

Designing, Manufacturing, and Predicting Deformation
of a Formable Crust Matrix

A Thesis
Presented to

The Academic Faculty

By

Austina N. Nguyen

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Mechanical Engineering

Georgia Institute of Technology

July 2004

Copyright © 2004 by Austina N. Nguyen

Designing, Manufacturing, and Predicting Deformation
of a Formable Crust Matrix

 Approved:

Dr. David Rosen
Chairman of the Committee
Associate Professor
Mechanical Engineering

Dr. Mark Allen
Professor
Electrical & Computer Engineering

Dr. Imme Ebert-Uphoff
Assistant Professor
Mechanical Engineering

Date Approved: 16 June 2004

Suffering is but another name for the teaching of experience, which is the parent of
instruction and the schoolmaster of life

 -- Horace

And for this thesis, I suffered . . . and learned.

 iv

ACKNOWLEDGEMENTS

My Parents

Because of the incomplete translation of English words to Vietnamese, it took

them a while to realize that I am a graduate researcher and not a paper filer, a mechanical

design engineer and not a car mechanic or fashion designer. But no matter what I strived

to do, they have been there for me.

Dr. David Rosen

 A man who would not take NO for an answer. He pushed and pushed me to

complete every task even when it seemed impossible, reminding me, “It is not like

putting a man on the moon.” Then, he pushed and pushed me to get the heck outta his

department! Because of him, I am a mechanical engineer.

Dr. Imme Ebert-Uphoff and Dr. Mark Allen

 I’d like to thank my other committee members for taking the time to read this

thesis. I know that from their inputs I can make this thesis a document to look back upon

with pride: “Yes my grandchild, I wrote that”.

The Lab-mates in MARC 251

 In the room where the lights remain on late into the night and into the early part of

the morning, there are always companies, words of encouragement, and people full of

 v

thesis experiences. I’d like to thank personally Sundiata Jangha and Benay Sager for

sharing with me their experiences at Georgia Tech.

Loren Ybarrondo

 During the first half of my thesis work, I was struggling. He was there

entertaining me, keeping up my spirit and staying up late at night to help me develop the

next set of equations. Because of him, I gained one of the greatest rewards from being a

graduate student: learning endurance. Loren, you are definitely a true friend.

Kyle Mitchell

 The soon to be famous writer who was kind enough to lend me his creativity by

editing my thesis, I owe him much thanks.

Jason Lawrence

The one whom I owe the most debt for making this thesis possible: Jason. He was

there from the beginning to the end. He was there teaching me how to code in MATLAB.

He was there fine-tuning my knowledge about spherical coordinates. He was there to the

very end, reading over my thesis one page at a time. Because of him, I have made it this

far. Thank-you so much.

This research was financially supported by the Rapid Prototyping Manufacturing Institute

(RPMI) at Georgia Institute of Technology and the National Science Foundation: grant

number IIS-0121663.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT iv

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xiii

SUMMARY xix

CHAPTER 1

INTRODUCTION TO DIGITAL CLAY

1

 1.1 Digital Clay Context 1

 1.2 Motivation for Studying Digital Clay 3

 1.3 The Benefits of Digital Clay to Society 4

 1.4 Digital Clay Team 4

 1.5 Digital Clay Architecture 6

 1.6 Problem Statement 8

 1.7 Key Question 9

 1.8 Goals 10

 1.9 Development Questions 11

 1.10 Development Hypothesis 12

 1.11 Deliverables: Show Me The Money! 14

 1.12 Introduction to The Rest of The Thesis 15

CHAPTER 2

LITERATURE REVIEW

16

 2.1 “Virtual Clay” Ideas 16

 2.1.1 CyberGrasp and RM-II Hand Master 16

 2.1.2 The PHANTOM 18

 2.1.3 FreeForm 19

 vii

 2.1.4 Feelex 20

 2.2 Elastic Deformation Products 21

 2.2.1 Compliant Mechanism 22

 2.2.2 Flexural-Based Gripper 23

 2.3 Ending Comment 24

CHAPTER 3

THE SKETCHBOOK OF MATRIX DESIGNS

25

 3.1 Requirement List 25

 3.2 Check (Clarifying The Task) 27

 3.3 Abstracting to Identify the Essential Problem 28

 3.3.1 Abstraction and Problem Formation and Systematic Broadening 28

 3.4 Function Structure 29

 3.5 The Manufacturing Technique 30

 3.5.1 MEMS 30

 3.5.1.1 Thermal Press Molding 31

 3.5.1.2 Injection Molding 31

 3.5.1.3 PDMS Cast Molding 31

 3.5.1.4 Lamination 31

 3.5.2 LCVD 32

 3.5.3 Other Techniques 33

 3.5.4 SLA 33

 3.6 Design and Manufacturing of Designs 35

 3.6.1 The Flexible Corners 35

 3.6.2 Deformable Cubes 36

 3.6.3 Compliant Hinges 37

 3.6.4 Deformable Crust Design 38

 3.6.4.1 Unit Cell for Crust 38

 3.6.4.1.1 Eight-Sided Unit Cell 39

 3.6.4.1.2 Spherical Joint Unit Cell 40

 3.6.4.1.3 Linear Triangles 41

 viii

 3.6.5 Selection Process of the Unit Cells for the Crust Matrix 42

 3.6.6 Matrix Selection 44

 3.6.7 Modification of Selected Unit Cell 46

 3.6.8 Grid Matrix 47

 3.6.9 Hexagon Matrix 48

 3.7 Crust Matrix MEMS Style 50

 3.8 Ending Remarks 53

CHAPTER 4

IT IS THE PRINCIPLES BEHIND THE MATH

55

 PART 1 METHOD 1:

 ABSTRACT FORMABLE CRUST MODEL
64

 4.1 Referencing Notation 68

 4.2 The Principles Underlying the Formable Crust Models 69

 4.3 Constraints From User Inputs (Method 1: “User Inputs” Block) 69

 4.4 Line Interpolation (Method 1: “Interpolate” block) 70

 4.5 Constraints (Method 1: “Iteration” Block) 71

 4.5.1 Length Constraints 71

 4.5.2 Coordinate Constraints 71

 4.6 Calculating Energy (Method 1: “Iteration” Block) 72

 4.6.1 Finding the Stiffness Value 73

 4.6.1.1 The Experimental Set-up 74

 4.6.1.2 Joint A (Larger Joint) Design and Results 74

 4.6.1.3 Joint B (Smaller Joint) Design and Results 78

 4.6.1.4 Effect of k 80
 4.6.1.5 Stiffness Ending Remarks 83

 4.6.2 Calculating the Angles from the Position Coordinates 84

 4.7 Iteration Process (Method 1: “Iteration” Block) 84

 4.7.1 Determination of a Direction using the Hessian Matrix 85

 4.7.2 Line-Search Procedure 86

 4.8 Ending Comments for Method 1 86

 ix

 PART 2 METHOD TWO:

 ACTUAL MANUFACTURABLE CRUST MODEL
87

 4.9 Spherical Coordinates (Method 2: Interpolation and Initial Guess) 92

 4.10 Initial Guess (Method 2: Interpolate and Initial Guess) 95

 4.11 Duplications (Method 2: “Create Relationship” Block) 98

 4.12 From Spherical to Cartesian (Method 2: Inside Iteration Box) 100

 4.13 Calculating the Joint Angles

 (Method 2: Joint Angles Calculation)

105

 4.13.1 Joint Angle Pseudo-code for One Unit Cell 106

 4.13.2 Joint Angle Calculation for an Array 112

 4.14 Potential Energy (Method 2: Inside Iteration Box) 114

 4.15 Ending Comments for Method 2 115

 4.16 Forward and Inverse Statics: Overall Statics of Method 2 116

 4.16.1 Inverse Statics 118

 4.16.1.1 Inverse Statics Equations 119

 4.16.2 Forward Statics 120

 4.16.2.1 Forward Statics Algorithm 122

 4.17 Unknowns, Equations, and Degrees-of-Freedom 125

 4.17.1 Method 1 127

 4.17.2 Method 2 131

 4.17.3 Ending Remarks for Section 137

 4.18 Ending Remarks for Chapter 139

 4.18.1 Benefits 139

CHAPTER 5

EXPERIMENTS AND RESULTS
 141

 5.1 Compare and Contrast 142

 5.2 Line Test 1 145

 5.3 Line Test 2 150

 5.4 Line Test 3 154

 5.5 Line Test 4: Piggybacking Style 160

 x

 5.5.1 Piggybacking Style Example 1 161

 5.5.2 Piggybacking Style Example 2 164

 5.6 Method 1 Matrix Elapse Time Study 168

 5.7 Method 1 Matrix Accuracy Prediction 171

 5.7.1 Matrix Plane Test 1 171

 5.7.2 Matrix Surface Test 2 172

 5.8 Mimicking the Car-hood Models 173

 5.9 Degeneracy 175

 5.10 Uniqueness 176

 5.11 Geometric Non-linearity 181

 5.12 Ending Remarks 182

 5.13 Comparing Two Theses 182

CHAPTER 6

LAST(ING) COMMENTS

185

 6.1 Concluding Comments 185

 6.2 Future works 188

 6.3 Benefits and Values 191

APPENDIXES

 APPENDIX A FINDING STIFFNESS VALUE 194

 APPENDIX B JOINT ANGLES DEFORMATION 210

 APPENDIX C MATLAB FOR METHOD 1 218

 APPENDIX D MATLAB FOR METHOD 2: FIX FACE 260

 APPENDIX E MATLAB FOR METHOD 2: FREE FACE 294

BILIOGRAPHY 322

 xi

LIST OF TABLES

Table 1.1: Digital Clay Team Members 5

Table 3.1: Requirement List 26

Table 3.2: Requirement List (continued) 27

Table 3.3: Manufacturing Attribute 42

Table 3.4: Scalable Attribute 42

Table 3.5: Deformation Attribute 43

Table 3.6: Rank of the Criteria 43

Table 3.7: Design Section Table 43

Table 4.1: Finding Unit Vector 1ar and 3ar from Bosscher’s Master’s Thesis 107

Table 4.2: Finding the Joint Angles θ's From Bosscher’s Master Thesis 111

Table 5.1: Computer Configuration 142

Table 5.2: Table 5.2: Kinematics Comparison Test 1 146

Table 5.3: Time Comparison for Line Test 1 147

Table 5.4: Iteration and Energy Comparison for Line Test 1 148

Table 5.5: Z-values Comparison 149

Table 5.6: Kinematics Comparison Test 2 151

Table 5.7: Time Comparison for Line Test 2 151

Table 5.8: Iteration and Energy Comparison for Line Test 2 152

Table 5.9: Z-values Comparison 153

Table 5.10: Kinematics Comparison Test 3 155

Table 5.11: Time Comparison for Line Test 3 155

Table 5.12: Iteration and Energy Comparison for Line Test 3 156

Table 5.13: Z-values Comparison 157

Table 5.14: Joint Results for Method 1 159

 xii

Table 5.15: Joint Results for Method 2 Fix 159

Table 5.16: Joint Results for Method 2 Free 159

Table 5.17: Time Comparison for Piggyback Example 1 162

Table 5.18: Iteration and Energy Comparison for Piggyback Example 1 162

Table 5.19: Z-values Comparison 163

Table 5.20: Time Comparison for Piggyback Example 2 165

Table 5.21: Iteration and Energy Comparison for Piggyback Example 2 165

Table 5.22: Z- values Comparison 166

Table A.1: Summary of Stiffness Values for Large Joint 204

Table A.2: Summary of Stiffness Values for Small Joint 209

Table B.1: Joint Results For Cell 1 and 2. Method 1 212

Table B.2: Joint Results For Cell 3 and 4. Method 1 212

Table B.3: Joint Results For Cell 5 and 6. Method 1 213

Table B.4: Joint Results For Cell 7. Method 1 213

Table B.5: Joint Results For Cell 1 and 2. Method 2: Fix 214

Table B.6: Joint Results For Cell 3 and 4. Method 2: Fix 215

Table B.7: Joint Results For Cell 5 and 6. Method 2: Fix 215

Table B.8: Joint Results For Cell 7. Method 2: Fix 215

Table B.9: Joint Results For Cell 1 and 2. Method 2: Free 216

Table B.10: Joint Results For Cell 3 and 4. Method 2: Free 217

Table B.11: Joint Results For Cell 5 and 6. Method 2: Free 217

Table B.12: Joint Results For Cell 7. Method 2: Free 217

 xiii

LIST OF FIGURES

Figure 1.1: Schematic of Digital Clay in Use 1

Figure 1.2: The Overall Goals of Digital Clay 2

Figure 1.3: Flow Chart of Task 5

Figure 1.4: Control and Interface Subsystems 7

Figure 2.1: CyberGrasp (Left) and RM-II Hand Master (Right) 17

Figure 2.2: Face deformation (www.siggraph.org) 18

Figure 2.3: SensAble Technology PhanTom 19

Figure 2.4: FreeForm Modeling for Manufacturing 20

Figure 2.5: Feelex Version 1 and 2 21

Figure 2.6: Compliant Crimping (Left). Compliant Gripper (Right) 22

Figure 2.7: Flexural-Based Gripper Design (Left). Manufactured (Right) 23

Figure 3.1: Overall Function Structure 29

Figure 3.2: Function Structure Using Generally Valid Functions 30

Figure 3.3: An Additive Fabrication Process – Stereolithography (Jacobs, 1992) 34

Figure 3.4: The Flexible Corners 35

Figure 3.5: Deformable Cubes 36

Figure 3.6: Compliant Hinges 37

Figure 3.7: Deformable Crust Concepts 38

Figure 3.8: Twelve-sided Deformable Crust 39

Figure 3.9: Spherical Joint Unit Cell 40

Figure 3.10: Linear Triangles 41

Figure 3.11: Grid Matrix Unit Cell 47

Figure 3.12: Grid Matrices 47

Figure 3.13: Hexagon Unit Cell 48

Figure 3.14: Hexagon Matrices 49

 xiv

Figure 3:15: Bellows Bubble Actuators Concept 1 51

Figure 3:16: Bellows Bubble Actuators Concept 2 51

Figure 3.17: One Unit Cell 52

Figure 3.18: Enclosing Membrane 52

Figure 4.1:Crust Matrix 55

Figure 4.2: Actual Crust Matrix Deforming 56

Figure 4.3: Low Degree-of-Freedom Car Hood Model 57

Figure 4.4: Deformation of Car Hood Model 58

Figure 4.5: Morphing of the Car Hoods 58

Figure 4.6: Car Hood Frame 59

Figure 4.7: 2D Example of Input 60

Figure 4.8: Basic Structure of Both Methods 61

Figure 4.9: Method 1-- Abstract Model 62

Figure 4.10: Springs for One Unit Cell 62

Figure 4.11: Flow Chart of Method 1 64

Figure 4.12: Example of matrix initial conditions 65

Figure 4.13: the Angles Between Two Center-points 66

Figure 4.14: Counting Convention 68

Figure 4.15: Inputting Z-heights 69

Figure 4.16: Line interpolation 70

Figure 4.17: The Two Different Joint Designs 73

Figure 4.18: Joint A (Left) and Joint B (Right) 73

Figure 4.19: Experimental set-up for Finding Stiffness 74

Figure 4.20: Set-up for Joint A 75

Figure 4.21: Finding Stiffness for the Joint A—the Larger Joint. 77

Figure 4.22: Set-up for Joint B 78

Figure 4.23: Finding Stiffness for Joint B (smaller Joint) 79

Figure 4.24: 4-by-5 Method 1 K Test. K=1(1st image). K=100 (3rd). K=1000 (4th) 81

Figure 4.25: K1=100; K2=500 (LT). K1=500; K2=500 (M). K1=100; K2=1000 (RT) 83

Figure 4.26: Flow Chart of Method 2 88

 xv

Figure 4.27: The nr and vr -vectors 93

Figure 4.28: Spherical Coordinates 93

Figure 4.29: Example of Spherical Coordinates 94

Figure 4.30: Interpolation From Z-input 96

Figure 4.31: nr and vr -vectors for One Unit Cell 98

Figure 4.32: Linking unit cells 99

Figure 4.33: Rotation about J-axis 101

Figure 4.34: Rotation about K-axis 102

Figure 4.35: Two Rotations 103

Figure 4.36: Unit Cell 106

Figure 4.37: Detail of Dashed Circle of Unit Cell 108

Figure 4.38: Second Detail 110

Figure 4.39: Array of Unit cells with Center points 112

Figure 4.40: Arrangement of ar and midar vectors 113

Figure 4.41: Forward and Inverse Statics 116

Figure 4.42: Calculates the Position 117

Figure 4.43: Inverse Statics Diagram 119

Figure 4.44: Calculating the Edge Vertices 120

Figure 4.45: Linking Unit Cells 122

Figure 4.46: Roll-Pitch-Yaw 126

Figure 4.47: Numbers of Unknowns and Constraints for a 1-by-7 Matrix 127

Figure 4.48: Method 1 2D Example for DoF 129

Figure 4.49: 4-by-5 Matrix of Constraints 129

Figure 4.50: 2-by-2 DoF Example 130

Figure 4.51: Method 1: 4-by-5 DoF Example 131

Figure 4.52: Method 2: DoF Counting 134

Figure 4.53: Method 2: 2-by-2 DoF Example 135

Figure 4.54: Method 2. 4-by-5 DoF Example 136

 xvi

Figure 5.1: Fixed Face: Line of Cells (Left) and Detail of Fixed Face (Right) 143

Figure 5.2: Free Face: Line of Cells (Left) and Detail of Free Face (Right) 143

Figure 5.3: Line Test 1 Method 1: Abstract Model 145

Figure 5.4: Line Test 1 Method 2: With Fixed Face 145

Figure 5.5: Line Test 1 Method 2: Without Fixed Face 145

Figure 5.6: Z-Values Results for Line Test 1 149

Figure 5.7: Line Test 2 Method 1--Abstract Model 150

Figure 5.8: Line Test 2 Method 2-- With Fixed Face 150

Figure 5.9: Line Test 2 Method 2-- Without Fixed Face 150

Figure 5.10: Z-Values Results for Line Test 2 152

Figure 5.11: Line Test 2 Method 1-- Abstract Model 154

Figure 5.12: Line Test 2 Method 2--With Fixed Face 154

Figure 5.13: Line Test 2 Method 2--Without Fixed Face 154

Figure 5.14: Z-Values Results for Line Test 3 157

Figure 5.15: Graphic Reminder of Previous Results for Method 1 and 2 161

Figure 5.16: Piggybacked Example 1 Result 161

Figure 5.17: Z-Values for Piggyback Example 1 163

Figure 5.18: Method 1 Inputs (Left) and Line Interpolation (Right) 164

Figure 5.19: Method 1 Results 164

Figure 5.20: Piggyback Results 164

Figure 5.21: Z-Values for Piggyback Example 2 166

Figure 5.22: 3-by-3 Matrix Input at [2,2] (Left). Results (Right) 168

Figure 5.23: 4-by-4 Matrix Input at [3,3] (Left). Results (Right) 168

Figure 5.24: 5-by-5 Matrix Input at [3,3] (Left). Results (Right) 169

Figure 5.25: Computational Time 169

Figure 5.26: Iteration Rate 170

Figure 5.27: Plane Test Inputs (Left). Results (Right) 171

Figure 5.28: Surface Test Inputs (Left). Results (Right) 172

Figure 5.29: Morphing Car-hood Models 173

Figure 5.30: Ferrari Attempt 173

 xvii

Figure 5.31: Corvette Results 174

Figure 5.32: Non-Existing Springs 175

Figure 5.33: Non-deformed state (Left) Shear Deformation (Right) 176

Figure 5.34: The Bowing Effects 177

Figure 5.35: Set 1. Flat Plane Starting Position (LT). Input (M). Results (RT) 178

Figure 5.36: Set 2. Flat Plane Starting Position (LT). Input (M). Results (RT) 179

Figure 5.37: Set 3 Starting Position with Inputs 179

Figure 5.38: Set 3. Starting Position (LT). Input (M). Results (RT) 180

Figure 5.39: Bosscher’s Abstract model 183

Figure A.1: Results Large Joint Run 1 195

Figure A.2: Stiffness Value for Large Joint. Run 1 195

Figure A.3: Results Large Joint Run 2 196

Figure A.4: Stiffness Value for Large Joint. Run 2 196

Figure A.5: Results Large Joint Run 3 197

 Figure A.6: Stiffness Value for Large Joint. Run 3 197

Figure A.7: Results Large Joint Run 4 198

Figure A.8: Stiffness Value for Large Joint. Run 4 198

Figure A.9: Results Large Joint Run 5 199

Figure A.10: Stiffness Value for Large Joint. Run 5 199

Figure A.11: Results Large Joint Run 6 200

Figure A.12: Stiffness Value for Large Joint. Run 6 200

Figure A.13: Results Large Joint Run 7 201

Figure A.14: Stiffness Value for Large Joint. Run 7 201

Figure A.15: Results Large Joint Run 8 202

Figure A.16: Stiffness Value for Large Joint. Run 8 202

Figure A.17: Results Large Joint Run 9 203

Figure A.18: Stiffness Value for Large Joint. Run 9 203

Figure A.19: Results Small Joint Run 1 205

Figure A.20: Stiffness Value for Small Joint. Run 1 205

 xviii

Figure A.21: Results Small Joint Run 2 206

Figure A.22: Stiffness Value for Small Joint. Run 2 206

Figure A.23: Results Small Joint Run 3 207

Figure A.24: Stiffness Value for Small Joint. Run 3 207

Figure A.25: Results Small Joint Run 4 208

Figure A.26: Stiffness Value for Small Joint. Run 4 208

Figure B.1: Results from Method 1 211

Figure B.2: Results from Method 2: Fix Face 214

Figure B.3: Results from Method 2 Free Face 216

 xix

SUMMARY

Digital Clay represents a new type of 3-D human-computer interface device that

enables tactile and haptic interactions. The Digital Clay kinematics structure is computer

controlled and can be commanded to acquire a wide variety of desired shapes (shape

display), or be deformed by the user in a manner similar to that of real clay (shape

editing). The design of the structure went through various modifications where we finally

settled on a crust matrix of spherical joint unit cells. After designing the kinematics

structure, the next step is predicting the deformation of the crust matrix based upon a

handful of inputs. One possible solution for predicting the shape outcome is considering

minimizing the potential energy of the system. In this thesis two methods will be

introduced. The first method will be an abstract model of the crust where the energy is

calculated from a simplified model with one type of angular springs. The second method

is the actual manufacturable crust model with two types of angular springs. From the

implementation of these two methods, the output will be center-points of the unit cells.

From the center-points, one can also calculate the joint angles within each unit cell.

 1

CHAPTER 1

INTRODUCTION TO DIGITAL CLAY

Digital Clay is the next stage of CAD modeling. The main focus of this thesis will

be the manufacturability and kinematics of the Digital Clay structure that will help this

advancement.

1.1 Digital Clay Context

In recent years, the communication of form and complex data has been greatly

enhanced by visualization technologies. However these visualization technologies are

based on planar images. With the advancement of computational power, it is now

possible to consider real-time, tactile 3-D physical communication to overcome the

inherent limitations of planar images. A team at the Georgia Institute of Technology is

pursuing a novel type of human-computer interaction called Digital Clay. Figure 1.1

shows a schematic illustration of Digital Clay being used for shape editing.

Figure 1.1: Schematic of Digital Clay in Use.

 2

The objective of the Digital Clay, NSF-sponsored research team is to develop an

interactive technique that combines haptic sensation with computer algorithms to achieve

two key goals. The first goal is to design a deformable, spatially-continuous surface with

sensors that store its shape in a computer as the user deforms the surface. In addition, the

surface will be actuated so that users can input shape data into the computer and the

Digital Clay will deform itself into the desired shape. The shape data can be sent and

received electronically anywhere within the world through the use of the Internet. This

will allow other users to not only see an image of the surface but alter its shape as well.

The second goal is to provide this visual and haptic sensation simultaneously through the

use of a single device that does not obligate an individual to wear any extra apparatus

(gloves, virtual headgear, etc.). Figure 1.2 shows a schematic of how the Digital Clay

product can inter-connect people.

Figure 1.2: The Overall Goals of Digital Clay

Female designs a cup
by physically shaping
Digital Clay.

On the other side of
the world, a man
receives the cup
design.

The man redesigns the
cup by using an
algorithm or his hands
and sends the data back
to the female.
Communication through
Digital Clay is achieved.

 3

This thesis will discuss the development of one feature of the Digital Clay device:

the deformable kinematics structure that takes on shape and displays the shape. Later this

thesis will discuss the technical issues and mathematics behind generating arbitrary

shapes in the clay.

1.2 Motivation for Studying Digital Clay

Currently we are living in a world that is progressing toward global

communication. For example in the production of automobiles, the body of the car may

be designed in Germany, the engine may be designed in the U.S., and the whole car may

be assembled in Mexico. How do all of these people communicate their ideas,

development, and progression? In the past, we have relied on mail, telephones, and fax

machines. But with the advent of the world-wide-web, we have the power to

communicate within minutes. However, the Internet only allows us to communicate flat

objects like pictures and text, not the real thing. So we revert back to mail. Hey, wait a

minute -- what happened to progress? Digital Clay will be the next innovative tool in this

world of global communication that will fill up the “progression” gap. This technology

will allow designers, engineers, artists, doctors, and lawyers around the world to interact

on a visual and somewhat physical aspect.

 4

1.3 The Benefits of Digital Clay to Society

Digital Clay has several potential applications for society. These include:

1) Art: Displaying shape morphing

2) Medical diagnostics: Studying the shape of cancers

3) Bioengineering device design: Fitting artificial limbs for amputee

4) Reconfigurable displays: Demonstrating motion as in a wheel on a car

5) Products: Designers sharing concepts

6) Mechanical computer-aided design: Two gears turning

7) Education: Distance collaboration for product development:

8) Visually impaired persons: Communication for the blind

9) Lawyers: Re-enactment of scenes

Some applications require the user to directly shape the surface, while others

only display the shape. For example, for medical diagnosis sometimes it is only necessary

to support shape and display stiffness so that the Digital Clay can “feel” like an organ or

a type of tissue. In all cases, the Digital Clay device will advance our present knowledge

of how we design, communicate, and collaborate.

1.4 Digital Clay Team

The Digital Clay project was initiated in the beginning weeks of July 2001 when

NSF (National Science Foundation) financially approved Georgia Institute of Technology

to develop a realistic Digital Clay product. The following Georgia Institute of

 5

Technology faculty members and students were given with this task. The names are

shown in Table 1.1.

Table 1.1: Digital Clay Team Members

Professor / Student
Focal Points Concerning Digital

Clay Project
Mark Allen / Guang Bai MEMS (Micro-Electro Mechanical Systems)

Wayne Book / HaiHong Zhou Project Manager/Controls
Ari Glezer / Dan Short Hydraulics/Fluids

David Rosen / Austina Nguyen Manufacturing
Jarek Rossignac / Byoung-Moon Kim Computer Modeling Interface
Imme Ebert-Uphoff / Paul Bosscher Kinematics / Structure Analysis

 Below is a flow chart that describes the task of each department. The dashed

blocks describe the focus for this thesis.

Digital Clay Research

Interface

SensorsActuators AlgorithmsDrivers
(amplifiers,

Etc)

Motion
Tranission
systems

Skin

Predicting Deformation
of Design

power
source

Design for
Manufacturing

Geometry of
structure

Legend
 Basic Info. Flow with Manuf. and others

 Division of task

 Overall Digital Clay project

computer
simulations

computer/clay
Interfaces

Computer graphics
simulations

Design of
crust

Fluid MechanicalMEMSManufacturing

Thesis Focus

Crust

hardware

Controls

software

Kinematics

Figure 1.3: Flow Chart of Task

 6

As seen in Figure 1.3, the main focus for this thesis is describing the design of the

kinematics structure for quick manufacturing using stereolithography technology and

predicting the deformation of the kinematics structure design. For a more descriptive

schematic about the interaction within the Digital Clay architecture, refer to the next

section. After designing the kinematics structure that will deform, we will need a

program that will predict the deformation. We will create this program to test the

deformation capability of the kinematics structure that we designed. At the same time, we

will communicate with the interface group for feedback and improving the interfacing of

the program for human usage.

1.5 Digital Clay Architecture

Digital Clay will be a physical volume bounded by a deformable kinematics

structure that acts as the haptic interface. This kinematics structure is connected to a

computer that can either recreate the surface topography of the shape inputted as a CAD

file or modify the kinematics structure and the volume underneath the surface from a

preexisting file. To display any acquired shape either by human manipulation or CAD

file, the kinematics structure is controlled by an array of interconnected fluidic-driven

actuators. Each actuator is a fluidically inflatable cell that is connected to two common

pressurized reservoirs (within a base) through a dedicated two-way miniature valve. The

valves and pressure sensors will be part of the Digital Clay base that controls fluid flow

to and from the inflatable cells. For measuring deformations and/or displacements of the

cells, an additional array of sensors may be incorporated into the base. The Digital Clay

 7

device architecture described above is shown schematically within the dashed (bottom)

box in Figure 1.4.

Figure 1.4: Control and Interface Subsystems

The control and interface subsystems are shown within the dot-dashed (top) box

in Figure 1.4. The operation of the Digital Clay depends upon the mode in which the

clay is being used. In display mode, the Application, through an API (application

programming interface) translates the shape from the CAD file into commands and

parameter values that can be sent to a lower-level control unit. The lower level control

unit regulates fluid flow until the Digital Clay has taken the desired shape. This

information flow is shown using thin arrows.

In shape editing mode, the user will press and deform the Digital Clay kinematics

structure in the interface area. This will cause the pressure within the inflatable cells to

rise above a threshold value, which forces fluid out of the cells. The user can also

Application
User Interface /

Gesture
Interpretation

Mathematical
Model

Desired Shape
Parameter
Processing

Controller

Actuation
System

Kinematic
Structure

SkinUser Input

Sensor

Sensor
(optional)

AP
I

Device

Control & Interface

Application
User Interface /

Gesture
Interpretation

Mathematical
Model

Desired Shape
Parameter
Processing

Controller

Actuation
System

Kinematic
Structure

SkinUser Input

Sensor

Sensor
(optional)

AP
I

AP
I

Device

Control & Interface

Interface Area

 8

directly indicate to the control unit to inflate or deflate the cells. In either case, the top

level of control will first interpret the user’s gestures to determine his/her intent. A

mathematical model of the clay’s behavior will be used to compute commands and

parameter values that can drive the clay according to the user’s actions. These values are

then sent to the lower level clay controller for communication to the actuators. The

additional information flow for this mode is shown in bold arrows.

The Digital Clay architecture is a complex maze of interacting subsystems. It is

beyond the scope of this thesis to describe every subsystem. The main focus of this thesis

is the deformable kinematics structure, which will be discussed in further detail in a later

section. The next few sections will explain about the purpose, goals, and focus of the

Digital Clay research.

1.6 Problem Statement

The Digital Clay structure is a kinematics structure that deforms to display

various shapes. From this initial design idea, there are three problems that arise. The first

problem deals with design, the second deals with manufacturing the structure, and the

third problem deals with calculating its deformation. Below are the problem statements.

1) The kinematics structure needs to be designed such that it can deform into various

shapes based upon a set number of inputs.

 9

2) A manufacturing process is needed for building the kinematics structure to

deform into various shapes without breaking within an aging period of the

material used.

3) An algorithm is needed to calculate the deformation of the kinematics structure

based upon a series of given constraints.

a. The algorithm needs be universal enough to consider different types of

materials that can be used to manufacture the kinematics structure.

b. The algorithm must be computationally efficient and have a fast rate of

convergence.

1.7 Key Question

Although the Digital Clay could be built using any number of manufacturing

processes, our prototypes were built using stereolithography. Since a production

manufacturing process has not been selected, a general focus of study is the deformation

of the kinematics structure based upon various materials to help select the material and

predict the outcome of the kinematics structure due to applied force. Therefore the main

key question is:

What is this kinematics structure and how can the deformation of the

kinematics structure be predicted based upon the materials being used and

constraints being applied?

 10

1.8 Goals

Based upon the key question, the main goal of this thesis is to design a kinematics

structure concept such that it will behave correctly and it is manufacturable. Then an

algorithm must be developed that could predict the deformation of the kinematics

structure based upon the material properties, system constraints, and user inputs. The

results will help the MEMS and the Rapid prototyping departments choose a

manufacturing material and help the controls department to predict the deformation.

The goal is broken up into several tasks:

1) Designing and manufacturing a deformable kinematics structure using rapid

prototyping technology with consideration in scalability, shape generation capability,

and longevity to understand how the kinematics structure should deform in real life.

2) Expanding the existing joint angle calculation equations for one unit cell of the

kinematics structure to calculate all the deformation angles of the whole skin.

3) Incorporating the joint stiffness for each unit cell of the kinematics structure from

the mechanical properties of Stereolithography material to study the “inverse static”

deformation of the structure.

4) Developing a “forward statics” algorithm (forward kinematics equations with

mechanical properties embedded into the equations) for completing the circle of

inverse and forward equations to predict the deformation of the deformable

kinematics structure.

 11

1.9 Development Questions

Based on the aforementioned goals, there are two specific areas this thesis will

focus upon. One is the design of the kinematics structure for manufacturing. The second

is the development of a method for predicting deformation. The development questions

are divided into two groups: the design and the deformation method.

1) Design:

a. What design features should the kinematics structure have to allow the greatest

deformation without breaking?

b. What building process should be considered for designing the kinematics

structure?

c. What size should be chosen such that the kinematics structure yields optimal

deformation and is feasible to build?

2) Deformation Method

a. What is the smallest amount of information needed from the user to determine the

deformation of the kinematics structure?

b. How should the computer algorithm use the inputs to determine the optimal

deformation state of the kinematics structure?

c. What is the best process for guiding the results toward a global solution?

d. Since this is a static analysis, what properties of the kinematics structure should

be known to help determine the deformation of the kinematics structure based

upon the manufacturing aspect?

e. How would the method be implemented?

 12

1.10 Approaches to Answer Development Questions

This section will discuss how the above questions will be answered through a

these proposed approaches. Similar to the previous section, this section is divided into

two sections, the design and deformation methods.

Design:

1) Design a feature that would cause the whole kinematics structure to deform. One

possible design focus is the unit cell that makes up the structure, where the unit

cell’s range of motion would be maximized.

2) Consider a manufacturing process that would produce high turn around results.

Presently, the kinematics structure is used for studying of deformation and shape

formation. We need something that would give quick results with high accuracy.

One possible building process is using a rapid prototyping technique called

stereolithography where the results can occur within 24 hours.

3) Create a kinematics structure that is as large as possible. Since rapid prototyping

is suggested, then the size of the kinematics structure should be as large as the

platform of the stereolithography machine allowed. For the case of the unit cells

that makes up the kinematics structure, the size of the unit cells should be as small

as possible. As the size of the cells decreases, the resolution increases which in

turns increases the shape formation. A possible size to aim for is 18mm, which is

the average width of one fingertip.

 13

Deformation method:

1) Require the smallest amount of information possible. The given inputs should

create a series of equations for the method. In turn the user is only expected to

input only a handful of information to produce the desired outcome. With both

types of inputs, this can be an under-constrained problem. Any additional

constraints will improve the calculation in either speed or accuracy. To calculate

the deformation when there are not enough equations from the given inputs to

solve for the number of unknowns, a numerical iterative process can be applied.

The numerical method would search for the minimum point similar to Newton

Raphson method.

2) Improve the initial guess to increase the speed of convergence of the iterative

method.

3) Determine the material property that is most likely the one that would affect the

motion of the unit cells. Since these ranges of motion in these unit cells determine

the deformation of the kinematics structure, the most reasonable material property

would be the elastic modulus or the stiffness factor.

4) Equate the number of equations to the number of unknowns by applying the

system of equations method for deriving the answers quicker than the iteration

process.

 14

5) If the numbers of equations and unknowns are equal, then material properties or

material side effects (unit cell stiffness) are not needed to determine the

deformation.

1.11 Deliverables

 Below are brief descriptions of what this thesis will deliver. The two main

deliverables are the manufactured kinematics structure and the deformation algorithm.

Since it is difficult to determine the best way to predict the deformation, we developed

two methods. Only one of them will be selected as the method of choice.

1) Kinematics structure designs

a. Grid kinematics structure: Manufacture four connecting spherical joints (unit

cells) to form a kinematics structure.

b. Hexagon kinematics structure: Manufacture six connecting spherical joints to

form a hexagon.

2) Stiffness value of the different types of joints in the unit cells based upon

experimental results.

3) Deformation Method/s

a. Analysis of deformation with the grid kinematics structure. 1

1 After accomplishing these programs for the grid, the analysis can be extended to the hexagon kinematics
structure.

 15

1. Method 1: under-constrained, abstract formable kinematics structure model

that used the average stiffness value of the joints in the unit cells.

2. Method 2; under-constrained, actual manufactuable kinematics structure

model that applies two different stiffness values for the two different types of

joint designs that comprise the unit cells.

1.12 Introduction to the Rest of the Thesis

This chapter serves as an introduction to this thesis, explaining the foundation for

what will come. Below are brief explanations of the other chapters.

Chapter 2: Literature research about other CAD modeling package

Chapter 3: Design and manufacturing of the kinematics structure

Chapter 4: The math behind the analysis of the deformation of the kinematics structure

Chapter 5: The results from the implementation of the math

Chapter 6: Future works and benefits of this thesis to other members of the Digital Clay

 16

CHAPTER 2

LITERATURE REVIEW

In this chapter are sections discussing about other designs related to the work in

this thesis. The first set of sections discuss about other products that work with or apply

the “Virtual Clay” idea. The second set that follows will discuss about existing product

that is similar to the deformable kinematics structure in this thesis.

2.1 “Virtual Clay” Ideas

Below are examples of existing “Virtual Clay” or products that manipulate

“Virtual Clay”.

2.1.1 CyberGrasp and RM-II Hand Master

The human-computer interface idea is a powerful improvement upon the current

CAD system and has already provoked others researchers curiosity. Some existing

implementations have included a glove-like or haptic manipulator interfaces that focused

on reshaping non-physical volumes of ‘virtual clay’ on a computer screen. Examples are

the CyberGrasp (Immersion, 2004) and the RM-II Hand Master (Virtual Reality

Technology, 2004) as seen in Figure 2.1.

 17

Figure 2.1: CyberGrasp (Left) and RM-II Hand Master (Right)

 Applications for these haptic manipulators can be surgical training that requires

the physical volumes to behave in a physically based manner (Choi, et. al, 2002).

However these sculpting systems were being criticized for relying upon physically based

behavior that utilizes multi-scale techniques or pre-computed material properties to

achieve real-time performance (Capell, et. al, 2002; Debunne, et. al, 2001; McDonnell

and Qin, 2000). It does not look or feel real. Figure 2.2 is an example of a graphically

manipulated non-physical volume of ‘virtual clay’ on a computer screen.

 18

Figure 2.2: Face deformation (www.siggraph.org)

These physically based behaviors are often computationally expensive and may

lead to unnecessary interaction difficulties. For example, the volume preservation

behavior of physical clay is an unwanted and unneeded behavior for our work. Other

work in freeform deformation implemented some physically based behaviors (Barr, 1984;

Sederberg, 1986) and has utilized a variety of deformation tools (Coquillart, 1990).

2.1.2 The PHANTOM

As haptic interface devices become more popular, the introduction of the

PHANTOM by SensAble Technology has spawned a wide variety of applications

(SensAble, 2004).

 19

Figure 2.3: SensAble Technology PhanTom

 In the area of mechanical product development, physical interaction between user

and clay consists primarily of the forces applied by each to the other. In addition, the

user can inspect the shape visually and by touching the shape without modifying it. Our

approach in our Digital Clay haptic feedback device is to investigate a single mode of

interaction to explore capabilities and limitations of tactile interaction, with shape and

force feedback through the device.

2.1.3 FreeForm

Another one of SensAble product is the FreeForm modeling system that they are

advertising for having real-time force feedback for complex shapes. They are attempting

to move into the engineering market of design and manufacturing of products for the user

to create various organic shapes as shown in Figure 2.4. Other similar types of haptic

 20

interface devices have also been developed and tested for product development

applications (Gurocak, et.al, 2002).

Figure 2.4: FreeForm Modeling for Manufacturing

Although the FreeForm modeling packaged produced very organic shapes on the

screen, the shape is still on the screen. The Digital Clay will be a physical device that

allows the user to physically view and touch the shape in real life. It will also have a

graphic display of the shape on the screen, much like the FreeForm but with an extra

plus.

2.1.4 Feelex

It appears that so far every product can manipulate shape on the screen, but not in

physical life. With the introduction of the Feelex by the Virtual Reality Lab (VR Lab) in

Japan, the user can now feel the haptic feedback of any given shape with their bare hands

and manipulate the shape without any additional hardware as seen in Figure 2.5 (Iwata,

et.al, 2001).

 21

Figure 2.5: Feelex Version 1 and 2

This innovative product is the next step into providing haptic force feedback for

user without using any extraneous devices. The digital clay device will take that idea to

become a more advanced version of the Feelex in force feedback device. It will not be

just a bunch of pins that moves up and down like an animated pin-cushion but a series of

bubbles that inflates and deflates upon applied force. This will allow greater shape

deformation and resolution. Plus the digital clay device is a combination of both the

SensAble technology’s Freeform and the VR Lab’s Feelex, advancing what already exist.

Digital Clay-- so far nothing is like it in the current market. That’s what makes this

project and thesis a challenging and rewarding experience.

2.2 Elastic Deformation Products

Previously we gave examples of different products that would allow the user to

deform CAD models using force-feedback mechanism. Now instead of discussing about

 22

the whole Digital Clay device by giving examples of competitive products, lets us

describe the focus of this thesis: the deformable kinematics structure. This section will

describe various existing products that use elastic deformation as the source of motion. In

all the examples below, each product is a 2D deformable device. Their designs will help

develop the 3D deformable crust matrix.

2.2.1 Compliant Mechanism

Figure 2.6: Compliant Crimping (Left). Compliant Gripper (Right)

 Designed by a team of Mechanical Engineers from the University of Michigan,

Ann Arbor and Sandia National Laboratories, compliant mechanisms are single-structure

mechanisms that can transmit motion though flexible hinges (Kota, et.al, 2001). These

mechanisms consist of connecting rigid links with elastic deformable joints as seen in

Figure 2.6 with both the Compliant Crimping on the left side and the Gripper on the right

side. As the two handles on the far right of the Compliant Crimping are pushed together,

the rectangle on the far left will move horizontally to the left. For the Compliant Gripper,

 23

as the handle in the center is pulled to the left, the two trapezoids on the far right will be

pulled together as if it was pinching something.

Similarly this thesis is attempting to create a design where a single action will

create a series of reactions to accomplish a task. Currently we are investigating compliant

mechanisms for ideas to develop our Digital Clay deformable crust.

2.2.2 Flexural-Based Gripper

Figure 2.7: Flexural-Based Gripper Design (Left). Manufactured (Right)

Comparable to Kota’s Compliant Mechanisms, Chen and Lin’s Flexural-based

Gripper applies the elastic deformation capability of the material to create motion with

little or no assembly necessary (Chen, 2002). In this case, this Flexural-based Gripper is

used for handling optical fibers. In the left image of Figure 2.7, the zoom image shows

the curved surface and the thin walls of the design that would act as the flexible joint for

 24

the mechanism and the right image shows the gripper being manufactured. This will be

another idea that would help how our Digital Clay deformable crust becomes more of a

reality.

Both of these 2D compliant mechanism designs set the stage for developing the

Digital Clay crust matrix with compliant hinges that would use elastic deformation as a

source of motion to deform in 3D.

2.3 Ending Comment

 Based upon this literature review and the introduction chapter, the design

expectation for the Digital Clay crust matrix is to design a deformable crust as a physical

mesh that would respond to human touch. In the introduction chapter, we mentioned that

the Digital Clay device should also receive signal from the computer to deform. This set

another requirement that there should be some sort of interconnection between the

actuators and the display device. However at this stage, we need to design the crust

matrix that would deform with consideration for actuators and sensors than to design the

interconnection. The next chapter describes the various designs that the deformable crust

matrix went through before we settle down on analyzing one design.

 25

CHAPTER 3

THE SKETCHBOOK OF MATRIX DESIGNS

The design of the deformable infrastructure that would generate manifolds of

shapes went through various iterations and modifications. The final design is a

deformable crust of spherical joints. Before the spherical joint was developed, the parts

that make up the crust matrix are generically named “unit cells”--individual cells that can

deform and can be combined to deform as a whole. Below will be explanations of the

design process similar to Beitz and Pahl Design process (Beitz and Pahl, 1996) and the

manufacturing of different concepts for the unit cells.

3.1 Requirement List

 After knowing what is expected from this matrix based upon the previous

chapters, the requirement list will be created to ensure that the customer’s demands are

being met as well as any requirements that we, the designers, may have. The customers

are the Digital Clay team members. A requirement list is a design specification list that

states which features or characteristics of the subject of study are either demands

(“[features] that must be met under all circumstances”) or wishes (“[features] that should

be taken into consideration whenever possible”) (Beitz and Pahl, 1996). The people

involved in fulfilling the requirements are various people who are/were classmates,

project members, and Digital Clay team members. I am the principle designer who will

gather the necessary data and guide the design development phase during this whole

process. Below are the original descriptions and specifications for one unit cell design

 26

that we are developing to satisfy our customer. While creating the list, we will also

consider the matrix of unit cells. As previously stated, the unit cell should be able to

form a deformable kinematics structure by linking together and becoming a matrix of unit

cells. During this design stage, the matrix of unit cells is not attached to any mechanical

or electrical devices. The energy for deformation of the crust matrix will be human

powered. Later in the design stage, the energy of deformation will be powered by

mechanical or electrical devices. It is beyond the scope of this thesis to go into the details

of the devices. Below is Table 3.1 that describes the requirements for design these unit

cells that would link together.

Table 3.1: Requirement List
Problem Statement: Schematic:

Design a unit cell that is capable of
deforming in various directions
without breaking and able to link
together to form a matrix of the cells.

D
W

Requirements

 1. Geometry
W Width of unit cell: width <18mm (a fingertip width)
W Depth of unit cell: Depth <18mm (a fingertip width)
W Height of unit cell: Height <18mm (a fingertip width)
D Unit cells capable of attaching to neighboring cells to form a matrix structure.
D Matrix of cells is scalable

 2. Kinematics
D Cell Deformable angle: 90 degree - 180 degree
D Matrix constructed from these cells has to be able to deform
D Matrix constructed from these cells must be portable

 3. Forces
D Cell deforms in three directions (x, y, z)
D Applied forces on matrix can act in any direction
W Applied force for matrix deformation: 3 N - 6 N

 27

Table 3.2: Requirement List (continued)
D
W

Requirements

 4. Energy
D Mechanism of deformation: human power for shape input

 5. Material
D Material capable of deforming
W Material is elastic
D Cell withstands repeatable deformation: 20 count - 500 count

 6. Safety
D Operator safe

 6. Ergonomics
W Matrix of cells is smooth to human touch

 8. Production
W Manufacturing cell: SLA.

 9. Assembly
W All cells molded as one piece.
D Matrix is constructed of multiple cells.

 10. Operation
D Human touch on matrix causes deformation.
D Computer actuated when matrix is connected to computer

 11. Maintenance
W Easy exchange of cells within matrix

 12. Recycle & Environmental
W Environmentally safe material.

3.2 Check (Clarifying The Task)

With the completion of a detailed requirement list that focuses on our customer’s

needs and wants as well as ours, Phase II, conceptual design, is next. The reason for this

is that we now have a list that lays out the functions and requirements that are necessary

for our design to be successful.

 28

3.3 Abstracting to Identify the Essential Problem

After developing a requirement list according to our customer’s demands and our

wishes, we begin to abstract the conditions attributed to the problem and task, trying to

venture away from any design fixations. To accomplish this task, abstraction and

problem formation are done using the five-step method.

3.3.1 Abstraction and Problem Formation and Systematic Broadening

 From the Beitz and Pahl Design process the Abstraction and Problem formation

process is a five-step process that goes through the requirement list and reduces the list to

one main problem formation statement. The process consists of:

I. Eliminate personal preference

II. Omits requirements that have no direct bearing on the function and the essential

constraints,

III. Transform quantitative into qualitative data and reduce them to essential

statements

IV. Generalize the statement made in step III

V. Formulate the problem in solution-neutral terms.

This process was already performed in ME 6101: Design Engineering. The result is

Design a multi-connected, scalable cell that can deform in various directions. Upon

developing this solution-neutral problem statement, we further broaden the project to

 29

prevent any potential design fixations. Systematic broadening is done by abstracting from

a specific statement to a general statement.

 For Systematic Broadening, this process was already preformed in ME 6101. The

final statement is: Design a scalable matrix that deforms.

3.4 Function Structure

 As a result from systematic broadening, our portion of the project is focusing on

just the construction and deformation of a cell that would later become the matrix. The

function structure is seen to be relatively simple.

Figure 3.1: Overall Function Structure

 The energy input is the amount of force applied to the unit cell matrix to deform

it. Meanwhile, the signal represents the direction and location of the applied force. For

instance, the various locations of the applied force will result in different visual

deformation signals. Figure 3.2 is a more descriptive function structure. When the energy

and the signal are given to the matrix, the matrix would respond and change the positions

of various unit cells. Because the energy gets lost when the applied force is moved, not

every unit cells receive the same amount of energy; therefore not every unit cells will

deform the same amount. When the residual force is removed, the unit cells will return to

their original shape.

Design a matrix of cells capable of
deforming in various directions
without breaking.

Energy Energy

Signal Signal

 30

Figure 3.2: Function Structure Using Generally Valid Functions

3.5 The Manufacturing Technique

There are various ways to create prototypes of the Digital Clay matrix for testing

and evaluation. Below are several techniques that are being considered.

3.5.1 MEMS

Micro-electromechanical systems (MEMS) technology is an integration of

sensors, actuators, and electronics on a common substrate using micro-fabrication

technology (MEMS and Nanotechnology Clearinghouse Website). Below are various

MEMS techniques being considered for prototyping the Digital Clay matrix.

Energy
(Applied force)

Energy Loss
(Applied force
is removed)

.

Connect energy
and signal to

matrix for
deformation.

Channel energy
to move cells in
the matrix.

Vary energy to
deform matrix
and to symbolize
energy loss when
applied force is
removed.

Channel residual
energy to return
cell to its original
shape.

Energy Loss
(Residual force removed)

Signal
Signal

 31

3.5.1.1 Thermal Press Molding

Using a mold made of aluminum or stainless steel, the Digital Clay matrix can be

formed by pouring a thermo-set polymer onto the mold. The polymer would then solidify

by applying heat and pressure. The materials being investigated are Dyneon Elastomer

and Polyethylene. This process seems promising. We may create a mold for the matrix in

the future. It is beyond the scope of this thesis to discuss the possibility of this mold.

3.5.1.2 Injection Molding

 Similar to the thermal press molding, a mold is first created. The selected polymer

is heated to a quasi-liquid state, then injected into the mold using a vacuum and cured by

heat. This process is not successful because the walls of the Digital Clay structures are

too thin and complicated for the injection molding process to work properly.

3.5.1.3 PDMS Cast Molding

Poly-dimethylsiloxane (PDMS) is a liquid pre-polymer that is cast against a mold.

After curing, the cross-linked and elastomeric PDMS is carefully peeled off from the

mold. The surface of the cured PDMS is the structure of the Digital Clay matrix. PDMS

has an excellent capability of capturing details, but the material is too flexible for our

needs.

3.5.1.4 Lamination

Another MEMS approach is using the lamination-based polymeric approach that

bonds to substrates by heat and pressure. In these approaches, analogous to lamination-

 32

based electronic packaging approaches, individual sheets of material are lithographically

patterned or laser-cut to form the required chambers and fluidic interconnects, and then

are laminated together to form the final structure (Dalmia, 2002). However cost, shape

generation capability, dimension issues, and facility availability are issues when using

this technology.

3.5.2 LCVD

One rapid prototyping technique being considered is Laser Chemical Vapor

Deposition (LCVD). A laser CVD rapid prototyping system is one of the promising

manufacturing techniques that is under development in the School of Mechanical

Engineer at Georgia Institute of Technology. The process has the capability of fabricating

complex net-shaped metallic and ceramic structures by depositing powder using laser to

heat a heated substrate (Park, 2003). LCVD can satisfy several of the demands from the

matrix requirement list because the process deposits material at the atomic level,

producing a material that is fully dense, ultra-pure, and mechanically sound. Since LCVD

can also produce fibers or layers in any given direction, the design of the crust matrix and

the building orientation will be not restricted by this technique. Furthermore, a capacity

for multiple materials permits composite structures and functionally-graded materials and

alleviates traditional material restrictions imposed by a given prototyping technique

(Lackey, 2002). LCVD is a promising manufacturing technology that may be beneficial

to Digital Clay, however it is a new process that is still being investigated and may not be

available to the manufacturing community until later in the future.

 33

3.5.3 Other Techniques

There are other standard techniques that can be used to manufacture the matrix.

One included the injection molding using a low viscosity liquid with a low cooling rate to

fill up all the small spaces and holes of the crust matrix. Another technique is using an

open face molding with a spray adhesive and a stamp cutter. Both of these techniques are

promising, but expensive to create the mold. At this time we are searching for a technique

that has a fast turn-around time with a high accuracy result.

3.5.4 SLA

 Rapid prototyping technology using Stereolithography (SLA) technique has a

high turn around rate with high accuracy. Because of this feature, using SLA technology

will allow us to vary the dimensions of the Digital Clay cell and build the matrix within

hours to meet any specific task that our client may want to use the product for.

Furthermore, it will satisfy the demand imposed by our client that the Digital Clay cell is

scalable. The cells will have to be integrated together to form a matrix that will respond

to at least a finger width (approx. 18 mm) of applied pressure. With rapid prototyping

technology, multitude of thin and small cells can be generated at a low cost with

relatively fast results without supervision. Therefore a rapid prototyping method using a

stereolithography machine appears to be the most efficient method of creating our Digital

Clay cells and for that reason it was placed as a wish on our requirement list.

Refer to Figure 3.3 below for a brief definition of Stereolithography. In

Stereolithography, solid objects are created by using a layer based manufacturing

 34

technique. First the designer would create a CAD model of the objects, in this case the

Rook from the Chess game. Next, a computer will “slice” the CAD model into cross-

section contours, one on top of the other. Third, the stereolithography machine will create

the support structures for levitating the Rook above the platform that the Rook will be

resting upon. Fourth, the slices are created by tracing the 2D contours from the CAD

models in a vat of photopolymer resin with a laser. Each slice is created when the

platform that the parts rested on is lowered into the vat, exposing only a thin layer of

resin to the laser at any one time. The final step is cleaning, post-curing, and detail

finishing the parts (personal preference of the designer). At the end we will have our

Rook! For more information about stereolithography, refer to “Rapid Prototyping &

Manufacturing: Fundamentals of Stereolithography” by Paul Jacob (Jacobs, 1992).

Figure 3.3: An Additive Fabrication Process – Stereolithography (Jacobs, 1992)

 35

3.6 Design and Manufacturing of Designs

 From the requirement list and the function structure, several ideas evolved. Below

are some of the ideas. Some of these were manufacturable while others will crash due to

the part designs exceeding the machine capability.

3.6.1 The Flexible Corners

Figure 3.4: The Flexible Corners

In Figure 3.4, these corners can connect to other corners of the same design and

create a matrix of flexible corners. The shapes are simple enough to be scaled down

without losing much detail. However these shapes poses problem when they are rapid

prototyped. The flexible joints would not build properly because of the thinness of the

joints. After resolving the manufacturing problem, the joints would break after bending

them less than 10 times by hand. Because of this problem, the flexible corners idea was

eliminated.

 36

3.6.2 Deformable Cubes

Figure 3.5: Deformable Cubes

 The deformable cubes are actually a variation of the flexible corners in Figure 3.5.

The cube on the left has several ball and socket joints connected to a square base. The

balls rotate perfectly within the socket and are able to deform as a whole. However the

angle of deformation is based upon the opening of the socket. As a whole, the cube

deforms around 20-30 degrees.

The other cube on the right has a greater degree of freedom because of the

springs. During manufacturing, this cube crashes more than any of the other designs.

Another minus point is that as this cube on the right is scaled down, the deformation

capability decreases.

Of both designs, scalability is a big question. Will the matrix of theses cell deform

as well as it can when the cells are scaled down?

 37

3.6.3 Compliant Hinges

Figure 3.6: Compliant Hinges

The compliant hinges are two plates connected by a thin flexible plate. The one

on the left is a modification of Jacob Diez’s compliant hinges from his robotic hand(Diez,

2001). The design on the right is a modification of the one on the left to improve the

fatigue life. Both of these designs will deform upon applied force and return back to

original shape after the force is released. The one on the right is one of the easiest designs

to scale and manufacture due to its simplicity. The downfall is that it only deforms in two

direction: Z and X or Z and Y.

 38

3.6.4 Deformable Crust Design

 While developing a feasible manufacturable joint design, crust design evolved

with the help from Paul Bosscher. The crust design is a deformable matrix that acts like a

piece of cloth. As the fluid flows in from the valves, the crust will deform and take shape

from the applied pressure, as it was a piece of cloth.

Figure 3.7 demonstrates the crust deformation idea. Each vertex is an abstract

representation of a deformable unit cell and each line is a connecting rod from the unit

cell.

Figure 3.7: Deformable Crust Concepts

3.6.4.1 Unit Cell for Crust

The crust idea seems simple and effective enough for fulfilling the requirement

list. The challenge with crust designs is their Manufacturability. The construction of

spherical, revolute, or other kinematics joints at small size scales is difficult. To

duplicate the behavior of spherical joints, we can use a collection of links and revolute

joints, where the joint axes have a common intersection point (Bosscher, 2003) as one

 39

will see in the following sections. Below are ideas for developing the unit cells that

would compose the crust matrix.

3.6.4.1.1 Eight-Sided Unit Cell

Figure 3.8: Eight-sided Deformable Crust

From paper to model to manufactured design concept, Figure 3.8 describes a unit

cell with eight sides and eight revolving joints. The greatest complication in CAD

modeling is assembling the individual pieces together and scaling the cell down. After

prototyping in SLA, the cell is very deformable but not very rigid. It deforms like a piece

of cloth, but the joint clearances cause repeatability problems.

 40

3.6.4.1.2 Spherical Joint Unit Cell

Figure 3.9: Spherical Joint Unit Cell

 This unit cell consists of eight expandable faces with a revolving joint in between

each face. There are also 4 linking faces with two revolving joints that are connected to

the expanding faces. This gives a total of 12 faces and 12 joints. In this case, all the faces

are triangles. The expanding faces are nicknamed “intermediate triangles” because they

are in-between the smaller faces. The smaller faces are nicknamed “linking triangles”,

because they will be used for linking to the next neighboring spherical joint. The CAD

modeling of this unit cell has the same difficulties as the Eight-sided Deformable cells

with assembling and scaling of the cell. In the manufacturing aspect, the cell deforms as

well as the Eight-sided Deformable Cell. The difference is that there are more degrees of

freedom because each linking triangle rotation capability is not affected by the other

linking triangles. The triangles in the Eight-sided Deformable Crust have more inter-

connection and less Degrees-of-freedom. The Spherical Joint unit cell has more potential

for deformation but still does not provided the resistance force for feedback that was

requested in the requirement list.

 41

3.6.4.1.3 Linear Triangles

Figure 3.10: Linear Triangles

 Unlike the previous two unit cells for the crust design, this design utilizes the

compliant joints mechanism from prior designs in section 3.7.3 Compliant Hinges. CAD

modeling is less complicated with no assembly necessary (it is drawn as one piece). The

CAD model is also less complicated to scale down. During manufacturing in SLA, this

design is the most stable of all three designs. However, the manufactured piece deforms

the least of all three crust designs due to interference and neighboring walls.

 42

3.6.5 Selection Process of the Unit Cells for the Crust Matrix

The most promising design needs to be selected from the manufactured

prototypes of the unit cells for the crust matrix. The best design would be based on three

criteria--manufacturability, scalability, and dynamic functionality. Each criterion is rated

a scale of 1 (worst) to 10 (best). A detailed description corresponding to each rating is

shown in the tables below.

 Table 3.3: Manufacturing Attribute Table 3.4: Scalable Attribute

Description Rating Description Rating

Very Simple - Easily
manufacture without any

complications at a quick pace.
10

Very Scalable – Cell is scalable
without any problems and

performs function to perfection
10

Simple - Easy to manufacture
with minor complications. 7

Slightly Scalable – Cell is
scalable but with minor
problems and reduced

performance.

7

Complex - Manufacturing
takes time and potential

problems are encountered.
4

Normally Scalable – Cell is not
very scalable and has some

problems with low performance.
4

Very Complex -
Manufacturing is extremely

difficult and time consuming.
Problems constantly have to

be overcome.

1

Un-scalable – Cell is hardly
scalable and has serious

problems with major
performance issues.

1

 43

 Table 3.5: Deformation Attribute Table 3.6: Rank of the Criteria

Description Rating Description Rating

Very Dynamic - Cells perform
desired deformation to utmost

perfection.
10

Dynamic Function – Ability of the
cell to simulate desired motion 3

Slightly Dynamic - Cells perform
desired deformation with slight
interference or other problems.

7

Manufacturing – Manufacturing of
the cell without causing any

problems
2

Nominally Dynamic - Cells have
marked problems and do not

perform full deformation.
4

Scalable – Ability of the cell to be
put in a matrix. 1

Non-Dynamic - Cells are virtually
un-deformable and do not

achieve the required motion at all.
1

Table 3.7: Design Selection Table

Cr
it
er

ia

sc
al
e

D
yn

M
an

uf
To

ta
l

 5 *1=5 5*1=5 9*1=9

 6*3=18 9*3=27 1*3=3

 6*2=12 4*2=8 10*2=20

 35 40 32

 44

After considering the scalability of all the models, the parts were manufactured

(repeatedly in some cases) and then tested dynamically. The highest importance is

attached to the deformation functionality. After several tests, it was found that Spherical

Joint Unit Cell model best simulated the desired motion. In addition, it was decently

scalable and can be extended to form a matrix of cells. The only problem encountered is

in manufacturability. Due to the vertical alignment of the model, the support trusses that

are automatically formed during the manufacturing process in SLA are not able to

support the structure and hence the model is hard to manufacture. The model still is

considerably superior over the other models because of its better dynamic functionality.

3.6.6 Matrix Selection

Although the unit cell was selected based upon the given criteria, it is not yet

certain that the crust matrix would deform, as one would want it to base upon the quality

of one unit cell. Therefore it is necessary to consider the unit cell as part of a whole

matrix before coming to a decision that the design selected is best fitted for the task

given. At this point of time, it is unnecessary to attempt building different matrices with

different unit cells. The selection process given is only meant to be a suggestion of the

unit cell design that should be carried on to the next step. While going through the design

process stage, we can modify the unit cell so that it can create a matrix. During the

process we would also consider the other designs that did not arise high.

Below are suggested criteria for the selection process among various matrices

with different unit cell designs.

 45

Connection Capability:

 Since each unit cell is connected to each other, how are they connected? Is the

connection robust enough to handle various deformations and the added stress to the

displacement?

Manufacturability:

 Although the selected unit cell is manufacturable, the matrix may not be as

manufacturable. There maybe interface problem as the unit cells are connected together.

Scalability:

 Can the matrix be scaled down? Although the unit cells individually scalable, it

does not mean that the whole matrix is scalable. Perhaps the connection between unit

cells would prevent the matrix from properly being scaled down while still maintaining

deformation capability.

Deformability:

 As the displacements are added to various points on the matrix, how much can the

neighboring cells deform? How much displacement can any one unit cell handle before

interference or structure damage occurs?

As mentioned above, these new criteria given are for comparing various matrices

built using different unit cell designs. Currently we are only working with one type of

 46

unit cell with different matrix designs. In the future after developing more matrices using

different unit cell design, these new criteria can come into play.

3.6.7 Modification of Selected Unit Cell

From the previous section, spherical joint unit cell is selected to progress further

into the design development stage. However the manufacturing issue is a problem. From

the previous section, the least problematic is the linear triangles with the compliant joints.

In this section, the two strong qualities from the two previous designs will be combined

into one: spherical joint with compliant joints. From the idea of the spherical joint unit

cell connecting together to form a square grid, the spherical joint unit cell can also be

modified for three linking triangles to form a hexagonal grid matrix. There are other

design modifications such as applying prismatic joints between two connecting unit cells

(Bosscher, 2003). It is beyond the scope of this thesis to go into the details of these

modifications. Below are the modifications that are being considered and the

development of the matrix.

 47

3.6.8 Matrix

Figure 3.11: Grid Matrix Unit Cell

Figure 3.11 shows the spherical joint unit cells from the previous design being

modified with compliant joints. Only two of those joints are labeled in the first image.

Another modification is that the linking triangles are pyramids to add rigidity and

creating the coupling effect when the unit cells are linked together. Because of this design

modification, the spherical joint unit cell can be scaled down as seen in the middle image

with the quarter. From this design the cells can be linked together as seen in the last

image as vertices with dark circles and matrices as seen in Figure 3.11.

Figure 3.12: Grid Matrices

Figure 3.12 shows the unit cells being linked together to create a grid. The first

image shows circular rods in between each unit cells. The rod was originally thought to

 48

expand the length between the unit cells while maintaining the rigid linking. However,

the rods twist and bend due to the material used. The material is DSM Somos 8120

photopolymer resin. Other resins were explored, but the DSM Somos 8120 has the most

promising material characteristics. This material provides the needed flexibility for the

compliant joints to function properly and also the stiffness for the linking triangles to

create the coupling effect when the unit cells are linked together. The second image

shows that the rod length is reduced when the unit cells shrunk. The last image shows

that the rods are completely eliminated from the matrix with two unit cells almost

equaling the diameter of a penny. A four-by-four matrix with these unit cells is less than

the size of a business card. The deformation capability of the grid matrix is analyzed in

the next chapter.

3.6.9 Hexagon Matrix

Figure 3.13: Hexagon Unit Cell

 Similar to the grid design, the hex matrix has three linking triangles instead of

four and each unit cells are connected together to create a matrix of hexagons. Again the

revolving joints that were originally part of the spherical joint unit cell design are being

 49

replaced by compliant joints as seen in the first image of Figure 3.13. As previously

stated this modification allows the unit cells to be scaled down as seen in the middle

image with the penny and connected as seen as vertices with the darker circles in the last

image and in Figure 3.14.

Figure 3.14: Hexagon Matrices

In Figure 3.14, the rod idea was tested again. Again, the rod idea is slowly being

eliminated from the design. The hexagon unit cells did not follow the same path in design

modification as the grid matrix as seen in the previous section. The reason is the center

voids of the hexagon matrix. In the middle image, a penny occupies one of the center

voids of the hexagon matrix. As the matrix deforms, the center voids will prevent the

matrix from creating a continual surface that we would expect the matrix to create when

the matrix deforms. The last image is two matrices overlapping to attempt eliminating the

jaggedness of the shape generation from the hexagon matrix. Offsetting and overlapping

modification was also considered. This offsetting and overlapping did reduce the center

voids, but it also reduces the deformation capability of the matrix.

 50

3.7 Crust Matrix MEMS Style

 The previous sections described the Digital Clay crust matrix built using SLA

technology. Earlier, we mentioned the possibility of using MEMS technology to fabricate

the crust matrix. The introduction chapter also mentioned the possibility of adding bubble

actuators in the joints of the crust matrix, expanding and compressing the joints by filling

and draining the fluids in the bubbles. There maybe additional or different types of

considerations when MEMS technology is being applied instead of SLA. Since I am not

an expert in MEMS, I will pose several questions to the people who will attempt to create

the crust in MEMS with the bubble actuators.

Questions:

1) What is the material of fabrication?

2) From the material of usage, what is the stiffness of the joints?

3) Will there be enough force feedback to maintain shape deformation?

4) Can the unit cells be rigidly connected through their linking triangles while the joint

maintains its flexible capability?

5) Will the curvature of the joints change as the fabrication process changes from SLA

to MEMS?

6) How small can we get and still be able to add actuators to each unit cell?

 51

These questions may evoke some creative juice in the MEMS department.

Currently, they have developed several ideas to fabricate and interface a bubble-like

actuator in the joints. The pictures of several different concepts for the bubbles are shown

below.

Figure 3:15: Bellows Bubble Actuators Concept 1

Figure 3:16: Bellows Bubble Actuators Concept 2

It is beyond the scope of this thesis to explain these bellows actuator designs.

 52

 Another idea for designing the bubble is to enclose the joints using a membrane

that can deflate. At maximum inflation, the joints are at their largest angle of

deformation. Figure 3.17 shows one unit cell that the bubble has to work with. Figure

3.18 shows two images describing the membrane enclosing one joint. The first image

describes one joint being deflated. The next image describes the joint at the maximum

deformation.

Figure 3.17: One Unit Cell

Figure 3.18: Enclosing Membrane

 53

The tube coming off the front is where the fluid will be flowing from. Currently

this idea is being criticized because the membrane needs to be expandable like a rubber

band. If the membrane is being built at the same time as the crust matrix with every joint

at its maximum deformation, the matrix will contour into various different shapes. This

may cause problem during the manufacturing process. Currently Sharon Wu in the

MEMS department is investigating possible elastic materials for manufacturing the

bubbles. Another possibility is that the membrane is built deflated. When the crust is at

its resting state, there will not be any force applied to the joints. When it expands, the

fluid pressure being applied will have to be greater than the force created by the stiffness

in the joint and the membrane. The same situation occurs when the joint compresses.

Fabricating the crust matrix using MEMS technology while designing the bubble

actuators for the joints is a difficult task that requires extensive research in design

exploration, manufacturing techniques, and material study. The MEMS department is

studying all three areas. Once this is accomplished, we will have the interconnection

between the crust matrix and the rest of the hardware. Since this is not the focus of this

thesis. We will not continue discussing this interconnection.

3.8 Ending Remarks

From the two crust designs, grid matrix design is selected to progress further into

the design stage. The reason for this selection is because the grid matrix has the best

combination of functionality, scalability, and manufacturability. Also the center voids of

the grids are smaller than the hexagon, producing smoother surfaces.

 54

The hexagon matrix is an excellent idea because each joint of each unit cell has a

greater angle of deformation than the grid design. The calculation of Degrees-of -

Freedom for both the hexagon and the grid matrix shows that the hexagon matrix has a

greater capability to create shapes (Bosscher, 2003). However, we need to find a

manufacturing technique that can produce the hexagon matrix small enough to reduce the

center voids, which in turn reduces the jaggedness. The possible solution is using the

DSM Somos 8120 resin in the 3D system SLA VIPER machine that is designed

specifically for creating micro products. However as the CAD model of the unit cells

(both grid and hexagon) is scaled down, the mathematics behind the CAD model will

increase in complexity to maintain the relationship among the features in the model. This

may cause problems when the facets of the models do not align properly. In turn, it will

create holes and unwanted articles in the models themselves. In a chain reaction, the

results of the manufactured CAD models will be either unacceptable or failed parts. It is

beyond the scope of this thesis to further investigate these phenomena.

Another reason for choosing to progress further with the grid design is the

geometric shape of the grid design. It is easier to analyze a square than a non-right angle

hexagon. Once the analysis of the deformation for the grid is accomplished, the

mathematics can be extrapolated to the hexagon. The next chapter describes the math.

 55

CHAPTER 4

IT IS THE PRINCIPLES BEHIND THE MATH

 This chapter will analyze the kinematics of the grid matrix developed in the

previous chapter. The final grid matrix design, comprised of modular unit cells, is shown

Figure 4.1.

Figure 4.1: Crust Matrix

 The matrix consists of rigid connections between each unit cell. If one unit cell

moves, the connecting unit cells will deform as well. Therefore there is a coupling effect

inherent in the structure’s deformation, as shown in Figure 4.2.

 56

Figure 4.2: Actual Crust Matrix Deforming

 The shape in Figure 4.2 is at the lowest energy state of the matrix based upon the

external inputs and geometric design of the matrix. In this case the external inputs are the

pressure of the fingers applied at various locations. The geometric design consists of the

individual unit cells that are connected to form the matrix.

 To illustrate how the Digital Clay crust can be used for modeling, we present a

model of an automotive front end. The designer can manipulate 12 independent inputs to

control various aspects of the front end’s shape as seen in Figure 4.3. A formable crust

design is used to model the hood.

 57

Figure 4.3: Low Degree-of-Freedom Car Hood Model

 The crust is manually actuated using 1 DoF levers. The levers amplify the

inputted user displacement and control the crust surface through the beams shown in

Figure 4.4 and 4.6. This allows the flat surface of the crust to morph into various car

hood designs. For clarity, not all levers and compliant mechanisms are shown in the

Figures. A formable crust is attached to the beam and column tops. As one can see, even

though only one unit cell is actuated, the neighboring cells will deform as well.

 58

Figure 4.4: Deformation of Car Hood Model

The user can control the hood shape by manipulating the positions of points on

the hood. The motions of many of these points are coupled due to the rigid linking of the

unit cells. The objective is for the crust to start as a flat surface that can morph into

various hood designs of high-end sports cars, such as the Lotus, Ferrari, and Corvette,

sketches of which are shown in Figure 4.5. The morphing of the crust can be controlled

by changing the points that are actuated.

Figure 4.5: Morphing of the Car Hoods

To connect the inputs to the crust, a set of compliant mechanisms was integrated

with the beams that are connected to the crust. The arrangement of columns and beams

to control positions of points on the crust is shown in Figure 4.6.

 Lotus Corvette Ferrari
Flat
Surface

 59

Figure 4.6: Car Hood Frame

The two front corner columns are fixed, while the other columns can be vertically

displaced and flexed laterally when necessary to produce smooth surfaces. The beams

ensure longitudinal symmetry of the hood, which can be seen in Figure 4.6b. Each beam

will be driven vertically by one compliant mechanism. The two columns at the top of the

hood (hood-windshield joint) are coupled by another beam (not shown). The crust

consists of a 14-by-18 array of spherical joints (Figure 4.6b) that are spaced 12.7 mm

apart to give an overall size of about 177.8 –by- 228.6 mm (7 X 9 inches).

Covering the crust will be a flexible skin. The actuators and columns will be

rigidly attached to a base. We have considered adding a windshield and fenders (non-

formable) to complete the model, but at this stage the hood will be enough to demonstrate

the deformation of the crust.

b) top viewa) frame with columns and beams

 60

 The car hood model is only one example of how the deformable crust matrix can

be used. There are various other applications for the Digital Clay crust matrix. The

question is, which points or unit cells of the crust matrix need to be actuated and how

much control is necessary to create the various desired surfaces (e.g., car-hood models)?

This chapter will discuss two methods for predicting the deformation of the crust. Both

methods form their prediction using the system constraints, material properties, and

magnitude and location of the points actuated.

 For both methods, the inputs to the system are the Z coordinates of the centers

from various unit cells in the matrix. Figure 4.7 shows an example of how the Z-height

input can affect the links. Since the link is rigid, it cannot stretch as seen in the figure.

 Figure 4.7: 2D Example of Input

 In addition, because of the coupling between each cell and its neighbors, it is not

necessary for all the Z-heights to be inputted for the program to find all of the coordinates

of the center-points for every unit cell. Even if all the Z-heights are known, there is still

Z height
input

Z height
input

(x1,z1) (x2,z2)

(x3,z3)

 61

not have enough equations to fully describe the surface. For every Z-values there are two

unknowns-- X and Y values. Based on this fact, the system is under-constrained. To solve

this problem, the two methods will use an iterative process that searches through various

combinations of cartesian coordinates for the lowest possible potential energy of the

system while maintaining the constant length between two unit cells. The basic structure

of both methods is as explained in Figure 4.8.

Cartesian Coordinates

User Inputs
System constants:

matrix dimensions, geometric
constraints, and material properties

Z-heights:
quantity, location, and magnitude

Iteration Process
Search for the positions of centerpoints.
Considers length constants
Minimizes the Potential Energy

Figure 4.8: Basic Structure of Both Methods

 The first method uses an abstract model of the matrix of unit cells as seen in

Figure 4.9. The balls represent the center points of the unit cells in the matrix. The lines

that connect the balls represent the rigid links between the cells. As the surface deforms

the balls move and the ends of the links are free to pivot about the balls. Rotational

springs are used to model the stiffness of the compliant joints in the unit cells. The spring

constant is an average stiffness value of each compliant joint.

 62

Figure 4.9: Method 1-- Abstract Model

 The second method is a more accurate representation of the crust model that

better represents the manufacturable shape and behavior of the formable crust. The model

uses two different stiffness values to represent the two different joint designs for each

unit cell. Figure 4.10 shows where all the springs are located for one unit cell in the

model used by the second method. Joints 1 and 3 have the same stiffness value while

Joint 2 has a different value.

Figure 4.10: Springs for One Unit Cell

 63

Now that both two methods are introduced for predicting the shape deformation

of the crust matrix based upon several parameters, the math will be explained. The

results will be the cartesian coordinates (x,y,z) for the centers of every unit cell in the

matrix. In the following sections, the first set of sections will be discussing principles and

pseudo-code for the problem formulations, flow charts, and algorithms for the Method 1.

This will be called Part 1: Method 1. The second set will be discussing about Method 2.

This will be called Part 2: Method 2. Then the third will be about the forward and inverse

statics. Following the third set is one section discussing about the number of unknowns,

number of equations, and Degrees-of-Freedom for both methods.

 64

PART 1 METHOD 1: ABSTRACT FORMABLE CRUST MODEL

Below is a flow chart for the first method. The numbering on the right side

denotes the section that will explain the block. Following the flow chart is a step-by-step

description of the algorithm used in the first method.

energy_mimimize

Iteration: 4.7

P(x,y,z) of cells

calculate P.E : 4.6

Constraints: 4.5

P.E. Mimimizes: 4.7

mxn matrix

 minimal P.E.
P(x,y,z)

Calculating the cartesian coordinates

 Initial Guess:4.4

interpolate: 4.4

User Inputs: 4.3

Figure 4.11: Flow Chart of Method 1

 65

Zf 3,3

Xf 4,1

Yf 1,5

(Xf 1,1 ,Yf 1,1 ,Zf 1,1)

dist

m n

Figure 4.12: Example of matrix initial conditions

Note that only the P1,1 corner point has fixed X, Y, and Z values.

Given:

m-by-n = size of matrix of unit cells center points in a uniform 2D grid

Zf i,j = fixed Z value of the center-points for the [i,j] cell

Xf i,j = fixed X value of the center-points for the [i,j] cell

Yf i,j = fixed Y value of the center-points for the [i,j] cell

dist = distance between two center points

k = average stiffness value of all the joints in the matrix

Find: Pi(x,y,z)= center-points of every unit cell in the matrix

 66

Satisfy: i i+1P -P =dist (Equation 4.1)

where Pi and Pi+1 are adjacent unit cell centers and Equation 4.1 holds for every

pair of adjacent cells.

Minimize:
*

2

i=1

1P.E= * ()
2

id ir

m n

k θ θ−∑ (Equation 4.2)

 where θid and θir are the angles between two center-points with d= after

deformation of the matrix deformation and r = rest or before deformation.

θi+1,d

θir

θid

θi+1,r θi+2,d

θi+2,r

Figure 4.13: the Angles Between Two Center-points

Algorithm:

1) Initialize an m-by-n matrix with the fixed cells at Zf i,j, Xf i,j , Yf, i,j and all other cells at

their natural, un-deformed location. Figure 4.12 shows an example of an initial

configuration of a matrix.

2) Create the initial guess vector of unknowns: x0

a) Linearly interpolate between the fixed Zf i,j values.

b) Place all coordinates into the x0 vector

 67

3) Iterate to find minimum energy combination of the cartesian coordinates

a) Minimize total P.E. (Potential Energy) while also satisfying the length constraints

and the Zf i,j, Xf i,j , Yf, i,j constraints.

(1) Calculate P.E. of the angles between all adjacent Pi and Pi+1.

(2) Compare P.E. values from previous results.

(3) Calculate length between all adjacent Pi and Pi+1 to check the length

constraint.

(4) Check the Zf i,j, Xf i,j , Yf, i,j constraints.

(5) Modify guesses

4) Output the Pi(x,y,z) of all the unit cells

 68

4.1 Referencing Notation

 Before presenting the math, the notation for referencing cells in the crust matrix

will be discussed. Figure 4.14 shows a matrix of balls that represent the center points of

each unit cells. Figure 4.14 also demonstrates how each cell in the matrix is referenced.

One way is through cartesian coordinates of their center-points. A second way is by their

chronological sequence in the matrix (e.g. P14). A third way is to reference to the rows

and column location of each cell: Pi,j, where i and j denotes the row and column

respectively. For example, P14 means the same thing as P3,4. The type of referencing used

will change based upon convenience and what context it is used in.

1
2

3
4

5

6
7

8
9

10

11
12

13
14

15

16
17

18
19

20

columnrow

Figure 4.14: Counting Convention

 69

4.2 The Principles Underlying the Formable Crust Models

 The two methods mentioned earlier have similarities in how they approach the

problem. First we will discuss the mathematical principles behind Method1. Method 2

will follow Method 1. The organization of the principles is based upon the previous

mentioned flow chart: Figure 4.11.

4.3 Constraints From User Inputs (Method 1: “User Inputs” Block)

 For all cases, the first cell, P1, will always be fixed at (0,0,Zf 1,1). The Zf 1,1 is

either zero or any value that the user inputs. At every corner including the first cell, all

the z values are also constrained at either ‘0’ or any value specified by the user. For

example, in Figure 4.15 the user has specified several Z-heights at P13 and P5, which

become additional constraints. Also the upper left X- coordinate, P16 in Figure 4.15, and

the lower right Y- coordinate, P5, are fixed at zero or at the user specified value.

ColumnRow

5

Column

Y Z XY
Z

X

P5

P13

1
2

3
4

6
7

8
9

10

11
12

13
14

15

16
17

18
19

20

Row

Figure 4.15: Inputting Z-heights

 70

4.4 Line Interpolation (Method 1: “Interpolate” block)

 Once the constraints are added, the balls, representing the center-points of the unit

cells, are moved to create a linear interpolation between two constraining coordinates.

This interpolation becomes the initial guess of the deformed state for the minimization

program. Because it is difficult to show the interpolation for a 3D matrix, the 2D

example in Figure 4.16 will demonstrate how the linear interpolation works.

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3) (x4, y4, z4)

(x5, y5, z5) (x6, y6, z6)

Figure 4.16: Line interpolation

 Linear interpolation of the unknown variables improves the initial guess of the

unknowns. In most numerical methods, which use iterative methods to find a minimum

or maximum of a system, a good question to ask is: is the result a global or a local

minimum? By using linear interpolation, the initial guess is placed closer to the global

minimum. Therefore the program will converge faster and be more likely to converge

toward a global minimum.

 71

4.5 Constraints (Method 1: “Iteration” Block)

 Constraints are equations that limit the iteration process from deviating far from

the correct answer. Below are two types of constraints.

4.5.1 Length Constraints

 Since each cell is rigidly linked, the distance between any two unit cells is

constant. Therefore, the calculated length in either the x or the y direction minus the user

specified constant distance, “dist”, should equal a number that is either zero or close to it:

1) Length constraint in the x-direction

a) Lx= (Xi,j- Xi+1, j)2 + (Yi,j- Yi+1,j)2 + (Zi,j- Zi+1,j)2 –dist2 =~0 (Equation 4.3)

2) Length constraint in the y-direction

a. Ly= (Xi,j- Xi, j+1)2 + (Yi,j- Yi,j+1)2 + (Zi,j- Zi,j+1)2 –dist2 =~0 (Equation 4.4)

With ‘i’ representing the rows and ‘j’ representing the columns

Dist= the inputted distance value between two unit cells

X, Y= cartesian coordinates for the unit cells

4.5.2 Coordinate Constraints

 Based upon the user inputs and the embedded constraints, several of the

coordinates are constrained. Below are equations that constrain the coordinates. Any

variable with the subscript “f” denotes a fixed coordinate value that should be

constrained. The variable without the subscript is the one that the iteration process

calculated:

 72

X-Coordinate Constraints

 , , 0f i j i jX X− = (Equation 4.5)

Y-Coordinate Constraints

 , , 0f i j i jY Y− = (Equation 4.6)

Z-Coordinate Constraints

 , , 0f i j i jZ Z− = (Equation 4.7)

4.6 Calculating Energy (Method 1: “Iteration” Block)

 The deformation of the crust matrix is predicted by minimizing its potential

energy. As previously mentioned in the introduction of this chapter, the first method

models the matrix as a system of springs, rods, and balls. These rotational springs

connect two rigid links together, causing the links to become pivoting rods. The stiffness

value is the average of the stiffness value in the system. The equation for calculating the

energy is already mentioned in Equation 4.2 and will not be repeated here.

 To calculate the energy, several variables need to be known. They are the stiffness

value, the angles, and the positions of the center-points of the unit cells. They are derived

in the following sections.

 73

4.6.1 Finding the Stiffness Value

 From the previous section, calculating the potential energy requires knowing the

stiffness value, k. For one unit cell there are two k values because there are two different

joint designs as seen in Figure 4.17.

Figure 4.17: The Two Different Joint Designs

 To study each stiffness value, the joints are “cut-up” or individually modeled and

manufactured in the stereolithography material that is being used for manufacturing the

crust. The k values are then found through performing several experiments.

Figure 4.18: Joint A (Left) and Joint B (Right)

joint A
joint A

joint B

 74

4.6.1.1 The Experimental Set-up

The set-up uses the Instron Universal Material Testing Machine as seen in Figure

4.19 with the three images.

Figure 4.19: Experimental set-up for Finding Stiffness

The first image is the Instron Testing Machine. The second image is a zoom-up of

the attachment piece that applies the force to the specimen being tested. The Instron is

also connected to a computer that reads the force versus the displacement of the specimen

as the force is being applied. The last image is a diagram of how the force is being

applied to one of the specimens while the specimen is being attached to a base. The

maximum displacement is 10mm from the starting position.

4.6.1.2 Joint A (Larger Joint) Design and Results

 As previously mentioned, the joints are individually modeled so that they can be

tested independent of the other joints. The dimensions for joint A are seen on the left

image in Figure 4.20. The free-body diagram is on the right of joint A as it is being set-up

and tested. For this case, the test is performed vertically where the specimen is attached

to the sidewall of the base.

 75

FA

θ1

θ2

P

δL

b

R

Ho

(Ho - δ)

a

Figure 4.20: Set-up for Joint A

The mathematics is as follows for finding the torque based upon the force versus

displacement values. From the torque, we can find the stiffness value for joint A.

Definition: L=Length of the axial arm

δ (mm) = The displacement value/s as the force is being applied to the specimen

FA (N) = The force that is being applied to the specimen

θ1 = The original angle between two arms before deformation

θ2 = The rotational angle between the arms

Ho= Beginning height of the axial arm where the force is being applied

P= The horizontal length from where the force is being applied (Constant Value)

R= The responding horizontal length that changes with the force

Angle a= Original angle from axial arm to horizontal plane before deformation

Angle b= rotational angle of axial arm measured from horizontal plane.

 76

Given: L= 38.1mm, δ , FA, θ1

Find: T=Torque

Equations:

 Ho= L*sin(a) (Equation 4.8)

1 Ho -b sin
L

δ− =

 (Equation 4.9)

2θ 90 b= + (Equation 4.10)

ATorque=P×F (Equation 4.11)

 77

From the equations and the data, we can find the torque. From the torque we can

find the stiffness based upon the slope of the torque graph. Figure 4.21 is an example

graph for the torque and the linear fitting line for the torque.

Finding Stiffness for Large joint

y = 0.1513x - 0.0018
R2 = 0.9979

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure 4.21: Finding Stiffness for the Joint A—the Larger Joint

 From Figure 4.21, the fitting equation is y= 0.1513x-0.0018 with R2=0.9979. This

means that stiffness value is 0.1513 Nm with the y-intercept of –0.0018. After 9

experimental runs, the average stiffness value is about 0.1348 Nm. (See Appendix A)

 78

4.6.1.3 Joint B (Smaller Joint) Design and Results

 Similar to Joint A, the dimensions and the free-body diagram are shown below.

FA

L θ1

θ2

Ho

(Ho - δ)

P
R

Figure 4.22: Set-up for Joint B

 For this case, the joint is attached horizontally on top of the base and the force is

applied as shown. Again we will find torque first and then find the stiffness.

Given: L= 38.1mm, δ , FA, θ1, Ho

Find: T=Torque

Equations:

Ho= L*sin(θ1) (Equation 4.13)

1
2

Ho -θ sin
L

δ− =

 (Equation 4.14)

ATorque=P×F (Equation 4.16)

 79

Similar to joint A, the torque is found from the equations developed above and the

experimental data as seen in Figure 4.23. From the torque, the stiffness can be found by

fitting a trend line through the points.

Finding Stiffness for Small Joint

y = 0.0177x + 0.0009
R2 = 0.9828

0

0.002

0.004

0.006

0.008

0.01

0.012

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (P

 X
F)

(N
m

)

Torque VS Angle
Linear (Torque VS Angle)

Figure 4.23: Finding Stiffness for Joint B (smaller Joint)

The linear fitting line shows that the stiffness value for this particular specimen is

0.0177 with the R2 value of 0.9828. After 6 experimental runs, the average stiffness

value for 4 of the experimental runs for joint B is 0.01635 Nm. Two of the runs were

outliers and were thrown away. (See Appendix A)

 80

4.6.1.4 Effect of k

 After finding the k values, how does the value of the k’s affect the results? The

effect of k can be determined analytically and numerically and be verified by performing

various runs of the two methods. For Method 1, the value of k does NOT have a

significant effect on resulting deformations. For finding a local minimum of any function,

the derivative of the function needs to be zero. For this problem we are searching for

minimum energy stored in the system. When taking the derivative of the potential energy

equation with respect to the variables that are being minimize (eg. Xi,Yi, and Zi of the

center-points) for Method 1, the constant k value can drop out as seen in Equation 4.17.

This makes sense because the constant k value is a scaling factor that does not affect the

location of the minima of the energy function. As a reminder, the Xi,Yi, and Zi of the

center-points are embedded in the θi coefficients. These variables determine the θi values

as shown in earlier sections.

()2
id

1 *k*
2

xi
0irθ θ ∂ −

∂

∑ = (Equation 4.17)

After explaining the analytical reasoning, now we will discuss the effect of the k

value on the numerical algorithm for finding the minimum of the problem. For Method 1

the k value is an amplitude that can be moved out of the summation term as shown in

Equation 4.17. Similarly for matrices such as the Jacobian or the Hessian, the k value can

be moved out of the matrix. The Matlab algorithm uses the Jacobian and the Hessian

matrices to find the direction of the search vector to where the minimum is thought to lie.

 81

The k will act like a magnification that lengthens the search vector direction. It does not

improve the speed of convergence and does not change where the minimum is thought to

lie. If the k=0, then there isn’t a search vector direction for the algorithm to search for.

Setting k=0 will create an error in the algorithm. The sum of potential energy will be

amplified by the value of k. With different k values, the same minimum point can be

found except the total energy at that point will be different. Of course, the specific values

of k will become more important of nonlinear effects are taken into account.

Figure 4.24 shows the different results with different k values for a 4-by-5 matrix

with two inputs.

Figure 4.24: 4-by-5 Method 1 K Test. K=1(1st image). K=100 (3rd). K=1000 (4th)

If the values of the results from Figure 4.24 are compared, their differences are

negligible.

Since the k value does not matter, is it necessary to use energy minimization to

find the position of the center-points based upon a handful of inputs? Answer: No. This is

an under-constrained system with several fixed values. Within the system are length

constraints that restrict the distance between any two unit cells. The purpose is to find all

 82

the coordinate locations of every center-point of the unit cells. One possible solution

without using a system of springs is applying a surface-fitting algorithm to fit to the input

X, Y, and Z coordinates. The surface-fitting algorithm could be to a least squares

regression algorithm for interpolating polynomial surfaces of various orders. The greatest

challenge is applying the length constraint which makes the algorithm not a direct

process but an iterative guessing process until the length constraints are satisfy within

reasonable error values.. However it is beyond the scope of this thesis to further develop

this idea.

For Method 2, there are two k values. These values do have an effect on the

deformation as shown in Equation 4.18.

' 2 ' 2 ' 21
1 1 3 3 2 2

2

1 * () () ()
2 0p p p p p p

i

k
k

x

θ θ θ θ θ θ

 ∂ − + − + −

∂

∑
= (Equation 4.18)

As one can see, the Method 2 energy equation is re-arranged by dividing the first

summation by the k2 value; then taking the derivative with respect to a Xi value. For this

case the 1

2

k
k

 cannot be removed because it is only part of one term in the summation. As a

reminder, k3 from the energy equation (not shown in Equation 4.18) is an arbitrary large

number that would guide the iteration process from deviating from the given constraints.

Like Method 1, k3 can be moved out of its summation term and be removed. It does not

guide the convergence as much as the other k’s would. However it will affect the total

potential energy value as explained in previous sections. Figure 4.25 shows the different

 83

results from the different combination of k values using the same coordinate inputs and

constraints. Again the units are not important if all the inputs use the same units.

Figure 4.25: K1=100; K2=500 (LT). K1=500; K2=500 (M). K1=100; K2=1000 (RT)

With just visual inspection, all the graphs look the same. By comparing the actual

coordinate values, there is a 1/100 difference in the coordinate values. However, the k1

and k2 values are not as important as the ratio of these two values as shown in Equation

4.18. For an example, k1= 10 and k2=100. The ratio of the two k values is 10/100 = 1/10.

That means that as long as the ratio of the k values is maintained, different runs with

different k values with the same constraints will have similar (if not the same)

deformation results. Refer again to Figure 4.25 for examples except change the values of

the ks to k1=100 k2=500 (Left) k1=10 k2=50 (Mid) k1=1 k2=5 (Right). The resulting

coordinate values do change, but by the factor of 1/1000. The difference is less than the

previous example.

4.6.1.5 Stiffness Ending Remarks

 After finding both stiffness values for the two joints in the unit cell, the equation

for calculating the potential energy for the system is complete. The first method uses a

simplified model, with only one spring per unit cell. Therefore, we will use the average

 84

stiffness value from both joints in method 1. The average value is 0.0756 Nm. However,

the second method uses both stiffness values and is more complex but more accurate.

4.6.2 Calculating the Angles from the Position Coordinates

 The angles for Method 1 are the angles between two rigid links as seen in the

previous images in Figure 4.9 and 4.13. As they deform, not all the angles stay 180

degree or π. Since the rigid links can be seen as vectors, we will apply ATAN2 to

calculate the angles between any two vectors. For a matrix of any size, the angles are

arbitrarily calculated first in the x-direction then in the y-direction. Since the

deformations are in the Z-axis direction, the calculation will use the z values from each

position coordinate. The -π value insures that the angle we are measuring is below the

surface of the matrix.

Angles in the X-directions

i,j , 1, , 1,

1, 2, 1, 2,

X = atan2 ,

atan2 ,

i j i j i j i j

i j i j i j i j

Z Z X X

Z Z X X

π − −

− − − −

 − + − −
 − − −

 (Equation 4.19)

Angles in the Y-directions

i,j , , 1 , , 1

, 1 , 2 , 1 , 2

Y = atan2 ,

atan2 ,

i j i j i j i j

i j i j i j i j

Z Z Y Y

Z Z Y Y

π − −

− − − −

 − + − −
 − − −

 (Equation 4.20)

4.7 Iteration Process (Method 1: “Iteration” Block)

 The iteration process applies a “search and calculate” process. The search for a

minimum energy position of the unit cells starts by following a gradient path. Then the

 85

potential energy of the matrix is calculated at the end of the path. Next, this value is

compared to the previously calculated potential energy at the end of the previous path.

One successful iterative process that we found is the “Fmincon” process. “Fmincon” is a

pre-packaged MATLAB minimization program that searches for the minimum of a

constrained nonlinear multivariable function by computing a sparse finite-difference

approximation to the Hessian Matrix (Mathworks, 2004). For this case, “Fmincon” will

search through various combinations of cartesian coordinates to find the minimum

potential energy of the system based upon the initial guess. Second if “Fmincon” is

supplied a series of nonlinear constraints, such as the constant length of the unit cells, the

Hessian matrix will be restricted by using another matrix of equations while searching for

feasible answers (Gill, et. al, 1981). ‘Fmincon’ is best described as two steps:

‘Determination of a Direction’ and ‘Line Search Procedure’. Below is a simple overall

summary of the math. It is beyond the scope of this project to decipher the math behind

these two steps.

4.7.1 Determination of a Direction using the Hessian Matrix

 The Hessian matrix contains the second partial derivatives of a function at various

unknown variables. For this case the function is the Potential Energy equation with the

unknowns coordinate values. The Equation 4.21 describes the Hessian matrix. The

matrix be positive definite to insure that the line is going in the right direction. “Hessian,

H, is always maintained to be positive definite so that the direction of search, d, is always

in a descent direction” (Mathworks). For every small step in the direction, d, the potential

energy function will decrease in magnitude.

 86

2 2

2
1 1 2

2 2

2
2 1 2

Hessian=

f f
x x x

f f definite
x x x

 ∂ ∂
 ∂ ∂ ∂
 ∂ ∂

= +
∂ ∂ ∂

…

 (Equation 4.21)

4.7.2 Line-Search Procedure

‘Line-Search Procedure’ is done by following along the line created by the

Hessian matrix and searching for the location that is at the lowest value.

4.8 Ending Comments for Method 1

 Using the principles mentioned above, the minimal cartesian coordinate positions

for every unit cell in the matrix of any size can be calculated. The joint angles can also be

calculated after determining the cartesian coordinate position by applying the joint

calculation process that will later be explain in Part 2: Method 2 of this chapter.

 87

PART 2 METHOD TWO: ACTUAL MANUFACTURABLE CRUST MODEL

Unlike Method 1, which uses an abstract model of the crust, Method 2 computes

the shape of the actual manufacturable, formable crust. Inverse and forward statics and

spherical coordinates matrix manipulations are used to find all the unit cell positions and

the crust shapes. Below is the flow chart with S.C and C.C standing for spherical and

cartesian coordinates respectively. All other notation has already been defined in previous

sections. Following the chart is the step-by-step algorithm formulation for Method 2.

 88

Iteration: 4.7

mxn matrix

ANGLES CALCULATION

S.C. -> C.C. of n's & v's: 4.12

Corners/edges P (x,y,z): centerpoints

(φn,θn ,θv)

φn, θn , θv

Calculating the spherical coordinates

Results

vertices of unit cells : 4.16

Potential Energy of Joints: 4.14 Potential Energy of Z-input: 4.14

Cartesian Coordinates-> Spherical: 4.9; 4.10

Initial Guess: 4.10

Interpolation: 4.10

User Inputs: 4.3

ENERGY MINIMIZATION

Joint Angle Calculation: 4.13

S.C. -> C.C.of n's & v's: 4.12

Create Relationship Among S.C. Values: 4.11

(φn,θn ,θv)

Figure 4.26: Flow Chart of Method 2

 89

Given: m-by-n ,Zf i,j ,Xf i,j ,Yf i,j ,dist , L1, L3, La, 1 2 1 2, , ,α α β β , k1, k2, k3, 1pθ , 2 pθ , 3 pθ

New Given variables not previously explained:

k1= stiffness value of Joints 1 and 3 (see Figure 4.10)

k2=Stiffness value of Joint 2 (see Figure 4.10)

k3 = arbitrarily large stiffness value to control the Z-heights

1pθ , 2 pθ , 3 pθ = Joint angles of the structure in its undeformed state. 1pθ

refers to the angle at Joint 1 in Figure 4.10; 2 pθ refers to the angle

at Joint 2 in Figure 4.10; and 3 pθ refers to the angle at Joint 3 in

Figure 4.10. Note that this set of 3 angles repeats itself 4 times in

each unit cell. Therefore index “p” runs from 1 to 4*m*n where m

is the number of rows and n is the number of columns in the

matrix.

L1, L3, La, 1 2 1 2, , ,α α β β =Geometrical constants for the 3-D structure.

These will be explained later.

Find: Pi(x,y,z)= center-points of every unit cell in the matrix

Satisfy: Zf i,j , Xf i,j, , Yf i,j Where these constraints remain fixed values;

distance constraints

 90

Minimize:

4* *
' 2 ' 2 ' 2

1 1 1 2 2 2 1 3 3
1

' 2 ' 2 ' 2
3 (i,j) (i,j) (i,j) (i,j) (i,j) (i,j)

1 1

1P.E= * () () ()
2

1 * () () ()
2

[]
m n

p p p p p p
p

m n

f f f f f f
i j

k k k

k X X Y Y Z Z

θ θ θ θ θ θ
=

= =

− + − + −

 + − + − + −

∑

∑∑

 (Equation 4.22)

'
1iθ , '

2iθ , '
3iθ = Joint angles of the structure in its final, deformed state.

Notation is similar to undeformed angles described above.

Xf i,j’= Calculated X-height of the center of the unit cell in the ith-row and jth-column

Yf i,j’= Calculated Y-height

Zf i,j’= Calculated Z-height

Algorithm:

1) Initialize the m-by-n matrix with the fixed cells at Zf i,j, Xf i,j, Yf i,j and all other cells

set at their natural, un-deformed state based upon the user inputs (see Section 4.3)

2) Calculate n and v -vectors in Cartesian Coordinates

(The meaning of these vectors will be given later)

3) Convert Cartesian Coordinates (C.C.) => Spherical Coordinates (S.C.)

4) Linearly interpolate to develop the initial guess, x0

 91

5) Iterate to find the minimum energy state

a) Energy minimization

(1) Create Relationship among S.C. values

(2) Convert back to C.C.

(3) Apply Inverse Statics using L1, L3, La, 1 2 1 2, , ,α α β β

(4) Calculate P.E. of the joints

(5) Compare P.E. values from previous results

(6) Modify x0 of S.C

b) End Loop

6) Results from the iteration are the S.C. of n and v -vectors

7) Convert S.C.=> C.C.

8) Find P(x,y,z) by applying dist, L1, L3, La, 1 2 1 2, , ,α α β β

 92

4.9 Spherical Coordinates (Method 2: Interpolation and Initial Guess)

 Unlike Method 1, Method 2 uses spherical coordinate values instead of Cartesian

coordinates. Below is the explanation that would lead to understanding about the

interpolation process and the reason for the variables in the initial guess matrix.

The formable crust matrix consists of a series of n and v unit vectors that

completely determine the cartesian coordinates of all the centerpoints, links, and joints

for every unit cell in the matrix. Figure 4.27 shows all the vectors for a 1-by-3 matrix of

unit cells. The detailed image shows that the n -vectors are the normal vectors to the

triangular faces of the unit cells. The v -vectors originate from the center of a unit cell

and point toward the centers of all adjacent unit cells. They always lie in the planes of

the triangular faces, called linking triangles. Note that the n -vectors are always

perpendicular to the v -vectors. By specifying the elements of these vectors and knowing

a few geometric constants, the coordinates of any point on any of the unit cells can be

calculated. Both the n and v -vectors consist of three unknowns (x,y,z). For just 2 unit

cells, there are 8 v -vectors and 8 n -vectors, giving a total of (8+8)*3= 48 unknowns.

One method to reduce the number of unknowns is to use spherical coordinates.

 93

n1

n2n3

n4

v1

v2

v4

n5

n6n7

n8

v5

v6
v7

v8

n9

n10n11

v9

v10

v11

n12

v12

v3
n3

v3
detail

Figure 4.27: The n and v -vectors

When converting the unit vectors from cartesian to spherical coordinates, the

number of unknown variables is reduced. Instead of using the cartesian variables (x,y,z),

Figure 4.28 shows how to define a vector using three different parameters: φ, θ, and

length r. If the vector has unit magnitude, the number of unknowns can be reduced since r

always equals one.

+K

+I
+J

p

φ

θ

r p/0
=r

Figure 4.28: Spherical Coordinates

 94

Figure 4.29 shows how the spherical coordinates are used to define the vectors in

the detail of Figure 4.27. Note that the linking, triangular face of the unit cell is included

in the drawing. The 3n vector is specified by two coordinates, θn and φn similar to the

p -vector in Figure 4.28. Since the v -vectors are always perpendicular to their

corresponding n -vectors, it is only necessary to specify one parameter for the v -vectors.

This one parameter appears as the θv value in Figure 4.29. θv value will change as the

matrix twists and deforms. This automatically reduces the number of unknowns the

computer needs to find for Method 2. The intermediate coordinate system, i”,j”,k”, will

aid in this coordinate transformation. This intermediate coordinate system is defined such

that the 3n vector is colinear with the k” direction and the 3v vector lies in the i”-j”

plane.

+K

+I

+k''
φn

+i'' +J
+j''

v3

n3

θn

θv

Figure 4.29: Example of Spherical Coordinates

 95

From this explanation for why we using spherical coordinate instead of cartesian

coordinates, below are the rest of the principles for Method 2 that uses the spherical

coordinates.

4.10 Initial Guess (Method 2: Interpolate and Initial Guess)

From the givens, we can develop the Initial Guess vector of what n i and vi

vector values may be by using only spherical coordinates [φ,θ]. As previously stated,

spherical coordinates can reduce the number of variables that needs to be iterated.

Originally all n unit vectors are [0,0,1] in the cartesian coordinate and all v unit vectors

are in their cartesian directional vector. Equation 4.23 is a sample of the coordinates for

the v unit vectors of one cell. This sample can be duplicated based upon the numbers of

cells in the crust matrix.

() () () ()1 2 3 4[v ; v ; v ; v] 0, 1,0 ; 1,0,0 ; 0,1,0 ; 1,0,0 = − − (Equation 4.23)

As previously described, one of the givens are the Zf i,j points, which are the user

specified heights of several of the unit cells. The initial guess requires interpolating

between any two fixed Zfi,j points.

 96

Since graphically explaining interpolation for a matrix is too complex, Figure

4.30 is a 2D example of an interpolation for one row.

φ
Z-input1st

unit cell

5th
unit cell last

unit cell

Figure 4.30: Interpolation From Z-input

For Figure 4.30, the first, fifth, and last z-values of the related unit cell are

constrained. The fifth z-value is constrained by a Z-height input value. Similar to

Method 1, the unit cells in between should follow the straight line between two z-

constraints. The difference between the two interpolation styles is in the n and v vector

values. Instead of cartesian coordinates, these values start off as spherical coordinates.

 97

Sub-Step 1:

Calculate the angle of deformation, φ, between two Z- constraints.

()
()

f f-11
i

f f-1

Z -Z
sin

Cell Cell *dist
φ −

= − −
 (Equation 4.24)

f= 2, 3,…# of inputs+1

Zf i,j= current fixed Z heights

Zf-1 i,j= previous fixed Z heights

Cellf i,j = The cell where Z heights are currently fixed

Cellf-1 i,j = The cell where Z heights are previously fixed

Sub-Step 2:

After calculating the φi's all the new n ’s are

i
in

0
φφ

θ

= =

 (Equation 4. 25)

The θ are still all zeros because the n ’s are not rotated laterally only

longitudinally. The v ’s values remain the same before and after deformation. If any of

the cells has a fixed x or y cartesian coordinate, the φi's for the normal vectors of that cell

will not be part of the unknowns in the Initial Guesses vector. For example in Figure

 98

4.31, if the x-coordinate of the center-point for the unit cell shown is fixed, then both the

φ for n 2 and n 4 are a fixed value that will not be part of the Initial Guesses vector.

v4

+J

n1

n3

n4

v1

+I

v3

+K
n2+Z

+Y +X

Figure 4.31: n and v -vectors for One Unit Cell

The unknowns from the Initial Guesses vector will be the variables that the

iteration process will be determining for calculating the potential energy in the system

with the joint angles.

4.11 Duplications (Method 2: “Create Relationship” Block)

 We can take advantage of the symmetries within the matrix of cells to simplify

the analysis by deriving the relationship between the cartesian coordinates of the v and

n vectors. These symmetries create duplications of the variables. Below are explanations

of the duplications:

 99

linking
triangle

linked
triangles

Center
point

joints

Unit cell

na

va

nb

vb

Figure 4.32: Linking unit cells

1) The unit normal vectors of any triangles that are rigidly linked together will always

point in the same direction, as seen in Figure 4.32. We can call these values “identical

twins.”

a. a bn n= (Equation 4.26)

2) For every v -vector that radiates out toward the edge of a linking triangle, there is an

equal and opposite v -vector on the neighboring cell. We can call these vectors “mirror-

image twins”:

a. a bv v= − (Equation 4.27)

 Using these properties the number of unknown variables can be reduced: once one

variable is found, the twin of the found variable can easily be calculated. When the

number of unknown variables is reduced, the number of iterations or guesses that

computer has to perform is reduced. This will also increase the calculation speed. The

properties can also be used as a check on the accuracy of the guesses. The calculated

values can be compared to each other to determine the accuracy of the calculation.

 100

4.12 From Spherical to Cartesian (Method 2: Inside Iteration Box)

 Based upon the previous explanation of spherical coordinates and the already

explained principles for Method 2, this section will describe how the spherical

coordinates unknowns will be converted back to cartesian coordinates to calculate the

joint angles. The first step is calculating the cartesian coordinates for n vectors.

Finding n vectors

As previously stated, the θn and φn parameters for the n -vectors are defined in the

same way that the spherical coordinates are defined in Figure 4.28. Based upon the

generic conversion of spherical coordinates, the equation for the n -vectors is as follows

(Ginsberg,1998):

() ()
() ()

()

n nn

n n n

n n

sin *cosx
n y sin *sin

z cos
i

φ θ

φ θ

φ

 = =

 (Equation 4.28)

Finding v vectors

 An imaginary i”-j”-k” frame was created in Figure 4.29, with the n -vector

aligned along the k”-axis and the v -vector lying in the i”-j” plane. The first task is to

find the rotation matrix between the I,J,K frame and the i”,j”,k” frame. This can be

accomplished using two rotations as shown in Figure 4.29; first rotating about the J-axis

by φn , then rotating about the K-axis by θn. The θv is embedded in the n -vector rotation

as one will see in the following calculation. Figure 4. 33 below will describe the first

rotation.

 101

φn

φn

+K

+I
+J=+j'+i'

+k'

b

3D axis

+K

+I

+k'

+i'

b

2D axis

φn

φn

Figure 4.33: Rotation about J-axis

Rotation about the J-axis:

Let ˆˆ ˆb x y zi j k= + + denote an arbitrary vector that is being rotated about the J-

axis by φn. After rotating, the new b-vector can be referenced back to the space-fixed

coordinate system using trigonometry, as shown in the 2D axis image of Figure 4.33.

n n n n
ˆ ˆ ˆ ˆ ˆb=x *[cos sin] y*[1] z*[sin cos]I K J I Kφ φ φ φ− + + + (Equation 4.29)

The matrix formulation for the rotation of an arbitrary vector about the J-axis is:

space-fixed rotation rotated
= *

coordinates matrix coordinates

 =>
n n

n n

cos 0 sinX x
Y 0 1 0 * y
Z sin 0 cos z

φ φ

φ φ

 =
 −

 (Equation 4.30)

 102

Rotation about the K-axis:

We now derive the rotation matrix for an arbitrary rotation of θn about the space

fixed K-axis. This rotation is shown in Figure 4.34.

+I

+J
+j''

+i''b

2D axis

+I

3D axis

θn
θn

+K=+k''

+i''

+j''

+J

b

θn

θn

Figure 4.34: Rotation about K-axis

Again using the b-vector example: ˆˆ ˆb x y zi j k= + + , the equation and matrix

derivations are as follow:

ˆ ˆ ˆ ˆ ˆb=x *[cos sin] y*[sin cos] z*[1]I J I J Kθ θ θ θ+ + + + (Equation 4.31)

X cos sin 0 x
Y sin cos 0 * y
Z 0 0 1 z

θ θ
θ θ

−
 =

 (Equation 4.32)

After developing the rotation matrices for each axis, the overall rotation matrix

can be written as a product of the two rotations. The overall rotation matrix is given as:

 103

[] []
n n n n n n nn n

z y n n n n n n n

n n n n

C 0 S C C S C SC S 0
R R * R S C 0 * 0 1 0 S C C S S

S 0 C0 0 1 S 0 C

φ φ θ φ θ φ φθ θ

θ θ θ φ θ θ φ

φ φ φ φ

 − −
 = = − =
 −

 (Equation 4.33)

This is the rotation matrix that converts i”, j”, k” coordinates to I,J,K coordinates.

As a check we can use the p -vector, which is parallel to the k’’ axis as shown in

Figures 4.19 and 4.20. The two rotations that define the p -vector and k’’ axis are shown

in Figure 4.35, and are identical to the two rotations discussed above.

θn

φn

1st rotation

2nd rotation

+J=+j'

+I

+K

+k'

+i'

+k''=p

+j''

+i''
φn

θn

θn

Figure 4.35: Two Rotations

 104

Before being rotated the p -vector is parallel to the K-axis. Therefore its rotated

value becomes:

n n n n n n n

n n n n n n n

n n n

C *C S S *C S *C0
C *S C S *S * 0 S *S

1S 0 C C

φ θ φ φ θ φ θ

φ θ θ φ θ φ θ

φ φ φ

 −
 =
 −

 (Equation 4.34)

The result is the same as in Equation 4.28, for converting from spherical to

cartesian coordinates. Also this matrix is checked with vectors other than [0 0 1] and the

results is the same as the equation in Ginsberg, 1998. Therefore our rotation matrix is

correct.

 Based on Figure 4.29, the v -vector and the linking triangle lies in the i”-j” plane.

Its position in the i”,j”,k” reference frame is:

[]
v

i v

C
v 's position

0
S

θ

θ

 =

 (Equation 4.35)

Next, the rotation matrix in equation 4.33 is used to convert the i”,j”,k”

coordinates into I,J,K coordinates.

 105

n n n n n n n v n vv

n n n n n v n n v n n

n n n v

C *C S S *C C *C *C - S *CC
C *S C S *S * S C *S *C + C *S

0S 0 C S *C

φ θ φ φ θ φ θ θ θ θθ

φ θ θ φ θ θ φ θ φ θ θ

φ φ φ θ

 −
 =
 − −

 (Equation 4.36)

Now we have the equations for converting the v -vectors from spherical to

cartesian coordinates.

4.13 Calculating the Joint Angles (Method 2: Joint Angles Calculation)

Based upon a given set of cartesian coordinates of the vi, and ni vectors, the joint

angles can be calculated by applying a series of equations using the geometric design of

the unit cells. The joint angle values will be used in calculating the potential energy in the

system, which in turn helps calculate the position of the center-points for every unit cell.

The mathematical notation is given as:

Joint angles: δ = G-1 (C(vi,ni)) (Equation 4.37)

C(vi,ni) denotes the cartesian coordinates of vi , ni, and G-1 denotes a set of

equations that can take C(vi,ni) to find the deformation, δ, of the angles for the unit cells.

Below will be a series of equations to analyze an array of unit cells.

Note: This section incorporates some of Paul Bosscher’s Master thesis on inverse

kinematics. However, this is not the inverse kinematics for this thesis. There is not an

inverse kinematics section for this thesis. There is an inverse statics section

 106

4.13.1 Joint Angle Pseudo-code for One Unit Cell

Figure 4.36 shows a unit cell and the detail of the focus area within the dashed

circle. The math is as follows:

P(x,y,z)

θ1

θ2
θ3

a1

a2

a3

v1 v2

n2

n1

u1 u2

β1 β2

α1 α2

+Y

+X
a1

a2

a3

detail

Figure 4.36: Unit Cell

New Definition

i. a i =Unit vector running along the axis of the revolute joints shown in the Figure.

ii. ju =Unit vector normal to the plane containing a j and 1a j+

iii. iβ = Interior angle of main linking triangle i

iv. kα =Interior angle of secondary linking triangle k

v. θj =the angle at joint j

Given: 1 2 1 2 1 2 1 2 v , v , n ,n , , , ,α α β β

Find: 1 2 3, ,θ θ θ

 107

Step 1:

Finding the unit vector 1a and 3a can be achieved by applying Bosscher’s

equations as seen in Table 4.1 (Bosscher, 2003).

Table 4.1: Finding Unit Vector 1a and 3a from Bosscher’s Master’s Thesis

v1

η1a1

w1

β1/2

1
1

1 1

v1

cos cos
2 2

η
β β

= =

1
1 1w sin

2
βη = ⋅

 (∗see footnote)

1 1 1 1a v wη ⋅ = +

()1
1 1 1 1w sin n v

2
βη = ⋅ ⋅ ×

 (*)

()1 1
1 1 1 1a v tan n v cos

2 2
β β = + ⋅ × ⋅

v2

η2a3w2

β2/2

2
2

2 2

v1

cos cos
2 2

η
β β

= =

2
2 2w sin

2
βη = ⋅

 (*see footnote)

2 3 2 2a v wη ⋅ = +

()2
2 2 2 2w sin n v

2
βη = − ⋅ ⋅ ×

 (*)

()2 2
3 2 2 2a v tan n v cos

2 2
β β = + ⋅ × ⋅

Step 2:

Step 2 describes the math for finding 2a from 1a and 3a by modifying Bosscher’s

equations. In the set of equations to calculate the joint angles, Bosscher specified using an

iterative process by searching through various combinations and checking when

∗ In the original text, there were errors. This paper is presenting the correct version.

 108

1 3 2(a a) a 0× ≤i . This process does work for finding 2a but it involves solving a

nonlinear system of equations.

 Another approach is using a direct method by considering the unit cell as a

combination of geometric shapes. This method is faster, simpler without having

conditions and constraints, and more accurate.

In reference to Table 4.1, Figure 4.37 shows another technique for finding the

2a vector within the dash circle of the previous figure.

Q

P

L1

L2

L1

na

a1

a2

a3

L3

L4

θ
L2

na
Q

a2

detail of internal triangle

Figure 4.37: Detail of Dashed Circle of unit cell

1) Given from Geometry: L1, L3, La (the length of the edge collinear with 1a)

2) Find 2a

 109

Sub-step 1:

Finding the Q vector from P vector using vector summation rule

a 3 a 1a aP L L= ⋅ − ⋅ (Equation 4.38)

a 1a
2
PL Q⋅ + = (Equation 4.39)

Sub-step 2:

Finding θ by combining the Pythagorean Theorem and the Law of cosine

2
2

2 1 2
PL L= − (Equation 4.40)

22 2
2 3 32 cosL Q L Q L θ= + − ⋅ ⋅ ⋅ (Equation 4.41)

22 2
2 3

3

()
cos

2

L Q L
a

Q L
θ

 − + + ⇒ =
 ⋅ ⋅

Sub-step 3:

Find an̂ which is the unit normal vector to a plane shared by both 1a and 3a

1 3a aan X= (Equation 4.42)

ˆ a
a

a

nn
n

= (Equation 4.43)

Sub-step 4:

Calculate the last unknown length using trigonometry

4 tanL Q θ= ⋅ (Equation 4.44)

 110

Sub-step 5:

After finding all the other unknowns calculate the 2a by the vector summation

rule and applying the unit vector equation. Figure 4.38 is another detail image from

Figure 4.37 that will provide a visual explanation for the following calculation.

θ

-na
L3

L4

na

L2

Q

a2

Figure 4.38: Second Detail

2 4 ˆa aL n Q= − ⋅ + (Equation 4.45)

2
2

2

âa
a

= : the unit vector that points in the direction of the middle vector.

 (Equation 4.46)

 111

Step 3:

 After finding 2a using this method, the joint angles, θ's can be found by applying

the rest of Bosscher’s method, as presented in Table 4.2.

 Table 4.2: Finding the Joint Angles θ's from Bosscher’s Master Thesis
Finding 1u and 2u :

()1 2
1

1 2

a a
u

a a
×

=
×

()2 3
2

2 3

a a
u

a a
×

=
×

Finding θ1, θ2 , and θ3:

()1 1 1u n cos π θ⋅ = −

()2 2 3u n cos π θ⋅ = −

()1 2 2u u cos π θ⋅ = −

()1
1 1 1cos u nθ π−= − ⋅ + 1

 where if

()1 1 1 1u n a 0 then θ π× ⋅ = =

()1
3 2 2cos u nθ π−= − ⋅ +

where if

()2 2 3 3u n a 0 then θ π× ⋅ = =

()1
2 1 2cos u nθ π−= − ⋅ +

1 In the original equation, finding θ requires the design variable, λ. For this case, the design variable is not
necessary.

 112

4.13.2 Joint Angle Calculation for an Array

For an array of unit cells the math is similar to the one unit cell case. The goal is

to find the θ’s of every joint for every unit cell in the matrix. The derivation is identical to

the one shown in the previous section. The only difference is that now the equations

must be compiled into vectors to store the information for the multiple cells in the matrix.

Figure 4.39 is a composite of previous images and explanation to remind the reader of

what this section is about.

columnrow

pi+1,j

pi,j

pi+1,j+1

pi,j+1

Figure 4.39: Array of Unit Cells with Center points

1) New Definition:

i) La = length of the edge coincident with the 1a -vector from Figure 4.37

ii) Lamid= length of the edge coincident with the 2a -vector from Figure 4.37

 1 2 1 2, , ,α α β β = geometric constants as seen in Figure 4.36

2) Given: 1 2 1 2v , n , , , ,i i α α β β , k1, k2, dist, La, Lamid, 1 2 1 2, , ,α α β β

3) Find: θ1p, θ2p, θ3p

i) Where p= 1, 2,… 4*n*m, identical to the definition in section 4.1.2.

 113

Based upon the geometry and Bosscher equations for one cell, we will assume the

following:

1 2α α α= = (Equation 4.47)

1 2β β β= = (Equation 4.48)

The equations for deriving the a -vectors are shown in Table 4.1 and will not be

repeated here. However, for computational purposes we will change the previously

developed notation for a -vectors. The a -vectors between the linking triangles will be

denoted as mid ia , while the a -vectors on the edges of the linking triangles are denoted as

ia as seen for one unit cell in Figure 4.40.

+I

+J+K

w1

w2

w8

w3

a1

a8

a7

a6 a5

a4

a3

a2

amid1

amid2

amid4

face 1

face 4

face 2

face 3

Figure 4.40: Arrangement of a and mida vectors

Note this departs from our previous notation.

 114

The ia -vectors are arranged in a matrix as seen below:

1cell1

2cell1

3cell1

8cell1

1cell2

2cell2

3cell2

8cellm*n

a
a
a

a
a

a
a
a

a

 =

 (Equation 4.49)

After finding all the a -vectors, use Table 4.2 to calculate the θ1, θ2, and θ3 for

each unit cell. The only difference is there will be a subscript variable “p” to indicate

which joint it refers to. Since the θ1, θ2, and θ3 appear 4 times in each cell the “p” index

will range from 1 through 4*m*n.

4.14 Potential Energy (Method 2: Inside Iteration Box)

 From the angles calculated, we can apply the potential energy equation that was

already mentioned in Equation 4.22 under the pseudo-code of Method 2. It will not be

repeated here. The coordinate constraints also add potential energy values to the total sum

of the Potential Energy. If the iteration process produces coordinate results that deviates

from the constraint coordinates, the iteration process will be “penalized” with a very high

potential energy value as seen in Equation 4.22. The penalty k3 value in Equation 4.22 is

 115

insignificant as long as this value is at least 2X greater than any of the other 2 k values.

For this reason, we arbitrarily selected 100,000 as the k3 value. If the potential energy is

high, the iteration process to re-evaluate the guesses until the energy value is at its lowest

state. Also consider there is an additional stiffness value on any fixed Z coordinate. For

example in Figure 4.30, the fifth cell has a Z-height input. Therefore the potential energy

equation will have an additional term with the difference between the value in which the

fifth Z should be fixed at Zf i,j, and the value in which the computer calculated, Zf i,j‘. This

additional stiffness will reduce the likelihood of the iteration process from deviating from

the given value as seen in Equation 4.22.

4.15 Ending Comments for Method 2

 After finding the spherical coordinates for the n and v vectors, the vectors can

be converted back to cartesian coordinates using one of the previously mentioned

principles. From the cartesian coordinates of the n and v vectors, the position can be

calculated by applying inverse statics. Below will be the explanation of forward and

inverse statics that provide the overall structure for Method 2. The flow chart that will

later be mentioned in the statics section can be used in parallel with the already

mentioned flow chart to clarify Method 2.

 116

4.16 Forward and Inverse Statics: Overall Statics of Method 2

In Method 2, both the inverse and forward statics are applied to complete the

statics circle and to solve for the position coordinate values of the center-points of the

unit cells. Figure 4.41 is a diagram that describes the relationship between the two types

of statics.

Position inputs
(Pi)

Forward

Statics

Inverse

Statics

Coordinates of
v and n vectors

(ni, vi)

Figure 4.41: Forward and Inverse Statics

First the user will input a set of cartesian coordinates for the center-points of some

unit cells. Because of the manipulation of several z-values and the rigid linking between

any two unit cells, the coordinate position values will not be accurate. From the inputs,

Method 2 will apply forward statics to determine the coordinates of the n and v -vectors.

From this calculation, Method 2 will also apply inverse statics to correctly recalculate the

positions. This is an overall description of the relationship between the two.

 117

For a more detail version of how Method 2 calculates the positions by applying an

iterative process, refer to Figure: 4.42.

Position (Pi)
inputs

Intital Guess of
 and vectorsnivi

Iteration
&vi ni

θ

Pi
θ

Pi

vi ni&

Figure 4.42: Calculates the Position

 The user will input a set of cartesian coordinate position values for the center-

points for some of the unit cells in the matrix. Embedded inside the methods are

additional coordinate constraints. As stated above, the cartesian coordinate values are not

accurate. There is a direct relationship between the positions of the unit cells and the n

and v -vectors. At this point, we also do not know the correct coordinate values for n and

v -vectors. However, we can create initial guesses of what those values can possibly be.

As stated above, the n and v -vectors can be calculated by using an iterative process. The

iterative process will calculate n and v -vectors by attempting to minimize the potential

energy of the angles from the joints within each unit cell. After producing the cartesian

coordinates of n and v -vectors, a correct list of the values for the position of the center-

points can be calculated along with the angles in the joints. The cycle is complete.

 In the following sections, the mathematics for both statics will be explained.

 118

4.16.1 Inverse Statics

The inverse statics will be described first because forward statics applies inverse

statics to iteratively arrive at the n and v -vectors values. The mathematic notation is

shown:

C (Pi) = G (ni,vi) (Equation 4.50)

 We need a series of equations for the n i and vi unit vectors denoted by G (ni,vi).

From this we can calculate the cartesian coordinate positions of the center-points denoted

by C (Pi). The inverse statics can also be applied to develop the inputs for calculating the

angles, which in turn helps forward statics to determine the cartesian coordinate positions

of the n i and vi unit vectors. However, the main purpose of inverse statics is to calculate

the position values of the center-points of every unit cell in the matrix.

 119

4.16.1.1 Inverse Statics Equations

pi+1,j

pi,j

pi+1,j+1

pi,j+1

Pi,j
vi vj

ni nj

Figure 4.43: Inverse Statics Diagram

From Figure 4.43, the image on the left describes the n and v -vectors for one of

the cells in a matrix. By following the direction of the v unit vectors a certain distance,

one can calculate the cartesian coordinate position values of any of the center-points. For

example, we know that at the first cell, the position value is (0,0,ZF1,1). We can follow

the vi unit vector a “dist” length. The arrival point is the next centerpoint at Pi+1,j as

shown on the right image. We can continue onto the next v unit vector until we arrive at

the next center-point. Of course we can also go the other direction and arrive at Pi,j+1.

This process can continue until we know all of the center-points.

The equations for the center-points are as follow:

, i-1,j
,

, i,j-1

V *dist +PRow
P

column V *dist+P
i ji

i j
j i j

 = =

 (Equation 4.51)

 120

After knowing the center-points position, the cartesian coordinates of every vertex

of every unit cell can be calculated by following the 1,2,3a unit vectors for the Pi,j cell as

shown in Figure 4.44. The vertices are referring to the end of the edges of which the 1a ,

2a , and 3a vectors follow.

Pi,j
vi vj

ni nj

a1 i,j

a2 i,j

a3 i,j

La1 La3

La2

Pi,j

Figure 4.44: Calculating the Edge Vertices

The equations for the vertices are as follow.

1(,) a1

2(,) a2

3(,) a3
, i,j

11(,) a11

12(,) a12

a *L

a *L

a *L
a p

a *L

a *L

i j

i j

i j
i j

i j

i j

 = +

 (Equation 4.52)

 i,ja = A group of i,ja vertices. For each unit cells there are twelve unit i,ja -vectors.

 Lai= length for the corresponding i,ja vectors.

 121

4.16.2 Forward Statics

Based upon all the inputs of the cartesian coordinate position values of all the unit

cells, all the n and v -vectors can be calculated. The mathematical notation for the

forward statics is given as:

C(ni,vi) = G (Pi) (Equation 4.53)

The G(Pi) denotes the sets of equations that take on the given position values

input, Pi. C(ni,vi) is the resulting cartesian coordinates of the n i and vi unit vectors. The

implementation of forward statics is applied in the Method 2: Under-constrained Actual

Manufacturable Crust Model. Since the forward statics for the crust matrix problem

cannot be solved using a series of equations, we are going to apply an iterative process.

The iterative process uses the inverse statics to calculate the angles based upon the initial

guesses of the n i and vi unit vectors for every linking triangle on every unit cell. Next it

will calculate the potential energy from the angles. Then it will take the energy calculated

from the angles and modifies the n i and vi unit vectors. Forward statics is accomplished.

The iterative process is being accomplished in “Fmincon”: a pre-packaged minimization

function in MATLAB. Below is the math for the set-up.

 122

4.16.2.1 Forward Statics Algorithm

Figure 4.45 is three unit cells rigidly linked together with the center-points labeled

as Pi,j. The n i and vi unit vectors are labeled based upon the referencing convention

mentioned earlier.

n1

n2
n3

n4

v1

v2v3

v4

n5

n6n7

n8

v5

v6v7

v8

n9

n10
n11

v9

v10

v11

n12

v12P1,1

P1,2

P1,3

Figure 4.45: Linking Unit Cells

 There are 4 n i and 4 vi unit vectors for every Pi,j value. For forward statics, we

want to derive n i and vi vector values from the Pi,j values. Since they are unit vectors,

at this point it does not matter where they are located in space. As previously mentioned,

there is not a direct method to calculate n i and vi vector values. We will be applying an

iterative process to solve the problem. The pseudo-code is very similar to Method 2. Most

of the steps will be referenced back to Method 2.

 123

Given: Same as Method 2

Find: n i and vi unit vectors

Minimize: Potential Energy (Equation 4.22 from Method 2)

Step 1:

 Determine the initial guess of the n and v -vectors.

Step 2:

Apply the spherical coordinates rotation matrix to find the cartesian coordinates

of the n and v -vectors.

Step 3:

Apply the inverse statics equations to calculate the n and v -vectors.

Step 4:

Apply the Joint Angle calculation to determine the joint angles.

Step 5:

Calculate the potential energy in the system with the additional constraints on the

unit cell.

Step 6-8:

Repeat steps 2-5 by changing the resulted spherical coordinate guesses back into

cartesian coordinates, placing back into the iterative process applied by pre-package

 124

program ‘Fmincon’ and modifying guesses. Continue iterating to search for the optimal

combination of spherical coordinates for the lowest potential energy.

Step 9:

Convert the final spherical coordinates back to cartesian coordinates of the n and

v -vectors. From here we have finished the forward statics.

Step 10:

Next will be the inverse statics for taking cartesian coordinates of the n and v -

vectors and finding the position values of the center-points for each unit cell.

 125

4.17 Unknowns, Equations, and Degrees-of-Freedom

 The number of unknowns differs for methods 1 and 2. We will use several

examples to show how we will count up the numbers of unknowns.

The number of equations is a count of the independent equations that each method

uses to solve the problem. However, this does not count any of the equations that are used

to derive these relevant equations. The number of equations differs for each example of

Method 1 as one will later see, but stays the same for all examples of Method 2.

 For any rigid body, there are 6 Degrees-of-Freedom (DoF): 3 translational and 3

rotational. As rigid bodies are attached together to create one deformable body, most of

the rigid bodies lose their translational DoF. We can count each translational DoF by the

direction in which the rigid body can move in the X, Y, and Z direction. The convention

we will be using to analyze the rotational DoF is the “Roll-Pitch-Yaw” rotations for the

rods and unit cells. “Roll-Pitch-Yaw” is a transformation convention for a rigid body

rotating about the Z, Y, and X axes respectively. To visualize this convention, Figure

4.46 shows the hull of a boat in water and how it can move about the axes.

 126

X (Yaw) Z (Roll)

Y (Pitch)

Figure 4.46: Roll-Pitch-Yaw

 For this DoF analysis, we will not remove any DoF to fix the crust matrix in

space. It is up to the controls department to determine how to attach the crust matrix to

the Digital Clay base. This in turn will affect the number of DoF that will be removed.

For both methods, we have enough length constraints and coordinate constraints to fix the

matrix in space for analyzing and calculating.

 127

4.17.1 Method 1

Below are the analyses for Method 1 using a simple line example and a matrix

example.

Number of Unknowns for a Serial Chain

For the first method, the number of unknowns is the number of cartesian

coordinates in the matrix because this is what we are solving for. For a 1-by-7 matrix of

unit cells as seen in Figure 4.47 the number of unknowns is (3 Cartesian Coordinates)*(#

unit cells)=21 unknowns.

dist
dist

dist
dist dist

dist

z-input 1
z-input 2(0,0,0)

Figure 4.47: Numbers of Unknowns and Constraints for a 1-by-7 Matrix

Number of Equations for a Serial Chain

The additional fixed coordinate values, such as the Z-heights, and the constant-

length equation are constraints that limit the searching process. For every constraint, there

 128

is an equation. The constraints do not affect the number of unknowns for Method 1.

There is an additional equation, the potential energy minimization equation. For Figure

4.47, the constraints are the first coordinate points at (0,0,0), the Z-height inputs, any

other constrained coordinate values, and the length “dist” constraints. Therefore for

Figure 4.47 with an example of a 1-by-7 matrix, there are 5 coordinate constraints + 6

length “dist” constraints + 1 minimization equation = 12 equations total.

Since there are constraints that affects the unknowns, this is not minimum number

of variables that determine the exact position of the unit cells. In other words, the

number of unknowns does not equal the degrees-of-freedom.

Degrees-of-Freedom for a Serial Chain

First we will start with one rod having 5 DoF as seen in the first image in Figure

4.48 between point A and B. That means that rod A-B has 3 (translational) + 2

(rotational) = 5 DoF. Note that in the figure, the balls are the endpoints for the rods.

There are only two rotational DoF for rod A-B because if rod A-B rotates about its own

axis, it is still a cylinder. This means from the “Roll, Pitch, and Yaw” definition of

rotation, we have ignored the “Roll”. In the middle image, another rod is added. Again

this rod starts off with 5 DoF. Since rod B-C is attached to a fully defined rigid body, rod

B-C loses 3 translational DoF. Therefore rod B-C has 2 DoF left. We can continue adding

rods to the chain as seen in the last image. By the previous argument, each added rod

only contains 2 DoF for a linearly connected chain. Again we are not going to fix this

 129

matrix. It is beyond the scope of this thesis to determine how the crust matrix will be

fixed to the Digital Clay device. Therefore we will keep the matrix floating in space.

For a 1-by-7, the DoF is: [5+2+2+2+2+2](total DoF) = 15 DoF for a 1-by-7.

Figure 4.48: Method 1 2D Example for DoF

Number of Unknowns for a Matrix

For a matrix, the number of unknowns gets more complex. As the size of the

matrix increases, the unknowns increase. For the case of a 4-by-5 as seen in Figure 4.49,

there are a total of 20 unit cells. That means there are (3 Cartesian Coordinates)*(20 Unit

cells) = 60 unknowns.

nm

dist
dist

dist
dist

dist
dist

dist

Y
Z

X

Figure 4.49: 4-by-5 Matrix of Constraints

5 DoF

A B

5 DoF

A B

2 DoF

C

5 DoF

A B

2 DoF

C

2 DoF

D

 130

Number of Equations for a Matrix

The number of coordinate constraints equations is dependent on the number of

user inputs to constrain the X, Y, or Z coordinate values of the unit cell centers. In Figure

4.49, we know there are [(n-1)*m + (m-1)*n] (length constraint equations) + 1

minimization equation = 32 equations. The coordinate constraints are not counted

because this value is based upon the user inputs and varies for different situation.

Degrees-of-Freedom for a Matrix

To determine the DoF for a matrix, first let’s look at a simple case with a 2-by-2

matrix. Again the first rod has 5 DoF as seen in Figure 4.50. The second rod is attached

to Rod A-B and adds 2 DoF, similar to the case shown in Figure 4.48. Rod C-D initially

has two DoF, similar to Rod A-C. But Rod D-B and Rod C-D have to meet at one

connecting point D. The locus of points equidistant from the two points B and C is a

circle. Therefore the DoF for both Rod C-D and D-B is one. In other words, the location

of point D is the last element that needs to be known to define this 2-by-2 matrix. Once

this is known, we can total up the DoF: (5+2+1) = 8 DoF.

Figure 4.50: 2-by-2 DoF Example

5 DoF

A B

5 DoF

C

2 DoF

A B

5 DoF

C D1 DoF

2 DoF
0 DoF

A B

 131

For the case of a 4-by-5 as seen in Figure 4.49, this same addition is applied. The

Degrees-of-Freedom: 5+ 2*(n-2)+2*(m-1)+1*(m-1)*(n-1) = 29 DoF for a 4-by-5 matrix

using the Method 1 modeling technique.

Figure 4.51: Method 1: 4-by-5 DoF Example

Note that the previous equation holds for any matrix of m rows and n columns.

4.17.2 Method 2

Below is the analysis for Method 2 with the unit cells.

Number of Unknowns for a Serial Chain

For Method 2, the unknowns are the n and v -vectors. It is the cartesian

coordinates of these vectors that determines the centerpoints and joint angles for

minimizing the potential energy. As previously stated, we were able to reduce the number

of unknowns by using spherical coordinates for the n and v -vectors. If any one of the

faces of any unit cell is fixed, then n and v -vectors for that particular face are known.

5 2 2
2

2

2

1

0
1

0
1

0
1

0

1

0

1

0

1

0

1

0

1

0
1

0
1

0
1

0

2

 132

Face fixing will be further explained in the next chapter, but not accounted for in

this section. However, the other constraints such as the coordinate constraints and the

length contraints will not affect the numbers of unknowns. This is because they are

imbedded in the energy equation. For any unit cell, there are 4 θn , 4 φn , and 4

θv unknown values. If any of these variables is on the same plane or on a linked triangle,

then the number of unknowns is further reduced because there are duplications in the θn ,

φn , and θv . The realization of duplication was explained earlier in section 4.11.

 For example, for a 1-by-7 matrix of unit cells as seen in Figure 4.47, there are (m

rows)*(n columns)* (4θn + 4φn + 4θv per unit cell) = 84 unknowns. If an X number of the

faces is fixed, then we can subtract X θn , X φn , and X θv unknown values from the 84

unknowns. Lets say one of the faces in the matrix is fixed, then that leaves 84 – [1 θn, 1

φn, and 1 θv unknown values] = 81 unknown values left. Of course for this analysis we

assume that no face is being fixed. That means the number of unknowns is still 84. Now

we will apply the realization of duplication method because some of the θn , φn , and θv

share the same linking triangles. There are 12 linking triangles that are rigidly connected

for a 1-by-7 matrix. These linking triangles are described by 12θn , 12φn , and 12θv.

However, half of these are duplicated. That means there are only 6 θn , 6φn , and 6θv

unknown values. So finally we have 84- 6(linked triangles)*3 (the variables that are being

duplicated) = 66 unknowns.

 133

Number of Equations for a Serial Chain

The number of equations for Method 2 is similar to Method 1= [number of

coordinate constraints] + [number of length constraints] + 1 [energy minimization

equation]. For the 1-by-7 matrix in Figure 4.47, there are 4 coordinate constraints + 6

length “dist” constraints + 1 minimization equation = 11 equations total. This number is

the same as Method 1 because the constraints are the same for both methods. As

previously explained the coordinate constraints equation and the minimization equation

can be combined into one equation. The length constraints can be considered after the

iteration process. Of course this is all implementation of the equations and does not affect

the total number of equations for Method 2.

Degrees-of-Freedom for a Serial Chain

Unlike Method 1, all rigid bodies now start off with 6 DoF. If they are linked

together end-to-end then each additional body will lose 3 translational DoF. What is left

for the connecting rigid body is the“Roll-Pitch-Yaw” rotation. For Method 2, the shape of

the rigid body is a triangle. Notice that in contrast to Method 1, we will count the “Roll”

as part of the rotational DoF, because a triangle rotated about the Z-axis changes its

orientation.

Figure 4.52 shows how the counting convention starts and is propagated for a

linear case. The first triangle still has all of its 6 DoF.

 134

6 DoF

3 DoF

3 DoF

3 DoF

6 DoF 3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

3 DoF 6 DoF 3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

Figure 4.52: Method 2: DoF Counting

The other three triangles in the first image lose their translational DoF when they

are connected to the first triangle. They are left with 3 rotational DoF. The middle image

shows two triangles linking, that means these two triangles share 3 DoF because these

triangles become 1 rigid body when they are rigidly connected to each other. The last

image shows how the the DoF propogates. For a 1-by-7 matrix, there are actually:

6+3*3(DoF per face)*7(unit cells) = 69 Degrees-of-Freedom.

If one compares the number of unknowns and the Degrees-of-Freedom, one will

realize the difference is 3. In the previous example for a 1-by-7, there are 66 unknowns

and 69 DoF. The reason for the difference is because in the DoF analysis there are 6 DoF

for the first face while there are only 3 unknowns for the first face. There is a positive

difference of 3: 6 DoF and 3 unknowns. Therefore, we can safely say that there is a direct

relationship between the DoF and the number of unknowns. For a matrix of any size we

will not need to count up the number of unknowns. We just count the DoF and then

subtract 3. We will later derive the number of unknowns for a m-by-n matrix from

the Degrees-of-Freedom.

 135

Number of Equations for a Matrix

For a 4-by-5 matrix, there are [(n-1)*m + (m-1)*n] (length constraint equations)

+ 1 minimization equation = 32 equations. Similar to Method 1, the coordinate

constraints are not counted.

Degrees of Freedom for a Matrix

Calculating the Degrees-of-Freedom for Method 2 is similar to how we calculated

for Method 1, except we do not remove the “Roll”. Figure 4.53 shows one triangle fully

defined by 6 DoF. The other connected triangles in the cell have 3 rotational DoF because

they have lost their 3 translational DoF. The second image is a propagation of the first.

When Cell C is connected to Cell A in the third image, there are only 3 DoF between the

two. However when Cell D is connected, there are only 2 DoF for C-D. The reason for 2

DoF is similar to the previous argument for Method 1 shown in Figure 4.48. However,

now the linked triangle can also “Roll” between point C and D. The last linked triangle,

between D and B, has only 1 DoF because it can only “Roll”.

6 DoF

3 DoF

3 DoF

3 DoF

6 DoF 3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

3 DoF

6 DoF 3 DoF

3 DoF 3 DoF

3 DoF

6 DoF 2 DoF

3 DoF 3 DoF

3 DoF

3 DoF 1 DoF

A A B
A B

C D

Figure 4.53: Method 2: 2-by-2 DoF Example

 136

For a 4-by-5 matrix, the counting technique for the Degrees-of-Freedom can be

propagated for the whole matrix as shown in Figure 4.53.

6 3 3 3 3 3

33 3 3 3

3 1

3 2 3

3 1

3 2 3

3 1

3 2 3

3 3 3 3 3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Figure 4.53: Method 2: 4-by-5 DoF Example

 The DoF counting technique for Method 2 is very similar to Method 1. If we

compare Figure 4.53 to Figure 4.51, the main difference is that there is one more Degree-

of-Freedom for every rigid body in Method 2 as compared to Method 1. The reason is

that we did not remove the “Roll” for Method 2.

 137

The equation for the DoF is:

6 * * * 3*(1) 3*(1)
2*(1)*(1) 1*(1)*(1)

DoF F Te n Se m F n m
m n m n

= + + − + − + −
+ − − + − −

 (Equation 4.54)

F=3 DoF for every triangle faces

Te= 2 Top edges

Se= 2 Side edges

From this equation, the DoF for a 4-by-5 matrix = 30+24-3+12+9+24+12= 114

DoF .

Number of unknowns for a matrix

Previously we explain in the section about “Degrees-of-Freedom for a Serial

Chain”, we can calculate the numbers of unknowns from the DoF by subtracting 3. The

number of unknowns is 111.

4.17.3 Ending Remarks for Section

 By comparing the statics of the two methods, we have a far better understanding

of the two different methods. The first method does not attempt to reduce the unknowns

by calculating the Degrees-of –Freedom first. However, it is still faster, because overall

there are fewer unknowns and less Degrees-of-Freedom than the second method. The

 138

second method considers every aspect of the actual deformable crust matrix—there

should be more unknowns and DoF.

Note: For counting the number of DoF for the whole deformable body, we have

considered both external and internal DoF. External refers to the DoF the structure would

have if it behaved like a rigid body and did not deform. Internal refers to the DoF that

cause the body to deform, and does not include any external DoF. For an example for the

difference between external and internal DoF, consider a box with a hinged lid. The

whole box in space has 6 external DoF because it can rotate and translate without any

hindrance to its motion. The hinge on the box only has 1 internal DoF because it can only

flip up and down. Therefore the box has 6 external and 1 internal DoF. The total DoF for

this hinged box is 7.

The number of equations for Method 1 and 2 are the same because the constraints

applied are the same.

 139

4.18 Ending Remarks for Chapter

The two methods mentioned are developed for calculating the position of the

center-points of the every unit cell position. Below are various comments about the

methods.

4.18.1 Benefits

How would these two methods benefit anyone? These two methods mentioned in

the previous sections will benefit the Digital Clay team members because the methods

can be applied for both shape display and shape editing-- the original goals of the Digital

Clay project.

As previously explained, shape display is when the Digital Clay crust matrix can

be computer-commanded to acquire a wide variety of desired shapes. In both methods

that were discussed in the earlier sections, the user can input several constraints and the

programs that implemented the methods would calculate and display the shape based

upon the applied constraints. This will benefit the Digital Clay team members because

they can predict the shape of the crust matrix based upon the inputs. This also allows the

members to determine what material will be best fitted for manufacturing the crust based

upon the inputs and the shape display.

Shape editing is when the user can modify an existing shape into another shape. A

former example of shape editing is the car hood model idea introduced at the beginning

 140

of this chapter. The car hood Lotus design can morph into a Ferrari then into a Corvette

as seen in Figure 4.5: Morphing of the Car Hoods. To accomplish this shape-editing task,

the final position of the Lotus will become the initial stage of the Ferrari. And so on. This

morphing of shapes has already been accomplished when the flat surface (an initial stage)

of the crust matrix has morphed into the Lotus (final stage). This morphing process can

be further enhanced for different shape morphing when there is a loop command in the

programs. This loop command has not been implemented yet due to the time constraint

for this thesis.

Another bonus to the two methods is that these two methods can be piggybacked

to increase speed and accuracy. Since the first method is faster, the user inputs will be

placed in the first method. The final results of the first method can then be placed into the

second method for improving the accuracy of the shape displayed. This piggybacking

idea will be further explained in the next chapter.

There are other benefits from this project to the sub-groups of the Digital Clay

team. These will also be mentioned in the last chapter.

 141

CHAPTER 5

EXPERIMENTS AND RESULTS

Below are the results from both methods, implemented by MATLAB

programming. The first method is successfully executed to produce the deformation for a

line or an m-by-n matrix. The speed of convergence dramatically increases when the

initial guesses are improved with linear interpolation. The fixed points are the user

specified center-points.

The second method implementation currently produces a line. It may take up to

two more months to complete the coding for the implementation of the second method to

produce a complete matrix. Presently, another master student in the Computer Science

department is considering completing the coding in C++. This collaboration will be

further discussed in the future works section of the last chapter. For the second method,

there are actually two programming versions. The difference between the two versions is

in the constraints. The versions will be described in details in the next section. In total

there are three programs: one for the first method, and two for the second method.

In this chapter, the results from the first method will be compared to both of the

versions from the second method. From these results, Method 1 outperforms Method 2 in

the time comparison test and is competitive in the accuracy of output values. The Method

1 will be used to create several matrices to determine the time and accuracy of the

implementation for a matrix. Finally, the different car-hood models will be presented.

 142

The time it takes to produce the final results is determined on the computer being

used. Below is a table describing the computer/s that will be running the programs.

 As a reminder, the units will not be shown because it is assumed that all the

values of the results have the same units or in the same family of units. The values of the

results are not as important as the relations of the values to each other.

5.1 Compare and Contrast

 As previously stated there are actually three different programs. The first program

is for the first method, which is an abstract model of the crust matrix with one stiffness

value. Therefore the resulting graphs are only stick figures with the vertices representing

the center-points of each unit cell. It is not necessary to show every unit cell, because we

are mainly interested in the center-points locations. The second and third programs are

different versions of the second method. Method 2 consists of two different stiffness

values for the two different joint designs for each unit cell. There will be 2 graphs from

these programs: first will show the unit cells deforming and the other will show the

center-points. The reason for the unit cell graphs is because the angles between any two

faces will deform as the position of the center-points changes. The first method does not

deal with the angles within each unit cell.

Table 5.1: Computer Configuration
Dell Computers from Mechanical Engineering CAE Clusters
Processor Display Adapter Network Adapters
Intel (R) Xeon ™
CPU 3.20 GHz

NVIDIA Quadro
FX 500

3Com EtherLink XL 10/100 PCI
Intel(R) Pro/1000 MTW Network Connection

 143

The first version of Method 2 has one of the faces fixed horizontally- in this case

the face at the edge of the first unit cell for a line. Refer to Figure 5.1 for a visual

description.

Figure 5.1: Fixed Face: Line of Cells (Left) and Detail of Fixed Face (Right)

There is an assumption that the crust may be fixed at the edges to the future walls

of the digital clay interactive device.

The second version of the second method has several center-points fixed at the

user specified heights. Therefore the faces are not fixed to any assumed edges as seen in

Figure 5.2 with the two images.

Figure 5.2: Free Face: Line of Cells (Left) and Detail of Free Face (Right)

 144

From the three programs that implemented the different methods, the results are

compared based upon the center-points, the computational time, the number of iterations,

and the energies that are calculated from the configuration of the lines. Also joint angles

and the energy in the joints angles are compared. Since there are a lot of joint angles for

any one case, only the third line test will show the joint angle test. The third line test is

the most complicated in comparison to the first and second test. The sections below are

divided up based upon the test. We are currently studying a line because it is visually

easier to compare the difference among the programs. The line will be at an arbitrary size

of 1-by-7—not too small to see the difference and not too large so that we have to wait

for hours for the results. In later sections we will show the matrix of center-points.

 145

5.2 Line Test 1

Below are the results for the first line test—a line with 1 input at the end of the

line at 0.5 unit.

Figure 5.3: Line Test 1 Method 1: Abstract Model

Figure 5.4: Line Test 1 Method 2: With Fixed Face

Figure 5.5: Line Test 1 Method 2: Without Fixed face

 146

 For this example, the numbers of unknowns, numbers of equations, and the

Degrees-of-Freedom are shown in the Table 5.1.

Table 5.2: Kinematics Comparison Test 1
 # Unknowns # Equations Degrees-of-freedom

Method 1 21 11 15
Method 2: Fix Face 63 11+3=14 66
Method 2:Free Face 66 11 69

From Table 5.1, for Method 1 there are 3(unknown coordinates value)*7(unity

cells)= 21 unknowns. There are 4 (coordinate constraints) + 6(length constraints)+ 1

(minimization equation)=11 equations total. There are 15 DoF. The explanation for DoF

was already explained in the previous chapter and will not be repeated here.

For Method 2: Fix Face, there are [3(spherical n and v -vectors values)*4(faces

for each cell)*7(unit cells in the matrix)] - [6(duplicates)* 3(spherical n and v -vectors

values)] - 3(spherical n and v -vectors values that are fixed on one of the faces)= 63

unknowns. There are also 63+3=66 Degrees-of-Freedom. Again, we will not repeat why

we added 3 to the number of unknowns to find the DoF. The number of equations is the

same as Method 1 except there are now 3 more equations because one of the face is fixed.

For Method 2: Free Face, there are [3(spherical n and v -vectors values)*4(faces

for each cell)*7(unit cells in the matrix)] - [6(duplicates)* 3(spherical n and v -vectors

values)] =66 unknowns. Three more unknowns than the Fix Face example, because no

face is fixed. There are also 66+3=69 Degrees-of-Freedom. Again there are 11 equations,

the same number of constraints as Method 1.

 147

Just from the figures, one can tell that the results for all three cases are very

similar. However, let’s look at a closer detail by actually comparing the differences.

Below are the tables for comparing the various results. As a reminder, Method 1 is the

abstract model. Method 2 is the actual manufacturable model with the first face being

fixed. Another version of Method 2 is without any face being fixed.

Table 5.2 shows the time it takes for the any methods to actually converge to the

answers.

Obviously the first method is faster mainly because it requires less unknown

variables to iterate and also there is only one stiffness value to consider. Following first is

the Method 2 without the Fix Face and then in last place Method 2 with Fix Face.

Table 5.3: Time Comparison for Line Test 1
 Time

Method 1 0.404 sec
Method 2: Fix Face 202sec ~ 3.4 min
Method 2:Free Face 5.9 sec

 148

The next table compares the number of iterations that it takes for the methods to

converge and the stored energy value at convergence. Again, the units are not the

significant factor since they all have the same units. Only the values are shown.

Table 5.4: Iteration and Energy Comparison for Line Test 1
 Iteration Energy

Method 1 8 3.270*10 -9
Method 2: Fix Face 68 70.104

Method 2:Free Face 74 59.302

Method 1- Method 2: Fix Face 60 70.104
Method 1- Method 2: Fix Face 66 59.302

From the table, it takes fewer iterations amount for Method 1 to converge. Also

there is less energy stored in Method 1, because there are fewer angles to consider for

summing up the potential energy in the system. Coming in second is Method 2: Free Face

with last place Method 2 with the fixed face.

 149

The third table compares the Z-values. Along with the table is a graph of the

results from the three programs.

Comparison Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5

X coordinates

Z
co

or
di

na
te

s

Method1
Method2: Fix
Method2: Free

C

 Figure 5.6: Z-Values Results for Line Test 1

From the table and the graph, all three programs turn out to have the same results.

The differences in the Z-values from the results of Method 1 and 2 are so small that they

are negligible. It appears there is not a difference between the Method 1 and 2: Free Face.

Even in the graph, all the results appear to overlap, giving the graph the appearance of

containing only one line.

Ironically so, it takes longer for both versions of Method 2 to converge to an

answer but their results are very similar to Method 1, which takes less than half a second.

Of course this is only a simple case with only 1 input.

Table 5.5: Z-values Comparison
Z-values Results

M1 – M2:fix M1 – M2:free
0 0
0 0

0.001 0
1.000*10 -4 0

0 0
1.000*10 -4 0
1.000 *10 -4 0

 150

5.3 Line Test 2

 Now we will add two inputs: 0.5 unit at the beginning and 0.5 unit at the end. This

is a simple test, but the results should show us how each program can handle the first

center-point being displaced.

Figure 5.7: Line Test 2 Method 1--Abstract Model

Figure 5.8: Line Test 2 Method 2-- With Fixed Face

Figure 5.9: Line Test 2 Method 2-- Without Fixed Face

 151

 Again the kinematics table will introduce the comparison.

Table 5.6: Kinematics Comparison Test 2
 # Unknowns # Equations Degrees-of-freedom

Method 1 21 11 15
Method 2: Fix Face 63 1 66
Method 2:Free Face 66 1 69

 The values do not change, because the new inputs only change the magnitude of

the existing constraints.

 Taking a quick glance says every graphs look the same. Then we look a little bit

closer at Figure 5.8. The Z-values of the center-points are all at zero. The other graphs

from the other programs show that the center-points are at the expected 0.5 unit. There is

a difference. Let’s look at the actual values by comparing the results in tables.

Table 5.7: Time Comparison for Line Test 2
 Time

Method 1 0.340 sec
Method 2: Fix Face 4.761 sec
Method 2:Free Face 5.421 sec

 Again the first method is the fastest of all three. In this case Method 2: Fix Face

and Method 2: Free Face switch ranking. A possible reasoning is that there are less

unknown variables when one of the faces is fixed. So it will take less time when there are

fewer variables. Also this is a straight horizontal line. It will not be difficult for any

process to coverage to the answer.

 152

 The next table compares the number of iteration and the stored energy value.

Table 5.8: Iteration and Energy Comparison for Line Test 2
 Iteration Energy

Method 1 10 4.850*10 -6
Method 2: Fix Face 1 7.470*10 -9
Method 2:Free Face 1 7.630*10 -9

Method 1- Method 2: Fix Face 9 4.840*10 -6
Method 1- Method 2: Fix Face 9 4.840*10 -6

Method 1 requires more iteration, but the convergence rate as seen in the previous

table is faster. Both versions of Method 2 require the same number of iteration--1, but

Method 2: Free Face has a slightly higher energy value. The difference is so small that it

is insignificant.

The third table compares the Z-values as it was previous done for the first test.

Comparison of Results

0
0.1
0.2
0.3
0.4
0.5
0.6

0 1 2 3 4

X coordinates

Z
co

or
di

na
te

s

Method1
Method2: Fix
Method2: Free

 Figure 5.10: Z-Values Results for Line Test 2

Table 5.9: Z-values Comparison
 Z-values Results

M1 – M2:fix M1 – M2:free
0.5 0
0.5 0
0.5 0
0.5 0
0.5 0
0.5 0
0.5 0

 153

 From the previous table and graph, there is a recognizable difference. The result

from Method 2: Fix Face converges to a line but all the z-values are at zero. The

difference between Method 1 and Method 2: Fix Face is exactly the value of the inputs.

Method 1 and Method 2: Free Face has the exact same value. Therefore their differences

are zeros. Even in the graph, the resulted lines from Method 1 and Method 2: Free Face

overlaps, leaving the graph to only look like it has two graphs. Of course the second line

from the results of Method 2: Fix Face is strangely offset. Reason: the fixed face grounds

the first face at Z-height of zero or at the edge of the future walls of the digital clay

interactive device. This in turns causes the first unit cell to be grounded at (0,0,0). So how

was face grounded? In the algorithm for Method 2, all the unknowns are placed into the

iteration algorithm. The unknowns are the n and v values for every face on every unit

cell of the matrix. To fix a face, we do not place the n and v values for that particular

face into the iteration algorithm. This will prevent the iteration process from moving that

face, which in turns prevents the first unit cell from moving. Since the first unit cell

cannot move, the lowest energy state is when all the other cells are also at ground level.

For Method 2 with all the faces being free, all the n and v values for every face are

placed into the iteration algorithm. This allows the iteration algorithm to search for

possible orientation of the n and v values for the all the faces.

 154

5.4 Line Test 3

 Now we notice there is a difference when the first unit cell of a 1-by-7 is

displaced. With 3 inputs, the first at 0.3 unit, the middle at 0.1 unit, and the last at 0.6

unit, the results are similar to Line Test 2. Below are the resulting graphs.

Figure 5.11: Line Test 2 Method 1-- Abstract Model

Figure 5.12: Line Test 2 Method 2--With Fixed Face

Figure 5.13: Line Test 2 Method 2--Without Fixed Face

 155

 Again the kinematics comparison chart is below.

Table 5.10: Kinematics Comparison Test 3
 # Unknowns # Equations Degrees-of-freedom

Method 1 21 12 15
Method 2: Fix Face 63 12+3=15 66
Method 2:Free Face 66 12 69

 The only change from the first and second example is the number of equations for

Method 1 because there is an additional input that constrained a different point than the

other previous examples. The number of equations of both versions of Method 2 also

changed because the constraints are different. The difference in the value was already

explained in the previous chapter and will not be repeated here.

 Obviously from the figures, the resulting graphs in Figures 5.11 look different

from the other graphs. The Table 5.11 –5.13 below compare the exact values.

Table 5.11: Time Comparison for Line Test 3
 Time

Method 1 0.415 sec.
Method 2: Fix Face 212.354 sec ~ 3.539 min
Method 2:Free Face 239.330 sec~3.989 min

 And again Method 1 is the winner with Method 2: Fix Face coming in on second.

However the results from Method 2: Fix Face are questionable. Of course the results are

based upon how the constraints are situated—this means whether the user wants to fix the

edges to the bounding walls or not.

 156

 The next set of data is the iteration and energy comparison table.

Table 5.12: Iteration and Energy Comparison for Line Test 3
 Iteration Energy

Method 1 10 27.90
Method 2: Fix Face 74 59.30
Method 2:Free Face 80 26.90

Method 1- Method 2: Fix Face 64 31.426
Method 1- Method 2: Free Face 70 0.971

 In this configuration, the lowest/best energy value goes to Method 2: Free Face

and Method 2: Fix Face has the highest/worst energy value. Again the difference between

Method1 and Method 2: Free Face is not significant enough to be accounted for. The

energy value for Method 2: Free Face is high because of the kink in the graph. Again the

kink is to maintain the first edge face to be fixed horizontally to the ground, which in

turns keeps the first unit cell being fixed at (0,0,0). However, the kink causes the resulted

line to have a high energy value.

 157

The next set of data compares the Z-values.

Comparison of Results

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3

X coordinates

Z
co

or
di

na
te

s

Method1
Method2: Fix
Method2: free

 Figure 5.14: Z-Values Results for Line Test 3

 From Table 5.13, there is a definite difference between Method 1 and 2. The

difference is again noticeable in the corresponding graph where the results for Method 2:

Fix Face is shown as the lower line. There is a slight difference between Method 1 and

Method 2: Free Face. The difference is so little that the two lines overlap in the

corresponding graph. These results conclude that Method 2: Fix Face cannot properly

handle an input at the first unit cell. Previously there was a section discussing how

Method 2: Fix Face handles non-first-unit-cell inputs. Later there will be more examples

of Method 2: Fix Face handles non-first-unit-cell inputs.

Unlike the first two examples, we are going to introduce a new comparison chart:

comparing the angles. Yes, any of the programs that implement the methods can output

the angles of the joints as well as the center-point positions. For every unit cell, there are

12 angles. In a matrix of 1-by-7 there will be a total of 12*7= 84 angles. To properly

Table 5.13: Z-values Comparison
Z-values Results

M1 – M2:fix M1 – M2:free
0.3 0

0.2506 0.0013
0.2383 0.0016
0.2962 0.0008
0.2426 0.0014
0.254 0.0011
0.3011 0.0004

 158

compare the results from method 1 and Method 2, we need to show 84*3 angles= 252

plus the comparison values. We are not going to show all of that in this chapter. Please

refer to Appendix B for all the values and the comparison values for Line Test 3. Table

5.14- 5.16 will show a sample of angles. Note that the angles are symmetric about the

line that connects two center-points together. Refer to the previous Figure 5.12 and 5.13

for visual help.

The legend for the tables below:

 After: Joint angles (radian) after the program converges

 Before: Joint angles (radian) before the program converges

 Diff: the absolute value difference between the before and after angles

 Energy: the energy stored in the spring

o Method 1: k*(after-before)2 . K: Average Stiffness Value: 0.0756 Nm

o Method 2:

 Energy Equation for larger joint: 0.1348*(Before-After)2

 Energy Equation for larger joint: 0.0164*(Before-After)2

 The alphabet letters: the symmetry of the angles:

o For example:

 All A values for the Cell 1 has similar values in Method 1.

 159

Table 5.14: Joint Results for Method 1
 Cell 4
 After Before Diff Energy
A 2.2246 2.0089 0.2157 0.007072
B 1.4079 1.4432 0.0353 1.93E-05
C 2.1227 2.0089 0.1138 0.001968
C 2.0378 2.0089 0.0289 1.29E-05
B 1.4295 1.4432 0.0137 2.85E-05
A 2.2151 2.0089 0.2062 0.000659
D 2.2272 2.0089 0.2183 0.007244
E 1.4068 1.4432 0.0364 2.05E-05
F 2.0997 2.0089 0.0908 0.001253
F 2.0514 2.0089 0.0425 2.8E-05
E 1.4126 1.4432 0.0306 0.000142
D 2.2104 2.0089 0.2015 0.000629

Table 5.15: Joint Results for Method 2 Fix Table 5.16: Joint Results for Method 2 Free
 Cell 4 Cell 4
 After Before Diff Energy After Before Diff Energy
A 2.2246 2.0089 0.2157 0.007072 A 2.1199 2.0089 0.111 0.001873
B 1.4079 1.4432 0.0353 1.93E-05 B 1.4369 1.4432 0.0063 6.15E-07
C 2.1227 2.0089 0.1138 0.001968 C 2.0377 2.0089 0.0288 0.000126
C 2.0378 2.0089 0.0289 1.29E-05 C 2.0373 2.0089 0.0284 1.25E-05
B 1.4295 1.4432 0.0137 2.85E-05 B 1.4373 1.4432 0.0059 5.29E-06
A 2.2151 2.0089 0.2062 0.000659 A 2.1202 2.0089 0.1113 0.000192
D 2.2272 2.0089 0.2183 0.007244 D 2.1202 2.0089 0.1113 0.001883
E 1.4068 1.4432 0.0364 2.05E-05 E 1.4373 1.4432 0.0059 5.4E-07
F 2.0997 2.0089 0.0908 0.001253 F 2.0372 2.0089 0.0283 0.000122
F 2.0514 2.0089 0.0425 2.8E-05 F 2.0378 2.0089 0.0289 1.29E-05
E 1.4126 1.4432 0.0306 0.000142 E 1.4368 1.4432 0.0064 6.23E-06
D 2.2104 2.0089 0.2015 0.000629 D 2.1198 2.0089 0.1109 0.000191

 From the tables, the symmetry becomes apparent. Each cell is divided into two

halves. Within each half are other symmetry among the joints. A-C denotes the symmetry

for the first half. D-F denotes the symmetry among the second half. The symmetry is

repeated in every column. This in turn causes the energy in the springs to be symmetric

as well. From the symmetry, we can say that joint angles are correctly calculated.

 160

 Next, we will be talking about how to improve the speed and accuracy of the

programs.

5.5 Line Test 4: Piggybacking Style

 From all previous graphs of Line Test 1, 2, and 3, Method 1 converges the fastest

to highly reasonable answers that are compared to Method 2: Free Face. Unlike Method

2: Fix Face where the edge of the face for the first unit cell is fixed, both Method 1 and

Method 2: Free Face have similar constraints. Although Method 1 converges the fastest,

Method 2: Free Face is a more accurate representation of the manufacturable crust that

was described in the earlier chapters. We can take advantage of this: use the results from

Method 1 as the inputs for Method 2: Free Face. Unlike Method 1, Method 2: Free Face

does not restrict the algorithm from searching around the inputs for other possible

combinations that might create a lower potential energy state. Also this will decrease the

time in which Method 2: Free Face converges to an answer because the initial guess (or

in this case the inputs) is a lot closer to the answers.

 Because Method 2: Fix Face has a face constraint that is different from any of the

other programs, Method 2: Fix Face will not be piggybacked.

 To demonstrate this piggyback style, we will use two examples. The first one is

from Line Test 3 with three inputs for a 1-by-7 line. The second example is a 1-by-31 line

with 5 inputs.

 161

5.5.1 Piggybacking Style Example 1

Figure 5.15: Graphic Reminder of Previous Results for Method 1 and 2

 Because the results for Both Method 1 and Method 2: Free Face are so similar, it

is unnecessary to show two graphs that looks identical. For this case, one graph is enough

information to convey the point.

Figure 5.16: Piggybacked Example 1 Result

 The piggybacked result looks indistinguishably the same. However, let’s look at

the details by using tables to actually compare the difference.

 162

Table 5.17: Time Comparison for Piggyback Example 1
 Time

Method 1 0.415 sec.
Method 2:Free Face 239 sec. ~ 4 min.

Piggyback: M1+M2 Free 215 sec. ~3.6 min.

 Piggybacking results shows that the summation of the total time is 3.6 minutes.

The total time is the time it takes for Method 1 to converge then summing it up with the

time it takes to run the results through Method 2: Free Face and arrive at the final answer.

It appears that piggybacking for this example is faster by 0.4 minute than just running

Method 2: Free Face.

Table 5.18: Iteration and Energy Comparison for Piggyback Example 1
 Iteration Energy

Method 1 10 4.850*10 -6
Method 2:Free Face 80 26.90

PG:Method 1+ Method 2:free 70 26.97

| Method 1- Method 2: Free Face | 9 26.905
| Method 1- P G | 9 26.917

 Even comparing with Table 5.18, The Piggybacking has better results than just

applying Method 2: Free Face. The Piggybacking method takes less iteration and the

energy value is almost the same- minor difference.

 163

Comparison of Results

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 1 2 3

X coordinates

Z
co

or
di

na
te

s

Method1
Method2: Free
Piggybacked

 Figure 5.17: Z-Values for Piggyback Example 1

 From applying the piggyback method, the differences in the Z-values are very

small--almost all zero. In the corresponding graph, all the lines overlap giving an illusion

of one line. Now the question is: is piggy-backing worth it? The difference is so small

that it may not be significant enough to account for in our prediction. However, this is a

simple case. Let’s consider a more complex case with 1-by-31 unit cells.

Table 5.19: Z-values Comparison
Z-values Results

M1 – M2:free M1 – Piggyback
0 0.0

0.0013 0.0
0.0016 0.0
0.0008 0.0007
0.0014 1.0 *10 -4
0.0011 0
0.0004 0.0004

 164

5.5.2 Piggybacking Style Example 2

 This example will use a 1-by-31 line with five inputs. Below are the results for

applying the Method 1, Method 2: Free Face, and finally the results from piggybacking

Method 1 onto Method 2: Free Face.

Figure 5.18: Method 1 Inputs (Left) and Line Interpolation (Right)

Figure 5.19: Method 1 Results

Figure 5.20: Piggyback Results

 165

 Again, the Piggyback results look similar to the Method 1 results, because

Method 1 has proven to be very reliable on the results as seen in previous line tests and

example. Below are the tables that describe in more detail of the final answers.

Table 5.20: Time Comparison for Piggyback Example 2
 Time

Method 1 1.906 sec.
Method 2:Free Face 1990 sec. ~ 5.5 hrs

Piggyback: M1+M2 Free 1470 sec. ~ 4.1 hrs

 As the number of unit cells increases, the time it takes for each program to

converge to an answer also increases. Instead of minutes, now Method 2: Free Face takes

5.5 hours, which is 5 hours and 30 minutes. With piggybacking, it takes 4.1 hours, 1.4

hour less than without Method 2: Free Face being piggybacked. Of course, just running

Method 1, it only takes less than 2 second.

 The next table compares the iteration and energy values.

Table 5.21: Iteration and Energy Comparison for Piggyback Example 2
 Iteration Energy

Method 1 32 34.859
Method 2:Free Face 283 34.684

PG:Method 1+ Method 2:free 295 34.703

| Method 1- Method 2: Free
Face | 251 0.1749

| Method 1- P G | 263 0.1547

 166

 Using the piggybacked method, the number of iterations does increase to 295

iterations in comparison to 283 using just Method 2: Free Face without piggybacking.

Although the iteration numbers differ, all energy values are very similar. It is

insignificant to distinguish among the differences in values, refer to the set of data below.

Comparison Of Results

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

X coordinates

Z
co

or
di

na
te

s

Method 1
Method 2: Free
Piggybacked

Figure 5.21: Z-Values for Piggyback Example 2

Table 5.22: Z- values Comparison
Z-values Results

M1 – M2:free M1 – Piggyback
0 0

-0.0002 0
-0.0002 0
-0.0002 0
-1*10 -4 -1*10 -4

0 0
0.0003 0
0.0007 0
0.001 0
0.001 0

0.0003 0.0003
-0.0014 0
-0.0032 0
-0.0049 0
-0.0058 0
-0.006 0

-0.0053 0
-0.004 0

-0.0024 0
-0.0009 0
-0.0003 -0.0003
-0.0011 0
-0.0019 0
-0.002 0

-0.0016 0
-0.0007 0
0.0002 0.0002
0.0006 0
0.0006 0
0.0004 0

-1*10 -4 -1*10 -4

 167

From Table 5.22, the actual number comparison shows there really isn’t much

difference between running Method 1, Method 2: Free Face, and piggybacking them. So

what is the benefit for running a program that takes hours and the answers will be very

similar to another program that take several seconds to complete the same task?

 The answer: how accurate do you want your answer to be? Six Sigma accurate?

For the Digital Clay project, I do not think it is that necessary to be that perfect at this

stage of the design process. Therefore, the rest of this chapter will switch back to

focusing on the methods not the program. Method 1: Abstract Model of Crust. The next

section will compare how Method 1 handles different size matrix. It does not matter

about the dimension as much as the number of unit cells and inputs in the matrix. The

number of unit cells determines the number of unknowns. The more inputs, the more

equations, this would decrease the computational time because there are more constraints

that would guide the iteration process. The more numbers of unknowns, the longer it

takes for the methods to converge to an answer because there are more variables to

iterate. We will not test these two assumptions because the location and the magnitude of

the inputs vary with the user and the situation. Any resulting data from these test will be

misleading.

 168

5.6 Method 1 Matrix Elapse Time Study

 From previous tests, we learned that the program that implements Method 1

converges to the answer the fastest of any of the other programs. So how will it handle

different size matrices as the number of unit cells increase? To answer this question, we

will only give each matrix one input of the same value at the center or around the center

of the matrix. The stiffness value will be arbitrarily assigned at 1000 units. The corners of

the matrix will default to the original constraints of Method 1 at zero Z-heights. Figures

5.21-5.23 are examples of how we are conducting this experiment.

Figure 5.22: 3-by-3 Matrix Input at [2,2] (Left). Results (Right)

Figure 5.23: 4-by-4 Matrix Input at [3,3] (Left). Results (Right)

 169

Figure 5.24: 5-by-5 Matrix Input at [3,3] (Left). Results (Right)

 We continue performing this test until the size of the matrix is 15-by-15. Figure

5.25 and 5.25 are two graphs from the test.

Computational Time

y = 0.0001x3 - 0.0172x2 + 1.3206x - 15.278
R2 = 0.9984

-100

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250

Number of Cells

Ti
m

e
(S

ec
on

d)

Time
Poly. (Time)

Figure 5.25: Computational Time

 Figure 5.26 shows that as the number of cells increases, the computational time

increases. The graph follows a 3rd degree polynomial line.

 170

Iteration

y = 0.0001x3 - 0.041x2 + 4.868x - 26.522
R2 = 0.9691

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Number of Cells

N
um

be
r O

f I
te

ra
tio

n

Time
Poly. (Time)

Figure 5.26: Iteration Rate

 The number of iterations as seen in Figure 5.26 also follows a rising 3rd degree

polynomial line as the number of cells increases.

 From these graphs, we can predict the time it takes and the numbers of iterations

for Method 1 to converge to an answer when it is applied to a matrix of any size.

 171

5.7 Method 1 Matrix Accuracy Prediction

 At this point of time, the mechanical device that will deform the crust has not

been built yet. Therefore, Method 1 cannot be proven with experimental data to predict

the deformation of the crust based upon the user inputs. The current car-hood SLA model

is not a precise hardware that will displace any center-points by any specify distant.

However, visual inspection and intuition can be applied to test Method 1 for reasonable

answers. Below are several tests using a 6-by-4 matrix. The dimensions are varied from

the previous matrix size to show that this method can handle various conditions.

5.7.1 Matrix Plane Test 1

Figure 5.27: Plane Test Inputs (Left). Results (Right)

 From intuition, if two corners are vertically displaced for a material with high

stiffness of 1000 units, the results should be a plane. For this case, the result is a plane. A

real-life example is a piece of paper fixed at one end and held by two fingers at the other

end—the result is a plane.

 172

5.7.2 Matrix Surface Test 2

Figure 5.28: Surface Test Inputs (Left). Results (Right)

 If a displacement is applied to point in the middle of a plane, the plane should

curve and create a concave surface. This example is again compared to a real-life

situation with a piece of paper. If a piece of paper is held in space with one finger in the

middle, how will it look like? The result looks like the graph on the right.

 We already did several line tests. From these results, we concluded that Method 1

does a very good job at predicting the deformation. Now we can apply this method to the

car hood models.

 173

5.8 Mimicking the Car-hood Models

 In previous chapters, we use the car-hood model as an example of what we

wanted the low degree of freedom machine to mimic. Below is a repeated image of the

car-hood models as they morph.

Figure 5.29: Morphing Car-hood Models

 Now we want to mimic the car-hood using Method 1. Only the hood will be

modeled. The windshield needs another matrix, because it is on a different plane than the

hood. The Lotus will not be attempted, because it is just a flat plane. That plane can be

seen in Figure 5.27.

Figure 5.30: Ferrari Attempt

 This is the first attempt with 30 inputs on a 14-by-18 matrix. It took 13 hours for

the program to finally converge to an answer. The mimicking hood is close, but not

 Lotus Corvette Ferrari
Flat
Surface

 174

perfect. Figure 5.30 demonstrates the possibility of recreating the hood and to not show

how perfect the mimicking is. We only did one run. We can run various trials and errors

by changing the magnitude of the inputs and the amount of inputs until Method 1 shows a

perfect Ferrari. However, the benefit will not be worth the time and effort put into this

experiment.

Figure 5.31: Corvette Results

 Figure 5.31 contains 32 inputs for 14-by-18 matrix to model the Corvette hood.

The time for the answer to converge is 15 hours. The results (image on the right) show a

kink near the bottom left hand corner because there are several inputs that are right next

to each other. These inputs cause a sharp decline from one surface to the other. Again, we

can run several experiments until the perfect hood is displayed, but the benefit will not be

high enough to compensate for the resources added into getting the perfect hood example.

 175

5.9 Degeneracy

Degeneracy is when a system would reduce or degenerate to a simpler version of

itself. For an example a dot is a degenerate version of a circle with radius 0. A circle is a

degenerate version of an ellipse with eccentricity 0. The system of rods and springs in

Method 1 can degenerate when the matrix is deformed horizontally. In other words, we

did not consider the shearing effect of the matrix because there isn’t any spring between

two intersecting rods. Figure 5.32 shows where the springs would be to prevent shearing

in addition to the existing springs underneath the center-points.

Springs

Figure 5.32: Non-Existing Springs

Previously we stated that if various Z-heights are inputted, the shape deformation

for the matrix in Method 1 can be predicted from minimizing the energy in the angular

springs. However, if the matrix is sheared as seen in the right image of Figure 5.33, the

Potential Energy calculated will be the same as the undeformed state, as shown in the left

image.

 176

Figure 5.33: Non-deformed state (Left) Shear Deformation (Right)

This would make Method 1 solution NOT unique when deforming horizontally.

This means that both images in Figure 5.33 have the same amount of stored energy but

their shapes are different. Uniqueness will be further explained in Chapter 5. To resolve

this situation, we need to place a spring between any two intersecting rods as seen in

Figure 5.32.

 For Method 2, there are two types of springs that comprise one unit cell. Any type

of deformation of the unit cell, including shear, will change the total energy in the

springs. Therefore, this spring configuration will prevent Method 2 from degenerating

when deformation is horizontally applied. The potential energy is different in the two

cases in Figure 5.33.

5.10 Uniqueness

Uniqueness is when the methods would converge to the same results, based upon

the given inputs and constraints and given different initial guesses. As previously stated,

since Method 1 can degenerate when deforming horizontally, Method 1 is not unique in

that deformation manner. Method 2 has two types of springs that may prevent

 177

degeneration and increase the possibility of uniqueness. However Figure 5.34 is an

example of horizontal deformation that questions if uniqueness still exists for either

method. When one edge of the matrix is constrained and a force is applied to the other

edge as seen in the first image of Figure 5.34, what will the shape be?

Figure 5.34: The Bowing Effects

Will it bow up as seen in the middle image of Figure 5.34 or bow down as seen in

the last image? Or can it be a combination of both where half of the matrix bows up and

the other half bows down? Both the bowing up and bowing down situations are minima,

and the results are based upon the searching process: how and which direction the

guesses would take to search for the answer. Therefore the answer is NO: neither method

is unique for horizontal displacement. A possible solution for guiding the results is

applying threshold values to ensure that any joints angles will not be greater than a

certain amount of degrees. Threshold values will be explained in Chapter 6.

For Method 2, the springs are located where the actual joints are. This placement

will guide Method 2 into behaving more like the actual model. However, it is difficult to

guarantee that the physical model will behave in the same manner as the math model.

Another possible solution to get the desired effect is adding a Z-height displacement in

 178

the center of the matrix to ensure that the matrix would bow up. The more Z-heights (or

constraints added), the more likely the system would converge to a unique answer. The

same solution can be applied to ensure a bowing down effect.

Another question is: are the methods unique for vertical deformation, (ie. when Z-

heights are used as inputs)? One test for the vertical deformation situation is performing

a set of simulation runs. The runs include comparing the results from one run with the

results from another run using different starting positions but with the same constraints as

seen in Figure 5.35-5.37 with Method 1.

Figure 5.35: Set 1. Flat Plane Starting Position (LT). Input (M). Results (RT).

Set 1 is a 4-by-5 example that starts off with a flat plane as seen in Figure 5.35.

Then two Z-heights are inputted as seen in the middle image. The results as expected are

seen in the last image.

 179

Figure 5.36: Set 2. Flat Plane Starting Position (LT). Input (M). Results (RT).

Similarly Set 2 also starts off with a flat plane as seen in Figure 5.36. The Z-

height inputs are placed in the middle image and the results are seen in the last image.

Figure 5.37: Set 3 Starting Position with Inputs.

Using the results from Set 1 as seen in the first image of Figure 5.37 and adding to

it the Z-heights inputs from Set 2 as seen in the middle, a new starting position will be

specified that should converge to the same position as in set 2, seen in the last image of

Figure 5.37.

 180

Figure 5.38: Set 3. Starting Position (LT). Input (M). Results (RT).

 For Set 3 the starting position (results from Set 1) is seen in the first image in

Figure 5.38. The Z-heights from Set 2 are added into the starting position as seen in the

middle image. And the results looks exactly like Set 2, as one would expect. When the

data points are compared, the difference is 1/10000 in the data point values. This

difference is insignificant. For this example, the implementation of Method 1 is unique.

Since different starting points converge to the same solution, the question is: for Method

1 are the solutions always unique? The answer is unknown. Although the previous

example shown indicate that Method 1 is unique and most likely there would be a lot of

cases where the results will be unique, it is difficult to determine how the iterative

process would converge for any conceivable inputs.

 Similar to Method 1 uniqueness test, Method 2 can also go through various tests

using a serial chain of unit cells instead of matrices. Of course, when Method 2 has been

implemented for a matrix, the 4-by-5 matrix test can be repeated. Again the solutions for

Method 2 are not likely to be unique due to the iterative guessing process for determining

the results.

 181

5.11 Geometric Non-linearity

 Geometric non-linearity could occur when there is a large displacement in relation

to the matrix dimension. In the case of the structures discussed in this thesis, the both the

X-Y position coordinates of the crust are fixed only at the first point. Since the other

points of the crust can translate in the X or Y or both in response to the Z-displacement;

stretching-induced geometric non-linearity are partially mitigated. However, in more

complex models of translation-restricted clay, geometric non-linearity may have to be

taken into account. Geometric non-linearity will create unwanted stress stiffening and/or

strain deformation either in the joints or the rigid links of the matrix. This will cause the

joints or the links to warp undesirably. In relation to the Digital Clay crust matrix,

understanding geometric non-linearity can help determine how much Z-height

displacement amount a matrix can handle before an unwanted amount of stress or strain

would occur. By knowing this value, we can prevent the structural damage of the crust

matrix or the machine that deforms the crust. There are two approaches for handling

Geometric Nonlinearity: Updated Lagrangian description and Total Lagrangian

description (El-Zeiny, 2000) (Bathe, 1996). Update Lagrangian refers to comparing the

deformation geometry to a previous value. Total Lagrangian refers to comparing the

deformation to a reference configuration. One way to implement either one of the

Lagrangian descriptions is applying Finite Element Analysis (FEA) individually to every

situation. This application was already attempted by He Liu and co-workers to determine

the geometric nonlinearity occurrence of a Fluid Tank, which will help determine the

effect of large deformation to the tank. (Liu, et. al, 2002). A similar process can be

extrapolated to the matrix for either method. Currently the FEA implementation has not

 182

been performed, but it is assumed that there is a limit to how much deformation the

matrix can handle before the matrix warps. Geometric Non-linearity can be a

supplementary evaluation with using a threshold value. Threshold value will be

mentioned in Chapter 6.

5.12 Ending Remarks

 From the results shown in this chapter, the methods developed can predict the

deformation based upon the user inputs and the material stiffness property. There are

questions with uniqueness and geometric non-linearity that was already discussed.

5.13 Comparing Two Theses

Previously Paul Bosscher’s Master Thesis was referenced. Bosscher is a former

graduate student who was involved in the Digital Clay project. For his thesis, he helped

designed the kinematics structure of the deformable crust and developed an algorithm to

predict the deformation of the crust. The algorithm is for an abstract matrix with angular

springs between vertices and linear springs representing prismatic joints as shown in

Figure 5.39.

 183

Figure 5.39: Bosscher’s Abstract model

Comparing Figure 5.39 to Method 1’s abstract model in Figure 4.9 there are two

obvious differences; the locations of the springs that are being minimized and the use of

prismatic joints. For Method 1 from this thesis, prismatic joints are not modeled.

However, the implementation of Method 1 can be modified to consider the prismatic

joints by changing the tolerance value for the length calculation.

Another main difference is the minimization technique. Bosscher finds the

minimal location of all the points by moving a set of points while fixing the other sets of

points. This method did yield the minimal location of all the points. For this thesis, we

move all the points at the same time searching for various combinations of the location of

the center-points. It is uncertain which style of problem solving is better: solving for one

big equation or lots of smaller equations.

 184

For Method 2, unlike Bosscher’s approach, the actual manufactured crust shape

was modeled. This means there are two different angular springs. Each spring represents

the different joints in the unit cells. This is not an abstract model, which increases the

complexity. Because the crust is fully modeled, the location of every vertex can be

calculating using Method 2 before and after deformation. In addition the edge vertices

can be calculated as shown in Figure 4.44.

 Another main difference between this work and Bosscher’s thesis is the

application of material properties: the stiffness values of the joints are derived from

experimental runs. Knowing these stiffness values will enable us to accurately predict the

deformation capability of the material being used. Bosscher did consider the material

properties, stating the springs have a stiffness value, but did not develop a process for

deriving what these values are. For both methods from this thesis, the actual stiffness

values were used to predict the deformation of the matrix.

 185

CHAPTER 6

LAST COMMENTS

 In this chapter, the “Concluding Comments” will be discussed first then followed

by “Future Works” well as the “Benefits and Values” for each individual subgroup in the

Digital Clay team. There are two methods developed for this thesis with three different

programs. The suggested method to use is Method 1. Of course it is up to the end user

which method and which program best fit the usage.

6.1 Concluding Comments

At the beginning we attempt on fulfilling four goals and answering the key

question: What is this kinematics structure and how can the deformation of the

kinematics structure be predicted based upon the materials being used and

constraints being applied? Below is a list that comments on the accomplishment.

1. Designing and manufacturing a deformable kinematics structure

The final design is a deformable crust matrix with spherical joints. The crust design

can be formed into various shapes. The design is effective but of course there can be

improvements in simplifying the design to better scale down the matrix. For

manufacturing the crust, several manufacturing techniques are listed. Some of them show

potential in manufacturing the crust matrix. We settled on the SLA process because it

was the most accessible and the most time efficient. The one of the criteria for selecting

the process for manufacturing the kinematics structure is obtaining the stiffness property

 186

from the material used in the chosen process. The stiffness factor will determine the

deformation as seen with Method 2 and affect the threshold value that will be mention as

part of Future Works. This answers the first part of the key question: “What is this

kinematics structure”.

2. Expanding the existing joint angle calculation

Before this thesis was written, a joint angle calculation was introduced for one unit

cell. This calculation was expanded to consider an array of joints. The calculation was

successful because the size of the matrix would not affect how the calculation is

implemented: the calculation can calculate any matrix size.

3. Incorporating the joint stiffness

From the material research and the experimental run, we were able to calculate the

stiffness property and apply in our equation to determine the deformation. Although we

were able to derive the stiffness values for both types of joints, of all of the goals, this is

the least successful. The experimental set-up did not have the proper tools to measure

angular springs that only needs up to 1N for the displacement response. From what we

had, we were successful in setting-up and evaluating the stiffness value since the angle of

deformation was not high.

 187

4. Developing a “Forward Statics” Algorithm

From Method 2, we have completed all the goals by developing the forward Statics

equations to complete the cycle with inverse Statics with material consideration. The

algorithm solves the problem and partially answered the second part of the key question.

Second part of key question: “how can the deformation of the kinematics structure

be predicted based upon the materials being used and constraints being applied?” As

mentioned, there are two methods presented with 3 different implementations total. Both

methods consider the material being used by using the stiffness value in the calculation.

Both methods also consider the constraints being applied by the user to predict the

deformation. It is up to the user which method and implementation to use. Each method

can be extrapolated for other crust designs with angles as the deformation feature. Also

both the methods and the implementations are robust. The implementations are robust

because any of the implementation can handle various size matrix and unit cells with

different constraints being applied. The methods are robust because the methods can also

handle any matrix and unit cell size. As previously mentioned, the starting position can

also vary and the methods will arrive at an answer. Of course, there is a question of

uniqueness that was previously addressed.

Both parts of the keys questions are successfully answered while fulfilling the

goals of this thesis.

 188

6.2 Future Work

Below are suggested improvements that can be made to this thesis.

1. Implement Method 2 for Matrix

Currently the programs that implement Method 2 only model a serial chain of unit

cells. The programs can be modified to create a whole matrix by considering the

geometry as each unit cell gets connected to each other and more realization of

duplication of the variables in the matrix. The question one has to ask is what variables

are being duplicated and how are they duplicated.

2. Methods for Hex Matrix

Extrapolating the methods developed for the Grid Matrix to the Hex Matrix. The

math for the Hex Matrix has not been developed yet because it was easier to start off with

the Grid Matrix. After developing a system to analyze the Grid Matrix, it will now be

easier to analyze the Hex Matrix.

3. Looping for Shape Editing

As previously explained, any of the methods developed can be used for Shape

Editing. That means that one shape can transform into a different shape by modifying the

inputs. Any of the programs created to implement the methods can be changed to support

Shape Editing by adding a loop command within the program. This modification has not

yet been completed due to time constraints.

 189

4. Converting MATLAB to C++

MATLAB is a higher level programming language than C++; however C++ has

higher computational speed. C++ also allows the programmer to create a better, friendlier

user interface than MATLAB. At present, I, the Mechanical Engineer, am working with a

Computer Science Master student, to convert the MATLAB code that implemented the

methods into C++. Presently, this process has not been completed.

5. Exploration of Material

For this development thesis, a stereolithography material was used to create the

matrices. In the MEMS department other materials are being explored. Presently, we

have not explored enough material to determine which material is best fitted to build the

formable crust matrix that will be part of the Digital Clay device.

6. Adding Threshold Values

As stated in the last chapter, there needs to be a threshold value for the crust

matrix as it deforms. This threshold value can be the maximum angle(s) deformation for

any angle in the methods. If the threshold value is reached, there can be a feedback

statement in the programs stating that the crust matrix will break. To include this

criterion, we can add a loop at the end of the program that will evaluate each angle

against the threshold angle(s). The threshold angle(s) is/are determined by the design of

each unit cell and can be experimentally estimated.

 190

Another criterion is calculating the energy stored in each spring. If the energy

stored in a spring is greater than a threshold value, then the constraints imposed by the

method being used and user input values would cause the crust matrix to break. For

example, a piece of wood cannot handle a Z-height input applied in the middle while

being constrained at its corners without breaking. The threshold value varies with the

material being used.

These new criteria are easy to attach at the end of the existing methods. However,

the threshold values for these criteria require more research in material and experimental

runs.

7. Experimentation Validation

 The previous chapter shows various simulation runs of the implementations of the

two different methods. However, the results are not validated. This means we do not have

a machine that would confirm the cartesian coordinate values of every center-point of

every unit cells in a matrix. A machine can be built to measure the X, Y, and Z

coordinate values before and after deformation.

8. Exploration of design

Although the current design is very well done in creating various shapes, there

can possibly be other designs that can deform better and be easier to manufacture.

 191

6.3 Benefits and Values

 For each subgroup, this thesis will provide some potential benefits. There are six

subgroups. They are MEMS headed by Dr. Mark Allen, Controls headed by Dr. Wayne

Book, Fluids by Dr. Ari Glezer, Manufacturing by Dr. David Rosen, Interface by Dr.

Jarek Rossignac, and Kinematics by Dr. Imme Ebert Uphoff.

1. MEMS

Currently the MEMS group is investigating various materials to build the

formable crust matrix valves. Using the methods developed for this thesis, the MEMS

department can determine which material is best fitted for creating the desired

deformation. Also, any of the programs developed can output the deformed angles for

any unit cell in the matrix. The MEMS department can use the output to determine the

maximum angle deformation for any given shape. Once the maximum angle deformation

is found, the optimal valve can be designed for the crust matrix.

2. Controls

The Control group led by Dr. Wayne Book is investigating various devices to

manipulate the crust matrix once it is developed. With the advent of the methods

developed for this thesis, the control department can predict (or control) what shape will

be outputted based upon the inputs.

 192

3. Fluids

Since the Digital Clay device will have fluids enclosed within the hardware to

expand and contract the formable crust matrix, the Fluids group can apply the methods

developed to determine how much fluid is needed. The amount of fluid will affect the

force applied to the formable crust matrix, which in turn affects the shape configuration.

4. Manufacturing

Currently we are investigating the various materials to build the formable crust.

The materials include different resins for the SLA technique. Currently we decided on

DSM 8120 because of its elastic modulus material property, which in turn affects the

stiffness values of the joints. This does not mean we have ended our material search. The

methods developed will help us select other potential materials.

5. Interface

Currently we are collaborating with the Computer Science group to convert the

MATLAB code. The programs will help the C.S. department advance their development

for creating a program that can externally manipulate the formable crust matrix and start

developing the interface for the Digital Clay device.

 193

6. Kinematics

The methods developed for predicting the shape output applies several statics

principles. That includes inverse and forward statics and spherical coordinate matrix

manipulation. These statics principles can advance the Kinematics group’s current

understanding of the formable crust matrix.

 194

APPENDIX A:

 FINDING STIFFNESS VALUE

Through various experimental runs, the joint stiffness values for the two types of

joints that comprise one unit cell are found. This appendix will contain graphical results

from these runs.

 195

Graphs for Large Joint

Run 1

Experimentation Results

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Displacement (m)

Fo
rc

e
(N

)

Figure A.1: Results Large Joint Run 1

Finding Stiffness for Large joint

y = 0.1187x - 0.0016
R2 = 0.9976

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.05 0.1 0.15 0.2 0.25

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.2: Stiffness Value for Large Joint. Run 1

 196

Run 2

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.3: Results Large Joint Run 2

Finding Stiffness for Large joint

y = 0.1378x - 0.0026
R2 = 0.9985

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.4: Stiffness Value for Large Joint. Run 2

 197

Run 3

Experimentation Results

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.5: Results Large Joint Run 3

Finding Stiffness for Large joint

y = 0.1326x - 0.0006
R2 = 0.9985

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.6: Stiffness Value for Large Joint. Run 3

 198

Run 4

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.7: Results Large Joint Run 4

Finding Stiffness for Large joint

y = 0.1263x - 0.0014
R2 = 0.9987

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.8: Stiffness Value for Large Joint. Run 4

 199

Run 5

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.9: Results Large Joint Run 5

Finding Stiffness for Large joint
y = 0.1513x - 0.0018

R2 = 0.9979

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.10: Stiffness Value for Large Joint. Run 5

 200

Run 6

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.11: Results Large Joint Run 6

Finding Stiffness for Large joint

y = 0.1336x - 0.0032
R2 = 0.9615

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.12: Stiffness Value for Large Joint. Run 6

 201

Run 7

Experimentation Results

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.13: Results Large Joint Run 7

Finding Stiffness for Large joint

y = 0.1454x - 0.0006
R2 = 0.9979

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.14: Stiffness Value for Large Joint. Run 7

 202

Run 8

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.15: Results Large Joint Run 8

Finding Stiffness for Large joint

y = 0.1342x - 0.0011
R2 = 0.9985

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.16: Stiffness Value for Large Joint. Run 8

 203

Run 9

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e
(N

)

Figure A.17: Results Large Joint Run 9

Finding Stiffness for Large joint

y = 0.1337x - 0.0028
R2 = 0.9984

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

Figure A.18: Stiffness Value for Large Joint. Run 9

 204

Table A.1: Summary of Stiffness Values for Large Joint
EXPERIMENTAL RUN FOR LARGE JOINT STIFFNESS VALUE

RUN 1 0.1187
RUN 2 0.1378
RUN 3 0.1326
RUN 4 0.1263
RUN 5 0.1513
RUN 6 0.1336
RUN 7 0.1454
RUN 8 0.1342
RUN 9 0.1337

AVERAGE: 0.1348

 205

SMALL JOINT

Run 1

Experimental Results for Small Joint

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095 0.0105

Displacement(m)

Fo
rc

e(
N

)

Figure A.19: Results Small Joint Run 1

Finding Stiffness for Small Joint

y = 0.0177x + 0.0009
R2 = 0.9828

0

0.002

0.004

0.006

0.008

0.01

0.012

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (P

 X
F)

(N
m

)

Torque VS Angle
Linear (Torque VS Angle)

Figure A.20: Stiffness Value for Small Joint. Run 1

 206

Run 2

Experimental Results for Small Joint

1.5

1.6

1.7

1.8

1.9

2

2.1

0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095 0.0105

Displacement(m)

Fo
rc

e(
N

)

Figure A.21: Results Small Joint Run 2

Finding Stiffness for Small Joint

y = 0.0155x + 0.0007
R2 = 0.9894

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque VS Angle

Linear (Torque VS Angle)

Figure A.22: Stiffness Value for Small Joint. Run 2

 207

Run 3

Experiemental Results for Small Joint

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095 0.0105

Displacement(m)

Fo
rc

e(
N

)

Figure A.23: Results Small Joint Run 3

Finding Stiffness for Small Joint

y = 0.0164x + 0.0011
R2 = 0.9774

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque VS Angle
Linear (Torque VS Angle)

Figure A.24: Stiffness Value for Small Joint. Run 3

 208

Run 4

Experimental Results for Small Joint

1.5

1.6

1.7

1.8

1.9

2

2.1

0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095 0.0105

Displacement(m)

Fo
rc

e(
N

)

Figure A.25: Results Small Joint Run 4

Finding Stiffness for Small Joint

y = 0.0158x + 0.0006
R2 = 0.9886

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Change in Angle (Radian)

To
rq

ue
 (P

 X
F)

(N
m

)

Torque VS Angle
Linear (Torque VS Angle)

Figure A.26: Stiffness Value for Small Joint. Run 4

 209

Table A.2: Summary of Stiffness Values for Small Joint
EXPERIMENTAL RUN FOR SMALL JOINT STIFFNESS VALUE

RUN 1 0.0177
RUN 2 0.0155
RUN 3 0.0164
RUN 4 0.0158

AVERAGE: 0.01635

There were originally 6 runs, but only four are shown because the other 2 runs

were outliers. These other runs will give false information and are deleted from this

section.

 210

APPENDIX B:

 JOINT ANGLES DEFORMATION

There are three programs that implement the two different methods. From the

results from each method, one can calculate the joint angles for every cell. For a 1-by-7

there are 7 cells and 12 joint angles for each cell. This appendix will show the joint

angles before and after deformation and the energy stored in them.

 211

First Program: Method 1

Figure B.1: Results from Method 1

Inputs: First cell: 0.3; Fourth cell:0.1; Last cell:0.6

Legend:

 After: Joint angles (radian) after the program converges

 Before: Joint angles (radian) before the program converges

 Dif: the absolute value difference between the before and after angles

 Energy: the energy stored in the spring: k*(after-before)2

 K: Stiffness Value: 0.8375Nm

The alphabet letters denotes the symmetry of the angles: For example: All A

values for the Cell 1 has similar values in Method 1. All B in Cell 1 has similar values,

etc.

 212

Table B.1: Joint Results For Cell 1 and 2. Method 1
 Cell 1 Cell 2
 After Before Dif Energy After Before Dif Energy
A 1.7592 2.0089 0.2497 0.005222 A 1.8381 2.0089 0.1708 0.002443
B 1.4507 1.4432 0.0075 4.71E-06 B 1.4467 1.4432 0.0035 1.03E-06
C 2.0604 2.0089 0.0515 0.000222 C 2.0435 2.0089 0.0346 0.0001
C 2.0604 2.0089 0.0515 0.000222 C 2.0435 2.0089 0.0346 0.0001
B 1.4507 1.4432 0.0075 4.71E-06 B 1.4467 1.4432 0.0035 1.03E-06
A 1.7592 2.0089 0.2497 0.005222 A 1.8381 2.0089 0.1708 0.002443
D 2.0089 2.0089 0 0 D 2.2643 2.0089 0.2554 0.005463
E 1.4432 1.4432 0 0 E 1.4507 1.4432 0.0075 4.71E-06
F 2.0089 2.0089 0 0 F 1.9632 2.0089 0.0457 0.000175
F 2.0089 2.0089 0 0 F 1.9632 2.0089 0.0457 0.000175
E 1.4432 1.4432 0 0 E 1.4507 1.4432 0.0075 4.71E-06
D 2.0089 2.0089 0 0 D 2.2643 2.0089 0.2554 0.005463

Table B.2: Joint Results For Cell 3 and 4. Method 1

 Cell 3 Cell 4
 After Before Dif Energy After Before Dif Energy
A 1.9991 2.0089 0.0098 8.04E-06 A 2.2468 2.0089 0.2379 0.00474
B 1.4432 1.4432 0 0 B 1.4497 1.4432 0.0065 3.54E-06
C 2.0108 2.0089 0.0019 3.02E-07 C 1.9661 2.0089 0.0428 0.000153
C 2.0108 2.0089 0.0019 3.02E-07 C 1.9661 2.0089 0.0428 0.000153
B 1.4432 1.4432 0 0 B 1.4497 1.4432 0.0065 3.54E-06
A 1.9991 2.0089 0.0098 8.04E-06 A 2.2468 2.0089 0.2379 0.00474
D 2.1824 2.0089 0.1735 0.002521 D 2.0187 2.0089 0.0098 8.04E-06
E 1.4467 1.4432 0.0035 1.03E-06 E 1.4432 1.4432 0 0
F 1.9769 2.0089 0.032 8.58E-05 F 2.007 2.0089 0.0019 3.02E-07
F 1.9769 2.0089 0.032 8.58E-05 F 2.007 2.0089 0.0019 3.02E-07
E 1.4467 1.4432 0.0035 1.03E-06 E 1.4432 1.4432 0 0
D 2.1824 2.0089 0.1735 0.002521 D 2.0187 2.0089 0.0098 8.04E-06

 213

Table B.3: Joint Results For Cell 5 and 6. Method 1
 Cell 5 Cell 6
 After Before Dif Energy After Before Dif Energy
A 2.4107 2.0089 0.4018 0.013521 A 2.4917 2.0089 0.4828 0.019522
B 1.4614 1.4432 0.0182 2.77E-05 B 1.4692 1.4432 0.026 5.66E-05
C 1.9411 2.0089 0.0678 0.000385 C 1.9304 2.0089 0.0785 0.000516
C 1.9411 2.0089 0.0678 0.000385 C 1.9304 2.0089 0.0785 0.000516
B 1.4614 1.4432 0.0182 2.77E-05 B 1.4692 1.4432 0.026 5.66E-05
A 2.4107 2.0089 0.4018 0.013521 A 2.4917 2.0089 0.4828 0.019522
D 1.776 2.0089 0.2329 0.004543 D 1.6213 2.0089 0.3876 0.012582
E 1.4497 1.4432 0.0065 3.54E-06 E 1.4614 1.4432 0.0182 2.77E-05
F 2.0568 2.0089 0.0479 0.000192 F 2.0908 2.0089 0.0819 0.000562
F 2.0568 2.0089 0.0479 0.000192 F 2.0908 2.0089 0.0819 0.000562
E 1.4497 1.4432 0.0065 3.54E-06 E 1.4614 1.4432 0.0182 2.77E-05
D 1.776 2.0089 0.2329 0.004543 D 1.6213 2.0089 0.3876 0.012582

Table B.4: Joint Results For Cell 7. Method 1

 Cell 7
 After Before Dif Energy
A 2.0089 2.0089 0 0
B 1.4432 1.4432 0 0
C 2.0089 2.0089 0 0
C 2.0089 2.0089 0 0
B 1.4432 1.4432 0 0
A 2.0089 2.0089 0 0
D 1.5463 2.0089 0.4626 0.017922
E 1.4692 1.4432 0.026 5.66E-05
F 2.1076 2.0089 0.0987 0.000816
F 2.1076 2.0089 0.0987 0.000816
E 1.4692 1.4432 0.026 5.66E-05
D 1.5463 2.0089 0.4626 0.017922

 214

Second Program: Method 2 Fix Face

Figure B.2: Results from Method 2: Fix Face

Same inputs, same legend definition.

Stiffness: k1 = 0.152Nm and k2 = 0.0155Nm

Energy Equation for larger joint: 0.152*(Before-After)2

Energy Equation for larger joint: 0.0155*(Before-After)2

 Table B.5: Joint Results For Cell 1 and 2. Method 2: Fix
 Cell 1 Cell 2
 After Before Dif Energy After Before Dif Energy
 1.8021 2.0089 0.2068 0.0065 A 1.9541 2.0089 0.0548 0.000456
 1.4728 1.4432 0.0296 1.36E-05 B 1.4534 1.4432 0.0102 1.61E-06
 2.0049 2.0089 0.004 2.43E-06 C 2.0165 2.0089 0.0076 8.78E-06
 2.0171 2.0089 0.0082 1.04E-06 C 2.0125 2.0089 0.0036 2.01E-07
 1.4271 1.4432 0.0161 3.94E-05 B 1.4368 1.4432 0.0064 6.23E-06
 1.9407 2.0089 0.0682 7.21E-05 A 2.0069 2.0089 0.002 6.2E-08
 1.9323 2.0089 0.0766 0.000892 D 2.006 2.0089 0.0029 1.28E-06
 1.4367 1.4432 0.0065 6.55E-07 E 1.4393 1.4432 0.0039 2.36E-07
 1.9801 2.0089 0.0288 0.000126 F 2.003 2.0089 0.0059 5.29E-06
 1.9749 2.0089 0.034 1.79E-05 F 2.0007 2.0089 0.0082 1.04E-06
 1.4351 1.4432 0.0081 9.97E-06 E 1.4442 1.4432 0.001 1.52E-07
 1.9471 2.0089 0.0618 5.92E-05 D 2.0059 2.0089 0.003 1.4E-07

 215

 Table B.6: Joint Results For Cell 3 and 4. Method 2: Fix
 Cell 3 Cell 4
 After Before Dif Energy After Before Dif Energy
A 2.0231 2.0089 0.0142 3.06E-05 A 2.2246 2.0089 0.2157 0.007072
B 1.4437 1.4432 0.0005 3.87E-09 B 1.4079 1.4432 0.0353 1.93E-05
C 2.0584 2.0089 0.0495 0.000372 C 2.1227 2.0089 0.1138 0.001968
C 2.008 2.0089 0.0009 1.26E-08 C 2.0378 2.0089 0.0289 1.29E-05
B 1.4636 1.4432 0.0204 6.33E-05 B 1.4295 1.4432 0.0137 2.85E-05
A 2.0211 2.0089 0.0122 2.31E-06 A 2.2151 2.0089 0.2062 0.000659
D 2.0228 2.0089 0.0139 2.94E-05 D 2.2272 2.0089 0.2183 0.007244
E 1.4621 1.4432 0.0189 5.54E-06 E 1.4068 1.4432 0.0364 2.05E-05
F 2.0134 2.0089 0.0045 3.08E-06 F 2.0997 2.0089 0.0908 0.001253
F 2.0448 2.0089 0.0359 2E-05 F 2.0514 2.0089 0.0425 2.8E-05
E 1.4039 1.4432 0.0393 0.000235 E 1.4126 1.4432 0.0306 0.000142
D 2.2058 2.0089 0.1969 0.000601 D 2.2104 2.0089 0.2015 0.000629

 Table B.7: Joint Results For Cell 5 and 6. Method 2: Fix

 Cell 5 Cell 6
 After Before Dif Energy After Before Dif Energy
A 2.1875 2.0089 0.1786 0.004848 A 2.0136 2.0089 0.0047 3.36E-06
B 1.4219 1.4432 0.0213 7.03E-06 B 1.4411 1.4432 0.0021 6.84E-08
C 2.0085 2.0089 0.0004 2.43E-08 C 2.0139 2.0089 0.005 3.8E-06
C 1.9607 2.0089 0.0482 3.6E-05 C 2.0026 2.0089 0.0063 6.15E-07
B 1.4639 1.4432 0.0207 6.51E-05 B 1.4455 1.4432 0.0023 8.04E-07
A 2.0082 2.0089 0.0007 7.6E-09 A 2.006 2.0089 0.0029 1.3E-07
D 2.0282 2.0089 0.0193 5.66E-05 D 2.0079 2.0089 0.001 1.52E-07
E 1.4345 1.4432 0.0087 1.17E-06 E 1.4422 1.4432 0.001 1.55E-08
F 2.0606 2.0089 0.0517 0.000406 F 2.0142 2.0089 0.0053 4.27E-06
F 1.9746 2.0089 0.0343 1.82E-05 F 2.0046 2.0089 0.0043 2.87E-07
E 1.4619 1.4432 0.0187 5.32E-05 E 1.4441 1.4432 0.0009 1.23E-07
D 2.0108 2.0089 0.0019 5.6E-08 D 2.0107 2.0089 0.0018 5.02E-08

Table B.8: Joint Results For Cell 7. Method 2: Fix

 Cell 7
 After Before Dif Energy
A 2.0042 2.0089 0.0047 3.36E-06
B 1.4369 1.4432 0.0063 6.15E-07
C 1.9953 2.0089 0.0136 2.81E-05
C 1.9941 2.0089 0.0148 3.4E-06
B 1.4367 1.4432 0.0065 6.42E-06
A 2.0075 2.0089 0.0014 3.04E-08
D 2.013 2.0089 0.0041 2.56E-06
E 1.4281 1.4432 0.0151 3.53E-06
F 2.0249 2.0089 0.016 3.89E-05
F 1.968 2.0089 0.0409 2.59E-05
E 1.4722 1.4432 0.029 0.000128
D 1.7922 2.0089 0.2167 0.000728

 216

Third Program: Method 2 Free Face

Figure B.3: Results from Method 2 Free Face

Same inputs, same legend definition.
Stiffness: k1 = 0.152Nm and k2 = 0.0155Nm
Energy Equation for larger joint: 0.152*(Before-After)2

Energy Equation for larger joint: 0.0155*(Before-After)2

Table B.9: Joint Results For Cell 1 and 2. Method 2: Free

 Cell 1 Cell 2
 After Before Dif Energy After Before Dif Energy
A 2.0089 2.0089 0 0 A 2.0445 2.0089 0.0356 0.000193
B 1.4434 1.4432 0.0002 6.2E-10 B 1.443 1.4432 0.0002 6.2E-10
C 2.0085 2.0089 0.0004 2.43E-08 C 2.016 2.0089 0.0071 7.66E-06
C 2.0092 2.0089 0.0003 1.39E-09 C 2.0169 2.0089 0.008 9.92E-07
B 1.443 1.4432 0.0002 6.08E-09 B 1.4424 1.4432 0.0008 9.73E-08
A 2.0088 2.0089 0.0001 1.55E-10 A 2.0448 2.0089 0.0359 2E-05
D 2.0088 2.0089 0.0001 1.52E-09 D 2.0445 2.0089 0.0356 0.000193
E 1.4433 1.4432 1E-04 1.55E-10 E 1.443 1.4432 0.0002 6.2E-10
F 2.0087 2.0089 0.0002 6.08E-09 F 2.0159 2.0089 0.007 7.45E-06
F 2.009 2.0089 1E-04 1.55E-10 F 2.017 2.0089 0.0081 1.02E-06
E 1.4431 1.4432 1E-04 1.52E-09 E 1.4424 1.4432 0.0008 9.73E-08
D 2.0089 2.0089 0 0 D 2.0447 2.0089 0.0358 1.99E-05

 217

 Table B.10: Joint Results For Cell 3 and 4. Method 2: Free
 Cell 3 Cell 4
 After Before Dif Energy After Before Dif Energy
A 2.0814 2.0089 0.0725 0.000799 A 2.1199 2.0089 0.111 0.001873
B 1.4408 1.4432 0.0024 8.93E-08 B 1.4369 1.4432 0.0063 6.15E-07
C 2.0262 2.0089 0.0173 4.55E-05 C 2.0377 2.0089 0.0288 0.000126
C 2.0259 2.0089 0.017 4.48E-06 C 2.0373 2.0089 0.0284 1.25E-05
B 1.441 1.4432 0.0022 7.36E-07 B 1.4373 1.4432 0.0059 5.29E-06
A 2.0818 2.0089 0.0729 8.24E-05 A 2.1202 2.0089 0.1113 0.000192
D 2.0816 2.0089 0.0727 0.000803 D 2.1202 2.0089 0.1113 0.001883
E 1.441 1.4432 0.0022 7.5E-08 E 1.4373 1.4432 0.0059 5.4E-07
F 2.0255 2.0089 0.0166 4.19E-05 F 2.0372 2.0089 0.0283 0.000122
F 2.0266 2.0089 0.0177 4.86E-06 F 2.0378 2.0089 0.0289 1.29E-05
E 1.4406 1.4432 0.0026 1.03E-06 E 1.4368 1.4432 0.0064 6.23E-06
D 2.0814 2.0089 0.0725 8.15E-05 D 2.1198 2.0089 0.1109 0.000191

 Table B.11: Joint Results For Cell 5 and 6. Method 2: Free

 Cell 5 Cell 6
 After Before Dif Energy After Before Dif Energy
A 2.0805 2.0089 0.0716 0.000779 A 2.0437 2.0089 0.0348 0.000184
B 1.4408 1.4432 0.0024 8.93E-08 B 1.4426 1.4432 0.0006 5.58E-09
C 2.0257 2.0089 0.0168 4.29E-05 C 2.0164 2.0089 0.0075 8.55E-06
C 2.0257 2.0089 0.0168 4.37E-06 C 2.0164 2.0089 0.0075 8.72E-07
B 1.441 1.4432 0.0022 7.36E-07 B 1.4428 1.4432 0.0004 2.43E-08
A 2.0807 2.0089 0.0718 7.99E-05 A 2.0438 2.0089 0.0349 1.89E-05
D 2.0806 2.0089 0.0717 0.000781 D 2.0438 2.0089 0.0349 0.000185
E 1.441 1.4432 0.0022 7.5E-08 E 1.4428 1.4432 0.0004 2.48E-09
F 2.0257 2.0089 0.0168 4.29E-05 F 2.0164 2.0089 0.0075 8.55E-06
F 2.0258 2.0089 0.0169 4.43E-06 F 2.0164 2.0089 0.0075 8.72E-07
E 1.4408 1.4432 0.0024 8.76E-07 E 1.4427 1.4432 0.0005 3.8E-08
D 2.0805 2.0089 0.0716 7.95E-05 D 2.0438 2.0089 0.0349 1.89E-05

Table B.12: Joint Results For Cell 7. Method 2: Free

 Cell 7
 After Before Dif Energy
A 2.0089 2.0089 0 0
B 1.4431 1.4432 1E-04 1.55E-10
C 2.0088 2.0089 0.0001 1.52E-09
C 2.0089 2.0089 0 0
B 1.4433 1.4432 1E-04 1.52E-09
A 2.0089 2.0089 0 0
D 2.0089 2.0089 0 0
E 1.4433 1.4432 1E-04 1.55E-10
F 2.0089 2.0089 0 0
F 2.0088 2.0089 0.0001 1.55E-10
E 1.4432 1.4432 0 0
D 2.0089 2.0089 0 0

 218

APPENDIX C:

 MATLAB FOR METHOD 1

Method 1 was implemented through using MATLAB Coding. The first page will

be a guide to the code and the functions in the code. The rest of the pages in this

Appendix are the code.

 219

NAVIGATION OUTLINE
FIRST PROGRAM IMPLEMENTING METHOD 1

Nomenclature:

xcell: a matrix of the Cartesian coordinates of the center-points of the unit cells
ncells: the matrix dimension
xcellvar: controlling the constraints. Dimension size is the same as xcell.
dist: fixed distance value between any two point
k_joint: stiffness value
xcell_initial: initial value of xcell before the modifying any values.
Zinputs: user dislocatement inputs for the z-values in xcell
k_alpha: geometric constant from design model
k_beta: geometric constant from design model
k_lamda: geometric constant from design model

STICKFIGURE

1. User Inputs: requesting user inputs to create an m-by-n matrix

2. xcell_initial = xcell

3. Creating the 'on'/ 'off' matrix for controlling the constraints

a. Initiating an emptied matrix: xcellvar
i. Note: xcellvar will be a matrix of the same size as xcells

b. For any Cartesian coordinate variables fixed in xcell,
i. The corresponding value in Xcellvar=0

c. For any Cartesian variables free to change in xcell,
i. The corresponding value in Xcellvar Xcellvar=1

4. Link_length: calculating the distance between any two center-point

5. Graph_ctpt: graphing the center-points of the unit cells from xcell

6. guess_interpolating: linear interpolation function

7. Creating Initial Guess vector: x0

a. If xcellvar=1, place xcell value into x0

8. Fmincon –blackbox MATLAB function
a. MinimizingEnergy: calculating the potential energy in the system for

Fmincon

 220

b. Controlling_length: controls the distance between two center-points based
upon the user input :dist”

9. xcell: the final results of Cartesian coordinates

10. Link_length: calculating the distance between any two center-point

11. Graph_ctpt: graphing the center-points of the unit cells from xcell

12. k_alpha= (58.054 *pi)/180; % convert degree to radian
13. k_beta= (22*pi)/180;
14. k_lamda= (62.806 *pi)/180;

15. boundary_vectors: creating extra unit cells surrounding the developed matrix for

calculating V-vectors.

16. cal_v_n: calculating the v-vectors and the n-vectors for each cells

17. calc_theta: calculating the angles of each joint for each cell in the matrix

18: bdpt_remove: removing the extra unit cells

 221

USER_INPUTS

1. Specify user to input: ncells, dist, k_joint; number of zinput

2. Create xcell matrix from inputs

3. Graph_ctpt: graphing the center-points of the unit cells from xcell

4. Loop command for adding z-height values at “zimput” number of locations

5. Output: ncells and xcell

LINK_LENGTH
1. Loop command

a. For all the link in the x-direction, calculate the length:

() () ()2 2 2
1 2 1 2 1 2Lx= x x y y z z− + − + −

2. Loop command

a. For all the link in the y-direction, calculate the length:

() () ()2 2 2
1 2 1 2 1 2Ly= x x y y z z− + − + −

GRAPH_CTPT
1. Drawing the horizontal lines

a. For all the center-points on every row, draw a horizontal line connecting any two
points

2. Drawing the vertical lines

a. For all the center-points on every column, draw a vertical line connecting any two
points

 222

GUESS_INTERPOLATING

Step 1: using 'interp1' to draw a straight between all the Z inputs at the edge/border.

1) If ncells(2)>1: Determine there is more than one column in the matrix

i) **perform loop if matrix is more than a horizontal line.
b) find the index of all the centerpts in the 1st row that Z is inputted
c) Connect all the z-input in line(s) using 'interp1'

2) If ncells(2)>1;

a) find the index of all the centerpts in the last row that Z is inputed
b) Connect all the z-input in line(s) using 'interp1'

3) If ncells(1)>1: Determine there is more than one row in the matrix

a) find the index of all the centerpts in the 1st column that Z is inputted
b) Connect all the z-input in line(s) using 'interp1'

4) If ncells(1)>1;

a) find the index of all the centerpts in the last column that Z is inputted
b) Connect all the z-input in line(s) using 'interp1'

Step 2: after creating a border, create a second xcellvar called 'xcellvar2' that states those

values at the borders are constrained

1) Creating the 'on'/ 'off' matrix for controlling the constraints

a) Initiating an emptied matrix: xcellvar2
i) Note: xcellvar2 will be a matrix of the same size as xcells
ii) For any Cartesian coordinate variables fixed in xcell,

(1) The corresponding value in Xcellvar2=0
iii) For any Cartesian variables free to change in xcell,

(1) The corresponding value in Xcellvar 2=1

Step 3: using the Z values at the edge for each row, use 'interp1' to draw a straight line

through all the Z inputs for each rows plus the z's at the edge.

Step 4: repeat process for the columns using 'interp1'

Step5: super-impose the z values derived from the row 'interp1' and the coln 'interp1'

Where there is overlap, take the max of the the Zvalues.

Step 6: Repeat step 2-5 to interpolate for the rows and column that does not have a
zinputs.

Use the previously interpolated points as fixed values for xcellvar3.

 223

MINIMIZINGENERGY

1) From the main page, Matrix30_interp, replacing all the non-constrained coordinate

values in the xcell matrix with xi values: xi= {x(1), x(2), x(3)…}

2) Energy in the X direction

a) Sum-up all the energy between two center-points in the x-direction using atan2

3) Energy in the Y direction

a) Sum-up all the energy between two center-points in the y-direction using atan2

4) Potential Energy

a) Add y-direction sum to x-direction sum

CONTROLLING_LENGTH

1) Controling the length in X direction

a) Lx: Calculating the distance between any two center-points in the x-direction
i) Subtract Lx from dist2. This value should be as close as possible to zero or

Fmincon would re-evaulate the Cartesian coordinates of the unit cells.

2) Controling the length in Y direction, same process as ablove

a) Ly: Calculating the distance between any two center-points in the y-direction
i) Subtract Ly from dist2. This value should be as close as possible to zero or

Fmincon would re-evaulate the Cartesian coordinates of the unit cells.

 224

BOUNDARY_VECTORS

adding extra unit cells for help calculating the unit vectors V and n.
Below is an ascii art diagram of the additional unti cells

% visual descriptions of boundary cells: xedge_top, xedge_bot, xedgeleft, xedge_right:

% =====================xedge_top====================

% =xedge_left=== [input xcell ct-pt]===xedge_right===

% =xedge_left=== [input xcell ct-pt]===xedge_right===

% ====================xedge_bot=====================

1) Create the xedge_top, xedge_bot, xedgeleft, xedge_right, vectors

2) Add on these vectors to the xcell matrix

CAL_V_N

To understand the algorithm for this section, refer to the below ascii art diagram

numbering convention for cells:
% 4 5 6
% 1 2 3

numbering conventions for the v vectors and n vectors on each unit cells

These numbering conventions will help you understand how the code operates by starting
with the first unit cell. Within each unit cells are 4 v and 4 n vectors. The code starts
calculating at the first unit cell. Below is the algorithm for the code.

 7
8 + 6

5

 3
0,4 + 2

1

 11
12 + 10

9

 225

1) Calculating the unit v_vectors
a) v_vectori= (xcelli- xcelli+1)/ (||(xcelli- xcelli+1)||)

2) Calculating the n_vectors

a) finding phi: the angle of rotation of each n_vectors: (sin(Z/L))^-1
i) L=(length of the unit vector in the direction of either X or Y)=1

b) finding the new rotated normal
i) for all n_vectors in the plane with the horizontal V-vectors (e.g. #4 and#2 in

the counting convention for individual unit cells)
ii) for all n_vectors in the plane with the vertical V-vectors (e.g. #1 and#3 in the

counting convention for individual unit cells)

CALC_THETA

1) Initialize the w_matrix, which is the a matrix consisting of all 8 w_vectors before

deformation

2) Calculate the w_vectors after deformation

3) Calculate the side a vectors

4) Calculate the middle a vector

5) Calculate the u_vector

6) Calculate the thetas

BDPT_REMOVE

1) Initialize blank matrix

2) Start counting cells and storing cells at the first cell that is not on the border.

3) Skip the outer side cells

4) Stop counting when before reaching the first cell on the top border.

 226

STICKFIGURE

close all;
clear all;
%%%%%%%%%%%INPUTS%%%%%%%%%%%%%%%%%%%%%%%%%
global ncells;
global dist;
global k_joint;
global xcellvar;
global xcell_initial;
global std_dev;
global xcell;
global zinput;
[ncells,xcell] = user_inputs(ncells,dist,k_joint)
%function that ask for user inputs

xcell_initial=xcell; %storing the intital guess coordinates

std_dev= dist;
% this is is the deviation from the original guess
%for the upper bound. THe lower bound will always be '0'

%%creating the 'on'/ 'off' matrix for what value can change
xcellvar=zeros(size(xcell));

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 if xcell(counter31,3) ==0
 %if xcell=0 note: '0.001' is not '0'
 xcellvar(counter31,1)=1;
 %then put these 1 or 0 into xcellvar
 xcellvar(counter31,2)=1;
 xcellvar(counter31,3)=1;
 else
 xcellvar(counter31,1)=1;
 xcellvar(counter31,2)=1;
 xcellvar(counter31,3)=0;
 end
 end

end
xcellvar;

 227

%%%
%
% LT% upper Lt 0 0 0 0 upperRT
% S% 0 0 0 0 0 0
% I% 0 0 0 0 0 0 ^
% D% 1stPT 0 0 0 0 LowerRT | Y
% E
% ------------Bottom row--------------
% --------------------X->--------> X

xcellvar(1,:)=[0 0 0];
% nXm size of the xcell_bdpt
%constraint the first pt with all '0' b/c 1st pt is constraint

%Constrainting the various coordinate at the corners of the matrix

 xcellvar(ncells(2)*ncells(1)-ncells(2)+1,3)=0;
 %constraint the upper LT Z coodinate
 xcellvar(ncells(2)*ncells(1)-ncells(2)+1,1)=0;
 %constraint the upper LT x coodinate
 xcellvar(ncells(2),3)=0;
 %constraint the lower RT Z coodinate
 xcellvar(ncells(2),2)=0; %constraint the lower RT 1 coodinate

 if ncells(1)==1
 xcellvar(:,2)=0;
 end

 if ncells(2)==1
 xcellvar(:,1)=0;
 end

 xcellvar(ncells(1)*ncells(2),3)=0;
 %constraint the upper RT Z coodinate

[Lx,Ly] =link_length (ncells, xcell);
%function that finds the length of link:
 %this will show what the intial guess gives

%%%
%%%%%%%%%%%%%Intital guesses for 3D%%%%%%%%%%%%%%%

%putting all the intial guess in a vector
 %except for the first coordinate
 %as constraint and the input.

 228

% Intital guess to be placed into fmincon
x0=[];

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 %% interiopr cell conunter Start at the 1st interior cell
 for coord=1:3
 if xcellvar(counter31,coord) ==1;
 %if xcell=0 note: '0.0000001' is not '0'
 x1=xcell(counter31,coord);
 x0=[x0;x1];
 end
 end
 end
end
x0;

%%%

graph_ctpt (ncells, xcell);
% a function that graphs the center pt

[Lx,Ly] =link_length (ncells, xcell);
%function that finds the length of link:
 %this will show what the intial guess gives

xcell;

%%%%%%%Moditified Intitial guesses using fsolve and x0
%this modified initial guess will move all the points
 %to draw a straight line between two input points.
%the coordinates of the straight lines will give
 %the coordinates for the values for inputting into
 %fmincon for minmizing the potential energy ofthe system

tic;

%n_interp=(ncells(1)*ncells(2)-zinput)/2

%while n_interp>=ncells(1) & n_interp>=ncells(2)
xcell = guess_interpolating(xcell,xcellvar)

 %n_interp=n_interp/2
 %end

 229

toc;
sec_elapsed_interpolation=toc

graph_ctpt (ncells, xcell);
 %function that graphs the center points of unit cell

[Lx,Ly] =link_length (ncells, xcell);
%function that finds the length of link:
%this will show what the intial guess gives

xcell

%%%

%putting all the intial guess in a vector
 %except for the first coordinate as constraint and the input.
% Intital guess to be placed into fmincon
x0=[];

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 %% interiopr cell conunter Start at the 1st interior cell
 for coord=1:3
 if xcellvar(counter31,coord) ==1;
 %if xcell=0 note: '0.0000001' is not '0'
 x1=xcell(counter31,coord);
 x0=[x0;x1];
 end
 end
 end
end
x0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic;

options=optimset('Display','iter','MaxIter',1e5,...
 'MaxFunEvals',1e12,'TolFun',0.001, 'TolX',0.001);

x = fmincon('minimizingEnergy',x0,[],[],[],[],0,[],'controling_length',options);
 %x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
 %x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...)

 230

 %subjects the minimization to the nonlinear inequalities c(x)
 % or equalities ceq(x) defined in nonlcon.
 %fmincon optimizes such that c(x) <= 0 and ceq(x) = 0.
 % Set lb=[] and/or ub=[] if no bounds exist.
 %FMINCON requires at least four input argument

toc;
sec_elapsed_fmincon_energymin=toc

xcell;
graph_ctpt (ncells, xcell)
[Lx,Ly] =link_length (ncells, xcell)
%function that finds the length of link: this will show what the intial guess gives

xcell
%%%%%%%%%%%%%%%3D%%%%%%%%%%%%%%%%

graph_ctpt (ncells, xcell);

xcell %THe new xcell matrix with recalculated X and Y coordinates

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%Graphing the center points%%%%%%%%%%%%%%%%%

graph_ctpt (ncells, xcell)

%%
%%%%%%%%%%Adding Boundary pts%%%%%%%%%%%%%%%

[xcell]=boundary_vectors (dist, ncells,xcell); %function that adds boundary pts

%%%
%%%%%%%%%Calculating the V vectors and norms%%%%%%%%%%%%%%%%

[v_vectors,phi,rot_norm]= cal_v_n (ncells,xcell);

 231

USER INPUTS

function [ncells,xcell,zinput] = user_inputs(ncells,dist,k_joint)

global ncells;
global dist;
global k_joint;
global xcellvar;
global xcell_initial;
global std_dev;
global xcell;
global zinput;

ncells= input('Enter the rows and columns in this form: [row, column]=');
dist=input('Enter distant between two center point=');
k_joint=input('Enter the joint stiffness value=');
% joint stiffness value
zinput=input('Enter the number Z heights that you will input=');

%creating a matrix of center points based upon input
xcell=[];
for it60=1:ncells(1)
 for it61=1:ncells(2)
 xcell2=[dist*(it61-1), dist*(it60-1),0];
 xcell=[xcell;xcell2];
 end
end
xcell;

graph_ctpt (ncells, xcell);
% a function that graphs the center pt

disp('--------------------------------------')
repeatn=input('Do you want to modify values inputed? 1->yes and 0->no ==');
if repeatn==1;
 ncells= input('Enter the rows and columns in this form: [row, column]=');
 dist=input('Enter distant between two center point=');
 k_joint=input('Enter the joint stiffness value=');
 % joint stiffness value

 zinput=input('Enter the number Z heights that you will input=');
 disp('---')

 232

 xcell=[];
 for it60=1:ncells(1)
 for it61=1:ncells(2)
 xcell2=[dist*(it61-1), dist*(it60-1),0];
 xcell=[xcell;xcell2];
 end
 end

 graph_ctpt (ncells, xcell); % a function that graphs the center pt
 repeatn=input('Do you want to modify values inputed? 1->yes and 0->no ==');

 while repeatn==1;
 ncells= input('Enter the rows and columns in this form: [row, column]=');
 dist=input('Enter distant between two center point=');
 k_joint=input('Enter the joint stiffness value=');
 % joint stiffness value

 zinput=input('Enter the number Z heights that you will input=');
 disp('---')

 xcell=[];
 for it60=1:ncells(1)
 for it61=1:ncells(2)
 xcell2=[dist*(it61-1), dist*(it60-1),0];
 xcell=[xcell;xcell2];
 end
 end
 graph_ctpt (ncells, xcell); % a function that graphs the center pt
 repeatn=input('Do you want to modify values inputed? 1->yes and 0->no ==');
 end
end

%Adding the Z displacement for the number of zinput requested
for it62=1:zinput
 disp('---')
 fprintf ('Below are requests for the location and value for #%.0f from the total Z
heights \n', it62)
 deformz=input('Enter the [row,column] that you want to input the Z height=');%[row
column];
 fprintf ('Initial coordinates for the location requested: %.3f %.3f %.3f \n', ...
 xcell((deformz(1)-1)*ncells(2)+deformz(2), :))
 xcell((deformz(1)-1)*ncells(2)+deformz(2),3)=...
 input('Enter the Z height deformation for this point=');
end
graph_ctpt (ncells, xcell); % a function that graphs the center pt

 233

disp('---')

repeatz=input('Do you want to modify Z height inputs? 1->yes and 0->no ==');

if repeatz==1
 disp(' for statement below: only specify the number of Z heights to modify')
 zinput=input('Enter the number Z heights that you will input=');
 for it62=1:zinput

 234

LINK_LENGTH

function [Lx,Ly] =link_length (ncells, xcell);

%Finding the initial magnitude of X and Y based on pythagorn theorem
Lx=[]; %initial length of based upon the X and Y and Z coordinates in X direction

count40=0;
for it42=1:ncells(1); %2
 for it40= 1:ncells(2)-1; % 1: 4-1=3
 Lx1=sqrt((xcell(it40+count40,1)- xcell(it40+count40+1,1))^2 ...
 + (xcell(it40+count40,2)- xcell(it40+count40+1,2))^2 ...
 + (xcell(it40+count40,3)- xcell(it40+count40+1,3))^2);
 Lx=[Lx;Lx1];

 end
 count40=count40+ncells(2);
end
Lx;

Ly=[]; %initial length in the Y direction
count41=0;
for it44=1:ncells(1)-1
 for it45=1:ncells(2)
 Lyl=sqrt((xcell(it45+count41,1)- xcell(it45+ncells(2)+count41,1))^2 ...
 + (xcell(it45+count41,2)- xcell(it45+ncells(2)+count41,2))^2 ...
 + (xcell(it45+count41,3)- xcell(it45+ncells(2)+count41,3))^2);
 Ly=[Ly;Lyl];
 end
 count41=count41+ncells(2);
end
Ly;

 235

GRAPH_CTPT

function graph_ctpt (ncells, xcell);

figure;
%drawing the horizontal lines for the graph that connects two points

counter35=0;
for it35=1:ncells(1) % the numbers of rows
 for it36= 1:ncells(2)-1
 %%%2 1 less line than the total number of point per rows...
 %%%%b/c # of lines connecting two points
 plot3([xcell(it36+counter35,1);xcell(it36+1+counter35,1)],...
 [xcell(it36+counter35,2);xcell(it36+1+counter35,2)],...
 [xcell(it36+counter35,3);xcell(it36+1+counter35,3)],'b*-');
 hold on
 end
 counter35=counter35+ncells(2);
end

%drawing the vertical lines for the graph that connects two points
counter36=0;
for it38= 1: ncells(1)-1% numbers of column of lines
 for it37=1:ncells(2)
 plot3([xcell(it37+counter36,1);xcell(it37+ncells(2)+counter36,1)],...
 [xcell(it37+counter36,2);xcell(it37+ncells(2)+counter36,2)],...
 [xcell(it37+counter36,3);xcell(it37+ncells(2)+counter36,3)],'r*-');
 hold on
 end
 counter36=counter36+ncells(2); %3
end

title('Profile of position vector')
xlabel('X position')
ylabel('Y position')
zlabel('Z position')
axis equal

 236

GUESS_INTERPOLATING

function xcell= guess_interpolating(xcell,xcellvar)

global ncells;
global xcell;
global dist;
global k_joint;
global xcellvar;
global xcell_initial;
global std_dev;
global zinput;

%step 1:
%using 'interp1' to draw a straight Between all the Z inputs at the edge/border
%using the X coordinates as reference.
%For reminder, all the corners Z values are constrainted either at 0 ...
%%or at the value the user specify.

%step 2:
%after creating a border
%create a second xcellvar called 'xcellvar2' ...
%%that states those values at the borders are constrainted.

%step 3:
%using the Z values at the edge for each row, use 'interp1' ...
%to draw a straight line thorugh all the
%Z inputs for each rows plus the z's at the edge.

%step 4:
%repeat process for the columns using 'interp1'

%step 5:
%super-impose the z values derived from the row 'interp1' and the coln 'interp1'
% Where there is overlap, that the average of the the Zvalues.

 237

%%%%%step 1:=%%% %%%%%%%%step 1:=%%%% %%%%%%%%%%
if ncells(2)>1;
%find the index of all the centerpts in the 1st row that Z is inputed
vrow1= find(xcellvar(1:ncells(2),3)==0);
%Connect all the z-input in line(s)using 'interp1'
xcell(1:ncells(2),3)=INTERP1(xcell(vrow1,1),xcell(vrow1,3),xcell(1:ncells(2),1),'linear');
end

%find the index of all the centerpts in the last row that Z is inputed
if ncells(2)>1;
vrow2=[];
for it=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1)
 if xcellvar(it,3)==0
 vrow2=[vrow2;it];
 end
end
%ranges= the centerpts for the last row
ranges=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1);
%Connect all the z-input in line(s) using 'interp1'
xcell(ranges,3)=INTERP1(xcell(vrow2,1),xcell(vrow2,3),xcell(ranges,1),'linear');
end

%find the index of all the centerpts in the 1st column that Z is inputed
if ncells(1)>1;
 vcoln1=[];
 for it=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1;
 if xcellvar(it,3)==0
 vcoln1=[vcoln1;it];
 end
 end
%ranges= the centerpts for the 1st column
ranges=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1;
%Connect all the z-input in line(s) using 'interp1'
xcell(ranges,3)=INTERP1(xcell(vcoln1,2),xcell(vcoln1,3),xcell(ranges,2),'linear');
end

%find the index of all the centerpts in the last column that Z is inputed
if ncells(1)>1;
 vcoln2=[];
 for it=ncells(2):ncells(2):ncells(2)*ncells(1);
 if xcellvar(it,3)==0
 vcoln2=[vcoln2;it];
 end
 end
%ranges= the centerpts for the 1ast column
ranges=ncells(2):ncells(2):ncells(2)*ncells(1);

 238

%Connect all the z-input in line(s) using 'interp1'
xcell(ranges,3)=INTERP1(xcell(vcoln2,2),xcell(vcoln2,3),xcell(ranges,2),'linear');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%step 2:=%%%%%%%% %%%%%step 2:=%%%%%%
% Creating second matrix of 'xcellvar2'
xcellvar2=zeros(size(xcell));

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 if xcell(counter31,3) ==0 %if xcell=0 note: '0.001' is not '0'
 xcellvar2(counter31,1)=1; %then put these 1 or 0 into xcellvar
 xcellvar2(counter31,2)=1;
 xcellvar2(counter31,3)=1;
 else
 xcellvar2(counter31,1)=1;
 xcellvar2(counter31,2)=1;
 xcellvar2(counter31,3)=0;
 end
 end

end

% constrainting the Z at the LT side
 if ncells(1)>1
 for it31= ncells(2)+1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1;
 xcellvar2(it31,3)=0;
 end
 end

% constrainting the Z at the RT side
 if ncells(1)>1
 for it31= ncells(2):ncells(2):ncells(2)*ncells(1)
 xcellvar2(it31,3)=0;
 end
 end

% constrainting the Z on Bottom row an
if ncells(2)>1
 for it30=1:ncells(2)
 xcellvar2(it30,3)=0; %constraint the bottom row z coordinate pt
 end
 end

 239

% constrainting the Z on Top row an
if ncells(2)>1
 for it30=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1)
 xcellvar2(it30,3)=0; %constraint the bottom row z coordinate pt
 end
 end
 xcellvar2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%step 3 and 4:=%%%%%%%step 3and4:=%%%%% %%%%%%%%%

%Drawing straight through each row
if ncells(2)>1
 xcellr=[];
 for it=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1;
 irows=[];
 for it2=it:it+ncells(2)-1;
 if xcellvar2(it2,3)==0;
 irows=[irows; it2];
 end
 end
 rrange=it:it+ncells(2)-1;
 xcellr(rrange,3)=INTERP1(xcell(irows,1),xcell(irows,3),xcell(rrange,1),'linear');
 end
else
 xcellr=zeros(size(xcell));
end

%drawing a straight line through each column
if ncells(1)>1
 xcellc=[];
 for it= 1:ncells(2);
 icoln=[];
 for it2=it:ncells(2):ncells(1)*ncells(2);
 if xcellvar2(it2,3)==0;
 icoln=[icoln;it2];
 end
 end
 crange=it:ncells(2):ncells(1)*ncells(2);
 xcellc(crange,3)=INTERP1(xcell(icoln,2),xcell(icoln,3),xcell(crange,2),'linear');
 end
else
 xcellc=zeros(size(xcell));
end
%%%%%%%%%%%%%%%%%%%

 240

%%%%%%%%%%%%%%%step 5:=%%%% %step 5:=% %%%%%%%%%

xcellc;
xcellr;

if ncells(2)>1 & ncells(1)>1

 xcell(:,3)=max (xcellc(:,3),xcellr(:,3));

elseif ncells(2)>1 & ncells(1)==1
 xcell(:,3)= xcellr(:,3);
else
 xcell(:,3)= xcellc(:,3);
end

xcell;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%REPEATING STEP 2-5%%%REPEATING STEP 2-5%%%
%%%%%%%%%%%%%%%step 2:= %%%%%step 2:=%%%% %%%%%%

% Creating third matrix of 'xcellvar3'
xcellvar3=zeros(size(xcell));

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 if xcell(counter31,3) ==0 %if xcell=0 note: '0.0000001' is not '0'
 xcellvar3(counter31,1)=1; %then put these 1 or 0 into xcellvar
 xcellvar3(counter31,2)=1;
 xcellvar3(counter31,3)=1;
 else
 xcellvar3(counter31,1)=1;
 xcellvar3(counter31,2)=1;
 xcellvar3(counter31,3)=0;
 end
 end

end
% constrainting the Z at the LT side
 if ncells(1)>1
 for it31= ncells(2)+1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1;
 xcellvar3(it31,3)=0;
 end
 end

 241

% constrainting the Z at the RT side
 if ncells(1)>1
 for it31= ncells(2):ncells(2):ncells(2)*ncells(1)
 xcellvar3(it31,3)=0;
 end
 end

% constrainting the Z on Bottom row an
if ncells(2)>1
 for it30=1:ncells(2);
 xcellvar3(it30,3)=0; %constraint the bottom row z coordinate pt
 end
 end

% constrainting the Z on Bottom row an
if ncells(2)>1
 for it30=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1)
 xcellvar3(it30,3)=0; %constraint the bottom row z coordinate pt
 end
 end
xcellvar3;
%%%%%%%% End step Two%%%% End step Two%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%step 3 and 4:=%% %%%step 3and 4:=% %%%%%%%%%%

%Drawing straight through each row
if ncells(2)>1
 xcellr=[];
 for it=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1;
 irows=[];
 for it2=it:it+ncells(2)-1;
 if xcellvar3(it2,3)==0;
 irows=[irows; it2];
 end
 end
 rrange=it:it+ncells(2)-1;
 xcellr(rrange,3)=INTERP1(xcell(irows,1),xcell(irows,3),xcell(rrange,1),'linear');
 end

end

%drawing a straight line through each column
if ncells(1)>1
 xcellc=[];
 for it= 1:ncells(2);

 242

 icoln=[];
 for it2=it:ncells(2):ncells(1)*ncells(2);
 if xcellvar3(it2,3)==0;
 icoln=[icoln;it2];
 end
 end
 crange=it:ncells(2):ncells(1)*ncells(2);
 xcellc(crange,3)=INTERP1(xcell(icoln,2),xcell(icoln,3),xcell(crange,2),'linear');
 end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%step 5:=% %%%%%step 5:=%%%%%%%%%

xcellc;
xcellr;

if ncells(2)>1 & ncells(1)>1
 xcell(:,3)=max (xcellc(:,3),xcellr(:,3));
elseif ncells(2)>1 & ncells(1)==1
 xcell(:,3)= xcellr(:,3);
else
 xcell(:,3)= xcellc(:,3);
end

xcell;

 243

MINIMIZINGENERGY

function pot_energy = minimizingEnergy(x)

global ncells;
global xcell;
global dist;
global k_joint;
global xcellvar;
global xcell_initial;
global std_dev;

%replacing all the non-constrainted coordinate values with xi values...
%%These are the unknowns
cnt = 1; % counter for the x(1), x(2), x(3) etc...
counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 for coord=1:3
 if xcellvar(counter31,coord) ==1
 %if xcell=0 note: '0.001' is not '0'
 xcell(counter31,coord)=x(cnt);
 cnt = cnt + 1;
 end
 end
 end
end

%---------0---------------------------------
% ^ \)A
% / \
% / v
% /)C ----0------
%--0---------

%energy in the X direction
pot_energy=0;
%initial length of based upon the X and Y and Z coordinates in Xdirectiion

if ncells(2)>2

 244

 counter31=2;
 for it42=1:ncells(1); %row
 for it40= 1:ncells(2)-2; % column
 counter31=counter31+1;
 angle= -pi ...
 +(atan2(xcell(counter31,3)-xcell(counter31-1,3),...
 xcell(counter31,1)-xcell(counter31-1,1)))... %A
 -atan2(xcell(counter31-1,3)-xcell(counter31-2,3), ...
 xcell(counter31-1,1)-xcell(counter31-2,1)) ; %C

 pot_energy = pot_energy + 0.5 *k_joint *(pi-abs(angle))^2;

 end
 counter31=counter31+2;

 end
end

%energy in the Y direction
if ncells(1) > 2
 counter31=2;
 for it44=1:ncells(1)-2%row
 for it45=1:ncells(2)%column
 counter31=counter31+1;
 angle= -pi ...
 +(atan2(xcell(counter31+2*ncells(2)-2,3)-xcell(counter31+ncells(2)-2,3),...
 xcell(counter31+2*ncells(2)-2,2)-xcell(counter31+ncells(2)-2,2)))... %A
 -atan2(xcell(counter31+ncells(2)-2,3)-xcell(counter31-2,3),...
 xcell(counter31+ncells(2)-2,2)-xcell(counter31-2,2)) ; %C

 pot_energy = pot_energy + 0.5 *k_joint *(pi-abs(angle))^2;

 end
 end
end

pot_energy;

 245

CONTROLLING_LENGTH

function [c,lengths] = controling_length(x)

%nonlcon
 %The function that computes the nonlinear inequality constraints c(x)<= 0
 %and the nonlinear equality constraints ceq(x) = 0.
 %The function nonlcon accepts a vector x and returns two vectors c and ceq.
 %The vector c contains the nonlinear inequalities evaluated at x,
 %and ceq contains the nonlinear equalities evaluated at x.
 %The function nonlcon can be specified as a function handle.

%x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

%where mycon is a MATLAB function such as

%function [c,ceq] = mycon(x)
%c = ... % Compute nonlinear inequalities at x.
%ceq = ... % Compute nonlinear equalities at x.

global dist;
global ncells;
global k_joint;
global xcellvar;
global xcell_initial;
global std_dev;
global xcell;
%%%%%%%%%Keeping the link length constant%%%%%%%%%%%%%%%

%Controling the length in X direction
Lx=[]; %initial length of based upon the X and Y and Z coordinates in Xdirectiion
%counter31=ncells(2)+2+1; % interiopr cell conunter Start at the 1st interior cell
counter31=0;
for it42=1:ncells(1); %row
 for it40= 1:ncells(2)-1; % column
 counter31=counter31+1; %% interiopr cell conunter
 Lx1=(xcell(counter31,1)- xcell(counter31+1,1))^2 ...
 + (xcell(counter31,2)- xcell(counter31+1,2))^2 ...
 + (xcell(counter31,3)- xcell(counter31+1,3))^2- dist^2;
 Lx=[Lx;Lx1];

 end
 counter31=counter31+1;
end

 246

%Controling the length in Y direction
Ly=[];
%counter31=ncells(2)+2+1;% interiopr cell conunter Start at the 1st interior cell
counter31=0;
for it44=1:ncells(1)-1%row
 for it45=1:ncells(2)%column
 counter31=counter31+1; %% interiopr cell conunter
 Lyl=(xcell(counter31,1)- xcell(counter31+ncells(2),1))^2 ...
 + (xcell(counter31,2)- xcell(counter31+ncells(2),2))^2 ...
 + (xcell(counter31,3)- xcell(counter31+ncells(2),3))^2- dist^2;
 Ly=[Ly;Lyl];
 end
 % counter31=counter31+2;
end

lengths=[Lx;Ly];

%%%%all X(i) values should be positive and within a range of std %%%%%%%

 % due to the nonlinear inequality constraint of fmincon c(x)<= 0.
 %therefore all the neg of x(i) [-x(i)] values should be less than or equal to 0...
 %This means that all the x(i) must be positive.
 if 0 %if 0=false means will notever do what to do within if loop.
 %%if=1, then true, do everything in the loop
 values=[];
 counter31=0;
 cnt=1;
 for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell
 for coord =1:3

 if xcellvar(counter31,coord) ==1; %if xcell=0 note: '0.0000001' is not '0'

 if coord==3
 LBZ= -x(cnt);
 %lower bound for the z coodinate which is the lowest value inputed
 %from this equation: 0 <= x(i) <= x(i) + std_dev.
 % Solve for x(i) for the LT .
 UBZ= x(cnt)-(max(xcell_initial(:,3))+dist/2);
 %upper bound for the z coodinate which is the highest value inputed
 values=[values;LBZ;UBZ];

 else
 LB= - x(cnt); % this sets up the LB to be zero.
 %from this equation: 0 <= x(i) <= x(i) + std_dev.

 247

 %Solve for x(i) for the LT .
 UB= x(cnt) - (xcell_initial(counter31,coord)+std_dev);

 %upper bound for the the X and Y coodinate...
 %which the +3 pts away original values from this equation:
 % 0 <= x(i) <= x(i) + std_dev. Solve for x(i) for the RT side
 values=[values;LB;UB];

 end

 cnt=cnt+1;
 end
 end
 end
 end
 c=values;
 else
 c=0;
 end

 248

BOUNDARY_VECTORS

function [xcell]= boundary_vectors (dist, ncells, xcell);

global ncells;
global xcell;
global dist;
global k_joint;
global xcellvar;
global xcell_bdpt; %intial guess xcell with boundary pts
global xcell_initial;
global std_dev;

%The matrix is floating.
%These boundary vectors are added to help find the position v_vectors and the n_vector
%because of too much contraint. For the design of this crust,..
%a flexbile skin will be over the crust.
% this Skin will attach the crust to the base and stretches while the crust deforms.
%Presently, the skin is not developed yet.
%Ex: A piece of cloth on a square piece of stretchy rubber...
%THe edge of the rubber is attached a frame.
%THe cloth can deform in various ways within the limits of the rubber.
%THerefore the edge of the matrix is not attached, but there are constraints.
%THe contraints that this code will consider are
%the coordinate of first point which will be from the user input
%Another contraints to prevent rotation is the X value of Centerpt ..
%from 1 of the neighboring unit cell

% visual descriptions of boundary vectors of
%xedge_top, xedge_bot, xedgeleft, xedge_right:

% =====================xedge_top=====================

% =xedge_left=== [input xcell ct-pt]===xedge_right===

% =xedge_left=== [input xcell ct-pt]===xedge_right===

% ====================xedge_bot=====================

xedge_bot = xcell(1:ncells(2),:); %rosen's simplification of my coding from 13 lines to 2
xedge_bot(:,2) = xedge_bot(:,2) - dist;
xedge_bot=[0,0,0;xedge_bot; 0,0,0];
%the (0,0,0) are placement pts. Are ignored/skip over during calculation

xedge_top =xcell((ncells(2)*(ncells(1)-1)+1):ncells(2)*ncells(1),:);

 249

xedge_top(:,2) = xedge_top(:,2) + dist;
xedge_top=[0,0,0;xedge_top; 0,0,0];

%We need an extra set of vectors at the left edge of the first column...
%in the matrix to define the edge of the crust
xedge_left=[];
for it12= 1:ncells(2):(ncells(2)*(ncells(1)-1)+1);
 xedge_left1=xcell(it12,:);
 xedge_left1(:,1)=xedge_left1(1)- (dist);
 %xedge_left2=[xedge_left1(1)- (dist/2), xedge_left1(2),xedge_left1(3)];
 xedge_left=[xedge_left; xedge_left1];
end

%We need an extra set of vectors at the right edge of the first column

xedge_right=[];

for it13= ncells(2):ncells(2):ncells(2)*ncells(1);
 xedge_right1=xcell(it13,:);
 xedge_right1(:,1)=xedge_right1(1)+ (dist);
 %xedge_right2=[xedge_right1(1)+ (dist/2), xedge_right1(2),xedge_right1(3)];
 xedge_right=[xedge_right; xedge_right1];
end

%combining both the inputed ct-pt of cells and boundary vectors as one matrix
all_xcells=[xedge_bot];
count17=0;
count18=0;
for it16=1:ncells(1)
 count18=count18+1;
 row1=[xedge_left(count18,:);xcell(it16+count17:
ncells(2)*it16,:);xedge_right(count18,:)];
 all_xcells=[all_xcells;row1];
 count17=count17+ncells(2)-1;
end

all_xcells=[all_xcells;xedge_top];
xcell=all_xcells;

 250

CAL_V_N

function [v_vectors,phi,rot_norm] = cal_v_n(ncells,xcell)

%%%
%%%%%%%%Calculating the v vectors%%%%%%%%%%%%%%%%
%%%

 %numbering convention for cells:
% 4 5 6
% 1 2 3

% numbering convetions for the v vectors and normals"
% 3
%4 + 2
% 1

counter30=0; % location placement for calc. values of v
counter31=ncells(2)+2+1;% interiopr cell conunter

for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %
 counter30=counter30+1; %
 v_vectors(counter30,1,:)=(xcell(counter31-(ncells(2)+2),:) - xcell(counter31,:))...
 /(norm((xcell(counter31-(ncells(2)+2),:) - xcell(counter31,:))));

 v_vectors(counter30,2,:) =(xcell(counter31+1,:) - xcell(counter31,:))...
 /(norm(xcell(counter31+1,:) - xcell(counter31,:)));

 v_vectors(counter30,3,:) =(xcell(counter31+(ncells(2)+2),:) - xcell(counter31,:))...
 /(norm((xcell(counter31+(ncells(2)+2),:) - xcell(counter31,:))));

 v_vectors(counter30,4,:) =(xcell(counter31-1,:) - xcell(counter31,:))...
 /(norm(xcell(counter31-1,:) - xcell(counter31,:)));

 end
 counter31=counter31+2;

end
v_vectors;

%%%
%%%
%%%%%%%%Calculating the Normals with local UCS%%%%%%%

 251

%%%
% SEE Notes and Drawings for more Explanation

%step 1: finding f=phi: the angle of rotation: (sin(Z/L))^-1
%Where L=(length of the vector in the direction of either X or Y)=1 ...
%becuase if unit vector

%Step 2: finding the new rotated normal
% for finding the Normals from the Horizontal V-vectors,...
%the Normal is rotated around the Y-axis,
% therfore the value of the Y coordinate is always '0' for H V-vectors
% from Jerry H. Ginsberg "Advanced Engineering Dynamic 2nd ed"
%Rotation matix for rotation about the Y-axis:
%[cos(f) 0 -sin (f);
% 0 1 0;
% sin(f) 0 cos (f)];

% for finding the Normals from the Vertical V-vectors,...
%the Normal is rotated around the X-axis,
% therefore the value of the X coordinate is always '0' for V V-vectors
%[1 0 0;
% 0 cos(f) sin (f);
% 0 -sin(f) cos (f)];

%Step 3: use check equation to validate the new norm
%check EQN 1: dot(N2, N1)= norm(N2)* norm(N1)*cos(f)
%check EQN 2: dot(N2, V2)=0 because perpendicular
% N2= New Rotated Normal N1= Orginal Normal (0,0,1)
% V2= New Roated V Vector
%%%
%%%%%%%Step 1: find phi: angle of rotation%%%%%%%%%%%%%%%%
%%%
% numbering conventions for the phi's
% 3_v
%4_h + 2_h
% 1_v

phi=[];
for it15= 1:ncells(1)*ncells(2)

 phiy=asin(v_vectors(it15,1,3)/(-1));
 % Calculating phi from Vertical V-vectors
 phi=[phi;phiy];

 phix=asin(v_vectors(it15,2,3)/1);
 % Calculating phi from horizontal V-vectors

 252

 phi=[phi;phix];

 phiy2=asin(v_vectors(it15,3,3)/1);
 % Calculating phi from Vertical V-vectors
 phi=[phi;phiy2];

 phix2=asin(v_vectors(it15,4,3)/(-1));
 % Calculating phi from horizontal V-vectors
 phi=[phi;phix2];
end
phi;

%%%
%%%%%%Step 2: finding the new rotated normal%%%%%%%%%%%%%%%%
%%%
%for Horizontal V-vectors
%rot_maty=[cos(f) 0 -sin (f);
 % 0 1 0;
 % sin(f) 0 cos (f)];

%For Vertical V-vectors
%rot_matx= [1 0 0;
 % 0 cos(f) sin (f);
 % 0 -sin(f) cos (f)];

 normal=[0,0,1];

 rot_norm=[];

for it16=1:2:4*ncells(1)*ncells(2)
 rot_normx= [1, 0, 0; 0, cos(phi(it16)), sin(phi(it16));...
 0, -sin(phi(it16)), cos(phi(it16))]*normal';
 rot_norm=[rot_norm;(rot_normx')];

 rot_normy= [cos(phi(it16+1)), 0, -sin(phi(it16+1)); 0, 1, 0;...
 sin(phi(it16+1)), 0, cos(phi(it16+1))]*normal';
 rot_norm=[rot_norm;(rot_normy')];

end
rot_norm; % this matrix is already normalize need not to be normed

%For rot_norm, Place all the X in one matrix,...
%All the Y in another, Z in the last

for k = 1:ncells(1)*ncells(2)
 for k2 = 1:4

 253

 for xyz = 1:3
 rot_norm3D(k,k2,xyz) = rot_norm((k-1)*4+k2,xyz);

 end
 end
end

for k = 1:ncells(1)*ncells(2)
 fprintf ('Element %d of rot_norm3D\n', k);
 for kk = 1:4
 fprintf (' %f %f %f \n', rot_norm3D(k,kk, :));
 end
end

rot_norm3D;
%%%
%%%%%%%Step 3: Validating the new rotated normal%%%%%%%%%
%%%
%ploting to check perpendicularity of 1 vector and 1 norm
%figure
%axis equal
%plot([0;v_vectors(1,3,2)],[0;v_vectors(1,3,3)],'c+-')
%hold on
%plot([0;rot_norm(3,2)],[0;rot_norm(3,3)],'b+-')
%axis equal

check_norm1=[]; % the results should all be '0'
check_norm2=[]; % the results should all be '0'

for it17=1:4*ncells(1)*ncells(2)
 check_eqn1= (norm(rot_norm(it17,:))*cos(phi(it17)))...
 - (dot(rot_norm(it17,:),normal));
 check_norm1=[check_norm1;check_eqn1];
end

count30=0;
for it18=1:ncells(1)*ncells(2)
 for it19=1:4
 count30=count30+1;
 check_eqn2=dot(rot_norm(count30,:),...
 [v_vectors(it18,it19,1),...
 v_vectors(it18,it19,2),....
 v_vectors(it18,it19,3)]);
 check_norm2=[check_norm2;check_eqn2];
end
end

 254

CALC_THETA

function [theta_tab] = calc_theta (ncells,xcell,v_vectors,rot_norm,phi)

%%%
%Calculation using Paul's Equation for the first cell%%%%%%%%%%%%%%%%
%%%

global k_alpha;
global k_beta;
global k_lamda;

%h_ scaling is a scaling factor multipied to the side of the small triangle
% Due to some re-calcuation, Paul's equation was modified:
% w_norm=sin (B/2) => w_norm= (h_scaling)*sin (B/2)= tan (B/2)
 %since h_scaling= 1/cos

h_scaling=1/(cos((k_beta)/2));
w_norm=tan((k_beta)/2);

%These are the initial vectors of 1 unit cell before any rotation.
w_unit=[-1, 0,0;
 1, 0,0;
 0,-1,0;
 0, 1,0;
 1, 0,0;
 -1, 0,0;
 0, 1,0;
 0,-1,0];
w_initial=[-0.1944, 0, 0;
 0.1944, 0, 0;
 0, -0.1944, 0;
 0, 0.1944, 0;
 0.1944, 0, 0;
 -0.1944, 0, 0;
 0, 0.1944, 0;
 0, -0.1944, 0];

w=[];
% w=example for 1 unit cell:[w8; w1; w2; w3; w4; w5; w6; w7] ...
%in reference to numbering convention per unit cell
count19=0;
for it20=1:ncells(1)*ncells(2)
 for it21=1:4

 255

 count19=count19+1;
 w_vec1= (w_norm)*cross([v_vectors(it20,it21,1),v_vectors(it20,it21,2),...
 v_vectors(it20,it21,3)], rot_norm(count19,:));
 w=[w;w_vec1]; %method of stacking **must start with w=[] for an empitied set
 w_vec2= (w_norm)*cross(rot_norm(count19,:),[v_vectors(it20,it21,1),...
 v_vectors(it20,it21,2),v_vectors(it20,it21,3)]);
 w=[w;w_vec2];
 end
end
w;

a=[]; %a=side vector of top small connecting triangles

count=0;
for it20=1:ncells(1)*ncells(2);
 for it21=1:4
 count=count+1;
 a_val1=([v_vectors(it20,it21,1),v_vectors(it20,it21,2),...
 v_vectors(it20,it21,3)]+w(count,:))/(h_scaling);
 a=[a;a_val1];
 count=count+1;
 a_val2=([v_vectors(it20,it21,1),v_vectors(it20,it21,2),...
 v_vectors(it20,it21,3)]+w(count,:))/(h_scaling);
 a=[a;a_val2];
 end
end

a ; %example for 1 unit cell: a=[a8; a1; a2; a3; a4; a5; a6; a7]...

 %all the vectors on the side of the main link triangle

%%%
%%%%%find the middle a vector between two big link%%%%%%%
%%%%explaination of modification of paul's eqn for "for loop%%%%%%%%

%%%
%%%

%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7]
%rearrange the a matrix to move the first a value from each unit cell...
%to become the last value for each unit cell
a2=[]; %a1 %a2 %a3.....%a8

for it23= 1:8:8*ncells(1)*ncells(2)-7
 a1=[a(it23+1:it23+7,:);a(it23,:)];

 256

 a2=[a2;a1];
end
a=a2;

%%%%%% FINDING THE MIDDLE VECTOR:M%%%%%%%%%%
%%%%%%%%Reference Word Doc: findingM_a_mid_vector %%%%

m=[];

count4=0;
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6'
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5'
L1= 73/256; %%length of the side of intermediate joints
L5=83/256; %%length of the middle vector of intermediate joints
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells
 count4=count4+1;
 vect1=a(count4,:);
 count4=count4+1;
 vect2=a(count4,:);

 p_vect=0.25*vect2 - 0.25*vect1;
 %%% p_vect= a vector that connects a(i) and a(i+1).
 q_vect=0.25*vect1 + p_vect/2;
 %%%q_vect= vector taht connects the centerpt of unit cell to mid of p_vect.
 L4= sqrt(L1^2 - (norm(p_vect/2))^2);
 %% length that connects Q_vector to the bottom of the triangle
 angle_triangle= acos((-(L4^2)+(norm(q_vect))^2 +L5^2)...
 /(2*norm(q_vect)*L5));
 L6= norm(q_vect)*tan(angle_triangle);
 %%L6= perpendicular from end of q_vector to L5
 n_avects= cross(vect1,vect2);
 %%% normal vector to 2 crossing a vectors
 n_avectu= n_avects/(norm(n_avects));
 %%% the unit vector of the a vector normal
 m_vect= -L6*n_avectu+q_vect;
 m_vectu= m_vect/(norm(m_vect));
 m=[m;m_vectu];
end

a_mid=m; % a matrix of all the calculated middle 'a' vectors...
 %%between the intermidiate links.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%findin the U vectors that are normal to the intermediate links...

 257

 %%%using the 'a' and 'a_mid' vectors
%a=example for 1 unit cell:[a1; a2; a3; a4; a5; a6; a7; a8]
%a_mid= [a_mid1(between a1 and a2); a_mid2(between a3 and a4);...
%%a_mid3(between a5 and a6); a_mid4(between a7 and a8)]

u_norm=[];
count5=0;
for it7=1:4*ncells(1)*ncells(2)
 count5=count5+1;
 u_val1=(cross(a2(count5,:), a_mid(it7,:)))/...
 (norm (cross(a2(count5,:), a_mid(it7,:))));
 u_norm=[u_norm;u_val1];

 count5=count5+1;
 u_val2= (cross(a_mid(it7,:), a2(count5,:)))/...
 (norm (cross(a_mid(it7,:), a2(count5,:))));
 u_norm=[u_norm;u_val2];
end
u_norm;

%example for 1 unit cell:[8 rows, 3 colns]
 %%%%[u1; u2; u3; u4; u5; u6; u7; u8]

%%%%%%%%%%explanation of finding theta%%%%%%%%%%
% find theta1 (between main and intermediate),
%theta2 (between 2 intermediate), theta3 (between main and intermediate)
% g_n= [g_n1; g_n2; g_n3; g_n4];
% k_lamda= [k_lamda1, k_lamda2, k_lamda3, k_lamda4];
% from paul's eqns:
% theta1=- acos(dot(u1,n1)+pi-lamda1
% theta3= -acos(dot(u2,n2)+pi-lamda2 modified from Paul's eqn: '+' => '-'.
% theta 2= -acos(u1,u2)+ pi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

theta=[]; % for every 3 rows are the 3 thetas for 1 out of 4 section...
 %%%of the radial symetric unit cell.
%copying the begining the 1st norm to the end for: ...
 %%'For loop it8' because of circular motion
g_n_it8= [rot_norm(1:4*ncells(1)*ncells(2),:); rot_norm(1,:)];
count6=0;
for it8= 1:4*ncells(1)*ncells(2)
 count6=count6+1;
 theta1= -acos(dot(u_norm(count6,:), g_n_it8(it8,:))) + pi - k_lamda;
 theta=[theta;theta1];

 theta2= -acos(dot(u_norm(count6,:), u_norm(count6+1,:))) +pi;

 258

 theta=[theta;theta2];

 theta3= -acos(dot(u_norm(count6+1,:), g_n_it8(it8+1,:))) + pi - k_lamda;
 theta=[theta;theta3];
 count6=count6+1;

end
theta;

theta_tab=[];
for it24=1:12:3*4*ncells(1)*ncells(2)
 theta_t=[theta(it24:it24+11)];
 theta_tab=[theta_tab,theta_t];
end

theta_tab
%the Theta for each section of the first unit cell

 259

BDPT_REMOVE

function xcell = bdpt_remove (ncells,xcell);
%removing the boundary pts/vectors for display for other purpose

xcell0=xcell; %storing the xcell with the boundary pts in xcell0

xcell_ctpt=[];
counter31=ncells(2)+2+1;% interiopr cell conunter Start at the 1st interior cell
% ncells(2)+2+1+1 = ncells(2)= bottom row...
 %%2= the 2 corners empty boundary cell 1=LT boundary cell
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %% interiopr cell conunter
 xcell_ctpt= [xcell_ctpt; xcell(counter31,:)];
 %removing the begin_pt and end_pt for graphings
 end
 counter31=counter31+2;
end

xcell=xcell_ctpt

%xcell=xcell0;

 260

APPENDIX D:

 MATLAB FOR METHOD 2: FIX FACE

Method 2 with one of the faces being fixed was also implemented through using

MATLAB Coding. The first page will be a guide to the code and the functions in the

code. The rest of the pages in this Appendix are the code.

 261

NAVIGATION OUTLINE
SECOND PROGRAM IMPLEMENTING

METHOD 2: FIXED FACE

Nomenclature:

k1= stiffness of type-1 joint
k2= stiffness of type-2 joint
k_alpha= geometric design constant
k_beta = geometric design constant
k_lambda= geometric design constant
h_scaling= geometric design constant
xcell: a matrix of the Cartesian coordinates of the center-points of the unit cells
ncells: the matrix dimension
xcellvar: controlling the constraints. Dimension size is the same as xcell.
dist: fixed distance value between any two point
xcell_initial: initial value of xcell before the modifying any values.
zinputs: user dislocatement inputs for the z-values in xcell

FIXFACE

1) Specifying inputs

2) k1,k2,dist,ncells,xcell, k_alpha, k_beta, h_scaling

3) Constraining certain variables

4) Xcellvar: “on/off’ matrix for controlling what value from xcell matrix can change

5) xcell: an (m*n)-by-3 matrix, where x is in the first column, y is 2nd, z is 3th

6) 0= off, meaning value should remain fix

7) 1=on, value can change

8) Developing the initial guess

a) cc_convert_scfix:
i) Note: for all of the steps, skip the 4th n and v vectors, which are on 4th face of

the first cell.
ii) Converting the Cartesian coordinates to Spherical
iii) Interpolating by rotating the S.C
iv) Condensing the variables by realization of duplications

b) Creating initial S.C. variables from previous function results:
i) phi_ni, theta_ni, theta_vi

 262

c) Creating x0: initial guess vector (Do NOT include the 4th n and v vectors)

9) Creating upper and lower bounds for x0

a) Lower bound for phi_ni, theta_ni, theta_vi
b) Upper bound for phi_ni, theta_ni, theta_vi

10) sc_graphfix(x) Function that graphs the unit cells using SC as inputs

11) Fmincon –blackbox MATLAB function

a) minimizingPenergyfix: calculating the potential energy in the system for
Fmincon

12) Expands the condensed matrices of S.C. coordinates vectors

a) Creates relationship among vectors based upon duplications
b) Uncondensing the variables: phi_n, theta_n, theta_v
c) Reminder:

i) Numbering conventions for the v vectors and n vectors on each unit cells
ii) Numbering in reference in face number

d) For all the sections in each cell in a matrix is m-by-n matrix

i) One unit cell has 4 sections.

ii) phi_n

(1) Skip the 4th n vectors on the 4th face of the 1st unit cell
(2) if current variable is a multiple of 4 and is greater than 4: 8,12,14,…

(a) Copy the 6th previous phi_n variables
(b) e.g: phi_n at face number 12= phi_n at face number 6
(c) If not a multiple of 4, then pull values from the iteration results: x

iii) Theta_n

(1) Skip the 4th n vectors on the 4th face of the 1st unit cell
(2) If current variable is a multiple of 4 and is greater than 4: 8,12,14, …

(a) Copy the 6th previous theta _n variables
(b) e.g: theta _n at face number 12 = theta _n at face number 6
(c) If not a multiple of 4, the pull values from the iteration results: x

iv) Theta_v

(1) Skip the 4th v vectors on the 4th face of the 1st unit cell
(2) If current variable is a multiple of 4 and is greater than 4: 8,12,14, …

(a) Copy the 6th previous theta_v variable and add “pi”

 7
8 + 6
 5

 3
4 + 2
 1

 11
12 + 10
 9

 263

(b) e.g: theta _vat face number 12 = theta _v at face number 6 +pi
(c) If not a multiple of 4, the pull values from the iteration results: x

13) Findingtheta: calculating the joint angles for each joint for every cell in matrix

CC_CONVERT_SCFIX

1) Find all the fixed zvalues in xcell by using xcellvar

2) Initialize an emptied Phi_n matrix

3) Phi_n: Find phi_n by calculating the angles of deformation between any two fixed

zvalues.
a) Only place the values that are not duplicates into Phi_n matrix
b) *Note: only the phi_n values will be changed for interpolating and initial guess
c) **Note: do not include the 4th n vectors on the fourth face

4) Theta_na: Initialize the matrix of theta_n

5) Theta_va: Initialize the matrix of theta_v

6) Theta_n: condense by eliminating duplications

a) *Note: do not include the 4th n vectors on the fourth face

7) Theta_v: condense by eliminating duplications
a) *Note: do not include the 4th v vectors on the fourth face

SC_GRAPHFIX

1) Uncondensing the variables: phi_n, theta_n, theta_v as shown in realfree

2) Set flagplot=1

3) image3dfix: plots the 3d images of the unit cell

4) Move the all the unit cells back to original starting locations before being shifted

to origin

5) graph_ctpt: graphs the centerpoints

 264

MINIMIZEPENERGYFIX

1) Expands the condensed matrices of S.C. coordinates vectors

2) Creates relationship among vectors based upon duplications

a) Skip the 4th v and n vectors on the 4th face of the 1st unit cell

3) Uncondensing the variables: phi_n, theta_n, theta_v as seen in fixface

4) Reminder:

a) Numbering conventions for the v vectors and n vectors on each unit cells

b) Numbering in reference in face numberFor all the sections in each cell in a matrix

is m-by-n matrix
i) One unit cell has 4 sections.

ii) phi_n
iii) if current variable is a multiple of 4 and is greater than 4: 8,12,14,…

(1) Copy the 6th previous phi_n variables
(2) e.g: phi_n at face number 12= phi_n at face number 6

iv) If not a multiple of 4, the pull values from the iteration results: x

v) Theta_n
vi) if current variable is a multiple of 4 and is greater than 4: 8,12,14,…

(1) Copy the 6th previous theta _n variables
(2) e.g: theta _n at face number 12 = theta _n at face number 6

vii) If not a multiple of 4, the pull values from the iteration results: x

viii) Theta_v
ix) if current variable is a multiple of 4 and is greater than 4: 8,12,14,…

(1) Copy the 6th previous theta_v variable and add “pi”
(2) e.g: theta _vat face number 12 = theta _v at face number 6 +pi

x) If not a multiple of 4, the pull values from the iteration results: x

5) image3dfix: function that calculates the joint angles for minimizing

6) Can also calculate the center-points of each unit cell for plotting

7) Pot_energy: calculates the energy in the system from the angles of the joints

 7
8 + 6
 5

 3
4 + 2
 1

 11
12 + 10
 9

 265

IMAGE3DFIX

1) Converting the N and V vectors from Spherical to cartesian for calculations

2) Finding vertices

a. Calculate the side a unit vectors
b. Calculate the middle a unit vector
c. Multiply the a unit vectors by their geometric design length
d. Find the Cartesian coordinates of the corners and centerpoints of every unit cell
e. vert_cn: Initialize a matrix for the centerpoints
f. Calculate Cartesian coordinates by multiplying every v_vectors by their

corresponding geometric design length.

3) Graph by organizing the scalar a and v vectors by groups of three’s for creating a 3d
graphs using the embed MATLAB function “patching”

4) Change all vectors back to unit vectors.

5) Calculate the u unit vectors

6) Calculate the theta’s: joint angles

FINDINGTHETA

1) Converting the N and V vectors from Spherical to cartesian for calculations

2) Cal joint angles

a) Calculate the side a unit vectors
b) Calculate the middle a unit vector
c) Multiply the a unit vectors by their geometric design length
d) Find the Cartesian coordinates of the corners and centerpoints of every unit cell
e) vert_cn: Initialize a matrix for the centerpoints
f) Calculate Cartesian coordinates by multiplying every v_vectors by their

corresponding geometric design length.
g) Change all vectors back to unit vectors.
h) Calculate the u unit vectors
i) Calculate the theta’s: joint angles

 266

FIXFACE

close all;
clear all;

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;

k1=500;
k2=800;
dist=.4905;
ncells=[1,3];
xcell=[0, 0, 0;
 0, dist, 0;
 0, dist*2, 0];

k_alpha= (58.054*pi)/180;
k_beta=(22*pi)/180;
h_scaling=1/(cos((k_beta)/2));
%w_norm=tan((beta)/2);

%disp= 0.01; % inches
%r_arm=0.25;

%%%%%%creating the 'on'/ 'off' matrix for what value canchange%%%%%%
xcellvar=zeros(size(xcell));

 267

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 if xcell(counter31,3) ==0 %if xcell=0 note: '0.01' is not '0'
 xcellvar(counter31,1)=1;%then put these 1 or 0 into xcellvar
 xcellvar(counter31,2)=1;%1=free
 xcellvar(counter31,3)=1;
 else
 xcellvar(counter31,1)=1;
 xcellvar(counter31,2)=1;
 xcellvar(counter31,3)=0; %0=fixed
 end
 end
end
 xcellvar;

%%%%%%%%%%%additional contraints %%%%%%%%%%%%%
%
% LT% upper Lt 0 0 0 0 upperRT
% S% 0 0 0 0 0 0
% I% 0 0 0 0 0 0 ^
% D% 1stPT 0 0 0 0 LowerRT | Y
% E
% ------------Bottom row--------------
% --------------------X->--------> X

xcellvar(1,:)=[0 0 0];
 % nXm size of the xcell_bdpt
 %constraint the first pt with all '0' b/c 1st pt is constraint

%%%Constrainting the various coordinate at the corners of the matrix %%%

xcellvar(ncells(2)*ncells(1)-ncells(2)+1,3)=0;
 %constraint the upper LT Z coodinate
xcellvar(ncells(2)*ncells(1)-ncells(2)+1,1)=0;
 %constraint the upper LT x coodinate
 xcellvar(ncells(2),3)=0; %constraint the lower RT Z coodinate
 xcellvar(ncells(2),2)=0; %constraint the lower RT 1 coodinate

 if ncells(1)==1
 xcellvar(:,2)=0;
 end

 if ncells(2)==1

 268

 xcellvar(:,1)=0;
 end

 xcellvar(ncells(1)*ncells(2),3)=0;
 %constraint the upper RT Z coodinate

[Lx,Ly] =link_length (ncells, xcell);
 %function that finds the length of link:...
 %this will show what the intial guess gives

%%
%%%%%%%%%%% initial guess %%%%%%%%%%%%%%%%%

[phi_n,theta_n,theta_v]= cc_convert_scfix(xcell,xcellvar);
%interpolation function

phi_ni=phi_n
theta_ni=theta_n
theta_vi=theta_v

x0=[phi_n; %should be condensed
 theta_n;
 theta_v];

x=x0;
x
[xcell]=sc_graphfix(x); %function that graphs

%%%%%%%%%%%%%%%bounds for options%%%%%%%%%%%%%%%%
%lower bound for searching for guess
lower_b=[];
for it=1:3*ncells(1)*ncells(2);
 lower_bi=-60*pi/180; %phi_ni's

 lower_b=[lower_b;lower_bi];

end

for it=1:3*ncells(1)*ncells(2);

 lower_bi=-60*pi/180; %theta_ni
 lower_b=[lower_b;lower_bi];

 269

end

for it=1:3*ncells(1)*ncells(2);

 lower_bi=theta_vi(it)-60*pi/180; %theta_vi
 lower_b=[lower_b;lower_bi];

end

%upper bound for searching for guess
upper_b=[];
for it=1:3*ncells(1)*ncells(2);

 upper_bi=60*pi/180; %phi_ni's
 upper_b=[upper_b;upper_bi];

end

for it=1:3*ncells(1)*ncells(2);

 upper_bi=60*pi/180; %theta_ni
 upper_b=[upper_b;upper_bi];

end

for it=1:3*ncells(1)*ncells(2);

 upper_bi=theta_vi(it)+60*pi/180; %theta_vi
 upper_b=[upper_b;upper_bi];

end
%%
tic;
options=optimset('Display','iter','MaxIter',1e5, 'MaxFunEvals',1e12,'TolFun',0.001,
'TolX',0.001);
%x = fmincon('energy_min',x0)

A_matrix=[];

x = fmincon('minimizePenergyfix',x0,[],[],[],[],lower_b, upper_b,[],options);

toc;
sec_elapsed_fvd_theta=toc

 270

[xcell]=sc_graphfix(x); %function that graphs

%%
%%

cnt=0;
phi_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 phi_n1=0;
 phi_n=[phi_n;phi_n1];
 cnt=cnt-1;
 % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 phi_n3=phi_n(it-6);
 phi_n=[phi_n;phi_n3];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number
 else
 phi_n2=x(cnt);
 phi_n=[phi_n;phi_n2];

 end
end

theta_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 theta_n1=0;
 theta_n=[theta_n; theta_n1];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 theta_n3=theta_n(it-6);
 theta_n=[theta_n;theta_n3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_n2=x(cnt);
 theta_n=[theta_n; theta_n2];
 end
end

theta_v=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 271

 if it==4
 theta_v1=pi;
 theta_v=[theta_v;theta_v1];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 theta_v3=theta_v(it-6)+pi;
 theta_v=[theta_v;theta_v3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_v2=x(cnt);
 theta_v=[theta_v;theta_v2];
 end
end

flagplot =0; % 0 for not plotting graphs
[theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);
 % Kinematic functions that produces the thetas fo minmizations

theta_tab

 272

CC_CONVERT_SCFIX

function [phi_n,theta_n,theta_v]= cc_convert_scfix(xcell,xcellvar);
%%%from cartesian coordinates to spherical

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;

%%%%%%step 1:=%%%%% %%step 1:= %%%%%%%%%%%%%%
phi_n=[];
if ncells(2)>1;
 %find the index of all the centerpts in the 1st row that Z is inputed
 Vrow= find(xcellvar(1:ncells(2),3)==0)
 for it=2:size(Vrow)
 phi_n_interp1=-asin((xcell(Vrow(it),3)-xcell(Vrow(it-1),3))...
 /((Vrow(it)-Vrow(it-1))*dist)); %finding the angles of deformation
 if it~=2 %not
 phi_n(length(phi_n)-1)=phi_n_interp1; %n6
 phi_n(length(phi_n))=(phi_n_interp2+phi_n_interp1)/2; %n7
 phi_n(length(phi_n)-2)=(phi_n_interp2+phi_n_interp1)/2; %n5
 end
 if it==2
 for it2=1:4*((Vrow(it)-Vrow(it-1))+1);
 if mod(it2,4)~=0 %skipping the n4, n8.....
 %phi_n1=phi_n_interp1*ones((vrow1(it)-vrowl(it-1))*4,1);
 phi_n=[phi_n; phi_n_interp1];

 273

 end

 end
 else
 for it2=1:4*((Vrow(it)-Vrow(it-1)));
 if mod(it2,4)~=0 %skipping the n4, n8.....
 %phi_n1=phi_n_interp1*ones((vrow1(it)-vrowl(it-1))*4,1);
 phi_n=[phi_n; phi_n_interp1];

 end

 end

 end
 phi_n_interp2=phi_n_interp1;
 end
end

 phi_n_interp1;

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% spherical: n01=[phi, theta] because r is always 1
%%% theta= rotating latitude
%%%% phi= rotatin longitude

%phi_n(4)=0; %Because the first pt=0,0,0, There n4 remains fixed

theta_na=zeros(4*ncells(1)*ncells(2),1);

theta_va=[];
for it=1:4:4*ncells(1)*ncells(2);
 theta_va(it,1)=3*pi/2;
 theta_va(it+1,1)=0;
 theta_va(it+2,1)=pi/2;
 theta_va(it+3,1)=pi;
end
theta_n=[];
for it=1:4*ncells(1)*ncells(2);
 if mod(it,4)~=0 %to condense by eliminating duplicates
 theta_ni=theta_na(it,1);
 theta_n=[theta_n;theta_ni];
 end
end

theta_v=[];

 274

for it=1:4*ncells(1)*ncells(2);
 if mod(it,4)~=0
 theta_vi=theta_va(it,1);
 theta_v=[theta_v;theta_vi];
 end
end

phi_ni=phi_n;
theta_ni=theta_n;
theta_vi=theta_v;

 275

SC_GRAPHFIX

function [xcell]=sc_graphfix(x)
%graphing the spherical values by uncompressing and changing to cartesians

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;

%%% %%%%%%%uncompression.....%%% %%%%%%%%%% %%%%%%%%%%
%Has the repeats where all the n's that are parellel will be listed as well
%%%%%%% At the begining all Phi_ni=Phi_n,theta_ni=theta_n, and theta_vi=theta_v
%%%%%%% THe Phi_ni, etc were uses as initial guesses, while the Phi_n, etc.
%%%%%%% were kept as the orginal inputs and deformation
%%%%%%% In this section replace the results X values from 'fmincon' into
%%%%%%% the Phi_n,etc. but do not replace the constrainted values.

cnt=0;
phi_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 phi_n1=0;
 phi_n=[phi_n;phi_n1];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 phi_n3=phi_n(it-6);
 phi_n=[phi_n;phi_n3];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number

 276

 else
 phi_n2=x(cnt);
 phi_n=[phi_n;phi_n2];

 end
end

theta_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 theta_n1=0;
 theta_n=[theta_n; theta_n1];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 theta_n3=theta_n(it-6);
 theta_n=[theta_n;theta_n3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_n2=x(cnt);
 theta_n=[theta_n; theta_n2];
 end
end

theta_v=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 theta_v1=pi;
 theta_v=[theta_v;theta_v1];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 theta_v3=theta_v(it-6)+pi;
 theta_v=[theta_v;theta_v3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_v2=x(cnt);
 theta_v=[theta_v;theta_v2];
 end
end

%%%
%%%
%phi_n=[x(1); phi_ni(2); x(2); phi_ni(4)];
%theta_n=[x(3); theta_ni(2); x(4); theta_ni(4)];
%theta_v=[x(5); theta_vi(2); x(6); theta_vi(4)];

 277

flagplot =1; % for plotting graphs in fvd_patching

[theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);
% Kinematic program that produces the thetas fo minmizations

xcell=vert_centpt;
[Lx,Ly] =link_length (ncells, xcell);
%function that finds the length of link: this will show what the intial guess gives
graph_ctpt (ncells, xcell);% a function that graphs the center pt

%%

 278

MINIMIZINGPENERGYFIX

function [pot_energy] = minimizePenergyfix(x)

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;

%%%% spherical: n01=[phi, theta] because r is always 1
%%%% theta= rotating latitude
%%%% phi= rotatin longitude
%%%%%%%%Creating relations between vectors%%%%%%%%%%%%%%
%%This code sets any normals that should be parellel is parellet.% %%%%%%

%example: n2= n8 because both vectors are on the linking links

cnt=0;
phi_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 phi_n1=0;
 phi_n=[phi_n;phi_n1];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 phi_n3=phi_n(it-6);
 phi_n=[phi_n;phi_n3];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number
 else

 279

 phi_n2=x(cnt);
 phi_n=[phi_n;phi_n2];

 end
end

%theta_n=theta_ni;
theta_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 theta_n1=0;
 theta_n=[theta_n; theta_n1];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 theta_n3=theta_n(it-6);
 theta_n=[theta_n;theta_n3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_n2=x(cnt);
 theta_n=[theta_n; theta_n2];
 end
end

theta_v=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if it==4
 theta_v1=pi;
 theta_v=[theta_v;theta_v1];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 elseif mod(it,4)==0 %MOD Modulus (signed remainder after division).
 theta_v3=theta_v(it-6)+pi;
 theta_v=[theta_v;theta_v3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_v2=x(cnt);
 theta_v=[theta_v;theta_v2];
 end
end

%%%
%%%

flagplot =0; % for not plotting graphs
[theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);

 280

% Kinematic functions that produces the thetas fo minmizations

theta_tab;

%%%%%separate calucations %%%%%%%%%%%%%%%%%5

pot_energy=0;

for it2=1:ncells(1)*ncells(2)
 for it=1:3:3*4; %for every sections there are three angles

 pot_energy1=1/2 *k1*(115.1005*pi/180-theta_tab(it,it2))^2 ...
 +1/2 *k2*(82.6897*pi/180-theta_tab(it+1,it2))^2 ...
 +1/2 *k1*(115.1005*pi/180-theta_tab(it+2,it2))^2;

 pot_energy=pot_energy+pot_energy1;
 end
 end

 %%%%%creating the 'on'/ 'off' matrix for what value can change%%%%

 counter31=0;% interiopr cell conunter
 for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell

 if xcell(counter31,3) ~=0 %if xcell=0 note: '0.0000001' is not '0'
 pot_energy=pot_energy+...
 100000*(vert_centpt(counter31,3)-xcell(counter31,3))^2;
 end
 end
 %counter31=counter31+2;
 end

%%%

close
%convert back to spherical for the 'fvd_constraint' function

 281

IMAGE3DFIX

function [theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);
% Kinematic program that produces the thetas fo minmizations

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;

%%%% spherical: n01=[phi, theta] because r is always 1
%%% theta= rotating latitude
%%%% phi= rotatin longitude
%%%THere is a relationship of the phi for v vectors and the n vector locations

%converting the N and V vectors back to cartesian/rectangular for calculations%%%%

n_norm=[];
%%converting back to rectangular for calculations
for it=1:4*ncells(1)*ncells(2)
 n_norm(it,:)=[sin(phi_n(it))*cos(theta_n(it)),...
 sin(phi_n(it))*sin(theta_n(it)), cos(phi_n(it))];
end

v_vectors=[];
%converting back to rectangular for calculations
for it= 1:4*ncells(1)*ncells(2)
 v_vectors(it,:)=[cos(phi_n(it))*cos(theta_n(it))*cos(theta_v(it))...
 - sin(theta_n(it))*sin(theta_v(it)), ...
 cos(phi_n(it))*sin(theta_n(it))*cos(theta_v(it))...
 + cos(theta_n(it))*sin(theta_v(it)), ...

 282

 -sin(phi_n(it))*cos(theta_v(it))];
end

 %%%%%%%%%%%%%%Calculating Angles %%%%%%%%%%%%%%
%%%
%%%
%%%
%%%

a=[]; %a=side vector of top small connecting triangles

for it21=1:4*ncells(1)*ncells(2)
 a_val1=([v_vectors(it21,:)]-tan(k_beta/2)*(cross(n_norm(it21,:),...
 v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot1
 a=[a;a_val1];
 a_val2=([v_vectors(it21,:)]+tan(k_beta/2)*(cross(n_norm(it21,:),...
 v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot2
 a=[a;a_val2];
end

a; %%% a8 %a1 %a2 %a3.....
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7]
%rearrange the a matrix to move the first a value from
%each unit cell become the last value for each unit cell
a2=[]; %a1 %a2 %a3.....%a8

for it23= 1:8:8*ncells(1)*ncells(2)-7
 a1=[a(it23+1:it23+7,:);a(it23,:)];
 a2=[a2;a1];
end
a=a2;

%%%
%%%

m=[];
;
count4=0;
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6'
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5'
L1= 73/256; %%length of the side of intermediate joints
L5=83/256; %%length of the middle vector of intermediate joints
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells
 count4=count4+1;
 vect1=a(count4,:);
 count4=count4+1;

 283

 vect2=a(count4,:);

 p_vect=0.25*vect2 - 0.25*vect1;
 %%% p_vect= a vector that connects a(i) and a(i+1).
 q_vect=0.25*vect1 + p_vect/2;
 %%%q_vect= vector taht connects the centerpt of unit cell to mid of p_vect.
 L4= sqrt(L1^2 - (norm(p_vect/2))^2);
 %% length that connects Q_vector to the bottom of the triangle
 angle_triangle= acos((-(L4^2)+(norm(q_vect))^2 +L5^2)/(2*norm(q_vect)*L5));
 L6= norm(q_vect)*tan(angle_triangle);
 %%L6= perpendicular from end of q_vector to L5
 n_avects= cross(vect1,vect2);
 %%% normal vector to 2 crossing a vectors
 n_avectu= n_avects/(norm(n_avects)); %%% the unit vector of the a vector normal
 m_vect= -L6*n_avectu+q_vect;
 m_vectu= m_vect/(norm(m_vect));
 m=[m;m_vectu];
end

ap=a*0.25; %scaler of a vectors
a_mid= m*(83/256) ; %scaler of m_mid vectors

%%%
%%%
%%%turning the C.C of V and N into the C.C. of the centerpts for each unit cell%%%

%pat_vert=[0,0,0];
%vert_cn=[0,0,0];

vert_cn=zeros(ncells(1)*ncells(2),3);
%starting off the vertices of the centerpts for each unit cell

%cnt=0;
%for it=2:4:4*ncells(1)*ncells(2)-4
 % cnt=cnt+1;
 % vert_cn1=vert_cn(cnt,:)+v_vectors(it,:)*dist;
 % vert_cn=[vert_cn; vert_cn1];
 %end

% calculates all the vertrices pts
cnt=0;
pat_vert=[];
cnt2=0;
for it2= 1:ncells(1)*ncells(2) % going through each unit cell
 pat_vert=[pat_vert; vert_cn(it2,:)];
 %first intializes the first vertices which is the centerpt for each unit cell

 284

 for it=1:4
 cnt=cnt+1;
 cnt2=cnt2+1;

 % adds in the vertices for the scaler "a vectors" and "middle vectors"
 pat_vert1=[ap(cnt,:);
 a_mid(cnt2,:)];
 pat_vert=[pat_vert; pat_vert1]; %stacking
 cnt=cnt+1;
 pat_vert2=ap(cnt,:);
 pat_vert=[pat_vert; pat_vert2];
 end
end
pat_vert;
%translating groups of 13points all at the same time to the scalar postion
%for each unit cell
cnt=0;
cnt2=13; %starting at the 13th vertices which is on the 2nd cell
for it=2:ncells(1)*ncells(2)
 for it2=1:13 %for every cell there is 13 vertice points
 cnt2=cnt2+1; %conuter to count for each vertices
 pat_vert(cnt2,:)=pat_vert(cnt2,:)+pat_vert(13*cnt+1,:)+v_vectors(2+cnt*4,:)*dist;
 end
 cnt=cnt+1;
end

pat_vert;

cfaces=[];
vert_centpt=[];

cnt=0;
for it=1:ncells(1)*ncells(2)
 for it2=1:11
 cfaces1=[13*cnt+it2+1,13*cnt+1,13*cnt+it2+2];

 cfaces=[cfaces; cfaces1];
 end
 vert_centpt1=pat_vert(13*cnt+1,:);
 %placing all of the center points of each unit cell into one matrix
 vert_centpt=[vert_centpt;vert_centpt1];
 cfaces2=[13*cnt+2 ,13*cnt+1,13*cnt+13];
 cfaces=[cfaces;cfaces2];
 cnt=cnt+1;
end
vert_centpt;

 285

cfaces;

%%%
%%%
%%%
%%%

%cfaces=[2,1,3; %1
 % 3,1,4; %2
 % 4,1,5;
 % 5,1,6; %3
 % 6,1,7; %4
 % 7,1,8;
 % 8,1,9; %5
 % 9,1,10;
% 10,1,11;%6
 % 11,1,12;%7
 % 12,1,13;%8
 % 2,1,13]; %12
 if flagplot==1;
color_vect=[]; %for RGB

for it=1:ncells(1)*ncells(2)
 for it2=1:4
 color_vect1=[0,0,1; %blue face in RGB
 0,1,0; %green face in RGB
 1,0,0]; %red face in RGB
 color_vect=[color_vect; color_vect1];
 end
end

patch('Vertices',pat_vert,'Faces',cfaces,'FaceVertexCData',color_vect,'FaceColor','flat')
view(3);
axis equal;
pause(.2)
end

%%%%%%%%%%%%%%%%%%%%%%%%change back to unit vectors

m_unit=[];
for it =1:4*ncells(1)*ncells(2)
 m1= a_mid(it,:)/(norm(a_mid(it,:)));
 m_unit=[m_unit;m1];
end
m=m_unit;

 286

a_unit=[];
for it =1:8*ncells(1)*ncells(2)
 a1= ap(it,:)/(norm(ap(it,:)));
 a_unit=[a_unit;a1];

end

ap=a_unit;
%%%
%findin the U vectors that are normal to the intermediate links using the 'a' and 'a_mid'
vectors
%a=example for 1 unit cell:[a1; a2; a3; a4; a5; a6; a7; a8]
%a_mid= [a_mid1(between a1 and a2); a_mid2(between a3 and a4); a_mid3(between a5
and a6); a_mid4(between a7 and a8)]

u_norm=[];
count5=0;
for it7=1:4*ncells(1)*ncells(2)
 count5=count5+1;
 u_val1=(cross(ap(count5,:),a_mid(it7,:)))/...
 (norm (cross(ap(count5,:),a_mid(it7,:))));
 u_norm=[u_norm;u_val1];

 count5=count5+1;
 u_val2= (cross(a_mid(it7,:), ap(count5,:)))/...
 (norm (cross(a_mid(it7,:), ap(count5,:))));
 u_norm=[u_norm;u_val2];
end
u_norm; %example for 1 unit cell:[8 rows, 3 colns] [u1; u2; u3; u4; u5; u6; u7; u8]

%%%%%%%%%%%%%%%%explanation of finding theta%%%%%%%%
% find theta1 (between main and intermediate), theta2 (between 2 intermediate), theta3
(between main and intermediate)
% g_n= [g_n1; g_n2; g_n3; g_n4];

% from paul's eqns:
% theta1=- acos(dot(u1,n1)+pi
% theta3= -acos(dot(u2,n2)+pi modified from Paul's eqn: '+' => '-'.
% theta 2= -acos(u1,u2)+ pi

%%%

theta=[];
% for every 3 rows are the 3 thetas for 1 out of 4 section...
 %of the radial symetric unit cell.

 287

%copying the begining the 1st norm to the end for: 'For loop it8' because of circular
motion
g_n_it8= [n_norm(1:4*ncells(1)*ncells(2),:); n_norm(1,:)];
count6=0;
for it8= 1:4*ncells(1)*ncells(2)
 count6=count6+1;
 theta1= -acos(dot(u_norm(count6,:), g_n_it8(it8,:))) + pi ;
 theta=[theta;theta1];

 theta2= -acos(dot(u_norm(count6,:), u_norm(count6+1,:))) +pi;
 theta=[theta;theta2];

 theta3= -acos(dot(u_norm(count6+1,:), g_n_it8(it8+1,:))) + pi ;
 theta=[theta;theta3];
 count6=count6+1;

end
theta;

theta_tab=[];
for it24=1:12:3*4*ncells(1)*ncells(2)
 theta_t=[theta(it24:it24+11)];
 theta_tab=[theta_tab,theta_t];
end

theta_tab;

 288

FINDINGTHETA

function [theta_tab, vert_centpt] = findingtheta(phi_n, theta_n, theta_v); % Kinematic
%program that produces the thetas fo minmizations

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;
global shift_xcell;

%%%% spherical: n01=[phi, theta] because r is always 1
%%% theta= rotating latitude
%%%% phi= rotatin longitude
%%%THere is a relationship of the phi for v vectors and the n vector locations

%%%%%converting the N and V vectors back to cartesian for calculations%%%%%
n_norm=[];
%%converting back to rectangular for calculations
for it=1:4*ncells(1)*ncells(2)
 n_norm(it,:)=[sin(phi_n(it))*cos(theta_n(it)),...
 sin(phi_n(it))*sin(theta_n(it)), cos(phi_n(it))];
end

v_vectors=[];
%converting back to rectangular for calculations
for it= 1:4*ncells(1)*ncells(2)
 v_vectors(it,:)=[cos(phi_n(it))*cos(theta_n(it))*cos(theta_v(it)) ...
 - sin(theta_n(it))*sin(theta_v(it)), ...
 cos(phi_n(it))*sin(theta_n(it))*cos(theta_v(it))...
 + cos(theta_n(it))*sin(theta_v(it)), ...

 289

 -sin(phi_n(it))*cos(theta_v(it))];
end

 %%%%%%%%%%%calculating angles%%%%%%%%%%%%%

a=[]; %a=side vector of top small connecting triangles

for it21=1:4*ncells(1)*ncells(2)
 a_val1=([v_vectors(it21,:)]-tan(k_beta/2)*(cross(n_norm(it21,:),...
 v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot1
 a=[a;a_val1];
 a_val2=([v_vectors(it21,:)]+tan(k_beta/2)*(cross(n_norm(it21,:),...
 v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot2
 a=[a;a_val2];
end

a; %%% a8 %a1 %a2 %a3.....
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7]
%rearrange the a matrix to move the first a value from each...
%unit cell become the last value for each unit cell
a2=[]; %a1 %a2 %a3.....%a8

for it23= 1:8:8*ncells(1)*ncells(2)-7
 a1=[a(it23+1:it23+7,:);a(it23,:)];
 a2=[a2;a1];
end
a=a2;

%%%
m=[];
;
count4=0;
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6'
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5'
L1= 73/256; %%length of the side of intermediate joints
L5=83/256; %%length of the middle vector of intermediate joints
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells
 count4=count4+1;
 vect1=a(count4,:);
 count4=count4+1;
 vect2=a(count4,:);

 p_vect=0.25*vect2 - 0.25*vect1; %%% vector that connects a(i) and a(i+1).
 q_vect=0.25*vect1 + p_vect/2;
 %%% vector taht connects the centerpt of unit cell to mid of p_vect.
 L4= sqrt(L1^2 - (norm(p_vect/2))^2);

 290

 %% length that connects Q_vector to the bottom of the triangle
 angle_triangle= acos((-(L4^2)+(norm(q_vect))^2 +L5^2)/(2*norm(q_vect)*L5));
 L6= norm(q_vect)*tan(angle_triangle);
 %%L6= perpendicular from end of q_vector to L5
 n_avects= cross(vect1,vect2); % normal vector to 2 crossing a vectors
 n_avectu= n_avects/(norm(n_avects)); % the unit vector of the a vector normal
 m_vect= -L6*n_avectu+q_vect;
 m_vectu= m_vect/(norm(m_vect));
 m=[m;m_vectu];
end

ap=a*0.25; %scaler of a vectors
a_mid= m*(83/256) ; %scaler of m_mid vectors

%%%
%%turning the C.C of V and N into the C.C. of the centerpts for each unit cell%%

%pat_vert=[0,0,0];
%vert_cn=[0,0,0];

vert_cn=zeros(ncells(1)*ncells(2),3);
 %starting off the vertices of the centerpts for each unit cell

% calculates all the vertrices pts
cnt=0;
pat_vert=[];
cnt2=0;
for it2= 1:ncells(1)*ncells(2) % going through each unit cell
 pat_vert=[pat_vert; vert_cn(it2,:)];
 %first intializes the first vertices which is the ctpt for each cell
 for it=1:4
 cnt=cnt+1;
 cnt2=cnt2+1;
 pat_vert1=[ap(cnt,:);
 % adds in the vertices for the scaler "a vectors" and "middle vectors"
 a_mid(cnt2,:)];
 pat_vert=[pat_vert; pat_vert1]; %stacking
 cnt=cnt+1;
 pat_vert2=ap(cnt,:);
 pat_vert=[pat_vert; pat_vert2];
 end
end
pat_vert;

 %translating groups of 13points all at the same time to the scalar postion
 %for each unit cell

 291

cnt=0;
cnt2=13; %starting at the 13th vertices which is on the 2nd cell
for it=2:ncells(1)*ncells(2)
 for it2=1:13 %for every cell there is 13 vertice points
 cnt2=cnt2+1; %conuter to count for each vertices
 pat_vert(cnt2,:)=pat_vert(cnt2,:)+pat_vert(13*cnt+1,:)+v_vectors(2+cnt*4,:)*dist;
 end
 cnt=cnt+1;
end

pat_vert;

cfaces=[];
vert_centpt=[];

cnt=0;
for it=1:ncells(1)*ncells(2)
 for it2=1:11
 cfaces1=[13*cnt+it2+1,13*cnt+1,13*cnt+it2+2];

 cfaces=[cfaces; cfaces1];
 end
 vert_centpt1=pat_vert(13*cnt+1,:);
 %placing all of the ctpts of each unit cell into one matrix
 vert_centpt=[vert_centpt;vert_centpt1];
 cfaces2=[13*cnt+2 ,13*cnt+1,13*cnt+13];
 cfaces=[cfaces;cfaces2];
 cnt=cnt+1;
end
vert_centpt;
cfaces;
%%%
%%%

%%%
%%%%%change back to unit vectors%%%%%%%%%%%%%%%%

m_unit=[];
for it =1:4*ncells(1)*ncells(2)
 m1= a_mid(it,:)/(norm(a_mid(it,:)));
 m_unit=[m_unit;m1];
end
m=m_unit;

a_unit=[];

 292

for it =1:8*ncells(1)*ncells(2)
 a1= ap(it,:)/(norm(ap(it,:)));
 a_unit=[a_unit;a1];

end

ap=a_unit;

%%%
%%%

%findin the U vectors that are normal to the intermediate links using the 'a' and 'a_mid'
vectors
%a=example for 1 unit cell:[a1; a2; a3; a4; a5; a6; a7; a8]
%a_mid= [a_mid1(between a1 and a2);...
%%%%%%%%%a_mid2(between a3 and a4);...
%%%%%%%%%a_mid3(between a5 and a6);...
%%%%%%%%%a_mid4(between a7 and a8)]

u_norm=[];
count5=0;
for it7=1:4*ncells(1)*ncells(2)
 count5=count5+1;
 u_val1=(cross(ap(count5,:),a_mid(it7,:)))/ (norm (cross(ap(count5,:),a_mid(it7,:))));
 u_norm=[u_norm;u_val1];

 count5=count5+1;
 u_val2= (cross(a_mid(it7,:), ap(count5,:)))/ (norm (cross(a_mid(it7,:), ap(count5,:))
));
 u_norm=[u_norm;u_val2];
end
%example for 1 unit cell:[8 rows, 3 colns] [u1; u2; u3; u4; u5; u6; u7; u8]

%%%%%%%explanation of finding theta%%%%%%%%%%%%%%%%
% find theta1 (between main and intermediate),...
%theta2 (between 2 intermediate), theta3 (between main and intermediate)
% g_n= [g_n1; g_n2; g_n3; g_n4];

% from paul's eqns:
% theta1=- acos(dot(u1,n1)+pi
% theta3= -acos(dot(u2,n2)+pi modified from Paul's eqn: '+' => '-'.
% theta 2= -acos(u1,u2)+ pi
%%%

 293

theta=[]; % for every 3 rows are the 3 thetas for 1 out of 4 section of the radial symetric
unit cell.
%copying the begining the 1st norm to the end for: 'For loop it8' because of circular
motion

for it=0:ncells(1)*ncells(2)-1
 count6=0;
 for it8= 1:4
 count6=count6+1;
 theta1= -abs(acos(dot(u_norm(count6+it*8,:), n_norm(it8+it*4,:)))) + pi ;
 theta=[theta;theta1];

 theta2= -abs(acos(dot(u_norm(count6+it*8,:), u_norm((count6+1)+it*8,:)))) +pi;
 theta=[theta;theta2];

 if it8==4
 theta3= -abs(acos(dot(u_norm((count6+1)+it*8,:), n_norm(1+it*4,:)))) + pi ;
 theta=[theta;theta3];
 count6=count6+1;
 else
 theta3= -abs(acos(dot(u_norm((count6+1)+it*8,:), n_norm((it8+1)+it*4,:)))) + pi
;
 theta=[theta;theta3];
 count6=count6+1;
 end

 end
end

theta_tab=[];
for it24=1:12:3*4*ncells(1)*ncells(2)
 theta_t=[theta(it24:it24+11)];
 theta_tab=[theta_tab,theta_t];
end

 294

APPENDIX E:

 MATLAB FOR METHOD 2: FREE FACE

Method 2 without having any face being fixed was also implemented through

using MATLAB Coding. The first page will be a guide to the code and the functions in

the code. The rest of the pages in this Appendix are the code.

 295

Navigation Outline
Program three implementing Method 2: Free face

Nomenclature:
 k1= stiffness of type-1 joint
 k2= stiffness of type-2 joint
 k_alpha= geometric design constant
 k_beta = geometric design constant
 k_lambda= geometric design constant
 h_scaling= geometric design constant
 xcell: a matrix of the Cartesian coordinates of the center-points of the unit cells

ncells: the matrix dimension
xcellvar: controlling the constraints. Dimension size is the same as xcell.
dist: fixed distance value between any two point
xcell_initial: initial value of xcell before the modifying any values.
zinputs: user dislocatement inputs for the z-values in xcell

REALFREE

1) specifying inputs

2) k1,k2,dist,ncells,xcell, k_alpha, k_beta, h_scaling

3) Constraining certain variables

4) Xcellvar: “on/off’ matrix for controlling what value from xcell matrix can change

5) xcell: an (m*n)-by-3 matrix, where x is in the first column, y is 2nd, z is 3th

6) 0= off, meaning value should remain fix

7) 1=on, value can change

8) Shifting coordinates to origin

9) If the first unit cell has a z-displacement, z1, then shift all the coordinates in xcell

z1 amount, until the first cell is back at the origin.

10) This will help simplify the calculation with the calculation starting at the origin.

11) Developing the initial guess

 296

12) cc_convert_sc:
a. converting the Cartesian coordinates to Spherical
b. interpolating by rotating the S.C
c. condensing the variables by realization of duplications

13) creating initial S.C. variables from previous function results:
a. phi_ni, theta_ni, theta_vi

14) creating x0: initial guess vector

15) sc_graph: graphing the 3D matrix with the S.C. variables

16) Creating upper and lower bounds for x0

17) lower bound for phi_ni, theta_ni, theta_vi

18) upper bound for phi_ni, theta_ni, theta_vi

19) Fmincon –blackbox MATLAB function

a. minimizingPenergy: calculating the potential energy in the system for
Fmincon

20) Expands the condensed matrices of S.C. coordinates vectors

21) Creates relationship among vectors based upon duplications

22) Uncondensing the variables: phi_n, theta_n, theta_v

a. Reminder:
b. numbering conventions for the v vectors and n vectors on each unit cells

i. numbering in reference in face number

c. For all the sections in each cell in a matrix is m-by-n matrix
d. One unit cell has 4 sections.

i. phi_n
1. if current variable is a multiple of 4 and is greater than 4:

8,12,14,…
2. Copy the 6th previous phi_n variables
3. e.g: phi_n at face number 12= phi_n at face number 6
4. If not a multiple of 4, then pull values from the iteration

results: x

ii. Theta_n

 7
8 + 6
 5

 3
4 + 2
 1

 11
12 + 10
 9

 297

1. if current variable is a multiple of 4 and is greater than 4:
8,12,14,…

2. Copy the 6th previous theta _n variables
3. e.g: theta _n at face number 12 = theta _n at face number 6
4. If not a multiple of 4, then pull values from the iteration

results: x

iii. Theta_v
1. if current variable is a multiple of 4 and is greater than 4:

8,12,14,…
2. Copy the 6th previous theta_v variable and add “pi”
3. e.g: theta _vat face number 12 = theta _v at face number 6

+pi
4. If not a multiple of 4, the pull values from the iteration

results: x

23) Findingtheta: calculating the joint angles for each joint for every cell in matrix

 298

CC_CONVERT_SC

1) Find all the fixed zvalues in xcell by using xcellvar

2) Initialize an empitied Phi_n matrix.

3) Phi_n: Find phi_n by calculating the angles of deformation between any two fixed

zvalues.
a. Only place the values that are not duplicates into Phi_n matrix
b. *note: only the phi_n values will be changed for interpolating and initial

guess

4) Theta_na: Initialize the matrix of theta_n

5) Theta-va: Initialize the matrix of theta_v

6) Theta_n: condense by eliminating duplications

7) Theta_v: condense by eliminating duplications

SC_GRAPH

1) Uncondensing the variables: phi_n, theta_n, theta_v as shown in realfree

2) Set flagplot=1

3) image3d: plots the 3d images of the unit cells

4) Move the all the unit cells back to original starting locations before being shifted
to origin

5) graph_ctpt: graphs the centerpoints

MINIMIZEPENERGY

1) Expands the condensed matrices of S.C. coordinates vectors

2) Creates relationship among vectors based upon duplications

3) Uncondensing the variables: phi_n, theta_n, theta_v

 299

4) Reminder:
a. numbering conventions for the v vectors and n vectors on each unit cells
b. numbering in reference in face number

5) For all the sections in each cell in a matrix is m-by-n matrix

a. One unit cell has 4 sections.
i. phi_n

1. if current variable is a multiple of 4 and is greater than 4:
8,12,14,…

2. Copy the 6th previous phi_n variables
3. e.g: phi_n at face number 12= phi_n at face number 6
4. If not a multiple of 4, the pull values from the iteration

results: x

ii. Theta_n
1. if current variable is a multiple of 4 and is greater than 4:

8,12,14,…
2. Copy the 6th previous theta _n variables
3. e.g: theta _n at face number 12 = theta _n at face number 6
4. If not a multiple of 4, the pull values from the iteration

results: x

iii. Theta_v
1. if current variable is a multiple of 4 and is greater than 4:

8,12,14,…
2. Copy the 6th previous theta_v variable and add “pi”
3. e.g: theta _vat face number 12 = theta _v at face number 6

+pi
4. If not a multiple of 4, the pull values from the iteration

results: x

6) image3d: function that calculates the joint angles for minimizing
a. Can also calculate the center-points of each unit cell for plotting

7) Pot_energy: calculates the energy in the system from the angles of the joints

 7
8 + 6
 5

 3
4 + 2
 1

 11
12 + 10
 9

 300

IMAGE3D

1) Converting the N and V vectors from Spherical to cartesian for calculations

2) Calculate joint angles

a. Calculate the side a unit vectors
b. Calculate the middle a unit vector
c. Multiply the a unit vectors by their geometric design length

3) Find the Cartesian coordinates of the corners and centerpoints of every unit cell

4) vert_cn: Initialize a matrix for the centerpoints

5) Calculate Cartesian coordinates by multiplying every v_vectors by their

6) corresponding geometric design length.

7) Organize the scalar a and v vectors by groups of three’s for creating a 3d graphs

using the embeed MATLAB function “patching”.

8) Change all vectors back to unit vectors.

9) Calculate the u unit vectors

10) Calculate the theta’s: joint angles

 301

FINDINGTHETA

1) Converting the N and V vectors from Spherical to cartesian for calculations

2) Inverse kinematics

3) Calculate the side a unit vectors

4) Calculate the middle a unit vector

5) Multiply the a unit vectors by their geometric design length

6) Find the Cartesian coordinates of the corners and centerpoints of every unit cell

7) vert_cn: Initialize a matrix for the centerpoints

8) Calculate Cartesian coordinates by multiplying every v_vectors by their

corresponding geometric design length.

9) Change all vectors back to unit vectors.

10) Calculate the u unit vectors

11) Calculate the theta’s: joint angles

 302

REALFREE

close all;
clear all;

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;
global shift_xcell;

k1=500;
k2=500;
dist=.4905;

ncells=[1,9];
xcell=[0, 0, 0;
 dist, 0, 0;
 dist*2, 0, 0;
 dist*3, 0, 0;
 dist*4, 0, -.1;
 dist*5, 0, 0;
 dist*6, 0, 0;
 dist*7, 0, 0;
 dist*8, 0, .2];

k_alpha= (58.054*pi)/180;
k_beta=(22*pi)/180;
h_scaling=1/(cos((k_beta)/2));

 303

%%%%creating the 'on'/ 'off' matrix for what value canchange%%%%%%%%%%%%
xcellvar=zeros(size(xcell));

counter31=0;
for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1;
 if xcell(counter31,3) ==0 %if xcell=0 note: '0.0000001' is not '0'
 xcellvar(counter31,1)=1; %then put these 1 or 0 into xcellvar
 xcellvar(counter31,2)=1; %1=free
 xcellvar(counter31,3)=1;
 else
 xcellvar(counter31,1)=1;
 xcellvar(counter31,2)=1;
 xcellvar(counter31,3)=0; %0=fixed
 end
 end
end
 xcellvar;

%%%%%%%%%%additional contraints %%%%%%%%%%%%%%%%%%%%%
%
% LT% upper Lt 0 0 0 0 upperRT
% S% 0 0 0 0 0 0
% I% 0 0 0 0 0 0 ^
% D% 1stPT 0 0 0 0 LowerRT | Y
% E
% ------------Bottom row--------------
% --------------------X->--------> X

xcellvar(1,:)=[0 0 0];
% nXm size of the xcell_bdpt %constraint the first pt with all '0' b/c 1st pt is constraint

%%%%%Constrainting the various coordinate at the corners of the matrix %%%%

xcellvar(ncells(2)*ncells(1)-ncells(2)+1,3)=0; %constraint the upper LT Z coodinate
 xcellvar(ncells(2)*ncells(1)-ncells(2)+1,1)=0; %constraint the upper LT x coodinate
 xcellvar(ncells(2),3)=0; %constraint the lower RT Z coodinate
 xcellvar(ncells(2),2)=0; %constraint the lower RT 1 coodinate

%if ncells(1)==1
 % xcellvar(:,2)=0;
 %end

 304

 % if ncells(2)==1
 % xcellvar(:,1)=0;
 %end

 xcellvar(ncells(1)*ncells(2),3)=0; %constraint the upper RT Z coodinate

%%%%%%%%%%%%%moving xcell to orgin%%%%%%%%%%%%%

 flag_shift=0;
shift_xcell=xcell(1,3);
if xcell(1,3)~=0;
 flag_shift=1;
 xcell(:,3)=xcell(:,3)-xcell(1,3);
end

%%

[Lx,Ly] =link_length (ncells, xcell);
%function that finds the length of link: this will show what the intial guess gives

%%%

%%%% Flat non-deformed Cartesian C -> Spherical C %%%%%%%%%

%%%%%%%%%%%%%%% initial guess %%%%%%%%%%%%%%

[phi_n,theta_n,theta_v]= cc_convert_sc(xcell,xcellvar);%interpolation function

phi_ni=phi_n;
theta_ni=theta_n;
theta_vi=theta_v;

x0=[phi_n; %should be condensed
 theta_n;
 theta_v];

x=x0;
x;

[xcell]=sc_graph(x,0); %function that graphs

 305

%%%%%%%%%%%%%%%bounds for options%%%%%%%%%%%%%%%%%
%lower bound for searching for guess

lower_b=[];
for it=1:3*ncells(1)*ncells(2)+1;
 lower_bi=-60*pi/180; %phi_ni's

 lower_b=[lower_b;lower_bi];
end

for it=1:3*ncells(1)*ncells(2)+1;
 lower_bi=-60*pi/180; %theta_ni
 lower_b=[lower_b;lower_bi];
end

for it=1:3*ncells(1)*ncells(2)+1;
 lower_bi=theta_vi(it)-60*pi/180; %theta_vi
 lower_b=[lower_b;lower_bi];
end

%upper bound for searching for guess
upper_b=[];
for it=1:3*ncells(1)*ncells(2)+1;
 upper_bi=60*pi/180; %phi_ni's
 upper_b=[upper_b;upper_bi];
end

for it=1:3*ncells(1)*ncells(2)+1;
 upper_bi=60*pi/180; %theta_ni
 upper_b=[upper_b;upper_bi];
end

for it=1:3*ncells(1)*ncells(2)+1;
 upper_bi=theta_vi(it)+60*pi/180; %theta_vi
 upper_b=[upper_b;upper_bi];
end

%%%

options=optimset('Display','iter','MaxIter',1e5, 'MaxFunEvals',1e12,'TolFun',0.001,
'TolX',0.001);

tic;
x = fmincon('minimizePenergy',x0,[],[],[],[],lower_b, upper_b,[],options);

 306

toc;
sec_elapsed_fmincon=toc

xcell

%%%

[xcell]=sc_graph(x,flag_shift); %function that graphs
xcell

%%%%Results from Fmincon is condensed, uncondense the variables%%%

cnt=0;
phi_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 phi_n3=phi_n(it-6);
 phi_n=[phi_n;phi_n3];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number
 else
 phi_n2=x(cnt);
 phi_n=[phi_n;phi_n2];

 end
end

theta_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 theta_n3=theta_n(it-6);
 theta_n=[theta_n;theta_n3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_n2=x(cnt);
 theta_n=[theta_n; theta_n2];
 end
end

theta_v=[];
for it=1:4*ncells(1)*ncells(2)

 307

 cnt=cnt+1;
 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 theta_v3=theta_v(it-6)+pi;
 theta_v=[theta_v;theta_v3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_v2=x(cnt);
 theta_v=[theta_v;theta_v2];
 end
end

[theta_tab, vert_centpt] = findingtheta(phi_n, theta_n, theta_v);

theta_tab

 308

SC_GRAPH

function [xcell]=sc_graph(x,flag_shift)
%graphing the spherical values by uncompressing and changing to cartesians

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;
global shift_xcell;

%%% %%%%%%%uncompression/undensing.....%%%%%%% %%%%%%%
%%%%%%% HAs the repeats where all the n's that are parellel will be listed as well
%%%%%%% At the begining all Phi_ni=Phi_n,theta_ni=theta_n, and theta_vi=theta_v
%%%%%%% THe Phi_ni, etc were uses as initial guesses, while the Phi_n, etc.
%%%%%%% were kept as the orginal inputs and deformation
%%%%%%% In this section replace the results X values from 'fmincon' into
%%%%%%% the Phi_n,etc. but do not replace the constrainted values.

cnt=0;
phi_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 phi_n3=phi_n(it-6);
 phi_n=[phi_n;phi_n3];
 cnt=cnt-1;% resetting counter to previous cnt because skipped a number

 309

 else
 phi_n2=x(cnt);
 phi_n=[phi_n;phi_n2];

 end
end

theta_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 if mod(it,4)==0 & it>4 %MOD (signed remainder after division).
 theta_n3=theta_n(it-6);
 theta_n=[theta_n;theta_n3];
 cnt=cnt-1; % resetting counter to previous cnt because skipped a number
 else
 theta_n2=x(cnt);
 theta_n=[theta_n; theta_n2];
 end
end

theta_v=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if mod(it,4)==0 & it>4 %MOD (signed remainder after division).
 theta_v3=theta_v(it-6)+pi;
 theta_v=[theta_v;theta_v3];
 cnt=cnt-1; % reseting counter to previous cnt because skipped a number
 else
 theta_v2=x(cnt);
 theta_v=[theta_v;theta_v2];
 end
end

%%%
%%%
%phi_n=[x(1); phi_ni(2); x(2); phi_ni(4)];
%theta_n=[x(3); theta_ni(2); x(4); theta_ni(4)];
%theta_v=[x(5); theta_vi(2); x(6); theta_vi(4)];

flagplot =1; % for plotting graphs in image3d

[theta_tab, vert_centpt] = image3d(phi_n, theta_n, theta_v,flagplot,flag_shift);
% Kinematic program that produces the thetas fo minmizations
if flag_shift==1
 vert_centpt(:,3)=vert_centpt(:,3)+shift_xcell;

 310

end
xcell=vert_centpt;
[Lx,Ly] =link_length (ncells, xcell);
%function that finds the length of link: this will show what the I.G gives
graph_ctpt (ncells, xcell);% a function that graphs the center pt
%%%

 311

MINIMIZINGPENERGY

function [pot_energy] = minimizePenergy(x)

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;

%%%% spherical: n01=[phi, theta] because r is always 1
%%%% theta= rotating latitude
%%%% phi= rotatin longitude

%%%%%%%%Creating relations between vectors%%%%%
%%%%This code sets any normal that should be parallel is parallel. %%%%%%

%example: n2= n8 because both vectors are on the linking links
cnt=0;
phi_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 phi_n3=phi_n(it-6);
 phi_n=[phi_n;phi_n3];
 cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number
 else
 phi_n2=x(cnt);
 phi_n=[phi_n;phi_n2];

 312

 end
end

%theta_n=theta_ni;
theta_n=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;
 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 theta_n3=theta_n(it-6);
 theta_n=[theta_n;theta_n3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_n2=x(cnt);
 theta_n=[theta_n; theta_n2];
 end
end

theta_v=[];
for it=1:4*ncells(1)*ncells(2)
 cnt=cnt+1;

 if mod(it,4)==0 & it>4 %MOD Modulus (signed remainder after division).
 theta_v3=theta_v(it-6)+pi;
 theta_v=[theta_v;theta_v3];
 cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number
 else
 theta_v2=x(cnt);
 theta_v=[theta_v;theta_v2];
 end
end

%%%

flagplot =0; % 0 for not plotting graphs; 1=ploting
[theta_tab, vert_centpt] = image3d(phi_n, theta_n, theta_v,flagplot,0);
 % Kinematic functions that produces the thetas fo minmizations

theta_tab;

%%%%%separate calucations %%%%%%%%%%%%%%%%%%%%%

pot_energy=0;

for it2=1:ncells(1)*ncells(2)

 313

 for it=1:3:3*4; %for every sections(4sections total) there are three angles

 pot_energy1=1/2 *k1*(115.1005*pi/180-theta_tab(it,it2))^2 ...
 +1/2 *k2*(82.6897*pi/180-theta_tab(it+1,it2))^2 ...
 +1/2 *k1*(115.1005*pi/180-theta_tab(it+2,it2))^2;

 pot_energy=pot_energy+pot_energy1;
 end
 end

 %%%%%%%creating adding constraints on fixed value%%%%%%%%%%%%%

 counter31=0;% interiopr cell conunter
 for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell
 if xcellvar(counter31,3)==0 %i0= constrainted
 pot_energy=pot_energy+...
 100000*(vert_centpt(counter31,3)-xcell(counter31,3))^2;
 end
 end
 end

 counter31=0;% interiopr cell conunter
 for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell

 if ncells(1) ==1 %
 pot_energy=pot_energy+...
 100000*(vert_centpt(counter31,2)-xcell(counter31,2))^2;
 end
 end
 end

 counter31=0;% interiopr cell conunter
 for it30= 1: ncells(1);% % rows
 for it31= 1:ncells(2)% % column
 counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell

 if ncells(2) ==1 %
 pot_energy=pot_energy+...
 100000*(vert_centpt(counter31,1)-xcell(counter31,1))^2;

 314

 end
 end
 end

%%%

pot_energy;
close

 315

IMAGE3D

function [theta_tab, vert_centpt] = image3d(phi_n, theta_n, theta_v,flagplot,flag_shift);
% Kinematic
%program that produces the thetas fo minmizations

global k1;
global k2;
global k_alpha;
global k_beta;
global k_lambda;
global h_scaling;
global phi;
global a;
global v_vectors;
global n_norm;
global phi_ni;
global theta_ni;
global theta_vi;
global theta_tab;
global ncells;
global xcell;
global dist;
global xcellvar;
global shift_xcell;

%%%% spherical: n01=[phi, theta] because r is always 1
%%% theta= rotating latitude
%%%% phi= rotatin longitude
%%%THere is a relationship of the phi for v vectors and the n vector locations

%%%%%%converting the N and V vectors back to cartesian/rectangular for
calculations%%%%
n_norm=[];
%%converting back to rectangular for calculations
for it=1:4*ncells(1)*ncells(2)
 n_norm(it,:)=[sin(phi_n(it))*cos(theta_n(it)), sin(phi_n(it))*sin(theta_n(it)),
cos(phi_n(it))];
end

v_vectors=[];
%converting back to rectangular for calculations
for it= 1:4*ncells(1)*ncells(2)
 v_vectors(it,:)=[cos(phi_n(it))*cos(theta_n(it))*cos(theta_v(it))...

 316

 - sin(theta_n(it))*sin(theta_v(it)), ...
 cos(phi_n(it))*sin(theta_n(it))*cos(theta_v(it))...
 + cos(theta_n(it))*sin(theta_v(it)), ...
 -sin(phi_n(it))*cos(theta_v(it))];
end

 %%%%%%%%%%%Calculating angles%%%%%%%%%%%%%%%%%%
%%%
a=[]; %a=side vector of top small connecting triangles

for it21=1:4*ncells(1)*ncells(2)
 a_val1=([v_vectors(it21,:)]-tan(k_beta/2)*(cross(n_norm(it21,:),...
 v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot1
 a=[a;a_val1];
 a_val2=([v_vectors(it21,:)]+tan(k_beta/2)*(cross(n_norm(it21,:),...
 v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot2
 a=[a;a_val2];
end

a; %%% a8 %a1 %a2 %a3.....
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7]
%rearrange the a matrix to move the first a value from each unit cell...
%%become the last value for each unit cell
a2=[]; %a1 %a2 %a3.....%a8

for it23= 1:8:8*ncells(1)*ncells(2)-7
 a1=[a(it23+1:it23+7,:);a(it23,:)];
 a2=[a2;a1];
end
a=a2;

%%%
%%%

m=[];
;
count4=0;
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6'
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5'
L1= 73/256; %%length of the side of intermediate joints
L5=83/256; %%length of the middle vector of intermediate joints
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells
 count4=count4+1;
 vect1=a(count4,:);
 count4=count4+1;
 vect2=a(count4,:);

 317

 p_vect=0.25*vect2 - 0.25*vect1;
 %%% p_vect= a vector that connects a(i) and a(i+1).
 q_vect=0.25*vect1 + p_vect/2;
 %%%q_vect= vector taht connects the centerpt of unit cell to mid of p_vect.
 L4= sqrt(L1^2 - (norm(p_vect/2))^2);
 %% length that connects Q_vector to the bottom of the triangle
 angle_triangle= acos((-(L4^2)+(norm(q_vect))^2 +L5^2)/(2*norm(q_vect)*L5));
 L6= norm(q_vect)*tan(angle_triangle);
 %%L6= perpendicular from end of q_vector to L5
 n_avects= cross(vect1,vect2); % normal vector to 2 crossing a vectors
 n_avectu= n_avects/(norm(n_avects)); % the unit vector of the a vector normal
 m_vect= -L6*n_avectu+q_vect;
 m_vectu= m_vect/(norm(m_vect));
 m=[m;m_vectu];
end

ap=a*0.25; %scaler of a vectors
a_mid= m*(83/256) ; %scaler of m_mid vectors

%%%
%%%
%%turning the C.C of V and N into the C.C. of the centerpts for eachunit cell%%%
%pat_vert=[0,0,0];
%vert_cn=[0,0,0];

vert_cn=zeros(ncells(1)*ncells(2),3); %starting off the vertices of the centerpts for each
unit cell

% calculates all the vertrices pts
cnt=0;
pat_vert=[];
cnt2=0;
for it2= 1:ncells(1)*ncells(2) % going through each unit cell
 pat_vert=[pat_vert; vert_cn(it2,:)];
 %first intializes the first vertices which is the centerpt for each unit cell
 for it=1:4
 cnt=cnt+1;
 cnt2=cnt2+1;
 pat_vert1=[ap(cnt,:); % adds in the vertices for the scaler "a vectors" and "middle
vectors"
 a_mid(cnt2,:)];
 pat_vert=[pat_vert; pat_vert1]; %stacking
 cnt=cnt+1;
 pat_vert2=ap(cnt,:);
 pat_vert=[pat_vert; pat_vert2];

 318

 end
end
pat_vert;
%translating groups of 13points all at the same time to the scalar postion
%for each unit cell
cnt=0;
cnt2=13; %starting at the 13th vertices which is on the 2nd cell
for it=2:ncells(1)*ncells(2)
 for it2=1:13 %for every cell there is 13 vertice points
 cnt2=cnt2+1; %conuter to count for each vertices
 pat_vert(cnt2,:)=pat_vert(cnt2,:)+pat_vert(13*cnt+1,:)+v_vectors(2+cnt*4,:)*dist;
 end
 cnt=cnt+1;
end

pat_vert;

cfaces=[];
vert_centpt=[];

cnt=0;
for it=1:ncells(1)*ncells(2)
 for it2=1:11
 cfaces1=[13*cnt+it2+1,13*cnt+1,13*cnt+it2+2];

 cfaces=[cfaces; cfaces1];
 end
 vert_centpt1=pat_vert(13*cnt+1,:); %placing all of the center points of each unit cell
into one matrix
 vert_centpt=[vert_centpt;vert_centpt1];
 cfaces2=[13*cnt+2 ,13*cnt+1,13*cnt+13];
 cfaces=[cfaces;cfaces2];
 cnt=cnt+1;
end
vert_centpt;
cfaces;

%%%
%%%
%%%
%%%

 if flagplot==1;
 color_vect=[]; %for RGB

 for it=1:ncells(1)*ncells(2)

 319

 for it2=1:4
 color_vect1=[0,0,1; %blue face in RGB
 0,1,0; %green face in RGB
 1,0,0]; %red face in RGB
 color_vect=[color_vect; color_vect1];
 end
 end

 pat_vert1=pat_vert;
 if flag_shift==1
 pat_vert1(:,3)=pat_vert(:,3)+shift_xcell;
 end

patch('Vertices',pat_vert1,'Faces',cfaces,'FaceVertexCData',color_vect,'FaceColor','flat')
 view(3);
 axis equal;
 pause(.2)
 end

%%%%% change back to unit vectors%%%%%%%%%%%%%%%%%
m_unit=[];
for it =1:4*ncells(1)*ncells(2)
 m1= a_mid(it,:)/(norm(a_mid(it,:)));
 m_unit=[m_unit;m1];
end
m=m_unit;

a_unit=[];
for it =1:8*ncells(1)*ncells(2)
 a1= ap(it,:)/(norm(ap(it,:)));
 a_unit=[a_unit;a1];

end

ap=a_unit;
%%%

%findin the U vectors that are normal to the intermediate links using the 'a' and 'a_mid'
vectors
%a=example for 1 unit cell:[a1; a2; a3; a4; a5; a6; a7; a8]
%a_mid= [a_mid1(between a1 and a2); a_mid2(between a3 and a4); a_mid3(between a5
and a6); a_mid4(between a7 and a8)]

u_norm=[];

 320

count5=0;
for it7=1:4*ncells(1)*ncells(2)
 count5=count5+1;
 u_val1=(cross(ap(count5,:),a_mid(it7,:)))/...
 (norm (cross(ap(count5,:),a_mid(it7,:))));
 u_norm=[u_norm;u_val1];

 count5=count5+1;
 u_val2= (cross(a_mid(it7,:), ap(count5,:)))/...
 (norm (cross(a_mid(it7,:), ap(count5,:))));
 u_norm=[u_norm;u_val2];
end
%example for 1 unit cell:[8 rows, 3 colns] [u1; u2; u3; u4; u5; u6; u7; u8]

%%%%explanation of finding theta%%%%%%%%%%%%%%%%%%

% find theta1 (between main and intermediate), theta2 (between 2 intermediate), theta3
(between main and intermediate)
% g_n= [g_n1; g_n2; g_n3; g_n4];

% from paul's eqns:
% theta1=- acos(dot(u1,n1)+pi
% theta3= -acos(dot(u2,n2)+pi modified from Paul's eqn: '+' => '-'.
% theta 2= -acos(u1,u2)+ pi

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

theta=[]; % for every 3 rows are the 3 thetas for 1 out of 4 section of the radial symetric
unit cell.
%copying the begining the 1st norm to the end for: 'For loop it8' because of circular
motion

for it=0:ncells(1)*ncells(2)-1
 count6=0;
 for it8= 1:4
 count6=count6+1;
 theta1= -abs(acos(dot(u_norm(count6+it*8,:), n_norm(it8+it*4,:)))) + pi ;
 theta=[theta;theta1];

 theta2= -abs(acos(dot(u_norm(count6+it*8,:), u_norm((count6+1)+it*8,:)))) +pi;
 theta=[theta;theta2];

 if it8==4
 theta3= -abs(acos(dot(u_norm((count6+1)+it*8,:), n_norm(1+it*4,:)))) + pi ;
 theta=[theta;theta3];

 321

 count6=count6+1;
 else
 theta3= -abs(acos(dot(u_norm((count6+1)+it*8,:), n_norm((it8+1)+it*4,:)))) + pi
;
 theta=[theta;theta3];
 count6=count6+1;
 end

 end
end

theta_tab=[];
for it24=1:12:3*4*ncells(1)*ncells(2)
 theta_t=[theta(it24:it24+11)];
 theta_tab=[theta_tab,theta_t];
end

FINDING THETA
(WAS ALREADY SHOWN IN APPENDIX D AND WILL NOT BE REPEATED)

 322

BIBLIOGRAPHY

1. Barr, A.H., “Global and Local Deformations of Solid Primitives”. Proceedings of
ACM SIGGRAPH, July 1984.

2. Bathe, K.J. “Finite Element Procedures in Engineering Analysis”, Prentice-Hall,

1996.

3. Beitz, W. and Pahl, G. “Engineering Design: A Systematic Approach”. 2nd Ed.

Springer-Verlag London Limited. Great Britain 1996.

4. Bosscher, P. and Ebert-Uphoff, I., “A Novel Spherical Joint Mechanism”. Accepted
for presentation at IEEE Robotics and Automation Conference, 2003.

5. Bosscher, P. and Ebert-Uphoff, I., “Digital Clay: Architecture Designs for Shape-

Generating Mechanisms”. Accepted for presentation at IEEE Robotics and
Automation Conference, 2003.

6. Bosscher, Paul “Digital Clay: Architecture Designs for Shape-Generating

Mechanisms”. Master Thesis. Georgia Institute of Technology. Atlanta, GA April
2003.

7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popovic, Z. “A Multiresolution

framework for Dynamic Deformations”. Proceedings of ACM SIGGRAPH, 2002.

8. Chapra and Canale, “Numerical Methods for Engineers” 3rd Ed. WCB McGraw Hill

Boston 1998.

9. Choi, K.S., Sun, H., Heng, P.A., and Cheng, J.C.Y. “A Scalable Force Propagation

Approach for Web-Based Deformable Simulation of Soft Tissues”. Proceedings
of 7th International Conference on 3D Web Technology, ACM Press, 2002.

10. Coquillart, S., “Extended Freeform Deformation: A Sculpting Tool of 3D Geometric

Modeling”. Proceedings, ACM SIGGRAPH, August 1990.

11. Debunne, G., Desbrun, M., Cani, M-P., and Barr, A.H., “Dynamic Real-Time

Deformations using Space Time Adaptive Sampling”. Proceedings ACM
SIGGRAPH, 2001.

12. Diez, Jacob. “Design for Additive Fabrication: Building Miniature Robotic

Mechanisms”. Master Thesis Georgia Institute of Technology. Atlanta, GA March
2001.

 323

13. Gill, Philip; Murray, Walter; and Wright, Margaret. “Practical Optimization”.
Academic Press Limited. San Diego, CA. 1981.

14. Ginsberg, Jerry. “Advanced Engineering Dynamics”. 2nd Ed. Cambridge University
Press. New York, NY 1998.

15. Goldfarb, M. and Speich, J., "A Well-Behaved Revolute Flexure Joint for Compliant

Mechanism Design," ASME Journal of Mechanical Design, vol. 121, no. 3, pp.
424-429, 1999.

16. Gurocak, H., Parrish, B., Jayaram, S., Jayaram, U. “Design of a Haptic Device For

Weight Sensation in Virtual Environments”. Proceedings of ASME Computers
and Information in Engineering Conference, paper #DETC2002/CIE-34387,
Montreal, Canada, September 2002.

17. Immersion, www.immersion.com.

18. Iwata, H., Yano, H., Nakaizumi, F, and Kawamura, R., “Project FEELEX: Adding

Haptic Surface to Graphics”. Proceedings ACM SIGGRAPH, August 2001.

19. Jacobs, Paul F. Ph.D. “Rapid Prototyping & Manufacturing: Fundamentals of

Stereolithography”. Society of manufacturing Engineers. Dearborn, MI USA
1992.

20. Kota, Sridhar; Joo, Jinyong; Li, Zhe; Rodgers, Steven M.; and Sniegoswki, Jeff.

“Design of Complaint Mechanisms: Applicants to Mems”. Analog Integrated
Circuits and Signal Processing, 29, 7-15. Kluwer Academic Publishers.
Netherland 2001.

21. Liu, He and Schubert, Daniel H., “Effects Of Nonlinear Geometric And Material

Properties On The Seismic Response Of Fluid-Tank Systems”, 2002 ANSYS 10th
International Conference and Exhibition. Pittsburgh, PA 2002.

22. MathWorks, www.mathworks.com.

23. McDonnell, K.T. and Qin, H. “FEM-Based Subdivision Solids for Dynamic and

Haptic Interaction”. Proceedings of 6th Symposium on Solid Modeling and
Applications, 2000.

24. MEMS and Nanotechnology Clearinghouse, www.memsnet.org.

25. Park, Jae-Hyoung. “Process Planning for Laser Chemical Vapor Deposition”. Master

Thesis. Georgia Tech. Atlanta, GA, April 2003.

26. Rapid Prototyping Manufacturing Institute, www.rpmi.marc.gatech.edu.

 324

27. S. Dalmia, S.H. Lee, S. Bhattacharya, F. Ayazi, M. Swaminathan, "High-Q RF
Passives on Organic Substrates Using a Low-Cost Low-Temperature Laminate
Process". Proc. 2002 Symposium on Design, Test, Integration and Packaging of
MEMS/MOEMS (DTIP 2002), Cannes, France, May 2002.

28. Sederberg, T.W. and Parry, S.R. “Freeform Deformation of Solid Geometric

Models”. Proceedings of ACM SIGGRAPH, August 1986.

29. SensAble Technologies, www.sensable.com.

30. Virtual Reality Technology, www.caip.rutgers.edu/vrlab.

31. W. J. Chen, and W. Lin. “A Miniature Gripper System for Optical Fiber Handling”.

SPIE Conference on Optomechatronic System III, 12 - 14 November 2002.

32. Yong Wang, Sue Ann Bidstrup, Guang Yuan, and Mark G. Allen “Printed-Wiring-

Board Microfluidics for Thermal Management of Electronic Systems”. ECS 201st
meeting, 2002.

33. Zeiny, A. “Nonlinear Time-Dependent Seismic Response of Unanchored Liquid

Storage Tanks”. Phd. Dissertion in Civil Engineering. University of California.
2000-09-06

