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SUMMARY 

Current understanding of phonons is based on the phonon gas model (PGM). According to 

the PGM, the vibrational modes in a material are assumed to be plane-waves, hence they can be 

modeled as a gas of particles that exchange energy through scattering events. During the last 100 

years, the PGM has provided great insights into thermal transport in pure homogeneous crystals. 

However, when one attempts to apply the PGM to understand behavior in non-idealized materials 

that contain some level of disorder, however, there is growing evidence to suggest that the PGM 

fails. The problem is that conceptually, when any level of disorder is introduced, whether 

compositional or structural, the character of vibrational modes in solids changes, yet the PGM 

continues to assume phonons are still waves. For example, the phonon contributions to alloy 

thermal conductivity rely on this assumption and are most often computed from the virtual crystal 

approximation (VCA). In this dissertation, we show that the conventional theory and 

understanding of phonons requires revision, because the critical assumption that all 

phonons/normal modes resemble plane waves with well-defined group velocities is no longer valid 

when disorder is introduced.  

Here, we first develop a new method for calculation of the degree of periodicity of 

individual vibrational modes in a generic solid, which is termed the eigenvector periodicity 

analysis (EPA). The EPA quantifies the extent to which a mode’s character corresponds to a 

propagating mode, e.g., exhibits plane wave modulation. Using this method, one can quantify what 

fraction of the modes in a given structure are propagating as a function of the degree of disorder. 

We apply this method to InxGa1-xAs and show that the character of phonons changes dramatically 

within the first few percent of impurity concentration, beyond which phonons more closely 
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resemble the modes found in amorphous materials. We then devise two test cases to study and use 

a correlation-based theory, i.e., Green Kubo modal analysis (GKMA) to systematically examine 

the validity of the PGM/VCA in random alloys and investigate the fundamental reasons for failure 

of the PGM/VCA. 
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CHAPTER 1 

INTRODUCTION: 

THE THEORY OF PHONON TRANSPORT 

1.1      Phonon transport in pure crystalline solids and random alloys 

In crystalline dielectric solids, atoms located at lattice sites oscillate about their equilibrium 

positions. These atomic vibrations create a displacement field within the solid which comprises its 

thermal energy, which can be transported and also stored. In classical mechanics, this displacement 

field is described by a displacement vector obeying a homogeneous, linear, second order wave 

equation in time and space. The displacement field can be characterized as superpositions of 

sinusoidal plane waves, termed “normal modes”, with wavelengths and frequencies obeying a 

nonlinear dispersion relationship. These normal modes can have different eigenvectors, depending 

on whether the displacement field is parallel (longitudinal) or perpendicular (transverse) to the 

wave vector. In fact, in the small wave vector (long wavelength) limit, the longitudinal modes 

become sound waves in a solid. From a quantum mechanical perspective, the atomic displacement 

field can be described by an infinite number of distinguishable quantized oscillators, termed 

phonons. The momentum of each phonon is proportional to its wave vector, i.e., q , while the 

energy is a multiple of  , where  is the reduced Planck constant,   is the angular frequency of 

the phonon, q  is its wave vector, i.e., 2


, and   is its wavelength. Furthermore, each phonon has 

a polarization vector field which describes the magnitude and direction of the vibration of atoms 

in a phonon. Phonons are bosons, which do not experience particle number conservation and have 

zero rest mass; the distribution of phonons in thermal equilibrium can therefore be described by 

Bose-Einstein [1,2]. 
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In 3-dimensional materials, since each atom has 3 degrees of freedom (i.e., x, y, z), there 

exist 3N  phonon or vibrational modes, where N  is the total number of atoms. This includes the 

3 translational modes, which are generally ignored. Constructive interference of a finite set of these 

phonons with different phases, amplitude and wave vectors generates a wave packet. The wave 

packet can be modeled as a particle or an envelope of a localized wave if its size is significantly 

smaller than the crystal size. According to this particle picture, the wave packets act as 

quasiparticles, propagating in solids and transporting heat at a group velocity d
d


q

. This particle 

description of phonons is useful in treating their interactions with impurities, defects, boundaries, 

and other particles such as electrons, photons, neutrons. Essentially, phonon can be treated as a 

“gas” of particles that interact with other particles including other phonons, and are responsible 

for heat transport. This physical picture for phonons is called phonon gas model (PGM), which is 

based on this special case of phonon behavior in an infinitely large, pure, homogenous, well-

ordered crystal (IPHC). 

According to the PGM, each phonon in the crystal with a frequency   carries an energy 

of   at a velocity v . The thermal current density in a solid under a temperature gradient is caused 

by a deviation from an equilibrium distribution of phonons 

  , , , ,

,

1
,BJ f f T

V
   



   q q q q

q

v     (1.1) 

where V  is the volume of solid, T  is the temperature, ,f q
is the phonon distribution function, ,qv  

is the group velocity of the phonon, and the indices q  and  refer to wave vector and polarization 

respectively. Equation (1.1) is the primary equation to describe the heat flux carried by phonons, 

according to the PGM, and is at the heart of virtually every expression for phonon transport, 
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because the derivation of almost all expressions begin with such a statement [1,2]. At thermal 

equilibrium, in the absence of a temperature gradient, phonons are distributed according to the 

Bose–Einstein distribution: 

 ,

,

1
,

exp 1
B

B

f T

k T









 

 
 

q

q

    (2.1) 

In the presence of a temperature gradient, the distribution function deviates from Bf , and this 

deviation can be modeled using the Boltzmann Transport Equation (BTE) 

, , ,

,

collision

f f f

t t

  



   
   

   

q q q

qv
r

    (3.1) 

where r  and t  are the position vector and time, respectively. At steady state, the rate of change in 

the distribution vanishes, i.e, 
,

0
f

t






q
. Therefore, 

, ,

,

collision

f f

t

 



  
  

  

q q

kv
r

     (4.1) 

The right-hand side of Eq. (4.1), i.e., the collision term, can be dealt with by the introduction of a 

relaxation time approximation (RTA). Within the RTA, the collision term is replaced by 

 , ,,

,

,B

collision

f f Tf

t

 







 
  

 

q qq

q

    (5.1) 

where 
,q

is the phonon relaxation time between two scattering events. In other words, it is the 

time that a phonon takes to return to equilibrium in a perturbed system.  

https://www.sciencedirect.com/topics/chemistry/phonons
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Assuming local equilibrium, i.e.,  , , ,Bf f T 
q q

, the left hand side of  the BTE can be written 

as 

 ,,

, ,

,Bf Tf T

T



 

 


  

qq

q qv v
r r

    (6.1) 

Substituting Eqs. (6.1) and (5.1) into Eq. (4.1) gives 

 
 ,

, , , ,

,
,

B

B

f T T
f f T

T



   


 

 
  

 

q

q q q qv
r

   (7.1) 

Under the above assumption, the thermal current density, i.e., Eq (1.1) can be expressed as 

 ,

, , , ,

,

,1 Bf T T T
J

V T



   



  

   
    
   
 


q

q q q q

q

v v
r r

  (8.1) 

According to Fourier’s law 
T

J 


 
r

, hence the thermal conductivity (TC) can be given as  

2

, , ,

,

1
C

V
  



   q q q

q

v        (9.1) 

where 
,C q

is the specific heat per phonon and is equal to 
 ,

,

,Bf T

T












q

q . Based on the Eq. 

(9.1), phonon TC depends on its group velocity (
,qv ), heat capacity (

,C q
), and relaxation time (

,q
). Since phonons can be scattered by different scattering mechanisms, an effective relaxation 

time can often [3] be used in Eq. (9.1), in lieu of solving the BTE with all of the scattering 

mechanisms coupled [3]. To calculate the effective relaxation time, Matthiessen’s rule [1,2] is 

often used, which assumes scattering mechanisms are independent: 
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1 1 1 1
...

p p p b p e     

         (10.1) 

where p p  , p b  , p e  , p d  are phonon-phonon, phonon-boundary, and phonon-electron 

relaxation times, respectively.  

The relaxation time and specific heat are universal properties of all types of phonons. The 

former can be calculated using many methods proposed in the literature, including via analytical 

models with fitting parameters, time domain normal mode analysis (NMA), based on molecular 

dynamics (MD) simulations [3-5], third-order anharmonic lattice dynamics calculations [3,6,7], 

Fermi’s golden rule, and iterative schemes to solve the linearized BTE [3,8,9]. In the case of the 

latter, the heat capacity can be obtained by calculating the phonons frequency using lattice 

dynamics (LD) [10]. In LD, by describing the chemical binding of atoms in the system using an 

interatomic potential, one can develop a formalism to obtain the phonon frequencies and 

consequently, heat capacity. One approximation which is usually made when calculating phonon 

frequencies and dispersion relations is the harmonic approximation. According to this 

approximation, to approximate the interatomic potential as harmonic, the crystal potential is taken 

as a Taylor expansion around the equilibrium atomic position, and only second order term is kept, 

while higher order terms are neglected. The motions of atoms in the solid then can be described 

by an eigen-system that can be solved to obtain the eigenvalues, which gives the phonon frequency 

at different wave vectors, as well as eigenvectors of each phonon mode. 

Finally, group velocity is another important parameter in the PGM and it is necessary to 

calculate the contribution of each phonon to the thermal conductivity (TC). In well-ordered, 

homogenous, crystalline solids, due to the existence of structural and compositional periodicity, 
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all the phonon eigenvectors correspond to plane wave modulated vibrations (i.e., propagating 

waves). Therefore, one can define a wavelength/wave vector for phonons and consequently, a 

phonon dispersion relation, to describe the relationship between the frequency and wavelength. 

For such systems, the group velocity is can be calculated by taking the derivative of the phonon 

dispersion relation with respect to wave vector, i.e., 
d

d



q
.  

For random alloys, the PGM can be extended using the virtual crystal approximation 

(VCA), a method introduced for the first time by Abeles in 1963 [11]. As will be explained in 

Chapter 2, under the VCA, one essentially replaces the disordered alloy with a perfect, single-

species crystal with properties (e.g., dispersion, velocity, specific heat etc.) equivalent to a 

compositionally weighted average of the two starting materials (e.g., atomic mass and bond 

strength). However, the TC of crystalline alloys is not well described by a simple rule of mixtures 

for the base crystal phononic properties. To account for deviation from this simplified model, an 

additional mechanism for phonon scattering, namely alloy scattering must be superimposed. In 

other words, the VCA treats the presence of dissimilar elements in an alloy lattice as though they 

act as scattering centers for the phonon gas, and the expressions used to model this effect were 

derived by Tamura [12] in the context of modeling isotope scattering. This additional scattering 

mechanism ultimately yields much more frequent scattering, which reduces the TC, leading to 

much better agreement with experimental data [11,13-15], as compared to a simple rule of 

mixtures. Therefore, the impurity scattering term is what qualitatively causes the VCA to correctly 

predict the typical U-shaped curve observed in TC vs. composition in most alloys. For alloys, TC 

typically decreases by ~10x as the composition of a single impurity approaches ~10–25% at which 

point it remains approximately constant until ~75–90%, after which it quickly increases to the 

other pure crystal’s TC.  
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Currently, the VCA is the most widely accepted/used theoretical framework for 

understanding phonon transport in random alloys, and this approximation has largely been justified 

in the literature, where good agreement between the VCA and experiments has been observed [13-

18]. Given its success, it has become the sole theoretical approach for understanding of phonons 

in random alloys. However, there are instances where the VCA fails [19-23], even when adjustable 

parameters are used to fit the data to which it is compared. It is also important to note that these 

failures are not only quantitative [19-23], but also qualitative [19,20,22]; some alloys exhibit 

monotonically increasing TC or seemingly constant TC vs. temperature whereas the VCA always 

inherently yields the same qualitative temperature dependence as a pure crystal. This dependence 

consists of a low-temperature peak (typically dictated by the competition between phonon–phonon 

scattering and phonon–impurity scattering for > 10-20% alloy concentration) followed by 

monotonically decreasing TC due to anharmonic phonon–phonon scattering. Figure 1.1 (a, b) 

compares VCA predictions and experimental values of TC of some example random alloys at 

different temperatures and compositions. As seen from the figure, for these systems, VCA fails 

both quantitatively and qualitatively. Investigating the fundamental reason of failure of the 

PGM/VCA is the main focus of this thesis.   
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Figure 1.1 Some examples of alloys in which VCA fails to predict TC.  (a) TC vs alloy 

composition, (b) TC vs temperature. The experimental data are collected from References 

[19,21,22,24-28] while the VCA prediction data are from Reference [16,19,29]. The VCA curves 

are calculated using ab initio calculations.   
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1.2      The fundamental problem  

For more than half a century, all investigations of phonon transport in random alloys have been 

conducted using the VCA. Despite the prevalence of the VCA in the literature, there are several 

alloys in which the VCA fails to predict not only the value of TC, but also the trend of TC vs 

composition and/or temperature, as illustrated in Figure. 1.1. These failures suggest our 

understanding of the fundamental physics may need revision, and revisiting the underlying 

assumptions of the VCA is a logical starting point. There are two fundamental issues with the 

application of the PGM/VCA to random alloys: 

 The assumption that all phonons/vibrational modes correspond to plane waves, thereby 

justifying invocation of expressions for TC that are based on the PGM.  

 The derivation of the heat current in Eq. (1.1) by simple analogy to heat flow attributed to 

gas particles and was not rigorously derived from first principles. 

With respect to the first point, in reality, adding a dissimilar atom or a defect/impurity into a 

previously pure homogenous crystal leads to the symmetry/periodicity of the system breaking. As 

a result, one obtains solutions to the equations of motion for the atoms that have a very different 

character than a plane wave modulated distribution of atom displacements/velocities. Due to the 

lack of plane wave characteristics of these solutions (phonons), one cannot define a wavelength 

or, consequently give a well-defined group velocity. Therefore, the application of the PGM/VCA 

to describe the transport of phonons in random alloys is questionable and inconsistent with the 

actual atomic vibrations in the alloy. This issue is critical, because almost all studies since 1963 

are based on the assumption that phonons in random alloys have 100% plane wave character. 

To observe the real vibrational modes in crystalline alloys, we conducted a supercell lattice 

dynamics calculation (SCLD) (see Figures 1.2-1.4) on an In0.53Ga0.47As alloy as an example. As 
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seen in Figures 1.2-1.4, the eigenvectors for the normal modes of In0.53Ga0.47As alloy fall into the 

same three categories identified by Allen and Feldman (AF) in 1999 for amorphous materials, 

namely propagons, diffusons and locons[30]. Propagons are typically low frequency modes that 

extended throughout the entire system and are delocalized, and generally exhibit some periodicity 

in their eigenvectors (i.e., a sinusoidal modulation to the displacement/velocity field). These modes 

are termed “propagons”, largely because they resembled the traditional phonon in a crystal, which 

is a pure plane-wave that consequently propagates energy (Figure. 1.2) at a certain group velocity 

throughout the entire structure. The wavelength can be clearly recognized as the distance over 

which the wave’s shape repeats. The average distance of propagation of a propagon would then be 

its mean free path (MFP).  

 

Figure 1.2. Eigenvectors of a propagon in In0.53Ga0.47As . The arrows represent eigenvector 

magnitude and direction. 

The second category of phonons in In0.53Ga0.47As is diffusons. They are delocalized modes 

that don’t have any apparent propagating character and exhibit seemingly random eigenvectors. 

As can be seen in Figure 1.3, the vibration is of a random nature, hence one cannot define 

wavelength or group velocity for these types of phonons. The apparent randomness associated with 

these modes led to them being termed “diffusons”, since there is no discernable periodicity, thus 

their displacement/velocity profiles are diffuse. It was furthermore hypothesized that diffusons 



11 
 

might contribute to heat conduction through a diffusive process, rather than propagation of energy 

from one location to another location. As will be discussed in the Chapter 4, the majority of 

phonons in the In0.53Ga0.47As alloy studied herein are diffusons. 

 

Figure 1.3. Eigenvectors of a diffuson in In0.53Ga0.47As. The arrows represent eigenvector 

magnitude and direction. 

The third and last category of modes are high frequency modes that are spatially localized 

(Figure. 1.4), and subsequently termed “locons”. These modes do not involve the majority of the 

atoms in the system; instead only small groups or clusters of atoms in a small region participate in 

the mode.  

 

Figure 1.4. Eigenvectors of a locon in In0.53Ga0.47As. The arrows represent eigenvector 

magnitude and direction. 

The existence of non-propagating vibrational modes, i.e., diffusons and locons clearly 

suggests the application of the PGM/VCA in random alloys would be problematic. The question 
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then arises is “What are the respective contributions that each category of modes (e.g., propagons, 

diffusons and locons) makes to TC?” Answering this question requires a different theory, because 

the existing PGM theory cannot be invoked for the diffusons and locons, because one cannot define 

their group velocities. For propagons, one can find an associated wavelength [30,31] and it is still 

conceivable that treating such modes via the PGM/VCA would therefore be valid. However, as 

will be shown in the following chapters, propagons only comprise a small fraction of the modes 

for 15–85% compositions, thus it is not clear a priori that all other modes can simply be neglected. 

For diffusons and locons, one must use alternative methods for describing their potentially 

significant TC contributions. Recently, Lv and Henry[32] have developed a general approach 

termed Green–Kubo modal analysis (GKMA), which combines SCLD with the fully anharmonic 

dynamics generated by MD simulations to solve this problem. The GKMA method can directly 

assess a mode’s TC contribution, without any invocation of the PGM, as one needs only to utilize 

the mode level contributions to each atom’s velocity to determine that mode’s contribution to the 

heat flux operator in an equilibrium MD simulation. In this sense, the key attribute of the GKMA 

approach is that it describes phonon transport in terms of correlation, rather than scattering, which 

is a major shift in perspective from the current understanding. As will be shown in the subsequent 

chapters, the main advantage of knowing the mode level contributions is that it allows one to look 

at trends in the behaviors with respect to the mode character. It would be useful to separate the 

contributions of propagons and diffusons to see if the trends in TC contribution or underlying 

mechanisms differ significantly, or if somehow, despite the differences in character, the PGM 

physical picture still holds. 
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1.3      Thesis questions  

The overall aim of this study is to examine the validity of the PGM/VCA for predicting the 

TC of random alloys and understand the role of mode character on alloy TC.  To reach this goal, 

this thesis will address the following primary research questions: 

(1) As shown in Figures 1.2-1.4, compositional disorder gives rise to a change in mode 

character, yet due to the lack of alternatives, the PGM/VCA is still applied to alloys that 

likely consist of propagons, diffusons, and locons[30,31]. As a first step toward our main 

goal, it is critically important to develop a means of identifying each type of modes in 

random alloys in a quantitative/systematic way. As will be shown in Chapter 3, 

distinguishing locons from propagons and diffusons is straightforward, by using the 

participation ratio[31,33], which measures the extent to which a mode is localized. 

However, distinguishing between propagons and diffusons is challenging, as both are 

spatially delocalized. Therefore, the first question that arises is: how can one systematically 

and quantitatively discern the difference between propagons and diffusons? Developing a 

rigorous method of classification allows us to study the effect of disorder on the vibrational 

modes character and consequently identify the modes that cannot be studied by PGM/VCA. 

As will be shown in Chapter 3, the structure factor (SF) is one possible method to 

distinguish between propagons and diffusons, by testing the plane-wave character of 

vibrational modes at a particular polarization and wave vector[34,35]. The primary 

problem with the SF approach, however, is that SF quantifies the spatial and temporal 

frequency content of the collective motions of the eigenvectors. Therefore, it is not 

generally possible to assign a unique wave vector to individual modes.  Furthermore, the 

SF is not normalized, and therefore yields different magnitudes of values for different 
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materials. Therefore, the magnitude of the SF alone cannot distinguish propagons or 

diffusons on a universal scale, and as a result, one must compare the relative magnitudes 

for different modes in the same structure. Therefore, it is important to have a universal 

scale by which a mode’s character can be judged more generally, which would allow 

propagons and diffusons to be directly compared for different material systems. In Chapter 

3, we introduce a new general method, termed “Eigenvector Periodicity Analysis (EPA),” 

for classifying vibrational modes and specifically distinguishing propagons from diffusons. 

EPA doesn’t have the issue associated with the SF method, hence, one can compare 

individual modes in two different structures on a universal scale that is material agnostic. 

Using EPA, one can clearly quantify what fraction of modes in a given structure are 

propagons or diffusons as a function of the degree of disorder. 

(2) Traditionally, the distinction between propagons and diffusons is often described by a 

transition/cut-off frequency, above which the modes are all diffusons and locons and below 

which the modes are all propagons[34]. Such a conclusion was solely made based on visual 

inspection of vibrational modes or the prediction based on the SF method. Therefore, the 

second question arises is: how does the transition between propagons and diffusons occur? 

Is there any sharp cutoff frequency between propagons and diffusons? In other words, is 

there any requirement that the mode character must change abruptly with respect to 

frequency? By applying EPA to various disordered solids in Chapter 3, we will address 

this question and show that that in general no strict set of rules that would require any 

abrupt shift in mode character. 

(3) The third question arises is: “What is the fundamental reason for the failure of VCA in 

random alloys?” More specifically, what is the key fundamental information missing in the 



15 
 

PGM/VCA? Using GKMA and EPA to study the TC and vibrational modes in  InxGa1-xAs 

as an example test case, we will systematically prove that the missing information in the 

PGM/VCA is knowledge of the vibrational mode character. As the second test case to 

examine the validity of PGM/VCA in random alloys, we will also show that the relaxation 

time is not a valid descriptor for non-propagating vibrational modes in random alloys. 

Other interesting questions that one can ask are: How does mode character change with 

composition in a random alloy?, what aspect of vibrational modes changes when the 

propagating character decreases? We will address these questions in detail in Chapter 4. 

(4) As discussed above, due to the lack of periodicity in structurally/compositionally 

disordered materials, the majority of vibrational modes are non-propagating [23,30,31,34], 

so one cannot clearly define the phonon dispersion and group velocity. Therefore, one may 

not be able to extend insights about optical phonons in pure, homogeneous crystalline 

materials to disordered solids. However, as will be discussed in Chapter 3, for disordered 

solids, one can use phase quotient (PQ) to evaluate whether a mode shares more 

distinguishing properties with acoustic vibrations (PQ>0) or optical vibrations (PQ<0). The 

forth question will be answered in this thesis is: Do PQ<0 modes in 

structurally/compositionally disordered systems contribute significantly to heat 

conduction? Understanding the contributions to TC from PQ>0 and PQ<0 phonons is 

important, because once the dominant phonon types and their transport mechanism are 

understood, the means by which their contributions can be manipulated might then be 

explored. We will address this question in Chapter 5 and show that surprisingly the PQ<0 

phonons can have a significant contribution to the TC of disordered solids.  
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This thesis first describes a new method for classifying vibrational modes in 

compositionally/structurally disordered solids such as amorphous materials and random alloys. 

Then, utilize GKMA, an entirely new paradigm to understand alloy TC that can treat modes with 

any character and experimentally confirm its new insights. 

In Chapter 2, we discuss the correlation-based theory of alloy TC. We first review the 

Green-Kubo (GK) method, then we derive GKMA formalism, which utilizes MD and LD.  

Meanwhile, the existing theoretical framework for understanding of phonon transport in random 

alloys, namely PGM/VCA, will be briefly discussed. 

In Chapter 3, we first review the existing methods for classifying vibrational modes in 

disordered solids, i.e., participation ratio and SF. Then, we introduce the EPA formalism and 

demonstrate its application to several crystalline and amorphous solids. Finally, we will explain 

the mathematical formalism of PQ, a useful quantity that can be used to evaluate whether a mode’s 

properties are more similar to acoustic or optical vibrations. 

In Chapter 4, we first study the effect of disorder on vibrational modes in InxGa1-xAs alloy. 

By applying EPA to InxGa1-xAs alloy at various compositions, we will show that how the 

vibrational mode change when alloy composition change. We will discuss the correlation between 

the trend of eigenvector periodicity parameter (will be introduced in Chapter 3) vs alloy 

composition and TC vs alloy composition. Afterwards, the TC of In0.53Ga0.47As alloy is calculated 

using both the VCA and GKMA approaches. We first show the VCA fails to predict the TC, then 

discuss devise two test cases to more deeply examine the fundamental reason for the failure of the 

VCA.  
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In Chapter 5, we discuss the importance of PQ<0 phonons on TC of disordered solids.  By 

calculating the PQ and phononic TC of various disordered solids, we will show the trend of PQ 

verses frequency and the role of PQ<0 mode to the TC of disordered solids. Finally, Chapter 6 lists 

potential future work and gives some concluding remarks. 
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CHAPTER 2 

CORRELATION THEORY OF PHONON TRANSPORT  

 

In this chapter we review the mathematical formulation of GKMA. As discussed in Chapter 1, 

GKMA is a general approach that can be used to investigate the mode TC of all class of solids 

ranging from well-ordered crystalline solids to fully disordered solids such as amorphous systems. 

GKMA is based on fluctuation-dissipation theory or GK formula, which is a general approach to 

calculate the TC of wide variety of materials including solids, fluids, and gases[1,36-38]. 

Although, GK has been used extensively to study TC various systems well-ordered and disordered 

including amorphous solids, it is not able to provide information about the contributions of 

individual vibrational modes to the TC. The extended version of GK, termed GKMA, combines 

GK formula and LD and allows one to study the contributions of individual modes to TC. In this 

chapter, we first review GKMA formalism. Then, we briefly review the existing analytical and 

computational approaches based on PGM/VCA for calculating the TC of random alloys. Finally, 

we will discuss fundamental differences between PGM/VCA and GKMA. 

 

2.1       Green-Kubo formulation 

GKMA is based on the GK formula which was derived from the linearized Liouville 

equation[1]. For a system with N arbitrary particles with momentum p and coordinate r , one can 

define N particle distribution function  N
f  representing the probability density of finding a state 

defined by N individual particle momenta p and locations r . The response of such a system 

subjected to a thermal disturbance as a temperature perturbation, i.e.,    , expT t T i t  r  
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with input frequency of  , is heat flux ( netQ ) which can be determined by solving the linearized 

Liouville equation for the N particle distribution function [1,39,40] 

     2

t

net

B

V
t t t t T dt

k T




       Q Q Q   (2.1) 

Where netQ is the net heat flux in the system, Bk is the Boltzmann constant, T  is the system 

temperature, and V  is the volume of the system. By extracting the temperature gradient from Eq. 

(2.1), an expression for the heat current, similar to heat current defined by Fourier’s law 

T  Q  can be obtained. Substituting Fourier’s heat current equation, we can derive an 

expression for the TC, using a Fourier transform to rewrite the integral to obtain: 

       2

0

, 0 exp
B

V
T i d

k T
       



     Q Q      (2.2) 

Where  ,T  is TC tensor, the  subscripts denote the directional components.   and T  

are the perturbation frequency and the temperature of the system, respectively. Q  is the heat flux 

of the system and   the correlation time, V is the volume of the system, and ...  represents the 

autocorrelation function. For macroscale situations, the atomic scale fluctuations are orders of 

magnitude faster than the time scale of the system perturbations. Therefore, the zero frequency 

limit of Eq. (2.2)[41]  is required 

     2

0

0
B

V
T d

k T
    



  Q Q     (2.3) 

However, if the input frequency of perturbation is similar to atomic fluctuations frequency, the 

frequency dependent TC can deviate from Eq. (2.3).  
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In Eq. (2.3), the heat current Q  as a function of microscopic variables can be extracted 

from atomistic simulation. For the case of MD simulations in which empirical interatomic 

potentials (EIPs) describe the system energy and interaction forces, Hardy[37] derived a general 

heat current operator that can be applied to any EIP. Essentially, he first used a generic form for 

Hamiltonian operator to express the heat current operator in terms of microscopic quantities 

available in atomistic simulations. He then defined a spatial weighting function to describe the 

local energy density as a continuous function, then integrated to obtain the volume averaged heat 

current operator as, 

   
1

ii i j i ij

i j

t E
V

 
     

 
  rQ x x r     (2.4) 

Where iE  is the potential and kinetic energy of atom i , V  is volume of the system, j denotes 

potential energy of atom j , ijr  is distance between atom i and j , and  ix  is the velocity of atom i

. In Equation (2.4), there are two physically meaningful terms that correspond to two different 

mechanisms of heat transport in materials. The first term dominants in liquids and gasses because 

in fluids the heat and energy is transported through the kinetic energy of molecules. In solids, the 

second term dominates, because of larger interatomic forces and atoms are constrained to their 

local environment, which yields continuous interactions (i.e., not intermittent scattering events). 

For example, McGaughey et al. has shown that for solid crystalline argon, the total heat current 

due to the second term dominates[42]. 

GK is fundamentally a different approach to calculate the TC of materials compared to the 

PGM. GK is a general approach based on fluctuation-dissipation theory and describes the response 

of the system to small external disturbances from equilibrium, while the PGM treats phonons as 

particles and their interactions are considered as scattering events. In the PGM, the TC is function 
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of the frequency of scattering events, i.e., the higher the frequency of the scattering, the higher the 

thermal resistance and consequently the lower the TC. The GK formula on the other hand describes 

the TC as a function of the heat current autocorrelation, which can be calculated using Eq. (2.3). 

Based on the GK correlation paradigm, any form of correlated pattern in the system’s trajectory 

can contribute to TC. Physically, the correlation of the heat current in Eq. (2.3) measures how 

similar the heat current is at some time t  and another later time t  . The more similar the heat 

current fluctuations are, the longer the memory of the initial perturbations the system experienced, 

and as a result, the inner product between the two is larger. This leads to more correlation and 

consequently higher the TC. Thus, in low TC solids, the correlation is usually short-lived (i.e., a 

few picoseconds), while in high TC materials, the fluctuations remain correlated for longer times 

(i.e., tens to hundreds of picoseconds) as the memory of the earlier state dissipates more slowly.  

Since the GK formula can be evaluated using MD simulations, all degrees of 

anharmonicity, i.e., 3-phonon, 4-phonon up to N-phonon interactions are naturally included in the 

heat current therefore TC. Furthermore, GK can be used to study defects, disorder, and finite size 

effect explicitly, as opposed to treating them as perturbations to some homogeneous and infinitely 

large system. In this way, on can evaluate the dynamics of an actual and specific configuration of 

atoms, rather than relying on effective medium and perturbation schemes. Instead one can evaluate 

effects like disorder by statistically sampling different configurations that have the same descriptor 

of interest, i.e. the same defect density or the same interface roughness etc. Finally, since the GK 

formula doesn’t cast TC in terms of phonons directly, but instead in terms of atoms, there is no 

utilization of quantities such as group velocity to calculate the TC. In fact, it makes no assumptions 

about the phase of matter, and as a result, this approach can be used to predict TC of materials with 
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broken symmetry such as non-crystalline solids, random alloys, amorphous materials and even 

single molecules. 

Although GK has several advantages it is not able to provide information on the 

contributions of individual vibrational modes to the TC. This is because it is formulated completely 

independent of the notion of a phonon, as it is equally valid for liquids and gasses, where phonons 

are not even a well-defined phenomenon and arguably do not exist. Nonetheless, for solids/rigid 

bodies, phonons exist, and in the next section, we explain GKMA in which one can calculate the 

contribution of each phonon to the TC. In the next section, we first review the general form of the 

LD formulation and then discuss GKMA approach. 

 

2.2       Lattice dynamics formulation 

Lattice dynamics is a generalized formulation that can provide a useful picture into the 

spectral characteristics of phonons. In well-ordered solids, the potential energy   of the solid can 

be expanded in a Taylor series in powers of the atomic displacements u   
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  (2.5) 

The i  and j  sums over the atoms in the systems, and the  and   sums are over the x , y  , and 

zdirections.   

At equilibrium, the system is in a minimum energy configuration hence the first derivative of the 

potential energy with respect to atomic displacement is zero 
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, 0
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
      (2.6) 

The second derivative of the energy with respect to atomic displacements yields the second-order 

force constants 
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and the third derivative of energy yields the third-order force constants 
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    (2.8) 

Therefore, we can write the potential energy in terms of the force constants as 
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         (2.9) 

By expanding the potential energy up to the second order with respect to atomic displacement, one 

can show that the displacements can be written in terms of vibration modes which are completely 

decoupled. For b th atom in the l th unit cell the equation of motion is 

 ;b

b l

l l
m bl b l

b b 

   
          

u u      (2.10) 

Where bm is the mass of atom b .  ;bl b l   is the 3 3 force constant matrix describing the 

interaction between atoms bl and b l  , 
l

b

 
  

u  is the displacement of atom bl from its equilibrium 
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position, and the summation is over every atom in the system. Now assume a plane wave (i.e., 

harmonic) solution to Eq. (2.10), which will be a sum over all the normal modes (i.e., over all 

wave vectors and polarizations), which have frequencies 


 
 
 

q
: 

0

1
expb

b

l l
i t

b bm N


 

         
           
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

q

q q
u e q r   (2.11) 

Where 0

l

b

 
 
 

r  is the equilibrium position of the l th unit cell, b


 
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 

q
e  is the eigenvector, N is the 

total number of atoms, and q is the wave vector, and   is dispersion branch. 

Substitution of Eq. (2.11) in Eq. (2.10) leads to the following 3N simultaneous equations, 

  
2


  

     
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Where 


 
 
 

q
e is a complex eigenvector which depicts the direction of atomic displacement.  D q  

is the dynamical matrix containing the mass and stiffness information as  D q is projected onto a 

particular propagation direction. The  D q  matrix elements are given by[10] 

   , 0 0

1
, 0, exp

0 0lb b

l l
D bb b b l i

m m
  



     
            

     
q q r r   (2.13) 

The summation is over all unit cells and   or   equals 1 for x , 2 for y , and 3 for z . The dynamical 

matrix is symmetric and Hermitian, guaranteeing real eigenvalues that are all positive for stable 

structures. By solving the eigenvalue problem for all allowed wave vectors, the normal mode 
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frequencies and eigenvectors are obtained. From the frequencies, one can calculate mode specific 

heats using Bose-Einstein and build phonon dispersion curves and the density of states.  

The above formalism can be extended to compositionally/structurally disordered solids. 

For such systems, the structure can be treated more generally in the sense that we do not attempt 

to describe the solutions in terms of plane waves and wave vectors. In this case, one can treat the 

entire simulation cell as if it is a single unit cell on a cubic lattice, such that all of the LD 

calculations are carried out at the gamma point ( 0q ). Substituting 0q  in Eq. (2.11)-(2.13), 

the dynamical matrix elements can be written as 

   ,

1
, 0 0,

lb b

D bb b b l
m m

  


    q    (2.14) 

In Eq (2.14), b  and b represent any atom in the simulation domain instead of only atoms in a unit 

cell.  In this supercell LD (SCLD) approach, one effectively treats the entire super cell calculation 

domain as one unit cell. This approach then allows us to generalize the LD formalism to systems 

with any degree of order or disorder or lack of periodicity, such as crystals, random alloys, 

amorphous materials and individual molecules. Using SCLD, we can obtain the mode 

shape/eigenvectors of the phonons. The next step is to input the mode information into GK and 

heat current formula such that one can calculate mode level information from MD simulation that 

include anharmonicity. 

2.3       Green-Kubo modal analysis method formulation   

As discussed in section 2.2, for an arbitrary rigid structure with N atoms, using a SCLD 

calculation one can obtain 3N collective modes of vibration. With the 3N modes determined, one 
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can then use the individual polarization vectors for each atom in a mode as a basis set for projecting 

the anharmonic trajectory from MD. Towards this end, we first show transformation from 

individual atom coordinates to normal mode coordinates, where the normal mode coordinates of 

position  nX t  and velocity  nX t  for mode n  can be written as, 

   *

,n j j n j

j

X t m t  e x      (2.15) 

   *

,n j j n j

j

X t m t  e x      (2.16) 

where ,j ne is the eigenvector that gives the magnitude and direction of motion for atom j in mode 

n , * represents the complex conjugate, jm is the mass of atom j, while jx  and jx are the 

displacement and velocity vectors of atom j in the system, which can also be obtained from the 

reverse transformation that starts with known normal mode coordinates, 

     , ,

1
j j n j n n

n nj

t t X t
m

   x x e     (2.17) 

     , ,

1
j j n j n n

n nj

t t X t
m

   x x e     (2.18) 

Equations (2.17)-(2.18) essentially state that at every instant, every atom’s position and 

velocity are a superposition of individual contributions from all normal modes of vibration in the 

system. These individual contributions are proportional to  nX t  and its time derivative  nX t . 

Recognizing the meaning of this forward and backward transformation, one can then substitute the 

modal contributions to the velocity of each atom into the heat flux operator derived by Hardy[37], 
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to obtain each mode’s contribution to the volume averaged heat flux at each time step in an EMD 

simulation, 

      
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This then yields the individual modal contributions to heat flux as, 
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  rQ e e r   (2.20) 

where    
n

nt tQ Q . By substituting Eq. (2.20) into Eq. (2.3), one can obtain the 

contribution of mode n in total TC,  

   , ,2n n

b

V
t t t dt

k T
       Q Q     (2.21) 

If one sorts the vibrational modes  n  based on their frequencies, the modal contributions to TC 

can be represented in the form of the frequency-based TC accumulation function. It is important 

to emphasize here that having the full mode level detail is powerful because one can resort the 

contributions of the different modes according to any descriptor as desired. For example, one could 

compute the relaxation times or MFPs associated with different modes in a crystal, to then 

determine the accumulation as a function of MFPs[36]. Alternatively, one could sort the modal 

contributions by another descriptor, such as the PQ [43] or any other descriptor that can be well 

defined for all the modes in a given structure. Furthermore, one can also substitute the summation 
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of modal contributions to the heat flux in both places of the heat flux autocorrelation to obtain the 

TC as a double summation over individual mode–mode heat flux cross-correlation functions, 

       , , , ,2 2
,

n n n n

n n n nb b

V V
t t t dt t t t dt

k T k T
      

 

           Q Q Q Q  (2.22) 

This allows the TC contribution due to correlation between pairs of modes can be calculated 

as 

   , , ,2nn n n

b

V
t t t dt

k T
    

    Q Q     (2.23) 

Equation (2.21) allows one to obtain each mode’s contribution to the total TC while equation 

(2.23) can be used to examine how the correlation between pairs of modes contributes to TC. Here, 

it should be noted that the correlation between mode n  and n  contains all the levels of phonon-

phonon interactions and should not be interpreted as two-phonon interactions. In the PGM 

paradigm, the scattering events create or annihilate phonons [1,2] at a short timescale (i.e., much 

shorter than the time of flight), but this physical picture is disjoint with what actually occurs in a 

MD simulation. In a MD simulation the phonon interactions occur continuously, as there is no 

sudden scattering event or discrete change in amplitude. If one were to for example generate wave 

packet, all the phonons participating in the wave packet oscillate continuously together to 

contribute to the heat flow. During these oscillations, the different modes are continually 

interacting, and the energy in the modes gradually couples to other modes which breaks up the 

collective oscillation over a time scale equivalent to the relaxation time. Thus, the MD perspective 

is that phonons continuously interact and wave packets made from groups of phonons gradually 

dissipate their energy via attenuation, which differs from the particle based physical picture 

consisting of discrete scattering events.  
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In concept, PGM based methods attempt to measure the time/distance between dephasing or 

the loss of correlation for wave packets, while on the other hand, GKMA measures the amount of 

time it remained correlation itself. In the GKMA paradigm, the correlation for a pair of modes n  

and n does not translate to a two-phonon interaction, but instead it includes all 3-phonon, 4-

phonon and higher order scattering related information. It has not yet been proven, but it should 

be noted that by representing the potential energy as a Taylor expansion, one might be able to 

extract two-phonon, three-phonon, and N-phonon scattering related information. This is because 

the heat flux and TC would become separable into 2nd order, 3rd order, and higher contributions. 

However, from the GKMA perspective, all that matters is how long two phonons ( n  and n ) stay 

correlated, which is proportional to their corresponding contribution to TC. The longer they remain 

correlated, the more they contribute to the net heat flow.  

2.3.2    Quantum correction  

Since GKMA can provide frequency dependent TC, one can apply a quantum correction to the 

classical MD GKMA results at different temperatures to map classically predicted TC onto a 

corresponding quantum corrected value. The underlying assumption in doing so is that only the 

quantum effect on the specific heat must be accounted for. Turney and McGaughey [44] have 

shown that for crystalline materials there are two quantum effects, (i) quantum effects on the 

scattering rate due to incorrect mode–mode occupations, and (ii) quantum effects on the heat 

capacity. The first is important, as one could envision that in the limit that only a single mode is 

excited in the system, the time it takes for it to couple to other modes and relax towards 

equipartition is a strong function of the amplitudes of other modes. Thus, when other modes are 

simultaneously excited, it affects the rate at which mode–mode interactions occur. It has been 

shown that for crystalline solids this effect is critical [44], and because classical MD trajectories 
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do not yield the correct quantum mode amplitudes observed at low temperatures, MD incorrectly 

predicts higher scattering rates. However, even though this issue is important for crystalline solids, 

in situations where the phonon–phonon scattering processes are not the primary mechanism 

governing the low frequency mode TC contributions, one would imagine that the error associated 

with incorrect mode–mode occupations at low temperatures could become negligible. For instance, 

in low dimensional (e.g., nanoparticles and nanowires) systems where the majority of the low 

frequency phonon contributions are limited by scattering with the boundaries, the net relaxation 

time for most modes is dictated by the system dimensions and not the detailed mode–mode 

interactions, which require the mode occupations to be correct. This is especially the case for the 

low frequency modes which are the only modes that remain excited at low temperatures. As a 

result, in such a situation, one would imagine that application of a quantum heat capacity correction 

could still lead to good predictions/agreement with experimental data. 

Using GKMA one can calculate the TC of individual modes. However a few temperature 

dependent corrections are needed to accurately predict the TC. Due to its classical nature, MD 

results in a constant heat capacity with respect to temperature, since every mode is equally excited 

at all temperatures. However, once each individual mode’s TC is obtained, one can easily apply a 

quantum specific heat correction, which extends the MD based predictions to essentially any 

temperature. To obtain the an accurate temperature dependence TC, Lv and Henry[45] used 

following expression  

      ,,Q n k n

n

T f T T f T       (2.24) 

where index n  denote the thn  vibrational mode in the system. Equation (2.24) includes three 

explicit functions of temperature, namely Qf , kf  and  . In this equation the function Qf  
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represents the ratio of quantum to classical specific heat for mode n , which has frequency   at 

temperature T  and is unit-less. The function kf  represents the GKMA derived modal 

contributions to TC (e.g., it has the units of TC), obtained from MD simulations conducted at the 

simulation temperature of T . The function   represents the phonon frequency of mode n , which 

itself might also exhibit some temperature dependence. 

The quantum to classical specific heat ratio ( Qf ) is the most important source of temperature 

dependence. It restricts the contributions of the high frequency modes at low temperatures and 

modulates the MD derived TC contributions determined from the GKMA method. The quantum 

expression of volumetric specific heat, based on Bose-Einstein statistics is given by, 

 
 

2

2
, ;

1

x

B
q

x
B

k x e h
C T x

V k Te


  



    (2.25) 

and the classical volumetric specific heat is given by B
c

k
C

V
 . Thus, the quantum heat capacity 

correction factor which is the ratio of qC  and cC is 
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     (2.26) 

The second source of temperature dependence enters through the GKMA derived TC 

contributions ( kf ). As temperature changes, the modal interactions change, and the contributions 

of different modes are inherently temperature dependent via the anharmonic nature of the 

interactions. However, unlike the quantum specific heat correction, which is a continuous function 

of temperature, MD simulations are run at discrete temperatures. To then generate a piece-wise 

continuous function for TC vs. temperature, one can interpolate the data for kf  at discrete values 
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of temperature. Here, one can use the data at a few initial temperatures and determine by 

inspection, what temperature ranges may require additional simulations to improve the resolution 

of the temperature dependence, e.g., in temperature ranges where the contributions change more 

rapidly. This is because it is advantageous to minimize the number of temperatures needed for kf  

to minimize computational expense. Suppose for a given material, we calculated the frequency 

dependent TC at 3 temperatures, i.e., 
1T , 

2T and 
3T . Since in the classical MD simulations, all 

of the modes are excited, one can determine the mode diffusivity from the mode TC by dividing it 

by the classical specific heat, i.e., T
T

c

D
C


 . For the intermediate temperatures, one can linearly 

interpolate the mode diffusivity using the two temperatures GKMA results for each individual 

mode diffusivity  

   

 
1 22 1

2 1

T T

T

D T T D T T
D

T T
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


    (2.27) 

After interpolation, one obtains the mode diffusivity and multiplies by the quantum corrected 

specific heat using Bose-Einstein statistics to yield the TC at a given temperature. 

Finally, the phonon frequencies ( ) can slightly change with temperature, due to 

anharmonicity and thermal expansion[46]. If the GKMA simulations are performed at constant 

volume, thermal expansion does not play a role, but anharmonic effects can still cause the mode 

frequencies to change. The extent of the frequency shift as a function of temperature can be 

determined by interpolation of the data at discrete temperatures, using the peak frequency obtained 

from a Fourier transform of the mode amplitudes. 

Using GKMA and temperature dependent corrections, one can accurately calculate the 

temperature dependent TC. It should be noted that in Eq. (2.24), the quantum effect is included 
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once for every individual mode. After calculating one mode correlations with all other modes, the 

specific heat is corrected for that mode. Using this method, we consider whether one mode is 

activated or not at a specific temperature based upon its specific heat ratio. However, Eq. (2.21) 

does not consider whether the other modes, which it correlates with, are excited from ground state 

or not at the specific temperature. However, this can be remedied by applying the quantum 

correction to both modes in each pair. The idea here is to use the square root of each mode’s 

quantum correction so that when multiplied a combined correction with the correct units is 

obtained via, 
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where n  and n  represent two modes, Q  is heat current for a mode, 
qC  is quantum specific heat 

from Bose Einstein statistics, and 
cC is classical specific heat, and   is frequency of the mode. It 

should be noted that the choice of using the product of square roots of each mode’s heat capacity 

is not arbitrary, but instead motivated by a derivation given in prior work by Henry and Chen[36]. 

In their derivation, they represented the heat flux according to the PGM and merged it with the 

GK approach by substituting the phonon heat flow for the volume averaged heat flow derived by 

Hardy. The result of that derivation ultimately led to an expression that contained the square root 

of one phonon’s quantum heat capacity multiplied by the square root of another phonon’s quantum 

heat capacity. The remainder of the expression contained quantities that were related to the 

phonon-phonon interactions, but the main point of relevance here, is that a quantum version of the 

GK expression that expresses the TC of phonons, is proportional to the product of square roots of 

the two modes interacting. This is the motivation behind the form of Eq. (2.28), which can be 

applied to the 2D correlation maps. This second approach is not equivalent to the expression in 
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Eq. (2.24) and will yield different total TC values, but this approach is possibly better in the sense 

that it may, to some extent, account for the second quantum effect on the scattering rate due to 

incorrect mode–mode occupations. 

2.4       GKMA Validation 

In this section, we have introduced a correlation based modal analysis method, i.e., GKMA to 

understand and calculate the TC from atomistic level simulations. Importantly, the results using 

GKMA have produced good agreement with experiments for several amorphous materials and a 

random alloy, as shown in Figure. 2.1 [23,32,43,47,48]. What is noteworthy about the data in 

figure. 2.1 is the fact that all of the phonon contributions in all of the materials were computed 

with the exact same formalism, without any modification. This means that GKMA provides a 

unified formalism with which phonons can be understood in any material system where atoms 

vibrate around equilibrium positions, including individual molecules[49].  
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Figure 2.1. GKMA TC predictions for various solids 
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2.5      Virtual Crystal Approximation Method 

In this section two widely used VCA[13,50] methods that have been used throughout this 

thesis are briefly reviewed. As discussed in chapter 1, the VCA is based on the PGM and is 

consistent with the predominant paradigm for interpreting all phonon contributions to TC in terms 

of the phonon MFPs. However, as a consequence, it requires that every normal mode/phonon have 

an associated velocity. In the VCA, one must first calculate each phonon’s properties such as its 

specific heat and group velocity, both of which are derived from the model of the dispersion, as 

well as the phonon-phonon scattering rates. The base assumption in the VCA is then that all of the 

aforementioned phonon properties are appropriately weighted averages of same properties from 

base pure crystals. In this thesis, two primary VCA approaches will be used, termed VCA-1 which 

utilizes an analytical model with 5 fitting parameters developed by Wang and Mingo[50], and 

VCA-2 which is based on the use of Fermi golden rule for calculation of three phonon scatterings 

and Klemens theory for calculation of phonon-alloy scattering. 

The Wang and Mingo model[50] uses analytical models for phonon dispersion, and 

phonon-phonon and phonon-alloy impurity relaxation times. These analytical models should 

empirically fit to experimental results, which limits the predictive capability of the Wang and 

Mingo model[50]. In this approach the TC of 1x xA B  alloy is given by 

 
 




Tk

y

y

B

B

c

dy
e

e
yyT

v

Tk










0

2

4

32

34

1
,

2
    (2.29) 

Where B
k is Boltzmann’s constant, T  is temperature,  is Planck’s constant divided by 2 , 

Tk
y

B

  is a dimensionless parameter, c is the cut-off frequency and  obtained using Debye 
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model. The average velocity v  is calculated by  
1

2 2 21 B Av x v xv


     
, where x is element A 

concentration and Av and Bv are the average speeds of sound in element A and B, respectively. The 

scattering time for a given frequency is related to individual processes via Mattheissen’s rule 
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Where 1

pp , 
1

m , and 
1

b  are the umklapp, mass disorder, and boundary scattering times, 

respectively. These are given by 
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Where L is film thickness and constants  ,  , and   are fitting parameters[50]. While this 

approach can calculate alloy TC and mode properties from the analytical models, it is not a 

predictive method. 

The predictive version of VCA is based on the solution of phonon BTE for a virtual crystal 

with weighted average atomic mass, force constants, and lattice constant. In this approach, the 

harmonic and anharmonic IFCs are first calculated using direct displacement method [51-53] and 

then using Fermi’s golden rule, the anharmonic phonon lifetimes will be calculated[51-53]. 

Afterwards, the total lattice TC can be determined under the RTA by summing up the modal 

contributions[51-53].  

As discussed in section (2.2), the ground state energy of a crystal can be expressed in terms of 

IFCs by Taylor expanding about the equilibrium positions, 
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Where   and  are harmonic and cubic IFCs, respectively. Subscripts ,, and   indicate the 

direction of the Cartesian displacement u  from the equilibrium position. The residual force   is 

zero as potential is expanded around minimum energy configuration hence, 
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The IFCs can be obtained by the real-space direct displacement method[51,53]. In this approach, 

various sets of force-displacement data are calculated by displacing atoms in the supercell. Then, 

the displacement-force data are fitted to Eq. (2.34), taking the translational and rotational 

invariances into account. Usually, considering the IFCs up to cubic terms can lead to accurate TC 

calculations. For harmonic IFCs a small magnitude of displacement, i.e., 0.005 Å should be used 

to suppress the anharmonic contributions while for anharmonic IFCs calculation larger 

displacements are necessary to increase the accuracy of sampling and reduce the error in 

anharmonic IFCs. To model the atomic interactions and calculate the forces one can use either EIP 

or forces directly calculated using DFT. After obtaining harmonic IFCs, the dynamical matrix for 

a given wave vector k  can be calculated by Fourier transformation, 
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Where R  is atomic position of the primitive cell.  Cubic IFCs are used to compute the three-phonon 

scattering matrix elements given by  
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Where 0N is the total number of mode in the first Brillouin zone,  is the Planck constant divided 

by 2 , and s denotes different polarizations. Phonon lifetimes due to umklapp and normal three-

phonon scattering processes can be calculated using Fermi’s golden rule to the cubic 

Hamiltonian[52,53]  
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where snq is the Bose-Einstein distribution. The conservation of momentum requires

   q q q G , where G is the reciprocal lattice vector. For normal process 0G  while for 

Umklapp process 0G . 

The mass disorder is treated as a perturbation. Therefore, the net scattering rate of a phonon mode 

is calculated as the sum of scattering rate due to mass disorder and anharmonicity, according to 

Matthiessen’s rule: 

1 1 1
p p m

s s s  
 

q q q

    (2.38)  

The second term is Tamura harmonic mass disorder scattering rate, which is calculated by using 

perturbation theory[12], 
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where      
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fg ,  if  and  im are the  atomic concentration and mass of 

thi  isotope of the   atom. The quantity      
i

iieffi
mfm 

, , is the weighted average mass of 

atom   and e  is its polarization vector.   

The size effects can be accounted for by using Matthiessen's rule 
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where the second term is the boundary scattering rate, 
,

1
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. Finally TC can be calculated 

based on RTA 
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where svq is the group velocity of mode and is the volume of unit cell. 

The VCA has been widely applied to many alloys including Si-Ge alloy[13], PbTe(1-x)Sex  

[8], (Bi(1-x)Sbx)2Te3[15], and Mg2SixSn1-x[18], to name a few. However the application of VCA in 

alloys is questionable from the standpoint of the mode character. The limitation with the usage of 

the VCA is because it is based on PGM that needs a well-defined wavevector for each phonon in 

order to calculate the dispersion relation and group velocity. The lack of a clearly defined velocity 

is critical, because the PGM hinges on the velocity being defined in order to properly describe a 

mode’s contribution to TC.  
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CHAPTER 3 

CLASSIFICATION OF VIBRATIONAL MODES IN DISORDERED 

SOLIDS 

 

As discussed in Chapter 1, most of our understanding and intuition regarding phonon 

transport has been derived from studies of homogenous crystalline solids, where the atomic 

composition and structure are periodic. For this specific class of materials, the solutions to the 

equations of motions for the atoms (in the harmonic limit) result in plane wave modulated velocity 

fields for the normal modes of vibration. However, as shown previously, whenever a system lacks 

periodicity, either compositional or structural, the normal modes of vibration can still be 

determined (in the harmonic limit), but the solutions take on different characteristics, and many 

modes may be non-plane wave modulated. For such systems, as we showed in Chapter 1, the 

normal modes of vibrations can be segregated into three types of modes, propagons, diffusons, and 

locons. Propagons are delocalized modes with sinusoidally modulated velocity fields that exhibit 

a rather identifiable wavelength and corresponded to low frequencies vibrations that in concept 

must occur in the low frequency limit as one must eventually observe sound waves. Diffusons are 

spatially delocalized modes that do not exhibit sinusoidally modulated velocity fields, but instead 

appear to exhibit random vibrations similar to the randomized amorphous structure itself. Lastly, 

locons correspond to localized vibrations that often center on atoms with significant deviations in 

local coordination than the rest of the structure.  Conceptually, one might expect that each of the 

three classes of modes might contribute to thermal transport in a fundamentally different way. For 

example, one might expect that propagons can still be treated with the PGM, since they largely 

resemble the traditional phonon, as they are a sinusoidally modulated vibration (propagating 
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modes) that can carry energy from one location to another at a speed given by their group 

velocities[34]. However, it is still not clear how diffusons and locons contribute to thermal 

transport. Nonetheless, to develop a thermal transport framework that properly accounts for the 

role a mode’s character plays in its contribution to TC, a critical step is to first develop a means of 

identifying each type of mode in a quantitative/systematic way. In this Chapter, we first review 

the existing methods for distinguishing propagons, diffusons, and locons. In particular, the 

participation ratio (PR) and SF methods to identify locons and propagons in a given structure, 

respectively will be discussed. Then we will present the EPA method, that quantifies the extent to 

which a mode’s character corresponds to a propagating mode, e.g., exhibits plane wave 

modulation. This new method allows for clear and quantitative distinctions between propagons 

and diffusons. As will be shown, using EPA, we can automate the classification of modes for any 

arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably 

around their respective equilibrium sites. Finally, we will discuss the PQ, which is a quantity that 

can be used to evaluate whether a mode more shares properties of acoustic vibrations, or optical 

vibrations.  

 

3.1       Classifying Locons 

Methods exist for distinguishing locons from propagons and diffusons by measuring the 

extent to which a mode is localized. For example, AF[30] introduced the usage of the PR as a 

means of distinguishing delocalized modes (i.e., propagons and diffusons) from localized modes 

– namely locons. This approach is straightforward and can be applied to an individual mode by 

assessing the size of the eigenvectors for different atoms in the mode. Mathematically PR can be 

defined as[31,33] 
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where 
,i ne  is the eigenvector of atom i  (which runs over all the atoms in the supercell) for mode 

n , N  is the number of atoms in the system. The above definition implies that spatially extended 

modes have a large value of nPR , on the order of 1, whereas localized modes have small ratios 

that can reach a minimum value of 1
N for a mode completely localized on a single atom. In 

concept, locons are modes that involve a small fraction of the system and hence have low PR 

values. For various structures[23,31,43,47,54], the PR appears to change by more than an order of 

magnitude, so it seems reasonably acceptable that somewhere in the 2 310 10  regime, a mode 

could be referred to as localized, since it would mean that only 0.1-1% of the atoms in the system 

are participating in such a mode. Here it is important to point out that spectrum of PR values is 

continuous, and there is in general no strict set of rules that would require any abrupt shift in mode 

character. Thus, even though any scheme for identifying modes will be somewhat arbitrary, it is 

no different than the distinctions between photons. For example, the border between visible and 

infrared (IR) photons is approximate/arbitrary, and it is well acknowledged that the regime of 

wavelengths between 699-701 nm is approximately the regime where the transition occurs. Thus, 

one cannot strictly claim that a photon with a wavelength of 701.5 nm is not in the visible spectrum, 

but rather that it lies near the border between visible and IR light as the exact boundary is arbitrary. 

Nonetheless, distinguishing photons by terms such as visible, IR, ultra-violet and X-Rays etc. is 

still quite useful, since each regime has rather unique and distinguishing types of interactions with 

matter, despite the fact that all photons are simply excitations of the electromagnetic field. 
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Similarly, it is likely to be quite valuable to distinguish between different types of phonons, since 

each group may contribute to thermal transport in fundamentally different ways, despite the fact 

that these phonons exist on a spectrum of spatial delocalization, rather than falling into distinct, 

obvious categories. 

 

3.2       Classifying Propagons vs. Diffusons 

3.2.1       Structure factor method  

Distinguishing between propagons and diffusons is challenging, since both are spatially 

delocalized. One approach is to manually look for the frequency range where the mode character 

changes, which is usually quite narrow, i.e. < 1 THz. This is also generally regarded as the 

frequency regime where the relaxation times deviate from the well-known 
2

 behavior, termed 

the Ioffe-Regel cut-off [34]. Larkin and Mcgaughy[34] used this approach to estimate the 

transition cut-off frequency between propagons and diffusons in amorphous silicon (a-Si) and 

silica using the mode relaxation times calculated via MD simulations. The problem with this 

method is that the distinction between propagons and diffusons is described from a collective trend, 

rather than being defined for an individual mode based solely on in its own characteristics. For 

example, it is often described by a transition/cut-off frequency, above which the modes are all 

diffusons and locons and below which the modes are all propagons. This transition frequency and 

the modes that fall on one side of the cut-off verses the other may shift slightly with temperature, 

or different trajectories. Therefore, this classification approach can be temperature/trajectory 

dependent and it is much more robust to have a classification method that relies solely upon 

information for a single mode obtained from a LD/SCLD calculation. 
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Calculation of structure factor (SF) of the supercell gamma modes is another approach that 

has been extensively used in the literature[34] to predict effective dispersion curves of disordered 

and amorphous materials experimentally and numerically[34,35,55-62]. This approach performs 

a space and time Fourier transform of the eigenvectors as: 

      , ,, , 0,L T L TS E


       q q q    (3.2) 

where   is the frequency, q  is the phonon wavevector and the summation is over all the modes   

at the gamma point . LE  and TE  refer to the longitudinal and transverse polarizations, respectively 

and are defined as 
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where the summation is over all atoms indexed by i  in the domain, q  is a unit vector,  ,ie is the 

eigenvector describing the direction of motion of the atom, and ir is the equilibrium position of 

atom i . 

Equation (3.2) quantifies the spatial and temporal frequency content of the collective 

motions of the eigenvectors. If a collective motion exists with a well-defined frequency and 

wavevector, the distribution of LE and TE  is a delta function. Therefore, the SF represents the 

frequency spectrum required to create a wave packet with a well-defined wave vector and 

polarization[34,35]. For a perfect crystals, the SF peaks are delta functions centered at the 

vibrational mode frequencies, indicating that the modes are pure plane-waves. With increasing 

disorder, the SF spreads in width, particularly at high frequencies, which is an indication that the 
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modes are not pure plane waves. There are three issues with SF method: (i) while the SF gives the 

frequency spectrum needed to construct a propagating state with pure wave vector q , the 

individual mode spectra LE and TE  [Eqs. (3.3) and (3.4)] predict the plane-wave character of each 

mode [34,35]. It is not generally possible to assign a unique wave vector to individual modes in 

disordered systems, even at low frequency. The second issue with SF method is that the SF yields 

different magnitudes for different materials. Therefore, the magnitude of the SF alone cannot 

distinguish propagons or diffusons on a universal scale and as a result, one must compare the 

relative magnitudes for different modes in the same structure. Thus, even though it only requires 

information about one mode to calculate the SF, determining the mode’s classification still requires 

a comparison to other modes. Finally, similar to first technique discussed above, SF allows one to 

only define a transition frequency between propagons and diffusons. However, as will be shown 

in section 3.2.4, there is no requirement that the mode character must change abruptly with respect 

to frequency. In essence, there are almost no strict rules for the mode character, other than the fact 

that in the low frequency limit, one will likely always observe the existence of sound waves – 

which are propagons – for large systems (e.g., not small individual molecules). Thus, one cannot 

rule out the possibility of finding a system where very low frequency diffusons and locons and/or 

high frequency propagons exist, despite the fact that in practice one typically observes rather sharp 

transitions and segregations with respect to frequency. For example, if one were to make a bulk 

material that consisted of an crystalline matrix with amorphous nanoparticles embedded that are 

distributed throughout the structure randomly, it might be possible to observe localized modes in 

each nanoparticle at low frequencies. Thus, it would be particularly useful to develop an approach 

that can distinguish propagons from diffusons that is general and will measure the extent to which 

a mode is propagon-like or diffuson-like, on a universal scale that is material agnostic. Such a 
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method allows us to systematically and quantitatively discern the difference between propagons 

and diffusons. 

In the next section, we present the EPA method that quantifies the extent to which a mode’s 

character corresponds to a propagating mode, e.g., exhibits plane wave modulation[31]. The 

method uses equilibrium atomic positions and eigenvectors of atoms in each vibrational mode and 

then calculates the degree of periodicity in the mode’s velocity field – termed eigenvector 

periodicity. It then compares the EP of a mode to another fictitious mode that has pure sinusoidal 

modulation. In this way the method normalizes the EP so that every mode falls between zero and 

unity. The extremes of zero and unity then correspond 0% and 100% sinusoidal/propagating 

velocity field periodicity for a given mode. After developing the mathematical formulation of EPA, 

we demonstrate its application to several crystalline and amorphous solids, which for the first time 

allows us to clearly quantify what fraction of the modes in a given structure are propagons as a 

function of the degree of disorder. The key here is that calculation of the EP for a mode is well-

defined for any normal mode of vibration and can be evaluated in its entirety for a single mode, 

without any reference or relative scaling to the values of other modes.   

 

3.2.2       Eigenvector Periodicity Analysis  

Starting with a harmonic or anharmonic LD calculation (e.g., at the gamma point, since 

wave vectors are not well-defined for non-periodic systems and the objective here is to remain 

general); the eigenvectors (e.g., the velocity field) is calculated for all atoms in a supercell. For N 

atoms that can move in 3 dimensions, one then obtains all 3N solutions to the equations of motion 

at one time, each of which consists of a list of eigenvectors that describe the direction and 
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magnitude of each atom’s motion (referred to herein as its velocity field) and a frequency for each 

of the 3N solutions/normal modes.   

We then seek to calculate the degree of spatial periodicity for the eigenvectors of each 

mode. Here, in essence, we are defining the key characteristic that makes a mode a propagon as 

motions of the atoms that repeat spatially, in some way. This trait is not observed for diffusons, as 

diffusons seem to exhibit almost random velocity fields, with no clear preferred direction or 

periodicity, which is indicative of the underlying structure or composition that is disordered/non-

symmetric. Towards measuring the degree of spatial periodicity, we note that what periodicity 

implies, is that two atoms separated by some distance in a particular direction will have 

eigenvectors pointing in the same or opposite directions, with similar magnitudes. For such pairs 

of atoms the inner product of their eigenvectors i je e will be a larger number than a pair of atoms 

that have randomly pointed vectors. This distinction then becomes the basis of distinguishing 

propagons from diffusons. 

By comparing the inner product of the eigenvectors for a pair of atoms to the corresponding 

value that would have been obtained if the eigenvectors followed a periodic function oriented 

along a particular direction denoted by 2q 


 , where  is the wavelength/period of spatial 

repetition, one can then assess the extent to which the functions match. This matching can be 

determined by simply taking the product of the two functions integrated over the entire super cell, 

via  
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where the function f  represents the periodic function chosen for comparison. Here, any spatially 

oscillatory function such as,  sin q r ,  cos q r , or  exp i q r can be used for f  and each 

will yield the same final answer when properly normalized. The first product in brackets 
, ,i n j ne e

measures whether the two atoms have the same direction and magnitude. If this is true for many 

pairs then the sum of the products will be a large number. The second product in brackets 

( ) ( )i jf f    q r q r  yields the corresponding value that would be obtained if the velocity field 

corresponded to a periodic function with wavelength L , phase  and direction q . The summation 

over all pairs then yields the equivalent of a spatial integral, which only becomes large when the 

values in each set of brackets match for many pairs of atoms. As a result, the function  n q  

becomes large if the mode velocity field resembles that of the periodic function, and it provides a 

direct and quantitative measure of the degree of resemblance. The problem is then that one does 

not know for a given propagon, a priori, what direction and what wavelength will best resemble 

its motion. Thus, one can simply search over a wide range of values for q  and phase  , to 

determine which values maximize  n q . In the ensuing description, the prime superscript and 

n subscript will be used to denote the values of q  and  that maximize n , for mode n .  

The next issue then becomes the criterion used to determine the search space for q  and 

. To minimize computational expense one would prefer to minimize the search space as much as 
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possible. Therefore, for crystalline solids (i.e., alloys), the q -space can be defined using reciprocal 

lattice vectors of the primitive cell. For strongly structurally disordered systems, such as an 

amorphous solid, since the wave vector cannot be defined, the search space for q  can be based on 

the ( maxR ) and minimum ( minR ) distance between any two atoms in the super cell i.e.,

min
max

2
R

q , 
max

min

2
R

q . The spacing between adjacent points on the three-dimensional q  

point grid can then be calculated based on the maximum possible wavelength that can occur in that 

supercell, namely min q q . In addition, since the underlying function is periodic one need only 

search through phase factors between 0,
2

 
 

.  

The next issue becomes the normalization, since we specifically seek to define a value that 

measures the degree of EP, which should be 100% for a perfectly periodic propagating mode and 

likely near zero for a non-propagating mode such as a diffuson. The normalization can then be 

done by comparing the value of n  for the actual mode, with n  for a fictitious mode that is 

based on the value of q  and  that maximized n  for the mode in question. Thus, the appropriate 

fictitious mode for comparison is one that is oriented along the q  vector with phase  . To do so, 

we construct a fictitious mode and assign a displacement vector proportional to ( )if   q r  for 

every atom i  as follows, 
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i n

i i io
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e

d r q r
e

    (3.6) 

where the subscript index o  denotes the equilibrium position and id , q and   are the 

displacement vector of atom i  in the fictitious mode, wave vector and phase angle corresponding 
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to maximum value of n , respectively. Therefore, the polarization vector of each atom in the 

fictitious mode used for comparison can be written as,  
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where    *

i io i io

i

d r d r  is the normalization factor for the eigenvectors, 
,i ns is the eigenvector 

of the fictitious mode, and the superscript   indicates the complex conjugate.  Therefore, the 

normalized n  can be calculated as 
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The n  is called eigenvector periodicity parameter (EPP) and its value represents the degree of 

EP on a normalized scale from zero to unity.  For a mode with 100% propagating character 1n 

, while modes with n values far from unity correspond to either localized or de-localized but non-

propagating modes. By introducing the normalization factor, a propagon is not only be identified 

by a plane-wave that most closely matches its velocity field, but it quantifies the extent to which 

the mode actually resembles a plane-wave on a universally normalized scale. In this way, a single 

mode in any material can be assessed and compared to a single mode in any other system on equal 

footing. It is very important to note here that based on the analysis of an amorphous and defected 
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structures studied in this thesis[31], the transition between propagons and diffusons occurred round 

0.2. This value is not derived or based on anything other than visual inspection, but nonetheless 

could be considered as a universal value that they claimed could be interpreted or used across all 

materials/systems (i.e., it is not an adjustable parameter).  

3.2.3       Computational cost  

The computational time required to calculate n  for a given vibrational mode in the system 

depends on the number of atoms in the supercell, atomsN , and the resolution of both the wave vector 

( qN ) and phase ( N ) in the search space used to evaluate n function. Here, qN  and N  are the 

number of discrete wave vectors and phases in the search space. For a given mode, 2 3

atoms qN N N

evaluations of  n  are required to search the entire search space. This is because the search should 

be conducted for all  , ,x y zq q q and   points in the phase and wave vector space, in addition to 

evaluation of  n  for each ,i j pair, i.e. the double summation in Eq. (3.5). Therefore, for a given 

vibrational mode there are 6 “for loops” in the code for evaluation of n  at all the points in the 

search space. For example, for a crystalline silicon ( 0.538a nm  ) with 5,000 atoms in the super 

cell, i.e., 5000atomsN  , the minimum and maximum distance between two atoms can be used to 

calculate the maximum and minimum wave vector in the structure, i.e., 
1

max 26.97 nm
q and 

1

min 1.08nmq . Therefore, the total number of q -points in the q -space is max

min

24kN 
q

q
. 

Assuming 6 discrete values for the phase space, i.e., 6N  , the total number of n evaluation 

will be 2 3 122.3 10atoms qN N N  . Such a large number of n evaluations limits the study of 
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systems with more than ~10,000 atoms in the super cell (as might be required for a nanostructure 

such as a thin film). However, such a calculation is trivially parallelizable on multi-core 

architectures over the number of discrete wave vectors and phases in the search space. Nonetheless, 

it can still be computationally expensive to do the calculations for all the vibrational modes in the 

system. Therefore, to further reduce the computational cost, one can break the calculations into 

many separate calculations where each is responsible for doing the analysis on a couple of modes. 

For instance, for a system with N atoms, rather than calculating the n  of all 3N from a single 

job, up to 3N parallel jobs corresponding the total number of vibrational modes in the system can 

be run to obtain the n  of all the modes in the supercell.  

Finally, in performing calculations for n , it is important to ensure that the resolution of 

the q -point grid is sufficiently high. This can make it challenging to evaluate n for large systems 

due to significant increase in computational cost, but it can have a significant effect, particularly 

for propagating modes with high values of n as shown in Figures. 3.1 and 3.2. Typically, 

propagating modes are strongly sensitive to the q -space density while non-propagating modes are 

not and can consequently be calculated using a coarser q -space grid. This is due to the fact that 

non-propagating modes are not well represented by any periodic function and thus their values of 

n converge quickly with increasing q -point resolution, while propagating modes are described 

by a single unique q  vector, that may not exactly lie on the  min max,q q based grid. Therefore, in 

order to decrease the computational cost, one can use the baseline q -point density based on 

 min max,q q  and for modes with low values of n , while for modes with 0.25n  , an 
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increasingly finer grid can be used until convergence. Furthermore, one can center the refinement 

on the q  of each iteration thereby reducing the size of the search space and making the procedure 

efficient. As seen in Figure 3.1 and 3.2, there is a discernible q -space density dependence for 

resolutions smaller than 9 9 9  for c-Si, while less q -space resolution is needed for the diffusons 

and locons in a-Si.  It is also important to note that the phase   has a significant effect on the value 

of n  for the modes with high values of n , while locons and diffusons are quite insensitive to 

phase offsets. To decrease the computational cost associate with  , one can use the baseline   of 

0,
2

 
 

 for non-propagating modes ( 0.25n  ), and for modes with higher values, an 

increasingly finer grid can be used until convergence. Furthermore, to further reduce the size of 

the search space –and ultimately the computational cost – it is suggested that the refinement be 

conducted around  . 
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Figure 3.1. The effect of reciprocal space resolution on the determination of EP in c-Si with 512 

atoms. All vibrational modes in this system are propagating.  
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Figure 3.2. The effect of reciprocal space resolution on the determination of EP in a-Si with 512 

atoms. Only low frequency vibrational modes, i.e., <2.2 THz are propagating.  

 

 

3.2.4       Application of eigenvector periodicity analysis to crystalline and amorphous solids 

We now examine the vibrational modes in crystalline and amorphous silicon and 

germanium as two example test cases. First, we calculate the n  for crystalline (denoted by the 

“c-” prefix) and amorphous (denoted by the “a-” prefix) silicon and germanium supercells with 

216 atoms and compare the results to visual, qualitative inspection to confirm that the method 

correctly distinguishes individual eigenmodes. Second, we consider larger systems of a-Si and a-

Ge to study size effects and examine convergence in the infinite system size limit. 

The frequencies and eigenvectors were computed using harmonic LD calculations in the 

General Utility Lattice Program (GULP)[63] employing the Tersoff potential (Si[64], Ge[65]). For 

crystalline silicon (c-Si) and germanium (c-Ge), we used 216 atom supercells and the lattice 

constants were 5.431 A˚ and 5.658 A˚, respectively. The amorphous structures have between 216 
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and 4100 atoms, with densities of 2.33 g/cm3 and 5.32 g/cm3 for a-Si and a-Ge, respectively. The 

amorphous structures were generated using the melt and quench method as discussed in the report 

by Larkin and McGaughey[34]. In order to avoid structural metastability, the initial structures were 

annealed at 1000 K for 10 ns (Reference[34]) using the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS)[66] and subsequent energy relaxation performed in GULP[63]. 

Figures 3.3 and 3.4 illustrate n vs. frequency for c-Si and a-Si, and c-Ge and a-Ge, 

respectively. It can be seen that in crystalline systems, all of the vibrational modes are periodic (

1n  ) and therefore correspond to propagons, as would be expected. However, in the amorphous 

materials, only some of the low frequency modes have a large value of n , and the majority of the 

modes have less than 10% eigenvector periodicity. It is also particularly interesting to note that in 

the a-Si structure, there are several modes with high values of n  at frequencies significantly 

higher than ~1 THz, which would have been deemed the Ioffe–Regel cut-off, which is where the 

predominant shift in character occurs at 2 THz. This result is particularly interesting and is 

evidence that even in a typical amorphous structure, the transition between propagon-like and 

diffusion-like behavior may not occur at a particular frequency. Instead, the new methodology 

employed here shows that propagons and diffusons can exist at different frequencies with a 

significant amount of overlap. Figure 3.5 shows illustrations of the eigenvectors associated with 

several example propagons, diffusons, and locons in the a-Si studied, as identified in Figure 3.3. 

In the top, middle, and bottom panels, the three propagons, labeled 1P , 2P , and 3P , three 

diffusons, labeled 1D , 2D and 3D , and the three locons, labeled 1L , 2L and 3L , were identified 

by their respective n in Figure. 3.3. The propagating modes ( 1P , 2P , and 3P ) from the top panel 
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have some plane-wave-like character. These modes are representative of modes with large values 

of n , where modes with 0.2n   show similar features to that shown in top panel. The high 

frequency modes ( 1L , 2L and 3L ) corresponding to bottom panel are highly localized. The 

diffusons ( 1D , 2D and 3D ) are neither plane-wave-like nor localized and appear to correspond 

to values of 0.2n  . 
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Figure 3.3. EPP for crystalline and amorphous silicon (c-Si, a-Si) 
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Figure 3.4. EPP for crystalline and amorphous germanium (c-Ge, a-Ge) 
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Figure 3.5. Illustration of the velocity field for example normal modes in a-Si System as 

identified by their value of n in Figure. 3.3.  

The PR and n for large structures of a-Si and a-Ge, each consisting of 4096 atoms, are 

shown in Figures. 3.6-3.7. It can be seen that the PR drops sharply at both the low and high ends 

of the frequency spectrum. In the high-phonon frequency regime, the modes involve a considerably 

reduced number of atoms corresponding to locons. This feature is independent of the sample size, 

suggesting that truly localized states exist in this regime. Such localized vibrational states have 

also been observed in grain-boundary structures, a-Ge, a-Si, etc. The drop at the low end of the 

frequency spectrum, however, is due to the presence of resonant or localized modes[31]. Resonant 

modes are not truly localized, because they are an artifact of the finite size of the supercell and 

decrease in number as the size of the system increases. 
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Figure 3.6. EPP and PR for a-Si 



59 
 

Frequency (THz)
0 2 4 6 8 10 12 14

E
ig

e
n

v
e

c
to

r 
P

e
ri
o

d
ic

it
y
 (
 n

)
 

10-3

10-2

10-1

100

P
a

rt
ic

ip
a

ti
o

n
 R

a
ti
o

10-3

10-2

10-1

100

a-Ge

 

Figure 3.7. EPP and PR for a-Ge 

It is important to note that with the EPA, we can now use a universal scale for judging 

whether a mode is a propagon or diffuson. In reality, just as the cut-off between different types of 

photons (visible vs. IR) is somewhat arbitrary, one cannot define a single value cut-off for n  that 

will determine whether a mode is a propagon or diffuson. However, with this now physically 

meaningful normalization embedded in the definition of n , one can define a regime on the 

absolute scale between zero and unity where the transition between the two occurs, albeit 

heuristically. 

 

3.2.5       Eigenvector periodicity analysis vs. structure factor method 

In this section, we compare SF and EPA. As discussed in section (3.2.1), the SF measures the 

spatial and temporal frequency content of the collective motions of the eigenvectors. Therefore, 

the SF provides a different perspective from EPA, which focus on the characteristics of single 

eigenvectors. Recently Moon et al[35]  calculated the dynamic SF for a-Si at 0K and 300K. They 

noted that if propagating waves existed, despite the atomic disorder, the dynamic SF should exhibit 

a clear peak, which would identify a phonon band, indicating a clear dispersion relation. 
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Conversely, if propagating waves are not supported, the spread in SF values would appear diffuse 

without an apparent dispersion relation. In their work, they showed that despite the atomic 

disorder, a clear dispersion exists up to frequency as high as ~10 THz for longitudinal vibrations 

and ~5THz for transverse vibrations. They then argued that propagating vibrational modes clearly 

comprise a substantial portion of phonon density of states. Furthermore, using the Ioffe-Regel 

criterion, they showed that the crossover frequencies from propagons to diffusons are consistent 

with the observed sudden broadening in the SF. They also calculated the density of states for the 

propagating vibrational modes with a Debye model and identified that ~24% of all phonons are 

propagons. This observation conflicts with the prediction based on EPA in Figure 3.6 as well as 

prior conclusions that propagons have frequencies less than 2-3 THz in a-Si[31].  

To assess the accuracy of the SF prediction, we first visually inspect at random some of the 

vibrational modes in 2-10 THz region. Figures 3.8-3.10 show the mode shape for some randomly 

selected modes up to ~10.6 THz. It can be seen that the low frequency vibrational modes, i.e., <2.2 

THz are propagating while the eigenvectors for modes with frequencies greater than 2.2 THz are 

random indicating they are diffusons. This is in agreement with EPA prediction in Figure 3.6 but 

contradict with SF prediction by Moon et al[35]. Delving deeper into the characteristics of the 

vibrational modes and the discrepancy between the EPA and SF results, we plot n versus absolute 

value of wave vector ( q ) as we check the values of different components of wave vector (

, ,x y zq q q ) and phases ( ) in the search space. To do this, we first divide the density of states 

between 0-10 THz into 10 bins (width of each bin is 1 THz), calculate the n  for 10 randomly 

selected mode in each frequency bin, then average the n values in each bin. Figure 3.11 shows 
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the average n  vs absolute value of wave vector, i.e., 
2 2 2

x y zq q q  q for the phase value   

that maximize the n function. Each curve in the figure shows the frequency around which that 

bin is centered. As can be seen in the low frequency (<2THz) region of spectrum where all the 

modes are propagating ( 0.4n  ), there is a clear peak with a large value which is consistent 

with the SF method prediction. According to SF, for modes with a plane wave character, i.e., a 

well-defined wave vector, the SF peaks are delta functions centered at the vibrational mode 

frequencies. However, for high frequency bins (>2THz), although there exist peaks at a certain 

wave vector, the values are significantly smaller ( 0.2n  ) than the ones observed in low 

frequency phonons (<2THz), i.e, 0.4n  .  Due to the existence of these peaks, the SF method, 

based on the Moon et al. interpretation, these modes are considered propagating. However, as seen, 

these modes have a <20% similarity to a pure 100% plane wave mode. This finding suggests that 

the magnitude of the SF alone cannot distinguish propagons or diffusons on a universal scale and 

as a result, one must compare the relative magnitudes for different modes in the same structure. 

For EPA on the other hand, due to the use of a normalization embedded in the definition of n , 

one can assess the degree of periodicity of a given mode without additional 

information/normalization. The analysis presented in Figure. 3.11 clearly show why the 

normalization factor is critical to discern between propagons and diffusons. The normalization 

used in EPA allows one to compare modes in any material, all on a single scale from zero to one.  
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Figure 3.8. Eigenvectors of 4 randomly selected propagating modes between 0.6-2.2 THz. The 

arrows show eigenvector magnitude and direction 
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Figure 3.9. Eigenvectors of 4 randomly selected diffusons between 2.6-7.3 THz. The arrows 

show eigenvector magnitude and direction 
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Figure 3.10. Eigenvectors of 4 randomly selected localized modes between 8.6-10.6 THz. The 

arrows show eigenvector magnitude and direction 
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Figure 3.11. Average EPP as a function of absolute value of wave vector for a phase value that 

maximize the n function 

 

3.3       Acoustic vs. Optical Classifications 

As discussed in Chapter 1, most of the phonons/modes in disordered materials have a 

different character, thus they may contribute to heat conduction in a fundamentally different way 

than described by the PGM. For the modes in crystals, which have a sinusoidal character, one can 

separate modes into two primary categories, namely acoustic and optical modes. However, for the 

modes in disordered materials, such designations may no longer rigorously apply. In this section 

we review the phase quotient (PQ) formula[30,43], a quantity originally proposed by Allen and 

Feldman [30], that can be used to evaluate whether a mode more shares a distinguishing property 

of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical 

vibrations manifested as negative PQ. 

3.3.1       Phase Quotient 
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Before introducing the PQ, it is important to clearly define what is meant by acoustic vs. 

optical. In crystalline materials, one characteristic of acoustic phonons is that they represent in-

phase movements of atoms along with their immediate neighbors. Acoustic phonons also have 

energies that become vanishingly small in the long wavelength limit, corresponding to sound 

waves – hence the name acoustic. An important characteristic of optical phonons, on the other 

hand, is that they correspond to out-of-phase motions between an atom and its nearest neighbors. 

These out-of-phase vibrations in polar materials generate electric fields, which correspondingly 

can couple to the electromagnetic field, hence the name optical. They also have a minimum 

frequency of vibration that does not decay to zero as the wavelength tends to infinity. It is important 

to note that although these are important and distinguishing features of acoustic and optical 

phonons in crystals, they are not the only distinguishing features. One could presumably 

incorporate into their definition other attributes, but here we have simply focused on the specific 

attributes associated with the way in which atoms move as they participate in such modes. 

Therefore, in moving towards a more general definition, what would have been termed acoustic or 

optical vibrations in a crystal are more generally characterized by collective vibrations, whereby 

the atoms and their nearest neighbors (in the case of an amorphous material, these would be the 

atoms associated with the first peak in the radial distribution function) tend to move in either the 

same or opposing directions. By invoking this basic concept, in this thesis we shift our focus away 

from the terminology of acoustic and optical, to that of the value of the PQ[43]. The PQ of a mode 

was introduced by AF[30] and it directly measures the extent to which an atom and it nearest 

neighbors move in the same or opposing directions, 
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where the summation is done over all first-neighbor bonds in the system. Atoms i  and j  

constitute the 
thm  bond, ie  is the eigenvector of atom i , and n  is the mode number. In concept, 

when the PQ of a mode is positive, it means that the atoms move more so in the same direction as 

their neighbors, as opposed to the opposite direction, which would give rise to a negative PQ. The 

PQ is normalized such that a static displacement, where all atoms move in the same direction, i.e., 

a translational mode corresponding to bulk motion of the entire material, gives rise to PQ = 1. 

Conversely, a PQ = -1 corresponds to every atom moving in the opposite direction of its neighbors. 

In these extremes, one can draw correspondence to the more widely used terms “acoustic” and 

“optical”. At intermediate values, in between -1 and 1, the correspondence to the acoustic and 

optical terminology is no longer rigorous, but it is still useful to note that modes with positive PQ 

are arguably more “acoustic-like” than “optical-like”, and modes with negative PQ are arguably 

more “optical-like” than “acoustic-like”. Near PQ = 0, one cannot necessarily distinguish the 

difference between acoustic and optical like modes with this methodology. For example, consider 

modes at the Brillouin zone boundary in a crystal. Modes defined traditionally as both acoustic 

and optical in this region of q-space will exhibit PQ values near or equal to zero. In the analysis 

and discussion presented in next chapter, it is from this perspective that, we proceed, using PQ as 

a descriptor.  

3.3.2       Application of phase quotient to pure homogenous crystalline systems 
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It is instructive to inspect the PQ of pure homogenous crystalline solids and compare the 

acoustic/optical features with the ones can be obtained from the dispersion curve. Figure 3.12 

shows the PQ for crystalline InAs and GaAs systems verses frequency. As expected for both 

systems, the PQ starts from 1 at the low-frequency region of the spectrum and ends at -1 for high 

frequency phonons. For InAs, the majority of the phonons below the lower edge of the phonon 

band gap (~5.2THz) have a PQ >0, while the majority of phonons above the upper edge of bandgap 

(~5.8THz) are optical with PQ <0. These results are in good agreement with ab initio phonon 

dispersion calculations of Zhou et al[67] which predicts a similar transition frequency between 

acoustic and optical modes. For GaAs, there is no phonon band gap, and therefore we observe a 

mixture of optical and acoustic phonons around 6-8 THz as  the transition from acoustic to optical 

occurs around this point, which is in agreement with the ab initio phonon dispersion calculations 

of Sternik et al.[68]. 

 

Figure 3.12. PQ verses phonon frequency for InAs and GaAs. 
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In conclusion, in this chapter, we have introduced a new method, EPA, for classifying 

normal modes of vibrations; the method is general and based on individual mode character. 

Previous classification methods have been restricted to SF based methods and qualitative sorting 

of the vibrational modes according to their frequencies, which is not be accurate in many instances. 

However, with the introduction of “eigenvector periodicity”, one can classify the propagating 

vibrational modes based on their mode character, which is more general and provides a universal 

scale that can allow for comparisons between different materials. As opposed to the SF method, 

which considers many modes collectively, EPA assess the degree of periodicity of individual 

modes. Thus, this new method is currently the only method that can be used to study individual 

modes in the system. The EP parameter (EPP) introduced in this chapter measure the extent to 

which a mode is propagon like or diffuson like, on a universal scale (between 0 and 1) that is 

material agnostic. The extremes of zero and unity correspond 0% and 100% sinusoidal/propagating 

velocity field periodicity for a given mode. It is important to note that the calculation of the EPP 

for a mode is well-defined for any normal mode of vibration and can be evaluated in its entirety 

for a single mode, without any reference or relative scaling to the values of other modes. We also 

showed that there no requirement that the mode character must change abruptly with respect to 

frequency. By studying the trend of EPP versus frequency for different structures, it was observed 

that there is no sharp cutoff frequency between propagons and diffusons, suggesting there is no 

strict set of rules that would require any abrupt shift in mode character. Finally, we also discussed 

the reason for discrepancy between EPA and the SF method used by Moon et al[35] for 

distinguishing propagating modes in a-Si. Finally, we introduced the PQ formula that can be used 

to study the acoustic/optical character of vibrational of modes in disordered solids.  
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CHAPTER 4 

NEW INSIGHTS INTO THERMAL TRANSPORT IN RANDOM ALLOYS 

 

In Chapter 1, we discussed the fact that for the majority of vibrational modes in random 

alloys, due to lack of a well-defined phonon group velocity, the application of the PGM/VCA is 

highly questionable. However, because of the absence of a suitable alternative theory, the 

PGM/VCA has been used extensively during the last 50 years to study thermal transport in various 

random alloys [3,11,13-21,23,50,51,69]. This is because the PGM/VCA is the sole theoretical 

framework to have ever been introduced to study thermal transport in alloys[11].  In Chapter 2, we 

reviewed the formulation of the newly developed correlation-based theory of phonons, i.e., 

GKMA, and showed that it does not have the problems associated with the PGM/VCA. Since 

GKMA doesn’t require a group velocity to calculate the contribution of individual vibrational 

modes to the TC, it can be used to study disordered systems such as random alloys and amorphous 

solids. The excellent agreement between experimental data and GKMA results for various 

disordered materials [23,32,43,45,47,48,54,70] has helped to validate its formulation, lending 

confidence to its predictive power. To more deeply understand the role of different type of 

vibrational modes – and in particular, the role of mode character – to heat conduction, it is critical 

to distinguish between propagons, diffusons, and locons. Toward this end, in Chapter 3, we 

introduced EPA to calculate the mode character in disordered solids and distinguish between 

propagating and non-propagating vibrational modes (diffusions and locons). EPA quantifies the 

extent to which a mode's character corresponds to a propagating mode, e.g., exhibits plane wave 

modulation. We have studied different systems and showed that EPA is the only method that 

allows for clear and quantitative distinctions between propagons and diffusons/locons in any 
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arbitrary material or structure. In the proceeding chapter, we will use EPA and GKMA to answer 

two fundamental questions raised in Chapter 1: (i) how does vibrational mode character change in 

random alloys when alloy composition changes? According to the PGM, introducing any type of 

disorder to a pure homogenous solid only alters the phonon scattering mechanisms in the solid, 

while the vibrational modes are still the same as the ones exist in the pure homogenous system. 

However, it is not clear if this assumption is valid. (ii) What is the fundamental reason for the 

failure of the PGM in random alloys? More specifically, what fundamental information is missing 

in the PGM when it comes to predicting the TC of random alloys? Answering these questions will 

refine our understanding of how phonons behave in random alloys, which ultimately might lead to 

the ability to manipulate phononic contributions to the TC. 

 

4.1       Determining if the scattering paradigm is invalid 

As previously discussed, in infinitely large, pure, homogeneous crystalline solids, the 

vibrations experienced by an atom are a superposition of oscillations by some or all atoms at a 

single frequency, which are often termed normal modes of vibration[23]. In such systems, one can 

solve the equations of motion in the harmonic limit and find that all solutions correspond to plane 

wave modulated vibrations, which is a result of the structural periodicity. If one adds together 

solutions with similar wave vectors, one then obtains a wave packet that propagates energy at the 

group velocity ( d
d


q

) and resembles a moving particle. According to the PGM, these vibrational 

modes can be treated as quasi-particles that travel and scatter with each other, similar to a gas of 

molecules. In alloys, the theory of phonon transport is based on the VCA, which utilizes the same 

scattering-based physical picture to describe the interaction of phonons. The VCA treats the 

presence of dissimilar elements in an alloy lattice as though they act as scattering centers for the 

phonon gas. In other words, in random alloys, an additional scattering mechanism – namely 
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compositional impurity/defect scattering – is superimposed to the intrinsic phonon-phonon 

scattering to account for the effect on heat transport of the alloying atoms. This impurity scattering 

term is what qualitatively causes the VCA to correctly predict the typical U-shaped curve observed 

for TC vs. composition in most alloys.  However, as discussed in Chapter 1, there are instances 

where the VCA fails both qualitatively and quantitatively [19-23].  In the following sections, we 

will discuss the fundamental reason for the failures of the PGM/VCA in random alloys. In 

particular, we will show the scattering picture is not appropriate to describe the transport in random 

alloys, because the vibrational modes in alloys are fundamentally different from the modes that 

exist in pure homogenous crystalline solids. We will examine in-depth the behaviors of phonons 

in InGaAs random alloys as a representative example, because its compositional disorder reveals 

a rather fundamental issue with the way phonons have been conceptualized, namely considering 

them to be plane waves/quasi-particles that propagate and scatter. 

4.1.1      The role of disorder on mode character 

The fundamental problem with applying the PGM/VCA to an alloy is the presumption that all 

of the phonons/modes correspond to plane waves, thereby justifying invocation of expressions for 

TC that are based on the PGM. In reality, when one adds a dissimilar atom or a defect/impurity to 

a previously pure homogenous crystal, one breaks the symmetry/periodicity that limits solutions 

to the equations of motion to plane waves. As a result, one obtains solutions with a very different 

character than a plane wave-modulated distribution of atom displacement/velocities (see Figures. 

4.1 and 4.2). Here, we used the EPA introduced in Chapter 3 to analyze the modes in an In1-xGaxAs 

random alloy. Interestingly, the eigenvectors (e.g., the displacement/velocity fields[31]) for the 

normal modes in a crystalline random alloy fall into the same three categories identified by AF for 

amorphous materials, i.e., propagons, diffusons and locons[30]. It is important to note that the 
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existence of non-propagating vibrational modes in crystalline random alloys had previously been 

theorized by AF, but the data in Figure. 4.1 is the first evidence to confirm AF’s claim[30]. Figure 

4.2 shows the calculation of the fraction of modes that are propagons in In1-xGaxAs as a function 

of In content. As expected for endpoints solids, i.e., InAs and GaAs, all the vibrational modes have 

a propagating character, but alloying either composition even slightly, the majority of vibrational 

modes change their propagating character and they become either diffusons or locons. Based on 

the data in Figures. 4.1 and 4.2 , one might expect that an expression for alloy TC that is based on 

the PGM might exhibit significant errors in its description of TC vs. temperature for alloys in the 

15-85% composition range, because in this regime, less than 2% of the modes are propagons. 

Again, this is because the PGM is built on the assumption that all modes propagate; thus when 

situations occur where this is not true, one would expect PGM based theories/models to 

breakdown, e.g., for alloys in the 15-85% composition range.  

 

Figure 4.1. EPP for InxGa1-xAs, as a function of alloy composition 
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It is also remarkable that even in the dilute limit, for impurity concentrations between 0.1-2%, 

most of the modes in what would generally be considered a rather pure crystal are far from being 

pure plane waves. Figures 4.1 and 4.2 show examples of how the mode character evolves in this 

regime, and it is clear that such low impurity concentration result in a majority of vibrational modes 

losing ~40% of their propagating character (the maximum EPP for > 2THz phonons is ~60%). 

This realization is insightful, because given that the momentum of phonons ( q ) is derived from 

the assumption that phonons are plane waves, this warrants a significant rethinking of how 

phonons in non-pure crystals interact with other quantum particles such as electrons, photons, and 

neutrons. It should also be emphasized here that the results in Figure. 4.1 and 4.2 suggest that 

“pure” for phonons implies impurity concentrations less than 0.1-1%, yet many materials used in 

industrial applications are only 97-99% pure.  

Alloy Composition (%)

0 20 40 60 80 100

F
ra

c
ti
o

n
 o

f 
P

ro
p

a
g

o
n

s

0.0

0.2

0.4

0.6

0.8

1.0

A
v

e
ra

g
e

 P
la

n
e

 W
a

v
e

 C
h

a
ra

c
te

r

0.0

0.2

0.4

0.6

0.8

1.0

Fraction of Propagons
Average Plane Wave Character

~1.5% Propagon 

 

Figure 4.2. Average EPP and fraction of propagating modes vs. In composition 
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To see how the mode character changes when EPP decreases, the eigenvectors of six randomly 

selected vibrational modes with different values of n  are shown in Figure 4.3. Such visual 

inspection of modes is insightful, because it shows very clearly what aspects of a mode’s 

propagating character are first lost and how the transition from propagon to diffuson occurs. The 

panels on the left show the eigenvectors along the length of the computational domain while the 

panels on the rights show the eigenvectors viewed from the cross section of the computational 

domain. It can be seen that for 1n  , the eigenvectors correspond to plane wave modulated 

vibrations (i.e., propagating waves). In this case, the wavelength can be clearly recognized as the 

distance over which the wave’s shape repeats. By decreasing the EPP, the vibration of atoms 

becomes more random and the modes tend to become non-propagating. For example, when 

0.6n  , one can clearly see more random vibrations in the cross section of computational domain 

compared to the mode with 0.8n  .  However, in both cases, along the length of the computational 

domain, periodicity is still evident. For 0.4n  , the eigenvector seems to be completely random 

when viewed from the cross section, and one might consider this mode as diffuson. However, this 

mode can still be considered a propagons, because the transition between propagon and diffuson 

occur at 0.2n  , as discussed in Chapter 3. For 0.2n  , the vibrational directions are fully 

random and the mode is a diffuson, hence one cannot define an effective wave vector for this type 

of vibration. For In0.53Ga0.47As, as shown in figure 4.2, the majority of vibrational modes are 

diffusons. As will be shown in the next section, these modes contribute significantly to TC at room 

temperature, and their contributions to TC increase with increasing temperature, a phenomenon 

that cannot be explained by PGM. Finally, the two bottom panels show an example of a localized 

mode with 0.05n  . Locons are only a small fraction of vibrational modes in In0.53Ga0.47As system 
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and do not contribute to TC of this system significantly, as will be seen in the following section. 

In conclusion, we have shown how vibrational mode character changes with a changing alloy 

composition. By increasing the disorder in random alloys, the EPP decreases, and consequently 

the mode character from propagating vibrational modes to non-propagating diffusons. 
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Figure 4.3. The effect of EPP on modes in In0.53Ga0.47As 
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Finally, to qualitatively determine the correlation between n  and TC versus alloy 

composition, we calculated the TC of InxGa1-xAs alloys at different compositions and room 

temperature. Figure 4.4 shows TC as a function of alloy composition at room temperature, 

calculated using the GK method. The error bars are the standard deviation of the results from 

independent simulation ensembles at a given In composition. It is important to note that at 300K, 

quantum effects play a minimal role, thus GK can calculate accurate values of TC without applying 

quantum corrections. As seen in Figure 4.4, the predictions yield good agreement with 

experimental data for the alloy TC at all compositions. Notably, the TC is found to drop sharply 

after only a small amount of alloying. In the composition range 15 %< x< 85% the alloy TC 

becomes nearly independent of composition, before again increasing when the composition 

approach to 100%, i.e, InAs. It is important to note that according to the PGM/VCA, this U-shape 

trend of TC versus composition is due to phonon-impurity scattering. The validity of this physical 

explanation is suspect, because at high alloy concentrations, i.e., ~50%, almost every other atom 

in the system is effectively an impurity.  Consequently, it is not clear whether phonons in this 

system would still have a propagating character. However, the results presented in Figure. 4.4 

suggests that the reason the alloy TC drops quickly within the first 10% may be associated with 

the loss of propagating character, as opposed to impurity scattering; such an explanation is a 

fundamental shift in how TC in disordered materials is conceptualized. 
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Figure 4.4.  TC of InxGa1-xAs vs. Indium composition at 300K calculated using GK-MD 

 

4.1.2       Mode character: The key information missing in the Virtual Crystal Approximations 

The results presented in Section 4.2 suggest that the conventional theory and understanding of 

phonons in random alloys should be revisited, because the critical assumption that all 

phonons/normal modes resemble plane waves with well-defined group velocities is no longer valid 

when disorder is introduced, and symmetry is consequently broken. As seen by increasing the alloy 

concentration, the vibrational mode character changes, and the majority of vibrational modes 

become non-propagating, i.e., diffusons and locons. Therefore, one can hypothesize that the 

fundamental reason for failure of PGM/VCA is the absence of knowledge of mode character in its 

framework. To test this hypothesis, in this section, we study the random alloy In0.53Ga0.47As a test 

case. Since the majority of vibrational modes in this system are non-propagating (see Figure. 4.2). 

It is important to note that the PGM/VCA theory cannot be used to calculate the TC contribution 
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of non-propagating modes, i.e., diffusons and locons because one cannot define their group 

velocities. Therefore, one must use an alternative method to describe their TC contributions. As 

discussed in Chapter 2, GKMA is a powerful method that can directly assess a mode’s contribution 

to TC without any invocation of the PGM, as one needs only to utilize the mode level contributions 

to each atom’s velocity to calculate mode’s contribution to heat flux and consequently TC. In this 

sense, the key feature of the GKMA method is that it describes phonon transport in terms of 

correlation, rather than scattering, which is a major shift in perspective from the current 

understanding. Therefore, in the proceeding sections, we use GKMA to calculate the TCs and test 

the above hypothesis about the lack of mode character in the PGM/VCA framework. In particular, 

two case studies are conducted. The first case study examines whether non-propagating modes 

exhibit size effects. Diffusons and locons are non-propagating modes, hence we hypothesize that 

they do not exhibit size effects, as they cannot propagate. By comparing the TC of thin film 

samples with predictions based on GKMA (in which size effects are only applied to propagating 

modes), we will show that this hypothesis is valid, hence diffusons exist in random alloys and 

contribute to TC. This serves as evidence that not only do non-propagating modes exist in alloys, 

but they significantly affect the material’s TC, hence the critical assumption of plane-wave 

vibrational modes in the PGM/VCA is incorrect. The second case study examines the relationship 

between phonon relaxation time and mode TC for non-propagating vibrational modes. If the 

PGM/VCA is applicable to non-propagating vibrational modes in random alloys, their relaxation 

times should be proportional to the mode TC. Using GKMA and NMA, we will compute mode 

relaxation time and mode TC and show that there is no simple proportional relationship between 

them. This serves as a second indicator that the PGM/VCA is not suitable to describe the alloy TC, 

and we need an entirely new paradigm to understand alloy TC. 
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4.1.2.1    Size effects on thermal conductivity of non-propagating modes 

To illustrate the importance of considering mode character, we first modeled a In1-xGaxAs 

system using both the VCA and GKMA. We then determined the TC as a function of composition 

at room temperature, after which we studied the TC of the In0.53Ga0.47As alloy vs. temperature for 

several film thicknesses. To model the atomic interactions and calculate the interatomic forces we 

used an EIP, namely the Abell-Tersoff potential[71], which was optimized using ab initio data. 

The accuracy of the Abell-Tersoff potential[71] was verified first by its predictions of the TC vs. 

temperature for the InAs and GaAs separately using the BTE[51]. The harmonic and anharmonic 

IFCs are first calculated using direct displacement method[53] . Then, using Fermi’s golden 

rule[53] the anharmonic phonon lifetimes are calculated. Finally, the total lattice TC is determined 

under the RTA[51,53] by summing up the modal contributions. For the harmonic IFCs calculation, 

we used small magnitude displacements (0.005 Å) to suppress the anharmonic contributions, while 

for anharmonic IFCs, larger displacements (0.02 Å) are used to increase the accuracy of sampling 

and reduce the error in anharmonic IFCs. We then used a cubic supercell of a 2 2 2   conventional 

unit cell, which consists of 64 atoms in total to compute the IFCs. To calculate the TC, a 

30 30 30  k -point mesh within the first Brillouin zone was used to ensure convergence. We 

have confirmed that the TC is converged with respect to grid size when a 30 30 30  grid is used. 

For further details, readers are directed to Reference[51,53]. Figure 4.5 shows the calculated lattice 

TC of InAs and GaAs, and the values are compared against available ab initio and experimental 

data [72-76]; for both compounds, the calculated TC agrees reasonably well with previous data. 

The small discrepancies between the present work and experimental results might come from 

defect scattering and impurities in the experimental sample, which results in lower thermal 

conductivities compared to theoretical predictions. Higher order phonon scattering, which is not 
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included in this calculation, might be another reason for such discrepancy, especially at higher 

temperatures. The good agreement between the theoretical predication and experimental data 

demonstrate the accuracy of our approach and the validity of the RTA, and the data support our 

following discussion.   
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Figure 4.5. Temperature dependent TC of InAs and GaAs as predicted by the empirical potential 

used in this thesis. Data is compared to ab initio results from Li and Mingo[73] (for InAs) and Lue 

et al[74] (for GaAs) and to experimental data[72,75,76]. 

 

To calculate the TC of alloys using the VCA, the disordered crystal is replaced with an ordered 

one with a compositionally weighted lattice constant, IFCs, and atomic masses. The mass disorder 

and anharmonicity are both treated as a perturbations, as discussed in Chapter 2. The room 

temperature bulk TC of In0.53Ga0.47As using an EIP is 8.07 W m-1 K-1, while the prediction based 

on first principles calculations[77] is 8.28 W m-1 K-1. This agreement between the TC predicted 

using EIP and first principle calculations further indicates that the EIP accurately describes the 

interatomic forces for the alloy sufficiently well for the purposes herein. Finally, we also employed 

a second method for calculating the TC of the alloy using the VCA, whereby fitting parameters 
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were used to describe phonon-phonon and phonon-alloy impurity relaxation times originally 

developed by Wang and Mingo[50]. A comparison of the TC of InxGa1-xAs calculated using the 

VCA with an EIP (VCA-1), VCA using fitting parameters (VCA-2), and MD simulations using 

the GK method as a function of In composition is shown in Figure 4.6. It can be seen that there is 

good agreement between all methods at room temperature over the full range of In concentrations. 

It can be seen that the TC drops sharply after only a small amount of alloying – such a result is 

expected and can be interpreted via the VCA as being due to strong scattering of phonons even in 

the dilute alloy limit. Unsurprisingly, the results predict that in the composition range of 0.2-0.8 

the alloy TC becomes nearly independent of composition, which agrees both qualitatively and 

quantitatively with experimental data.  

 

Figure 4.6.  TC of InxGa1-xAs vs. In composition at 300K calculated using different methods. 

 

Figure 4.6 shows that good agreement with experiments can be obtained for the TC vs. 
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reason temperature reveals some discrepancy between the two methods is because phonon 

contributions to TC are proportional to individual phonon heat capacity. Quantum mechanically, 

the heat capacity of phonons is strongly temperature dependent and decays to zero at “high” 

temperatures. The quantum mechanical suppression of specific heat is frequency dependent – at 

low temperatures, only low frequency modes are excited, in accordance with Bose-Einstein 

statistics, while high frequency modes are only activated at higher temperatures. As a result, 

temperature serves as a broadband filter for mode level contributions to TC. Consequently, at low 

temperatures, one can single out the contributions of low frequency modes, while at higher 

temperatures, higher frequency mode contributions are also included. Thus, one can probe the non-

specific heat related TC contributions for each method by comparing TC vs. temperature, because 

the specific heat of each model is identical – leaving the major distinction as each model’s 

description of the phonon-phonon interactions. Figure 4.7 shows the TC calculated by each 

methodology, compared to experimental data [69,78] for a thick 1.6 micron film, which are likely 

the bulk values. The results show that the VCA values are in the correct range, but the trends with 

respect to temperature differ somewhat from the experimental data.  
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Figure 4.7. TC of In0.53Ga0.47As. Temperature dependent TC of In0.53Ga0.47As film [69,78] and the 

corresponding theoretical predictions using the VCA and GKMA. The error bars were determined 

based on the standard deviation of GK results. Each labeled curve highlights the respective 

contributions associated with propagons, diffusons and locons, according to the GKMA and EP 

methodologies.  

Although there are some appreciable differences between the two methodologies, the VCA 

predictions of total TC are not drastically different from the experimental data, which might in 

turn lead one to assume that for this specific system at least, the physical picture described by the 

VCA is still valid. Furthermore, it might seem as though considering the mode character shift 

illustrated in Figures. 4.1 and 4.2, is unnecessary. However, if this is true, the VCA should still 

provide the correct guiding intuition and predictions for cases beyond the bulk crystalline behavior; 

we are specifically interested in investigating a case that will highlight the difference between the 

two physical pictures (i.e., the PGM/VCA scattering paradigm vs. GKMA mode character and 
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correlation). In this respect, we note that a fundamental difference between the modes of an infinite 

pure homogenous crystal (e.g., plane waves) – which are similar to propagons – and the 

predominant modes (by number) in the alloy – namely diffusons – is that the diffusons cannot be 

associated with a well-defined group velocity. This then rigorously prevents them from being 

associated with a corresponding MFP, and because the addition of multiple diffuson velocity fields 

presumably does not yield a traveling wave packet, it is intuitive to expect that diffusons should 

not exhibit significant classical size effects[1]. A classical size effect is a well-known phenomenon 

that is well explained by the PGM and is one of the most valuable pieces of intuition it provides. 

According to the PGM, TC is proportional to the average distance a phonon can travel before it 

scatters (i.e., its MFP). Therefore, as one shrinks the size of a material, the propagation of phonons 

becomes constrained by the material’s boundaries, where a phonon must scatter/reflected. As a 

result, the reduced size of a material eventually limits some phonon’s MFP and consequently 

reduces TC in a predictable way[1,2,79]. Diffusons and locons, however, do not propagate; thus it 

is intuitive that they should not experience such size effects and their contributions to TC should 

be unaffected by reduced dimensions. It is important to also emphasize that locons have an 

associated length scale which can be quantified by a localization length[30], but diffusons do not, 

since they are delocalized. Although AF[30] proposed a length scale (
2l  ) associated with the 

mode diffusivity (  iD  ), to our knowledge this definition has never been shown to be a useful 

quantity. 

Nonetheless, from this progression of logic, we compared the predictions of both methods 

(GKMA and VCA) to the TCs of much thinner films of In0.53Ga0.47As (280 nm and 120 nm thick) 

whereby, according to the revised intuition, we hypothesized that the propagons would most 

certainly experience classical size effects, but the diffusons and locons should not. The details 
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associated with the experimental fabrication and measurements are described in Reference[23]. 

The VCA predictions were generated using the same methods used for the results shown in Figure. 

4.7, and boundary scattering was applied to all the modes in the VCA using Mathissen’s rule with 

the diffuse limit 
2 v

L  boundary scattering RTA [1,53,79,80]. It should be noted that boundary 

scattering was also applied to the results in Figure. 4.7, however, because the film thickness was 

large (1.6 micron) it essentially had no effect on the TC results. Thus the only change between the 

predictions in Figure. 4.7 and Figure. 4.8 was a change in the value of L , which was changed to 

the smaller film thicknesses for the results in Figure. 4.8. Based on our revised understanding for 

GKMA, size effects were applied to the propagons only, and not the diffusons or locons. The 

propagon relaxation times were calculated using the standard NMA technique proposed by 

McGaughey and Kaviany[81], and the propagon contributions determined from GKMA were then 

scaled down according to the decreased relaxation times the propagons would experience in the 

thinner films, i.e.,  

,

1
,

n cut

i eff

propagons GKMA

i i


 



      (4.1) 

In the above equation ,n cut  is the minimum EPP of non-propagating modes, namely 0.2. Above 

0.2n  , vibrational modes behave like a plane wave vibrational mode and we assume their 

contributions to depend on MFP, as prescribed by the PGM. Here, i  is the net phonon-phonon 

and phonon-defect relaxation time calculated using NMA in MD and ,i eff  is the effective net 

relaxation time after superimposing the effect of boundary scattering. This approach was used to 

avoid the excessively large computational expense associated with simulating the entire thickness 
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of the film with free boundaries. Furthermore, the fact that an application of this basic 

intuition/understanding can allow us to avoid the large computational expense associated with 

simulating the entire film is precisely why it is so valuable to test and confirm the intuition is 

correct in the first place. Our predictions were then compared to TC measurements determined by 

time domain thermoreflectance measurements of single crystalline In0.53Ga0.47As thin film samples 

that were grown on single crystalline InP substrates via metal-organic chemical vapor deposition, 

as discussed in the supplementary materials of Reference[23].  

The results in Figure. 4.8 show that the GKMA approach exhibits remarkable agreement with 

the experimental data and most notably, it properly captures the correct trends and magnitude of 

TC for each film. The VCA, on the other hand, provides a much poorer description, as the added 

phenomenon of size effects exacerbates its key shortcoming. Of particular concern is the fact that 

both applications of the VCA (e.g., VCA-1 and VCA-2) incorrectly predict a lower temperature 

peak of ~50-100K, while only the GKMA method correctly predicts that the peak occurs slightly 

above 200K.  
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Figure 4.8. Temperature dependent TC of In0.53Ga0.47As for different thin film thicknesses, and the 

corresponding theoretical predictions using VCA and GKMA. The error bars were determined 

based on the standard deviation of GK results. 

It is also interesting to note that even if one discards the arguably more rigorous 

implementation of the VCA (e.g., VCA-1) in favor of the approach utilized more frequently before 

the advent of first principles methods (VCA-2, namely using fitting parameters), one still cannot 

properly predict the size effects observed in the thin films. When fitting parameters are used, it is 

interesting that the thicker 1.6 micron film TC and the overall shape of the TC accumulations (see 

Figure 4.9) more closely match those predicted by GKMA over the entire temperature range. 

However, because the PGM/VCA implicitly assumes that all of the modes are plane wave-like in 

nature and should therefore experience size effects, the fitted version significantly under-predicts 

the TC of the films (i.e., error > 2x for the 120 nm at 300K). Nonetheless, by more properly 

accounting for the fact that the majority of the modes are diffusons, which should not experience 

significant size effects, the GKMA predictions agree well with the measurements.  



90 
 

Frequency (THz)

0 2 4 6 8

Th
e

rm
a

l C
o

n
d

u
c

ti
v

it
y
 A

c
c

u
m

u
la

ti
o

n
 (

W
m

-1
K

-1
)

0

2

4

6

8

GKMA

VCA -1

VCA -2

(a) T= 100 K

Frequency (THz)

0 2 4 6 8

Th
e

rm
a

l C
o

n
d

u
c

ti
v
it
y
 A

c
c

u
m

u
la

ti
o

n
 (

W
m

-1
K

-1
)

0

2

4

6

8

GKMA

VCA-1

VCA-2

(b) T= 200 K

 

Frequency (THz)

0 2 4 6 8

Th
e

rm
a

l C
o

n
d

u
c

ti
v
it
y
 A

c
c

u
m

u
la

ti
o

n
 (

W
m

-1
K

-1
)

0

2

4

6

8

GKMA

VCA-1

VCA-2

(c) T= 300 K

Frequency (THz)

0 2 4 6 8

Th
e

rm
a

l C
o

n
d

u
c

ti
v
it
y
 A

c
c

u
m

u
la

ti
o

n
 (

W
m

-1
K

-1
)

0

2

4

6

8

GKMA

VCA-1

VCA-2

(d) T= 700 K

 

Figure 4.9. TC accumulation of 1.6 micron thin film In0.53Ga0.47As using the VCA with fitting 

parameters, VCA with an empirical potential, and GKMA. 

 

In conclusion, the results show that consistent with their character, diffusons do not experience 

significant size effects at the 100 nm length scales probed in this thesis, and as a result, the TC of 

thin films differs significantly from VCA predictions, even when fitting parameters are employed. 

Thus, the theory of alloy TC and the concept of phonons more generally should be reconsidered 

to account for changes in mode character vs. disorder.  

4.1.2.2    Relaxation time can become an invalid descriptor 
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From the PGM perspective, TC depends on individual mode phonon group velocities, heat 

capacities, and relaxation times. Considering the fact that the TC of solids spans about 5 orders of 

magnitude (0.1-10,000 W m-1K-1), it is instructive to inspect which of these three parameters is 

primarily responsible for the range of thermal conductivities observed in nature. For example, 

group velocities scale with the speed of sound and are usually in the range of 1,000-10,000 m/s. 

Furthermore, the phonon heat capacities are essentially determined by the phonon density of states 

and are independent of temperature at high temperatures. Therefore, the PGM claims that the 

relaxation times are the primary descriptors for explaining thermal transport in different materials. 

Additionally, in a given class of materials, the temperature dependence of relaxation time mainly 

determine the temperature dependent TC. Utilizing the fact that the relaxation times are 

predominantly responsible for the temperature dependence of TC above cryogenic temperatures, 

one can devise a scheme by which to assess the validity of the PGM. 

The validity of the PGM/VCA becomes questionable for random alloys, due to the inability 

to define the phonon velocities for non-propagating vibrational modes, which are expected to be a 

large fraction of phonons in random alloys. Here it is important to note that structural and 

compositional periodicities are an inherent requirement for rigorously defining the group velocity 

for phonons, since they require that one defines the phonon wave vectors, and consequently 

phonon dispersion curves. Therefore in a random alloys, where there is no compositional 

periodicity, it is useful to assess whether or not one can still utilize the PGM framework to calculate 

the TC. If for example, one can still rationalize the behavior of random alloys with the PGM/VCA, 

then one can potentially define an effective MFP for non-propagating vibrational modes apply the 

same methods used for pure homogenous crystalline solids. However, if after such an assessment 
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one determines that the PGM is inapplicable, then one must then proceed to consider alternative 

physical descriptions of the heat flow. 

To determine whether one can rationalize the PGM for random alloys, one can compare 

the temperature dependent trends of TC and relaxation time in non-propagating modes. To this 

end, we calculated individual mode relaxation times of In0.53Ga0.47As at 300K and 700K using 

NMA[81]. In the NMA approach, the atomic trajectories generated by MD simulations are used 

to calculate the relaxation times. The normal modes amplitudes  ,S k  can be expressed as a 

sum over the positions of the atoms in the system[81] 

      
1 1

*2 2
, 0, exp( . ) , .i j j o i j j

j

S N M i t 


  k k r e k r r      (4.2) 

where  ,i e k  is the eigenvector,  is mode polarization, jM is mass of atom j , k  is wave vector, 

N  is total number of atoms in the system, and ,j or  and  j tr  are the equilibrium lattice position 

vector and  the atom’s position vector, respectively.  

Under the harmonic approximation, the total energy of each mode is given by[81] 

 
2 * *

, ,
2 2

i i i i i
i i P i K

S S S S
E t E E


       (4.3) 

where *denotes complex conjugate and i  is the frequency of the normal mode. The first term 

in Eq.4.3 corresponds to potential energy ( ,j PE ) and the second term to the kinetic energy ( ,j KE

). The vibrational mode relaxation time can be calculated by calculating the decay of the 

autocorrelation of each mode’s total energy via[81,82] 
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In the present work the eigenvectors are calculated using GULP[63] at the gamma point. It is 

important to note that the relaxation time calculated using this method measures the net phonon-

phonon scattering rate and does not distinguish between umklapp and normal processes or 

interactions with the alloying element(s). This is due to the explicit inclusion of the alloying 

elements and comprehensive inclusion of temperature dependent anharmonicity expressed within 

the atomic trajectory. 

Figure 4.10 shows the relaxation times of non-propagating modes versus EPP in 

In0.53Ga0.47As at T=300K and T=700 K. It can be seen that as temperature increases, relaxation 

times decreases. According to the PGM, lower relaxation times at higher temperatures are 

primarily due to higher phonon-phonon scattering at higher temperatures. To understand the 

correlation between the relaxation time of non-propagating modes and their contribution to the 

TC, we used GKMA to calculate the TC of In0.53Ga0.47As at 300K and 700K. As shown in the 

previous section, GKMA yields excellent agreement with experimental results of TC of 

In0.53Ga0.47As. Therefore, GKMA can be regarded as a meaningful step towards improved insight 

and assessment of the validity of the PGM.  However, one can argue that even though GKMA 

provides a fundamentally different physical picture of thermal transport (i.e., based on correlation 

and not scattering[32]), one could potentially still view the problem from a PGM perspective via 

some correction to the MFP. Here, we investigate this question and show that the behavior in 

random alloys is distinctly different from what can be predicted by the PGM/VCA, thus the 
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PGM/VCA is a fundamentally problematic way of viewing phonon transport in random alloys, 

since one cannot rationalize the use of a MFP based explanation. 
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Figure 4.10. Relaxation time of non-propagating modes ( 0.2n  ) in In0.53Ga0.47As at 300K 

and 700K using NMA 

In Figure 4.11, TC accumulation with respect to the EPP is shown at 300 K and 700K. For 

In0.53Ga0.47As, at these temperatures, all the vibrational modes are excited and therefore have an 

identical heat capacity of 
Bk

V . As a result, the accumulation curves for 300K and 700 K do not 

reflect the temperature dependence of heat capacity. After dividing by the constant heat capacity 

Bk
V for every mode, one can think of the accumulation as a thermal diffusivity accumulation, 
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where 
2D v  . If one were to then try and rationalize the results in terms of the PGM, one 

would expect that the corresponding thermal diffusivity contributions must follow the same 

temperature dependence as the relaxation times determined from MD. As seen, at both 300 K and 

700K, the TC accumulations are identical while the relaxation times (Figure 4.10) decreases by 

30% on average. In particular, it can be seen that at T=300K the cumulative contribution of 

phonons up to 0.05n  is lower than cumulative contribution of phonons at T=700K. This is 

in contrast with the trend of relaxation times shown in Figure 4.10. Therefore, the relaxation time 

trend required for consistency with the PGM is not observed. This shows that the standard 

PGM/VCA model for the modes in random alloys does not offer a good description of the actual 

behavior. 
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Figure 4.11. TC accumulation of non-propagating vibrational modes in In0.53Ga0.47As as a 

function of EPP at 300K and 700K. 
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In conclusion, in this chapter, we answered the third question raised in Chapter 1 regarding 

the validity of PGM/VCA in predicting the TC of random alloys. Using InGaAs as a test case, we 

have systematically proved that missing information in the PGM/VCA is knowledge of the 

vibrational mode character. In general, in random alloys, the majority of vibrational modes in can 

be non-propagating, thereby one cannot define group velocity for them and consequently 

PGM/VCA fails to predict their contribution to the TC. We also showed that the relaxation time is 

not a valid descriptor for non-propagating vibrational modes in random alloys.  
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CHAPTER 5 

THE IMPORTANCE OF NEGATIVE PHASE QUOTIENT PHONONS 

 

It is generally understood that in bulk crystalline materials, the contributions associated 

with optical phonons to TC are small, due their low group velocity and short relaxation times. For 

example, in bulk Si, the contribution of optical phonons at room temperature is ~5% [36,83,84]. 

However, in nanostructures where there are significant size effects for acoustic modes, optical 

mode contributions can become more significant [85-87]. Furthermore, optical phonons are still 

important in bulk materials, because they provide an important means of scattering for acoustic 

phonons and therefore are responsible for a significant decrease in TC, since if they were non-

existent, conceptually the TC would be higher.  

As shown in the previous chapters, due to the lack of periodicity in 

structurally/compositionally disordered materials, the majority of vibrational modes are non-

propagating (i.e., diffusons and locons)[23,31,43], so one cannot clearly define the phonon 

dispersion and group velocity. Therefore, one may not be able to extend insights about optical 

phonons in pure, homogeneous crystalline materials to disordered solids. Furthermore, as we 

discussed in Chapter 3, for disordered solids, one can use PQ to evaluate whether a mode shares 

more distinguishing properties with acoustic vibrations (PQ>0) or optical vibrations (PQ<0). The 

key question then becomes: Do negative PQ modes in structurally/compositionally disordered 

systems contribute significantly to heat conduction? Understanding the contributions to TC from 

PQ>0 and PQ<0 phonons is important, because once the dominant phonon types and their transport 

mechanism is understood, the means by which their contributions can be manipulated might then 

be explored. In this section, in an attempt to determine to what extent the PQ>0 and PQ<0 phonons 
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in disordered systems contribute to the TC, we study several example materials, i.e., a-SiO2, 

amorphous carbon (a-C), and random crystalline In0.53Ga0.47As alloy.  

 

5.1       Phase quotient in disordered systems 

In this section, we first use PQ formula introduced in Chapter 3 to calculate the PQ of 

vibrational modes in a-SiO2, a-C, and random In0.53Ga0.47As alloy, and then use GKMA to 

calculate the modal thermal conductivities. The interatomic interactions between atoms in 

In0.53Ga0.47As and a-SiO2 systems are described by Tersoff potential[71,88] while the interactions 

in a-C system are described by modified Tersoff potential[89] that has been tested to accurately 

reproduce the mechanical properties of diamond-like carbon and hydrogenated diamond-like 

carbon. The GKMA details for In0.53Ga0.47As alloys is discussed in Chapter 4. Therefore, in this 

section, we briefly discuss the details for calculation of the TC of the a-SiO2 and a-C. To generate 

a-SiO2 and a-C structures, we used the melt-quench method[90]. The detailed procedures for 

generating the amorphous structures have been described elsewhere [45,48]. For a-SiO2, after 

quenching, the structure was annealed at 1100 K for 10 ns to avoid the meta-stability reported by 

Larkin et al.[34]. For a-C, in order to offer the fairest comparison with the experimental results, 

we used a DLC structure with a density of 3.0 g/cm3, which is identical to the DLC measured in 

the associated experiments[91]. This is important, because the TC of a-C is known to depend 

strongly on the density, which ultimately determines the sp2 /sp3 bonding ratio (i.e., 

graphite/diamond like bonding). After quenching the structures to the desired density, we then 

relaxed the structures using a constant number of atoms, volume, and temperature for 1 ns and 

then simulated the structure in the microcanonical ensemble for 5 ns (a-C) and 2 ns (a-SiO2), which 

is when the modal contributions to the heat flux are calculated. Simulations were run with 0.25 fs 
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(a-C) and 0.1 fs (a-SiO2), time-steps and the total heat flux and mode heat flux are calculated every 

5 fs to reduce the computational time. All MD simulations were conducted using LAMMPS 

package[66] and the eigen modes were determined from LD calculations using GULP[63]. It is 

worth mentioning for each material excellent agreement with experimental data has been achieved 

elsewhere [23,45,47,48], using the methods employed here. Thus, we proceed with confidence that 

the elucidated modal contributions are correct and therefore the insights derived from the following 

analysis are physically meaningful. 

Figure 5.1 shows the participation ratio and PQ for In0.53Ga0.47As, a-C and a-SiO2. It can 

be seen that for a-C and In0.53Ga0.47As the transition between diffusons and locons occurs around 

65THz and 9 THz, respectively. However, in a-SiO2 the transition occurs around 25THz and 

35THz, as there exist two regions that have localized modes, from 25 to 30THz and above 35THz. 

Given the low PR of vibrational modes in these regions, one can classify both of these groups of 

modes as locons, which are spatially localized and typically only involve a small group of atoms 

in the vibration[31]. The sharp drop in PR for a-SiO2 around 25THz is interesting because in 

crystalline SiO2, at approximately the same point in the spectrum[92,93], the TA branch ends and 

the density of states has a local minimum. Therefore, 25THz marks an interesting point in the 

spectrum where non-propagating vibrational modes change their character from acoustic-like to 

optical-like phonons, in both the crystalline and amorphous phases of SiO2. It is interesting to note 

that the cross-over frequency regime for the PQ remains largely unchanged despite the dramatic 

difference in structure and mode character. Finally, it is worth mentioning that for carbon 

materials, such as diamond, graphene, and a-C, at low and intermediate temperatures (T<300 K) 

the heat capacity is far below the Dulong–Petit limit, which indicates that most of the localized 
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vibrational modes are not excited. As a result, the contribution of localized modes, i.e, phonons 

with frequency greater than 65THz to the TC is negligible at these temperatures.  

The general trends for PQ in a-SiO2, a-C and the In0.53Ga0.47As random alloy are similar 

(see Figure. 5.1).  It is interesting to see an example case, where PQ does not traverse fully from 

PQ = 1 to PQ = -1. In concept, one might have expected there to always be some intrinsic balance 

between the number of modes with positive PQ and negative PQ, but the results of the SCLD 

calculations show that the net summed PQ is not always near zero, as it was for the crystalline 

materials InAs and GaAs studied in Chapter 3. However, one would also expect that a crystalline 

material with a basis larger than two, would have more optical branches/modes than acoustic, and 

thus, it might not be expected that there is any general balance in PQ for crystalline materials. 

Nonetheless, it is interesting to note the differences in the net PQ for each material, as shown in 

Table 1. In Table 1, the sum of positive and negative PQs for a-C, a-SiO2, and random 

In0.53Ga0.47As alloy are -465, -374, and 59, respectively, which is an order of magnitude larger than 

the sum of PQs for InAs and GaAs, which are -5.13 and -2.21 respectively.  

Table 5.1. The sum of PQ for all modes in each system studied 

Sum of PQ Random 

In0.53Ga0.47As 

a-C a-SiO2 Crystalline 

InAs 

Crystalline 

GaAs 

Positive PQ 1135.41 2817.39 2049.06 1041.17 1101.02 

Negative PQ -1076.21 -3283.06 -2424.06 -1046.30 1103.3 

Net PQ 59.22 -465.66 -374.9 -5.13 -2.21 
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Figure 5.1. Participation ratio and PQ for a-C, a-SiO2, and In0.53Ga0.47As alloy 

 

5.2       The contribution of negative phase quotient phonons on thermal conductivity 

To study the contribution of modes with negative PQ to the heat conduction, we then 

computed the modal contributions to the TC. Here, we segregated the modes according to their PQ 

to directly quantify the contributions of modes with positive/negative PQ on TC. Figure 5.2 shows 

the TC accumulation and DOS as a function of PQ at different temperatures for a-C, a-SiO2 and 

In0.53Ga0.47As. The color-shaded regions in the DOS plots represent the quantum specific heat 

contributions at different temperatures. Since the classical volumetric specific heat is constant, the 

area under the black line (i.e., not the black area) is proportional to the specific heat in the Dulong-

Petit limit. It can be seen that for In0.53Ga0.47As, at low temperatures (T < 200K) the contribution 

of modes with PQ<0 is negligible, because they are not excited in this temperature range. However, 

when temperature increases the high frequency/negative PQ modes become excited and they 
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contribute to the TC. For example, phonons with negative PQ contribute 13% and 6% to the TC 

of In0.53Ga0.47As at 700K and 300K, respectively.  

As seen in a-SiO2 at T < 400K, the slope changes in the TC contributions when PQ is near 

zero. This increase is due to the increase in contributions from modes with positive PQ. Based on 

what is known for crystals, negative PQ modes might have been expected to have low to negligible 

contribution to the TC, yet in a-SiO2 they become dominating contributors to the TC at high 

temperatures once they are excited. It can also be seen that by increasing temperature, the 

contributions of modes with negative PQ increases, for example at 1200K, 800K and 400 K, they 

contribute to 53%, 47% and 44% to the total TC, respectively in a-SiO2. Furthermore, the modes 

in a-SiO2 with PQ > 0.83 have almost negligible contribution to the TC due to their low density of 

states. Another interesting distinction from pure crystals is that the positive PQ contributions do 

not seem to be correspondingly reduced by the fact that the negative PQ contributions increase 

with temperature. From a fundamental perspective, the physics associated with this feature is one 

way of explaining why the TC of disordered materials often increases with temperature.   

Finally, for a-C as seen at low temperatures (<100K), only positive PQ phonons contribute 

to the TC while at 1000K negative PQ modes are responsible of 40% of TC. To the best of our 

knowledge, this is in stark contrast to any other material previously analyzed. The sharp increase 

in TC of a-C at T=1000K at PQ around -0.3 is mainly due to the high DOS in this region. The 

results for TC vs. PQ for a-C, a-SiO2 and In0.53Ga0.47As suggest that phonons with negative PQ 

can have major contributions in structurally disordered systems, especially at high temperatures, 

but they don’t seem to have significant contributions in In0.53Ga0.47As. 
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Figure 5.2. TC accumulation and density of states verses PQ for a-C, a-SiO2, and In0.53Ga0.47As 

alloy 

 

Figure 5.3 shows the ratio of the percentage of TC ( (%)k ) to the percentage of heat 

capacity ( (%)pC ) associated with positive and negative PQ phonons. This ratio, represented by 

 , essentially measures how much each sub category of modes is contributing, on a per unit heat 
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capacity basis. This quantity is in many ways similar to the mode diffusivity introduced by AF[30]. 

However, here we are representing it on a normalized basis to allow for easy comparison between 

the different materials, which have very different total diffusivities and thermal conductivities. The 

reason this quantity ( ) is useful, is because it allows us to assess to what extent are the TC 

contributions are purely limited by the specific heat, vs. the actual interactions with other modes, 

which in concept are associated with everything else in the TC other than the heat capacity. The 

results show that modes with negative PQ at 1200K in a-SiO2 have the highest contribution to TC 

on this per unit heat capacity like basis (e.g., here 40X higher than the positive PQ values for  ). 

Interestingly, for this system, at almost all temperatures the   for negative PQ modes is higher 

compared to positive PQ modes, while for the other systems the positive PQ modes consistently 

have higher contributions than negative PQ at all temperatures.  

 

 
Figure 5.3. The ratio of the percentage of TC to percentage of heat capacity associated with 

positive and negative PQ.  

In conclusion, in this chapter, we have studied the contributions of phonons with negative 

PQ on the TC of In0.53Ga0.47As, a-SiO2, a-C. We showed that phonons with negative PQ comprise 
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up to 40%, 53% and 13% of the total TC in a-C, a-SiO2, and In0.53Ga0.47As at 1000K, 1200K, and 

700K, respectively, despite what one might expect based on optical modes in crystals, where their 

contributions are usually small/negligible. This finding brings to light the importance of 

contributions from phonons with negative PQ to heat conduction in disordered solids. Although a-

SiO2, a-C and In0.53Ga0.47As are taken as the model materials, one might expect that similar 

behaviors will arise in many other materials. Furthermore, we found that in general the trend of 

PQ verses frequency for every material can be different. Some materials exhibit clear trends in PQ 

with increasing frequency, moving from 1 to -1, but others less so. In theory, as one approaches 

the zero-frequency limit for a solid with a homogenous density, one should observe sound waves, 

so one would expect to see PQ start at unity and smoothly translate away from it at least initially. 

But the rest of the behavior could in theory vary quite a lot. Thus, based on the results herein, we 

believe PQ is an interesting and important descriptor for phonons that should be examined in future 

studies to determine the extent to which important quantities (e.g. relaxation times), trends or 

mechanisms may depend on this sub-classification (PQ>0, PQ<0) of modes. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1      Conclusions 

Current understanding of phonons treats them as plane waves/quasi-particles of atomic 

vibrations that propagate and scatter. The problem is that conceptually, when any level of disorder 

is introduced, whether compositional or structural, the character of vibrational modes in solids 

changes, yet nearly all theoretical treatments continue to assume phonons are still waves. For 

example, the phonon contributions to alloy TC rely on this assumption and are most often 

computed from the VCA. Good agreement is obtained in some cases, but there are many instances 

where it fails—both quantitatively and qualitatively. In this dissertation, we showed that the 

conventional theory and understanding of phonons requires revision, because the critical 

assumption that all phonons/normal modes resemble plane waves with well-defined group 

velocities is no longer valid when disorder is introduced. We showed that the character of phonons 

changes dramatically within the first few percent of impurity concentration, beyond which 

phonons more closely resemble the modes found in amorphous materials. We then utilized a 

different theory that can treat modes with any character and experimentally confirm its new 

insights. 

In Chapter 2, we reviewed the mathematical formalism and implementation of GKMA, the 

newly developed correlation-based theory of phonon transport in disordered solids. We also briefly 

described the PGM/VCA, the existing scattering-based theory of phonon transport in random 

alloys, and discussed the difference between correlation and scattering paradigms. 
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In Chapter 3, we reviewed the existing methods for distinguishing different type of 

vibrational modes in disordered solids, i.e., propagons, diffusons, and locons. We first discussed 

issues with the SF method, the most widely used method for distinguishing between propagating 

and non-propagating modes. We showed that the SF method is unable to measure the extent to 

which a mode is propagon-like or diffuson-like on a universal scale, hence it is not material 

agnostic. To solve this issue, we introduced a new approach, EPA, which can quantify the extent 

to which an individual mode’s character exhibits plane wave modulation. As we showed, using 

EPA one can classify the vibrational modes in any arbitrary material/structure on a universal scale 

of 0 to 1. Afterwards, we investigated whether the transition between propagons and diffusons in 

a disordered solid is sharp. By applying EPA to different crystalline and amorphous solids, we 

showed that there is no requirement that the mode character must change abruptly with respect to 

frequency. Finally, we briefly reviewed the physical meaning and mathematical formulation of 

PQ, a quantity that can be used to evaluate whether a mode shares properties more so with acoustic 

or optical vibrations. 

In Chapter 4, we applied EPA and GKMA to answer two fundamental questions raised in 

Chapter 1: (i) how does vibrational mode character change when alloy composition increases and 

(ii) what is the fundamental reason for the failure of the PGM in random alloys? By calculating 

the EPP for a crystalline In1-xGaxAs as an example random alloy, we showed that the majority of 

vibrational modes become non-propagating when disorder introduced to the system, which 

suggests that the conventional theory and understanding of phonons in random alloys requires 

revision. We then devised two test cases to examine the validity of the PGM/VCA in a random 

alloy and test the hypothesis that the key fundamental information missing in the VCA is 

knowledge of the mode character. We first hypothesized that non-propagating do not exhibit size 



109 
 

effects in random alloys and proved this hypothesis experimentally. The excellent agreement 

between the experimental values of TC and the GKMA results for thin films suggest that the non-

propagating modes exist in alloys, hence the fundamental assumption of plane-wave vibrational 

modes in the PGM/VCA is not right. We then conducted an analysis to see if the relationship 

between relaxation time and TC for non-propagating vibrational modes is consistent with the 

PGM/VCA. Our analysis showed that in In1-xGaxAs, there is no simple proportional relationship 

between the relaxation time and TC of non-propagating modes, which is additional evidence that 

the PGM/VCA is not suitable to describe the alloy TC. 

In Chapter 5, we answered the last question raised in Chapter 1: Do PQ<0 modes in 

structurally/compositionally disordered systems contribute significantly to heat conduction? By 

calculating the PQ of the vibrational modes in several example materials, i.e., a-SiO2, a-C, and 

random crystalline In0.53Ga0.47As alloy, we first showed that, the trend of PQ verses frequency for 

every material can be different, and there are no strict rules for PQ. Then, we calculated the TC of 

these materials and showed that phonons with PQ<0 contribute up to 40%, 53% and 13% of the 

total TC in a-C, a-SiO2, and In0.53Ga0.47As at high temperatures, respectively. This finding brings 

to light the importance of contributions from phonons with negative PQ to TC in disordered solids. 

6.2      Future work 

Future work should be dedicated towards understanding the thermal properties of materials 

with various types of defects such as solids with point defects, dislocations, and grain boundaries. 

Furthermore, it is expected that even in crystals with strong anharmonicity (phonon MFPs on the 

order of the lattice spacing), as well as crystalline solids with large number of atoms in the unit 

cell, the application of PGM becomes questionable[94]. For example, recent first principle 
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calculations on higher manganese silicide ladder structures[95] and TI3VSe4 [96] show that heat 

may be carried by both phonons and ‘hopping’ of localized vibrational modes. The investigation 

of phonon transport in these class of materials are still in its infancy, and further research on these 

materials is necessary. Another possible direction for the future research is to study the thermal 

transport in other alloys. In general, there are many unresolved problems in random alloys, some 

examples are listed below.  

As shown in Chapter 4, the TC contributions in In0.53Ga0.47As calculated by GKMA are 

generally constant for non-propagating modes with respect to temperature, yet the relaxation times 

decreased in the same temperature range. This suggest that the relaxation times are simply 

inappropriate descriptors for the modal contributions, which then implies that the PGM may not 

be an appropriate model for the non-propagating modes in random alloys. Therefore, the question 

arises is: “what is the correct physical picture for phonon transport through diffusons?” If the PGM 

is not able to properly describe the behavior of non-propagating modes what model can? Although, 

GKMA allow us to compute the contributions of different modes to the TC, obtaining their 

quantitative and qualitative behaviors does not necessarily translate to the conceptualization of a 

corresponding physical picture. Therefore, the development of a correctly modified or new 

physical picture can be the focus of future studies. Such physical picture has tremendous value, as 

it can identify and explain phenomena that might be completely non-intuitive or non-obvious 

otherwise. 

Another important question that should be addressed in the future is: “Do diffusons actually 

experience size effects?”. As shown in Chapter 4, for In0.53Ga0.47As, the diffusons don’t experience 

size effects at length scales up to 100 nm. However, it is not clear what happens at smaller length 

scales.  “Is it possible that diffusons do actually experience size effects, just at a much smaller 
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length scale than the propagons?” Previous works on amorphous solids[97] show that it is possible 

that diffusons exhibit size effect, albeit at much smaller length scales than were probed in the 

simulations and experiments presented in this thesis.  This raises the next question of “what 

circumstances are required such that a diffuson will experience a size effect?”. Furthermore, if 

only some diffusons experience size effects at all, why would only some diffusons exhibit this 

characteristic, while others do not? Another critical question then becomes, “can diffuson MFPs 

ever greatly exceed 100 nm, and potentially enabling the engineering of high thermal conductivity 

disordered materials? “. Answering such questions can be the focus of future experimental and 

numerical studies. 

Furthermore, as shown in Chapter 4, locons don’t contribute significantly to the thermal 

conductivity of In0.53Ga0.47As. The question arises is: “What is the contribution of locons in other 

random alloys?” Do they ever contribute significantly to the thermal conductivity? If not, is it 

possible to design an alloy where the majority of its vibrational modes are localized? Such an alloy 

might have important applications in development of thermoelectric generators. Although, 

intuitively, it is difficult to imagine an alloy, where majority of its phonons are localized, there is 

nothing that theoretically prevents this from happening. Intuitively, the presence of multiple atom 

types with a high coordination number leads to an increased fraction of locons – particularly when 

the atoms’ masses differ greatly[97]. For example, one could design an alloy with substantial 

inhomogeneity, i.e., with multiple atom types in combination with lightweight atoms (e.g. 

hydrogen) dispersed throughout the material. This is because the light atoms, due to their lower 

mass, would likely be forced to vibrate at much higher frequencies than the surrounding atoms to 

which they are bonded. Consequently, if the surrounding atoms' solutions to the equations of 

motion cannot access the frequencies needed for the light atoms, then localized solutions will have 
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to form around the light atoms. Figure 6.1 shows an example of this through SCLD calculations 

of a crystalline SiGe alloy. What is clear is that when one starts with Si as the base crystal and 

adds a heavier atom like Ge, the solutions to the equations of motion change, but since Ge vibrates 

at the same or lower frequencies than Si, the new/modified modes all continue to fall within the 

original frequency range of Si. Furthermore, since the new/modified solutions are within the same 

frequency space as the base crystal/material, they simply induce the creation of diffusons, since a 

localized solution is not necessary. However, when one starts from Ge as the base crystal and adds 

Si, the Si atom is lighter and can vibrate at frequencies that exceed that of Ge. As a result, localized 

solutions are required to describe the Si atom vibrations, and it can also cause the surrounding Ge 

atoms to vibrate above the maximum frequency in bulk crystalline Ge as well. Therefore, the 

addition of lighter atoms to a base material as isolated defects or impurities is likely to generate 

localized modes. Furthermore, by spreading them apart from each other at a distance that is 

randomized, one could try to optimize by compensating between two conversely competing 

effects. On the one hand, one should increase the number of light atoms included per unit volume, 

which would result in smaller distances between them, but should increase the fraction of locons. 

On the other hand, it will be important to keep the distance between the light atoms large enough 

so that the locons are unable to merge into an interconnected and therefore delocalized solution, 

which would then convert them into diffusons. By accounting for these two competing 

mechanisms, one could likely construct a system with a large and maximized fraction of locons. 

Thus, there are still several open questions regarding locons, such as: “Is it possible to 

experimentally prove that locons actually contribute to thermal conductivity, and is it possible that 

a system exists where they become large or even the dominant contributors?”; “What approaches 
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can be used to maximize the number of locons?” These questions will be important to answer in 

future work. 

 

 

Figure 6.1. PR, showing the degree of localization of phonons. For Si0.1Ge0.9, the PR is reduced 

for high frequency phonons, indicating localization. 

 

Finally, there are several important fundamental questions, which should be undertaken as 

the subject of future work. For example, “What is the crystal momentum associate with diffusons 

and locons?” This question is particularly important, because it is likely to impact how such modes 

will interact with other quantum particles. For propagons, since there is periodicity in the mode’s 

displacement/velocity field, one can conceivably identify a representative wave-vector. However, 

for diffusons and locons, due to the lack of periodicity it is not clear how one can calculate the 

mode momentum. Additionally, the notion of the phase quotient is worth further study [132]. In 

the quest to rethink the physical picture of phonons, new or alternative descriptors that are ideally 
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well-defined for all phonons regardless of their character are needed. By identifying/developing 

new descriptors and assessing propgaton, diffuson, and locon contributions with respect to them, 

it may be possible to identify non-dimensional parameters i.e., groups of descriptors that ultimately 

predict with high accuracy how strongly a given mode contributes to thermal conductivity. 
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