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SUMMARY 

 

 Our aim was to understand mechanisms responsible for excessive electrolyte loss 

in the sweat gland and the potential impact on fluid balance during exercise in heat stress 

conditions. Human physiological testing under exercise/heat stress and 

immunofluorescence staining of sweat glands from skin biopsies were compared between 

healthy individuals (with normal and high sweat sodium concentration) and with cystic 

fibrosis patients (CF), who exhibit excessively salty sweat due to a defect of Cl- channel 

cystic fibrosis transmembrane conductance regulator (CFTR). Three novel findings are 

presented. First, excessively salty sweat may be associated with reduced expression of 

CFTR in the sweat gland reabsorptive duct of healthy individuals in addition to in those 

with cystic fibrosis (CF); however, although a link to a CF gene mutation in healthy 

individuals with high sweat sodium was not demonstrated, the possibility of an 

undetected CFTR mutation or polymorphism remains to be investigated as an underlying 

mechanism. Two, CF and healthy individuals with excessively salty sweat respond to 

moderate dehydration (3% body weight loss during exercise) with an attenuated rise in 

serum osmolality, greater relative loss in plasma volume, but similar perceived thirst 

compared to healthy individuals with “normal” sweat sodium. However, individuals with 

CF respond to rehydration (presentation of hypotonic beverage following dehydration) by 

drinking less ad libitum in response to reduced serum sodium chloride concentration, 

suggesting that thirst-guided fluid and electrolyte replacement may be more appropriate 

for CF patients rather than restoring 100% of sweat loss following dehydration as is often 

recommended in healthy individuals. 
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CHAPTER 1 

 
INTRODUCTION 

  

1.1  Variability in the NaCl Content of Human Eccrine Sweat 

There is considerable disagreement in values reported for the electrolyte 

composition of human sweat 1, particularly in the electrolyte sodium (Na+) for which the 

concentration can vary greatly within and between individuals 2-4.  Across studies there is 

disparity in reported sweat electrolytes with values for mean sweat sodium concentration 

([Na+]) from 30 mmol/L 5 to as high as 90 mmol/L 6 for healthy subjects. Discrepancies 

in sweat composition between studies can be related to differences in sweat stimulation 

method 7-11; rate of sweating elicited 12 13; acclimation status of subjects 14-17; anatomic 

location 8 18;  and technique used (gauze pad 1, Brisson pouch 19 20, whole body washdown 

21 22, arm bag 23, or ventilated capsule 24) for sweat collection. Variability in sweat 

composition among subjects within a single study, where such factors are controlled, is 

still commonly high. This is particularly true for [Na+] where reported mean values for 

typical subject pool are typically accompanied by large SDs (e.g. + 10-20 mmol/L) with 

coefficient of variation ranging from 40 to 60%.  

 Electrolytes in the extracellular fluid (ECF), and specifically in the vascular space 

of the ECF, are maintained in a fairly tight physiological range in humans. It is puzzling, 

therefore, that humans are also known to exhibit large variability in Na+ loss during both 

thermal- 3 4 9 25 26 and pharmacologically 2 9 27 -induced eccrine sweating compared to 

other electrolytes such as potassium (K+). Sweat electrolyte composition at a given sweat 
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rate is not believed to be influenced by gender 28 or age 29.  The impact of diet, 

specifically sodium ingestion, however, is debated 30-32. Sweat composition can be 

acutely altered by dehydration. Healthy subjects exercising in the heat exhibited higher 

mean sweat [Na+] and chloride concentration ([Cl-]) during dehydration compared to 

when hydration was maintained via fluid ingestion (euhydration) 6.  It is also well-

documented that heat acclimation reduces sweat electrolyte loss by producing a more 

copious and dilute sweat 14-17 33 ; however, even when controlling for acclimation status, 

some individuals continue to excrete higher concentrations of sweat NaCl for reasons that 

have not yet been fully identified or understood. The underlying mechanisms responsible 

for this sweat [NaCl] variability might be attributed to individual differences in sweat 

duct absorption of electrolytes.  

 
1.2  Eccrine Sweat Gland Physiology 

 Human skin adaptations are the result of physical modifications to climate and 

environment changes over the last 4 to 7 million years 34. In addition to loss of hair and 

skin pigmentation, the human eccrine sweat gland is thought to have been a key 

evolutionary adaptation for humans to become superior predators 35. Unlike humans and 

horses, other mammals are not capable of copious sweating in response to a rise in body 

temperature and, coincidentally, are also unable to perform sustained running 34 36.  

Sweating occurs through two types of glands in mammals: apocrine and eccrine sweat 

glands.  Humans use primarily eccrine sweating while other mammals, including horses, 

exhibit apocrine sweating 34 37. Apocrine sweating is considered to be primitive, the 

quantity is small in most mammals (except in horses) making it less effective for 

dissipating heat 34. The human body contains typically 2 to 4 million eccrine sweat glands 
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distributed over most body surfaces. The density of sweat glands varies by region, for 

instance, there are approximately ~ 64 per square cm on the back but two to three times 

as many over the forearm and forehead 38.  

The eccrine sweat gland is composed of two morphologically and functionally 

distinct components, a secretory coil and a reabsorptive duct.  The secretory coil is 

responsible for the formation and secretion of an isotonic fluid when stimulated via 

cholinergic or adrenergic receptors 38. Originally thought to operate under the pump leak 

model 39, it is now understood that the Na-K-2Cl cotransport model 40 better explains the 

mechanism of eccrine sweat secretion 38 41 (Fig 1.1). Upon cholinergic or adrenergic 

stimulation, extracellular calcium (Ca2+) enters the secretory cell 42 and opens cAMP 

activated Cl- channels (cystic fibrosis transmembrane conductance regulator, CFTR) in 

the luminal membrane, as well as Ca2+ sensitive K+ channels in the basolateral membrane 

43 44. This results in the electrically-neutral KCl loss from the cytoplasm and the decrease 

of cell volume. Loss of KCl produces a favorable chemical potential gradient for the 

influx of K+ and Cl+ from the interstitial medium thru NaK2Cl co-transporters45. The Na+ 

carried into the cell by the cotransporters is then pumped out across the basolateral cell 

membrane by Na+K+ATPase. Transport of Cl- into the lumen produces lumen negative 

transepithelial potential and Na+ enters the lumen from the interstitial fluid through a 

paracellular route.  Water enters the lumen as needed to balance the Na+ and Cl- 38.  

 The iso-osmotic initial fluid, or ‘primary’ sweat produced by the secretory 

portion of the gland is approximately isotonic with plasma, containing NaCl 

concentrations approximately equal to blood levels 46.  The primary sweat travels through 

the coil and enters the lumen of the two-cell thick reabsorptive duct 38. In the duct, NaCl 
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in the primary sweat is partially reabsorbed by passive transport of Na+ and Cl- into the 

ductal cell via apical membrane channels CFTR and epithelial sodium channel (ENaC) 47-

49 (Fig 1.2). Na+K+ATPase activity in the basolateral membrane maintains concentration 
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Fig 1.1: Schematic of membrane transport proteins involved in the Na-K-2Cl model of 
sweat secretion in a secretory coil cell.   
 

 

gradients and K+ is passively transported out basolateral K+ channels 41.  In addition, a 

proton pump present on the apical membrane of the luminal cell is suggested to be 

responsible for acidifying sweat as it passes through the lumen 50 51.  More recently, a 

sodium hydrogen exchanger (NHE1) was identified on the basolateral membranes and is 

likely responsible for intracellular pH and cell volume regulation as it is in other tissues 51 

52.  Modification of primary sweat in the duct produces a hypotonic liquid for excretion at 
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the skin surface as ‘final’ sweat 38.  The hypotonicity of excreted sweat can vary greatly 

across humans, however, and is a primary focus of this dissertation.  
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Fig 1.2: Schematic of membrane transport proteins involved in ductal cell modification 
of primary iso-osmotic secreted sweat into hypotonic final sweat by reabsorption of Na- 
and Cl-. Only the inner ductal cell is represented in the schematic for simplicity.  
 

 
1.3  Cystic Fibrosis Sweat 

Individuals with the inherited autosomal recessive disease cystic fibrosis (CF) 

excrete sweat with a three to five times higher [NaCl] than typical 53-55. The primary 

sweat is not different in CF; it is failure of NaCl reabsorption in the CF sweat duct 

(calculated to be approximately 20% of normal based on the Thaysen-Schwartz model of 

isotonic secretion) 56 that results in the excessively salty sweat of CF patients 57. The CF 

sweat duct is defective in NaCl absorption due to an absence or malfunction of the 

mutated CF gene product CFTR in the apical and basolateral membranes 12 58-60.  No 
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studies have attempted to demonstrate a relationship between sweat duct membrane 

transport protein expression/activity and extent of sweat electrolyte loss during 

physiological thermoregulatory sweating in CF compared to individuals without disease. 

A whole-cell patch clamp study comparing normal and CF sweat gland cells 61 found no 

difference in channel types and proportions however their data is from secretory not 

ductal cells. This is an important distinction because it has been known for some time that 

“primary” sweat (entering the duct after exiting the secretory portion of the gland) is 

isotonic with respect to ECF and any decrease in [electrolyte] in the excreted sweat 

compared to ECF reflects the absorptive properties of the sweat duct 57. The study of 

sweat from isolated microperfused sweat duct segments 62, and from pharmacologically-

induced local sweat tests 27 54 63, have helped characterize the CF defect. However, 

pharmacologically-induced sweating only reflects one aspect of sweat gland function. 

Physiological in situ sweating is controlled by multiple innervations to the sweat gland 

under the influence of multiple endogenous agonists 38.  For example, thermally-induced 

sweat contains a significantly lower [K+] when compared to both pilocarpine- 8 , and 

methacholine- 64 induced sweat and could reflect endogenous agonist activity on K+ 

channel activity. This is in parallel with new evidence suggesting that CFTR activity in 

the sweat duct may be regulated by relative kinase and phosphatase activity in response 

to changes in relative intracellular concentrations of K+ and Na+  49. Furthermore, exercise 

is known to induce greater increases in blood flow 65 and periglandular region 

temperature 66, as well as higher concentrations of circulating adrenergic hormones that 

can serve as co-factors in the sudorific response 38, all of which may contribute to the 

differences between pharmacologically- , passive heating- , and exercise-induced 
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sweating 11. Therefore, while elevated sweat electrolytes in pharmacologically-induced 

CF sweat is well-documented, electrolyte composition of in situ sweating (i.e. as 

encountered in the context of exercise) remains to be elucidated for this population.  

Some healthy individuals without CF also exhibit sweat [Na+ ] approaching that 

of CF 64.  The explanation for this is unknown and a genetic link to CF has been theorized 

67, but never directly investigated in individuals with excessively salty sweat.  In a study 

comparing CF heterozygote and homozygote newborns (n= >700) with the CFTR 

mutation ΔF508 and non-CF newborns, heterozygotes had significantly higher 

pilocarpine-induced sweat [Na+] and [Cl-] than the non-carrier newborns 68. In a more 

recent study, healthy individuals that were CF heterozygotes (n >500), were shown to 

have a lower rate of increase in systolic blood pressure with age; and the subjects with the 

lowest blood pressures were heterozygotes with the highest pilocarpine-induced sweat 

[Na+] and [Cl-] 69
.   

It is not known if a CF mutation can explain differences in sweat [NaCl] in 

healthy individuals (e.g. those with high and ‘typical’ [NaCl]). A recent review 70 

suggested that perhaps certain unidentified populations are at risk for the development of 

exercise-associated hyponatremia (blood [Na+] < 135 mmol/L), such as those without 

disease but heterozygotes carrying variants of the CFTR gene. It was suggested that 

future research addressing this would be helpful in determining if this genetic basis could 

explain why some individuals develop low serum Na+ levels during prolonged activity in 

the heat 70.  To our knowledge, it has not been investigated whether apparently healthy 

individuals who exhibit excessively salty sweat (heretofore referred to as ‘salty 

sweaters’) are carriers of a CF gene mutation. Moreover, the quantity and function of 
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CFTR and ENaC in these non-CF ‘salty sweaters’ have not been examined and compared 

to those individuals with normal sweat [NaCl] or CF patients. The first Aim of this 

research was to investigate if a cellular mechanism similar to that in CF disease (i.e. 

decreased channel number) also explains heterogeneity in sweat [NaCl] between 

“healthy” individuals. Therefore, with an original investigation of ductal electrolyte 

transport channel expression and the incidence of CF mutations in apparently healthy 

‘salty sweaters’ compared to those with ‘average’ sweat [NaCl], the first major aim of 

this dissertation research tested the hypothesis that a mechanism (similar to that in CF 

disease) explains the variance in sweat NaCl loss in human eccrine sweating. The 

findings related to this Aim are detailed primarily in chapter 2 of this thesis.  

 
1.4  Impact of Sweat NaCl Loss on Physiological Responses to  

Exercise and Dehydration 

As discussed above, some individuals without CF excrete sweat containing high 

[NaCl], with values approaching that of CF 64. It is not known if other physiological 

responses such as blood osmolality and blood electrolytes during prolonged exercise are 

affected in ‘salty sweaters’ compared to their normal-to-low sweat NaCl counterparts. 

Furthermore, it is not known if the body water deficit commonly incurred during 

prolonged exercise in the heat differentially affects thirst drive and thermoregulation in 

salty sweaters. There is a strong positive cause-effect relationship between the sensation 

of thirst and plasma osmolality 71-74. Approximately 0.8% body weight loss and 1-2% 

increase in plasma osmolality represent the hypovolemic, and hyperosmotic thresholds 

for the stimulation of thirst in humans, respectively 73 75-77. The hyperosmotic thirst 

mechanism (in response to plasma osmolality increases) is thought to have greater 



 9

sensitivity than the hypovolemic thirst mechanism (loss of blood volume) 71 75 78.  As 

plasma osmolality increases, plasma vasopressin (AVP) is released, mediated by 

signaling from osmoreceptors of the preoptic anterior hypothalamus. In response to rise 

in plasma osmotic pressure (via either fluid loss or solute concentration increase), fluid 

shifts down a concentration gradient out of cells (cell dehydration) to maintain fluid 

volume in the vascular space 79 80. It is thought that this cell dehydration, in response to a 

rise in extracellular osmotic concentration, provides the strong stimulus for thirst because 

the activated volume-depleted osmoreceptor cell signals for increased release of AVP 71 

81 82.  

No study has examined if blood osmolality and blood [Na+] are lower and alter 

thirst drive in CF and healthy ‘salty sweaters’ compared to those with typical sweat NaCl 

loss at the same relative level of dehydration during exercise in the heat.  One study 83 

that compared thirst-guided drinking behavior of CF to non-CF children during a three 

hour intermittent exercise session (20 min cycling at 45%VO2max with 25 min rest 

periods) found that  CF children drank significantly less than controls and subsequently 

lost twice as much body weight. Unfortunately blood osmolality measures were taken 

only at the end of the three hour session and reflected not only the electrolyte loss but 

also the consumption of differing amounts of water. Therefore, while the authors 

postulated that the high NaCl loss in CF prevented the sweating-induced hyperosmolality 

of body fluids and thus deprived the CF children of a thirst trigger, they conceded that 

without serial blood samples during the protocol, they could not confirm  the greater 

NaCl loss was accompanied by lower serum osmolality throughout  exercise  83. Clearly, 

further research is required to understand the impact of high sweat NaCl on physiological 
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responses regulating fluid and electrolyte homeostasis during prolonged exercise. 

Therefore, in addition to investigating the mechanisms related to high sweat [NaCl], the 

present dissertation work included experiments of human physiological testing in order to 

explore questions related to implications. Findings and conclusions related to 

physiological testing are detailed primarily in chapter 3 of this thesis.  

 
1.4.1  To Rely or Not to Rely on Thirst 

 Since first recognized in 1965, many researchers have confirmed that a lag in the 

thirst mechanism can lead to inadequate body fluid homeostasis and impair 

thermoregulation as well as exercise performance 84-87. Montain et al. 88 reported 

impaired thermoregulatory capacity during exercise in the heat with dehydration to 3% 

and 5% body weight loss as compared to euhydration trials.  With lag in the thirst 

mechanism potentially contributing to inadequate hydration during prolonged exercise in 

the heat, regimented or ‘programmed’ drinking according to a formula based on sweat 

losses has been recommended and published by expert organizations to ensure safety and 

improve performance in sport 4 84.  It is argued by some that moderate dehydration during 

exercise is actually preferable such that reliance upon thirst to dictate fluid intake 

prevents the problem of water intoxication by regimented, overconsumption of hypotonic 

fluids 89-92. Most cases of exercise-induced hyponatremia (Fig 1.3) (serum Na+ < 135 

mmol/L) (Fig. 3) are attributed to overconsumption of  hypotonic fluid (water, low 

sodium beverages), replacement in excess of fluid loss, and is indicated by post-event 

weight gain 93. Whether thirst-guided drinking may sufficiently maintain fluid balance 

during prolonged physical activity in the heat depends on the accuracy of the thirst drive 

and regulatory inputs to thirst such as blood osmolality. A second Aim of this research 
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investigated if thirst perception appropriately reflects body water loss in individuals with 

high sweat NaCl loss. These findings are presented in chapter 3 of this thesis.  

 

 
Fig. 1.3:  Model of Contributing Factors to Exercise-Induced Hyponatremia 
 

 

1.4.2  Impact of Sweat NaCl Loss on Electrolyte Balance 

 While not as common, hyponatremia may also occur in conjunction with 

dehydration, particularly in longer, ultraendurance events 26 70 94. This ‘hypovolemic 

hyponatremia’ is possible presumably from excessive salt depletion via sweating and not 

from overdrinking, according to a recently-developed quantitative model (Fig. 1.3) 26.  It 

is believed that a large sweat NaCl loss during exercise presents a greater risk for the 

development of hyponatremia during prolonged activity in the heat 70 95 96.  Mathematic 

predictions for change in serum [electrolytes] with progressive dehydration have not been 
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validated in a field or laboratory setting using individuals at extreme ends of the sweat 

[NaCl] continuum. Therefore, a secondary goal of the dissertation work was to evaluate 

implications related to mathematically-predicted and actual serum [electrolytes] in 

individuals with high vs. ‘typical’ sweat [NaCl] and will be discussed in chapter 4 of this 

thesis.       

 
1.4.3  Cystic Fibrosis and Exercise in the Heat 

 This dissertation’s investigation into implications of high sweat [NaCl] loss was, 

for the most part, novel for the healthy and physically-fit individuals studied. However, 

research into differential responses related to fluid and electrolyte balance as a result of 

salty sweat was almost entirely unexplored territory for the CF subjects included in this 

work. Exercise physiology in the CF population has been an understandably low research 

priority given the average life expectancy for a CF patient, up until 1990, was not beyond 

the teenage years. Management of respiratory and digestive sequelae has greatly 

improved for CF and not only has the average life expectancy nearly doubled since 1990, 

CF are participating in recreational and competitive sports in increasing numbers.  Some 

of the unique responses of CF are presented in chapter 3 of this thesis. It is hoped that 

these findings may contribute to the development of recommendations for CF, as well as 

non-CF exercisers with excessive sweat NaCl loss, to more safely and comfortably 

perform prolonged activity in the heat.   
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CHAPTER 2 
 

REDUCED EXPRESSION OF CFTR IN SWEAT DUCTS OF 

HEALTHY INDIVIDUALS AND CYSTIC FIBROSIS PATIENTS 

WITH HIGH SWEAT SODIUM  

  

2.1. Abstract 

Humans exhibit large variability in sodium chloride loss through eccrine 

sweating. In an effort to understand the underlying mechanisms responsible for 

heterogeneity of human NaCl losses in sweat during exercise, we investigated the 

relationship between sweat duct membrane transport protein expression and sweat 

electrolyte concentration.  We hypothesized that CFTR expression would be decreased in 

healthy individuals with high sweat sodium concentration ([Na+]) in a mechanism similar 

to CF. Skin biopsies and sweat samples were obtained from physically-active, healthy 

young adults and from six physically-active patients with CF. Half of the non-CF subjects 

were individuals identified to excrete sweat with high sweat [Na+], ‘salty sweaters’.  CF 

and healthy subjects performed cycling ergometry in the heat to obtain sweat samples for 

electrolyte measurement. Immunofluorescent staining for the chloride channel CFTR, 

and for the sodium channel alpha-ENaC, was performed on cryosections of skin biopsies. 

Ductal and lumenal CFTR and ENaC fluorescence was quantified by a blinded 

investigator. Immunofluorescent staining of sweat glands revealed significantly lower 

luminal membrane CFTR in ducts of non-CF ‘salty sweaters’ (p<0.05) and CF (p<0.005) 

when compared to Control. Epithelial Na+ Channel (ENaC) staining was similar among 
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the three groups.  Genetic testing of healthy subjects to investigate a possible CF gene 

mutation underlying ductal Cl- channel deficiency did not result in any CF heterozygotes 

(carriers) within non-CF groups. Availability of CFTR for facilitation of electrolyte 

transport across the ductal membrane may contribute to the high physiological variability 

known for eccrine sweat NaCl across apparently healthy humans. Yet, we found no direct 

evidence that lower CFTR in healthy individuals who excrete excess sodium chloride had 

a relationship to any of the known, common disease-causing CF gene mutations. 

2.2. Background 

2.2.1.  NaCl Reabsorption in the Eccrine Sweat Gland 

Fluid excreted by the sweat gland is the work of two morphologically and 

functionally distinct organ components, a secretory coil and a reabsorptive duct. In a two-

step process common to all mammalian fluid secretory systems, a primary isotonic fluid 

secretion (i.e. similar in electrolyte concentration to blood) is modified as it travels 

through the lumen of the reabsorptive duct and, in humans, results in a final sweat that is 

hypotonic to the plasma 12 38.  Despite controlling for factors known to influence 

measured sweat concentration such as acclimation status 14-17 and sweat stimulation 8 10 11 

and collection 21-23 technique, the diluteness of this final excreted sweat can vary greatly 

between individuals 1-4. Since primary sweat is always isotonic to the plasma 97 98, 

glandular mechanisms underlying this inter-individual ‘physiological’ variability are 

presumably due to differences in sweat duct electrolyte reabsorption 38.  A principal 

source of Cl- conductance in the reabsorption process 99, the cystic fibrosis 

transmembrane conductance regulator (CFTR) is highly expressed 58 59 and constitutively 

active 48 in the apical membrane of the normal sweat duct. CFTR activity regulates an 
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epithelial sodium channel (ENaC) 100, the only channel for luminal Na+ entry into the 

ductal cell.   

Cystic fibrosis (CF) is an inherited autosomal recessive disease of faulty 

electrolyte transport due to insufficient CFTR activity that results in a secondary loss of 

CFTR-dependent ENaC conductance. In the sweat gland, CFTR malfunction results in 

excretion of sweat with a three to five times higher sodium chloride concentration [NaCl] 

than typical 53-55. The mechanism for and extent of insufficient CFTR activity is 

mutation-specific although the relationship between genotype and phenotype and sweat 

[NaCl] is debated 101-104. The secreted primary sweat in CF is not different than in non-

CF; it is failure of NaCl reabsorption in the sweat duct (calculated to be approximately 

20% of normal based on the Thaysen/Schwartz model of isotonic secretion 56) that results 

in the excessively salty sweat of patients 57. 

Studies of the composition of pharmacologically- and thermally-induced sweat 

have identified that some non-CF subjects have sweat Na+ levels that approach that of CF 

64. It is possible that reduced expression of ductal transport proteins CFTR and ENaC 

mechanistically underlies these apparently-healthy ‘salty sweaters’,  potentially linked to 

a genetic cause such as a heterozygous CF mutation 70. A mutation of the CF gene occurs 

with high frequency in man, ~1 in 25 Caucasians of European descent 105 106.  Some 

reports have shown a greater incidence of heterozygocity for a CF mutation in non-CF 

persons prone to chronic CF-like conditions such as idiopathic pancreatitis 107 108, 

bronchiectasis, nontuberculous mycobacterial infections 109, and chronic rhinosinusitis 

110-112. Furthermore, sweat induction by beta-adrenergic stimulation (a secondary method 

of sweat gland stimulation 11 38) cannot occur in CF homozygotes 113 and is not as 
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effective in CF heterozygotes as compared to non- carriers 114 115.  Differences in sweat 

electrolyte composition of CF heterozygotes as compared to non-carriers are debated, 

mostly due to difficulty sorting out the major confounding factor of sweat rate 12. CF 

carriers have pilocarpine-induced sweat Cl- and Na+ levels that are significantly higher 

than non-carriers (2-5 times normal has been reported) but lower than CF homozygotes 

116. In pilocarpine-induced sweat tests performed on CF gene carriers and non-carriers 

with chronic pancreatitis (n=134), a step-wise increase in sweat [Na+] and [Cl-] was 

reported where non-carriers had the lowest concentrations and carriers had the highest 

concentrations 108.  Thus, it is plausible that there exists a correlation between apparently-

healthy individuals with greater NaCl loss in sweat and a non-disease causing CFTR 

mutation. The present study investigated eccrine sweat duct CFTR and ENaC expression, 

and electrolyte composition of control subjects with ‘average’ sweat [NaCl] compared to 

healthy ‘salty sweaters’ and to CF patients with phenotypically high sweat [NaCl] during 

exercise-induced sweating in a hot environment. We hypothesized an inverse association 

between ductal CFTR and/or ENaC expression and sweat [NaCl]; consequently, salty 

sweaters (including CF and healthy subjects) would exhibit decreased CFTR and/or 

ENaC expression at the ductal luminal membrane as compared to individuals with 

average sweat [NaCl]. Since a genetic link to CF has been theorized for individuals with 

high sweat [NaCl] 67, but never directly investigated, incidence of CF mutations within 

the healthy subjects exhibiting large variability in sweat NaCl loss was also investigated.  

 
2.3. Methods 

2.3.1  Preliminary Screening and Subject Selection 



 17

Recreationally-active young adults (aged 18-40 yrs) were recruited from the 

campus community and endurance sports teams in the area. Normal, healthy volunteers 

(non-CF subjects) participated in a preliminary sweat collection session (i.e., 30-60 min 

of cycling or running at self-selected pace until ~1.5-2 ml of sweat was obtained). Twelve 

individuals were chosen to participate as subjects based on their measured sweat 

composition: six were ‘salty sweaters’ (SS) with sweat [Na+] > 70 mmol/L (Mean ± SD = 

87.6 ± 18.4 mmol/L, range 70-111 mmol/L),  and six individuals (Control) with sweat 

[Na+] < 60 mmol/L mmol/L (Mean ± SD = 41.2 ± 8.4 mmol/L, range 31-55 mmol/L). 

The cut-point of  > 70 mmol/L was used for selecting SS because it represents ~ two SD 

higher than the mean recently reported for regional sweat [Na+] collected under similar 

conditions using the same measurement site (i.e. upper back region) during exercise in 

the heat 117.  

In addition, six young adults with cystic fibrosis (CF) were recruited through the 

Emory University Cystic Fibrosis Center and the local community to participate as 

volunteers.  All CF subjects had sweat [Cl-] in previous diagnostic pilocarpine testing of 

> 75 mmol/L and had ΔF508 mutations on at least one allele.  One CF subject was 

ΔF508/R1162X, one was ΔF508/1717-1G→A, and the remaining four were homozygous 

for ΔF508 mutations.  All CF subjects were in stable clinical status with an FEV1 > 75% 

of predicted value, performed aerobic exercise for a minimum of four hours per week, 

and were cleared by their physician for participation. Informed written consent was 

obtained from both CF and non-CF subjects as approved by the Institutional Review 

Boards at the Georgia Institute of Technology and Emory University School of Medicine.  

 
2.3.2.  Study Design  
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Sweat duct membrane transport protein expression, genotype, and sweat 

[electrolytes] were compared among Control, SS, and CF using a cross-sectional design. 

Identification of SS subjects was performed first through sweat collections in preliminary 

screening. Subsequent matching of each SS subject with a Control subject was performed 

on the criteria that Control have lower sweat [Na+] by at least ~50% (mean ± SD % 

difference in sweat [Na+]  for Control compared to matched SS = -50.7 ± 10.1%). 

Attempts were also made to match all non-CF pairs based on age, gender, anthropometry, 

and training status.  In order, to control for natural heat acclimation (a well-documented 

modifier of sweat composition) 14-17, paired non-CF subjects were tested in the same 

month and not during summer months of June, July, and August. CF subjects were 

matched to non-CF subjects by gender but not necessarily tested within the same month 

as their non-CF counterparts. However, this was not a major study limitation since CF 

sweat composition does not appear modifiable, even with heat acclimation 118.  

Sweat comparison among subject groups was performed at the same relative level 

of dehydration (from 0.5 to 3% body weight loss) and exercise intensity (50% of aerobic 

capacity) to minimize potential effects of these known modifiers on sweat electrolytes. 

Skin sampling via scapular biopsy for examination of sweat ducts was performed at 

approximately the same time of day (mid morning) to minimize potential differences in 

sweat duct membrane transport proteins under circadian influence 119 120.  In order to 

examine the relationship between ductal membrane protein expression and measured 

sweat electrolytes, all biopsies were performed immediately prior to initiation of the 

prolonged exercise protocol circumventing potential differences in ductal channel 

expression invoked by exercise and sweating responses. To avoid potential influence of 
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estrogen and progesterone on ductal channel expression during the luteal phase 121-123, all 

female subjects were tested in the early follicular phase of the menstrual cycle.  

 
2.3.3.  Initial Testing Session: Aerobic Capacity Assessment and Familiarization  

In the first test session, a graded, incremental cycling test was conducted in the 

heat (32-33°C and 35% relative humidity) to determine maximal oxygen uptake 

(VO2max).  Collection of expired gases to determine oxygen consumption (VO2) and 

respiratory exchange ratio (RER), heart rate (HR) and rating of perceived exertion (RPE) 

124 were recorded each minute during the test. Subjects cycled until volitional exhaustion.  

VO2max was considered achieved at test termination based on attainment of at least two of 

the following criteria: a plateau in VO2 during the last two stages (increase < 2.1 

ml/kg/min), a HR within 10 beats/min of age-predicted HRmax, a respiratory exchange 

ratio (RER) > 1.10, or a minute ventilation > 115 L/min.  

A 30 min familiarization ride in the heat (32-33° C and 35% relative humidity) 

followed the VO2max testing to validate the workloads corresponding to a work rate 

estimated to elicit 50%VO2max for the next test session. Nude dry body weight was 

obtained before and after the 30 min ride to determine individual whole-body sweat rates. 

During the familiarization ride, a regional sweat sample was collected from the right 

scapula in order to confirm group placement.   

During the first test session, body composition was assessed for subject matching 

purposes using dual energy X-ray absorptiometery (DEXA) with a Lunar Prodigy whole 

body scanner (GE Medical Systems, Madison, WI). At the completion of this initial 

testing session, subjects were instructed in use of dietary logs to record ingested food and 

beverages for the three days prior to their second testing session.  
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2.3.4.  Second Testing Session: Biopsy and Sweat Collection   

2.3.4.1.  Pre-testing Controls 

Subjects abstained from caffeine (12 hr minimum) and alcohol (32 hr minimum) 

prior to reporting to the research facility for skin biopsy and subsequent exercise testing. 

Twenty-four hour food logs indicated that subjects complied with instructions to 

consume a standardized breakfast meal consisting of bagel, toast, and/or English muffin 

with cream cheese, butter, and/or peanut butter, and juice (any desired, except tomato 

juice) on the morning of testing. There was no difference (p<0.05) among groups in mean 

macronutrient, sodium, or caloric intake relative to body weight (BW) for the three days 

prior to testing.  There was also no difference among groups in macronutrient, sodium, or 

caloric intake relative to BW for the morning of testing except for CF who consumed 

significantly (p=0.02) more fat (0.61 ± 0.3 g/kg) than both Control (0.27 ± 0.1 g/kg) and 

SS (0.28 ± 0.1 g/kg).  To minimize variation in pre-exercise hydration between subjects, 

a euhydration protocol was piloted and instituted. Subjects were given instructions to 

ingest a volume of water equivalent to 12 ml per kg of BW the evening before and 

morning of testing. Furthermore, subjects did not perform physical exercise for 24 hours 

prior to testing. Euhydration was confirmed prior to biopsy and again prior to beginning 

the exercise protocol with measurement of urine specific gravity (USG) < 1.021 125, and 

with subsequent measurement of serum osmolality <290 mOsm 4.  

 
2.3.4.2.  Skin Biopsies  

At the start of the second testing session, skin biopsies were removed from the 

right scapular region, identical to the site of sweat collection in the initial testing session, 
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and contralateral to the collection site of the subsequent prolonged exercise protocol. 

Two full-thickness 4 mm diameter punch biopsies were performed by a dermatologist 

under local anesthetic 62. Biopsied tissue was immediately rinsed in ice-cold lactate 

Ringers and maintained in a second ice-cold lactate Ringers with glucose for tissue 

transport until placed in OCT embedding medium (Miles Inc., Elkhart,, IN) and frozen in 

isopentane cooled in liquid nitrogen.  Frozen biopsies were stored at -80°C until 

sectioned for immunohistochemisty experiments.  

 
2.3.4.3.  Sweat Collection During Prolonged Exercise in the Heat 

Sweat was collected following the skin biopsy during a prolonged exercise 

protocol in an environmental chamber (32-33° C and 35% relative humidity). Intermittent 

cycling was performed at the workload determined previously to correspond to an 

exercise intensity of 50% of VO2max, in 20 minute bouts, separated by five min rest 

periods. No fluids were ingested by subjects during exercise. To estimate whole body 

fluid loss, nude dry body weight was obtained pre-exercise, and during the break periods 

between 20 min cycling bouts, until 3% body weight loss was achieved. Subjects 

undressed and towel dried in a screened area within the heat chamber prior to each 

weighing.  

Sweat was collected with the modified Brisson method 20 using a collection pouch 

constructed with impermeable Parafilm (7 cm x 8 cm) (American Can Co., Greenwich, 

CT) and Opsite wound dressing (10 cm x 14 cm) (Smith & Nephew Inc., Largo, FL). The 

sweat collection site used for all sweat sampling was the scapular region, an accessible 

area that correlates well to whole-body sweat constituent concentrations for [Na+] and 

[Cl-] 18. The skin of the scapula was cleaned with alcohol, deionized water, and sterile 
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gauze, and air dried before application of the collection pouch. Sweat was aspirated from 

the collection pouch every 20 min during cycling. Sweat [Na+], [Cl-], and [K+] were 

measured in triplicate using a chemistry analyzer (Nova 5, Nova Biomedical, Waltham, 

MA).  Frequent removal of accumulated sweat in this protocol likely minimized 

electrolyte leaching from the epidermal layer into the sweat sample. Stable sweat [K+] 

values throughout the collection time points provided evidence that this potential source 

of error was minimal 126. 

 
2.3.5.  Cryosectioning and Immunostaining  

Skin biopsy sections at a thickness of 6 μM were cut using a cryostat (Leica 

CM3050-S, Bannockburn, IL) at a chamber temperature of -20°C, beginning at the 

epidermis and advancing into the dermis. To confirm that sections for immunostaining 

contained ductal portions of the gland, initial sections at each cut depth were treated with 

the nuclear stain hematoxlin and examined under light microscopy for ductal 

characteristics.  Sweat ducts were distinguished from the secretory coil portion of the 

sweat gland by their two cell thickness and well-defined lumen (Fig 1). This was an 

important distinction because it has been known for some time that sweat entering the 

duct after exiting the secretory portion of the gland, ‘primary sweat’, is isotonic to 

extracellular fluid and any decrease in [electrolyte] in the final sweat compared to the 

extracellular fluid reflects the absorptive properties of the sweat duct 98.  In order to 

obtain representation from as much of the entire length of the sweat duct as possible for 

immunofluorescence assay, sections were inspected for presence of ducts at cut depths 

spaced every 90 to 150 μM.  Sections cut in immediate succession from those found to 

contain adequate ducts were picked up onto silane-coated slides (Histobond, Marienfeld, 
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Lauda-Königshofen), air dried, and fixed in a -20°C solution of acetone-methanol (50:50) 

for 10 min.  Following rinsing with phosphate-buffered saline (PBS), plated sections 

were permeabilized in 0.25% Triton in PBS for 10 min. After blocking in 1% bovine 

serum albumin (BSA) in PBS, sections were incubated with primary antibodies overnight 

at 4°C. M3A7 (sc-58615, Santa Cruz Biotechnology, CA), a mouse monoclonal Ab 

raised against recombinant CFTR NBF 2 domain (human origin), was used to detect 

CFTR at a dilution of 1:10. Of the eight main CFTR antibodies established in the 

literature, M3A7 has been used to distinguish healthy and ΔF508 sweat ducts by CFTR 

immunostaining 60 127 128, and has an epitope outside of the ΔF508 deletion. ENaC was 

detected using at a dilution of 1:200 the rabbit polyclonal Ab H-95 (sc-21012, Santa Cruz 

Biotechnology, CA), which targets amino acids 131-225 near the N-terminus of human 

α-ENaC. After thorough washes to remove excess primary antibody, sections were 

incubated for 60 min at room temperature with anti-mouse AlexaFluor488 and anti-rabbit 

AlexaFluor 594 secondary antibodies at a 1:500 dilution (Invitrogen, Life Technologies, 

Carlsburg,CA).  To confirm lack of nonspecific binding by secondary antibodies, 

omission of primary antibodies was performed on some sections from each subject. After 

thorough washes, the sections were stained with 4',6-diamidino-2-phenylindole (DAPI) to 

demonstrate sweat gland morphology, and fixed with a mounting solution. Localization 

of CFTR and ENaC were examined using a Zeiss Axiovision microscope and 

photographed using Zeiss Axiocam-HR (Zeiss, Oberkochen, Germany). Captured images 

were analyzed by a blinded investigator using ImageJ analysis software (National 

Institutes of Health, Bethesda, MD) for quantification of ENaC and CFTR staining (mean 

pixel intensity per area) at ductal lumen. Background fluorescence was subtracted from 
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staining intensity. To assess reproducibility, cryosectioning, immunostaining and image 

analysis was performed on the biopsies of six subjects (3 non-CF pairs) a second time. 

 
2.3.6.  Statistical Analysis  

Results are presented as means ± SE. For each subject, an overall mean pixel 

intensity per area for CFTR, and for ENaC, was computed as an average of all imaged 

ducts’ mean pixel intensity per area values. This consolidated value was used to 

determine between group differences in CFTR and ENaC expression. To minimize the 

effect of batch-to-batch variability in this cross-sectional analysis, staining intensity, 

cryosectioning and immunostaining procedures were always performed in the same run 

for matched subjects. Differences in subject characteristics, sweat electrolytes, and 

expression of membrane channels CFTR and ENaC among subject groups Control, SS, 

and CF were determined using a one way Analysis of Variance (ANOVA). Post-hoc 

testing (Tukey) was performed to determine between-group differences. For the six 

paired non-CF subjects for whom repeated immunostaining was performed, coefficient of 

variation for relative expression, calculated as mean pixel intensity per area divided by 

the total mean pixel intensity per area of both subjects within a matched pair, was 

determined with Pearson-Product-Moment Correlation. The relationship between sweat 

electrolytes and mean pixel intensity per area of CFTR staining, and ENaC staining, was 

analyzed using Pearson-Product Moment Correlation. All statistical testing was 

performed using SPSS (version 17.0, SPSS, Inc., Chicago, IL).  An α level of 0.05 was 

used to indicate statistical significance. 

 
2.3.7.  Genetic Testing 



 25

A venous sample collected from non-CF subjects at the start of their second 

testing session was used for genetic testing. Genomic DNA (gDNA) was isolated from 

whole blood and tested by an outside laboratory (Emory Genetics) using an allele-

specific primer extension assay (Tag-It Cystic Fibrosis Kit, Luminex, Toronto). This 

assay tested for 39 of the most common CF mutations in the US, including the 

recommended ACMG panel 129 of 23 common mutations. Mutations tested in this panel 

were: ΔF508, R334W, S549N, 3659delC, ΔI507, I347P, A559T, S1255X, 1898+1G>A, 

R347H, N1303K, 1898+5G>T, 3876delA, A455E, 394delTT, 2183GG>A, 3905insT, 

3120+1G>A, V520F, 2184delA, G85E, Y1092X, 711+1G>T, 2307insA, Y122X, S549R, 

M1101K, 1078delT, 2789+5G>A, G551D, G542X, 621+1G>T, R560T, W1282X, 1717-

1 g>a, 3849 + 10KbC>T, R553X, R117H, and R1162X.  

 
2.4.  Results 

 
2.4.1.  Subjects 

 Mean (± SE) physical characteristics are presented in Table 2.1. The two groups 

of non-CF subjects (those with high and low sweat [Na+]) were similar in their physical 

characteristics and exercise training volume. As expected given the nature of the disease, 

CF subjects were younger, and had lower aerobic capacity and weekly training volume 

compared to non-CF subjects. 

 
2.4.2.  Sweat Electrolytes and Sweat Rate 

Mean (±SE) sweat electrolytes presented in Table 2.2 are calculated for each 

subject as their average across all collections (from 0.5 to 3% dehydration).  As expected 

given the procedure for the subject selection, sweat [Na+] and [Cl-] were higher for SS  
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and CF compared to Control (p<0.001). Sweat [Na+] and [Cl-] values for CF were also 

higher than SS (p<0.001). Consistent with reports in the literature for CF sweat 

electrolyte composition 2 64, CF sweat [K+] tended to be higher than non-CF groups (p= 

0.09). Control and SS had similarly low sweat [K+] (p=0.858).   

 
 
 
Table 2.1: Mean (±SE) physical characteristics, exercise training volume, and aerobic 
fitness (VO2max) of Control, non-CF salty sweaters (SS), and cystic fibrosis (CF) subjects 
(n=18). * Significantly < Control, # CF significantly < SS (p<0.05). 
 

Physical Characteristics Control SS CF 

Gender 4 m, 2 f 4 m, 2 f 4 m, 2 f 

Age (yrs) 31.2 ± 2.0 31.2 ± 3.0    22.2 ± 1.0 *# 

Weight (kg) 68.4 ± 5.7 73.2 ± 6.4 64.0 ± 5.7 

Body Fat (%) 15.0 ± 3.3 18.0 ± 3.5 15.3 ± 2.3 

Training Volume (hrs/wk) 12.2 ± 2.0 11.8 ± 1.8       5.1 ± 0.7 *# 

VO2max (ml/kg/min) 53.9 ± 2.4 49.5 ± 2.8     39.9 ± 1.8 *# 
 
 
 
 
 
Table 2.2: Mean (±SE) sweat electrolytes concentration (indicated by brackets), and 
sweat rate (SR) relative to body weight (BW), of Control, non-CF salty sweaters (SS), 
and cystic fibrosis (CF) subjects (n=18). * Significantly > Control (p<0.005), # CF 
significantly > SS (p<0.05).  
 

Sweat Characteristics Control SS CF 

Sweat [Na+] (mmol/L)   46.2 ± 4.2    94.9 ± 6.2 *     132.6 ± 2.6 *# 

Sweat [Cl-] (mmol/L)   47.8 ± 3.6    87.1 ± 7.1 *     127.0 ± 4.9 *# 

Sweat [K+] (mmol/L)     4.9 ± 0.2   4.3 ± 0.1         7.4 ± 0.6 # 

SR (ml/hr/kgBW)   13.1 ± 0.9 12.4 ± 1.4  11.0 ± 0.7 
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 [Na+] and [Cl-] increased with progressive dehydration in all three groups. 

Interestingly, there was a greater relative increase in sweat [Na+] (p<0.05) with 

dehydration in Control (mean % change of 17.7 ± 3.2%) compared to CF (4.2 ± 2.1%), 

and tended to be greater (p=0.15) in Control compared to SS (8.7 ± 4.2%).  There was 

also a trend (p=0.10) for greater relative increase in sweat [Cl-] with dehydration in 

Control (16.5 ± 3.9%) compared to CF (6.2 ± 1.9%). 

As designed, Control, SS, and CF achieved similar percent body weight loss (% 

dehydration) at the termination of exercise (3.0 ± 0.06% for Control, 2.9 ± 0.07% for SS, 

and 2.9 ± 0.07% for CF). There was also no difference among groups in sweat rate (SR) 

expressed relative to BW (Table 2.2).  

 
2.4.3.  CFTR and ENaC Expression at Ductal Lumen 

Sections from the ductal portion of the sweat gland were distinguished 

morphologically from sections of the secretory coil portion of the gland by nuclear 

staining. The ductal segment (coiled and straight portion) has a two cell layered wall, as 

indicated by two layers of nuclei surrounding a clearly defined lumen (examples shown 

with arrow, Fig 2.1a and Fig 2.1b). In contrast, the secretory coil segment is only one cell 

wall thick, has a more poorly defined lumen, and is usually larger in diameter with larger 

nuclei (examples labeled with ‘S’, Fig 2.1a and Fig 2.1b). This distinction is important 

because CFTR and ENaC staining was quantified only in the lumen (example is circled in 

Fig 2.1b) of images identified clearly as ductal segments. Representative epifluorescence 

images of immunostaining for Control (row 1), SS (row 2), and CF (row 3) are presented  

in Fig 2.2.  As expected, CFTR (stained green) was localized primarily to the ductal 

lumen. ENaC (stained red) was also located primarily at ductal lumen but additionally 
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a.  

 
 
b. 

 
 
c.  

 

Fig. 2.1: Eccrine sweat gland tubules in biopsied human skin. To demonstrate 
morphology of secretory coil (S) and reabsorptive duct (arrows), 6 µm cryosections were 
stained with (a and b) hematoxylin (brightfield image original magnifications 20X) and 
(c) 4',6-diamidino-2-phenylindole (DAPI, epifluorescence image original magnification 
40X). An example of a ductal lumen (outlined) is shown in part (c). 
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distributed thoughout the cytoplasm.  Immunofluorescent staining for CFTR and ENaC 

was absent on negative control sections not incubated with primary antibodies (Fig 2.2, 

4th column). In the three subject pairs for which repeat sectioning and immunostaining 

was performed, the coefficients of variation (CV) between initial and repeat relative 

expression of CFTR were 7.2%, 4.0%, and 4.3% (mean 5.5 ± 1.8%). The relative 

expression of ENaC in these repeated pairs had CVs of 1.7%, 19.1%, and 0.4% (mean 7.1 

± 10.4%).  

CFTR expression was lower (p< 0.05) in SS than Control (Figs 2.2 and 2.3).  

CFTR expression in CF was lower than Control (p<0.005), but not SS (p=0.241) (Fig 2.2 

and 2.3).  ENaC expression was not different (p=0.957) among groups (Fig 2.2 and 2.3).  

 
2.4.4.  Relationship between Channel Expression and Sweat Electrolytes 
 

Significant inverse relationships were observed between CFTR expression and 

sweat [Na+] (r = -0.639, p<0.005) (Fig 2.4), and for CFTR and sweat [Cl-] (r = -0.594, 

p<0.010); namely, greater sweat Na+ and Cl- was associated with lower sweat duct 

CFTR. When only non-CF subjects (n=16) were examined, the same relationship with 

CFTR expression persisted but did not reach significance for sweat [Na+] (r = -0.461, 

p=0.132), or for sweat [Cl-] (r = -0.402, p=0.195).  There was also no significant 

relationship between CFTR and sweat electrolytes in the six CF subjects (r = 0.143, 

p=0.788 for Na+; and r = 0.304, p=0.558 for Cl-).  

Consistent with the finding of similar ENaC expression among groups, there was 

no significant relationship between ENaC expression and sweat [Na+] (r = 0.211, 

p=0.401)(Fig. 2.4), or sweat [Cl-] (r = -0.307, p=0.216). There was also no significant 
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Fig. 2.2: Immunofluorescence staining of the eccrine sweat gland reabsorptive duct in 6 
µm cryosections of biopsied human skin. Anti-CFTR labeling with M3A7 (column 1, 
green), and anti-αENaC labeling with H-95 (column 2, red) revealed immunoreactivity 
particularly corresponding to the luminal plasma membranes. Overlay of images from 
column 1 and 2 demonstrates where immunoreactivity to CFTR and ENaC occurred at 
the same location (column 3, yellow). Sections without primary antibodies did not show 
immunoreactivity (column 4). CFTR staining was significantly more pronounced in 
Control subject with mean sweat [Na+] of 45 mmol/L and [Cl-] of 44 mmol/L (row 1) 
compared to paired non-CF salty sweater subject (SS) with sweat [Na+] of 88 mmol/L 
and [Cl-] of 85 mmol/L (row 2), and compared to paired cystic fibrosis (CF) subject 
(ΔF508/1717-1G→A) with sweat [Na+] of 136 mmol/L and [Cl-] of 130 mmol/L (row 3). 
Original magnification 40x. 
 

 

relationship when analyzed for only non-CF subjects (r = 0.285, p=0.369 for Na+; and r = 

0.398, p=0.200 for Cl-). However, unlike in non-CF subjects, there was a significant 

positive relationship in CF for ENaC and sweat [Cl-] (r = 0.846, p = 0.034), with a 

tendency for sweat [Na+] in CF subjects to be positively correlated with ENaC as well (r 

= 0.741, p = 0.092).   

Control 

SS 

αENaC No 1° Ab  CFTR Overlay 

CF 
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Fig. 2.3: Mean (±SE) sweat duct luminal membrane channel expression (mean pixel 
intensity per area) for cystic fibrosis transmembrane conductance regulator (CFTR, 
green), and epithelial sodium channel (ENaC, red) of Control subjects with mean±SE 
sweat [Na+] of 46.2 ±4.2 and [Cl-] of 47.8 ±3.6 mmol/L (solid bars), non-CF salty 
sweaters (SS) with mean±SE sweat [Na+] of 94.9 ±6.2 and [Cl-] of 87.1 ±7.1 mmol/L 
(striped bars), and cystic fibrosis (CF) subjects with mean±SE sweat [Na+] of 132.6 ±2.6 
and [Cl-] of 127.0 ±4.9 mmol/L (checkered bars). * Significantly < Control (p<0.05). 
Number of (n) ducts and subjects for each mean are indicated below x axis.   
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Fig. 2.4: Relationship between sweat duct luminal membrane channel expression and 
[Na+] of thermally-induced sweat of CF (circles), non-CF salty sweaters (SS, diamonds), 
and Control (triangles) subjects. A significant inverse relationship (green line, r=-0.639, 
p<0.005) was demonstrated for mean pixel intensity per area of ductal luminal membrane 
CFTR (green symbols) and [Na+] of sweat collected during exercise in the heat to 3% 
dehydration. No relationship (p=0.401) was observed for mean pixel intensity per area of 
ductal luminal membrane ENaC (red symbols) and sweat [Na+]. 
 
 
 
 
 
2.4.5.  Genetic Testing 
 

Genetic testing determined that none of the healthy subjects were heterozygous 

for any of the 39 most common disease-causing CFTR mutations in the US. While the 

testing panel used in this study is considered to accurately predict 99% of all non-

Hispanic Caucasian carriers of a disease-causing CFTR mutation in the US 129, it does not 

detect CFTR mutations with milder or unknown phenotypes.  
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2.5.  Discussion 
 
This study investigated a potential mechanism that might account for the known 

inter-individual variability of NaCl loss in humans during thermoregulatory sweating. 

Given that primary sweat produced by the secretory coil of the sweat gland is isotonic to 

extracellular fluid 38 97, and that extracellular [NaCl] is maintained in a tight physiological 

range across humans, we examined the reabsorptive duct of the sweat gland for 

differences in the abundance of membrane transport machinery that might explain 

variable electrolyte reabsorption. To accomplish this, measurement of sweat electrolytes 

(during exercise in the heat eliciting moderate dehydration) and luminal membrane CFTR 

and ENaC expression was performed in healthy subjects with salty sweat compared to 

those with ‘typical’ sweat [NaCl], and compared to subjects with CF. Immunoreactivity 

to anti-CFTR was localized primarily to the apical membrane of the inner luminal ductal 

cells, the principal site of NaCl reabsorption 38. Immunoreactivity to anti-αENaC was 

greatest at the apical membrane of the inner luminal ductal cells, but was also observed 

between the inner and outer luminal ductal cells, and generally distributed more diffusely 

throughout the cell than CFTR. Intriguingly, a significant association was demonstrated 

for ductal luminal membrane CFTR expression and thermoregulatory sweat [NaCl]. 

Further, CFTR expression in sweat ducts of healthy salty sweaters was found to be less 

than in Control and not significantly different than in CF subjects.  

In light of this finding of altered CFTR expression in SS, it is somewhat 

surprising then that none of these subjects were identified as heterozygotes for CF. This 

suggests that: 1) either the lower CFTR expression in the SS group was not related to CF 

carrier status, or, 2) the testing panel utilized was not complete and thus failed to detect 
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all other potential CFTR gene mutations. The test panel utilized in this study is the most 

commonly used for CF genetic testing to detect the most frequently occurring mutations 

of the CFTR gene that are associated with development of the classical form of the 

disease. Approximately 4% of individuals of European Caucasian descent are carriers of 

one of these CFTR mutations 105 106. Over 1600 mutations and over 300 polymorphisms 

of the CFTR gene have been identified 130, however, with no known clinical 

abnormalities associated with most 70. The prevalence of carriers in the population for 

one of the many other CFTR variants is not known.  Thus, it is still possible that a less 

common CFTR gene mutation associated with a non-disease causing phenotype, perhaps 

only manifesting in the sweat gland, was responsible for the lower CFTR expression and 

the higher sweat [NaCl] in SS. Given that SS were all well-trained endurance athletes 

who reported no chronic CF-like conditions (e.g. pancreatitis, recurrent sinus infections), 

this is more likely.  Gene sequencing of non-CF subjects would be required to determine 

if such a discreet CF gene polymorphism is present with greater frequency in SS. Thus, 

we cannot yet exclude the possibility that a relationship exists between excess NaCl loss 

in sweat and CF carrier status.  

While CFTR expression was reduced in SS and CF, ENaC expression was 

remarkably similar among groups. In addition to serving as a cAMP-activated Cl- 

channel, CFTR plays a critical role in transepithelial absorption through its influence on 

other ion transport proteins, including ENaC 131-133. Functionally dependent on CFTR in 

several absorbing tissues including those of the sweat gland 100 134, ENaC conductance for 

Na+ reabsorption should not be assumed intact when ENaC expression is normal. 

Therefore, it is reasonable that [Na+] in sweat was markedly higher in SS despite no 
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difference in ENaC expression, and that no association was determined between sweat 

[Na+] and luminal expression of ENaC.  

While our findings indicate that reduced CFTR expression at the luminal 

membrane of the sweat duct is related to the high sweat [NaCl] found in some 

apparently-healthy individuals, reduced CFTR expression accounts for only 21% of the 

variance in sweat [Na+] within non-CF subjects which suggests that other factors may 

also play a mechanistic role.  The possibility of other contributing factors is also 

suggested by the observation that sweat [NaCl] in SS was approximately twice that of 

Control while CFTR expression in SS compared to Control was only 25% less. Further, 

CF sweat [NaCl] was almost three times higher than Control yet mean CFTR expression 

in CF compared to Control was only approximately 50% less. It is not possible with these 

data to assess how differences in overall channel function for SS and CF compared to 

Control contributed to differences in their sweat [NaCl]. However, functional impairment 

of transepithelial transport channels may explain how sweat [NaCl] was almost twice that 

of matched Control despite CFTR expression that was similar for one of the six SS 

subjects, and unexpectedly greater for another of the six SS subjects, compared to 

Control counterparts.   

Functional impairment of CFTR was almost certainly an additional factor in the 

high sweat [NaCl] for CF subjects, all of whom had ΔF508 mutations on at least one 

allele, and four of whom were homozygous for ΔF508.  ΔF508 CFTR is translated, but 

misprocessing within the endoplasmic reticulum results in most of the protein being 

directed toward degradation instead of insertion into the plasma membrane 135 136. 

Therefore, it was expected that luminal CFTR immunostaining would be largely absent in 
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CF as other investigators have demonstrated for ΔF508 sweat ducts 60 128. Interestingly, 

there was not a complete absence of luminal CFTR staining in CF tissue.  While many 

ductal sections showed scarce immunoreactivity to M3A7, some CF ducts were found to 

stain for CFTR similar to that in non-CF SS tissue, and overall mean CFTR expression in 

CF was still approximately half that of Control. This is unexpected as immunostaining 

with M3A7 at similar dilutions has previously been characterized by other investigators 

127 128. One possible explanation for the slightly greater CFTR expression in these 

subjects compared to ΔF508 CF in previous studies is an increase secondary to patient 

medications. Aminoglycosides, especially tobramycin, are frequently prescribed for CF 

patients to combat respiratory infections from the opportunistic bacterial pathogen 

Pseudomonas aeruginosa 137.  It is not known if aminoglycoside therapy results in 

pharmacologic effects that extend beyond control of infections. Four out of six CF 

subjects in this study were on tobramycin or other aminoglycosides at the time of 

participation. An important difference observed for CF compared to non-CF was the lack 

of association between sweat duct CFTR expression and sweat [Na+] or [Cl-].  Despite 

apparent presence of CFTR (albeit reduced) at the CF ductal lumen, NaCl sweat loss was 

still almost three fold higher for CF than Control. This is consistent with the belief that 

for the few ΔF508 CFTR channels that are somehow trafficked to the luminal membrane, 

channel function is compromised, possibly due to reduced channel activity 138 and/or 

stability 139. The unexpected positive relationship between ENaC and sweat [Na+] and 

[Cl-] in CF subjects is congruent with the observed upregulation of ENaC expression in 

CF nasal epithelium 140.   
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 It is also possible that expression or function of ductal membrane transport 

proteins other than CFTR and ENaC is additionally reduced in SS or CF. One possibility 

is a Na+/H+ exchanger (NHE1), thought to be responsible for intracellular pH regulation 

in ductal epithelium in concert with an apical concanamycin A-sensitive proton pump 50 

51. NHE1 is present at the basolateral and lateral membranes of human eccrine sweat duct 

cells 51 52 and control of ductal intracellular pH may be mechanistically linked to luminal 

Na+ removal 51. A deficiency in NHE1 expression or function would lead to a rise in 

intracellular Na+, thereby reducing the gradient for luminal Na+ entry through ENaC. 

This would decrease luminal Na+ reabsorption and acidification of sweat. While not 

examined in this study, it would be interesting to determine if sweat pH is elevated along 

with [NaCl] in apparently-healthy salty sweaters.   

Looking for other potential mechanisms that can explain the remaining 

variability, it has been suggested that aquaporins might play a role in the saltiness of 

sweat particularly as a possible point of control for acute regulation of the sweat gland by 

vasopressin 6 141. However, while secretory coil cells of mice and rat paw sweat glands 

appear to specifically express AQP5 142, there is not good evidence supporting its 

presence in the cells of the human sweat duct.  AQP5 is more likely to be found in the 

secretory not ductal portion of the human sweat gland, as has been shown to be the case 

in other glandular epithelium 143-145. If AQP5 or other aquaporins are indeed localized to 

the secretory coil of the human sweat gland, they would not participate in the ductal 

modification of primary sweat prior to final sweat excretion. However, it is conceivable 

that decreased aquaporin expression or function in the coil could ultimately contribute to 

a more concentrated final sweat if transcellular water transport (into the lumen) during 
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the formation of primary secreted sweat is decreased. Volume of sweat produced would 

also be compromised, though, and salty sweat is not associated with a lower rate of 

sweating as observed in both CF and SS in this study. Nonetheless, further investigation 

is needed to clarify the role that aquaporins may play in the human sweat gland and if 

variable expression or function is a contributing factor to the excretion of saltier sweat in 

some individuals.  

 
2.6.  Conclusion 

 In the present study, we have demonstrated that reduced expression of the Cl- 

channel CFTR at the apical membrane of the sweat gland’s reabsorptive duct may 

contribute to greater loss of NaCl in some apparently healthy individuals during 

thermoregulatory sweating. CF subjects had significantly lower ductal CFTR expression 

compared to healthy salty sweaters; moreover, these healthy salty sweaters had lower 

CFTR expression than their control counterparts.  Differences in CFTR-mediated Cl- and 

Na+ transport in ductal NaCl reabsorption could be a potential mechanism underlying 

variability in human sweat Na (.i.e. promoting a CF-like phenotype). However, genetic 

testing failed to establish a link between healthy salty sweaters and one of the 39 most 

common disease-causing CFTR mutations; but, a relationship to other untested CFTR 

variants cannot be entirely ruled out. Further research is needed to investigate whether 

other epithelial transport proteins contribute to the variability in human eccrine sweat 

sodium chloride composition.  
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CHAPTER 3   
 
 

HIGH SWEAT SODIUM LOSSES DO NOT DIFFERENTIALLY 

ALTER PERCEIVED THIRST DURING EXERCISE IN THE HEAT 

  

3.1.  Abstract 

 Purpose:  Eccrine sweat sodium concentration ([Na+]) varies greatly among 

individuals; but, whether this differentially affects physiological responses that dictate 

thirst during prolonged exercise in the heat has not been investigated.  Methods:  A total 

of twenty-one physically-active young adults performed cycling in the heat (32-33°C, 

35% RH) at 50% of VO2max until 3% body weight loss. Seven healthy subjects with high 

sweat [Na+] (SS) were matched by physical characteristics, training, and acclimation 

status to healthy subjects with average sweat [Na+] (Control).  Six physically-active 

cystic fibrosis patients (CF), who phenotypically excrete extremely salty sweat, served as 

a third group. Results: Mean (± SD) regional sweat [Na+] (91.0 ± 17.3) and [Cl-] (84.0 ± 

17.8 mmol/L) for SS were higher (p<0.001) than Control (43.7 ± 9.9, and 41.9 ± 6.9 

mmol/L, respectively). CF sweat [Na+] (132.6 ± 6.4) and [Cl-] (127.0 ± 12.1) were also 

higher compared to Control (p<0.001) and SS (p<0.005).  Whole body sweat rate relative 

to body mass (12.3 ± 2.5 mL/kg/hr) and exercise time required to reach 3% dehydration 

(125.7 ± 22.0 min) did not differ among groups. Rise in serum osmolality with 

dehydration was lower (p<0.05) in CF (6.1 ± 4.3 mOsm/kgH2O), and SS (8.4 ± 3.0 

mOsm/kgH2O) compared to Control (14.8 ± 3.5 mOsm/kgH2O). Relative change in 

plasma volume (%ΔPV) was significantly (p<0.05) greater in CF (-19.3 ± 4.5%), and SS 
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(-18.8 ± 3.1%) than Control (-14.3 ± 2.3%). Rating of thirst relative to dehydration and 

change in plasma aldosterone, vasopressin, and angiotensin II was not different among 

groups. During recovery, serum [Na+] (by 2.8 ± 2.1 mmol/L) and [Cl-] (by 4.8 ± 1.3 

mmol/L) decreased below resting values in CF with ingestion of a sports beverage 

despite 30% lower (p<0.05) volume ingested ad libitum compared to SS and Control. 

Conclusion:  Individuals with CF and healthy individuals with high sweat [Na+] exhibit 

attenuated blood osmolality but greater relative plasma fluid loss at moderate levels of 

dehydration, resulting in similar ratings for thirst as Controls during exercise in the heat.  

However, drinking behavior in CF, unlike SS, was altered when presented with hypotonic 

fluids in recovery, presumably in response to the reduction in blood [NaCl].   

 
3.2.  Background 

3.2.1.  Variability in Human Eccrine Sweat Electrolytes 

There is tremendous inter-individual variability in eccrine sweat sodium 

concentration ([Na+]) in healthy subjects tested under similar conditions that control  

methodological factors related to sweat collection and analysis 2-4 146 147. Representing the 

most extreme physiological example of extra salty sweat, [Na+] of sweat from individuals 

with the lethal autosomal recessive disease cystic fibrosis (CF) is typically three to five 

times higher than average due to defective chloride (Cl-) and sodium (Na+) channel 

transport in the CF sweat duct 53 54. ΔF508 is the most frequent mutation causing CF in 

the US, with more than 90% of all CF patients carrying at least one allele 148.  As a result 

of the misprocessing and protein degradation associated with this mutation, CFTR fails to 

localize correctly at the sweat duct membrane 148 149 and results in sweat that is nearly 

isotonic to plasma.  Regardless of acclimation status (which is known to modulate sweat 
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electrolytes even within an individual 14-17 33), some apparently healthy (non-CF) 

individuals also excrete sweat containing high [Na+], with values approaching that of CF 

64. The implications of excess sweat sodium losses on physiological functions (e.g., 

thermoregulation, fluid balance, cardiovascular regulation) are not fully understood, 

especially for humans engaging in exercise where dehydration may occur. 

 
3.2.2.  Physiology of Thirst 

 Thermoregulatory sweating during exercise typically results in increased blood 

osmolality due to the relatively greater loss of water compared to electrolytes. There is a 

strong relationship between the sensation of thirst and blood osmolality 71-73. As 

osmolality increases, arginine vasopressin (AVP) release increases, mediated by 

signaling from osmoreceptors of the preoptic anterior hypothalamus 77. As little as a 1 or 

2% rise in osmolality induces release of this dipsogenic hormone 73-77, AVP, which 

results in insertion of aquaporin-2 channels into the apical membrane of the collecting 

duct and subsequently increases renal fluid retention 77. Vasopressin also stimulates a 

behavioral mechanism (drinking) for the correction of hyperosmolality by its influence 

on thirst drive 73-76. Individuals with high sweat [Na+] have proportionately less free 

water (FW) loss during sweat-induced dehydration 79; however, the impact of lower FW 

loss on their hyperosmolality-dependent sensitivity of thirst relative to hydration deficit is 

not well known. This has important implications during exercise in the heat, because 

attenuated thirst and diminished drinking may promote a state of involuntary dehydration 

71, with subsequent challenges for cardiovascular responses and thermoregulation.  

 
3.2.3.  Adequacy of Thirst Mechanism during Prolonged Exercise in the Heat 
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 There is debate among exercise physiologists whether reliance on thirst is 

recommended during exercise in the heat.  It has been common practice to recommend 

programmed drinking 84-87 due to a potential lag in the thirst mechanism leading to 

inadequate fluid balance to maintain exercise performance. An alternative view is that 

thirst-guided drinking in humans is sufficient for fluid balance during exercise (as in 

other mammalian species) and that not relying upon the thirst drive could potentially lead 

to excess consumption of fluids and increased risk of hypervolemic hyponatremia 89 90 93 

150.  It is possible that both views are correct, but that the thirst drive is not reliable for all 

individuals.  It has been observed that individuals with CF, who phenotypically exhibit  

elevated sweat [NaCl], may underestimate their fluid needs during exercise in the heat, 

resulting in a state of ‘involuntary dehydration.’ It has been suggested that this may be 

due to an attenuated hyperosmolality trigger for thirst 83 151 152. The impact of variability 

in sweat [Na+] on thirst sensation has not been previously explored. The implications 

could be particularly important for individuals with high sweat [Na+] such that, if thirst 

does not match actual fluid needs due to sweating, they may be at greater risk for 

dehydration if dependent upon thirst-guided drinking during prolonged activity in the 

heat. However, to recommend regimented drinking for these individuals is also possibly 

deleterious because the combination of excess sweat [Na+] loss coupled with excessive 

water intake could result in lower serum sodium and risk for hyponatremia during 

prolonged activity in the heat 26 70 95 96.   

 For individuals with CF who excrete extremely salty sweat, the impact of a 

potentially greater cumulative sweat NaCl loss on blood electrolytes and thirst sensitivity 

has not been investigated systematically. With improved management of respiratory and 
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digestive sequelae, participation in recreational and competitive sports is increasing for 

patients with CF. Exercise is encouraged, as higher levels of aerobic fitness in CF 

patients have been shown to be associated with an increased life expectancy 153 154. 

However, with electrolyte and fluid losses during prolonged exercise not clearly defined 

for CF, fluid replacement guidelines have yet to be established for this population to 

maximize safety and performance during exercise in the heat. To our knowledge, CF 

responses to thermally-induced sweating during exercise have been investigated in only 

four studies to date in the literature 83 118 151 155. However, there are methodological 

limitations in some aspects of these studies, such as uncontrolled volume of fluid 

ingestion during exercise between groups 83 118 155, inadequate yield in blood sampling 151, 

use of CF subjects with low fitness 83 or unequal fitness levels between CF and non-CF 

groups 118.  In the present study, exercise-trained CF patients were compared to healthy 

exercise-trained individuals with high and “normal” sweat NaCl loss to determine the 

effect of dehydration on physiological responses and fluid/electrolyte balance during 

exercise.  It was hypothesized that individuals with high sweat [NaCl] (e.g. both healthy 

and CF) would have attenuated increases in blood osmolality and thus decreased osmotic 

stimulation of thirst relative to change in hydration status compared to individuals with 

normal sweat [NaCl].  

 
3.3.  Methods 

3.3.1.  Subjects 

3.3.1.1.  Preliminary Screening and Subject Selection 

Recreationally-active young adults (aged 18-40 yrs) were recruited from the 

campus community and endurance sports teams in the area. Normal, healthy volunteers 
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(non-CF subjects) participated in a preliminary sweat collection session (i.e., 30-60 min 

of cycling or running at self-selected pace until 1.5-2 ml of sweat was obtained). Sixteen 

individuals were chosen to participate as subjects based on their measured sweat 

composition: eight were ‘salty sweaters’ (SS) with sweat [Na+] > 70 mmol/L (Mean ± SD 

= 87.6 ± 18.4 mmol/L, range 70-111 mmol/L),  and eight were normal (Control) with 

sweat [Na+] < 60 mmol/L mmol/L (Mean ± SD = 41.2 ± 8.4 mmol/L, range 31-55 

mmol/L). The cut-point of  > 70 mmol/L was used for selecting SS because it represents 

~ 2 SD higher than the mean recently reported for regional sweat [Na+] collected under 

similar conditions and with a similar technique from the upper back region during 

exercise in the heat 117.  

In addition, six young adults with cystic fibrosis (CF) were recruited through the 

Emory University Cystic Fibrosis Center and the local community to participate as 

volunteers.  All CF had sweat [Cl-] in previous diagnostic pilocarpine testing of > 75 

mmol/L.  One CF subject was ΔF508/R1162X, one was ΔF508/1717-1G→A, and the 

remaining four were homozygous for ΔF508 mutations.  All CF were in stable clinical 

status with an FEV1 > 75% of predicted value, performed aerobic exercise for a minimum 

of four hours per week, and were cleared by their physician for participation. Informed 

written consent was obtained from both CF and non-CF as approved by the Institutional 

Review Boards at the Georgia Institute of Technology and Emory University.  

 
3.3.1.2.  Study Design and Subject Characteristics 

 Responses to progressive dehydration induced by prolonged exercise in the heat 

in Control, SS, and CF were compared using a cross-sectional design. Identification of SS 

subjects was performed first through sweat collections in preliminary screening. 
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Subsequent matching of each SS subject with a Control subject was performed on the 

criteria that Control have lower sweat [Na+] by at least ~50% (mean ± SD % difference in 

sweat [Na+]  for Control compared to matched SS = -53.2 ± 11.6%). Non-CF pairs were 

also matched by age, gender, anthropometry, training history, and aerobic capacity. 

Subject characteristics are presented in Table 3.1. Sample size among the groups was not 

equally balanced due to difficulty in recruiting CF subjects and a subject drop-out in SS. 

Compared to non-CF groups, CF were younger, had lower aerobic capacity, and lower  

 
 
Table 3.1: Mean (±SD) physical characteristics, exercise training volume, and aerobic 
fitness (VO2max) of Control, non-CF salty sweaters (SS), and cystic fibrosis (CF) subjects 
(n=21). * Significantly < Control and SS (p<0.05). 
 
 
 Control SS CF 

Gender 8 m, 2 f 7 m, 2 f 4 m, 2 f 

Age (yrs) 30.5 ± 5.7 31.6 ± 6.5   22.2 ± 4.5 * 

Weight (kg)   68.8 ± 11.8   74.4 ± 14.7   63.7 ± 13.9 

Body Fat (%) 14.5 ± 6.8 17.3 ± 8.1 15.3 ± 5.6 

Training Volume (hrs/wk) 11.1 ± 4.9 12.0 ± 4.0     5.1 ± 1.6 * 

VO2max (ml/kg/min) 52.8 ± 5.7 50.1 ± 6.5   39.9 ± 4.5 * 

HRpeak (bts/min) 184.9 ± 7.1 181.4 ± 6.2   190.0 ± 4.8  
 
 
 

 

weekly training volume as expected given the nature of the disease. Paired non-CF 

subjects were tested in the same month, and between the months of December through 

May, to control for natural heat acclimation (a well-documented modifier of sweat 

composition) 14-17. CF subjects were matched to non-CF subjects by gender but not 

necessarily tested within the same month as their non-CF counterparts. However, this was 

not a major study limitation since CF sweat composition does not appear to change with 
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heat acclimation 118. All female subjects were tested in the early follicular phase of the 

menstrual cycle to avoid estrogen and progesterone influences on osmotic thirst and AVP 

responses during the luteal phase 123.  Comparison of collected sweat among groups was 

performed at the same relative dehydration and exercise intensity to minimize potential 

effects of these known modifiers on sweat electrolytes.  

 
3.3.2. Initial Testing Session: Aerobic Capacity Assessment and Familiarization  

In the first test session, a graded, incremental cycling test was conducted in the 

heat (32-33°C and 35% relative humidity) to determine maximal oxygen uptake 

(VO2max).  Collection of expired gases to determine oxygen consumption (VO2) and 

respiratory exchange ratio (RER), heart rate (HR) and rating of perceived exertion (RPE) 

124 were recorded during each stage the test. Subjects cycled until volitional exhaustion. 

VO2max was considered achieved at test termination based on attainment of at least two of 

the following criteria: a plateau in VO2 during the last two stages (increase < 2.1 

ml/kg/min), a HR within 10 beats/min of age-predicted HRmax, a respiratory exchange 

ratio (RER) > 1.10, or a minute ventilation > 115 L/min.  

A 30 min familiarization ride in the heat (32-33° C and 35% relative humidity) 

followed the VO2max testing to validate the workloads corresponding to a work rate 

estimated to elicit 50%VO2max for the next test session. Nude dry body weight was 

obtained before and after the 30 min ride to determine individual whole-body sweat rates. 

During the familiarization ride, a regional sweat sample was collected from the right 

scapula in order to confirm group placement.  

Body composition was assessed for subject matching purposes using dual energy 

X-ray absorptiometery (DEXA) with a Lunar Prodigy whole body scanner (GE Medical 
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Systems, Madison, WI). At the completion of their initial testing session, subjects were 

instructed in use of dietary logs to record ingested food and beverages for the three days 

prior to their second testing session.  

 
3.3.3.  Second Testing Session: Dehydration Induced by Prolonged Cycling in Heat 

3.3.3.1.  Pre-testing Controls 

Subjects abstained from caffeine at least 12 hours prior and alcohol at least 32 

hours prior to reporting to the lab for testing. Twenty-four hour food logs indicated that 

subjects complied with instructions to consume a standardized breakfast meal consisting 

of bagel, toast, and/or English muffin with cream cheese, butter, and/or peanut butter, and 

orange juice (if desired) on the morning of testing. There was no difference (p>0.05) 

between SS and Control in macronutrient, sodium, or caloric intake relative to body 

weight (BW) for the morning of testing, and for the average of three days prior to testing. 

CF consumed significantly more (p<0.05) total calories (14.7 ± 7.1 kcals/kg of BW) and 

protein (0.6 ± 0.3 g/kg BW) than SS (6.5 ± 2.7 kcals/kg, 0.3 ± 0.2 g/kg protein), and 

significantly more (p<0.05) fat (0.6 ± 0.3 g/kg) than both Control (0.3 ± 0.1 g/kg) and SS 

(0.2 ± 0.1 g/kg) the morning of testing. However, there was no difference (p>0.05) from 

Control or SS for CF 3 day average macronutrient, sodium, or caloric intake relative to 

BW.  

To minimize variation in pre-exercise hydration between subjects, a euhydration 

protocol was piloted and instituted. Subjects were given instructions to ingest a volume of 

water equivalent to approximately 12 ml of per kg of BW the evening before and 

morning of testing. Furthermore, subjects did not perform physical exercise for 24 hours 

prior to testing. Euhydration was confirmed with measurement of urine specific gravity 
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(USG) < 1.021 125 one hour prior to, and immediately prior to beginning the exercise 

protocol, and with subsequent measurement of serum osmolality < 290 mOsm 4. All 

subjects began the protocol well-hydrated with no difference (p<0.05) among groups in 

initial serum osmolality (Control 279.9 ± 2.8, SS 282.8 ± 2.5, and CF 284.0 ± 3.2 

mOsm), or USG (Control 1.006 ± 0.002, SS 1.006 ± 0.001, and CF 1.009 ± 0.004). 

 
3.3.3.2.  Testing Protocols: Exercise and Recovery 

The experimental test protocol consisted of prolonged cycling exercise in a heated 

environmental chamber (32-33° C and 35% relative humidity). Cycling was performed at 

50% of VO2max, in 20 minute bouts, separated by five min rest periods and continued 

until 3% body weight was lost. No fluids were ingested by subjects during exercise. To 

estimate whole body fluid loss, nude body weight was obtained pre-exercise and every 20 

min during cycling; subjects undressed and towel dried in a screened area within the heat 

chamber prior to each weighing.  

Following the exercise-induced dehydration protocol, subjects moved to a 

thermoneutral room (22°C) for a 60 min recovery period. Subjects were provided ad 

libitum a carbohydrate-electrolyte replacement beverage with 20 mmol Na+ (Gatorade, 

Pepsico, Purchase, NY).  Due to CF subject complaints following the exercise-

dehydration protocol presumably from substantial sweat NaCl losses, CF were also 

provided ad libitum salty foods (e.g. potato chips, salty crackers) beginning at 30 minutes 

of recovery and these subjects remained an additional 60 min for monitoring of blood 

[Na+] prior to departure.   

 
3.3.3.3.  Measurements 
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VO2 and RER were obtained five min prior to the end of every 20 min exercise 

stage by open-circuit spirometry using a PARVO Medics TrueOne 2400 Metabolic 

Measurement System (Parvo Medics, Inc., Salt Lake City, UT). HR was measured via 

telemetry (Polar Electro Inc., Woodbury, NY) and recorded every five min. Core 

temperature was monitored using an ingestible temperature sensor (CoreTemp, HTI 

Technologies Inc, Palmetto, FL) and recorded every 20 min. RPE with a 15 point Borg 

Scale 124 was recorded at the end of each 20 min exercise stage. Rating of perceived thirst 

using a 10 mm Visual Analog Scale (VAS) was obtained prior to and every 20 min 

during cycling and every 10 min during the post-exercise recovery.  Without giving 

specific rehydration instructions to subjects, post-exercise volume of beverage ingested 

ad libitum was also recorded.  

 
3.3.3.4.  Regional Sweat Analysis 

Sweat was collected with the modified Brisson method 20 using a collection pouch 

constructed with impermeable Parafilm (7 cm x 8 cm) (American Can Co., Greenwich, 

CT) and Opsite wound dressing (10 cm x 14 cm) (Smith & Nephew Inc., Largo, FL). The 

sweat collection site was the scapular region, an accessible area that correlates well to 

whole-body sweat concentrations for [Na+] and [Cl-] 18. The skin of the scapula was 

cleaned with alcohol, deionized water, and sterile gauze, and air dried before application 

of the collection pouch. Sweat was aspirated from the collection pouch every 20 min 

during cycling. Sweat [Na+], [Cl-], and [K+] were measured in triplicate using a chemistry 

analyzer (Nova 5, Nova Biomedical, Waltham, MA).  Frequent removal of accumulated 

sweat minimized electrolyte leaching from the epidermal layer into the sweat sample. 
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Stable sweat [K+] values throughout the collection time points provided evidence that this 

potential source of error was minimal 126. 

 
3.3.3.5.  Blood and Urine Analysis 

A forearm vein was cannulated with subjects in a supine position, and following 

12 min in a sitting position, a resting blood sample was drawn.  Blood samples were also 

drawn every 20 min during the cycling protocol, and following the 60 min post-exercise 

recovery period. For most CF subjects, additional recovery period samples were drawn at 

30 min, 90 min, and 120 min. The catheter was kept patent with a sodium heparin 

lockflush solution between samplings. Following removal of a ~1.5 mL waste sample, 

venous blood was drawn into an EDTA-treated test tube and immediately analyzed for 

hemoglobin (Hb) (HemaCue AB, Angelholm) and hematocrit (Hct) (microhematocrit 

centrifugation). Blood was centrifuged at 3,000 rpms for 10 min and plasma was stored at 

-20° C.  Plasma hormone assays were performed by an outside laboratory (Yerkes 

Biomarkers Core Lab, Emory University). Plasma samples corresponding to baseline 

(0%), 1.5%, and 3.0% dehydration were analyzed using commercially-available 

radioimmunoassay kits for aldosterone (ALDO) (Diagnostic Systems Laboratories, 

Beckman Coulter, Webster, TX), and angiotensin II (AngII) (American Laboratory 

Products Company, Windham, NH), and a commercially-available enzyme immunoassay 

kit for arginine vasopressin (AVP) (Assay Designs, Ann Arbor, MI). At all collection 

times, a venous sample was also drawn into a serum separator tube, allowed 30 to 60 min 

to clot, and centrifuged at 3,000 rpms for 10 min. Urine was collected pre- and post-

exercise, and during the 60 min recovery period to assess volume, specific gravity 

(handheld refractometry), and [electrolytes]. There was no urine output during exercise 
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except for one SS subject. In this case, the urine output during exercise was included in 

the post-exercise urine volume. Urine and serum [Na+], [K+], and [Cl-] were measured 

with a Nova5 chemistry analyzer (Nova Biomedical, Waltham MA). Serum was also 

measured for osmolality via freeze point depression method (MicroOsmette Precision 

Systems, Natick, MA). 

 
3.3.3.6.  Calculations 

Total body water (TBW) loss was estimated from body weight loss. Total sweat 

loss was calculated from net change in body weight assuming that water loss due to 

respiration was negligible 156. Electrolyte losses in sweat and urine were calculated by 

multiplying the volume lost by the [electrolyte] of each 157. Cation loss was calculated as 

[([Na+] + [K+])sweat  x volumesweat } + {([Na+] + [K+])urine  x volumeurine ]. Free water 

(FW) loss was calculated as TBW loss – (cation loss x 2)/serum Osmopre. The ratio of 

FW loss to TBW loss describes the nature of the dehydration challenge (isotonic vs. 

hypotonic) and determines how the TBW loss is shared by the different body fluid 

compartments 79 158.  The relative change in plasma volume (%ΔPV) was calculated from 

changes in Hb and Hct 159.   

 
3.3.4.  Statistical Analysis 

The sample size required to obtain a measurable effect on serum [Na+] and 

osmolality was estimated based on previously published research with eight cyclists 

exercising in the heat that resulted in varied sweat electrolyte loss 6. Using G Power 160, 

for a power of 0.9 and a minimum effect size of 0.75, comparisons between 16 subjects 

was considered adequate. Analysis of variance with repeated measures (ANOVA-RM) 

was used to assess differences among groups for physiological responses across 
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dehydration levels 0 to 3.0%, or across recovery time points. One-way Analysis of 

variance (ANOVA) was used to assess differences among groups for variables not 

expressed over progressive dehydration or time such as subject characteristics, pre-test 

measures, and change relative to baseline for variables measured post-exercise or post-

recovery. When a significant main effect for group was observed, post-hoc analyses 

(Tukey) were performed to identify between-group differences. Association of sweat 

[Na+] with serum osmolality, actual and predicted serum [Na+], % ΔPV, and hormone 

responses; and association of physiological responses to dehydration with ad libitum 

drinking volume were analyzed with Pearson product-moment correlation. All statistical 

testing was conducted using SPSS (ver. 17.0, Chicago, IL).  An α level of 0.05 was used 

to indicate statistical significance.  All values are presented as mean (± SD). 
 
 

3.4.  Results 

 
3.4.1.  Sweating Characteristics and Responses 

Sweating-related characteristics are presented in Table 3.2. Control, SS, and CF 

had similar exercise time, TBW loss, and percent body weight loss (3% dehydration) 

achieved at the termination of exercise. There was no difference among groups in sweat 

rates (SR) expressed relative to kg of body mass, or as absolute values ( 0.9 ± 0.2 L/hr for 

Control, 1.0 ± 0.3 L/hrfor SS, and 0.7 ± 0.2 L/hr for CF). Sweat electrolytes presented in 

Table 3.2 reflect an average for all values obtained during the entire exercise protocol.  

As an expected outcome based on the subject recruitment procedure, sweat [Na+] and [Cl-

] were significantly higher for CF and SS compared to Control (p<0.001) and also higher 

for CF compared to SS (p<0.001). Consistent with reports in the literature 2 64, CF sweat 

[K+] was also significantly higher compared to both non-CF groups (p= 0.04 vs. Control 

and p=0.02 vs. SS); moreover, Control sweat [K+] did not differ from SS (p=0.941).  
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There was no significant relationship observed for SR and sweat [Na+] (r = -0.278, 

p=0.223). Sweat [Na+] and [Cl-] increased with progressive dehydration as expected and 

consistent with the literature 6. There was a trend (p=0.074) for sweat [Na+] to increase 

more in Control compared to CF.  Sweat [Na+] was significantly and inversely associated 

with free water (FW) loss (Fig 3.1, r = -0.991, p<0.001). Calculated FW loss relative to 

kg of BW was significantly lower for SS (12.2 ± 3.0 ml/kg BW), p<0.001) and CF (1.1 ± 

2.5 ml/kg BW, p<0.001) compared to Control (21.7 ± 1.8 ml/kg BW). FW loss in CF was 

also significantly less than SS (p<0.001). This was also observed when FW loss was 

expressed as a percentage of ΔTBW (Fig 3.2).  

 
 

Table 3.2: Mean (±SD) characteristics for Control, non-CF salty sweaters (SS), and 
cystic fibrosis (CF) subjects (n=21) for exercise time to achieve 3% dehydration, total 
body water (TBW) loss relative to body weight (BW), free water loss relative to BW, 
sweat rate (SR) relative to BW, change in SR by 3% compared to 1% dehydration final 
exercise stage, sweat electrolytes concentration (indicated by brackets), and change in 
sweat electrolytes by final exercise stage. Percent change values are calculated relative to 
values at 1.0% dehydration. * Significantly > Control, # CF significantly > SS (p<0.05).  
 

 Control SS CF 

Exercise time (min) 122.5 ± 16.7 125.7 ± 27.6 130.0 ± 24.5 

TBW loss (ml/kg) 33.8 ± 3.3 32.1 ± 2.8 30.4 ± 2.8 

Free water loss (ml/kg) 21.7 ± 1.8   12.2 ± 2.9 *         1.1 ± 2.5 * # 

Sweat Rate (ml/min/kgBW) 212.8 ± 32.5 215.8 ± 58.0 183.7 ± 29.0 

% Change in SR    -2.8 ± 12.5    -1.6 ± 22.9    -1.3 ± 20.2 

Sweat [Na+] (mmol/L) 43.7 ± 9.9      91.0 ± 17.3 *    132.6 ± 6.4 * # 

% Change in Sweat [Na+]   14.2 ± 9.5   8.2 ± 7.4   4.2 ± 5.0 

Sweat [Cl-] (mmol/L) 41.9 ± 6.9      84.1 ± 18.0 *       127.0 ± 12.1 * #

% Change in Sweat [Cl-]   16.1 ± 9.7   9.4 ± 8.9   6.2 ± 4.7 

Sweat [K+] (mmol/L)   4.7 ± 0.5      4.4 ± 0.3 *         7.4 ± 3.3 * # 

% Change in Sweat [K+]    -4.2 ± 8.8      2.0 ± 10.3    1.8 ± 8.1 
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3.4.2.  Blood Responses 

Serum osmolality increased during exercise but was not different across groups at 

the same relative level of dehydration (p=0.589) (Fig 3.3a); however, the increase in 

serum osmolality was significantly less in CF (p= 0.015) at 1.5 through 3.0% dehydration 

and in SS (p=0.034) at 3% dehydration compared to Control (Fig 3.3b).  A significant 

relationship (r = -0.756, p<0.001) was determined between sweat [Na+] and change in 

osmolality (Fig 3.4a), such that individuals with the highest sweat [Na+] had smaller 

change in osmolality. 
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Fig. 3.1: Relationship between regional sweat sodium concentration (indicated by 
brackets), and change from baseline in free water relative to change in total body water 
(ΔFW/ΔTBW) incurred by exercise in the heat to 3% body weight loss (3% dehydration) 
for Control subjects (blue squares) with ‘typical’ sweat [Na+], non-CF salty sweaters 
(orange squares), and CF subjects (red squares) with phenotypically very high sweat 
[NaCl]. * p <0.001; n=21. 
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Fig. 3.2: Mean ± SD Free water loss relative to total body water loss (ΔFW/ΔTBW) 
incurred by exercise in the heat to 3% body weight loss (3% dehydration) for Control 
subjects (blue) with ‘typical’ sweat sodium concentration (indicated by brackets), non-CF 
salty sweaters (SS, orange), and CF subjects (CF, red) with phenotypically very high 
sweat [NaCl]. * Significantly less than Control, p <0.001; # CF significantly less than SS, 
p<0.001; n=21. 
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Fig. 3.3: Mean ± SD serum osmolality (A) and change (Δ) in serum osmolality (B) 
relative to percent body weight loss (percent dehydration) during exercise in the heat for 
Control subjects (blue) with ‘typical’ sweat sodium concentration (indicated by brackets), 
non-CF salty sweaters (SS, orange), and CF subjects (CF, red) with phenotypically very 
high sweat [NaCl]. * Significantly less than Control, p <0.05 
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Fig. 3.4: Relationship between regional sweat sodium concentration (indicated by 
brackets), and change from baseline in serum osmolality incurred from exercise in 
the heat to 3% body weight loss (3% dehydration) for Control subjects (blue 
squares) with ‘typical’ sweat [Na+], non-CF salty sweaters (orange squares), and 
CF subjects (red squares) with phenotypically very high sweat [NaCl].  

 * p <0.001, n=19. 

 

 

Serum [electrolytes] during progressive dehydration and recovery are presented in 

Figures 3.5a-c. Control and SS had similar pre-exercise serum [Na+] (p=0.370) but CF 

had higher pre-exercise serum [Na+] than SS (p=0.023) (Fig 5a).  However, CF 

developed lower serum [Na+] than Control (p=0.022) at 2.5% dehydration and CF values 

remained lower throughout exercise (p=0.003) and recovery (p=0.013) (Fig 3.5a). Net 

change in serum [Na+] was significantly less for CF (2.88 ± 1.7 mmol/L)  
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Fig. 3.5: Mean ± SD serum Na+ concentration (indicated by brackets) (a), serum [Cl-] (b), 
and serum [K+] (c), relative to percent body weight loss (percent dehydration) during 
exercise in the heat and at 60 min recovery for Control subjects (blue) with ‘typical’ 
sweat, non-CF salty sweaters (SS, orange), and CF subjects (CF, red) with phenotypically 
very high sweat [NaCl]. * CF significantly less than Control,   p < 0.05, # CF 
significantly greater than SS, p<0.05.  
 
 

 

compared to SS (6.3 ± 1.0 mmol/L, p=0.001) and Control (7.5 ± 1.0 mmol/L, p<0.001), 

and less for SS compared to Control (p=0.05).  

Unlike serum [Na+], serum [Cl-] was not different among groups at baseline 

(p=0.356) (Fig 3.5b). Serum [Cl-] in CF did not increase with progressive dehydration as 

it did for SS and Control, but decreased significantly below baseline at 2.5% dehydration 

(p=0.04)  and was significantly lower (p=0.031) than Control after 1.5% dehydration (Fig 

3.5b) .  SS serum [Cl-] was significantly lower than Control at 2% dehydration (p=0.05) 

and remained lower throughout exercise (p=0.03)(Fig 3.5b).  Net change in serum [Cl-] 

was less for CF (-0.8 ± 0.7 mmol/L) compared to both SS (p<0.001), and Control 

(p<0.001), and less for SS (2.9 ± 1.5 mmol/L) compared to Control (4.9 ± 1.0 mmol/L, 

p=0.02). 

There was no difference among groups in serum [K+] from 0-3% dehydration or 

following recovery (Figs 5c).  There was also no difference in net change (pre- to post- 

exercise) in serum [K+] among groups.  

There was no difference among groups in baseline Hb (13.4 ± 1.6, 14.1 ± 1.3, and 

14.6 ± 1.4 g/dL) or Hct (40.3 ± 1.5%, 41.8 ± 1.9% for SS, 43.7 ± 3.7% for Control, SS, 

and CF, respectively). Percent reduction in plasma volume (PV) across progressive 

dehydration was significantly greater in CF (p=0.04) and SS (p=0.03) compared to 
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Control (Fig 3.6) and post-exercise percent loss in PV was significantly greater in CF 

(p=0.03) and SS (p=0.01) compared to Control. There was a significant relationship (r= 

0.53, p=0.02) between sweat [Na+] and post-exercise relative change in plasma volume 

(Fig 3.7) such that those with higher sweat [Na+] had greater relative loss of plasma 

volume.   
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Fig. 3.6: Mean ± SD % change in plasma volume relative to body weight loss (percent 
dehydration) during exercise in the heat for Control subjects (blue) with ‘typical’ sweat 
Na+ concentration (indicated by brackets), non-CF salty sweaters (SS, orange), and CF 
subjects (CF, red) with phenotypically very high sweat [Na+],  * CF significantly < 
Control,  p < 0.05, * SS significantly < Control,   p < 0.05. 
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Fig. 3.7: Relationship between regional sweat sodium concentration (indicated by 
brackets), and relative change in plasma volume (%ΔPV) incurred from exercise in the 
heat to 3% body weight loss (3% dehydration) for Control subjects (blue squares) with 
‘typical’ sweat [Na+], non-CF salty sweaters (orange squares), and CF subjects (red 
squares) with phenotypically very high sweat [NaCl]. * p <0.05, n=19 

 

 

SS had significantly higher plasma [AVP] at baseline than Control (p=0.042) 

(Table 3.3) and remained higher during progressive dehydration and at 60 min of 

recovery (p=0.034) (Table 3.3). A significant positive relationship was determined for 

non-CF subjects between sweat [Na+] and plasma [AVP] at baseline (r = 0.707, p=0.007), 

post-exercise (r = 0.616, p<0.05), and recovery (r = 0.712, p=0.006) indicating in healthy 

subjects higher sweat [Na+]  was associated with higher AVP . There were no differences 

among groups for change in plasma [AVP] relative to baseline across dehydration and at 

60 min recovery (p=0.619), nor was there any relationship observed between change in 
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plasma [AVP] at any collection points and sweat [Na+]. Higher recovery plasma [AVP] 

was associated with greater fluid retention in recovery (calculated as % of ingested fluid 

that was not diuresed by 60 min post-exercise) (r = 0.605, p = 0.049) and post-exercise 

urine volume (r = -628, p=0.029) when considering only non-CF subjects. Pre- to post-

exercise increase in plasma [AVP] was associated with greater dehydration-induced 

change (% increase) in sweat [Na+] (r = 0.490, p=0.046) and smaller dehydration-induced 

reduction (% decrease) in SR (r = -.656, p=0.003).  

There were no differences among groups in either plasma [AngII] or ALDO at 

baseline, 1.5% and 3.0% dehydration, or after 60 min post-exercise recovery (Table 3.3). 

There were also no differences among groups in change in plasma [AngII]  or ALDO 

relative to baseline at any sample points.   

 
 
Table 3.3: Mean (±SD) in Control, non-CF salty sweaters (SS), and cystic fibrosis (CF) 
subjects (n=19) for plasma hormone concentration (indicated by brackets) of arginine 
vasopressin ([AVP]), angiotensin II ([angII]), and aldosterone ([ALDO]) at baseline 
(pre),in samples corresponding to 1.5% and 3% dehydration, and at 60 min post-exercise 
(post-recovery). * Significantly > Control (p<0.05). 
 
 

Pre 48.1 ± 13.0 81.8 ± 36.5 * 72.0 ± 33.9 

1.5% 54.7 ± 18.1 88.9 ± 37.6 * 73.7 ± 28.4 

3.0% 58.6 ± 19.5 101.2 ± 41.9 * 79.4 ± 21.3 
[AVP] 

Post-recov. 47.4 ± 16.4 83.0 ± 31.9 * 71.6 ± 30.7 

Pre 7.7 ± 5.3 5.5 ± 2.9 9.5 ± 8.9 

1.5% 25.8 ± 20.4 25.5 ± 9.6 55.6 ± 72.9 

3.0% 54.9 ± 54.9 47.0 ± 23.2 90.5 ± 91.6 
[AngII] 

Post-recov. 12.8 ± 6.3 16.4 ± 18.5 31.9 ± 40.8 

Pre 151.3 ± 55.9 135.0 ± 47.7 160.5 ± 68.8 

1.5% 496.5 ± 181.8 482.9 ± 159.9 692.0 ± 387.5 

3.0% 753.1 ± 271.7 845.1 ± 407.1 957.3 ± 481.3 
[ALDO] 

Post-recov. 338.4 ± 90.1 455.9 ± 263.1 454.4 ± 195.7 

 

CF SS Control 
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3.4.3.  Physiological Responses 

 Relative exercise intensity (%VO2max) was similar among groups as designed 

(51.9 ± 2.5% for Control, 51.2 ± 2.6% for SS, and 52.6 ± 2.8% for CF).  Mean HR across 

the dehydration protocol were higher for CF compared to Control and SS (p=0.013), but 

mean %HRpeak, was not different (p= 0.223) among groups (72.5 ± 4.4%  for Control, 

72.8 ± 5.6%  for SS, and 77.6 ± 7.1% for CF) and increased with progressive dehydration 

(by 8.1 ± 4.4 % for Control, 9.1 ± 4.7% for SS, and 6.1 ± 5.4 % for CF). There was no 

difference among groups in core temperature relative to dehydration level. Final core 

temperature was 38.4 ± 0.3 for Control, 38.1 ± 0.2 for SS, and 38.1 ± 0.4°C for CF and 

increased similarly among groups (net change of 1.5 ± 0.5 for Control, 1.4 ± 0.6 for SS, 

and 1.0 ± 0.2 °C for CF).  There was no difference (p=0.696) in RPE between groups 

relative to dehydration across the exercise protocol. RPE increased with progressive 

dehydration similarly among groups (2.1 ± 1.7 for Control, 2.8 ± 2.2 for SS, and 2.9 ± 1.4 

for CF). 

 
3.4.4.  Thirst Response  
 

Thirst ratings via VAS are presented in Fig 8. Pre-exercise thirst rating was 

similar among groups (1.4 ± 1.2 for Control, 1.9 ± 0.9 for SS, and 1.2 ± 0.5 for CF). 

There was no difference among groups in thirst rating relative to dehydration across the 

exercise protocol (p=0.956) or recovery (p=0.724) (Fig 8).  Net change in thirst ratings at 

3% dehydration from pre-exercise values was also similar (p=0.298) among groups (5.95 

± 1.6 for Control, 5.33 ± 1.9 for SS, and 6.72 ± 0.9 for CF). There was also no difference 

among groups (p=0.798) in level of dehydration at the thirst rating of ‘4’, which is 

anchored by the descriptors, “a little thirsty” and “moderately thirsty” on the 10  
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cm VAS rating scale. Mean (± SD) % dehydration at the “4” rating was 1.20 ± 0.8% for 

Control, 1.11 ± 0.9 for SS, and 1.39 ± 0.2 for CF.   

Post-exercise thirst rating (at 3% dehydration) tended to be higher in subjects with 

greater increase in plasma [AVP] (r = 0.413, p=0.08, n=16).  Greater post-exercise thirst 

was also seen with greater dehydration-induced elevation in serum osmolality, but only 

for the control group (r = 0.833, p=0.01, n=8).  For SS, there was a tendency for greater 

post-exercise thirst to occur in those with greater increase in plasma [AngII] (r = 0.670, 

p=0.14, n=6).    

 Individual responses for CF subjects are presented along with mean (± SD) 

volume of fluid ingested ad libitum (normalized by BW) for the three groups during 

recovery in Figure 9. There was no difference between Control and SS in beverage 

volume (p=0.70); however, CF drank significantly less compared to Control and SS when 

expressed in absolute volume in mL (p=0.018 vs. Control, 0.017 vs. SS) and relative to 

BW (Fig 9) (p=0.010 vs. Control, 0.029 vs. SS). 
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Fig. 3.8: Mean ± SD rating of thirst relative to percent body weight loss (percent 
dehydration) during exercise in the heat for Control subjects (blue) with ‘typical’ sweat, 
non-CF salty sweaters (SS, orange), and CF subjects (CF, red) with phenotypically very 
high sweat [NaCl].  
 

 

Greater early ad libitum drinking (volume relative to BW, consumed in the first 30 min of 

recovery) was related to greater dehydration-induced elevation of serum [Cl-] (r = 0.645, 

p= 0.003), and [Na+] (r = 0.491, p=0.03), and lower sweat [Na+] (r = - 0.490, p=0.024),  

and [Cl-] (r = -0.474, p=0.030). These relationships did not persist for healthy subjects 

(n=14) when CF subjects were eliminated from the analysis (p>0.05). Mean % 

dehydration (relative to pre-exercise?) at 60 min post-exercise despite ad libitum fluid 

ingestion in recovery was similar (p=0.137) for Control( 0.3 ± 0.9%), SS ( 0.3 ±  0.4%) 

and CF (1.0 ± 0.5%). 

“Not thirsty 
at all” 

“Very very 
thirsty” 
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Fig 3.9: Mean ± SD cumulative volume of sports beverage consumed during ad libitum 
drinking of recovery period following exercise in the heat to 3% body weight loss 
(dehydration) for Control subjects (blue squares) with ‘typical’ sweat, non-CF salty 
sweaters (SS, orange squares), and CF subjects (CF, red squares) with phenotypically 
very high sweat [NaCl]. Individual data for CF is also shown (solid lines). * CF 
significantly < Control,  p < 0.05; # CF significantly < SS, p<0.05.  

 

 

 
3.4.5.  Recovery Blood and Urine Responses 
 

Individual and mean serum [electrolyte] responses during 60 min recovery (and 

an extended recovery period of 120 min for CF) are presented in Figure 3.9. Net change 

in serum [Na+] from baseline at 60 min recovery (Fig 10a) was significantly less for CF 

compared to Control (p=0.009) and compared to SS (p=0.005). Following the 60 min 

recovery, serum [Na+] was significantly lower (p=0.013) for CF (141.9 ± 0.6 mmol/L) 

compared to Control (145.1 ± 1.9 mmol/L), but not different from SS (144.0 ± 1.8 
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mmol/L, p=0.129). There were no CF or SS subjects that exhibited hyponatremia (<135 

mmol/L). Serum [Cl-] at 60 min recovery was also significantly lower (p=0.032) for CF 

(103.9 ± 1.3 mmol/L) compared to Control (107.6 ± 2.5 mmol/L) but not compared to SS 

(105.6 ± 2.3 mmol/L).  Serum osmolality at 60 min recovery was not different (p=0.886)  

(290.5 ± 11.1 mOsm/kgH2O for Control, 287.5 ± 8.3 mOsm/kgH2O for SS, and 288.3 ± 

3.6 mOsm/kgH2O for CF) and was different from baseline in Control (p<0.001), but not 

for CF (p=0.082) or SS (p=0.167).  

 Recovery values for %ΔPV at 60 min post-exercise following ad libitum fluid 

ingestion were still below baseline for all groups, and the differences across groups did 

not reach significance (p=0.685) (-3.7 ± 11.1% for Control, -3.6 ± 8.3% for SS, and -5.5 

± 3.6% for CF). Mean (± SD) plasma volume restoration (difference between %ΔPV 

post-exercise and %ΔPV following recovery at 60 min post-exercise) was greater 

(p<0.05) in SS (15.2 ± 4.1) than Control (10.6 ± 3.6), but not CF (13.8 ± 4.7, p=0.847); 

and the difference in plasma volume restoration between CF and Control did not reach 

significance (p= 0.178).  

 Effects of exercise-induced dehydration to 3% body weight loss and ad libitum 

drinking in the subsequent 60 min recovery period on urine [electrolytes], specific 

gravity, and volume are presented in Table 3.4. CF and SS appeared to concentrate their 

urine less during recovery compared to Control in terms of change in [electrolytes] and 

USG; and CF appeared to retain less of what was a significantly smaller fluid intake, 

however none of these observations for recovery urine reached statistical significance.  
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Table 3.4: Mean (±SD) 60 min post-exercise recovery values in Control, non-CF salty 
sweaters (SS), and cystic fibrosis (CF) subjects (n=21) for percent change in urine Na+ 

concentration (indicated by brackets) relative to baseline (pre), and relative to immediate 
post-exercise values (post-ex), urine volume, urine specific gravity (USG), fluids 
ingested ad libitum relative to body weight (BW), and percent of fluids ingested during 
ad libitum drinking not lost in urine (% of ingested fluid retained), n=21. * < Control and 
SS (p<0.05). 

  

60 min Recovery 
Variable 

Control SS CF 

% Δ urine [Na+] 
from pre 

210.4 ± 144.7 108.6 ± 97.1 49.6 ± 90.6 

% Δ urine [Na+] 
from post-ex 

74.3 ± 50.6 36.1 ± 53.2 15.4 ± 62.1 

Urine Vol (mL) 54.3 ± 27.8 58.7 ± 52.9  90.7 ± 79.1 

USG 1.022 ± 0.004 1.021 ± 0.007 1.020 ± 0.010 

Fluid ingested 
(mL/kgBW) 

27.2 ± 8.3 26.7 ± 3.7  19.0 ± 4.2 * 

% of ingested  
fluid retained 

96.7 ± 2.1 96.7 ± 3.6 92.6 ± 5.4 

    

 
 
 

3.5.  Discussion 

The present study provided a novel comparison of physiological responses to 

prolonged exercise in the heat among groups with varying NaCl loss in sweat. A key 

focus was the physiological impact of high sweat [NaCl] on factors known to drive thirst 

during progressive dehydration. The most salient finding was that perceived thirst was 

not differentially affected by sweat [NaCl] during exercise, despite our observation that, 

as hypothesized, the hyperosmolality that typically accompanies progressive dehydration 
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was attenuated in subjects with greater sweat NaCl loss. Since increased blood osmolality 

is a potent stimulator of thirst in humans 75-78, similar perceived thirst with differential 

osmotic stimuli in our subjects with high sweat [NaCl] (Fig 3.3) was unexpected. We also 

did not anticipate that the loss of PV relative to dehydration would be greater in subjects 

with high sweat [NaCl] (Fig 3.6). Interestingly, despite similar post-exercise thirst 

ratings, we observed less ad libitum fluid ingestion for individuals with CF compared to 

healthy subjects during the post-exercise recovery period.  

That thirst sensitivity was largely unaffected by high sweat NaCl loss in CF and 

SS may be attributed to the well-documented redundancy in the control mechanisms for 

thirst drive (i.e. osmolality and relative volume of fluid within the vascular space in the 

face of moderate dehydration) 77 161 77 161.  The fact that drinking behavior subsequently 

was different in CF subjects also suggests that thirst sensitivity (Fig 3.8) is not 

unidimensional (based solely on hyperosmolality or on hypovolemia). The greater loss of 

PV relative to dehydration (Fig 3.6) likely impacted thirst sensitivity in SS and CF as it is 

recognized that a reduction in extracellular fluid (ECF) volume, such as incurred with PV 

loss (although believed to be secondary 162) also serves as a signal for thirst. A 10% 

decrease in plasma volume induces an animal to drink voluntarily 77. In humans, the 

hypovolemic threshold for stimulation of thirst is a body water loss of ~0.8% 73 76. While 

all subjects experienced similar relative TBW loss in the dehydration protocol of this 

study (3% of body weight), maintenance of fluid within the vascular space with 

dehydration was less in SS and CF (Fig 3.6). Therefore, while their hyperosmotic 

stimulus for thirst was less, SS and CF subjects may have had a greater hypovolemic 

stimulus relative to dehydration which maintained thirst sensitivity similar to Control. 
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Supporting the notion that thirst sensitivity in individuals with high sweat [NaCl] may 

rely additionally on hypovolemic stimuli, while individuals with more ‘typical’ 

hypotonicity of sweat rely primarily on hyperosmotic stimuli, post-exercise thirst was 

related to dehydration-induced elevation in serum osmolality only within Control, and 

there was a tendency post-exercise thirst to relate to dehydration-induced elevation of the 

(primarily hypovolemic hormone) plasma [AngII] only within SS. 

Congruent with the observation that relative loss of PV was greater in SS and CF 

compared to Control (Fig 3.6), a strong positive relationship was determined for sweat 

[Na+] and reduction in PV with dehydration (Fig 3.7). These observations are somewhat 

counterintuitive, for it might be expected that Controls, with greater fluid lost relative to 

solute in sweat and greater increases in blood osmolality, would also demonstrate greater 

PV loss. However, the opposite finding was observed: SS and CF did not maintain PV 

with dehydration as well as Control. This might be explained by differences in osmotic-

driven shifts between fluid compartments. With exercise-induced dehydration (loss of 

hypotonic body water via sweating), fluid is drawn from the intracellular fluid (ICF) 

compartment into the vascular space of the ECF compartment, along an osmotic gradient 

determined primarily by the [NaCl] of the blood, in order to maintain circulating blood 

volume 156 158 163. Nose et al. 79 a strong positive correlation between dehydration-induced 

change in blood osmolality and change in ICF volume (r = 0.738, p<0.02), and between 

sweat [Na+] and dehydration-induced change in ECF volume (r = 0.804, p<0.01). This 

led them to conclude that the [Na+] in sweat dictates the osmotic gradient that determines 

directional fluid shifts between compartments with dehydration whereby the greater the 

sweat [Na+], the greater the loss in ECF relative to total body water loss 79.  We cannot 
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report changes in ICF and ECF that occurred in our subjects because the calculations 

require measurement of initial total plasma volume. However, given that the relationships 

observed for sweat [Na+] with FW loss (fig. 3.1), and change in blood osmolality with 

FW loss (r = 0.719, p<0.01), are remarkably similar to those reported by Nose et al. 79 for 

subjects dehydrated to 2.3% body weight loss via exercise, it is likely, too, that a reduced 

shift from the ICF to ECF compartment occurred in SS and CF compared to Control due 

to the diminishing effect of high sweat [NaCl] on osmotic pressure to maintain fluid in 

vessels with dehydration.  Since the major determinant of osmolality is NaCl levels in the 

blood, the finding of smaller dehydration- induced change in serum [Na+] and [Cl-] in SS 

and CF subjects with greater sweat [NaCl] loss is congruent with the finding of 

attenuated dehydration-induced increase in osmolality in these subjects as well.  

The tendency for post-exercise thirst rating (at 3% dehydration) to be higher in 

subjects with greater dehydration-induced increase in plasma [AVP] is consistent with 

the well-documented dipsogenic effect of this hormone 72 73 123. A primary driver of 

hyperosmotic thirst, AVP is released from the posterior pituitary gland in response to cell 

shrinking (from loss of ICF), mediated through activated, volume-depleted osmoreceptor 

cells in the pre-optic anterior hypothalamus 77. It was anticipated that the plasma AVP 

response to dehydration might be blunted in SS and CF since their dehydration-induced 

relative hypernatremia and hyperosmolality (Figs 3.3, 3.5), and thus secondary 

dehydration of the ICF compartment, was less. Further, it was anticipated that the 

dipsogenic hormone most sensitive to loss of PV, angiotensin II 162, might demonstrate a 

more pronounced rise in SS and CF with greater relative PV loss over dehydration (Fig 

3.6). However, change in plasma [AVP] and plasma [AngII] with dehydration was not 
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different among groups (Table 3.3). The absence of differential effect of sweat [NaCl] on 

dipsogenic hormone response may be explained by the significant cross-talk that is 

known to exist between hormones of the hyperosmotic and hypovolemic thirst pathways 

77. For instance, peripherally-administered AngII can stimulate AVP release by acting on 

circumventricular organs or directly on the pituitary, and intracranial AngII can also 

cause vasopressin release 162 164.  

Understanding human thirst is important since it has been recognized that the 

drive to drink in humans may be blunted in healthy individuals under certain 

physiological, psychological, and environmental stresses (i.e. athletic competition, cold) 

71 87; as well as diseases such as CF, where involuntarily dehydration during exercise has 

been speculated due to an impaired hyperosmotic trigger for thirst 83 151.  Our results on 

CF subjects are especially novel because serial blood sampling during the dehydration 

and recovery protocols permitted drinking behavior differences in this population to be 

related to measured changes in hydration and electrolyte balance.  CF responses were 

particularly unique because it appears that despite the predicted attenuated 

hyperosmolality, perceived thirst per during moderate dehydration was not affected; 

however, when presented with fluids during recovery, drinking behavior was different. 

While sustaining similar relative TBW loss (3% dehydration), CF subjects ingested 30% 

less fluid ad libitum during recovery than non-CF (even the saltiest of sweaters). Such 

‘involuntary dehydration’ in our CF subjects is inconsistent with the similar perceived 

thirst ratings throughout exercise that mirrored the other non-CF groups, but consistent 

with the behavior observed by other investigators 83 151 for CF children during ad libitum 

fluid replacement following exercise. This suggests that volitional fluid intake for CF is 



 73

particularly influenced by factors other than just TBW loss, such as the unique challenge 

to [NaCl] balance that they incur with prolonged sweating. Volitional drinking may have 

been additionally repressed in CF by the hypotonicity of the recovery beverage provided 

([Na+] = 20 mmol). As present evidence indicates, CF ingestion of the sports drink during 

recovery elicited marked decreases relative to baseline in serum [Na+] and, to a greater 

extent, [Cl-], within 30 min (Fig 3.10).  It is possible that the relatively rapid decrease in 

serum [NaCl] for CF may have served to inhibit appetite for the hypotonic beverage 

provided. Consistent with this, it is known that drinking is also controlled by sodium 

appetite 158 162. Osmoreceptors in the organum vasculosum of the lamina terminals 

(OVLT) and subfornical organ (SFO) responsible for eliciting thirst also trigger one’s 

taste for salt 158 162. In addition to input from osmoreceptors, recent evidence in rats 

suggest that specialized salt sensors with Na+ sensitive channels, Nax, are also located on 

cells of the circumventricular organs and may also contribute to fluid intake behavior 

independently of plasma osmolality 165. While not well characterized in humans, Nax in 

laboratory rats is thought to function by responding to a rise in [Na+] of the cerebrospinal 

fluid and, via efferent projections to the pre-optic anterior hypothalamus, stimulate AVP 

release as well as signal other motor effector regions of the brain 165.  Analysis of 

drinking patterns in rats with experimentally-induced hypertonic vs. hypotonic 

hypovolemia suggests that avoidance of salt imbalance is given preference over 

stimulation of fluid intake for blood volume restoration, with inhibitory signals 

originating from both the gastrointestinal tract and circumventricular organs involved in 

this response 156 161 162 166 167.  Similar to that demonstrated repeatedly in animal models, 

the reduced ad libitum fluid ingestion in CF may reflect physiological cues directed at 
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preservation of salt balance over volume restoration. To illustrate this, individual serum 

[Na+] and [Cl-] responses during recovery are plotted for the CF subjects (Fig 10 a, b). 

Unique to CF, post-exercise serum [Cl-] was reduced, and post-exercise serum [Na+] was 

minimally increased, relative to baseline. By 30 minutes into the recovery period of ad 

libitum drinking, serum [Na+] dropped below pre-exercise values for four CF subjects, 

and to pre-exercise value for another. Serum [Na+] continued to decrease and by 60 

minutes reached values 2-5 mmol/L below pre-exercise.  At 90 min into recovery, serum 

[Na+] was below pre-exercise values for all five CF subjects and by 2 hours post exercise 

remained lower for 3 of the subjects, equaled pre-exercise value for one subject, and in 

one was not measured.  

At the start of the recovery, serum [Cl-] was below pre-exercise values for all but 

one of the CF subjects. By 30 minutes into the recovery period, serum [Cl-] had dropped 

further for all CF subjects, between 3 and 4.5 mmol/L below baseline. Serum [Cl-] 

continued to fall for 4 of the subjects, and remained unchanged in one of the subjects, so 

that by 60 minutes reached between 3 and 7 mmol/L below baseline.  By 90 min into 

recovery, serum [Cl-] was still below baseline for all five CF subjects and by 2 hours post 

exercise remained lower relative to baseline for 4 of the subjects; and for one was not 

measured.    

Illustrating the potential importance of a strategy aimed at preservation of salt 

balance over volume restoration, CF subjects CPE and SWH had the lowest ad libitum 

drinking volume relative to BW during the first 40 min of recovery (Fig 3.9) and by 60 

min had the smallest remaining deficit relative to baseline in serum [Na+] (Fig 3.10 a) and 

[Cl-] (Fig 3.10 b). While no CF subject’s recovery serum [Na+] decreased into the range  
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Fig. 3.10: Mean ± SD change relative to baseline in serum Na+ concentration (indicated 
by brackets) (a), and [Cl-] immediately following exercise in the heat to 3% body weight 
loss (dehydration), and during ad libitum drinking of subsequent recovery period, for 
Control subjects (blue squares) with ‘typical’ sweat, non-CF salty sweaters (SS, orange 
squares), and CF subjects (CF, red squares) with phenotypically very high sweat [NaCl]. 
Individual data for CF is also shown (solid lines). * Significantly < Control, p< 0.05 for 
SS, p < 0.01 for CF; # CF significantly < SS, p<0.01.  

b. 
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Fig. 3.11: Individual CF subjects’ ad libitum salt intake during 30-60 min of recovery 
period following exercise in the heat to 3% body weight loss (dehydration). One CF 
subject and all non-CF subjects were not presented with salty foods during recovery.   

 

 

of clinical hyponatremia (<135 mmol/L), it is tempting to speculate how much lower CF 

serum [Na+] and [Cl-] might have continued to fall without provision for ad libitum salty 

snacks along with sports drink replacement after 30 min in recovery (Fig. 3.11). 

During progressive dehydration, there was no effect of sweat electrolytes on other 

physiological responses (e.g. SR, thermoregulation) important for safety during exercise 

in the heat. SR decreased and core temperature increased similarly for Control, SS and 

CF.  While an increase in blood osmolality is believed to be a signal for the reduction in 

sweating sensitivity associated with dehydration during exercise in the heat 88 168-170, 

sweating sensitivity was not different in the saltiest sweat groups with attenuated rise in 

serum osmolality.  However, analogous to the dual control mechanism for fluid intake, 

hyperosmolality and hypovolemia jointly contribute to sweating inhibition in order to 

preserve fluid and electrolyte balance during prolonged thermoregulatory demand 171 172. 
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Therefore, even though SS and CF may have experienced less hyperosmotic inhibition of 

sweating with dehydration, this may have been offset by their reduced maintenance of PV 

potentially contributing to a greater hypovolemic inhibition of sweating as dehydration 

progressed during exercise.  

 
3.6.  Summary and Practical Recommendations 

In summary, unique findings from this study were that despite smaller FW loss 

and attenuated serum hyperosmolality with dehydration, thirst perception was not 

differentially affected in individuals with high sweat [NaCl] loss during exercise (both 

healthy and CF patients).  The greater relative PV losses with dehydration observed in 

these individuals may serve as compensatory input to drive thirst in the absence of a 

strong hyperosmotic signal. Thirst drive appears to be appropriately maintained despite 

large variability in human sweat electrolyte loss, particularly when considering that 

drinking behavior in the CF patients following dehydration appeared to be more 

responsive to serum [NaCl] compared to body fluid loss. With a sweat concentration of 

salt nearly isotonic to blood, CF did not experience hyponatremia during exercise (2-2.5 

hr duration) with moderate dehydration when not ingesting fluids, but ad libitum fluid 

replacement with a hypotonic sports beverage resulted in a fall in blood [NaCl] below 

pre-exercise values.  These data suggest that CF should approach replacement with 

hypotonic fluids cautiously and ingest salt to minimize risk of electrolyte deficiency 

during recovery from prolonged exertion-related sweating.  The ‘involuntary 

dehydration’ reported to occur in CF 83 151, and observed in the recovery phase of this 

study, may reflect physiological cues directed at preservation of salt balance over volume 

restoration. Further research is needed to identify optimal fluid and electrolyte 
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replacement strategies for this population who, clearly, can gain the health-related 

benefits obtained from endurance exercise.  
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CHAPTER 4 

 

PERSPECTIVES, REMAINING QUESTIONS, and FUTURE 

INVESTIGATIONS 

 
 
4.1. Inter-individual Differences in Sweat Composition Related to Channel Function 

A major conclusion from the present work is that differences in CFTR channel 

expression may be a mechanism underlying variability in human eccrine sweat [NaCl]. 

However, as discussed in chapter 2, the magnitude of difference from Control for sweat 

[NaCl] did not match the magnitude of difference from Control in CFTR expression for 

the excess salty sweaters studied. For instance, sweat [NaCl] was ~ 100% greater in non-

CF salty sweaters (SS) compared to Control while CFTR expression was only ~ 25% 

less. Further, appearance of CFTR in the sweat duct lumen only explains ~ 21% of the 

variance in sweat [Na+] in non-CF subjects. This discrepancy suggests that another 

mechanism beyond CFTR quantity as assessed by immunostaining may contribute to 

inter-individual differences in sweat [NaCl] in healthy individuals. However, it is also 

possible that the method used to quantify immunostaining intensity of channel expression 

(via selected cross-sectional sections along variable locations within the sweat duct) 

could not completely capture relative deficiencies in total sweat duct channel proteins. 

Use of immunofluorescence staining to evaluate channel expression is less ideal than 

more quantifiable methods of total channel protein expression, such as immunoblotting. 

However, it was not possible to obtain sufficient protein in the 4 to 6 sweat glands 
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homogenized from 4 mm skin biopsies to perform immunoblotting experiments, and 

increasing the size of human tissue biopsied  was also not a reasonable option.   

In addition to quantification limitations imposed by immunhistochemistry 

methods, it was not possible to assess with these methods how differences in overall 

channel function may also contribute to inter-individual differences in sweat [NaCl]. To 

evaluate cell physiology (i.e. channel function) and cell morphology unaffected by 

questions of tissue preservation, the study of living sweat gland cells would be preferred.  

Studies of living sweat gland cells have been largely limited to model systems such as 

cultured cells and isolated ductal segments 47 49-51 60 173 174. Unfortunately, morphological 

and functional observations that are secondary to cell culturing may be difficult to 

distinguish from physiological ones. For instance, if primary cultures of sweat duct cells 

obtained from isolated ducts would have been used to compare epithelial transport among 

subjects in the present study, known quantitative differences in active Na+ flux in cells of 

primary culture compared to intact sweat ducts 175 may have led to flawed interpretations 

regarding the relationship between channel function and sweat [NaCl]. It was originally 

proposed that channel function would be compared among subjects using 

electrophysiology experiments on isolated sweat ducts. Measurement of size-relative 

currents of individual cells in isolated ducts could have allowed evaluation of differences 

in membrane transport among the three subject groups attributed to differences in 

maximal activation capability of electrolyte channels present. Unfortunately this 

electrophysiological data was not collected because the split tubule technique required for 

patch clamping experiments on apical membrane cells was determined not possible on 

isolated ducts. The split tubule model used extensively in the study of renal tubules 176-178 
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has never been performed with sweat gland tubules. In our hands, sweat ducts were 

successfully isolated from skin samples but the thick basement membrane, two-cell 

thickness, and frequently-closed lumen of the tubule segments (Fig 4.1) made it difficult 

to longitudinally split, open, and plate ducts for apical membrane patch clamping. 

  

Lumen

Basolateral
Membrane

Apical 
Membrane

 
Fig. 4.1: Cut end of a microdissected sweat duct from a pilot subject skin biopsy viewed 
under light microscopy. Arrows indicate uniquely ductal characteristics. Original 
magnification 40x.  
 
 
 

An alternative method to determine differences in channel function among individuals 

with varying sweat [NaCl] is the tubule microperfusion technique 12 55 62. This technique 

is performed routinely in sweat glands but only by a relatively few number of laboratories 

because it is technically difficult and requires specialized instrumentation of an 

electrophysiology ‘rig’ in order to achieve and maintain tubule perfusion. Another 

limitation of the tubule microperfusion method that may make it less useful for 

comparisons between tissues is that it measures transepithelial currents representing the 
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summation of activity from thousands of cells lining the duct, rather than from a single 

cell, and therefore inter-individual differences in total measured current could be 

confounded by inter-individual differences in tubule morphology.   

It is always a concern that experimental systems employing isolated cells and 

isolated tubules do not accurately represent the in vivo situation because they lack 

interactions with blood vessels, nerves, extracellular matrix, and other supporting tissues. 

An alternative to the microperfusion technique that may, in the future, facilitate the study 

of living sweat duct channel function in its native environment is the application of 

multicolor two-photon intravital microscopy to biopsied human skin samples. Two-

photon fluorescence depends on the simultaneous absorption of two photons of light, and 

fluorescence excitation occurs only at a focal point where the density of illuminating 

photons is highest 179. Fluorescence generated in two-photon microscopy can be collected 

without a confocal aperture, which allows measurement of fluorescence generated deep 

in light-scattering tissue that is otherwise immeasurable 180.  Two-photon microscopy has 

been recently adapted for use in explanted organs of living laboratory animals, for 

instance to obtain three dimensional information regarding the complex organization of 

the kidney 181 182. Two-photon intravital microscopy such as that providing in vivo and 

real time study of epithelial transport in nephrons 181 has not been performed in living 

humans for obvious reasons. However, it may be possible to extend this technique to 

living human tissue. Intact sweat glands distributed throughout biopsies of human skin 

were noted to stay alive and capable of epithelial transport for several days following 

removal when maintained in cold lactate Ringers with glucose. Viability of sweat glands 
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was evidenced by secretion of Neutral Red into the ductal lumen within ten minutes 

following addition of the substance to the bath containing a whole biopsy (Fig 4.2a) or an  

a. 

 

b.  

 

Fig. 4.2: Viability of the eccrine sweat gland of a 4 mm punch biopsy removed from a 
pilot subject 2 days earlier, shown (a) embedded in fat globule and dermis of intact skin 
plug, and (b) in an isolated sweat duct,. Neutral Red added to bath is taken up into the 
gland and secreted into the ductal lumen (dark red stripe) within 10 min. Original 
magnification 10x (a) and 20x (b). 
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isolated gland (Fig 4.2b). Therefore, future work may be directed at novel adaptation of 

two-photon fluorescence microscopy to permit ‘ex vivo’ study of the living human sweat 

gland maintained in its physiological dermal environment. Two-photon microscopy 

employing intracellular probes like acytoxylmethyl esters could be used to measure inter-

individual differences in ductal epithelial electrolyte transport, pH regulation, calcium 

flux, and the like. Skin samples containing sweat glands are readily accessible and 

require a minimally invasive punch biopsy to obtain. If two-photon ex vivo microscopy 

can be successfully adapted for use in fresh skin biopsies, the technique could be 

particularly useful in therapeutics research, such that directed at improving CFTR 

expression and function in CF epithelium. Strength of such an approach is that it would 

permit the simultaneous study of inter-individual differences in drug response 

mechanistically (e.g. ductal transport) and symptomatically (e.g. sweat composition) in 

order to improve target specificity. 

 
4.2.  Aquaporin Expression in Human Sweat Duct 

It is possible that inter-individual differences in sweat [NaCl] could also be 

attributed to differences in expression of other membrane transport proteins in sweat 

gland epithelium. Membranous aquaporins of principal cells forming the collecting duct 

in renal tubules are largely responsible for dictating urine concentration by regulating the 

reabsorption of water through this tight epithelium of the nephron 183. Differences in 

collecting duct aquaporins have been implicated in pathology related to fluid and sodium 

management such as hypertension 184.  It is possible that inter-individual differences in 

expression of aquaporins could contribute to inter-individual variability in sweat [NaCl]. 

However, as discussed in chapter two, evidence for the presence of aquaporins in the 
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human sweat duct is not convincing. In the one study of aquaporin expression to date that 

included human sweat glands 142, no quantitative assessment is provided and only a single 

fluorescence image of an immunostained gland is shown. It is not clear from the poorly 

visualized cell morphology in that image if the aquaporin staining was along the lumen of 

the ductal versus the secretory portion of the sweat gland. Therefore, a follow-up 

experiment should investigate the expression of aquaporins in the human sweat duct, and 

the relationship to [NaCl] in excreted sweat. This could be achieved with the same 

protocol employed in the present study except with the use of primary antibodies directed 

at aquaporins instead of at ENaC and CFTR when immunostaining cryosections. AQP5 

appears to be expressed in the secretory coil of mice and rat paw sweat glands 142 so 

AQP5 may be the most logical aquaporin to investigate first in human glands.   

 
4.3.  Differences in Hormonal Regulation of Sweat Duct Transport 

 
Interestingly, basal plasma vasopressin concentrations ([AVP]), as well as levels 

measured in the plasma after 1.5% and 3% dehydration and recovery, were unexpectedly 

elevated for the non-CF subjects with high salt sweat examined in the present study. 

Elevated AVP has been suggested as a potential contributing mechanism to exercise-

induced hyponatremia based primarily on retrospective investigation of post-exercise 

blood [AVP] in athletes receiving medical attention for symptomatic hyponatremia 185 186. 

In individuals susceptible to the condition dubbed the ‘syndrome of inappropriate 

secretion of AVP (SIADH)’, an inability to rapidly excrete relative fluid excess when 

excessive fluid intake is coupled to high [Na+] losses is thought to cause and/or sustain 

low serum [Na+] 70 93 95 185-187.  It has been assumed that the elevated post-exercise [AVP] 

measured in these athletes is a consequence of failure to appropriately suppress AVP but 
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it is not clear in these retrospective studies if baseline AVP and thus net change in AVP 

was also different for these athletes.  Higher baseline plasma [AVP] (that remained 

higher through dehydration and recovery) was observed in SS compared to Control of the 

present study, but change in plasma AVP across graded dehydration and following 

recovery was similar. If, in these SS, recovery plasma [AVP] were to have been 

examined without consideration of the higher starting values, it may have been assumed 

that they, like the hyponatremic athletes in the retrospective studies 185 186, had 

inappropriate secretion of AVP relative to their Control counterparts. Since greater 

sodium loss in sweat is associated with risk for hyponatremia, it is likely that many of the 

hyponatremic athletes in the retrospective studies were indeed ‘salty sweaters’ like SS in 

this study.     

While the cause for the higher plasma [AVP] in SS is not apparent, it is possible 

that increased plasma [AVP] could have contributed to the greater [NaCl] of sweat in 

these individuals. AVP acts on aquaporin channels to increase water absorption across 

renal epithelium 184. As discussed above, the mere presence of aquaporins in the human 

sweat duct needs to be established prior to suggesting that differing vasopressin levels 

may be related to sweat [NaCl]. However, increased vasopressin could contribute to 

greater sweat [NaCl] in non-CF salty sweaters via another mechanism. In vitro 

vasopressin addition to rat collecting tubules transiently increases activity of the enzyme 

hydroxysteroid dehydrogenase type II (HSD2) 188. The enzyme 11 beta-hydroxysteroid 

dehydrogenase type II (11 beta HSD2) confers specificity on mineralocorticoid receptors 

(MR) by inactivating glucocorticoids. In eccrine sweat ducts, MR is present on 

basolateral membranes and 11 beta HSD2 is present on luminal membranes 189. Recently 



 87

reported in Hypertension 190, HSD2 activity was found to be partially deficient in isolated 

sweat ducts from individuals with essential hypertension as compared to normotensives. 

This indicates that MR, 11 beta HSD2 and vasopressin could play an important role in the 

regulation of sweat duct Na+ absorption and is a topic ripe for further investigation.  

Further, it would be interesting to investigate if the elevated plasma [AVP] found in the 

high salt sweaters of this study may have resulted in chronic, elevated in vivo exposure to 

vasopressin at the duct and subsequently increased luminal HSD2 activity, as it is known 

to do in other absorptive epithelium 188. Increased HSD2 would decrease Na+ 

reabsorption across duct and could be a contributing mechanism for the greater salt losses 

in sweat for individuals with elevated vasopressin.  

 
4.4.  Colocalization of CFTR and ENaC in Human Eccrine Sweat Duct 

A functional link between CFTR and ENaC has been suggested based on 

evidence from electrophysiological and biochemical methods in heterologous expression 

systems 191. Their interaction in native tissue is not clearly defined but is implicated in the 

pathophysiology of CF 192. One proposed mechanism is a direct protein-protein 

interaction between CFTR and ENaC, suggested based on evidence from 

electrophysiological 100 193, FRET 194, yeast-two-hybrid 195, and co-immunoprecipitation 

196 methods in heterologous expression systems. However, the overexpression required 

for these methods to work in mammalian cells can produce interactions between the 

channel proteins that are neither entirely specific nor physiologic. In this respect, 

investigation of a potential CFTR-ENaC relationship under conditions of endogenous 

channel expression is favored, but complicated by the large quantity of tissue required to 

obtain measurable membrane protein levels. While tangential to the primary aims of this 
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thesis work, in order to provide a novel characterization of the physical proximity of 

CFTR and ENaC in a native absorptive epithelium, immunostained cryosections of 

subjects’ biopsied tissues were additionally examined under laser confocal microscopy 

(Olympus Microscopes, Melville, NY). Photomicrographs of immunofluorescence were 

captured using FluoView software (Olympus) and colocalization of ductal 

immunoreactivity corresponding to CFTR and ENaC was quantified using ImageJ 

(National Institutes of Health, Bethesda, MD).  Some sections were treated with a 

polyclonal antibody against an epitope near the N-terminus of the α1 subunit of 

Na+K+ATPase, which contains the binding sites for ATP and cations (N-15, sc-16041, 

Santa Cruz Biotechnology, CA). Na+K+ATPase is located primarily on the basolateral 

and apical membrane of the outer duct cell and the basolateral membrane of the inner 

duct cell 41. Therefore co-staining for Na+K+ATPase with CFTR served as a negative 

control for colocalization.  

Similar to epifluorescence microscopy (chapter 2), immunostaining visualized 

under confocal microscopy marked abundant CFTR (green) and ENaC (red) as expected 

in the ductal portion of the sweat glands (Fig 3). Staining was primarily localized to the 

luminal membrane for both channels, but immunoreactivity for ENaC was additionally 

observed across the entire duct. Quantification of preliminary images indicated that 

lumen-specific staining was significantly greater for CFTR (by 195.3 ± 32%, p<0.001) 

and ENaC (by 98.2 ± 38%) compared to staining across the entire duct. CFTR and ENaC 

in preliminary images were also well-associated in the duct (R=0.48, p<0.05) but show 

even stronger correlation in the lumen (R= 0.69, p<0.01). Immunostaining for 

Na+K+ATPase was located primarily at the basolateral membrane of inner and outer  
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Fig. 4.3 a and b: Immunofluorescence staining of the eccrine sweat gland reabsorptive 
duct in 6 µm cryosections of biopsied human skin under laser confocal microscopy. Anti-
αENaC labeling with H-95 (column 1, red) and anti-CFTR labeling with M3A7 (column 
1, green) revealed immunoreactivity particularly corresponding to the luminal plasma 
membranes. Overlay of images from column 1 and 2 demonstrates where 
immunoreactivity to CFTR and ENaC was colocalized (column 3, yellow). Tubules 
without luminal staining in image ‘a’ are secretory coil. Original magnification 40x. 
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luminal ductal cells, the apical and outer membrane of outer ductal cells, and largely 

absent at the apical membrane of inner ductal cells (Fig 4). While image analysis and 

quantification of Na+K+ATPase localization with CFTR has not yet been performed, no 

significant colocalization is expected for these two proteins. 

 

 

 
 
Fig. 4.4: Overlay image of immunofluorescence staining of eccrine sweat gland 
reabsorptive ducts in 6 µm cryosection of biopsied human skin under epifluorescence 
microscopy. Anti-α1-Na+K+ATPase labeling with N-15 (red) revealed immunoreactivity 
particularly corresponding to the basolateral plasma membranes while anti-CFTR 
labeling with M3A7 (green) stained lumen. Original magnification 40x. 

 

 

While not a primary aim of the present investigations, immunofluorescent 

staining of subject biopsies additionally visualized under confocal microscopy has 
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provided a novel demonstration of localization of CFTR and ENaC in a native absorptive 

epithelium. These preliminary data suggest that colocalization of CFTR and ENaC is 

particularly rich along what operates as the reabsorptive epithelium of the duct. Their 

striking physical proximity at this principal site of transepithelial NaCl transport speaks 

to the functionality of the CFTR-ENaC physical association and lends support to a 

potential direct protein interaction between these two membrane transport channels. 

Continued experiments are planned in order to fully investigate this interesting 

preliminary finding. These follow-up experiments are 1) to perform co-immunostaining 

in sweat ducts for two subunits of ENaC, α and β, as a positive control for colocalization; 

2) to additionally quantify colocalization in ~10 confocal images from each of  ~ 6 

different subjects’ immunostained sweat ducts (CF and non-CF) to build upon the current 

data set.  

 
4.5. Indirect Evidence for Acute Regulation of Sweat Duct Reabsorption 

Sweat [Na+] and [Cl-] increased as expected with progressive dehydration for all 

subjects participating in the present study (chapter 3). Differences were observed among 

subject groups in dehydration-induced change in electrolyte composition.  Since rate of 

sweating and ductal electrolyte reabsorption are thought to be related 12 13; it is important 

to note that sweat rate (SR) did not differ among groups and therefore differences in 

dehydration-induced change in sweat [NaCl] were not confounded by a varied SR 

response among groups. It is interesting that differences among Control, SS and CF in 

dehydration-induced elevation in sweat [Na+] and [Cl-] (Table 2, chapter 3) are similar to 

the between-group differences noted in dehydration-induced elevation in serum [Na+] and 

[Cl-] (Fig 5). In a stepwise fashion, Control had greatest increase in sweat [Na+] and [Cl-]  
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Fig. 4.5: Mean ± SD change in serum Na+ concentration (indicated by brackets) (a), and 
serum [Cl-] (b), relative to baseline following exercise in the heat to 3% body weight loss 
(dehydration) for Control subjects (blue) with ‘typical’ sweat [NaCl], non-CF salty 
sweaters (SS, orange), and CF subjects (CF, red) with phenotypically very high sweat 
[NaCl]. * Significantly < Control (p < 0.05), # CF significantly < SS (p<0.05). 
 

 

with dehydration, followed by SS, and then CF. Similarly, the greatest increase in blood 

a. 

b. 
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 [Na+] and [Cl-] with dehydration occurred in Control, then SS, then CF.  However, it is 

curious that the magnitude of increase in sweat [Na+] and sweat [Cl-] with dehydration 

did not match the magnitude of increase in serum [Na+] and serum [Cl-] with 

dehydration. For example, in Control, sweat [Na+] increased by 13% while serum [Na+] 

increased by ~ 3%.  In SS, sweat [Na+] increased by 8% while serum [Na+] increased by 

only 2%. Morgan et al.6 noted a similar mismatch in the magnitude of change in serum 

[Na+] and sweat [Na+] with acute dehydration. This observation led them to be among the 

first to suggest that the sweat gland might be acutely regulated by hormonal or 

sympathetic input to adjust Na+ reabsorption in response to a stimulus such as elevated 

serum electrolytes.  The concept of an acutely regulated sweat gland is not consistent 

with the traditional assumption that the increase in sweat electrolyte loss (e.g. with 

dehydration) is primarily a function of increased blood electrolytes delivered to the sweat 

gland due to relatively greater loss of fluid in sweat relative to electrolytes since sweat is 

typically quite hypotonic to sodium chloride compared to plasma concentration. If the 

increase in sweat [NaCl] with dehydration were to be simply due to blood levels 

increasing (e.g. more Na+ in = more Na+ out), then the percent change incurred with 

dehydration in sweat [Na+] and serum [Na+] should be nearly identical. The discrepancy 

in magnitude of change can be explained, however, if the sweat duct’s ion transport 

activity is considered potentially capable of acute regulation via alterations in 

transmembranous channel function. It is not known if hyperosmotic stimuli can signal for 

an acute compensatory down regulation of NaCl absorption in sweat duct epithelium as it 

does in renal and gut epithelium.  However, the human eccrine sweat gland is well-

evolved to provide copious sweating for cooling during even prolonged thermoregulatory 
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challenges 36.  Furthermore, the sweat duct is equipped for acute regulation with 

epithelial transport proteins responsive to changes in intracellular and extracellular 

milieu. As evidence of regulation in the sweat duct that works on a simple negative 

feedback loop, Reddy and Quinton (2006) demonstrated using tubule microperfusion that 

intracellular [K+] helps to regulate NaCl influx to prevent the massive entry that could 

otherwise lead to cell swelling and destruction. They determined that relatively low 

basolateral K+ conductance in non-transporting cells helps to maintain higher intracellular 

[K+], which results in the tonic inhibition of endogenous phosphatase dephosphorylation 

of CFTR. Then, at the onset of the sweating when primary sweat first enters into the 

lumen of the duct, there is a massive rapid NaCl influx into the cell through ENaC and 

CFTR down their concentration gradients. This large NaCl influx increases 

Na+K+ATPase activity which serves to maintain concentration gradients. The activated 

CFTR results in an increased K+ conductance at the basolateral membrane for the exit of 

K+ from the ductal cells. The lowering of intracellular K+ serves as a feedback 

mechanism whereby the tonic inhibition of phosphatases is reduced, thus decreasing the 

PKA phosphorylation of CFTR 197 which reduces the channel activation and the entry of 

Cl- and Na+ from the lumen into the cell. Slowing the entry of Cl- and Na+ from the 

lumen into the ductal cell lowers the K+ conductance at the basolateral membrane,  and 

eventually a new steady state is reached where the influx balances the outflux to prevent 

the cell from swelling and bursting.  

Another example of acute regulation of electrolyte transport in a different 

secreting and absorbing epithelium, increased cytosolic [Na+] or [Cl-] results in an acute 

down-regulation of luminal ENaC in salivary duct epithelium 198. It has not been 
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investigated if increases in serum [Na+] or [Cl-] may increase cytosolic [Na+] or [Cl-] of 

sweat duct cells and if this in turn is able to down-regulate luminal ENaC in ductal 

epithelium. However, supporting the concept of an acutely regulate-able sweat gland 

during prolonged thermoregulation, Buono et al. 199 determined that sweat Na+ 

reabsorption rate increases proportionately less than Na+ secretion rate with increases in 

sweat rate, and suggested that the inhibitory effect of decreasing cytosolic pH on ENaC 

could mechanistically explain this observation.  If reabsorption across the sweat duct is 

acutely regulated in response to serum concentration changes, then in the present study 

where serum osmolality was observed to rise more in response to dehydration in Control 

due to their greater free water (FW) loss, the response to this stimulus would be greater 

signaling for reduction of NaCl reabsorption across the sweat duct epithelium. It follows, 

then, that the greatest magnitude of dehydration-induced increase in sweat [Na+] and [Cl-] 

is in Control. The fact that in CF subjects the percent change in dehydration-induced 

elevation in sweat [Na+]  and serum [Na+]  were curiously more similar to each other than 

they were in the non-CF subjects serves to reinforce the concept of an acutely regulate-

able sweat duct, in a pathway that directly or indirectly involves the chloride channel 

CFTR. Without much functioning CFTR at the sweat duct, CF are quite possibly not able 

to perform the suggested regulation to the degree that non-CF are capable.  While no 

group’s sweat or serum [K+] changed significantly, it is interesting that the mean change 

in [K+] is in the opposite direction in non-CF subjects. This makes physiological sense 

because K+ moves in the opposite direction of Na+ and Cl- during epithelial transport and 

SS and Control had a relatively larger (and possibly intentional) increase in sweat [NaCl] 

with dehydration.   
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While indirect evidence provided by the present study suggests that the sweat duct 

may actually decrease NaCl reabsorption in order to attenuate hyperosmolality during 

progressive dehydration, more research is needed to determine if and how the sweat duct 

is capable of acutely regulating ductal reabsorption during prolonged thermoregulatory 

sweating. Taking the notion of an acutely regulate-able sweat gland even further, it was 

suggested in a recent paper that the sweat gland may actually serve as an integral 

regulator of fluid and [Na+] balance during exercise 141, possibly though AVP response, 

based on relationships observed for post-exercise plasma [AVP], and sweat and urine 

[Na+]. One limitation to this study, however, is that the authors do not report change 

values for plasma [AVP] so it is difficult to assess true hormone ‘response’. It is possible 

that baseline AVP was also related to sweat [Na+] in their subjects, as it was for the non-

CF subjects in the present study, which would indicate that the relationship they were 

observing was not truly an acute regulatory response per se. Clearly, future experiments 

are needed to investigate potential mechanisms at the level of the gland for acute sweat 

gland regulation. Such experiments could employ sweat duct tubule microperfusion or ex 

vital microscopy of sweat ducts in skin to assess acute changes in channel behavior in 

response to ligands (e.g. aldosterone and vasopressin), and in response to changes in 

intracellular and extracellular environments (e.g. pH, salinity).  

 
4.6.  Sweat Cl- is Hypertonic to Serum Cl- in CF 

Consistent with compromised ductal NaCl reabsorption, sweat [Na+] in CF was 

higher than both non-CF groups and near-isotonic to serum. Sweat [Cl-] in CF was also 

higher than both non-CF groups and the difference between sweat [Cl-] and sweat [Na+]  

was smaller for CF subjects, as other researchers have reported with cholinergic- 
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stimulated sweat testing 2 54 56. Interestingly, sweat [Cl-] was not only higher than non-CF 

but was hypertonic to serum in all CF subjects. Using in vitro sweat induction in isolated 

glands, Sato and Sato 64 demonstrated that, relative to the extracellular bath, [Na+] and 

[K+] in the primary sweat produced by the secretory coil is nearly isotonic, but [Cl-] is 

actually hypertonic, in both CF and non-CF tissue. Therefore, in the case of severely 

limited ductal Cl- reabsorption, such as that in CF, it is not unphysiological for the [Cl-] 

of the final excreted sweat to be measured higher than serum levels. Other factors may 

also contribute to the hypertonic sweat [Cl-] in CF, such as greater net Cl- transport out of 

the ductal cell into the lumen secondary to abnormal activity of a putative luminal HCO3
-

/Cl- exchanger 200, particularly if HCO3
- management is faulty in the CF sweat gland as it 

is in other CF epithelia. Potentially prompting greater HCO3
-/Cl- exchanger activity, 

sweat [HCO3
-] may have been higher in CF subjects. Indeed, the anion gap (Na+ + K+ - 

Cl-), thought to approximate HCO3
- + lactate 201, was significantly greater in CF sweat 

than non-CF sweat, as others have shown in pilocarpine-stimulated sweat 56 202. Future 

research should investigate how the sweat gland handles HCO3
- and the role that CFTR 

may play in this process.  

 
4.7.  Predicting Changes in Serum Na+ and Susceptibility to Exercise-induced 

Hyponatremia 
 

Exercise-induced hyponatremia (serum [Na+] < 135 mmol/L) at endurance events, 

such as the marathon or ultradistance triathlon, is most commonly attributed to ingestion 

of hypotonic fluids in excess of fluid loss, ‘overdrinking,’ and is associated with post-

event weight gain 93. While not as common, hyponatremia may also occur in conjunction 

with dehydration, particularly in longer, ultraendurance events 26 70 94 203 or military 
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operations. This ‘hypovolemic hyponatremia’ is presumably from excessive salt 

depletion via sweating and not from overdrinking, according to a recently-developed 

quantitative model 26. This model, based on a equation developed by Kurtz and Nguyen 

204, predicts post-exercise serum [Na+] on the basis of changes in the mass balance of 

cations Na+, K+, and water.  The high sweat [Na+] in CF and also found in many healthy 

individuals may present a greater risk for the development of hyponatremia during 

prolonged activity in the heat 26 70 95 96. One example is the case reported by Smith et al. in 

1995 of a British soldier who developed hyponatremia during desert marches on two 

occasions and was subsequently confirmed to have elevated sweat electrolytes and 

homozygous CF mutations 205.  In the present study, examination of actual and calculated 

predicted change in serum [electrolytes] with progressive dehydration in individuals with 

salty sweat compared to those with normal sweat [NaCl] was additionally performed to 

indicate whether or not hyponatremia may be possible and predictable in some 

individuals (i.e. those with excess salt loss in sweat) over the duration of ultraendurance 

events in the absence of overdrinking.    

Predicted post-exercise serum [Na+] was calculated for each subject according to 

Nguyen and Kurtz 204:  Post-Exercise Serum [Na+] = {[(Initial serum [Na+] + 23.8) * 

initial TBW + 1.03 ΔE] / (initial TBW – TBW loss)} – 23.8.  Initial TBW assume = 0.73 

of fat-free mass 206. Individually-calculated predicted serum [Na+] values were compared 

to actual values with paired t-tests and association of sweat [Na+] with actual and 

predicted serum [Na+] was analyzed with Pearson product-moment correlation (SPSS, 

ver. 17.0, Chicago, IL).   

 
4.7.1.  Predicted vs. Actual Post-Exercise Serum [Na+]  
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The difference between calculated (predicted) post-exercise serum [Na+] and 

measured (actual) values for all subjects was (mean ± SD) -1.5 ± 1.2 mmol/L. The 

discrepancy between actual and predicted values for post-exercise serum [Na+] was not 

different among the three groups (p=0.333).  Mean ± SD for difference between actual 

and predicted values for post-exercise serum [Na+] was  -1.12 ± 1.2 mmol/L for Control 

(p=0.03), -2.16 ± 1.2 mmol/L for SS (p=0.01), and -1.55 ± 1.4 mmol/L for CF (p=0.06).   
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Fig. 4.6: Relationship between predicted (calculated) serum sodium concentration [Na+] 
and actual (measured) serum [Na+] following exercise in the heat to 3% body weight loss 
(3% dehydration) for Control subjects (blue squares) with ‘typical’ sweat [Na+], non-CF 
salty sweaters (orange squares), and CF subjects (red squares) with phenotypically very 
high sweat [NaCl]. Predicted value was calculated using equation by Kurtz and Nguyen 
204 which predicts post-exercise serum [Na+] on the basis of changes in the mass balance 
of cations Na+, K+, and water. * p <0.001, n=19. 
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A significant (p <0.001) relationship was determined between measured post-exercise 

serum [Na+] and predicted values (Fig 6).  This relationship (y=0.96x + 6.9, Pearson 

r=0.92) was similar to that reported by Baker et al. (y = 0.84x + 23, Pearson r=0.90) for 

subjects following prolonged running in the heat with ending dehydration levels of 0, -2, 

and -4% body weight loss. 207. The linear regression’s non-zero positive y-intercept, and 

the mean negative value for difference between predicted and measured post-exercise 

serum [Na+],  indicates that the equation slightly over predicted Na+ losses for our 

subjects.  There are a number of possible explanations for this. First, an overestimation of 

[Na+] lost in sweat could have resulted from collection artifact, such as that proposed by 

Weschler due to electrolyte leaching from the stratum corneum 126, or a discrepancy 

between regional and whole body sweat electrolyte loss 21. The low and extremely 

consistent values for sweat [K+] measured in our sweat sampling across the 80 to 160 min 

dehydration protocol indicate that electrolyte leaching as a source of sample artifact is not 

likely 126.  It is possible that sweat collected from the scapular region was slightly higher 

in [Na+] than reflected in whole body sweat. While whole-body washdown is the criterion 

method to determine whole body sweat Na+ losses 22 208, it was not practical for use in 

this protocol. Stofan et al. recently put forth an equation, y=0.67x-2.56, for correction of 

regional samples obtained from the back to reflect whole body losses 209. When this 

equation is used to correct individual subjects’ sweat [Na+] values prior to use in the 

Nguyen-Kurtz equation, the gap between predicted and actual post-exercise serum [Na+] 

almost completely closes (mean ± SD difference = -0.20 ± 1.4 mmol/L for Control, -0.42 

± 1.2 mmol/L for SS, 0.72 ± 1.2 mmol/L for CF, and 0.03 ± 1.3 mmol/L for the whole 

group). A final possible explanation for the small discrepancy between predicted and 
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actual post-exercise serum [Na+] is the mobilization of osmotically-activated Na+ from 

exchangeable internal stores 93, a notion put forth by Noakes et al. as a potential 

mechanism determining susceptibility to hyponatremia under conditions of overdrinking. 

The existence and identity of such an internal store, and its potential function in 

regulating extracellular fluid space electrolyte balance during prolonged sweating have 

not yet been elucidated.  

 
4.7.2.  Risk for Exercise-Induced Hyponatremia- Evaluating Actual and Predicted  

 Post-Exercise Serum [Na+]  
 
The relationship between sweat [Na+] and actual (open circles) and predicted 

(closed circles) post-exercise serum [Na+] is shown in Fig 7. Actual and predicted post-

exercise serum [Na+] values with 3% dehydration did not fall into hyponatremia range (< 

135 mmol/L, shaded region Fig 7) for any of the subjects following their ~ 2 hr 

dehydration cycling protocol. Using the Nguyen-Kurtz equation 204 in the model 

proposed by Montain et al. 26 to predict post-exercise values for serum [Na+] if all body 

water loss were to be exactly replaced by water (0% dehydration) indicated that one CF 

and one SS subject would have become hyponatremic (closed squares, Fig 4.7) at the 

same exercise duration. Calculating post-exercise serum [Na+] values at 3% dehydration 

but doubling each subject’s total exercise time (to closer reflect marathon and other 

ultraendurance events finishing times)  indicated that one CF subject would have become 

hyponatremic (closed diamonds, Fig 4.7). Finally, post-exercise serum [Na+] values 

calculated for both double the exercise duration and with all body water loss exactly 

replaced by water  (0% dehydration) indicated that all subjects (n=11) with sweat [Na+] > 

60 mmol/L would have become hyponatremic (closed triangles, Fig 4.7).  As expected 
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with an exercise protocol of dehydration and relatively short duration (~ 2 hrs), no 

subjects developed exercise-induced hyponatremia. However, examination of the 

relationship between sweat [Na+] and predicted post-exercise serum electrolytes when 

each subject’s own exercise duration is extended two-fold (4-5 hr typical of ultra-

endurance events) predicts that hypovolemic hyponatremia may be possible in extremely 

high salty sweaters (i.e. CF).  To assess if hyponatremia may be possible in the absence  
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Fig. 4.7: Actual and predicted post-exercise serum [Na+] with 0% dehydration and with 
3% dehydration, for two different total exercise durations. Open circles and black trend 
line: actual values at 3% dehydration, r= 0.761. y = -0.042x + 151.6. Closed circles and 
green trend line: predicted values at 3% dehydration, r = 0.798, y = -0.045x + 150.2. 
Actual and predicted lines were not different. Closed diamonds and brown trend line: 
predicted values at 3% dehydration and 2x the subject’s exercise duration, r= 0.925, y = -
0.093x + 149.7. Closed squares and purple trend line: predicted values at 0% dehydration 
(all sweat loss replaced 100%with water), r=0.693, y = -0.03x + 140.3. Closed triangles 
and light blue trend line: predicted values if 0% dehydration (all fluids exactly replaced 
with water) and 2x the subject’s exercise duration, r=0.871, y = -0.080x + 139.7. 
Hyponatremia is indicated by yellowed area.  
 

Control subjects SS subjects CF subjects 

Hypo-
natremia 
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of dehydration and overdrinking, predicted serum [Na+] calculated for a condition of 

euhydration (0% body weight loss/gain , water exactly replaces fluid volume loss) 

predicts that one CF and one SS subject would have become hyponatremic at the end of 

their exercise testing session.  Furthermore, when calculated again for a condition of 

euhydration but at an exercise duration arguably more representative of a typical 

recreational marathon finish time (~ 4 to 5 hrs), all CF and SS subjects were predicted to 

be in the range of clinical hyponatremia when water intake exactly replaces fluid volume 

loss. It is important to note that none of these predictions factor in electrolyte replacement 

of any kind and would not likely represent what most competitors would practice during 

endurance exercise.  These data suggest that exercise-induced hyponatremia appears to be 

possible in the absence of overdrinking within the typical exercise duration required to 

finish a marathon (4-5 hours) for CF and healthy individuals with sweat [Na+] above ~ 65 

mmol/L. Future experiments should investigate the impact of sweat [NaCl] loss on fluid 

and electrolyte balance during exercise in the heat with ad libitum vs. regimented fluid 

and/or electrolyte replacement. In conjunction with ad libitum vs. regimented fluid and 

electrolyte replacement, actual and predicted during- and post-exercise serum [Na+] could 

be assessed for incidence and potential risk of exercise-induced hyponatremia.  

 
4.8. Self-assessment of Sweat Composition 

Findings from the present study, as well as from other investigations 26, suggest 

that individuals with high sweat [Na+] may be at greater risk for exercise-induced 

hyponatremia during prolonged exercise in the heat, such as military operations or 

performance of ultra-distance marathons and triathlons. Since measurement of 
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thermoregulatory sweat [electrolytes] requires specialized collection and a chemistry 

analyzer, it is often not practical in field settings. Therefore, it important to understand 

how well individuals are able to assess their own sweat electrolyte losses to formulate 

personal fluid and electrolyte replacement strategies during prolonged endurance events. 

It has been suggested that it may be possible to subjectively identify individuals with high 

sweat salt [NaCl] from complaints of a salty taste of sweat in their mouth or eye irritation 

when sweat drips into their eyes; or from visible salt stains on clothing worn during 

prolonged exertion in the heat 210. To date, there have been no studies to investigate the 

validity of such assessment. To address this need, subjects in the present study completed 

a brief survey for self-assessment of sweat rate and salt content prior to being informed 

of actual sweat rate and [NaCl]. The survey was comprised of five questions with 

answers indicated by subjects placing a vertical line along a horizontal visual analog 

scale line (Appendix item E). The relationship between predicted (self-assessed) and 

actual (measured) sweat [NaCl] and sweat rate was analyzed with Pearson product-

moment correlation (SPSS, ver. 17.0, Chicago, IL).   

No significant correlation was determined between self-assessed rate of sweating 

(question #1) and actual rate of sweating (r = 0.393, p = 0.119). There was also no 

significant correlation for answers to the first three questions related to saltiness of sweat 

(questions 2-4) with actual (measured) sweat [Na+] or [Cl-] (r = 0.149, and p = 0.567 for 

question # 2, r = 0.355, and p = 0.162 for question # 3, and r = 0.032, and p = 0.902 for 

question # 4. There was a significant correlation for answers to the last question on the 

survey (question #5, ‘how much salt do you think is in your sweat compared to others?’) 

and sweat [Na+] (r = 0.761, and p< 0.001). This indicates that factors other than ‘stinging 
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of sweat in the eyes’ and white salt residue on skin may have led subjects to correctly self 

–assess their sweat NaCl losses. However, before conclusions can be drawn from these 

correlations, additional population sampling will be needed to expand this dataset from 

its current limited size of n= 22 (16 males and 6 females) to include the additional 47 

healthy subjects for whom preliminary screening of sweat content was performed. An 

additional ~20 subjects should also be tested to balance gender and age groups. Future 

research should examine the predictability of other survey questions that may be useful to 

subjectively identify subjects with high versus low to normal sweat NaCl loss during 

exercise. If eventually determined to be effective, a survey such as this could be further 

developed into a testing tool for coaches, athletes, military personnel, and others that 

work with exercisers and laborers in the heat in order to identify those that may need to 

pay particular attention to electrolyte replacement during prolonged activity.  

 
4.9.  Summary of Future Directions 

Several potentially fruitful lines of investigation remain based on the primary 

dissertation work: 1) novel adaptation of two-photon microscopy to study inter-individual 

differences in ductal epithelial transport in living sweat glands of fresh skin biopsies; 2) 

quantifying expression of aquaporins in the human sweat duct and the relationship to 

[NaCl] of excreted sweat; 3) quantifying luminal HSD2 activity in the sweat duct of 

individuals with high sweat [Na+] and elevated basal plasma [AVP]; 4) quantifying 

colocalization of CFTR and ENaC in the sweat duct using laser confocal microscopy; 5) 

evaluating fluid and electrolyte balance during exercise in the heat with ad libitum vs. 

regimented fluid and/or electrolyte replacement and assessment of actual and predicted 

during- and post-exercise serum [Na+] for incidence and potential risk for exercise-
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induced hyponatremia; and 6) examining the predictability of survey questions that may 

be useful to subjectively identify individuals with high vs. normal sweat NaCl loss during 

prolonged exercise in the heat.  
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APPENDIX A 

PROTOCOL FOR CRYOSECTIONING AND IMMUNOSTAINING 

BIOPSIED HUMAN SKIN 

 

 Remove tissue to be cut from -80°C freezer and place in -20°C cryochamber to thaw 

for at least 30 min but optimally > 60 min prior to cutting.  

 Pour acetone methanol solution into coplin jar (1:1) and place in -20°C cryochamber 

for at least 30 min prior to use. 

 Begin gross sectioning at the surface of the epidermis, remove ~ 300 µm of tissue 

then cut a 6 μm sections and transfer to (any) slide. Let air dry at room temperature 

for at least 30 sec.  

 Apply a large droplet of hematoxylin to section.  

 After 2 min, rinse hematoxylin off slide carefully with light drizzle of distilled water 

or submerge very briefly in water.  

 View hematoxylin-stained section under light microscopy, 10-40x, to look for sweat 

ducts.  

 If an insufficient number of ductal cross sections are observed, then return to cutting. 

Remove only 90 to 150 µm of tissue each time during cutting before cutting another 6 

µm section to check for ducts with hematoxylin staining. 

 When a desired section is found under light microscopy (presence of sweat ducts), cut 

another 6 μm section and transfer to silane-coated slide 

 When three sections are on a silane-coated slide, place in acetone and methanol 

solution in coplin jar in cryochamber (-20° C) for 10 min. 

 Air dry slides at RT and put in slide holder, keep slide holder in cryochamber and 

keep lid on so that tissue debris during cutting does not land on slides.  

 When desired slides are prepared, perform immunostaining as soon as possible, 

keeping slides cold (cooler with ice packs) if transport is necessary.  

 Prepare PBS solution: use a 10x PBS prepared to 1x (so 100 ml of the 10x PBS + 900 

mL distilled water). Make two 1L bottles of this. 
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 Prepare permeabilization solution: 0.25% Triton in PBS for 10 min. For coplin jar 

size use 162.5 uL of Triton in 65 ml of PBS. For larger slide holder container, double 

that. Be sure to clip end off of pipet tip to make it easier. 

 Prepare blocking solution, the 1%BSA solution: 10ul of BSA serum+90 ul of PBS  

which is also 0.05g of dry BSA into 5 ml of PBS. 

 Submerge slides to rinsse in PBS solution in coplin jar for 2x3 min at room temp.  

 Permeabilization step: 0.25% Triton in PBS for 10 min 

 Submerge slides to rinse in PBS solution in coplin jar again, for 3x3 min at room 

temp. 

 Blocking in 1%BSA solution: Apply 100 ul per slide. Incubate 10-30 min at RT in 

humidifier box.  

 Prepare primary antibodies while blocking solution is on. But first decide which 

going to use together and make those up in the same vial. Dilutions are done with the 

1%BSA solution. Vortex vial(s) containing primary antibodies and 1%BSA for 3 sec, 

then keep on ice until used. 

o 1:10 CFTR M3A7 

o 1:200 αENaC 

o 1:500 Z01 

o 1:50 NaKATPase 

 After blocking step, just tip and firmly tap slide to clean surface to get excess off the 

serum. May also dab with a chemwipe to carefully dry around sections, this will keep 

antibody solutions from running all over the slide.  

 Apply primary antibody. Apply 80 μL per slide. Let sit in humidifier box sealed 

tightly at 4°C overnight.  

 Next day, tip and tap slides to get Ab excess off the slide, and do three times three 

minute soaks in PBS in coplin jar 

 Make up secondary antibodies: Alexa Fluor made up in 1:500 strength in PBS with 

1%BSA. Vortex mixture in vial for 3 sec. Keep away from light and on ice until use.  

 Apply secondary antibody, 100 μL per section, let sit in humidifier box sealed tightly  

for 1 hour at room temp in dark, then tip slides to get Ab excess off the slide. 

 Do three times three minute soaks in PBS in coplin jar 
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 Make up DAPI. The DAPI solution is made up for the coplin jar as 6 uL of the DAPI 

(already made up in vial in foil in fridge as 1 mg per ml) into 60 mL of PBS. Mix in 

flask and pour into coplin jar. Keep in dark. Soak in DAPI solution for 10 min in dark 

followed by 3x3 min rinses in PBS. Double this if making for the larger slide tray 

holder. OR, apply DAPI in Vecta Shield, apply per section about 1-2 drops, then 

carefully coverslip so get no air bubbles. Before coverslipping whether with or 

without DAPI in the coverslipping material, be sure to remove excess solution from 

front and back of slide with tissue carefully, particularly around the section itself.  

 Let dry in dark at least 90 min. Then can nailpolish sides, be carefully not to move 

coverslip while doing this because will smear DAPI staining. Store in dark at room 

temperature. 
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APPENDIX B 

DIAGRAM OF OVERALL THESIS METHODS 
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 APPENDIX C 

SCHEMATIC OF PROLONGED EXERCISE TESTING PROTOCOL  
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_

Physiological Testing Protocol
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APPENDIX D 

PROLONGED EXERCISE TESTING DATA COLLECTION FORM 

 
PAGE 1: 
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PAGE 2: 
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PAGE 3: 
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APPENDIX E 

SURVEY FOR SELF-ASSESSMENT OF SWEATING  

 
 

Name:_________________________         ID:_______       Date:________________  
        
This questionnaire asks about your current opinion regarding your own sweating.  
There are no right or wrong answers.  Please be as honest and accurate as possible in 
responses. Make a vertical line through each horizontal line below to indicate the 
intensity of your current opinion. If you have no answer, write “N/A” next to the 
question. 

 
 
1. How much do you sweat compared to others? 

 
Much, much more                                                        Much, much less 
                              _______________________________________________ 
  
 
             

2. Do you have stinging if sweat drips in your eyes? 
 
Very, very much                                                                      Not at all 
                              _______________________________________________ 
 
 

3. Do you have salt dried on your skin after sweating? 
 
Very, very much                                                   Not at all 
                               _______________________________________________ 
 
 

4. Do you have white salt stains on your clothing after sweating? 
 
Very, very much                                                                Not at all 
 
                              _______________________________________________ 
 

 
5.   How much salt do you think is in your sweat compared to others? 

 
Much, much more                                                        Much, much less 
                              _______________________________________________ 



 117

REFERENCES 

 

1. Verde T, Shephard RJ, Corey P, Moore R. Sweat composition in exercise and in heat. J 
Appl Physiol 1982;53(6):1540-1545. 

2. Shwachman H, Mahmoodian A, Neff RK. The sweat test: Sodium and chloride values. 
The Journal of Pediatrics 1981;98(4):576. 

3. Large interindividual variability in sweat sodium loss in well-trained endurance 
athletes. American College of Sports Medicine 53rd Annual Meeting; 2006; 
Denver, CO. 

4. Sawka M, Burke L, Eichner E, Maughan R, Montain S, Stachenfeld N. American 
College of Sports Medicine position stand. Exercise and fluid replacement. Med 
Sci Sports and Exerc 2007;39(2):377-390. 

5. Shirreffs SM, Aragon-Vargas LF, Chamorro M, Maughan RJ, Serratosa L, Zachwieja 
JJ. The Sweating Response of Elite Professional Soccer Players to Training in the 
Heat. International Journal of Sports Medicine 2005(2):90-95. 

6. Morgan R, Patterson M, Nimmo M. Acute effects of dehydration on sweat 
composition in men during prolonged exercise in the heat. Acta Physiol Scand 
2004;182:37-43. 

7. Machado-Moreira C, Wilmink F, Meijer A, Mekjavic I, Taylor N. Local differences in 
sweat secretion from the head during rest and exercise in the heat. European 
Journal of Applied Physiology In press. Accepted Dec 2007. 

8. Sato K, Freibleman C, Dobson R. The electrolyte composition of pharmacologically 
and thermally induced sweat: a comparative study. J Invest Dermatol 
1970;55(433-438). 

9. Schwartz V, Simpson N. Is salt reabsorption in the human sweat duct subject to 
control? Clinical Science 1985;68:441-447. 

10. Machado-Moreira C, Smith F, van den Heuvel A, Mekjavic I, Taylor N. Sweat 
secretion from the torso during passively-induced and exercise-related 
hyperthermia. European Journal of Applied Physiology In press, accepted Dec 
2007. 

11. Vimieiro-Gomes AC, Magalhaes FC, Amorim FT, Machado-Moreira CA, Rosa MS, 
Lima NV, et al. Comparison of sweat rate during graded exercise and the local 
rate induced by pilocarpine. Brazilian Journal of Medical and Biological 
Research 2005;38:1133-1139. 



 118

12. Quinton PM. Cystic Fibrosis: Lessons from the Sweat Gland. Physiology 
2007;22(3):212-225. 

13. Shamsuddin AKM, Yanagimoto S, Kuwahara T, Zhang Y, Nomura C, Kondo N. 
Changes in the index of sweat ion concentration with increasing sweat during 
passive heat stress in humans. European Journal of Applied Physiology 
2005;94(3):292. 

14. Allan JR, Wilson CG. Influence of acclimatization on sweat sodium concentration. J 
Appl Physiol 1971;30(5):708-712. 

15. Kirby CR, Convertino VA. Plasma aldosterone and sweat sodium concentrations after 
exercise and heat acclimation. J Appl Physiol 1986;61(3):967-970. 

16. Nielsen B, Strange S, Christensen N, Warberg J, Salin B. Acute and adaptive 
responses in humans to exercise in a warm, humid environment. Pflugers Arch-
Eur J Physiol 1997;434:49-56. 

17. Smiles KA, Robinson S. Sodium ion conservation during acclimatization of men to 
work in the heat. J Appl Physiol 1971;31(1):63-69. 

18. Patterson MJ. Variations in regional sweat composition in normal human males. 
Experimental Physiology 2000;85(6):869-875. 

19. Boysen TC, Yanagawa S, Sato F, Sato K. A modified anaerobic method of sweat 
collection. J Appl Physiol 1984;56(5):1302-1307. 

20. Brisson GR. A simple and disposable sweat collector. European Journal of Applied 
Physiology 1991;63:269-272. 

21. Lemon P, Yarasheski K, Dolny D. Validity/reliability of sweat analysis by whole 
body washdown vs. regional collections. J Appl Physiol 1986;61:1967-1971. 

22. Shirreffs SM, Maughan RJ. Whole body sweat collection in humans: an improved 
method with preliminary data on electrolyte content. J Appl Physiol 
1997;82(1):336-341. 

23. Van Heyningen R, Weiner JS. A comparison of arm-bag sweat and body sweat. J 
Physio. London 1952;116:395-404. 

24. Kondo N, Shibasaki M, Aoki K, Koga S, Inoue Y, Crandall C. The function of human 
eccrine sweat gland during passive heat stress and dynamic exercise. J Appl 
Physiol 2001;90:1877-1881. 

25. Cage G, Dobson R. Sodium secretion and reabsorption in the human eccrine sweat 
gland. Journal of Clinical Investigation 1965;44(7):1270-1276. 



 119

26. Montain SJ, Cheuvront SN, Sawka MN. Exercise associated hyponatremia: 
quantitative analysis to understand the aetiology. Br J Sports Med 2006;40:98-
106. 

27. Callen A, Diener-West M, Zeitlin PL, Rubenstein RC. A simplified cyclic adenosine 
monophosphate-mediated sweat rate test for quantitative measure of cystic 
fibrosis transmembrane regulator (CFTR) function. The Journal of Pediatrics 
2000;137(6):849. 

28. Morimoto T, Slabochova Z, Naman RK, Sargent F. Sex differences in physiological 
reactions to thermal stress. J Appl Physiol 1967;22:526-532. 

29. Meyer F, Bar-Or O, MacDougall D, Heigenhauser GJ. Sweat electrolyte loss during 
exercise in the heat: effects of gender and maturation. Med Sci Sports and Exerc 
1992;24:776-781. 

30. Allsopp AJ, Sutherland R, Wood P, Wootton SA. The effect of sodium balance on 
sweat sodium secretion and plasma aldosterone concentration. European Journal 
of Applied Physiology and Occupational Physiology 1998;78(6):516. 

31. Davies J, Harrison M, Cochrane L, Edwards R, Gibson T. Effect of saline loading 
during heat acclimatisation on adrenocortical hormone levels. J Appl Physiol 
1981;50:605-612. 

32. Robinson S, Kincaid R, Rhamy R. Effect of salt deficiency on the salt concentration 
in sweat. J Appl Physiol 1950;3:55-62. 

33. Buono MJ, Ball KD, Kolkhorst FW. Effect of active heat acclimation on the sweat 
sodium ion concentration verses sweat rate relationship in humans. J Appl Physiol 
2007:In Press. 

34. Lupi O. Ancient adaptations of human skin: why do we retain sebaceous and apocrine 
glands? International Journal of Dermatology 2008;47:651-654. 

35. Bramble D, Lieberman D. Endurance running and the evolution of Homo. Nature 
2004;432:345-352. 

36. Porter A. Sweat and thermoregulation in hominids. Comments prompted by the 
publications of P.W. Wheeler 1984-1993. J Human Evol 1993;25:417-423. 

37. Robertshaw D. Sweat and heat exchange in man and other mammals. J Human Evol 
1985;14(63-73). 

38. Sato K, Kang W, Saga K, Sato T. Biology of the eccrine sweat gland. I. Mechanism 
of sweat secretion. J Am Acad Dermatol 1989;20:537-63. 

39. Ussing H. Transport of electrolytes and water across epithelia. Harvey Lecture Series 
1965;59:1-30. 



 120

40. O'Grady S, Palfrey H, Field M. Characteristics and function of Na-K-Cl cotransport 
in epithelial transport. Am J Physiol 1987;253:C177-192. 

41. Saga K. Structure and function of human sweat glands studied with histochemistry 
and cytochemistry. Progr. Histochem. Cytochem 2002;37(4):323-386. 

42. Sato K, Sato F. Relationship between quin2-determined cytosolic [Ca2+] and sweat 
secretion. Am J Physiol Cell Physiol 1988;254(2):C310-317. 

43. Sato K, Sato F. Role of calcium in cholinergic and adrenergic mechanisms of eccrine 
sweat secretion. Am J Physiol Cell Physiol 1981;241(3):C113-120. 

44. Sato K, Sato F. Cholinergic potentiation of isoproterenol-induced cAMP level in 
sweat gland. Am J Physiol Cell Physiol 1983;245(3):C189-195. 

45. Sato K, Ohtsuyama M, Sato F. Whole cell K and Cl currents in dissociated eccrine 
secretory coil cells during stimulation. The Journal Of Membrane Biology 
1993;134(2):93. 

46. Sato K, Sato F. Nonisotonicity of simian eccrine primary sweat induced in vitro. Am J 
Physiol 1987;252:R1099-105. 

47. Reddy MM, Light MJ, Quinton PM. Activation of the epithelial Na+ channel (ENaC) 
requires CFTR Cl- channel function. Nature 1999;402:301-304. 

48. Reddy MM, Quinton PM. cAMP activation of CF-affected Cl- conductance in both 
cell membranes of an absorpive epithelium. J Membr Biol 1992;130:49-62. 

49. Reddy MM, Quinton PM. Cytosolic potassium controls CFTR deactivation in human 
sweat duct. 2006 2006;291:c122-129. 

50. Granger D, Marsolais M, Burry J, Laprade R. V-type H+-ATPase in the human 
eccrine sweat duct: immunolocalization and functional demonstration. Am J Cell 
Physiol 2002;282:C1454-1620. 

51. Granger D, Marsolais M, Burry J, Laprade R. Na+/H+ exchangers in the human 
eccrine sweat duct. Am J Cell Physiol 2003;285:C1047-1058. 

52. Nejsum LN, Praetorius J, Nielsen S. NKCC1 and NHE1 are abundantly expressed in 
the basolateral plasma membrane of secretory coil cells in rat, mouse, and human 
sweat glands. Am J Physiol Cell Physiol 2005;289(2):C333-340. 

53. Emrich HM, Stoll E, Friolet B, Colombo JP, Richterich R, Rossi E. Sweat 
composition in relation to rate of sweating in patients with cystic fibrosis of the 
pancreas. Pediatric Research2 1968(464-478). 

54. Shwachman H, Mahmoodian A. Pilocarpine iontophoresis sweat testing results of 
seven years' experience. Mod Probl Pediat 1966;10:158-182. 



 121

55. Quinton PM, Bijman J. Higher bioelectric potentials due to decreased chloride 
absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 
1983;308(20):1185-1189. 

56. Bijman J, Quinton PM. Influence of abnormal Cl- permeability on sweating in cystic 
fibrosis. Am J Physiol Cell Physiol 1984;247:C3-C9. 

57. Schulz I. Micropuncture studies of the sweat formation in cystic fibrosis patients. J 
Clin Invest 1969;48:1470-1477. 

58. Cohn JA, Melhus O, Page LJ, Dittrich KL, Vigna SR. CFTR: Development of high-
affinity antibodies and localization in sweat gland. Biochemical and Biophysical 
Research Communications 1991;181(1):36. 

59. Crawford I, P. M, P. Z, Guggino WB, Hyde S, Turley H, et al. Immunocytochemical 
localization of the cystic fibrosis gene product CFTR. PNAS USA 1991;88:9262-
9266. 

60. Karnter N, Augustinas O, Jensen T, Naismith L, Riordin J. Mislocalization of 
deltaF508 CFTR in cystic fibrosis sweat gland. Nature Genetics 1992;1:321-327. 

61. Krouse ME, Hagiwara G, Chen J, Lewiston NJ, Wine JJ. Ion channels in normal 
human and cystic fibrosis sweat gland cells. Am J Physiol Cell Physiol 
1989;257(1):C129-140. 

62. Sato K, Sato F. Methods for studying eccrine sweat gland function in Vivo and in 
Vitro. Methods in Enzymology 1990;192:583-599. 

63. Gibson LE, di Sant'Agnese PA. Studies of salt excretion in sweat: Relationships 
between rate, conductivity, and electrolyte composition of sweat from patients 
with cystic fibrosis and from control subjects. The Journal of Pediatrics 
1963;62(6):855. 

64. Sato K, Sato F. Na+, K+, H+, Cl-, and Ca2+ concentrations in cystic fibrosis eccrine 
sweat in vivo and in vitro. J Lab Clin Med 1990;115:504-511. 

65. Sugenoya J, Iwase S, Mano T, Sugiyama Y, Ogawa T, Nishiyama T, et al. 
Vasodilator component in sympathetic nerve activity destined for the skin of the 
dorsal foot of mildly heated humans. . Journal of Physiology 1998;507:603-610. 

66. Nadel ER, Mitchell JW, Saltin B, Stolwijk JA. Peripheral modifications to the central 
drive for sweating. J Appl Physiol 1971;31(6):828-833. 

67. Eichner E. Genetic and other determinants of sweat sodium. Curr Sports Med Rep 
2008;7(4):S36-S40. 

68. Farrell PM, Koscik RE. Sweat chloride concentrations in infants homozygous or 
heterozygous for F508 cystic fibrosis. Pediatrics 1996;97(4):524. 



 122

69. Super M, Irtiza-Ali A, Roberts SA, Schwarz M, Young M, Smith A, et al. Blood 
Pressure and the Cystic Fibrosis Gene: Evidence for Lower Pressure Rises With 
Age in Female Carriers. Hypertension 2004;44(6):878-883. 

70. Montain SJ, Sawka M, Wenger C. Hyponatremia associated with exercise: risk 
factors and pathogenesis. Exercise & Sport Sciences Reviews 2001;29(3):113-117. 

71. Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med 
Sci Sports and Exerc 1992;24:645-656. 

72. Maresh CM, Gabaree-Boulant CL, Armstrong LE, Judelson DA, Hoffman JR, 
Castellani JW, et al. Effect of hydration status on thirst, drinking, and related 
hormonal responses during low-intensity exercise in the heat. J Appl Physiol 
2004;97(1):39-44. 

73. Phillips PA, Rolls BJ, Ledingham JG, Forsling ML, Morton JJ. Osmotic thirst and 
vasopressin release in humans: a double-blind crossover study. Am J Physiol 
Regul Integr Comp Physiol 1985;248(6):R645-650. 

74. Thompson C, Bland J, Burd J, Baylis P. The osmotic thresholds for thirst and 
vasopressin release are similar in healthy man. Clin Sci (Lond) 1986;71:651-656. 

75. Stachenfeld NS. Acute effects of sodium ingestion on thirst and cardiovascular 
function. Curr Sports Med Rep 2008;7(4):S7-S13. 

76. Wolf AV. Osmometric analysis of thirst in man and dog. Am J Physiol 1950;161:75-
86. 

77. Antunes-Rodrigues J, De Castro M, Elias LLK, Valenca MM, McCann SM. 
Neuroendocrine Control of Body Fluid Metabolism. Physiol. Rev. 
2004;84(1):169-208. 

78. Engell D, Maller O, Sawka MN, Francesconi N, Drolet L, Young AJ. Thirst and fluid 
intake following graded hypohyration levels in humans. . Physiol. Behav. 
1987;40:229-236. 

79. Nose H, Mack GW, Shi X, Nadel ER. Shift in body fluid compartments after 
dehydration in humans. J Appl Physiol 1988;65:318-324. 

80. Nose H, Morimoto T, Ogura K. Distribution of water losses among fluid 
compartments of tissue under thermal dehydration in the rat. Jpn J Physiol 
1983;33:1019-1029. 

81. Jewell P, Verney E. An experimental attempt to determine the site of the 
neurohypophyseal osmoreceptors in the hypothalamus. . Philos Trans R Soc Lond 
1957;B240:197-324. 



 123

82. Verney E. The antidiuretic hormone and the factors which determine its release. Proc 
R Soc Lond 1947;B135:25-106. 

83. Bar-Or O, Blimkie C, Hay J, MacDougall J, Ward D, Wilson W. Voluntary 
dehydration and heat intolerance in cystic fibrosis. Lancet 1992;339:696-699. 

84. Casa D, Armstrong L, Hillman S, Montain S, Reiff R, Rich B, et al. National Athletic 
Trainers' Association Position Statement: Fluid Replacement for Athletes. J Athl 
Train 2000;35(2):212-224. 

85. Convertino VA, Armstrong L, Coyle E, Mack G, Sawka M, Senay L, et al. ACSM 
Position Stand: Exercise and Fluid Replacement. Medicine & Science in Sports & 
Exercise 1996;28(10):i-ix. 

86. Coyle E. Fluid and fuel intake during exercise. J Sports Sci 2004;22(1):39-55. 

87. Greenleaf JE, Sargent F. Voluntary dehydration in man. J. Appl. Physiol 
1965;20:719-724. 

88. Montain SJ, Latzka WA, Sawka MN. Control of thermoregulatory sweating is altered 
by hydration level and exercise intensity. J Appl Physiol 1995;79(5):1434-1439. 

89. Noakes T. Hyponatremia in distance runners: fluid and sodium balance during 
exercise. Curr Sports Med Rep 2002;4:197-207. 

90. Noakes T, Speedy D. Case proven: Exercise-associated hyponatremia is due to 
overdrinking. So why did it take 20 years before the original evidence was 
accepted? Br J Sports Med 2006;40:567-572. 

91. Noakes TD, Speedy DB. Time for the American College of Sports Medicine to 
acknowledge that humans, like all other earthly creatures, do not need to be told 
how much to drink during exercise. Br J Sports Med 2007;41(2):109-a-111. 

92. Noakes T, Sharwood K, Collins M, Perkins D. The dipsomania of great distance: 
Water intoxication in an Ironman triathlete. Br J Sports Med 2004;38:E16. 

93. Noakes TD, Sharwood K, Speedy D, Hew T, Reid S, Dugas J, et al. Three 
independent biological mechanisms cause exercise-associated hyponatremia: 
Evidence from 2,135 weighed competitive athletic performances. PNAS 
2005;102(51):18550-18555. 

94. Speedy D, Noakes T, Rogers I, Thompson J, Campbell R, Kuttner J, et al. 
Hyponatremia in ultradistance triathletes. Med Sci Sports and Exerc 1999;31:809-
815. 

95. Rosner MH, Kirven J. Exercise-Associated Hyponatremia. Clin J Am Soc Nephrol 
2007;2(1):151-161. 



 124

96. Sawka MN, Montain SJ. Fluid and electrolyte supplementation for exercise heat 
stress. Am J Clin Nutr 2000;72(2):564S-572. 

97. Quinton PM. Water metabolism: protozoa to man. 3rd ed. Basel, Switzerland: Karger, 
1979. 

98. Schulz I, Ulrich K, Fromter E, Emrich H, Frick A, Hegel U, et al. Micropuncture 
Experiments on Human Sweat Gland. In: Di Sant'Agnese P, editor. Research on 
Pathogenesis of Cystic Fibrosis, NIAMD. Bethesda, MD, 1964:136-146. 

99. Reddy MM, Quinton PM. Localization of Cl- conductance in normal and Cl- 
impermeability in cystic fibrosis sweat duct epithelium. Am J Physiol Cell Physiol 
1989;257(4):C727-735. 

100. Reddy MM, Quinton PM. Functional interaction of CFTR and ENaC in sweat 
glands. Pflugers Arch. 2003;445(4):499-503. 

101. Desmarquest P, Feldmann D, Tamalat A, Boule M, Fauroux B, Tournier G, et al. 
Genotype Analysis and Phenotypic Manifestations of Children With Intermediate 
Sweat Chloride Test Results. Chest 2000;118(6):1591-1597. 

102. Feldmann D, Coudere R, Audrezet M, Ferec C, Bienvenu T, Desgeorges M, et al. 
CFTR genotypes in patients with normal or borderline sweat chloride levels. 
Human Mutation 2003. 

103. Wilschanski M, Dupuis A, Ellis L, Jarvi K, Zielenski J, Tullis E, et al. Mutations in 
the cystic fibrosis transmembrane regulator gene and in vivo transepithelial 
potentials. Am. J. Respir. Crit. Care Med. 2006;174(7):787-794. 

104. Wilschanski M, Zielenski J, Markiewicz D, Tsui L-C, Corey M, Levison H, et al. 
Correlation of sweat chloride concentration with classes of the cystic fibrosis 
transmembrane conductance regulator gene mutations. The Journal of Pediatrics 
1995;127(5):705. 

105. Cuthbert AW, Halstead J, Ratcliff R, Colledge WH, Evans MJ. The genetic 
advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J Physiol 
1995;482(Pt_2):449-454. 

106. Quinton PM. What is good about cystic fibrosis? Current Biology 1994;4(8):742-
743. 

107. Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. 
Relation between Mutations of the Cystic Fibrosis Gene and Idiopathic 
Pancreatitis. N Engl J Med 1998;339(10):653-658. 

108. Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, et al. Mutations of 
the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 
1998;339(10):645-652. 



 125

109. Ziedalski TM, Kao PN, Henig NR, Jacobs SS, Ruoss SJ. Prospective analysis of 
cystic fibrosis transmembrane regulator mutations in adults with bronchiectasis or 
pulmonary nontuberculous mycobacterial infection. Chest 2006;130(4):995-1002. 

110. Jayant MP, Hayes MG, Daniel S, Robert MN, Carole O. A genomewide screen for 
chronic rhinosinusitis genes identifies a locus on chromosome 7q. The 
Laryngoscope 2008;118(11):2067-2072. 

111. Raman V, Clary R, Siegrist K, Zehnbauer B, Chatila T. Increased prevalence of 
mutations in the cystic fibrosis transmembrane conductance regulator in children 
with chronic rhinosinusitis. Pediatrics 2002;109(1):E13. 

112. Wang X, Moylan B, Leopold DA, Kim J, Rubenstein RC, Togias A, et al. Mutation 
in the gene responsible for cystic fibrosis and predisposition to chronic 
rhinosinusitis in the general population. JAMA 2000;284(14):1814-1819. 

113. Sato K, Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in 
vivo and in vitro. J Clin Invest 1984;73:1763-1771. 

114. Behm J, Hagiwara G, Lewiston NJ, Quinton PM, Wine JJ. Hyposecretion of beta-
adrenergically induced sweating in cystic fibrosis heterozygotes. Pediatric 
Research22 1987;3(271-276). 

115. Sato K, Sato F. Variable reduction in beta-adrenergic sweat secretion in cystic 
fibrosis heterozygotes. J Lab Clin Med 1988;111:511-518. 

116. Lieberman J, Kellog F. Evaluation of the sweat chloride asay in adults: use of 
pilocarpine iontophoresis. Am J Med Sci 1963;246:537-549. 

117. Montain S, Cheuvront SN, Lukaski H. Sweat mineral element responses during 7 hr 
of exercise-heat stress. . Int J Sport Nutr Exerc Metab 2007;17(6):574-82. 

118. Orenstein DM, Henke KG, Green CG. Heat acclimation in cystic fibrosis. J Appl 
Physiol 1984;57(2):408-412. 

119. Fava C, von Wowern F, Berglund G, Carlson J, Hedblad B, Rosberg L, et al. 24-h 
ambulatory blood pressure is linked to chromosome 18q21-22 and genetic 
variation of NEDD4L associates with cross-sectional and longitudinal blood 
pressure in Swedes. Kidney Int 2006;70(3):562-569. 

120. Qing W, Jean-Daniel H, Marc M, Hans RB, Bernard CR, Michel B. Salt- and 
angiotensin II-dependent variations in amiloride-sensitive rectal potential 
difference in mice. Clinical and Experimental Pharmacology and Physiology 
2000;27(1-2):60-66. 

121. Chang C, Sun C, Pong Y, Chen Y, Lin G, TC C, et al. Interaction of estrogen and 
progesterone in the regulation of sodium channels in collecting tubular cells. 
Chang Gung Med J 2007;30(4):305-312. 



 126

122. Gambling L, Dunford S, Wilson CA, McArdle HJ, Baines DL. Estrogen and 
progesterone regulate [alpha], [beta], and [gamma]ENaC subunit mRNA levels in 
female rat kidney. Kidney Int 2004;65(5):1774-1781. 

123. Volkes T, Weiss N, Schreiber J, Gaskill M, Robertson G. Osmoregulation of thirst 
and vasopressin during normal menstrual cycle. Am J Physiol Regul Integr Comp 
Physiol 1988;23:R461-R647. 

124. Borg G. Perceived exertion: A note on “history” and methods. Medicine and Science 
in Sports and Exercise 1987;19:398-403. 

125. Armstrong L, Maresh C, Castellani J, Bergeron M, Kenefick R, La Gasse K, et al. 
Urinary indices of hydration status. Int J Sport Nutr Exerc Metab 1994;4:265-279. 

126. Weschler LB. Sweat electrolyte concentrations obtained from within occlusive 
coverings are falsely high because sweat itself leaches skin electrolytes. J Appl 
Physiol 2008:00924.2007. 

127. Claass A, Sommer M, de Jonge H, Kalin N, Tummler B. Applicability of different 
antibodies for immunohistochemical localization of CFTR in sweat glands from 
healthy controls and from patients with cystic fibrosis. The Journal of 
Histochemistry and Cytochemistry 2000;48(6):831-837. 

128. Kalin N, Claabeta A, Sommer M, Puchelle E, Tummler B. DeltaF508 CFTR 
expression in tissues from patients with cystic fibrosis. J Clin Invest 
1999;103:1379 - 1386. 

129. ACOG. American College of Obstetricians and Gynecologist (ACOG) commitee 
opinion: Update on carrier screening for cystic fibrosis. Obstetrics and 
Gynecology 2005;106:1465-1468. 

130. Cutting GR. Cystic Fibrosis Mutation Database, 2009. 

131. Kunzelmann K, Schreiber J. CFTR, a regulator of channels. J Membr Biol 
1999;168:1-8. 

132. Schwiebert E, Beno D, Egan M, Stutts M, Guggino W. CFTR is a conductance 
regulator as well as a chloride channel. Physiological Reviews 1999;79(1):S145-
166. 

133. Stutts MJ, Canessa CM, Olson JC, Hamrick M, Cohn J, Rossier BC, et al. CFTR as 
a cAMP-dependent regulator of sodium channels. Science 1995;269:847-850. 

134. Reddy MM, Light MJ, Quinton PM. Activation of the epithelial Na+ channel 
(ENaC) requires CFTR Cl- channel function. Nature 1999;402(6759):301-304. 



 127

135. Cheng S, Gregory R, Marshall J, Paul S, Souza D, White G, et al. Defective 
intracellular transport and processing of CFTR is the molecular basis of most 
cystic fibrosis. Cell 1990;63(4):827-834. 

136. Gregory RJ, Rich DP, Cheng SH, Souza DW, Paul S, Manavalan P, et al. 
Maturation and function of cystic fibrosis transmembrane conductance regulator 
variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. 
Cell. Biol. 1991;11(8):3886-3893. 

137. Ratjen F, Brockhaus F, Angyalosi G. Aminoglycoside therapy against Pseudomonas 
aeruginosa in cystic fibrosis: A review. J Cyst Fibros.  2009;Sep 9. [Epub ahead 
of print]. 

138. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, et al. Altered 
chloride ion channel kinetics associated with the [Delta]F508 cystic fibrosis 
mutation. Nature 1991;354(6354):526-528. 

139. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, Riordan JR, et al. The 
delta F508 mutation decreases the stability of cystic fibrosis transmembrane 
conductance regulator in the plasma membrane. Determination of functional half-
lives on transfected cells. Journal of Biological Chemistry 1993;268(29):21592-
21598. 

140. Bangel N, Dahlhoff C, Sobczak K, Weber W, Kusche-Vihrog K. Upregulated 
expression of ENaC in human CF nasal epithelium. Journal of Cystic Fibrosis 
2008;7(3):197-205. 

141. Hew-Butler TD, Noakes TD, Soldin SJ, Verbalis JG. Acute changes in arginine 
vasopressin, sweat, urine and serum sodium concentrations in exercising humans: 
Does a coordinated homeostatic relationship exist? Br J Sports Med 
2008:bjsm.2008.051771. 

142. Nejsum LN, Kwon T-H, Jensen UB, Fumagalli O, Frokiaer J, Krane CM, et al. 
Functional requirement of aquaporin-5 in plasma membranes of sweat glands. 
PNAS 2002;99(1):511-516. 

143. Burghardt B, Elkaer M, Kwon  T, Rácz G, Varga G, Steward M, et al. Distribution 
of aquaporin water channels AQP1 and AQP5 in the ductal system of the human 
pancreas. Gut 2003;52(7):1008-16. 

144. Gresz V, Kwon T-H, Gong H, Agre P, Steward MC, King LS, et al. 
Immunolocalization of AQP-5 in rat parotid and submandibular salivary glands 
after stimulation or inhibition of secretion in vivo. Am J Physiol Gastrointest 
Liver Physiol 2004;287:G151-G161 

 

 
 



 128

145. Song Y, Verkman A. Aquaporin-5 dependent fluid secretion 
in airway submucosal cells. J. Biol. Chem. 2001;276:41288-41292. 

146. Maughan R, Shirreffs S. Development of individual hydration strategies for athletes. 
Int J Sport Nutr Exerc Metab 2008;18:457-472. 

147. Robinson S, Robinson A. Chemical composition of sweat. Physiological Reviews 
1954;34:202-220. 

148. Collins F. Cystic fibrosis: molecular biology and therapeutic implications. Science 
1992;256:774-779. 

149. Skach W. Defects in processing and trafficking of the cystic fibrosis transmembrane 
conductance regulator. . Kidney Int 2000;57:825-831. 

150. Noakes TD, Speedy D. The aetiology of exercise--associated hyponatraemia is 
established and is not "mythical". Br J Sports Med 2007;41(2):111-a-113. 

151. Kriemler S, Wilk B, Schurer W, Wilson W, Bar-Or O. Preventing dehydration in 
children with cystic fibrosis who exercise in the heat. Med Sci Sports and Exerc 
1999;31(6):774-779. 

152. Nixon PA. Role of exercise in the evaluation and management of pulmonary disease 
in children and youth. Medicine and Science in Sports and Exercise 
1996;28(4):414-420. 

153. Nixon PA, Orenstein DM. The prognostic value of exercise testing in patients with 
cystic fibrosis. New England Journal of Medicine 1992;327(25):1785. 

154. Turchetta A, Salerno T, Lucidi V, Libera F, Cutrera R, Bush A. Usefulness of a 
program of hospital-supervised physical training in patients with cystic fibrosis. 
Pediatric Pulmonology 2004;38(2):115-118. 

155. Orenstein D, Henke K, Costill D, Doershuk C, Lemon P, Stern R. Exercise and heat 
stress in cystic fibrosis patients. Pediatric Research 1983;17:267-269. 

156. Morimoto T, Miki K, Nose H, Yamada S, Hirakawa K, Matsubara C. Changes in 
body fluid volume and its composition during heavy sweating and the effect of 
fluid electrolyte replacement. Jpn J Biometerol 1981;18:31-39. 

157. Amatruda TTJ, Welt LG. Secretion of electrolytes in thermal sweat. J Appl Physiol 
1953;5(12):759-772. 

158. Johnson A. The sensory psychobiology of thirst and salt appetite. Med Sci Sports 
and Exerc 2007;39(8):1388-1400. 

159. Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, 
plasma, and red cells in dehydration. J Appl Physiol 1974;37(2):247-248. 



 129

160. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power 
analysis program for the social, behavioral, and biomedical sciences. Behavior 
Research Methods 2007;39(2):175-191. 

161. Skott O. Body sodium and volume homeostasis. Am J Physiol Regul Integr Comp 
Physiol 2003;285(1):R14-18. 

162. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 
1998;78(3):583-686. 

163. Morimoto T, Toshiyuki I. Thermoregulation and body fluid osmolality. Journal of 
Basic and Clinical Physiology and Pharmacology 1998;9(1):51-72. 

164. Saavedra J. Brain and pituitary angiotensin. Endocr Rev 1992;13:329-380. 

165. Noda M. The subfornical organ, a specialized sodium channel, and the sensing of 
sodium levels in the brain. Neuroscientist 2006;12(1):80-91. 

166. Stricker E, Callahan J, Huang W, Sved A. Osmoregulation in water-deprived rates 
drinking hypertonic saline: effect of area postrema lesions. Am J Physiol Regul 
Integr Comp Physiol 2001;280:R831-R842. 

167. Nose H, Yawata T, Morimoto T. Osmotic factors in restitution from thermal 
dehydration in rats. Am J Physiol Regul Integr Comp Physiol 1985;249(2):R166-
171. 

168. Greenleaf JE, Castle BL. Exercise temperature regulation in man during 
hypohydration and hyperhydration. J Appl Physiol 1971;30(6):847-853. 

169. Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory 
and blood responses during exercise at graded hypohydration levels. J Appl 
Physiol 1985;59(5):1394-1401. 

170. Takamata A, Nagashima K, Nose H, Morimoto T. Osmoregulatory inhibition of 
thermally induced cutaneous vasodilation in passively heated humans. Am J 
Physiol Regul Integr Comp Physiol 1997;273(1):R197-204. 

171. Fortney SM, Nadel ER, Wenger CB, Bove JR. Effect of blood volume on sweating 
rate and body fluids in exercising humans. J Appl Physiol 1981;51:1594-6000. 

172. Fortney SM, Wenger CB, Bove JR, Nadel ER. Effect of hyperosmolality on control 
of blood flow and sweating. J Appl Physiol 1984;57:1688-1695. 

173. Bell CL, Reddy MM, Quinton PM. Reversed anion selectivity in cultured cystic 
fibrosis sweat duct cells. Am J Physiol Cell Physiol 1992;262(1):C32-38. 



 130

174. Reddy MM, Quinton PM. Altered electrical potential profile of human reabsorptive 
sweat duct cells in cystic fibrosis. Am J Physiol Cell Physiol 1989;257(4):C722-
726. 

175. Larsen E, Novak I, Pedersen P. Cation transport by sweat ducts in primary culture. 
Ionic mechanism of cholinergically evoked current ocsillations. Journal of 
Physiology 1990;424:109-131. 

176. Frindt G, Ergonul Z, Palmer LG. Na channel expression and activity in the 
medullary collecting duct of rat kidney. Am J Physiol Renal Physiol 
2007;292(4):F1190-1196. 

177. Frindt G, Sackin H, Palmer LG. Whole-cell currents in rat cortical collecting tubule: 
low-Na diet increases amiloride-sensitive conductance. Am J Physiol Renal 
Physiol 1990;258(3):F562-567. 

178. Gray DA, Frindt G, Zhang Y-Y, Palmer LG. Basolateral K+ conductance in 
principal cells of rat CCD. Am J Physiol Renal Physiol 2005;288(3):F493-504. 

179. Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy. 
Science 1990;248:73-76. 

180. Centonze V, White J. Multiphoton excitation provides optical sections from deeper 
within scattering specimens than confocal imaging. Biophys J 1998;75:2015-
2024. 

181. Dunn K, Sandoval R, Kelly K, Dagher P, Tanner G, Atkinson S, et al. Functional 
studies of the kidney of living animals using multicolor two-photon microscopy. 
Am J Cell Physiol 2002;283(C905-916). 

182. Phillips C, Arend L, Kojetin D, Filson A, Clendenon J, Fang S, et al. 3-D imaging of 
embryonic mouse kidney by two-photon microscopy.  . Am J Pathol 2001;158:49-
55. 

183. Nielsen S, Chou C, Marples D, Christensen EI, Kishore BK, Knepper MA. 
Vasopressin increases water permeability of kidney collecting duct by inducing 
translocation of aquaporin-CD water channels to plasma membrane. PNAS 
1995;92(4):1013-1017. 

184. Deen P, Verdijk M, Knoers N, Wieringa B, Monnens L, van Os C, et al. 
Requirement of human renal water channel aquaporin-2 for vasopressin-
dependent concentration of urine. Science 1994;264(5155):92-95. 

185. Siegel AJ, Verbalis JG, Clement S, Mendelson JH, Mello NK, Adner M, et al. 
Hyponatremia in marathon runners due to inappropriate arginine vasopressin 
secretion. The American Journal of Medicine 2007;120(5):461.e11-461.e17. 



 131

186. Speedy D, Rogers I, Noakes T, Wright S, Thompson J, Campbell R, et al. Exercise-
induced hyponatremia in ultradistance athletes is caused by inappropriate fluid 
retention. Clin J Sport Med 2000;10:272-278. 

187. Montain S. Strategies to prevent hyponatremia during prolonged exercise. Curr 
Sports Med Rep 2008;7(4):S28-S35. 

188. Alfaidy N, Blot-Chabaud M, Bonvalet JP, Farman N. Vasopressin potentiates 
mineralocorticoid selectivity by stimulating 11 beta hydroxysteroid 
deshydrogenase in rat collecting duct. The Journal of Clinical Investigation 
1997;100(10):2437-2442. 

189. Hirasawa G, Sasano H, Takahashi K-i, Fukushima K, Suzuki T, Hiwatashi N, et al. 
Colocalization of 11{beta}-hydroxysteroid dehydrogenase type II and 
mineralocorticoid receptor in human epithelia. J Clin Endocrinol Metab 
1997;82(11):3859-3863. 

190. Bocchi B, Kenouch S, Lamarre-Cliche M, Muffat-Joly M, Capron MH, Fiet J, et al. 
Impaired 11-{beta} hydroxysteroid dehydrogenase type 2 activity in sweat gland 
ducts in human essential hypertension. Hypertension 2004;43(4):803-808. 

191. Berdiev BK, Qadri YJ, Benos DJ. Assessment of the CFTR and ENaC association. 
Mol. Biosyst. 2009;5:123-127. 

192. Quinton PM. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 
1990;4(10):2709-2717. 

193. Berdiev B, Shlyonsky V, Karlson K, Stanton B, Ismailov I. Gating of amiloride-
sensitive Na(+) channels: subunit-subunit interactions and inhibition by the cystic 
fibrosis transmembrane conductance regulator. Biophys J 2000;78(4):1881-1884. 

194. Berdiev BK, Cormet-Boyaka E, Tousson A, Qadri YJ, Oosterveld-Hut HMJ, Hong 
JS, et al. Molecular proximity of cystic fibrosis transmembrane conductance 
regulator and epithelial sodium channel assessed by fluorescence resonance 
energy transfer. J. Biol. Chem. 2007;282(50):36481-36488. 

195. Kunzelmann K, Kiser GL, Schreiber R, Riordan JR. Inhibition of epithelial Na+ 
currents by intracellular domains of the cystic fibrosis transmembrane 
conductance regulator. FEBS Letters 1997;400(3):341. 

196. Ji H-L, Chalfant ML, Jovov B, Lockhart JP, Parker SB, Fuller CM, et al. The 
cytosolic termini of the beta - and gamma -ENaC subunits are involved in the 
functional interactions between cystic fibrosis transmembrane conductance 
regulator and epithelial sodium channel. J. Biol. Chem. 2000;275(36):27947-
27956. 

197. Reddy M, Quinton P. PKA Mediates Constitutive Activation of CFTR in Human 
Sweat Duct. J Membr Biol 2009;Published Online Oct 29th. 



 132

198. Cook D, Dinudom A, Komwatana P, Young J. Control of Na+ transport in salivary 
duct epithelial cells by cytosolic Cl- and Na+. Eur J Morphol 1998;36(S67-S73). 

199. Buono MJ, Claros R, DeBoer T, Wong J. Na+ secretion rate increases 
proportionally more than the Na+ reabsorption rate with increases in sweat rate. J 
Appl Physiol 2008;105(4):1044-1048. 

200. Reddy MM, Quinton PM. Intracellular Cl activity: evidence of dual mechanisms of 
Cl- absorption in sweat duct. Am J Physiol Cell Physiol 1994;267(4):C1136-1144. 

201. Nadeau G. Simple method for combined determination of plasma bicarbonate, pH 
and chloride. Am J Clin Pathol 1953;23(7):710-2. 

202. Kaiser D, Drack E. Diminished excretion of bicarbonate from the single sweat gland 
of patients with cystic fibrosis of the pancreas. Eur J Clin Invest 1974;4:261-265. 

203. O'Toole M, Douglas P, Laird R, Hiller W. Fluid and electrolyte status  in athletes 
receiving medical care at an ultradistance triathlon. Clin J Sport Med 1995;5:116-
122. 

204. Kurtz I, Nguyen M. A simple quantitative approach to analyzing the generation of 
dysnatremias. Clin Exp Nephrol 2003;7:138-144. 

205. Smith HR, Dhatt GS. Cystic fibrosis presenting as hyponatraemic heat exhaustion. 
BMJ: British Medical Journal 1995;310(6979):579-580. 

206. Pace N, Rathbun E. Studies on body composition. III. The body water and 
chemically combined nitrogen content in relation to fat content. J Biol Chem 
1945;158(685-691). 

207. Baker LB, Lang JA, Kenney WL. Quantitative analysis of serum sodium 
concentration after prolonged running in the heat. J Appl Physiol 2008;105(1):91-
99. 

208. Armstrong L, Casa D. Methods to evaluate electrolyte and water turnover of 
athletes. Athletic Training and Sports Health Care 2009;1(4):1-11. 

209. Comparison of regional patch collection vs. whole-body washdown for measuring 
sodium loss during exercise. American College of Sports Medicine Annual 
Meeting; 2009; Seattle, Washington. 

210. Shirreffs SM, Sawka MN, Stone M. Water and electrolyte needs for football training 
and match-play. Journal of Sport Sciences 2006;24(7):699-707. 

 
 

 

 



 133

 

 

VITA 

 

MARY BETH BROWN 

 

 

BROWN was born in Tampa, Florida.  She attended public schools in St. 

Petersburg, Florida, received a B.A. in Exercise Physiology and Athletic Training 

Certification from Lenoir-Rhyne College, Hickory, North Carolina in 1993 and a M.S. in 

Physical Therapy from University of Miami School of Medicine, Coral Gables, Florida in 

1995. She practiced physical therapy in St. Petersburg, Florida for nearly a decade before 

coming to Georgia Tech to pursue a doctorate in Applied Physiology.  When she is not 

working on her research, Ms. Brown enjoys triathlon, traveling with her husband, and 

running with her dog, Meishka.   

 

 


