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• 

Demand for light weight aircraft structures results in the use of 

as small a safety margin as is practical. As a consequence of the 

small safety margin and other uncertainties,,cracks or partial damages 

are likely to occur before the economical life of the aircraft is 

expncled- Fatigue is one of the principal causes for the cracks. 

Fatigue loading and fatigue crack growth also contain uncertainties. 

The susceptibility of the aircraft structure to crack or partial 

damage during the useful. life of the structure imposes the requirement 

that the structure should be capable of supporting the service loads 

with these cracks. Furthermore, it must be possible to'detect these 

cracks before they extend to critical sizes and cause catastrophic 

failure of the structure. Therefore, any fail safe design that can 

achieve this objective needs . a knowledge of the probability of the 

presence of a crack of a certain length at a given location after 

certain number of flight hours. A stochastic model has been developed 

to describe such a probability for fatigue process by assuming a varying 

hazard rate. This stochastic model can be used to obtain the desired ' 

probability of a crack of certain length at a given location after certain' 

nimber: of cycles or time. 

Quantitative estimation of the developed model has also been 

discussed. Application of the model to develop a procedure for reliability-

based cost-effective fail-safe structural design has been discussed. 

This design procedure includes the reliability improvement due to 

inspection and repair. Methods of obtaining optimum inspection and 

maintenance schemes have also been discussed. 



Alternate methods of fatigue reliability improvement by cold 

working processes have been discussed. The associated stress corrosion 

problem has been studied. Application of statistical decision theory 

to select suitable test options and safety factors subject to a reli-

ability constraint have also been investigated. 

Most of the investigations under this project have either been 

published in journals and conference proceedings or pending publi-

cation. 
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INTRODUCTION 

It is now generally accepted that all structural materials are not 

"flaw—free". Sometimes, a maximum acceptable flaw-size can be specified 

as a part of the structural specifications. Thus, an initial flaw size 

(a ) and the associated probability distribution characterize the 

structure. Due to fatigue loading, these initial "micro-sized" flaws 

grow to detectable sizes. Time or number of cycles required for this 

growth to detectable size of crack length is often called the "crack 

initiation time." In many cases, this growth time amounts to a 

significant function of the total fatigue life of the structure. Due 

to further fatigue loading, crack sizes increase until they attain critical 

sizes. These critical sizes depend upon the critical stress intensity 

factors and the external loads. Thus, the probability distribution for 

crack sizes is changing continuously with time or number of cycles at 

all locations of the structure. Therefore, the probabilistic description 

fatigue process can be expressed as the probability that for time t 5  T, 

the crack size a 5 A. This is a shochastic process. 

1-8 
7r,  most of the reported works 	, the varying crack lengths "a" 

associated with the fatigue process are ignored. In these works, 

stochastic process is not considered. The entire fatigue process is 

described by a single random variable "t" which is the time for fatigue 

failure. The quantitative description consists of the probability that 

for time tZTfatigue failure took place. Because of the simplicity of the 



model, probability distributions .such as the Weibull Distribution have 

been used to describe the time for fatigue failure. 

The use of such a description that uses a single random variable 

is very limited because such a model neglects many important aspects of 

fatigue. process. For example, one question that needs an answer is as 

follows. What is the ,length of the crack that corresponds to the defined 

f....,-7. 1ure time? Is-this length the initiation length or critical crack 

length or some arbitrarily chosen length? Initiation length can vary 

depending on the available non-destructive inspection capability. 

Furthermore, such a model does not provide any information for optimizing 

repair threshold crack length, crack arresting devices, N.D.I. capabilities 

and different loading process. Another arguement used by the users of a 

single random variable is to assume that the effect of varying crack 

length is negligable and a stochastic process is not needed. In order 

to verify if such a statement could be true fatigue data from specific 

fleet of aircraftare analyzed as a first step of the investigation. 

explained in later sections, these investigations demonstrated that a 

stochastic model is necessary to describe fatigue of structure 

FuT-'-hl-  investigations during the project period is described as follows: 

a) DevelOpment of 

the concept of 

a 	 using simple stochastic model for fatigue by 

a varying hazard rate and a birth process 9-10 
 

Quantitative estimation of the parameters of the stochastic 

model by using fracture mechanics considerations 9  

Quantitative estimation of the parameters of the stochastic 

11,12 
model from available data  



Application of the stochastic model to develop a reliability-

based, cost effect fail-safe design procedure .9 

Development of procedures for devising optimum inspection and 

maintenance schemes 
11

, 
12 

Application of statistical decision theory to select appropriate:. 

test options and safety factors subject to reliability restraints 1  

:
Investigation of alternate methods of improving fatigue life and 

fatigue reliability by using interference fit techniques and the 

14,15 
associated stress corrosion considerations 

h) Application of the principles of analysis of variance ;to study 

the significance of present methods of grouping fatigue failure 

data 
16 

As a bi- product of the above investigations,an improved mathematical 

technique has been developed. This technique and its application can be 

described as follows: 

i) An improved numerical technique of multiple integration with respect 

to one independent variable 1 7 

j) Application of new technique of integration to develop a procedure 

18 
for the study of some random vibration problems 



Analysis of Fatigue Failure Data 

■ • 

In order to investigate if fatigue provess can be described by a single 

random variable "t" that denotes time for fatigue, fatigue data from two 

specific fleets were analyzed. A typical inspection record contained the 

following information. 

1 Identification number of the airplane 

2. Number of flight hours completed before the inspection 

3. Inspection date 

4. Number of reinspection(s) 

5. The command 

6. The base 

7. Facility of inspection 

8. Crack location by numbers of the critical regions as has been 

previously identified 

9. Number of such cracks in a given region 

10. Direction of crack growth 

11. Crack length 

12. Information as to whether the crack has been repaired 

A two par,-,-,mer weibull model was hypothesized for the fatigue failure time "t". 

F(t) 
	

ex/ [ (673) ej 
	

(r) 

the equation,a and are shape and scale parameters respectively. These 

parameters were estimated from the data by using the method of maximum likelihood
19

. 



The chi-square and Kolmogrov
20 
 tests were used to verify the goodness of 

• 
fit of the estimated parameters. The following conclusions were reached. 

(1) For a given critical location or a selected , group of critical 

locations, no acceptable Weibull distribution was obtained 

unless the data were censored in some way. In general, 

censoring of both high-level outliers and low level outliers 

were needed. Low-level outliers refer to those fatigue failure 

times that lie below a selected failure time for purposes of 

censoring. Similarly, high-level outlier refers to those 

failure times that lie above a time corresponding to high 

censoring level. Use of a low level outlier was not conservative. 

Any model derived by the use of low level censoring can result in 

serious errors in decisions concerning design and maintenance. 

Similarly, models derived by the use of high level censoring can 

result in increased weight and cost. 

(2) A three parameter weibull distribution or a log-normal distribution 

did not improve the results. 

(3) However, when the observed failure times at a given loCation 

were reduced by regression techniques to correspond to the time 

for initiation of crack of a given length acceptability of the 

two-parameter weibull model improved in many cases. Probability 

distribution was different for differentcrack lengths. 

Necessity for a stochastic model was evident. 



Development of A Stochastic Model for Fatigue.  

It is assumed that a single crack is present in a fatigue critical 

region. Multiple cracks can be treated by order statistics or other 

proc.‘du-res. Then, the variation of crack length with time is quali-

tatively of the type shown in Figure 1. This consists of a continuous 

variation of crack length with continuous variation of time or number 

of cycles. The corresponding model for the stochastic process for 

fatigue crack sizes involves the consideration of continuous state 

space of crack lengths and continuous time. It is difficult to develop 

such a model. The development of the model is simplified by considering 

the state space of crack length to be discrete as shown in Figure 1. 

Accuracy can be increased by decreasing the magnitude of 'AL' of 

discrete crack length increments. This process of considering the 

state space of crack length can also accomodate consideration of crack 

initiation i.e. probability of a crack of length a i  initiating at time t 

less than or equal to ti  as shown in Figure 2. Even though the crack 

lengths are assumed to increase in discrete steps the mean crack growth 

rate can vary continuously as a function of time. Because the resulting 

process is nonstationary, the probability that a crack of length k(AL) 

times AL , is present at a time t <t
k 
 depends on the initial 

value of time t . This is denoted by P(k, to , tk). 

By considering the different ways in which the event of the develop-

/ " meat of a crack of length Ag` -A 	can occur in time interval t o 
to t 

the following equation can be written 



by assuming orderliness of crack growth i.e., 

-t+ t- ) 
A t 

0-) 

when 

s 1 ( )t- 	(gi t12 1 0 

	— P (vita, t 
	

(5) 

S(f) = 	P( (t-o,t} f— POI to 	P to, ti 

It can be shown that the following differential equations are for k 

d rfik,i0,tu 	 ._ paito,t 	(7) 
t L • 

In this equation, E [a(0] is the mean crack growth rate at t. For 

k = 1, the equation (7) takes the following special form. 

and 

and 

t o  

-1—LP(//t;, t).] (t) 	E-r_ca( t-)7 p 	to j  

where fe (t) is the probability density for crack initiation. These 

equations can be solved by methods similar to those discussed in Reference 

However, P(k, t) can be obtained only if E [a(t)] and f e (t) 

can be estimated if probability distribution for initial flaw sizes are 

known. This procedure will be discussed in a separate note. The method'' , 

of obtaining E[i(t)] is discussed in the next section. 

Mean Crack Growth Rate 

Knowledge of the mean crack growth rate is essential to estimate 

the crack length at a given time. According to Forman the rate of 

crack growth is given by 

7 



cj (-1 K  ) 

	

c ) 

dA/ 	(1--n)Kic AK 

where C
1 
and n are materiel constants,21K is the range of stress intensity 

factors, 
Klc 

 is the,: critical-stress intensity factor, r is the ratio 

of minimum stress intensity factor to the maximum stress intensity factor 

'a' is the half crack length and 'N' is the number of cycles. For a 

sl- ined panel the rangeilK is given by 

aK = 41L, ( -n- ck 	 CR (q, 
	 (to) 

whereAL is the range of applied loads at a given time, f(!) is the 

finite width correction factor, C
R 

(a, b) is the tip stress reduction 

factor, and b is half the stringer spacing. For a fixed value of 

da 
is a function of the random load parameters L. and r. Thus at a 

dN 

given crack length say a - a
l' 

the growth rate is a randam variable. If 

t3 L (N) and r(N) are assumed to be independent stationary stochastic 

processes with known density functions, then the expected value of the 

growth rate is given by 

[t] 	(t) -tr (4) 	 ct 7i (=VAL-) 
a = ct i  6i=a, 

AL- 	71 

where f(r) and g(AL) are the density fucntions of the random variables 

r 	 AL respectively. RAL  and Rr 
are the range spaces ofilL and r 

respectively. Equation (11), thus gives the mean crack growth rate at 

any value of crack length under the random loading. This quantity 

t is required in the expressed in terms of the discrete length units 

equation for P(k, t) o f previous section 



The mean crack growth rate as given by Equation (11) is a compli 7 

 cated integral to be solved and does not have a closed form solution. 

Hence, numerical methods have been used to solve the equation. However, 

for a special cases where r andAL are stationary Gaussian processes, 

Taylor's series expansion has. been used to obtain approximation. Then 

E[ii at any value of a i is given by the following equation. 

A k, 	 07-27 i/lp (I -14)1. 	C/4 
taL 	41- 	 ) 	latj 

3 A - C - 2u A L r.;77.,, i_ 	i3 o  -14 	,+ c"1.44 _ 

-1-Atc131- 	C  "176-2L-- 	 13  ( 	 ) 
„ 

Alternate Method of Estimation of Parameters 

An alternate method of estimation of parameters is to use the 

fatigue failure data from the same fleet, similar fleet or from tests. 

Such a method requires the following steps. 

(1) The first required step is the solution of equation ..(7) and 

(8) to obtain P(k, t). This could be left in the form of 

quadratures. 

(2) The next step needed is the normalization to a realistic maximum, 

crack length N (AL). 

(3) If the parameters are to be estimated by the method of maximum 

likelihood it is necessary to forMulate the likelihood function 

from the results of steps (1) and (2). 

.(4) The next step will be to maximize the likelihood function to 

obtain the parameters. 

This work has been carried out as a part of the project investigation.! 

. 
Preliminary results are published in references 11 and 12. These papers 

9 



include the consideration of data from a specific fleet supplied by NASA. 

detailed analysis including the model verification will be published 12  . 

Applications of the Developed Model 

One of the applications of the developed model is to develop a 

reliability-based, cost-effective design procedure. This method has 

been_ dev2loped and reported by the investigators in reference. 18. 

Some of the significant items and example problems are discussed here. 

Problem Setting  

The problem setting can be best explained by considering an example. 

In this report, the deisgn of a built-up structure such as a sheet 

stiffener combination is considered. Figure 3 illustrates the stiffened 

panel. The panel is of width w and thickness t. The panel is assumed 

to be made of a specific material and the particular structure is assumed 

to be a sub-assembly of an aircraft structure. It is also assumed that 

large number of aircraft will be produced as a result of this design. 

Even though the discussed methodology considers a specific material, an 

optimum choice among several candidate materials can be made by following 

a similar procedure and statistical dedision theory. External loading 

F consists of a sustained loadina
° 
 F 1 , and a random fatigue loading F 2 . 

2' 

t isassumed that the random fatigue loading has been quantified 

probabilistically. Thus, the total loading F is specified probabilistically. 

For a particular choice of the thickness t, the stringer Spacing 

2b, and the choice of the material, the initial ultimate load carrying 

capacity F
u 

is known. If the initial microsized flaws or cracks are 

10 



specified by a probabilistic distribution, the initial load carrying 

capacity Fu  is characterized by an appropriate probabilistic distribution 

which depends on the initial flaw size distribution, the material and the 

dependence of the load'carrying capacity of the structure on the flaw 

size and other dimensions. 

On the other hand, if it is assumed that the effect of initial 

flaw size distribution can be described by a crack initiation probability 

distribution, the load carrying capacity F can be expressed as a determinis-

tic quantity if the material properties are also assumed to be deterministic. 

The corresponding initial ultimate stress is defined to bea . Similarly, 

for a given thickness, stress corresponding to external' loading is denoted 

by at. . If.fc
ru 

and aL  are deterministic, the initial safety margin i.e., 

before fatigue effects are present, is given by the ratio of a
u 

to a
L 

As explained earlier, both a u  and al,  have uncertainties and need probabiliS-

tic representation. Then the initial reliability can be considered as a 

safety measure. This can be represented by the probability that a u/ aL  

is greater than 1. Due to the presence of fatigue loading, cracks grow 

in size. Crack growth rates and the crack sizes depend on the material 

properties, stress and the number of cycles. The presence of a crack 

of sj_ze a reduces the ultimate strength from a u  to aui . Then the reli- 

which is defined by the probability that the ratio , aui to aL  is 

greater than 1 is also reduced. Consequently, the probability of failure 

which is the probability of the ratio a u o 
L 

is less than 1 is increased. 

  

The probability of failure increases as the crack lengths increase to 

such an extent (a 
cr
) that the strenghth is reduced below the externally 

applied load. The probability of failure can be reduced by increasing 

1 1 



the initial margin of safety or reliability. This of course, increases 

the weight of the structure. Another way of decreasing the probability 

of failure is to inspect the structure at selected times so that the 

cracks can be detected and repaired before they reach their critical 

sizes. In this process,allowable initial margin of safety can be small 

because cracks are not allowed to grow to their critical sizes. This 

process however, increases the cost due to inspection. Increasing 

weight also increases the initial cost and the cost of operation. There-

fore, the required design procedure consists of selecting the design 

variables such as the thickness, stiffener spacing, and inspection fre7 

qUency during the projected service life so as to minimize the total 

expected cost or weight. The cost and weight can be considered as inter-

changeable functions that can be optimized. Many a time it is easy to 

express the objective fundtion to be optimized as an equivalent weight 

function. This entire procedure, however, is subjected to the restraint 

that the margin of safety or'reliability does not fall below an accept-

able limit during the projected life of the structure. 

Therefore, reliability-based fail-safe fatigue design procedure 

consists of selecting specified design variables including inspection 

frequency, subject to constraints, so as to minimize the expected cost 

or weight function while the probability of failure is kept below 

specified limits during the projected life of the structure. In order to 

make the design procedure acceptable to a designer who is not familiar 

with the statistical methods, the reliability or probability of failure 

can be related to a 'variable' safety factor or safety margin. 

12 
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Methodology 

The following are the steps that need to be followed in the method-

ology for the reliability-based fail-safe fatigue design procedure dis-

cussed in this paper. 

The first step consists of specifying the design variables and 

constraints. This step identifies the design variables that can 

be selected by the designer to minimize the objective-function 

(weight or cost). 

.- The §econd step is to specify the probabilistic distribution o 

the external loading. This can. be a stochastic process. 

e third step is to formulate the objective function. 

can be a weight or cost function and is related to.the probability 

of failure, the projected life of the structure, the specified 

and selectable design variables,. and external loading. 

. The fourth step is to select trial design variables and obtain 

the initial margin of safety or reliability. 

. The next step is to obtain the variation of crack size and crack 

growth probabilities with time. A stochastic model for crack 

growth developed by the authors is used in this report to obtain 

the probabilistic description of crack sizes. This probability 

depends on the material, load description and the number of cycles. 

From this knowledge of the probability distribution of crack 

sizes reduction in strength and probability of failure is estimated. 

The inspection and repair frequency during the projected-design 

life is included in this estimate of the probability of failure. 



. The seventh step is to substitute all the information in to the 

cost or weight that was formulated in the third step. This yields 

the cost or weight due to the particular selection of the trial 

design variables. 

. Steps two to seven are repeated with different trial variables to 

minimize the objective function by search method. 

. The final design variables are selected subject to restraints such 

as reliability bounds, minimum spacing, etc. 

These are the general steps that are necessary in the design proce 

dure developed in this report. This needs the description of a stochastic 

model for fat.igue crack growth and crack sizes, methods of estimation 

of the probability of failure, methods of including the effects of in-
. 

spection and repair frequency during the projected design life in the . 

probability of failure, and an objective function in terms of cost or 

weight. The stochastic model and the estimation of the parameters of the 

model are already discussed in previous sections. The estimation of the 

probability of failure, reliability improvement due to inspection and 

repair, formulation of the objective function and its minimization are 

discussed in the following sections. 

Probability of Failure 

In this section, method of estimating probability of failure is 

discussed. The improvement in reliability due to inspection, repair and 

consequent renewal and the estimation of this reliability improvement 

are not discussed in this section. These are discussed in the next 

section. 

14 



The first step in estimation of probability of failure is t 
N\  

identify the possible failure modes. In addition to the fatigue failure 

mode, other failure modes such as the sudden over stress or buckling are 

possible. If the event of fatigue failure is denoted by E f , the event 

of sudden over stress by E
s 
and the event of buckling failure by E b . 

The probability of failure P f  is given by the union of the all the 

possible events of failure. 

P L 1-te  u Es  u (13) 

Probability of occurrence of each of these events depends on the 

strength of the structure to resist.:that particular type of failure and 

the probability of occurrence of the load that can result in that parti-

cular type of failure. Because the discussions of the paper are primarily 

restricted to fatigue failure, it will be assumed that only fatigue 

failure are possible. This means that only failure mode possible is 

due to the growth of fatigue cracks and consequent reduction in strength. 

Before discussing the probability of failure under conditions of 

uncertainty, a deterministic design procedure is briefly reviewed here. 

This review is useful in identifying the different probabilistic fatigue 

failure modes. Consider the stiffened panel shown in Figure 3. Let it 

be assumed that a central crack is likely to develop in this structure 

due -to fatigue. For given w and assumed length between stiffeners 2b, 

the variation of the residual strength a :TATith half the length of the 

central crack
29-31 
 is shown in Figure 4. The value of the maximum 

external load L is precisely known in deterministic design. Then, for 

particular choice of the initial safety margin S, the thickness t and 



the corresponding stress a , critical crack length a
c 

can be obtained. 

These are shown in Figure,4. As the fatigue cracks initiate and grow, 

failure is not possible until the crack attains a length of a
c
. The 

length of a
c 

can also be obtained analytically from the following 

formula in the case of a stiffened panel. 

L t/.7r ac 	('R 

	 0 10 

In this equation f(a /W) is the width correction factor 22
, 
C
R 

is the 

tip stress reduction factor
23

, K
c 

is the fracture toughness of the 

material. 

Because the maximum load L is known precisely in a deterministic: 

case; the stresses due to external load never exceed the residual strength 

for crack lengths a<a . Alternately, it can be stated that probability 

of failure is zero for crack lengths a <a
c 
and the probability of failure 

is one for a> a 
c 

In reality, the external load is not precisely known. The load is 

usually characterized by a random variable. This is the case in which 

reliability based design procedures are needed. In this paper, external 

loading is assumed to be characterized by a stationary stochastic process. 

Evan in this case, a value of a
c 

can be selected in the Figure 4. This 

curve is assumed to be known deterministically. This means that for a 

given width of the panel w and a choice of stiffener spacing 2b, a value 

of critical crack length a
c 

is chosen. This value of a corresponds to 

a definite value of a-  on the curve in Figure 4. But, the external load-

ing is not known precisely as in the deterministic case. Therefore, the 

value of a c 
and aL cannot be related to initial safety margin and choice 

16 



of thickness t. However, the probabilistic description of the external 

loading L is known. As will be shown later, the choice ac, g
L' 
 and 

thickness t can be related to reliability or probability of failure. 

From a knowledge of the specified bounds on reliability, a c  and t can 

be chosen. 

Alternately, the following procedure can be used instead of starting 

with a choice, ac . A value of Q' is selected such that 

= /A () + 	k) Q S) 
wheree, 	is the mean value of external load divided by the choice of 

L 
thickness t and .)...(1) is the corresponding variance. The quantity ot is 

constant which is similar to safety margin in a deterministic design. 

However, 0( is not arbitrary. 'The quantitiesc, t and a
c 

reliability. They can be selected on the basis of the prescribed reli-

ability bounds. As can be seen in the figure, a selected value of 

corresponds to a value of which corresponds to a value of a . 

Unlike the case of deterministic loading, failure may take place 

even for values of crack sizes smaller than a
c
. Such a failure is 

possible because the externally induced stress (L/t) has a probability 

distribution and does not represent the absolute maximum possible 

stress.Forvaluesofa<ac ,fatigue failure is posSible if the externally 

induced stress exceeds the residual strength at any time during 

the service life of the aircraft. This failure is defined as static 

are related to 

fatigue failure P sf In order to define absolute safety limits, the 

structure is assumed to fail definitely when crack length exceeds a c . 

This is defined as the critical crack size fatigue failure P
fc

. Then, 

the total fatigue failure at any time t is due to union of these two 

events. 

17 
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For a given 7-, a
c can be obtained from equation (14) by replacing 

P ( 3 	t 07) 

L  
by  and using the appropriate value for fracture toughness k

c for the 

material. 

The probability of critical crack size fatigue failure needed in 

Equation (20) can be obtained from the developed stochastic model. In 

terms of discrete crack sizes a
c corresponds to kc

(a) where k
c 

integer and 6.1, is the size of discrete crack sizes. Then 

P(a?cte) -(- )- p[C4 -4 0 . kc(6.0 117 

is an 

The probability of static fatigue failure 

method discussed in the Appendix. 

Reliability Improvement Due to Inspection and Repair 

If no inspections. are .done during the projected design life, the 

P
sf 

can be obtained by a 

It is to be noted that P
fc 

is given by 

probability of critical crack size fatigue is given by 

Na.,.. 
P 	 (I V 

Pe 

In _his: equation T
D 

is the projected design of the structure. The 

probability of critical crack size fatigue failure P fc can be improved 

due to inspections. This change in probability of failure and hence in 

reliability can be obtained in 

The projected design life 

or cycles. It is assumed that 

the following way. 

is still assumed to be TD  number of hours 

one inspection is done at T
o 
number of 

18 



hours or cycles. If only periodic inspections are considered 2T
o 
= TD . 

At the time of inspection, if cracks of length k(AL
r
(LL) are ob-

served, the cracks are repaired. The quantity k r (p1) is the repair 

threshold crack length. It is further assumed that structure is as good 

as new after repair. This means any further crack initiation and growth 

are to be calculated as though the structure is put into service at 

t = T
o 
and not at t = o. It is also to be noted that only structures 

with k
r
<k<k

c 
are repaired because the structures with k(A1);"-kc (L1) 

have failed due to critical size fatigue failure. It is hmplicit that 

the cracks of k(p1).4. k r (L1) are not repaired. 

There is still another quantity to be considered. This is the 

probability of detecting a crack by nondestructive inspection techniques 

if a crack exists. In the first step of the derivation, it will be 

assumed that the repair threshold crack length k r(A.L.) is chosen that 

the detection probability is one. Then, the probability of critical 

size fatigue failure in the two intervals can be obtained as follows. 

The probability of failure P(I) in the first interval corresponding 

to 0 <t< To  is given by 

PO)  
k' kc 

Bv referring to Figure 4, the probability of survival in 0<t<ZT 

i s I - P(1) because there is the probability P(1) that structures fail 

in 0 <t<T . For tT o 
k‹ k c  To ] (2_9 

and the probability of repair P is given by 

P L C 	k< 4•c, T;_i 

0.0 
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Then the total probability of critical crack size fatigue failure 

in 0 <t <2T
o 
 = T

D  can be written as follows:  

Pi( 	PO )  4-  PR  P( ► ) 	F, {f)(2)- p(► 	 1(1) 7 3 ) 

where 

and 

-I 	= 	P 	rx. ) 

P (2-) 	P E:f< -kc 2- 7-0] 

EqUation .(23) - , for the probability of failure under one inspection is 

obtained by considering the three mutually exclusive and exhaustive 

events F P
R 
 and P(1) [see Equation (21:)j. The quantity in the paten- 

thesis of the last term of Equation (30) is the conditional probability 

that the structures will fail in T<t4!2T
o 
 given that they survived 

:0<=ti-T
o 

This expression for
c s

atisfies all the limiting conditions. 

For example, when PR  = 0, P fc  reduces to P(2), as expected. 

When P
R 
= 1 and hence P(1) = 0, P

fc 
becomes zero. Similarly, the 

probability of failure under any number of inspections can be obtained. 

If the crack detection probability due to nondestructive inspection 

techniques is considered, the probability of repair . PR  changes. The 

repait is now possible only if a crack of size k r (604:k(6L)<kc (61.) 

exists and is detected by the NDI capability, with a probability D(k). 

Here, D(k) is the probability of detecting a crack of size k( 1). 

Them, the unconditional probability of detecting and repairing cracks 

of size k (NL) <k.(A.T,)<k 
c
(g,) at T

o 
is given by 

—  

'-- 	7 	P 	-77D7 D (k) 

Then, of the repairable aircraft given by P k r  k kc , 	only P
R 

are 

repaired and the others are not repaired. Now, equations similar to (30) 

can be written with detection probability for cracks included. 
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Total Weight Function  

Every optimization problem involves the so-called objective function 

which is a function of the design variables appropriate to.the problem 

at h
a
nd

24-28
. The optimum values of the design variables are obtained 

by finding the stationary locations of the objective function subject 

to the design constraints  

For aircraft structures "weight" is the most cfucial consideration 

in design. In the present context, the weight of the stiffened panel is 

considered to be minimized. The design variables are the thickness of  

the sheet and the width of the stringer spacing. The total "weight 

function" comprises of the deterministic weight of the panel and the 

expected loss of weight due to the probability of failure. The expected 

loss of weight is given by the product of the probability of failure 

under a given number of inspections and the deterministic weight of the 

panel. The deterministic weight of the panel consists of the weight of 

the panel consists of the weight of the sheet and the stringers. Ex-

pressed mathematically, the total weight function is given by 

N(6) t) (;.1  710 ozcti-, ), 	A's 1/1/7 	
(20 

wherew 17- total width of the sheet 

t. = thickness of the sheet 

h = breadth of the sheet 

p a density of the sheet material 

Nst = number of stringers 
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2b = stringer spacing 

W
st 
 =weight of one stringer 

Equation (26) is the proper objective function for the minimization of 

the. weight. The effect of increasing the thickness is to reduce to 

expected loss of weight because of the reduction in the probability of 

failure. On the other hand, the deterministic weight is increased by 

increasing the thickness. Thus, a balance has to be found between the 

two. Stringer spacing has the opposite effect on the different weights, 

The minimization is carried out by the search method. The total 

weight function is calculated for a set of thicknesses and stringer 

spacings. It is then plotted versus thickness with stringer spacing a 

the parameter. Then, the lowest weight is selected. The thickness and 

the stringer spacing corresponding to the minimum weight are the optimum 

values if the reliability constraint is satisfied at these values. The 

weight can be expressed in terms of equivalent costs. 

Total Cost Function: 

If the problem at hand is the determination of the optimum number 

of the periodic inspections, then the total weight function may not be 

the proper objective function. Then the total cost function concept 

has to be introduced. The total cost function comprises of the expected 

cost of failure and the deterministic cost of the periodic inspections. 

The expected cost of failure is given by the product of the probability 

of failure under the given number of inspectiOns and the deterministic 

22 



cost of structure. The deterministic cost of inspections is proportional 

to the number of inspections. The mathematical expression for the total 

cost function is given as follows: 

CT (j) =PfCs + C I
. 

where P
f 

is the probability of failure under j inspections 

C
s 

is the cost of new structure 

C is the cost of one inspection 

J is the number of inspections 

Equation (34) gives the proper objective function because as the number 

of inspections increases, the expected cost of failure decreases while 

the cost of inspections increases. The minimum value of the total cost 

function is found by the search method. The minimization is subject to 

the reliability constraint. 

Illustrative Example 

In order to illustrate the developed method, two examples have been 

considered. The first problem is that of a minimum weight design of 

7075-T6 alloy. The problem has been deliberately kept simple for purposes 

of. illustration. A more detailed problem is discussed in the Appendix II. 

The design life is supposed to be 15,000 cycles with two periodic 

inspections made during the design life. The reliability is to be 

99.5%. The design variables to be selected are the thickness t and the 

spacing of the stringers 2b. The following data is assumed to be known. 

23 



"1/ -- 

A/I C 

0a/4;-3  .7  

‘fo eo 

co 0 0 
2-- 

1 0 0 .0 a* 

Ii 

T: 3 

24 

—13 
C 1 = .s- Arc 

As outlined in the preceding sections, the solution procedure is 

carried out. As a first step, the residual strength-critical crack 

length diagrams are obtained for a choice of number of stringers, e. g. 

3,. 5, 7, 9, 11, etc. (Fig. 6). As the number increases the stringer 

spacing decreases. As one might expect, the rate of growth decreases 

with the number of stringers. The tip stress reduction factor C
R(a/b) h 

which is required in the expression for the residual strength is obtained 

from references (29-30) as shown in Figure 6. 

The variation of the static reliability with residual strength and •: 

thickness is shown in Figure 7. For a given loading, in order to maintain 

the same static reliability, the thickness has to increase as the design 

residual strength decreases and vice versa. 

In Figure 8, the relation between the probability of static 

failure, fatigue failure, and total failure is delineated. 

The total weight functions are calculated in the manner explained 

pre•iously for fixed R - 0.9996 and N 	= 3, 5, 7, 9, Figure 9 
stringer 

depicts the minimization curves.. From these curves, the minimum W for 

each curve can be obtained; and then compared with other minima of other 

curves. The overall minum in Figure 10 occurs for a thickness of 

0.106 inches, N
stringer 



Figure 10 represents the minimization curves for R s  = 0.9997. 

expected, the minimum values are now changed, and occur at different 

= 7 thicknesses. The minimum now occurs for Nstringer 	
and thickness  

t = 0.1044 inches. From Figure 11, for R - 0.9998, the overall minimum 

decreases to 3.554 and at N 	= 7 and t - 0.1052. 
stringer 

Then the static reliability R is increased further to R
s 

= 

they overall minimum is higher than before, i.e. W
min 

= 3.630 and occur 

for-  N 	= 7 and thickness t - 0.1052, Figure 12. 
stringer 

Thus comparing all the minima over the various variables, the 

miniMummostisWmin =3.554forRs =0.9997, t 0.1044 inches and 

This corresponds to an overall reliability of 0.99765 Nstringer 

and a design residual strength = 15,500 psi. The reliability constraint 

is satisfied since 0.99765 Rb  = 0.995. 

Check on the Initial Factor of Safety:  

The mean and standard deviation of the maximum load L am , are 

obtained. Then, considering different numbers of standard deviations 

above the mean-maximum load L, the initial factors of safety are obtained. 

For example, for one standard deviation above L, the initial factor of 

safety of the optimum design, based on yield strength is found to:be 

3.067 When two and three standard deviations are employed, the corres-

ponding factors of safety are 2.60 and 2.32 respectively. This is 

indicative of the adquency of the optimum design obtained above for 

an equivalent deterministic design. 

Cost Optimization: 

To demonstrate cost optimization, the designed stiffened panel is 

considered. The only variable now, is the number of periodic inspections 
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through the fastner hole. Many similar processes are available for 

cold working fastner holes. 

26 

or the inspection interval. Since the panel is of a given configuration, 

its weight is fixed. Hence the total cost function C T  Equation (34) 

is the proper objective function to be considered in the present con- 

text. 

As a first step, the probability of fatigue failure under 

inspections, j - 0, 1, 2, 3, 4, . . .etc. is calculated. These values 

are graphically depicted in Figure 13. Corresponding to each of these 

nambers of inspections the total cost function CT 
is calculated from 

Equation (34) ,-Figure 15. This is repeated for various values of the 

ratio of the cost of one inspection C I  to the cost of the structure CS . 

When C
I
/C

S 
= 0.1, the minimum occurs for one inspection. Decreasing 

CI
/CS  to 0.01, 0.005, 0.001 renders the minimum to occur at two 

 

inspections, three inspections and four inspections respectively as 

delineated in Figure 14. 

Alternate Methods of Improving Fatigue Life 
Fatigue Reliability 

The models for fatigue discussed in the preceding sections do not 

apply to cases for which residual stresses are present near fastner holes - 

due to a cold working process such as stress coining. The purpose of 

stress coining is to improve the fatigue life of the structure. A simple 

method of stress coining in aluminum alloy is to expand the fastner hole 

of the structural member by drawing an oversized mardrel hydraulically 



Such cold working processes result in a radial flow of the material. 

This results in residual stresses. Residual compressive stresses surround-I 

ing the hole provide protection against the fatigue damage by opposing 

the applied tensile stresses, However, as shown in the investigation, 

there is a zone of sustained residual tensile stresses located at a short 

distance from the hole. The maximum tensile stress usually occurs at 

the elastic-plastic boundary. Although the tensile stresses are not 

critical in the point of view of fatigue life of the structure, they can 

cause stress corrosion under certain conditions. 

Therefore, the reliability of a stress coined structure needs the 

consideration of both the fatigue improvement and stress corrosion sus-

tibility. The first step in such a study is to assess the residual 

stresses and stress coining susceptibility in such structures/ The 

investigations carried out in the pfoject have been published in references 

14 and 15 . 

Bi-Products From the Project 

As a bi-product of the investigations, the following have been 

developed. An improved numerical technique was needed in quantitative 

estimation of the parameters of the stochastic model. This has been 

discussed in Appendix III. An application of the technique has been 

done. to random vibration problems. The purpose of the application was 

to verify the accuracy of the technique. 

Another bi-product is the application of the principles of analysis 

of variance to study the significance of the present methods - of grouping 

fatigue failure ;  data. Preliminary work in the field has been discussed 

in Appendix Iv. 
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Conclusions and Recommendations 

It has been demonstrated that an accurate description of fatigue is 

possible by means of stochastic model. A simple model has been developed 

This model can be quantitatively estimated. The model has been applied 

to develop a procedure for a reliability-based cost-effective fail-safe 

design for aircraft structures. In particular, reliability improvement\ 

dune-to inspection and maintenance has been considered. 

Deterministic design procedures that do not consider the involved 

uncertainties usually result in an over design. This results in an 

increased weight that affects both cost and performance. Furthermore, 

risks involved in a deterministic design are not known. On the other 

hand, the reliability-based design that uses a stochastic model considers 

the uncertainties that are consistent with the model. Risks in a design 

can be assessed. consistent with the model considered. Such a procedure 

usually results in lower weight than determiniStic designs. This results 

in low operating cost and better performance of the aircraft— A very 

costly item in owning and operating an aircraft is the inspection and 

maintenance during the life of the aircraft. As has been demonstrated 

in the project an optimum schemes can be developed by using a 

.stochastic model for fatigue and considering the reliability improve-

ment due to inspection and repair. Methods of including such reliability 

improvement at the design stage has also been discussed. 

The following further investigations are suggested in the point 

of view of the practical application of the developed procedures. 
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1. Development of different types of stochastic models so that 

the user has a choice depending on the particular application. 

It is necessary that all uncertainties be properly included 

in the model. Different and more accurate methods of quanti-

tative estimation and verification of the model are needed. 

2. It is also necessary to develop simple optimization techniques to 

include the combination of discrete inspection costs with other 

costs. This is necessary to avoid the difficulty with local 

minimums.and provide a simple practical procedure. 

3. The developed procedures should be modified to include multiple 

locations, and multiple cracks. 

4. It appears as though cold working process will be used to 

improve the fatigue life of most existing and future metal 

aircraft. Probabilistic model for failure of such structures 

that includes both the life improvement and the stress corrosion 

Susceptibility has not yet been developed. Such models 

are essential to fully take advantage of the cost and weight 

savings potential offered by the cold working processes. 

. In the point of view of increasing fuel costs, present levels 

of performance can be maintained only by using a material that 

has a higher strength to weight ratio than that offered by 

present aircraft structural materials. Advanced composites 

have such a potential. Mechanical behavior and failure modes 

of these advanced composites are different from that of metals. 

Instead of developing a deterministic design procedure and 

then modifying the procedures to develop probabilistic procedures, 
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reliability-based design procedure should be developed from 

the very beginning. By such a process the weight saving 

potential of advanced composites can be explored completely. 

This needs modification of the project to adopt to failure 

modes of composites. 

6. Development of more accurate cumulative damage estimation 

techniques are essential for both metal and composite aircraft. 
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Appendix I 

In this appendix, a method of estimation of the static fatigue 

failure P
fs 

has been discussed. This fatigue failure is possible when 

the external loading exceeds the residual strength of the structure and 

the crack size a is less than a
c
. By defining a quantity s in the 

following way 

(t) 

The, probability of static fatigue failure can be defined as the proba-

bility of s being less than or equal to 1. Alternately, reliability 

against the static fatigue failure can be defined as R 

= pc s 	P 	I 	7 	(a) 

This probability can be evaluated from the following integral if 

the marginal probability density functions ofCii andc7 -1-,  are given. 
x

Rs 	s iz/s1 	(.z /S) d z as 	(3) 
Rz  

In this equation, f and g are the marginal probability density functions 

of fr and 0—  respectively, .Z is an auxiliary variable and R is the range 

space of Z. The integral given in Equation (3) is difficult to evaluate. 

Instead of evaluating the integral of Equation (3), the following 

alternate procedure can be adopted to evaluate the static-fatigue 

29-33 
reliability R 	. The generalized Chebychev inequality is employed to 

determine the reliability R • For any shape of density function h(s), 

the probability that the random variable s lies within a range (d 4) 

(d +&) is given by the following inequality 34: 

p Ea- 87 s s (ct 

34 



For R
s 

to be a maximum it is necessary that 32 

a0 	
a2-Rs 	 G. 0 
a d 

in this equation E C'3 denotes the expectation operation.2& is the 

width of the strip and d is any particular value of s. The lower 

limit of s namely, (d-Fi) is unity, i.e.E= d - 1. Substituting these 

limits in Equation (4), 

Now, recognizing that 

E(S) -1T, the mean value of S, and 
2- 

E(S2 ) = 07§ + §2  

the equation(5) reduces to the following form after using Equation (2): 

6:51 - 0 
	 ct)

2-j . 	
(6) 

(5-).) 2 E (s) -1-ct 	(g) 

From the first of Equation (7), 

) 
(8) 

From the second of Equation (7) and (8) 

?R5  
dd 

— 2 (E'' /1/[( -/) :±. 0-s 

which is negative for all S and t74 

Substituting for d from Equation (8) in Equation (6) it follows that 

o-$  " t - 	- f, 

(co 
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Appendix II 

Numerical Example: 

The problem is to design a stiffened panel subjected to a given 

random loading. The panel can have a central crack extending through 

the thickness. Also, the panel will be subjected to periodic main- 

	 inspections with attendant repairs of the crack when possible. 

Thus. the design variables involved can be categorized as follows: 

(1) Material parameters 

(2) Geometrical parameters and 

(3) Maintenance parameters. 

The design problem therefore consists of (1) selecting the optimum 

material from a given set of different materials, (2) selecting the 

optimum stringer spacing and thickness, and (3) selecting the optimum 

number of periodic inspections. 

The following are assumed to be given and the designer has no-choice 

in these variables 

05 = 20.0" 

4 = 15.0 

0(= 7.5 

=48,000 cycles 

= 6.0 x 105  cycles 

)1 = 99.95% 

In tine above set Gi and', are the overall dimensions of the panel 

The quantity Wandig characterize the Weibull model for crack initiation 

of 0.005, inches The design life 1)  is to be 6.0 x 10
5 
cycles. The 
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reliability restriant Rb  should be 0.9995.. The material properties 

are as follows: 

For 7075T6 Aluminum Alloy 

Klc = 68,000 Nb/in 
3/2 

C = 5 x 1043  

n = 3 

For 2024-T3 Aluminum Alloy 

Klc = 83,000 lb/in3 2  

C = 3 x 10
-13  , n . 3 

A computer program has been written to obtain the probability of failure 

for each selected thickness, stringer spacing, material and the number 

of - periodic inspections N during the design life. This information is 

later used in another computer program to obtain the expected cost or 

weight function. The design variables that meet the minimum expected 

cost or weight function subject to reliability constraints are selected. 

The following tables illustrate representative results and the selected 

deSign variables and the material. 

For the first material, i.e., 2026-T3 the overall minimum occurs for 

6 periodic inspections, 3.3" stringer spacing and sheet thickness of 

0.1G5"- For 7075-T6, the overall minimum occurs for 6 periodic inspec-

tions, 3.5" stringer spacing and 0-103" thickness when both minimums 

were compared, 7075-T6 has the lower minimum weight at 6 inspeCtions, 

3.3" stringer spacing and 0.103" sheet thickness. Hence, 7075-T6 

would be the selected material. All the details of the calculations 

will be published in the Ph.D. thesis. of Mr. B. Uppaluri and in a 

journal. 
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by the integrating matrix [i3. For example, 

Xi x 	X [Li] [ 1 p: .  0 r 	 .. 

5 
0 p 

- Improvement: 

Appendix III 

Multiple integration with respect to one independent variable was 

needed in integrating the equations (7) and (8) of the main text to 

obtain P(ka.., t). Such a technique is also needed in'many other 

engineering problems. Hunter 35 developed a method of numerical multiple 

inte:r 4tion and called, it "the integrating matrix method". He applied 

the technique to forced vibration problem of helicopter rotor blades. 

Hr,TTr's method, the derivation of the integrating matrix consisted of 

dividing the range of integration into N intervals of equal size and 

N+1 points. At each of the N+1 points, the values of the integrand were 

obtained and represented in a column matrixiq The functional varia- 

tion of the integrand in each interval was represented by an r
th 
 degree 

polynomial. In order to obtain the values of the integral, an rt e 
 

degree integrating matrix[iTias constructed b using Newton's inter-

polation formula. By multiplying the integration matrix and the 

integrand column matrix, the values of the integral were obtained. For 

multiple integration, the integrand matrix f
r 
was repeatedly multiplied 

The mathematical motivation for the improvement is the fact that 

when an tr. th,  degree polynomial is integrated an 1(r + 1) 
th, 

degree 

polynomial is obtained. Thus, the improvement suggested is that the 

degree of the integrating matrix be increased by one after each inte-

gration is a multiple integral. For example, 
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[17,4:21 P:4 

The improved method was applied for the following problems: 

(i ) Multiple Integration of an algebraic function 0< x <20 

(ii) Forced Vibration response of a Canilever beam 

(iii)Free vibration of Canilever beams 

The results were compared with the exact solutions. 

In the first example, a constant function f(x) = 1.0 was successively 

integrated four times using a second degree integrating matrix and number 

of divisions N = 20. The percent , error ranged from 200.0 at x = I to' 

0.5 at x=20, The improved method was employed with the same N = 20, 

but with integrating matrices of degree 2, 3, 4, and 5 successively. 

The percent error was zero all through the range of integration. 

For the forced vibration problem the span was divided into five 

equal intervals (N = 6) and a second degree integrating matrix is 

enployed four times consecutively. The percent error ranged from 6.4 

at 1/5 span to 0.3 at 5/5 span. The improved technique with the same 

N = 6 but increasing degree of integrating matrix from two resulted in 

a maximum percent error of only 0.03. 

For the free vibration problem less than 1 percent error in 

natural frequency and/or less mean square error in mode shape was 

obtained at a lower number of spanwise divisions than in the case when 

the integrating matrix was not altered. Also, the mean square error in 

the modeshape compared to the exact mode shape for any mode was less 

in the, improved method than in the method of Hunter. 
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The difference between the two methods decreased as the degree of 

the starting integrating matrix is increased. All the results will be 

published. At present the manuscript is being prepared. 
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The total variation is expressed by the total corrected sum of 

squares, i. 

S ST 

In this equation 

a is the number of treatments 

Xishe data point 

¶. is the total sum of data pointi 

N is the total number of data points, and 

Appendix IV 

Introduction .  

Analysis of variance is a means of determining the homogeneity of 

a large collection of data that have been formed by lumping together 

several small groups of data. The small groups are denoted as "sub 

group "'and the variation between them as "variation between subgroups". 

The- nams,analysis of variance, itself stems from an analysis in which 

the .total variation in the entire data is partitioned into component 

parts. These components are used to develop a test statistic:. 

. is the number of data points in 'i'th treatment. 

The total variation SS T  can be split up into two components as follows: 

(2) 

The term SS
A 

is variation between subgroups and SS
E 

is variation within 

subgroups. Then, the following table is constructed to facilitate the 

analysis of variane. 

SS = SS + SS 
T 	A 	E ,  
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Source of 	 Sum of 
Variation 	Squares  

Between sub- 
groups 	 SSA 

Within sub 
groups 
	

SS
E 

S
T 

Degrees of 	Mean Sum 
Freedom 	of Squares  

a-1 
	

SS
A 	

SS
A
/(a-1) 

SS
E /(N-a) 

N-a 
	

SS
E
/(N-a) 

N-1 

The value in the last column is compared with the critical F 

value at a given percent of significance and degrees of freedom of 

and (N-a) respectively. The data is homogeneous if the F 

less than the critical F value 36.  

If the above analysis of variance indicates that the data is non- 

homogeneous, then it is desirable to find out which of the subgroups 

form a homogeneous set of data. For this purpose, Duncan's multiple 

range test 37  can be employed. It consists of comparing the modified 

differencebetweenthevariousmeansOn.-m.)' with the corresponding 

critical value R' p . The modified means are calculated from the following 

expressions 

- m.
3
)' = (m. - m.j

) a j 
1 	, 	i 

value is 

a.. 
1 3 (4) 

where r
i
, r

j 
are the number of replications in each group. The critical 

values can be calculated from Table II of Duncan's 37 paper. Then all 
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the possible groups are subjected to Duncan's test and those groups 

whose modified mean does not exceed the critical value of R' belong to 
p 

one homogeneous set of data. 

App14 cation 

The procedure that has been discussed in the preceding paragraph 

is used to analyze the fatigue failure data from a specific fleet of 

aircraft. The objective is to investigate if the fatigue failure data 

from several critical regions can be lumped together. If it is possible 

to lump the data together a small number of probability distributions 

can be used to describe the fatigue failure of the entire structure. 

It is also possible to use the system of lumping to do large number of 

inspections at a few representative locations. 

The particular aircraft under consideration has 92 fatigue critical 

regions. Investigations show that the station group (2 to 15), (33 to 3 8 ), 

(41 to 46) and (89 to 92) can be lumped together Analysis of variance 

tests indicate that these subgroups form a homogeneous set of fatigue 

data. The station groups (1-92), (61-70) and (71-80) cannot be lumped 

together because the test results show that their data varies signifi-

cantly. These results are quantitatively presented in the following 

table - . 
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Group Variance Result 

Within Groups 	Between Groups 

(2-15) 0.9490 0.7785 No Significant 
Variation 

(33-38) 0.2680 0.5972 No Significant 
Variation 

(41-46) 0.5229 0.4460 No Significant 
Variation 

(41-46, 
89-92) 0:8026 0.3890 No Significant 

Variation 

(89-92) 0.8457 0.4224 No Significant 
Variation 

(61-70) 0.6846 3.7367 Data Varies 
Significantly 

(71-80) 0.6753 1.8720 Data Varies 
Significantly 

(33-38, 
41-46, 
61-72, 
89-92) 0.7488 3.8284 Data Varies 

Significantly 

1-92 0.7651 1.4761 Data Varies 
Significantly 

Complete details will be published in a Journal. 
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