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SUMMARY

This thesis aims at developing numerical models and subgrid closures for Large Eddy

Simulation(LES) of turbulent reacting flow problems in non-trivial geometries with moving

boundaries. Many practical engineering devices involve moving boundaries interacting with

a reacting flow. While Computational Fluid Dynamics (CFD) can be effectively employed

to study and understand the functioning of these systems, existing numerical methods face

several difficulties that have so far limited their use. The foremost problem with the con-

ventional body conformal CFD approaches is that of grid generation especially for complex

geometries and moving boundaries. In contrast, the grid generation is greatly simplified

with Cartesian grid based Embedded Boundary (EB) methods due to which they are gaining

popularity in recent years. However, to resolve the flow and reaction dynamics in complex

flow systems, a high order of accuracy is often needed without which many critical flow

phenomena cannot be captured. This requirement has been particularly challenging for IB

methods as many of the existing schemes suffer from a lower order of accuracy specifically

near the embedded boundaries. For moving boundaries, conservation of mass, momentum,

and energy is not easy to enforce with existing IB methods.

In this thesis, a wholistic approach is taken to identify some of the key issues related to

numerical simulation of moving boundary reacting flow problems, and several developments

are done to address these problems. The need for local mesh refinement to resolve fine-scale

flow features is addressed by performing block-structured adaptive mesh refinement by in-

terfacing with a massively parallel open source library (BoxLib). A strictly conservative

high-order Cartesian cut-cell method is developed to handle embedded boundaries. A novel

cell clustering algorithm for handling the ‘small cell’ problem afflicting all the cut-cell meth-

ods is proposed. The developed cut-cell method is capable of smooth reconstruction of flow

solution with upto fourth order accuracy. The cell clustering algorithm is also extended to

enforce strict conservation for moving boundaries. Finally, subgrid closures for flow and

xxvi



chemistry are developed adapted to the presence of block structured refinement and embed-

ded boundaries.

There are several validation tests performed to demonstrate the accuracy and robustness

of the developments in this thesis. The cost effectiveness of AMR is demonstrated by ap-

plying it to blast and detonation studies. It is shown that the cut-cell method can achieve

design order of accuracy and also results in smooth near wall solution. For moving bound-

ary problems, strict conservation is demonstrated by employing the extended cell clustering

algorithm. The multi-level closure model, when applied with the cut-cell method, provides a

consistent treatment for transitional turbulent flow problems. Improvements in model predic-

tions are also demonstrated for the canonical problem of a flame interacting with turbulence,

using the multi-level reacting rate based closure. The application of the AMR to study the

interaction of turbulence with propagating shocks is described. The model and numerical

method developments are then applied to practical configurations. The mechanisms of flame

holding and stabilization in transverse reacting jet coming out of a pipe into a cross flow

are studied. The other practical problem of detonation initiation by hypersonic projectiles in

flight in a reacting mixture is investigated using the moving cut-cell method. Some important

observations on the nature of detonation and flame stabilization for both the configurations

are documented.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

There are many engineering devices with complex geometries that have moving or deform-

ing surfaces in a compressible reacting flow environment. Examples of such applications

include propulsion systems with moving components such as Internal Combustion (IC) en-

gines, hypersonic propulsive devices such as Oblique Detonation Wave (ODW) engines,

Ram accelerators [1] and solid rocket motors involving regressing propellant surfaces. In

many cases, the reacting components may be integral to the functioning of these systems.

Such as in IC engines, the motion of the valve regulates the flow into the cylinder, and the

movement of the piston drives the engine. In some cases, the process of boundary deforma-

tion is a result of surface burning and regression as in the case of combustion of energetic

materials or propellants [2]. Such problems are often characterized by complex interactions

involving one or more of the following phenomenon: near-wall turbulence, unsteady shock

motion and its impact on the surface, surface reactions and regression including fracture and

particle ejections, and highly time-dependent transient motions. In other cases, the boundary

motion can be a result of the interaction of hydrodynamic forces acting on the surface of

the boundary such as in the case of ram accelerators. For some applications, the boundary

motion can significantly alter the flow physics surrounding the body such as in the case of

Explosively Formed Projectiles (EFP) [3]. The deformation of the surface of the projectile

due to the impact of a detonating condensed phase has a significant effect on its aerodynam-

ics characteristics and flight trajectory [4].

Also, there also exists several engineering applications where it is of interest to under-

stand the flow over complex geometries with stationary boundaries. Examples include flow

past finite airfoil, effusion holes in gas turbines, multi-injectors in a gas turbine, or a group

of objects that are separated by narrow gaps, such as flow past heat exchangers [5], struts,
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etc. Three-dimensional flow interactions between a group of droplets or solid particles are

also relevant in many applications such as air pollution control, combustion systems, and

chemical processes [6]. Some of these application problems of interest are illustrated via

schematics or reproduced from other sources in 1.1. Numerical simulations can be effec-

tively employed to study the performance and optimization of these systems.

(a) (b)

(c) (d)

Figure 1.1: Schematic of the different application problems of interest a) direct ignition IC
engines b) explosively formed projectile[3] c) super detonative ram accelerator d) Propellant
grains in a gun barrel configuration

However, there are several challenges associated with the numerical simulation of flow

problems with complex geometries and, with moving boundaries. These are briefly discussed

in the next section.

1.1 Mathematical modeling of moving boundary problems

The various challenges associated to mathematical modeling of moving boundary problems

are categorized under three topics: difficulties associated to grid generation, scheme and

cost related problems and finally, the closure model issues related to turbulence modeling of
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moving boundary reacting flow problems.

Grid generation

Meshing complex surface topologies are especially challenging and in some cases impossible

for body conformal structured approaches [7]. Another difficulty with structured approaches

are the contradictory requirements of sufficient local resolution in the region of interest and

minimizing the total number of overall grid points. The reason is, a refinement in a particular

portion of the structured mesh will ‘bleed through’ the rest of mesh making it impossible to

localize the refinement. Though moving mesh [8] technique can be used to represent moving

boundaries on a structured grid, these methods are limited to small boundary displacements.

In the case of larger displacements, the moving mesh approach can result in severe mesh

distortion and tangling adversely affecting the accuracy of the flow solution[9].

Although the unstructured mesh methods [10, 11], on the other hand, can handle the com-

plex geometries efficiently, managing the mesh connectivity is tedious requiring complicated

data structures. Besides, developing high order schemes with the unstructured approach is

problematic as many of these schemes are designed for a structured neighbor connectivity

[7]. In the case of moving boundaries, periodic remeshing is needed to account for the sur-

face motion. The quality of the remeshing region can quickly deteriorate with large scale

boundary motion. As the solution is interpolated to the remeshed grid [12, 9], the accuracy

of the solution can be highly compromised in such scenarios. Also, the remeshing in an

unstructured approach is a global operation and is computationally expensive [9].

Turbulence modeling of moving boundary reacting flow problems

Due to highly turbulent nature of most of the practical flows, resolving all scales of motion,

as is done in a Direct Numerical Simulation (DNS), is not possible due to the high compu-

tational costs involved. The alternative is to employ Large Eddy Simulation (LES) in which

only the most energy containing eddies are resolved by the numerical grid and effect of
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small scales of motion on the larger scales is modeled. Development of subgrid closures for

turbulent reacting flow problems is an active area of research with its own difficulties[13].

In addition, the introduction of unconventional numerical techniques such as embedded

boundary methods [14, 15, 16, 17, 18] and Adaptive Mesh Refinement (AMR) can further

complicate the closure problem for LES. The majority of sub-grid closures for LES have

been developed for body-conformal, uniform grids without local refinement. The behavior

of the closure models for unconventional methodologies such as dynamic mesh refinement

[19] and embedded boundary techniques [20] is not completely understood. To the best of

the author’s knowledge, there have not been many studies in the area of LES with embed-

ded boundary methods and dynamic refinement for reacting turbulent for moving boundary

reacting flow problems.

Accuracy and computational cost of numerical schemes

In addition to grid generation challenges, an accurate prediction of all the physical phenom-

ena related to moving boundary reacting flow problems requires adequate grid resolution.

Due to high-speed nature of the flow in many of the propulsion applications, compressible

features such as shocks, expansion waves, detonations, etc. are present in the system. Many

of these features and their interactions results in multi-scale nature of flow solution. These

fine scale flow features are much smaller than the overall scale of the problem. A uniform

grid resolution without adopting to some form of local refinement would result in a pro-

hibitively high computational cost. Instead, if a coarse back ground grid is employed and

increased refinement is performed in only regions of interest, huge savings in the cost and

the storage of simulation data can be achieved. This is demonstrated later in this thesis.

Additionally use of high-order methods (greater than second order) can result in gains

in computational cost of the simulations [21]. As noted in [21], a common belief is that

high-order methods are too costly to be applied for simulation of practical flow problems.

Even though high-order methods are costlier than a corresponding low order method (order
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of accuracy 2 or lower) for the same grid resolution, the required accuracy can be achieved at

a much coarser grid resolution with a high-order method at a reduced cost. In the context of

turbulence modeling using LES technique, the numerical error can strongly interact with the

sub-grid closure models introducing a significant uncertainty in the simulation results [22].

Therefore use of high-order schemes becomes particularly relevant for LES as the truncation

errors from lower order schemes can exceed the magnitude of the subgrid scale term [22].

1.2 Adaptive Mesh Refinement

A wide range in scales of motion and flow features can be observed in the flow systems

of practical devices. The multiscale nature of flow solution, therefore mandates some form

of local mesh refinement for the overall computation to be even tractable. The term Adap-

tive Mesh Refinement (AMR) is used to refer to local mesh refinement, which dynamically

changes as the regions of interest changes over time [23] such as in the case of shock hydro-

dynamics, simulation of detonations and blast waves, or simulation of unsteady flames such

as in gas turbines or in moving boundary problems. More recently, many studies [24, 25,

26, 27, 28] have successfully employed AMR for embedded boundary methods. The local

refinement can be performed using both structured [19, 29] and unstructured approach [30].

The specific focus of this thesis is on the structured refinement techniques and the following

discussion is limited to the different methods related to the structured approach. An example

of a locally refined mesh and a uniform mesh for resolving a sinusoidal front is shown in

Fig. 1.2.

1.2.1 Cell based AMR

In a cell-based adaptive mesh refinement [29], the background mesh is made up of uniform

Cartesian cells and each cell can be split locally into a quadtree/octree in two/three dimen-

sions. Due to the cell based local refinement, the connectivity between the cells becomes

unstructured. A tree-based data structure is often used to manage the hierarchical relation
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(a) (b)

Figure 1.2: Comparison of (a) a uniform grid (b) an adaptively refined grid for capturing a
sinusoidal front.

between a parent cell (of the background mesh) and its child cells (of the refined mesh). And,

in some cases, the entire tree data structure has to be traversed through to access any partic-

ular cell. The computation of fluxes at the interfaces of a cell is similar to the unstructured

mesh and require some form of linear least squares method.

The advantage of this method is that the refinement can be focused narrowly in the region

of interest resulting in an optimal refinement with the most minimum cost. However, there

are no known libraries for performing unstructured mesh refinement and can be tedious in

implementation, especially when the underlying compressible solver is block structured.

1.2.2 Block structured patch based AMR

The patch based AMR is a block-structured adaptive mesh refinement, which is originally

proposed by Berger and Collela [19]. The background mesh, as the name indicates is block

structured and of coarser resolution. The regions of interest are stacked with series of nested

blocks that are increasingly finer in their grid resolution. Ghost cells are built around each of

the grid blocks to effect communication between adjacent blocks and across different levels
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of refinement. Since the refinement is block based, the amount of the total number of grid

points that is obtained from a particular refinement criteria is always more compared to the

number grid points from an unstructured Cartesian AMR approach.

In contrary to the previous approach, however there are many open source libraries

that are available for performing block-structured adaptive mesh refinement (BoxLib [31],

Chombo[32], PARAMESH[33], SAMRAI [34], AMRCLAW[35], AMROC[36], etc.). The

underlying base solver for compressible flows, that will be used in this thesis as described

later, is a block structured solver (LESLIE) [37, 38, 39]. The block-structured patch based

refinement approach is more suitable to the implement AMR and therefore, is the chosen

approach in this thesis.

1.3 Existing numerical approaches for stationary and moving solid boundaries

In order to deal with boundary motion, three main methodologies have been proposed in the

literature. These are: body-conforming Arbitary-Lagrangian-Eulerian (ALE) approaches

[40, 41], overset grid techniques [42, 43] and embedded boundary methods [14, 15, 16, 17,

18]. Each approach has its own strengths and weakness. The differences in the approaches

are mainly in the manner in which grid generation is performed to resolve the moving surface

geometry.

In the first approach, the time varying computational domain is handled using a body-

fitted approach and the numerical grid is updated every time the boundary moves. The ma-

jority of the ALE schemes are based on unstructured grid approach due to which mesh gen-

eration for complex geometries is relatively easy compared to the structured grid generation

technique. The motion of the body surface is incorporated via a conservation equation writ-

ten in a control volume formulation. Reynold transport theorem is then employed to account

for the fluxes swept by a changing control volume. ALE schemes have been demonstrated

to solve FSI problems with multicomponent compressible flow [44, 45]. The disadvantage,

however, is that these schemes suffer from the poor accuracy of the solution due to mesh
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tangling and, parallelization bottlenecks due to frequent remeshing in cases of significant

deformation [46].

In the second class of methods, the embedded boundary is resolved by using a local

structured meshed that overlay a background mesh. Multiple bodies are handled easily in

this approach by providing each body its own body-conforming grid. Fluid state variables

are exchanged between the overlapping grids, and the dynamic boundaries are handled by

moving the upper associated mesh with it while the background mesh remains stationary.

Henshaw and Schwendeman [43] employed the overset technique with success for simula-

tion of moving boundaries in high-speed reactive and non-reactive inviscid flow. The main

limitation of the overset technique is that it is restricted to only moving rigid boundaries and

extension to deforming interfaces is more difficult. Also, since it is based on the identifica-

tion of mesh intersection points and data interpolation on overlapping meshes, the quality of

the solution is sensitive to the interpolation technique used. Besides, if the boundary shape is

complex, the mesh generation difficulties persists affecting the grid quality, which can lead

to stability and convergence issues in the numerical solver.

The last class of methods, the embedded boundary method (EB), consists of a back

ground grid that does not conform to the body and special corrections are applied to the

numerical scheme for solving the flow governing equations to the points or cells in close

proximity to the boundary. Moving boundaries are easily handled using EB methods by

repositioning the embedded surfaces in the fixed computational mesh [47, 48, 49, 50]. Also,

narrow gaps between groups of bodies can be resolved without a major loss in grid qual-

ity. The embedded boundary methods can be classified as Immersed Boundary (IB) method

[51] and Cartesian grid based method [52]. It must be noted that IB methods can also be

employed for Cartesian grids and the distinction between IB and Cartesian methods is not

very clear. For the purpose of this review, both these approaches are considered as Cartesian

grid based methods. An excellent review of the existing methods to represent embedded

boundaries within the background Cartesian mesh is provided by [20] and are known as Im-
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mersed Boundary (IB) methods, in general, or more specifically, as Cartesian grid based IB

methods. Due to the significant advantages posed by this class of method such as ease of

grid generation, ease of handling moving boundaries and ability to incorporate high-order

schemes, the Cartesian grid based EB methods are reviewed in more detail.

The first use of IB methods was reported by Peskin [51, 53] to simulate cardiac me-

chanics and associated blood flow. The entire simulation was performed on a Cartesian grid

and a novel procedure was formulated for imposing the effect of an embedded boundary by

adding a localized forcing function to the momentum transport equations. Since then, nu-

merous modifications and refinements have been done to the basic formulation and various

approaches have been developed in this area. All the existing approaches of IB methods

can be broadly grouped into two major categories: continuous forcing and discrete forc-

ing approach. Here, forcing is a formulation used to enforce the boundary condition at the

embedded surface.

In the continuous forcing methods[53], a distributed global forcing function is added to

the momentum equations to account for the interactions at the interface. The forcing function

can be adapted to the flow configuration using model parameters. A number of extensions

and adaptations of this basic method can be found [54, 55, 56, 53, 57]. While this approach

is attractive for flows with elastic boundaries, rigid boundaries pose some challenges since

the forcing terms do not behave well in the rigid limit leading to stability and accuracy issues

[56, 58]. The other disadvantage of this approach is that sharp interfaces are smeared over

an area corresponding to the local mesh width resulting in only first order accuracy [20].

The discrete forcing method, on the other hand, is based on applying a localized forcing

function in the momentum equations for enforcing the interface conditions. This approach

was followed in [59] and later in [60] along with a predictor and corrector formulation. The

major advantage of such a discrete forcing concept, unlike the continuous forcing methods,

is the absence of tunable parameters in the model and also an improvement in numerical

stability. Balaras [61] reported flow past 2D and 3D bluff bodies using the discrete forcing

9



approach. This approach retains a sharp interface with no spreading and improved local

accuracy near immersed boundary. The class of methods discussed so far are generally

called as direct forcing methods. There are two other classes of discrete forcing IB methods

which involve explicit representation of the boundary surface. These are the finite difference

based ghost cell-based method [62, 63, 64]s and finite volume based cut-cell methods [65,

50]. Common to both the approaches is the modification of the numerical scheme used for

integration of the flow governing equations near the embedded boundaries. They differ in

the manner in which this modification is done to include the embedded boundary effects.

Additionally, the immersed interface methods (IIM) [66] and direct forcing are also cat-

egorized under discrete forcing methods. The key difference between the latter two and the

former two methods is that in the latter approaches, the interface boundary conditions are

implemented indirectly via jump conditions or forcing functions, whereas in the cut-cell and

the GFM, the boundary conditions at the embedded surfaces are defined explicitly. Among

the different Cartesian grid based methods, GFM and cut-cell are the most widely studied

and are discussed in further detail in the following subsections.

1.3.1 Ghost fluid finite difference IB method

The Ghost Fluid Method (GFM) was originally developed for two-phase flows to achieve

accurate discretization across the interface by Fedkiw et al. [67] and was later extended to

handle solid embedded boundaries [17, 68]. GFM is a finite difference based and enforces

boundary conditions at the embedded surfaces through the use of ghost nodes. The nodes

on the solid side of the domain, which has at least, one of its neighbor node in the fluid side

are referred to as ghost nodes. Standard finite difference operators can be used in Cartesian

nodes away from the boundary for flow solution computation without any changes to the

stencil. However, near to the boundary, the operator requires information from the ghost

nodes that fall inside the solid. The state variables at the ghost nodes are interpolated from

neighboring nodes so as to enforce the embedded wall boundary conditions [69, 55, 70,
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71], [72], [73]. The main advantage of this class of methods is that they eliminate the time

step restriction problem posed by the small cells, as the time step is only determined by the

regular uncut cell size. These methods are attractive because of their simplicity. However,

the major drawback of these methods is that strict conservation of mass and momentum are

not observed in the vicinity of the boundaries [69, 55].

The non-conservation of mass, momentum, and energy can lead to spurious pressure os-

cillations, which are even more amplified as the boundary moves or deforms, whereby the

fluid nodes change to solid nodes and vice-versa [74]. Also, the non-conservatory nature

of GFM can lead to an incorrect prediction of flow physics such as shock speed, detonation

velocity, etc, in the case of high-speed flow problems. Many studies have been reported on

applying the ghost fluid method along with different correction schemes to mitigate the oscil-

lation issue and these are discussed below. There are a wide variety of studies, each focusing

on a specific class of problems considering either one or more of the challenging aspects

such as treatment of viscous fluxes, complex and moving geometries, turbulent flows, which

are reviewed in the following couple of subsections.

Viscous flows using GFM: The GFM for viscous flows was first reported Tseng and Ferziger

[17]. They employed a variant of the direct forcing method proposed in earlier studies [59,

16] by introducing a ghost cell inside to solid boundary to impose the momentum forcing.

Ghias and Mittal [75] used ghost cell method to simulate wide a variety of compressible

viscous flows including high Reynolds number flow past a circular cylinder and an airfoil.

Recently Uddin [76] proposed a high-order IB method for viscous, compressible flows that is

constructed on a partial difference eqaution based field extension of the boundary conditions

into the solid region. The method was shown to achieve smooth reconstruction of pressure

and wall shear stress solution. Although the scheme was set to achieve up to sixth-order

accuracy away from the immersed boundaries, the solution dropped to second order at the

boundaries.
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Turbulence modeling using GFM: Turbulence modeling with ghost cell IB method on Carte-

sian grids is an active area of research. The difficulties essentially arise in suppressing spu-

rious oscillations near the interface. Lee and Ruffin [77] used standard k − ε model with a

wall function treatment for Reynolds Averaged Navier-Stokes (RANS) turbulence closure,

within the GFM, to solve flow over 3D rotorcraft airfields. A more recent interesting ap-

proach using a Normalized Ray Refinement (NRR) technique was proposed by Ruffin et al.

[78] to perform cost effective RANS computations using IB technique. In their proposed

approach, instead of refining completely along boundary, local refinement was restricted to

narrow ‘rays’ originating from the boundary surface. They NRR approach was shown to

predict accurate skin friction and pressure distribution for 2D attached and seperated high

Reynolds number flows. Vanella et al. [79] presented a direct forcing approach which is a

variant of the GFM approach for solving transitional and turbulent moving body problems.

They simulated turbulent incompressible flow around two falling plates and also, LES of tur-

bulent incompressible flow around a sphere. A dynamic viscosity model with a Lagrangian

averaging procedure was employed for the LES subgrid closure.

Moving boundaries using GFM: Most of the work in employing ghost cell method for mov-

ing boundaries was done for inviscid flows [62, 63, 80] and [81]. Wang et al. [80] instead of

relying exclusively on interpolation or extrapolation for the ghost nodes, proposed a method

to enforce the appropriate value of fluid velocity at the wall and recover the value of fluid

pressure using an exact solution of local 1D fluid-structure Riemann problems and demon-

strated it for inviscid moving flow problems Lee et al. used a GFM method for moving

body problems in viscous, incompressible flow and identified two sources of spurious os-

cillations. The first is from the discontinuity in pressure field at grid points located on the

immersed boundary and the second source is from the temporal discontinuity in the velocity

field when a grid changes its state from fluid to solid due to boundary motion. In a later
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work, Lee and You [82] used a fully implicit time integration along with mass source/sink

algorithm so as to address both the sources of oscillations in GFM based methods that were

identified by Lee et al. [74]. Another approach was adopted by Bergmann et al. [83] by

using a penalty correction to impose the right pressure boundary conditions in the GFM and

suppressed the oscillations by using face-centered velocity. They have applied their method

for complex moving geometries in an incompressible medium. Mittal et al. [68] employed

a multi-dimensional ghost-cell methodology, which was shown to simulate incompressible

flow past 3D stationary, moving, as well as deforming bodies. One of the common problem

in all the above studies associated with extending the GFM method to moving boundaries is

the handling of the freshly cleared” nodes, i.e. nodes in the fluid region which were inside

the solid region and got uncovered due to boundary motion [20]. These nodes do not have a

time history of state variables and therefore require interpolation from their neighbors. How-

ever, the interpolation is non-conservative and results in loss of conservation near the moving

boundary which can be amplified for high speed reacting flow problems.

Reacting flow using GFM The literature on using GFM for reacting flow problems is very

sparse with only few reported studies. Deiterding [28] employed a finite volume based GFM

for simulation of shock induced combustion for high speed inviscid flow problems in com-

plex domains. The method is globally second order accurate but locally only first order

accurate.

1.3.2 Cartesian grid based Cut-cell finite volume method

Clarke et al. [52] first introduced the cut-cell method in the context of Cartesian grid meth-

ods for inviscid flow computations. In this method, cells cut by the solid boundary are

reshaped to conform to the shape of the interface. The cut-cell approach is designed to sat-

isfy the underlying conservation laws for the cells near the interface. Strict global and local

conservation of mass, momentum, and energy is guaranteed by resorting to a finite volume
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discretization even for the cut cells. The Cartesian cut-cell finite volume methods [52, 84,

25] are, therefore, in comparison to finite difference ghost cell methods [55, 73], attractive

as they enforce strict conservation and also can avoid generation of spurious pressure fluctu-

ations that are observed typically with ghost fluid methods [85, 20, 86]. Nonetheless, there

are two main problems that are often associated with cut-cell methods. The primary issue is

the presence of very small cells, which results in an excessively small time step in case of an

explicit scheme or a badly conditioned matrix in case of an implicit scheme. The other issue

that often affects cut-cell schemes is the numerical oscillation of pressure and especially wall

shear stress at the boundaries [87].

Several approaches have been suggested in the literature for the small cell problem such

as (a) cell mixing/redistribution [88, 89], approach where the numerical fluxes from the small

cells are mixed with the surrounding cells in a conservative manner, (b) the cell-merging

approach [90, 91], wherein the small cells are physically merged with the neighbor cell to

create a net cell composed of big and small cells, and (c) the cell linking approach [92],

where the small cells are linked with a master neighbor cell to form a master/slave pair.

Among the different approaches for handling the small cell problem, the cell mixing is

the easiest to implement as it does not require any changes to underlying cut-cell data struc-

ture [48]. The cell merging approach [93], on the other hand, require modifications in the

way cut-cells are indexed and stored. Furthermore, the cell merging process introduces new

cell topologies, which can severely complicate the finite volume discretization process [89].

The additional complexity with cell merging approach is in finding the appropriate neighbors

for merging, which is non-trivial in three dimensions [89, 48]. In the cell linking approach,

on the other hand, the cut-cell and the neighbor cell are linked as a master/slave pair, instead

of merging them to form a single cell. The volumetric and surface information of the slave

and master cells remain distinct. Although the cell-linking is well established for 2 D prob-

lems, its extensibility to 3D has not been studied well, where it would be required to link

more than two cells. Moreover, the cell linking as well as merging procedures reduces the
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order of the numerical scheme locally [94]. To the best of authors knowledge, none of the

above small cell treatments have been shown in the past to be more than second-order accu-

rate. Sources of the numerical noise in wall shear stress prediction were later analyzed by

[95] and different near wall modeling solution approaches were suggested. They found that

the numerical oscillations are caused by the presence of irregularities in the stencil spacing

of the numerical grid adjacent to the boundaries and proposed wall models that can result

in smooth reconstruction of wall shear stress. The existing literature studies on applying

cut cell method in addressing different aspects of the application problems of interest are

detailed in the following sections.

Viscous flows using cut-cell: The use of cut-cell method for viscous flows was first intro-

duced by Udaykumar et al. [84] also, there were several other later studies by their group

[65, 96, 90]. An assessment of Cartesian mesh based cut-cell approach for viscous flows is

provided by Coirier and Powell [87]. They concluded that the non-positivity induced by the

cut-cells in wall gradient data based derived quantities, such as skin friction and heat trans-

fer, results in significant numerical noise in the solution although the integrated quantities

such as the drag and lift coefficient agree well with past data. Hartman et al [94, 97, 25]

in a series of papers presented a novel cut-cell method with ghost node implementation for

modeling compressible viscous flows. They employed distance weighted convex averaging

of cell centered gradients to compute surface gradients needed for viscous terms. The second

order overall accuracy of the method was demonstrated for several 2D and 3D test cases for

steady and unsteady flows. However, the accuracy and smoothness of the wall shear stress

prediction using their approach were never demonstrated. Gao [98] extended the cut cell

method to viscous incompressible flows, which was originally developed for inviscid flows,

by Yang et al [14]. Botella and Cheny [99] employed a levelset based cut-cell method to

solve incompressible viscous flows. Their method was based on symmetry preserving finite

volume discretization. However, the only 2D studies were reported in the paper and applica-
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bility of the approach for 3D flows is not clear. All the above studies except for Coirier and

Powell [87] only report on the global integrated quantities such as drag and lift coefficient

and do not look into surface shear stress distribution.

Turbulence modeling using cut-cell: To date, there have been only a few reported works on

modeling turbulence using the cut-cell Cartesian method. Meyer [100] developed a conser-

vative second order accurate immersed interface method suitable for LES of high Reynolds

number incompressible flows. However, an implicit LES approach in the capacity of ALDM

approach was employed for the turbulence closure. Essentially, the numerical dissipation of

the scheme was assumed to mimic the physical dissipation due to action of small scale unre-

solved turbulence. In a recent article, Berger and Aftosmis [95] extensively analyzed mod-

eling of steady viscous compressible flows using Cartesian cut cell finite volume method.

They explored the use of wall models for laminar and turbulent flows to suppress numerical

oscillations in the second derivatives used for viscous flux computations.

Moving boundaries using cut cell: There have been a limited number of studies reported

on applying the cut-cell method to moving boundaries. Yang and Causon [101, 102], in

a series of two papers, described a Cartesian cut cell method applicable to compressible

inviscid flows around stationary and moving bodies. A unique feature of their method is

the use of cell merging technique to address both the issues of time step restriction due

to small cells and the problem of ”freshly-cleared” cells. The approach adopted was to

use the cell merging technique to populate the flow state variables in cells that are exposed

due to interface motion. The only caveat was that the surface was not allowed to sweep

across more than one local cell width thereby restricting the time step. Hu and Khoo [48]

employed a level set description for the interface and a mixing procedure to circumvent

the time step restriction for the small cells to solve for flow around moving boundaries.

The interface conditions for the boundary points are obtained using an interface interaction
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method [103]. Schneiders et al. [50, 104] extended the work done by Hartmann et al. [25] to

moving boundaries. They employed a variant of the flux redistribution technique previously

developed by Pember et al. [105] for handling the small cell problem. The blending of a

stable non-conservative update based on interpolation, with an unstable conservative update

based on time integration, was done to achieve stability of the small cells and achieve a

smooth temporal variation of surface forces on the boundary. The mass deficit/surplus due

to the non-conservative update is distributed to the neighboring cells. However, the effect of

flux distribution on the accuracy of the surface shear stress predictions was not discussed.

Moreover, the cases demonstrated were mostly restricted to bodies moving at low subsonic

velocities. The capability of the method to handle large displacements at high speed was not

addressed.

1.4 Summary of the existing numerical capabilities

A summary of various techniques with respect to the grid generation for complex and moving

boundaries are listed in Table. 1.1 and the key features comparing the two main EB methods

are provided in Table.1.2. Overall, the highlights of the existing numerical capabilities are

summarized in the following points:

Based on survey of existing approaches, an overview of the different solver schemes

that are used to simulate moving boundary problems by overcoming some of the associated

challenges (highlighted earlier), is shown in Fig. 1.3. Although there are several approaches

used in the past for the class of problems mentioned earlier, the discussion in this thesis is

restricted to the most popular approaches that apply to viscous, high Reynolds number, high

speed reacting flow problems.

- Among the three numerical solver schemes, only the Cartesian cut-cell method and

GFM IB method can perform automatic mesh generation for complex and moving

boundaries. Other body-conforming approaches have limitations when employed for

moving boundary problems.
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Table 1.2: Comparison of embedded boundary methods
Feature Ghost cell Cut cell
a) Discretization scheme finite difference finite volume
b) Conservative property no yes
c) Enforcing boundary conditions using ghost nodes modifying the stencil
d) Time step restriction no yes, via small cell volume
e) Main challenge spurious numerical oscil-

lations near boundaries
esp. for viscous flows

small cell treatment, nu-
merical noise in near wall
solution

f) Studies on viscous flows [17],[59], [16],[75], [77],
[79]

[84],[65],[96],
[87],[14],[99], [100],
[95]

g) Studies on moving bodies [62][63],[80],[81]
[106],[82],[20] [83][80]

[101][102],[48], [103],
[50],[104], [25], [105]

h) Studies on reacting flows with
moving bodies

[28] [107]

Figure 1.3: Block diagram summarizing different approaches to solve moving body prob-
lems involving complex geometries
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- Between the embedded boundary approaches, the GFM IB methods are not conserva-

tive and can produce spurious numerical oscillations due to mass loss issues. The loss

of conservation becomes more severe for moving boundaries when employing GFM

techniques.

- Although the cut cell method, ensures strict conservation, it also has problems in en-

suring a robust treatment for small cells and, a noise free reconstruction of wall shear

stress. The cell-merging and the cell-linking algorithms reported in the literature for

small cell treatment have been demonstrated for mostly simple geometries. Extension

to complex 3D geometries is not well studied.

- Only very few studies have been reported for reacting flow problems using embedded

boundary approaches although there are several engineering applications that can be

mathematically modeled using such a capability.

- All the methods reported are utmost globally second order accurate and in some cases

the accuracy reduces to first order near immersed boundaries.

1.5 Thesis objectives

The long term application problems that are of interest in this thesis involve high speed,

reacting and turbulent flows over/through complex geometries, which may be having either

static or moving boundary. A successful strategy for the simulation these problems must ad-

dress both the numerical scheme and model development aspects. The existing approaches

are either not robust or inaccurate when dealing these class of problems (i.e., moving bound-

aries). Other issues related to the past approaches such as numerical artifacts at the boundary

and loss of conservation have to be resolved. The desired properties of the proposed strategy

are summarized below:

- Ability to perform local mesh refinement - Adequate grid resolution is needed without

huge cost overhead and without compromising the accuracy of the simulation
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- Robustness of the method when dealing with complex and moving boundaries- The

method must be applicable to practical geometries with narrow gaps and sharp edges

- High-order of accuracy near embedded boundaries - Uniform accuracy required both

at the boundaries and in the interior especially for turbulent flows.

- Have good conservation properties - required when the problem involves compressible

effects such as shocks and detonations

- Be time accurate - To resolve the highly transient flow physics involved in reacting flow

moving boundary problems

- Be flexible to incorporate sub-grid closures in the context of LES - The numerical

schemes must be able to work efficiently with minimal changes to existing LES subgrid

closures

The overarching goal of this thesis is thus to develop the required numerical and model

framework, with all the above properties as well as subgrid closures that are required for

LES of turbulent reacting high speed flow problems in complex geometries with station-

ary/moving boundaries. A block diagram including the workflow between the different com-

ponents of the proposed numerical framework is illustrated in Fig.1.4. The specific technical

objectives for this thesis, the justifications and the associated tasks are detailed below.

1.5.1 Development of numerical approach for simulation of moving boundary reacting

flow problems

The major contribution of the thesis is a numerical framework for performing adaptive multi-

scale simulations with a high order strictly conservative embedded boundary method. To this

end, several approaches were identified based on extensive survey of past literature. Abil-

ity to perform local mesh refinement for increased accuracy at manageable overall cost is

identified as one of the requirement for simulation of application problems of interest. To
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Figure 1.4: Workflow between the different components of the proposed numerical frame-
work

resolve stationary and moving boundaries, a high-order (greater than second order) method

that is strictly conservative and can provide accurate results for compressible viscous flow

problems is also required since viscous effects are significant in many application problems.

To address the above requirements, the two major numerical techniques that are developed

are the capability to perform block structured adaptive mesh refinement and treatment of

embedded boundaries using a high-order cut-cell approach. The specific tasks under this

objective are discussed below:

- Adaptive Mesh Refinement strategy using a block structured approach is developed

by interfacing an in-house high fidelity compressible flow solver, LESLIE [37] with

BoxLib, [31] an open source massively parallel library developed at Lawrence Berkley

National Lab (LBNL) to address the computational needs of the problems of inter-

est. As LESLIE is a block structured compressible flow solver, using block-structured

AMR to perform refinement is determined to be more appropriate and efficient. New
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interfacing algorithms for synchronizing communication between BoxLib and LESLIE

are developed. The algorithm and methodology used are generalized so that they apply

to interfacing any generic multi-block structured code and a library for block structured

refinement.

- A high order accurate cut-cell method that can deal with complex geometries involv-

ing moving boundaries is developed. The method is demonstrated to achieve fourth

order accuracy for inviscid flow problems, third order accuracy for viscous flow prob-

lems. For moving boundaries, the method is second order accurate. The cut-cell em-

bedded boundary approach also involved developing cell clustering algorithm, a new

”small cell” treatment that can preserve the order of accuracy at the boundaries, both

when the body is stationary as well as during its movement. The ”small cell” treat-

ment also robustly handles complex boundaries with narrow gaps, sharp edges, etc.

The method also ensures noise free reconstruction of skin friction coefficient and heat

transfer rate, which is critical for the accurate prediction of various physics related to

near-wall effects. Some other notable aspects of the approach are: a robust neighbor

finding algorithm for the cell clustering approach (that works with complex geomet-

rical features such as narrow gaps, sharpe edges, etc.), extension of the small cell

algorithm to enforce strict conservation for moving boundaries and ability to achieve

arbitrary orders of accuracy.

- Verification and validation of AMR/cut-cell approach are performed extensively

with various appropriately designed canonical test cases. The accuracy of the pro-

posed cut-cell method is verified for both static and moving boundary problems. The

accuracy and the cost effectiveness of the AMR framework is demonstrated by study-

ing various 2D and 3D test cases.
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1.5.2 Development of sub-grid closures for turbulent reacting flow in the presence of local

refinement and embedded boundaries

The numerical framework that is developed (as part of the previous objective) also requires

consistent subgrid closures, as most of the existing sub-grid closures that are designed for

body conformal approaches and single level grids, can not be directly applied. As the cut-

cell method introduces irregularities in the stencil at the wall of the boundaries, the sub-

grid closures have be modified so that it can be applied to the new stencil. In addition, the

deployment of AMR introduces multi-levels of refined meshes. Therefore, corrections to the

sub-grid closures are developed so that the closures are consistent and applicable across the

various mesh levels. In specific, the focus of the model development are:

- A multi-level subgrid closure is developed and validated by extending the existing

one equation subgrid kinetic energy closure [37] for AMR/cut-cell approach (hence-

forth called as Cut-cell/AMRLES).

- A multi-level reaction rate based closure for reacting flows is also developed and

demonstrated by extending the existing Linear Eddy Model (LEM)[108] for LES of

turbulent reacting flow when used with AMR/cut-cell approach (henceforth called as

multi-level RRLES)

1.5.3 Application studies involving high speed turbulent reacting flow problems with

complex/moving geometries

The developed framework is applied to some chosen applications of interest. Three ap-

plication studies are performed, each focusing and making use of multiple aspects of the

developed numerical framework.

• Interaction of turbulence with stationary and propagating shocks is investigated,

which is of fundamental interest in many high-speed applications. Two configurations

are chosen for the study: the canonical problem of a planar shock interacting with a
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isotropic turbulence with different Reynolds numbers and a Taylor blast interacting

with ambient isotropic turbulence. In these studies, both DNS and LES studies are

performed with the AMR based code. AMRLES is used to accurately capture statis-

tically stationary and propagating shocks. For the shock turbulence interaction study,

DNS is performed to assess the accuracy of the AMR approach in handling turbulent

flow. LES of the same configurations is performed to highlight multi-level closure

performance and study the dynamical behavior of closure model across refinement

interfaces. The LES study is then extended to analyze interaction of a strong Taylor

blast wave with surrounding isotropic turbulence. Comparison with past studies are

also used for validation.

• Flame interaction with turbulence in simple and complex configurations are stud-

ied, where the cut-cell/AMR along with the developed sub-grid closures for both flow

and reaction chemistry are also utilized. The multi-level closure for chemistry is vali-

dated for a canonical configuration of a freely propagating flame interacting with de-

caying turbulence. Flame anchoring mechanism in a reacting transverse jet in a cross

flow (JICF) are investigated using LES at different jet/crossflow velocity ratios where

the cut-cell method is used for resolving the jet inflow pipe and bottom wall boundary.

These cases are chosen sine previous data from experiments exists for comparison.

• Detonation initiation and stabilization by moving projectiles are investigated as an

application involving moving bodies. The problem of detonation initiation by projec-

tiles moving at hypersonic speed is of fundamental interest in hypersonic propulsion

systems. In this study, cut-cell the method is deployed for the moving body along

with dynamic mesh refinement using AMR. The different modes of combustion and

the effect of pressure on these modes are analyzed to understand the physical mecha-

nisms behind the detonation stabilization. Comparison with experimental data is used

to demonstrate the accuracy of the proposed method.
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All of the application problems are chosen carefully so as to represent best the various

flow characteristics encountered in practical engineering devices. The studies also provide

some insight into the various physics related questions that remains to be answered in the

above class of problems.

1.6 Thesis organization

The organization of the thesis is as follows. In Chapter 2, the governing equations and math-

ematical formulation employed for all the numerical simulations presented in this thesis are

described. The integration of an external open source library with the inhouse CFD solver to

perform block structured adaptive mesh refinement is described and appropriate validation

cases are provided in Chapter 3. The high-order cut-cell based embedded boundary method

to handle static/moving or deforming boundaries is then introduced in Chapter 4. The algo-

rithm to handle the ”small cell” problems common to all cut-cell techniques is also described

in this chapter. In addition, the verification and validation of the cut-cell embedded bound-

ary method are discussed by studying several test cases. The details of a new multi-level

subgrid closure for flow based on the one equation based subgrid scale kinetic energy model

is described in Chapter 5. The proposed closure is investigated for several test cases with

local mesh refinement and embedded boundaries handled using the cut-cell approach in the

same chapter. In Chapter 6, an extension of the Linear Eddy Model (LEM) to AMR grids is

proposed and assessment of the closure is performed for the problem of a freely propagating

flame interacting with isotropic turbulence. The application AMR to the canonical problem

of shock-turbulence interaction and blast turbulence interaction is performed in Chapter 7.

In the next Chapter, 8, the problem of a reacting jet in cross flow is studied using the com-

bination of the cut-cell method and AMR. Finally, detonation initiation by hypervelocity

projectiles is presented in Chapter 9. Conclusion emphasizing the contributions of this thesis

and directions for the future research and recommendations for extending current capabilities

are summarized in the final Chapter 10.
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CHAPTER 2

GOVERNING EQUATIONS AND MATHEMATICAL FORMULATION

In this chapter, the governing equations used for simulation of all the problems relevant to

this thesis and the details of closure modeling for LES of reacting flow problems are first

discussed. The mathematical formulation used for discretization of the governing equations

and numerical approaches employed for evaluation of the fluxes are then described.

2.1 Governing equations

Multi-component, reacting, compressible Navier-Stokes equations are solved in both the un-

filtered form without employing any closure models and with the filtered form with subgrid

closure models for LES to obtain the various results reported in this thesis. These equations

are described along with the various associated sub-classes of equations and models in the

following sections.

2.1.1 Unfiltered Navier-Stokes equation

The compressible Navier-Stokes equations in its conservative form are given by:

∂U
∂t

+
∂Finv,i

∂xi
+
∂Fvis,i

∂xi
= Q, i = 1, 2, 3, (2.1)

where U is the vector of conservative variables U = [ρ, ρu1, ρu2, ρu3, ρE, ρYk]
T with

ρ being the density, ui denoting the velocity components, p denoting the pressure, E being

the total energy per unit mass defined as the sum of internal energy, e and kinetic energy:

E =
1

2
uiui + e. (2.2)
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The internal energy of a multicomponent system is defined as:

e =
Ns∑
k=1

Ykek, (2.3)

where ek and Yk are sensible energy and the mass fraction of the kth species, respectively. In

Eq. (2.1), Finv,i, Fvis,i and Q are the vectors of the inviscid, viscous fluxes and source terms,

respectively in the ith direction and are given as follows:

Finv,i =



ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

(ρE + p)ui

ρuiYk


,Fvis,i = −



0

τi1

τi2

τi3

ujτij − qi
YkVi,k


, and Q =



0

0

0

0

0

ω̇k


, (2.4)

where ω̇k is the mass production rate of kth species, τij and qi are the stress tensor and

the heat flux vector respectively, and Vi,k is the diffusion velocity for the kth species. The

inviscid and viscous flux vectors are identified separately to facilitate the discussion of nu-

merical procedures associated to compute these fluxes. The different terms in Eq. (2.1) will

be described in more detail as follows:

Equation of state

The equation of state for a thermally perfect gas is given by:

P = ρRT, (2.5)
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with R being the mixture gas constant defined as:

R = Ru

Ns∑
k

Yk
MWk

. (2.6)

In Eq. (2.6), Ru is the universal gas constant expressed in per mole and MWk is the molec-

ular weight of the kth species. Based on the equation of state defined by Eq. (2.6), for a

thermally perfect gas, the sensible energy of kth species and thus the total internal energy

of the mixture can be shown to be strictly a function of temperature only and is given as

follows:

e = ρ
Ns∑
k=1

Ykek = ρ
Ns∑
k=1

Yk

(
e0
k +

∫ T

T0

cv,k(T
′)dT ′

)
, (2.7)

where cv,k(T ) is the specific heat at constant volume of kth species, which is a function

of Temperature T . and e0
k is the reference energy of the species k evaluated at temperature

T0. In many of the thermodynamic databases, polynomial curve fits are available for the

specific heat at constant pressure , cp,k(T ). This motivates rewriting Eq. (2.7) in terms of the

sensible enthalpy of the species, which is a function of cp,k(T ). This is done by using the

state relation, e = h + p/ρ where h is the sensible enthalpy of the mixture. The sensible

enthalpy of kth species is given the following equation:

hk = h0
k +

∫ T

T0

cp,k(T
′)dT ′, (2.8)

where k0
k is the sensible enthalpy at reference temperature T0 for species k. The specific heat

at constant volume (cv,k) and constant pressure (cp,k) are related by:

cp,k = cv,k +
Ru

MWk

. (2.9)
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Using Eqs. (2.8) and (2.9), the thermodynamic state of the mixture is completely defined

along with the equation of state if the cp,k of each species k is known.

Viscous stress tensor

In this work, the fluid is assumed to be Newtonian and accordingly the viscous stress tensor

is expressed as:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij, (2.10)

where µ is the kinematic viscosity, λ is the bulk viscosity and δij is the Kronecker delta

function given as:

δij =


1 if i = j

0 otherwise.
(2.11)

The value of bulk viscosity is set as λ = −2/3µ following Stoke’s hypothesis which states

that the sum of normal viscous stresses is zero i.e., the trace of stress tensor is zero. This as-

sumption generally holds in practice for a wide range flows and is used for all the simulations

in this study. The stress tensor can then be written as:

τij = 2µ (Sij − 2/3δijSll) (2.12)

where Sij = 1/2
(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate tensor. For all the non-reacting cases, the

kinematic viscosity which is a function of temperature only is computed using a power-law

of the form:

µ = µ0

(
T

T 0

)n
, (2.13)
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where µ0 and T0 are the reference values and n is the power law exponent. For reacting

case studies, the viscosity is a function of both temperature and mixture composition and

computed using mixture-averaged rules

Heat flux vector

The heat flux vector, qi, present in the energy equation, can be given using the Fourier’s

law of heat conduction and also from the contribution to sensible enthalpy due to species

diffusion:

qi = −κ ∂T
∂xi

+ ρ
Ns∑
k=1

hkYkVi,k, (2.14)

where κ is the thermal conductivity, µ is dynamic viscosity, hk is the specific enthalpy and

Vi,k is the diffusion velocity for the kth species. Similar to the dynamic viscosity, κ can be

computed using a power law expression or from mixture averaged formulation. A common

practice is to relate µ and κ using a non-dimensional number known as Prandtl number (Pr)

as follows:

Pr =
Cpµ

κ
, (2.15)

and is assumed to be Pr = 0.7 for non-reacting cases and Pr = 0.72 for the reacting cases.

Species diffusion velocity

The diffusion velocity, Vi,k is modeled using Fickian diffusion approximation as:

Vi,k = −Dk
1

Xk

∂Xk

∂xi
+

1

W

Ns∑
k=1

DkWk
∂Xk

∂xi
, (2.16)
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where W is the mixture molecular weight, Dk and Xk are the diffusion coefficient and the

mole fraction of the kth species, respectively. Soret effects are neglected in the above model.

Note that the above formulation satisfies the condition
∑
Vi,k = 0 without which the mass

conservation would be violated. For the reacting cases reported in this thesis, Vi,k is com-

puted using the mixture averaged formulation.

2.1.2 Filtered Navier-Stokes equation for LES

The Navier-Stokes equations can be solved using DNS in which the complete range of scales

of motions are resolved. The computational cost of DNS, however can go up significantly

especially for turbulent flows. Through simple dimensional analysis, it can be shown that

the number of degrees of freedom in space and time required for a DNS is related to the flow

Reynolds number as [109]:

l

η
= Re

3/4
l , (2.17)

τl
τη

= Re
2/4
l . (2.18)

where l is the integral length scale, η is the Kolmogrov length scale, τl and τη are the in-

tegral and Kolmogrov time scales, respectively and Rel is the Reynolds number based on

the integral length scale. The number of points N required to resolve η and l is given by

N = l
η
. The total number of points required in 3D is N3 and scales as Re9/4

l . The number

of time steps required to resolve an integral time scale scales as Nt = Re
2/4
l . Therefore

the total cost of the simulation which involves solving N3 points for Nt time steps would

scale as N3 × Nt = Re
11/4
l . It can be seen that the cost grows roughly cubically with

Reynolds number. For practical flows, which are generally at high Reynolds numbers, the

cost becomes prohibitively high. The alternative is to employ Large Eddy Simulation (LES)

strategy in which only the most energy containing scales of motion are resolved by the nu-

merical discretization. The effect of unresolved small scales motion on the represented scales
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is modeled using subgrid closures.

The basic idea behind LES is to perform a spatial filtering operation and decompose the

flow variables into the resolved and subgrid scales. For any flow variable, φ the filtering

operation results in:

φ = φ+ φ′′. (2.19)

In Eq. (2.19), φ is the resolved part and φ′′ represents the unresolved subgrid part. The

separation of the resolved and unresolved scales is done by applying a filtering operator, G

over the numerical domain, Ω:

φ(x) =

∫
Ω

G(x− x′)φ(x′)dx′, (2.20)

where x and x′ are position vectors. The filtering operation G is often expressed a product of

one dimensional filter kernels performed over the three coordinate directions:

G(x′) =
3∏
i=1

g(xi − xi′)). (2.21)

The one-dimensional filter kernel takes the following for a box-filter:

g(xi − xi′) =


1/∆i if |x− xi′| < ∆i/2

0 otherwise.
(2.22)

The filter width, ∆ size in three dimensions can be notionally considered as:

∆ = (∆1∆2∆3)1/3. (2.23)

It has to be noted that for LES without an explicit filtering, the numerical grid acts as the filter

and the filter width is same as the local grid size. For compressible and variable density flows,
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a more convenient form of density weighted filtering known as Favre filtering is performed

on the flow variables as follows:

φ̃ =
ρφ

ρ
. (2.24)

After Favre filtering, the compressible, multicomponent N-S equations, has the following

form:

∂

∂t



ρ

ρũj

ρẼ

ρỸk


+

∂

∂xj



ρũi

ρũiũj + pδij − τ̃ij + τ sgsij

(ρẼ + p)ũj − ũiτ̃ij + qj +Hsgs
j + σsgsj

ρũjỸk − ỸkṼj,k + Y sgs
j,k + θsgsj,k


=



0

0

0

ω̇k


. (2.25)

The total resolved energy, Ẽ is the sum of filtered internal energy, resolved kinetic energy

and subgrid kinetic energy, ksgs:

Ẽ = ẽ+
1

2
ũiũi + ksgs, (2.26)

with the subgrid kinetic energy defined as:

ksgs =
1

2
ũiui − ũiũi. (2.27)

The filtered equation of state for a thermally perfect gas is:

p = ρ
(
R̃T̃ + T sgs

)
, (2.28)

where R̃ is the mixture gas constant and is given as:

R̃ =
Ns∑
k=1

Ỹk
Ru

Wk

. (2.29)
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The filtered viscous stress tensor, τ ij , and the filtered heat-flux vector, qi are modeled as:

τ ij = 2µ(T̃ )

(
S̃ij −

1

3
S̃kkδij

)
, (2.30)

qi = −κ(T̃ )
∂T̃

∂xi
+ ρ

NS∑
k=1

h̃kỸkṼi,k +

NS∑
k=1

qsgs
i,k . (2.31)

Here, S̃ij is the resolved rate of strain, given as:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.32)

Finally, Ṽi,k is the filtered diffusion velocity for the kth species, and is modeled as

Ṽi,k = −Dk
1

X̃k

∂X̃k

∂xi
+

1

W

Ns∑
k=1

DkWk
∂Xk

∂xi
. (2.33)

In the above equations, all the subgrid-scale terms, indicated with a sgs superscript, are

unclosed, and therefore, require modeling. These terms are summarized below:

τ sgs
ij = ρ (ũiuj − ũiũj) , (2.34)

Hsgs
i = ρ

(
Ẽui − Ẽũi

)
+
(
uiP − ũiP̄

)
, (2.35)

σsgs
i = (ujτij − ũjτ ij) , (2.36)

Y sgs
i,k = ρ

(
ũiYk − ũiỸk

)
, (2.37)

θsgs
i,k = ρ

(
Ṽi,kYk − Ṽi,kỸk

)
, (2.38)

qsgs
i,k = ρ

(
˜hkYkVi,k − h̃kỸkṼi,k

)
, (2.39)

T sgs = R̃T − R̃T̃ , (2.40)

Esgs
k = ˜Ykek(T )− Ỹkek(T̃ ) (2.41)

Models for τ sgsij , Hsgs
i , σsgsi , Y sgs

i,k , θsgsi , and ω̇k are presented in the next section. The
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other terms, Esgs
k , T sgs, and qsgsi are neglected based on a previous study [110].

The subgrid model used in this thesis is based on a past work by Kim and Menon [111]

and a compressible form of the same subgrid closure later extended by Genin and Menon

[37]. The model is based on solving for the evolution of the subgrid turbulent kinetic en-

ergy ksgs. The details of closure model for the base case without any AMR refinement are

explained in this section. The extension of the model to handle block adaptive mesh refine-

ment and embedded boundaries is discussed later in chapters 5 and 6.

The sgs subgrid terms in the momentum equations are closed by employing the Bousi-

nessq eddy viscosity assumption which postulates that the momentum transfer due to action

of turbulent eddies is analogous to that caused by molecular viscosity. Accordingly, the eddy

viscosity and the subgrid stress tensor are modeled as:

νt = Cν
√
ksgs∆, (2.42)

τ sgs
ij = −2ρνt

(
S̃ij −

1

3
S̃kkδij

)
+

2

3
ksgsδij, (2.43)

where ∆ is the grid filter width set same as the local grid size. the two unclosed terms in the

energy equation, Hsgs
i and σsgs

i are modeled together as[37]:

Hsgs
i + σsgs

i = (ρνt + µ)
∂ksgs

∂xi
+
ρνtcp
Prt

∂T̃

∂xi
+ ũjτ

sgs
ij . (2.44)

The subgrid kinetic energy, ksgs is obtained by solving a transport equation for its evolution:

∂ρ̄ksgs

∂t
+

∂

∂xi
(ρ̄ũik

sgs) = Tksgs + pdksgs + Pksgs −Dksgs , (2.45)

where Tksgs denotes the transport of ksgs due to diffusion effects, pdksgs is the pressure di-

latation correlation, Pksgs is the subgrid kinetic energy production and Dksgs is the subgrid

kinetic energy dissipation. The closure formulation of the each of these terms are summa-
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rized below:

Tksgs =
∂

∂xi

[
(ρνt + µ)

∂ksgs

∂xi
+
ρνtR̃

Prt

∂T̃

∂xi

]
, (2.46)

pdksgs = αpdM
sgs
t

2

(
ρS̃ksgs

Dsgs

)2

(Pksgs −Dksgs) , (2.47)

Pksgs = τ sgsij S̃ij, (2.48)

Dksgs = ρCε (ksgs)3/2 /∆. (2.49)

In Eq. (2.45), the pressure dilatation term pdksgs which is a model for effect pressure fluc-

tuations on the subgrid kinetic energy production is relevant only for flows with significant

compressibility effects i.e. Mt > 0.1. where Mt is the turbulent Mach number given by

Mt =
√
q/c with q = ũiũi and C is the filtered speed of sound. Similarly the diffusion of

the ksgs due to temperature gradients in Tksgs is also negligible for low speed flows.

The coefficients Cν and Cε can be computed using a local dynamic approach originally

developed by Kim and Menon [111]. Extension of the dynamic approach for determining

compressibility corrections terms Prt and αpd was then later performed by Genin and Menon

[37].

2.2 Mathematical formulation

2.2.1 Finite volume approach for moving boundary problems

The finite volume scheme is described for the unfiltered multi-component compressible

Navier-Stokes (N-S) equation without loss of any generality. The same procedure applies

for the filtered N-S equations with appropriate modifications to include the sgs terms. The

N-S governing equations are discretized using the finite volume formulation based on the

integral form of Eq. (2.1) over a control volume V (t) whose boundary surfaces are moving
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with a velocity us. For a moving reference frame, using the Reynolds Transport theorem:

∫
v(t)

∂

∂t
Udv =

∂

∂t

∫
v(t)

Udv +

∫
s(t)

Fs(U) · nds, (2.50)

where Fs is the flux due to the boundary motion. Reformulating the above equation using

Eq. (2.1) results in:

∂

∂t

∫
v(t)

Udv +

∫
s(t)

(Finv(U) + Fvis(U)) · nds =

∫
v(t)

Qdv. (2.51)

The inviscid flux function Finv is modified taking into account Fs(U) and therefore is in terms

of the contra-variant velocity vector, v = u−us, where us is the surface velocity vector. The

complete flux formulation for Finv for moving control volume is:

Finv,i =



ρ(ui − us,i)

ρ(ui − us,i)u1 + pδi1

ρ(ui − us,i)u2 + pδi2

ρ(ui − us,i)u3 + pδi3

(ρE + p)(ui − us,i) + pus,i

ρ(ui − us,i)Yk


, (2.52)

where us,i is the velocity of the boundary surface, S(t) of the control volume V (t) in ith

direction. Note that the background Cartesian mesh is always stationary, even in the case of

a moving boundary, therefore us = 0 at all the regular cell faces. However, at the boundary

surface us is nonzero and is the velocity vector of the moving boundary. The only change in

flux evaluation of moving boundary problems is restricted to the inviscid part. The viscous

and the source term formulation remain invariant in a moving reference frame.

Applying volume averaging of the Eq. (2.51) over a computational cell with a volume

V and discretely approximating the surface integral over the surface Γ of the computational
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cell would result in the following semi-discrete form:

∂

∂t
(V U) =

(
M∑
m=1

ng∑
l=1

wlFinv(U) · n +
M∑
m=1

ng∑
l=1

wlFvis(U) · n
)
, (2.53)

where

U =
1

V

∫
v

UdV, (2.54)

represents the volume average of a conservative quantity U = (ρ, ρui, E) in the computa-

tional cell (i, j, k). Here M , wl, and ng denote the face number, quadrature weights and

the number of quadrature points used for flux integration along each of the M faces with a

unit normal vector n, respectively. The finite volume scheme described is applied to both

the regular Cartesian cells and also for partially cell partially cut by the solid embedded

boundaries.

A sketch of a normal cell and a cut-cell in two-dimensions with the relevant parameters

used in Eq. (2.53) is shown in Fig. 2.1. To evaluate the inviscid and viscous fluxes, Mac-

Figure 2.1: Schematic of a (a) 2D normal cell and (b) 2D cut-cell.

Cormack’s predictor-corrector [112] method is employed on full cells away from the embed-

ded boundaries. The finite volume version of the MacCormacks method couples the time and

39



spatial integration schemes. First order or second order extrapolation of cell-averaged values

that alternates between the downwind and the upwind direction at each step is performed

to compute the fluxes on the cell faces. This results in a second-order accurate scheme in

both time and space. A higher order extrapolation can increase the accuracy of the scheme

to fourth order. For cut-cells, an alternative formulation is used for computing the fluxes and

is described below.

2.2.2 Inviscid flux evaluation

The inviscid flux Finv at each cell interface is evaluated as the solution of a local Riemann

problem with the initial discontinuous data defined by the left and the right reconstructed

states UL and UR [113], and is given as:

Finv(U) · n = finv(UL,UR,n), (2.55)

where finv is the solution to the Riemann problem in the direction defined by the surface

normal n. In this work, Hartmann-Lax-VanLeer family of approximate Riemann solvers

(HLL and HLLC) [113] are employed to solve the Riemann problem. The left and the right

solution states, UL and UR, are reconstructed based on a k-exact higher order piecewise

polynomial approximation of U described in more detail in Section 4.1.1. For a k-order

exact reconstruction, a (k+1)-order accurate spatial discretization is achieved for smooth

hyperbolic problems [114].

2.2.3 Viscous flux evaluation

The viscous flux Fvis in the direction n at each cell interface m, is computed from the cell

interface values of the conservative state U and its gradient∇U, and can be defined in terms

of the viscous flux function fvis as:

Fvis(U) · n = fvis(U,∇U,n). (2.56)
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Both the cell interface solution, U and its gradient∇U, must be known for evaluating the

viscous flux function fvis. As detailed in Ivan and Groth [114], an unlimited, cell centered, k-

exact, higher order polynomial reconstruction is employed to obtain U and its gradient∇U is

obtained from the direct differentiation of the k-exact polynomial. Overall, the viscous flux

evaluation is k-order accurate for a k-order polynomial reconstruction. Thus, for example,

for k=3, the proposed scheme is fourth order accurate for inviscid fluxes and third order

accurate for viscous fluxes. A stable central scheme results by taking average of the left

and the right reconstructed states, UL,UR, and their gradients,∇UL,∇UR for evaluating the

viscous flux at the cell interface [114].

The number of Gauss quadrature point, ng, employed for the integration of the numerical

fluxes at each cell interface is selected to match the order of reconstruction. In general, a

ng point Gauss quadrature rule yields an exact result for a polynomial of degree 2ng − 1.

Accordingly, a single quadrature point (ng = 1) is used for quadratic reconstruction and two

quadrature points (ng=2) are employed for cubic reconstruction.
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CHAPTER 3

BLOCK STRUCTURED ADAPTIVE MESH REFINEMENT

The implementation and validation of block structured Adaptive Mesh Refinement into a

multi-block CFD solver, are discussed in this chapter. Some basic concepts of block struc-

tured refinement are first described. The details of interfacing an AMR library with a multi-

block structured CFD solver is then discussed. Results for several validation cases are re-

ported to demonstrate the computational efficiency and accuracy of performing block struc-

tured AMR.

3.1 Basic concepts of block structured AMR

To facilitate the further discussion of various AMR related scheme and model development

implemented in this thesis, some of the basic concepts of block structured refinement are

discussed and appropriate notations are provided in this section. To simplify the discussion,

the notations are developed assuming a two dimensional coordinate system. Extension to

the three dimensions is quite direct and the overall hierarchical grid index system developed

here is used later for discussion of three dimensional scheme and model development. The

basic concept of patch based AMR and the notations developed are described through the

schematics Fig. 3.1 and Fig. 3.2.

The numerical domain is given is denoted asD and is a represented by a block structured

AMR grid, G. The grid is comprised by various subgrids Gl at different refinement levels,

l = 1, 2, 3, ...NLmax. In mathematical notation this is given by:

G := Gl : l ∈ N, 1 ≤ l ≤ NLmax. (3.1)
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(a) (b)

Figure 3.1: Schematic of block based refinement for a front (a) flattened view (b) hierarchical
view.

Figure 3.2: Schematic for AMR nomenclature and different data operations.
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At each refinement level, the subgridsGl is a union of blocksGl,m wherem = 1, 2, ..,Ml

with Ml being the number of blocks at level, l. Accordingly,

Gl :=

Ml⋃
m

Gl,m. (3.2)

An additional constraint is implied on the block structured grid topology which is the nest-

edness of the various levels which requires:

Gl ⊆ Gl−1. (3.3)

The implication of Eq. (3.3) is that a grid level, Gl is wholly contained by its immediately

coarser grid level, Gl−1. Proper nesting makes sure all the cells of a finer level, l are com-

pletely covered by the cells of all the coarser levels from 1 to l − 1. This ensures all the

internal cells of level l can only be adjacent to all the internal cells in level l − 1 and l + 1.

Properly nested block structured topology is strictly required for correctness of interpola-

tion of flow solution between various levels. Additionally grid blocks of a subgrid at certain

refinement level are non-overlapping, adjacent but may not be contiguous.

The size of each grid level, Gl defined in terms of number of cells in each direction,

(Nil, Njl), can be determined from the base grid resolution as:

(Nil, Njl) = (rl−1Ni1, r
l−1Nj1), (3.4)

where r is the refinement ratio between two successive refinement levels and (Ni1, Nj1)

is the base grid resolution. In this work, unless mentioned, all the simulations employ a

refinement ratio of r = 2. Each grid block, Gl,m can be uniquely identified with a global

index given by:

N(Gl,m) =
l−1∑
k=1

Mk +m (3.5)
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The computational index extents of a grid level can be determined given the size of the grid

level:

CGl = {(i, j) : 0 ≤ i < Nil, 0 ≤ j < Njl}. (3.6)

The co-ordinate system defined in Eq. (3.6) is used to index all the cells contained by grid

level, Gl. The computational indexing of each of the grid block Gl,m requires the starting

index in the CGl coordinate system. and the size of each of grid block (Nil,m, Njl,m). A

size distribution of the all the blocks in the level is denoted by:

S(Gl) = {(Nil,k, Njl,k) : k = 1, 2, ..,Ml},
Ml∑
k

Nil,k ≤ Nil and

Ml∑
k

Njl,k ≤ Njl. (3.7)

The size distribution for a level, S(Gl) is constrained by three inputs: MAX SIZE,Cl width

and Cl fac. These inputs are the maximum number of cells allowed for a grid block, the

minimum width of the grid block in any direction and the factor with the sizes must exist

i.e. Nil,m, Njl,m = i × Cl fac, j × Cl fac : i, j ∈ N . Another input that determine the

distribution of the blocks on a certain refinement level is the tagging criteria:

T (Gl) = {(itag, jtag) : 0 ≤ itag < Nil, 0 ≤ jtag < Njl}. (3.8)

The tagging criteria T (Gl) is provided in terms of a distribution of coordinate indices which

are marked for refinement. Based on the T (Gl) and S(Gl), the number and size of grid blocks

in a certain level are determined. Once these two parameters are known, the individual block

identity can be found at in terms of its coordinate extents as:

CGl,m = {i, j : loil,m ≤ i < hiil,m, lojl,m ≤< hijl,m}, (3.9)
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where (loil,m, lojl,m) and (hiil,m, hijl,m) are the beginning and starting index of a grid block

m at level l. To facilitate communication and application of boundary condition, a halo of

ghost cell of thickness ng is created around each block. According the grid block, Gl,m is

now augmented by ghost cells and is denoted as Gσ
l,m with coordinate extents:

CGσ
l,m = {i, j : −ng + loil,m ≤ i < hiil,m + ng,−ng + lojl,m ≤ j < hijl,m + ng},

(3.10)

The layer ghost layer cells for the entire grid at level l has the following computational

extents:

CGng
l,m := {i, j : −ng ≤ i < loil,m,−ng ≤ j < lojl,m}⋃{i, j : hiil,m ≤ i < hiil,m + ng,−ng ≤ j < lojl,m},⋃{i, j : −ng ≤ i < loil,m, hijl,m ≤ j < hijl,m + ng},⋃{i, j : hiil,m ≤ i < hiil,m + ng, hijl,m ≤ j < hijl,m + ng}. (3.11)

The corresponding halo grid of the grid level Gl is identified as Gng
l . The main operations

involved in a multi-block structure AMR and their respective nomenclatures are discussed in

the following sections.

3.2 AMR data operations

Operations involving interpolation,extrapolation and communication of data between various

refinement levels of AMR hierarchy is necessary to enable AMR in any flow solver. One of

the aspects of block structured AMR is that the data is operated independently at different

levels. A reconciliation step is necessary to ensure consistency and integrity of data. The

various data operations ensure that the data is represented consistently across the AMR grid

hierarchy.

The operation in which the data is filtered from the finer level to the coarser levels is
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known as restriction, R. And the operation of interpolating from the coarse level to finer

levels is known as prolongation or projection, P. The restriction of data between any two

levels l and l− 1 , is generally done for all the cells in the interior of the the two levels. This

operation between two levels is defined in this thesis as Rl−1
l (u;Gl, Gl−1), where u is any

flow data such as mass, momentum or energy. The restriction operation across the entire grid

hierarchy, denoted as R(u), is summarized by the Algorithm 1.

R(u), restriction of data u across G :

for i← NLmax to 2 do
PerformRl−1

l (u;Gl, Gl−1)

end
Algorithm 1: Restriction of interior data across AMR levels

The prolongation of data between any two levels l and l+ 1 , is generally done to fill the

ghost cells of level l + 1 with information from the interior cells of a coarser level, l. This

operation is defined as P l+1
l (u;Gl, G

ng
l+1). And the prolongation operation across the entire

grid hierarchy, Png(u) is summarized by the Algorithm 2.

Png(u), prolongation of data u across G :

for i← 1 to NLmax − 1 do
Perform P l+1

l (u;Gl, G
ng
l+1)

end
Algorithm 2: Prolongation of ghost cell data across AMR levels

In certain situations, the prolongation operation may be applied to all the cells, both inte-

rior and the ghost cells between two levels and accordingly defined as P l+1
l (u;Gl, Gl+1).

The prolongation operation on the entire grid for data u denoted as P(u) is then given by

Algorithm 3.
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P(u), prolongation of data u across G :

for i← 1 to NLmax − 1 do
Perform P l+1

l (u;Gl, Gl+1)

end
Algorithm 3: Prolongation of interior and ghost cell data across AMR levels

Finally, the data communication operation between ghost cells of various blocks within

the same level is denoted as C(u;Gl, G
ng
l ) and the communication for the whole grid is sum-

marized in Algorithm 4

C(u), communication of data u for G :

for i← 1 to NLmax do
Perform Cl(u;Gσ

l , G
ng
l )

end
Algorithm 4: Communication of data between various blocks across AMR levels

Suppose we consider a problem of the form:

H(u) = 0, (3.12)

where H(u) can be an ordinary differential equation, the procedure for performing the nu-

merical solution to this problem using AMR is reported in the following algorithm:
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Sequence of steps for solution ofH(u) in an AMR grid hierarchy, G:

for i← 1 to NLmax do

for m← 1 to M do
Solve forH(u) on Gi,m

end

end

Communicate using C(u) to fill information in the interior ghost cells;

Restrict using R(u) to filter data from finest grid to coarser grids;

Prolongate using Png(u) to fill ghost cells at fine/coarse or coarse/fine AMR

boundaries

Algorithm 5: General procedure for numerical solution to a problem with AMR
As described in the above Algorithm 5, the first step in the solution to H(u) = 0 is to solve

the numerical discretization of the equation in each of the grid blocks Gl,m across all the

levels. The data from a given grid block is then communicated to the ghost cells of the

neighboring grid blocks. The communication needs to be done since many of the simula-

tions of problems studied in this thesis are performed on modern parallel computing clusters.

A restriction operation is then performed that filters data from the finest AMR grid blocks

to underlying coarser grid blocks. Finally, data from regions of coarser grid blocks that

are covered by finer grid ghost cells are prolongated initialize valid data at the coarse/fine

and fine/coarse interfaces. The sequence of above steps is repeated if a time integration of

governing equations needs to be performed on an AMR grid hierarchy.

3.3 Implementation of AMR into a multi-block CFD solver

The BoxLib library[31] developed by Lawrence Berkeley National Laboratory (LBNL) is

used to perform local adaptive mesh refinement for all the simulations presented in this

thesis. The BoxLib library contains all the functionalities for managing the hierarchical

AMR rids and has been shown to scale well in parallel computing environment [31]. BoxLib
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provides the software framework (building blocks) for building massively parallel block-

structured AMR codes for solving time-dependent Partial Differential Equations. The library

consists of a hybrid C++/Fortran90 version as well as pure Fortran90 version and is publicly

available (ccse.lbl.gov/BoxLib). The BoxLib library contains extensive software support

for 1D/2D/3D grid-based and particle-mesh operations on adaptive hierarchical meshes and

supports data on cell centers, faces and nodes. Also the software architecture of BoxLib

is very similar to that of LESLIE. The version control of the code repository is managed

using GIT version control system [115] for both the codes (LESLIE and BoxLib). Similarly,

CMake [116] is used for building the libraries and executables associated with the code. For

these reasons, the block structured implementation using BoxLib was chosen from among

the multiple open source AMR libraries.

Though BoxLib library provides all the functionalities for writing a AMR based CFD

solver, often the requirement would be to add the AMR capability to an existing CFD solver

code base. This is a non-trivial task as the data layout, code design, and data communication

used by the multi-block CFD solver are often very different from those employed by an ex-

ternal library such as BoxLib. In this section, the framework for performing block structured

refinement with a multi-block structured CFD code such as LESLIE is discussed.

Figure 3.3: Process flow describing implementation of AMR using BoxLib into a multi-
block CFD solver
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Every time a regridding is performed for dynamic refinement, the mapping between the

AMR and the multi-block structure must be reestablished.

Mapping between AMR data structure and a multi-block data structure

One of the most important step of the coupling between a multi-block solver and BoxLib is to

establish the mapping between the data layouts of the solver and AMR library. This is briefly

discussed in this section. The Fig. 3.4 illustrates how the blocks across the different AMR

Figure 3.4: Creation of the mapping between the multi-block data structure and BoxLib
hierarchical AMR data structure

levels are collected for a given processor and mapped to an equivalent multi-block structure.

The hierarchical AMR data layout is flattened to create the multi-block data layout. As is the

case for any scientific code, the basic units of the data structures are the multi-dimensional

arrays. If the order of dimensions of the application CFD code conforms to the the order

of dimensions of the hierarchical data structures, duplication of memory allocation can be

avoided. But in cases, such as in the LESLIE code, since the order of the multidimensional

arrays is different than the BoxLib order, data is copied every timestep from the multi-block

structure to BoxLib structure. This is an overhead that can be avoided if the data layout

of multidimensional arrays (mainly the arrays used for holding the conservative quantities)

is made the same in LESLIE. Generally, the cost of the memory copy is only a fraction of

the overall computational cost, but can become significant under certain conditions (such
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as if the number of processors on which the simulations are run is increased). Any data

communication and multi-level operations is done on the hierarchical data sets and any CFD

solver operations are performed on the multi-block structure. Once the mapping is created,

data can be transferred back and forth between the two data sets. If a regridding operation is

performed, the mapping between the two data structures must be recreated.

3.4 Refinement criteria

Flow sensors are employed to detect physical flow phenomena, based on which grid refine-

ment is performed where appropriate. Grid adaptation along discontinuities is achieved by

evaluating gradients multiplied by the local grid size (scaled gradients) in all directions. A

cell is flagged for refinement if any of the following conditions are satisfied:

∇ρ∆x > ερ,

∇p∆x > εp,

∇Yk∆x > εYk ,

(3.13)

where εφ is the threshold constant for the scaled gradient of any quantity. This constant

is set dynamically for each refinement step as,

εφ = f(∇φ∆x)2, (3.14)

with the parameter f set to 0.75 using numerical experiments. The species mass fraction

based refinement criteria is used only for reacting cases. By default, only the pressure based

and density based refinement criteria is employed. Additional criteria can also be easily

added. Similar criteria has been used in the past [28] for performing refinement for com-

pressible reacting flows.
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Table 3.1: Summary of AMR test cases and their motivation.
Case Reacting/Non-reacting Motivation
1D shock tube problem Non-reacting Is a basic test case for a nu-

merical method
2D Riemann problem Non-reacting Validation for 2D
2D/3D Sedov blast problem Non-reacting Validation of AMR for

strong propagating shocks
3D Blast studies Non-reacting Validation for NM and TNT

charge detonation
2D Detonation propagation Reacting Validation for a reacting

problem

3.5 Validation of AMR for non-reacting/reacting problems

The block structured AMR implementation into LESLIE multi-block solver is validated

through several test problems listed in Table 3.1. The purpose of each of the test case is

also summarized in the table.

3.5.1 1D shock tube studies

Two shock tube problems are considered. The first test is a variation of the Sod Riemann

problem. The initial interface forms a right-moving shock, a left-moving rarefaction fan,

and an intermediate contact discontinuity. Specifically, the rarefaction fan contains as sonic

point, a physical feature that some linearized solvers can not resolve correctly. The initial

discontinuity is formed by the following left and right states:

qL =



ρL

uL

vL

wL

pL


=



1.0

0.75

0.0

0.0

1.0


, qR =



ρR

uR

vR

wR

pR


=



0.125

0.0

0.0

0.0

0.1


(3.15)
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The one-dimensional domain, 0.0< x <1.0, is discretized by 100 computational points with

the flow discontinuity located at x= 0.3 m. A simple extrapolation boundary condition is

imposed at the ends of the shocktube. The results are compared to an exact solution of the

Riemann problem at a final time of 0.2 seconds.

For the second test, the initial interface forms a right-moving shock, a left-moving rar-

efaction fan, and an intermediate contact discontinuity, which is stationary during the simu-

lation. The initial discontinuity is formed by the following left and right states:

qL =



ρL

uL

vL

wL

pL


=



1.0

−19.59745

0.0

0.0

1000.0


, qR =



ρR

uR

vR

wR

pR


=



1.0

−19.59745

0.0

0.0

0.01


(3.16)

The initial the flow discontinuity is located at x = 0.8 m. The adiabatic index is 1.4. The

left-boundary is a supersonic outflow boundary and the right is a supersonic inflow boundary.

The results are compared to an exact solution of the Riemann problem at a final time of 0.012

seconds. Both the cases were run with a base grid resolution of (100 X 100) cells with three

AMR levels. As observed in Figs 3.5 and 3.6, there is an excellent agreement between the

simulation results and the exact solution.

3.5.2 2D Riemann problem

The 2D Riemann problem consists of solving four initially discontinuous flow states in a

(1 x 1) unit computational domain. The four quadrants of the domain are initially assigned

different flow and thermodynamic states. Depending upon the type of the initial data, differ-

ent geometric flow patterns formed by shocks, rarefactions, slip lines, and contacts, can be

observed with the evolution of the solution. The initial data for the Riemann problem is set
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Figure 3.5: Profiles for shock testube configuration 1.
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Figure 3.6: Profiles for shock testube configuration 2.
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as follows:

(p, ρ, u, v)(x, y, 0) =



(p1, ρ1, u1, v1), x > 0.5, y > 0.5

(p2, ρ2, u2, v2), x < 0.5, y > 0.5

(p3, ρ3, u3, v3), x < 0.5, y < 0.5

(p4, ρ4, u4, v4), x > 0.5, y < 0.5


(3.17)

There are several configurations with different set of values for the four sections of the do-

main. Here, one of the configurations with the following initial data is simulated:

p1 = 1, ρ1 = 2, u1 = −0.75, v1 = −0.5

p2 = 1, ρ2 = 2, u2 = −0.75, v2 = 0.5

p3 = 1, ρ3 = 1, u3 = 0.75, v3 = 0.5

p4 = 1, ρ4 = 3, u4 = 0.75, v4 = −0.5

A base grid resolution of (100 x 100) cells with three AMR levels is employed such that the

effective resolution is (400 x 400) cells. The results are compared with that of a uniform

mesh with the same effective resolution as the finest AMR level.

(a) (b)

Figure 3.7: Comparison of density contours between (a) AMR and (b) uniform mesh at t =
0.25.
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Figure 3.8: Snapshot of the block structure refinement at t = 0.25. Red - coarsest level, green
- finer level, blue - finest level.

Since exact solutions are not available for the 2D Riemann problems, the result of the

simulation with AMR is compared with that from using an uniform fine mesh. The density

contours at t = 0.25 units for both the cases are compared in Fig. 3.7 and a good agreement

in the results can be observed. The refinement of the density gradients by the three AMR

levels can be seen in Fig. 3.8.

3.5.3 Sedov blast studies

In this problem, a high-pressure blob is allowed to expand in an open domain. The objective

of this test is to validate AMR for a 2D and 3D blast problem. Sedov, in a seminal work

[117], demonstrated that the blast solution becomes self-similar sufficiently far away from

the center of a strong blast. He quantified the blast evolution and showed that the radius of

the outwards-going blast front followsR(t) ∝ t2/(n+2), where n = 1 for a planar explosion,

n = 2 for a cylindrical one, and n = 3 for a spherical explosion.

Simulations are conducted using a uniform fine mesh and an AMR mesh with three

levels such that both have the same effective grid resolution of dx = 5 × 10−4 units. The

computational domain is of (0.512 x 0.512) units with initial blast located in the center of

the domain. For 3D simulations, only a quadrant of the full domain is simulated taking

advantage of the symmetry of the solution. Symmetry condition is imposed on the lower x,
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y and z planes and supersonic outflow condition is prescribed on the other boundaries.

The evolution of the pressure field for the 2D Sedov problem is shown in Fig. 3.9 and it

can be seen that the blast remains circular at all times mainly because the blast front is well

resolved by local refinement. The radially averaged pressure field for the 2D Sedov problem

with AMR is compared with that of the uniform fine mesh case in Fig. 3.10(b). Although

there are some differences in the results especially near the smaller pressure peak early in

the simulation, the results agree very later when the two pressure peaks merge. The scaling

of the blast radius with time follows a 2/4th in 2D and 2/5th in 3D as seen in Fig. 3.10(a)

and Fig. 3.11.

(a) t = 1 ms (b) t = 2 ms

(c) t = 4 ms (d) t = 5 ms

Figure 3.9: Pressure contours at various time instants for the 2D sedov test case
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Figure 3.10: Comparison of the blast characteristics (a) blast radius and (b) radially averaged
pressure profile between AMR and uniform mesh for 2D Sedov problem.
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Figure 3.11: Comparison of the blast radius evolution between AMR and uniform mesh for
3D Sedov problem.
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3.5.4 2D detonation propagation

High resolution 2D simulation of a detonation propagating in a channel is performed for

stoichiometric ethylene/oxygen gaseous mixture diluted with argon. A single step chemistry

with Arrhenius kinetics of the form

ω̇ = −AρY exp− Ea
RT

(3.18)

is employed to model the reaction occurring at the detonation front. The parameters A and

Ea, which are the pre-exponential factor and activation energy respectively, are chosen from

past studies [118] for the same mixture.

Computations are performed on a (0.018X0.006) m2 2D domain with three AMR levels

and a base resolution of (216 X 72). The channel width is chosen to capture a single reg-

ular detonation cell. Inflow and outflow conditions are set in the x-direction and periodic

boundary condition is used in the transverse direction.

(a) (b)

(c) (d)

Figure 3.12: Instantaneous snapshot of the detonation front at various stages of the triple
point motion along the leading shock front.

Past studies have reported that the leading shock at the detonation front is wrinkled and
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(a) AMR (b) Theoretical structure

Figure 3.13: Comparison of the triple point structure with theory.

0 20 40 60 80 100

Time [µs]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

D
/D

C
J

Figure 3.14: Regular oscillation of the detonation velocity, D tracked using temporal history
of triple point.
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comprises of alternate strong Mach stems and weak incident shocks. Triple points formed at

the junctions of the transverse waves and leading shock front propagates along the detonation

front as it moves forward. Sufficient mesh resolution is required to resolve the transverse

waves structures that generates this characteristic cellular pattern. Without the use of AMR,

a high mesh resolution would be required for the entire domain to resolve a highly localized

flow feature such as detonation front. Dynamic AMR can be effectively used for such cases

to accurately resolve all the relevant flow characteristics.

The simulations are performed in a frame attached to the moving detonation front. After

an initial period, solutions exhibit regular oscillatory cellular behavior. Shown in Fig. 3.12

are snapshots of the front at various time instants. The comparison of the triple point structure

from with the theoretical structure is shown in Fig. 3.13. A remarkable resolution of the

various features such as the leading Mach stem, incident shock, transverse wave and slip line

is achieved by the simulations and matches their description from the theoretical structure.

The regular oscillation of the detonation front velocity with time is shown in Fig. 3.14. After

some initial transience, the detonation velocity on an average matches with that given by the

Chapman-Jouget [119] conditions.

3.5.5 3D blast studies

In this 3D test problem, blast wave propagation corresponding to an initial charge of 11.8

cm diameter of TNT and Nitro Methane is tracked with AMR. The grid resolution and initial

detonation profile is used from a previous study [120]. Taking advantage of the symmetry

of the problem, the simulation is performed for a quadrant of the complex 3D domain. The

domain is a cubic box of size 4m × 4m × 4m with a base grid resolution of (250 X 250 X

250) and 4 levels of AMR are employed resulting in an effective resolution of 2mm.

Figure 3.15 presents the logarithm of density field at various time instants. The evolution

of the primary blast, the formation of the secondary shock and its subsequent reflection can

be clearly observed from the results. The ensuing hydrodynamic instability can also be noted
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(a) (b)

(c) (d)

Figure 3.15: Instantaneous snapshots of log(ρ) at the x-y plane for 3D NitroMethane blast.
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in the later stages of the blast evolution. More quantitative analysis of the blast characteristics

is studies by comparing the blast radius evolution and the overpressure with previous studies

in Fig. 3.16 for both the explosives. There is an excellent match of the primary blast evolution

and overpressure with past data. However, the current simulations predict stronger secondary

shock which propagates faster. This might be because, the origin is exactly represented in

the current approach. Whereas in the previous study [120] employed a sector grid in which

the origin is a singularity and can not be resolved. As discussed in [120], a small cut-off

radius equal to one cell width is introduced. The differences in the treatment of the origin

could be resulting in differences in the dynamics of the secondary shock. A snapshot of the

AMR levels for the NM blast problem is shown in Fig. 3.17. The refinement near both the

primary and the secondary blast front can be clearly seen.
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Figure 3.16: Comparison of (a) blast overpressure for TNT and NitroMethane charges and
(b) blast radius evolution for a NitroMethane charge with past studies.

3.6 Performance of block structured AMR implementation

One of the main goals of employing AMR is computational cost reduction. This is achieved

by reduction of the total number of grid points required for the simulation through local

refinement. As mentioned before, this can result in an order of magnitude savings in terms of

computational costs and also the storage space required for the results of the simulation. The
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Figure 3.17: Snapshot of the AMR levels for the free blast of Nitro Methane.

computational gains of using AMR is demonstrated by comparing the above metrics with

that obtained from using a uniform fine mesh with the same effective resolution as AMR, for

the 3D Sedov blast problem. The cost and space comparisons are reported in Fig. 3.18 for

two different grid resolutions. All the computations were performed on 64 cores of a Linux

cluster with Intel(R) Xeon(R) CPU E5-2670 @ 2.6GHz and 32 GB of RAM. The data for the

uniform case for 5123 is projected from the timing results for the 2563 case as the problem

was too big to be run on 64 processors.

As seen in Fig. 3.18, there is an order of magnitude gain in employing AMR and the

space required for storing a single restart checkpoint simulation file also comes down signif-

icantly with AMR. The gains are much higher for the 5123 case in comparison to the 2563

case. It must be noted that these comparisons are specific to this case and there might be

other cases where the benefits of using AMR may not be this high. To further understand

the computational performance of AMR, the cost distribution of different solver operations

are reported in Fig. 3.19. The majority of time spent by the solver is from the flux evalua-

tion. The communication overhead which includes the copying of data from the multi-block

structure to the BoxLib data structure is around five %. The other significant solver step that
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(a) (b)

Figure 3.18: Comparison of (a) computational cost and (b) storage space required for the 3D
Sedov problem.

takes around 22 % of the computational time is the regridding step. The regridding, as seen

from the results, is a computationally costly step and therefore care must be taken to perform

the dynamic regridding only when required.

Figure 3.19: Time taken by various solver steps for the 3D Sedov problem for the 2563 case.
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CHAPTER 4

CARTESIAN BASED CUT-CELL EMBEDDED BOUNDARY METHOD

A Cartesian based strictly conservative cut-cell method is developed in this thesis to resolve

solid embedded boundaries. The details of the formulation of the high-order (up to 4th order)

cut-cell method for stationary boundaries and a second order cut-cell method for moving

boundaries are described in this chapter. Extensive validation of the approach is performed,

and accuracy of the method is demonstrated through several 1D, 2D, and 3D test problems.

The formulation and results for the stationary cut-cell approach described here are from a

published work by the thesis author [26] and are repeated here with appropriate permissions.

4.1 Formulation and implementation of cut-cell method

Cut-cell method [94, 14] is used in this work to represent embedded boundaries on a Carte-

sian grid. Information for defining the cut-cells at the embedded boundary is extracted from

a levelset field description. Levelset, as defined by Osher and Sethian [121, 122], is a contin-

uous scalar field having values φ > 0 in the fluid region, φ < 0 in the solid region and φ = 0

at the interface. Once the levelset field is described completely, all the cut-cell metrics can

be computed.

To create a cut-cell, the levelset field is assumed to be piecewise linear in a cell and is

given as:

φ(x, y, z) =
∑1

p1=0

∑1
p2=0

∑1
p3=0 x

p1yp2zp2ap1,p2,p3, (4.1)

(p1 + p2 + p3) 6 1

in which the coefficients, ap1,p2,p3, are determined based on the nodal values, φi, i = 1, 8

for a given computational cell. The embedded boundary surface is defined by the function
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φ(x, y, z) = 0. The boundary equation along with the linear system of equations represent-

ing the cut-cell edges are solved simultaneously to provide the points of intersection of the

boundary with the edges. The process of finding the cut surface is illustrated in Fig. 4.1(a).

As shown, the embedded surface is approximated by a planar cut in a given computation cell

(i, j, k).

(a) Cut-cell creation (b) Cut-cell definition

Figure 4.1: Schematic of a three dimensional cut-cell: (a) creation from levelset description
φ with cut-surface described by φ(x, y, z) = 0. (b) Various geometric variables for defining
a cut-cell to represent an embedded boundary.

Once the intersection points are determined, the available face area in each of the coordi-

nate directions (x, y, z): shix , slox , shiy , sloy , shiz and slox , as shown in Fig. 4.1(b), are determined

using fifth-order accurate Gauss-Legendre quadrature rules. Here, the suffices lo and hi de-

note the positive and negative direction along a coordinate direction, respectively. Using the

computed cut areas, the cut surface area of the embedded boundary, sΓ and the cell normal

vector, nΓ are obtained following the procedure detailed in [14] and are given as:

sΓ =
√

(shix − slox )2 + (shiy − sloy )2 + (shiz − sloz )2, (4.2)

nΓ,x =
1

sΓ

(shix − slox ), (4.3)

nΓ,y =
1

sΓ

(shiy − sloy ), (4.4)

nΓ,z =
1

sΓ

(shiz − sloz ). (4.5)
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As the cut-cells have a reduced volume, the cell centroid for the cut-cells (xc, yc, zc) is ad-

justed to its new position (x̂c, ŷc, ẑc) according to:

x̂c =
1

V

∫
xdv, ŷc =

1

V

∫
ydv, ẑc =

1

V

∫
zdv, (4.6)

where V is the cut-cell volume of cell (i, j, k) and can be evaluated by using Gauss diver-

gence theorem [94].

4.1.1 Higher order k-exact least squares reconstruction

The main idea behind achieving a higher order accuracy at the embedded boundaries is use

of a piece-wise high order polynomial approximation of cell centered flow quantities as

proposed by Ivan and Groth [114]. Accordingly, the following reconstruction polynomial

of order k for any conservative or primitive flow quantity u in a given cell i is defined as

follows:

uki (x, y, z) =
k∑

p1=0

k∑
p2=0

k∑
p3=0

(x− xc,i)p1(y − yc,i)p2(z − zc,i)p3Dk
p1,p2,p3

,

p1 + p2 + p3 6 k (4.7)

where (xc,i, yc,i, zc,i) are the cell center coordinates and Dk
p1,p2,p3

are coefficients of kth order

approximation of u, which can be proved to be scalar multiples of derivatives of u using

Taylor series expansion. Once these coefficients are determined, the above polynomial ap-

proximation in Eq. (4.7) can be employed to reconstruct, anywhere within the cell i, the

quantity u and its pth derivative with the order of accuracy (k + 1) and (k − p + 1), respec-

tively. Using the volume averaged values of the current cell ui,

ui =
1

V

∫
v

k∑
p1=0

k∑
p2=0

k∑
p3=0

(x− xc,i)p1(y − yc,i)p2(z − zc,i)p3Dk
p1,p2,p3

dv, (4.8)
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and the neighboring cell uj , the coefficients Dk
p1,p2,p3

can be found by solving a system of

linear equations defined as follows:

uj − ui =
k∑

p1=0

k∑
p2=0

k∑
p3=0

( ̂xp1yp2zp3)ijDk
p1,p2,p3

| j = 1..np,

p1 + p2 + p3 6 k (4.9)

where np represents the number of neighbors that are required to solve the ith cell centered

quantity and depends on the order of reconstruction. In Eq. (4.9), ̂xp1yp2zp3 is the geometric

moment of jth cell about ith cell center given by:

( ̂xp1yp2zp3)ij =

∫
vj

(x− xc,i)p1(y − yc,i)p2(z − zc,i)p3dv. (4.10)

For a given order of reconstruction k, the number of unknownsN that are solved in the above

system of equations Eq. (4.9), for example in 3D is given by:

N =
1

6
(k + 1)(k + 2)(k + 3)− 1. (4.11)

In the current work, as suggested by Ivan and Groth [114], additional neighbors are included

to make the reconstruction more robust in the presence of cut-cells. Accordingly, the central

stencil for reconstruction uses 8 nearest neighbors in 2D and 27 nearest neighbors in 3D for

k=2. For k=3, 24 nearest neighbors in 2D and 124 nearest neighbors in 3D are used for

reconstruction. The number of neighbors needed for k > 3 will depend on the number of

unknowns as given by Eq. (4.11). For example, for k = 4, the number of unknowns in 3D

would be 34 which implies that a stencil width spanning 124 nearest neighbors is sufficient

for the linear least square reconstruction. The stencil width in case of 2D cut-cell geometry

is illustrated through a schematic in Fig. 4.2. For achieving k-th order accuracy, k + 1 ghost

cells are added to the block boundaries. This is due to the stencil width required for the

least-squares reconstruction as described in Fig. 2. For k-th order accurate scheme, k − 1
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ghost cells are required for the reconstruction. Two additional cells are added for building

the cut-cells at the boundary.

(a) (b)

Figure 4.2: Illustration of the k-exact reconstruction stencil used for (a) k=2 and (b) k=3.
Stencil highlighted by the gray shaded region. Subscript i denotes the cell for which k-exact
reconstruction is done and j is one of the neighbor cells.

As np > N in general, Eq. (4.9) is often an over determined system of linear equations to

ensure stability of the solution to the system of linear equations. The Eqs. (4.9)-(4.10) need

to be computed for each neighbor cell j and this evaluation is computationally very intensive.

Hence, a strategy to compute the geometric moments that was originally developed by Gooch

and Alten [123] is employed whereby differences (x − xc,i), (y − yc,i) and (z − zc,i) are

replaced with (x − xc,j) + (xc,j − xc,i), (y − yc,j) + (yc,j − yc,i) and (z − zc,j) + (zc,j −

zc,i), respectively. This modification expresses the geometric moments of jth cell about ith

cell center as in Eq. (4.10) as a function of the geometric moment about jth (its own) cell

center. The integral in Eq. (4.10) can, therefore be approximated by the following binomial

expansion:

( ̂xp1yp2zp3)ij =

p1∑
l=0

p2∑
r=0

p3∑
t=0

(
p1

l

)(
p2

r

)(
p3

t

)
∆xlij∆y

r
ij∆z

t
ij(x

p1−lyp2−rzp3−t)j, (4.12)
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where ∆xij = (xc,i − xc,j), ∆yij = (yc,i − yc,j), ∆zij = (zc,i − zc,j) and (xp1−lyp2−rzp3−t)j

is a geometric moment of cell j about its own cell center.

The overdetermined linear system of equations given by Eq. (4.9) can be written as:

Ax-b=e, (4.13)

where the coefficient matrix A depends only on the mesh, b contains the volume averaged

solution values in each cell and x is the vectors of coefficients Dk
p1,p2,p3

needed for the k-

exact reconstruction. The vector, e represents the residual error that must be minimized.

The overdetermined system of Eq. (4.13) is solved in the current study using a least-squares

approach. Each row of Eq. (4.13) is multiplied with a geometric weight that is the inverse

of the distance between the current cell i and each of the neighbor cell j (Refer Fig. 4.2

for more details) to improve the accuracy of the reconstruction. The weighted least-squares

problem of Eq (4.13) is solved using Singular Value Decomposition (SVD) [124] by which

the pseudo-inverse matrix, A† can be found. The solution to the least-squares problem is

then given by x = A†b [125]. The pseudo-inverse matrix A†, like A, depends only on the

mesh and therefore is precomputed and stored in a pre-processing step.

4.1.2 Boundary conditions at embedded surfaces

Boundary conditions are enforced by introducing constraint equations into the system of

linear equations, Eq. (4.9). Velocity fields are prescribed with Dirichlet boundary condition

and remaining flow variables, i.e., pressure, density, and temperature are prescribed with

Neumann condition. For a Dirichlet condition, the following system of equations are added:

u(xl, yl, zl)j − ūi =
k∑

p1=0

k∑
p2=0

k∑
p3=0

((xl − xc,i)p1(yl − yc,i)p2(zl − zc,i)p3

− (xp1yp2zp3)i)Dp1,p2,p3 .

(4.14)
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Here, (xl, yl, zl)j are coordinates of the Gauss quadrature points on cut-cell face of jth cell.

To specify Neumann condition for variables such as pressure, density and temperature, a

Neumann boundary constraint are of the following form:

∇un(xl, yl, zl)j =
k∑

p1=0

k∑
p2=0

k∑
p3=0

(p1(xl − xc,i)p1−1(yl − yc,i)p2(zl − zc,i)p3nΓ,x

+ p2(xl − xc,i)p1(yl − yc,i)p2−1(zl − zc,i)p3nΓ,y

+ p3(xl − xc,i)p1(yl − yc,i)p2(zl − zc,i)p3−1nΓ,z)Dp1,p2,p3 ,

(4.15)

with,

∇un(xl, yl, zl)j = (∇ux(xl, yl, zl)nΓ,x+

∇uy(xl, yl, zl)nΓ,y +∇uz(xl, yl, zl)nΓ,z)j,

(4.16)

where nΓ,x, nΓ,y and nΓ,z are the boundary normals in x, y and z direction, respectively as

shown in Fig. 4.1(b). The boundary constraint equations (Eqs. (4.14) and (4.15)) are added

to the system of linear equations (Eq. (4.9)) and solved using linear least squares method.

4.1.3 Flux computation near embedded surfaces

Inviscid flux evaluation at cut faces

The evaluation of the inviscid flux at cut faces is based on the formulation of Ingram et. al.

[126]. The pressure pn at a boundary quadrature point (xl, yl, zl) for jth cell is evaluated

using the higher order polynomial expression as follows.

pn(xl, yl, zl) =
k∑

p1=0

k∑
p2=0

k∑
p3=0

(xl − xc,i)p1(yl − yc,i)p2(zl − zc,i)p3D(p)p1,p2,p3 , (4.17)
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where D(p)p1,p2,p3 are the coefficients of polynomial expansion of pressure field. The invis-

cid fluxes F inv at the cut-cell surface s are then evaluated as follows.

FΓ,inv



ρ

ρui

ρE

ρYk


=



0∑ng

l=1wlpn(xl, yl, zl)A
Γ
i

us,ipn(xl, yl, zl)

0


, (4.18)

where AΓ
i is the projected area of the cut surface along direction i, wl is the quadrature

weight, ng is the number of quadrature points, and us,i is the surface velocity in i direction.

Wall shear stress evaluation

At the cut-faces, the wall shear stress is evaluated from the derivatives of velocity compo-

nents that are reconstructed from the piecewise polynomial expansion at the boundary face

Γ as :

1

V

∫
s

Fvis · nds =
1

V

ng∑
l=1

wlτij(xl, yl, zl)A
Γ
j ds. (4.19)

In Eq. (4.19), V is the cell volume, wl is the quadrature weight, ng is the number of quadra-

ture points, Asj is the projected area of cut surface s in j direction, and (xl, yl, zl) are the

Gauss quadrature points. The derivatives at each of the quadrature point at the wall is ob-

tained by differentiating the high order polynomial approximation and are given by:

∂u

∂x
(xl, yl, zl) =

k∑
p1=0

k∑
p2=0

k∑
p3=0

p1(xl − xc,i)p1−1(yl − yc,i)p2(zl − zc,i)p3D(u)p1,p2,p3 , (4.20)

∂v

∂x
(xl, yl, zl) =

k∑
p1=0

k∑
p2=0

k∑
p3=0

p2(xl − xc,i)p1(yl − yc,i)p2−1(zl − zc,i)p3D(v)p1,p2,p3 , (4.21)
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∂w

∂x
(xl, yl, zl) =

k∑
p1=0

k∑
p2=0

k∑
p3=0

p3(xl − xc,i)p1(yl − yc,i)p2(zl − zc,i)p3−1D(w)p1,p2,p3 . (4.22)

In Eqs.( 4.20)-(4.22), D(u)p1,p2,p3 , D(v)p1,p2,p3 and D(w)p1,p2,p3 represent the coefficients of

polynomial approximation for u, v and w velocity fields, respectively. It is important to note

that the shear stress evaluation using the above method is higher order accurate and also

results in smooth reconstruction of shear stress even if the distance between the cut-face

quadrature points and cell centroid changes irregularly. It is noted that, many of the previous

studies with cut-cell employed a first order formulation of derivatives for evaluating shear

stress, which besides a loss of accuracy, is known to result in a very ’noisy’ wall shear stress

[95, 87].

4.1.4 Cell clustering algorithm for small cell treatment

During the creation of cut-cells from boundary crossings on a Cartesian mesh, arbitrary cells

of very low volume can also be generated. Low cell volume of these cells considerably in-

creases the stiffness of the system of governing equations and results in numerical instability.

This is a well-known problem in all the cut-cell based immersed boundary schemes and has

been addressed in the past using several approaches such as: cell merging approach [90, 91],

cell linking approach [92], cell mixing/redistribution [88, 89] and mixed approaches[85].

As pointed out earlier, the cell mixing approach is easiest to implement due to its inher-

ent simplicity. However, when the classical cell mixing algorithm along with the k-exact

reconstruction for viscous flow over embedded boundaries was used, significant numerical

oscillations in the solution were observed at the boundaries destroying the smoothness of the

reconstruction procedure. The oscillations were particularly accentuated for the wall shear

stress as it involves reconstruction of the gradients. The distributions of the pressure coef-

ficient (Cp) and the skin friction coefficient (Cf ) over a cylinder surface in a cross flow of
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diameter based Reynolds number, Red = 40 are shown in Fig. 4.3. Note, a comparatively

fine grid resolution is used based on a previous study with the cut-cell approach that used

cell merging technique [94]. Although a reasonably smooth distribution for pressure was

obtained using cell merging technique in [94], the behavior of the skin friction coefficient is

not known as the data was not reported.

(a) (b)

Figure 4.3: Numerical oscillations in the pressure coefficient and the skin friction coefficient
on a cylinder surface placed in aRed = 40 cross flow. Cell-mixing algorithm [100] was used
for the small cell treatment and the grid resolution used was based on a previous study using
cut-cells [94] (Solid black dots indicate data from a previous study [17] with body-fitted
grid).

The problem of oscillatory behavior of the flow solution along the embedded boundary

is due to the irregular stencil employed for the k-exact CENO reconstruction and also degra-

dation of solution accuracy due to local cell mixing of conservative quantities. This problem

has been reported even for other cut-cell methods with lower order schemes [87, 95]. Clearly,

the advantage of using a high-order scheme is nullified at the boundaries because of the prob-

lem of irregularity in the stencil used for reconstructing the flow solution and its gradients

using the k-exact CENO scheme. To address the stability of the small volume cut-cells and

also at the same time maintain the design order of accuracy, a new cell clustering algorithm

is proposed.

The central idea of the cell clustering technique is to employ the k-order, polynomial
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piecewise approximation of the flow solution to a cluster of cells. The reconstruction poly-

nomial for the cluster is based on the common centroid of the cell cluster and is given as:

ukc (x, y, z) =
k∑

p1=0

k∑
p2=0

k∑
p3=0

(x− xc)p1(y − yc)p2(z − zc)p3Dp1,p2,p3

p1 + p2 + p3 6 k, (4.23)

where ,

(x, y, z)c =

∑nc

n=1(x, y, z)nVn∑nc

n=1 Vn
(4.24)

with (x, y, z)c and (x, y, z)n being the cell centroid coordinates for the cluster c and cell n

respectively, nc is the number of small cells in the cluster, and Vn is the volume of cell n.

A single polynomial approximation for the cell cluster, as given by Eq. (4.23), is employed

for evaluation of the inviscid and the viscous fluxes for all the cells belonging to the cluster.

The geometric moments of the cluster ( ̂xp1yp2zp3)c is computed from the individual cell

geometric moments about the cluster cell centroid and is given as:

( ̂xp1yp2zp3)c =

∑nc

n=1( ̂xp1yp2zp3)(n,c)Vn∑nc

n=1 Vn
, (4.25)

where ( ̂xp1yp2zp3)(n,c) is the geometric moment of cell n about the cluster centroid c. The

operation in Eq. (4.25) can shown to be consistent by the following steps. Invoking the

Divergence to transform the volume integral into surface integrals results in:

( ̂xp1yp2zp3)(n,c) =
1

Vn

∫
V

(x− xc)p1(y − yc)p2(z − zc)p3dV,

=
1

Vn(p1 + 1)

∫
V

∇ · ((x− xc)p1+1(y − yc)p2(z − zc)p3 î)dV,

=
1

Vn(p1 + 1)

∫
s

(x− xc)p1+1(y − yc)p2(z − zc)p3nΓs,xds. (4.26)
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Eq. (4.26) can be numerically approximated as:

( ̂xp1yp2zp3)(n,c) =
1

Vn(p1 + 1)

M∑
m=1

ng∑
l=1

wl(x − xc)
p1+1(y − yc)

p2(z − zc)
p3nΓm,xAΓm,x,

(4.27)

where nΓm,x is a unit normal of surface m in x-direction. The summation of the geometrical

moments of individual cells performed for according to Eq. (4.25) then reduces to:

( ̂xp1yp2zp3)c
nc∑
n=1

Vn =

1

(p1 + 1)

nc∑
n=1

M∑
m=1

ng∑
l=1

wl(x− xc)p1+1(y − yc)p2(z − zc)p3nnΓm,xA
n
Γm,x. (4.28)

It should be noted that for the common face m of the two neighboring cells (n, n + 1),

nnΓm,x
= −nn+1

Γm,x
. This leads to cancellation of the terms for common interior faces except

for the outer surfaces bounding the cluster resulting in effective geometric moments of the

cluster c.

In contrast to cell merging techniques used in the past [94, 85], the individual identities

of the cells are maintained retaining the full geometric resolution of the embedded surface

in the current cell clustering approach. The process of forming the cell cluster of small cells

having a volume fraction, α less than the allowed volume fraction, αlim is described in the

following algorithm:
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Cluster cells less than a limiting volume fraction αlim:

First pass to find immediate cluster neighbors;

for i← 1 to Ncut−cells do

if αi < αlim then
Find j along greatest component of cut surface normal of i ;

Add i as a cluster neighbor to j;

Add j as a cluster neighbor to i;

Increment no. of cluster neighbors of cells j and i

end

end

Second pass to link all cluster cells to each other;

for i← 1 to Ncut−cells do

if neighbor count(i) > 0 then

for j ← 1 to neighbor count(i) do
Add neighbors of jth neighbor cell to i

end

Update neighbor count(i)

end

end
Algorithm 6: Cell clustering algorithm

All the cluster properties from Eq. (4.23)-(4.25) can be computed for each cluster group

and stored in each cell belonging to the cluster group by looping over the list of neighbors of a

given cut-cell. The stencil for high-order k-exact least-square reconstruction (as described in

Fig. 2) of the cluster is centered around the cell that is closest to the cluster centroid. Since

an inverse distance weighing is used, all the neighbors of the cell belonging to the same

cluster will be discarded in the polynomial least-square reconstruction procedure. This is

because the individual cell centroids are corrected with the cluster centroid resulting in zero

weights for the neighbor cells belonging to the same cluster. The reconstruction procedure
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is performed for only one cell belonging to the cluster and for all the other cells, the cluster

properties are copied. Cell clustering for the case of viscous flow over a cylinder is shown in

Fig. 4.4 for different values of limiting volume fraction, αlim allowed for a cut-cell.

(a) αlim=0.25 (b) αlim=0.50 (c) αlim=0.75

Figure 4.4: Cell cluster groups colored based on cluster number for the case of viscous flow
2D cylinder. Clusters are shown for various values of limiting volume fraction αlim.

Algorithm 6 is robust and stable in finding cell clusters for any value of limiting volume

fraction αlim = 0 − 1. The kth-order, piecewise polynomial reconstructed for each cluster

using Eq. (4.23), is then employed for evaluating the inviscid and the viscous fluxes accord-

ing to Eq. (2.55) and Eq. (2.56), respectively, at each of the cut-cell faces belonging to the

cell cluster. In essence, the surface-flux reconstruction is performed on all the cells in the

same exact manner. However, since the polynomial coefficients of the cluster are copied into

all the cells belonging to the cluster, these cells will be using the cluster based reconstruction

polynomial. The conservative quantities, U in all normal cells and small cells are updated by

integrating Eq. (2.53) and at the end of time integration, a conservative volume averaging is

performed over each cell cluster according to:

Uc =

∑nc

n=1 UnVn∑nc

n=1 Vn
. (4.29)

The conservative averaging overwrites the flow variables on all cells belonging to the cluster

with the cluster-averaged values. For the time integration of Eq. (2.53), the time step is
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calculated based on the CFL condition based on the normal cells having volume fraction

greater than the limiting volume fraction (α > αlim).

The improvement in reconstruction of the pressure coefficient and the skin friction co-

efficient (Cf ) is clearly observable in Fig. 4.5. The solution for Cp and Cf is quite smooth

and matches very well with the previous studies using body-fitted approaches for the same

problem. Additionally, the smoothness in the solution is not affected by the increase in the

minimum small cell volume allowed. This is an excellent property of the approach described

here as the minimum allowable time step based on CFL condition can be significantly im-

proved without compromising the accuracy of the solution. For the current case, an increase

of close to 60% in the time step is observed by increasing the limiting volume fraction αlim

from 0.25 to 0.75. It must be noted that for the pressure and skin friction coefficient distri-

bution not to be affected by the limiting volume fraction αlim, the flow gradients must be

adequately resolved. The results shown in Fig. 4.5 are for a grid resolving the diameter of

the cylinder by 80 cells. At a lower grid resolution using 20 cells, the pressure and the skin

friction coefficient are found to have a weak dependence on αlim as seen in Fig. 4.6. For

all the cases in the current study, a conservative value of αlim=0.33 is used that is consistent

with many past studies [85, 94] using the cut-cell approach.

4.1.5 Corrections near moving boundaries using cell clustering method

The modification of the cell clusering algorithm to accommodate moving boundaries is de-

scribed in this section. It is important to emphasize here that the conservative averaging

though may appear to be first order at the boundaries, along with the application of a cluster

based polynomial approximation as given by Eq.(4.24), provides a high order accuracy for

the flux evaluations. For the time integration of Eq. (2.53), the time step is calculated based

on the CFL condition based on the normal cells having volume fraction greater than the lim-

iting volume fraction (α > αlim). A most noteworthy feature of the cell clustering algorithm

as detailed above, is the ability to achieve large limiting volume fractions without losing out
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(a) (b)

Figure 4.5: Plot of (a) co-efficient of pressure (Cp) and (b) skin friction co-efficient (Cf ) for
different values of limiting volume fraction αlim with the proposed cell clustering method:
αlim = 0.25 ; αlim = 0.50 ; αlim = 0.75 demonstrating that the smoothness of

solution is not affected by changing αlim (Solid black dots indicate data from a previous
study [17] with body-fitted grid).

(a) (b)

Figure 4.6: Plot of (a) co-efficient of pressure (Cp) and (b) skin friction co-efficient (Cf ) for
different values of limiting volume fraction αlim with the proposed cell clustering method:
αlim = 0.25 ; αlim = 0.50 ; αlim = 0.75 for a coarser grid using 20 cells for

resolving the cylinder (Solid black dots indicate data from a previous study [17] with body-
fitted grid).
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on the accuracy as demonstrated in [26].

The details on how newly emerging fluid cells and cells that turn into solid are handled

are provided below. For the sake of clarity, a single time update for a cell, k, of the following

form:

(V U)n+1
k = (V U)nk −∆t

(
M∑
m=1

H(U)nmA
n
m − (VQ(U))n

)
k

, (4.30)

is considered. In the case of newly emerging cells, V n
k = 0 and V n+1

k > 0. Whereas, when

the cell, k, turns into a solid, V n
k > 0 and V n+1

k = 0. Both the possible scenarios are shown

in Fig. 4.7. The time update in Eq. (4.30) is valid only for cells with V n+1
k > 0 as the

conservative update of Un+1
k requires dividing the right hand side of Eq. (4.30) with V n+1

k .

The following time update is used for vanishing cells which along with the cell clustering

corrections described in Sections 4.1.5 and 4.1.5 ensures strict conservation:

V n
k (U)n+1

k = (V U)nk −∆t

(
M∑
m=1

H(U)nmA
n
m − (VQ(U))n

)
k

. (4.31)

In the above Eq. (4.31), the state of a vanishing cell, k is not physically defined. Rather,

including the time update for the vanishing cells as given in Eq. (4.31) facilitates transfer

of correct mass, momentum and energy to neighboring cluster cells using the following

corrections.

Correcting for vanishing cells

During boundary movement, a cell can get progressively covered by the moving boundary

and eventually vanish. To account for the mass of the cells that turn into a solid cell, explicit

redistribution of the cell mass to its cluster neighbors is performed as follows:
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(a) (b)

Figure 4.7: Schematic depicting (a) a fluid cell vanishing and (b) a new fluid cell emerging
because of boundary motion. The thick arrow indicates the direction of transfer of mass,
momentum and energy between a cell and its neighbor.

Uk
n+1

= Uk
n+1,∗

+

∑nv

i=1 Ui
n+1,∗

(Vi)
n∑nc

i=1 Vi
n+1 , k = 1, 2, .., nc (4.32)

Here, nv is the number of vanishing cells in the cluster, c at time level n and nc is the total

number of cells in the cluster. The subscripts, n and n+1 denote the current and the next time

step. The cell averaged quantity before the clustering update is given by Uk
n+1,∗

and after

update is given by Uk
n+1

. The above Eq. (4.32) takes up the mass of all the vanishing cells

in a given cluster and redistribute it to all the other cluster neighbors in a volume weighted

manner.

Correction for newly emerging cells

When a moving boundary uncovers new fluid cells, it’s initial state before a time update

is undefined. In such a case, the newly emerged cell is made as a part of the cell cluster.

This is enforced by the making sure that the boundary motion does not exceed the volume

limit required to form a cell cluster. As described in Eq. (4.37), the characteristic cell length
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is computed as hn = 3
√
αlimV n, with αlim being the limiting cell volume fraction. This

constraint ensures that the cell is always clustered with its neighbors when the boundary

crosses a cell and thereby uncovers the cell. A similar approach was employed in [14]

for a small cell linking strategy. The main difference in the current approach is that the

cell clustering allows linking with multiple neighbors of a small cell and allows a higher

value of the limiting volume fraction whereas in [14], the number of neighbors of a small

cell is restricted to one. Thus the current cell clustering methodology is valid for complex

changes in grid topologies where it is often difficult to find unique pairs of small cell and

a neighboring bigger cell. Once the clusters are formed for the newly emerging cell, a cell

clustering correction of the following form:

Uk
n+1

=

∑(nc−ne)
i=1 Ui

n+1,∗
(Vi)

n+1∑nc

i=1 Vi
n+1 , k = 1, 2, .., nc (4.33)

is applied to all the cells of the cluster, c, formed at time level n+1. Note that all the cells that

are newly emerging (Vn = 0) has no history of flow solution and hence must be discarded in

the summation on the numerator of Eq. (4.33). This ensures that all the newly emerged cells

are set with a consistent value of the conservative variables U after boundary motion. Note

that many of previous approaches [104, 50] resort to some form of a correction in addition to

the small cell technique used. For example, in [104], the newly emerged cells are linked for

a single time step with a neighboring cell and delinked later. Such corrections increase the

complexity of the algorithm and implementation. In contrast, the cell clustering technique

can handle all the scenarios related to moving boundaries and hence is much more simpler

to implement.

Equation of motion for rigid bodies

For problems where the body motion is driven by hydrodynamic forces, the Newton’s equa-

tions of motion are solved to determine the boundary velocity. Accordingly, the forces acting
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on the surface of a rigid boundary are stored and the following equations are solved at every

sub-time step:

Fi =

∫
Γ

Fs,iAids, (4.34)

vn+1
i = vni +

Fi
m
dt, (4.35)

where Fs,i is the force acting normal to the boundary Γ in the direction i with Ai being the

projected boundary area in the ith direction. The interface velocities at time steps n and n+1

along a given direction are denoted by v and m is the mass of the rigid body.

4.1.6 Time integration for moving boundary problems

The time integration of the moving boundary needs special attention as the domain volume is

allowed to change during a time step. Figure 4.8 shows the change in volume of a cut-cell due

to boundary motion between time steps tn and tn+1. Note that this is in contrast with some

of the recent studies where the domain volume is frozen during a time integration step [104].

A first order error in time an be incurred for high speed flow problems because the surface

motion and the flow solution integration is not coupled during a single time integration step.

An even large departure of the solution is possible if the frozen volume approach is used for

fluid-structure interaction problems where the surface motion is due to the hydrodynamic

forces exerted on the surface.

In this work, a second order Runge-Kutta scheme modified to accommodate deform-

ing/moving boundaries during a solution step is employed and is given as:

(V U)n+1/2 = (V U)n − ∆t

2

(
M∑
m=1

H(U)nmA
n
m − (VQ(U))n

)
,

(V U)n+1 = (V U)n −∆t

(
M∑
m=1

H(U)n+1/2
m An+1/2

m − (VQ(U))n+1/2

)
, (4.36)

where V is the volume of the cell, n, n+1/2, and n represent the time step indices, H(U) de-
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Figure 4.8: Schematic of a 2D cut-cell undergoing a volume change due to boundary motion.

notes flux function including both the inviscid fluxes, Finv(U) and the viscous fluxes Fvis(U).

Note that the volume of the cell, V is allowed to change within the time step. In the above

Eq. (4.36), the quadrature points are dropped for clarity. The time step is computed globally

as:

∆t = min
n∈D

{
CFL hn

|u|n + an + 2νn

hn

}
, (4.37)

where hn is the characteristic length of the cell, n, computed as hn = 3
√
αlimV n with V being

the volume of the cell, αlim is the limiting volume fraction (explained in Section. 4.1.5),

below which cells are clustered, |u| is the velocity magnitude, a is the speed of sound and

ν is the kinematic viscosity, all of which are computed locally for a cell n. The constraint

hn = 3
√
αlimV n ensures that the solid boundary does not cross a given cell before it has

formed a cluster with a neighboring fluid cell.

For stationary boundaries, the time step is computed globally as:

∆t = min
n∈D

{
CFL hn

|u|n + an + 2νn

hn

}
, (4.38)

A CFL number of 0.5 is used for all moving and stationary boundary problems.
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Algorithm for moving boundary simulations

The implementation of the current method for simulation of moving boundary problems

using the adaptive cut-cell technique is summarized by the following steps:

– Step 1: Prescribe initial conditions for the flow U0 and the levelset field, φ0 to define

the embedded boundary

– Step 2: Compute the geometrical properties of the cut-cell from the levelset descrip-

tion

– Step 3: Begin time stepping loop

– Step 4: Mark regions of strong flow discontinuity based on the curvature sensor

– Step 5: Compute or prescribe surface velocities at embedded boundaries

– Step 6: Compute the fluxes on all the regular and cut-cell faces with a high-order

unlimited CENO reconstruction in smooth regions and a limited second order MUSCL

in regions of flow discontinuity

– Step 7: Update the levelset field based on the computed or prescribed surface veloci-

ties

– Step 8: Recompute the geometric properties of cut-cell and update cell volumes

– Step 9: Update flow solution, (UV )n+1 from (UV )n using Eq. (4.36) for the time step

tn+1

– Step 10: Apply the small cell correction using Eq. (4.29) and corrections for change

of state of a cell (from fluid to solid and vice versa) using Eqs. (4.32) and (4.33)

– Step 11: Repeat Step 5-10 for all the sub stages of a Runge-Kutta scheme and time

integrate till end of time
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The surface motion of the embedded boundary can be prescribed or can be driven by the

interaction with hydrodynamic forces. In either case, the same procedure described above

is followed. The differences in the procedure appear only in the step where the surface

velocities of the embedded boundaries are computed.

4.1.7 Hybridization of flux computation in regions of flow discontinuity

For problems with high speed effects such as shocks and other compressible flow features, a

high-order k-exact reconstruction can not be used in the regions of strong flow discontinuity.

Instead in these regions, a monotonized central limited second order MUSCL scheme [14] is

used. As in a previous work [37], curvature of pressure and density is used for detection of

the strong shocks or high gradients in flow solution. For any face (i+ 1/2, j, k), the inviscid

flux function Finv(U)ni+1/2,j,k is evaluated in the near field of the embedded boundary as:

Finv(U)ni+1/2,j,k = λi+1/2,j,k Finv(U)n,CENOi+1/2,j,k + (1− λi+1/2,j,k) Finv(U)n,MUSCL
i+1/2,j,k , (4.39)

where λi+1/2,j,k is a Heavside step function switch at face (i+ 1/2, j, k) computed as:

λi+1/2,j,k =


1 if max(Sψ,i, Sψ,i+1) <= 0

0 otherwise.
(4.40)

In Eq. (4.40), Sψ,i is the smoothness parameter of the flow quantities ψ = p, ρ computed

according to:

Sψ,i =


|ψi+1,j,k−2ψi,j,k+ψi−1,j,k|

|ψi+1,j,k−ψi,j,k|+|ψi,j,k−ψi−1,j,k|
− Sth if |ψi+1,j,k − 2ψi,j,k + ψi−1,j,k| > εψψi,j,k

−Sth otherwise.

(4.41)
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Based on a previous study [37], The coefficients, εp and ερ are taken to be equal to 0.05

and 0.1, respectively. The parameter, Sth is the threshold value of the pressure or density

field after which the curvature value is computed and is taken to be equal to 0.5 and 0.25,

respectively. The same procedure is repeated for the j and k directions.

4.2 Validation of high-order cut-cell for stationary boundaries

Various test cases are chosen to verify and validate the current cut-cell method for laminar

compressible flow problems. The different test cases and the motivation for each of the

cases are summarized in Table 4.1. The order of accuracy in reconstruction of any flow field

quantity and its derivative on immersed boundaries is verified in case 1. The effect of small

cell mixing on the order of accuracy of the k-exact scheme for cut-cells is investigated in the

second test case (case 2). The third test case, (case 3) is that of laminar flow over a single

cylinder at two different Reynolds number and the results are compared with established

data from literature. The more complex case of flow past two cylinders in cross flow at

different pitch ratios and incidence angles is studied in the next test case. For one of the

configurations, (with Red =100) the results are compared with a past numerical study [127]

performed using a body-fitted spectral difference scheme. The sensitivity of the vortex flow

patterns observed for this case on the order of the scheme is also reported. The cut-cell

scheme is then used to investigate the flow vortex patterns when the cylinders are placed

very close to each other with a narrow gap between them. The problem of low Reynolds

number flow over a corrugated airfoil at different angles of attack is then investigated. The

results from the cut-cell scheme are compared with previous experimental and numerical

studies for a similar configuration. The motivation for this case is to asses the performance

of the solver in handling complex geometrical features. Finally, results are presented for

laminar flow over single and multiple spheres to demonstrate the consistency and accuracy

of the three dimensional cut-cell method.
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Table 4.1: Summary of test cases and their motivation.
Case Motivation
k-exact scalar and gradient reconstruction Check accuracy of k−exact reconstruction
2D elliptic problem Check accuracy with cell clustering method
Flow over single cylinder Verify scheme for 2D flows.
Flow over two side-by-side cylinders Investigate vortex shedding patterns for

complex configurations involving narrow
gaps.

Flow over a corrugated airfoil Demonstrate the robustness of the solver in
handling sharp geometrical features.

Flow over two side-by-side spheres Verify 3D cut-cell scheme and investigate
complex flow interactions between pair of
solid spheres.

4.2.1 Order of accuracy analysis for scalar and its gradient reconstruction

To verify the order of accuracy of the proposed k-exact reconstruction, consider a scalar field

ψ in a 2D domain (x, y) ∈ [1, 1] given by:

ψ(x, y) = sin(πx) sin(πy) (4.42)

A circular boundary of radius 0.1 m, is resolved using cut-cells on a 2D Cartesian mesh.

Both, the variable ψ and its gradient |∇ψ| are evaluated at the circular boundary for various

grid sizes: 0.025 m, 0.0125 m, 0.00625 m, and 0.003125 m. The initial solution is inte-

grated and stored for each computational cell using a fifth-order accurate Gauss-Legendre

quadrature rule. The errors are computed on the surface as follows.

eψ = ψΓ − ψexact (4.43)

e∇ψ = ∇ψΓ −∇ψexact (4.44)

where subscript Γ denotes the reconstructed value of ψ and∇ψ at the boundary and subscript

exact denotes the corresponding analytical solution, respectively. While the error eψ is in-
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Table 4.2: Error in reconstruction of a scalar ψ and order of accuracy at the embedded
boundary using a quadratic reconstruction(k=2).

Grid L1 norm L1 order L2 norm L2 order L∞ norm L∞ order
40 x 40 6.83x10−6 - 1.03x10−5 - 1.66x10−5 -
80 x 80 7.26x10−7 3.23 1.05x10−6 3.29 1.65x10−6 3.33

160 x 160 7.69x10−8 3.24 1.09x10−7 3.26 2.05x10−7 3.08
320 x 320 7.21x10−9 3.40 1.02x10−8 3.41 2.11x10−8 3.28

Table 4.3: Error in reconstruction of gradient of a scalar, |∇ψ| and order of accuracy at the
embedded boundary using a quadratic reconstruction(k=2).

Grid L1 norm L1 order L2 norm L2 order L∞ norm L∞ order
40 x 40 7.86x10−4 - 1.06x10−3 - 1.18x10−3 -
80 x 80 2.11x10−4 1.90 2.51x10−4 1.90 2.47x10−4 2.26

160 x 160 6.57x10−5 1.68 7.54x10−5 1.68 8.74x10−5 1.50
320 x 320 1.51x10−5 2.12 1.71x10−5 2.12 1.97x10−5 2.15

dicative of the accuracy of inviscid terms discretization, e∇ψ is representative of the accuracy

of viscous terms reconstruction. The Lp norms of the errors are computed as:

Lp(eψ,|∇ψ|) =

(
1

ΣiAiΓ
ΣiA

i
Γ|eiψ,|∇ψ||p

) 1
p

, (4.45)

where AiΓ and ei are the area of the cut surface and error in reconstruction for ith cell, re-

spectively. The errors eψ,|∇ψ| are reported in Tables 4.2, 4.3, 4.4 and 4.5 for different orders

of reconstruction along with the convergence rates.

The convergence rates for ψ and ∇ψ are also shown in Fig. 4.9. As seen in the tables

Table 4.4: Error in reconstruction of a scalar ψ and order of accuracy at the embedded
boundary using a cubic reconstruction(k=3).

Grid L1 norm L1 order L2 norm L2 order L∞ norm L∞ order
40 x 40 2.07x10−6 - 2.44x10−6 - 2.86x10−6 -
80 x 80 1.44x10−7 3.85 1.63x10−7 3.90 2.05x10−7 3.80

160 x 160 7.57x10−9 4.25 9.17x10−9 4.15 1.51x10−8 3.76
320 x 320 4.38x10−10 4.11 5.64x10−10 4.02 1.05x10−9 3.85
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Table 4.5: Error in reconstruction of gradient of a scalar, |∇ψ| and order of accuracy at the
embedded boundary using a cubic reconstruction(k=3).

Grid L1 norm L1 order L2 norm L2 order L∞ norm L∞ order
40 x 40 4.49x10−4 - 5.90x10−4 - 6.45x10−4 -
80 x 80 6.75x10−5 2.73 7.64x10−5 2.95 1.05x10−4 2.61

160 x 160 8.75x10−6 2.95 9.62x10−6 2.99 1.28x10−5 3.03
320 x 320 1.10x10−6 2.93 1.22x10−6 2.98 1.96x10−6 2.70

and the figure, the reconstruction scheme has excellent consistency across the different Lp

norms and the order represents the true order of the reconstruction both locally and globally.

Formally third order with k=2 and fourth order with k=3 for inviscid terms and formally

second order with k=2 and third order with k=3 for is derivatives is achieved the boundaries.

This is an improvement over the earlier studies using cut-cell [94, 86] where the accuracy

degraded to first order at the wall boundaries.
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Figure 4.9: Error norms in reconstruction of a scalar ψ and its gradient ∇ψ on a immersed
boundary. Solid black lines indicate the design order of accuracy

4.2.2 Order of accuracy analysis for a 2D elliptic problem

The accuracy of the cut-cell finite volume scheme is demonstrated by solving for the Laplace’s

problem:
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∂2ψ

∂x2
+
∂2ψ

∂y2
= 0, (4.46)

on a series of successively refined grids and with two different orders of reconstruction: k=2

and k=3. The exact solution of Eq. (4.46) is: ψexact = sin x exp y. Although, a high order

accurate reconstruction of the flow field quantities and their derivatives are obtained using

the k-exact approach, the solution accuracy degrades due to the aforementioned cell mixing

process. Particularly for viscous flow problems, the classical cell mixing method, achieves

numerical stability in computations but causes significant noise in the reconstruction of the

derivative quantities, e.g, shear stress and heat flux (as seen in Fig. 4.3).

The proposed small cell treatment scheme is now assessed for this Laplace’s problem on

a domain,D with a embedded boundary, Γ. The boundary is defined by a levelset description

φ on a 1 × 1 unit domain given by:

φ1(x, y) = 1−
√

(x− xc)2

r2
1

+
(y − yc)2

r2
2

, (4.47)

φ2(x, y) = 1−
√

(x− xc)2

r2
2

+
(y − yc)2

r1
2

, (4.48)

φ(x, y) = min(φ1, φ2) (4.49)

where (xc, yc) is set at (0.5, 0.5) and r1 = 0.3, r2 = 0.5. The boundary represented by the

above levelset description is shown in the following Fig. 4.10(a).

Equation Eq. (4.46) is solved using the finite volume approach described in Section 2.2.

All the conserved quantities are frozen and an additional scalar equation is solved for ψ with

a Dirichlet boundary condition ψ(xΓ, yΓ) = ψexact imposed at the immersed boundaries.

The L1, L2 and L∞ norm of the errors are computed as Lp(eψ) =
(

1∑
i vi

∑
i vi|eψ|p

) 1
p

with

vi being the volume of cell, p is error norm and |eψ| = |ψ − ψexact|. The error norms are

reported for different mesh sizes and for k=2 and k=3 in Table 4.6. The plot of the error
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Figure 4.10: (a) Immersed domain for the Laplace’s problem represented using cut-cells (b)
Exact solution to Laplace’s problem, ψexact = sinx exp y .

norms along with the design order of accuracy is shown in Fig. 4.11(a).
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Figure 4.11: (a) Error norms of ψ for the solution to the Laplace’s problem at different
grid resolutions (b) Accuracy versus cost for the Laplace’s problem with different orders of
k-exact reconstruction.

The error in the solution includes the effects of small cell clustering and mixing. With the

cell clustering algorithm, the design order of accuracy is achieved for both k=2 and k=3. Pre-

vious studies employing cut-cell [25, 85] have only reported the reconstruction error which

does not account for the small cell effects. It is noted that in the current approach, higher or-
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Table 4.6: Error norms for solution to Laplace equation for different orders of k-exact recon-
struction.

k = 2
Grid L1 norm order L2 norm order L∞ norm order
402 2.03× 10−6 - 2.37× 10−6 - 4.173× 10−6 -
802 5.04× 10−7 2.01 5.90× 10−7 2.0 1.053× 10−6 1.99
1602 1.24× 10−7 2.02 1.46× 10−7 2.01 2.60× 10−7 2.02
3202 3.15× 10−8 1.98 3.70× 10−8 1.98 6.59× 10−8 1.98

k = 3
Grid L1 norm order L2 norm order L∞ norm order
402 9.06× 10−8 - 1.14× 10−7 - 3.14× 10−7

802 1.0× 10−8 3.17 1.26× 10−8 3.17 4.48× 10−8 2.81
1602 1.23× 10−9 3.03 1.54× 10−9 3.03 6.30× 10−9 2.83
3202 1.55× 10−10 2.99 1.95× 10−10 2.98 8.65× 10−10 2.86

der accuracy is achieved both locally and globally. When compared with error norms for only

the reconstruction shown in Fig. 4.9, it appears that the effect of cell clustering is to increase

the error in the solution locally but the method is still able to maintain the design order of

convergence. This clearly indicates the robustness of the proposed cell clustering approach

in handling complex surface topologies and still achieve higher order. The Laplace’s prob-

lem is representative of the class of viscous flow problems since it involves elliptic, diffusion

like term and therefore, the inferences made on order of accuracy for this simple problem

should be applicable to compressible viscous flow problems in general.

All the computations were performed on a Intel(R) Xeon(R) CPU E5345 @ 2.33GHz

processor with 4 MPI threads. The cost is measured as the time taken to compute 500 steps

and is plotted against the accuracy measured in terms of the L2 norm error in Fig. 4.11(b).

As seen in the figure, to achieve a given accuracy, the high order k=3 scheme requires lesser

number of grid points and is always less costlier than the lower order k=2 scheme. And

for a given a grid resolution, though there is a overhead in using the cubic k-order (k=3)

reconstruction compared to the quadratic reconstruction (k=2), the gain in accuracy is in

orders of magnitude. This simple test provides some insight into the cost incurred versus the

accuracy gained in employing a higher order reconstruction.
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Table 4.7: Various grid resolutions used for viscous flow over cylinder case.
Red Case Levels of local refinement D/∆x
40 Re4010 2 10
40 Re4020 3 20
40 Re4040 4 40
40 Re4080 5 80

100 Re10010 2 10
100 Re10020 3 20
100 Re10040 4 40
100 Re10080 5 80

4.2.3 Laminar flow over a single cylinder

The case of laminar flow past a cylinder has been extensively studied both experimentally

and numerically [55, 128] and used for validation of many IB schemes in the past. Results

are reported for two Reynolds numbers with Red = 40 and Red = 100 where Red is the

Reynolds number based on diameter of the cylinder, d and free stream velocity, u∞. For

both the cases, Mach number of the free stream is set to M∞ = 0.2. The domain size for

both is 30d × 30d. A characteristic inflow boundary condition is employed to the left side

while a non-reflecting characteristic outflow is set on the top, bottom and right. All the

simulated cases that are run are summarized in Table 4.7. The last column in the Table 4.7

denotes the number of grid points resolving the diameter of the cylinder, d.

At this low Reynolds number of Red=40, the flow remains steady and the cylinder wake

is characterized a symmetric pair of vortices that are attached to the cylinder. A re-circulation

region behind the wake develops which eventually breaks with the increase in flow Reynolds

number. The streamline plot at the finest resolution with cubic reconstruction is shown in

Fig. 4.12. At this resolution (case Re4080), it is found that there are no apparent differences

in the streamlines with k = 2 and k = 3. But at the lowest resolution, minor differences

especially in the recirculation region are noticeable with different orders of reconstruction

(figure not shown).

More quantitative comparisons of the improvement in the solution with increase in order
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Figure 4.12: Streamlines for Red=40 flow over a cylinder for case Re4080 with k = 3.

of reconstruction are be done by analyzing the pressure coefficient Cp computed as Cp =

(p − p∞)/ρU2
∞ and the skin fraction coefficient computed as Cf = 2τf/ρu

2
∞ along the

cylinder surface. Here, τf is the skin friction on the surface of the cylinder. TheCp andCf are

plotted in Figs. 4.13 and 4.14 for the different grid resolutions given in Table 4.7 and for k =

2 and k = 3. As seen in the figures, there is a very good agreement between the current results

and the data from previous study [17] with a body-fitted grid. A smooth reconstruction of

both inviscid and viscous fluxes is achieved at the cut-cell boundary resulting in a smooth

pressure and shear stress distribution at the solid boundaries with a very low effective grid

resolution. A clear improvement in the Cp and Cf distribution can be noticed by increasing

the order of reconstruction from k=2 to k=3. Even with just 10 points per diameter of

the cylinder, the correct pressure and shear stress distribution is recovered with k=3 that

almost matches with the fine resolution case having 80 points per diameter of the cylinder.

The deviations noted at θ ≈ 90 ◦ in Cp and θ ≈ 50 ◦ in Cf can be due to errors in the

surface approximation using cut-cells rather than from the accuracy of the scheme. A better

approximation of the surface with multiple planar cuts could potentially improve the solution

even more. The results demonstrates the superiority of the proposed scheme over previous

cut-cell based approaches.

On increasing the Reynolds number of the cross flow toReD,critical > 49, the re-circulation

region in the wake of the cylinder becomes unstable [129] and above this critical Reynolds

98



0 20 40 60 80 100 120 140 160 180
θ

−1.0

−0.5

0.0

0.5

1.0

1.5

C
p

80 100

−0.8

−0.6

(a)

0 20 40 60 80 100 120 140 160 180
θ

−1.0

−0.5

0.0

0.5

1.0

1.5

C
p

80 100

−0.8

−0.6

(b)

Figure 4.13: Results for pressure coefficient with (a) k = 2 (b) k = 3 along the cylinder
surface for Red = 40 compared with reference data from a boundary-fitted grid [17] (solid
back dots) or cases: Re4010 ; Re4020 ; Re4040 ; Re4080.
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Figure 4.14: Results for skin friction coefficient with (a) k = 2 (b) k = 3 along the cylinder
surface for Red = 40 compared with reference data from a boundary-fitted grid [17] (solid
back dots) or cases: Re4010 ; Re4020 ; Re4040 ; Re4080.
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number, the wake begins to oscillate. Periodic alternating vortices are shed exhibiting the

well known von Kármán vortex street. This can be observed from the vorticity iso-lines

shown in Fig. 4.15 at Red = 100 again for the finest resolution with k = 3 reconstruction. No

differences are observed with k = 2 reconstruction in the vortex patterns at this resolution. As

for the steady case, the higher order of reconstruction is found to only marginally improve

resolution of the wake vortical structures at lower resolutions (figure not shown).

Figure 4.15: Vorticity iso-lines for Red=100 flow over a cylinder for case Re4080 with k =
3. Solid lines denote positive vorticity and dotted lines denote negative vorticity.

The variation of the drag coefficient Cd = Fdrag/(0.5ρu∞
2) with time is shown in

Fig. 4.16 for various resolutions. A rapid convergence to the fine grid solution is noted

for k=3 compared to k=2. A similar plot for the lift coefficient Cl = 2Flift/ρu∞
2 over time

is presented in Fig. 4.17. The amplitude of the lift coefficient is better predicted using k=3

whereas with k=2, the peak amplitude is off by 33%.

The drag coefficient,Cd at different grid resolutions forRed = 40 are listed in Table 4.15.

Also reported in the table are the Cd data from a previous study employing cut-cell method.

As seen, the drag coefficient rapidly converges to the fine grid value. In comparison, the

prior study [25] employing cut-cell scheme exhibits a slower convergence. Similar behavior

is observed for the average coefficient of drag C̄d and Strouhal number, St = Dfs/u∞,

where fs is the shedding frequency, for Red = 100 as seen in Table 4.9. The values of Cd,

C̄d and St reported by previous studies are reported in Table 4.10 along with values obtained

using the present cut-cell method for the finest resolution cases (Re4080 and Re10080) and
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Figure 4.16: Variation of drag coefficient over non-dimensional time for Red = 100 for
various grid resolutions with: (a) k = 2 (b) k = 3; Re10010 ; Re10020 ; Re10040 ;

Re10080.
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Figure 4.17: Variation of lift coefficient over non-dimensional time for Red = 100 for var-
ious grid resolutions with: (a) k = 2 (b) k = 3; Re10010 ; Re10020 ; Re10040 ;

Re10080.
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Table 4.8: Grid convergence of Cd for Red = 40

Effective res.(D/∆x)

10
20
40
80

Red = 40
Cd,k=2 Cd,k=3 Cd(Past study [25])
1.545 1.551 1.428
1.558 1.559 1.488
1.558 1.559 1.513
1.559 1.560 1.521

Table 4.9: Grid convergence of C̄d, St for Red = 100

Effective res.(D/∆x)

10
20
40
80

Red= 100
C̄d, k=2 C̄d, k=3 St, k=2 St, k=3
1.314 1.336 0.163 0.165
1.340 1.356 0.165 0.166
1.359 1.359 0.166 0.167
1.361 1.361 0.166 0.167

with k=3. The predicted values from the simulation agree well with the data from existing

studies.

Note that the skin friction coefficient and the pressure coefficient converges to the fine

grid value at a grid resolution of D/∆x = 20 (See Table 4.8) with the current approach.

The values of the relevant derived quantities (Cd, St) also converged to the second decimal

at relatively low grid resolution as seen in Table 4.9. In comparison, previous studies [94]

required much higher grid resolution (4 times more) to predict even first order quantities

such as pressure. The results suggests the potential of the current formulation to maintain

good accuracy even at a relatively lower grid resolution.

Table 4.10: Comparison with past studies: Left - Cd for Red = 40, Right - C̄d and St for
Red = 100

Contribution Cd
Tritton [128] 1.58

Tseng and Ferziger [17] 1.53
Chung [91] 1.54

Current work 1.56

Contribution C̄d St

Tseng and Ferziger [17] 1.42 0.164
Kim et al.. [55] 1.33 0.165

Chung[91] 1.39 0.172
Current work 1.36 0.167
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4.2.4 Red=100 flow over two side-by-side cylinders in cross-flow

The new approach is now applied to a more complex problem of a Red = 100 flow over

two side by side cylinders with a free stream Mach number of M = 0.2. The two cylinders

are placed apart from each other with a center to center distance of P = 2.5D where P is

generally defined as the pitch between cylinders. This case was earlier investigated using

a fourth-order spectral difference method with a body-fitted mesh [127] and an IB method

employing discrete momentum forcing [130]. This is a challenging test case as the wake

pattern of the two cylinders initially are in anti-phase, but later exhibits a transition from

anti-phase vortex shedding to an in-phase vortex shedding. A less accurate numerical scheme

would not be able to accurately capture the transition and predict the wake pattern behavior.

The phase transition phenomenon has been noted in the past [127, 130] for pitch ratio of

P/D = 2.5. The process of the vortex synchronization and pairing between the vortices of

opposite signs of the gap between the cylinders resulting in two von Kármán vortex streets

that are in anti-phase is also noted in experiments [131]. It must be noted that for the vortex

pairing process to occur, there must be a small difference in the shedding frequencies of the

upper and lower cylinders. In reality, flow irregularities causes instantaneous differences in

the vortex shedding frequencies of the upper and lower cylinder. This facilitates the vortices

of opposite signs to pair up and synchronize. In the current study, as in [130], the flow was

initialized with a random sate, whereby a numerical noise of magnitude 5% of the freestream

velocity was added to both the streamwise and spanwise velocity components.

A domain of 45D × 30D was used for this case and the boundary conditions are the

same as employed or the single cylinder study. Five AMR levels of local grid refinement

over a base resolution of 0.3D is used resulting in an effective resolution of 0.01875D,

which is comparable to grid resolution used in the previous spectral difference study [127].

Simulations are performed for two different orders of reconstruction (k=2 and k=3). The

phase transition from antiphase shedding pattern to inphase, because of pairing of vortices

on either side of the gap between cylinders, is shown in Fig. 4.18.
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(a) tu∞/d = 50 (b) tu∞/d = 90

(c) tu∞/d = 150

Figure 4.18: Instantaneous snapshot of vorticity iso-lines showing the transitioning from
(a) anti-phase to (c) in-phase regime in vortex shedding of the two cylinders using cut-cell
scheme with cubic reconstruction (k=3) (solid and dotted lines denote positive and negative
vorticity, respectively.

104



The results of the time history of lift coefficients for the upper and the lower cylinder are

shown in Fig. 4.19 for k = 2 and k = 3 and compared with the earlier spectral difference

study [127].
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Figure 4.19: Lift coefficient history for two side-by-side cylinders in a Red = 100 cross flow
with: (a) k=2 (b) k=3 (c) Spectral difference method (figure taken from [127]).

As seen in Fig. 4.19, the transition in the wake pattern in captured accurately by the

present method with both k=2 and k=3. The lift coefficient history is in fact almost identi-

cal for both the second-order and third-order schemes implying that the near cylinder wall

physics is accurately captured even with the second-order scheme. As seen from the results

of the single cylinder studies in Section 4.2.3, the higher order reconstruction improves the

solution only for a coarse mesh. For a relatively well resolved mesh as used in this case, the

105



0.00 0.05 0.10 0.15 0.20 0.25
St. no.

0.00

0.05

0.10

0.15

0.20

0.25

Am
p.
 o
f C

l

k=2
k=3

Figure 4.20: Fast Fourier Transform of lift coefficient for k=2 and k=3.

predictions are not expected to improve between k=2 and k=3. The Fast Fourier Transform

(FFT) of the lift coefficient of the top cylinders is presented in Fig. 4.20. The peaks cor-

respond to the shedding pattern before and after transition. First peak corresponding to the

inphase vortex shedding is occurring at around St ≈ 0.167 with both k=2 and k=3 and is

close to the value reported by Kang [130].

Further, to analyze the performance of the proposed scheme for geometries involving

narrow gaps, the wake pattern behind the two cylinders is also investigated when they are

very close to each other. The same configuration used in the previous case is employed but

the cylinders are now placed close to each other separated by a narrow gap of ∆=0.01875D

which corresponds to a single numerical grid for the chosen resolution. Such a configuration

is difficult to simulate for any scheme and to the best of authors knowledge, is not investi-

gated in the past using body-fitted or IB methods. This is essentially due to the difficulty in

achieving a good numerical grid resolving the narrow gap between cylinders. The particular

interest in this case is the behavior of the higher order k-exact reconstruction near narrow

gaps and therefore k=3 cubic reconstruction is employed. Due to lack of experimental or

numerical data for this configuration, only qualitative assessment of the results are made.

The vorticity patterns in the wake of the two cylinders as seen in Fig. 4.21 clearly shows a

single vortex street behind the cylinders. The time history of the lift coefficients for the upper
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and the lower cylinder are shown in Fig. 4.22 and confirm the in-phase nature of the vortex

shedding. Since the two cylinders are almost in contact with each other with P/D ≈ 1.0, the

flow patterns exhibits behavior seen for a single bluff body. The vortex shedding frequency

is different from that of a single cylinder, but only a single von Kármán vortex street is

observable. These characteristics were also noticed in the experiments [131] in which flow

patterns were studied when two staggered cylinders are placed in a cross-flow. When the

two cylinders are separated by a small gap, the flow bleeds through the gap and affects the

vortex shedding process. Even though only a single von Kármán vortex street is observed,

the length of the wake region extends because of the presence of the base bleed.

(a) (b)

Figure 4.21: Instantaneous snapshot of (a) vorticity iso-lines showing a single bluff body
vortex shedding pattern for two cylinders in close contact with the each other using cut-cell
scheme with cubic reconstruction (k=3) (solid and dotted lines denote positive and negative
vorticity, respectively), and (b) Velocity vector plot near the narrow gap.

4.2.5 Low Reynolds number flow over a corrugated airfoil

One of the main advantages of employing sharp interface schemes such as cut-cell method is

that sharp and irregular bodies can be accurately resolved. To demonstrate that the proposed

high order cut-cell scheme can work with abrupt geometrical discontinuities without loss

of accuracy, the results are presented for the problem of flow over a corrugated airfoil of

chord length c at a chord based Reynolds number of Rec = 10, 000. The airfoil represents

the cross-section located at the mid-section of the forewing of a dragonfly (Aeshna cyanea).

Three different angles of attack, α = 0, 5 and 10 degrees are considered for this study.
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(a) CD (b) CL

Figure 4.22: Drag and lift coefficient history for two side-by-side cylinders close to each
other in a Red = 100 cross flow exhibiting an in-phase shedding regime.

This specific profile of the airfoil was experimentally investigated by Kesel, [132] and

was also numerically studied by Vargas et al., [133]. Both k = 2 and 3 reconstruction are

used for this study. The domain and grid resolution is based from the previous numerical

study of Vargas et al., [133]. The domain size is 12c × 6c with the airfoil located at the

center. An effective grid resolution of 0.0834t, where t is the thickness of the airfoil, is used

by employing AMR with 5 levels of refinement. The mesh in the close proximity of the

airfoil is shown in Fig. 4.23.

(a) (b)

Figure 4.23: Numerical mesh (a) in the vicinity of the corrugated airfoil (only every 4 points
shown) and (b) zoomed in view to highlight the sharp geometrical discontinuities.
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In comparison with a profiled airfoil, the corrugated airfoil can achieve higher lift at

the same flight conditions [132]. The corrugation prevents large-scale flow separation and

airfoil stall at low Reynolds numbers. This is because the protruding corners of the corru-

gated airfoil generates unsteady vortex structures to promote the transition of the separated

boundary-layer flow from laminar to turbulent. Experimental studies of Hu and Tamai [134]

showed that the unsteady vortex structures trapped in the valleys of the corrugated cross sec-

tion can bring in high speed fluid flow from the outer section into the corrugations which

results in increase of the kinetic energy of the near-wall flow preventing flow separation

and stall. Therefore accurate resolution of the sharp corners is of paramount importance for

any numerical scheme in accurately predicting of aerodynamic performance of corrugated

airfoils. This generally is not easy to achieve with traditional methods due to mesh singu-

larity near corners and inability of some numerical schemes to handle abrupt geometrical

discontinuities.

The instantaneous plots of the vorticity iso-lines for the three different angles of attack at

a same time instant is shown in Fig. 4.24. Consistent with past observations [133], there is

a considerable amount of flow separation and reattachment in the valleys of the corrugation.

At α = 10◦, there is a large scale vortex role up as evident in the instantaneous plots.

The comparison of the time averaged plot of the lift and drag coefficients for the different

angles of attack with the past data are presented in Fig. 4.25. As in the previous study [133],

the data for the first 5 time units is ignored and the time averaging is done over next 15 time

units for α = 0◦, 20 time units for α = 5◦ and 40 time units for α = 10◦. A time unit is the

non-dimensionalised time using the free stream velocity, U∞ and the chord length, c and is

given as t∗ = tU∞/c. Good agreement with the experimental results is observed for the drag

coefficient, Cd. The lift coefficient, Cl, is over predicted by around 28 % at α = 10◦, but

for the other two angles of attack, matches well with the experiment. The discrepancy in the

lift coefficient can be attributed to possible modification of pressure and shear forces on the

airfoil due to the end effects from tunnel walls and this effect can become more pronounced

109



(a) α = 0.0◦ (b) α = 5.0◦

(c) α = 10.0◦

Figure 4.24: Instantaneous snapshot of vorticity iso-lines for flow over corrugated airfoil at
different angles of attack using cut-cell scheme with cubic reconstruction (k=3) (solid and
dotted lines denote positive and negative vorticity, respectively.
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at higher angles of attack [133]. The general trend is however well predicted by the cut-cell

scheme. It can be observed from Fig. 4.25 that there are noticeable differences in the lift

and drag prediction between the past numerical study which employed a finite difference

based IB method and the current work. One reason that can be attributed to the differences

in the results, is that the sharp corners of the airfoil are more accurately represented using the

cut-cell approach. Whereas, in the past study, the airfoil shape was considerably smoothed

out to remove the sharp edges for the purpose of reducing resolution requirements of the

simulation. Note that the same mesh resolution is used in the present study, but the airfoil

geometry is well resolved preserving the sharp edges that are critical to the aerodynamic

performance. The lift and drag coefficient results are almost the same using both k=2 and 3.

This indicates that the flow is well resolved for this Reynolds number.
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Figure 4.25: Time averaged (a) drag coefficient, Cd and (b) lift coefficient Cl at three dif-
ferent angles of attack, α=0, 5 and 10◦ compared with Experiments [132] ( �) for k=2
( N); k=3 ( �) and previous numerical study ( •) [133].

4.2.6 Three dimensional flow over single and multiple spheres in cross-flow

In this final study, a Mach 0.2 laminar flow over a single sphere at various Reynolds numbers

are simulated along with the flow over two side-by-side spheres at Red=100. The purpose
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of these simulation is to demonstrate that the proposed cut-cell method remains robust and

accurate for 3D flows as well. The simulation results with current scheme are compared with

some of the earlier experimental and simulation data [135, 136, 55, 25] for flow over a single

sphere. Although seemingly simple, this is a challenging case for IB methods as all possible

angles of intersection between the embedded boundary and the Cartesian grid occur.

All the three-dimensional cases were run with quadratic polynomial reconstruction (k=2).

A reasonably fine mesh resolution of 40 points per diameter of the sphere is used for all the

cases (D/∆x = 40). It was observed from the studies on single cylinder presented in Sec-

tion 4.2.3 that for this resolution, k=3 did not significantly improve the results. Thus for all

the three-dimensional cases, a quadratic reconstruction with k=2 is employed. Higher or-

der reconstruction for three-dimensional flows will be performed for high Reynolds number

flows in near future. For both, the single sphere and multiple spheres cases, A domain of size

32D× 32D× 32D with 5 levels of local mesh refinement performed from a base resolution

of 0.8D is used resulting in an effective resolution of 0.025D. The choice of grid resolution

is based on the numerical grid convergence studies for flow past a single cylinder conducted

earlier and reported (see Section 4.2.3.

Streamline plots for flow over a single sphere for various Reynolds numbers is shown in

Fig. 4.26. As noted in the past studies [135, 55], the flow remains steady until Red ≈ 270

and at Reynolds numbers ranging between 270 to 300, an onset of unsteady motion occurs

that causes periodic vortex shedding. Since the Reynolds number of the flow is less than the

critical Reynolds number, the flow is steady for all the cases. As noted in Fig. 4.26, the wake

pattern remains symmetric and an increase in the Reynolds number is resulting in a progres-

sively bigger re-circulation region. The results of the computations for the steady regime are

summarized in Table 4.11 and compared with past data from literature. As observed, there is

a very good agreement between the current study and the past studies. The Table 4.12 com-

pares the results of the cut-cell simulations for Red= 300 with data from previous studies. At

this Reynolds number, the wake becomes unsteady resulting in complex three dimensional
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hairpin-like structures. The mean drag, lift coefficient and Strouhal number predictions agree

well for also this unsteady case with the past results. The Q-criterion [137] is generally used

to identify the vortex structures in numerical simulations and is defined as:

Q =
1

2
(Ωi,jΩi,j − Si,jSi,j) , (4.50)

where Ωi,j = 1
2
( ∂ui
∂xj
− ∂uj

∂xi
) is the rotation rate and Si,j = 1

2
( ∂ui
∂xj
− ∂uj

∂xi
) is the strain rate. The

iso-surface of Q-criterion with Q > 0 will identify regions where the rotation rate dominates

the strain rate and thus visualizing the vortex regions The vortex structures identified by

iso-surface of Q-criterion for the Red =300 flow past sphere is shown in Fig. 4.27. The

hairpin-like flow structures are clearly identifiable in the wake of the sphere.

(a) (b)

(c)

Figure 4.26: Instantaneous streamlines for flow past a single sphere at:(a) Red = 50 (b) Red
= 150 (c) Red = 250 shown in x− y plane
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Figure 4.27: Iso-surfaces of Q-criterion colored with vorticity magnitude for Red = 300
flow past sphere.

Table 4.11: Drag coefficients for flow over sphere at different Red.
Contribution Cd, Red= 50 Cd, Red= 150 Cd, Red= 250

Present 1.56 0.88 0.69
Johnson and Patel [135] 1.57 0.9 -

Marella et al. [136] 1.56 0.85 -
Kim et al. [55] - - 0.70

Hartmann et al. [25] 1.57 0.88 0.0

Table 4.12: Drag, lift coefficients and Strouhal number for flow over sphere at Red = 300.
Contribution Cd Cl St. no.

Present 0.52 -0.063 0.131
Johnson and Patel [135] 0.656 -0.069 0.137

Kim et al. [55] 0.657 -.0.067 0.134
Hartmann et al. [25] 0.657 -0.069 0.135
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The case of Red=100 flow over two spheres separated from each other with center to

center pitch to diameter ratio of P/D = 0.75 was previously investigated by Kim et al.

[6] using a body-fitted structured grid approach to understand the three-dimensional flow

interactions between droplets and solid particles. Generating a good grid is considerably

complex in the vicinity of multiple spheres and in the prior study [6], a symmetry condition

was imposed on the plane separating the two spheres and only a single sphere was actually

simulated. The limitation with the approach is that only steady state flow with low Reynolds

number can be investigated. In the current approach, the complete grid involving both the

spheres is generated and hence the approach allows study of both steady and unsteady flow

over multiple spheres.

Figure 4.28(a) shows the pressure coefficient, Cp, around the top sphere in the principal

x-y plane and the results agree well with the previous numerical study [6]. As seen in the

figure, due to the presence of another sphere in the vicinity, the pressure on the top part of

the sphere is, on an average, higher than the bottom sphere contributing to a positive lift

force, which is absent in case of flow past a single sphere. The spatial pressure coefficient

distribution along the surface of the spheres is shown in Fig. 4.28(b) along the with the flow

streamlines in the principal plane. Note the smooth distribution of the pressure coefficient

along the surface of the spheres. In Fig.4.29(a), the skin friction coefficient, Cf , is shown

in the same principal plane as in Fig. 4.28(a). The presence of a neighboring sphere makes

the distribution of Cf asymmetric between the top and bottom surfaces of the sphere. An

interesting feature of the shear stress plot is the differences in the angle at which the shear

stress vanishes (Cf =0) for the top and bottom surface indicating different separation points.

There is a very good agreement of theCf distribution with the previous study [6]. Especially,

the flow separation angles are in excellent agreement. There is a minor difference in the

magnitude of the peak shear stress, nevertheless the smoothness in Cf distribution on the

top and bottom surfaces (Fig. 4.29(b)) and the earlier results of Cp shows that the current

implementation is accurate and models the near wall region very well.
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Figure 4.28: (a) Distribution of the pressure coefficient, Cp around the top and bottom sphere
in the principal x-y plane (Filled dots - [6]). (b) Smooth spatial distribution of Cp, on the
surface of the top and bottom sphere. Also shown are flow streamlines in the principal plane.
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Figure 4.29: (a) Distribution of the skin friction coefficient, Cf , around the top and bottom
sphere in the principal x-y plane (Filled dots - [6]). (b) Smooth spatial distribution of Cf , on
the surface of the top and bottom sphere. Also shown are flow streamlines in the principal
plane.
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4.3 Validation of second order cut-cell method for moving boundaries

The order of accuracy of the moving cut-cell method is assessed by studying isentropic

expansion of a gas confined between two reflecting walls. The validation of the new cut-cell

method for moving boundary problems is then performed by studying a piston moving at

Mach 2 in a quiescent ambient air. The grid convergence of the shock location is reported for

various grid resolutions. To demonstrate the strict mass conservative property of the current

scheme, results are reported for flow inside an oscillating membrane. Next, comparison of

surface pressure and wall shear stress distribution is presented for the case of a cylinder

moving at subsonic and supersonic velocities in a stationary fluid with an equivalent static

boundary problem with moving fluid and stationary cylinder. The ability of the method

to handle coupled fluid and rigid body motion is demonstrated by studying the problem

of shock driven cylinder motion. Validation studies are then presented for the case of a

moving piston in a reacting flow at supersonic velocities and the results are compared with

an equivalent static boundary problem. Finally, the developed cut-cell scheme is applied

to study the complex problem of detonation initiation and propagation by a hypervelocity

projectiles shot into a detonable mixture. All the test cases and their motivations are listed in

Table 4.13.

All the simulations, unless mentioned, use a time step based on a CFL number of 0.5 and

αlim = 0.75 such that the time step restrictions are close to the ones based on the full cell

volume. This value of limiting volume fraction, αlim, is much higher than the usual value

of 0.5 used in most of the previous cut-cell approaches. A quadratic reconstruction k = 2

is employed for all the cases. This provides a third order accuracy in the computation of

inviscid fluxes and second order accuracy for viscous fluxes evaluation in regions of smooth

solution. Finally, the hybrid cut-cell scheme using the high-order CENO reconstruction in

smooth regions of flow and a second order limited MUSCL reconstruction in regions of flow

discontinuities is used for the all the simulations.
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Table 4.13: Summary of test cases and their motivation.
Case Motivation
Smoothly expanding piston Assess the order of accuracy of the cut-cell

method for moving boundaries
Non-reacting moving piston with pre-
scribed supersonic motion

Check accuracy and strict mass conserva-
tion property of scheme

Flow inside an oscillating membrane Demonstrate strict mass conservation even
for deforming bodies

Moving subsonic/supersonic cylinder in a
viscous flow

Compare solution accuracy with static
cases and demonstrate smooth reconstruc-
tion of shear stress for moving boundaries

Shock driven cylinder motion Demonstrate the accuracy and robustness of
scheme for coupled fluid/rigid body inter-
actions

4.3.1 Smoothly expanding piston

A one-dimensional test case in which a non-reacting gas is confined between two reflecting

walls located at xl = 0.0 and xr = 0.5 + vrt , where the right most wall is moving at a

velocity vr is considered. The initial conditions for the flow field variables are given as:

[ρ(x), u(x), p(x)]T = [1 + 0.2 cos(π − 2πx), 2vr(1− x), ρ(x)γ]T . (4.51)

The entropy for the initial state is constant, i.e, s(x, 0) = p(x, 0)/ρ(x, 0)γ = 1.0 and remains

constant with time as long as the solution is smooth. Since the flow is subsonic, disconti-

nuities such as shocks are absent in the flow field, and the solution is expected to remain

smooth. The error in entropy is thus an effective measure of the numerical error induced

by the scheme. The L∞ and L1 error norms for the entropy are reported after a time of

te = 0.5 secs in Fig. 4.30. The formal order of accuracy of the moving cut-cell method ap-

pears to be only second order accurate even with k = 2 for which a third-order convergence

is expected. The drop in order of convergence might be related to the corrections given by

Eqs. (4.32) and (4.33) which enforce strict conservation during cell emerging and vanishing

events. Though the formal order of accuracy is only second order, the drop in magnitude of
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the error with an increase in the order of reconstruction can be clearly observed. Thus more

accuracy is obtained by high-order reconstruction even though the formal order of accuracy

of the moving cut-cell method is only second order.
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Figure 4.30: Convergence rates in error of entropy for the case of smoothly expanding piston.

4.3.2 Non-reacting piston with prescribed supersonic motion

In this first example, a piston is moved at a constant speed of Mach 2 in a quiescent fluid. The

piston of thickness L is initially centered at x = 64L in a 2D domain of length 128L × 4L,

where L is a reference length. As the piston moves, a compression shock is formed ahead

and a rarefaction wave results behind the piston. The flow solution at the front and the back

of the piston can be treated as two independent Riemann problems for which exact analytical

solutions are available [138]. As noted in the past studies of the same case [139, 104], strict

conservation of mass, momentum and energy is essential for predicting the correct shock

speed and the structure of the expansion region.

Computations for this case are done on a series of grid resolutions: ∆x = L/2, L/5, L/10

and L/20 respectively. The coarsest resolution is chosen such that the piston is resolved by

at least two cells. Slip walls are employed in the axial and transverse directions. The piston,
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which is initially at rest, is given a sudden acceleration to a Mach number of 2 based on

the initial fluid conditions. The computations are performed till a time unit of t = 25L/vp,

where vp is the speed of the piston, after which the solutions at various grid resolutions, are

compared.

The normalized pressure, density and the Mach number profiles at t = 25L/vp, for the

different grid resolutions are shown in Fig. 4.31. It can be seen that the flow solutions look

converged even at the lowest grid resolution. The comparison of the profiles for the finest

resolution case with the analytical solutions is shown in Fig. 4.32. There is an excellent

agreement of the solution for the shock and the expansion region with the analytical results.

A lesser accurate or a lesser robust scheme would not be able to produce correct results for

this case especially even at the lowest resolution. It must be noted for cases of this nature,

where a shock or expansion results due to a high-speed body in motion, the conservative

nature of the scheme is most important. The fact that our scheme is conservative can be

confirmed from the observation that the position of the shock is the same for different grid

resolutions. This is an important asset of the method which guarantees exact prediction of

high-speed flow features around moving interfaces even at a relatively coarse grid resolution.

4.3.3 Oscillating membrane

The strict conservative property of the cut-cell scheme for deforming boundaries is verified

by studying flow in an oscillating membrane. For a time period of oscillation given by Tp,

the instantaneous location of the membrane surface satisfies:

x2

a2
+

y2

b(t)2
= 1, (4.52)
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Figure 4.31: Grid convergence studies of (a) pressure, (b) density and (c) Mach no. profiles
for the piston moving at Mach 2: ∆x = L/2 ; L/5 ; L/10 ; L/20 (piston region
colored with blue).
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Figure 4.32: Comparison of (a) pressure, (b) density and (c) Mach no. profiles for the piston
moving at Mach. 2 for ∆x = L/20 with analytical results (piston region colored with blue).
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where a = 0.1 and b(t) = a
(

1 + 0.5 sin(2πt
Tp

)
)

. The surface velocity is then given by:

dy

dt
=


+πa

T
cos

(
2πt
T

√
1− x2

a2

)
if y > 0,

−πa
T

cos

(
2πt
T

√
1− x2

a2

)
if y < 0.

(4.53)

Slip conditions are imposed on the surface of the membrane. Atmospheric conditions are

assumed for the initial fluid state in the membrane. The membrane oscillation is simulated

for two time periods during which the surface locations of the membrane change at various

time instants of oscillation as shown in Fig. 4.33(a). Since the membrane is oscillating, the

volume change results in progressive compression and expansion of the fluid medium. The

average density ratio at any instant of time, t, can be found both numerically and analytically

as:

(
ρ̄

ρ0

)
ana

=
πa2

πab(t)
, (4.54)(

ρ̄

ρ0

)
num

=

∑N
n=1 Vnρn∑N
n=1 Vnρ0

, (4.55)

where N corresponds to the total number of cells in the numerical mesh, ρ0 is the initial

density of the fluid under atmospheric conditions and Vn is the volume of the nth grid cell.

The comparison of the instantaneous average density ratio ρ̄
ρ0

from the simulation with

the exact analytical value is shown in Fig. 4.33(b). The differences in the values were of

the order of O(10−16) and is constant throughout the simulation implying that the mass con-

servation is enforced up to machine precision using the current scheme. Grid convergence

studies are also conducted for this case but the results did not show any sensitivity to the grid

resolution and therefore not shown.
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Figure 4.33: (a) Shape of the membrane at various time instants and (b) the comparison of
the average density with analytical value.

4.3.4 Moving cylinder in a viscous flow under subsonic conditions

The canonical problem of a moving cylinder in a stationary viscous flow is considered for

evaluating the moving cut-cell method for viscous flow problems. Extensive studies for this

case have been performed both experimentally and numerically [55, 128] in the past and

are used for validating the current cut-cell scheme for simulating moving boundaries in a

viscous flow. The initial fluid conditions are atmospheric and the cylinder, initially at rest,

is instantaneously accelerated to a uniform velocity of uc such that the Mach number based

on the initial fluid conditions is M = 0.2 and the Reynolds number based on the diameter,

D, is Red = 40. A domain size of 80D × 16D is used with the cylinder initially located

at 1.5D from the left boundary. Subsonic characteristics based outflow conditions are used

on all the boundaries while a no-slip condition is imposed on the moving boundary of the

cylinder. Computations are performed for a flight time of 65 non-dimensional time units,

t∗ = tuc/D, during which the cylinder moves though a distance of 78.5D. It is ascertained

that the change in the drag and lift coefficients are less than 0.1 % for the last 20 time units.

A series of grids are employed with progressive refinement in resolution in the near field of

the cylinder and are summarized in Table. 4.14. The last column denotes the number of grid

points resolving the diameter of the cylinder, D.
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Table 4.14: Various grid resolutions used for the moving cylinder at Re=40 case.
Case Levels of local refinement D/∆x
Re4010 2 10
Re4020 3 20
Re4040 4 40
Re4080 5 80

(a) t*=36

(b) t*=46

(c) t*=57

Figure 4.34: Contours of velocity magnitude (m/s) at various time instants for the moving
cylinder problem in a viscous flow at Re 40 for the case Re4080.
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For the given Mach and Reynolds number, the wake behind the moving cylinder is steady.

A symmetric pair of vortices attached to the cylinder develop in the wake and the recircula-

tion region which initially increases, attains a constant size later. The plots of the contours of

the velocity magnitude at various time instants during the flight of the cylinder are shown in

Fig. 4.34. Figure 4.35(a) plots the temporal history of the drag coefficient, Cd = 2Fdrag/ρu
2
c ,

for various grid resolutions that are given in Table 4.14. An immediate observation from the

plot is the presence of numerical oscillations in Cd even though the mean looks converged.

But these oscillations which are around 2 % for caseRe4010 drops to 0.2 % for the finest res-

olution case Re4080. The zoomed in view of these oscillations is shown in the Fig. 4.35(b).

The reason for the presence of these oscillations may be related to the numerical approxi-

mations in the surface properties of the grid which diminishes with higher grid resolution.

This is strongly supported by the almost linear reduction of the fluctuations with the grid

refinement as noted in Table 4.14. The occurrence of new cell emerging events and grid cells

turning into solid can result in instantaneous changes in the local flow quantities and can also

be one of the reasons for the presence of the numerical perturbations. Also, the frequency of

these oscillations does seem to have a high correlation with the grid spacing.
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Figure 4.35: (a) Comparison of the drag coefficient (Cd) for the different grid resolutions
(b) Zoomed in view showing reduction of oscillations with progressive mesh refinement:
Re4010 ; Re4020 ; Re4040 ; Re4080.
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Table 4.15: Grid convergence of Cd for Red = 40

Eff. res.(D/∆x) Cd ± σCd
, Moving (current) Cd, static [26] (∆Cd)err (current) order

10 1.556 ± 0.0325 1.551 0.033 -
20 1.582 ± 0.0167 1.559 0.007 2.23
40 1.587 ± 0.0099 1.559 0.002 1.81
80 1.589 ± 0.0038 1.560 -

In order to further assess the accuracy of the moving cut-cell method, the pressure coef-

ficient, Cp, computed as Cp = (p − p∞)/ρu2
c and the skin fraction coefficient computed as

Cf = 2τf/ρu
2
c along the cylinder surface are analyzed. Here, τf , is the skin friction on the

surface of the cylinder. The results forCp andCf at different grid resolutions after 60 units of

non-dimensionalized flight time are presented in Fig. 4.35(a). Similar to trend observed for

flow over static cylinder cases reported in an earlier work by the authors [26], the match with

a body-fitted grid results are excellent even at a relatively low resolution of ∆x = D/20.

It can thus be concluded that all the attributes of the high order adaptive cut-cell method

are retained even for the moving boundary cases. The minor numerical oscillations on the

integrated quantities though present does not in any manner affect the accuracy of the near

wall solution. It has to be noted that, to the best of authors knowledge, the current cut-cell

scheme is the only method to predict a smooth skin friction coefficient prediction for moving

bodies using an immersed boundary method.

Table 4.15 reports the drag coefficient, Cd, for the different cases. The Cd values for

the all the cases are averaged over the final 20 time units. Results are also presented for the

flow over a static cylinder for same Reynolds number. There is a good correspondence in

the values computed for the moving cylinder in a static fluid case with the static cylinder in

a moving flow problem. The minor differences could be due to different domain sizes em-

ployed for the two cases. The convergence rates of the error in the drag coefficient prediction

computed as (∆Cd)err = |Cd,n−Cd,80| where n = 10, 20, and, 40, suggests a quadratic trend

implying the present method is second order accurate.
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Figure 4.36: Comparison of the pressure coefficient (Cp) and the skin friction coefficient
(Cf ) with previous results from a body-fitted grid [17] (solid back dots) for the case of Re=40
moving cylinder in a viscous flow: Re4010 ; Re4020 ; Re4040 ; Re4080.

4.3.5 Moving cylinder in a viscous flow under supersonic conditions

The new approach is applied to studying the problem of a cylinder moving at supersonic

velocities in a viscous fluid medium. This case tests the performance of the method of

simulating high speed moving boundaries in compressible viscous flows. The Mach number

and the Reynolds number based on the free stream conditions are M = 5.75 and Red =

15.9×103, respectively. The same case was previously studied experimentally [140] and the

data are available for comparison with the current results. A rectangular two-dimensional

domain of size 80D × 16D is considered with the cylinder initially placed at (1.5D, 8D).

The problem is solved using both viscous and inviscid flow assumption to determine the

significance of viscous effects on flow features. The Mach number plot of the flow field

after a flight distance of 60D, by which all the flow features are fully developed, is shown in

Fig. 4.38(a) for both the viscous and inviscid cases. The near wall grid resolution with the 5

levels of refinement used is ∆x = D/80 which is just sufficient to resolve the boundary layer.

It can be observed from Fig. 4.38(a) that the simulation captures all the essential flow features

of the problem. A bow shock is formed ahead of the cylinder. The subsonic region behind the
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shock expands and accelerates to supersonic flow which separates in the rear of the cylinder.

A strong recirculation region is formed trapped between the separating supersonic flow. All

these features were also noted in the past wind tunnel experiments of supersonic cylinders in

viscous compressible flow [140]. The flow features ahead of the cylinder look identical for

both viscous and inviscid cases. However, there are striking differences in the flow solution

near the rear of the cylinder. Particularly, the separation is much delayed for the inviscid

case. This results in a shift of the recompression shock and an increased thickness of the

neck region between the shocks.

Figure 4.37: Mach number plot for a moving cylinder at M = 5.75 in a quiescent flow. Top:
Viscous flow at Red = 15.9× 103, bottom: Inviscid flow.

The comparison of pressure ratio, p/p0, where p0 is the stagnation pressure, on the sur-

face of the cylinder for viscous and inviscid computation with the corresponding experimen-

tal data [140], for the same Reynolds and Mach number, is shown in Fig. 4.38(a). It can be

seen that there are reasonable agreement in the separation point and the pressure distribution

predictions in the rear of the cylinder with the experimental data. An important observa-

tion to make is that the flow separation in the wake of the cylinder happens much earlier

for the viscous case in comparison with the inviscid case and is closer to the experimental

separation point. The current results highlight the importance of resolving near wall viscous

effects in supersonic flow problems, especially if the wake effects are important. The devel-

opment of the bow shock with time, visualized by contours of gradient of pressure, is shown
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in Fig. 4.39(a). The shock shape is compared with the analytical correlation [141] given by:

x = R + ∆−Rc cot2 θ

[(
1 +

y2 tan2 θ

R2
c

)1/2

− 1

]
, (4.56)

where ∆ is the shock stand-off distance, Rc is the vertex radius of curvature and θ is the

asymptotic shock angle. Empirical correlations for the shock stand-off distance and radius of

curvature are available for hypersonic flows and are given as: ∆/R = 0.386 exp(4.67/M2)

andRc/R = 1.386 exp(1.8/(M−1)3/2) withR being the radius of the cylinder andM , is the

Mach number. The analytical shock shape is shifted with time to correspond to the position

of the center of the cylinder as it moves through the fluid. From the Fig. 4.39(a) it can

be observed that the bow shock structure once established, matches well with the analytical

correlation and remains unchanged with cylinder motion. These results confirm the accuracy

of the scheme in simulating high speed moving bodies in a compressible viscous flow.
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Figure 4.38: Pressure distribution on the rear of the cylinder for the viscous and inviscid case
compared with experimental data [140].

4.3.6 Cylinder driven by shock impact

In this problem, the interaction of a planar shock with a rigid cylinder is studied. This case

was studied earlier using an overset grid technique and due to lack of an analytical solution
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Figure 4.39: Time series of the bow shock visualized by contours of gradient of pressure
compared with analytical correlation Eq.(4.56) marked with red dots.

for this problem, the current results are compared with the data from the previous study [43].

A cylinder of mass m = 0.25 kg, initially at rest at a position of x = −1/2 and y = 0 in

a channel of extents |x| = 2 and |y| = 2, is hit by a planar shock wave of Mach number

1.5, which is initially located at x = −1.5. The surface forces exerted by the shock wave

drives the cylinder forward and are computed based on Eq. (4.34) and the cylinder velocity

is updated using Eq. (4.35). The initial condition of the flow ahead of the shock is set to be

ρ0 = γ = 1.4, p0 = 1 and post shock is determined by the normal shock jump conditions

ρ1 = 2.6069, u1 = 0.6944, v1 = 0, p1 = 2.4583. Computations are performed on a grid with

three levels of dynamic refinement with an effective resolution of ∆x = 2.5 × 10−3, which

is same as the one used in a past study [43].

The Schlieren density contours at different time instants are shown in Fig. 4.40. The

shock impact drives the cylinder forward which in turn generates a reflected shock in the

back. The forward motion of the cylinder also creates a compression wave in the flow up-

stream which later develops into a bow shock. The incident shock on diffracting around the

cylinder, generates a Mach-stem like shock which later interacts with the bow shock devel-

oped in front of the cylinder and the reflected shock at the back to form two pairs of three

intersections. All of the above complex highly transient flow phenomena are accurately cap-

tured in the numerical solution. The regions where the limited second order MUSCL scheme

is activated for this problem is shown in Fig. 4.41.

In a previous study [43], the authors employed the overlapping grids concept to solve
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(a) t=0.0 (b) t=0.5

(c) t=1.0 (d) t=1.5

Figure 4.40: Schlieren contours for shock-driven cylinder at various times.
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(a) t=0.0 (b) t=0.5

(c) t=1.0 (d) t=1.5

Figure 4.41: Regions where the second order MUSCL is activated using the curvature based
discontinuity detection switch is highlighted in grey at various time instants.
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Figure 4.42: Force, velocity and position of the rigid cylinder as a function of grid compared
against the reference solution of Henshaw & Schwendenman [43].

the same problem and the numerical solution computed from the adaptive cutcell method is

compared against the solution reported [43] in Fig. 4.42. The x-component of force, velocity

and position of the center of the cylinder are plotted as a function of time. The y-component

of the force was close to zero within the round-off error, thereby confirming the symmetry

of the flow solution. As observed from Fig. 4.42, results show excellent agreement with

the past reference solution [43]. This case validates the capability of the current method to

perform accurate computations of the coupled fluid driven rigid body motion.
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CHAPTER 5

MULTI-LEVEL SUBGRID KINETIC ENERGY BASED CLOSURE

In this chapter, a multi-level formulation for the subgrid closure for unclosed sgs terms is

described. The formulation is an extension of the transport equation based subgrid kinetic

energy closure [37] for AMR grids. The main objective of the proposed formulation is to be

able to perform LES in the presence locally refined mesh and embedded boundaries. Both

these scenarios (with AMR for local refinement and cut-cell for embedded boundaries) are

investigated using the multi-level closure.

5.1 Multi-level nomenclature

Some additional notations pertaining to a multi-level grid for LES are developed in this

section. These notations are useful for describing the proposed multi-level ksgs closure and

are adopted from a previous work [142]. The filtering operation described in Eq. (2.20) has

the following modification for an AMR system:

φ
l
(x) =

∫
Gl

Gl(x− x′)φ(x′)dx′, (5.1)

where Gl is th filtering operation associated to level l which can vary from l = 1, 2, ..N with

N being the maximum level of refinement. The filer size for the operation, ∆n is same as

the local grid size. Accordingly:

∆1 > ∆2 > ... > ∆N , (5.2)

k1 < k2 < ... < kN , (5.3)
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where kl is the wave number resolved by the grid at level l. The multi-level filtering opera-

tion, denoted by l can then be defined as:

φ
l
= Gl ∗ Gl+1 ∗ ... ∗ GNφ. (5.4)

The double bar denotes the filtering obtained using recursive filtering operation. The relation

between the filtered variables at various refinement levels is as follows:

φ
N

= φ
N
, (5.5)

φ
N−1

= GN−1φ
N
, (5.6)

., (5.7)

., (5.8)

φ
1

= G1 ∗ G2 ∗ ... ∗ GNφ. (5.9)

The representation of the filtered quantity on a multi-level AMR grid is shown in Fig. 5.1.

The wavenumber corresponding to each AMR level and the corresponding filtered quantity

at that level is indicated in the figure.

Figure 5.1: Schematic of turbulent kinetic energy spectra. The multi-level filtering of a flow
quantity φ and the associated wave number are also indicated.

Generally, the filter width ∆
l

associated with the filtered field φ
l

is not same as the local
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filter width ∆l because of the successive filtering operation. But for a box filter, the filter

width is same as the local filter width for that level implying atleast for all the cases in this

study:

∆
l
= ∆l. (5.10)

The discrete representation of the recursive filtering operation, based on the notations

described in Section 3.1 can be defined as the following:

φl = Rl
l+1(Rl+1

l+2(...RN−1
N (DN(φ))...)). (5.11)

In the above Eq. (5.11), Rl−1
l is the restriction operation performed between grid levels Gl

and Gl−1. The grid levels are dropped in the above equation for clarity. The operator DN(φ)

is the implicit filtering operation by the grid level N.

Remark Note that for an AMR grid, there will be some regions of a given grid level,

l covered with finer grids and there might be also some regions that are not covered with a

finer mesh. In such a scenario, the multi-level representation of the filtered field for unrefined

regions is given by:

φl = Dl(φ). (5.12)

The multi-level representation of the filtered field is described more clearly in the schematic

Fig. 5.2.

For compressible flows, the equivalent representation of the Favre filtering operation is:

˜̃
φ
l

=
ρφ

l

ρ
l
. (5.13)
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Figure 5.2: Multi-level representation of a filtered quantity φ on a AMR mesh.

The filtered governing equations for a multi-level AMR grid then becomes:

∂

∂t



ρ
l

ρ
l ˜̃uj l
ρ
l ˜̃
E
l

ρ
l ˜̃
Y
l

k


+

∂

∂xj



ρ
l˜̃uli

ρ
l˜̃uli˜̃ulj + p

l
δij − ˜̃τ lij + τ sgs,lij

(ρ
l ˜̃
E
l

+ p
l
)˜̃ulj − ˜̃uli˜̃τ lij + q

l
j +Hsgs,l

j + σsgs,lj

ρ
l˜̃ulj ˜̃Y l

k −
˜̃
Y
l

k
˜̃
V
l

j,k + Y sgs,l
j,k + θsgs,lj,k


=



0

0

0

ω̇
l

k


(5.14)

for a grid level, Gl. The Favre average for single level will be replaced with the multi-level

filtering operation ˜̃ in Eqs. (2.26) - (2.41) and are not repeated.

The superscripts sgs, l denote the unclosed subgrid terms in the governing equation cor-

responding to level l.

5.2 Subgrid closure modeling for multi-level LES

The approach proposed in this thesis for closure of the sgs terms in Eq. (5.14) is to employ

the standard single level closures for each level independently. The only difference is in the
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treatment of the subgrid turbulent kinetic energy ksgs,l for which an additional correction is

performed. The closure models for each of the sgs, l terms are summarized below:

νlt = C l
ν

√
ksgs,l∆l, (5.15)

τ sgs,lij = −2ρ
l
νlt

(˜̃
S
l

ij −
1

3
˜̃
S
l

kkδij

)
+ 2/3ρ

l
k
sgs,l

δij, (5.16)

and

Hsgs,l
i + σsgs,li = −

(
ρ
l
νlt + µl

) ∂ksgs,l
∂xi

− ρ
l
νltc

l
p

Prlt

∂
˜̃
T
l

∂xi
+ ˜̃uljτ sgs,lij . (5.17)

The transport equation for the subgrid kinetic energy also becomes the following:

∂ρksgs,l

∂t
+

∂

∂xi

(
ρ
l˜̃uliksgs,l) = Tksgs,l + pdksgs,l + Pksgs,l −Dksgs,l , (5.18)

with the different closure terms in the ksgs equation taking the following form:

Tksgs,l =
∂

∂xi

(ρ
l
νlt + µ)

∂ksgs,l

∂xi
+
ρ
l
νlt
˜̃
R
l

Prlt

∂
˜̃
T
l

∂xi

 , (5.19)

pdksgs,l = αlpdM
sgs,l
t

2

ρl ˜̃Slksgs,l
Dsgs,l

2

(Pksgs,l −Dksgs,l) , (5.20)

Pksgs,l = τ sgs,lij
˜̃
S
l

ij, (5.21)

Dksgs,l = ρ
l
C l
ε

(
ksgs,l

)3/2
/∆l. (5.22)

The Eqs. (5.16) - (5.22) are in fact exact equivalents of Eqs. (2.43) - (2.49) with the single

level flow variables now replaced with their multi-level representation. The coefficients, C l
ν

, C l
ε, α

l
pd and Prlt are computed still computed dynamically for each level after employing a

test filter with twice the local grid size and using a least square approach. More details on

the dynamic approach near coarse/fine and fine/coarse AMR boundaries are discussed later
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in this section.

Consider the flow solution by solving the governing equations in a time advanced manner.

Once the filtered governing equations are solved using a numerical scheme for each grid

level, Gl, a restriction operation is performed according to Eq. (5.11). Suppose that this

solution to the flow governing equations based on single level formulations is denoted as

φ
l

with φ representing any conserved quantity such as mass, momentum or energy. The

restriction operation, R(φ), overwrites φ
l

solved at a coarser level, l with the filtered value,

φ
l

from finer levels covering it. This filtered field for φ is then used to solving the filtered

governing equations for the next time step on each grid level.

The above procedure is consistent as long as flow quantity that is filtered is conservative

.i.e. the filtering operation satisfies Eq. (5.4). This is true of the mass, momentum and total

energy, but the quantity, ρksgs is non-conservative across a multi-level system. This is proved

as follows by considering filtering of ksgs,l+1 to ksgs,l by a restriction operation:

ksgs,l+1 =Rl
l+1(ksgs,l+1)

=Rl
l+1(ũiui

l+1 − ũil+1ũi
l+1)

=Rl
l+1(ũiui

l+1)−Rl
l+1(ũi

l+1ũi
l+1)

=Rl
l+1(ũiui

l+1)−Rl
l+1(ũi

l+1)Rl
l+1(ũi

l+1)+

(Rl
l+1(ũi

l+1)Rl
l+1(ũi

l+1)−Rl
l+1(ũi

l+1ũi
l+1))

=ũiui
l − ũilũil+

(Rl
l+1(ũi

l+1)Rl
l+1(ũi

l+1)−Rl
l+1(ũi

l+1ũi
l+1))

=ksgs,l + (ũi
lũi

l −Rl
l+1(ũi

l+1ũi
l+1)).

(5.23)

Rearranging terms in Eq. (5.23) results in the following relation between the subgrid kinetic

energies at two levels:

ksgs,l = Rl+1
l (ksgs,l+1) + δ

sgs,l
, (5.24)
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where δ
sgs,l

= (Rl
l+1(ũi

l+1ũi
l+1)) − ũilũil is the correction term that needs to be added to

the filtered subgrid kinetic energy field from level, l + 1. Identifying that the same relation

is applicable between levels l + 1 / l + 2 and so on, till N − 1/N , the relation in Eq. (5.24)

can be generalized as:

ksgs,l = ksgs
l
+ δ

sgs,l
. (5.25)

The multi-level correction in Eq. (5.25) is therefore:

δ
sgs,l

= ˜̃uiuil − ˜̃uil ˜̃uil. (5.26)

For a compressible formulation, the Favre filtered form of the above correction would be:

ρksgs,l = ρksgs
l
+ ρδ

sgs,l
, (5.27)

ρδ
sgs,l

= ρuiui
l − ρui

l
ρui

l

ρ
l

. (5.28)

The discrete formulation of the multi-level correction ρδ
sgs,l

is given as:

ρδ
sgs,l

=
Rl
N

(
ρN ũNi ũ

N
i

)
Rl
N(ρN)

− Rl
N

(
ρN ũNi

)
Rl
N

(
ρN ũNi

)
Rl
N(ρN)Rl

N(ρN)
. (5.29)

It can be noted that the correction for ksgs with ρδ is the unresolved turbulent kinetic energy

that is resolved by a grid level finer than the current grid level. So in essence, the correction

ensures consistency of the total represented kinetic energy at any grid level. The entire solu-

tion procedure is described through the following algorithm:

141



A single time iteration for solving U with the multi-level sgs closure:

for i← 1 to NLmax do

for m← 1 to M do
Solve for filtered governing equations on Gi,m

end

end

Communicate using C(U) to fill information in the interior ghost cells;

Restrict using R(U) to filter data from finest grid to coarser grids;

Prolongate using Png(U) to fill ghost cells at fine/coarse or coarse/fine AMR

boundaries

Correct for the total represented turbulent kinetic energy using Eq. (5.28) and adding

the correction ρδ
sgs

Algorithm 7: Single solution step for the multi-level sgs closure

The multi-level correction procedure is illustrated in Fig. 5.3. For unrefined regions,

the single-level transport equation based closure is employed. But for the refined regions

indicated by yellow and blue color, the correction described by Eq. (5.28) is applied.

The multi-level formulation can be seen as a mixed model that employs, the transport

equation based sgs model at the finest resolution and adding a correction based on the explicit

filtering of represented turbulent kinetic energy on the grid resolution finer than the current

level. Common to mixed model formulation is the issue of Galilean invariance. Consider a

new reference frame with u∗i = ui +Vi where Vi is the velocity of the reference frame. It can

be shown that:

1

2

(
ρũi

N ũi
N
n

− ρũNi
n

ρũNi
n

/ρ
n

)
=

1

2

(
ρũi
∗,N ũi

∗,N
n

− ρũ∗,Ni
n

ρũ∗,Ni

n

/ρ
n

)
. (5.30)

Thus the proposed correction is Galilean invariant.

Remark: The interpretation of the local dynamic procedure for computing the coeffi-
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Figure 5.3: Schematic of the multi-level correction for ksgs on a AMR mesh.

cients: C l
ν , C l

ε, α
l
pd and Prlt for a AMR grid may not be direct especially at the coarse/fine

and fine/coarse interface and more details of this step are discussed here. For a given grid

cell index CGl(i, j), the local dynamic procedure involves a test filter of size 2∆l applied to

the neighboring cells CGl(i± 1, j ± 1). In the interior of the grid, this operation is perfectly

defined. But along the first layer of cells adjacent to the boundary, the filtering operation may

appear to be ill defined especially along a coarse/fine or fine/coarse boundary. On a more

careful consideration, it becomes apparent that the filtering operation is still defined as for

any general grid block, Gl,m, a halo layer of ghost cells, Ghalo
l,m = Gng

l,mĜl,m exists. A projec-

tion operation, P(φ) defined in Section 3.1 is used to fill all the ghost cells at a coarse/fine or

fine/coarse interface.

5.3 Assessment of multi-level AMRLES

To assess the performance of the multi-level closure, two cases are considered. In the first

case, the behavior of the closure model when a turbulent flow convects past an AMR grid

interface is studied. The flow solution and the closure model behavior is then investigated for
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the case of turbulent flow past a cylinder and sphere represented by the cut-cell embedded

boundary approach.

5.3.1 LES of homogeneous turbulence convecting across coarse/fine AMR interface

The problem of a turbulent flow past an AMR grid refinement interface is generally encoun-

tered in the simulation of many practical engineering flow systems. In many applications

when AMR is applied to resolve features such as flames, shocks, and detonations, the turbu-

lent flow invariably crosses a coarse/fine AMR interface. Here we consider a basic test prob-

lem involving advection of a decaying isotropic turbulence past a coarse/fine and fine/coarse

interface. The test domain is a channel of dimensions (−2π, 2π) in the x-direction and of

(0, 2π) in y and z-direction. Homogeneous turbulence of Reλ = 400 and Mt = 0.05 is ad-

vected from left to right with a convective Mach number of M = 1.5 and periodic boundary

conditions are employed along the spanwise directions. This configuration is same as the

one employed in previous studies for analyzing the effect of grid discontinuity on turbulent

flow statistics [143, 144]. Both the scenarios, when the flow passes through from a coarse

to fine grid and from a fine to the coarse grid are considered. All the cases for this problem

are summarized in Table 5.1. The inflow turbulence is precomputed using the same subgrid

model as is used for the simulation in a (2π×2π×2π) box with periodic boundary conditions

and is brought in using Taylor’s frozen turbulence hypothesis.

For cases CF − WC and CF − NC, the left side of the block of size (2π, 2π, 2π)

is coarser and has 64 × 64 × 64 cells and the right block of the same size is fine with

128 × 128 × 128 cells. This case was setup to study the coarse to fine transition. The other

cases FC −WC and FC −NC has the coarse and fine blocks interchanged to study fine to

coarse transition. The goal of the study is to understand the behavior of the various turbulent

flow quantities such as the vorticity magnitude, resolved turbulent kinetic energy and the

subgrid turbulent kinetic energy across an AMR grid discontinuity.

When a turbulent flow convects past an AMR interface, some abrupt changes in its char-
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(a) Fine to coarse (b) Coarse to fine

Figure 5.4: AMR mesh for (a) coarse to fine and (b) fine to coarse case

(a)

(b)

Figure 5.5: Instantaneous vorticity magnitude on the central XY plane for (a) coarse to fine
and (b) fine to coarse case.
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Table 5.1: LES of advection of homogeneous turbulence across a AMR grid discontinuity
Case Grid No. of points Multi-level sgs corr.
UC Uniform-coarse 2 × 643 N/A
UF Uniform-fine 2 × 1283 N/A
CF-WC Coarse to fine 643 + 1283 Present
FC-WC Fine to coarse 1283 + 643 Present
CF-NC Coarse to fine 643 + 1283 Not present
FC-NC Fine to coarse 1283 + 643 Not present

acteristics can be expected due to the sudden change in the grid size. This change in the flow

features can be observed in the instantaneous vorticity magnitude plots shown for both the

coarse/fine interface and fine/coarse interface in Figs. 5.5(a) and 5.5(b). For the coarse/fine

case, there is a sudden coarsening of the turbulent structures downstream of grid discon-

tinuity. Whereas, in the fine/coarse case, it can be seen that there is a gradual recovery

of small-scale structures as the turbulence advects into the fine downstream mesh from the

coarser upstream mesh. The transition length required for the small scales to get populated

depends on the convective and the eddy turn around time scale. From the plot, it can be seen

that the recovery of small-scale structures is quite evident immediately after the interface.

For the fine to a coarse case, the behavior of the resolved turbulence is basically inverse

to that seen for the coarse to the fine case. As seen in Fig. 5.5(b), the sudden coarsening,

which translates to a sudden change in the filter size, leads to abrupt loss of small-scale struc-

tures. The effect of the lost small scales of motion on the flow post the discontinuity must be

adequately modeled by the subgrid closure.

The spectra of the resolved turbulent kinetic energy taken at two locations just before

and after the AMR grid interface are shown in Fig. 5.6. The spectra is obtained by collecting

y-z plane data over one flow-through time. Any artifact introduced by a grid discontinuity

is expected to shown up prominently in the turbulent kinetic energy spectra. For the coarse

to fine case, when the turbulence enters the fine region, the wave number support increases.

Due to the interpolation from the coarse grid ghost cells, there are some high wave number

modes introduced into the spectra which is taken at y-z plane of the first fine grid cell. But
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after few grid points, the non-linear convective processes and vortex stretching introduce

small-scale structures which relax the spectra to a more physical state. The fine-coarse case

shows a behavior analogous to an operation of a box filter on the fine mesh flow solution.

High wave number modes disappear and there is also some damping noticeable at the higher

wave numbers that are resolvable on the coarse mesh. This is a typical characteristic of a box

filter which does not perform a sharp spectral cut-off and has infinite support in the spectral

space. The energy pile up problem noted by Vanella et al. [143] before a fine to coarse

interface is not present in the current results. This is believed due to the conservative nature

of handling the total resolved turbulent kinetic energy, ũiui = ũiũi + ksgs, across a grid

discontinuity.
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Figure 5.6: Resolved TKE spectrum near an AMR grid interface for (a) coarse to fine and
(b) fine to coarse cases.

One of the main interests of the study is to understand the behavior of sgs terms across

a grid interface. In fact, a sudden change in the size of the grid which acts as a filter, is

expected to most significantly affect the sgs contributions. The predicted subgrid kinetic

energy, ksgs, is spatially averaged along the homogeneous directions and also averaged over

two convective flow-through times and its variation along the axial direction in plotted in

Figs. 5.7(a) and 5.7(b) for both the cases. The subgrid kinetic energy has a monotonically

increasing relationship with the filter size. A sudden increase in the filter size must result in
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Figure 5.7: Averaged plot of resolved TKE, ũiũi for (a) coarse to fine scenario and (b) fine
to coarse scenario: fine with correction; coarse with correction; fine without
correction; coarse without correction; uniform fine and uniform coarse.

a sudden change in the subgrid kinetic energy. The multi-level correction using Eq. (5.28)

accounts for this change in the filter size, by explicitly adding the resolved part of the TKE

on a finer grid which can not be resolved on an underlying coarser grid to the subgrid kinetic

energy of the coarser grid. This ensures that the total resolved turbulent kinetic energy is

conserved across different levels of refinement. The correction will not make any difference

for an algebraic closure such as Dynamic Smagorinsky model. This is because, the flow so-

lution on the coarser underlying patches are overwritten by the finer grid solution. The effect

of correction is only relevant for a transport equation based sgs model where the ’memory’

effect of subgrid turbulent kinetic energy upstream influences its value downstream. The

effect of the correction can be clearly seen in Fig. 5.7(a). The jump in ksgs is correctly ac-

counted by the multi-level sgs model. Whereas, without the correction term, as is observed

in Fig. 5.7(b), the jump in the subgrid kinetic energy is absent and is continuous across the

grid interface. The ksgs variation for a uniform coarse and fine grid is also shown for refer-

ence. Post the grid interface, the increase in ksgs matches fairly with its value on a uniform

coarse grid. The difference in the magnitude of the increase can be attributed to differences

in prescription of the inflow conditions between a fine and a coarse grid. The numerical
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diffusion of the scheme can also influence the state of the turbulence in the coarser grid. For

the coarse to fine cases CF −WC and CF − NC, the correction doest not result in any

change in behavior at the grid interface. One observation that can be made from the results

for CF −WC and CF −NC is that though the subgrid kinetic energy is continuous, there

is a sudden change in its decay rate. The impact of the correction on resolved flow quantities

will be next assessed.
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Figure 5.8: Averaged plot of resolved TKE, ũiũi for (a) coarse to fine scenario and (b) fine
to coarse scenario: fine with correction; coarse with correction; fine without
correction; coarse without correction; uniform fine and uniform coarse.

The variation of the time and space averaged resolved TKE along the axial direction is

shown in Figs. 5.8(a) and 5.8(b). In the case of fine to coarse transition, there is a sudden

drop in the resolved level turbulent kinetic energy. This is expected as the sudden coarsening

causes loss of small scale turbulent motion which results in a drop in the turbulent kinetic

energy at the resolved level. For the case CF −NC, without the multi-level ksgs correction,

this drop in the resolved level tke is lesser compared to case CF −WC. This is because,

if the correction is not effected, the sudgrid stresses are under predicted resulting in lesser

dissipation due to the subgrid scale motions. This is directly an effect of the insufficient raise

in the subgrid kinetic energy in the post derefinement region. For the FC −WC and FC −

NC cases, the correction does not make any difference as the ksgs behavior does not change
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with and without the multi-level correction. However, the coarse to fine cases however raises

an important concern when dealing with a sudden refinement. The history effect of the

subgrid energy helps in maintaining the total resolved turbulent kinetic energy. How other

models such as Smagorinsky can handle a sudden refinement or coarsening is not clear and

more investigation may be needed to study their suitability with AMR as there appears to be

no mechanism for a non-transport equation based model to maintain the conservation of the

total resolved TKE across the grid interface.
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Figure 5.9: sgs budget for flow past an AMR grid discontinuity for (a) fine to coarse and (b)
coarse to fine case.

More on the behavior of the different sgs terms in the transport of the subgrid kinetic

energy when the flow encounters a grid interface can be understood from the plots in Fig. 5.9.

The production term P sgs = τ sgsij S̃ij , is proportional to νt ∝ ksgs and S̃ijS̃ij based on eddy-

viscosity hypothesis. Across the fine/coarse interface, there are two competing effects: (1)

jump in ksgs and (2) Drop in |S| =
√
SijSij due to loss of small scale structures. Depending

upon which of these effects are dominating, the production of ksgs increases or decreases.

Similarly the sgs dissipation, Dsgs, undergoes a sudden change across the interface. The

sgs dissipation, Dsgs = Cεk
sgs3/2/∆ depends on ksgs and inversely on the filter size, ∆.

Across an AMR interface, again there are competing effects. For a fine/coarse interface, the

increase in the ksgs can lead to increased dissipation while increase in the filter size will lead

150



to its decrease. For a coarse/fine interface, the dissipation will always increase with decrease

in filter size. The ksgs, as seen from the plots, remains continuous across an coarse/fine

interface.

5.3.2 LES of Red=3900 flow past a cylinder

In this study, LES is employed to simulate the turbulent flow ofRed = 3900 over a cylinder of

diameter, d. The simulations are performed in a large rectangular domain of size (30d×30d×

π d) with a base resolution of (150x150x20). As shown in Fig.5.10, six AMR levels are

employed such that the effective resolution at the cylinder surface is 0.003125d, which falls

in at around y+ = 4, where + indicates non-dimensionalization by the viscous length scale.

The first point of the wall is located at y+ = 2. The grid resolution is comparable to a

previous study of the same problem [145]. This problem has been extensively studied using

both body conformal and immersed boundary approaches in the past and therefore is an

ideal reference case for evaluating the current AMRLES closure with embedded boundaries.

Characteristics based subsonic inflow is used in the left boundary while subsonic outflow

condition is prescribed to the top, bottom and right boundary. Front and top surfaces are

prescribed with periodic boundary condition.

Figure 5.10: Snapshot of local mesh refinement near cylinder surface for Red = 3900 flow
past a cylider.
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The stringent wall resolution requirement is due to lack of use of any wall modeling

for performing AMRLES which makes this a wall-resolved LES. The coefficients for the

subgrid closure models are evaluated dynamically using the LDKM approach. The flow

Mach number is set at M = 0.2 which is low enough to avoid any compressibility effects.

The time history of the drag and lift coefficient plots are shown in Fig. 5.11.
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Figure 5.11: Time history of drag (Cd) and lift (Cl) coefficient of Red=3900 flow past a
cylinder.

The average drag coefficient of Cd ≈ 1 matches with the data from past studies [146,

145]. The amplitude changes in the lift coefficient is due to vortex shedding events occurring

downstream of the cylinder. The vortex structures in the wake of the cylinder are identified

by the iso-surface of Q-criterion colored with streamwise velocity and are shown in Fig. 5.12.

It can be observed that the boundary layer separates around the top and bottom of cylinder

and forms shear layers which breaks up into coherent structures and eventually into small

scale turbulence within a couple of diameters downstream of the cylinder.

The instantaneous snapshots of vorticity magnitude, subgrid kinetic energy and eddy vis-

cosity ratio are shown in Fig. 5.13. An important observation from the subgrid kinetic energy

plot is that the ksgs is generated in shear layer following the coarsening of the finest AMR

mesh covering the cylinder surface. As noted in the grid turbulence case study discussed in
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Figure 5.12: Vortex structures visualization by iso-surface of Q-criterion colored with
streamwise velocity.

(a) (b)

(c)

Figure 5.13: Instantaneous snapshot of (a) vorticity magnitude (b) subgridn kinetic energy
and (c) eddy viscosity ration in the center x-y plane
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the previous section, the generation of ksgs from a fine/coarse AMR interface occurs solely

due to the multi-level subgrid closure. The inflow is laminar and therefore in the free-stream

ksgs = 0. Without the correction, ksgs will remain zero in the wake resulting in insufficient

dissipation at small scales.

Statistics are collected for 100 non-dimensionalized time units, t = d/u∞ . In Fig. 5.14,

the average pressure coefficient Cp and the skin friction coefficient, Cf are plotted over

the surface of the cylinder. The data was averaged in space and also along the z-direction.

Excellent agreement is obtained for the point of separation and pressure coefficient data. The

skin friction coefficient is also matching well with the past data. Also, note the smoothness

in the pressure and skin friction coefficient. To the best of the author’s knowledge, such

a smooth reconstruction, especially in the skin friction coefficient has never been shown

in any of the past IB studies. Overall, the Cutcell-AMRLES approach captures the near

wall solution very well. There are some oscillations in the skin friction coefficient plot

around 50 degrees. These oscillations indicate the flux reconstruction in the cell present

in these regions is not accurate. More investigation is needed to ascertain the source of

these numerical artifacts, but the current hypothesis is that the cell clustering and thus the

polynomial reconstruction is affected because of some degenerate small cells. Nevertheless,

in other regions, the skin friction coefficient distribution is smooth.

To further assess the performance of the subgrid closure, the time averages plots of vari-

ous flow and closure related quantities are presented in Fig. 5.15. The streamline plots along

with the streamwise velocity contours clearly show two recirculation bubbles in the back of

the cylinder which are close to symmetric with respect to the streamwise direction. The reat-

tachment length from for bubble is around two diameters which matches with observations

from past experimental studies. From the figure, the generation of ksgs in the free shear layer

formed from the boundary layer separation is clearly seen in the mean sense. The closure

model parameters Cν , Cε that are computed dynamically show a wide variation, especially in

the wake region. As expected there is a significant increase the value of parameter Cν in the
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Figure 5.14: Time and spatially averaged (in homogeneous direction) data of (a) pressure
coefficient Cp and (b) skin friction coefficient for Red = 3900 flow past cylinder. Block dots
in (a) represent data from a past experimental study [147] and (b) represent data from a body
fitted LES [145].

(a) (b)

(c) (d)

Figure 5.15: Time average plots of (a) Streamwise velocity (b) Subgrid kinetic energy (c)
LDKM parameter Cν and (d) LDKM parameter Cε in center x-y plane.
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wake region where the large scale vortex structures breakdown and flow become turbulent.

The increase in Cν in turn increases the contribution of the subgrid stress to the momentum

equation through Eq. (2.42). The plot of the time averaged Cε shows high values near the

boundary and the shear layer. Downstream of the cylinder in the turbulent wake, the value

of the Cε drops. Since this parameter is a scaling coefficient for the model of dissipation of

subgrid turbulent kinetic energy, a high value of Cε implies increased subgrid dissipation in

the near wall region and shear layer.

The quality of the wake predictions by the Cutcell-AMRLES approach is assessed by

comparing the mean streamwise velocity along the centerline of the cylinder with previous

data in Fig. 5.16. Overall the velocity deficit and recovery post reattachment is captured well

in the current simulation. But it appears that the length of the recirculation bubble is over

predicted which is causing a delayed reattachment. Since the near wall predictions are in

excellent agreement with past data, the reason for this discrepancy is suspected to be mainly

because of lack of convergence of the temporal statistics. A previous study [145] performed

time averaging after 700 non-dimensionalized time units for an interval of 250 time units.

Whereas in the current study, time statistics were collected after 150 time units for only an

additional 100 time units. The wake predictions are expected to improve with collection of

more time averaged data.

5.3.3 LES of Red=3700 flow past a sphere

Simulations of flow past spheres can be quite challenging with traditional body conformal

structured grid methods mainly because of the complexity involved in generating a good

quality mesh especially near the wake region. Here, the Cutcell-AMRLES approach is em-

ployed to simulate the turbulent flow of Red = 3700 over a sphere of diameter, d. The

simulations are performed in a rectangular domain of size 30d×30d×30d with a base reso-

lution of (150x150x150). The AMR levels and grid resolution is kept same as the previous

Red = 3900 study as the Reynolds numbers are comparable. The plot of the AMR refine-
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Figure 5.16: Time averaged streamwise velocity along the cylinder centerline. Blue solid
line - Cutcell-AMRLES, Black dotted line - Body-fitted LES [145], Black filled dots - Ex-
perimental [148], Black filled triangles - Experimental [149].

ment for the sphere is shown in Fig. 5.17 Characteristics based subsonic inflow is used in

the left boundary while subsonic outflow condition is prescribed to all the other boundaries.

DNS simulation of the same Reynolds number has been performed in the past [150] using

an body-conformal unstructured approach.

Figure 5.17: Snapshot of local mesh refinement near surface for Red = 3700 flow past a
sphere.

The time history of the drag and lift coefficient plots are shown in Fig. 5.18. The average

value of the drag coefficient is found to be Cd = 0.38. This is close to the value of Cd,DNS=
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Figure 5.18: Time history of drag (Cd) and lift (Cl) coefficient of Red=3700 flow past a
sphere.

0.39 predicted by the DNS study. To visualize the vortex structures in the wake of the sphere,

the iso-surface of Q-criterion colored with streamwise velocity is shown in Fig. 5.19. Similar

to the cylinder case, the boundary separates from the sphere surface and forms shear layer

envelope which breaks down rapidly into small scale turbulence within a couple of diameters

downstream. Due to the three dimensional nature of the free shear layer, the break down to

small scale turbulence is much faster compared to flow past a cylinder.

Figure 5.19: Vortex structures visualization by iso-surface of Q-criterion colored with
streamwise velocity.

The instantaneous snapshots of subgrid kinetic energy and eddy viscosity ratio are shown
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in Fig. 5.20. It can be seen from the figure that the behavior of the various flow field quantities

(a) (b)

Figure 5.20: Instantaneous snapshot of (a) subgrid kinetic energy and (b) eddy viscosity ratio
in the center x-y plane

is similar to the previous case of flow past cylinder. The multi-level closure injects ksgs when

near wall refinement ends into the shear layer. A jump in the subgrid kinetic energy and the

eddy viscosity is observed after a fine/coarse AMR interface.

The data is time averaged over 100 non-dimensionalized time units. The plots of the

average pressure coefficient Cp and the skin friction coefficient, Cf extracted along the mid-

plane of the sphere, are presented in Fig. 5.21. The current results show excellent agreement

with the data from DNS and an experimental study for the Cp, Cf , the back pressure and the

point of separation. Again it has to be reiterated that to the best of the author’s knowledge,

such a good match has never been reported in addition to smooth reconstruction of pressure

and especially skin friction coefficient, in any of the past studies employing an embedded

boundary technique. The contour plot of the pressure distribution on the sphere surface is

shown in Fig. 5.22.

The wake predictions are assessed by comparing the mean streamwise velocity and the

RMS of streamwise velocity along the centerline with previous DNS results in Fig. 5.23. The

velocity deficit and recovery post reattachment is captured well in the current simulation. The

magnitude of the rms of streamwise velocity is slightly over predicted but the peak locations

match well with the DNS data. As for the cylinder study, the wake predictions are expected
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Figure 5.21: Time averaged data of (a) pressure coefficientCp and (b) skin friction coefficient
for Red = 3700 flow past cylinder. Solid blue line- Cutcell-AMRLES Block dots in (a)
represent data from a past experimental study [147] and (b) represent data from a body fitted
LES [145].

Figure 5.22: Smooth distribution of pressure on the sphere surface for Red = 3700 flow past
a sphere.
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to improve with collection of more time averaged data.
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Figure 5.23: Time averaged streamwise velocity along the cylinder centerline. Blue -
Cutcell-AMRLES, Black dots - Body-fitted unstructured DNS [150]
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CHAPTER 6

MULTI-LEVEL REACTION RATE CLOSURE FOR CHEMISTRY

For LES of reacting flows, the filtered reaction rate requires a closure. A Linear Eddy Model

(LEM) based reaction rate closure adapted for multi-level AMR grids (multi-level RRLES)

is described in this chapter. The RRLES along with AMRLES is applied to study interaction

of a freely propagating methane flame with a decaying isotropic turbulence. The RRLES

implementation and the flame-turbulence interaction results presented in this thesis are taken

from a past work [151] co-authored by the thesis author and are presented here with appro-

priate permissions.

6.1 Formulation and implementation of a multi-level closure for filtered reaction rate

The subgrid closure for chemistry is a natural extension of the AMRLES closure. The closure

model is developed and implemented as a part of this thesis and the complete description of

the closure can be found in [151]. First, some of the single level closure problems related to

scalars are discussed. The multi-level formulation is then later described.

LEM Subgrid Model

The original LEM model [108] was a stand-alone model to account for concurrent interac-

tions between turbulence, molecular diffusion and reaction kinetics. The model as originally

envisioned by Kerstein was one-dimensional (and hence, computationally very efficient), and

contained three fundamental physics of scalar mixing and reaction kinetics: (a) molecular

diffusion, (b) reaction kinetics and (c) stirring by turbulent eddies. These processes are im-

plemented by solving the reaction-diffusion model for species and Temperature fields along
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a notional 1D domain:

ρLEM
∂Y LEM

k

∂t
+ F stir

k + ρLEM
∂

∂x

(
−Dk

∂Y LEM
k

∂x

)
= ω̇k, (6.1)

ρLEMCp
∂TLEM

∂t
+ F stir

T +
Ns∑
k=1

Cp,k
∂

∂x

(
Dk

∂Y LEM
k

∂x

∂TLEM

∂x

)
− ∂

∂x

(
κ
∂TLEM

∂x

)
=

Ns∑
k=1

ω̇khk.

(6.2)

The scalar fields Y LEM
k and TLEM are represented in notional 1D lines embedded inside each

3D cells. The scalar fields are concurrently modified by the stirring events F stir
k and F stir

T

that punctuate the deterministic evolution in the reaction-diffusion process. This turbulent

stirring is implemented as stochastic events (based on the so-called triplet maps that attempts

to capture the effect of turbulent stirring (based on Kolmogorov scaling) on the scalar field

and mimics the effect of vortices on the scalar field. Successive folding and compressive

motions are modeled such as an initially monotonic profile of, say, mixture fraction can

develop multiple extrema with stoichiometric points in between each corresponding to a

flame location. At high turbulence intensity, the time scale of folding, compression, and

diffusive mixing might become short enough relative to chemical time scales so that broad

reaction zones, stirred internally by small eddies can be formed. This ability of LEM is

unique in mixing model but it is also apparent that this feature of LEM limits its applicability

to turbulent flows where inertial range scaling is applicable.

In 1D LEM the instantaneous maps represent the outcome of an individual eddy mo-

tion, although such a literal connection between maps and eddies is not required. An LEM

simulation time advances the 1D unsteady diffusion-reaction equations, including associated

dilatations along the 1D domain and this advancement is punctuated by instantaneous rear-

rangements of property profiles by mapping operations of a specified form. In effect, the

outcome of each map constitutes a new initial condition for further time advancement.
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The details of the 1D LEM as a stand alone model [152, 153] have been reported in

details elsewhere and therefore, not repeated here. It has also been implemented as a sub-

grid model for LES (called LEMLES) [153]. There are advantages and disadvantages to

this implementation. Since the model is in 1D, the resolution can be fine enough to resolve

the smallest scales and therefore, reaction kinetics and molecular diffusion can be simulated

without any closure. Turbulent stirring in high Re flows recover turbulent diffusivity [154,

155], and the model has shown ability to capture both high and low Schmidt Number de-

pendencies [156] without requiring any model adjustments. On this other hand, reduction to

a 1D notional dimension (typically considered aligned normal to the scalar gradient) limits

its ability in cases where the flame has to propagate in 3D as opposed to fluctuate around a

statistically mean location. Fortunately, many combustion problems of practical interest as

in swirl combustors, premixed burner etc., involve relatively stationary flames and therefore,

this closure has shown ability in many applications in the past.

A variant of the LEMLES closure model that can be adapted to AMR is now described.

Multi-level RRLES

The main idea of the multi-level RRLES approach is to employ the 1D LEM subgrid model

on the coarsest level, l = 1 to close the filtered reaction rate term ω̇
1

k. Accordingly, the

subgrid reaction-diffusion equations ( Eqs. (6.1) and (6.2)) are solved on a 1D domain. This

1D LEM domain in the conventional LEMLES approach lies embedded within each LES

grid cell. For a multi-level grid, there is now an option of locating these LEM 1D domains

in any or all of the AMR grid levels. In this thesis, the approach proposed is to allocate these

LEM 1D domains in the coarsest AMR level. Accordingly, the 1D LEM equations given by

Eqs. (6.1) and (6.2) are solved at the subgrid level on only the first AMR grid level.

To enforce conservation of mass and ensure consistency of the species mass fraction, i.e.,˜̃
Y

1

k, the 1D subgrid species mass fraction and temperature fields need to be reconstructed ev-

ery time step based on the corresponding resolved quantities. This reconstruction approach
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Figure 6.1: Schematic of the multi-level approach (a) and workflow (b) in the LEMLES and
RRLES strategy. Subfigure (a) shows contours of progress variable on both the grids for a
planar premixed flame configuration.
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needs to be specified as the resolved level does not explicitly contains the subgrid informa-

tion. A gradient based reconstruction model that relies on the notional idea that the 1D LEM

domains are aligned along the direction of the maximum scalar gradient is proposed. Also, a

multi-resolution approach for the numerical implementation of RRLES is employed wherein,

the LEM subgrid scalar fields are hosted on a grid with relatively coarser resolution while the

LES governing equations are solved on all AMR grid levels. An estimate of the subgrid field

variation at the coarse grid can be made by employing a multi-resolution strategy. Therefore,

the scalar gradient computed at the finest grid level is used at the coarse grid level to per-

form the subgrid reconstruction. Figure 6.1 shows a sketch of the multi-resolution LEMLES

approach, demonstrating the multi-resolution strategy. Note that the multi-resolution based

RRLES strategy is an alternate formulation in comparison to the traditional single resolution

based LEMLES strategy, which is also shown in Figure 6.1. There are notable differences in

the traditional LEMLES and the current RRLES formulations, which are also highlighted.

For the gradient based reconstruction, both the scalar fields and their gradients are filtered

from the finest AMR grid level to the coarsest level and is given by the following equation:

(
Yk

LEM, T LEM
)1

= R1
N (Yk,∇Yk, T,∇T ) , (6.3)

where R is the restriction operator (see Figure 6.1) that does a conservative filtering from

the finest grid to the coarsest grid to initialize the LEM fields. The scalar fields are then

constructed using the following equations:

Yk,iLEM =
˜̃
Yk

1

−
˜̃∇Yk1

∆x1

2
+ (iLEM − 1)

˜̃∇Yk1

∆x1

NLEM

, (6.4)

TiLEM =
˜̃
T

1

−
˜̃∇T 1

∆x1

2
+ (iLEM − 1)

˜̃∇T 1

∆x1

NLEM

, (6.5)

where iLEM = 1, 2, ...NLEM . The reconstruction process is performed every time step and

the idea is shown in Fig. 6.2 whereGR(
˜̃
Y

1

k,
˜̃∇Y 1

k,
˜̃
T

1

,
˜̃∇T 1

) denotes the gradient reconstruc-
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Figure 6.2: A schematic describing the gradient reconstruction of species scalar field at LEM
level.

tion operation.

The filtered reaction rate within the 1D LEM are computed as:

ω̇k,LEM =

∑NLEM

m=1 ω̇k,m∆Vm∑NLEM

m=1 ∆Vm
, (6.6)

where, ∆Vm is the volume of the mth LEM cell. Since the 1D LEM equations given by

Eqs. (6.1) and (6.2) are solved at the subgrid level, the effects of the subgrid molecular

diffusion and turbulent stirring (as in Step 1 of LEMLES) are implicitly included in Eq. (6.6).

Hence the species governing equations in Eq. (5.14) are solved at the resolved grid level with

the filtered reaction rate obtained from the subgrid level.

Afterward, Eq. (6.6) is projected to the finer grids (see Figure 6.1) using a prolongation

operation, such that:

ω̇
l

k,LES = P l1
(
ω̇

1

k

)
(6.7)

where ω̇1

k = ω̇k,LEM. The entire multi-level RRLES closue procedure is summarized in

Fig. 6.3.

There are advantages and disadvantages of this approach. For example, aforementioned

limitation of the LEMLES approach in regions of low turbulence is avoided since there are

more unresolved scales at the coarser grid where LEM is used. Also, since the “splicing”
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Figure 6.3: A schematic describing the multi-level RRLES closure for the filtered reaction
rate.

algorithm of LEMLES (Step 2) is avoided all the limitations of this approach in the limiting

case of DNS or in laminar regions are avoided since molecular diffusion at the LES level by

the term ∂
∂xi

[
ρ
l ˜̃
Y
l

k
˜̃
V
l

k,i

]
is explicitly included. On the other hand, counter-gradient transport

is not feasible by this closure.

Another subtle issue observed is that in the asymptotic limit of low turbulence the filtered

reaction rate term does not approach the quasi-laminar reaction rate limit [157]. In the quasi-

laminar chemistry based closure in large-eddy simulation, which is sometimes also called as

a no-model approach for the reaction-rate term, the filtered-reaction rate is simply expressed

as: ω̇k,QL = ẇk

(
P , T̃ , Ỹ1, Ỹ2, . . . , ỸNs

)
. To achieve the asymptotic limit under both high

and low turbulent conditions, a hybrid approach for the filtered reaction rate is used and

Eq. (6.7) is replaced as:

ω̇
l

k,LES = f (ξ)P
(
ω̇

1

k

)
+ [1− f (ξ)] ω̇

l

k,QL, (6.8)

where ξ = νlt/ν
l is the ratio of the turbulent eddy viscosity and the kinematic viscosity at
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level l, respectively and f is a blending function in the range [0, 1] and is given as:

f(ζ) =
1

2
+

1

2
tanh

[
a

(
ζ

ζ + 1
− b
)

+ c

]
, (6.9)

where a = 100, c = −50 and b = −0.475 based on numerical experiments [151]. A prelim-

inary assessment of the effect of the functional form of f (ξ) on the flame structure can be

found in [151]. The requirement in Eq. (6.8) is that at low or negligible sgs turbulence level,

f (ξ) → 0 whereas at higher turbulence level, which is characterized by ξ � 1, f (ξ) → 1.

At moderate turbulence levels when the ratio ξ = O(1), the reaction rate computed from the

LEM field and the fine grid LES are comparable and therefore both can contribute to the LES

closure. The function f (ξ) is determined in a dynamic manner (since νlt is obtained using a

localized dynamic approach, LDKM) and therefore, this approach adapts with the solution.

Although a more comprehensive assessment of this hybrid approach will be reported in the

future, the results reported in this thesis shows the potential of this approach as a multi-scale

sgs closure for finite-rate kinetics modeling.

6.2 LES and DNS of a freely propagating premixed flame interacting with a

decaying isotropic turbulence

To assess the accuracy of the multi-level RRLES approach, interaction of a freely propa-

gating methane flame with a decaying isotropic turbulence is studied at various levels of

turbulence. Figure 6.4(a) shows a schematic of the premixed planar flame configuration.

Three different turbulent premixed flames corresponding to the CF, TRZ and B/DRZ regimes

(based on the initial turbulence and flame conditions) are considered in this study to analyze

the resolved and sgs dynamics of flame-turbulence interaction. These cases are indicated

on the premixed regime diagram [158] in Figure 6.4(b) at both the initial time and the time

at which the flame statistics are analyzed. The initial flame front is obtained from a lami-

nar premixed flame solution, and is specified near the center of the domain with reactants
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Figure 6.4: A schematic of the turbulent premixed flame configuration (a) and the premixed
flame regime diagram [158] (b) showing the cases considered in this study. Solid and open
symbols indicate the initial state of the flame-turbulence interaction and the state at which
analysis is performed, respectively.
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and products on its left and right sides, respectively. The extent of the computational do-

main is L × L × L in the streamwise (x), transverse (y) and spanwise (z) directions, where

L = 0.0055 m. The flow field is initialized using an isotropic turbulent flow field obtained

using the Kraichnan spectrum [159]. It is further superimposed with the one-dimensional

planar flame solution obtained at φ = 0.8, Tref = 570 K and Pref = 1 atm. Here, φ denotes

equivalence ratio of the methane-air mixture, Tref is the temperature on the reactants side

and Pref is the reference pressure. The flame conditions, particularly the preheated condi-

tions and the equivalence ratio chosen here are nominally based on past studies, which are

typical of gas turbines, spark-ignition engines and combustors [160, 161]. A characteristic

based inflow-outflow boundary condition is used in the streamwise (x) direction and periodic

boundary condition is used along the spanwise (z) and the transverse (y) directions.

Table 6.1 summarizes the simulation parameters of all the cases in terms of turbulence

and flame parameters. The three premixed flames are estimated to be in the CF, TRZ and

B/DRZ regimes based on initial turbulence intensity, and are respectively labeled as Case

A, Case B and Case C. QLLES and LEMLES closures are used employed with the the

same simulation parameters set for RRLES closure. In Table 6.1, l is the integral length

scale, δ = ν/SL is the Zeldovich flame thickness, u′ is the turbulence intensity, SL is the

laminar flame speed, and Re, Ka and Da are respectively, the integral Reynolds number,

the Karlovitz number and the Damköhler number defined as Re = u′l
ν

, Ka =
√

u′3δ
S3
Ll

, and

Da = SLl
u′δ

. These values are estimated based on the initial conditions of the simulation.

The grid resolution, Nx, Ny and Nz along x-, y- and z-directions, respectively is chosen

based on the past studies, and for the conditions reported here is sufficient to reach kmaxη ≥ 1

for DNS, where kmax is the largest wave number and η is the Kolmogorov length scale. In

particular, kmaxη = 7.23, 2.6 and 2.1 for Case A1, Case B1 and Case C1, respectively.

Note that the grid resolution of a well resolved LES of the flame-turbulence interaction is

dictated by two requirements. First, the turbulence on the LES grid should be resolved

in a manner so that it satisfies the Pope criterion [162], which requires that the resolved
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Case Closure Nx ×Ny ×Nz u′/SL l/δ Re Ka Da
A1 DNS 384× 384× 384 2.0 9.6 19.2 0.9 4.8
A2 RRLES 96× 96× 96/48× 48× 48 2.0 9.6 19.2 0.9 4.8
A3 QLLES 96× 96× 96 2.0 9.6 19.2 0.9 4.8
A4 LEMLES 96× 96× 96 2.0 9.6 19.2 0.9 4.8
B1 DNS 384× 384× 384 10.0 6.2 62.8 12.6 0.63
B2 RRLES 96× 96× 96/48× 48× 48 10.0 6.2 62.8 12.6 0.63
B3 QLLES 96× 96× 96 10.0 6.2 62.8 12.6 0.63
B4 LEMLES 96× 96× 96 10.0 6.2 62.8 12.6 0.63
C1 DNS 512× 512× 512 50.0 9.6 478.7 113.9 0.19
C2 RRLES 128× 128× 128/64× 64× 64 50.0 9.6 478.7 113.9 0.19
C3 QLLES 128× 128× 128 50.0 9.6 478.7 113.9 0.19
C4 LEMLES 128× 128× 128 50.0 9.6 478.7 113.9 0.19

Table 6.1: Initial turbulent premixed flame parameters for cases considered in this study.

turbulent kinetic energy should be approximately 80% of the total kinetic energy. Secondly,

the flame structure should be adequately resolved, which requires approximately 10 points

across the the thermal flame thickness, i.e., δL = (Tb − Tu) / |∇T |max, when no closure is

used for turbulence-chemistry interaction [163]. Here, subscript ‘b’ and ‘u’ denote burnt and

unburnt regions, respectively. The LES cases for Case A, Case B and Case C approximately

resolves about 90%, 80% and 70% of the total turbulent kinetic energy at t/t0 = 2, 2 and

3, respectively. Here t0 = u′/l is the initial eddy turnover time. In addition, with the grids

employed in the present study, it is estimated that the thermal flame thickness is resolved by

around by 20 points in DNS and 5 points in LES in Case A. Clearly, the LES grid does not

resolve the thermal flame thickness and can be considered as a borderline, particularly for

the QLLES cases. For RRLES, two AMR levels are used with the finest level matching the

resolution of other single level closures. For this case, the second AMR level completely

covers the first level and therefore the dynamic refinement option is not used.

Also, 12 LEM cells are used in each LES cell for both LEMLES and RRLES. Estimates

suggest that in the sgs scales eddies of size of the order of η/2 are resolved. Simulation using

an increased resolution with 24 LEM cells does not show any significant effects on the flame

statistics (not shown here), and, therefore, all the results reported here are based on simu-
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lations employing 12 LEM cells. For RRLES, two level of completely over-lapping grids

are used. The simulations are carried out long enough to allow flame-turbulence interaction

to evolve and all the results are compared after two (three) initial eddy turnover times for

Case A/B (C), i.e., t/t0 = 2 (3). Even though turbulence decays in time in the present study,

there is a period during which flame-turbulence interaction attains a quasi-stationary state,

and therefore, the dynamics and statistics associated with the flame-turbulence interaction

can be analyzed during such period.

Figure 6.5(a)-(l) compares the flame structure from all the simulated cases. The wrinkling

and stretching of the flame is predicted by RRLES in a consistent manner, and the increase

in the wrinkling along with enhanced transport of heat from the reaction zone from Case A

to Case C is also qualitatively captured. All simulations show a continuous flame structure

and no sign of local extinction for these conditions. The RRLES the formulation can capture

the flame structure as it includes the laminar diffusion and additionally, due to the blending

approach employed by the formulation through Eq. (6.8), it asymptotes towards the quasi-

laminar value of the filtered reaction-rate term when turbulence is either low or resolved.

The statistics of flame-turbulence interactions are analyzed after such interactions reach

a quasi-stationary state. Figure 6.6 shows the conditional variation of the filtered reaction

rate for methane. The peak location is shifted toward higher value of c̃ for all cases. The

improved predictions by the RRLES formulation is noticeable in all the cases, where a good

agreement with the DNS data can be observed. The asymptotic behavior of the RRLES

closure is again evident here, as can be observed in the prediction of approaches DNS and

QLLES in Case A when the level of turbulence is small. For case C with a high level of

turbulence, only the RRLES approach is able to match with the DNS result. The other

single level closures, LEMLES and QLLES both over predict the reaction the rate. These

predictions by the various closures highlights their abilities and limitations. The unphysical

results predicted by LEMLES in Case A demonstrates the limitations of the formulation

when the local flow conditions tend to have a low subgrid-scale turbulence.
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(a) Case A: DNS (b) Case B: DNS (c) Case C: DNS

(d) Case A: RRLES (e) Case B: RRLES (f) Case C: RRLES

Figure 6.5: Contours of filtered temperature field overlaid with the flame brush extents in the
central x − y plane identified using the filtered progress variable (iso-lines of c̃ = 0.01 and
c̃ = 0.99) [151].
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Figure 6.6: Conditional variation of the filtered reaction rate of CH4 with respect to the
progress variable [151].
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CHAPTER 7

APPLCATION 1: LES OF SHOCK TURBULENCE INTERACTION

Many of the engineering flows of interest are highly turbulent, for which Large Eddy Simu-

lations (LES) is often used as a computational cost effective alternative to Direct Numerical

Simulation (DNS) to resolve the entire range of scales of fluid motion involved. However,

there are some applications, especially those involving shocks along with turbulence, for

which it might be impossible (computationally) to accurately predict the wide range of scales

involved using LES in a uniform grid. For such problems, an adaptive local refinement can

help to adequately resolve and accurately predict the solution besides improving the compu-

tational efficiency significantly. While there are a number of studies [164] , [143] , [165],

[144],[166] static and, adaptive mesh refinement (AMR) for LES of incompressible flows,

there exists very limited studies on applying AMR to LES for compressible flows.

The developed framework of AMRLES can be applied to study a wide range of prob-

lems in the compressible flows involving turbulence along with phenomenon such as shocks,

flames, etc. To demonstrate the applicability for such problems, two representative cases

involving high turbulence and shocks are selected, one with a static shock and other with a

moving shock.

7.1 Introduction

The resolution requirements for DNS and LES of shock-turbulence interaction have been

well discussed in [167]. In many cases it is often not possible to resolve the shock. Therefore

it is treated as a discontinuity in flow solution and the shock is captured over few grid points.

In principle, the shock capturing scheme used will provide the required numerical dissipation

in the vicinity of the shock to stabilize the solution. However, these schemes that are used

are inherently dissipative throughout the solution regime and not just near the shock. To
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avoid excessive numerical dissipation, a common practice is to employ a hybrid scheme

[37] that switches to a shock capturing upwind scheme in the vicinity of the shock and to

a low dissipation central scheme in the smooth regions of the flow. In order to reduce the

dissipation, the regions in which the shock capturing scheme is active can be minimized

[167] by using fine grid resolution. Additionally, the region immediately after the shock

also requires a fine resolution as it has been observed that there is a significant reduction of

turbulent length scales in the post shock region [168] in all directions. The adaptive mesh

refinement can be used flexibly and easily to refine those required regions alone. There are

different applications involving interaction various phenomena such as shocks, turbulence,

flames and, detonation viz: blast turbulence interaction [169], flame-turbulence interaction

[151], detonation-turbulence interaction [170] where AMR can be effectively employed to

capture strong discontinuities with a background turbulent flow.

7.2 Results and discussion

7.2.1 Planar shock in isotropic turbulence

This is a canonical problem of a planar shock interacting with an isotropic turbulenc, the

schematic of which is shown in Fig.7.1. The case configurations that are chosen [168] are

shown in Table 7.1. Two different Re numbers are chosen, one in the lower range with

Re = 19.1 and the other at a higher value with Re= 40. Both the cases are run with DNS,

so that the accuracy of the LES solution obtained with the sub-grid closure models can be

calibrated against DNS at two different Re number values. The LES of high Re is run with

two grid resolutions, a relatively fine and a coarse resolution, to evaluate the dependence of

the simulation results with the grid resolution. The grid resolution of the cases is based on

the previous studies [168, 167, 171], which guides on the level of resolution nearby to the

shock.

The inflow turbulence is precomputed, filtered and brought in using the Taylor’s frozen

turbulence hypothesis. For the case STIDNS1 corresponding to Reλ= 19.1 and Mt = 0.11,
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Figure 7.1: Schematic for the shock-turbulence interaction study.

Table 7.1: Summary of STI cases
Case Reλ Ma Mt Type AMR levels Base grid resolution
STIDNS1 19.1 1.29 0.11 DNS 4 160 × 80 × 80
STILES1 19.1 1.29 0.11 LES 4 80 × 40 × 40
STIDNS2 40.0 1.5 0.22 DNS 2 512 × 256 × 256
STILES2F 40.0 1.5 0.22 LES 3 256 × 128 × 128
STILES2C 40.0 1.5 0.22 LES 4 128 × 64 × 64
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the turbulence was evolved from an initial state of Reλ = 40 and Mt = 0.22 in a 2π3 triply

periodic box with a grid resolution of 80 × 80 × 80 cells. The DNS data is filtered using a

box filter onto a grid with 40 × 40 × 40 cells for the case STILES1. And for the higher Re

case, STIDNS2, an isotropic turbulence with Reλ = 140 and Mt = 0.33 was evolved using

DNS until it reached a state of Reλ = 40.0 and Mt = 0.22. The data is then filtered onto

grids with two different grid resolutions of 1283 cells and 643 cells respectively for cases

STILES2f and STILES2c. Three independent realizations of the initial state are evolved and

then stacked to form a (6π, 2π, 2π) box for providing the inflow turbulence data. Periodic

boundary conditions are used in the transverse directions and a characteristic based subsonic

outflow is used for the outflow boundary condition. The grid resolution is coarsened using

the block-structured AMR technique adjacent to the outflow to damp the acoustic reflections

from the outflow boundary condition.

The shock is initialized using the Rankine-Hugoniot jump conditions, which are cali-

brated to achieve a statistically stationary shock.. However, since the jump conditions are

satisfied only instantaneously, the exact jump conditions resulted in a shock drift. This drift

is corrected using the procedure detailed in [168]. The simulation is evolved for two flow-

through times to get rid of the initial transience. The statistics are then collected by running

the simulation for additional two flow-through times. Snapshots of the DNS data are stored

at 60 time instants over a two flow through time period. The data is then filtered onto the

LES grid and averaged over the 60 time instants and used for evaluating the LES results. The

iso-surfaces of the Q-criterion colored by the pressure are shown in Fig. 7.2 for DNS clearly

indicates the presence of fine scale vortical structures, which needs to be captured in the case

of AMRLES as well.

Shock turbulence interaction for low Reynolds number case

For the low Re case, the inflow turbulence and turbulent Mach number are not high enough

to break it but can wrinkle the shock. The axial and transverse subgrid stresses are spatially
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(a) Reλ=19.1 (b) Reλ=40.0

Figure 7.2: Iso-surfaces of Q-criterion colored with pressure for the cases STIDNS1 and
STIDNS2.

averaged in the two homogeneous directions and also averaged over two flow-through times.

As is the practice in the past shock-turbulence studies, all the time averaged data are normal-

ized using the values just upstream of the shock. In Fig. 7.3, the time averaged streamwise

0 5 10 15 20 25 30 35 40
K0x

0.0

0.5

1.0

1.5

2.0

2.5

u
u

AMR
DNS (Mahesh et al.)

(a)

0 5 10 15 20 25 30 35 40
K0x

0.0

0.5

1.0

1.5

2.0

2.5

vv

AMR
DNS (Mahesh et al.)

(b)

Figure 7.3: Comparison of (a) axial and (b) transverse Reynolds stresses for case STIDNS1

with DNS[171]

and transverse subgrid stresses for the low Reynolds number case are compared with a previ-

ous DNS simulation by Mahesh et al. [172] in which a stretched grid was employed. There

is a very good agreement for both the axial and transverse Reynolds stresses. Although there
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is a minor under prediction of the downstream intensity of the stresses, the decay rates agree

quite well with the previous DNS result. The results from the LES simulations employing

the multi-level sgs closure are next compared with the filtered data in Fig. 7.4. The time

averaged subgrid stresses are obtained in the same procedure as described for the DNS data.

The LES results agree well with the filtered data obtained from the DNS simulations. The

post-shock decay is slightly under predicted for both the subgrid stress components resulting

in slightly higher values downstream of the shock. The over-prediction is more pronounced

for the transverse subgrid stress.
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Figure 7.4: Comparison of (a) axial and (b) transverse Reynolds stresses for case STILES1

with filtered DNS data

Shock turbulence interaction for high Reynolds number case

The quality of the DNS results for the high Re case are assessed by comparing the time

averaged streamwise and transverse subgrid stresses obtained with the current DNS against

those of the past DNS data [167], as shown in Fig. 7.5. The DNS data was digitized and

shifted to match the shock location of the current simulations. The agreement is quite good

considering the different methodologies used for generating the inflow turbulence and pos-

sibly some differences in the shock location. Regardless, the simulation results from DNS

look quite reasonable and can serve as a reference for evaluating the LES results. The LES
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Figure 7.5: Comparison of axial and transverse Reynolds stresses for case STIDNS2 with a
past DNS [167]

results for the time averaged subgrid stresses for both the fine and coarse grid resolutions

(Table 7.1) are shown in Figs. 7.6 and 7.7 respectively. As can be seen from Fig.7.5 and

Fig.7.6), the profiles of axial stress show a good match with the DNS in case of LES with

fine grid resolution. However, the downstream decay rate of the transverse stress, on the

other hand, seems to be slightly under predicted. With respect to the coarser grid resolution,

(STILES2C), as seen in Fig. 7.7 the underprediction in the decay rates are more pronounced

for both the transverse Reynolds stress. Whereas, the axial stress matches well the DNS

trend until the maximum value is reached, beyond which there is an underprediction in the

downstream decay rate. Neverthelss, the current LES results have performed better in its

comparison against DNS, than a previous study [171] One key observation from the results

is that there emerges a consistent trend wherein the post-shock decay rates are not correctly

predicted especially at coarser grid resolution. That could be due to the strict isotropic na-

ture of modeled subgrid stresses, which therefore could not explain the anisotropy in the

dissipation mechanisms causing the post-shock decay. This is actually a limitation of all the

eddy-viscosity models, rather than of the AMRLES sub-grid closure as all of those eddy-

viscosity models assume the eddy viscosity, νt to be same in all the direction, which may not

be always true.
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Figure 7.6: STILES2f : Comparison of axial and transverse Reynolds stresses for case LES
of M=1.5, Reλ = 40.0 with filtered DNS data
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Figure 7.7: STILES2c: Comparison of axial and transverse Reynolds stresses for case LES of
M=1.5, Reλ = 40.0 with filtered DNS data
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In order to assess the performance of the multi-level sgs closure, the filtered subgrid

kinetic energy is compared with the model predicted value in Fig. 7.8 for the two cases

STILES2f and STILES2c. The figure provides considerable insight into the behavior of the

subgrid closure in a refinement region. Ideally, when there is a sudden reduction in the grid

size, to conserve the total resolved turbulent kinetic energy, there must be an immediate

transfer of the subgrid kinetic energy to the grid resolved turbulent kinetic energy, ũiũi.

Such a transfer mandates immediate population of small scales of the flow in regions of fine

resolution with the subgrid kinetic energy dropping commensurately. The filtered ksgs shows

this behavior where the sgs kinetic energy drops to zero in well-resolved regions. However,

such a transfer rarely happens with a subgrid closure as there is no explicit mechanism to

enforce the transfer. Instead, as seen in the case of flow past discontinuity problem, there

is a transition region over which the small scales develop resulting in a drop of the subgrid

kinetic energy. This behavior is observed in Fig. 7.8 for both the cases. When the grid is

refined in the vicinity of the shock, ksgs is convected from the coarse grid solution and starts

decaying rapidly by virtue of increased dissipation at smaller scales of motion. A spike in

ksgs is observed at the shock after which the decay continues. An increase in ksgs then occurs

when a refinement region ends and the mesh becomes coarser. There is a good agreement

with filtered DNS data downstream of the shock for both the fine and coarse LES mesh cases.

In the intermediate region, the remnant subgrid kinetic energy, through the closure model for

the sgs stresses, provides required dissipation due to the subgrid scales for the resolved level

turbulence.

An evaluation of the sgs budget can help to identify the contribution of various terms

to the ksgs. The different sgs terms (convection, production, transport, dissipation and pres-

sure dilatation) that are summarized in Table 7.2 are evaluated from the instantaneous snap-

shots and time averaged over two flow-through times. The tke budget for case STILES1 and

STILES2c are shown in Fig.7.9. Prior to the shock, there is a sudden increase in sgs dissi-

pation after every grid refinement interface and this increase is balanced by the convective
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Figure 7.8: Comparison of the filtered ksgs with simulation predictions for the fine and coarse
LES of M=1.5, Reλ = 40.0.

Table 7.2: Closure models for various terms in transport equation of ksgs

Term Closure

T sgs ∂
∂xi

[
(ρνt + µ)∂k

sgs,n

∂xi
+ ρνtR̃

Prt
∂T̃
∂xi

]
pdksgs αpdM

sgs
t

2
(
ρS̃k

sgs,n

Dsgs

)2

(P sgs −Dsgs)

P sgs τ sgsij S̃ij

Dsgs ρCε

(
k
sgs,n)3/2

/∆
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term. Whereas, at the shock, all the terms go up in magnitude. The pressure dilatation term

is seen to be active only at the shock. The production term acts as a source for the sgs, and

as sink term for the resolved turbulent kinetic energy transport equation [173]. The increase

in the sgs production implies increased transfer of energy from the resolved level turbulent

kinetic energy to the subgrid kinetic energy. The subgrid diffusion is not found to play any

major role in the transport of the sgs kinetic energy and is only active near the shock due to

intermittency.
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Figure 7.9: ksgs budget for the low and high Re cases. < Dsgs >; < P sgs >;
< ∂ρũik

sgs

∂xi
>; < T sgs >; < pdsgs >.

7.2.2 Blast turbulence interaction

The objective of this case study is to apply the multi-level sgs closure to a moving shock

problem. The particular interest is in the sgs dynamics across a propagating shock. An

isotropic turbulence of Reλ= 40 and Mt = 0.22 is initialized in a periodic 2π3 box. The

initial turbulent state is the same as used for providing the precomputed inflow turbulence

for the higher Reynolds number case, STILES2f of the planar shock-turbulence interaction

problem. First, the Taylor blast problem is studied without the ambient turbulence. The

initial profile is setup using a similarity solution which was presented in a seminal paper by

Taylor [174]. An approximation of the solution to the similarity laws is also provided in the
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journal and is used in the current study. The analytical solution for the location of the blast

as a function of time is given by the following equation:

Rs(t) = S(γ)ρ
−1/5
0 E1/5t2/5, (7.1)

where, Rs is the radius of the blast front at any time t, S(γ) is a function dependent on γ, ρ0

is the density of the ambient fluid and E is the initial energy deposited. The scaling exponent

for the time from Eq. (7.1) is 0.4. The case without turbulence is run with 3 levels of AMR

refinement with the base grid resolution as 128 x 128 x 128. The finest resolution was chosen

based on an grid independence study (not shown here). Radial averaging is done, for all the

radial plots shown, in the following manner:

f(r) =
1

N(r)

N(r)∑
i=1

φi, (7.2)

N(r) =

⌈
r − rmin

rmax − rmin

⌉
Nbins, (7.3)

where φ is any cell centered quantity, N(r) is the N th bin with a radius range r + dr/2 and

r−dr/2. Here dr = (rmax−rmin)/Nbins is the size of a single bin with rmax, rmin being the

maximum and minimum allowed radius andNbins is the total number of bins. The refinement

criteria is based on scaled gradients of pressure and density. The evolution of the AMR mesh

with time for the case without turbulence is shown in Fig. 7.10a). As can be clearly seen, the

AMR refinement is able to correctly track the moving blast front as it expands with time. In

Fig. 7.11(b), the radial plots of pressure at different time instants are shown. Note that the

profiles are self-similar in nature as is expected for a Taylor blast solution. The evolution of

the blast radius characterized by the location of the peak pressure is shown in Fig. 7.11(a).

The reference slope based on the exact analytical solution is also shown for comparison,

which shows a very good agreement with the predicted solution from the simulation.

187



(a) t = 0.0 ms (b) t = 0.5 ms (c) t = 1.0 ms

Figure 7.10: Time series of snapshot of AMR patches field at central XY plane for a Taylor
blast. Red - 1st level refinement, green - 2nd level of refinement and blue - finest level of
refinement.
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Figure 7.11: Line plots for interaction of a blast with an isotropic turbulence Reλ = 40.0.
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Having validated the Taylor blast setup, it is then seeded with a background turbulence.

The evolution of the blast is then tracked over time. Comparison of the radially averaged

plots of pressure at different time instants are shown in Fig. 7.12. For the given turbulent

conditions, there is not much effect of the turbulence on the blast pressure profile but the

peak value of the pressure spike is marginally lesser when the turbulence is present. The
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Figure 7.12: Comparison of radially averaged pressure profile at time = 1 ms with and with-
out turbulence.

instantaneous plots of vorticity magnitude, pressure and the subgrid scale kinetic energy at

time = 1 ms are shown in Fig. 7.13. Due the interaction, perturbations from the spherical

nature of the blast are seen in the pressure contours. The vorticity magnitude contours in-

dicate that the vortical structures dissipate in the core of the blast. This is due to the high

non-physical temperature in the core of the blast as a result of the artificial initialization. It

is shown in many previous studies that the Taylor blast solution is valid only at later times of

a blast. The early period dynamics can be better captured with a more physical initialization

as used in [175]. There is an occurrence of turbulent structures immediately after the blast

front, however they dissipate quickly as they moved towards the core of the blast. The sgs

kinetic energy also increases sharply at the blast front.

Finally, the role of different sgs terms in the evolution of the subgrid kinetic energy is

assessed for this case as was done for the shock-turbulence interaction problem. The radi-
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(a) Vorticity (b) Pressure

(c) Subgrid kinetic energy

Figure 7.13: Plots of various quantities at t = 1 ms for the case of blast interacting with an
isotropic turbulence.
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ally averaged sgs budget is presented in Fig. 7.14. Across the blast, the sgs production and

sgs dissipation both sharply raise. The contribution of the other terms to the sgs kinetic en-

ergy evolution is found to be negligible. The dynamics of the sgs production and dissipation

completely dominates the other effects such as the diffusion of ksgs and the pressure dilata-

tion. Overall, the behavior of the closure model across a strong propagating blast appears to

be consistent with what is expected. More parametric studies with different blast strengths

and turbulence levels can be performed to characterize the behavior of the turbulence, the

blast and their interaction. This study only serves to evaluate the multi-level subgrid closure

behavior across a propagating strong blasts.
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Figure 7.14: Radially averaged sgs budget for the blast-turbulence interaction problem at t =
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7.3 Conclusions

The main highlight of the study is the application of AMR for turbulent flow both in DNS and

LES methodologies. The good match between the DNS results with past data and especially

smooth transition of resolved turbulence across a grid interface should alleviate any concerns

in the employment of AMR for turbulent flows. The multi-level sgs closure (AMRLES) is

then applied to study problems involving a planar shock and, a moving shock interacting with

turbulence. Although there exist some discrepancies in some of the comparisons with the

DNS results, overall, it is found that there is a good agreement between the results predicted

191



by AMRLES. The sgs budget analysis for LES of shock and blast turbulence indicates the

consistent behavior of the multi-level closure model across AMR boundaries. This study

has therefore looked into and addressed some of the problems related to applying LES with

AMR.
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CHAPTER 8

APPLICATION 2: LES OF NON-REACTING/REACTING JET IN CROSS FLOW

In this chapter LES of non-reacting and reacting transverse jet in cross-flow is performed

using the cutcell-AMRLES approach. The presence of wide range of scales for flow and

flame in JICF configurations is well known. A fixed grid without any local refinement, when

used for simulation of JICF, will require high grid resolution making the computations very

expensive. AMR can be efficiently employed to resolve some of the fine scale flame and flow

structures present in this configuration. Many studies in the past have shown the importance

of resolving the jet inflow pipe geometry as it particularly affects the jet penetration into the

cross-flow. An embedded boundary representation of the inflow pipe on a Cartesian AMR

grid is therefore required to simulate the JICF configuration accurately. Thus, the challenges

of doing LES (and subgrid modeling) using a Cutcell-AMRLES strategy is addressed in this

chapter.

8.1 Introduction

A gaseous jet exiting into a cross flow is a configuration that is seen in many reacting/non-

reacting flow systems such as in gas turbine combustors for dilution [176] and in turbine

blades for film cooling [177], etc. In such systems, the interaction of the transverse jet with

the cross flow results in myriad of flow structures such as the jet shear layer vortices, Counter-

Rotating Vortex Pairs (CVPs), horse shoe vortices and wake vortices [178]. The presence

of these structures significantly increases the mixing between the jet and the cross-flow and

thus JICF is a canonical configuration of great interest.

Numerous experimental and numerical studies of the non-reacting JICF have been done

in the past and a good understanding of the flow characteristics has been developed [179,

180, 181, 178, 182, 183, 184, 185, 186]. For a reacting JICF, however, the understanding
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of the mechanisms involved in flame anchoring, and its stabilization is far from complete

and only few studies have been reported on this subject matter. Canonical experimental data

for this configuration is also limited and is available for only very specific setups, e.g., sonic

jet in supersonic crossflow. Numerically, Grout et al [187], [188] performed Direct Nu-

merical Simulations (DNS) of a nitrogen diluted hydrogen transverse square jet in a heated

cross-flow. However, performing a DNS for reacting JICF problems is very computationally

expensive due to the high spatial resolution required to resolve the turbulent flow structures

and the employment of detailed chemistry.

A more practical alternative is to use Large Eddy Simulation (LES) in which the large

scale processes are directly simulated and only the smaller subgrid scale processes need to

be modeled. This can result in a significant reduction of computational expense without

the need to resolve all the flow and time scales as required for a DNS. But there has been

no reported study of a LES of reacting subsonic JICF to the best of authors’ knowledge.

Establishing an affordable strategy to perform LES can help in a long way in understanding

the different aspects of the reacting jet in cross-flow problem. There are many challenges for

an affordable and an accurate LES of JICF, since there is a wide range of fluid and chemical

time scales involved and their resolution is critical in predicting the lifted flame stabilization

mechanism.

8.2 Problem description

The case configuration is based on the experiments done at DLR [189] and is shown Fig. 8.1.

As the jet penetration depth is dependent on the velocity ratio, and is a key factor in under-

standing the flame anchoring mechanism, three different jets of varying velocity ratio are

investigated. Three jets of different velocity ratios numbers are investigated for both the re-

acting and the non-reacting JICF, and the case conditions of which are summarized in Table

8.1. The velocity ratio for all the cases is given by Rm =
√

ρjuj2

ρcfucf 2 with ρj and uj being

the jet fluid density and velocity while ρcf and ucf being the cross-flow density and velocity,
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Case Jet vel(m/sec) Rejet rm
1 200 6000 2.9
2 150 4500 2.2
3 100 3000 1.4

Table 8.1: Jet conditions different JICF cases

respectively. Note that the velocity ratio is defined as rm =
√
J , where J is often called

the momentum ratio and the jet Reynolds number is defined as Rejet = ρjetujetd/µ. The

configuration considered consists of a turbulent heated cross flow of air at T = 750K and

a jet that exits from a nozzle placed at 5d from the inflow boundary, where d represents the

diameter of the jet. The numerical domain is of size 20d × 15d × 10d and is based on past

DNS studies [187]. The jet fluid comprises of 70% H2 and 30% N2 by volume and enters

the domain at 423K. A detailed chemistry mechanism [190] for hydrogen combustion in air

with 19-steps and 9-species is employed for the gas phase combustion. This mechanism was

widely used in many of the past DNS studies of similar JICF configurations [187, 188].

Figure 8.1: Schematic of the JICF configuration.

8.3 Results and discussion

The mean profile for the turbulent inflow in all cases are specified based on the data from

experiments [189] performed for the same configuration. Synthetic Kraichnan turbulence
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[159] is superimposed such that the intensity of the fluctuations matches with the experi-

mental data. The boundary conditions are: partially reflecting inflow at x = 0, partially

reflecting outflow at x = Lx, y = Ly, adiabatic no slip wall at y = 0 and periodic boundary

conditions in the span wise direction (z = 0, Lz).

The inlet pipe boundary surface is resolved by using cut-cell and three AMR levels are

employed for all the cases with the effective resolution in terms of wall coordinates being

∆x+ = ∆y+ = ∆z+ = 2 (=62.5µm). Here, + indicates the non-dimensionalization by

the viscous length scale. The first point of the wall is located at y+ = 1. A snapshot of

the AMR grid for the JICF configuration is shown in Fig. 8.2. The above resolution for

LES is almost three times as coarse as the DNS resolution used by Grout et al [187]. The

dynamic refinement is performed based on the criteria of density and temperature (εT and

ερ in Eq. (3.13)) and is turned off once the flow is fully established and steady in case of

non-reacting case. Whereas, in case of reacting case, the dynamic refinement is turned off

once the flame attained a quasi stationary state. The statistics are collected for all the cases

with the frozen static refinement.

Figure 8.2: Snapshot of the AMR mesh for JICF configuration (only every 4 mesh points
shown).
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8.3.1 Non-reacting JICF

Cutcell-AMRLES results of a non-reacting JICF with a round jet is presented in this section.

Conditions for the different non reacting case studies are summarized in Table. 8.1. Simu-

lations are run for approximately seven flow through times while the time averaging of the

flow field data are done over last four flow through times. Here, the flow through time is

defined as tf = Lx/ucf , where Lx being the domain length in x direction and ucf is the cross

flow velocity.

Instantaneous flow field results

As the flow is highly unsteady and complex in a JICF configuration, instantaneous flow field

snapshots can aid in identifying some important flow phenomena. Fig. 8.3 shows the vortical

structures visualized based on the Q-criterion. Also shown is a shadow plot of the vorticity

magnitude in the jet center XY plane. Some widely noted flow features stand out in Fig. 8.3.

The jet shear layer vortices in the windward side of the jet as well as the wake and upright

vortices in the leeward side of the jet can be clearly seen.

The eddy viscosity ratio is used to estimate the level of unresolved turbulence in a region

of flow. High eddy viscosity ratios denote the presence of significant unresolved subgrid

turbulence while a low ratio might be indicative of either a laminar flow region or a region

where all scales of turbulent motion are completely resolved. For the case of JICF, the wake

of the jet is characterized by highly unsteady vortical motions and their subsequent break-

down enables mixing between the injected fluid and the cross-stream. The eddy viscosity

ratio shown in Figure 8.4 on jet center x − y plane and also on x − z plane at y = 6d from

jet exit suggests that a high viscosity ratio is observed in the jet shear layer regions and the

ratio is also significant in the wake of the jet where the large scale coherent structures of the

jet breaks up into smaller vortical structures. Value of this ratio as high as 3 is seen in some

regions suggesting that these regions are not well resolved in the grid and LES model has to

provide the necessary dissipation for the subgrid kinetic energy.
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(a) rm = 2.9

(b) rm = 2.2

(c) rm = 1.4

Figure 8.3: Instantaneous snapshot of vortical structures identified by Q-criterion and col-
ored with vorticity magnitude for jet velocities
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(a) x− y centerplane (b) x− z plane at y = 6d

Figure 8.4: Eddy viscosity ratio for the Rej = 6000 case

Another measure of the quality of a LES is to determine the energy spectrum, which for a

well resolved LES should show a −5/3 slope in the inertial range. Velocity data is collected

in a region where the jet breaks down and a significant level of turbulence is observed. The

typical spectra for the time sampled data is shown in Figure 8.5. Satisfactory match with the

−5/3 slope is observed in the inertial range and this shows the resolution to be adequate for

a LES with present AMR grid.
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Figure 8.5: Turbulent kinetic energy spectra
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Time averaged flow field results

Figure 8.6 shows the averaged velocity magnitude fields in the jet centerplane for the three

cases. The streamlines corresponding to the time averaged flow field velocities are also

superimposed over the velocity magnitude contours. The jet trajectory, as expected, bends

more sharply for the low jet Reynolds number case. All the three cases indicate the presence

of nodes in the near field of jet on the leeward side. The presence of a small downward

component of velocity can be seen just before the jet for both the cases. This is due to the

high pressure region formed ahead of the jet column forcing the cross flow downwards. The

above observations are consistent with previous studies and an extensive discussion on this

can be found in Mahesh and Muppidi [184].

(a) rm = 2.9 (b) rm = 2.2

(c) rm = 1.4

Figure 8.6: Time averaged flow field contours for the Jet center x− y plane
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Mean jet trajectories along the center streamline for the different cases are compared

against the experimental observations in Figure 8.7. As seen in the figure, the jet trajecto-

ries for the cases collapse when scaled with velocity ratios and diameter. The trajectories

predicted by the Cutcell-AMRLES simulations show a reasonable agreement with those pre-

dicted by Su and Mungal [182] and New et al. [191] .

These results suggest that the current approach appears to capture the nature of JICF in

agreement with past observations. Also, it is seen that with the current number of levels of

refinement employed, there is still a significant amount of unresolved subgrid turbulence and

therefore a subgrid closure is required.
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Figure 8.7: Jet centerline trajectory comparisons scaled with only rmd. Solid black - rm =
2.9, dashed blue - rm = 2.2, dash-dot red - rm = 1.4, blue dots - Su Mungal [182], black
squares - New et al. [191].

To understand the significance of resolving the flow inside the pipe geometry, mean ve-

locity magnitude contour plots along with streamlines are studied at the jet inflow x-z plane

and also on the x-y central plane. These plots are shown in Fig. 8.8. As noted in the figures,

there is a significant downward component very close to the jet inflow. A strong recircula-

tion pattern is also seen immediately in the wake of the jet. Without resolving the jet inflow

accurately, these feature may not be captured correctly.
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(a) (b)

Figure 8.8: Flow pattern in the near field of the jet inflow in the (a) x-y central plane and (b)
x-z plane at y = 0.

8.3.2 Reacting JICF

Results for the LES of reacting jet in crossflow are presented here. A similar JICF config-

uration with lower Reynolds number was investigated previously using DNS with detailed

chemistry [187] and on a grid of 1.6 billion points with a minimum resolution of 10 µm. The

current simulations are of size 20 million with a minimum resolution of 62.5 µm. There is a

80 X reduction in the grid size through use of AMR and LES together.

As seen in the non-reacting case studies, the wake of the jet is highly turbulent with

unsteady vortical motions with a cascade of length scales. A strong interaction between

these flow structures and the flame is expected especially near the flame anchoring point

[187, 188]. Additionally, detailed chemical kinetics are found to play a significant role in

flame ignition/extinction and stabilization characteristics.

To ignite the mixture, a small cylindrical volume of size 0.2 mm and height 2 mm present

in the recirculation zone just behind the jet column is patched with adiabatic flame temper-

ature and burnt products in the non-reacting flow solution. Roughly one flow through time

was allowed for the initial transients to exit the domain and flame to get stabilized. The data

was time averaged over 1.2ms corresponding to approximately 1.5 flow through time.

Simulations were run on 1024 processors on a Cray XE6 with AMD Opteron and Inter-
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lagos processors for around 100K CPU hours. In comparison, the DNS for the same case

was run on 48000 cores of a Cray XT5 and used approximately 4M cpu hours [187]. It is

also noted that the refined grid in the AMR third level would correspond to around 115 M

cells if the same grid resolution is used in the entire domain. With AMR, the grid size on

an average (as the number of grid points change frequently due to dynamic refinement) is

around 20 Million. The initial grid in which the flow solution evolved is even coarser with

only around 5 Million cells.

Instantaneous flow field results

Figure 8.9 shows the instantaneous snapshot of the iso-surface of Q-criterion colored with

axial velocity. The shadow plot on the jet center x − y plane presents the contours of the

instantaneous vorticity magnitude. In comparison to the non-reacting cases, there is clearly

loss of small scale structures in flow because of heat release effects. The heat release due

to combustion increases the temperature of the mixtures and thus its viscosity. Due to the

increase in viscosity, the small scale flow structures are dissipated.

The instantaneous structure of the flame for the three jet Reynolds numbers are presented

in Fig. 8.10. It does appear that instantaneously the flame is lifted for all the three cases.

The flame is anchored in the leeward side of the jet where the velocity magnitude is low.

The strong recirculation zone formed in the wake of the jet facilitates mixing of burnt hot

products with ignitable mixture, thus sustaining the flame. There appears to be no flame in

the windward side of the jet as seen in some reacting jets in cross-flow configurations.

The flame stabilization mechanisms and mixture preparation are investigated for the

highest jet Reynolds number/velocity ratio case and the plots of the heat release rate (HRR)

and flame index (FI) are presented in Figures 8.11 (a)-(b). Flame index, defined as FI =

∇H2.∇O2

|∇H2||∇O2| × ω̇H2 , is shown on the jet centerplane in Figure 8.11. The value of flame index

indicates the level of alignment of the gradients between fuel and oxidizer. A high posi-

tive indicates complete alignment and is generally observed for premixed flames, whereas
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(a) rm=2.9

(b) rm=2.2

(c) rm=1.4

Figure 8.9: Instantaneous snapshot of vortical structures identified by Q-criterion and col-
ored with vorticity magnitude for different jet Reynolds numbers.
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(a) rm=2.9 (b) rm=2.2

(c) rm=1.4

Figure 8.10: Instantaneous temperature contours in the jet central x-y plane.
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a negative value indicates a complete misalignment and is generally seen in non premixed

flames. A strong correlation can be noted in Figure 8.11 between the regions of high heat

release rates and positive flame index suggesting that the flame is partially premixed near

the anchoring zone. Also, the flame index is used to as a coloring label in the scatter plot

of Da vs heat release rate shown in Fig. 8.12. A high positive value of flame index can be

clearly observed in the regions of low Da and high heat release. Put together, the above

observations of a high flame index, low Da indicating well mixed condition and high heat

release rates strongly suggests that the flame is stabilized via partial premixing. Also from

the instantaneous heat release plots, there appears to be two flame anchoring regions, one in

the wake of the jet and another which is slightly lifted and further downstream of the jet.

(a) (b)

Figure 8.11: Instantaneous snapshot of (a) Heat Release Rate (HRR) and (b) scaled flame
index for Rej=6000.

In Figure 8.12, Da is computed as the ratio of flow time τflow based on local mixing time

scale and chemical time τchem based on H2O reaction rate (Equation 8.1). Lu et al. [192]

studied a non-premixed flame and used a similar approach for computing Da based on H2O.

Da =
τflow
τchem

; where τflow =
∆

u∆

; τchem =
ρYH2O

˙ωH2O

(8.1)
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Figure 8.12: Scatter plot of Da number and HRR colored with flame index.

where, ∆ refers to filter size, u∆ =
√

2Ksgs, YH2O and ˙ωH2O are the species mass fraction

and reaction rate of H2O, respectively. A high value of Da indicates that the flow time

scales dominate and the flame is thin, whereas, a low value could indicate that the flame is

distributed with chemical time scales dominating for flow time scales. In the limitDa >> 1,

the turbulence chemistry interaction is intense and ignoring the subgrid species fluctuations

in computing the filtered reaction rate ω̇k(Y ;T ) might lead to significant errors. For the limit

Da < 1 however the subgrid species fluctuations can be ignored by assuming the state of the

fuel and oxidizer to be well mixed locally. As seen in Figure 8.11, regions of high heat release

are characterized by Da ∼ 1. Grout et al in their DNS, report that the average Da < 10

with τchem based on chemical explosive mode analysis (CEMA), correspond to a distributed

reaction in a well-stirred reaction zone which is subjected to intense turbulence. The range

of Damkohler numbers seen for a non-premixed jet flame [192] was between ∼ 1 − 20 but

with a much larger variance (0−110). Compared to the wide ranges reported for Damkohler

numbers, the current extent of 0 − 2 is suggestive of a distributed flame regime. It can be

clearly seen from the scatter plot in Fig. 8.12 that in the regions of high heat release rates,
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Da ∼ 1.

Finally, one of the interesting research questions is the effect of heat release on vorticity

dynamics of the flow. The study of vorticity dynamics for a reacting JICF is particularly

important due to the role of the vortex structures in anchoring the flame. From many previous

studies, the mixing of hot products and fresh reactants by the vortex structures in the leeward

side of the jet are understood to be the primary mechanism by which flame is stabilized. One

of the main contributors of vorticity generation for reacting flows is the baroclinic torque

BT = |∇p∇ρ|
ρ2

, which is resulted when the pressure and density gradients are not aligned.

Due to heat release in reacting flow, the density gradients are enhanced which can lead to

increase in the magnitude of the baroclinic torque. A comparison plot of the magnitude of

baroclinic torque for a reacting and a non-reacting case for the highest jet Reynolds number

case is presented in Fig. 8.13. In both, the case, the magnitude of the baroclinic torque is

high near the jet shear layers. For the reacting case, there is a noticeable increase in |BT |

downstream of the jet. The dilatation,∇u acts as a sink of the vorticity and is also compared.

The heat release causes expansion which results in increase dilatation killing vorticity. In the

region where the dilatation effects are strong, the vorticity magnitude is damped with loss

small-scale flow structures.

(a) (b)

Figure 8.13: Comparison of the magnitude of the baroclinic torque between reacting and
non-reacting cases for Rej =200.
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Time averaged flow field results

In Fig. 8.14, the mean temperature contours for the three different jet Reynolds numbers are

shown. As noted from the instantaneous results, the flame is lifted for all the three cases

anchoring in the leeward side of the jet. As noted in experiments [189], there are two flame

branches: a ’lee’ stabilized flame branch and a lifted flame branch. These two branches

seem to be merged for the low jet velocity case and appears more distinct as the jet velocity

increases.

(a) rm=2.9 (b) rm=2.2

(c) rm=1.4

Figure 8.14: Mean temperature contours at jet center x-y plane for different cases.

A comparison of the time averaged streamwise velocity for rm = 2.9 case with experi-

mental data is presented in Fig. 8.15. The jet trajectory tracked through the center streamline

is also plotted for both the simulation and the experiment. As seen, the results from cur-
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rent simulation is in reasonable agreement with the experimental data. There is a very good

agreement in the jet centerline trajectory between the simulation and the experiments. The

recirculation region is stronger and bigger in the simulations compared to its size from the

experimental plot. This can be seen as a direct effect of the jet bending later in the simula-

tions in comparison to the experiments. As the jet column height is higher in the simulations,

the wake behind the jet in the leeward side is bigger and stronger.

(a) Cutcell-AMRLES (b) DLR Expt.

Figure 8.15: Comparison of the mean jet behavior between the current simulations and DLR
experimental data [189]. Experimental image taken from [193].

Line plot comparisons of mean streamwise velocity, rms of streamwise velocity and aver-

age temperature along various axial locations at central jet plane are shown in Fig. 8.16. For

the streamwise velocity plots, there is a noticeable difference in the simulation results and

experiments closer to jet, but the agreement improves significantly further downstream. The

RMS values of the streamwise fluctuation urms are in much better agreement except for close

to jet inflow. Note that in the current simulations, the jet inflow had no turbulence. Whereas,

the experiments show significant levels of RMS of the streamwise velocity at the jet inflow.

Adding inflow turbulence to the current cases can improve the predictions for urms. The time

averaged temperature profile comparisons reveal that overall the flame location is captured

reasonably well. Near the jet inflow region, the simulation over predicts the temperature

values as compared to experiments. A possible cause for this might be because of the pres-

ence of a stronger recirculation zone due to which the flame anchoring location is shifted
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downwards. This might be resulting in higher near wall temperatures causing differences

with experimental data.
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Figure 8.16: Line plots of (a) mean streamwise velocity (b) rms of streamwise velocity and
(c) mean temperature at various axial locations on x-y jet centerplane. Solid blue line -
Cutcell-AMRLES, black dots - DLR experiments [189].

To further understand the flame anchoring zone, the iso-volume of time-averaged heat

release rate clipped between 10- 90 % of the total heat release is shown in Fig. 8.17 for the

three velocity ratios. An interesting observation is that the heat release zone appears to be

continuous with a ring-like structure. This is in contrast to the observations made with only

the 2D slices which indicated the anchoring zones to be disconnected and separate.
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(a) rm=2.9 (b) rm=2.2

(c) rm=1.4

Figure 8.17: Iso-volume of heat release rate clipped between 10 and 90 percent of the total
heat release for the three cases.
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8.4 Conclusions

The Cutcell-AMRLES along with multi-level RRLES closure is employed to investigate the

flame anchoring mechanism and vorticity dynamics of a transverse reacting jet in cross flow

configuration at different jet Reynolds numbers. For all the three Reynolds numbers, a lifted

flame is observed as in experiments of the same JICF configuration. This investigative study

attempted to first understand the behavior of a non-reacting jet in cross flow and also study

the behavior of the subgrid closure model for this complex flow system. The dynamics of

the subgrid kinetic energy and eddy viscosity ratio are consistent with model behavior ex-

pected for a multi-level AMR mesh. Mean jet trajectories for different jet Reynolds number

compare well with that predicted by an empirical scaling law. Further analysis of the react-

ing JICF suggests that the flame is anchored in a low-velocity region on the leeward side

of the jet and the flame stabilization is achieved through partial premixing for all the three

jet Reynolds numbers. The quality of the current predictions for the high Reynolds number

case is assessed by comparing with the experimental data and it is concluded that the Cutcell-

AMRLES approach captures all the trends seen in experiments with sufficient accuracy. The

results look promising regarding the ability to predict the flow and flame characteristics and

can be potentially used to perform design studies and better understand the reacting JICF

configurations.
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CHAPTER 9

APPLICATION 3: DETONATION INITIATION AND STABILIZATION BY

MOVING PROJECTILES IN A REACTIVE MIXTURE

In this chapter, the cut-cell method for moving boundaries is used to investigate detonation

initiation and stabilization by high speed projectiles moving in a reactive mixture. Both

prescribed projectle motion with constant velocity and coupled motion due to hydrodynamics

forces acting on the projectile surface are investigated. The results of the simulation are

compared with past experimental data or analytical solution if available.

9.1 Introduction

High speed projectile behavior in detonable gases have significant implications on the initi-

ation of combustion processes in ram accelerators and other hypersonic propulsion systems.

Such systems based on detonation have gained an increasing interest in the past few years,

owing to their higher efficiency resulting from fast heat release and thereby generated high

peak pressures[1]. Understanding the processes that govern the detonation initiation by hy-

pervelocity projectiles is thus critical to explore possible applications of propulsion systems

such as Oblique Wave Engines (ODWs) and Pulse Detonation Engines (PDEs). To that end,

the moving cut-cell method along with the developed AMR framework are used to solve

some application problems, representative of the actual engineering systems of interest. The

problems that are chosen are systems where detontation is initiated by i) a hypersonic mov-

ing piston, ii)a hypersonic cylinder, and ii)a hypersonic sphere. The results from each of the

different studies are described in the following sections.
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9.2 Results and discussion

All the simulations, unless mentioned, use a time step based on a CFL number of 0.5. For

the one dimensional piston and the three dimensional spherical projectile reactive studies, a

27 steps detailed hydrogen oxygen mechanism used in the Shock Detonation Toolbox (SDT)

library developed at Caltech [194] is employed. A quadratic reconstruction k = 2 is em-

ployed for all the cases. This provides a third order accuracy in the computation of inviscid

fluxes and second order accuracy for viscous fluxes evaluation in regions of smooth solution.

The hybrid cut-cell scheme using the high-order CENO reconstruction in smooth regions of

flow and a second order limited MUSCL reconstruction in regions of flow discontinuities is

used for the all the simulations.

9.2.1 Piston initiated detonation.

The ignition of a detonation wave by a piston moving at a constant velocity or equivalently

by the reflection of a shock from the end wall of a shock tube is studied here. The first sce-

nario is a moving boundary problem, which when cast in the reference frame of the moving

piston, becomes a fixed boundary problem as described as an equivalent scenario. Both the

fixed boundary and its equivalent moving boundary case are considered to study the ignition

problem and demonstrate the applicability of the current moving boundary cut-cell method

for reacting flows. This problem has been extensively studied analytically [195], numeri-

cally [196, 197] as well as experimentally [198]. In the first case, a piston moving with a

velocity of 800 m/s in a tube filled with a hydrogen-oxygen-argon mixture with a molar ratio

of 2:1:7 is considered. The piston velocity is chosen so as to produce a shock of just enough

strength to raise the temperature of the mixture above its auto-ignition temperature. A do-

main of length 3.0× 0.1 m is used with a piston initially located at x = 0. Supersonic outflow

conditions are prescribed at the right most boundary and symmetry condition is imposed on

the top and the bottom boundaries. Two effective grid resolutions of 40µm and 80µm are
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Table 9.1: Flow conditions of the mixture.
moving static

ρ (kg/m3) 0.08497 0.08497
p (kPa) 6.67 6.67
u (m/s) 0.0 -800.0
T (K) 298 298

employed using 5 and 4 levels of refinement respectively. The flow conditions of the mixture

that are used, are reported in Table 9.1.

At t=0, the piston is suddenly accelerated to vp = 800 m/s. The same problem is also

considered in the reference frame of the piston, wherein the piston at the left end is kept

stationary and the flow is initiated with a velocity u = -800 m/s. As both the scenarios

are equivalent with just a change of reference frame, they must result in the same solution.

The time history of the pressure profile for the static and the moving cases are shown in

Figs. 9.1(a) and 9.1(b). The pressure value at various times shown are shifted by 200 Kpa

for clarity.

As seen from Fig.9.1(a), the motion of the piston creates a shock ahead of the piston

which raises the temperature of the mixture above its auto-ignition limit. After an induction

time tind, reactions occur in the region adjacent to the piston faces and raises the pressure

locally. The high-pressure reaction zone moves rightwards towards the propagating shock

wave. And when the reaction zone couples with the leading shock wave, it leads to deto-

nation reaction. Similarly, in the case of static piston case (in Fig.9.1(b)), a reflected shock

forms at the closed left end, which propagates towards the right. As observed in the case

of the moving piston, a high pressure reaction zone forms nearer to the closed end, the sub-

sequent movement of which coupled with the leading shock can be seen in Fig. 9.1(b). To

verify if the obtained solutions are the same between the two equivalent cases, the pressure

profiles are overlaid from the two cases and compared in Fig. 9.2. As the frame of reference

is different in the two cases, the the static wall cases are shifted in x-axis such that the closed

end now corresponds to the location of the piston at a particular time instant and are overlaid
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Figure 9.1: 1D profiles at various time instants (0 - 1.0 ms) for (a) the moving piston and (b)
the static wall problem. Pressure values are shifted by 200 kPa every for each time instant
for clarity.
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on one another. As observed, there is nearly an exact match in the pressure profiles between

the static and the moving piston cases, which verifies the validity of the moving cut-cell

scheme along with the reaction closure.

In addition, this case also serves as a stringent test for the conservative property of the

scheme in case of reacting flow problems with moving boundaries. With the reaction oc-

curring instantaneously with the piston movement, resulting in a huge mass and energy con-

tent, any loss of conservation in mass, energy or momentum will result in a delay in the

shock wave propagation and further in its coupling with the reaction zone. The near precise

match of the profiles of pressure, density and temperature for the moving and the static cases

validates the current cut-cell scheme for reacting problems with moving boundaries, more

particularly its conservative nature in these cases.
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Figure 9.2: Comparison of the pressure profile history between the moving and stationary
reacting piston problem.

The grid resolution studies are performed for the moving boundary problem using res-

olutions of 40 µm and 80 µm and the pressure profiles obtained from both the cases are

compared in Fig. 9.3(a) with a zoomed in view of which at t = 1 ms is shown in Fig. 9.3(b).

The detonation characteristics obtained for both the resolutions are compared along with

previous studies in Table 9.2 and are found to be in good agreement.
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Figure 9.3: Comparison 1D profiles at (a) various time instants (0 - 1.0 ms) (b) zoomed in
view at t = 1.0 ms for the two grid resolutions ∆ x= 40 µm and 80 µ m

Table 9.2: C-J characteristics of the mixture for various grid resolution for the moving piston
problem.

Deiterding [199] 40 µm 80 µm
Pvn (kPa) 177.3 180.0 176.4
Tvn (K) 1921.7 1980.0 1972.0
Uvn (m/s) 1231.4 1258.0 1250.0
DCJ (m/s) 1629.9 1651.0 1650.3
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9.2.2 Detonation initiation due to an impulsive cylinder motion

As the former case of detonation initiation by a hypersonic piston is a more simplified case,

a better representation of the more generic class of problems involving detonation initiation

due to accelerating/decelerating hypersonic projectile can be obtained by using a hypersonic

rigid cylinder as the projectile. This problem was previously investigated by using an over-

lapping grid methodology by Henshaw et al.[43]. Similar case conditions as those used by

Henshaw et al.[43] are adopted for the current study, wherein the reactive flow is modeled

by a single step chemistry with Arrhenius kinetics and the linear depletion rate, ω̇ as:

ω̇ = σ(1− Y ) exp
1

ε

(
1− 1

T

)
. (9.1)

Here σ is the pre-exponential scale factor, ε is the dimensionless reciprocal of activation

energy and T = p/ρ is temperature of the mixture such that gas constant is unity. For

small values of ε, the reaction rate is very highly sensitive to temperature variations. And,

when the values of T is very small (T < 1), the reaction rate is also exponentially small,

however increases rapidly as T approaches 1. In this problem, the values of T are chosen

to be sufficienly closer to 1.0 and therefore any abrupt motion in the system can create a

compression wave that can heat up the mixture and initiate the chemical reaction, which can

later turn into a detonation.

The initial state of the flow is set as ρ0 = 1, u = v = 0, T0 = 0.93. The computations

are performed on a two-dimensional channel with domain boundaries −0.5 < x < 1.5 and

|y| < 0.75 using an effective resolution of ∆x = 3.125× 10−4 via 4 levels of adaptive mesh

refinement. The cylinder is initially centered at x = y = 0 with a radius 0.15 and mass of

1.0. At t = 0, the cylinder is given an impulse corresponding to u = 1 and its subsequent

motion is then tracked using Eq. (4.34) and Eq. (4.35). The heat release from the reaction is

assumed to be Q = −4 and the reaction rate is determined based on asumming ε = 0.06 and

σ = ε/(γ − 1)|Q| from Eq.9.1. The values of the kinetic parameters are based on an earlier
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study [200], in which mechanisms for detonation formation due to temperature gradient was

investigated.

Shown in Fig. 9.4 are snapshots of the Schlieren image of density contours in the detona-

tion front at various stages of the detonation formation, which clearly indicates the formation

of cellular structures at front. A more clearer representation of the cellular structures can be

seen from the numerical soot foil image shown in Fig. 9.5(a), which is generated by record-

(a) t=50 ms (b) t=200 ms

(c) t=300 ms (d) t=450 ms

Figure 9.4: Time series of Schlieren image of the detonation front for the case of impulsive
cylinder motion in a reacting mixture.

ing the movement of triple points over time. The spiral cellular structures observed in the

numerical solution was also noted earlier in the experiments of similar system (Fig. 9.5(b)).
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The figure in Fig. 9.5(b) is an open-shuttle photograph of a cylinderically diverging deto-

nation. As seen from the two soot foil images, the adaptive cut-cell solution is clearly able

to predict the qualitative behavior of the front very well. Further analysis on the detona-

tion front propagation can be performed by determining terms such as average detonation

velocity, DCJ , the theoretical value of which can be computed as follows [200]:

Figure 9.5: Visualization of cellular structures Left: Numerical soot foil from AMR simula-
tions. Right: Open-shuttle photograph of a diverging cylinderical detonation[201]

(
DCJ

a0

)2

= υ +
√
υ2 − 1; υ = 1 + (γ2 − 1)

−Q
a2

0

, (9.2)

where a0 =
√
γp0/ρ0 is the mixture speed of sound. The instantaneous velocity of the front

from the numerical simulation is determined based on the rate of change of the peak pressure

and is presented in Fig. 9.6. As observed in the figure, though the front propagation velocity

varies between 0.6 to 1.25 of the C-J value, the average velocity is very close to the C-J value

DCJ = 3.18 for this mixture computed from Eq.(9.2).

9.2.3 Detonation initiation and stabilization over spherical projectiles

In this final case study, a more challenging problem of initiation and stabilization of an

Oblique Detonation Wave (ODW) over spherical projectiles shot into a hydrogen-oxygen-

argon mixture with a molar ratio of 2:1:3 at super detonative velocities is investigated. The
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Figure 9.6: Time history of the velocity of propagation of the diverging detonation front.

case configuration is based on a recent experimental study by Maeda et al.. [202], in which

the effect of filling pressure and projectile size on the detonation stabilization was inves-

tigated for acetylene and hydrogen-oxygen-argon mixture. The case conditions are sum-

marized in Table 9.3 and are chosen to cover the different combustion regimes that were

observed in experiments. It is to be noted that the conditions are clustered around the critical

limit for pressure (pcrit), which is required for a stabilized ODW.

For computational cost considerations, only a quadrant of the sphere is considered by

imposing symmetry conditions in Y and Z directions. A domain size of 80D X 5D X 5D

is used with the sphere initially located at (1.5D, 0, 0), where D is the diameter of the

sphere. The assumptions around choosing a quadrant sphere and the domain size can be

justified considering that the wake behind the sphere is not expected to exhibit any large

scale coherent structures for supersonic flows. Therefore, all the key characteristics of the

flow relevant for the detonation stabilization mechanism such as the bow shock ahead of the

projectile, oblique shock that stabilizes near the wake and the flow separation points can be

captured accurately even with the symmetry assumption. Four levels of AMR are employed

resulting in an effective mesh resolution of the 80µm. The induction length for the mixture

under the given conditions is around lig ≈ 300µm, which is sufficiently resolved by the grid.
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Table 9.3: Case conditions for the detonation initiation study by supersonic spherical projec-
tiles.

Mixture composition 2H2 +O2 + 3Ar
Projectile diameter (mm) 3.18
uprojectile (m/s) 2170.0
Filling pressure, p (kPa) 90, 95, 96, 97.5, 100
Temperature, T (K) 298

Also, based on the one dimensional reacting piston studies (Fig.9.3), a resolution of 80µm

was found sufficient to predict correct detonation characteristics of the mixture. It must be

noted that the near wall resolution for this case is not sufficient to capture the boundary layer

effects accurately. However, since the objective of the study is to investigate the detonation

stabilization mechanism, which is affected only by the bow shock ahead of the projectile, the

current results are deemed to be sufficiently accurate. Besides, the principal objective of this

case is to demonstrate a practical and challenging application of the moving cut-cell method

for reacting flows. A snapshot of the AMR mesh for this problem is shown in Fig. 9.7.

Figure 9.7: Snapshot of the AMR mesh for the problem detonation initiation by a hypersonic
projectile (only every four grid points shown).

Some interesting observations can be made on the coupling of the reaction and the lead-

ing shock from the contour plots in Fig. 9.8. The decoupling of the reaction zone and the

leading shock is clearly visible for the pressure conditions corresponding to p= 90 kPa and p

= 95 kPa. It is clear that for p = 95 kPa, the initial detonation which resulted from coupling
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of the combustion zone with the leading the shock front is getting attenuated. At p = 96

kPa, a highly unsteady leading shock front is observed. Local explosions are visible down-

stream of the projectile, which appear to stabilize the ODW. A series continued explosions

are in fact observed for this pressure condition during the projectile’s flight. Similar obser-

vations were made in experiments [202] and it was postulated that these local explosions

then facilitate the formation of an steady ODW. At pressures above the critical pressure, for

example at p = 97.5 kPa, the coupling between the reaction zone and the shock wave is fairly

immediate resulting in an ODW. Figure 9.9 summarizes the different combustion regimes

observed across the various filling pressures. It can be seen from the plots that the criti-

cal pressure that is required for stabilization of the ODW for the given projectile velocity is

around pcrit ≈ 100kPa. The C-J velocities required for computing the non-dimensional pro-

jectile velocity (Vp/DCJ ) for various filling pressure are computed using Shock Detonation

Tool box (SDT) developed at EDL, Caltech [194].

Figure 9.9 summarizes the different combustion regimes observed across various filling

pressures. The different stages of the combustion regimes observed in the current study

were also noted in experiments and the Schlieren snapshots of the different regimes from

the experiments are shown in Fig. 9.10. As discussed in the previous study [202], the bow

shock ahead of the projectile raises the temperature of the mixture in the post shock region.

After an induction time that is dependent on the initial pressure, the mixture starts reacting.

If the induction time is relatively short, then the reaction zone couples with the shock front

resulting in a successfully initiation and stabilization of ODW. Wheraes, if the initial pressure

is low, the reaction zone decouples from the shock front resulting in a failure of ODW.

The mechanism responsible for this initial pressure dependent behaviour was investigated in

experimental studies [202] and it was found that the curvature effect of the three dimensional

ODW plays a significant role in detonation stability. Further, it was also observed that the

curvature effect is responsible for the stabilizing the criticality of detonation waves.

To further understand the nature of the stabilization mechanism, the three dimensional
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(a) Stabilized ODW

(b) Straw hat type ODW

(c) Unsteady attenuated ODW

(d) SIC

Figure 9.8: Pseudocolor plots of temperature in Y-plane at the same time instants for various
filling pressures (pfilling = 97.5, 96, 95 and 90 kPa) for the case of supersonic projectile shot
into a stiochiometric H2/O2 mixture.
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Figure 9.9: Different combustion regimes observed for various filling pressures (SIC - Shock
induced combustion, ODW - Oblique Detonation Wave).

iso-surface plots of temperature are shown in Fig. 9.11. The temperature iso surface for a

steady ODW is largely axi-symmetric and smooth. But for an unsteady ODW, the temper-

ature iso-surface is characterized by a highly three dimensional structure resulting from a

series of local explosions. Although the large scale structures appear axi-symmetric for the

higher pressure conditions, the leading shock structure is distorted and three dimensional

in nature as seen in Fig. 9.11. The experimental visualization of the ODW stabilization is

available only in the center plane as it is very difficult to capture the full three dimensional

structure. Whereas, in the current numerical simulations, complete data is available using

which any relevant three dimensional effects can be explored.

It can be seen from the plots that the critical pressure that is required for stabilization

of the ODW for the given projectile velocity, uprojectile is around pcrit ≈ 100kPa. The C-J

velocities required for computing the non-dimensional projectile velocity (Vp/DCJ ) for var-

ious filling pressure are determined using the Shock Detonation Tool box (SDT) developed

at EDL, Caltech [194]. The critical pressure from the current simulations is found to be

around pcrit = 96 kPa. However, the experiments noted that the criticality was observed near,
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Figure 9.10: Schlieren snapshots from experiments [202] of the different combustion
regimes observed for the case of supersonic projectile shot into a stiochiometric H2/O2 mix-
ture (figure taken from [202] with permissions).
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pcrit = 140 kPa. The differences in the critical pressure between the current simulations and

the experiments may be attributed to the differences in the projectile velocity. Moreover,

since the induction time of the mixture plays a major role in the stabilization, the critical

pressure prediction can also heavily be influenced by the chemical mechanism used for the

simulations.

In summary, as seen from the results, the 3D curvature effect of ODW and the overall

trend of transitioning from a successful detonation to a shock-induced combustion is cap-

tured correctly by the current simulations. More rigorous studies with different projectile

velocities and different mechanisms are required to identify the parameter set that predicts

the critical pressure closer to the experimental value. Nevertheless, all the key physics seen

in experiments are captured qualitatively by the current simulations. The application studies

that can be investigated using the developed numerical framework of (cutcell-AMR-RRLES)

are demonstrated using some representative problems in this and the previous two chapters.

The next chapter presents a summary of this thesis contributions and provides some sugges-

tions on future research in this direction.

9.3 Conclusions

For the complex and challenging problem of detonation initiation and stabilization by super-

sonic projectiles, the numerical simulations accurately predict the detonation characteristics

when a cylinder is impulsively moved in a reacting mixture. For the case of spherical pro-

jectiles shot into a H2 − O2 − Ar mixture, the simulation captures all the four combustion

regimes and the trend matches well with the experimental observations. With a drop in pres-

sure, a successful ODW first recedes to form a straw hat type ODW and eventually attenuates

to a shock-induced combustion. The differences in the critical pressure prediction between

the numerical simulation and experimental data for the same configuration is attributed to

the chemical mechanism used. Nevertheless, the current results are very encouraging and

strongly support some of the hypothesis made in experiments on stabilization of the ODW.
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(a) Stabilized ODW

(b) Straw hat type ODW

(c) Unsteady attenuated ODW

(d) SIC

Figure 9.11: Instantaneous iso-surface of temperature colored with pressure for various fill-
ing pressures (pfilling = 90, 95, 96 and 97.5 Kpa) for the case of supersonic projectile shot
into a stoichiometric H2/O2 mixture.
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CHAPTER 10

CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH DIRECTIONS

10.1 Conclusions

The main goal of this thesis is to develop a comprehensive, high-order accurate and robust

numerical framework to perform LES of challenging engineering problems of practical in-

terests involving complex geometries with moving boundaries in a compressible reacting

flow environment. A holistic approach is taken to identify and address several objectives

required to achieve this goal. The specific contributions along with the key components of

the numerical framework that is developed are listed below:

- Ability to perform AMR: One of the primary requirement for cost effective simula-

tion of many practical flow problems of interest is the ability to perform dynamic local

mesh refinement. Among the several approaches existing in the literature, the block

structured Adaptive Mesh Refinement (AMR) methodology is chosen as most suited

due to its ability to adapt to existing multi-block structured CFD codes. BoxLib which

is an open source library is interfaced with in-house multi-block structured solver

LESLIE to perform local mesh refinement. Although an existing AMR library is used

to implement AMR within the in-house compressible solver, coupling the solver with

the library and ensuring a consistent and synchronized communication between the

two is highly challenging and involved a significant intellectual input. The AMR is the

major contribution of this thesis over which the other numerical and modeling com-

ponents are built. In fact, once interfaced, the existing capabilities of BoxLib library

provided new opportunities for model development which is leveraged successfully in

this thesis. The AMR framework is the bedrock over which the embedded boundary

scheme and multi-level subgrid closure models are built. One of the major contribu-
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tions of this thesis is the development of comprehensive understanding the nuts and

bolts of performing patch based refinement.

- A high order method for treatment of embedded boundaries: A principal contri-

bution of this thesis is the development and implementation of a high-order strictly

conservative cut-cell method for treating embedded boundaries in viscous reacting

flow. The method is shown to achieve upto fourth order accuracy for inviscid flows

and third order accuracy for viscous flows in case of stationary boundaries. For mov-

ing boundaries, the method is formally second order accurate. A novel ‘small cell’

algorithm termed as cell clustering is developed to ensure the stability while still re-

taining the high-order accuracy of the scheme. It is shown that this new small cell

treatment procedure ensures smooth reconstruction of wall shear stress on immersed

boundaries and thus is able to capture physically accurate flow physics for complex

configurations. The k-exact reconstruction used in the cut-cell method which is shown

to be fourth-order accurate, can be extended to arbitrary orders of accuracy. The ro-

bustness and accuracy of the model were established by a series of test cases that are

carefully chosen to best challenge the model’s ability. There are many other sharp

interface methods used in the past but to the best of author’s knowledge none that can

ensure exact conservation and also provide a smooth reconstruction of flow solution.

Preserving high-order nature is especially important for LES as the numerical errors at

the boundary can propagate into the flow solution and contaminate the quality of the

results.

- Development of closure models suited to AMR and embedded boundaries: Clo-

sure model development was necessary to apply the developed numerical techniques

to perform LES. A multi-level subgrid closure is developed which is an extension of

the previously developed Local Dynamic k-equation model (LDKM) based sgs closure

to a block-structured AMR framework with embedded boundaries termed as Cutcell-
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AMRLES. The proposed correction through test cases is shown to have a consistent

representation of the total turbulent kinetic energy across the different levels of AMR

refinement. This consistency is shown to be required when a turbulent flow passes

through a coarse/fine or fine/coarse AMR interface. For reacting flows, a multi-level

reaction rate based closure (RRLES) is developed by extending the Linear Eddy Model

to an AMR framework. The extension not only ensured LEM was able to work with

AMR, but also in some cases shown to be more accurate than the baseline LEM model.

The RRLES formulation alleviates some of the limitations associated with the origi-

nal LEMLES formulation. In particular, the RRLES formulation includes large-scale

molecular diffusion, which is ignored in the LEMLES formulation, and therefore, the

model can be used in cases where the turbulence is either resolved at the LES level

as in a DNS or if the turbulence is negligible. Additionally, due to the utilization of

a multi-level strategy in the RRLES formulation, there are more unresolved scales

available at the subgrid LEM level, thus leading to improved predictions.

The numerical techniques and closure modeling are validated using numerous test cases.

Only the highlights of these cases along with important conclusions are discussed here. Mul-

tiple test cases demonstrated the accuracy of the AMR framework for reacting and non-

reacting flow problems. The cost effectiveness of the AMR methodology was particularly

realized for the 3D blast problem which required only a very small fraction of the com-

putation resource if this problem is run with a uniform non-AMR grid. For the 3D blast

simulations, since the origin is exactly resolved in comparison to a sector grid, the secondary

shock propagation characteristics were more accurately captured.

The test cases for the cut-cell method were picked to best demonstrate its capabilities.

In particular, a third order local and global accuracy in reconstruction is demonstrated for

an immersed circular 2D domain. The effect of small cell treatment and the improvement

in reconstruction of derivatives with the proposed cell clustering approach is shown using

a Laplace’s problem with immersed domains. Further validation and assessment of new
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approach are carried out for flow past cylinder and results indicate that the current solver

is able to achieve overall third-order accuracy and smooth solution even at a relatively low

grid resolution. The flow patterns and phase transitions in vortex shedding are accurately

predicted for the cases involving flow over staggered cylinders. The new approach is also

extended to full 3D flows and used to investigate flow over single and multiple spheres, both

of which are challenging problems for a body-fitted method. Also, the ability of the adaptive

high-order cut-cell scheme in handling narrow gaps and sharp edges is clearly evident from

the results of the problem of flow past two cylinders separated by a narrow gap and low

Reynolds number flow over a corrugated airfoil. To the best of author’s knowledge, the case

of two cylinders in very close proximity to each other was never studied in the past due

to the problem of resolving the narrow gap with a numerical grid. Such narrow gaps, as

demonstrated, can be easily handled using the proposed scheme while still maintaining high

orders of accuracy. The lift and drag predictions for the case of flow past a corrugated airfoil

with sharp edges and abrupt changes in geometry, match well with the experimental data.

This again showcases the accuracy of the scheme even in the presence of abrupt geometrical

changes.

For moving boundary problems, the small cell clustering algorithm is extended to en-

able the transfer of mass, momentum and energy to/from newly emerging/vanishing cell

events caused by boundary motion. It is shown that the proposed method achieves smooth

reconstruction of near-wall shear stress and pressure even for moving boundaries. Numerical

oscillations in the integrated drag coefficient, though present, is shown to diminish signifi-

cantly with mesh refinement. The accuracy and robustness of the scheme are demonstrated

through several non-reacting and reacting flow examples. A strong asset of the method is in

ensuring strict conservation even for reacting flows with moving boundaries. The extended

cell clustering method for treating the cell vanishing/emerging events is observed to reduce

the formal order of accuracy of the method to second order. But using a high-order recon-

struction, the magnitude of the error is shown to reduce even though the formal order of
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accuracy is limited to second order. The ejection/injection of mass, momentum and energy

for vanishing /emerging cell is currently done to and form neighboring cells are selected

based on the cell finding algorithm developed for stationary boundaries. This may result in

some numerical artifacts locally in cases when the boundary motion direction is not aligned

with the local surface normal.

The multi-level AMRLES method is examined by studying decaying isotropic turbulence

past a discontinuity. For this case, the method is shown to prevent the piling up of small

sclae turbulent kinetic energy near a fine to coarse transition. For the case of a flow past

a coarse to fine transition, there is a smooth recovery of the small scale structures. The

Cutcell-AMRLES method has some interesting properties that tackled some issues related to

applying the existing closure models to transitional turbulent flows. The method accurately

predicted the near surface and wake solution for LES of flow past a sphere and cylinder

close to critical Reynolds numbers. In both the cases, the inflow is laminar and transition to

turbulence occurs in the shear layers resulting from boundary layer separation. Existing one-

equation based ksgs can not be used without some approximation since the model is based on

fully developed turbulent flows. The multi-level AMRLES approach, on the other hand, is

able to correctly provide the boundary conditions for the subgrid kinetic energy from a wall

resolved DNS and is therefore theoretically capable of handling transitional flows.

Three application studies, each focusing on one or more of the components in the nu-

merical framework are studied. The important problem of flame anchoring in non-premixed

transverse JICF configurations is studied using the framework developed. Several key modes

and mechanisms responsible for anchoring the flame are identified from the study. It can be

argued that the current framework is the most accurate and cost effective method of study-

ing this problem. Another important problem of detonation initiation by moving supersonic

projectiles is investigated using the moving cut-cell method. Particular focus is on the condi-

tions that can stabilize a detonation over the projectile. The effect of ambient pressure on the

stabilization is investigated and the different modes of combustion are analyzed. The validity
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and behavior of the multi-level closure model are analyzed for the canonical problem shock

and blast interacting with turbulence.

10.2 Thesis contributions

Many of approaches developed in this thesis have been well established with several con-

tributions in the past. However, a number of key advances in the methods employed in this

thesis. These are both algorithmic and conceptual. The highlights of this thesis are summa-

rized below:

1. Conceptual understanding of performing block structured refinement with a multi-

block structured code. The methodology developed in this thesis for interfacing BoxLib

open source library and LESLIE is applicable to any general multi-block structure

code. The whole approach is portable with easily substituting BoxLib with any other

library or LESLIE with any other multi-block structured code.

2. Development of a high order cut-cell method by extending the k-exact CENO recon-

struction approach. This is approach has the potential of achieving arbitrary order of

accuracy in embedded boundary methods [26].

3. A robust and accurate cell clustering scheme for handling the ‘small cell’ problem.

4. Development of a robust neighbor finding algorithm for cell clustering that works

equally well in 2D/3D and for arbitrary geometries

5. A new approach to achieving conservation for mass, momentum and energy for mov-

ing boundaries by extending the cell clustering algorithm

6. A multi-level ksgs closure for performing LES with AMR and cut-cell for embedded

boundaries.

7. A multi-level reaction rate based closure [151] for performing LES of reacting flow

problems with AMR and cutcell. approach.
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10.3 Future recommendations

This thesis work is an inception of a new paradigm for dealing some of the most challenging

aspects of simulation practical engineering problems. There are a number of future directions

that can be taken to extend or improve the capabilities developed in this thesis.

Wall modeling for LES

Currently, wall resolved LES can be performed as there are no wall models employed. Ex-

ploring use of wall models suited for embedded boundaries can significantly reduce the cost

requirements for high Reynolds number flows. In fact without wall modelling the computa-

tional cost of simulating high Reynolds number flow is prohibitively high with the current

framework. There are already several efforts on this front and wall models additions can be

done without any major effort.

Lagrangian particle tracking with AMR

Local adaptive mesh refinement can be effectively used along with Lagrangian particle track-

ing for simulation of multiphase dispersed flows. The framework for AMR and its coupling

with a multi-block structured communication layout is already well developed and under-

stood. Only moderate effort is needed to interface Lagrangian particle communication into

the AMR framework.

Multiphase interface tracking

Multiphase tracking of continuous miscible fluids is relevant in many spray systems. The

primary and secondary breakup of spray jets can be effectively analyzed using levelset tech-

niques. In fact all the necessary tools and equations are already present in the developed

framework and with minimal effort, multiphase interface tracking with levelset with AMR

can be easily added .
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Fluid structure interaction (FSI)

All the solid boundary motion are prescribed or due to rigid body dynamics. Surface defor-

mation due to hydrodynamic forces can modeled with addition of structural solvers to the

framework to provide FSI capability. This effort is expected to be substantial as development

structural solver and coupling with flow solver is a non-trivial task.

Heat and mass transfer due to surface burning

In devices such solid rocket motors and ammunition systems, burning and regressing surfaces

release mass and energy into the surrounding fluid. Burning/regressing surfaces and the

associated heat and mass transfer can be effectively modeled using the current framework.

The coupling of the mass and energy transfer from surface to the flow can be easily added

with minimal effort.

Cut-cell for complex geometries

The cut-cell method was shown to effectively handle complex geometrical features such

as narrow gaps and sharp boundaries. For applying the method for practical combustor

geometries, a translator is required which can extract signed distance levelset function, which

is the input required for the cut-cell scheme, from the CAD.

Performance improvements

Load balancing properties of the current framework can be improved to provide better per-

formance and scaling on modern high performance clusters. Since by design the embedded

boundary calculations are independent of the solver interior calculations, these embedded

boundary routines can be ’offloaded’ to performance accelerators such as GPU or intel phi

processors.
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Quadrature integration for three dimensional cut-cell scheme

In this thesis, the Gaussian quadrature points for flux integration are implemented only for

the two-dimensional cut-cell scheme. Quadrature rules need to be extended for the three-

dimensional cut-cell scheme to achieve formal higher order accuracy. With the current

framework, high order reconstruction can be still done for three-dimensional flows, but be-

cause of use of only one quadrature point per face, the formal order of accuracy is limited to

second order.

Faster access and extensible data structure for cut-cell stencils

In the developed framework, the cut-cells are built as array of objects. Every time a boundary

undergoes a displacement, the entire cut-cell data structure is rebuilt. This can be avoided if

a list based structure is adopted such that only cut-cells near displace boundaries are rebuilt.

This could provide significant performance gains for moving cut-cell method.
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APPENDIX A

CONSERVATION ANALYSIS FOR MOVING BOUNDARIES IN A UNIFORM

CROSS FLOW

To understand the corrections described for moving cut-cell method, a boundary moving in

an uniform constant flow with the same velocity, vs, as of the flow is considered. To facilitate

the analysis we consider the arbitrary Lagrangian-Eulerian formulation of Eq. (2.1). The

simplified form of the transport equation for conservative quantities, U, over a cell for this

case without any source terms then becomes:

∂

∂t

∫
v

UdV +

∫
s

U(u− vs) · n ds = 0, (A.1)

where u is the fluid velocity vector and n is the surface normal vector. The corresponding

semi-discrete form is given by:

(V U)n+1
k = (V U)nk −∆t

(
M∑
m=1

Un(ui − vs,i)ni,mAnm

)
k

, i = 1, 2, and 3. (A.2)

Since the flow velocity is same as the velocity of the boundary, Γ, ui = vs,i everywhere

except at the boundary surface where uini,Γ = un,Γ = 0 , Eq. (A.2) reduces to:

(V U)n+1
k = (V U)nk + ∆t (Unvs,ini,ΓA

n
Γ)k . (A.3)

If the corrections are consistent, then flow state Uk in any cell k must be left unaltered. For

a fluid cell, k that is not intercepted by a boundary either at tn or tn+1, the time update given

by Eq. (A.3) would result in:

(V U)n+1
k = (V U)nk , (A.4)
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as there are no solid faces in the cell k. Since for this cell V n+1
k = V n

k , and flow state before

and after the time update remains the same.

When the boundary moves such that, a cell k transitions from fluid to solid cell (V n
k > 0

and V n+1
k = 0), its adjacent cell neighbor l receives the vanishing cell’s mass, momentum

and energy. This scenario is shown in Fig.4.7(a). The time updates for the both the cells, k

and l would be:

V n
k (U)n+1,∗

k = (V U)nk −∆t (Unvs,ΓA
n
Γ)k , (A.5)

V n+1
l (U)n+1,∗

l = (V U)nl , (A.6)

as the cell l is a full cell before the boundary motion and the net flux over its faces is therefore

zero for an uniform flow. Here again, the conservative vectors Un+1,∗
k , and Un+1,∗

l represents

the flow state of cells k and l, respectively before performing the cell clustering operation.

For cell k, at the boundary face vs,ini = −vs,Γ. Considering cell l, since V n+1
l < V n

l , the

flow state after the time update is altered. The following cell clustering correction between

cells l and k according to Eq. (4.32) results in:

(V U)n+1
l = V n+1

l (U)n+1,∗
l + V n

k (U)n+1,∗
k , (A.7)

= (V U)nl + (V U)nk −∆t (vs,ΓUnAnΓ)k , (A.8)

= Un
l

(
V n
l + V n

k −∆t (vs,ΓA
n
Γ)k
)︸ ︷︷ ︸

GCL

. (A.9)

Noticing that (U)nk = (U)nl as both the cells l and k are part of the same cluster and V n
l +

V n
k −∆t(vs,ΓA

n
Γ)k = V n+1

l is the Geometric Conservation Law (GCL) for the volume change

of the cluster comprising the cells, l and k, Eq. (A.9) gives Un+1
l = Un

l .

For the case when the boundary motion exposes a new cell k, such that V n
k = 0, V n+1

k >
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0 and, vs,ini = vs,Γ, the time updates for the cell k and its neighbor l are given by:

V n+1
l (U)n+1,∗

l = (V U)nl + ∆t (vs,ΓUnAnΓ)l , (A.10)

V n+1
k (U)n+1,∗

k = 0. (A.11)

This scenario is depicted in Fig. 4.7(b). The cell clustering correction according to Eq. (4.33)

for both the cells can be shown to result in the following flow states:

Un+1
l = Un+1

k = V n+1
k (U)n+1,∗

k /(V n+1
k + V n+1

l ), (A.12)

= Un
l (V n

l + ∆t (vs,Γ A
n
Γ)l)︸ ︷︷ ︸

GCL

/(V n+1
k + V n+1

l ). (A.13)

Since V n
l + ∆t (vs,Γ A

n
Γ)l = V n+1

k + V n+1
l , the right hand side of Eq. (A.13) reduces to

Un
l . This analysis provides a basic understanding of the correction procedure to ensure ex-

act conservation. It is important to note that without the time update given by Eq. (4.31),

conservation is not ensured. The same correction steps given above are valid to any given

stage of a multi-step Runge-Kutta scheme. The above analysis is described for the case of a

cluster comprising only two cells, l and k for clarity. But the main strength of the extended

cell clustering approach in handling cell emerging and vanishing events is that the procedure

is applicable even in cases where the cluster comprises of more than two cells.
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APPENDIX B

COMPUTATIONAL PERFORMANCE

The computational performance of k = 2 and 3 reconstruction is analyzed for the problem of

flow over a sphere. The three main steps that take up 99% of the computational time required

per solver step are found to be:

1. Computing the solution, x, to the least-square problem for determining reconstruction

polynomial. This involves matrix multiplication of the pre-computed pseudo inverse

matrix, A† with the neighbor flow solution matrix, b (x = A†b). This must be done

every time step to update the coefficients of the reconstruction polynomial.

2. Computing the inviscid flux, Finv(U), Eq. (2.55).

3. Computing the viscous flux, Fvis(U), Eq, (2.56).

The fraction of time spent by each of the above step is reported in Table B.1. As seen from

the table, the main increase in computational time required for k = 3, is due to the overhead in

computing the linear least square solution. This is due to the increase in stencil size requiring

124 neighbors for solving Eq. (4.9). The size of the matrices, A† and b increased from 9×27

and 27× 1 for k = 2 to 19× 125 and 125× 1 for k = 3, respectively. The significant increase

in the size of matrix systems contribute to the bulk of the cost increase. For any higher

order reconstruction, i.e. for k > 3, the cost increase can be expected to be mainly due to

the increase in stencil size and number of terms in the reconstruction polynomial. The cost

increase for k = 4 from k = 3, is expected not to be as significant as for k = 3 from k = 2

because the stencil width for both k = 4 and 3 is the same. Only the number of terms in the

reconstruction polynomial would go up from 19 to 34 as determined from Eq. (4.11).
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Table B.1: Fraction of time spent by various routines for a time integration step.
Order tx=A†b tFinv(U) tFvis(U)

k=2 0.39 0.17 0.44
k=3 0.64 0.09 0.27
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[94] D. Hartmann, M. Meinke, and W. Schröder. “An adaptive multilevel multigrid for-
mulation for Cartesian hierarchical grid methods”. In: Comput. Fluids 37 (2008),
pp. 1103–1125.

[95] M. Berger and M.J. Aftosmis. “Progress towards a Cartesian cut-cell method for
viscous compressible flow”. In: 50th AIAA Conference, Nashville, TN AIAA-2012-
1301 (Jan. 2012).

[96] H.S. Udaykumar, R. Mittal, and P. Rampunggoon. “Interface tracking finite volume
method for complex solid-fluid interactions on fixed meshes”. In: J. Comput. Phys.
18 (2002), pp. 89–97.

[97] D. Hartmann, M. Meinke, and W. Schröder. “A general formulation of boundary
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