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METHODSANDSYSTEMSFOR 
CLASSIFYING THE TYPE AND SEVERITY 

OF DEFECTS IN WELDS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

2 
defect proximity signals corresponding to ultrasonic 
response signals from measurement locations on each side of 
the defect location may then be input into a trained artificial 
neural network. The trained artificial neural network may be 

5 operable to identify the type of the defect located at the defect 
location based on the defect signal and the plurality of defect 
proximity signals and output the type of the defect located at 
the defect location. This specification is related to connnonly assigned U.S. 

patent application Ser. No. 12/534,296 filed Aug. 3, 2009 
entitled "METHODS AND SYSTEMS FOR DETECTING 10 

DEFECTS IN WELDED STRUCTURES UTILIZING PAT-

In another embodiment, a method for determining a sever-
ity of a defect in a weld may include determining a defect 
location and a corresponding defect signal by analyzing ultra
sonic response signals from a plurality of measurement loca
tions along the weld. The defect signal and a plurality of 

TERN MATCHING" and U.S. patent application Ser. No. 
12/488,396 filed Jun. 19, 2009 entitled "METHODS AND 
SYSTEMS FOR DETECTING DEFECTS IN WELDED 
STRUCTURES". 

TECHNICAL FIELD 

The present specification generally relates to methods and 
systems for detecting and classifying defects in welded struc
tures and, more specifically, to methods and systems for iden
tifying the type and severity of defects in welded structures 
utilizing ultrasonic inspection in conjunction with an artificial 
neural network. 

BACKGROUND 

Various welding techniques are connnonly utilized to join 
metallic parts to produce a wide variety of articles of manu
facture such as, for example, automobile components, aircraft 
components, heavy equipment and machinery. The quality of 
the weld may play an important role in the structural integrity 
of the welded structure in which it is employed. However, 
during the welding or joining operation, defects may be intro
duced or formed in the weld. Such defects may include blow
holes, voids, porosity and insufficient weld penetration depth. 
Each of these defects may decrease the load bearing capacity 
of the welded structure. For example, some types of defects 
may act as stress risers or stress concentrators which may 
impact the static, dynamic and fatigue strength of the weld 
and the welded structure. Therefore, it is important to accu
rately detect and locate potential defects in the welds. 

When welds are formed automatically, such as by an auto
mated or robotic welding system, the quality ofa weld may be 
assessed by destructively testing a random sampling of the 
welded structures that are produced. Destructive tests, such as 
cut-checks, may be time-consuming and may generate excess 
product waste. Moreover, automation of such destructive test
ing methodologies may not be possible. 

15 
defect proximity signals corresponding to ultrasonic 
response signals from measurement locations on each side of 
the defect location may then be input into a trained artificial 
neural network. The trained artificial neural network may be 
operable to determine a defect severity classification of the 

20 defect located at the defect location based on the defect signal 
and the plurality of defect proximity signals and output the 
defect severity classification of the defect located at the defect 
location. 

In yet another embodiment, a defect classification system 
25 may include a controller, an acoustic signal generator, an 

acoustic signal detector, and a positioning device. The acous
tic signal generator, the acoustic signal detector and the posi
tioning device may be electrically coupled to the controller. 
The controller may be progrannned to: induce ultrasonic 

30 signals at multiple measurement locations along the weld 
with the acoustic signal generator; collect an ultrasonic 
response signal from each of the measurement locations with 
the acoustic signal detector and store each ultrasonic response 

35 
signal in a memory operatively associated with the controller; 
determine a defect location and a defect signal by analyzing 
the ultrasonic response signal from each of the measurement 
locations; determine a plurality of defect proximity signals, 
wherein the defect proximity signals correspond to ultrasonic 

40 response signals from measurement locations on each side of 
the defect location; input the defect signal and the plurality of 
defect proximity signals into a trained artificial neural net
work operatively associated with the controller, wherein the 
artificial neural network is operable to identify the type of the 

45 defect located at the defect location based on the defect signal 
and the plurality of defect proximity signals; and output the 
type of the defect located at the defect location. 

These and additional features provided by the embodi
ments described herein will be more fully understood in view 

50 of the following detailed description, in conjunction with the 
drawings. 

Efforts have been made to develop various non-destructive 
testing techniques for detecting defects in welds. However, 
most of these techniques may not be easily incorporated into 
manufacturing environments. Moreover, such non-destruc
tive techniques may be unable to identify the specific types of 
defects present in the weld and characterize the severity of the 55 

defects. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The embodiments set forth in the drawings are illustrative 
and exemplary in nature and not intended to limit the subject 
matter defined by the claims. The following detailed descrip
tion of the illustrative embodiments can be understood when 

Accordingly, a need exists for alternative methods and 
systems for detecting defects in welds and determining the 
type and severity of the detected defects. 

SUMMARY 

In one embodiment, a method for determining the type of a 
defect in a weld may include determining a defect location 
and a corresponding defect signal by analyzing ultrasonic 
response signals collected from a plurality of measurement 
locations along the weld. The defect signal and a plurality of 

60 
read in conjunction with the following drawings, where like 
structure is indicated with like reference numerals and in 
which: 

FIG. 1 is a block diagram of a defect classification system 
according to one or more embodiments shown and described 

65 herein; 
FIG. 2 depicts a defect classification system according to 

one or more embodiments shown and described herein; 
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FIG. 3 depicts a block diagram of a portion of the process 
flow for identifying the type and/or severity of a defect 
according to one or more embodiments shown and described 
herein; 

FIG. 4 schematically depicts an artificial neural network 
for identifying the type and/or severity of a defect according 
to one or more embodiments shown and described herein; 

FIG. 5 depicts a test sample comprising a plurality of welds 
and various manufacturing features; 

FIG. 6 depicts a cross section of a weld of the test sample 
ofFIG. 3 illustrating various defects that may be present in the 
weld; 

FIG. 7 is a flow diagram of a method for classifying the 
type and/or severity of a defect in a weld according to one or 
more embodiments shown and described herein; 

FIG. 8 is flow diagram of a method for determining the 
presence of a defect in a welded structure according to one or 
more embodiments shown and described herein; 

4 
signal generator 104 may comprise a pulsed laser source 
operable to excite an ultrasonic signal in the test sample 110 
by directing a series oflaser pulses onto the surface of the test 
sample. In another embodiment, the acoustic signal generator 
104 may comprise an electromagnetic acoustic transducer 
(EMAT) operable to excite an ultrasonic signal in the test 
sample 110 using electromagnetic fields. It should be under
stood that the acoustic signal generator 104 may comprise 
other devices suitable for generating ultrasonic signals in the 

10 test sample 110. 
The acoustic signal detector 106 may generally be a device 

operable to sense or detect the ultrasonic response signals 114 
generated in the test sample 110 without physically contact
ing the test sample. Accordingly, in one embodiment, the 

15 acoustic signal detector 106 may comprise an EMAT sensor 
operable to detect the acoustic response signal generated in 
the test sample 110. However, it should be understood that 
various other non-contact transducers and/or acoustic sensors 

FIG. 9 is a plot of an ultrasonic response signal collected 
from a test sample according to one or more embodiments 20 

shown and described herein; 

may be used to detect the ultrasonic response signal 114. 
In one embodiment (not shown), where the acoustic signal 

generator is an EMAT, the EMAT may be used to both excite 
an ultrasonic signal in the test sample and to detect the ultra
sonic response signal from the test sample. Accordingly, it 
should be understood that a single EMAT may be used as both 

FIG. 10 is a plot of an energy distribution derived from the 
ultrasonic response signal of FIG. 9; 

FIGS. llA-llJ schematically depict defect energy pat
terns which may be used to identify the presence of defects in 
a weld by comparison to an energy distribution, such as the 
energy distribution of FIG. 10, according to one or more 
embodiments shown and described herein; and 

FIG. 12 is a plot of the energy distribution of FIG. 10 with 
potential defect locations identified. 

DETAILED DESCRIPTION 

FIG. 1 generally depicts one embodiment of a defect clas
sification system for determining the type and/or severity 
presence and location of defects in a weld. The system may 
generally comprise an acoustic signal generator and an acous
tic signal detector coupled to a controller. The various com
ponents of the defect classification system and methods of 
using the defect classification system to determine the type 
and/or severity of defects in a welded structure will be 
described in more detail herein. 

Referring now to FIG. 1, a block diagram of a defect 
classification system 100 is depicted. The defect classifica
tion system 100 may generally comprise an acoustic signal 
generator 104, an acoustic signal detector 106 and a sample 
stage 108, each of which are electrically coupled to a control
ler 102. Accordingly, it should be understood that the solid 
lines and arrows shown in FIG. 1 are generally indicative of 
the electrical interconnectivity of the various components of 
the defect classification system 100. It should also be under
stood that the solid lines and arrows are indicative of elec
tronic signals, such as control signals and/or data signals, 
propagated between the various components of the defect 
classification system 100. Further, it should be understood 
that the dashed line and arrow between the acoustic signal 
generator 104 and the test sample 110 is indicative of excita
tion signals 112 transmitted from the acoustic signal genera
tor 104 to a test sample 110 while the dashed line and arrow 
between the test sample 110 and the acoustic signal detector 
106 is indicative of an ultrasonic response signal 114 emitted 
from the test sample 110 due to the received excitation signal 
112 from the acoustic signal generator 104. 

In the embodiments shown and described herein the acous
tic signal generator 104 may be a device operable to excite an 
ultrasonic signal in the test sample 110 without physically 
contacting the test sample. In one embodiment, the acoustic 

25 the acoustic signal generator and the acoustic signal detector. 
In the embodiment of the defect classification system 100 

shown in FIG. 1, the sample stage 108 may comprise a fixture 
(not shown) for mounting a test sample to the sample stage. 
The sample stage 108 may comprise one or more actuators 

30 (not shown), such as motors and/or stepper motors, mechani
cally coupled to the stage and electrically coupled to the 
controller 102. The controller 102, in conjunction with the 
actuators, may be operable to adjust the position of sample 
stage 108 and test sample 110 relative to the acoustic signal 

35 generator 104 and acoustic signal detector 106 such that the 
excitation signals 112 emitted by the signal generator may be 
scanned over the test sample 110 in a controlled manner. 

While the embodiments shown and described herein depict 
the test sample as being fixtured to a moveable sample stage, 

40 it should be understood that, in other embodiments (not 
shown), the acoustic signal generator and the acoustic signal 
detector may be attached to a moveable stage or similar 
positioning device electrically coupled to the controller such 
that the acoustic signal generator and the acoustic signal 

45 detector may be adjustably positioned relative to the test 
sample. Accordingly, it should be understood that the defect 
classification system may include at least one positioning 
device for adjusting the relative orientation between the test 
sample and the acoustic signal generator and acoustic signal 

50 detector. 
The controller 102 may comprise a computer operable to 

execute a programmed instruction set and transmit control 
signals to each of the components of the defect classification 
system 100. The controller 102 may also be operable to store 

55 data received from the acoustic signal detector 106 and ana
lyze the stored data to determine the presence of defects in a 
weld and to identify the type and severity of defects present in 
the weld. For example, in one embodiment, the controller 102 
may be programmed with an artificial neural network (ANN) 

60 which may be trained to determine the type and severity of a 
defect present in the weld after the location of a defect has 
been determined with the controller, as will be described in 
more detail herein. Accordingly, it should be understood that 
the controller 102 may comprise or be coupled to one or more 

65 memory devices (not shown) for storing the programmed 
instruction set, ANN and the ultrasonic response signal data 
received from the acoustic signal detector. The controller 102 
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may also be coupled to one or more audible or visual indica
tors, such as a display (not shown), for providing a user with 
a visual or audible indication of the presence and location of 
defects and the type and/or severity of such defects. 

Referring now to FIGS. 2-4, one embodiment of a defect 5 

classification system 150 is illustrated. In this embodiment 
the acoustic signal generator is a pulsed laser source 105, such 
as an Inlite II-20 Nd: YAG pulsed laser manufactured by Con
tinuum Lasers. The pulsed laser source 105 may have a 20 Hz 
pulse repetition rate and a pulse width of 10 ns. The spot size 10 

of the laser may be about 6 mm and each pulse may have an 
energy from about 55 ml to about450 ml. The acoustic signal 
detector may be an EMAT sensor 107. In the embodiment 
depicted in FIG. 2 the EMAT sensor 107 is manufactured by 

15 
BWXT Services, Inc. and comprises a four channel broad
band receiver having a bandwidth from about 200 kHz to 
about 2.5 MHz. The EMAT sensor 107 may be coupled to the 
controller (not shown) with a data acquisition card, such as, 
for example, a Compuscope 8349 4 channel data acquisition 20 

card manufactured by GaGe Applied Technologies which has 
14 bit resolution and a data sampling rate of 125 MHz. The 
sample stage 108 may include one or more fixturing device(s) 
109, such as clamps, vices, etc. for holding test sample 110. 
The fixturing device and/or test sample may include one or 25 

more datums (not shown) such that test samples may be 
positioned on the sample stage with substantially the same 
orientation relative to the pulsed laser source 105 and the 
EMAT sensor 107. The sample stage 108 may be mounted to 
a stepper motor-driven lead screw 122 coupled to the control- 30 

!er such that the position of the sample stage may be adjusted 
with the controller. 

As described hereinabove, the controller (not shown) may 
be progrannned to determine if defects are present in the weld 
by analyzing ultrasonic response signals collected from the 35 

weld. Further, when a defect is determined to be present in the 
weld, the controller may be programmed to classify the type 
and/or severity of the defect. For example, after a defect is 
determined to be present in the weld, the controller may pass 
the ultrasonic response signal(s) collected from the weld to an 40 

ANN, such as the ANN 304 shown in FIG. 4, which may 
output a coded vector indicating the type of defect present in 
the weld and/or the severity of the defect in the weld. The 
ANN 304 may generally comprises an input layerNx(desig
nated as 306 in FIG. 3) for receiving an input vector A of 45 

dimension n, at least one hidden layer Ny (generally desig
nated as 308 in FIG. 3) and an output layer N z (designated as 
310 in FIG. 3) for outputting an output vector B of dimension 
q. The input layer N xmay generally comprise a plurality of n 
input nodes designated as X 1 , X2 , X3 ... Xn in FIG. 4. The 50 

number of input nodes generally corresponds to the number 
of components of the input vector A. The hidden layer N ymay 
comprise a plurality of p nodes which are designated as Y 1 , 

Y2 , Y3 ... YP in FIG. 4. The output layerN2 may comprise a 
plurality of q nodes which are generally designated as Z1 , Z2 , 55 

Z3 ... Zq in FIG. 4. The number of nodes q in the output layer 
corresponds to the desired number of components in the 
output vector B. 

Still referring to FIGS. 2-4, the input layer Nx may be 
coupled to the hidden layer Ny with a matrix of weights V np 60 

having dimensions nxp such that each node of the input layer 
is coupled to each node of the hidden layer Ny· Similarly, the 
hidden layer N ymay be coupled to the output layer N z with a 
matrix of weights W pq having dimensions pxq such that each 
node of the hidden layer is coupled to each node of the output 65 

layer N2 . The nodes of each layer work in conjunction with 
the matrices of weights to map the input vector A to the output 

6 
vector B thereby providing a solution to the relationship 
between the input vector A and the output vector B. 

While the embodiment of the ANN 304 shown in FIG. 4 
comprises an input layer Nx, an output layer N2 and single 
hidden layer Ny, it should be understood that the ANN 304 
may comprise multiple hidden layers. For example, in one 
embodiment, the ANN may comprise four hidden layers: a 
first hidden layer with 50 nodes; a second hidden layer with 
35 nodes, a third hidden layer with 24 nodes, and a fourth 
hidden layer with 5 nodes. When the ANN comprises mul
tiple hidden layers, as described above, additional weight 
matrices may interconnect the nodes of the various layers as 
well as the nodes of the input layer Nxand the output layer N2 

in a similar manner as shown in FIG. 4. 
Referring to FIGS. 3 and 4, each node of each layer com

prises a function, commonly referred to as an activation func
tion, which limits the output of the node to a pre-determined 
range. The activation function may take on a various forms 
including, without limitation, linear functions, step functions, 
ramp functions, sigmoid functions and Gaussian functions. In 
the embodiments of the ANN 304 described herein, each node 
of each layer (i.e., the input layer, the hidden layer(s) and the 
output layer) has a sigmoid activation function which bounds 
the output of the node to a pre-determined range. The sigmoid 
activation function may have the form: 

1 
f(y) = 1 +e-Y 

However, it should be understood that the sigmoid activation 
function may take on different forms. 

Referring again to FIG. 2, in the embodiment of the defect 
classification system 150 shown in FIG. 2, the excitation 
signal used to induce ultrasonic signals in the test sample is 
the output beam 113 of the pulsed laser source 105 which is 
optically coupled to the test sample 110 with one or more 
mirrors. As depicted in FIG. 2, mirrors 116, 117and118 form 
an optical path between the output of the pulsed laser source 
105 and the surface of the test sample 110 which directs the 
output beam 113 onto the surface of the test sample at the 
desired location. A lens 120 may be disposed in the optical 
path of the output beam 113 to focus the output beam. Addi
tional optical elements (not shown) may also be inserted in 
the optical path such as, for example, collimators or other 
elements which may be used to shape the output beam 113 of 
the pulsed laser source 105. Further, while the embodiments 
of the defect classification system 150 shown in FIG. 2 depict 
the output beam 113 coupled to the test sample 110 with 
mirrors, it should be understood that the output beam may be 
directly coupled to the test sample without being first diverted 
or reflected by a mirror. In alternative embodiments (not 
shown), the output beam 113 of the pulsed laser source may 
be coupled to the test sample with one or more optical 
waveguides, such as an optical fiber or similar optical 
waveguides capable of guiding a laser beam. 

As described herein, the pulsed laser source may be used to 
induce an ultrasonic signal in the test sample. Depending on 
the energy density or power of the output beam pulse incident 
on the surface of the test sample, the pulsed-laser source may 
be utilized to create an ultrasonic signal in either a thermo
plastic mode of operation or an ablative mode of operation. 
For example, the thermoplastic mode of ultrasonic signal 
generation occurs when the power density of the output beam 
of the pulsed laser source is relatively low. The output beam 
rapidly heats a localized area on the surface of the test sample 
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to a temperature less than the melting point of the material due 
to partial absorption of the laser radiation. The rapid increase 
in temperature is accompanied by a corresponding expansion 

8 
The legs of a lap joint weld 140 are defined as the distance 

between the root 141 of the weld 140 and the toe of the weld 
(e.g., the point where the weld intersects the base material). 
The legs of the weld 140 in FIG. 6 are shown as the distances 
Sl and S2. In the embodiments described herein, a short leg 
defect is present in the weld if either of the distances Sl or S2 
is less than 80% of the material thickness of either the upper 
portion 142 or lower portion 143 of the test sample 110. 
However, it should be understood that the specified percent-

of the heated material due to thermoplastic effects. The rapid 
expansion causes axis-symmetric tensile stresses to develop 5 

in the surface of the test sample. When the laser is switched 
off (e.g., between pulses), the heated region contracts. The 
expansion and contraction of the top surface of the test sample 
induces ultrasonic signals that propagate through the test 
sample. 

Alternatively, the ablative mode of ultrasonic signal gen
eration occurs when the power density of the output beam is 
high enough to heat the surface of the test sample to above the 
melting temperature of the material. The rapid heating creates 
axis-symmetric tensile stresses in the surface of the test 15 

sample, as described above. However, as the temperature on 
the surface of the sample exceeds the melting temperature, a 
small amount of material is vaporized and ejected from the 
surface of the test sample. Accordingly, in addition to the 
formation of tensile stresses, a normal reaction force is ere- 20 

ated against the surface of the sample as the material is 
ejected. The combination of the normal reaction force and the 
expansion and contraction of the top surface induces ultra
sonic signals that propagate through the test sample. In gen
eral, ultrasonic signals generated through the ablative mode 25 

are generally stronger that those generated in the thermoplas-

10 age may be greater than 80% depending on the application in 
which the test sample 110 is employed. 

tic mode. In either mode of operation the ultrasonic signals 
induced in the test sample have frequency content from about 
200 kHz to about MHz. 

Referring now to FIG. 5, the test sample 110 may generally 
comprise a metallic structure which comprises at least one 
weld 140. In the embodiment of the test sample 110 shown in 
FIG. 4, the test sample 110 is a structural support member for 
an automobile which comprises an upper portion 142 and a 
lower portion 143, both of which are formed from thin plates 
of stamped sheet metal. The upper portion 142 may be joined 
to the lower portion 143 at a lap joint (e.g., the joint shown in 
FIG. 6) with welds 140. The test sample 110 may also com
prise a plurality of manufacturing features including, for 
example, press marks 144 resulting from a stamping opera
tion and various attachment holes 146 for connecting com
ponents to the structural support member. 

The throat thickness TH is defined as the shortest distance 
between the root 141 of the weld 140 and the surface of the 
weld, as shown in FIG. 6. A short throat defect occurs when 
the throat thickness of the weld 140 is less than a specified 
percentage of the thickness of the base material. In the 
embodiments shown and described herein, a short throat 
occurs when the throat thickness TH is less than about 70% of 
the thickness of either the upper portion 142 or lower portion 
143 of the test sample. However, it should be understood that 
the specified percentage may be greater than 70% depending 
on the application in which the test sample 110 is employed. 

Referring now to FIGS. 2, 5 and 6, ultrasonic signals 
induced in the thin plates which comprise the upper portion 
142 and the lower portion 143 of the test sample 110 by 
operating the pulsed laser source in either the thermoplastic 
mode or ablative mode produce a series of ultrasonic Lamb 
waves which propagate through the test sample. The Lamb 
waves may be multi-modal with each mode defined by a set of 

30 frequency and wavelength pairs. Due to the different frequen
cies and wavelengths, each mode of the Lamb wave may react 
differently to different types of defects encountered in the test 
sample. For example, for a given type of defect, a first mode 
defined by a first set of frequency and wavelength pairs may 

35 be reflected by the defect while a second mode having a 
second set of frequency and wavelength pairs may be trans
mitted through the defect (i.e., the defect does not affect the 
second mode). Accordingly, different modes of the induced 
Lamb waves may be sensitive to different types of defects 

40 and, by collecting and analyzing an ultrasonic response signal 
from the test sample, the presence of different types of defects 
in the test sample may be determined, as will be described in 
more detail herein. Referring now to FIG. 6 which depicts a cross section of a 

lap joint and weld 140 between the upper portions 142 and 
lower portion 143 of the test sample 110 of FIG. 5, the weld 45 

140 may contain one or more different types of defects 
including, for example, blowholes, insufficient leg length 
(i.e., short legs), insufficient penetration depth and/or insuf
ficient throat thickness (i.e., short throat). A blowhole defect 
occurs in the weld when air or gas trapped in the weld escapes 50 

from the weld as the weld is formed or as the weld cools. The 

Referring now to FIG. 2, in order to determine the presence 
of defects in a weld on a test sample, the test sample 110 may 
be positioned on the sample stage 108 and attached to the 
sample stage 108 with one or more fixturing devices 109. The 
pulsed laser source 105 and EMAT sensor 107 may be posi
tioned such that the EMAT sensor 107 collects an acoustic 
response signal either transmitted through the weld or 
reflected by the weld. 

escaping air or gas leaves a void in the weld and/or forms 
pores in the weld, each of which may decrease the strength of 
the weld. 

The penetration depth of a weld is defined as the distance 
PD which the fusion portion of the weld penetrates into the 
base material, such as, for example, the upper portion 142 of 
the test sample 110. If the penetration depth is less than a 
specified percentage of the thickness of the base material an 
insufficient penetration depth or lack-of-penetration defect 
occurs. In the embodiments described herein, a lack-of-pen
etration defect occurs when the distance PD is less than about 
30% of the thickness of the upper portion 142 of the test 
sample. However, it should be understood that the specified 
percentage may be greaterthan 30% or less than 30% depend
ing on the application in which the test sample 110 is 
employed. 

For example, in one embodiment, when an acoustic 
response signal transmitted through the weld is desired, the 
test sample 110 may be positioned such that the output beam 

55 of the pulsed-laser source is incident on one side of the weld 
140 and the EMAT sensor 107 is positioned on the other side 
of the weld 140 and adjacent to the test sample 110, as shown 
in FIG. 2. Accordingly, it should be understood that the weld 
140 is positioned between the point where the output beam 

60 113 of the pulsed laser source 105 contacts the test sample 
110 and the EMAT sensor 107. In this embodiment, the ultra
sonic signals induced in the test sample 110 and received by 
the EMAT sensor 107 are transmitted through the weld 140. 
As defects alter the ultrasonic signal propagating through the 

65 weld the ultrasonic signal is transformed to an ultrasonic 
response signal which is received by the EMAT sensor 107. 
The ultrasonic response signal carries with it information 
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concerning the presence of defects in the weld 140. Further, 
the ultrasonic response signal(s) may be correlated to a posi
tion along the length of weld 140 and test sample 110 based 
on the relative positioning between the test sample 110 and 
the point where the output beam of the pulsed laser source 
contacts the test sample 110 and/or the position of the EMAT 
sensor 107. 

10 
indicative of a combination of defects. For example, a lack of 
penetration and short leg defect occurring at the same location 
may be represented by a vector coded as <1100>. 

DEFECT 
TYPE 

TABLE 1 

Defect Type and Representative Target Defect Vector Br 

Short Leg Blow Hole Short Throat 

10 TARGET 

In another embodiment (not shown), when an acoustic 
response signal reflected by the weld is desired, the EMAT 
sensor may be positioned on one side of the weld and the 
output beam of the pulsed-laser source may be directed onto 
the test sample on the same side of the weld as the EMAT 
sensor. The ultrasonic response signal induced in the test 
sample by the pulsed-laser source propagates through the test 
sample to the weld which reflects at least a portion of the 15 

signal (e.g., the ultrasonic response signal), which is detected 

Lack of 
Penetration 

<1000> <0100> <0010> <0001> 

by the EMAT sensor. Because portions of the weld which 
contain defects reflect or transmit the ultrasonic signal differ
ently than portions of the weld without defects, the reflected 
ultrasonic response signal received by the EMAT sensor car- 20 

ries with it information concerning the presence of defects in 
the weld. 

Prior to utilizing the defect classification system 150 to 
determine the presence of defects in a weld on a test sample 
and classifying the type and/ or severity of the defect, the ANN 25 

of the defect classification system 150 must be trained with a 
sample data set. The sample data set may include a collection 
of ultrasonic response signals which have been experimen
tally determined to correspond to a specific type of defect in 
a weld and/or the severity of the defect. The sample data set 30 

may be compiled by first determining the presence and loca
tion of defects in welds on one or more test samples through 
ultrasonic inspection. For example, the presence and location 
of a defect may be determined utilizing steps 202, 204 and 
206 of the methodology shown in FIG. 7, which is described 35 

in more detail herein. 
Once the location of a defect is determined, the weld 

sample may be destructively analyzed to qualitatively deter
mine the type of defect present in the weld at the defect 
location and/or to assign a defect severity classification to the 40 

defect. For example, the weld sample may be subjected to a 
"cut check" test in which the weld sample is sectioned at the 
defect location. The sections may then be polished and ana
lyzed to determine the type of defect present (e.g., blow hole, 
short legs, short throat, lack of penetration, etc.) and to assign 45 

the defect severity classification based on a quantitative 
assessment of the defect, as described above. For example, 
the defect may be assigned a letter classification of A, B, C or 
<C where A is indicative of no defect, B is indicative of a 
defect which is within permissible tolerances, C is indicative 50 

of a defect conditionally within permissible tolerances, and 
<C is a defect which is outside of permissible tolerances. 

After the type of defect has been identified and/or a severity 
classification has been assigned to the defect, the type and/or 
severity of the defect may be coded into a vector representa- 55 

tive of the type and/or severity of the defect. For example, in 
one embodiment, a four component target vector Br having 
components <bn bn bT3 br4 > may be assigned to the defect 
where component bn is indicative of a lack of penetration 
defect, component br2 is indicative of a short leg defect, 60 

component bT3 is a blow hole defect and component br4 is 
indicative of a short throat defect. Each component of the 
vector may be either a zero or a one where a one indicates the 
presence of the specific type of defect and zero indicates the 
absence of the defect. Table 1, shown below, contains exem- 65 

plary target vectors indicative of specific types of defects. It 
should be understood that the target defect vector may also be 

DEFECT 
VECTOR 

Alternatively, when only the severity classification of a 
defect is assigned, the defect severity classification may be 
coded to a vector with each defect severity classification 
assigned a numeric value such that severity classification "A" 
has a numeric value of one, severity classification "B" has a 
numeric value of two, severity classification "C" has a 
numeric value of three and severity classification "<C" has a 
numeric value of four, as shown in Table 2 below. 

TABLE2 

Defect Severity Classification and Target Severity Vector 

DEFECT 
SEVERITY 
TARGET 
SEVERITY 
VECTOR 

A 

<1> 

B 

<2> 

c <C 

<3> <4> 

In yet another embodiment, both the defect type and sever
ity may be coded into a single target defect vector. For 
example, the conventions described above in Tables 1 and 2 
may be combined to produce a five component target defect 
vector where the first four components are indicative of the 
defect type and the last component is indicative of the defect 
severity classification. Accordingly, a target defect vector Br 
having a value <l 0004> may be indicative of a lack of pen
etration defect with a severity classification of <C. 

Once the type and/or severity of the defect have been 
identified and coded in a target defect vector, the collected 
ultrasonic response signal corresponding to the defect loca
tion may be input into the ANN along with the ultrasonic 
response signals for measurement locations neighboring the 
defect location, as described below. In one embodiment, prior 
to inputting the signals into the ANN, the ultrasonic response 
signals may be pre-processed to reduce the overall number of 
data points in the ultrasonic response signals, as described 
herein. Utilizing the initialized weight matrices Vnp and Wpq 

and the activation function for each neuron, the ANN outputs 
a vector B, as described above. However, for a given sample 
input entered into the ANN, the output vector B from the 
output layer N2 may not be equal to the target vector Br 
indicating that the values of the weight matrices vnp and wpq 

need to be adjusted or trained. 
A variety of neural network training algorithms may be 

used to adjust the weight matrices vnp and wpq such that the 
ANN produces an output vector B corresponding to the target 
vector B of the sample data entered into the ANN. However, 
in the embodiments described herein, theANN is trained with 
a back propagation algorithm. In the embodiment as depicted 
in FIG. 4, the back propagation algorithm, which may be 
performed by the controller, includes determining an output 
error or cost function E across the output layer N2 oftheANN. 
The error function may be written as: 
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(1) 

where brm is the target value for component m of the target 
vector Br and bm is the value of the corresponding output 
neuron Zm. The variable mis an integer corresponding to the 
dimension q of the output vector B which is five in the exem
plary neural networks shown and described herein. The value 10 

bm of each neuron Zm in output layer N z may be calculated 
according to the equation: 

where a is a positive constant-valued learning rate which 
regulates the amount of adjustment made with each move or 
step along the gradient of the cost function E. Similarly, for 
the weight matrix Vnp between the input layer Nx and the 
hidden layer Ny, new values for each weight Vii in the matrix 
may be mathematically determined from the cost function by 
taking the partial derivative of the cost function E with respect 
to a weight Vii such that the new value for Vii may be written 
as: 

8E 
y'!ew = y'?ld -/3-

li Li 8Vii' 

(7) 

p 

bm = ~YiWim• 
i=l 

(2) 15 
where ~ is a positive constant-valued learning rate which 
regulates the amount of adjustment made with each move 
along the gradient of the cost function E. 

where Y, is the value of a neuron in the preceding hidden layer 
and W,m is the corresponding weight in weight matrix Wpq· 

The variable m may be an integer from 1 to q, as described 
above, while i is an integer from 1 to the total number of 
neurons in hidden layer Ny, which in this example is p. 

The value of Y, may be expressed as a function of the 
valued of the input layer neurons and the weight matrix Vnp 

such that: 

Equations 6 and 7 may be used to adjust each weight value 
20 in the weight matrices vnp and wpq such thatthe output vector 

B of the ANN more closely approximates the values of the 
experimentally determined target vector Br. The same algo
rithm may be used in conjunction with each test sample in the 
sample data set. The training process is iterated until the total 

25 sum of errors between the output vector B of the ANN and the 
target vector Br is within the a prescribed tolerance. 

Referring now to FIGS. 2 and 7, one embodiment of a 

Y; = 1(f a, v,,). 
(3) 30 

method 200 for detecting the presence, type and/or severity of 
defects in a weld with the defect classification system 150 is 
depicted. In a first step 202, the controller triggers the pulsed 
laser source 105 to induce an ultrasonic signal in the test 

l=l 

where i is an integer as described above and 1 is an integer 
from 1 to the total number of input neurons n and f is the 
activation function. Alternatively, the value for Y, may gen
erally be expressed as function the activation function for 
each neuron in the hidden layer Ny· 

New or adjusted values for each weight in the weight 
matrices V np and W pq may be determined by using the cost 
function E for a given set of sample inputs. Specifically, the 
values for each component of matrices vnp and wpq may be 
adjusted by moving along the cost function in a direction 
opposite the gradient to the minimum of the cost function 
(i.e., where the value of the cost function E yields the smallest 
amount of total error in the input/output mapping). For the 
weight matrix Wpq between the hidden layer N yand the out
put layer N2 this may be accomplished by taking the partial 
derivative of the cost function E with respect to a weight W,m 
which may be expressed mathematically as: 

(4) 

(5) 

The value of a particular weight W,m in the weight matrix 
Wpq may be adjusted by subtracting the partial derivative of 
the cost function with respect to W,m such that 

(6) 

sample 110 by directing a series of beam pulses onto the 
surface of the test sample, as described above. The controller 
may be programmed to trigger the pulsed laser source mul-

35 tiple times at each measurement location and the collected 
ultrasonic response signals generated by each firing of the 
pulsed laser at each measurement location may be averaged to 
increase the signal to noise ratio of the collected ultrasonic 
response signal at that location. In the embodiments 

40 described herein the pulsed laser source is operated in an 
ablative mode to induce ultrasonic response signals in the test 
sample which have frequency content from about 200 kHz to 
about 15 MHz. However, it should be understood that the 
pulsed laser source may also be operated in a thermoplastic 

45 mode to generate ultrasonic signals in the test sample. The 
ultrasonic signal propagates through the test sample 110 and 
the weld 140 and portions of the ultrasonic signal may be 
reflected by defects in the weld 140 orother features in the test 
sample while other portions of the ultrasonic response signal 

50 may be transmitted through the weld 140. In this example, the 
ultrasonic response signal is the signal transmitted or 
reflected after portions of the ultrasonic signal are reflected 
and/or defracted by defects and/or other features in the test 

55 

sample. 
In a second step 204, the ultrasonic response signal induced 

in the test sample 110 is collected with the EMAT sensor 107. 
In the embodiments described herein, the EMAT sensor 107 
is positioned to collect an ultrasonic response signal which is 
transmitted through the weld 140, as illustrated in FIG. 2 and 

60 described above. The EMAT sensor 107 converts the col
lected ultrasonic response signal to an electrical signal which 
has a voltage proportional to the amplitude of the ultrasonic 
response signal. Accordingly, in the embodiments described 
herein where the collected ultrasonic response signal has 

65 been transmitted through the weld 140, electrical signals 
produced by the EMAT sensor 107 with relatively large volt
ages correspond to ultrasonic response signals with relatively 
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greater amplitudes while electrical signals with relatively low 
voltages correspond to ultrasonic response signals with rela
tively lower amplitudes. The relative magnitude of the ultra
sonic response signal may be generally indicative of the 
absence or presence of defects and/or manufacturing features 
in the test sample with lower amplitudes indicative of the 
presence of a defect and/or manufacturing feature and higher 
amplitudes indicative of the absence of a defect and/or manu
facturing feature. 

The electrical signal produced by the EMAT sensor 107 is 10 

transmitted from the EMAT sensor 107 to the controller (not 
shown) where the electrical signal is stored in a memory 
associated with the controller. The amplitude (i.e., the volt
age) of the electrical signal is stored in the memory as a 
function of time and indexed or correlated to a specific posi- 15 

tion along the weld 140 of the test sample 110. Accordingly, 
it should be understood that the amplitude of the ultrasonic 
signal may be a function of both time (t) and position (x) 
along the weld 140 and, as such, may be written as f(x,t). 

14 
collected from the test sample may contain information 
regarding the presence of such features. 

In one embodiment, at step 206, the controller may be 
programmed to filter the ultrasonic response signals collected 
from the test sample to isolate frequencies most susceptible to 
reflection and/or diffraction by features such as manufactur
ing features and/or defects. In the embodiments described 
herein, the collected ultrasonic response signals for each mea
surement location (x) along the weld may be filtered into 
frequency ranges that are sensitive to features (such as 
defects) in the test sample by first decomposing the collected 
ultrasonic response signal by discrete wavelet transform 
(DWT). Specifically, for a specified location x along the weld, 
the collected ultrasonic response signal f(t) may be decom
posed into a set of wavelet coefficients WS(h,k) according to 
the relationship: 

WS(h,k)~f f(t)'Ph,k * (t)dt (8), 

where qr* h k(t) is the complex conjugate of wavelet qrh k(t). 
Wavelet qr~ k(t) may be a function of a mother wavelet func
tion qr which is scaled by scaling parameter s0 hand shifted by 
shifting parameter kt0 S0 h such that: 

1 (t-kros'Q) 
'l'h.k(t) = {i 'I' ----:;r- , 

(9) 

After the collected ultrasonic response signal is stored in 20 

memory for one measurement location along the weld 140, 
the position of the test sample 110 relative to the pulsed laser 
source 105 and EMAT sensor 107 may be adjusted such that 
ultrasonic sonic response signals may be induced and col
lected from the test sample 110 at a different measurement 25 

location along the weld 140. In the embodiment shown in 
FIG. 2, the position of the test sample 110 relative to the 
pulsed laser source 105 and EMAT sensor 107 may be 
adjusted by the controller which sends a control signal to the 
stepper motor (not shown) coupled to the lead screw 122. 
Rotation of the stepper motor causes the lead screw 122 to 
rotate, which, in tum, imparts translational motion to the 
sample stage 108 thereby adjusting the position of the test 
sample 110 relative to the pulsed laser source 105 and EMAT 
sensor 107. 

where tis time and hand k are integers. s0 is generally selected 
30 to be 2 and the shifting parameten0 is generally selected to be 

1. 
The selection of the mother wavelet qr may depend on the 

shape or form of the collected ultrasonic response signal as a 
given ultrasonic response signal may be better approximated 

After the position of the test sample 110 has been adjusted, 
steps 202 and 204 may be repeated at a new location along the 
weld 140 and the amplitude of the ultrasonic response signal 

35 by a wavelet having a shape or form similar to that of the 
signal. The mother wavelet qr used for decomposition of the 
ultrasonic response signal may be selected from, for example, 
the Daubechies wavelet family, the Coiflet wavelet family, the 

is stored in the memory operatively associated with the con
troller as a function of both time (t) and location (x) along the 40 

weld. This process of inducing an ultrasonic signal, collecting 
an ultrasonic response signal and adjusting the position of the 
test sample may be repeated multiple times to develop a set of 
ultrasonic response signals for a segment of the weld and/or 
the entire length of the weld 140. 45 

Haar wavelet family, the Symmlet wavelet family, the Dis
crete Meyer (DMEY) wavelet or similar wavelet families. For 
example, in one embodiment wavelet 6 of the Daubechies 
wavelet family may be used as the mother wavelet qr to 
decompose the ultrasonic response signal. However, it should 
be understood that other mother wavelets may be used. 

As shown above, decomposition of the ultrasonic response 
signal for each measurement location x by DWT produces a 
set of wavelet coefficients WS(h,k) for that measurement 
location. After decomposition, the controller may be pro
grammed to band-pass filter each resulting set of wavelet 

Referring now to FIG. 9, a set of ultrasonic response sig
nals collected from one test sample are graphically illustrated. 
The y-axis is indicative of the position along the weld, the 
x-axis is indicative of the time interval over which the ultra
sonic response signal was collected, and the gray scale is 
indicative of the relative amplitude of the collected ultrasonic 
response signal in units of voltage. The position of the test 
sample was adjusted in millimeter increments although larger 
or smaller increments may be used depending on the desired 
defect resolution. 

50 coefficients to isolate a frequency range most sensitive to 
defects which, in the embodiments described herein, is from 
about 0.977 MHz to about 1.464 MHz. Filtering the set of 
wavelet coefficients is performed by zeroing elements of the 
wavelet coefficient WS(h,k) that correspond to frequency 

55 content outside the desired frequency range. In the embodi
ments described herein, decomposition by DWT and filtering 
may be performed by the controller using Mallet's filter 
banks algorithm which produces a band-pass filtered set of 
wavelet coefficients for each measurement location along the 

Still referring to FIG. 9, the higher frequency/ shorter wave
length content of the ultrasonic signals induced in the test 
sample may be more susceptible to diffraction and/or reflec
tion by features in the test sample than other, lower frequen
cies. These features may include regular features (i.e., fea
tures regularly occurring in each of a plurality test samples) 
such as manufacturing features (e.g., connector holes, stamp 
marks, etc.) and irregular features such as defects. For 
example, one frequency range particularly susceptible to 
reflection and/or diffraction by these features may be from 65 

about 0.977 MHz to about 1.464 MHz. Accordingly, the 
corresponding frequencies in the ultrasonic response signal 

60 weld. 
After each collected ultrasonic response signal is decom

posed by DWT and the resulting wavelet coefficients are 
filtered to isolate the desired frequency content, the controller 
may be programmed to reconstruct a filtered response signal 
f(x,t) for each measurement location from the corresponding 
filtered sets of wavelet coefficients by inverse discrete wave
let transform (IDWT) to form a filtered response signal for 



US 8,146,429 B2 
15 

each measurement location x along the weld. For example, 
when there are 120 separate measurement locations along the 
weld, 120 filtered response signals are created by IDWT. 

Referring again to FIG. 7, in step 208, the controller may be 
programmed to identify the presence and location of defects 
in the weld and store the location and ultrasonic response 
signal corresponding to any identified defects in memory for 
use in classifying the type and/or severity of the defects. The 
ultrasonic response signal for measurement locations neigh
boring the defect location may also be stored in memory for 
use in classifying the type and/or severity of the defect. The 
controller may be programmed to identify the presence and 
location of defects in the weld by analyzing the ultrasonic 
response signals collected from each measurement location 
along the weld. For example, in one embodiment, the con
troller may be programmed to identify the location of defects 
in a weld using the methodologies disclosed in co-pending 
U.S. patent application Ser. No. 12/488,396 entitled "METH
ODS AND SYSTEMS FOR DETECTING DEFECTS IN 
WELDED STRUCTURES", which is herein incorporated by 
reference. In another embodiment, which is described more 
fully herein, the controller may be programmed to identify the 
location of defects in the weld by monitoring fluctuations in 
the energy of the ultrasonic response signal and/or comparing 
fluctuations in the energy of the ultrasonic response signal to 
known energy defect patterns. 

Referring now to FIG. 8, a flow diagram of one embodi
ment of a method for performing step 208 is depicted. In this 
embodiment, the presence of defects in the weld is deter
mined by monitoring fluctuations in the energy of the ultra
sonic response signal and/or comparing fluctuations in the 
energy of the ultrasonic response signal to known energy 
defect patterns. In step 252 the controller may be pro
grammed to calculate and normalize an energy E(x) for each 
measurement location x on the test sample based on the 
corresponding filtered response signals f(x,t) for the mea
surement location. The energy E(x) for each measurement 
location x may be calculated by summing the square of the 
corresponding filtered response signal f(x,t) over the time 
duration of the signal such that: 

E(x) = ~ (f(x, t)) 2
, 

(10) 

where E(x) is the energy at location x and f(x,t) is the ampli
tude of the filtered ultrasonic response signal at location x and 
time t. 
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such as the plotted energy distribution shown in FIG. 10. To 
identify potential defect locations, the controller may com
pare the energy E(x) for each measurement location x to the 
energy of adjacent measurement locations, such as, for 
example, measurement locations x-1 and x+l. If the energy 
E(x) is a local minimum (e.g., E(x-l)>E(x) and E(x+l)>E 
(x)) then measurement location xis a potential defect loca
tion. Examples of potential defect locations are indicated by 
the circled points in the plotted energy distribution shown in 

10 FIG. 12. Where E(x) is a local minimum, the controller may 
designate the position x of the local minimum as a potential 
defect location xpd and stores the potential defect location xpd 
in a memory operably associated with the controller. 

Referring now to FIGS. 8and10-12, in a next step 256, the 
15 controller may be programmed to analyze fluctuations in the 

ultrasonic energy at measurement locations neighboring each 
potential defect location xpd to determine the presence of 
defects in the weld utilizing the energy E(xpd) of the potential 
defect location xpd and the energy of neighboring measure-

20 ment locations. In one embodiment, the controller may ana
lyze each potential defect location xpd for the presence of 
defects by comparing the energy E(xpd) of the potential defect 
location and the energy of adjacent measurement locations to 
a set of defect energy patterns, such as the exemplary defect 

25 energy patterns graphically depicted in FIGS. llA-llJ, 
which may be stored in the memory operatively associated 
with the controller. 

The defect energy patterns shown in FIGS. llA-llJ may 
be derived from test samples which have been destructively 

30 examined after ultrasonic signals have been induced in the 
test samples and ultrasonic response signals have been col
lected from the test samples, as described above. An energy 
distribution for each test sample may then be plotted and the 
results of the destructive examination of each test sample may 

35 be compared to the corresponding energy distribution to cor
relate fluctuations in the energy distribution to the defects 
identified through destructive examination. Based on these 
comparisons a set of defect energy patterns may be identified 
which correspond to fluctuations in the energy distribution 

40 caused by defects. 
In order to determine if a potential defect location xpd 

contains an actual defect, the controller compares the pattern 
formed by the energy E(xpd) of each potential defect location 
xpd and the energy of neighboring measurement locations on 

45 each side of the potential defect location xpd to the defect 
energy patterns and, ifthe patterns have a similar shape, the 
controller designates the potential defect location xpd as a 
defect location Xn and stores this location as a defect location 
in the memory operatively associated with the controller. 

Referring to FIGS. 11 and 12 by way of example, a poten-
tial defect location xpd is present at x=104 mm. The pattern 
formed by the energy E(xpd) of this potential defect location 
and the energy of measurement locations on each side of the 
potential defect location (e.g., the 3 measurement locations to 

Based on the energy E(x) for each measurement location 50 

along the weld, an energy distribution may be plotted as 
depicted in FIG. 10 where the x-axis corresponds to the 
measurement location x along the weld and the y-axis corre
sponds to the ultrasonic signal energy E(x) for each measure
ment location. The plotted energy distribution shows that the 
energy of the ultrasonic response signal fluctuates along the 
length of the weld. These fluctuations in energy may be 
caused by the presence of various features in the test sample 
and/or weld which may reflect or diffract the ultrasonic signal 
induced in the test sample. Such features may include regular 60 

features, such as stamp marks, connector holes, and the like, 

55 the left of x= 104 mm and the three measurement locations to 
the right ofx=104 mm) form a pattern similar to the defect 
energy pattern of FIG. llI and, as such, the controller iden
tifies the potential defect location at x=104 mm as a defect 
location Xn and stores this location in memory as a defect. 

In an alternative embodiment, at step 256, the controller 
may be programmed to analyze each potential defect location 
xpd by comparing the energy E(x) at each potential defect 
location xpd to the energy of a plurality of neighboring mea
surement locations. The controller may compare the energy 

or irregular features, such as defects and/or changes in the 
thickness of the weld, as described above. 

Referring now to FIGS. 8, 10and12, in a next step 254, the 
controller may be programmed to identify potential defect 
locations along the weld utilizing the energy E(x) for each 
measurement location and/or a plotted energy distribution, 

65 for potential defect location xpd to the energy for at least two 
consecutive measurement locations on each side of the poten
tial defect location xpd· For example, the controller may com-
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pare the energy for points xpa l, xpa-2 ... xpa-i on one side 
ofxpd' and to points xP~l, xpd+2 ... xP~j on the other side 
ofxpd' wherei andj are integers, i<xpdand l~j~n-xpdandn 
is the total number of measurement locations along the weld. 

If the ultrasonic energy on each side of the potential defect 
location increases monotonically for each of the neighboring 
measurement locations, and if the number of neighboring 
measurement locations with monotonically increasing 
energy is between two and four on each side of the defect 
location, then the controller identifies the potential defect 10 

location xpd as a defect location Xn and stores the location in 
a memory operatively associated with the controller. As 
shown in FIG. 12, locations enclosed by a solid circle (e.g., at 
x=18 mm, 50 mm and 104 mm) are indicative of defect 

15 
locations and the locations enclosed by a dashed circle (e.g., 
at x=70 mm and 88 mm) are potential defect locations which, 
after further analysis by the controller, do not meet the criteria 
for the presence of a defect (i.e., the ultrasonic energy does 
not increase monotonically over at least two neighboring 

20 
measurement locations or it increases monotonically over 
more than four neighboring measurement locations on each 
side of the potential defect location). 

In one embodiment, after the ultrasonic energy of the 
potential defect location is compared to at least two neigh-

25 
boring defect locations on each side of the potential defect 
location to determine if the ultrasonic energy increases mono
tonically, the energy of the potential defect location and the 
energy of neighboring measurement locations may be com
pared to defect energy patterns stored in memory, as 

30 
described above, to further assess whether the potential defect 
location contains a particular defect, such as, for example, a 
lack of penetration defect which has a defect energy pattern as 
shown in FIG. llJ. If the ultrasonic energy at the potential 
defect location and the ultrasonic energy at the neighboring 

35 
defect locations corresponds to a defect energy pattern, then 
the controller designates the potential defect location xpd as a 
defect location Xn and stores the location in memory as a 
defect. 

18 
ti on xpd to the energy of a plurality of neighboring measure
ment locations, as described above. When the energy on each 
side of the potential defect location increases monotonically 
for each of the neighboring measurement locations, the con
troller identifies the potential defect location xpd as a defect 
location Xn and stores the location in a memory operatively 
associated with the controller. 

Referring now to FIGS. 3 and 9, in one embodiment, after 
a defect location has been identified, the controller may 
optionally process ultrasonic response the signals corre
sponding to the defect location and measurement locations on 
either side of the defect location with signal processing mod
ule 302 prior to inputting the signals to the ANN 304. The 
signal processing module may be either integral with the 
controller or a separate unit electrically coupled to the con-
troller. Accordingly, the method 200 may proceed to step 210 
where the ultrasonic signal corresponding to the identified 
defect location may be processed. In step 210 the ultrasonic 
signal corresponding to the defect location (hereinafter 
referred to as the defect signal) may be processed to reduce 
the overall number of data points in the defect signal. For 
example, in one embodiment, the defect signal may be 
divided into a plurality of segments or windows based on 
time. The number of segments used may vary depending on 
the total number of data points in the defect signal. In the 
embodiments described herein, 200 segments were used. 
After the defect signal is segmented, an average of each 
segment may then be calculated and the defect signal recon
structed using the average of each segment. Accordingly, it 
should be understood that, after processing, the defect signal 
comprises a total number of points equal to the number of 
segments used which, in the embodiments described herein, 
is 200. 

In a next step 212, the controller may optionally process the 
ultrasonic response signals corresponding to measurement 
locations neighboring the defect location (hereinafter the 
defect proximity signals) in a similar manner as the defect 
signals to reduce the total number of points in each defect 

In another embodiment, in order to identify a lack of pen
etration defect such as that shown in FIG. llJ, the controller 
may be programmed to first identify local maximum and 
minimum pairs by comparing the energy of each measure
ment location to the energy of neighboring measurement 
locations. For example, the points XN1 andXN2 shown in FIG. 
llJ are indicative of local maximum and minimum, respec
tively. Thereafter, the average slope between the local maxi
mum and minimum may be determined utilizing the follow-

40 proximity signal. As described herein, the defect proximity 
signals are the ultrasonic signals for measurement locations 
neighboring the defect location which may be effected by the 
presence of the defect and, as such, may be useful in classi
fying the type and/or severity of the defect. In the embodi-

ing equation: 

(11) 

where E(XN2) is the energy at measurement location XN2 and 
E(XNI) is the energy at measurement location XN1 . 

Thereafter, for each point X, between XNI and XN2 , the 
controller may be programmed to determine the slope 
between points x, and x,_l and the slope between points x, 
andX,_ 1 and compare each slope to the averaged slope. If the 
absolute value of the slope between points points X, and X,_ 1 

and the absolute value of the slope between points X, and X,+1 

are both greater than the average slope, then the point X, is a 
defect location. 

In yet another embodiment, at step 256, the controller may 
be programmed to analyze each potential defect location xpd 
by comparing the energy E(x) at each potential defect loca-

45 ments described herein, a total often defect proximity signals 
are utilized (five on either side of the defect location). How
ever, it should be understood that more or fewer defect prox
imity signals may be utilized to determine the type and sever
ity of the defect in the weld. After the defect proximity signals 

50 are processed, each defect proximity signal may comprise a 
total number of points equal to the number of segments used 
in processing which, in the embodiments described herein is 
200. 

Referring now to FIGS. 3, 4 and 7, in a next step 214, the 
55 controller may input the defect signal and the defect proxim

ity signals into the input layer of the previously trained ANN 
3 04. In the embodiments described herein, the controller may 
input the defect signal and the defect proximity signals into 
the ANN 304 by first creating an input vector A which com-

60 prises the defect signal and defect proximity signals. The 
input vector A generally has a dimension of n where n is an 
integer representing the number of components in the vector 
(i.e., a1 , a2 , a3 , ... an). In the examples described herein, there 
is one defect signal and ten defect proximity signals such that 

65 the input vector A comprises a total of 11 signals. If each 
signal is processed as described above, each signal will have 
a total of 200 points, with each point corresponding to a 
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component in the vector. Accordingly, for eleven signals each 
having 200 points, the input vector A has a dimension n of 
11 x200 such that n=2200. 

20 
controller may be programmed to graphically indicate the 
location Xn of defects on the energy distribution and provide 
a corresponding indication of the type and/or severity of each 
defect located. Alternatively or additionally, the controller 
may be programmed to display the location of each defect. 
For example, referring to the plot of the energy distribution 
shown in FIG. 12, the controller may be operable to indicate 
on the display that a blow hole defect of severity "B" is located 
at x= 18 mm, a lack of penetration depth defect of severity "C" 

While in the aforementioned example the dimension n of 
the input vector A is 2200, it should be understood that input 
vectors of larger or smaller dimensions may be used. For 
example, where fewer defect proximity signals are used, the 
dimension of the input vector A may be smaller. However, 
where more segments are used in processing the signal, the 
dimension of the input vector may be larger. Moreover, when 
the defect signal and the defect proximity signals are not 
processed to reduce the number of data points in each signal, 
the dimension n of the input vector A may be significantly 
larger depending on the number of data points in each of the 
defect signal and defect proximity signals. 

10 is located at x=50 mm and a combined lack of penetration/ 
short leg defect of severity "<C" is located at x= 104 mm. 

It should now be understood that the defect classification 
system and methods shown and described herein may be used 
to classify the type and/or severity of defects present in a weld 

After the controller creates the input vector A from the 
defect signal and the defect proximity signals, the controller 
passes the input vector A to the input layer N x of the ANN 
304. As described above and shown in FIG. 4, the input layer 

15 utilizing ultrasonic signals. The system may be implemented 
in a manufacturing environment to perform automated 
inspection of welded structures of various configurations. 
The system may be used as a quality control tool for each 

N x of the ANN 304 comprises n input nodes. Accordingly, 20 

each component of the input vector A is passed to a separate 
input node of the ANN 304. Utilizing the weight matrices 
determined during training of the ANN 304 and the activation 
function associated with each node of each layer, the ANN 
304 performs a series of mathematical operations on the input 25 

vector A and outputs a coded defect vector B which relates to 
the identity and/or severity classification of the defect corre
sponding to the defect signal. In the embodiments described 
herein, the defect vector B is coded to identify one of four 
different types of defects and/or combinations thereof. The 30 

defect vector also contains the severity classification of the 
identified defect, as described above. Accordingly, the defect 
vector B has a dimension of 5 (i.e., q=5). 

For example, using the conventions described hereinabove 
for the defect vector B, when the trainedANN 304 determines 35 

that the input vector A is indicative of a short leg defect having 
a defect severity classification of B, the ANN 304 outputs a 
defect vector of <01002> where the 1 at positions bl is 
indicative of a short leg defect and the 2 at position b5 is 
indicative of a defect severity classification of "B". 40 

As described hereinabove, the dimension of the output 
layer N2 of the ANN 304 (and therefore the dimensions of 
defect vector B) may be reduced or expanded to identify a 
different number of defect types and/or combinations of 
defect types. Further, additional severity classifications or 45 

severity sub-classifications may be added to the output layer 
N z to provide additional information on the severity of the 
defect. 

welded structure produced or, alternatively, to analyze a ran
dom sampling of the welded structures produced. 

While the defect classification systems described herein 
utilize non-contact methods for inducing an ultrasonic signal 
in the test sample and collecting an ultrasonic response signal 
from the test sample, it should be understood that the methods 
utilized by the defect classification systems may also be used 
by ultrasonic inspection systems which utilize acoustic signal 
generators and/or acoustic signal detectors which physically 
contact the test sample. 

Further, while the methods for classifying the type and/or 
severity of a defect in a weld are described herein as being 
performed in conjunction with inducing an ultrasonic signal 
in the test sample and collecting ultrasonic response signals 
from the test sample, it should be understood that the method 
for classifying the type and/or severity of a defect in a weld 
may be performed independently from the steps of inducing 
an ultrasonic signal and collecting an ultrasonic response 
signal. For example, the collected ultrasonic response signals 
may be stored in the controller and analyzed according to the 
methods described herein at a later time. 

It is noted that the terms "substantially" and "about" may 
be utilized herein to represent the inherent degree of uncer
tainty that may be attributed to any quantitative comparison, 
value, measurement, or other representation. These terms are 
also utilized herein to represent the degree by which a quan
titative representation may vary from a stated reference with
out resulting in a change in the basic function of the subject 
matter at issue. 

While particular embodiments have been illustrated and 
described herein, it should be understood that various other Further, while the defect vector B is described herein as 

comprising both an identification of the defect and the sever
ity classification of the defect, it should be understood that, in 
other embodiments, the defect vector B may include either 
the defect identification or the defect severity classification. 

50 changes and modifications may be made without departing 
from the spirit and scope of the claimed subject matter. More
over, although various aspects of the claimed subject matter 
have been described herein, such aspects need not be utilized 
in combination. It is therefore intended that the appended In a next step 216, the controller may be programmed to 

decode the defect vector B and output the defect type and/or 
severity classification indicated by the defect Vector B. For 
example, the controller may provide a visual and/or audible 
indication of the presence of defects in the weld as well as an 
indication of the type of defect and/or the severity of the 
defect. In one embodiment, where the defect classification 60 

system 150 comprises a display, the controller may be pro
grammed to plot an energy distribution on the display similar 

55 claims cover all such changes and modifications that are 
within the scope of the claimed subject matter. 

to that shown in FIG. 12. The controller may also be pro
grammed to identify defect locations on the display and iden
tify the type and/or severity of each defect at each defect 65 

location. For example, where the controller is programmed to 
display a plot of the energy distribution on the display, the 

What is claimed is: 
1. A method for determining a type of a defect in a weld 

comprising: 
determining a defect location and a defect signal corre

sponding to the defect location by analyzing ultrasonic 
response signals collected from a plurality of measure
ment locations along the weld; 

inputting the defect signal and a plurality of defect prox
imity signals into a trained artificial neural network, 
wherein the plurality of defect proximity signals corre
spond to ultrasonic response signals from measurement 
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locations on each side of the defect location and the 
trained artificial neural network is operable to: 
identify the type of the defect located at the defect loca

tion based on the defect signal and the plurality of 
defect proximity signals; and 

output the type of the defect located at the defect loca
tion. 

22 
output the severity classification of the defect located at 

the defect location. 

10. The method of claim 9 further comprising processing 
the defect signal and the plurality of defect proximity signals 
prior to inputting the defect signal and the plurality of defect 
proximity signals into the trained artificial neural network. 

11. The method of claim 10 wherein the defect signal and 
the plurality of defect proximity signals are processed by 
dividing each of the signals into a plurality of segments and 
averaging each segment. 

2. The method of claim 1 further comprising processing the 
defect signal and the plurality of defect proximity signals 
prior to inputting the defect signal and the plurality of defect 10 

proximity signals into the trained artificial neural network. 
12. The method of claim 9 wherein the trained artificial 

neural network is trained with a back propagation algorithm 
using a sample data set derived from destructively tested weld 

15 samples. 

3. The method of claim 2 wherein the defect signal and the 
plurality of defect proximity signals are processed by divid
ing each signal into a plurality of segments and averaging 
each segment. 

4. The method of claim 1 wherein the trained artificial 
neural network is operable to identify the type of the defect as 
a blow hole defect, a lack of penetration defect, a short leg 
defect, a lack of penetration/short leg defect or combinations 
thereof. 20 

5. The method of claim 1 wherein the trained artificial 
neural network is further operable to: 

determine a severity classification of the defect located at 
the defect location based on the defect signal and the 
plurality of defect proximity signals; and 25 

output the severity classification of the defect located at the 
defect location. 

6. The method of claim 5 wherein the trained artificial 
neural network outputs a coded vector indicative of the type 
and severity classification of the defect. 30 

7. The method of claim 1 wherein the trained artificial 
neural network is trained with a back propagation algorithm 
using a sample data set derived from destructively tested weld 
samples. 

8. The method of claim 1 wherein the defect location is 35 

determined by: 

13. The method of claim 9 wherein the defect location is 
determined by: 

filtering an ultrasonic response signal from each of the 
measurement locations to produce a filtered response 
signal for each of the measurement locations; 

calculating an ultrasonic energy for each of the measure
ment locations with the filtered response signal corre
sponding to each of the measurement locations; 

comparing the ultrasonic energy for each of the measure-
ment locations to the ultrasonic energy of adjacent mea
surement locations to identify potential defect locations, 
wherein, when the ultrasonic energy of a measurement 
location is less than the ultrasonic energy of the adjacent 
measurement locations, the measurement location is a 
potential defect location; and 

analyzing fluctuations in the ultrasonic energy at measure
ment locations neighboring the potential defect loca
tions to determine if a defect is present in the weld. 

14. A defect classification system for identifying a type of 
a defect in a weld, the defect classification system comprising 
a controller, an acoustic signal generator, an acoustic signal 
detector, and a positioning device, wherein the acoustic signal 
generator, the acoustic signal detector and the positioning 

filtering an ultrasonic response signal from each of the 
measurement locations to produce a filtered response 
signal for each of the measurement locations; 

calculating an ultrasonic energy for each of the measure
ment locations with the filtered response signal corre
sponding to each of the measurement locations; 

40 device are electrically coupled to the controller and the con
troller is programmed to: 

comparing the ultrasonic energy for each measurement 
location to the ultrasonic energy of adjacent measure
ment locations to identify potential defect locations, 45 

wherein, when the ultrasonic energy of a measurement 
location is less than the ultrasonic energy of the adjacent 
measurement locations, the measurement location is a 
potential defect location; and 

analyzing fluctuations in the ultrasonic energy at measure- 50 

ment locations neighboring the potential defect loca
tions to determine if a defect is present in the weld. 

9. A method for determining a severity of a defect in a weld 
comprising: 

determining a defect location and a defect signal corre- 55 

sponding to the defect location by analyzing ultrasonic 
response signals from a plurality of measurement loca
tions along the weld; 

inputting the defect signal and a plurality of defect prox
imity signals into a trained artificial neural network, 60 

wherein the plurality of defect proximity signals corre
spond to ultrasonic response signals from measurement 
locations on each side of the defect location and the 
trained artificial neural network is operable to: 
determine a severity classification of the defect located 65 

at the defect location based on the defect signal and 
the plurality of defect proximity signals; and 

induce ultrasonic signals at multiple measurement loca
tions along the weld with the acoustic signal generator; 

collect an ultrasonic response signal from each of the mea
surement locations with the acoustic signal detector and 
store each ultrasonic response signal in a memory opera
tively associated with the controller; 

determine a defect location and a defect signal by analyz
ing the ultrasonic response signal from each of the mea
surement locations; 

determine a plurality of defect proximity signals, wherein 
the plurality of defect proximity signals correspond to 
ultrasonic response signals from measurement locations 
on each side of the defect location; 

input the defect signal and the plurality of defect proximity 
signals into a trained artificial neural network opera
tively associated with the controller, wherein the trained 
artificial neural network is operable to identify the type 
of the defect located at the defect location based on the 
defect signal and the plurality of defect proximity sig
nals; and 

output the type of the defect located at the defect location. 

15. The defect classification system of claim 14 wherein 
the trained artificial neural network outputs a coded vector 
indicative of the type of the defect. 
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16. The defect classification system of claim 14 wherein 
the trained artificial neural network is further operable to: 

determine a severity classification of the defect located at 
the defect location based on the defect signal and the 
plurality of defect proximity signals; and 

output the severity classification of the defect located at the 
defect location. 

17. The defect classification system of claim 16 wherein 
the trained artificial neural network outputs a coded vector 
indicative of the type and severity classification of the defect. 

18. The defect classification system of claim 14 wherein 
the controller is further programmed to process the defect 
signal and the plurality of defect proximity signals prior to 

24 
inputting the defect signal and the plurality of defect proxim
ity signals into the trained artificial neural network. 

19. The defect classification system of claim 18 wherein 
the controller is programmed to process the defect signal and 

5 the plurality of defect proximity signals by dividing each 
signal into a plurality of segments and averaging each seg
ment. 

20. The defect classification system of claim 14 wherein 
the trained artificial neural network is trained with a back 

10 propagation algorithm using a data set derived from destruc
tively tested weld samples. 

* * * * * 


