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SUMMARY 

 

Digital Clay represents a new type of 3-D human-computer interface device that 

enables tactile and haptic interactions. The Digital Clay kinematics structure is computer 

controlled and can be commanded to acquire a wide variety of desired shapes (shape 

display), or be deformed by the user in a manner similar to that of real clay (shape 

editing). The design of the structure went through various modifications where we finally 

settled on a crust matrix of spherical joint unit cells. After designing the kinematics 

structure, the next step is predicting the deformation of the crust matrix based upon a 

handful of inputs. One possible solution for predicting the shape outcome is considering 

minimizing the potential energy of the system. In this thesis two methods will be 

introduced. The first method will be an abstract model of the crust where the energy is 

calculated from a simplified model with one type of angular springs. The second method 

is the actual manufacturable crust model with two types of angular springs. From the 

implementation of these two methods, the output will be center-points of the unit cells. 

From the center-points, one can also calculate the joint angles within each unit cell.  
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CHAPTER 1  

INTRODUCTION TO DIGITAL CLAY 

 

Digital Clay is the next stage of CAD modeling. The main focus of this thesis will 

be the manufacturability and kinematics of the Digital Clay structure that will help this 

advancement. 

 

1.1  Digital Clay Context  

In recent years, the communication of form and complex data has been greatly 

enhanced by visualization technologies. However these visualization technologies are 

based on planar images. With the advancement of computational power, it is now 

possible to consider real-time, tactile 3-D physical communication to overcome the 

inherent limitations of planar images. A team at the Georgia Institute of Technology is 

pursuing a novel type of human-computer interaction called Digital Clay. Figure 1.1 

shows a schematic illustration of Digital Clay being used for shape editing. 

 

 
Figure 1.1: Schematic of Digital Clay in Use. 
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The objective of the Digital Clay, NSF-sponsored research team is to develop an 

interactive technique that combines haptic sensation with computer algorithms to achieve 

two key goals.  The first goal is to design a deformable, spatially-continuous surface with 

sensors that store its shape in a computer as the user deforms the surface.  In addition, the 

surface will be actuated so that users can input shape data into the computer and the 

Digital Clay will deform itself into the desired shape.  The shape data can be sent and 

received electronically anywhere within the world through the use of the Internet.  This 

will allow other users to not only see an image of the surface but alter its shape as well. 

The second goal is to provide this visual and haptic sensation simultaneously through the 

use of a single device that does not obligate an individual to wear any extra apparatus 

(gloves, virtual headgear, etc.). Figure 1.2 shows a schematic of how the Digital Clay 

product can inter-connect people. 

 
 

                    
Figure 1.2:  The Overall Goals of Digital Clay 

 
 

Female designs a cup
by physically shaping
Digital Clay. 

On the other side of 
the world, a man 
receives the cup 
design. 

The man redesigns the
cup by using an
algorithm or his hands
and sends the data back
to the female.
Communication through
Digital Clay is achieved.
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This thesis will discuss the development of one feature of the Digital Clay device: 

the deformable kinematics structure that takes on shape and displays the shape.  Later this 

thesis will discuss the technical issues and mathematics behind generating arbitrary 

shapes in the clay.   

 

1.2  Motivation for Studying Digital Clay 

Currently we are living in a world that is progressing toward global 

communication. For example in the production of automobiles, the body of the car may 

be designed in Germany, the engine may be designed in the U.S., and the whole car may 

be assembled in Mexico. How do all of these people communicate their ideas, 

development, and progression? In the past, we have relied on mail, telephones, and fax 

machines. But with the advent of the world-wide-web, we have the power to 

communicate within minutes. However, the Internet only allows us to communicate flat 

objects like pictures and text, not the real thing. So we revert back to mail. Hey, wait a 

minute -- what happened to progress? Digital Clay will be the next innovative tool in this 

world of global communication that will fill up the “progression” gap.  This technology 

will allow designers, engineers, artists, doctors, and lawyers around the world to interact 

on a visual and somewhat physical aspect. 
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1.3  The Benefits of Digital Clay to Society 

Digital Clay has several potential applications for society.  These include: 

1) Art: Displaying shape morphing 

2) Medical diagnostics: Studying the shape of cancers 

3) Bioengineering device design: Fitting artificial limbs for amputee 

4) Reconfigurable displays: Demonstrating motion as in a wheel on a car 

5) Products: Designers sharing concepts 

6) Mechanical computer-aided design: Two gears turning 

7) Education: Distance collaboration for product development: 

8) Visually impaired persons: Communication for the blind 

9) Lawyers: Re-enactment of scenes  

 

Some applications require the user to directly shape the surface, while others   

only display the shape. For example, for medical diagnosis sometimes it is only necessary 

to support shape and display stiffness so that the Digital Clay can “feel” like an organ or 

a type of tissue. In all cases, the Digital Clay device will advance our present knowledge 

of how we design, communicate, and collaborate. 

 

1.4  Digital Clay Team 

The Digital Clay project was initiated in the beginning weeks of July 2001 when 

NSF (National Science Foundation) financially approved Georgia Institute of Technology 

to develop a realistic Digital Clay product.  The following Georgia Institute of 
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Technology faculty members and students were given with this task. The names are 

shown in Table 1.1. 

 

Table 1.1: Digital Clay Team Members 

Professor / Student 
Focal Points Concerning Digital 

Clay Project 
Mark Allen /  Guang Bai MEMS (Micro-Electro Mechanical Systems)

Wayne Book / HaiHong Zhou Project Manager/Controls 
Ari Glezer / Dan Short Hydraulics/Fluids 

David Rosen / Austina Nguyen Manufacturing 
Jarek Rossignac / Byoung-Moon Kim Computer Modeling Interface 
Imme Ebert-Uphoff / Paul Bosscher Kinematics / Structure Analysis 

 
 

 Below is a flow chart that describes the task of each department. The dashed 

blocks describe the focus for this thesis. 

 

Digital Clay Research

Interface

SensorsActuators AlgorithmsDrivers
(amplifiers,

Etc)

Motion
Tranission
systems

Skin

Predicting Deformation
of Design

power
source

Design for
Manufacturing

Geometry of
structure

Legend
                  Basic Info. Flow  with Manuf.  and others

                  Division of task

                  Overall Digital Clay project

computer
simulations

computer/clay
Interfaces

Computer graphics
simulations

Design of
crust

Fluid MechanicalMEMSManufacturing

Thesis Focus

Crust

hardware

Controls

software

Kinematics

 
Figure 1.3: Flow Chart of Task 
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As seen in Figure 1.3, the main focus for this thesis is describing the design of the 

kinematics structure for quick manufacturing using stereolithography technology and 

predicting the deformation of the kinematics structure design. For a more descriptive 

schematic about the interaction within the Digital Clay architecture, refer to the next 

section. After designing the kinematics structure that will deform, we will need a 

program that will predict the deformation.  We will create this program to test the 

deformation capability of the kinematics structure that we designed. At the same time, we 

will communicate with the interface group for feedback and improving the interfacing of 

the program for human usage.  

 

1.5  Digital Clay Architecture 

Digital Clay will be a physical volume bounded by a deformable kinematics 

structure that acts as the haptic interface. This kinematics structure is connected to a 

computer that can either recreate the surface topography of the shape inputted as a CAD 

file or modify the kinematics structure and the volume underneath the surface from a 

preexisting file. To display any acquired shape either by human manipulation or CAD 

file, the kinematics structure is controlled by an array of interconnected fluidic-driven 

actuators. Each actuator is a fluidically inflatable cell that is connected to two common 

pressurized reservoirs (within a base) through a dedicated two-way miniature valve.  The 

valves and pressure sensors will be part of the Digital Clay base that controls fluid flow 

to and from the inflatable cells.  For measuring deformations and/or displacements of the 

cells, an additional array of sensors may be incorporated into the base.  The Digital Clay 
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device architecture described above is shown schematically within the dashed (bottom) 

box in Figure 1.4. 

 

Figure 1.4: Control and Interface Subsystems  

 

The control and interface subsystems are shown within the dot-dashed (top) box 

in Figure 1.4.  The operation of the Digital Clay depends upon the mode in which the 

clay is being used.  In display mode, the Application, through an API (application 

programming interface) translates the shape from the CAD file into commands and 

parameter values that can be sent to a lower-level control unit.  The lower level control 

unit regulates fluid flow until the Digital Clay has taken the desired shape.  This 

information flow is shown using thin arrows. 

 

In shape editing mode, the user will press and deform the Digital Clay kinematics 

structure in the interface area.  This will cause the pressure within the inflatable cells to 

rise above a threshold value, which forces fluid out of the cells.  The user can also 
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directly indicate to the control unit to inflate or deflate the cells.  In either case, the top 

level of control will first interpret the user’s gestures to determine his/her intent.  A 

mathematical model of the clay’s behavior will be used to compute commands and 

parameter values that can drive the clay according to the user’s actions.  These values are 

then sent to the lower level clay controller for communication to the actuators.  The 

additional information flow for this mode is shown in bold arrows.   

 

The Digital Clay architecture is a complex maze of interacting subsystems. It is 

beyond the scope of this thesis to describe every subsystem. The main focus of this thesis 

is the deformable kinematics structure, which will be discussed in further detail in a later 

section. The next few sections will explain about the purpose, goals, and focus of the 

Digital Clay research.   

 

1.6       Problem Statement 

The Digital Clay structure is a kinematics structure that deforms to display 

various shapes. From this initial design idea, there are three problems that arise. The first 

problem deals with design, the second deals with manufacturing the structure, and the 

third problem deals with calculating its deformation. Below are the problem statements. 

 

1) The kinematics structure needs to be designed such that it can deform into various 

shapes based upon a set number of inputs. 
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2)  A manufacturing process is needed for building the kinematics structure to 

deform into various shapes without breaking within an aging period of the 

material used. 

 

3) An algorithm is needed to calculate the deformation of the kinematics structure 

based upon a series of given constraints.  

a. The algorithm needs be universal enough to consider different types of 

materials that can be used to manufacture the kinematics structure. 

b. The algorithm must be computationally efficient and have a fast rate of 

convergence. 

 

1.7  Key Question 

Although the Digital Clay could be built using any number of manufacturing 

processes, our prototypes were built using stereolithography. Since a production 

manufacturing process has not been selected, a general focus of study is the deformation 

of the kinematics structure based upon various materials to help select the material and 

predict the outcome of the kinematics structure due to applied force.  Therefore the main 

key question is: 

 

What is this kinematics structure and how can the deformation of the 

kinematics structure be predicted based upon the materials being used and 

constraints being applied? 
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1.8  Goals 

Based upon the key question, the main goal of this thesis is to design a kinematics 

structure concept such that it will behave correctly and it is manufacturable. Then an 

algorithm must be developed that could predict the deformation of the kinematics 

structure based upon the material properties, system constraints, and user inputs.  The 

results will help the MEMS and the Rapid prototyping departments choose a 

manufacturing material and help the controls department to predict the deformation. 

 

The goal is broken up into several tasks: 

1) Designing and manufacturing a deformable kinematics structure using rapid 

prototyping technology with consideration in scalability, shape generation capability, 

and longevity to understand how the kinematics structure should deform in real life. 

2) Expanding the existing joint angle calculation equations for one unit cell of the 

kinematics structure to calculate all the deformation angles of the whole skin. 

3) Incorporating the joint stiffness for each unit cell of the kinematics structure from 

the mechanical properties of Stereolithography material to study the “inverse static” 

deformation of the structure. 

4) Developing a “forward statics” algorithm (forward kinematics equations with 

mechanical properties embedded into the equations) for completing the circle of 

inverse and forward equations to predict the deformation of the deformable 

kinematics structure. 
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1.9  Development Questions 
 

Based on the aforementioned goals, there are two specific areas this thesis will 

focus upon. One is the design of the kinematics structure for manufacturing. The second 

is the development of a method for predicting deformation. The development questions 

are divided into two groups: the design and the deformation method. 

 

1) Design: 

a. What design features should the kinematics structure have to allow the greatest 

deformation without breaking? 

b. What building process should be considered for designing the kinematics 

structure? 

c. What size should be chosen such that the kinematics structure yields optimal 

deformation and is feasible to build? 

2) Deformation Method 

a. What is the smallest amount of information needed from the user to determine the 

deformation of the kinematics structure? 

b.  How should the computer algorithm use the inputs to determine the optimal 

deformation state of the kinematics structure? 

c. What is the best process for guiding the results toward a global solution? 

d.  Since this is a static analysis, what properties of the kinematics structure should 

be known to help determine the deformation of the kinematics structure based 

upon the manufacturing aspect? 

e. How would the method be implemented? 
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1.10  Approaches to Answer Development Questions 

This section will discuss how the above questions will be answered through a 

these proposed approaches. Similar to the previous section, this section is divided into 

two sections, the design and deformation methods.  

 

Design: 

1) Design a feature that would cause the whole kinematics structure to deform. One 

possible design focus is the unit cell that makes up the structure, where the unit 

cell’s range of motion would be maximized. 

 

2) Consider a manufacturing process that would produce high turn around results. 

Presently, the kinematics structure is used for studying of deformation and shape 

formation. We need something that would give quick results with high accuracy. 

One possible building process is using a rapid prototyping technique called 

stereolithography where the results can occur within 24 hours. 

 

3) Create a kinematics structure that is as large as possible. Since rapid prototyping 

is suggested, then the size of the kinematics structure should be as large as the 

platform of the stereolithography machine allowed. For the case of the unit cells 

that makes up the kinematics structure, the size of the unit cells should be as small 

as possible. As the size of the cells decreases, the resolution increases which in 

turns increases the shape formation. A possible size to aim for is 18mm, which is 

the average width of one fingertip. 
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Deformation method: 

1) Require the smallest amount of information possible. The given inputs should 

create a series of equations for the method. In turn the user is only expected to 

input only a handful of information to produce the desired outcome. With both 

types of inputs, this can be an under-constrained problem. Any additional 

constraints will improve the calculation in either speed or accuracy. To calculate 

the deformation when there are not enough equations from the given inputs to 

solve for the number of unknowns, a numerical iterative process can be applied. 

The numerical method would search for the minimum point similar to Newton 

Raphson method.  

 

2) Improve the initial guess to increase the speed of convergence of the iterative 

method. 

 

3) Determine the material property that is most likely the one that would affect the 

motion of the unit cells. Since these ranges of motion in these unit cells determine 

the deformation of the kinematics structure, the most reasonable material property 

would be the elastic modulus or the stiffness factor.  

 

4) Equate the number of equations to the number of unknowns by applying the 

system of equations method for deriving the answers quicker than the iteration 

process. 
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5) If the numbers of equations and unknowns are equal, then material properties or 

material side effects (unit cell stiffness) are not needed to determine the 

deformation.   

 

1.11  Deliverables 

 Below are brief descriptions of what this thesis will deliver. The two main 

deliverables are the manufactured kinematics structure and the deformation algorithm. 

Since it is difficult to determine the best way to predict the deformation, we developed 

two methods. Only one of them will be selected as the method of choice. 

 

1) Kinematics structure designs 

a. Grid kinematics structure: Manufacture four connecting spherical joints (unit 

cells) to form a kinematics structure. 

b. Hexagon kinematics structure: Manufacture six connecting spherical joints to 

form a hexagon. 

 

2) Stiffness value of the different types of joints in the unit cells based upon 

experimental results.  

 

3) Deformation Method/s 

a. Analysis of deformation with the grid kinematics structure. 1 

                                                 
1 After accomplishing these programs for the grid, the analysis can be extended to the hexagon kinematics 
structure. 
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1. Method 1: under-constrained, abstract formable kinematics structure model 

that used the average stiffness value of the joints in the unit cells. 

2. Method 2; under-constrained, actual manufactuable kinematics structure 

model that applies two different stiffness values for the two different types of 

joint designs that comprise the unit cells.  

 

1.12 Introduction to the Rest of the Thesis 

This chapter serves as an introduction to this thesis, explaining the foundation for 

what will come. Below are brief explanations of the other chapters. 

 

Chapter 2: Literature research about other CAD modeling package 

Chapter 3: Design and manufacturing of the kinematics structure 

Chapter 4: The math behind the analysis of the deformation of the kinematics structure 

Chapter 5: The results from the implementation of the math 

Chapter 6: Future works and benefits of this thesis to other members of the Digital Clay 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter are sections discussing about other designs related to the work in 

this thesis. The first set of sections discuss about other products that work with or apply 

the “Virtual Clay” idea. The second set that follows will discuss about existing product 

that is similar to the deformable kinematics structure in this thesis.  

 

2.1  “Virtual Clay” Ideas 

Below are examples of existing “Virtual Clay” or products that manipulate 

“Virtual Clay”. 

 

2.1.1  CyberGrasp and RM-II Hand Master 

The human-computer interface idea is a powerful improvement upon the current 

CAD system and has already provoked others researchers curiosity.  Some existing 

implementations have included a glove-like or haptic manipulator interfaces that focused 

on reshaping non-physical volumes of ‘virtual clay’ on a computer screen. Examples are 

the CyberGrasp (Immersion, 2004) and the RM-II Hand Master (Virtual Reality 

Technology, 2004) as seen in Figure 2.1.  
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Figure 2.1: CyberGrasp (Left) and RM-II Hand Master (Right) 
 

 Applications for these haptic manipulators can be surgical training that requires 

the physical volumes to behave in a physically based manner (Choi, et. al, 2002).  

However these sculpting systems were being criticized for relying upon physically based 

behavior that utilizes multi-scale techniques or pre-computed material properties to 

achieve real-time performance (Capell, et. al, 2002; Debunne, et. al, 2001; McDonnell 

and Qin, 2000). It does not look or feel real. Figure 2.2 is an example of a graphically 

manipulated non-physical volume of ‘virtual clay’ on a computer screen.   
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Figure 2.2: Face deformation (www.siggraph.org) 

 

These physically based behaviors are often computationally expensive and may 

lead to unnecessary interaction difficulties.  For example, the volume preservation 

behavior of physical clay is an unwanted and unneeded behavior for our work.  Other 

work in freeform deformation implemented some physically based behaviors (Barr, 1984; 

Sederberg, 1986) and has utilized a variety of deformation tools (Coquillart, 1990). 

 

2.1.2 The PHANTOM 

As haptic interface devices become more popular, the introduction of the 

PHANTOM by SensAble Technology has spawned a wide variety of applications 

(SensAble, 2004). 
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Figure 2.3: SensAble Technology PhanTom 
 

 In the area of mechanical product development, physical interaction between user 

and clay consists primarily of the forces applied by each to the other.  In addition, the 

user can inspect the shape visually and by touching the shape without modifying it.  Our 

approach in our Digital Clay haptic feedback device is to investigate a single mode of 

interaction to explore capabilities and limitations of tactile interaction, with shape and 

force feedback through the device.  

 

2.1.3  FreeForm 

Another one of SensAble product is the FreeForm modeling system that they are 

advertising for having real-time force feedback for complex shapes. They are attempting 

to move into the engineering market of design and manufacturing of products for the user 

to create various organic shapes as shown in Figure 2.4. Other similar types of haptic 



 20

interface devices have also been developed and tested for product development 

applications (Gurocak, et.al, 2002). 

 

 
 

Figure 2.4: FreeForm Modeling for Manufacturing 
 

Although the FreeForm modeling packaged produced very organic shapes on the 

screen, the shape is still on the screen. The Digital Clay will be a physical device that 

allows the user to physically view and touch the shape in real life.  It will also have a 

graphic display of the shape on the screen, much like the FreeForm but with an extra 

plus.  

 

2.1.4  Feelex 

It appears that so far every product can manipulate shape on the screen, but not in 

physical life. With the introduction of the Feelex by the Virtual Reality Lab (VR Lab) in 

Japan, the user can now feel the haptic feedback of any given shape with their bare hands 

and manipulate the shape without any additional hardware as seen in Figure 2.5 (Iwata, 

et.al, 2001). 
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Figure 2.5: Feelex Version 1 and 2 
 

This innovative product is the next step into providing haptic force feedback for 

user without using any extraneous devices. The digital clay device will take that idea to 

become a more advanced version of the Feelex in force feedback device. It will not be 

just a bunch of pins that moves up and down like an animated pin-cushion but a series of 

bubbles that inflates and deflates upon applied force. This will allow greater shape 

deformation and resolution. Plus the digital clay device is a combination of both the 

SensAble technology’s Freeform and the VR Lab’s Feelex, advancing what already exist. 

Digital Clay-- so far nothing is like it in the current market. That’s what makes this 

project and thesis a challenging and rewarding experience. 

 

2.2 Elastic Deformation Products 

Previously we gave examples of different products that would allow the user to 

deform CAD models using force-feedback mechanism. Now instead of discussing about 



 22

the whole Digital Clay device by giving examples of competitive products, lets us 

describe the focus of this thesis: the deformable kinematics structure. This section will 

describe various existing products that use elastic deformation as the source of motion. In 

all the examples below, each product is a 2D deformable device. Their designs will help 

develop the 3D deformable crust matrix. 

 

2.2.1  Compliant Mechanism 

 

       

Figure 2.6: Compliant Crimping (Left). Compliant Gripper (Right) 

 

 Designed by a team of Mechanical Engineers from the University of Michigan, 

Ann Arbor and Sandia National Laboratories, compliant mechanisms are single-structure 

mechanisms that can transmit motion though flexible hinges (Kota, et.al, 2001). These 

mechanisms consist of connecting rigid links with elastic deformable joints as seen in 

Figure 2.6 with both the Compliant Crimping on the left side and the Gripper on the right 

side. As the two handles on the far right of the Compliant Crimping are pushed together, 

the rectangle on the far left will move horizontally to the left. For the Compliant Gripper, 
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as the handle in the center is pulled to the left, the two trapezoids on the far right will be 

pulled together as if it was pinching something.   

 

Similarly this thesis is attempting to create a design where a single action will 

create a series of reactions to accomplish a task. Currently we are investigating compliant 

mechanisms for ideas to develop our Digital Clay deformable crust. 

 

2.2.2 Flexural-Based Gripper 

 
 

  

Figure 2.7: Flexural-Based Gripper Design (Left). Manufactured (Right) 

 

Comparable to Kota’s Compliant Mechanisms, Chen and Lin’s Flexural-based 

Gripper applies the elastic deformation capability of the material to create motion with 

little or no assembly necessary (Chen, 2002). In this case, this Flexural-based Gripper is 

used for handling optical fibers. In the left image of Figure 2.7, the zoom image shows 

the curved surface and the thin walls of the design that would act as the flexible joint for 
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the mechanism and the right image shows the gripper being manufactured.  This will be 

another idea that would help how our Digital Clay deformable crust becomes more of a 

reality.  

 

Both of these 2D compliant mechanism designs set the stage for developing the 

Digital Clay crust matrix with compliant hinges that would use elastic deformation as a 

source of motion to deform in 3D. 

 

2.3  Ending Comment 

 Based upon this literature review and the introduction chapter, the design 

expectation for the Digital Clay crust matrix is to design a deformable crust as a physical 

mesh that would respond to human touch. In the introduction chapter, we mentioned that 

the Digital Clay device should also receive signal from the computer to deform. This set 

another requirement that there should be some sort of interconnection between the 

actuators and the display device. However at this stage, we need to design the crust 

matrix that would deform with consideration for actuators and sensors than to design the 

interconnection. The next chapter describes the various designs that the deformable crust 

matrix went through before we settle down on analyzing one design.  
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CHAPTER 3 

THE SKETCHBOOK OF MATRIX DESIGNS 

 

The design of the deformable infrastructure that would generate manifolds of 

shapes went through various iterations and modifications. The final design is a 

deformable crust of spherical joints. Before the spherical joint was developed, the parts 

that make up the crust matrix are generically named “unit cells”--individual cells that can 

deform and can be combined to deform as a whole. Below will be explanations of the 

design process similar to Beitz and Pahl Design process (Beitz and Pahl, 1996) and the 

manufacturing of different concepts for the unit cells. 

 

3.1  Requirement List 

 After knowing what is expected from this matrix based upon the previous 

chapters, the requirement list will be created to ensure that the customer’s demands are 

being met as well as any requirements that we, the designers, may have. The customers 

are the Digital Clay team members. A requirement list is a design specification list that 

states which features or characteristics of the subject of study are either demands 

(“[features] that must be met under all circumstances”) or wishes (“[features] that should 

be taken into consideration whenever possible”) (Beitz and Pahl, 1996). The people 

involved in fulfilling the requirements are various people who are/were classmates, 

project members, and Digital Clay team members. I am the principle designer who will 

gather the necessary data and guide the design development phase during this whole 

process. Below are the original descriptions and specifications for one unit cell design 
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that we are developing to satisfy our customer. While creating the list, we will also 

consider the matrix of unit cells.  As previously stated, the unit cell should be able to 

form a deformable kinematics structure by linking together and becoming a matrix of unit 

cells. During this design stage, the matrix of unit cells is not attached to any mechanical 

or electrical devices. The energy for deformation of the crust matrix will be human 

powered. Later in the design stage, the energy of deformation will be powered by 

mechanical or electrical devices. It is beyond the scope of this thesis to go into the details 

of the devices. Below is Table 3.1 that describes the requirements for design these unit 

cells that would link together. 

 

Table 3.1: Requirement List 
Problem Statement: Schematic: 

Design a unit cell that is capable of 
deforming in various directions 
without breaking and able to link 
together to form a matrix of the cells. 

  
D 
W 

Requirements 

  1. Geometry   
W  Width of unit cell: width <18mm (a fingertip width)  
W  Depth of unit cell: Depth <18mm (a fingertip width) 
W  Height of unit cell: Height <18mm (a fingertip width) 
D  Unit cells capable of attaching to neighboring cells to form a matrix structure.  
D  Matrix of cells is scalable 
    

  2. Kinematics   
D  Cell Deformable angle: 90 degree - 180 degree 
D  Matrix constructed from these cells has to be able to deform 
D  Matrix constructed from these cells must be portable 
    

  3. Forces   
D  Cell deforms in three directions (x, y, z) 
D  Applied forces on matrix can act in any direction 
W  Applied force for matrix deformation: 3 N - 6 N 
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Table 3.2: Requirement List (continued) 
D 
W 

Requirements 

  4. Energy 
D  Mechanism of deformation: human power for shape input 
    

  5. Material 
D  Material capable of deforming 
W  Material is elastic 
D  Cell withstands repeatable deformation: 20 count - 500 count 

  
  6. Safety 
D  Operator safe 
     

 6. Ergonomics 
W  Matrix of cells is smooth to human touch 

  

  8. Production  
W  Manufacturing cell: SLA. 

     

  9. Assembly  
W  All cells molded as one piece. 
D  Matrix is constructed of multiple cells. 
     

  10. Operation  
D  Human touch on matrix causes deformation.  
D Computer actuated when matrix is connected to computer 

   

  11. Maintenance  
W  Easy exchange of cells within matrix 

     

  12. Recycle & Environmental 
W  Environmentally safe material.  

  

 

3.2  Check (Clarifying The Task) 

With the completion of a detailed requirement list that focuses on our customer’s 

needs and wants as well as ours, Phase II, conceptual design, is next.  The reason for this 

is that we now have a list that lays out the functions and requirements that are necessary 

for our design to be successful. 
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3.3  Abstracting to Identify the Essential Problem 

After developing a requirement list according to our customer’s demands and our 

wishes, we begin to abstract the conditions attributed to the problem and task, trying to 

venture away from any design fixations.  To accomplish this task, abstraction and 

problem formation are done using the five-step method. 

 

3.3.1  Abstraction and Problem Formation  and Systematic Broadening 

 From the Beitz and Pahl Design process the Abstraction and Problem formation 

process is a five-step process that goes through the requirement list and reduces the list to 

one main problem formation statement. The process consists of:  

 

I. Eliminate personal preference 

II. Omits requirements that have no direct bearing on the function and the essential 

constraints,  

III. Transform quantitative into qualitative data and reduce them to essential 

statements 

IV. Generalize the statement made in step III 

V. Formulate the problem in solution-neutral terms. 

 

This process was already performed in ME 6101: Design Engineering. The result is 

Design a multi-connected, scalable cell that can deform in various directions.  Upon 

developing this solution-neutral problem statement, we further broaden the project to 
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prevent any potential design fixations. Systematic broadening is done by abstracting from 

a specific statement to a general statement.  

 

  For Systematic Broadening, this process was already preformed in ME 6101. The 

final statement is: Design a scalable matrix that deforms. 

 

3.4  Function Structure 

 As a result from systematic broadening, our portion of the project is focusing on 

just the construction and deformation of a cell that would later become the matrix. The 

function structure is seen to be relatively simple.  

 
 
 
 

 
 

Figure 3.1: Overall Function Structure 
 

 The energy input is the amount of force applied to the unit cell matrix to deform 

it.  Meanwhile, the signal represents the direction and location of the applied force.  For 

instance, the various locations of the applied force will result in different visual 

deformation signals. Figure 3.2 is a more descriptive function structure. When the energy 

and the signal are given to the matrix, the matrix would respond and change the positions 

of various unit cells. Because the energy gets lost when the applied force is moved, not 

every unit cells receive the same amount of energy; therefore not every unit cells will 

deform the same amount. When the residual force is removed, the unit cells will return to 

their original shape. 

Design a matrix of cells capable of
deforming in various directions
without breaking. 

Energy Energy 

Signal Signal 
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Figure 3.2:  Function Structure Using Generally Valid Functions 
 

3.5  The Manufacturing Technique 

There are various ways to create prototypes of the Digital Clay matrix for testing 

and evaluation. Below are several techniques that are being considered. 

 

3.5.1  MEMS  

Micro-electromechanical systems (MEMS) technology is an integration of 

sensors, actuators, and electronics on a common substrate using micro-fabrication 

technology (MEMS and Nanotechnology Clearinghouse Website). Below are various 

MEMS techniques being considered for prototyping the Digital Clay matrix.  
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3.5.1.1 Thermal Press Molding 

Using a mold made of aluminum or stainless steel, the Digital Clay matrix can be 

formed by pouring a thermo-set polymer onto the mold. The polymer would then solidify 

by applying heat and pressure. The materials being investigated are Dyneon Elastomer 

and Polyethylene. This process seems promising. We may create a mold for the matrix in 

the future. It is beyond the scope of this thesis to discuss the possibility of this mold. 

 

3.5.1.2 Injection Molding 

 Similar to the thermal press molding, a mold is first created. The selected polymer 

is heated to a quasi-liquid state, then injected into the mold using a vacuum and cured by 

heat. This process is not successful because the walls of the Digital Clay structures are 

too thin and complicated for the injection molding process to work properly. 

 

3.5.1.3 PDMS Cast Molding 

Poly-dimethylsiloxane (PDMS) is a liquid pre-polymer that is cast against a mold. 

After curing, the cross-linked and elastomeric PDMS is carefully peeled off from the 

mold. The surface of the cured PDMS is the structure of the Digital Clay matrix. PDMS 

has an excellent capability of capturing details, but the material is too flexible for our 

needs. 

 

3.5.1.4 Lamination 

Another MEMS approach is using the lamination-based polymeric approach that 

bonds to substrates by heat and pressure.  In these approaches, analogous to lamination-
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based electronic packaging approaches, individual sheets of material are lithographically 

patterned or laser-cut to form the required chambers and fluidic interconnects, and then 

are laminated together to form the final structure (Dalmia, 2002). However cost, shape 

generation capability, dimension issues, and facility availability are issues when using 

this technology. 

 

3.5.2  LCVD 

One rapid prototyping technique being considered is Laser Chemical Vapor 

Deposition (LCVD). A laser CVD rapid prototyping system is one of the promising 

manufacturing techniques that is under development in the School of Mechanical 

Engineer at Georgia Institute of Technology. The process has the capability of fabricating 

complex net-shaped metallic and ceramic structures by depositing powder using laser to 

heat a heated substrate (Park, 2003). LCVD can satisfy several of the demands from the 

matrix requirement list because the process deposits material at the atomic level, 

producing a material that is fully dense, ultra-pure, and mechanically sound. Since LCVD 

can also produce fibers or layers in any given direction, the design of the crust matrix and 

the building orientation will be not restricted by this technique. Furthermore, a capacity 

for multiple materials permits composite structures and functionally-graded materials and 

alleviates traditional material restrictions imposed by a given prototyping technique 

(Lackey, 2002). LCVD is a promising manufacturing technology that may be beneficial 

to Digital Clay, however it is a new process that is still being investigated and may not be 

available to the manufacturing community until later in the future.  
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3.5.3  Other Techniques 

There are other standard techniques that can be used to manufacture the matrix. 

One included the injection molding using a low viscosity liquid with a low cooling rate to 

fill up all the small spaces and holes of the crust matrix. Another technique is using an 

open face molding with a spray adhesive and a stamp cutter.  Both of these techniques are 

promising, but expensive to create the mold. At this time we are searching for a technique 

that has a fast turn-around time with a high accuracy result. 

  

3.5.4  SLA 

 Rapid prototyping technology using Stereolithography (SLA) technique has a 

high turn around rate with high accuracy. Because of this feature, using SLA technology 

will allow us to vary the dimensions of the Digital Clay cell and build the matrix within 

hours to meet any specific task that our client may want to use the product for. 

Furthermore, it will satisfy the demand imposed by our client that the Digital Clay cell is 

scalable. The cells will have to be integrated together to form a matrix that will respond 

to at least a finger width (approx. 18 mm) of applied pressure.  With rapid prototyping 

technology, multitude of thin and small cells can be generated at a low cost with 

relatively fast results without supervision.  Therefore a rapid prototyping method using a 

stereolithography machine appears to be the most efficient method of creating our Digital 

Clay cells and for that reason it was placed as a wish on our requirement list.  

 

Refer to Figure 3.3 below for a brief definition of Stereolithography.  In 

Stereolithography, solid objects are created by using a layer based manufacturing 
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technique. First the designer would create a CAD model of the objects, in this case the 

Rook from the Chess game. Next, a computer will “slice” the CAD model into cross-

section contours, one on top of the other. Third, the stereolithography machine will create 

the support structures for levitating the Rook above the platform that the Rook will be 

resting upon. Fourth, the slices are created by tracing the 2D contours from the CAD 

models in a vat of photopolymer resin with a laser. Each slice is created when the 

platform that the parts rested on is lowered into the vat, exposing only a thin layer of 

resin to the laser at any one time. The final step is cleaning, post-curing, and detail 

finishing the parts (personal preference of the designer). At the end we will have our 

Rook! For more information about stereolithography, refer to “Rapid Prototyping & 

Manufacturing: Fundamentals of Stereolithography” by Paul Jacob (Jacobs, 1992). 

 

 

 
 

Figure 3.3: An Additive Fabrication Process – Stereolithography (Jacobs, 1992)
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3.6  Design and Manufacturing of Designs 

 From the requirement list and the function structure, several ideas evolved. Below 

are some of the ideas. Some of these were manufacturable while others will crash due to 

the part designs exceeding the machine capability.  

 
3.6.1  The Flexible Corners 
 

 
 

 
Figure 3.4: The Flexible Corners 

 

In Figure 3.4, these corners can connect to other corners of the same design and 

create a matrix of flexible corners. The shapes are simple enough to be scaled down 

without losing much detail. However these shapes poses problem when they are rapid 

prototyped. The flexible joints would not build properly because of the thinness of the 

joints. After resolving the manufacturing problem, the joints would break after bending 

them less than 10 times by hand. Because of this problem, the flexible corners idea was 

eliminated. 
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3.6.2 Deformable Cubes 

Figure 3.5: Deformable Cubes 

  

 The deformable cubes are actually a variation of the flexible corners in Figure 3.5. 

The cube on the left has several ball and socket joints connected to a square base. The 

balls rotate perfectly within the socket and are able to deform as a whole. However the 

angle of deformation is based upon the opening of the socket.  As a whole, the cube 

deforms around 20-30 degrees.  

 

The other cube on the right has a greater degree of freedom because of the 

springs. During manufacturing, this cube crashes more than any of the other designs. 

Another minus point is that as this cube on the right is scaled down, the deformation 

capability decreases.   

 

Of both designs, scalability is a big question. Will the matrix of theses cell deform 

as well as it can when the cells are scaled down?
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3.6.3  Compliant Hinges 

 

 
Figure 3.6: Compliant Hinges 

 

The compliant hinges are two plates connected by a thin flexible plate. The one 

on the left is a modification of Jacob Diez’s compliant hinges from his robotic hand(Diez, 

2001). The design on the right is a modification of the one on the left to improve the 

fatigue life. Both of these designs will deform upon applied force and return back to 

original shape after the force is released. The one on the right is one of the easiest designs 

to scale and manufacture due to its simplicity. The downfall is that it only deforms in two 

direction: Z and X or Z and Y. 
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3.6.4  Deformable Crust Design 

 While developing a feasible manufacturable joint design, crust design evolved 

with the help from Paul Bosscher. The crust design is a deformable matrix that acts like a 

piece of cloth. As the fluid flows in from the valves, the crust will deform and take shape 

from the applied pressure, as it was a piece of cloth.  

 

Figure 3.7 demonstrates the crust deformation idea. Each vertex is an abstract 

representation of a deformable unit cell and each line is a connecting rod from the unit 

cell. 

 

Figure 3.7: Deformable Crust Concepts 
 

3.6.4.1 Unit Cell for Crust 

The crust idea seems simple and effective enough for fulfilling the requirement 

list. The challenge with crust designs is their Manufacturability.  The construction of 

spherical, revolute, or other kinematics joints at small size scales is difficult.  To 

duplicate the behavior of spherical joints, we can use a collection of links and revolute 

joints, where the joint axes have a common intersection point (Bosscher, 2003) as one 
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will see in the following sections.  Below are ideas for developing the unit cells that 

would compose the crust matrix.   

 

3.6.4.1.1 Eight-Sided Unit Cell 

 

 

Figure 3.8: Eight-sided Deformable Crust 

 

From paper to model to manufactured design concept, Figure 3.8 describes a unit 

cell with eight sides and eight revolving joints. The greatest complication in CAD 

modeling is assembling the individual pieces together and scaling the cell down. After 

prototyping in SLA, the cell is very deformable but not very rigid. It deforms like a piece 

of cloth, but the joint clearances cause repeatability problems. 
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3.6.4.1.2 Spherical Joint Unit Cell 

 

 
 

Figure 3.9:  Spherical Joint Unit Cell 
 

 This unit cell consists of eight expandable faces with a revolving joint in between 

each face. There are also 4 linking faces with two revolving joints that are connected to 

the expanding faces. This gives a total of 12 faces and 12 joints. In this case, all the faces 

are triangles. The expanding faces are nicknamed “intermediate triangles” because they 

are in-between the smaller faces. The smaller faces are nicknamed “linking triangles”, 

because they will be used for linking to the next neighboring spherical joint. The CAD 

modeling of this unit cell has the same difficulties as the Eight-sided Deformable cells 

with assembling and scaling of the cell. In the manufacturing aspect, the cell deforms as 

well as the Eight-sided Deformable Cell. The difference is that there are more degrees of 

freedom because each linking triangle rotation capability is not affected by the other 

linking triangles. The triangles in the Eight-sided Deformable Crust have more inter-

connection and less Degrees-of-freedom.  The Spherical Joint unit cell has more potential 

for deformation but still does not provided the resistance force for feedback that was 

requested in the requirement list.  
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3.6.4.1.3 Linear Triangles       

 

 
 

Figure 3.10:  Linear Triangles 
 

 Unlike the previous two unit cells for the crust design, this design utilizes the 

compliant joints mechanism from prior designs in section 3.7.3 Compliant Hinges. CAD 

modeling is less complicated with no assembly necessary (it is drawn as one piece). The 

CAD model is also less complicated to scale down. During manufacturing in SLA, this 

design is the most stable of all three designs. However, the manufactured piece deforms 

the least of all three crust designs due to interference and neighboring walls. 
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3.6.5   Selection Process of the Unit Cells for the Crust Matrix 

The most promising design needs to be selected from the manufactured 

prototypes of the unit cells for the crust matrix. The best design would be based on three 

criteria--manufacturability, scalability, and dynamic functionality. Each criterion is rated 

a scale of 1 (worst) to 10 (best). A detailed description corresponding to each rating is 

shown in the tables below. 

 

   
   Table 3.3: Manufacturing Attribute     Table 3.4: Scalable Attribute 

Description Rating  Description Rating
 
 
 

Very Simple - Easily 
manufacture without any 

complications at a quick pace. 
10 

 

Very Scalable – Cell is scalable 
without any problems and 

performs function to perfection 
10 

 
 
 
 

Simple - Easy to manufacture 
with minor complications. 7 

 

Slightly Scalable – Cell is 
scalable but with minor 
problems and reduced 

performance. 

7 

 
 
 

Complex - Manufacturing 
takes time and potential 

problems are encountered. 
4 

 

Normally Scalable – Cell is not 
very scalable and has some 

problems with low performance. 
4 

 
 
 
 

Very Complex - 
Manufacturing is extremely 

difficult and time consuming.  
Problems constantly have to 

be overcome. 

1 

 

Un-scalable – Cell is hardly 
scalable and has serious 

problems with major 
performance issues. 

1 
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   Table 3.5: Deformation Attribute                Table 3.6: Rank of the Criteria 

Description Rating  Description Rating
 
 
 

Very Dynamic - Cells perform 
desired deformation to utmost 

perfection. 
10 

 

Dynamic Function – Ability of the 
cell to simulate desired motion 3 

 
 
 
 

Slightly Dynamic - Cells perform 
desired deformation with slight 
interference or other problems. 

7 

 

Manufacturing – Manufacturing of 
the cell without causing any 

problems 
2 

 
 
 

Nominally Dynamic - Cells have 
marked problems and do not 

perform full deformation. 
4 

 

Scalable – Ability of the cell to be 
put in a matrix. 1 

Non-Dynamic - Cells are virtually 
un-deformable and do not 

achieve the required motion at all.
1 

 
  

 
 

Table 3.7: Design Selection Table 
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After considering the scalability of all the models, the parts were manufactured 

(repeatedly in some cases) and then tested dynamically. The highest importance is 

attached to the deformation functionality. After several tests, it was found that Spherical 

Joint Unit Cell model best simulated the desired motion. In addition, it was decently 

scalable and can be extended to form a matrix of cells. The only problem encountered is 

in manufacturability. Due to the vertical alignment of the model, the support trusses that 

are automatically formed during the manufacturing process in SLA are not able to 

support the structure and hence the model is hard to manufacture. The model still is 

considerably superior over the other models because of its better dynamic functionality.  

 

3.6.6   Matrix Selection 

Although the unit cell was selected based upon the given criteria, it is not yet 

certain that the crust matrix would deform, as one would want it to base upon the quality 

of one unit cell. Therefore it is necessary to consider the unit cell as part of a whole 

matrix before coming to a decision that the design selected is best fitted for the task 

given. At this point of time, it is unnecessary to attempt building different matrices with 

different unit cells. The selection process given is only meant to be a suggestion of the 

unit cell design that should be carried on to the next step. While going through the design 

process stage, we can modify the unit cell so that it can create a matrix. During the 

process we would also consider the other designs that did not arise high. 

 

Below are suggested criteria for the selection process among various matrices 

with different unit cell designs. 
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Connection Capability: 

 Since each unit cell is connected to each other, how are they connected? Is the 

connection robust enough to handle various deformations and the added stress to the 

displacement?  

 

Manufacturability: 

 Although the selected unit cell is manufacturable, the matrix may not be as 

manufacturable. There maybe interface problem as the unit cells are connected together. 

 

Scalability: 

 Can the matrix be scaled down? Although the unit cells individually scalable, it 

does not mean that the whole matrix is scalable. Perhaps the connection between unit 

cells would prevent the matrix from properly being scaled down while still maintaining 

deformation capability.  

 

 

Deformability: 

 As the displacements are added to various points on the matrix, how much can the 

neighboring cells deform? How much displacement can any one unit cell handle before 

interference or structure damage occurs?  

 

As mentioned above, these new criteria given are for comparing various matrices 

built using different unit cell designs. Currently we are only working with one type of 
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unit cell with different matrix designs. In the future after developing more matrices using 

different unit cell design, these new criteria can come into play.  

 

3.6.7 Modification of Selected Unit Cell 

From the previous section, spherical joint unit cell is selected to progress further 

into the design development stage. However the manufacturing issue is a problem. From 

the previous section, the least problematic is the linear triangles with the compliant joints. 

In this section, the two strong qualities from the two previous designs will be combined 

into one: spherical joint with compliant joints. From the idea of the spherical joint unit 

cell connecting together to form a square grid, the spherical joint unit cell can also be 

modified for three linking triangles to form a hexagonal grid matrix. There are other 

design modifications such as applying prismatic joints between two connecting unit cells 

(Bosscher, 2003). It is beyond the scope of this thesis to go into the details of these 

modifications. Below are the modifications that are being considered and the 

development of the matrix. 
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3.6.8 Matrix  
 
 

 

 
Figure 3.11: Grid Matrix Unit Cell 

 

Figure 3.11 shows the spherical joint unit cells from the previous design being 

modified with compliant joints. Only two of those joints are labeled in the first image.  

Another modification is that the linking triangles are pyramids to add rigidity and 

creating the coupling effect when the unit cells are linked together. Because of this design 

modification, the spherical joint unit cell can be scaled down as seen in the middle image 

with the quarter. From this design the cells can be linked together as seen in the last 

image as vertices with dark circles and matrices as seen in Figure 3.11. 

 

 
 

Figure 3.12: Grid Matrices 
 

Figure 3.12 shows the unit cells being linked together to create a grid. The first 

image shows circular rods in between each unit cells. The rod was originally thought to 
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expand the length between the unit cells while maintaining the rigid linking. However, 

the rods twist and bend due to the material used. The material is DSM Somos 8120 

photopolymer resin. Other resins were explored, but the DSM Somos 8120 has the most 

promising material characteristics. This material provides the needed flexibility for the 

compliant joints to function properly and also the stiffness for the linking triangles to 

create the coupling effect when the unit cells are linked together. The second image 

shows that the rod length is reduced when the unit cells shrunk. The last image shows 

that the rods are completely eliminated from the matrix with two unit cells almost 

equaling the diameter of a penny. A four-by-four matrix with these unit cells is less than 

the size of a business card. The deformation capability of the grid matrix is analyzed in 

the next chapter.  

 
 
 
3.6.9 Hexagon Matrix 
 
 

 
 

Figure 3.13: Hexagon Unit Cell 
 
 

 Similar to the grid design, the hex matrix has three linking triangles instead of 

four and each unit cells are connected together to create a matrix of hexagons. Again the 

revolving joints that were originally part of the spherical joint unit cell design are being 
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replaced by compliant joints as seen in the first image of Figure 3.13. As previously 

stated this modification allows the unit cells to be scaled down as seen in the middle 

image with the penny and connected as seen as vertices with the darker circles in the last 

image and in Figure 3.14. 

 

 
 

Figure 3.14: Hexagon Matrices 
 

 
In Figure 3.14, the rod idea was tested again. Again, the rod idea is slowly being 

eliminated from the design. The hexagon unit cells did not follow the same path in design 

modification as the grid matrix as seen in the previous section. The reason is the center 

voids of the hexagon matrix. In the middle image, a penny occupies one of the center 

voids of the hexagon matrix. As the matrix deforms, the center voids will prevent the 

matrix from creating a continual surface that we would expect the matrix to create when 

the matrix deforms. The last image is two matrices overlapping to attempt eliminating the 

jaggedness of the shape generation from the hexagon matrix. Offsetting and overlapping 

modification was also considered. This offsetting and overlapping did reduce the center 

voids, but it also reduces the deformation capability of the matrix.  
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3.7 Crust Matrix MEMS Style 

 The previous sections described the Digital Clay crust matrix built using SLA 

technology. Earlier, we mentioned the possibility of using MEMS technology to fabricate 

the crust matrix. The introduction chapter also mentioned the possibility of adding bubble 

actuators in the joints of the crust matrix, expanding and compressing the joints by filling 

and draining the fluids in the bubbles. There maybe additional or different types of 

considerations when MEMS technology is being applied instead of SLA. Since I am not 

an expert in MEMS, I will pose several questions to the people who will attempt to create  

the crust in MEMS with the bubble actuators. 

 

Questions: 

1) What is the material of fabrication?  

2) From the material of usage, what is the stiffness of the joints? 

3) Will there be enough force feedback to maintain shape deformation? 

4) Can the unit cells be rigidly connected through their linking triangles while the joint 

maintains its flexible capability? 

5) Will the curvature of the joints change as the fabrication process changes from SLA 

to MEMS? 

6) How small can we get and still be able to add actuators to each unit cell? 
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These questions may evoke some creative juice in the MEMS department. 

Currently, they have developed several ideas to fabricate and interface a bubble-like 

actuator in the joints. The pictures of several different concepts for the bubbles are shown 

below.  

 

 

Figure 3:15: Bellows Bubble Actuators Concept 1 

 

Figure 3:16: Bellows Bubble Actuators Concept 2 

 

It is beyond the scope of this thesis to explain these bellows actuator designs.  
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 Another idea for designing the bubble is to enclose the joints using a membrane 

that can deflate. At maximum inflation, the joints are at their largest angle of 

deformation. Figure 3.17 shows one unit cell that the bubble has to work with. Figure 

3.18 shows two images describing the membrane enclosing one joint. The first image 

describes one joint being deflated. The next image describes the joint at the maximum 

deformation. 

 

 
 

Figure 3.17: One Unit Cell 
 

 

 

 
 

Figure 3.18: Enclosing Membrane 
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The tube coming off the front is where the fluid will be flowing from. Currently 

this idea is being criticized because the membrane needs to be expandable like a rubber 

band. If the membrane is being built at the same time as the crust matrix with every joint 

at its maximum deformation, the matrix will contour into various different shapes. This 

may cause problem during the manufacturing process. Currently Sharon Wu in the 

MEMS department is investigating possible elastic materials for manufacturing the 

bubbles. Another possibility is that the membrane is built deflated. When the crust is at 

its resting state, there will not be any force applied to the joints. When it expands, the 

fluid pressure being applied will have to be greater than the force created by the stiffness 

in the joint and the membrane. The same situation occurs when the joint compresses. 

 

Fabricating the crust matrix using MEMS technology while designing the bubble 

actuators for the joints is a difficult task that requires extensive research in design 

exploration, manufacturing techniques, and material study. The MEMS department is 

studying all three areas. Once this is accomplished, we will have the interconnection 

between the crust matrix and the rest of the hardware. Since this is not the focus of this 

thesis. We will not continue discussing this interconnection. 

 

3.8  Ending Remarks 

From the two crust designs, grid matrix design is selected to progress further into 

the design stage. The reason for this selection is because the grid matrix has the best 

combination of functionality, scalability, and manufacturability. Also the center voids of 

the grids are smaller than the hexagon, producing smoother surfaces. 
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The hexagon matrix is an excellent idea because each joint of each unit cell has a 

greater angle of deformation than the grid design. The calculation of Degrees-of -

Freedom for both the hexagon and the grid matrix shows that the hexagon matrix has a 

greater capability to create shapes (Bosscher, 2003).  However, we need to find a 

manufacturing technique that can produce the hexagon matrix small enough to reduce the 

center voids, which in turn reduces the jaggedness. The possible solution is using the 

DSM Somos 8120 resin in the 3D system SLA VIPER machine that is designed 

specifically for creating micro products. However as the CAD model of the unit cells 

(both grid and hexagon) is scaled down, the mathematics behind the CAD model will 

increase in complexity to maintain the relationship among the features in the model. This 

may cause problems when the facets of the models do not align properly. In turn, it will 

create holes and unwanted articles in the models themselves. In a chain reaction, the 

results of the manufactured CAD models will be either unacceptable or failed parts. It is 

beyond the scope of this thesis to further investigate these phenomena.  

 

Another reason for choosing to progress further with the grid design is the 

geometric shape of the grid design. It is easier to analyze a square than a non-right angle 

hexagon. Once the analysis of the deformation for the grid is accomplished, the 

mathematics can be extrapolated to the hexagon. The next chapter describes the math. 
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CHAPTER 4 

IT IS THE PRINCIPLES BEHIND THE MATH 

 

 This chapter will analyze the kinematics of the grid matrix developed in the 

previous chapter.  The final grid matrix design, comprised of modular unit cells, is shown 

Figure 4.1. 

 

 

Figure 4.1: Crust Matrix 
 

  The matrix consists of rigid connections between each unit cell.  If one unit cell 

moves, the connecting unit cells will deform as well. Therefore there is a coupling effect 

inherent in the structure’s deformation, as shown in Figure 4.2.  
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Figure 4.2: Actual Crust Matrix Deforming 
 

 The shape in Figure 4.2 is at the lowest energy state of the matrix based upon the 

external inputs and geometric design of the matrix. In this case the external inputs are the 

pressure of the fingers applied at various locations. The geometric design consists of the 

individual unit cells that are connected to form the matrix. 

  

 To illustrate how the Digital Clay crust can be used for modeling, we present a 

model of an automotive front end. The designer can manipulate 12 independent inputs to 

control various aspects of the front end’s shape as seen in Figure 4.3.  A formable crust 

design is used to model the hood.   
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Figure 4.3: Low Degree-of-Freedom Car Hood Model 
 

 The crust is manually actuated using 1 DoF levers.  The levers amplify the 

inputted user displacement and control the crust surface through the beams shown in 

Figure 4.4 and 4.6.  This allows the flat surface of the crust to morph into various car 

hood designs. For clarity, not all levers and compliant mechanisms are shown in the 

Figures.  A formable crust is attached to the beam and column tops.  As one can see, even 

though only one unit cell is actuated, the neighboring cells will deform as well. 
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Figure 4.4: Deformation of Car Hood Model 
 

The user can control the hood shape by manipulating the positions of points on 

the hood.  The motions of many of these points are coupled due to the rigid linking of the 

unit cells. The objective is for the crust to start as a flat surface that can morph into 

various hood designs of high-end sports cars, such as the Lotus, Ferrari, and Corvette, 

sketches of which are shown in Figure 4.5.  The morphing of the crust can be controlled 

by changing the points that are actuated. 

 

Figure 4.5: Morphing of the Car Hoods 
 

To connect the inputs to the crust, a set of compliant mechanisms was integrated 

with the beams that are connected to the crust.  The arrangement of columns and beams 

to control positions of points on the crust is shown in Figure 4.6.  

 Lotus  Corvette  Ferrari 
Flat 
Surface 
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Figure 4.6: Car Hood Frame 
 

The two front corner columns are fixed, while the other columns can be vertically 

displaced and flexed laterally when necessary to produce smooth surfaces.  The beams 

ensure longitudinal symmetry of the hood, which can be seen in Figure 4.6b.  Each beam 

will be driven vertically by one compliant mechanism.  The two columns at the top of the 

hood (hood-windshield joint) are coupled by another beam (not shown).  The crust 

consists of a 14-by-18 array of spherical joints (Figure 4.6b) that are spaced 12.7 mm 

apart to give an overall size of about 177.8 –by- 228.6 mm (7 X 9 inches). 

 

Covering the crust will be a flexible skin.  The actuators and columns will be 

rigidly attached to a base.  We have considered adding a windshield and fenders (non-

formable) to complete the model, but at this stage the hood will be enough to demonstrate 

the deformation of the crust.   

 

b)  top viewa)  frame with columns and beams
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 The car hood model is only one example of how the deformable crust matrix can 

be used.  There are various other applications for the Digital Clay crust matrix. The 

question is, which points or unit cells of the crust matrix need to be actuated and how 

much control is necessary to create the various desired surfaces (e.g., car-hood models)?  

This chapter will discuss two methods for predicting the deformation of the crust.  Both 

methods form their prediction using the system constraints, material properties, and 

magnitude and location of the points actuated.  

 

 For both methods, the inputs to the system are the Z coordinates of the centers 

from various unit cells in the matrix. Figure 4.7 shows an example of how the Z-height 

input can affect the links. Since the link is rigid, it cannot stretch as seen in the figure. 

 

     Figure 4.7: 2D Example of Input 

 

 In addition, because of the coupling between each cell and its neighbors, it is not 

necessary for all the Z-heights to be inputted for the program to find all of the coordinates 

of the center-points for every unit cell.  Even if all the Z-heights are known, there is still 

Z height
input

Z height
input

(x1,z1) (x2,z2)

(x3,z3)
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not have enough equations to fully describe the surface. For every Z-values there are two 

unknowns-- X and Y values. Based on this fact, the system is under-constrained. To solve 

this problem, the two methods will use an iterative process that searches through various 

combinations of cartesian coordinates for the lowest possible potential energy of the 

system while maintaining the constant length between two unit cells. The basic structure 

of both methods is as explained in Figure 4.8. 

 

Cartesian Coordinates

User Inputs
System constants:

matrix dimensions, geometric
constraints, and material properties

Z-heights:
quantity, location, and magnitude

Iteration Process
Search for the positions of centerpoints.
Considers length constants
Minimizes the Potential Energy

 

Figure 4.8: Basic Structure of Both Methods 

 

 The first method uses an abstract model of the matrix of unit cells as seen in 

Figure 4.9. The balls represent the center points of the unit cells in the matrix. The lines 

that connect the balls represent the rigid links between the cells.  As the surface deforms 

the balls move and the ends of the links are free to pivot about the balls. Rotational 

springs are used to model the stiffness of the compliant joints in the unit cells. The spring 

constant is an average stiffness value of each compliant joint. 



 62

 

Figure 4.9: Method 1-- Abstract Model 

 

 The second method is a more accurate representation of the crust model that 

better represents the manufacturable shape and behavior of the formable crust. The model 

uses two different stiffness values to represent the two different joint designs for each 

unit cell. Figure 4.10 shows where all the springs are located for one unit cell in the 

model used by the second method. Joints 1 and 3 have the same stiffness value while 

Joint 2 has a different value.  

 

Figure 4.10: Springs for One Unit Cell 
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Now that both two methods are introduced for predicting the shape deformation 

of the crust matrix based upon several parameters, the math will be explained.  The 

results will be the cartesian coordinates (x,y,z) for the centers of every unit cell in the 

matrix. In the following sections, the first set of sections will be discussing principles and 

pseudo-code for the problem formulations, flow charts, and algorithms for the Method 1. 

This will be called Part 1: Method 1. The second set will be discussing about Method 2. 

This will be called Part 2: Method 2. Then the third will be about the forward and inverse 

statics. Following the third set is one section discussing about the number of unknowns, 

number of equations, and Degrees-of-Freedom for both methods.   
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PART 1 METHOD 1: ABSTRACT FORMABLE CRUST MODEL 

 

Below is a flow chart for the first method. The numbering on the right side 

denotes the section that will explain the block. Following the flow chart is a step-by-step 

description of the algorithm used in the first method. 

 

energy_mimimize

Iteration: 4.7

P(x,y,z)  of  cells

calculate P.E : 4.6

Constraints: 4.5

P.E. Mimimizes: 4.7

mxn matrix

 minimal P.E.
P(x,y,z)

Calculating the cartesian coordinates

 Initial Guess:4.4

interpolate: 4.4

User Inputs: 4.3

 

Figure 4.11: Flow Chart of Method 1 
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Zf 3,3

Xf 4,1

Yf 1,5

(Xf 1,1 ,Yf 1,1 ,Zf 1,1)

dist

m n
 

Figure 4.12: Example of matrix initial conditions   

 

Note that only the P1,1 corner point has fixed X, Y, and Z values. 

 

Given:  

m-by-n = size of matrix of unit cells center points in a uniform 2D grid 

Zf i,j = fixed Z  value of the center-points for the [i,j] cell 

Xf i,j = fixed X value of the center-points for the [i,j] cell 

Yf i,j = fixed Y value of the center-points for the [i,j] cell 

dist = distance between two center points  

k = average stiffness value of all the joints in the matrix 

 

Find: Pi(x,y,z)= center-points of every unit cell in the matrix 
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Satisfy: i i+1P -P =dist           (Equation 4.1) 

where Pi and Pi+1 are adjacent unit cell centers and Equation 4.1 holds for every 

pair of adjacent cells. 

Minimize: 
*

2

i=1

1P.E= * ( )
2

id ir

m n

k θ θ−∑       (Equation 4.2) 

            where θid and θir are the angles between two center-points with d= after 

deformation of the matrix deformation  and r = rest  or before deformation. 

θi+1,d

θir

θid

θi+1,r θi+2,d

θi+2,r

 

Figure 4.13: the Angles Between Two Center-points 

 

Algorithm:  

1) Initialize an m-by-n matrix with the fixed cells at Zf i,j, Xf i,j , Yf, i,j and all other cells at 

their natural, un-deformed location.  Figure 4.12 shows an example of an initial 

configuration of a matrix. 

2) Create the initial guess vector of unknowns: x0 

a) Linearly interpolate between the fixed Zf i,j values.  

b) Place all coordinates into the x0 vector  
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3) Iterate to find minimum energy combination of the cartesian coordinates 

a) Minimize total P.E. (Potential Energy) while also satisfying the length constraints 

and the Zf i,j, Xf i,j , Yf, i,j constraints. 

(1) Calculate P.E. of the angles between all adjacent Pi and Pi+1. 

(2) Compare P.E. values from previous results. 

(3) Calculate length between all adjacent Pi and Pi+1 to check the length 

constraint. 

(4) Check the Zf i,j, Xf i,j , Yf, i,j constraints. 

(5) Modify guesses 

4) Output the Pi(x,y,z) of all the unit cells 
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4.1  Referencing Notation 

 Before presenting the math, the notation for referencing cells in the crust matrix 

will be discussed. Figure 4.14 shows a matrix of balls that represent the center points of 

each unit cells. Figure 4.14 also demonstrates how each cell in the matrix is referenced. 

One way is through cartesian coordinates of their center-points.  A second way is by their 

chronological sequence in the matrix (e.g. P14). A third way is to reference to the rows 

and column location of each cell: Pi,j, where i and j denotes the row and column 

respectively.  For example, P14 means the same thing as P3,4. The type of referencing used 

will change based upon convenience and what context it is used in.  
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Figure 4.14: Counting Convention 
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4.2 The Principles Underlying the Formable Crust Models 

 The two methods mentioned earlier have similarities in how they approach the 

problem. First we will discuss the mathematical principles behind Method1. Method 2 

will follow Method 1. The organization of the principles is based upon the previous 

mentioned flow chart: Figure 4.11. 

 

4.3 Constraints From User Inputs (Method 1: “User Inputs” Block) 

 For all cases, the first cell, P1, will always be fixed at (0,0,Zf 1,1). The Zf 1,1 is 

either zero or any value that the user inputs. At every corner including the first cell, all 

the z values are also constrained at either ‘0’ or any value specified by the user. For 

example, in Figure 4.15 the user has specified several Z-heights at P13 and P5, which 

become additional constraints. Also the upper left X- coordinate, P16 in Figure 4.15, and 

the lower right Y- coordinate, P5, are fixed at zero or at the user specified value.   
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Figure 4.15: Inputting Z-heights 
 
 



 70

4.4 Line Interpolation (Method 1: “Interpolate” block) 

 Once the constraints are added, the balls, representing the center-points of the unit 

cells, are moved to create a linear interpolation between two constraining coordinates. 

This interpolation becomes the initial guess of the deformed state for the minimization 

program.  Because it is difficult to show the interpolation for a 3D matrix, the 2D 

example in Figure 4.16 will demonstrate how the linear interpolation works. 

 

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3) (x4, y4, z4)

(x5, y5, z5) (x6, y6, z6)

 

Figure 4.16: Line interpolation 

 

 Linear interpolation of the unknown variables improves the initial guess of the 

unknowns. In most numerical methods, which use iterative methods to find a minimum 

or maximum of a system, a good question to ask is: is the result a global or a local 

minimum? By using linear interpolation, the initial guess is placed closer to the global 

minimum. Therefore the program will converge faster and be more likely to converge 

toward a global minimum. 
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4.5 Constraints (Method 1: “Iteration” Block) 

 Constraints are equations that limit the iteration process from deviating far from 

the correct answer. Below are two types of constraints. 

 

4.5.1 Length Constraints 

 Since each cell is rigidly linked, the distance between any two unit cells is 

constant. Therefore, the calculated length in either the x or the y direction minus the user 

specified constant distance, “dist”, should equal a number that is either zero or close to it: 

 

1) Length constraint in the x-direction 

a) Lx= (Xi,j- Xi+1, j )2 + (Yi,j- Yi+1,j)2 + (Zi,j- Zi+1,j)2 –dist2 =~0  (Equation 4.3) 

2) Length constraint in the y-direction 

a. Ly= (Xi,j- Xi, j+1 )2 + (Yi,j- Yi,j+1 )2 + (Zi,j- Zi,j+1 )2 –dist2 =~0  (Equation 4.4) 

With ‘i’ representing the rows and ‘j’ representing the columns 

Dist= the inputted distance value between two unit cells 

X, Y= cartesian coordinates for the unit cells 

 

4.5.2 Coordinate Constraints 

 Based upon the user inputs and the embedded constraints, several of the 

coordinates are constrained. Below are equations that constrain the coordinates. Any 

variable with the subscript “f” denotes a fixed coordinate value that should be 

constrained. The variable without the subscript is the one that the iteration process 

calculated: 
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X-Coordinate Constraints   

 , , 0f i j i jX X− =        (Equation 4.5) 

Y-Coordinate Constraints         

 , , 0f i j i jY Y− =         (Equation 4.6) 

Z-Coordinate Constraints         

 , , 0f i j i jZ Z− =         (Equation 4.7) 

    

4.6 Calculating Energy (Method 1: “Iteration” Block) 

 The deformation of the crust matrix is predicted by minimizing its potential 

energy. As previously mentioned in the introduction of this chapter, the first method 

models the matrix as a system of springs, rods, and balls. These rotational springs 

connect two rigid links together, causing the links to become pivoting rods. The stiffness 

value is the average of the stiffness value in the system. The equation for calculating the 

energy is already mentioned in Equation 4.2 and will not be repeated here.  

  

 To calculate the energy, several variables need to be known. They are the stiffness 

value, the angles, and the positions of the center-points of the unit cells. They are derived 

in the following sections. 
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4.6.1 Finding the Stiffness Value 

 From the previous section, calculating the potential energy requires knowing the 

stiffness value, k. For one unit cell there are two k values because there are two different 

joint designs as seen in Figure 4.17. 

 

Figure 4.17: The Two Different Joint Designs 

 

 To study each stiffness value, the joints are “cut-up” or individually modeled and 

manufactured in the stereolithography material that is being used for manufacturing the 

crust.  The k values are then found through performing several experiments.  

 

 

Figure 4.18:  Joint A (Left) and Joint B (Right) 

joint A
joint A

joint B
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4.6.1.1 The Experimental Set-up 

The set-up uses the Instron Universal Material Testing Machine as seen in Figure 

4.19 with the three images. 

 

 

Figure 4.19: Experimental set-up for Finding Stiffness 

  

The first image is the Instron Testing Machine. The second image is a zoom-up of 

the attachment piece that applies the force to the specimen being tested. The Instron is 

also connected to a computer that reads the force versus the displacement of the specimen 

as the force is being applied. The last image is a diagram of how the force is being 

applied to one of the specimens while the specimen is being attached to a base. The 

maximum displacement is 10mm from the starting position.    

 

4.6.1.2 Joint A (Larger Joint) Design and Results 

 As previously mentioned, the joints are individually modeled so that they can be 

tested independent of the other joints. The dimensions for joint A are seen on the left 

image in Figure 4.20. The free-body diagram is on the right of joint A as it is being set-up 

and tested. For this case, the test is performed vertically where the specimen is attached 

to the sidewall of the base. 
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FA

θ1

θ2

P

δL

b

R

Ho

(Ho - δ)

a

Figure 4.20: Set-up for Joint A 

 

The mathematics is as follows for finding the torque based upon the force versus 

displacement values. From the torque, we can find the stiffness value for joint A. 

 

Definition: L=Length of the axial arm 

δ (mm) = The displacement value/s as the force is being applied to the specimen 

FA (N) = The force that is being applied to the specimen 

θ1 = The original angle between two arms before deformation 

θ2 = The rotational angle between the arms 

Ho= Beginning height of the axial arm where the force is being applied 

P= The horizontal length from where the force is being applied (Constant Value) 

R= The responding horizontal length that changes with the force 

Angle a= Original angle from axial arm to horizontal plane before deformation 

Angle b= rotational angle of axial arm measured from horizontal plane. 
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Given: L= 38.1mm, δ , FA, θ1 

Find: T=Torque 

Equations: 

 Ho= L*sin(a)        (Equation 4.8) 

1 Ho -b sin
L

δ−  =  
 

       (Equation 4.9) 

2θ 90 b= +                  (Equation 4.10) 

ATorque=P×F                  (Equation 4.11)   
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From the equations and the data, we can find the torque. From the torque we can 

find the stiffness based upon the slope of the torque graph. Figure 4.21 is an example 

graph for the torque and the linear fitting line for the torque.  

 

Finding Stiffness for Large joint
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Figure 4.21: Finding Stiffness for the Joint A—the Larger Joint 

 

 From Figure 4.21, the fitting equation is y= 0.1513x-0.0018 with R2=0.9979. This 

means that stiffness value is 0.1513 Nm with the y-intercept of –0.0018. After 9 

experimental runs, the average stiffness value is about 0.1348 Nm. (See Appendix A)
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4.6.1.3 Joint B (Smaller Joint) Design and Results  

 Similar to Joint A, the dimensions and the free-body diagram are shown below. 

 

FA

L θ1

θ2

Ho

(Ho - δ)

P
R

 

Figure 4.22: Set-up for Joint B 

  

 For this case, the joint is attached horizontally on top of the base and the force is 

applied as shown. Again we will find torque first and then find the stiffness. 

 

Given: L= 38.1mm, δ , FA, θ1, Ho 

Find: T=Torque 

Equations:  

Ho= L*sin(θ1) (Equation 4.13) 

1
2

Ho -θ sin
L

δ−  =  
 

 (Equation 4.14) 

ATorque=P×F  (Equation 4.16) 
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Similar to joint A, the torque is found from the equations developed above and the 

experimental data as seen in Figure 4.23. From the torque, the stiffness can be found by 

fitting a trend line through the points. 

 

Finding Stiffness for Small Joint

y = 0.0177x + 0.0009
R2 = 0.9828

0

0.002

0.004

0.006

0.008

0.01

0.012

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Change in Angle: θ1−θ2  (Radian)

To
rq

ue
 (P

 X
F)

(N
m

)

Torque VS Angle
Linear (Torque VS Angle)

 

Figure 4.23: Finding Stiffness for Joint B (smaller Joint) 

 

The linear fitting line shows that the stiffness value for this particular specimen is 

0.0177 with the R2 value of 0.9828. After 6 experimental runs, the average stiffness 

value for 4 of the experimental runs for joint B is 0.01635 Nm. Two of the runs were 

outliers and were thrown away. (See Appendix A) 
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4.6.1.4 Effect of k  

 After finding the k values, how does the value of the k’s affect the results? The 

effect of k can be determined analytically and numerically and be verified by performing 

various runs of the two methods. For Method 1, the value of k does NOT have a 

significant effect on resulting deformations. For finding a local minimum of any function, 

the derivative of the function needs to be zero. For this problem we are searching for 

minimum energy stored in the system. When taking the derivative of the potential energy 

equation with respect to the variables that are being minimize (eg. Xi,Yi, and Zi of the 

center-points) for Method 1, the constant k value can drop out as seen in Equation 4.17. 

This makes sense because the constant k value is a scaling factor that does not affect the 

location of the minima of the energy function. As a reminder, the Xi,Yi, and Zi of the 

center-points are embedded in the θi coefficients. These variables determine the θi values 

as shown in earlier sections.  

 

( )2
id

1 *k*
2

xi
0irθ θ ∂ − 

 
∂

∑ =                (Equation 4.17) 

 

After explaining the analytical reasoning, now we will discuss the effect of the k 

value on the numerical algorithm for finding the minimum of the problem. For Method 1 

the k value is an amplitude that can be moved out of the summation term as shown in 

Equation 4.17. Similarly for matrices such as the Jacobian or the Hessian, the k value can 

be moved out of the matrix. The Matlab algorithm uses the Jacobian and the Hessian 

matrices to find the direction of the search vector to where the minimum is thought to lie.  
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The k will act like a magnification that lengthens the search vector direction. It does not 

improve the speed of convergence and does not change where the minimum is thought to 

lie. If the k=0, then there isn’t a search vector direction for the algorithm to search for. 

Setting k=0 will create an error in the algorithm. The sum of potential energy will be 

amplified by the value of k. With different k values, the same minimum point can be 

found except the total energy at that point will be different.  Of course, the specific values 

of k will become more important of nonlinear effects are taken into account. 

 

Figure 4.24 shows the different results with different k values for a 4-by-5 matrix 

with two inputs. 

 

Figure 4.24: 4-by-5 Method 1 K Test. K=1(1st image). K=100 (3rd). K=1000 (4th) 

 

If the values of the results from Figure 4.24 are compared, their differences are 

negligible.  

 

Since the k value does not matter, is it necessary to use energy minimization to 

find the position of the center-points based upon a handful of inputs? Answer: No. This is 

an under-constrained system with several fixed values. Within the system are length 

constraints that restrict the distance between any two unit cells. The purpose is to find all 
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the coordinate locations of every center-point of the unit cells. One possible solution 

without using a system of springs is applying a surface-fitting algorithm to fit to the input 

X, Y, and Z coordinates. The surface-fitting algorithm could be to a least squares 

regression algorithm for interpolating polynomial surfaces of various orders. The greatest 

challenge is applying the length constraint which makes the algorithm not a direct 

process but an iterative guessing process until the length constraints are satisfy within 

reasonable error values.. However it is beyond the scope of this thesis to further develop 

this idea. 

 
For Method 2, there are two k values. These values do have an effect on the 

deformation as shown in Equation 4.18.  

 

' 2 ' 2 ' 21
1 1 3 3 2 2

2

1 * ( ) ( ) ( )
2 0p p p p p p

i

k
k

x

θ θ θ θ θ θ
  

 ∂ − + − + −   
  

∂

∑
=            (Equation 4.18) 

 

As one can see, the Method 2 energy equation is re-arranged by dividing the first 

summation by the k2  value; then taking the derivative with respect to a Xi value. For this 

case the 1

2

k
k

 cannot be removed because it is only part of one term in the summation. As a 

reminder, k3 from the energy equation (not shown in Equation 4.18) is an arbitrary large 

number that would guide the iteration process from deviating from the given constraints. 

Like Method 1, k3 can be moved out of its summation term and be removed. It does not 

guide the convergence as much as the other k’s would. However it will affect the total 

potential energy value as explained in previous sections. Figure 4.25 shows the different 
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results from the different combination of k values using the same coordinate inputs and 

constraints. Again the units are not important if all the inputs use the same units. 

 

Figure 4.25: K1=100; K2=500 (LT). K1=500; K2=500 (M). K1=100; K2=1000 (RT) 

 

With just visual inspection, all the graphs look the same. By comparing the actual 

coordinate values, there is a 1/100 difference in the coordinate values. However, the k1 

and k2 values are not as important as the ratio of these two values as shown in Equation 

4.18. For an example, k1= 10 and k2=100. The ratio of the two k values is 10/100 = 1/10. 

That means that as long as the ratio of the k values is maintained, different runs with 

different k values with the same constraints will have similar (if not the same) 

deformation results. Refer again to Figure 4.25 for examples except change the values of 

the ks to k1=100 k2=500 (Left) k1=10 k2=50 (Mid) k1=1 k2=5 (Right). The resulting 

coordinate values do change, but by the factor of 1/1000. The difference is less than the 

previous example. 

 

4.6.1.5 Stiffness Ending Remarks 

 After finding both stiffness values for the two joints in the unit cell, the equation 

for calculating the potential energy for the system is complete. The first method uses a 

simplified model, with only one spring per unit cell. Therefore, we will use the average 
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stiffness value from both joints in method 1. The average value is 0.0756 Nm. However, 

the second method uses both stiffness values and is more complex but more accurate. 

 

4.6.2 Calculating the Angles from the Position Coordinates 

 The angles for Method 1 are the angles between two rigid links as seen in the 

previous images in Figure 4.9 and 4.13. As they deform, not all the angles stay 180 

degree or π.  Since the rigid links can be seen as vectors, we will apply ATAN2 to 

calculate the angles between any two vectors. For a matrix of any size, the angles are 

arbitrarily calculated first in the x-direction then in the y-direction. Since the 

deformations are in the Z-axis direction, the calculation will use the z values from each 

position coordinate.  The -π value insures that the angle we are measuring is below the 

surface of the matrix.  

 

Angles in the X-directions 

i,j , 1, , 1,

1, 2, 1, 2,

X = atan2 ,

atan2 ,

i j i j i j i j

i j i j i j i j

Z Z X X

Z Z X X

π − −

− − − −

 − + − − 
 − − − 

              (Equation 4.19) 

Angles in the Y-directions 

i,j , , 1 , , 1

, 1 , 2 , 1 , 2

Y = atan2 ,

atan2 ,

i j i j i j i j

i j i j i j i j

Z Z Y Y

Z Z Y Y

π − −

− − − −

 − + − − 
 − − − 

               (Equation 4.20) 

 

4.7 Iteration Process (Method 1: “Iteration” Block) 

  The iteration process applies a “search and calculate” process. The search for a 

minimum energy position of the unit cells starts by following a gradient path. Then the 
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potential energy of the matrix is calculated at the end of the path. Next, this value is 

compared to the previously calculated potential energy at the end of the previous path. 

One successful iterative process that we found is the “Fmincon” process. “Fmincon” is a 

pre-packaged MATLAB minimization program that searches for the minimum of a 

constrained nonlinear multivariable function by computing a sparse finite-difference 

approximation to the Hessian Matrix (Mathworks, 2004).  For this case, “Fmincon” will 

search through various combinations of cartesian coordinates to find the minimum 

potential energy of the system based upon the initial guess. Second if “Fmincon” is 

supplied a series of nonlinear constraints, such as the constant length of the unit cells, the 

Hessian matrix will be restricted by using another matrix of equations while searching for 

feasible answers (Gill, et. al, 1981).  ‘Fmincon’ is best described as two steps: 

‘Determination of a Direction’ and ‘Line Search Procedure’. Below is a simple overall 

summary of the math. It is beyond the scope of this project to decipher the math behind 

these two steps.  

 

4.7.1 Determination of a Direction using the Hessian Matrix 

  The Hessian matrix contains the second partial derivatives of a function at various 

unknown variables. For this case the function is the Potential Energy equation with the 

unknowns coordinate values. The Equation 4.21 describes the Hessian matrix.  The 

matrix be positive definite to insure that the line is going in the right direction. “Hessian, 

H, is always maintained to be positive definite so that the direction of search, d, is always 

in a descent direction” (Mathworks). For every small step in the direction, d, the potential 

energy function will decrease in magnitude. 
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            (Equation 4.21) 

 

4.7.2 Line-Search Procedure  

‘Line-Search Procedure’ is done by following along the line created by the 

Hessian matrix and searching for the location that is at the lowest value. 

 

4.8 Ending Comments for Method 1 

 Using the principles mentioned above, the minimal cartesian coordinate positions 

for every unit cell in the matrix of any size can be calculated. The joint angles can also be 

calculated after determining the cartesian coordinate position by applying the joint 

calculation process that will later be explain in Part 2: Method 2 of this chapter. 
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PART 2 METHOD TWO: ACTUAL MANUFACTURABLE CRUST MODEL 

  

Unlike Method 1, which uses an abstract model of the crust, Method 2 computes 

the shape of the actual manufacturable, formable crust. Inverse and forward statics and 

spherical coordinates matrix manipulations are used to find all the unit cell positions and 

the crust shapes. Below is the flow chart with S.C and C.C standing for spherical and 

cartesian coordinates respectively. All other notation has already been defined in previous 

sections. Following the chart is the step-by-step algorithm formulation for Method 2. 
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Iteration: 4.7

mxn matrix

ANGLES CALCULATION

S.C. -> C.C.  of  n's & v's: 4.12

Corners/edges P (x,y,z): centerpoints

(φn,θn ,θv)

φn, θn , θv

Calculating the spherical coordinates

Results

vertices of unit cells : 4.16

Potential Energy of Joints: 4.14 Potential Energy of Z-input: 4.14

Cartesian Coordinates-> Spherical: 4.9; 4.10

Initial Guess: 4.10

Interpolation: 4.10

User Inputs: 4.3

ENERGY MINIMIZATION

Joint Angle Calculation: 4.13

S.C. -> C.C.of  n's & v's: 4.12

Create Relationship Among S.C. Values: 4.11

(φn,θn ,θv)

 
Figure 4.26: Flow Chart of Method 2 
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Given: m-by-n ,Zf i,j ,Xf i,j ,Yf i,j ,dist , L1,  L3,  La, 1 2 1 2, , ,α α β β , k1, k2, k3, 1pθ , 2 pθ , 3 pθ  

New Given variables not previously explained: 

k1= stiffness value of Joints 1 and 3 (see Figure 4.10) 

k2=Stiffness value of Joint 2 (see Figure 4.10) 

k3 = arbitrarily large stiffness value to control the Z-heights 

1pθ , 2 pθ , 3 pθ = Joint angles of the structure in its undeformed state.  1pθ  

refers to the angle at Joint 1 in Figure 4.10;  2 pθ  refers to the angle 

at Joint 2 in Figure 4.10; and 3 pθ  refers to the angle at Joint 3 in 

Figure 4.10.  Note that this set of 3 angles repeats itself 4 times in 

each unit cell.  Therefore index “p” runs from 1 to 4*m*n where m 

is the number of rows and n is the number of columns in the 

matrix. 

L1, L3, La, 1 2 1 2, , ,α α β β =Geometrical constants for the 3-D structure.  

These will be explained later. 

 

Find: Pi(x,y,z)= center-points of every unit cell in the matrix 

 

Satisfy: Zf i,j ,  Xf i,j, , Yf i,j Where these constraints remain fixed values;  

distance constraints  
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Minimize: 

4* *
' 2 ' 2 ' 2

1 1 1 2 2 2 1 3 3
1

' 2 ' 2 ' 2
3 (i,j) (i,j) (i,j) (i,j) (i,j) (i,j)

1 1

1P.E= * ( ) ( ) ( )
2

1 * ( ) ( ) ( )
2

[ ]
m n

p p p p p p
p

m n

f f f f f f
i j

k k k

k X X Y Y Z Z

θ θ θ θ θ θ
=

= =

− + − + −

 + − + − + − 

∑

∑∑

                    (Equation 4.22)  

'
1iθ , '

2iθ , '
3iθ = Joint angles of the structure in its final, deformed state.   

Notation is similar to undeformed angles described above. 

Xf i,j’= Calculated X-height of the center of the unit cell in the ith-row and jth-column 

Yf i,j’= Calculated Y-height  

Zf i,j’= Calculated Z-height 

 

Algorithm: 

1) Initialize the m-by-n matrix with the fixed cells at Zf i,j, Xf i,j, Yf i,j and all other cells 

set at their natural, un-deformed state based upon the user inputs (see Section 4.3 ) 

2) Calculate nG  and vG -vectors in Cartesian Coordinates  

(The meaning of these vectors will be given later) 

3) Convert Cartesian Coordinates (C.C.) => Spherical Coordinates (S.C.)  

4) Linearly interpolate to develop the initial guess, x0  
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5) Iterate to find the minimum energy state 

a) Energy minimization  

(1) Create Relationship among S.C. values 

(2) Convert back to C.C. 

(3) Apply Inverse Statics using L1,  L3,  La, 1 2 1 2, , ,α α β β  

(4) Calculate P.E. of the joints 

(5) Compare P.E. values from previous results  

(6) Modify x0 of S.C  

b) End Loop 

6) Results from the iteration are the S.C. of nG  and vG -vectors 

7) Convert S.C.=> C.C. 

8) Find P(x,y,z) by applying dist, L1,  L3,  La, 1 2 1 2, , ,α α β β  
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4.9 Spherical Coordinates (Method 2: Interpolation and Initial Guess) 

 Unlike Method 1, Method 2 uses spherical coordinate values instead of Cartesian 

coordinates. Below is the explanation that would lead to understanding about the 

interpolation process and the reason for the variables in the initial guess matrix. 

 

The formable crust matrix consists of a series of nG and vG  unit vectors that 

completely determine the cartesian coordinates of all the centerpoints, links, and joints 

for every unit cell in the matrix. Figure 4.27 shows all the vectors for a 1-by-3 matrix of 

unit cells. The detailed image shows that the nG -vectors are the normal vectors to the 

triangular faces of the unit cells. The vG -vectors originate from the center of a unit cell 

and point toward the centers of all adjacent unit cells. They always lie in the  planes of 

the triangular faces, called linking triangles.  Note that the nG -vectors are always 

perpendicular to the vG -vectors. By specifying the elements of these vectors and knowing 

a few geometric constants, the coordinates of any point on any of the unit cells can be 

calculated. Both the nG  and vG -vectors consist of three unknowns (x,y,z). For just 2 unit 

cells, there are 8 vG -vectors and 8 nG -vectors, giving a total of (8+8)*3= 48 unknowns. 

One method to reduce the number of unknowns is to use spherical coordinates. 
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Figure 4.27: The nG  and vG -vectors 

 

When converting the unit vectors from cartesian to spherical coordinates, the 

number of unknown variables is reduced. Instead of using the cartesian variables (x,y,z), 

Figure 4.28 shows how to define a vector using three different parameters: φ, θ, and 

length r. If the vector has unit magnitude, the number of unknowns can be reduced since r 

always equals one. 
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Figure 4.28: Spherical Coordinates 
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Figure 4.29 shows how the  spherical coordinates are used to define the vectors in 

the detail of Figure 4.27.  Note that the linking, triangular face of the unit cell is included 

in the drawing.  The 3nG  vector is specified by two coordinates, θn and φn  similar to the 

pG -vector in Figure 4.28. Since the vG -vectors are always perpendicular to their 

corresponding nG -vectors, it is only necessary to specify one parameter for the vG -vectors. 

This one parameter appears as the θv value in Figure 4.29. θv value will change as the 

matrix twists and deforms. This automatically reduces the number of unknowns the 

computer needs to find for Method 2.  The intermediate coordinate system, i”,j”,k”, will 

aid in this coordinate transformation. This intermediate coordinate system is defined such 

that the 3nG  vector is colinear with the k” direction and the 3vG  vector lies in the i”-j” 

plane.    
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Figure 4.29: Example of Spherical Coordinates 
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From this explanation for why we using spherical coordinate instead of cartesian 

coordinates, below are the rest of the principles for Method 2 that uses the spherical 

coordinates. 

 

4.10 Initial Guess (Method 2: Interpolate and Initial Guess) 

From the givens, we can develop the Initial Guess vector of what n i
G  and  vi

G  

vector values may be by using only spherical coordinates [φ,θ]. As previously stated, 

spherical coordinates can reduce the number of variables that needs to be iterated. 

Originally all nG  unit vectors are [0,0,1] in the cartesian coordinate and all vG unit vectors 

are in their cartesian directional vector. Equation 4.23 is a sample of the coordinates for 

the vG unit vectors of one cell. This sample can be duplicated based upon the numbers of 

cells in the crust matrix. 

 

( ) ( ) ( ) ( )1 2 3 4[v ; v ; v ; v ] 0, 1,0 ; 1,0,0 ; 0,1,0 ; 1,0,0 = − − 
G G G G            (Equation 4.23) 

 

As previously described, one of the givens are the Zf i,j points, which are the user 

specified heights of several of the unit cells. The initial guess requires interpolating 

between any two fixed Zfi,j  points.  
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Since graphically explaining interpolation for a matrix is too complex, Figure 

4.30 is a 2D example of an interpolation for one row. 

 

φ
Z-input1st

unit cell

5th
unit cell last

unit cell

 

Figure 4.30: Interpolation From Z-input 

 

For Figure 4.30, the first, fifth, and last z-values of the related unit cell are 

constrained. The fifth z-value is constrained by a Z-height input value.  Similar to 

Method 1, the unit cells in between should follow the straight line between two z-

constraints. The difference between the two interpolation styles is in the nG  and vG  vector 

values. Instead of cartesian coordinates, these values start off as spherical coordinates. 

 



 97

Sub-Step 1:  

Calculate the angle of deformation, φ, between two Z- constraints. 

 

( )
( )

f f-11
i

f f-1

Z -Z
sin

Cell Cell *dist
φ −  

= −   − 
               (Equation 4.24) 

f= 2, 3,…# of inputs+1 

Zf  i,j= current fixed Z heights 

Zf-1 i,j= previous fixed Z heights 

Cellf  i,j = The cell where Z heights are currently fixed 

Cellf-1 i,j = The cell where Z heights are previously fixed 

 

 

Sub-Step 2:  

After calculating the  φi's  all  the new nG ’s are 

 

i
in

0
φφ

θ
  

= =   
   

G               (Equation 4. 25) 

 

The θ are still all zeros because the nG ’s are not rotated laterally only 

longitudinally. The vG ’s values remain the same before and after deformation.  If any of 

the cells has a fixed x or y cartesian coordinate, the φi's  for the normal vectors of that cell 

will not be part of the unknowns in the Initial Guesses vector. For example in Figure 
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4.31, if the x-coordinate of the center-point for the unit cell shown is fixed, then both the 

φ for nG 2 and nG 4 are a fixed value that will not be part of the Initial Guesses vector. 

 

v4

+J

n1

n3

n4

v1

+I

v3

+K
n2+Z

+Y +X

  

Figure 4.31: nG  and vG -vectors for One Unit Cell 

 

The unknowns from the Initial Guesses vector will be the variables that  the 

iteration process will be determining for calculating the potential energy in the system 

with the joint angles. 

 

4.11 Duplications (Method 2: “Create Relationship” Block) 

 We can take advantage of the symmetries within the matrix of cells to simplify 

the analysis by deriving the relationship between the cartesian coordinates of the vG  and 

nG vectors. These symmetries create duplications of the variables. Below are explanations 

of the duplications:  
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Figure 4.32: Linking unit cells 

 

1) The unit normal vectors of any triangles that are rigidly linked together will always 

point in the same direction, as seen in Figure 4.32. We can call these values “identical 

twins.” 

a. a bn n=
G G                  (Equation 4.26) 

 

2) For every vG -vector that radiates out toward the edge of a linking triangle, there is an 

equal and opposite vG -vector on the neighboring cell. We can call these vectors “mirror-

image twins”: 

a. a bv v= −
G G                  (Equation 4.27) 

 

 Using these properties the number of unknown variables can be reduced: once one 

variable is found, the twin of the found variable can easily be calculated. When the 

number of unknown variables is reduced, the number of iterations or guesses that 

computer has to perform is reduced. This will also increase the calculation speed. The 

properties can also be used as a check on the accuracy of the guesses.  The calculated 

values can be compared to each other to determine the accuracy of the calculation.
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4.12 From Spherical to Cartesian (Method 2: Inside Iteration Box) 

 Based upon the previous explanation of spherical coordinates and the already 

explained principles for Method 2, this section will describe how the spherical 

coordinates unknowns will be converted back to cartesian coordinates to calculate the 

joint angles. The first step is calculating the cartesian coordinates for nG  vectors.  

 

Finding nG  vectors 

As previously stated, the θn and φn parameters for the nG -vectors are defined in the 

same way that the spherical coordinates are defined in Figure 4.28. Based upon the 

generic conversion of spherical coordinates, the equation for the nG -vectors is as follows 

(Ginsberg,1998):         

 

( ) ( )
( ) ( )

( )

n nn

n n n

n n

sin *cosx
n y sin *sin

z cos
i

φ θ

φ θ

φ

  
  = =   
     

G                                                        (Equation 4.28) 

 

Finding vG  vectors  

   An imaginary i”-j”-k” frame was created in Figure 4.29, with the nG -vector 

aligned along the k”-axis and the vG -vector lying in the i”-j” plane.  The first task is to 

find the rotation matrix between the I,J,K frame and the i”,j”,k” frame. This can be 

accomplished using two rotations as shown in Figure 4.29;  first rotating about the  J-axis 

by φn , then rotating about the K-axis by θn. The θv is embedded in the nG -vector rotation 

as one will see in the following calculation. Figure 4. 33 below will describe the first 

rotation. 



 101

φn

φn

+K

+I
+J=+j'+i'

+k'

b

3D axis

+K

+I

+k'

+i'

b

2D axis

φn

φn

 

Figure 4.33: Rotation about J-axis 

 

Rotation about the J-axis: 

Let ˆˆ ˆb x y zi j k= + +
G

 denote an arbitrary vector that is being rotated about the J-

axis by φn.  After rotating, the new b
G

-vector can be referenced back to the space-fixed 

coordinate system using trigonometry, as shown in the 2D axis image of Figure 4.33. 

 

n n n n
ˆ ˆ ˆ ˆ ˆb=x *[cos sin ] y*[1 ] z*[sin cos ]I K J I Kφ φ φ φ− + + +

G
                           (Equation 4.29)    

 

The matrix formulation for the rotation of an arbitrary vector about the J-axis is: 

 

space-fixed rotation rotated
= *

coordinates matrix coordinates
     
     
     

 => 
n n

n n

cos 0 sinX x
Y 0 1 0 * y
Z sin 0 cos z

φ φ

φ φ

    
    =     
    −    

 

          (Equation 4.30)    
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Rotation about the K-axis: 

We now derive the rotation matrix for an arbitrary rotation of θn about the space 

fixed K-axis. This rotation is shown in Figure 4.34. 
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+J
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2D axis

+I

3D axis

θn
θn

+K=+k''
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Figure 4.34: Rotation about K-axis 

 

Again using the b
G

-vector example: ˆˆ ˆb x y zi j k= + +
G

, the equation and matrix 

derivations are as follow: 

 

ˆ ˆ ˆ ˆ ˆb=x *[cos sin ] y*[sin cos ] z*[1 ]I J I J Kθ θ θ θ+ + + +
G

                                 (Equation 4.31)   

X cos sin 0 x
Y sin cos 0 * y
Z 0 0 1 z

θ θ
θ θ

−     
     =     
          

                                                                (Equation 4.32)   

 

After developing the rotation matrices for each axis, the overall rotation matrix 

can be written as a product of the two rotations. The overall rotation matrix is given as: 
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[ ] [ ]
n n n n n n nn n

z y n n n n n n n

n n n n

C 0 S C C S C SC S 0
R R * R S C 0 * 0 1 0 S C C S S

S 0 C0 0 1 S 0 C

φ φ θ φ θ φ φθ θ

θ θ θ φ θ θ φ

φ φ φ φ

 − −  
    = = − =      
    −     

 

                   (Equation 4.33)    

 

This is the rotation matrix that converts i”, j”, k” coordinates to I,J,K coordinates. 

 

As a check we can use the pG -vector, which is parallel to the k’’ axis as shown in 

Figures 4.19 and 4.20.  The two rotations that define the pG -vector and k’’ axis are shown 

in Figure 4.35, and are identical to the two rotations discussed above. 

 

θn

φn

1st rotation

2nd rotation

+J=+j'

+I

+K

+k'

+i'
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Figure 4.35: Two Rotations 
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Before being rotated the pG -vector is parallel to the K-axis.  Therefore its rotated 

value becomes: 

 

n n n       n n n n

n n n n n n n

n n n

C *C S S *C S *C0
C *S C S *S * 0 S *S

1S 0 C C

φ θ φ φ θ φ θ

φ θ θ φ θ φ θ

φ φ φ

   −  
     =    
    −     

             (Equation 4.34)    

 

The result is the same as in Equation 4.28, for converting from spherical to 

cartesian coordinates. Also this matrix is checked with vectors other than [0 0 1] and the 

results is the same as the equation in Ginsberg, 1998. Therefore our rotation matrix is 

correct. 

 

 Based on Figure 4.29, the vG -vector and the linking triangle lies in the i”-j” plane.  

Its position in the i”,j”,k” reference frame is:  

 

[ ]
v

i v

C
v 's position

0
S

θ

θ

 
 =  
  

G                  (Equation 4.35)    

 

Next, the rotation matrix in equation 4.33 is used to convert the i”,j”,k” 

coordinates into I,J,K coordinates. 
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n n n       n n n n v n vv

n n n n n v n n v n n

n n n v

C *C S S *C C *C *C  - S *CC
C *S C S *S * S C *S *C  + C *S

0S 0 C S *C

φ θ φ φ θ φ θ θ θ θθ

φ θ θ φ θ θ φ θ φ θ θ

φ φ φ θ

   −  
     =    
    − −    

          (Equation 4.36)    

 

Now we have the equations for converting the vG -vectors from spherical to 

cartesian coordinates. 

 

4.13 Calculating the Joint Angles (Method 2: Joint Angles Calculation) 

Based upon a given set of cartesian coordinates of the vi, and ni vectors, the joint 

angles can be calculated by applying a series of equations using the geometric design of 

the unit cells. The joint angle values will be used in calculating the potential energy in the 

system, which in turn helps calculate the position of the center-points for every unit cell. 

The mathematical notation is given as: 

 

Joint angles: δ = G-1 (C(vi,ni))                (Equation 4.37) 

 

C(vi,ni)  denotes the cartesian coordinates of vi , ni, and G-1 denotes a set of 

equations that can take C(vi,ni) to find the deformation, δ, of the angles for the unit cells.   

Below will be a series of equations to analyze an array of unit cells.  

 

Note: This section incorporates some of Paul Bosscher’s Master thesis on inverse 

kinematics. However, this is not the inverse kinematics for this thesis. There is not an  

inverse kinematics section for this thesis. There is an inverse statics section 
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4.13.1 Joint Angle Pseudo-code for One Unit Cell 

Figure 4.36 shows a unit cell and the detail of the focus area within the dashed 

circle. The math is as follows:  

 

P(x,y,z)

θ1

θ2
θ3

a1

a2

a3

v1 v2

n2

n1

u1 u2

β1 β2

α1 α2

+Y

+X
a1

a2

a3

detail  

Figure 4.36: Unit Cell 

 

New Definition 

i. a i
G =Unit vector running along the axis of the revolute joints shown in the Figure. 

ii.  juG =Unit vector normal to the plane containing a j
G  and 1a j+

G  

iii. iβ = Interior angle of main linking triangle i 

iv. kα =Interior angle of secondary linking triangle k 

v. θj =the angle at joint j 

 

Given: 1 2 1 2 1 2 1 2 v , v , n ,n , , , ,α α β βG GG G   

Find: 1 2 3, ,θ θ θ  
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Step 1:  

Finding the unit vector 1aG  and 3aG  can be achieved by applying Bosscher’s 

equations as seen in Table 4.1 (Bosscher, 2003). 

 

Table 4.1:  Finding Unit Vector 1aG  and 3aG  from Bosscher’s Master’s Thesis 

v1

η1a1

w1

β1/2

 

1
1

1 1

v1

cos cos
2 2

η
β β

= =
   
   
   

G
 

1
1 1w sin

2
βη  = ⋅  

 
        (∗see footnote) 

1 1 1 1a v wη ⋅ = +
G G G  

( )1
1 1 1 1w sin n v

2
βη  = ⋅ ⋅ × 

 

GG G   (*) 

( )1 1
1 1 1 1a v tan n v cos

2 2
β β    = + ⋅ × ⋅    

    

G GG G  

v2

η2a3w2

β2/2

 

2
2

2 2

v1

cos cos
2 2

η
β β

= =
   
   
   

G
 

2
2 2w sin

2
βη  = ⋅  

 
         (*see footnote) 

2 3 2 2a v wη ⋅ = +
G G G  

( )2
2 2 2 2w sin n v

2
βη  = − ⋅ ⋅ × 

 

GG G   (*) 

( )2 2
3 2 2 2a v tan n v cos

2 2
β β    = + ⋅ × ⋅    

    

G GG G

 

Step 2:  

Step 2 describes the math for finding 2aG  from 1aG  and 3aG  by modifying Bosscher’s 

equations. In the set of equations to calculate the joint angles, Bosscher specified using an 

iterative process by searching through various combinations and checking when 
                                                 
∗ In the original text, there were errors. This paper is presenting the correct version. 
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1 3 2(a a ) a 0× ≤
G G Gi . This process does work for finding 2aG  but it involves solving a 

nonlinear system of equations.  

 

  Another approach is using a direct method by considering the unit cell as a 

combination of geometric shapes. This method is faster, simpler without having 

conditions and constraints, and more accurate. 

 

In reference to Table 4.1, Figure 4.37 shows another technique for finding the 

2aG vector within the dash circle of the previous figure. 

 

Q

P

L1

L2

L1

na

a1

a2

a3

L3

L4

θ
L2

na
Q

a2

detail of internal triangle

 

Figure 4.37:  Detail of Dashed Circle of unit cell 

 

1) Given from Geometry: L1,  L3,  La (the length of the edge collinear with 1aG ) 

2) Find 2aG  
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Sub-step 1:  

Finding the Q
G

 vector from P
G

 vector using vector summation rule 

a 3 a 1a aP L L= ⋅ − ⋅
G G G                  (Equation 4.38) 

a 1a
2
PL Q⋅ + =
G GG                  (Equation 4.39) 

 

Sub-step 2:  

Finding θ by combining the Pythagorean Theorem and the Law of cosine 

2
2

2 1 2
PL L= −
G

                                                  (Equation 4.40) 

22 2
2 3 32 cosL Q L Q L θ= + − ⋅ ⋅ ⋅

G G
                    (Equation 4.41) 

22 2
2 3

3

( )
cos

2

L Q L
a

Q L
θ

 − + + ⇒ =
 ⋅ ⋅
 

G

G     

 

Sub-step 3:  

Find an̂  which is the unit normal vector to a plane shared by both 1aG  and 3aG   

1 3a aan X=
G GG                                                                  (Equation 4.42)                         

ˆ a
a

a

nn
n

=
G
G                   (Equation 4.43) 

Sub-step 4:  

Calculate the last unknown length using trigonometry 

4 tanL Q θ= ⋅
G

                            (Equation 4.44) 
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Sub-step 5:  

After finding all the other unknowns calculate the 2aG  by the vector summation 

rule and applying the unit vector equation. Figure 4.38 is another detail image from 

Figure 4.37 that will provide a visual explanation for the following calculation. 

 

θ

-na
L3

L4

na

L2

Q

a2

 

Figure 4.38: Second Detail 

 

2 4 ˆa aL n Q= − ⋅ +
GG                                                 (Equation 4.45)                         

2
2

2

âa
a

=
G

G   : the unit vector that points in the direction of  the middle vector. 

                  (Equation 4.46) 



 111

Step 3: 

 After finding 2aG  using this method, the joint angles, θ's can be found by applying 

the rest of Bosscher’s method, as presented in Table 4.2. 

 

   Table 4.2: Finding the Joint Angles θ's from Bosscher’s Master Thesis 
Finding 1uG  and 2uG : 

( )1 2
1

1 2

a a
u

a a
×

=
×

G G
G

G G                                       

      

 

( )2 3
2

2 3

a a
u

a a
×

=
×

G G
G

G G    

Finding θ1, θ2 , and θ3: 

( )1 1 1u n cos π θ⋅ = −
GG  

( )2 2 3u n cos π θ⋅ = −
GG  

( )1 2 2u u cos π θ⋅ = −
G G  

( )1
1 1 1cos u nθ π−= − ⋅ +

GG 1 

 where if 

( )1 1 1 1u n a 0 then  θ π× ⋅ = =
G GG  

( )1
3 2 2cos u nθ π−= − ⋅ +

GG  

where if 

( )2 2 3 3u n a 0 then  θ π× ⋅ = =
G GG  

( )1
2 1 2cos u nθ π−= − ⋅ +

GG  

 

 

 

                                                 
1 In the original equation, finding θ requires the design variable, λ. For this case, the design variable is not 
necessary.  
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4.13.2 Joint Angle Calculation for an Array 

For an array of unit cells the math is similar to the one unit cell case. The goal is 

to find the θ’s of every joint for every unit cell in the matrix. The derivation is identical to 

the one shown in the previous section.  The only difference is that now the equations 

must be compiled into vectors to store the information for the multiple cells in the matrix. 

Figure 4.39 is a composite of previous images and explanation to remind the reader of 

what this section is about. 

 

columnrow

pi+1,j

pi,j

pi+1,j+1

pi,j+1

 

Figure 4.39: Array of Unit Cells with Center points 

 

1) New Definition: 

i) La = length of the edge coincident with the 1aG -vector from Figure 4.37 

ii) Lamid= length of the edge coincident with the 2aG -vector from Figure 4.37

 1 2 1 2, , ,α α β β = geometric constants as seen in Figure 4.36 

2) Given: 1 2 1 2v , n , , , ,i i α α β βGG , k1, k2, dist, La, Lamid, 1 2 1 2, , ,α α β β  

3) Find: θ1p, θ2p, θ3p 

i) Where p= 1, 2,… 4*n*m, identical to the definition in section 4.1.2. 
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Based upon the geometry and Bosscher equations for one cell, we will assume the 

following: 

 

1 2α α α= =                  (Equation 4.47) 

1 2β β β= =                  (Equation 4.48) 

 

The equations for deriving the aG -vectors are shown in Table 4.1 and will not be 

repeated here.  However, for computational purposes we will change the previously 

developed notation for aG -vectors.  The aG -vectors between the linking triangles will be 

denoted as mid iaG , while the aG -vectors on the edges of the linking triangles are denoted as 

iaG  as seen for one unit cell in Figure 4.40.  
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a4
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Figure 4.40: Arrangement of aG  and midaG vectors 

  

Note this departs from our previous notation.
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The iaG -vectors are arranged in a matrix as seen below: 

 

1cell1

2cell1

3cell1

8cell1

1cell2

2cell2

3cell2

8cellm*n

a
a
a

a
a

a
a
a

a

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  

G
G
G

#
G

G
G
G
G

#
G

                 (Equation 4.49)  

 

 

After finding all the aG -vectors, use Table 4.2 to calculate the θ1, θ2, and θ3 for 

each unit cell. The only difference is there will be a subscript variable “p” to indicate 

which joint it refers to.  Since the θ1, θ2, and θ3 appear 4 times in each cell the “p” index 

will range from 1 through 4*m*n. 

 

4.14 Potential Energy (Method 2: Inside Iteration Box) 

 From the angles calculated, we can apply the potential energy equation that was 

already mentioned in Equation 4.22 under the pseudo-code of Method 2. It will not be 

repeated here. The coordinate constraints also add potential energy values to the total sum 

of the Potential Energy. If the iteration process produces coordinate results that deviates 

from the constraint coordinates, the iteration process will be “penalized” with a very high 

potential energy value as seen in Equation 4.22. The penalty k3 value in Equation 4.22 is 
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insignificant as long as this value is at least 2X greater than any of the other 2 k values. 

For this reason, we arbitrarily selected 100,000 as the k3 value. If the potential energy is 

high, the iteration process to re-evaluate the guesses until the energy value is at its lowest 

state. Also consider there is an additional stiffness value on any fixed Z coordinate. For 

example in Figure 4.30, the fifth cell has a Z-height input. Therefore the potential energy 

equation will have an additional term with the difference between the value in which the 

fifth Z should be fixed at Zf i,j, and the value in which the computer calculated, Zf i,j‘. This 

additional stiffness will reduce the likelihood of the iteration process from deviating from 

the given value as seen in Equation 4.22. 

 

4.15 Ending Comments for Method 2 

 After finding the spherical coordinates for the nG  and vG  vectors, the vectors can 

be converted back to cartesian coordinates using one of the previously mentioned 

principles. From the cartesian coordinates of the nG  and vG  vectors, the position can be 

calculated by applying inverse statics. Below will be the explanation of forward and 

inverse statics that provide the overall structure for Method 2. The flow chart that will 

later be mentioned in the statics section can be used in parallel with the already 

mentioned flow chart to clarify Method 2. 
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4.16 Forward and Inverse Statics: Overall Statics of Method 2 

In Method 2, both the inverse and forward statics are applied to complete the 

statics circle and to solve for the position coordinate values of the center-points of the 

unit cells. Figure 4.41 is a diagram that describes the relationship between the two types 

of statics. 

 

Position inputs
( Pi )

Forward

Statics

Inverse

Statics

Coordinates of
v and  n  vectors

( ni, vi )

 

Figure 4.41: Forward and Inverse Statics 

 

First the user will input a set of cartesian coordinates for the center-points of some 

unit cells. Because of the manipulation of several z-values and the rigid linking between 

any two unit cells, the coordinate position values will not be accurate. From the inputs, 

Method 2 will apply forward statics to determine the coordinates of the nG  and vG -vectors. 

From this calculation, Method 2 will also apply inverse statics to correctly recalculate the 

positions. This is an overall description of the relationship between the two.  
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For a more detail version of how Method 2 calculates the positions by applying an 

iterative process, refer to Figure: 4.42. 
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Figure 4.42: Calculates the Position 

 

 The user will input a set of cartesian coordinate position values for the center-

points for some of the unit cells in the matrix. Embedded inside the methods are 

additional coordinate constraints.  As stated above, the cartesian coordinate values are not 

accurate. There is a direct relationship between the positions of the unit cells and the nG  

and vG -vectors. At this point, we also do not know the correct coordinate values for nG  and 

vG -vectors. However, we can create initial guesses of what those values can possibly be. 

As stated above, the nG  and vG -vectors can be calculated by using an iterative process. The 

iterative process will calculate nG  and vG -vectors  by attempting to minimize the potential 

energy of the angles from the joints within each unit cell.  After producing the cartesian 

coordinates of nG  and vG -vectors, a correct list of the values for the position of the center-

points can be calculated along with the angles in the joints.  The cycle is complete. 

 

 In the following sections, the mathematics for both statics will be explained. 
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4.16.1 Inverse Statics  

The inverse statics will be described first because forward statics applies inverse 

statics to iteratively arrive at the nG  and vG -vectors values. The mathematic notation is 

shown: 

 

C (Pi) = G (ni,vi)                  (Equation 4.50) 

 

 We need a series of equations for the n i
G  and vi

G  unit vectors denoted by G (ni,vi). 

From this we can calculate the cartesian coordinate positions of the center-points denoted 

by C (Pi). The inverse statics can also be applied to develop the inputs for calculating the 

angles, which in turn helps forward statics to determine the cartesian coordinate positions 

of the n i
G  and vi

G  unit vectors. However, the main purpose of inverse statics is to calculate 

the position values of the center-points of every unit cell in the matrix. 
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4.16.1.1  Inverse Statics Equations 

 

pi+1,j

pi,j

pi+1,j+1

pi,j+1

Pi,j
vi vj

ni nj

 

Figure 4.43: Inverse Statics Diagram 

 

From Figure 4.43, the image on the left describes the nG  and vG -vectors for one of 

the cells in a matrix. By following the direction of the vG  unit vectors a certain distance, 

one can calculate the cartesian coordinate position values of any of the center-points. For 

example, we know that at the first cell, the position value is (0,0,ZF1,1 ). We can follow 

the vi
G  unit vector a “dist” length. The arrival point is the next centerpoint at Pi+1,j  as 

shown on the right image. We can continue onto the next vG  unit vector until we arrive at 

the next center-point. Of course we can also go the other direction and arrive at Pi,j+1.  

This process can continue until we know all of the center-points. 

 

The equations for the center-points are as follow: 

 

, i-1,j
,

, i,j-1

V *dist +PRow
P

column V *dist+P
i ji

i j
j i j

  
 = = 
    

G

G               (Equation 4.51) 
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After knowing the center-points position, the cartesian coordinates of every vertex 

of every unit cell can be calculated by following the 1,2,3aG  unit vectors for the Pi,j  cell as 

shown in Figure 4.44. The vertices are referring to the end of the edges of which the 1aG , 

2aG , and 3aG vectors follow. 

 

Pi,j
vi vj

ni nj

a1 i,j

a2 i,j
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La1 La3

La2
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Figure 4.44: Calculating the Edge Vertices 

 

The equations for the vertices are as follow. 
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#
G
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              (Equation 4.52) 

 i,jaG = A group of i,jaG  vertices. For each unit cells there are twelve unit i,jaG -vectors. 

 Lai= length for the corresponding i,jaG  vectors. 
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4.16.2 Forward Statics  

Based upon all the inputs of the cartesian coordinate position values of all the unit 

cells, all the nG  and vG -vectors can be calculated. The mathematical notation for the 

forward statics is given as:      

 

C(ni,vi) = G (Pi)                 (Equation 4.53) 

 

The G(Pi) denotes the sets of equations that take on the given position values 

input, Pi.  C(ni,vi) is the resulting cartesian coordinates of the n i
G  and vi

G  unit vectors. The 

implementation of forward statics is applied in the Method 2: Under-constrained Actual 

Manufacturable Crust Model. Since the forward statics for the crust matrix problem 

cannot be solved using a series of equations, we are going to apply an iterative process. 

The iterative process uses the inverse statics to calculate the angles based upon the initial 

guesses of the n i
G  and vi

G  unit vectors for every linking triangle on every unit cell. Next it 

will calculate the potential energy from the angles. Then it will take the energy calculated 

from the angles and modifies the n i
G  and vi

G  unit vectors. Forward statics is accomplished. 

The iterative process is being accomplished in “Fmincon”: a pre-packaged minimization 

function in MATLAB. Below is the math for the set-up.  
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4.16.2.1  Forward Statics Algorithm 

Figure 4.45 is three unit cells rigidly linked together with the center-points labeled 

as Pi,j. The n i
G  and vi

G  unit vectors are labeled based upon the referencing convention 

mentioned earlier.  
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Figure 4.45: Linking Unit Cells 

 

 There are  4 n i
G  and  4 vi

G  unit vectors for every Pi,j value. For forward statics, we 

want to derive n i
G  and  vi

G  vector values from the Pi,j values.   Since they are unit vectors, 

at this point it does not matter where they are located in space.  As previously mentioned, 

there is not a direct method to calculate n i
G  and  vi

G  vector values. We will be applying an 

iterative process to solve the problem. The pseudo-code is very similar to Method 2. Most 

of  the steps will be referenced back to Method 2. 
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Given: Same as Method 2 

Find:  n i
G  and vi

G  unit vectors 

Minimize: Potential Energy (Equation 4.22 from Method 2)  

 

Step 1:  

 Determine the initial guess  of the nG  and vG -vectors. 

Step 2: 

Apply the spherical coordinates rotation matrix to find the cartesian coordinates 

of the  nG  and vG -vectors. 

 

Step 3:  

Apply the inverse statics equations to calculate the nG  and vG -vectors. 

  

Step 4:  

Apply the Joint Angle calculation to determine the joint angles. 

 

Step 5: 

Calculate the potential energy in the system with the additional constraints on the 

unit cell.  

 

Step 6-8: 

Repeat steps 2-5 by changing the resulted spherical coordinate guesses back into 

cartesian coordinates, placing back into the iterative process applied by pre-package 
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program ‘Fmincon’ and modifying guesses. Continue iterating to search for the optimal 

combination of spherical coordinates for the lowest potential energy. 

 

Step 9:  

Convert the final spherical coordinates back to cartesian coordinates of the  nG  and 

vG -vectors. From here we have finished the forward statics.  

 

Step 10: 

Next will be the inverse statics for taking cartesian coordinates of the  nG  and vG -

vectors and finding the position values of the center-points for each unit cell. 

 



 125

4.17 Unknowns, Equations, and Degrees-of-Freedom 

 The number of unknowns differs for methods 1 and 2. We will use several 

examples to show how we will count up the numbers of unknowns. 

 

The number of equations is a count of the independent equations that each method 

uses to solve the problem. However, this does not count any of the equations that are used 

to derive these relevant equations. The number of equations differs for each example of 

Method 1 as one will later see, but stays the same for all examples of Method 2. 

 

 For any rigid body, there are 6 Degrees-of-Freedom (DoF): 3 translational and 3 

rotational. As rigid bodies are attached together to create one deformable body, most of 

the rigid bodies lose their translational DoF. We can count each translational DoF by the 

direction in which the rigid body can move in the X, Y, and Z direction. The convention 

we will be using to analyze the rotational DoF is the “Roll-Pitch-Yaw” rotations for the 

rods and unit cells.  “Roll-Pitch-Yaw” is a transformation convention for a rigid body 

rotating about the Z, Y, and X axes respectively. To visualize this convention, Figure 

4.46 shows the hull of a boat in water and how it can move about the axes.  
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X (Yaw) Z (Roll)

Y (Pitch)

 

Figure 4.46: Roll-Pitch-Yaw 

 

 For this DoF analysis, we will not remove any DoF to fix the crust matrix in 

space. It is up to the controls department to determine how to attach the crust matrix to 

the Digital Clay base. This in turn will affect the number of DoF that will be removed. 

For both methods, we have enough length constraints and coordinate constraints to fix the 

matrix in space for analyzing and calculating.   
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4.17.1 Method 1 

Below are the analyses for Method 1 using a simple line example and a matrix 

example.  

 

Number of Unknowns for a Serial Chain 

For the first method, the number of unknowns is the number of cartesian 

coordinates in the matrix because this is what we are solving for. For a 1-by-7 matrix of 

unit cells as seen in Figure 4.47 the number of unknowns is (3 Cartesian Coordinates)*( # 

unit cells)=21 unknowns.   

 

dist
dist

dist
dist dist

dist

z-input 1
z-input 2(0,0,0)

 
Figure 4.47: Numbers of Unknowns and Constraints for a 1-by-7 Matrix 

 

Number of Equations for a Serial Chain 

The additional fixed coordinate values, such as the Z-heights, and the constant-

length equation are constraints that limit the searching process. For every constraint, there 
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is an equation.  The constraints do not affect the number of unknowns for Method 1. 

There is an additional equation, the potential energy minimization equation. For Figure 

4.47, the constraints are the first coordinate points at (0,0,0), the Z-height inputs, any 

other constrained coordinate values, and the length “dist” constraints. Therefore for 

Figure 4.47 with an example of a 1-by-7 matrix, there are 5 coordinate constraints + 6 

length “dist” constraints + 1 minimization equation = 12 equations total. 

 

Since there are constraints that affects the unknowns, this is not minimum number 

of variables that determine the exact position of the unit cells.  In other words, the 

number of unknowns does not equal the degrees-of-freedom.  

 

Degrees-of-Freedom for a Serial Chain 

First we will start with one rod having 5 DoF as seen in the first image in Figure 

4.48 between point A and B. That means that rod A-B has 3 (translational) + 2 

(rotational) = 5 DoF. Note that in the figure, the balls are the endpoints for the rods. 

There are only two rotational DoF for rod A-B because if rod A-B rotates about its own 

axis, it is still a cylinder. This means from the “Roll, Pitch, and Yaw” definition of 

rotation, we have ignored the “Roll”. In the middle image, another rod is added. Again 

this rod starts off with 5 DoF. Since rod B-C is attached to a fully defined rigid body, rod 

B-C loses 3 translational DoF. Therefore rod B-C has 2 DoF left. We can continue adding 

rods to the chain as seen in the last image. By the previous argument, each added rod 

only contains 2 DoF for a linearly connected chain. Again we are not going to fix this 
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matrix. It is beyond the scope of this thesis to determine how the crust matrix will be 

fixed to the Digital Clay device. Therefore we will keep the matrix floating in space. 

For a 1-by-7, the DoF is: [5+2+2+2+2+2](total DoF) = 15 DoF for a 1-by-7. 

 

 
Figure 4.48: Method 1 2D Example for DoF 

 

Number of Unknowns for a Matrix 

For a matrix, the number of unknowns gets more complex. As the size of the 

matrix increases, the unknowns increase.  For the case of a 4-by-5 as seen in Figure 4.49, 

there are a total of 20 unit cells. That means there are (3 Cartesian Coordinates)*(20 Unit 

cells) = 60 unknowns. 
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Figure 4.49: 4-by-5 Matrix of Constraints 
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Number of Equations for a Matrix 

The number of coordinate constraints equations is dependent on the number of 

user inputs to constrain the X, Y, or Z coordinate values of the unit cell centers. In Figure 

4.49, we know there are [(n-1)*m + (m-1)*n ] (length constraint equations) + 1 

minimization equation = 32 equations.  The coordinate constraints are not counted 

because this value is based upon the user inputs and varies for different situation. 

 

Degrees-of-Freedom for a Matrix 

To determine the DoF for a matrix, first let’s look at a simple case with a 2-by-2 

matrix. Again the first rod has 5 DoF as seen in Figure 4.50. The second rod is attached 

to Rod A-B and adds 2 DoF, similar to the case shown in Figure 4.48. Rod C-D initially 

has two DoF, similar to Rod A-C.  But Rod D-B and Rod C-D have to meet at one 

connecting point D. The locus of points equidistant from the two points B and C is a 

circle. Therefore the DoF for both Rod C-D and D-B is one. In other words, the location 

of point D is the last element that needs to be known to define this 2-by-2 matrix. Once 

this is known, we can total up the DoF: (5+2+1) = 8 DoF. 

 

Figure 4.50: 2-by-2 DoF Example 
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For the case of a 4-by-5 as seen in Figure 4.49, this same addition is applied. The 

Degrees-of-Freedom: 5+ 2*(n-2)+2*(m-1)+1*(m-1)*(n-1) = 29 DoF for a 4-by-5 matrix 

using the Method 1 modeling technique.   

Figure 4.51: Method 1: 4-by-5 DoF Example 

 

Note that the previous equation holds for any matrix of m rows and n columns. 

 

4.17.2 Method 2 

Below is the analysis for Method 2 with the unit cells. 

 

Number of Unknowns for a Serial Chain 

For Method 2, the unknowns are the nG  and vG -vectors. It is the cartesian 

coordinates of these vectors that determines the centerpoints and joint angles for 

minimizing the potential energy. As previously stated, we were able to reduce the number 

of unknowns by using spherical coordinates for the nG  and vG -vectors. If any one of the 

faces of any unit cell is fixed, then nG  and vG -vectors for that particular face are known.  
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Face fixing will be further explained in the next chapter, but not accounted for in 

this section. However, the other constraints such as the coordinate constraints and the 

length contraints will not affect the numbers of unknowns.  This is because they are 

imbedded in the energy equation.  For any unit cell, there are 4 θn , 4 φn , and  4 

θv  unknown values. If any of these variables is on the same plane or on a  linked triangle, 

then the number of unknowns is further reduced because there are duplications in the θn , 

φn , and   θv .   The realization of duplication was explained earlier in section 4.11. 

 

 For example, for a 1-by-7 matrix of unit cells as seen in Figure 4.47, there are (m 

rows)*(n columns)* (4θn + 4φn + 4θv  per unit cell) = 84 unknowns. If an X number of the 

faces is fixed, then we can subtract X θn , X φn , and  X θv  unknown values from the 84 

unknowns. Lets say one of the faces in the matrix is fixed, then that leaves 84 – [1 θn, 1 

φn, and  1 θv  unknown values] = 81 unknown values left. Of course for this analysis we 

assume that no face is being fixed. That means the number of unknowns is still 84. Now 

we will apply the realization of duplication method because some of the θn , φn , and θv  

share the same linking triangles. There are 12 linking triangles that are rigidly connected 

for a 1-by-7 matrix. These linking triangles are described by 12θn , 12φn , and 12θv. 

However, half of these are duplicated. That means there are only 6 θn , 6φn , and 6θv 

unknown values. So finally we have 84- 6(linked triangles)*3 (the variables that are being 

duplicated) = 66 unknowns.  
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Number of Equations for a Serial Chain 

The number of equations for Method 2 is similar to Method 1=  [number of 

coordinate constraints] + [number of length constraints]  + 1 [energy minimization 

equation]. For the 1-by-7 matrix in Figure 4.47, there are   4 coordinate constraints + 6 

length “dist” constraints + 1 minimization equation = 11 equations total. This number is 

the same as Method 1 because the constraints are the same for both methods. As 

previously explained the coordinate constraints equation and the minimization equation 

can be combined into one equation. The length constraints can be considered after the 

iteration process. Of course this is all implementation of the equations and does not affect 

the total number of equations for Method 2. 

 

Degrees-of-Freedom for a Serial Chain 

Unlike Method 1, all rigid bodies now start off with 6 DoF. If they are linked 

together end-to-end then each additional body will lose 3 translational DoF. What is left 

for the connecting rigid body is the“Roll-Pitch-Yaw” rotation. For Method 2, the shape of 

the rigid body is a triangle.  Notice that in contrast to Method 1, we will count the “Roll” 

as part of the rotational DoF, because a triangle rotated about the Z-axis changes its 

orientation.  

 

Figure 4.52 shows how the counting convention starts and is propagated for a 

linear case. The first triangle still has all of its 6 DoF.  
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Figure 4.52: Method 2: DoF Counting 

 

The other three triangles in the first image lose their translational DoF when they 

are connected to the first triangle.  They are left with 3 rotational DoF. The middle image 

shows two triangles linking, that means these two triangles share 3 DoF because these 

triangles become 1 rigid body when they are rigidly connected to each other. The last 

image shows how the the DoF propogates. For a 1-by-7 matrix, there are actually: 

6+3*3(DoF per face)*7(unit cells) = 69 Degrees-of-Freedom.  

 

If one compares the number of unknowns and the Degrees-of-Freedom, one will 

realize the difference is 3. In the previous example for a 1-by-7, there are 66 unknowns 

and 69 DoF. The reason for the difference is because in the DoF analysis there are 6 DoF 

for the first face while there are only 3 unknowns for the first face. There is a positive 

difference of 3: 6 DoF and 3 unknowns. Therefore, we can safely say that there is a direct 

relationship between the DoF and the number of unknowns. For a matrix of any size we 

will not need to count up the number of unknowns. We just count the DoF and then 

subtract 3.  We will later derive the number of unknowns for a m-by-n matrix from 

the Degrees-of-Freedom. 
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Number of Equations for a Matrix 

For a 4-by-5 matrix, there are [(n-1)*m + (m-1)*n ] (length constraint equations) 

+ 1 minimization equation = 32 equations.  Similar to Method 1, the coordinate 

constraints are not counted. 

 

Degrees of Freedom  for a Matrix 

Calculating the Degrees-of-Freedom for Method 2 is similar to how we calculated 

for Method 1, except we do not remove the “Roll”. Figure 4.53 shows one triangle fully 

defined by 6 DoF. The other connected triangles in the cell have 3 rotational DoF because 

they have lost their 3 translational DoF. The second image is a propagation of the first. 

When Cell C is connected to Cell A in the third image, there are only 3 DoF between the 

two. However when Cell D is connected, there are only 2 DoF for C-D.  The reason for 2 

DoF is similar to the previous argument for Method 1 shown in Figure 4.48.  However,  

now the linked triangle can also “Roll” between point C and D. The last linked triangle, 

between D and B, has only 1 DoF because it can only “Roll”.  
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Figure 4.53: Method 2: 2-by-2 DoF Example 
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For a 4-by-5 matrix, the counting technique for the Degrees-of-Freedom can be 

propagated for the whole matrix as shown in Figure 4.53. 
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Figure 4.53: Method 2: 4-by-5 DoF Example 

 

 The DoF counting technique for Method 2 is very similar to Method 1. If we 

compare Figure 4.53 to Figure 4.51, the main difference is that there is one more Degree-

of-Freedom for every rigid body in Method 2 as compared to Method 1. The reason is 

that we did not remove the  “Roll” for Method 2.   
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The equation for the DoF is:  

6 * * * 3*( 1) 3*( 1)
2*( 1)*( 1) 1*( 1)*( 1)

DoF F Te n Se m F n m
m n m n

= + + − + − + −
+ − − + − −

         (Equation 4.54) 

F=3 DoF for every triangle faces 

Te= 2 Top edges 

Se= 2 Side edges 

 

From this equation, the DoF for a 4-by-5 matrix = 30+24-3+12+9+24+12= 114 

DoF . 

 

Number of unknowns for a matrix 

Previously we explain in the section about “Degrees-of-Freedom for a Serial 

Chain”, we can calculate the numbers of unknowns from the DoF by subtracting 3. The 

number of unknowns is 111.  

 

4.17.3 Ending Remarks for Section 

 By comparing the statics of the two methods, we have a far better understanding 

of the two different methods. The first method does not attempt to reduce the unknowns 

by calculating the Degrees-of –Freedom first. However, it is still faster, because overall 

there are fewer unknowns and less Degrees-of-Freedom than the second method. The 
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second method considers every aspect of the actual deformable crust matrix—there 

should be more unknowns and DoF.  

 

Note: For counting the number of DoF for the whole deformable body, we have 

considered both external and internal DoF. External refers to the DoF the structure would 

have if it behaved like a rigid body and did not deform. Internal refers to the DoF that 

cause the body to deform, and does not include any external DoF. For an example for the 

difference between external and internal DoF, consider a box with a hinged lid. The 

whole box in space has 6 external DoF because it can rotate and translate without any 

hindrance to its motion. The hinge on the box only has 1 internal DoF because it can only 

flip up and down. Therefore the box has 6 external and 1 internal DoF. The total DoF for 

this hinged box is 7. 

 

The number of equations for Method 1 and 2 are the same because the constraints 

applied are the same.  
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4.18 Ending Remarks for Chapter 

The two methods mentioned are developed for calculating the position of the 

center-points of the every unit cell position. Below are various comments about the 

methods. 

 

4.18.1  Benefits 

How would these two methods benefit anyone? These two methods mentioned in 

the previous sections will benefit the Digital Clay team members because the methods 

can be applied for both shape display and shape editing-- the original goals of the Digital 

Clay project. 

 

As previously explained, shape display is when the Digital Clay crust matrix can 

be computer-commanded to acquire a wide variety of desired shapes. In both methods 

that were discussed in the earlier sections, the user can input several constraints and the 

programs that implemented the methods would calculate and display the shape based 

upon the applied constraints. This will benefit the Digital Clay team members because 

they can predict the shape of the crust matrix based upon the inputs. This also allows the 

members to determine what material will be best fitted for manufacturing the crust based 

upon the inputs and the shape display. 

 

Shape editing is when the user can modify an existing shape into another shape. A 

former example of shape editing is the car hood model idea introduced at the beginning 
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of this chapter. The car hood Lotus design can morph into a Ferrari then into a Corvette 

as seen in Figure 4.5: Morphing of the Car Hoods.  To accomplish this shape-editing task, 

the final position of the Lotus will become the initial stage of the Ferrari. And so on. This 

morphing of shapes has already been accomplished when the flat surface (an initial stage) 

of the crust matrix has morphed into the Lotus (final stage).  This morphing process can 

be further enhanced for different shape morphing when there is a loop command in the 

programs. This loop command has not been implemented yet due to the time constraint 

for this thesis. 

 

Another bonus to the two methods is that these two methods can be piggybacked 

to increase speed and accuracy. Since the first method is faster, the user inputs will be 

placed in the first method. The final results of the first method can then be placed into the 

second method for improving the accuracy of the shape displayed. This piggybacking 

idea will be further explained in the next chapter. 

 

There are other benefits from this project to the sub-groups of the Digital Clay 

team. These will also be mentioned in the last chapter. 
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

 

Below are the results from both methods, implemented by MATLAB 

programming. The first method is successfully executed to produce the deformation for a 

line or an m-by-n matrix. The speed of convergence dramatically increases when the 

initial guesses are improved with linear interpolation. The fixed points are the user 

specified center-points.  

 

The second method implementation currently produces a line. It may take up to 

two more months to complete the coding for the implementation of the second method to 

produce a complete matrix. Presently, another master student in the Computer Science 

department is considering completing the coding in C++. This collaboration will be 

further discussed in the future works section of the last chapter. For the second method, 

there are actually two programming versions. The difference between the two versions is 

in the constraints. The versions will be described in details in the next section. In total 

there are three programs: one for the first method, and two for the second method.  

 

In this chapter, the results from the first method will be compared to both of the 

versions from the second method. From these results, Method 1 outperforms Method 2 in 

the time comparison test and is competitive in the accuracy of output values. The Method 

1 will be used to create several matrices to determine the time and accuracy of the 

implementation for a matrix. Finally, the different car-hood models will be presented.  
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The time it takes to produce the final results is determined on the computer being 

used. Below is a table describing the computer/s that will be running the programs.  

 

 As a reminder, the units will not be shown because it is assumed that all the 

values of the results have the same units or in the same family of units. The values of the 

results are not as important as the relations of the values to each other. 

 

5.1  Compare and Contrast 

 As previously stated there are actually three different programs. The first program 

is for the first method, which is an abstract model of the crust matrix with one stiffness 

value. Therefore the resulting graphs are only stick figures with the vertices representing 

the center-points of each unit cell. It is not necessary to show every unit cell, because we 

are mainly interested in the center-points locations.  The second and third programs are 

different versions of the second method. Method 2 consists of two different stiffness 

values for the two different joint designs for each unit cell.  There will be 2 graphs from 

these programs: first will show the unit cells deforming and the other will show the 

center-points. The reason for the unit cell graphs is because the angles between any two 

faces will deform as the position of the center-points changes. The first method does not 

deal with the angles within each unit cell. 

 

Table 5.1: Computer Configuration 
Dell Computers from Mechanical Engineering CAE Clusters 
Processor Display Adapter Network Adapters 
Intel (R) Xeon ™ 
CPU 3.20 GHz 

NVIDIA Quadro 
FX 500 

3Com EtherLink XL 10/100 PCI  
Intel(R ) Pro/1000 MTW Network Connection 
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The first version of Method 2 has one of the faces fixed horizontally- in this case 

the face at the edge of the first unit cell for a line. Refer to Figure 5.1 for a visual 

description. 

 

 

Figure 5.1: Fixed Face: Line of Cells (Left) and Detail of Fixed Face (Right) 

 

There is an assumption that the crust may be fixed at the edges to the future walls 

of the digital clay interactive device. 

 

The second version of the second method has several center-points fixed at the 

user specified heights. Therefore the faces are not fixed to any assumed edges as seen in 

Figure 5.2 with the two images. 

 

 

Figure 5.2: Free Face: Line of Cells (Left) and Detail of Free Face (Right) 
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From the three programs that implemented the different methods, the results are 

compared based upon the center-points, the computational time, the number of iterations, 

and the energies that are calculated from the configuration of the lines. Also joint angles 

and the energy in the joints angles are compared. Since there are a lot of joint angles for 

any one case, only the third line test will show the joint angle test. The third line test is 

the most complicated in comparison to the first and second test. The sections below are 

divided up based upon the test. We are currently studying a line because it is visually 

easier to compare the difference among the programs. The line will be at an arbitrary size 

of 1-by-7—not too small to see the difference and not too large so that we have to wait 

for hours for the results. In later sections we will show the matrix of center-points. 
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5.2 Line Test 1 

Below are the results for the first line test—a line with 1 input at the end of the 

line at 0.5 unit.  

 

 

Figure 5.3: Line Test 1 Method 1: Abstract Model 

 

 

Figure 5.4: Line Test 1 Method 2: With Fixed Face 

 

 

Figure 5.5: Line Test 1 Method 2: Without Fixed face 
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 For this example, the numbers of unknowns, numbers of equations, and the 

Degrees-of-Freedom are shown in the Table 5.1. 

 

Table 5.2: Kinematics Comparison Test 1 
 # Unknowns # Equations Degrees-of-freedom 

Method 1 21 11 15 
Method 2: Fix Face 63 11+3=14 66 
Method 2:Free Face 66 11 69 

 

From Table 5.1, for Method 1 there are 3(unknown coordinates value)*7(unity 

cells)= 21 unknowns. There are 4 (coordinate constraints) + 6(length constraints)+ 1 

(minimization equation)=11 equations total. There are 15 DoF. The explanation for DoF 

was already explained in the previous chapter and will not be repeated here. 

  

For Method 2: Fix Face, there are [3(spherical n  and v -vectors values)*4(faces 

for each cell)*7(unit cells in the matrix)] - [6(duplicates)* 3(spherical n  and v -vectors 

values)] - 3(spherical n  and v -vectors values that are fixed on one of the faces)= 63 

unknowns.  There are also 63+3=66 Degrees-of-Freedom. Again, we will not repeat why 

we added 3 to the number of unknowns to find the DoF. The number of equations is the 

same as Method 1 except there are now 3 more equations because one of the face is fixed.  

 

For Method 2: Free Face, there are [3(spherical n  and v -vectors values)*4(faces 

for each cell)*7(unit cells in the matrix)] - [6(duplicates)* 3(spherical n  and v -vectors 

values)] =66 unknowns. Three more unknowns than the Fix Face example, because no 

face is fixed. There are also 66+3=69 Degrees-of-Freedom. Again there are 11 equations, 

the same number of constraints as Method 1. 
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Just from the figures, one can tell that the results for all three cases are very 

similar. However, let’s look at a closer detail by actually comparing the differences. 

Below are the tables for comparing the various results. As a reminder, Method 1 is the 

abstract model. Method 2 is the actual manufacturable model with the first face being 

fixed. Another version of Method 2 is without any face being fixed. 

  

Table 5.2 shows the time it takes for the any methods to actually converge to the 

answers. 

 

 

 

 

 

Obviously the first method is faster mainly because it requires less unknown 

variables to iterate and also there is only one stiffness value to consider. Following first is 

the Method 2 without the Fix Face and then in last place Method 2 with Fix Face. 

Table 5.3: Time Comparison for Line Test 1 
 Time 

Method 1 0.404 sec 
Method 2: Fix Face 202sec ~ 3.4 min 
Method 2:Free Face 5.9 sec 
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The next table compares the number of iterations that it takes for the methods to 

converge and the stored energy value at convergence. Again, the units are not the 

significant factor since they all have the same units. Only the values are shown. 

 

Table 5.4: Iteration and Energy Comparison for Line Test 1 
 Iteration Energy 

Method 1 8 3.270*10 -9 
Method 2: Fix Face 68 70.104 

Method 2:Free Face 74 59.302 
   

Method 1- Method 2: Fix Face 60 70.104 
Method 1- Method 2: Fix Face 66 59.302 

 

From the table, it takes fewer iterations amount for Method 1 to converge.  Also 

there is less energy stored in Method 1, because there are fewer angles to consider for 

summing up the potential energy in the system. Coming in second is Method 2: Free Face 

with last place Method 2 with the fixed face. 
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The third table compares the Z-values. Along with the table is a graph of the 

results from the three programs. 

 

Comparison Results
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          Figure 5.6: Z-Values Results for Line Test 1 

   

From the table and the graph, all three programs turn out to have the same results. 

The differences in the Z-values from the results of Method 1 and 2 are so small that they 

are negligible. It appears there is not a difference between the Method 1 and 2: Free Face.  

Even in the graph, all the results appear to overlap, giving the graph the appearance of 

containing only one line. 

 

Ironically so, it takes longer for both versions of Method 2 to converge to an 

answer but their results are very similar to Method 1, which takes less than half a second. 

Of course this is only a simple case with only 1 input. 

 

 

Table 5.5: Z-values Comparison
Z-values Results 

M1 – M2:fix M1 – M2:free 
0 0 
0 0 

0.001 0 
1.000*10 -4 0 

0 0 
1.000*10 -4 0 
1.000 *10 -4 0 
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5.3  Line Test 2 

 Now we will add two inputs: 0.5 unit at the beginning and 0.5 unit at the end. This 

is a simple test, but the results should show us how each program can handle the first 

center-point being displaced. 

 

 

Figure 5.7: Line Test 2 Method 1--Abstract Model 

 

 

Figure 5.8: Line Test 2 Method 2-- With Fixed Face 

 

 

Figure 5.9: Line Test 2 Method 2-- Without Fixed Face 
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 Again the kinematics table will introduce the comparison. 

Table 5.6: Kinematics Comparison Test 2 
 # Unknowns # Equations Degrees-of-freedom 

Method 1 21 11 15 
Method 2: Fix Face 63 1 66 
Method 2:Free Face 66 1 69 

 

 The values do not change, because the new inputs only change the magnitude of 

the existing constraints. 

 

 Taking a quick glance says every graphs look the same. Then we look a little bit 

closer at Figure 5.8. The Z-values of the center-points are all at zero. The other graphs 

from the other programs show that the center-points are at the expected 0.5 unit. There is 

a difference. Let’s look at the actual values by comparing the results in tables. 

 

Table 5.7: Time Comparison for Line Test 2 
 Time 

Method 1 0.340 sec 
Method 2: Fix Face 4.761 sec 
Method 2:Free Face 5.421 sec 

 

 Again the first method is the fastest of all three. In this case Method 2: Fix Face 

and Method 2: Free Face switch ranking. A possible reasoning is that there are less 

unknown variables when one of the faces is fixed. So it will take less time when there are 

fewer variables. Also this is a straight horizontal line.  It will not be difficult for any 

process to coverage to the answer.                              
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 The next table compares the number of iteration and the stored energy value. 

 

Table 5.8: Iteration and Energy Comparison for Line Test 2 
 Iteration Energy 

Method 1 10 4.850*10 -6 
Method 2: Fix Face 1 7.470*10 -9 
Method 2:Free Face 1 7.630*10 -9 

   

Method 1- Method 2: Fix Face 9 4.840*10 -6 
Method 1- Method 2: Fix Face 9 4.840*10 -6 

 

Method 1 requires more iteration, but the convergence rate as seen in the previous 

table is faster. Both versions of Method 2 require the same number of iteration--1, but 

Method 2: Free Face has a slightly higher energy value. The difference is so small that it 

is insignificant. 

 

The third table compares the Z-values as it was previous done for the first test. 
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                    Figure 5.10: Z-Values Results for Line Test 2  

 

Table 5.9: Z-values Comparison
 Z-values Results 

M1 – M2:fix M1 – M2:free 
0.5 0 
0.5 0 
0.5 0 
0.5 0 
0.5 0 
0.5 0 
0.5 0 
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 From the previous table and graph, there is a recognizable difference. The result 

from Method 2: Fix Face converges to a line but all the z-values are at zero. The 

difference between Method 1 and Method 2: Fix Face is exactly the value of the inputs. 

Method 1 and Method 2: Free Face has the exact same value. Therefore their differences 

are zeros. Even in the graph, the resulted lines from Method 1 and Method 2: Free Face 

overlaps, leaving the graph to only look like it has two graphs. Of course the second line 

from the results of Method 2: Fix Face is strangely offset. Reason: the fixed face grounds 

the first face at Z-height of zero or at the edge of the future walls of the digital clay 

interactive device. This in turns causes the first unit cell to be grounded at (0,0,0). So how 

was face grounded? In the algorithm for Method 2, all the unknowns are placed into the 

iteration algorithm. The unknowns are the n  and v  values for every face on every unit 

cell of the matrix. To fix a face, we do not place the n  and v  values for that particular 

face into the iteration algorithm. This will prevent the iteration process from moving that 

face, which in turns prevents the first unit cell from moving. Since the first unit cell 

cannot move, the lowest energy state is when all the other cells are also at ground level. 

For Method 2 with all the faces being free, all the n  and v  values for every face are 

placed into the iteration algorithm. This allows the iteration algorithm to search for 

possible orientation of the n  and v  values for the all the faces. 
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5.4  Line Test 3 

 Now we notice there is a difference when the first unit cell of a 1-by-7 is 

displaced.  With 3 inputs, the first at 0.3 unit, the middle at 0.1 unit, and the last at 0.6 

unit, the results are similar to Line Test 2. Below are the resulting graphs. 

 

 

Figure 5.11: Line Test 2 Method 1-- Abstract Model 

 

 

Figure 5.12: Line Test 2 Method 2--With Fixed Face 

 

 

Figure 5.13: Line Test 2 Method 2--Without Fixed Face 
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 Again the kinematics comparison chart is below.  

 

Table 5.10: Kinematics Comparison Test 3 
 # Unknowns # Equations Degrees-of-freedom 

Method 1 21 12 15 
Method 2: Fix Face 63 12+3=15 66 
Method 2:Free Face 66 12 69 

 

 The only change from the first and second example is the number of equations for 

Method 1 because there is an additional input that constrained a different point than the 

other previous examples. The number of equations of both versions of Method 2 also 

changed because the constraints are different. The difference in the value was already 

explained in the previous chapter and will not be repeated here. 

 

 Obviously from the figures, the resulting graphs in Figures 5.11 look different 

from the other graphs. The Table 5.11 –5.13 below compare the exact values. 

 

Table 5.11: Time Comparison for  Line Test 3 
 Time 

Method 1 0.415 sec. 
Method 2: Fix Face 212.354 sec ~ 3.539 min 
Method 2:Free Face 239.330 sec~3.989 min 

 

 And again Method 1 is the winner with Method 2: Fix Face coming in on second. 

However the results from Method 2: Fix Face are questionable. Of course the results are 

based upon how the constraints are situated—this means whether the user wants to fix the 

edges to the bounding walls or not. 

 



 156

 The next set of data is the iteration and energy comparison table. 

 

Table 5.12: Iteration and Energy Comparison for Line Test 3 
 Iteration Energy 

Method 1 10 27.90 
Method 2: Fix Face 74 59.30 
Method 2:Free Face 80 26.90 

   

Method 1- Method 2: Fix Face 64 31.426 
Method 1- Method 2: Free Face 70 0.971 

 

 In this configuration, the lowest/best energy value goes to Method 2: Free Face 

and Method 2: Fix Face has the highest/worst energy value. Again the difference between 

Method1 and Method 2: Free Face is not significant enough to be accounted for. The 

energy value for Method 2: Free Face is high because of the kink in the graph. Again the 

kink is to maintain the first edge face to be fixed horizontally to the ground, which in 

turns keeps the first unit cell being fixed at (0,0,0).  However, the kink causes the resulted 

line to have a high energy value. 
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The next set of data compares the Z-values. 

 

 

Comparison of Results
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           Figure 5.14: Z-Values Results for Line Test 3 

 

 From Table 5.13, there is a definite difference between Method 1 and 2. The 

difference is again noticeable in the corresponding graph where the results for Method 2: 

Fix Face is shown as the lower line. There is a slight difference between Method 1 and 

Method 2: Free Face. The difference is so little that the two lines overlap in the 

corresponding graph. These results conclude that Method 2: Fix Face cannot properly 

handle an input at the first unit cell. Previously there was a section discussing how 

Method 2: Fix Face handles non-first-unit-cell inputs. Later there will be more examples 

of Method 2: Fix Face handles non-first-unit-cell inputs.  

 

Unlike the first two examples, we are going to introduce a new comparison chart: 

comparing the angles. Yes, any of the programs that implement the methods can output 

the angles of the joints as well as the center-point positions. For every unit cell, there are 

12 angles. In a matrix of 1-by-7 there will be a total of 12*7= 84 angles. To properly 

Table 5.13: Z-values Comparison 
Z-values Results 

M1 – M2:fix M1 – M2:free 
0.3 0 

0.2506 0.0013 
0.2383 0.0016 
0.2962 0.0008 
0.2426 0.0014 
0.254 0.0011 
0.3011 0.0004 
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compare the results from method 1 and Method 2, we need to show 84*3 angles= 252 

plus the comparison values. We are not going to show all of that in this chapter. Please 

refer to Appendix B for all the values and the comparison values for Line Test 3. Table 

5.14- 5.16 will show a sample of angles. Note that the angles are symmetric about the 

line that connects two center-points together. Refer to the previous Figure 5.12 and 5.13 

for visual help. 

 

The legend for the tables below: 

� After: Joint angles (radian) after the program converges 

� Before: Joint angles (radian) before the program converges 

� Diff: the absolute value difference between the before and after angles 

� Energy: the energy stored in the spring  

o Method 1: k*(after-before)2 .  K: Average Stiffness Value: 0.0756 Nm 

o Method 2: 

� Energy Equation for larger joint: 0.1348*(Before-After)2 

� Energy Equation for larger joint: 0.0164*(Before-After)2 

� The alphabet letters:  the symmetry of the angles:  

o For example:  

� All A values for the Cell 1 has similar values in Method 1.  
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Table 5.14: Joint Results for Method 1 
  Cell 4 
  After Before Diff Energy 
A 2.2246 2.0089 0.2157 0.007072 
B 1.4079 1.4432 0.0353 1.93E-05 
C 2.1227 2.0089 0.1138 0.001968 
C 2.0378 2.0089 0.0289 1.29E-05 
B 1.4295 1.4432 0.0137 2.85E-05 
A 2.2151 2.0089 0.2062 0.000659 
D 2.2272 2.0089 0.2183 0.007244 
E 1.4068 1.4432 0.0364 2.05E-05 
F 2.0997 2.0089 0.0908 0.001253 
F 2.0514 2.0089 0.0425 2.8E-05 
E 1.4126 1.4432 0.0306 0.000142 
D 2.2104 2.0089 0.2015 0.000629 

 

Table 5.15: Joint Results for Method 2 Fix Table 5.16: Joint Results for Method 2 Free
  Cell 4   Cell 4 
  After Before Diff Energy   After Before Diff Energy 
A 2.2246 2.0089 0.2157 0.007072 A 2.1199 2.0089 0.111 0.001873 
B 1.4079 1.4432 0.0353 1.93E-05 B 1.4369 1.4432 0.0063 6.15E-07 
C 2.1227 2.0089 0.1138 0.001968 C 2.0377 2.0089 0.0288 0.000126 
C 2.0378 2.0089 0.0289 1.29E-05 C 2.0373 2.0089 0.0284 1.25E-05 
B 1.4295 1.4432 0.0137 2.85E-05 B 1.4373 1.4432 0.0059 5.29E-06 
A 2.2151 2.0089 0.2062 0.000659 A 2.1202 2.0089 0.1113 0.000192 
D 2.2272 2.0089 0.2183 0.007244 D 2.1202 2.0089 0.1113 0.001883 
E 1.4068 1.4432 0.0364 2.05E-05 E 1.4373 1.4432 0.0059 5.4E-07 
F 2.0997 2.0089 0.0908 0.001253 F 2.0372 2.0089 0.0283 0.000122 
F 2.0514 2.0089 0.0425 2.8E-05 F 2.0378 2.0089 0.0289 1.29E-05 
E 1.4126 1.4432 0.0306 0.000142 E 1.4368 1.4432 0.0064 6.23E-06 
D 2.2104 2.0089 0.2015 0.000629 D 2.1198 2.0089 0.1109 0.000191 

 

 From the tables, the symmetry becomes apparent. Each cell is divided into two 

halves. Within each half are other symmetry among the joints. A-C denotes the symmetry 

for the first half. D-F denotes the symmetry among the second half. The symmetry is 

repeated in every column. This in turn causes the energy in the springs to be symmetric 

as well. From the symmetry, we can say that joint angles are correctly calculated. 
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 Next, we will be talking about how to improve the speed and accuracy of the 

programs. 

 

5.5 Line Test 4: Piggybacking Style 

 From all previous graphs of Line Test 1, 2, and 3, Method 1 converges the fastest 

to highly reasonable answers that are compared to Method 2: Free Face. Unlike Method 

2: Fix Face where the edge of the face for the first unit cell is fixed, both Method 1 and 

Method 2: Free Face have similar constraints. Although Method 1 converges the fastest, 

Method 2: Free Face is a more accurate representation of the manufacturable crust that 

was described in the earlier chapters. We can take advantage of this: use the results from 

Method 1 as the inputs for Method 2: Free Face. Unlike Method 1, Method 2: Free Face 

does not restrict the algorithm from searching around the inputs for other possible 

combinations that might create a lower potential energy state. Also this will decrease the 

time in which Method 2: Free Face converges to an answer because the initial guess (or 

in this case the inputs) is a lot closer to the answers.  

  

 Because Method 2: Fix Face has a face constraint that is different from any of the 

other programs, Method 2: Fix Face will not be piggybacked.  

 

 To demonstrate this piggyback style, we will use two examples. The first one is 

from Line Test 3 with three inputs for a 1-by-7 line. The second example is a 1-by-31 line 

with 5 inputs.  

 



 161

5.5.1 Piggybacking Style Example 1 

 

Figure 5.15:  Graphic Reminder of Previous Results for Method 1 and 2 

 

 Because the results for Both Method 1 and Method 2: Free Face are so similar, it 

is unnecessary to show two graphs that looks identical. For this case, one graph is enough 

information to convey the point. 

 

 

Figure 5.16: Piggybacked Example 1 Result 

 

 The piggybacked result looks indistinguishably the same. However, let’s look at 

the details by using tables to actually compare the difference. 
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Table 5.17: Time Comparison for Piggyback Example 1 
 Time 

Method 1 0.415 sec. 
Method 2:Free Face  239 sec. ~ 4 min. 

Piggyback: M1+M2 Free 215 sec. ~3.6 min. 
 

 Piggybacking results shows that the summation of the total time is 3.6 minutes. 

The total time is the time it takes for Method 1 to converge then summing it up with the 

time it takes to run the results through Method 2: Free Face and arrive at the final answer. 

It appears that piggybacking for this example is faster by 0.4 minute than just running 

Method 2: Free Face. 

 

Table 5.18: Iteration and Energy Comparison for Piggyback Example 1 
 Iteration Energy 

Method 1 10 4.850*10 -6 
Method 2:Free Face  80 26.90 

PG:Method 1+ Method 2:free 70 26.97 
   

| Method 1- Method 2: Free Face | 9 26.905 
| Method 1- P G | 9 26.917 

 

 Even comparing with Table 5.18, The Piggybacking has better results than just 

applying Method 2: Free Face. The Piggybacking method takes less iteration and the 

energy value is almost the same- minor difference. 
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Comparison of Results
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     Figure 5.17: Z-Values for Piggyback Example 1 

 

 From applying the piggyback method, the differences in the Z-values are very 

small--almost all zero. In the corresponding graph, all the lines overlap giving an illusion 

of one line. Now the question is: is piggy-backing worth it? The difference is so small 

that it may not be significant enough to account for in our prediction. However, this is a 

simple case. Let’s consider a more complex case with 1-by-31 unit cells. 

Table 5.19: Z-values Comparison
Z-values Results 

M1 – M2:free M1 – Piggyback 
0 0.0 

0.0013 0.0 
0.0016 0.0 
0.0008 0.0007 
0.0014 1.0 *10 -4 
0.0011 0 
0.0004 0.0004 
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5.5.2 Piggybacking Style Example 2 

 This example will use a 1-by-31 line with five inputs. Below are the results for 

applying the Method 1, Method 2: Free Face, and finally the results from piggybacking 

Method 1 onto Method 2: Free Face.  

 

 

Figure 5.18: Method 1 Inputs (Left) and Line Interpolation (Right) 

 

 

 

Figure 5.19: Method 1 Results 

 

 

 

Figure 5.20: Piggyback Results 
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 Again, the Piggyback results look similar to the Method 1 results, because 

Method 1 has proven to be very reliable on the results as seen in previous line tests and 

example. Below are the tables that describe in more detail of the final answers. 

 

Table 5.20: Time Comparison for Piggyback Example 2 
 Time 

Method 1 1.906 sec. 
Method 2:Free Face  1990 sec. ~  5.5 hrs 

Piggyback: M1+M2 Free 1470 sec.  ~  4.1 hrs 
 

 As the number of unit cells increases, the time it takes for each program to 

converge to an answer also increases. Instead of minutes, now Method 2: Free Face takes 

5.5 hours, which is 5 hours and 30 minutes. With piggybacking, it takes 4.1 hours, 1.4 

hour less than without Method 2: Free Face being piggybacked. Of course, just running 

Method 1, it only takes less than 2 second.  

 

 The next table compares the iteration and energy values. 

 

Table 5.21: Iteration and Energy Comparison for Piggyback Example 2 
 Iteration Energy 

Method 1 32 34.859 
Method 2:Free Face  283 34.684 

PG:Method 1+ Method 2:free 295 34.703 
   

| Method 1- Method 2: Free 
Face | 251 0.1749 

| Method 1- P G | 263 0.1547 
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 Using the piggybacked method, the number of iterations does increase to 295 

iterations in comparison to 283 using just Method 2: Free Face without piggybacking. 

Although the iteration numbers differ, all energy values are very similar. It is 

insignificant to distinguish among the differences in values, refer to the set of data below. 

 

Comparison Of Results

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

X coordinates

Z 
co

or
di

na
te

s

Method 1
Method 2: Free
Piggybacked

 

Figure 5.21: Z-Values for Piggyback Example 2 

 

  

 

 

 

 

 

 

  

Table 5.22: Z- values Comparison
Z-values Results 

M1 – M2:free M1 – Piggyback 
0 0 

-0.0002 0 
-0.0002 0 
-0.0002 0 
-1*10 -4 -1*10 -4 

0 0 
0.0003 0 
0.0007 0 
0.001 0 
0.001 0 

0.0003 0.0003 
-0.0014 0 
-0.0032 0 
-0.0049 0 
-0.0058 0 
-0.006 0 

-0.0053 0 
-0.004 0 

-0.0024 0 
-0.0009 0 
-0.0003 -0.0003 
-0.0011 0 
-0.0019 0 
-0.002 0 

-0.0016 0 
-0.0007 0 
0.0002 0.0002 
0.0006 0 
0.0006 0 
0.0004 0 

-1*10 -4 -1*10 -4 
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From Table 5.22, the actual number comparison shows there really isn’t much 

difference between running Method 1, Method 2: Free Face, and piggybacking them. So 

what is the benefit for running a program that takes hours and the answers will be very 

similar to another program that take several seconds to complete the same task?  

 

 The answer: how accurate do you want your answer to be? Six Sigma accurate?  

For the Digital Clay project, I do not think it is that necessary to be that perfect at this 

stage of the design process. Therefore, the rest of this chapter will switch back to 

focusing on the methods not the program.  Method 1: Abstract Model of Crust. The next 

section will compare how Method 1 handles different size matrix. It does not matter 

about the dimension as much as the number of unit cells and inputs in the matrix. The 

number of unit cells determines the number of unknowns. The more inputs, the more 

equations, this would decrease the computational time because there are more constraints 

that would guide the iteration process. The more numbers of unknowns, the longer it 

takes for the methods to converge to an answer because there are more variables to 

iterate.  We will not test these two assumptions because the location and the magnitude of 

the inputs vary with the user and the situation. Any resulting data from these test will be 

misleading. 
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5.6  Method 1 Matrix Elapse Time Study 

 From previous tests, we learned that the program that implements Method 1 

converges to the answer the fastest of any of the other programs. So how will it handle 

different size matrices as the number of unit cells increase? To answer this question, we 

will only give each matrix one input of the same value at the center or around the center 

of the matrix. The stiffness value will be arbitrarily assigned at 1000 units. The corners of 

the matrix will default to the original constraints of Method 1 at zero Z-heights.  Figures 

5.21-5.23 are examples of how we are conducting this experiment.  

 

 

Figure 5.22: 3-by-3 Matrix  Input at [2,2] (Left). Results (Right)  

 

 

Figure 5.23: 4-by-4 Matrix Input at [3,3] (Left). Results (Right) 
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Figure 5.24: 5-by-5 Matrix Input at [3,3] (Left). Results (Right) 

 

 We continue performing this test until the size of the matrix is 15-by-15. Figure 

5.25 and 5.25 are two graphs from the test. 
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Figure 5.25: Computational Time 

 

 Figure 5.26 shows that as the number of cells increases, the computational time 

increases. The graph follows a 3rd degree polynomial line. 
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Iteration
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Figure 5.26: Iteration Rate 

 

 The number of iterations as seen in Figure 5.26 also follows a rising 3rd degree 

polynomial line as the number of cells increases.  

 

 From these graphs, we can predict the time it takes and the numbers of iterations 

for Method 1 to converge to an answer when it is applied to a matrix of any size. 
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5.7  Method 1 Matrix Accuracy Prediction 

 At this point of time, the mechanical device that will deform the crust has not 

been built yet. Therefore, Method 1 cannot be proven with experimental data to predict 

the deformation of the crust based upon the user inputs. The current car-hood SLA model 

is not a precise hardware that will displace any center-points by any specify distant. 

However, visual inspection and intuition can be applied to test Method 1 for reasonable 

answers. Below are several tests using a 6-by-4 matrix. The dimensions are varied from 

the previous matrix size to show that this method can handle various conditions. 

 

5.7.1  Matrix Plane Test 1 

 

 

Figure 5.27: Plane Test Inputs (Left). Results (Right) 

 

 From intuition, if two corners are vertically displaced for a material with high 

stiffness of 1000 units, the results should be a plane. For this case, the result is a plane. A 

real-life example is a piece of paper fixed at one end and held by two fingers at the other 

end—the result is a plane. 
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5.7.2  Matrix Surface Test 2 

 

 

Figure 5.28: Surface Test Inputs (Left). Results (Right) 

  

 If a displacement is applied to point in the middle of a plane, the plane should 

curve and create a concave surface. This example is again compared to a real-life 

situation with a piece of paper. If a piece of paper is held in space with one finger in the 

middle, how will it look like? The result looks like the graph on the right. 

 

 We already did several line tests. From these results, we concluded that Method 1 

does a very good job at predicting the deformation. Now we can apply this method to the 

car hood models. 
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5.8  Mimicking the Car-hood Models 

 In previous chapters, we use the car-hood model as an example of what we 

wanted the low degree of freedom machine to mimic. Below is a repeated image of the 

car-hood models as they morph. 

Figure 5.29: Morphing Car-hood Models 

 

 Now we want to mimic the car-hood using Method 1. Only the hood will be 

modeled. The windshield needs another matrix, because it is on a different plane than the 

hood. The Lotus will not be attempted, because it is just a flat plane. That plane can be 

seen in Figure 5.27.  

 

 

Figure 5.30: Ferrari Attempt 

 

 This is the first attempt with 30 inputs on a 14-by-18 matrix. It took 13 hours for 

the program to finally converge to an answer.  The mimicking hood is close, but not 

 Lotus  Corvette  Ferrari 
Flat 
Surface 
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perfect. Figure 5.30 demonstrates the possibility of recreating the hood and to not show 

how perfect the mimicking is. We only did one run. We can run various trials and errors 

by changing the magnitude of the inputs and the amount of inputs until Method 1 shows a 

perfect Ferrari. However, the benefit will not be worth the time and effort put into this 

experiment. 

 

 

Figure 5.31: Corvette Results 

 

 Figure 5.31 contains 32 inputs for 14-by-18 matrix to model the Corvette hood. 

The time for the answer to converge is 15 hours. The results (image on the right) show a 

kink near the bottom left hand corner because there are several inputs that are right next 

to each other. These inputs cause a sharp decline from one surface to the other. Again, we 

can run several experiments until the perfect hood is displayed, but the benefit will not be 

high enough to compensate for the resources added into getting the perfect hood example. 



 175

5.9 Degeneracy 

Degeneracy is when a system would reduce or degenerate to a simpler version of 

itself.  For an example a dot is a degenerate version of a circle with radius 0. A circle is a 

degenerate version of an ellipse with eccentricity 0. The system of rods and springs in 

Method 1 can degenerate when the matrix is deformed horizontally. In other words, we 

did not consider the shearing effect of the matrix because there isn’t any spring between 

two intersecting rods. Figure 5.32 shows where the springs would be to prevent shearing 

in addition to the existing springs underneath the center-points. 

Springs

 

Figure 5.32: Non-Existing Springs 

 

Previously we stated that if various Z-heights are inputted, the shape deformation 

for the matrix in Method 1 can be predicted from minimizing the energy in the angular 

springs. However, if the matrix is sheared as seen in the right image of Figure 5.33, the 

Potential Energy calculated will be the same as the undeformed state, as shown in the left 

image.  
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Figure 5.33: Non-deformed state (Left) Shear Deformation (Right) 

 

This would make Method 1 solution NOT unique when deforming horizontally. 

This means that both images in Figure 5.33 have the same amount of stored energy but 

their shapes are different. Uniqueness will be further explained in Chapter 5. To resolve 

this situation, we need to place a spring between any two intersecting rods as seen in 

Figure 5.32. 

 

 For Method 2, there are two types of springs that comprise one unit cell. Any type 

of deformation of the unit cell, including shear, will change the total energy in the 

springs.  Therefore, this spring configuration will prevent Method 2 from degenerating 

when deformation is horizontally applied. The potential energy is different in the two 

cases in Figure 5.33. 

 

5.10 Uniqueness  

Uniqueness is when the methods would converge to the same results, based upon 

the given inputs and constraints and given different initial guesses. As previously stated, 

since Method 1 can degenerate when deforming horizontally, Method 1 is not unique in 

that deformation manner. Method 2 has two types of springs that may prevent 
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degeneration and increase the possibility of uniqueness. However Figure 5.34 is an 

example of horizontal deformation that questions if uniqueness still exists for either 

method. When one edge of the matrix is constrained and a force is applied to the other 

edge as seen in the first image of Figure 5.34, what will the shape be? 

 

 

Figure 5.34: The Bowing Effects 

 

Will it bow up as seen in the middle image of Figure 5.34 or bow down as seen in 

the last image? Or can it be a combination of both where half of the matrix bows up and 

the other half bows down? Both the bowing up and bowing down situations are minima, 

and the results are based upon the searching process: how and which direction the 

guesses would take to search for the answer. Therefore the answer is NO: neither method 

is unique for horizontal displacement. A possible solution for guiding the results is 

applying threshold values to ensure that any joints angles will not be greater than a 

certain amount of degrees. Threshold values will be explained in Chapter 6.  

 

For Method 2, the springs are located where the actual joints are. This placement 

will guide Method 2 into behaving more like the actual model. However, it is difficult to 

guarantee that the physical model will behave in the same manner as the math model. 

Another possible solution to get the desired effect is adding a Z-height displacement in 
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the center of the matrix to ensure that the matrix would bow up. The more Z-heights (or 

constraints added), the more likely the system would converge to a unique answer. The 

same solution can be applied to ensure a bowing down effect. 

 

Another question is: are the methods unique for vertical deformation, (ie. when Z-

heights are used as inputs)?   One test for the vertical deformation situation is performing 

a set of simulation runs. The runs include comparing the results from one run with the 

results from another run using different starting positions but with the same constraints as 

seen in Figure 5.35-5.37 with Method 1. 

 

 

Figure 5.35: Set 1. Flat Plane Starting Position (LT). Input (M). Results (RT). 

 

Set 1 is a 4-by-5 example that starts off with a flat plane as seen in Figure 5.35. 

Then two Z-heights are inputted as seen in the middle image. The results as expected are 

seen in the last image. 
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Figure 5.36: Set 2. Flat Plane Starting Position (LT). Input (M). Results (RT). 

 

Similarly Set 2 also starts off with a flat plane as seen in Figure 5.36. The Z-

height inputs are placed in the middle image and the results are seen in the last image. 

 

 

Figure 5.37: Set 3 Starting Position with Inputs. 

 

Using the results from Set 1 as seen in the first image of Figure 5.37 and adding to 

it the Z-heights inputs from Set 2 as seen in the middle, a new starting position will be 

specified that should converge to the same position as in set 2, seen in the last image of 

Figure 5.37. 
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Figure 5.38: Set 3. Starting Position (LT). Input (M). Results (RT). 

 

 For Set 3 the starting position (results from Set 1) is seen in the first image in 

Figure 5.38. The Z-heights from Set 2 are added into the starting position as seen in the 

middle image. And the results looks exactly like Set 2, as one would expect. When the 

data points are compared, the difference is 1/10000 in the data point values. This 

difference is insignificant.  For this example, the implementation of Method 1 is unique. 

Since different starting points converge to the same solution, the question is: for Method 

1 are the solutions always unique? The answer is unknown. Although the previous 

example shown indicate that Method 1 is unique and most likely there would be a lot of 

cases where the results will be unique, it is difficult to determine how the iterative 

process would converge for any conceivable inputs.  

 

 Similar to Method 1 uniqueness test, Method 2 can also go through various tests 

using a serial chain of unit cells instead of matrices. Of course, when Method 2 has been 

implemented for a matrix, the 4-by-5 matrix test can be repeated. Again the solutions for 

Method 2 are not likely to be unique due to the iterative guessing process for determining 

the results.  
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5.11 Geometric Non-linearity 

 Geometric non-linearity could occur when there is a large displacement in relation 

to the matrix dimension. In the case of the structures discussed in this thesis, the both the 

X-Y position coordinates of the crust are fixed only at the first point. Since the other 

points of the crust can translate in the X or Y or both in response to the Z-displacement; 

stretching-induced geometric non-linearity are partially mitigated. However, in more 

complex models of translation-restricted clay, geometric non-linearity may have to be 

taken into account. Geometric non-linearity will create unwanted stress stiffening and/or 

strain deformation either in the joints or the rigid links of the matrix. This will cause the 

joints or the links to warp undesirably. In relation to the Digital Clay crust matrix, 

understanding geometric non-linearity can help determine how much Z-height 

displacement amount a matrix can handle before an unwanted amount of stress or strain 

would occur. By knowing this value, we can prevent the structural damage of the crust 

matrix or the machine that deforms the crust. There are two approaches for handling 

Geometric Nonlinearity: Updated Lagrangian description and Total Lagrangian 

description (El-Zeiny, 2000) (Bathe, 1996). Update Lagrangian refers to comparing the 

deformation geometry to a previous value. Total Lagrangian refers to comparing the 

deformation to a reference configuration.  One way to implement either one of the 

Lagrangian descriptions is applying Finite Element Analysis (FEA) individually to every 

situation. This application was already attempted by He Liu and co-workers to determine 

the geometric nonlinearity occurrence of a Fluid Tank, which will help determine the 

effect of large deformation to the tank. (Liu, et. al, 2002). A similar process can be 

extrapolated to the matrix for either method. Currently the FEA implementation has not 
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been performed, but it is assumed that there is a limit to how much deformation the 

matrix can handle before the matrix warps. Geometric Non-linearity can be a 

supplementary evaluation with using a threshold value. Threshold value will be 

mentioned in Chapter 6. 

 

5.12 Ending Remarks 

 From the results shown in this chapter, the methods developed can predict the 

deformation based upon the user inputs and the material stiffness property. There are 

questions with uniqueness and geometric non-linearity that was already discussed.  

 

5.13 Comparing Two Theses 

Previously Paul Bosscher’s Master Thesis was referenced. Bosscher is a former 

graduate student who was involved in the Digital Clay project. For his thesis, he helped 

designed the kinematics structure of the deformable crust and developed an algorithm to 

predict the deformation of the crust. The algorithm is for an abstract matrix with angular 

springs between vertices and linear springs representing prismatic joints as shown in 

Figure 5.39. 
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Figure 5.39: Bosscher’s Abstract model 

 

Comparing Figure 5.39 to Method 1’s abstract model in Figure 4.9 there are two 

obvious differences; the locations of the springs that are being minimized and the use of 

prismatic joints. For Method 1 from this thesis, prismatic joints are not modeled. 

However, the implementation of Method 1 can be modified to consider the prismatic 

joints by changing the tolerance value for the length calculation.  

 

Another main difference is the minimization technique. Bosscher finds the 

minimal location of all the points by moving a set of points while fixing the other sets of 

points. This method did yield the minimal location of all the points. For this thesis, we 

move all the points at the same time searching for various combinations of the location of 

the center-points. It is uncertain which style of problem solving is better: solving for one 

big equation or lots of smaller equations.   
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For Method 2, unlike Bosscher’s approach, the actual manufactured crust shape 

was modeled. This means there are two different angular springs. Each spring represents 

the different joints in the unit cells. This is not an abstract model, which increases the 

complexity. Because the crust is fully modeled, the location of every vertex can be 

calculating using Method 2 before and after deformation. In addition the edge vertices 

can be calculated as shown in Figure 4.44. 

 

 Another main difference between this work and Bosscher’s thesis is the 

application of material properties: the stiffness values of the joints are derived from 

experimental runs. Knowing these stiffness values will enable us to accurately predict the 

deformation capability of the material being used. Bosscher did consider the material 

properties, stating the springs have a stiffness value, but did not develop a process for 

deriving what these values are. For both methods from this thesis, the actual stiffness 

values were used to predict the deformation of the matrix. 
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CHAPTER 6 

LAST COMMENTS 

  

 In this chapter, the “Concluding Comments” will be discussed first then followed 

by “Future Works” well as the “Benefits and Values” for each individual subgroup in the 

Digital Clay team. There are two methods developed for this thesis with three different 

programs. The suggested method to use is Method 1. Of course it is up to the end user 

which method and which program best fit the usage. 

 

6.1 Concluding Comments  

At the beginning we attempt on fulfilling four goals and answering the key 

question: What is this kinematics structure and how can the deformation of the 

kinematics structure be predicted based upon the materials being used and 

constraints being applied?    Below is a list that comments on the accomplishment. 

 

1. Designing and manufacturing a deformable kinematics structure  

The final design is a deformable crust matrix with spherical joints. The crust design 

can be formed into various shapes. The design is effective but of course there can be 

improvements in simplifying the design to better scale down the matrix. For 

manufacturing the crust, several manufacturing techniques are listed. Some of them show 

potential in manufacturing the crust matrix. We settled on the SLA process because it 

was the most accessible and the most time efficient. The one of the criteria for selecting 

the process for manufacturing the kinematics structure is obtaining the stiffness property 
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from the material used in the chosen process. The stiffness factor will determine the 

deformation as seen with Method 2 and affect the threshold value that will be mention as 

part of Future Works. This answers the first part of the key question: “What is this 

kinematics structure”. 

 

2. Expanding the existing joint angle calculation  

Before this thesis was written, a joint angle calculation was introduced for one unit 

cell. This calculation was expanded to consider an array of joints. The calculation was 

successful because the size of the matrix would not affect how the calculation is 

implemented: the calculation can calculate any matrix size. 

 

3. Incorporating the joint stiffness 

From the material research and the experimental run, we were able to calculate the 

stiffness property and apply in our equation to determine the deformation. Although we 

were able to derive the stiffness values for both types of joints, of all of the goals, this is 

the least successful. The experimental set-up did not have the proper tools to measure 

angular springs that only needs up to 1N for the displacement response. From what we 

had, we were successful in setting-up and evaluating the stiffness value since the angle of 

deformation was not high. 
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4. Developing a “Forward Statics” Algorithm  

From Method 2, we have completed all the goals by developing the forward Statics 

equations to complete the cycle with inverse Statics with material consideration. The 

algorithm solves the problem and partially answered the second part of the key question. 

 

Second part of key question: “how can the deformation of the kinematics structure 

be predicted based upon the materials being used and constraints being applied?” As 

mentioned, there are two methods presented with 3 different implementations total. Both 

methods consider the material being used by using the stiffness value in the calculation. 

Both methods also consider the constraints being applied by the user to predict the 

deformation.  It is up to the user which method and implementation to use. Each method 

can be extrapolated for other crust designs with angles as the deformation feature. Also 

both the methods and the implementations are robust. The implementations are robust 

because any of the implementation can handle various size matrix and unit cells with 

different constraints being applied. The methods are robust because the methods can also 

handle any matrix and unit cell size. As previously mentioned, the starting position can 

also vary and the methods will arrive at an answer. Of course, there is a question of 

uniqueness that was previously addressed.  

 

Both parts of the keys questions are successfully answered while fulfilling the 

goals of this thesis. 
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6.2  Future Work 

Below are suggested improvements that can be made to this thesis.  

 

1. Implement Method 2 for Matrix 

Currently the programs that implement Method 2 only model a serial chain of unit 

cells. The programs can be modified to create a whole matrix by considering the 

geometry as each unit cell gets connected to each other and more realization of 

duplication of the variables in the matrix. The question one has to ask is what variables 

are being duplicated and how are they duplicated. 

 

2. Methods for Hex Matrix 

Extrapolating the methods developed for the Grid Matrix to the Hex Matrix. The 

math for the Hex Matrix has not been developed yet because it was easier to start off with 

the Grid Matrix. After developing a system to analyze the Grid Matrix, it will now be 

easier to analyze the Hex Matrix. 

 

3. Looping for Shape Editing 

As previously explained, any of the methods developed can be used for Shape 

Editing. That means that one shape can transform into a different shape by modifying the 

inputs. Any of the programs created to implement the methods can be changed to support 

Shape Editing by adding a loop command within the program. This modification has not 

yet been completed due to time constraints. 
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4. Converting MATLAB to C++ 

MATLAB is a higher level programming language than C++; however C++ has 

higher computational speed. C++ also allows the programmer to create a better, friendlier 

user interface than MATLAB. At present, I, the Mechanical Engineer, am working with a 

Computer Science Master student, to convert the MATLAB code that implemented the 

methods into C++.  Presently, this process has not been completed. 

  

5. Exploration of Material 

For this development thesis, a stereolithography material was used to create the 

matrices. In the MEMS department other materials are being explored. Presently, we 

have not explored enough material to determine which material is best fitted to build the 

formable crust matrix that will be part of the Digital Clay device. 

 

6. Adding Threshold Values 

As stated in the last chapter, there needs to be a threshold value for the crust 

matrix as it deforms. This threshold value can be the maximum angle(s) deformation for 

any angle in the methods. If the threshold value is reached, there can be a feedback 

statement in the programs stating that the crust matrix will break. To include this 

criterion, we can add a loop at the end of the program that will evaluate each angle 

against the threshold angle(s). The threshold angle(s) is/are determined by the design of 

each unit cell and can be experimentally estimated.  
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Another criterion is calculating the energy stored in each spring. If the energy 

stored in a spring is greater than a threshold value, then the constraints imposed by the 

method being used and user input values would cause the crust matrix to break. For 

example, a piece of wood cannot handle a Z-height input applied in the middle while 

being constrained at its corners without breaking. The threshold value varies with the 

material being used. 

 

These new criteria are easy to attach at the end of the existing methods. However, 

the threshold values for these criteria require more research in material and experimental 

runs.  

 

7. Experimentation Validation 

 The previous chapter shows various simulation runs of the implementations of the 

two different methods. However, the results are not validated. This means we do not have 

a machine that would confirm the cartesian coordinate values of every center-point of 

every unit cells in a matrix. A machine can be built to measure the X, Y, and Z 

coordinate values before and after deformation. 

 

8. Exploration of design 

Although the current design is very well done in creating various shapes, there 

can possibly be other designs that can deform better and be easier to manufacture. 

 

 



 191

6.3 Benefits and Values 

 For each subgroup, this thesis will provide some potential benefits. There are six 

subgroups. They are MEMS headed by Dr. Mark Allen, Controls headed by Dr. Wayne 

Book, Fluids by Dr. Ari Glezer, Manufacturing by Dr. David Rosen, Interface by Dr. 

Jarek Rossignac, and Kinematics by Dr. Imme Ebert Uphoff. 

 

1. MEMS  

Currently the MEMS group is investigating various materials to build the 

formable crust matrix valves. Using the methods developed for this thesis, the MEMS 

department can determine which material is best fitted for creating the desired 

deformation. Also, any of the programs developed can output the deformed angles for 

any unit cell in the matrix. The MEMS department can use the output to determine the 

maximum angle deformation for any given shape. Once the maximum angle deformation 

is found, the optimal valve can be designed for the crust matrix. 

 

2. Controls  

The Control group led by Dr. Wayne Book is investigating various devices to 

manipulate the crust matrix once it is developed. With the advent of the methods 

developed for this thesis, the control department can predict (or control) what shape will 

be outputted based upon the inputs. 
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3. Fluids 

Since the Digital Clay device will have fluids enclosed within the hardware to 

expand and contract the formable crust matrix, the Fluids group can apply the methods 

developed to determine how much fluid is needed. The amount of fluid will affect the 

force applied to the formable crust matrix, which in turn affects the shape configuration. 

 

4. Manufacturing  

Currently we are investigating the various materials to build the formable crust. 

The materials include different resins for the SLA technique. Currently we decided on 

DSM 8120 because of its elastic modulus material property, which in turn affects the 

stiffness values of the joints. This does not mean we have ended our material search. The 

methods developed will help us select other potential materials. 

 

5. Interface  

Currently we are collaborating with the Computer Science group to convert the 

MATLAB code. The programs will help the C.S. department advance their development 

for creating a program that can externally manipulate the formable crust matrix and start 

developing the interface for the Digital Clay device. 
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6. Kinematics  

The methods developed for predicting the shape output applies several statics 

principles. That includes inverse and forward statics and spherical coordinate matrix 

manipulation. These statics principles can advance the Kinematics group’s current 

understanding of the formable crust matrix. 
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APPENDIX A: 
 

 FINDING STIFFNESS VALUE 
 
 

Through various experimental runs, the joint stiffness values for the two types of 

joints that comprise one unit cell are found. This appendix will contain graphical results 

from these runs.  
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Graphs for Large Joint 
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Figure A.1: Results Large Joint Run 1 
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Figure A.2: Stiffness Value for Large Joint. Run 1
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Run 2 
 

Experimentation Results
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Figure A.3: Results Large Joint Run 2 

 
 

Finding Stiffness for Large joint

y = 0.1378x - 0.0026
R2 = 0.9985

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Change in Angle: θ1−θ2 (Radian)

To
rq

ue
 (N

m
)

Torque Vs Angle
Linear (Torque Vs Angle)

 
Figure A.4: Stiffness Value for Large Joint. Run 2
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Run 3 
 

Experimentation Results
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Figure A.5: Results Large Joint Run 3 
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Figure A.6: Stiffness Value for Large Joint. Run 3
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Figure A.7: Results Large Joint Run 4 
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Figure A.8: Stiffness Value for Large Joint. Run 4
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Run 5 
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Figure A.9: Results Large Joint Run 5 
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Figure A.10: Stiffness Value for Large Joint. Run 5
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Figure A.11: Results Large Joint Run 6 

 

Finding Stiffness for Large joint
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Figure A.12: Stiffness Value for Large Joint. Run 6 
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Figure A.13: Results Large Joint Run 7 

 

Finding Stiffness for Large joint
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Figure A.14: Stiffness Value for Large Joint. Run 7
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Run 8 
 

Experimentation Results

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01 0.012

Displacement (m)

Fo
rc

e 
(N

)

 
Figure A.15: Results Large Joint Run 8 

 
 

Finding Stiffness for Large joint
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Figure A.16: Stiffness Value for Large Joint. Run 8 
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Run 9 
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Figure A.17: Results Large Joint Run 9 

 
 

Finding Stiffness for Large joint
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Figure A.18: Stiffness Value for Large Joint. Run 9
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Table A.1: Summary of Stiffness Values for Large Joint 
EXPERIMENTAL RUN FOR LARGE JOINT STIFFNESS VALUE 

RUN 1 0.1187 
RUN 2 0.1378 
RUN 3 0.1326 
RUN 4 0.1263 
RUN 5 0.1513 
RUN 6 0.1336 
RUN 7 0.1454 
RUN 8 0.1342 
RUN 9 0.1337 

AVERAGE: 0.1348 
 



 205
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Figure A.19: Results Small Joint Run 1 
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Figure A.20: Stiffness Value for Small Joint. Run 1
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Figure A.21: Results Small Joint Run 2 
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Figure A.22: Stiffness Value for Small Joint. Run 2
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Run 3 
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Figure A.23: Results Small Joint Run 3 
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Figure A.24: Stiffness Value for Small Joint. Run 3
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Run 4 
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Figure A.25: Results Small Joint Run 4 
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Figure A.26: Stiffness Value for Small Joint. Run 4
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Table A.2: Summary of Stiffness Values for Small Joint 
EXPERIMENTAL RUN FOR SMALL JOINT STIFFNESS VALUE 

RUN 1 0.0177 
RUN 2 0.0155 
RUN 3 0.0164 
RUN 4 0.0158 

AVERAGE: 0.01635 
 

 

There were originally 6 runs, but only four are shown because the other 2 runs 

were outliers. These other runs will give false information and are deleted from this 

section. 
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APPENDIX B: 
 

 JOINT ANGLES DEFORMATION 
 
 

There are three programs that implement the two different methods. From the 

results from each method, one can calculate the joint angles for every cell. For a 1-by-7 

there are 7 cells and 12 joint angles for each cell. This appendix will show the joint 

angles before and after deformation and the energy stored in them. 
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First Program: Method 1 
 
 

 
Figure B.1: Results from Method 1 

 

Inputs:  First cell: 0.3; Fourth cell:0.1; Last cell:0.6 

Legend: 

 After: Joint angles (radian) after the program converges 

 Before: Joint angles (radian) before the program converges 

 Dif: the absolute value difference between the before and after angles 

 Energy: the energy stored in the spring: k*(after-before)2   

     K: Stiffness Value: 0.8375Nm 

The alphabet letters denotes the symmetry of the angles: For example: All A 

values for the Cell 1 has similar values in Method 1. All B in Cell 1 has similar values, 

etc.  
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Table B.1: Joint Results For Cell 1 and 2. Method 1 
  Cell 1   Cell 2 
  After Before Dif Energy   After Before Dif Energy 
A 1.7592 2.0089 0.2497 0.005222 A 1.8381 2.0089 0.1708 0.002443 
B 1.4507 1.4432 0.0075 4.71E-06 B 1.4467 1.4432 0.0035 1.03E-06 
C 2.0604 2.0089 0.0515 0.000222 C 2.0435 2.0089 0.0346 0.0001 
C 2.0604 2.0089 0.0515 0.000222 C 2.0435 2.0089 0.0346 0.0001 
B 1.4507 1.4432 0.0075 4.71E-06 B 1.4467 1.4432 0.0035 1.03E-06 
A 1.7592 2.0089 0.2497 0.005222 A 1.8381 2.0089 0.1708 0.002443 
D 2.0089 2.0089 0 0 D 2.2643 2.0089 0.2554 0.005463 
E 1.4432 1.4432 0 0 E 1.4507 1.4432 0.0075 4.71E-06 
F 2.0089 2.0089 0 0 F 1.9632 2.0089 0.0457 0.000175 
F 2.0089 2.0089 0 0 F 1.9632 2.0089 0.0457 0.000175 
E 1.4432 1.4432 0 0 E 1.4507 1.4432 0.0075 4.71E-06 
D 2.0089 2.0089 0 0 D 2.2643 2.0089 0.2554 0.005463 

 
 
Table B.2: Joint Results For Cell 3 and 4. Method 1 

  Cell 3   Cell 4 
  After Before Dif Energy   After Before Dif Energy 
A 1.9991 2.0089 0.0098 8.04E-06 A 2.2468 2.0089 0.2379 0.00474 
B 1.4432 1.4432 0 0 B 1.4497 1.4432 0.0065 3.54E-06
C 2.0108 2.0089 0.0019 3.02E-07 C 1.9661 2.0089 0.0428 0.000153
C 2.0108 2.0089 0.0019 3.02E-07 C 1.9661 2.0089 0.0428 0.000153
B 1.4432 1.4432 0 0 B 1.4497 1.4432 0.0065 3.54E-06
A 1.9991 2.0089 0.0098 8.04E-06 A 2.2468 2.0089 0.2379 0.00474 
D 2.1824 2.0089 0.1735 0.002521 D 2.0187 2.0089 0.0098 8.04E-06
E 1.4467 1.4432 0.0035 1.03E-06 E 1.4432 1.4432 0 0 
F 1.9769 2.0089 0.032 8.58E-05 F 2.007 2.0089 0.0019 3.02E-07
F 1.9769 2.0089 0.032 8.58E-05 F 2.007 2.0089 0.0019 3.02E-07
E 1.4467 1.4432 0.0035 1.03E-06 E 1.4432 1.4432 0 0 
D 2.1824 2.0089 0.1735 0.002521 D 2.0187 2.0089 0.0098 8.04E-06
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Table B.3: Joint Results For Cell 5 and 6. Method 1 
  Cell 5   Cell 6 
  After Before Dif Energy   After Before Dif Energy 
A 2.4107 2.0089 0.4018 0.013521 A 2.4917 2.0089 0.4828 0.019522 
B 1.4614 1.4432 0.0182 2.77E-05 B 1.4692 1.4432 0.026 5.66E-05 
C 1.9411 2.0089 0.0678 0.000385 C 1.9304 2.0089 0.0785 0.000516 
C 1.9411 2.0089 0.0678 0.000385 C 1.9304 2.0089 0.0785 0.000516 
B 1.4614 1.4432 0.0182 2.77E-05 B 1.4692 1.4432 0.026 5.66E-05 
A 2.4107 2.0089 0.4018 0.013521 A 2.4917 2.0089 0.4828 0.019522 
D 1.776 2.0089 0.2329 0.004543 D 1.6213 2.0089 0.3876 0.012582 
E 1.4497 1.4432 0.0065 3.54E-06 E 1.4614 1.4432 0.0182 2.77E-05 
F 2.0568 2.0089 0.0479 0.000192 F 2.0908 2.0089 0.0819 0.000562 
F 2.0568 2.0089 0.0479 0.000192 F 2.0908 2.0089 0.0819 0.000562 
E 1.4497 1.4432 0.0065 3.54E-06 E 1.4614 1.4432 0.0182 2.77E-05 
D 1.776 2.0089 0.2329 0.004543 D 1.6213 2.0089 0.3876 0.012582 

 
Table B.4: Joint Results For Cell 7. Method 1 

  Cell 7 
  After Before Dif Energy 
A 2.0089 2.0089 0 0 
B 1.4432 1.4432 0 0 
C 2.0089 2.0089 0 0 
C 2.0089 2.0089 0 0 
B 1.4432 1.4432 0 0 
A 2.0089 2.0089 0 0 
D 1.5463 2.0089 0.4626 0.017922
E 1.4692 1.4432 0.026 5.66E-05
F 2.1076 2.0089 0.0987 0.000816
F 2.1076 2.0089 0.0987 0.000816
E 1.4692 1.4432 0.026 5.66E-05
D 1.5463 2.0089 0.4626 0.017922
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Second Program: Method 2 Fix Face 
 

 
Figure B.2: Results from Method 2: Fix Face 

 
Same inputs, same legend definition.  

Stiffness: k1 = 0.152Nm and k2 = 0.0155Nm 

Energy Equation for larger joint: 0.152*(Before-After)2 

Energy Equation for larger joint: 0.0155*(Before-After)2 

 

  

     Table B.5: Joint Results For Cell 1 and 2. Method 2: Fix 
  Cell 1   Cell 2 
  After Before Dif Energy   After Before Dif Energy 
  1.8021 2.0089 0.2068 0.0065 A 1.9541 2.0089 0.0548 0.000456
  1.4728 1.4432 0.0296 1.36E-05 B 1.4534 1.4432 0.0102 1.61E-06
  2.0049 2.0089 0.004 2.43E-06 C 2.0165 2.0089 0.0076 8.78E-06
  2.0171 2.0089 0.0082 1.04E-06 C 2.0125 2.0089 0.0036 2.01E-07
  1.4271 1.4432 0.0161 3.94E-05 B 1.4368 1.4432 0.0064 6.23E-06
  1.9407 2.0089 0.0682 7.21E-05 A 2.0069 2.0089 0.002 6.2E-08 
  1.9323 2.0089 0.0766 0.000892 D 2.006 2.0089 0.0029 1.28E-06
  1.4367 1.4432 0.0065 6.55E-07 E 1.4393 1.4432 0.0039 2.36E-07
  1.9801 2.0089 0.0288 0.000126 F 2.003 2.0089 0.0059 5.29E-06
  1.9749 2.0089 0.034 1.79E-05 F 2.0007 2.0089 0.0082 1.04E-06
  1.4351 1.4432 0.0081 9.97E-06 E 1.4442 1.4432 0.001 1.52E-07
  1.9471 2.0089 0.0618 5.92E-05 D 2.0059 2.0089 0.003 1.4E-07 
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     Table B.6: Joint Results For Cell 3 and 4. Method 2: Fix 
  Cell 3   Cell 4 
  After Before Dif Energy   After Before Dif Energy 
A 2.0231 2.0089 0.0142 3.06E-05 A 2.2246 2.0089 0.2157 0.007072
B 1.4437 1.4432 0.0005 3.87E-09 B 1.4079 1.4432 0.0353 1.93E-05
C 2.0584 2.0089 0.0495 0.000372 C 2.1227 2.0089 0.1138 0.001968
C 2.008 2.0089 0.0009 1.26E-08 C 2.0378 2.0089 0.0289 1.29E-05
B 1.4636 1.4432 0.0204 6.33E-05 B 1.4295 1.4432 0.0137 2.85E-05
A 2.0211 2.0089 0.0122 2.31E-06 A 2.2151 2.0089 0.2062 0.000659
D 2.0228 2.0089 0.0139 2.94E-05 D 2.2272 2.0089 0.2183 0.007244
E 1.4621 1.4432 0.0189 5.54E-06 E 1.4068 1.4432 0.0364 2.05E-05
F 2.0134 2.0089 0.0045 3.08E-06 F 2.0997 2.0089 0.0908 0.001253
F 2.0448 2.0089 0.0359 2E-05 F 2.0514 2.0089 0.0425 2.8E-05 
E 1.4039 1.4432 0.0393 0.000235 E 1.4126 1.4432 0.0306 0.000142
D 2.2058 2.0089 0.1969 0.000601 D 2.2104 2.0089 0.2015 0.000629

 
     Table B.7: Joint Results For Cell 5 and 6. Method 2: Fix 

  Cell 5   Cell 6 
  After Before Dif Energy   After Before Dif Energy 
A 2.1875 2.0089 0.1786 0.004848 A 2.0136 2.0089 0.0047 3.36E-06 
B 1.4219 1.4432 0.0213 7.03E-06 B 1.4411 1.4432 0.0021 6.84E-08 
C 2.0085 2.0089 0.0004 2.43E-08 C 2.0139 2.0089 0.005 3.8E-06 
C 1.9607 2.0089 0.0482 3.6E-05 C 2.0026 2.0089 0.0063 6.15E-07 
B 1.4639 1.4432 0.0207 6.51E-05 B 1.4455 1.4432 0.0023 8.04E-07 
A 2.0082 2.0089 0.0007 7.6E-09 A 2.006 2.0089 0.0029 1.3E-07 
D 2.0282 2.0089 0.0193 5.66E-05 D 2.0079 2.0089 0.001 1.52E-07 
E 1.4345 1.4432 0.0087 1.17E-06 E 1.4422 1.4432 0.001 1.55E-08 
F 2.0606 2.0089 0.0517 0.000406 F 2.0142 2.0089 0.0053 4.27E-06 
F 1.9746 2.0089 0.0343 1.82E-05 F 2.0046 2.0089 0.0043 2.87E-07 
E 1.4619 1.4432 0.0187 5.32E-05 E 1.4441 1.4432 0.0009 1.23E-07 
D 2.0108 2.0089 0.0019 5.6E-08 D 2.0107 2.0089 0.0018 5.02E-08 

 
Table B.8: Joint Results For Cell 7. Method 2: Fix 

  Cell 7 
  After Before Dif Energy 
A 2.0042 2.0089 0.0047 3.36E-06
B 1.4369 1.4432 0.0063 6.15E-07
C 1.9953 2.0089 0.0136 2.81E-05
C 1.9941 2.0089 0.0148 3.4E-06 
B 1.4367 1.4432 0.0065 6.42E-06
A 2.0075 2.0089 0.0014 3.04E-08
D 2.013 2.0089 0.0041 2.56E-06
E 1.4281 1.4432 0.0151 3.53E-06
F 2.0249 2.0089 0.016 3.89E-05
F 1.968 2.0089 0.0409 2.59E-05
E 1.4722 1.4432 0.029 0.000128
D 1.7922 2.0089 0.2167 0.000728
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Third Program: Method 2 Free Face 
 

 
Figure B.3: Results from Method 2 Free Face 

 
 
Same inputs, same legend definition.  
Stiffness: k1 = 0.152Nm and k2 = 0.0155Nm 
Energy Equation for larger joint: 0.152*(Before-After)2 

Energy Equation for larger joint: 0.0155*(Before-After)2 
 
Table B.9: Joint Results For Cell 1 and 2. Method 2: Free 

  Cell 1   Cell 2 
  After Before Dif Energy   After Before Dif Energy 
A 2.0089 2.0089 0 0 A 2.0445 2.0089 0.0356 0.000193
B 1.4434 1.4432 0.0002 6.2E-10 B 1.443 1.4432 0.0002 6.2E-10 
C 2.0085 2.0089 0.0004 2.43E-08 C 2.016 2.0089 0.0071 7.66E-06
C 2.0092 2.0089 0.0003 1.39E-09 C 2.0169 2.0089 0.008 9.92E-07
B 1.443 1.4432 0.0002 6.08E-09 B 1.4424 1.4432 0.0008 9.73E-08
A 2.0088 2.0089 0.0001 1.55E-10 A 2.0448 2.0089 0.0359 2E-05 
D 2.0088 2.0089 0.0001 1.52E-09 D 2.0445 2.0089 0.0356 0.000193
E 1.4433 1.4432 1E-04 1.55E-10 E 1.443 1.4432 0.0002 6.2E-10 
F 2.0087 2.0089 0.0002 6.08E-09 F 2.0159 2.0089 0.007 7.45E-06
F 2.009 2.0089 1E-04 1.55E-10 F 2.017 2.0089 0.0081 1.02E-06
E 1.4431 1.4432 1E-04 1.52E-09 E 1.4424 1.4432 0.0008 9.73E-08
D 2.0089 2.0089 0 0 D 2.0447 2.0089 0.0358 1.99E-05
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     Table B.10: Joint Results For Cell 3 and 4. Method 2: Free 
  Cell 3   Cell 4 
  After Before Dif Energy   After Before Dif Energy 
A 2.0814 2.0089 0.0725 0.000799 A 2.1199 2.0089 0.111 0.001873
B 1.4408 1.4432 0.0024 8.93E-08 B 1.4369 1.4432 0.0063 6.15E-07
C 2.0262 2.0089 0.0173 4.55E-05 C 2.0377 2.0089 0.0288 0.000126
C 2.0259 2.0089 0.017 4.48E-06 C 2.0373 2.0089 0.0284 1.25E-05
B 1.441 1.4432 0.0022 7.36E-07 B 1.4373 1.4432 0.0059 5.29E-06
A 2.0818 2.0089 0.0729 8.24E-05 A 2.1202 2.0089 0.1113 0.000192
D 2.0816 2.0089 0.0727 0.000803 D 2.1202 2.0089 0.1113 0.001883
E 1.441 1.4432 0.0022 7.5E-08 E 1.4373 1.4432 0.0059 5.4E-07 
F 2.0255 2.0089 0.0166 4.19E-05 F 2.0372 2.0089 0.0283 0.000122
F 2.0266 2.0089 0.0177 4.86E-06 F 2.0378 2.0089 0.0289 1.29E-05
E 1.4406 1.4432 0.0026 1.03E-06 E 1.4368 1.4432 0.0064 6.23E-06
D 2.0814 2.0089 0.0725 8.15E-05 D 2.1198 2.0089 0.1109 0.000191

 
     Table B.11: Joint Results For Cell 5 and 6. Method 2: Free 

  Cell 5   Cell 6 
  After Before Dif Energy   After Before Dif Energy 
A 2.0805 2.0089 0.0716 0.000779 A 2.0437 2.0089 0.0348 0.000184
B 1.4408 1.4432 0.0024 8.93E-08 B 1.4426 1.4432 0.0006 5.58E-09
C 2.0257 2.0089 0.0168 4.29E-05 C 2.0164 2.0089 0.0075 8.55E-06
C 2.0257 2.0089 0.0168 4.37E-06 C 2.0164 2.0089 0.0075 8.72E-07
B 1.441 1.4432 0.0022 7.36E-07 B 1.4428 1.4432 0.0004 2.43E-08
A 2.0807 2.0089 0.0718 7.99E-05 A 2.0438 2.0089 0.0349 1.89E-05
D 2.0806 2.0089 0.0717 0.000781 D 2.0438 2.0089 0.0349 0.000185
E 1.441 1.4432 0.0022 7.5E-08 E 1.4428 1.4432 0.0004 2.48E-09
F 2.0257 2.0089 0.0168 4.29E-05 F 2.0164 2.0089 0.0075 8.55E-06
F 2.0258 2.0089 0.0169 4.43E-06 F 2.0164 2.0089 0.0075 8.72E-07
E 1.4408 1.4432 0.0024 8.76E-07 E 1.4427 1.4432 0.0005 3.8E-08 
D 2.0805 2.0089 0.0716 7.95E-05 D 2.0438 2.0089 0.0349 1.89E-05

 
Table B.12: Joint Results For Cell 7. Method 2: Free 

  Cell 7 
  After Before Dif Energy 
A 2.0089 2.0089 0 0 
B 1.4431 1.4432 1E-04 1.55E-10
C 2.0088 2.0089 0.0001 1.52E-09
C 2.0089 2.0089 0 0 
B 1.4433 1.4432 1E-04 1.52E-09
A 2.0089 2.0089 0 0 
D 2.0089 2.0089 0 0 
E 1.4433 1.4432 1E-04 1.55E-10
F 2.0089 2.0089 0 0 
F 2.0088 2.0089 0.0001 1.55E-10
E 1.4432 1.4432 0 0 
D 2.0089 2.0089 0 0 
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APPENDIX C: 
 

 MATLAB FOR METHOD 1 
 
 

Method 1 was implemented through using MATLAB Coding. The first page will 

be a guide to the code and the functions in the code. The rest of the pages in this 

Appendix are the code. 
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NAVIGATION OUTLINE 
FIRST PROGRAM IMPLEMENTING METHOD 1 

 
 
Nomenclature: 
 
xcell: a matrix of the Cartesian coordinates of the center-points of the unit cells 
ncells: the matrix dimension 
xcellvar: controlling the constraints. Dimension size is the same as xcell. 
dist: fixed distance value between any two point 
k_joint: stiffness value  
xcell_initial: initial value of xcell before the modifying any values. 
Zinputs: user dislocatement inputs for the z-values in xcell 
k_alpha: geometric constant from design model 
k_beta: geometric constant from design model 
k_lamda: geometric constant from design model 
  
 
STICKFIGURE 

 
1. User Inputs: requesting user inputs to create an m-by-n matrix 

 
2. xcell_initial = xcell 

 
3. Creating the 'on'/ 'off' matrix for controlling the constraints  

a. Initiating an emptied matrix: xcellvar 
i. Note: xcellvar will be a matrix of the same size as xcells 

b. For any Cartesian coordinate variables fixed in xcell,  
i. The corresponding value in Xcellvar=0 

c. For any Cartesian variables free to change in xcell,  
i. The corresponding value in Xcellvar Xcellvar=1 

 
4. Link_length: calculating the distance between any two center-point 

 
5. Graph_ctpt: graphing the center-points of the unit cells from xcell 

 
6. guess_interpolating: linear interpolation function 

 
7. Creating Initial Guess vector: x0 

a. If xcellvar=1, place xcell value into x0 
 

8. Fmincon –blackbox MATLAB function 
a. MinimizingEnergy: calculating the potential energy in the system for 

Fmincon 
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b. Controlling_length: controls the distance between two center-points based 
upon the user input :dist” 

 
9. xcell: the final results of Cartesian coordinates 

 
10. Link_length: calculating the distance between any two center-point 

 
11. Graph_ctpt: graphing the center-points of the unit cells from xcell 

 
 
 

12. k_alpha= (58.054 *pi)/180;  % convert degree to radian 
13. k_beta=  (22*pi)/180; 
14. k_lamda= (62.806 *pi)/180;   

 
15. boundary_vectors: creating extra unit cells surrounding the developed matrix for 

calculating V-vectors. 
 

16. cal_v_n: calculating the  v-vectors and the n-vectors for each cells 
 

17. calc_theta: calculating the angles of each joint for each cell in the matrix 
 
18: bdpt_remove: removing the extra unit cells
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USER_INPUTS 
 
1. Specify user to input: ncells, dist, k_joint; number of zinput 

 
2. Create xcell matrix from inputs 

 
3. Graph_ctpt: graphing the center-points of the unit cells from xcell 
 
4. Loop command for adding z-height values at “zimput” number of locations 

 
5. Output: ncells and xcell 
 
 
LINK_LENGTH 
1. Loop command 

a. For all the link in the x-direction, calculate the length: 

( ) ( ) ( )2 2 2
1 2 1 2 1 2Lx= x x y y z z− + − + −  

 
2. Loop command 

a. For all the link in the y-direction, calculate the length: 

( ) ( ) ( )2 2 2
1 2 1 2 1 2Ly= x x y y z z− + − + −  

 
 
GRAPH_CTPT 
1. Drawing the horizontal lines 

a. For all the center-points on every row, draw a horizontal line connecting any two 
points 

 
2. Drawing the vertical lines 

a. For all the center-points on every column, draw a vertical line connecting any two 
points 
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GUESS_INTERPOLATING 
 
Step 1: using 'interp1' to draw a straight between all the Z inputs at the edge/border. 
  
1) If ncells(2)>1: Determine there is more than one column in the matrix 

i) **perform loop if matrix is more than a horizontal line. 
b) find the index of all the centerpts in the 1st row that Z is inputted 
c) Connect all the z-input in line(s) using 'interp1' 

 
2) If ncells(2)>1; 

a) find the index of all the centerpts in the last row that Z is inputed 
b) Connect all the z-input in line(s) using 'interp1' 

 
3) If ncells(1)>1: Determine there is more than one row in the matrix 

a) find the index of all the centerpts in the 1st column that Z is inputted 
b) Connect all the z-input in line(s) using 'interp1' 

 
4) If ncells(1)>1; 

a) find the index of all the centerpts in the last column that Z is inputted 
b) Connect all the z-input in line(s) using 'interp1' 

 
 
Step 2: after creating a border, create a second xcellvar called 'xcellvar2' that states those 

values at the borders are constrained 
 
1) Creating the 'on'/ 'off' matrix for controlling the constraints  

a) Initiating an emptied matrix: xcellvar2 
i) Note: xcellvar2 will be a matrix of the same size as xcells 
ii) For any Cartesian coordinate variables fixed in xcell,  

(1) The corresponding value in Xcellvar2=0 
iii) For any Cartesian variables free to change in xcell,  

(1) The corresponding value in Xcellvar 2=1 
 
Step 3: using the Z values at the edge for each row, use 'interp1' to draw a straight line 

through all the Z inputs for each rows plus the z's at the edge. 
 
 
Step 4: repeat process for the columns using 'interp1' 
 
Step5: super-impose the z values derived from the row 'interp1' and the coln 'interp1' 

Where there is overlap, take the max of the the Zvalues. 
 
Step 6: Repeat step 2-5 to interpolate for the rows and column that does not have a 
zinputs.  

Use the previously interpolated points as fixed values for xcellvar3. 
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MINIMIZINGENERGY 
 
1) From the main page, Matrix30_interp, replacing all the non-constrained coordinate 

values in the xcell matrix with xi values: xi= {x(1), x(2), x(3)…} 
 
2) Energy in the X direction 

a) Sum-up all the energy between two center-points in the x-direction using atan2  
 
3) Energy in the Y direction 

a) Sum-up all the energy between two center-points in the y-direction using atan2 
 
4) Potential Energy 

a) Add y-direction sum to x-direction sum 
 
 
CONTROLLING_LENGTH 
 
1) Controling the length in X direction 

a) Lx: Calculating the distance between any two center-points in the x-direction 
i) Subtract Lx from dist2. This value should be as close as possible to zero or 

Fmincon would re-evaulate the Cartesian coordinates of the unit cells. 
 
 
2) Controling the length in Y direction, same process as ablove 

a) Ly: Calculating the distance between any two center-points in the y-direction 
i) Subtract Ly from dist2. This value should be as close as possible to zero or 

Fmincon would re-evaulate the Cartesian coordinates of the unit cells. 
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BOUNDARY_VECTORS 
 
adding extra unit cells for help calculating the unit vectors V and n.  
Below is an ascii art diagram of the additional unti cells 
 
% visual descriptions of boundary cells: xedge_top, xedge_bot, xedgeleft, xedge_right: 
 
%  =====================xedge_top==================== 
 
%  =xedge_left=== [input xcell ct-pt ]===xedge_right=== 
 
%  =xedge_left=== [input xcell ct-pt ]===xedge_right=== 
 
%  ====================xedge_bot===================== 
 
 
1) Create the xedge_top, xedge_bot, xedgeleft, xedge_right, vectors 
 
2) Add on these vectors to the xcell matrix 
 
 
CAL_V_N 
 
To understand the algorithm for this section, refer to the below ascii art diagram 
 
numbering convention for cells: 
% 4 5 6 
% 1 2 3 
 
numbering conventions for the v vectors and n vectors on each unit cells 

     
 
These numbering conventions will help you understand how the code operates by starting 
with the first unit cell. Within each unit cells are 4 v and 4 n vectors. The code starts 
calculating at the first unit cell. Below is the algorithm for the code. 
 

   7  
8 + 6 

5

      3  
0,4 + 2 

1

    11  
12 + 10

9
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1) Calculating the unit v_vectors  
a) v_vectori= (xcelli- xcelli+1)/ (||(xcelli- xcelli+1)||) 

 
2) Calculating the n_vectors 

a) finding phi: the angle of rotation of each n_vectors: (sin(Z/L))^-1   
i) L=(length of the  unit vector in the direction of either X or Y)=1  

b) finding the new rotated normal 
i) for all n_vectors in the plane with the horizontal V-vectors (e.g. #4 and#2 in 

the counting convention for individual unit cells) 
ii) for all n_vectors in the plane with the vertical V-vectors (e.g. #1 and#3 in the 

counting convention for individual unit cells) 
 
 
CALC_THETA 
 
1) Initialize the w_matrix, which is the a matrix consisting of all 8 w_vectors before 

deformation  
 
2) Calculate the w_vectors after deformation 
 
3) Calculate the side a vectors  
 
4) Calculate the middle a vector 
 
5) Calculate the u_vector 
 
6) Calculate the thetas 
 
 
BDPT_REMOVE 
 
1) Initialize blank matrix 
 
2)  Start counting cells and storing cells at the first cell that is not on the border. 
 
3) Skip the outer side cells 
 
4) Stop counting when before reaching the first cell on the top border. 
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STICKFIGURE 
 
 

close all; 
clear all; 
%%%%%%%%%%%INPUTS%%%%%%%%%%%%%%%%%%%%%%%%% 
global ncells; 
global dist;  
global k_joint; 
global xcellvar;  
global xcell_initial; 
global std_dev; 
global xcell; 
global zinput; 
[ncells,xcell] = user_inputs(ncells,dist,k_joint)   
%function that ask for user inputs 
 
xcell_initial=xcell; %storing the intital guess  coordinates  
 
std_dev= dist;  
% this is is the deviation from the original guess  
%for the upper bound. THe lower bound will always be '0' 
 
%%creating the 'on'/ 'off' matrix for what value can change 
xcellvar=zeros(size(xcell)); 
 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; 
            if  xcell(counter31,3) ==0   
                    %if xcell=0   note: '0.001' is not '0' 
                xcellvar(counter31,1)=1;  
                    %then put these 1 or 0 into xcellvar 
                xcellvar(counter31,2)=1; 
                xcellvar(counter31,3)=1;  
            else  
                xcellvar(counter31,1)=1; 
                xcellvar(counter31,2)=1; 
                xcellvar(counter31,3)=0;  
            end            
    end 
 
end 
xcellvar; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   
% LT%     upper Lt  0   0   0   0    upperRT 
% S%          0     0   0   0   0     0 
% I%          0     0   0   0   0     0          ^ 
% D%        1stPT   0   0   0   0   LowerRT      | Y 
% E  
%       ------------Bottom row-------------- 
%     --------------------X->--------> X 
 
xcellvar(1,:)=[0 0 0];  
% nXm size of the xcell_bdpt   
%constraint the first pt with all '0' b/c 1st pt is constraint 
 
%Constrainting the various coordinate at the corners of the matrix 
 
 xcellvar(ncells(2)*ncells(1)-ncells(2)+1,3)=0;  
    %constraint the upper LT Z coodinate 
  xcellvar(ncells(2)*ncells(1)-ncells(2)+1,1)=0;  
    %constraint the upper LT x coodinate 
 xcellvar(ncells(2),3)=0;   
    %constraint the lower RT Z coodinate 
  xcellvar(ncells(2),2)=0;  %constraint the lower RT 1 coodinate 
   
  if ncells(1)==1 
      xcellvar(:,2)=0; 
  end 
   
  if ncells(2)==1 
      xcellvar(:,1)=0; 
  end 
   
   
 xcellvar(ncells(1)*ncells(2),3)=0;    
 %constraint the upper RT Z coodinate 
 
[Lx,Ly] =link_length (ncells, xcell);  
%function that finds the length of link:  
    %this will show what the intial guess gives 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%Intital guesses for 3D%%%%%%%%%%%%%%% 
 
%putting all the intial guess in a vector  
    %except for the first coordinate  
    %as constraint and the input. 



 228

% Intital guess to be placed into fmincon 
x0=[]; 
 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
        counter31=counter31+1;  
        %% interiopr cell conunter Start at the 1st interior cell  
        for coord=1:3 
            if  xcellvar(counter31,coord) ==1;   
                %if xcell=0   note: '0.0000001' is not '0' 
                x1=xcell(counter31,coord); 
                x0=[x0;x1]; 
            end    
        end 
    end 
end 
x0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
graph_ctpt (ncells, xcell); 
% a function that graphs the center pt     
 
[Lx,Ly] =link_length (ncells, xcell);  
%function that finds the length of link:  
    %this will show what the intial guess gives 
     
xcell; 
 
%%%%%%%Moditified Intitial guesses using fsolve and x0 
%this modified initial guess will move all the points  
    %to draw a straight line between two input points. 
%the coordinates of the straight lines will give  
    %the coordinates for the values for inputting into  
    %fmincon for minmizing the potential energy ofthe system 
 
tic; 
 
%n_interp=(ncells(1)*ncells(2)-zinput)/2 
 
%while n_interp>=ncells(1) & n_interp>=ncells(2) 
xcell = guess_interpolating(xcell,xcellvar) 
     
    %n_interp=n_interp/2 
    %end 
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toc; 
sec_elapsed_interpolation=toc 
 
graph_ctpt (ncells, xcell);  
 %function that graphs the center points of unit cell   
  
[Lx,Ly] =link_length (ncells, xcell);  
%function that finds the length of link:  
%this will show what the intial guess gives 
 
xcell 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%putting all the intial guess in a vector  
    %except for the first coordinate as constraint and the input. 
% Intital guess to be placed into fmincon 
x0=[]; 
 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
        counter31=counter31+1;  
            %% interiopr cell conunter Start at the 1st interior cell  
        for coord=1:3 
            if  xcellvar(counter31,coord) ==1;   
                    %if xcell=0   note: '0.0000001' is not '0' 
                x1=xcell(counter31,coord); 
                x0=[x0;x1]; 
            end    
        end 
    end 
end 
x0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic; 
 
options=optimset('Display','iter','MaxIter',1e5,... 
                'MaxFunEvals',1e12,'TolFun',0.001, 'TolX',0.001); 
             
 
x = fmincon('minimizingEnergy',x0,[],[],[],[],0,[],'controling_length',options);  
    %x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) 
    %x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...) 
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    %subjects the minimization to the nonlinear inequalities c(x)  
    %  or equalities ceq(x) defined in nonlcon.  
    %fmincon optimizes such that c(x) <= 0 and ceq(x) = 0.  
   % Set lb=[] and/or ub=[] if no bounds exist. 
   %FMINCON requires at least four input argument 
    
toc; 
sec_elapsed_fmincon_energymin=toc 
 
xcell; 
graph_ctpt (ncells, xcell)  
[Lx,Ly] =link_length (ncells, xcell)  
%function that finds the length of link: this will show what the intial guess gives 
 
xcell 
%%%%%%%%%%%%%%%3D%%%%%%%%%%%%%%%% 
 
graph_ctpt (ncells, xcell);  
 
xcell  %THe new xcell matrix with recalculated X and Y coordinates 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%Graphing the center points%%%%%%%%%%%%%%%%% 
 
graph_ctpt (ncells, xcell) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%Adding Boundary pts%%%%%%%%%%%%%%% 
 
[xcell]=boundary_vectors (dist, ncells,xcell); %function that adds boundary pts  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%Calculating the V vectors and norms%%%%%%%%%%%%%%%% 
 
[v_vectors,phi,rot_norm]= cal_v_n (ncells,xcell); 
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USER INPUTS 
 
 

function [ncells,xcell,zinput] = user_inputs(ncells,dist,k_joint) 
 
global ncells; 
global dist;  
global k_joint; 
global xcellvar;  
global xcell_initial; 
global std_dev; 
global xcell; 
global zinput; 
 
ncells= input('Enter the rows and columns in this form: [row, column]='); 
dist=input('Enter distant between two center point=');  
k_joint=input('Enter the joint stiffness value=');  
% joint stiffness value 
zinput=input('Enter the number Z heights that you will input='); 
 
%creating a matrix of center points based upon input 
xcell=[]; 
for it60=1:ncells(1) 
    for it61=1:ncells(2) 
        xcell2=[dist*(it61-1), dist*(it60-1),0]; 
        xcell=[xcell;xcell2]; 
    end 
end 
xcell; 
 
 
 
graph_ctpt (ncells, xcell);  
% a function that graphs the center pt 
 
disp('--------------------------------------') 
repeatn=input('Do you want to modify values inputed? 1->yes and 0->no =='); 
if repeatn==1; 
    ncells= input('Enter the rows and columns in this form: [row, column]='); 
    dist=input('Enter distant between two center point=');  
    k_joint=input('Enter the joint stiffness value=');  
    % joint stiffness value 
     
    zinput=input('Enter the number Z heights that you will input='); 
    disp('-------------------------------------------------------') 
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    xcell=[]; 
    for it60=1:ncells(1) 
        for it61=1:ncells(2) 
            xcell2=[dist*(it61-1), dist*(it60-1),0]; 
            xcell=[xcell;xcell2]; 
        end 
    end 
 
    graph_ctpt (ncells, xcell); % a function that graphs the center pt 
    repeatn=input('Do you want to modify values inputed? 1->yes and 0->no =='); 
     
    while repeatn==1; 
        ncells= input('Enter the rows and columns in this form: [row, column]='); 
        dist=input('Enter distant between two center point=');  
        k_joint=input('Enter the joint stiffness value=');  
        % joint stiffness value 
         
        zinput=input('Enter the number Z heights that you will input='); 
        disp('-------------------------------------------------------') 
         
        xcell=[]; 
        for it60=1:ncells(1) 
            for it61=1:ncells(2) 
                xcell2=[dist*(it61-1), dist*(it60-1),0]; 
                xcell=[xcell;xcell2]; 
            end 
        end 
        graph_ctpt (ncells, xcell); % a function that graphs the center pt 
        repeatn=input('Do you want to modify values inputed? 1->yes and 0->no =='); 
    end 
end 
 
 
%Adding the Z displacement for the number of zinput requested 
for it62=1:zinput 
    disp('-------------------------------------------------------') 
    fprintf ('Below are requests for the location and value for #%.0f from the total Z 
heights \n', it62 )  
    deformz=input('Enter the [row,column] that you want to input the Z height=');%[row 
column]; 
    fprintf ('Initial coordinates for the location requested: %.3f %.3f %.3f \n', ... 
        xcell( (deformz(1)-1)*ncells(2)+deformz(2), : ) )  
    xcell((deformz(1)-1)*ncells(2)+deformz(2),3)=... 
        input('Enter the Z height deformation for this point='); 
end 
graph_ctpt (ncells, xcell); % a function that graphs the center pt 



 233

disp('-------------------------------------------------------') 
 
repeatz=input('Do you want to modify Z height inputs? 1->yes and 0->no =='); 
 
if repeatz==1 
    disp(' for statement below: only specify the number of Z heights to modify')  
    zinput=input('Enter the number Z heights that you will input='); 
    for it62=1:zinput 
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LINK_LENGTH 
    
 
function [Lx,Ly] =link_length (ncells, xcell); 
 
%Finding the initial magnitude of X and Y based on pythagorn theorem 
Lx=[]; %initial length of based upon the X and Y and Z coordinates in X direction 
 
count40=0; 
for it42=1:ncells(1); %2  
    for it40= 1:ncells(2)-1; % 1: 4-1=3 
        Lx1=sqrt( (xcell(it40+count40,1)- xcell(it40+count40+1,1))^2 ... 
            + (xcell(it40+count40,2)- xcell(it40+count40+1,2))^2 ... 
            + (xcell(it40+count40,3)- xcell(it40+count40+1,3))^2); 
        Lx=[Lx;Lx1]; 
         
    end  
    count40=count40+ncells(2); 
end 
Lx; 
 
Ly=[];       %initial length in the Y direction 
count41=0;     
for it44=1:ncells(1)-1 
    for it45=1:ncells(2) 
        Lyl=sqrt( (xcell(it45+count41,1)- xcell(it45+ncells(2)+count41,1))^2 ... 
            + (xcell(it45+count41,2)- xcell(it45+ncells(2)+count41,2))^2 ... 
            + (xcell(it45+count41,3)- xcell(it45+ncells(2)+count41,3))^2); 
        Ly=[Ly;Lyl]; 
    end 
    count41=count41+ncells(2); 
end 
Ly; 
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GRAPH_CTPT  
 
 

function graph_ctpt (ncells, xcell); 
 
figure; 
%drawing the horizontal lines for the graph that connects two points 
 
counter35=0; 
for it35=1:ncells(1) % the numbers of rows 
    for it36= 1:ncells(2)-1  
        %%%2  1 less line than the total number of point per rows... 
        %%%%b/c # of lines connecting two points 
        plot3([xcell(it36+counter35,1);xcell(it36+1+counter35,1)],... 
            [xcell(it36+counter35,2);xcell(it36+1+counter35,2)],... 
            [xcell(it36+counter35,3);xcell(it36+1+counter35,3)],'b*-'); 
        hold on 
    end 
    counter35=counter35+ncells(2); 
end 
 
%drawing the vertical lines for the graph that connects two points 
counter36=0; 
for it38= 1: ncells(1)-1% numbers of column of lines 
    for it37=1:ncells(2) 
        plot3([xcell(it37+counter36,1);xcell(it37+ncells(2)+counter36,1)],... 
            [xcell(it37+counter36,2);xcell(it37+ncells(2)+counter36,2)],... 
            [xcell(it37+counter36,3);xcell(it37+ncells(2)+counter36,3)],'r*-'); 
        hold on 
    end 
    counter36=counter36+ncells(2); %3 
end 
 
title('Profile of position vector') 
xlabel('X position') 
ylabel('Y position') 
zlabel('Z position') 
axis equal  
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GUESS_INTERPOLATING  
 

 
function xcell= guess_interpolating(xcell,xcellvar) 
 
 
global ncells; 
global xcell; 
global dist;  
global k_joint; 
global xcellvar; 
global xcell_initial; 
global std_dev; 
global zinput; 
 
%step 1: 
%using 'interp1' to draw a straight Between all the Z inputs at the edge/border 
%using the X coordinates as reference. 
%For reminder, all the corners Z values are constrainted either at 0 ... 
%%or at the value the user specify. 
 
%step 2: 
%after creating a border 
%create a second xcellvar called 'xcellvar2' ... 
%%that states those values at the borders are constrainted. 
 
%step 3: 
%using the Z values at the edge for each row, use 'interp1' ... 
%to draw a straight line thorugh all the 
%Z inputs for each rows plus the z's at the edge. 
 
%step 4: 
%repeat process for the columns using 'interp1' 
 
%step 5: 
%super-impose the z values derived from the row 'interp1' and the coln 'interp1' 
% Where there is overlap, that the average of the the Zvalues. 
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%%%%%step 1:=%%% %%%%%%%%step 1:=%%%% %%%%%%%%%% 
if ncells(2)>1; 
%find the index of all the centerpts in the 1st row that Z is inputed  
vrow1= find(xcellvar(1:ncells(2),3)==0); 
%Connect all the z-input in line(s)using 'interp1' 
xcell(1:ncells(2),3)=INTERP1(xcell(vrow1,1),xcell(vrow1,3),xcell(1:ncells(2),1),'linear'); 
end 
 
%find the index of all the centerpts in the last row that Z is inputed  
if ncells(2)>1; 
vrow2=[]; 
for it=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1) 
    if xcellvar(it,3)==0 
        vrow2=[vrow2;it]; 
    end 
end 
%ranges= the centerpts for the last row 
ranges=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1); 
%Connect all the z-input in line(s) using 'interp1' 
xcell(ranges,3)=INTERP1(xcell(vrow2,1),xcell(vrow2,3),xcell(ranges,1),'linear'); 
end 
 
%find the index of all the centerpts in the 1st column that Z is inputed  
if ncells(1)>1; 
    vcoln1=[]; 
    for it=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1; 
        if xcellvar(it,3)==0 
            vcoln1=[vcoln1;it]; 
        end 
    end 
%ranges= the centerpts for the 1st column  
ranges=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1; 
%Connect all the z-input in line(s) using 'interp1' 
xcell(ranges,3)=INTERP1(xcell(vcoln1,2),xcell(vcoln1,3),xcell(ranges,2),'linear'); 
end 
 
%find the index of all the centerpts in the last column that Z is inputed  
if ncells(1)>1; 
    vcoln2=[]; 
    for it=ncells(2):ncells(2):ncells(2)*ncells(1); 
        if xcellvar(it,3)==0 
            vcoln2=[vcoln2;it]; 
        end 
    end 
%ranges= the centerpts for the 1ast column  
ranges=ncells(2):ncells(2):ncells(2)*ncells(1); 
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%Connect all the z-input in line(s) using 'interp1' 
xcell(ranges,3)=INTERP1(xcell(vcoln2,2),xcell(vcoln2,3),xcell(ranges,2),'linear'); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%step 2:=%%%%%%%% %%%%%step 2:=%%%%%%  
% Creating second matrix of 'xcellvar2' 
xcellvar2=zeros(size(xcell)); 
 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; 
            if  xcell(counter31,3) ==0  %if xcell=0   note: '0.001' is not '0' 
                xcellvar2(counter31,1)=1; %then put these 1 or 0 into xcellvar 
                xcellvar2(counter31,2)=1; 
                xcellvar2(counter31,3)=1;  
            else  
                xcellvar2(counter31,1)=1; 
                xcellvar2(counter31,2)=1; 
                xcellvar2(counter31,3)=0;  
            end            
    end 
 
end 
 
 
% constrainting the Z at the LT side 
   if ncells(1)>1 
       for it31= ncells(2)+1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1; 
               xcellvar2(it31,3)=0;  
       end     
   end 
 
% constrainting the Z at the RT side 
   if ncells(1)>1 
       for it31= ncells(2):ncells(2):ncells(2)*ncells(1) 
               xcellvar2(it31,3)=0;  
       end     
   end 
 
% constrainting the Z on Bottom row an 
if ncells(2)>1 
     for it30=1:ncells(2) 
             xcellvar2(it30,3)=0;  %constraint the bottom row  z coordinate pt  
     end 
 end 
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% constrainting the Z on Top row an 
if ncells(2)>1 
     for it30=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1) 
             xcellvar2(it30,3)=0;  %constraint the bottom row z coordinate pt  
     end 
 end 
 xcellvar2; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%step 3 and 4:=%%%%%%%step 3and4:=%%%%% %%%%%%%%% 
 
%Drawing straight through each row 
if ncells(2)>1 
    xcellr=[]; 
    for it=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1; 
        irows=[]; 
        for it2=it:it+ncells(2)-1; 
            if xcellvar2(it2,3)==0; 
                irows=[irows; it2]; 
            end 
        end 
        rrange=it:it+ncells(2)-1; 
        xcellr(rrange,3)=INTERP1(xcell(irows,1),xcell(irows,3),xcell(rrange,1),'linear'); 
    end 
else  
    xcellr=zeros(size(xcell)); 
end 
 
%drawing a straight line through each column 
if ncells(1)>1 
    xcellc=[]; 
    for it= 1:ncells(2); 
        icoln=[]; 
        for it2=it:ncells(2):ncells(1)*ncells(2); 
            if xcellvar2(it2,3)==0; 
                icoln=[icoln;it2]; 
            end 
        end 
        crange=it:ncells(2):ncells(1)*ncells(2); 
        xcellc(crange,3)=INTERP1(xcell(icoln,2),xcell(icoln,3),xcell(crange,2),'linear'); 
    end 
else  
    xcellc=zeros(size(xcell)); 
end 
%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%step 5:=%%%% %step 5:=% %%%%%%%%% 
 
xcellc; 
xcellr; 
 
if ncells(2)>1 & ncells(1)>1 
    
        xcell(:,3)=max (xcellc(:,3),xcellr(:,3)); 
 
elseif ncells(2)>1 & ncells(1)==1 
    xcell(:,3)= xcellr(:,3); 
else 
    xcell(:,3)= xcellc(:,3); 
end 
 
xcell; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%REPEATING STEP 2-5%%%REPEATING STEP 2-5%%% 
%%%%%%%%%%%%%%%step 2:= %%%%%step 2:=%%%% %%%%%% 
 
% Creating third matrix of 'xcellvar3' 
xcellvar3=zeros(size(xcell)); 
 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; 
            if  xcell(counter31,3) ==0  %if xcell=0   note: '0.0000001' is not '0' 
                xcellvar3(counter31,1)=1; %then put these 1 or 0 into xcellvar 
                xcellvar3(counter31,2)=1; 
                xcellvar3(counter31,3)=1;  
            else  
                xcellvar3(counter31,1)=1; 
                xcellvar3(counter31,2)=1; 
                xcellvar3(counter31,3)=0;  
            end            
    end 
 
end 
% constrainting the Z at the LT side 
   if ncells(1)>1 
       for it31= ncells(2)+1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1; 
               xcellvar3(it31,3)=0;  
       end     
   end 
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% constrainting the Z at the RT side 
   if ncells(1)>1 
       for it31= ncells(2):ncells(2):ncells(2)*ncells(1) 
               xcellvar3(it31,3)=0;  
       end     
   end 
 
% constrainting the Z on Bottom row an 
if ncells(2)>1 
     for it30=1:ncells(2); 
             xcellvar3(it30,3)=0;  %constraint the bottom row  z coordinate pt  
     end 
 end 
  
% constrainting the Z on Bottom row an 
if ncells(2)>1 
     for it30=ncells(2)*ncells(1)-ncells(2)+1:ncells(2)*ncells(1) 
             xcellvar3(it30,3)=0;  %constraint the bottom row z coordinate pt  
     end 
 end 
xcellvar3; 
%%%%%%%% End step Two%%%% End step Two%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%step 3 and 4:=%% %%%step 3and 4:=% %%%%%%%%%% 
 
%Drawing straight through each row 
if ncells(2)>1 
    xcellr=[]; 
    for it=1:ncells(2):ncells(2)*ncells(1)-ncells(2)+1; 
        irows=[]; 
        for it2=it:it+ncells(2)-1; 
            if xcellvar3(it2,3)==0; 
                irows=[irows; it2]; 
            end 
        end 
        rrange=it:it+ncells(2)-1; 
        xcellr(rrange,3)=INTERP1(xcell(irows,1),xcell(irows,3),xcell(rrange,1),'linear'); 
    end 
 
end 
 
%drawing a straight line through each column 
if ncells(1)>1 
    xcellc=[]; 
    for it= 1:ncells(2); 
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        icoln=[]; 
        for it2=it:ncells(2):ncells(1)*ncells(2); 
            if xcellvar3(it2,3)==0; 
                icoln=[icoln;it2]; 
            end 
        end 
        crange=it:ncells(2):ncells(1)*ncells(2); 
        xcellc(crange,3)=INTERP1(xcell(icoln,2),xcell(icoln,3),xcell(crange,2),'linear'); 
    end 
 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%step 5:=% %%%%%step 5:=%%%%%%%%% 
 
xcellc; 
xcellr; 
 
if ncells(2)>1 & ncells(1)>1 
    xcell(:,3)=max (xcellc(:,3),xcellr(:,3)); 
elseif ncells(2)>1 & ncells(1)==1 
    xcell(:,3)= xcellr(:,3); 
else 
    xcell(:,3)= xcellc(:,3); 
end 
 
xcell;  
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MINIMIZINGENERGY 
 

 
function pot_energy = minimizingEnergy(x) 
 
 
global ncells; 
global xcell; 
global dist;  
global k_joint; 
global xcellvar; 
global xcell_initial; 
global std_dev; 
 
%replacing all the non-constrainted coordinate values with xi values... 
%%These are the unknowns 
cnt = 1; % counter for the x(1), x(2), x(3) etc... 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; 
        for coord=1:3 
            if  xcellvar(counter31,coord) ==1   
                    %if xcell=0   note: '0.001' is not '0' 
                xcell(counter31,coord)=x(cnt); 
                cnt = cnt + 1; 
            end    
        end 
    end 
end 
 
 
 
%---------0--------------------------------- 
%          ^   \ )A 
%        /       \ 
%      /          v   
%     / )C ----0------ 
%--0--------- 
 
 
%energy in the X direction 
pot_energy=0;  
%initial length of based upon the X and Y and Z coordinates in Xdirectiion 
 
if ncells(2)>2 
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    counter31=2; 
    for it42=1:ncells(1); %row 
        for it40= 1:ncells(2)-2; % column 
            counter31=counter31+1; 
            angle= -pi ... 
                +(atan2(xcell(counter31,3)-xcell(counter31-1,3),... 
                    xcell(counter31,1)-xcell(counter31-1,1)))...        %A 
                -atan2(xcell(counter31-1,3)-xcell(counter31-2,3), ... 
                    xcell(counter31-1,1)-xcell(counter31-2,1)) ;    %C 
             
            pot_energy = pot_energy + 0.5 *k_joint *(pi-abs(angle))^2;   
             
        end  
        counter31=counter31+2; 
         
    end 
end 
 
 
%energy in the Y direction 
if ncells(1) > 2 
   counter31=2;   
   for it44=1:ncells(1)-2%row 
      for it45=1:ncells(2)%column 
         counter31=counter31+1; 
         angle= -pi ... 
            +(atan2(xcell(counter31+2*ncells(2)-2,3)-xcell(counter31+ncells(2)-2,3),... 
                xcell(counter31+2*ncells(2)-2,2)-xcell(counter31+ncells(2)-2,2)))...        %A 
            -atan2(xcell(counter31+ncells(2)-2,3)-xcell(counter31-2,3),... 
                xcell(counter31+ncells(2)-2,2)-xcell(counter31-2,2)) ;    %C 
          
         pot_energy = pot_energy + 0.5 *k_joint *(pi-abs(angle))^2;   
          
      end 
   end 
end 
 
pot_energy; 
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CONTROLLING_LENGTH 
 
 

function [c,lengths] = controling_length(x) 
 
%nonlcon 
 %The function that computes the nonlinear inequality constraints c(x)<= 0  
 %and the nonlinear equality constraints ceq(x) = 0.  
 %The function nonlcon accepts a vector x and returns two vectors c and ceq.  
 %The vector c contains the nonlinear inequalities evaluated at x,  
 %and ceq contains the nonlinear equalities evaluated at x.  
 %The function nonlcon can be specified as a function handle. 
 
%x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon) 
 
%where mycon is a MATLAB function such as 
 
%function [c,ceq] = mycon(x) 
%c = ...     % Compute nonlinear inequalities at x. 
%ceq = ...   % Compute nonlinear equalities at x. 
  
global dist; 
global ncells; 
global k_joint; 
global xcellvar; 
global xcell_initial; 
global std_dev; 
global xcell; 
%%%%%%%%%Keeping the link length constant%%%%%%%%%%%%%%% 
 
%Controling the length in X direction 
Lx=[]; %initial length of based upon the X and Y and Z coordinates in Xdirectiion 
%counter31=ncells(2)+2+1;  % interiopr cell conunter Start at the 1st interior cell  
counter31=0; 
for it42=1:ncells(1); %row 
    for it40= 1:ncells(2)-1; % column 
        counter31=counter31+1; %% interiopr cell conunter  
        Lx1=(xcell(counter31,1)- xcell(counter31+1,1))^2 ... 
            + (xcell(counter31,2)- xcell(counter31+1,2))^2 ... 
            + (xcell(counter31,3)- xcell(counter31+1,3))^2- dist^2;  
        Lx=[Lx;Lx1];   
         
    end  
    counter31=counter31+1; 
end 
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%Controling the length in Y direction 
Ly=[];   
%counter31=ncells(2)+2+1;% interiopr cell conunter Start at the 1st interior cell  
counter31=0; 
for it44=1:ncells(1)-1%row 
    for it45=1:ncells(2)%column 
        counter31=counter31+1; %% interiopr cell conunter  
        Lyl=(xcell(counter31,1)- xcell(counter31+ncells(2),1))^2 ... 
            + (xcell(counter31,2)- xcell(counter31+ncells(2),2))^2 ... 
            + (xcell(counter31,3)- xcell(counter31+ncells(2),3))^2- dist^2; 
        Ly=[Ly;Lyl]; 
    end 
   % counter31=counter31+2; 
end 
 
lengths=[Lx;Ly]; 
 
%%%%all X(i) values should be positive and within a range of std %%%%%%% 
 
 % due to the nonlinear inequality constraint of fmincon c(x)<= 0.  
 %therefore all the neg of x(i) [-x(i)] values should be less than or equal to 0... 
 %This means that all the x(i) must be positive. 
 if 0 %if 0=false means will notever do what to do within if loop.  
      %%if=1, then true, do everything in the loop 
     values=[]; 
     counter31=0; 
     cnt=1;  
     for it30= 1: ncells(1);% % rows 
         for it31= 1:ncells(2)% % column 
             counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell  
             for coord =1:3 
                  
                 if  xcellvar(counter31,coord) ==1; %if xcell=0   note: '0.0000001' is not '0' 
                      
                     if coord==3 
                         LBZ= -x(cnt);   
   %lower bound for the z coodinate which is the lowest value inputed 
                         %from this equation: 0 <= x(i) <= x(i) + std_dev.  
   % Solve for x(i) for the LT .  
                         UBZ= x(cnt)-( max(xcell_initial(:,3))+dist/2);  
                         %upper bound for the z coodinate which is the highest value inputed 
                         values=[values;LBZ;UBZ];   
                          
                     else 
                         LB= - x(cnt); % this sets up the LB to be zero.   
                         %from this equation: 0 <= x(i) <= x(i) + std_dev.  
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   %Solve for x(i) for the LT .  
                         UB= x(cnt) - (xcell_initial(counter31,coord)+std_dev);  
                          
                         %upper bound for the the X  and Y coodinate... 
                         %which the +3 pts away original values from this equation:  
                         % 0 <= x(i) <= x(i) + std_dev. Solve for x(i) for the RT side 
                         values=[values;LB;UB];    
                          
                     end 
                      
                     cnt=cnt+1; 
                 end    
             end 
         end 
     end 
    c=values; 
 else  
     c=0; 
 end  
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BOUNDARY_VECTORS 
 
 

function [xcell]= boundary_vectors (dist, ncells, xcell ); 
 
global ncells; 
global xcell; 
global dist;  
global k_joint; 
global xcellvar; 
global xcell_bdpt;  %intial guess xcell with boundary pts 
global xcell_initial; 
global std_dev; 
 
%The matrix is floating.  
%These boundary vectors are added to help find the position v_vectors and the n_vector 
%because of too much contraint. For the design of this crust,.. 
%a flexbile skin will be over the crust. 
% this Skin will attach the crust to the base and stretches while the crust deforms. 
%Presently, the skin is not developed yet. 
%Ex: A piece of cloth on a square piece of stretchy rubber... 
%THe edge of the rubber is attached a frame. 
%THe cloth can deform in various ways within the limits of the rubber. 
%THerefore the edge of the matrix is not attached, but there are constraints. 
%THe contraints that this code will consider are 
%the coordinate of first point which will be from the user input 
%Another contraints to prevent rotation is the X value of Centerpt .. 
%from 1 of the neighboring unit cell 
 
% visual descriptions of boundary vectors of  
%xedge_top, xedge_bot, xedgeleft, xedge_right: 
 
%  =====================xedge_top===================== 
 
%  =xedge_left=== [input xcell ct-pt ]===xedge_right=== 
 
%  =xedge_left=== [input xcell ct-pt ]===xedge_right=== 
 
%  ====================xedge_bot=====================  
 
xedge_bot = xcell(1:ncells(2),:);   %rosen's simplification of my coding from 13 lines to 2 
xedge_bot(:,2) = xedge_bot(:,2) - dist; 
xedge_bot=[0,0,0;xedge_bot; 0,0,0];  
%the (0,0,0) are placement pts. Are ignored/skip over during calculation 
 
xedge_top =xcell( (ncells(2)*(ncells(1)-1)+1):ncells(2)*ncells(1),: ); 
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xedge_top(:,2) = xedge_top(:,2) + dist; 
xedge_top=[0,0,0;xedge_top; 0,0,0]; 
 
%We need an extra set of vectors at the left edge of the first column... 
%in the matrix to define the edge of the crust 
xedge_left=[]; 
for it12= 1:ncells(2):(ncells(2)*(ncells(1)-1)+1); 
    xedge_left1=xcell(it12,:); 
    xedge_left1(:,1)=xedge_left1(1)- (dist); 
    %xedge_left2=[xedge_left1(1)- (dist/2), xedge_left1(2),xedge_left1(3)]; 
    xedge_left=[xedge_left; xedge_left1]; 
end 
 
%We need an extra set of vectors at the right edge of the first column 
 
xedge_right=[]; 
 
for it13= ncells(2):ncells(2):ncells(2)*ncells(1); 
    xedge_right1=xcell(it13,:); 
    xedge_right1(:,1)=xedge_right1(1)+ (dist); 
    %xedge_right2=[xedge_right1(1)+ (dist/2), xedge_right1(2),xedge_right1(3)]; 
    xedge_right=[xedge_right; xedge_right1]; 
end  
 
%combining both the inputed ct-pt of cells and boundary vectors as one matrix 
all_xcells=[xedge_bot]; 
count17=0; 
count18=0; 
for it16=1:ncells(1) 
    count18=count18+1; 
    row1=[xedge_left(count18,:);xcell(it16+count17: 
ncells(2)*it16,:);xedge_right(count18,:)]; 
    all_xcells=[all_xcells;row1]; 
    count17=count17+ncells(2)-1; 
end 
 
all_xcells=[all_xcells;xedge_top]; 
xcell=all_xcells; 
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CAL_V_N 
 

 
function [v_vectors,phi,rot_norm] = cal_v_n(ncells,xcell) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%Calculating the v vectors%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  %numbering convention for cells: 
% 4 5 6 
% 1 2 3 
 
% numbering convetions for the v vectors and normals" 
%  3  
%4 + 2 
%  1 
 
counter30=0; % location placement for calc. values of v 
counter31=ncells(2)+2+1;% interiopr cell conunter  
 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
    counter31=counter31+1; % 
  counter30=counter30+1; % 
      v_vectors(counter30,1,:)=(xcell(counter31-(ncells(2)+2),:) - xcell(counter31,:))... 
         /(norm((xcell(counter31-(ncells(2)+2),:) - xcell(counter31,:)))); 
       
      v_vectors(counter30,2,:) =(xcell(counter31+1,:) - xcell(counter31,:))... 
         /(norm(xcell(counter31+1,:) - xcell(counter31,:)));  
       
      v_vectors(counter30,3,:) =(xcell(counter31+(ncells(2)+2),:) - xcell(counter31,:))... 
         /(norm((xcell(counter31+(ncells(2)+2),:) - xcell(counter31,:)))); 
       
      v_vectors(counter30,4,:) =(xcell(counter31-1,:) - xcell(counter31,:))... 
         /(norm(xcell(counter31-1,:) - xcell(counter31,:))); 
 
   end 
      counter31=counter31+2; 
          
end 
v_vectors; 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%Calculating the Normals with local UCS%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SEE Notes and Drawings for more Explanation 
 
%step 1: finding f=phi: the angle of rotation: (sin(Z/L))^-1   
%Where L=(length of the vector in the direction of either X or Y)=1 ... 
%becuase if unit vector 
 
%Step 2: finding the new rotated normal 
% for finding the Normals from the Horizontal V-vectors,... 
%the Normal is rotated around the Y-axis, 
% therfore the value of the Y coordinate is always '0' for H V-vectors 
% from  Jerry H. Ginsberg "Advanced Engineering Dynamic 2nd ed" 
%Rotation matix for rotation about the Y-axis: 
%[ cos(f) 0  -sin (f); 
%    0    1     0; 
% sin(f)  0  cos (f)]; 
 
% for finding the Normals from the Vertical V-vectors,... 
%the Normal is rotated around the X-axis, 
% therefore the value of the X coordinate is always '0' for V V-vectors 
%[ 1     0         0; 
%  0    cos(f)  sin (f); 
%  0   -sin(f)  cos (f)]; 
 
%Step 3: use check equation to validate the new norm 
%check EQN 1: dot(N2, N1)= norm(N2)* norm(N1)*cos(f) 
%check EQN 2: dot(N2, V2)=0    because perpendicular 
% N2= New Rotated Normal        N1= Orginal Normal (0,0,1) 
% V2= New Roated V Vector 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%Step 1: find phi: angle of rotation%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% numbering conventions for the phi's 
%   3_v  
%4_h + 2_h 
%   1_v 
 
phi=[]; 
for it15= 1:ncells(1)*ncells(2) 
     
   phiy=asin(v_vectors(it15,1,3)/(-1));  
   % Calculating phi from Vertical V-vectors 
   phi=[phi;phiy]; 
 
   phix=asin(v_vectors(it15,2,3)/1);  
   % Calculating phi from horizontal V-vectors 
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   phi=[phi;phix]; 
     
   phiy2=asin(v_vectors(it15,3,3)/1);  
   % Calculating phi from Vertical V-vectors 
   phi=[phi;phiy2]; 
 
   phix2=asin(v_vectors(it15,4,3)/(-1));  
   % Calculating phi from horizontal V-vectors 
   phi=[phi;phix2]; 
end 
phi; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%Step 2: finding the new rotated normal%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%for Horizontal V-vectors 
%rot_maty=[ cos(f) 0  -sin (f); 
 %            0    1     0; 
  %        sin(f)  0  cos (f)]; 
 
%For Vertical V-vectors 
%rot_matx= [ 1     0         0; 
 %           0    cos(f)  sin (f); 
  %          0   -sin(f)  cos (f)]; 
 
 normal=[0,0,1]; 
 
 rot_norm=[]; 
  
for it16=1:2:4*ncells(1)*ncells(2) 
    rot_normx= [1, 0, 0; 0, cos(phi(it16)), sin(phi(it16));... 
                0, -sin(phi(it16)), cos(phi(it16))]*normal'; 
    rot_norm=[rot_norm;(rot_normx')]; 
     
    rot_normy= [cos(phi(it16+1)), 0, -sin(phi(it16+1)); 0, 1, 0;... 
                sin(phi(it16+1)), 0, cos(phi(it16+1))]*normal'; 
    rot_norm=[rot_norm;(rot_normy')]; 
     
end 
rot_norm; % this matrix is already normalize need not to be normed 
 
%For rot_norm, Place all the X in one matrix,... 
%All the Y in another, Z in the last 
 
for k = 1:ncells(1)*ncells(2) 
    for k2 = 1:4 
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        for xyz = 1:3 
            rot_norm3D(k,k2,xyz) = rot_norm((k-1)*4+k2,xyz); 
           
        end 
    end 
end 
 
for k = 1:ncells(1)*ncells(2) 
    fprintf ('Element %d of rot_norm3D\n', k); 
    for kk = 1:4 
        fprintf ('  %f %f %f \n', rot_norm3D(k,kk, :)); 
    end 
end  
 
rot_norm3D; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%Step 3: Validating the new rotated normal%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%ploting to check perpendicularity of 1 vector and 1 norm 
%figure 
%axis equal 
%plot([0;v_vectors(1,3,2)],[0;v_vectors(1,3,3)],'c+-') 
%hold on 
%plot([0;rot_norm(3,2)],[0;rot_norm(3,3)],'b+-') 
%axis equal 
 
check_norm1=[];  % the results should all be '0' 
check_norm2=[];  % the results should all be '0' 
 
for it17=1:4*ncells(1)*ncells(2) 
    check_eqn1= ( norm(rot_norm(it17,:))*cos(phi(it17)) )... 
                    - ( dot(rot_norm(it17,:),normal) ); 
    check_norm1=[check_norm1;check_eqn1]; 
end 
 
count30=0; 
for it18=1:ncells(1)*ncells(2)   
    for it19=1:4 
        count30=count30+1; 
    check_eqn2=dot(rot_norm(count30,:),... 
               [v_vectors(it18,it19,1),... 
               v_vectors(it18,it19,2),.... 
               v_vectors(it18,it19,3)] ); 
    check_norm2=[check_norm2;check_eqn2]; 
end 
end 
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CALC_THETA 
 

function [theta_tab] = calc_theta (ncells,xcell,v_vectors,rot_norm,phi) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculation using Paul's Equation for the first cell%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global k_alpha; 
global k_beta; 
global k_lamda; 
 
%h_ scaling is a scaling factor multipied to the side of the small triangle 
% Due to some re-calcuation, Paul's equation was modified: 
% w_norm=sin (B/2) => w_norm= (h_scaling)*sin (B/2)= tan (B/2)   
        %since h_scaling= 1/cos  
 
h_scaling=1/(cos((k_beta)/2)); 
w_norm=tan((k_beta)/2); 
 
 
%These are the initial vectors of 1 unit cell before any rotation. 
w_unit=[-1, 0,0; 
         1, 0,0; 
         0,-1,0; 
         0, 1,0; 
         1, 0,0; 
        -1, 0,0; 
         0, 1,0; 
         0,-1,0]; 
w_initial=[-0.1944,   0,    0;  
            0.1944,   0,    0; 
            0,  -0.1944,    0; 
            0,   0.1944,    0;   
          0.1944,     0,    0; 
         -0.1944,     0,    0;           
            0,    0.1944,   0; 
            0,   -0.1944,   0]; 
 
 
w=[];  
% w=example for 1 unit cell:[w8; w1; w2; w3; w4; w5; w6; w7] ... 
%in reference to numbering convention per unit cell                                                                                   
count19=0; 
for it20=1:ncells(1)*ncells(2) 
    for it21=1:4 



 255

    count19=count19+1; 
    w_vec1= (w_norm)*cross([v_vectors(it20,it21,1),v_vectors(it20,it21,2),... 
                v_vectors(it20,it21,3)], rot_norm(count19,:)); 
    w=[w;w_vec1];  %method of stacking **must start with w=[] for an empitied set 
    w_vec2= (w_norm)*cross(rot_norm(count19,:),[v_vectors(it20,it21,1),... 
                v_vectors(it20,it21,2),v_vectors(it20,it21,3)]); 
    w=[w;w_vec2]; 
    end 
end 
w; 
 
 
a=[]; %a=side vector of top small connecting triangles 
 
count=0; 
for it20=1:ncells(1)*ncells(2); 
    for it21=1:4  
    count=count+1; 
    a_val1=([v_vectors(it20,it21,1),v_vectors(it20,it21,2),... 
            v_vectors(it20,it21,3)]+w(count,:))/(h_scaling); 
    a=[a;a_val1]; 
    count=count+1; 
    a_val2=([v_vectors(it20,it21,1),v_vectors(it20,it21,2),... 
            v_vectors(it20,it21,3)]+w(count,:))/(h_scaling); 
    a=[a;a_val2];  
    end 
end 
 
a ;  %example for 1 unit cell: a=[a8; a1; a2; a3; a4; a5; a6; a7]... 
 
    %all the vectors on the side of the main link triangle 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%find the middle a vector between two big link%%%%%%% 
%%%%explaination of modification of paul's eqn for "for loop%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7] 
%rearrange the a matrix to move the first a value from each unit cell... 
%to become the last value for each unit cell 
a2=[]; %a1 %a2 %a3.....%a8 
 
for it23= 1:8:8*ncells(1)*ncells(2)-7 
   a1=[a(it23+1:it23+7,:);a(it23,:)]; 
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   a2=[a2;a1]; 
end 
a=a2; 
 
%%%%%% FINDING THE MIDDLE VECTOR:M%%%%%%%%%% 
%%%%%%%%Reference Word Doc: findingM_a_mid_vector %%%% 
 
m=[]; 
 
count4=0; 
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6' 
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5' 
L1= 73/256; %%length of the side of intermediate joints 
L5=83/256; %%length of the middle vector of intermediate joints 
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells 
    count4=count4+1; 
    vect1=a(count4,:); 
    count4=count4+1; 
    vect2=a(count4,:); 
     
    p_vect=0.25*vect2 - 0.25*vect1;  
        %%% p_vect= a vector that connects a(i) and a(i+1). 
    q_vect=0.25*vect1 + p_vect/2;  
        %%%q_vect= vector taht connects the centerpt of unit cell to mid of p_vect. 
    L4= sqrt(L1^2 - (norm(p_vect/2))^2);  
        %% length that connects Q_vector to the bottom of the triangle 
    angle_triangle= acos( (-(L4^2)+(norm(q_vect))^2 +L5^2)... 
                            /(2*norm(q_vect)*L5)); 
    L6= norm(q_vect)*tan(angle_triangle);  
        %%L6= perpendicular from end of q_vector to L5 
    n_avects= cross(vect1,vect2);   
        %%% normal vector to 2 crossing a vectors 
    n_avectu= n_avects/(norm(n_avects));  
        %%% the unit vector of the a vector normal 
    m_vect= -L6*n_avectu+q_vect; 
    m_vectu= m_vect/(norm(m_vect)); 
    m=[m;m_vectu]; 
end 
 
a_mid=m; % a matrix of all the calculated middle 'a' vectors... 
            %%between the intermidiate links. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%findin the U vectors that are normal to the intermediate links... 
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    %%%using the 'a'  and 'a_mid' vectors 
%a=example for 1 unit cell:[ a1; a2; a3; a4; a5; a6; a7; a8] 
%a_mid= [a_mid1(between a1 and a2); a_mid2(between a3 and a4);... 
%%a_mid3(between a5 and a6); a_mid4(between a7 and a8)] 
 
u_norm=[]; 
count5=0; 
for it7=1:4*ncells(1)*ncells(2) 
    count5=count5+1; 
    u_val1=( cross(a2(count5,:), a_mid(it7,:)) )/... 
            ( norm (cross(a2(count5,:), a_mid(it7,:)) )); 
    u_norm=[u_norm;u_val1]; 
     
    count5=count5+1; 
    u_val2= ( cross(a_mid(it7,:), a2(count5,:)) )/... 
            ( norm (cross(a_mid(it7,:), a2(count5,:)) )); 
    u_norm=[u_norm;u_val2]; 
end 
u_norm;  
 
%example for 1 unit cell:[8 rows, 3 colns] 
            %%%%[ u1; u2; u3; u4; u5; u6; u7; u8] 
 
%%%%%%%%%%explanation of finding theta%%%%%%%%%% 
% find theta1 (between main and intermediate),  
%theta2 (between 2 intermediate), theta3 (between main and intermediate) 
% g_n= [g_n1; g_n2; g_n3; g_n4]; 
% k_lamda= [k_lamda1, k_lamda2, k_lamda3, k_lamda4]; 
% from paul's eqns: 
% theta1=- acos(dot(u1,n1)+pi-lamda1 
% theta3= -acos(dot(u2,n2)+pi-lamda2      modified from Paul's eqn: '+' => '-'. 
% theta 2= -acos(u1,u2)+ pi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
theta=[]; % for every 3 rows are the 3 thetas for 1 out of 4 section... 
            %%%of the radial symetric unit cell.  
%copying the begining the 1st norm to the end for: ... 
            %%'For loop it8' because of circular motion 
g_n_it8= [rot_norm(1:4*ncells(1)*ncells(2),:); rot_norm(1,:)];   
count6=0; 
for it8= 1:4*ncells(1)*ncells(2) 
    count6=count6+1; 
    theta1= -acos( dot(u_norm(count6,:), g_n_it8(it8,:)) ) + pi - k_lamda; 
    theta=[theta;theta1]; 
     
    theta2= -acos( dot(u_norm(count6,:), u_norm(count6+1,:)) ) +pi; 
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    theta=[theta;theta2]; 
     
    theta3= -acos( dot(u_norm(count6+1,:), g_n_it8(it8+1,:)) ) + pi - k_lamda; 
    theta=[theta;theta3]; 
    count6=count6+1; 
   
end 
theta; 
 
theta_tab=[]; 
for it24=1:12:3*4*ncells(1)*ncells(2) 
    theta_t=[theta(it24:it24+11)]; 
    theta_tab=[theta_tab,theta_t]; 
end 
 
theta_tab 
%the Theta for each section of the first unit cell 
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BDPT_REMOVE 
 
 

function xcell = bdpt_remove (ncells,xcell);  
%removing the boundary pts/vectors for display for other purpose 
 
xcell0=xcell; %storing the xcell with the boundary pts in xcell0 
 
xcell_ctpt=[]; 
counter31=ncells(2)+2+1;% interiopr cell conunter Start at the 1st interior cell  
% ncells(2)+2+1+1 = ncells(2)= bottom row... 
    %%2= the 2 corners empty boundary cell  1=LT boundary cell  
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
        counter31=counter31+1; %% interiopr cell conunter  
        xcell_ctpt= [xcell_ctpt; xcell(counter31,:)];  
                %removing the begin_pt and end_pt for graphings 
    end 
    counter31=counter31+2; 
end 
 
xcell=xcell_ctpt 
 
%xcell=xcell0; 
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APPENDIX D: 
 

 MATLAB FOR METHOD 2: FIX FACE 
 
 

Method 2 with one of the faces being fixed was also implemented through using 

MATLAB Coding. The first page will be a guide to the code and the functions in the 

code. The rest of the pages in this Appendix are the code. 
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NAVIGATION OUTLINE 
SECOND PROGRAM IMPLEMENTING  

METHOD 2: FIXED FACE 
 
 

Nomenclature: 
 
k1= stiffness of type-1 joint 
k2= stiffness of type-2 joint 
k_alpha= geometric design constant 
k_beta = geometric design constant 
k_lambda= geometric design constant 
h_scaling= geometric design constant 
xcell: a matrix of the Cartesian coordinates of the center-points of the unit cells 
ncells: the matrix dimension 
xcellvar: controlling the constraints. Dimension size is the same as xcell. 
dist: fixed distance value between any two point  
xcell_initial: initial value of xcell before the modifying any values. 
zinputs: user dislocatement inputs for the z-values in xcell 
 
 

FIXFACE 
 
1) Specifying inputs 
 
2) k1,k2,dist,ncells,xcell, k_alpha, k_beta, h_scaling 

 
3) Constraining certain variables 
 
4) Xcellvar: “on/off’ matrix for controlling what value from xcell matrix can change 
 
5) xcell: an (m*n)-by-3 matrix, where x is in the first column, y is 2nd, z is 3th 
 
6) 0= off, meaning value should remain fix 
 
7) 1=on, value can change 
 
8) Developing the initial guess 

a) cc_convert_scfix: 
i) Note: for all of the steps, skip the 4th n and v vectors, which are on 4th face of 

the first cell.  
ii) Converting the Cartesian coordinates to Spherical 
iii) Interpolating by rotating the S.C 
iv) Condensing the variables by realization of duplications  

b) Creating initial S.C. variables from previous function results:  
i) phi_ni, theta_ni, theta_vi 
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c) Creating x0: initial guess vector (Do NOT include the 4th n and v vectors) 
 
9) Creating upper and lower bounds for x0  

a) Lower bound for phi_ni, theta_ni, theta_vi 
b) Upper bound for phi_ni, theta_ni, theta_vi 

 
 
10) sc_graphfix(x) Function that graphs the unit cells using SC as inputs 
 
11) Fmincon –blackbox MATLAB function 

a) minimizingPenergyfix: calculating the potential energy in the system for 
Fmincon 

 
12) Expands the condensed matrices of S.C. coordinates vectors  

a) Creates relationship among vectors based upon duplications 
b) Uncondensing the variables: phi_n, theta_n, theta_v 
c) Reminder: 

i) Numbering conventions for the v vectors and n vectors on each unit cells 
ii) Numbering in reference in face number 

 
d) For all the sections in each cell in a matrix is m-by-n matrix 

i) One unit cell has 4 sections. 
 

ii) phi_n 
 

(1) Skip the 4th n vectors on the 4th face of the 1st unit cell 
(2) if current variable is a multiple of 4 and is greater than 4: 8,12,14,… 

(a) Copy the 6th previous phi_n variables 
(b) e.g: phi_n at face number 12= phi_n at face number 6 
(c) If not a multiple of 4, then pull values from the iteration results: x 

 
iii) Theta_n 

(1) Skip the 4th n vectors on the 4th face of the 1st unit cell 
(2) If current variable is a multiple of 4 and is greater than 4: 8,12,14, … 

(a) Copy the 6th previous theta _n variables 
(b) e.g: theta _n at face number 12 = theta _n at face number 6 
(c) If not a multiple of 4, the pull values from the iteration results: x 

 
iv) Theta_v 

(1) Skip the 4th v vectors on the 4th face of the 1st unit cell 
(2) If current variable is a multiple of 4 and is greater than 4: 8,12,14, … 

(a) Copy the 6th previous theta_v variable and add “pi” 

   7  
8 + 6
  5

   3  
4 + 2
   1

    11  
12 + 10
    9
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(b) e.g: theta _vat face number 12 = theta _v at face number 6 +pi 
(c) If not a multiple of 4, the pull values from the iteration results: x 

 
13) Findingtheta: calculating the joint angles for each joint for every cell in matrix 
 
 
CC_CONVERT_SCFIX 
 
1) Find all the fixed zvalues in xcell by using xcellvar 
 
2) Initialize an emptied Phi_n matrix 
 
3) Phi_n: Find phi_n by calculating the angles of deformation between any two fixed 

zvalues.  
a) Only place the values that are not duplicates into Phi_n matrix 
b) *Note: only the phi_n values will be changed for interpolating and initial guess 
c) **Note: do not include the 4th  n vectors on the fourth face 

 
4) Theta_na: Initialize the matrix of theta_n 
 
5) Theta_va: Initialize the matrix of theta_v 
 
6) Theta_n: condense by eliminating duplications 

a) *Note: do not include the 4th n vectors on the fourth face 
 

7) Theta_v: condense by eliminating duplications 
a) *Note: do not include the 4th  v vectors on the fourth face 

 
 
 
SC_GRAPHFIX 
 

1) Uncondensing the variables: phi_n, theta_n, theta_v as shown in realfree 
 
2) Set flagplot=1 

 
3) image3dfix: plots the 3d images of the unit cell 

 
4) Move the all the unit cells back to original starting locations before being shifted 

to origin 
 

5) graph_ctpt: graphs the centerpoints 
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MINIMIZEPENERGYFIX 
 
1) Expands the condensed matrices of S.C. coordinates vectors  
 
2) Creates relationship among vectors based upon duplications 

a) Skip the 4th v and n vectors on the 4th face of  the 1st unit cell 
 
3) Uncondensing the variables: phi_n, theta_n, theta_v as seen in fixface 
 
4) Reminder: 
 

a) Numbering conventions for the v vectors and n vectors on each unit cells 

 
b) Numbering in reference in face numberFor all the sections in each cell in a matrix 

is m-by-n matrix 
i) One unit cell has 4 sections. 

 
ii) phi_n 
iii) if current variable is a multiple of 4 and is greater than 4: 8,12,14,… 

(1) Copy the 6th previous phi_n variables 
(2) e.g: phi_n at face number 12= phi_n at face number 6 

iv) If not a multiple of 4, the pull values from the iteration results: x 
 

v) Theta_n 
vi) if current variable is a multiple of 4 and is greater than 4: 8,12,14,… 

(1) Copy the 6th previous theta _n variables 
(2) e.g: theta _n at face number 12 = theta _n at face number 6 

vii) If not a multiple of 4, the pull values from the iteration results: x 
 

viii) Theta_v 
ix) if current variable is a multiple of 4 and is greater than 4: 8,12,14,… 

(1) Copy the 6th previous theta_v variable and add “pi” 
(2) e.g: theta _vat face number 12 = theta _v at face number 6 +pi 

x) If not a multiple of 4, the pull values from the iteration results: x 
 

5) image3dfix: function that calculates the joint angles for minimizing  
 
6) Can also calculate the center-points of each unit cell for plotting  
 
7) Pot_energy: calculates the energy in the system from the angles of the joints 
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IMAGE3DFIX 
 
1) Converting the N and V vectors from Spherical to cartesian for calculations 
 
2) Finding vertices 

a. Calculate the side a unit vectors 
b. Calculate the middle a unit vector 
c. Multiply the a unit vectors by their geometric design length  
d. Find the Cartesian coordinates of the corners and centerpoints of every unit cell 
e. vert_cn: Initialize a matrix for the centerpoints 
f. Calculate Cartesian coordinates by multiplying every v_vectors by their 

corresponding geometric design length. 
 

3) Graph by organizing the scalar a and v vectors by groups of three’s for creating a 3d 
graphs using the embed MATLAB function “patching” 

 
4) Change all vectors back to unit vectors. 
 
5) Calculate the u unit vectors 
 
6) Calculate the theta’s: joint angles 
 
 
FINDINGTHETA 
 
1) Converting the N and V vectors from Spherical to cartesian for calculations 
 
2) Cal joint angles 

a) Calculate the side a unit vectors 
b) Calculate the middle a unit vector 
c) Multiply the a unit vectors by their geometric design length  
d) Find the Cartesian coordinates of the corners and centerpoints of every unit cell 
e) vert_cn: Initialize a matrix for the centerpoints 
f) Calculate Cartesian coordinates by multiplying every v_vectors by their 

corresponding geometric design length. 
g) Change all vectors back to unit vectors. 
h) Calculate the u unit vectors 
i) Calculate the theta’s: joint angles 
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FIXFACE 
 

 
 
close all; 
clear all; 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
 
k1=500; 
k2=800; 
dist=.4905; 
ncells=[1,3]; 
xcell=[0,      0, 0; 
       0,   dist, 0; 
       0, dist*2, 0];  
 
 
    
k_alpha= (58.054*pi)/180; 
k_beta=(22*pi)/180;   
h_scaling=1/(cos((k_beta)/2)); 
%w_norm=tan((beta)/2); 
 
%disp= 0.01; % inches 
%r_arm=0.25; 
 
%%%%%%creating the 'on'/ 'off' matrix for what value canchange%%%%%% 
xcellvar=zeros(size(xcell)); 



 267

 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
        counter31=counter31+1; 
        if  xcell(counter31,3) ==0 %if xcell=0   note: '0.01' is not '0' 
            xcellvar(counter31,1)=1;%then put these 1 or 0 into xcellvar 
            xcellvar(counter31,2)=1;%1=free 
            xcellvar(counter31,3)=1;   
        else  
            xcellvar(counter31,1)=1; 
            xcellvar(counter31,2)=1; 
            xcellvar(counter31,3)=0; %0=fixed 
        end 
    end 
end 
    xcellvar; 
     
%%%%%%%%%%%additional contraints %%%%%%%%%%%%% 
%   
% LT%     upper Lt  0   0   0   0    upperRT 
% S%          0     0   0   0   0     0 
% I%          0     0   0   0   0     0          ^ 
% D%        1stPT   0   0   0   0   LowerRT      | Y 
% E  
%       ------------Bottom row-------------- 
%     --------------------X->--------> X 
 
xcellvar(1,:)=[0 0 0];  
    % nXm size of the xcell_bdpt   
    %constraint the first pt with all '0' b/c 1st pt is constraint 
 
%%%Constrainting the various coordinate at the corners of the matrix %%% 
  
xcellvar(ncells(2)*ncells(1)-ncells(2)+1,3)=0;  
    %constraint the upper LT Z coodinate 
xcellvar(ncells(2)*ncells(1)-ncells(2)+1,1)=0;  
    %constraint the upper LT x coodinate 
 xcellvar(ncells(2),3)=0;  %constraint the lower RT Z coodinate 
  xcellvar(ncells(2),2)=0;  %constraint the lower RT 1 coodinate 
  
    if ncells(1)==1 
      xcellvar(:,2)=0; 
  end 
   
  if ncells(2)==1 
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      xcellvar(:,1)=0; 
  end 
   
   
 xcellvar(ncells(1)*ncells(2),3)=0;    
        %constraint the upper RT Z coodinate 
 
[Lx,Ly] =link_length (ncells, xcell);  
    %function that finds the length of link:... 
    %this will show what the intial guess gives 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%% initial guess %%%%%%%%%%%%%%%%% 
 
 
[phi_n,theta_n,theta_v]= cc_convert_scfix(xcell,xcellvar); 
%interpolation function 
 
phi_ni=phi_n 
theta_ni=theta_n 
theta_vi=theta_v 
 
x0=[phi_n; %should be condensed 
    theta_n; 
    theta_v]; 
 
 
x=x0; 
x 
[xcell]=sc_graphfix(x); %function that graphs 
 
%%%%%%%%%%%%%%%bounds for options%%%%%%%%%%%%%%%% 
%lower bound for searching for guess 
lower_b=[]; 
for it=1:3*ncells(1)*ncells(2); 
       lower_bi=-60*pi/180;    %phi_ni's 
       
      lower_b=[lower_b;lower_bi]; 
 
end 
 
for it=1:3*ncells(1)*ncells(2); 
 
      lower_bi=-60*pi/180;  %theta_ni 
      lower_b=[lower_b;lower_bi]; 
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end 
 
for it=1:3*ncells(1)*ncells(2); 
  
      lower_bi=theta_vi(it)-60*pi/180;  %theta_vi 
      lower_b=[lower_b;lower_bi]; 
 
end 
 
%upper bound for searching for guess 
upper_b=[]; 
for it=1:3*ncells(1)*ncells(2); 
 
      upper_bi=60*pi/180;    %phi_ni's 
      upper_b=[upper_b;upper_bi]; 
 
end 
 
for it=1:3*ncells(1)*ncells(2); 
 
    upper_bi=60*pi/180;  %theta_ni 
    upper_b=[upper_b;upper_bi]; 
 
end 
 
for it=1:3*ncells(1)*ncells(2); 
 
      upper_bi=theta_vi(it)+60*pi/180;  %theta_vi 
      upper_b=[upper_b;upper_bi]; 
  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic; 
options=optimset('Display','iter','MaxIter',1e5, 'MaxFunEvals',1e12,'TolFun',0.001, 
'TolX',0.001); 
%x = fmincon('energy_min',x0)  
 
A_matrix=[]; 
 
 
x = fmincon('minimizePenergyfix',x0,[],[],[],[],lower_b, upper_b,[],options);  
   
 
toc; 
sec_elapsed_fvd_theta=toc 
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[xcell]=sc_graphfix(x); %function that graphs 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
cnt=0; 
phi_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      phi_n1=0; 
      phi_n=[phi_n;phi_n1]; 
      cnt=cnt-1; 
            % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      phi_n3=phi_n(it-6); 
      phi_n=[phi_n;phi_n3]; 
      cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
   else 
      phi_n2=x(cnt); 
      phi_n=[phi_n;phi_n2]; 
       
   end 
end 
 
 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      theta_n1=0; 
      theta_n=[theta_n; theta_n1]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      theta_n3=theta_n(it-6); 
      theta_n=[theta_n;theta_n3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_n2=x(cnt); 
      theta_n=[theta_n; theta_n2];     
   end    
end 
 
theta_v=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
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   if it==4 
      theta_v1=pi; 
      theta_v=[theta_v;theta_v1]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      theta_v3=theta_v(it-6)+pi; 
      theta_v=[theta_v;theta_v3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_v2=x(cnt); 
      theta_v=[theta_v;theta_v2]; 
   end 
end 
 
 
 
 
flagplot =0; % 0 for not plotting graphs 
[theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);  
        % Kinematic functions that produces the thetas fo minmizations 
 
theta_tab 
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CC_CONVERT_SCFIX 
 
function [phi_n,theta_n,theta_v]= cc_convert_scfix(xcell,xcellvar); 
%%%from cartesian coordinates to spherical 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
 
 
 
 
 
%%%%%%step 1:=%%%%% %%step 1:= %%%%%%%%%%%%%% 
phi_n=[]; 
if ncells(2)>1; 
    %find the index of all the centerpts in the 1st row that Z is inputed  
    Vrow= find(xcellvar(1:ncells(2),3)==0) 
    for it=2:size(Vrow) 
        phi_n_interp1=-asin((xcell(Vrow(it),3)-xcell(Vrow(it-1),3))... 
            /((Vrow(it)-Vrow(it-1))*dist)); %finding the angles of deformation 
        if it~=2 %not 
            phi_n(length(phi_n)-1)=phi_n_interp1;  %n6 
            phi_n(length(phi_n))=(phi_n_interp2+phi_n_interp1)/2;   %n7 
            phi_n(length(phi_n)-2)=(phi_n_interp2+phi_n_interp1)/2; %n5 
        end 
        if it==2 
            for it2=1:4*((Vrow(it)-Vrow(it-1))+1); 
                if mod(it2,4)~=0 %skipping the n4, n8..... 
                    %phi_n1=phi_n_interp1*ones((vrow1(it)-vrowl(it-1))*4,1); 
                    phi_n=[phi_n; phi_n_interp1]; 
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                end 
                 
            end 
        else 
            for it2=1:4*((Vrow(it)-Vrow(it-1))); 
                if mod(it2,4)~=0 %skipping the n4, n8..... 
                    %phi_n1=phi_n_interp1*ones((vrow1(it)-vrowl(it-1))*4,1); 
                    phi_n=[phi_n; phi_n_interp1]; 
                     
                end 
                 
            end 
             
        end 
       phi_n_interp2=phi_n_interp1; 
    end 
end 
 
 phi_n_interp1; 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%% spherical: n01=[ phi, theta] because r is always 1 
%%% theta= rotating latitude 
%%%% phi= rotatin longitude 
 
%phi_n(4)=0; %Because the first pt=0,0,0, There n4 remains fixed 
   
theta_na=zeros(4*ncells(1)*ncells(2),1); 
 
theta_va=[]; 
for it=1:4:4*ncells(1)*ncells(2); 
    theta_va(it,1)=3*pi/2; 
    theta_va(it+1,1)=0; 
    theta_va(it+2,1)=pi/2; 
    theta_va(it+3,1)=pi; 
end 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2); 
   if mod(it,4)~=0 %to condense by eliminating duplicates 
      theta_ni=theta_na(it,1); 
      theta_n=[theta_n;theta_ni]; 
   end 
end 
 
theta_v=[ ]; 
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for it=1:4*ncells(1)*ncells(2); 
   if mod(it,4)~=0 
      theta_vi=theta_va(it,1); 
      theta_v=[theta_v;theta_vi]; 
   end 
end 
 
 
phi_ni=phi_n; 
theta_ni=theta_n; 
theta_vi=theta_v; 
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SC_GRAPHFIX 
 

function [xcell]=sc_graphfix(x) 
%graphing the spherical values by uncompressing and changing to cartesians 
 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
 
%%% %%%%%%%uncompression.....%%% %%%%%%%%%% %%%%%%%%%%  
%Has the repeats where all the n's that are parellel will be listed as well 
%%%%%%% At the begining all Phi_ni=Phi_n,theta_ni=theta_n, and theta_vi=theta_v 
%%%%%%% THe Phi_ni, etc were uses as initial guesses, while the Phi_n, etc. 
%%%%%%% were kept as the orginal inputs and deformation 
%%%%%%% In this section replace the results X values from 'fmincon' into 
%%%%%%% the Phi_n,etc. but do not replace the constrainted values. 
 
 
cnt=0; 
phi_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      phi_n1=0; 
      phi_n=[phi_n;phi_n1]; 
      cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      phi_n3=phi_n(it-6); 
      phi_n=[phi_n;phi_n3]; 
      cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
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   else 
      phi_n2=x(cnt); 
      phi_n=[phi_n;phi_n2]; 
       
   end 
end 
 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      theta_n1=0; 
      theta_n=[theta_n; theta_n1]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      theta_n3=theta_n(it-6); 
      theta_n=[theta_n;theta_n3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_n2=x(cnt); 
      theta_n=[theta_n; theta_n2];     
   end    
end 
 
theta_v=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      theta_v1=pi; 
      theta_v=[theta_v;theta_v1]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      theta_v3=theta_v(it-6)+pi; 
      theta_v=[theta_v;theta_v3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_v2=x(cnt); 
      theta_v=[theta_v;theta_v2]; 
   end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%phi_n=[x(1); phi_ni(2); x(2); phi_ni(4)]; 
%theta_n=[x(3); theta_ni(2); x(4); theta_ni(4)]; 
%theta_v=[x(5); theta_vi(2); x(6); theta_vi(4)]; 
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flagplot =1; % for plotting graphs in fvd_patching 
 
[theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);  
% Kinematic program that produces the thetas fo minmizations 
 
xcell=vert_centpt; 
[Lx,Ly] =link_length (ncells, xcell);  
%function that finds the length of link: this will show what the intial guess gives 
graph_ctpt (ncells, xcell);% a function that graphs the center pt  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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MINIMIZINGPENERGYFIX 
 

 
function [pot_energy] = minimizePenergyfix(x) 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
 
%%%% spherical: n01=[ phi, theta] because r is always 1 
%%%% theta= rotating latitude 
%%%% phi= rotatin longitude 
%%%%%%%%Creating relations between vectors%%%%%%%%%%%%%% 
%%This code sets any normals that should be parellel is parellet.% %%%%%% 
 
 
%example: n2= n8 because both vectors are on the  linking links 
 
cnt=0; 
phi_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      phi_n1=0; 
      phi_n=[phi_n;phi_n1]; 
      cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      phi_n3=phi_n(it-6); 
      phi_n=[phi_n;phi_n3]; 
      cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
   else 
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      phi_n2=x(cnt); 
      phi_n=[phi_n;phi_n2]; 
       
   end 
end 
 
%theta_n=theta_ni; 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      theta_n1=0; 
      theta_n=[theta_n; theta_n1]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      theta_n3=theta_n(it-6); 
      theta_n=[theta_n;theta_n3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_n2=x(cnt); 
      theta_n=[theta_n; theta_n2];     
   end    
end 
 
theta_v=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
   if it==4 
      theta_v1=pi; 
      theta_v=[theta_v;theta_v1]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   elseif mod(it,4)==0    %MOD    Modulus (signed remainder after division). 
      theta_v3=theta_v(it-6)+pi; 
      theta_v=[theta_v;theta_v3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_v2=x(cnt); 
      theta_v=[theta_v;theta_v2]; 
   end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
flagplot =0; % for not plotting graphs 
[theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);  
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% Kinematic functions that produces the thetas fo minmizations 
 
theta_tab; 
 
 
%%%%%separate calucations %%%%%%%%%%%%%%%%%5 
 
pot_energy=0; 
 
for it2=1:ncells(1)*ncells(2) 
    for it=1:3:3*4; %for every sections there are three angles 
         
        pot_energy1=1/2 *k1*(115.1005*pi/180-theta_tab(it,it2) )^2 ... 
            +1/2 *k2*(82.6897*pi/180-theta_tab(it+1,it2))^2 ... 
            +1/2 *k1*(115.1005*pi/180-theta_tab(it+2,it2))^2;  
         
        pot_energy=pot_energy+pot_energy1; 
    end 
 end 
  
  
 %%%%%creating the 'on'/ 'off' matrix for what value can change%%%% 
 
 counter31=0;% interiopr cell conunter   
 for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell  
        
       if  xcell(counter31,3) ~=0  %if xcell=0   note: '0.0000001' is not '0' 
          pot_energy=pot_energy+... 
                  100000*(vert_centpt(counter31,3)-xcell(counter31,3))^2; 
       end            
    end 
    %counter31=counter31+2; 
 end 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
close 
%convert back to spherical for the 'fvd_constraint' function 
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IMAGE3DFIX 
 
 

function [theta_tab, vert_centpt] = image3dfix(phi_n, theta_n, theta_v,flagplot);  
% Kinematic program that produces the thetas fo minmizations 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
 
%%%% spherical: n01=[ phi, theta] because r is always 1 
%%% theta= rotating latitude 
%%%% phi= rotatin longitude 
%%%THere is a relationship of the phi for v vectors and the n vector locations  
 
%converting the N and V vectors back to cartesian/rectangular for calculations%%%% 
 
n_norm=[];     
%%converting back to rectangular for calculations 
for it=1:4*ncells(1)*ncells(2) 
    n_norm(it,:)=[sin(phi_n(it))*cos(theta_n(it)),... 
                sin(phi_n(it))*sin(theta_n(it)), cos(phi_n(it))]; 
end 
 
v_vectors=[]; 
%converting back to rectangular for calculations 
for it= 1:4*ncells(1)*ncells(2) 
    v_vectors(it,:)=[cos(phi_n(it))*cos(theta_n(it))*cos(theta_v(it))... 
                        - sin(theta_n(it))*sin(theta_v(it)), ... 
              cos(phi_n(it))*sin(theta_n(it))*cos(theta_v(it))... 
                        + cos(theta_n(it))*sin(theta_v(it)), ... 
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              -sin(phi_n(it))*cos(theta_v(it))]; 
end 
 
 %%%%%%%%%%%%%%Calculating Angles %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
a=[]; %a=side vector of top small connecting triangles 
 
for it21=1:4*ncells(1)*ncells(2) 
    a_val1=([v_vectors(it21,:)]-tan(k_beta/2)*(cross(n_norm(it21,:),... 
                v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot1 
    a=[a;a_val1]; 
    a_val2=([v_vectors(it21,:)]+tan(k_beta/2)*(cross(n_norm(it21,:),... 
                v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot2 
    a=[a;a_val2];  
end 
 
a; %%% a8 %a1 %a2 %a3..... 
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7] 
%rearrange the a matrix to move the first a value from  
%each unit cell become the last value for each unit cell 
a2=[]; %a1 %a2 %a3.....%a8 
 
for it23= 1:8:8*ncells(1)*ncells(2)-7 
   a1=[a(it23+1:it23+7,:);a(it23,:)]; 
   a2=[a2;a1]; 
end 
a=a2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m=[]; 
; 
count4=0; 
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6' 
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5' 
L1= 73/256; %%length of the side of intermediate joints 
L5=83/256; %%length of the middle vector of intermediate joints 
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells 
    count4=count4+1; 
    vect1=a(count4,:); 
    count4=count4+1; 
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    vect2=a(count4,:); 
     
    p_vect=0.25*vect2 - 0.25*vect1;  
        %%% p_vect= a vector that connects a(i) and a(i+1). 
    q_vect=0.25*vect1 + p_vect/2;  
        %%%q_vect= vector taht connects the centerpt of unit cell to mid of p_vect. 
    L4= sqrt(L1^2 - (norm(p_vect/2))^2);  
        %% length that connects Q_vector to the bottom of the triangle 
    angle_triangle= acos( (-(L4^2)+(norm(q_vect))^2 +L5^2)/(2*norm(q_vect)*L5)); 
    L6= norm(q_vect)*tan(angle_triangle);  
        %%L6= perpendicular from end of q_vector to L5 
    n_avects= cross(vect1,vect2);   
        %%% normal vector to 2 crossing a vectors 
    n_avectu= n_avects/(norm(n_avects)); %%% the unit vector of the a vector normal 
    m_vect= -L6*n_avectu+q_vect; 
    m_vectu= m_vect/(norm(m_vect)); 
    m=[m;m_vectu]; 
end 
 
ap=a*0.25; %scaler of a vectors 
a_mid= m*(83/256) ;  %scaler of m_mid vectors 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%turning the C.C of V and N into the C.C. of the centerpts for each unit cell%%% 
 
%pat_vert=[0,0,0]; 
%vert_cn=[0,0,0]; 
 
vert_cn=zeros(ncells(1)*ncells(2),3);  
%starting off the vertices of the centerpts for each unit cell 
 
%cnt=0; 
%for it=2:4:4*ncells(1)*ncells(2)-4 
 %   cnt=cnt+1; 
  %  vert_cn1=vert_cn(cnt,:)+v_vectors(it,:)*dist; 
   % vert_cn=[vert_cn; vert_cn1]; 
   %end 
 
% calculates all the vertrices pts 
cnt=0; 
pat_vert=[]; 
cnt2=0; 
for it2= 1:ncells(1)*ncells(2)  % going through each unit cell 
    pat_vert=[pat_vert; vert_cn(it2,:)];  
        %first intializes the first vertices which is the centerpt for each unit cell 
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    for it=1:4 
        cnt=cnt+1; 
        cnt2=cnt2+1; 
         
            % adds in the vertices for the scaler "a vectors" and "middle vectors" 
        pat_vert1=[ap(cnt,:);      
            a_mid(cnt2,:)]; 
        pat_vert=[pat_vert; pat_vert1]; %stacking 
        cnt=cnt+1; 
        pat_vert2=ap(cnt,:); 
        pat_vert=[pat_vert; pat_vert2]; 
    end 
end 
pat_vert; 
%translating groups of 13points all at the same time to the scalar postion 
%for each unit cell 
cnt=0; 
cnt2=13; %starting at the 13th vertices which is on the 2nd cell 
for it=2:ncells(1)*ncells(2) 
    for it2=1:13 %for every cell there is 13 vertice points 
        cnt2=cnt2+1; %conuter to count for each vertices      
        pat_vert(cnt2,:)=pat_vert(cnt2,:)+pat_vert(13*cnt+1,:)+v_vectors(2+cnt*4,:)*dist; 
    end 
    cnt=cnt+1; 
end 
 
pat_vert; 
 
cfaces=[]; 
vert_centpt=[]; 
 
cnt=0; 
for it=1:ncells(1)*ncells(2) 
   for it2=1:11 
      cfaces1=[13*cnt+it2+1,13*cnt+1,13*cnt+it2+2]; 
       
      cfaces=[cfaces; cfaces1]; 
   end 
   vert_centpt1=pat_vert(13*cnt+1,:);  
        %placing all of the center points of each unit cell into one matrix 
   vert_centpt=[vert_centpt;vert_centpt1]; 
   cfaces2=[13*cnt+2 ,13*cnt+1,13*cnt+13]; 
   cfaces=[cfaces;cfaces2]; 
   cnt=cnt+1; 
end 
vert_centpt; 



 285

cfaces; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%cfaces=[2,1,3;  %1 
 %       3,1,4;  %2  
  %      4,1,5;  
   %     5,1,6;  %3 
    %    6,1,7;  %4 
     %   7,1,8;  
      %  8,1,9;  %5 
       % 9,1,10;  
%        10,1,11;%6 
 %       11,1,12;%7 
  %      12,1,13;%8 
   %     2,1,13]; %12 
 if flagplot==1; 
color_vect=[]; %for RGB 
 
for it=1:ncells(1)*ncells(2) 
    for it2=1:4 
        color_vect1=[0,0,1;  %blue face in RGB 
            0,1,0;  %green face in RGB 
            1,0,0];  %red face in RGB 
        color_vect=[color_vect; color_vect1]; 
    end 
end 
 
patch('Vertices',pat_vert,'Faces',cfaces,'FaceVertexCData',color_vect,'FaceColor','flat') 
view(3);  
axis equal; 
pause(.2) 
end                     
         
%%%%%%%%%%%%%%%%%%%%%%%%change back to unit vectors 
 
m_unit=[]; 
for it =1:4*ncells(1)*ncells(2) 
  m1= a_mid(it,:)/(norm(a_mid(it,:))); 
    m_unit=[m_unit;m1]; 
end 
m=m_unit; 
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a_unit=[]; 
for it =1:8*ncells(1)*ncells(2) 
  a1= ap(it,:)/(norm(ap(it,:))); 
    a_unit=[a_unit;a1]; 
     
end 
 
ap=a_unit; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%findin the U vectors that are normal to the intermediate links using the 'a'  and 'a_mid' 
vectors 
%a=example for 1 unit cell:[ a1; a2; a3; a4; a5; a6; a7; a8] 
%a_mid= [a_mid1(between a1 and a2); a_mid2(between a3 and a4); a_mid3(between a5 
and a6); a_mid4(between a7 and a8)] 
 
u_norm=[]; 
count5=0; 
for it7=1:4*ncells(1)*ncells(2) 
    count5=count5+1; 
    u_val1=( cross(ap(count5,:),a_mid(it7,:)) )/... 
            ( norm (cross(ap(count5,:),a_mid(it7,:)) )); 
    u_norm=[u_norm;u_val1]; 
     
    count5=count5+1; 
    u_val2= ( cross(a_mid(it7,:), ap(count5,:)) )/... 
            ( norm (cross(a_mid(it7,:), ap(count5,:)) )); 
    u_norm=[u_norm;u_val2]; 
end 
u_norm; %example for 1 unit cell:[8 rows, 3 colns] [ u1; u2; u3; u4; u5; u6; u7; u8] 
 
%%%%%%%%%%%%%%%%explanation of finding theta%%%%%%%% 
% find theta1 (between main and intermediate), theta2 (between 2 intermediate), theta3 
(between main and intermediate) 
% g_n= [g_n1; g_n2; g_n3; g_n4]; 
 
% from paul's eqns: 
% theta1=- acos(dot(u1,n1)+pi 
% theta3= -acos(dot(u2,n2)+pi    modified from Paul's eqn: '+' => '-'. 
% theta 2= -acos(u1,u2)+ pi 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
theta=[];  
% for every 3 rows are the 3 thetas for 1 out of 4 section... 
        %of the radial symetric unit cell.  
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%copying the begining the 1st norm to the end for: 'For loop it8' because of circular 
motion 
g_n_it8= [n_norm(1:4*ncells(1)*ncells(2),:); n_norm(1,:)];   
count6=0; 
for it8= 1:4*ncells(1)*ncells(2) 
    count6=count6+1; 
    theta1= -acos( dot(u_norm(count6,:), g_n_it8(it8,:)) ) + pi ; 
    theta=[theta;theta1]; 
     
    theta2= -acos( dot(u_norm(count6,:), u_norm(count6+1,:)) ) +pi; 
    theta=[theta;theta2]; 
     
    theta3= -acos( dot(u_norm(count6+1,:), g_n_it8(it8+1,:)) ) + pi ; 
    theta=[theta;theta3]; 
    count6=count6+1; 
   
end 
theta; 
 
theta_tab=[]; 
for it24=1:12:3*4*ncells(1)*ncells(2) 
    theta_t=[theta(it24:it24+11)]; 
    theta_tab=[theta_tab,theta_t]; 
end 
 
theta_tab; 
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FINDINGTHETA 
 

function [theta_tab, vert_centpt] = findingtheta(phi_n, theta_n, theta_v); % Kinematic 
%program that produces the thetas fo minmizations 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
global shift_xcell; 
 
 
%%%% spherical: n01=[ phi, theta] because r is always 1 
%%% theta= rotating latitude 
%%%% phi= rotatin longitude 
%%%THere is a relationship of the phi for v vectors and the n vector locations  
 
%%%%%converting the N and V vectors back to cartesian for calculations%%%%% 
n_norm=[];     
%%converting back to rectangular for calculations 
for it=1:4*ncells(1)*ncells(2) 
    n_norm(it,:)=[sin(phi_n(it))*cos(theta_n(it)),... 
    sin(phi_n(it))*sin(theta_n(it)), cos(phi_n(it))]; 
end 
 
v_vectors=[]; 
%converting back to rectangular for calculations 
for it= 1:4*ncells(1)*ncells(2) 
    v_vectors(it,:)=[cos(phi_n(it))*cos(theta_n(it))*cos(theta_v(it)) ... 
                     - sin(theta_n(it))*sin(theta_v(it)), ... 
                    cos(phi_n(it))*sin(theta_n(it))*cos(theta_v(it))... 
                    + cos(theta_n(it))*sin(theta_v(it)), ... 
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                     -sin(phi_n(it))*cos(theta_v(it))]; 
end 
 
 %%%%%%%%%%%calculating angles%%%%%%%%%%%%% 
 
a=[]; %a=side vector of top small connecting triangles 
 
for it21=1:4*ncells(1)*ncells(2) 
    a_val1=([v_vectors(it21,:)]-tan(k_beta/2)*(cross(n_norm(it21,:),... 
            v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot1 
    a=[a;a_val1]; 
    a_val2=([v_vectors(it21,:)]+tan(k_beta/2)*(cross(n_norm(it21,:),... 
            v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot2 
    a=[a;a_val2];  
end 
 
a; %%% a8 %a1 %a2 %a3..... 
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7] 
%rearrange the a matrix to move the first a value from each... 
%unit cell become the last value for each unit cell 
a2=[]; %a1 %a2 %a3.....%a8 
 
for it23= 1:8:8*ncells(1)*ncells(2)-7 
   a1=[a(it23+1:it23+7,:);a(it23,:)]; 
   a2=[a2;a1]; 
end 
a=a2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m=[]; 
; 
count4=0; 
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6' 
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5' 
L1= 73/256; %%length of the side of intermediate joints 
L5=83/256; %%length of the middle vector of intermediate joints 
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells 
    count4=count4+1; 
    vect1=a(count4,:); 
    count4=count4+1; 
    vect2=a(count4,:); 
     
    p_vect=0.25*vect2 - 0.25*vect1; %%%  vector that connects a(i) and a(i+1). 
    q_vect=0.25*vect1 + p_vect/2;  
            %%% vector taht connects the centerpt of unit cell to mid of p_vect. 
    L4= sqrt(L1^2 - (norm(p_vect/2))^2);  
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            %% length that connects Q_vector to the bottom of the triangle 
    angle_triangle= acos( (-(L4^2)+(norm(q_vect))^2 +L5^2)/(2*norm(q_vect)*L5)); 
    L6= norm(q_vect)*tan(angle_triangle);  
 %%L6= perpendicular from end of q_vector to L5 
    n_avects= cross(vect1,vect2);  % normal vector to 2 crossing a vectors 
    n_avectu= n_avects/(norm(n_avects)); % the unit vector of the a vector normal 
    m_vect= -L6*n_avectu+q_vect; 
    m_vectu= m_vect/(norm(m_vect)); 
    m=[m;m_vectu]; 
end 
 
ap=a*0.25; %scaler of a vectors 
a_mid= m*(83/256) ;  %scaler of m_mid vectors 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%turning the C.C of V and N into the C.C. of the centerpts for each unit cell%% 
 
%pat_vert=[0,0,0]; 
%vert_cn=[0,0,0]; 
 
vert_cn=zeros(ncells(1)*ncells(2),3); 
  %starting off the vertices of the centerpts for each unit cell 
 
% calculates all the vertrices pts 
cnt=0; 
pat_vert=[]; 
cnt2=0; 
for it2= 1:ncells(1)*ncells(2)  % going through each unit cell 
    pat_vert=[pat_vert; vert_cn(it2,:)];  
 %first intializes the first vertices which is the ctpt for each cell 
    for it=1:4 
        cnt=cnt+1; 
        cnt2=cnt2+1; 
        pat_vert1=[ap(cnt,:);      
  % adds in the vertices for the scaler "a vectors" and "middle vectors" 
            a_mid(cnt2,:)]; 
        pat_vert=[pat_vert; pat_vert1]; %stacking 
        cnt=cnt+1; 
        pat_vert2=ap(cnt,:); 
        pat_vert=[pat_vert; pat_vert2]; 
    end 
end 
pat_vert; 
 
 %translating groups of 13points all at the same time to the scalar postion 
 %for each unit cell 
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cnt=0; 
cnt2=13; %starting at the 13th vertices which is on the 2nd cell 
for it=2:ncells(1)*ncells(2) 
    for it2=1:13 %for every cell there is 13 vertice points 
        cnt2=cnt2+1; %conuter to count for each vertices      
        pat_vert(cnt2,:)=pat_vert(cnt2,:)+pat_vert(13*cnt+1,:)+v_vectors(2+cnt*4,:)*dist; 
    end 
    cnt=cnt+1; 
end 
 
pat_vert; 
 
cfaces=[]; 
vert_centpt=[]; 
 
cnt=0; 
for it=1:ncells(1)*ncells(2) 
   for it2=1:11 
      cfaces1=[13*cnt+it2+1,13*cnt+1,13*cnt+it2+2]; 
       
      cfaces=[cfaces; cfaces1]; 
   end 
   vert_centpt1=pat_vert(13*cnt+1,:);  
 %placing all of the ctpts of each unit cell into one matrix 
   vert_centpt=[vert_centpt;vert_centpt1]; 
   cfaces2=[13*cnt+2 ,13*cnt+1,13*cnt+13]; 
   cfaces=[cfaces;cfaces2]; 
   cnt=cnt+1; 
end 
vert_centpt; 
cfaces; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%change back to unit vectors%%%%%%%%%%%%%%%% 
 
m_unit=[]; 
for it =1:4*ncells(1)*ncells(2) 
  m1= a_mid(it,:)/(norm(a_mid(it,:))); 
    m_unit=[m_unit;m1]; 
end 
m=m_unit; 
 
a_unit=[]; 
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for it =1:8*ncells(1)*ncells(2) 
  a1= ap(it,:)/(norm(ap(it,:))); 
    a_unit=[a_unit;a1]; 
     
end 
 
ap=a_unit; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%findin the U vectors that are normal to the intermediate links using the 'a'  and 'a_mid' 
vectors 
%a=example for 1 unit cell:[ a1; a2; a3; a4; a5; a6; a7; a8] 
%a_mid= [a_mid1(between a1 and a2);... 
%%%%%%%%%a_mid2(between a3 and a4);... 
%%%%%%%%%a_mid3(between a5 and a6);... 
%%%%%%%%%a_mid4(between a7 and a8)] 
 
u_norm=[]; 
count5=0; 
for it7=1:4*ncells(1)*ncells(2) 
    count5=count5+1; 
    u_val1=( cross(ap(count5,:),a_mid(it7,:)) )/ ( norm (cross(ap(count5,:),a_mid(it7,:)) )); 
    u_norm=[u_norm;u_val1]; 
     
    count5=count5+1; 
    u_val2= ( cross(a_mid(it7,:), ap(count5,:)) )/ ( norm (cross(a_mid(it7,:), ap(count5,:)) 
)); 
    u_norm=[u_norm;u_val2]; 
end 
%example for 1 unit cell:[8 rows, 3 colns] [ u1; u2; u3; u4; u5; u6; u7; u8] 
 
%%%%%%%explanation of finding theta%%%%%%%%%%%%%%%% 
% find theta1 (between main and intermediate),... 
%theta2 (between 2 intermediate), theta3 (between main and intermediate) 
% g_n= [g_n1; g_n2; g_n3; g_n4]; 
 
% from paul's eqns: 
% theta1=- acos(dot(u1,n1)+pi 
% theta3= -acos(dot(u2,n2)+pi    modified from Paul's eqn: '+' => '-'. 
% theta 2= -acos(u1,u2)+ pi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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theta=[]; % for every 3 rows are the 3 thetas for 1 out of 4 section of the radial symetric 
unit cell.  
%copying the begining the 1st norm to the end for: 'For loop it8' because of circular 
motion 
 
 
for it=0:ncells(1)*ncells(2)-1 
   count6=0;  
   for it8= 1:4 
        count6=count6+1; 
        theta1= -abs(acos( dot(u_norm(count6+it*8,:), n_norm(it8+it*4,:)))) + pi ; 
        theta=[theta;theta1]; 
         
        theta2= -abs(acos( dot(u_norm(count6+it*8,:), u_norm((count6+1)+it*8,:)))) +pi; 
        theta=[theta;theta2]; 
         
        if it8==4 
            theta3= -abs(acos( dot(u_norm((count6+1)+it*8,:), n_norm(1+it*4,:)))) + pi ; 
            theta=[theta;theta3]; 
            count6=count6+1; 
        else 
            theta3= -abs(acos( dot(u_norm((count6+1)+it*8,:), n_norm((it8+1)+it*4,:)))) + pi 
; 
            theta=[theta;theta3]; 
            count6=count6+1; 
        end 
         
    end 
end 
 
theta_tab=[]; 
for it24=1:12:3*4*ncells(1)*ncells(2) 
    theta_t=[theta(it24:it24+11)]; 
    theta_tab=[theta_tab,theta_t]; 
end 
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APPENDIX E: 
 

 MATLAB FOR METHOD 2: FREE FACE 
 
 

Method 2 without having any face being fixed was also implemented through 

using MATLAB Coding. The first page will be a guide to the code and the functions in 

the code. The rest of the pages in this Appendix are the code. 
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Navigation Outline 
Program three implementing Method 2: Free face 

 
 
Nomenclature: 
 k1= stiffness of type-1 joint 
 k2= stiffness of type-2 joint 
 k_alpha= geometric design constant 
 k_beta = geometric design constant 
 k_lambda= geometric design constant 
 h_scaling= geometric design constant 
 xcell: a matrix of the Cartesian coordinates of the center-points of the unit cells 

ncells: the matrix dimension 
xcellvar: controlling the constraints. Dimension size is the same as xcell. 
dist: fixed distance value between any two point  
xcell_initial: initial value of xcell before the modifying any values. 
zinputs: user dislocatement inputs for the z-values in xcell 

 
 
REALFREE 
 

1) specifying inputs 
 
2) k1,k2,dist,ncells,xcell, k_alpha, k_beta, h_scaling 

 
3) Constraining certain variables 

 
4) Xcellvar: “on/off’ matrix for controlling what value from xcell matrix can change 

 
5) xcell: an (m*n)-by-3 matrix, where x is in the first column, y is 2nd, z is 3th 

 
6) 0= off, meaning value should remain fix 

 
7) 1=on, value can change 

 
8) Shifting coordinates to origin 

 
9) If the first unit cell has a z-displacement, z1, then shift all the coordinates in xcell 

z1 amount, until the first cell is back at the origin.  
 

10) This will help simplify the calculation with the calculation starting at the origin.  
 

11) Developing the initial guess 
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12) cc_convert_sc:  
a. converting the Cartesian coordinates to Spherical 
b. interpolating by rotating the S.C 
c. condensing the variables by realization of duplications  
 

13) creating initial S.C. variables from previous function results:  
a. phi_ni, theta_ni, theta_vi 
 

14) creating x0: initial guess vector 
 
15) sc_graph: graphing the 3D matrix with the S.C. variables 

 
16) Creating upper and lower bounds for x0  

 
17) lower bound for phi_ni, theta_ni, theta_vi 

 
18) upper bound for phi_ni, theta_ni, theta_vi 

 
19) Fmincon –blackbox MATLAB function 

a. minimizingPenergy: calculating the potential energy in the system for 
Fmincon 

 
20) Expands the condensed matrices of S.C. coordinates vectors  
 
21) Creates relationship among vectors based upon duplications 

 
22) Uncondensing the variables: phi_n, theta_n, theta_v 

a. Reminder: 
b. numbering conventions for the v vectors and n vectors on each unit cells 

i. numbering in reference in face number 

 
c. For all the sections in each cell in a matrix is m-by-n matrix 
d. One unit cell has 4 sections. 

i. phi_n 
1. if current variable is a multiple of 4 and is greater than 4: 

8,12,14,… 
2. Copy the 6th previous phi_n variables 
3. e.g: phi_n at face number 12= phi_n at face number 6 
4. If not a multiple of 4, then pull values from the iteration 

results: x 
 

ii. Theta_n 

   7  
8 + 6
  5

   3  
4 + 2 
   1 

    11  
12 + 10
    9
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1. if current variable is a multiple of 4 and is greater than 4: 
8,12,14,… 

2. Copy the 6th previous theta _n variables 
3. e.g: theta _n at face number 12 = theta _n at face number 6 
4. If not a multiple of 4, then pull values from the iteration 

results: x 
 

iii. Theta_v 
1. if current variable is a multiple of 4 and is greater than 4: 

8,12,14,… 
2. Copy the 6th previous theta_v variable and add “pi” 
3. e.g: theta _vat face number 12 = theta _v at face number 6 

+pi 
4. If not a multiple of 4, the pull values from the iteration 

results: x 
 

23) Findingtheta: calculating the joint angles for each joint for every cell in matrix 
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CC_CONVERT_SC 
 

1) Find all the fixed zvalues in xcell by using xcellvar 
 
2) Initialize an empitied Phi_n matrix. 

 
3) Phi_n: Find phi_n by calculating the angles of deformation between any two fixed 

zvalues.  
a. Only place the values that are not duplicates into Phi_n matrix 
b. *note: only the phi_n values will be changed for interpolating and initial 

guess 
 

4) Theta_na: Initialize the matrix of theta_n 
 

5) Theta-va: Initialize the matrix of theta_v 
 

6) Theta_n: condense by eliminating duplications 
 

7) Theta_v: condense by eliminating duplications 
 
 

SC_GRAPH 
 

1) Uncondensing the variables: phi_n, theta_n, theta_v as shown in realfree 
 

2) Set flagplot=1 
 

3) image3d: plots the 3d images of the unit cells 
 

4) Move the all the unit cells back to original starting locations before being shifted 
to origin 

 
5) graph_ctpt: graphs the centerpoints 

 
 
MINIMIZEPENERGY 
 

1) Expands the condensed matrices of S.C. coordinates vectors  
 
2) Creates relationship among vectors based upon duplications 

 
3) Uncondensing the variables: phi_n, theta_n, theta_v 
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4) Reminder: 
a. numbering conventions for the v vectors and n vectors on each unit cells 
b. numbering in reference in face number 

 
5) For all the sections in each cell in a matrix is m-by-n matrix 

a. One unit cell has 4 sections. 
i. phi_n 

1. if current variable is a multiple of 4 and is greater than 4: 
8,12,14,… 

2. Copy the 6th previous phi_n variables 
3. e.g: phi_n at face number 12= phi_n at face number 6 
4. If not a multiple of 4, the pull values from the iteration 

results: x 
 

ii. Theta_n 
1. if current variable is a multiple of 4 and is greater than 4: 

8,12,14,… 
2. Copy the 6th previous theta _n variables 
3. e.g: theta _n at face number 12 = theta _n at face number 6 
4. If not a multiple of 4, the pull values from the iteration 

results: x 
 
 
 

iii. Theta_v 
1. if current variable is a multiple of 4 and is greater than 4: 

8,12,14,… 
2. Copy the 6th previous theta_v variable and add “pi” 
3. e.g: theta _vat face number 12 = theta _v at face number 6 

+pi 
4. If not a multiple of 4, the pull values from the iteration 

results: x 
 

6) image3d: function that calculates the joint angles for minimizing  
a. Can also calculate the center-points of each unit cell for plotting  

 
7) Pot_energy: calculates the energy in the system from the angles of the joints 

 
 
 
 
 

   7  
8 + 6
   5 

   3  
4 + 2 
   1 

    11  
12 + 10
    9
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IMAGE3D 
 

1) Converting the N and V vectors from Spherical to cartesian for calculations 
 
2) Calculate joint angles 

a. Calculate the side a unit vectors 
b. Calculate the middle a unit vector 
c. Multiply the a unit vectors by their geometric design length  

 
3) Find the Cartesian coordinates of the corners and centerpoints of every unit cell 
 
4) vert_cn: Initialize a matrix for the centerpoints 

 
5) Calculate Cartesian coordinates by multiplying every v_vectors by their  

 
6) corresponding geometric design length. 

 
7) Organize the scalar a and v vectors by groups of three’s for creating a 3d graphs 

using the embeed MATLAB function “patching”. 
 

8) Change all vectors back to unit vectors. 
 

9) Calculate the u unit vectors 
 

10) Calculate the theta’s: joint angles 
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FINDINGTHETA 
 

1) Converting the N and V vectors from Spherical to cartesian for calculations 
 
2) Inverse kinematics 

 
3) Calculate the side a unit vectors 

 
4) Calculate the middle a unit vector 

 
5) Multiply the a unit vectors by their geometric design length  

 
6) Find the Cartesian coordinates of the corners and centerpoints of every unit cell 

 
7) vert_cn: Initialize a matrix for the centerpoints 

 
8) Calculate Cartesian coordinates by multiplying every v_vectors by their 

corresponding geometric design length. 
 

9) Change all vectors back to unit vectors. 
 

10) Calculate the u unit vectors 
 

11) Calculate the theta’s: joint angles 
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REALFREE 
 
 
close all; 
clear all; 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
global shift_xcell; 
 
k1=500; 
k2=500; 
dist=.4905; 
 
ncells=[1,9]; 
xcell=[0,      0, 0; 
     dist,  0,    0; 
     dist*2,   0, 0;  
    dist*3,  0,    0; 
     dist*4,   0, -.1; 
     dist*5,  0,    0; 
     dist*6,   0, 0;  
    dist*7,  0,    0; 
     dist*8,   0, .2]; 
      
  
k_alpha= (58.054*pi)/180; 
k_beta=(22*pi)/180;   
h_scaling=1/(cos((k_beta)/2)); 
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%%%%creating the 'on'/ 'off' matrix for what value canchange%%%%%%%%%%%% 
xcellvar=zeros(size(xcell)); 
 
counter31=0; 
for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
        counter31=counter31+1; 
        if  xcell(counter31,3) ==0  %if xcell=0   note: '0.0000001' is not '0' 
            xcellvar(counter31,1)=1; %then put these 1 or 0 into xcellvar 
            xcellvar(counter31,2)=1; %1=free 
            xcellvar(counter31,3)=1;   
        else  
            xcellvar(counter31,1)=1; 
            xcellvar(counter31,2)=1; 
            xcellvar(counter31,3)=0; %0=fixed 
        end 
    end 
end 
    xcellvar; 
     
 
%%%%%%%%%%additional contraints %%%%%%%%%%%%%%%%%%%%% 
%   
% LT%     upper Lt  0   0   0   0    upperRT 
% S%          0     0   0   0   0     0 
% I%          0     0   0   0   0     0          ^ 
% D%        1stPT   0   0   0   0   LowerRT      | Y 
% E  
%       ------------Bottom row-------------- 
%     --------------------X->--------> X 
 
xcellvar(1,:)=[0 0 0];  
% nXm size of the xcell_bdpt  %constraint the first pt with all '0' b/c 1st pt is constraint 
 
%%%%%Constrainting the various coordinate at the corners of the matrix %%%% 
 
 
xcellvar(ncells(2)*ncells(1)-ncells(2)+1,3)=0; %constraint the upper LT Z coodinate 
  xcellvar(ncells(2)*ncells(1)-ncells(2)+1,1)=0; %constraint the upper LT x coodinate 
 xcellvar(ncells(2),3)=0;  %constraint the lower RT Z coodinate 
  xcellvar(ncells(2),2)=0;  %constraint the lower RT 1 coodinate 
   
%if ncells(1)==1 
 %     xcellvar(:,2)=0; 
 %end 
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 % if ncells(2)==1 
  %    xcellvar(:,1)=0; 
  %end 
   
   
 xcellvar(ncells(1)*ncells(2),3)=0;   %constraint the upper RT Z coodinate 
 
 
%%%%%%%%%%%%%moving xcell to orgin%%%%%%%%%%%%% 
 
 flag_shift=0; 
shift_xcell=xcell(1,3); 
if xcell(1,3)~=0; 
    flag_shift=1; 
    xcell(:,3)=xcell(:,3)-xcell(1,3); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  
[Lx,Ly] =link_length (ncells, xcell);  
%function that finds the length of link: this will show what the intial guess gives 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%% Flat non-deformed Cartesian C -> Spherical C %%%%%%%%% 
 
%%%%%%%%%%%%%%% initial guess %%%%%%%%%%%%%% 
 
 
[phi_n,theta_n,theta_v]= cc_convert_sc(xcell,xcellvar);%interpolation function 
 
phi_ni=phi_n; 
theta_ni=theta_n; 
theta_vi=theta_v; 
 
x0=[phi_n; %should be condensed 
    theta_n; 
    theta_v]; 
 
 
x=x0; 
x; 
 
[xcell]=sc_graph(x,0); %function that graphs 
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%%%%%%%%%%%%%%%bounds for options%%%%%%%%%%%%%%%%% 
%lower bound for searching for guess 
 
lower_b=[]; 
for it=1:3*ncells(1)*ncells(2)+1; 
         lower_bi=-60*pi/180;    %phi_ni's 
       
      lower_b=[lower_b;lower_bi]; 
end 
 
for it=1:3*ncells(1)*ncells(2)+1; 
      lower_bi=-60*pi/180;  %theta_ni 
      lower_b=[lower_b;lower_bi]; 
end 
 
for it=1:3*ncells(1)*ncells(2)+1; 
      lower_bi=theta_vi(it)-60*pi/180;  %theta_vi 
      lower_b=[lower_b;lower_bi]; 
end 
 
%upper bound for searching for guess 
upper_b=[]; 
for it=1:3*ncells(1)*ncells(2)+1; 
      upper_bi=60*pi/180;    %phi_ni's 
      upper_b=[upper_b;upper_bi]; 
end 
 
for it=1:3*ncells(1)*ncells(2)+1; 
    upper_bi=60*pi/180;  %theta_ni 
    upper_b=[upper_b;upper_bi]; 
end 
 
for it=1:3*ncells(1)*ncells(2)+1; 
      upper_bi=theta_vi(it)+60*pi/180;  %theta_vi 
      upper_b=[upper_b;upper_bi]; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
options=optimset('Display','iter','MaxIter',1e5, 'MaxFunEvals',1e12,'TolFun',0.001, 
'TolX',0.001); 
 
tic; 
x = fmincon('minimizePenergy',x0,[],[],[],[],lower_b, upper_b,[],options);  
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toc; 
sec_elapsed_fmincon=toc 
 
xcell 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[xcell]=sc_graph(x,flag_shift); %function that graphs 
xcell 
 
%%%%Results from Fmincon is  condensed, uncondense the variables%%% 
 
cnt=0; 
phi_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
 
   if mod(it,4)==0  & it>4   %MOD    Modulus (signed remainder after division). 
      phi_n3=phi_n(it-6); 
      phi_n=[phi_n;phi_n3]; 
      cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
   else 
      phi_n2=x(cnt); 
      phi_n=[phi_n;phi_n2]; 
       
   end 
end 
 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
 
   if mod(it,4)==0  & it>4   %MOD    Modulus (signed remainder after division). 
      theta_n3=theta_n(it-6); 
      theta_n=[theta_n;theta_n3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_n2=x(cnt); 
      theta_n=[theta_n; theta_n2];     
   end    
end 
 
theta_v=[]; 
for it=1:4*ncells(1)*ncells(2) 
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   cnt=cnt+1; 
  if mod(it,4)==0 & it>4   %MOD    Modulus (signed remainder after division). 
      theta_v3=theta_v(it-6)+pi; 
      theta_v=[theta_v;theta_v3]; 
      cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
   else 
      theta_v2=x(cnt); 
      theta_v=[theta_v;theta_v2]; 
   end 
end 
 
 
[theta_tab, vert_centpt] = findingtheta(phi_n, theta_n, theta_v); 
 
theta_tab 
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SC_GRAPH 
 
 

function [xcell]=sc_graph(x,flag_shift) 
%graphing the spherical values by uncompressing and changing to cartesians 
 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
global shift_xcell; 
 
 
%%% %%%%%%%uncompression/undensing.....%%%%%%% %%%%%%%  
%%%%%%% HAs the repeats where all the n's that are parellel will be listed as well 
%%%%%%% At the begining all Phi_ni=Phi_n,theta_ni=theta_n, and theta_vi=theta_v 
%%%%%%% THe Phi_ni, etc were uses as initial guesses, while the Phi_n, etc. 
%%%%%%% were kept as the orginal inputs and deformation 
%%%%%%% In this section replace the results X values from 'fmincon' into 
%%%%%%% the Phi_n,etc. but do not replace the constrainted values. 
 
 
cnt=0; 
phi_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
 
   if mod(it,4)==0  & it>4   %MOD    Modulus (signed remainder after division). 
      phi_n3=phi_n(it-6); 
      phi_n=[phi_n;phi_n3]; 
      cnt=cnt-1;% resetting counter to previous cnt because skipped a number 
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   else 
      phi_n2=x(cnt); 
      phi_n=[phi_n;phi_n2]; 
       
   end 
end 
 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
 
   if mod(it,4)==0  & it>4   %MOD   (signed remainder after division). 
      theta_n3=theta_n(it-6); 
      theta_n=[theta_n;theta_n3]; 
      cnt=cnt-1; % resetting counter to previous cnt because skipped a number 
   else 
      theta_n2=x(cnt); 
      theta_n=[theta_n; theta_n2];     
   end    
end 
 
theta_v=[]; 
for it=1:4*ncells(1)*ncells(2) 
   cnt=cnt+1; 
  if mod(it,4)==0 & it>4   %MOD    (signed remainder after division). 
      theta_v3=theta_v(it-6)+pi; 
      theta_v=[theta_v;theta_v3]; 
      cnt=cnt-1; % reseting counter to previous cnt because skipped a number 
   else 
      theta_v2=x(cnt); 
      theta_v=[theta_v;theta_v2]; 
   end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%phi_n=[x(1); phi_ni(2); x(2); phi_ni(4)]; 
%theta_n=[x(3); theta_ni(2); x(4); theta_ni(4)]; 
%theta_v=[x(5); theta_vi(2); x(6); theta_vi(4)]; 
 
flagplot =1; % for plotting graphs in image3d 
 
[theta_tab, vert_centpt] = image3d(phi_n, theta_n, theta_v,flagplot,flag_shift);  
% Kinematic program that produces the thetas fo minmizations 
if flag_shift==1 
    vert_centpt(:,3)=vert_centpt(:,3)+shift_xcell; 
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end 
xcell=vert_centpt; 
[Lx,Ly] =link_length (ncells, xcell);  
%function that finds the length of link: this will show what the I.G gives 
graph_ctpt (ncells, xcell);% a function that graphs the center pt  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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MINIMIZINGPENERGY 
 
 

function [pot_energy] = minimizePenergy(x) 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
 
%%%% spherical: n01=[ phi, theta] because r is always 1 
%%%% theta= rotating latitude 
%%%% phi= rotatin longitude 
 
   
%%%%%%%%Creating relations between vectors%%%%% 
%%%%This code sets any normal that should be parallel is parallel. %%%%%% 
 
 
%example: n2= n8 because both vectors are on the  linking links 
cnt=0; 
phi_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
    cnt=cnt+1; 
     
    if mod(it,4)==0 & it>4   %MOD    Modulus (signed remainder after division). 
        phi_n3=phi_n(it-6); 
        phi_n=[phi_n;phi_n3]; 
        cnt=cnt-1;% reseting counter to previous cnt becaused skipped a number 
    else 
        phi_n2=x(cnt); 
        phi_n=[phi_n;phi_n2]; 
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    end 
end 
 
%theta_n=theta_ni; 
theta_n=[]; 
for it=1:4*ncells(1)*ncells(2) 
    cnt=cnt+1; 
    if mod(it,4)==0 & it>4    %MOD    Modulus (signed remainder after division). 
        theta_n3=theta_n(it-6); 
        theta_n=[theta_n;theta_n3]; 
        cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
    else 
        theta_n2=x(cnt); 
        theta_n=[theta_n; theta_n2];     
    end    
end 
 
theta_v=[]; 
for it=1:4*ncells(1)*ncells(2) 
    cnt=cnt+1; 
     
    if mod(it,4)==0 & it>4    %MOD    Modulus (signed remainder after division). 
        theta_v3=theta_v(it-6)+pi; 
        theta_v=[theta_v;theta_v3]; 
        cnt=cnt-1; % reseting counter to previous cnt becaused skipped a number 
    else 
        theta_v2=x(cnt); 
        theta_v=[theta_v;theta_v2]; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
flagplot =0; % 0 for not plotting graphs; 1=ploting 
[theta_tab, vert_centpt] = image3d(phi_n, theta_n, theta_v,flagplot,0);  
            % Kinematic functions that produces the thetas fo minmizations 
 
theta_tab; 
 
 
%%%%%separate calucations %%%%%%%%%%%%%%%%%%%%% 
 
pot_energy=0; 
 
for it2=1:ncells(1)*ncells(2) 
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    for it=1:3:3*4; %for every sections(4sections total) there are three angles 
         
        pot_energy1=1/2 *k1*(115.1005*pi/180-theta_tab(it,it2) )^2 ... 
            +1/2 *k2*(82.6897*pi/180-theta_tab(it+1,it2))^2 ... 
            +1/2 *k1*(115.1005*pi/180-theta_tab(it+2,it2))^2;  
         
        pot_energy=pot_energy+pot_energy1; 
    end 
 end 
  
  
 %%%%%%%creating adding constraints on fixed value%%%%%%%%%%%%% 
 
 counter31=0;% interiopr cell conunter   
 for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell  
       if  xcellvar(counter31,3)==0  %i0= constrainted 
          pot_energy=pot_energy+... 
                  100000*(vert_centpt(counter31,3)-xcell(counter31,3))^2; 
       end            
    end 
 end 
  
  
 counter31=0;% interiopr cell conunter   
 for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell  
        
       if  ncells(1) ==1 %  
          pot_energy=pot_energy+... 
                  100000*(vert_centpt(counter31,2)-xcell(counter31,2))^2; 
       end            
    end 
 end 
  
  
  counter31=0;% interiopr cell conunter   
 for it30= 1: ncells(1);% % rows 
    for it31= 1:ncells(2)% % column 
       counter31=counter31+1; %% interiopr cell conunter Start at the 1st interior cell  
        
       if  ncells(2) ==1 % 
          pot_energy=pot_energy+... 
                  100000*(vert_centpt(counter31,1)-xcell(counter31,1))^2; 
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       end            
    end 
 end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
pot_energy; 
close 
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IMAGE3D 
 
 

function [theta_tab, vert_centpt] = image3d(phi_n, theta_n, theta_v,flagplot,flag_shift); 
% Kinematic 
%program that produces the thetas fo minmizations 
 
global k1; 
global k2;  
global k_alpha; 
global k_beta;  
global k_lambda; 
global h_scaling; 
global phi; 
global a; 
global v_vectors; 
global n_norm; 
global phi_ni; 
global theta_ni; 
global theta_vi; 
global theta_tab; 
global ncells; 
global xcell; 
global dist; 
global xcellvar; 
global shift_xcell; 
 
 
%%%% spherical: n01=[ phi, theta] because r is always 1 
%%% theta= rotating latitude 
%%%% phi= rotatin longitude 
%%%THere is a relationship of the phi for v vectors and the n vector locations  
 
%%%%%%converting the N and V vectors back to cartesian/rectangular for 
calculations%%%% 
n_norm=[];     
%%converting back to rectangular for calculations 
for it=1:4*ncells(1)*ncells(2) 
    n_norm(it,:)=[sin(phi_n(it))*cos(theta_n(it)), sin(phi_n(it))*sin(theta_n(it)), 
cos(phi_n(it))]; 
end 
 
v_vectors=[]; 
%converting back to rectangular for calculations 
for it= 1:4*ncells(1)*ncells(2) 
    v_vectors(it,:)=[cos(phi_n(it))*cos(theta_n(it))*cos(theta_v(it))... 
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                    - sin(theta_n(it))*sin(theta_v(it)), ... 
              cos(phi_n(it))*sin(theta_n(it))*cos(theta_v(it))... 
                    + cos(theta_n(it))*sin(theta_v(it)), ... 
              -sin(phi_n(it))*cos(theta_v(it))]; 
end 
 
 %%%%%%%%%%%Calculating angles%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
a=[]; %a=side vector of top small connecting triangles 
 
for it21=1:4*ncells(1)*ncells(2) 
    a_val1=([v_vectors(it21,:)]-tan(k_beta/2)*(cross(n_norm(it21,:),... 
                v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot1 
    a=[a;a_val1]; 
    a_val2=([v_vectors(it21,:)]+tan(k_beta/2)*(cross(n_norm(it21,:),... 
                v_vectors(it21,:))))/(h_scaling); %vp1 +w_rot2 
    a=[a;a_val2];  
end 
 
a; %%% a8 %a1 %a2 %a3..... 
%a=example for 1 unit cell:[a8; a1; a2; a3; a4; a5; a6; a7] 
%rearrange the a matrix to move the first a value from each unit cell... 
%%become the last value for each unit cell 
a2=[]; %a1 %a2 %a3.....%a8 
 
for it23= 1:8:8*ncells(1)*ncells(2)-7 
   a1=[a(it23+1:it23+7,:);a(it23,:)]; 
   a2=[a2;a1]; 
end 
a=a2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m=[]; 
; 
count4=0; 
 %for changing the vector 1 and vector2 from the 'a' matrix for 'For Loop it6' 
%finding a2z=az_mid1 by searching through trial and error: in 'For Loop it5' 
L1= 73/256; %%length of the side of intermediate joints 
L5=83/256; %%length of the middle vector of intermediate joints 
for it6=1:4*ncells(1)*ncells(2) % the total numbers of a_mid for all cells 
    count4=count4+1; 
    vect1=a(count4,:); 
    count4=count4+1; 
    vect2=a(count4,:); 
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    p_vect=0.25*vect2 - 0.25*vect1;  
        %%% p_vect= a vector that connects a(i) and a(i+1). 
    q_vect=0.25*vect1 + p_vect/2;  
        %%%q_vect= vector taht connects the centerpt of unit cell to mid of p_vect. 
    L4= sqrt(L1^2 - (norm(p_vect/2))^2);  
        %% length that connects Q_vector to the bottom of the triangle 
    angle_triangle= acos( (-(L4^2)+(norm(q_vect))^2 +L5^2)/(2*norm(q_vect)*L5)); 
    L6= norm(q_vect)*tan(angle_triangle);  
        %%L6= perpendicular from end of q_vector to L5 
    n_avects= cross(vect1,vect2);  % normal vector to 2 crossing a vectors 
    n_avectu= n_avects/(norm(n_avects)); % the unit vector of the a vector normal 
    m_vect= -L6*n_avectu+q_vect; 
    m_vectu= m_vect/(norm(m_vect)); 
    m=[m;m_vectu]; 
end 
 
ap=a*0.25; %scaler of a vectors 
a_mid= m*(83/256) ;  %scaler of m_mid vectors 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%turning the C.C of V and N into the C.C. of the centerpts for eachunit cell%%% 
%pat_vert=[0,0,0]; 
%vert_cn=[0,0,0]; 
 
vert_cn=zeros(ncells(1)*ncells(2),3); %starting off the vertices of the centerpts for each 
unit cell 
 
% calculates all the vertrices pts 
cnt=0; 
pat_vert=[]; 
cnt2=0; 
for it2= 1:ncells(1)*ncells(2)  % going through each unit cell 
    pat_vert=[pat_vert; vert_cn(it2,:)];  
        %first intializes the first vertices which is the centerpt for each unit cell 
    for it=1:4 
        cnt=cnt+1; 
        cnt2=cnt2+1; 
        pat_vert1=[ap(cnt,:);     % adds in the vertices for the scaler "a vectors" and "middle 
vectors" 
            a_mid(cnt2,:)]; 
        pat_vert=[pat_vert; pat_vert1]; %stacking 
        cnt=cnt+1; 
        pat_vert2=ap(cnt,:); 
        pat_vert=[pat_vert; pat_vert2]; 
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    end 
end 
pat_vert; 
%translating groups of 13points all at the same time to the scalar postion 
%for each unit cell 
cnt=0; 
cnt2=13; %starting at the 13th vertices which is on the 2nd cell 
for it=2:ncells(1)*ncells(2) 
    for it2=1:13 %for every cell there is 13 vertice points 
        cnt2=cnt2+1; %conuter to count for each vertices      
        pat_vert(cnt2,:)=pat_vert(cnt2,:)+pat_vert(13*cnt+1,:)+v_vectors(2+cnt*4,:)*dist; 
    end 
    cnt=cnt+1; 
end 
 
pat_vert; 
 
cfaces=[]; 
vert_centpt=[]; 
 
cnt=0; 
for it=1:ncells(1)*ncells(2) 
   for it2=1:11 
      cfaces1=[13*cnt+it2+1,13*cnt+1,13*cnt+it2+2]; 
       
      cfaces=[cfaces; cfaces1]; 
   end 
   vert_centpt1=pat_vert(13*cnt+1,:); %placing all of the center points of each unit cell 
into one matrix 
   vert_centpt=[vert_centpt;vert_centpt1]; 
   cfaces2=[13*cnt+2 ,13*cnt+1,13*cnt+13]; 
   cfaces=[cfaces;cfaces2]; 
   cnt=cnt+1; 
end 
vert_centpt; 
cfaces; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  if flagplot==1; 
      color_vect=[]; %for RGB 
       
      for it=1:ncells(1)*ncells(2) 
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          for it2=1:4 
              color_vect1=[0,0,1;  %blue face in RGB 
                  0,1,0;  %green face in RGB 
                  1,0,0];  %red face in RGB 
              color_vect=[color_vect; color_vect1]; 
          end 
      end 
 
      pat_vert1=pat_vert; 
      if flag_shift==1 
          pat_vert1(:,3)=pat_vert(:,3)+shift_xcell; 
      end 
 
           
          
patch('Vertices',pat_vert1,'Faces',cfaces,'FaceVertexCData',color_vect,'FaceColor','flat') 
          view(3);  
          axis equal; 
          pause(.2) 
      end                             
 
%%%%% change back to unit vectors%%%%%%%%%%%%%%%%% 
m_unit=[]; 
for it =1:4*ncells(1)*ncells(2) 
  m1= a_mid(it,:)/(norm(a_mid(it,:))); 
    m_unit=[m_unit;m1]; 
end 
m=m_unit; 
 
a_unit=[]; 
for it =1:8*ncells(1)*ncells(2) 
  a1= ap(it,:)/(norm(ap(it,:))); 
    a_unit=[a_unit;a1]; 
     
end 
 
ap=a_unit; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%findin the U vectors that are normal to the intermediate links using the 'a'  and 'a_mid' 
vectors 
%a=example for 1 unit cell:[ a1; a2; a3; a4; a5; a6; a7; a8] 
%a_mid= [a_mid1(between a1 and a2); a_mid2(between a3 and a4); a_mid3(between a5 
and a6); a_mid4(between a7 and a8)] 
 
u_norm=[]; 



 320

count5=0; 
for it7=1:4*ncells(1)*ncells(2) 
    count5=count5+1; 
    u_val1=( cross(ap(count5,:),a_mid(it7,:)) )/... 
            ( norm (cross(ap(count5,:),a_mid(it7,:)) )); 
    u_norm=[u_norm;u_val1]; 
     
    count5=count5+1; 
    u_val2= ( cross(a_mid(it7,:), ap(count5,:)) )/... 
              ( norm (cross(a_mid(it7,:), ap(count5,:)) )); 
    u_norm=[u_norm;u_val2]; 
end 
%example for 1 unit cell:[8 rows, 3 colns] [ u1; u2; u3; u4; u5; u6; u7; u8] 
 
%%%%explanation of finding theta%%%%%%%%%%%%%%%%%% 
 
% find theta1 (between main and intermediate), theta2 (between 2 intermediate), theta3 
(between main and intermediate) 
% g_n= [g_n1; g_n2; g_n3; g_n4]; 
 
% from paul's eqns: 
% theta1=- acos(dot(u1,n1)+pi 
% theta3= -acos(dot(u2,n2)+pi    modified from Paul's eqn: '+' => '-'. 
% theta 2= -acos(u1,u2)+ pi 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
theta=[]; % for every 3 rows are the 3 thetas for 1 out of 4 section of the radial symetric 
unit cell.  
%copying the begining the 1st norm to the end for: 'For loop it8' because of circular 
motion 
 
 
for it=0:ncells(1)*ncells(2)-1 
   count6=0;  
   for it8= 1:4 
        count6=count6+1; 
        theta1= -abs(acos( dot(u_norm(count6+it*8,:), n_norm(it8+it*4,:)))) + pi ; 
        theta=[theta;theta1]; 
         
        theta2= -abs(acos( dot(u_norm(count6+it*8,:), u_norm((count6+1)+it*8,:)))) +pi; 
        theta=[theta;theta2]; 
         
        if it8==4 
            theta3= -abs(acos( dot(u_norm((count6+1)+it*8,:), n_norm(1+it*4,:)))) + pi ; 
            theta=[theta;theta3]; 
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            count6=count6+1; 
        else 
            theta3= -abs(acos( dot(u_norm((count6+1)+it*8,:), n_norm((it8+1)+it*4,:)))) + pi 
; 
            theta=[theta;theta3]; 
            count6=count6+1; 
        end 
         
    end 
end 
 
theta_tab=[]; 
for it24=1:12:3*4*ncells(1)*ncells(2) 
    theta_t=[theta(it24:it24+11)]; 
    theta_tab=[theta_tab,theta_t]; 
end 

 
 
 

FINDING THETA 
(WAS ALREADY SHOWN IN APPENDIX D AND WILL NOT BE REPEATED) 
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