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SUMMARY

The bio-enabled syntheses of functional nano-structured metal oxide thin films is

of importance for a range of application, in photonics, electronics, sensing, cell

engineering, and biochemical devices. This type of novel syntheses method can

overcome problems common in conventional oxide processing. In general, conventional

oxide processes often require thermal treatment, caustic chemicals, and mechanical

processing when producing shape-controlled inorganic materials. In contrast, biological

processes are usually carried out under mild conditions (low temperature, neutral pH, and

atmospheric pressure) and are therefore promising for the development of benign

processes. Functional materials synthesized at room temperature using biomolecules are

promising due to their expediency. During recent years, significant progress has been

made in developing new applications for such biomimetic oxide-based minerals.

However, much of the research has focused on SiO- and TiO-bearing organic-inorganic

hybrid materials, of which a significant limitation is that there are relatively few water-

soluble inorganic oxide precursors commercially available for such biological syntheses.

Two common compounds that are used in the biomimetic syntheses of SiO2 and TiO2 are

tetramethoxisilane (TMOS) and Ti(IV)-bis(ammonium lactato) dihydroxide (TiBALDH).

As a result, approaches to synthesize new water-soluble transition metal

complexes for use as precursors in the biomineralization of the corresponding functional

metal oxide thin films were explored in this work, in order to expand the range of

functional oxide chemistries formed via bio-enabled methods.

A Ti-containing TiBALDH-like compound was synthesized to compare the

behavior of commercially-available and as-synthesized TiBALDH. Another titanium-
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containing complex with citrate ligands, instead of lactate, was also synthesized to

investigate the influence of the ligand type on the deposition behavior of the precursors.

Zirconium- and hafnium-containing complexes were also synthesized to demonstrate the

feasibility and versatility of the idea of applying bio-enabled syntheses to the fabrication

of functional mineral oxides other than the reported SiO2 and TiO2.

The second part of this thesis focuses on developing a novel way to fabricate

porous functional mineral oxide thin films with controlled pore size, which can be used in

a variety of applications, such as dye loading for optical, photochemical, or

electrochemical purposes. Commercially-available, carboxyl-group-terminated

polystyrene spheres of different sizes were utilized as pore-size controllers in the bio-

enabled syntheses of TiO2 by protamine. This approach has been found to be an effective

means of creating uniform pores in inorganic mineral oxide coatings.

The accomplishments of this work have the potential to be integrated so as to

expand the boundaries of biomineralization in materials science and engineering.
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CHAPTER 1: SYNTHESES, PURIFICATION, AND

CHARACTERIZATION OF TI-, ZR-, HF-CONTAINING

COMPLEXES

1.1 SUMMARY

In this chapter, several water-soluble, atoxic, pH- and thermally-stable,Ti(IV)-,

Zr(IV)-, Hf(IV)-containing complexes were synthesized and characterized by 1HNMR

and13CNMR, which confirmed the presence of designed ligands on these complexes. The

precursor syntheses route is demonstrated to be very simple and environmentally friendly,

and could be applied to many other transition metals than Ti, Zr, and Hf. The synthesized

complexes will, for the first time, be applied as precursors for the bio-inspired layer-by-

layer fabrication of the corresponding inorganic oxide thin films.
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1.2 INTRODUCTION

Syntheses of Water-soluble Transitional-Metal-Containing Complex Precursors

Due to the growing significance of nanocrystalline inorganic functional materials

in the fields of catalysis, electronics, and energy conversion, together with the increasing

demand of society for safer, softer, and “greener” technologies, considerable attention

has been drawn towards water-based solution processes for the syntheses of such

materials.1-6 In this respect, complex oxides containing d0-transition metals, such as Ti,

Nb, or Ta, represent an outstanding challenge bio-enabled syntheses due to the narrow

range or absence of suitable precursor compounds compatible with aqueous systems. The

limited water-soluble metal-bearing anionic compounds hinder the range of materials

comprising these elements that can be synthesized by water-based, bio-enabled syntheses

techniques. At the same time, these elements are important as basic componentsof

functional ceramics including photo catalysts and phosphors, which are manufacturedon

a large scale in industry.7-12

A key aspect of water-soluble, transitional-metal-containing complexes is that

organic compounds are usually applied as ligands or chelating agents bonded to the metal

ion, to allow for solubility in water and to control reactions leading to desired oxide

precipitates and films. The organic ligands or chelating agents are often

hydroxycarboxylic acids, such as lactic acid, citric acid, glycolic acid, malicacid, etc,

which are biodegradable organic compounds widely present in nature.5,6,13-26While some

work has been done on the syntheses and characterization of aqueous precursor

complexes for several metal ions other than titanium, such as Mo(VI)13, Cu(II), Zn(II)

and Cd(II)14, V(V)15 and several lanthanides(III)16 plus Th(IV)17, perhaps the most
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remarkable progress has been achieved in the development of new water-soluble

complexes of titanium, and considerable experience has been accumulated in the

application of these latter compounds for the syntheses of nanocrystalline titanium-

containing oxides. Kakihanaet, et al.18-20 have synthesized water-soluble Ti-complexes,

such as a titanium-citrate complex ([Ti4(C6H4O7)4(O2)4]8-), titanium-lactate complex

([Ti(C3H4O3)3]2-) and a titanium-glycolate complex ([Ti4(C2H2O3)4(C2H3O3)2(O2)4O2]6-).

As the water-soluble complexes have negative charge, hydrolysis by the attack of OH-

does not occur. Tomita, et al.20 reported that their complexes could be converted

selectively into nanopowders of brookite, rutile, and mixtures of rutile and anatase under

hydrothermal conditions. Deng, et al.24 reported a syntheses route to make titanium-based

mixed oxides from a series of titanium(IV) citrate complexes, such as

(NH4)2[M(H2O)]6[Ti(C6H4O7)3]2·6H2O, M(II) = Mn, Fe, Co, Ni, Cu, and Zn.

Overall, two basic methods have been reported for the syntheses of these water-

soluble precursors. The first method is a non-peroxo route, which is based on a direct

reaction between either titanium tetrachloride or titanium alkoxide27 and almost

exclusively citric acid (Route A). Route A has been used for the syntheses of

mononuclear titanium citrato complexes, and a representative overall reaction can be

written as follows25:

TiCl4 + 3H4cit* + 10OH- [Ti(cit*)(Hcit*) 2]6- + 4Cl- + 10H2O (1)

Where H4cit* is an abbreviation for citric acid (C6H8O7:

CH2COOHC(OH)(COOH)CH2COOH) including four possible dissociative protons; thus

cit* stands for the fully deprotonated tetra-anionic form of the citrate. Titanium

tetrachloride is added slowly with continuous stirring to an aqueous solution of citric acid,
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followed by slow addition of an aqueous solution of either sodium hydroxide or ammonia

for adjustment to the appropriate pH. The degree of deprotonation in H4cit* depends

mainly on the pH of the solution, in addition to determining the final form of the titanium

citrato complexes.23 As the pH of the solution is increased, more highly deprotonated

citric acid species are coordinated to titanium. Indeed, crystallization of [Ti(H2cit*) 3]2-,

[Ti(Hcit*) 2(H2cit*)] 4-, [Ti(cit*)(Hcit*) 2]6-, and [Ti(cit*)3]8- with several different counter-

ions was confirmed at pH 2,234,206,22and 7,25respectively.

The peroxo route is based on a ligand-exchange reaction of a given hydroxo-

peroxo titanium species such as [Ti(O2)(OH)3]- with a wide range of chelating ligands

including citric acid, etc.18-26 (Route B). In Route B, the first step involves the

preparation of peroxo-hydroxo titanium complexes, such as [Ti(O2)(OH)3]- and

[Ti(O2)(OH)2], which can be achieved by either direct reaction between titanium tetra-

chloride and hydrogen peroxide under acidic conditions (eqs. 2-4) or reaction of metallic

titanium powder with hydrogen peroxide in the presence of ammonia (eq 5):

Ti4+ + H2O2 + H2O→ [Ti(O2)(OH)]+ + 3H+ (2)

Ti4+ + H2O2 + 2H2O→ [Ti(O2)(OH)2] + 4H+ (3)

Ti4+ + H2O2 + 3H2O→ [Ti(O2)(OH)3]- + 5H+ (4)

Ti + 3H2O2 + NH3 → [Ti(O2)(OH)3]- + NH4
+ + H2O (5)

The second step of Route B is to promote a ligand exchange reaction for

[Ti(O2)(OH)3]-, or similar types of peroxo-hydroxo titanium complexes, with an

appropriate ligand. As shown in equ. 6, when citric acid is used as a chelating reagent, it

reacts with the peroxo titanium complex formed in equ. 5 to produce a stable peroxo-

citrato titanium complex, [Ti4(cit*) 4(O2)4]8-:18
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4[Ti(O2)(OH)3] - + 4H4cit*→ [Ti 4(cit*) 4(O2)4] 8- + 4H3O+ + 8H2O (6)

For these two syntheses routes, there are different choices for the ligands. The

most frequently reported ligands are hydroxycarboxylic acids that can form stable

complexes with titanium in aqueous solutions, including glycolic acid (CH2(OH)COOH);

lactic acid (CH3CH(OH)COOH); malic acid (CH2COOHCH(OH)COOH); tartaric acid

(CH(OH)COOHCH(OH)COOH); citric acid (CH2COOHC(OH)COOHCH2COOH); and

an aromatic hydroxycarboxylic acid, mandelic acid (C6H5-CH(COOH)OH). The resulting

alkoxylato and carboxylato groups may simultaneously coordinate titanium, forming a

chelate ring. The ring is responsible for the stability of the resulting complex in a given

aqueous solution13-26.

. In my work, I chose the non-peroxo route which is more environmentally- and

economically-friendly. For the chelating ligands, I used lactic acid to react with TiCl4 to

generate a Ti(IV)-containing complex with a similar structure as commercially-available

TiBALDH (titanium(IV) bisammonium-lactato-dihydroxide), a precursor which has been

used widely in the bio-enabled syntheses of TiO2.
27-30 Besides the ammonium Ti(lactate)

complex, ammonium Zr(lactate) and ammonium Hf(lactate) were also synthesized

through the reactions of lactic acid with the corresponding salts, ZrCl4 and HfCl4. To

allow for a comparison with those lactates, citric acid was also chosento react with TiCl4,

ZrCl4, and HfCl4 for the reason that citric acid has a higher chelating stability constant

with Ti(IV) than lactic acid,31,32 which would make the synthesized citrate complexes

more stable than the lactates. Thus, there would be some difference between the

deposition behaviors of the citrate complexes and the lactate complexes. Besidescitric

acid, mandelic acid was also chosen as a chelating ligand to react with TiCl4, ZrCl4 and
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HfCl4. As mandelic acid has a benzene ring on the side chain, it is much bigger in size

than lactic acid. This would influence the structure of the corresponding mandelate

complexes which may affect the deposition behavior of these complexes by a peptide.

These synthesized lactate, citrate, and mandelate complexes were utilized in the peptide-

enabled, layer-by-layer deposition of the corresponding metal oxide thin films in the next

chapter.



7

1.3 EXPERIMENTAL PROCEDURES

The methods used to synthesize and characterize the Ti-, Zr-, Hf-containing

precursors are discussed in this section.

The chemicals used in the syntheses and characterization process are as below:

deionized (DI) water (18.2 MΩ·cm), methanol (99.8+% purity, Alfa Aesar, Ward Hill,

MA), isopropanol (99.8+% purity, Acros, New Jersey, NJ), 28% w/w ammonum

hydroxide (Alfa Aesar, Ward Hill, MA), L-lactic acid (98% purity, Alfa Aesar, Ward Hill,

MA), citric acid monohydrate (99.5+% purity, Alfa Aesar, Ward Hill, MA), mandelic

acid (99+% purity, Sigma-Aldrich, St. Louis, MO), titanium tetrachloride (99+% purity,

Alfa Aesar, Ward Hill, MA), zirconium tetrachloride (99.5+% purity, Alfa Aesar, Ward

Hill, MA), hafnium tetrachloride (99.9% purity, Alfa Aesar, Ward Hill, MA), 50% w/w

TiBALDH (Ti(IV) bis-ammoniumlactato-dihydroxide, Sigma-Aldrich, St. Louis, MO),

Deuterium oxide (99.8% purity, Alfa Aesar, Ward Hill, MA), and Dimethyl sulfoxide-d6

(99.9% purity, Sigma-Aldrich, St. Louis, MO).

1.3.1 Thermal Analysis of starting reactants

To verify the purity of the starting reactants, thermal analysis was conducted on

ZrCl4 and HfCl4. Containers with 3.2349 g ZrCl4 and 3.4594 g HfCl4 were heated to

800°C in a tube furnace (Lindberg / Blue M, NC USA) at a ramp rate of 3°C/min for 6

hrs (AutoFire® Controller, Orton Ceramic Foundation, OH, USA outfitted with a k-type

thermocouple, OMEGA Engineering, Inc., CT, USA) in air to convert ZrCl4 and HfCl4 to

ZrO2 and HfO2 to evaluate the purity of the two chlorides.



8

1.3.2 Syntheses and purification of Ti-containing Complexes

( 1 ) Preparation of Ammonium Ti(lactate) Complex

L-lactic acid (2.70 g, 30.0 mmol) was placed in a flask (15 mL, Ace Glass Inc.,

Vineland, NJ) and dissolved in 5 mL of DI H2O. Subsequently, titanium tetrachloride

(1.90 g, 10.0 mmol) was added slowly and under continuous stirring. After reaction for

12 hrs, 28 wt% ammonia solution was then added slowly to adjust the pH to a final value

of ~8.0, as measured by a pH/mV meter (UB-10, Denver Instrument, Bohemia, NY).

Initially, the resulting reaction mixture was slightly cloudy. After filtration (454,

Quantitative filter paper, Ashless, Fash Flow, distributed by VWR international), the

resulting clear solution was kept for further use.

The same procedure was duplicated to make a second bottle of ammonium

titanium lactate complex solution, which was then placed in the refrigerator at 4 °C for 12

hrs. 5.0 mL of cold isopropanol (99.8+% purity, Acros, New Jersey, NJ) at 4 °C was

added into the solution until the solution became cloudy. After 2 weeks, a light-yellow

solid formed in the bottle. This product was isolated by filtration (454 filter paper,

Quantitative, Ashless, Fash Flow, distributed by VWR international) and dried in vacuo

(pressure ~ 1*10-2 Pa) for 8 hrs at room temperature for subsequent solution NMR

analyses.18

( 2 ) Preparation of Ammonium Ti(citrate) Complex

Citric acid monohydrate (6.30 g, 30.0 mmol ) was placed in a flask (15 mL, Ace

Glass Inc., Vineland, NJ) and dissolved in 10 mL of DI H2O. Subsequently, titanium

tetrachloride (1.90 g, 10.0 mmol) was added slowly and under continuous stirring. The
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subsequent steps were the same as for the synthesis of the ammonium Ti(lactate)

complex.

( 3 ) Preparation of Ammonium Ti(mandelate) Complex

Mandelic acid (4.56 g, 30.0 mmol) was placed in a flask (25 mL, Ace Glass Inc.,

Vineland, NJ) and dissolved in 10 of mL DI H2O. Subsequently, titanium tetrachloride

(1.90 g, 10.0 mmol) was added slowly and under continuous stirring. The subsequent

steps were the same as for the synthesis of the ammonium Ti(lactate) complex.

( 4 ) Preparation of Solid Powder of TiBALDH from Sigma

In order to conduct the1H and13C-NMR analyses of this TiBALDH material from

Sigma-Aldrich, solid powder of TiBALDH from aqueous solution was obtained by the

following method: 10 mL of isopropanol was added into a flask with 2 mL of 50 wt%

TiBALDH in aqueous solution. White precipitates formed immediately once the two

solutions were mixed with each other. After filtration (454 filter paper,Quantitative,

Ashless, Fash Flow, distributed by VWR international) the white precipitate was

collected and dried invacuo (pressure ~ 1*10-2 Pa) for 8 hrs at room temperature for

subsequent NMR characterization.

1.3.3 Syntheses and purification of Zr-containing Complexes

( 1 ) Preparation of Ammonium Zr(lactate) Complex

L-lactic acid (1.80 g, 20.0 mmol) was placed in a flask (15 mL, Ace Glass Inc.,

Vineland, NJ) and dissolved in 5 DI mL H2O. Subsequently, zirconium tetrachloride

(2.33 g, 10.0 mmol) was added slowly and under continuous stirring. The subsequent

steps were the same as for the synthesis of the ammonium Ti(lactate) complex.
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( 2 ) Preparation of Ammonium Zr(citrate) Complex

Citric acid monohydrate (6.30 g, 30.0 mmol) was placed in a flask and dissolved

in 10 mL DI H2O. Subsequently, zirconium tetrachloride (2.33 g, 10.00 mmol ) was

added slowly and under continuous stirring. The following steps were the same with the

synthesis of ammonium Ti(lactate) complex.

( 3 ) Preparation of Ammonium Zr(mandelate) Complex

Mandelic acid (1.52 g, 10.0 mmol) was placed in a flask and dissolved in 10 mL

DI H2O. Subsequently, zirconium tetrachloride (2.33 g, 10.0 mmol) was added slowly

and under continuous stirring. The following steps were the same with the synthesis of

ammonium Ti(lactate) complex.

1.3.4 Syntheses and purification of Hf-containing Complexes

( 1 ) Preparation of Ammonium Hf(lactate) Complex

L-lactic acid (1.80 g, 20.0 mmol) was placed in a flask and dissolved in 5 mL DI

H2O. Subsequently, hafnium tetrachloride (3.20 g, 10.0 mmol) was added slowly and

under continuous stirring. The following steps were the same with the synthesis of

ammonium Ti(lactate) complex.

( 2 ) Preparation of Ammonium Hf(citrate) Complex

Citric acid monohydrate (4.80 g, 30.0 mmol) was placed in a flask and dissolved

in 10 mL H2O. Subsequently, hafnium tetrachloride (2.33 g, 10.0 mmol) was added

slowly and under continuous stirring. The following steps were the same with the

synthesis of ammonium Ti(lactate) complex.
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( 3 ) Preparation of Ammonium Hf(mandelate) Complex

Mandelic acid (1.52 g, 10.0 mmol) was placed in a flask and dissolved in 10 mL

H2O. Subsequently, hafnium tetrachloride (3.2 g, 10.0 mmol) was added slowly and

under continuous stirring. The following steps were the same with the synthesis of

ammonium Ti(lactate) complex.

1.3.5 1H and 13C NMR Solution Spectroscopy Characterization of Synthesized Ti-,

Zr- and Hf-Complexes

For L-lactic acid, citric acid, TiBALDH from Sigma-Aldrich, and the lactate and

citrate complexes, the samples for solution NMR analyses were prepared by dissolving

the dried powders in D2O, at concentrations in the range of 0.02 - 0.1 M. Because

mandelic acid and the mandelate complexes possess low solubility in D2O, they were

dissolved in DMSO (dimethyl sulfoxide-d6), at concentrations in the same range as for

the lactates and citrates. NMR spectra were recorded on a Bruker AM360 (1H and 13C)

spectrometer (Cambridge Scientific, Watertown, MA). Chemical shifts(δ) are reported in

ppm, relative to an external reference of tetramethylsilane.
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1.4 RESULTS AND DISCUSSION

1.4.1 Thermal analysis results of ZrCl4 and HfCl 4

After heat treatment at 800℃ for 6 hrs, ZrCl4 and HfCl4 were thoroughly

converted to ZrO2 and HfO2. The mass of ZrO2 obtained after firing was 1.7056 g, and

the mass of HfO2 obtained after firing was 2.2681g.

The purity of starting reactant ZrCl4 was calculated as below: purity of ZrCl4

= %71.992349.3037.233223.1237056.1 =÷×÷ (M.W. of ZrCl4 233.037 g/mol, M.W. of

ZrO2 123.223 g/mol, mass of starting ZrCl4 3.2349 g). This result matched with the purity

indicated by Alfa Aesar (99.5+%).

Similarly, the purity of starting reactant HfCl4 was calculated as below: purity of

HfCl4 = %77.994594.33048.3204909.2102681.2 =÷×÷ (M.W. of HfCl4 320.3048 g/mol,

M.W. of HfO2 210.4909 g/mol, mass of starting HfCl4 3.4594 g), this result was close to

the purity indicated by Alfa Aesar (99.9%).

1.4.21H and 13C-NMR Spectroscopy results of Ti-, Zr-, Hf-containing Complexes

Though the solid powders of the synthesized Ti-, Zr-, Hf-containing complex salts

were all collected and NMR analyses were conducted on these salts, three complexes,

ammonium Hf(lactate), ammonium Zr(mandelate), and ammonium Hf(mandelate), failed

to display resolvable NMR spectra. All of the other precursors, (i.e., TiBALDH from

Sigma, TiBALDH synthesized (ammonium Ti(lactate)), ammonium Ti(citrate),

ammonium Ti(mandelate), ammonium Zr(lactate), ammonium Zr(citrate),ammonium

Zr(mandelate), and ammonium Hf(citrate)), did yield resolvable NMR spectra.

For comparison, solution1H and 13C NMR analyses were also conducted on the

starting reacting ligands: L-lactic acid, citric acid, and mandelic acid.
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Figs. 1.2 - 1.5reveal solution1H and13C NMR spectra of citric acid, ammonium

Ti(citrate), ammonium Zr(citrate), and ammonium Hf(citrate).

For citric acid, the two CH2COOH chains are enantiotopic, but the methylene

protons Ha and Hb are diastereotopic (the molecule has a plane of symmetry

perpendicular to the page and passing through the central carbon, but there is no plane of

symmetry passing between the protons of each methylene group and this renders proton

Ha andHb on each CH2 group diastereotopic, seeFig. 1.1 for proton types in citric acid

below). Thus, citric acid displays an AB quartet in its1H NMR spectrum. The methylene

protons, Ha and Hb, are diastereotopic. They have different chemical shifts centered atδ

2.759 ppm andδ 2.937 ppm withJ = 16 Hz and show a splitting interaction, which

appears as an AB pattern doublet, as shown inFig. 1.2.33 The side peak around 3.249

ppm was probably from CH3OH37, which may have been present in the citric acid sample

as an impurity.

Figure 1.1: The proton and carbon types in citric acid for NMR analysis.

For the13C NMR characterization, citric acid contains four nonequivalent carbon

atoms. Accordingly, in the spectra of citric acid, there should be four signals. From Fig.
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1.2 it can be seen that in the lowest fields were located the signals of the carbonatoms of

the carboxylic groups. Theδ 176.52 ppm peak corresponds to the carbon atom in ,

and theδ 173.12 ppm peak to the carbon atom in the fragment38. At higher

field, a signalδ 43.04 ppm was observed for the methylene carbon atoms, while a signal

at δ 73.04 ppm corresponded to the quaternary carbon atom38. The peak atδ 48.61 ppm

was likely due to the carbon atom in methanol37, which is consistent with the peak

observed in the1H NMR spectrum.

For ammonium Ti(citrate),Fig. 1.3shows that there is an AB pattern centered atδ

2.452 ppm and 2.561 ppm, withJ = 15 Hz, similar to the quartet of peaks for free citric

acid ligand, but shifted to higher field by about 0.287 ppm, which may be due to the

coordination of the ligand with the metal atom34. The peak atδ 3.256 ppm for methanol

was present in this spectrum, which has shifted very little with respectto the spectrum for

citric acid. The13C NMR spectrum inFig. 1.3also showed the four representative signals

of a citrate ligand atδ 181.66 ppm,δ 178.94 ppm,δ 74.94 ppm, andδ 45.35 ppm.

However, comparing with the peaks of free citric acid, the peaks have shifted (δ 43.04

ppm,δ 73.04 ppm,δ 173.12 ppm,δ 176.52 ppm) to lower fields (δ 45.35 ppm,δ 74.94

ppm, δ 178.94 ppm,δ 181.66 ppm). The peak for methanol was not present in the13C

NMR spectrum of ammonium Ti(citrate). The concentration of methanol in this sample

was apparently too low for detection.

For ammonium Zr(citrate) inFig. 1.4 of the 1H NMR spectrum, the AB pattern

for the CH2 group in citric acid was shifted about 0.304 ppm to higher field, withJ = 15.5

Hz, in a manner similar to that observed for ammonium Ti(citrate). The13C NMR
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spectrum exhibited four signals corresponding to the four types of carbon in the citrate, δ

181.83 ppm,δ 179.15 ppm,δ 75.01 ppm,δ 45.49 ppm, which were also shifted to lower

fields when compared with free citric acid. The1H and 13C NMR spectra inFig. 1.5

revealed a similar case for ammonium Hf(citrate). Thus, we can conclude that the citrate

ligand was bound to the metal ion in these complexes, although we cannot determine the

number of citrate residues or other ligands associated with the metal ions.

The solvent peaks for D2O in Figs. 1.2 – 1.5were all at about 4.71 ppm37, shown

below as peaks with the highest intensity.
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A)

B)

Figure 1.2: Solution 1H NMR (A), 13C NMR (B) spectra of the starting reactant citric

acid in D2O
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A) B)

Figure 1.3: Solution 1H NMR (A), 13C NMR (B) spectra of the ammonium Ti(citrate)
complex in D2O
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A)

B)

Figure 1.4: Solution 1H NMR (A), 13C NMR (B) spectra of the ammonium Zr(citrate)
complex in D2O
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A)

B)

Figure 1.5: Solution 1H NMR (A), 13C NMR (B) spectra of the ammonium Hf(citrate)
complex in D2O
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Fig. 1.7 - 1.10are solution1H and13C NMR spectra of L-lactic acid, TiBALDH

from Sigma, synthesized TiBALDH (i.e., ammonium Ti(lactate), and ammonium

Zr(lactate).

For lactic acid, as shown inFig. 1.7, the chemical shifts of non-equivalent methyl

and tertiary C-H gave rise to a quartet centered atδ 4.266 ppm withJ = 7 Hz, and a

doublet atδ 1.302 ppm withJ = 7 Hz (for the active protons would exchange with D2O

solvent and would not appear in the spectrum33). For 13C NMR spectroscopy, there are 3

nonequivalent carbons in the L-lactic acid. C1 corresponds to the peak at the highest field,

δ 19.01 ppm, C2 atδ 66.16 ppm, and C3 at the lowest field,δ 178.34 ppm.35

a
b

1
2

3

Figure 1.6 : The proton and carbon types in L-lactic acid for NMR analysis.

For TiBALDH from Sigma,Fig. 1.8 shows that the solvent peak has shifted

from δ 4.71 ppm toδ 5.326 ppm, after adjusting the other peaks by substracting this shift,

the quartet was atδ 4.021 ppm withJ = 7 Hz. Compared with the quartet of free L-lactic

acid, these have shifted to higher fields by around 0.245 ppm, which may due to the

coordination of the ligand with the metal atom. The doublet was atδ 1.235 ppm withJ =

7 Hz. Compared with the doublet of free L-lactic acid, these peaks have shiftedto higher
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fields by around 0.067 ppm (i.e., a small shift comparing to the quartet). There are also

some side peaks around the doublet, but the concentrations of the proton associated with

these side peaks was very low compared with doublet proton. The13C NMR spectrum in

Fig. 1.8also showed the three representative signals of a lactate ligand, atδ 182.81 ppm,

δ 68.84 ppm, andδ 20.42 ppm. Comparing with the peaks of free L-lactic acid, the peaks

have shifted (δ 19.01 ppm,δ 66.16 ppm,δ 178.34 ppm.) to lower fields (δ 20.42 ppm,δ

68.84 ppm,δ 182.81 ppm). There is also a side peak atδ 82.63 ppm.

For synthesized TiBALDH (i.e., ammonium Ti(lactate)) inFig. 1.9, similar with

commercial TiBALDH, the solvent peak had shifted from 4.71 ppm to 5.326 ppm. By

substracting the shift from the proton peaks, the quartet was atδ 4.024 ppm withJ = 7 Hz.

Compared with the quartet of free L-lactic acid, these peaks have shifted tohigher fields

by around 0.242 ppm, which may due to the coordination of the ligand with the metal

atom. The doublet was atδ 1.238 ppm withJ = 7 Hz. Compared with the doublet of free

L-lactic acid, these peaks have shifted to higher fields by around 0.064 ppm (i.e., a small

shift comparing to the quartet). The13C NMR spectrum inFig. 1.9 for synthesized

TiBALDH also exhibited the three representative signals of a lactate ligand atδ 182.80

ppm, δ 68.83 ppm, andδ 20.42 ppm. Comparing with the peaks of free L-lactic acid,

these peaks have shifted (δ 19.01 ppm, δ 66.16 ppm,δ 178.34 ppm) to lower fields (δ

20.42 ppm,δ 68.83 ppm,δ 182.80 ppm).

For ammonium Zr(lactate) inFig. 1.10, the case was quite similar, though there

were more peaks unaccounted for in the spectrum. The solvent peak had shifted very

little in the 1H NMR spectrum, and the quartet was atδ 4.063 ppm withJ = 7 Hz.
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Compared with the quartet of free L-lactic acid, these peaks have shifted tohigher fields

by around 0.203 ppm, which may due to the coordination of the ligand with the metal

atom. The doublet was atδ 1.250 ppm withJ = 7 Hz. Compared with the doublet of free

L-lactic acid, these peaks have shifted to higher fields by around 0.052 ppm (i.e., a small

shift comparing to the quartet). There are also several low intensity resonances in the1H

NMR spectrum due to impurities in the complex sample. The13C NMR spectrum inFig.

1.10 for ammonium Zr(lactate) has a peak atδ 188.30 ppm, which would correspond to

the carbon in -COO- (shifting fromδ 178.34 ppm in free lactic acid). There is also a peak

located atδ 19.76 ppm with the strongest intensity, which corresponds to carbon in -CH3

(little shift comparing with that peak of free L-lactic acid atδ 19.01 ppm). The peak for

carbon in -CH- has been shifted fromδ 66.16 ppm toδ 82.01 ppm, which means the

complexation of the ligand with the Zr atom would affect the chemical environment of

carbon in -CH- greatly. Besides the peaks for the lactate ligand, there are also several

peaks in13C NMR spectrum of ammonium Zr(lactate) due to unknown substances, which

indicates that further purification work should be conducted for this precursor in the

future.

Thus, we can conclude from the above analyses that the lactate ligand does exist

in the complexes (i.e., TiBALDH from Sigma, synthesized TiBALDH, ammonium

Zr(lactate)), while future characterization is needed to determine the number of ligands

and complexation status of the ligands with the metal atoms.
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A)

B)

Figure 1.7: Solution1H NMR (A), 13C NMR (B) spectra of the starting reactant L-lactic

acid in D2O
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A)

B)

Figure 1.8: Solution1H NMR (A), 13C NMR (B) spectra of the TiBALDH from Sigma in
D2O
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A)

B) B)

Figure 1.9: Solution 1H NMR (A), 13C NMR (B) spectra of the synthesized TiBALDH
(i.e. ammonium Ti(lactate)) in D2O.
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A)

B)

Figure 1.10: Solution 1H NMR (A), 13C NMR (B) spectra of the ammonium Zr(lactate)
in D2O
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For mandelic acid, there are four types of non-equivalent protons except for

protons in -OH and -COOH, as shown inFig. 1.11. It can be seen fromFig. 1.12that the

solvent peak for DMSO had shifted fromδ 2.50 ppm36 to δ 4.723 ppm. By adjusting the

shifts, the singular peak atδ 5.034 ppm (originally atδ 7.257 ppm) corresponded to Ha in

-CH-. The multiplet centered atδ 7.731 ppm (originally at 9.584) corresponded to three

types of protons on the benzene ring (i.e., Hb, Hc, and Hd) which are spin-coupled to each

other.37 As DMSO is a solvent with low polarity, the active protons in -OH and -COOH

would also have peaks in the spectrum. InFig. 12, the broad peak at aboutδ 12.613 ppm

after adjusting (originally at aboutδ 14.836 ppm) corresponded to the proton in -COOH,

and the broad peak at aboutδ 6.851 ppm after adjusting (originally at aboutδ 8.074 ppm)

corresponded to the proton in -OH. For13C NMR spectroscopy, there are 6 nonequivalent

carbons in the mandelic acid as shown inFig. 1.11. C1 corresponded to the peak in lower

field, δ 174.4 ppm, C6 to δ 72.67 ppm, C2 corresponded to the peak atδ 140.5 ppm, and

C3, C4 and C5 corresponded to the peaks fromδ 126.92 ppm and 128.42 ppm.37 The set of

multiplet peaks fromδ 39.41 ppm to 40.08 ppm corresponded to the carbon peaks from

the solvent DMSO.35

a

b

c

d

Figure 1.11: The proton and carbon types in mandelic acid in for NMR analysis.
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For the 1H NMR spectrum of ammonium Ti(mandelate),Fig. 1.13 reveals a

multiplets centered atδ 7.423 ppm, which indicated the existence of the benzene ring in

the complex.37 There was also a singular peak at aboutδ 5.586 ppm corresponding to the

proton in -CH-,37 and a peak atδ 2.513 for the solvent proton35. From this spectrum,

many peaks with high intensity can be seen which don’t belong to the mandelate ligand,

which means that the purity of the ammonium Ti(mandelate) was not high. From the13C

NMR spectrum inFig. 1.13, the peak atδ 182.67 ppm, which shifted fromδ 174.4 ppm

for free mandelic acid, corresponded to the carbon in -COO-. The peaks atδ 144.36,δ

127.07ppm and 127.62 ppm were the signature peaks for benzene rings, which coincided

with the 1H NMR spectrum quite well. The peak atδ 73.40 ppm, shifting fromδ 72.67

ppm for free mandelic acid, corresponded to the carbon in -CH-.37 The solvent peaks are

from δ 39.61 ppm toδ 39.94 ppm35. Besides these peaks, there were still three side peaks

present in the spectra, which indicated that the ammonium Ti(mandelate) solution

contained has other impurities. Further purification work is needed for this precursor.

From the above analysis of the1H NMR and13C NMR spectra, the mandelate ligand does

exist in the ammonium Ti(mandelate) precursor. Future purification and characterization

work needs to be conducted to determine the number of ligands and complexation status

of the ligands with the Ti atom.
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A)

B)

Figure 1.12: Solution 1H NMR (A), 13C NMR (B) spectra of the starting reactant
mandelic acid in DMSO.
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A)

B)

Figure 1.13: Solution 1H NMR (A), 13C NMR (B) spectra of the ammonium
Ti(mandelate) in DMSO.
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1.5 SUMMARY AND OUTLOOK

In this work, several Ti-, Zr- and Hf-containing complexes with different types of

ligands were synthesized. Solution1H and 13C NMR spectroscopic analyses were

conducted on these complexes. The NMR spectroscopic analyses of ammonium

Ti(lactate), ammonium Ti(citrate), ammonium Ti(mandelate), ammoniumZr(lactate),

ammonium Zr(citrate), ammonium Hf(citrate) indicated that these complexes did possess

the desired ligands. But for some precursors (i.e., TiBALDH from Sigma, ammonium

Zr(lactate), ammonium Ti(mandelate)), the NMR spectra indicated thatthey were not

pure (i.e., there were some side peaks which could not be attributed to the ligands of there

complexes). Thus, work is left to future researchers to further purify thesecomplexes.

Moreover, solution1H and13C NMR analyses were not able to unambiguously determine

the structure of those complexes. Additional characterization work, such as FT-IR,

element analysis, TGA, XRD, etc, is needed on these complexes. For ammonium

Zr(mandelate), ammonium Hf(lactate), ammonium Hf(mandelate), NMR spectra were

not obtained.

All the complexes synthesized here were utilized in the next chapter in the

peptide-enabled, layer-by-layer deposition of the corresponding functional mineral oxide

thin films. With the syntheses route used in this chapter for metal-containingcomplexes,

and the potential of these complexes to be utilized as precursors in peptide-enabled layer-

by-layer deposition process, a variety of other functional mineral oxide thin films may be

fabricated for multiple applications in scientific and engineering fields.
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CHAPTER 2: LAYER-BY-LAYER FABRICATIONS OF BIO-

ENABLED FUNCTIOANL METAL-OXIDE THIN-FILMS USING

THE SYNTHESIZED COMPLEX PRECURSORS

2.1 SUMMARY

For the first time, several synthesized Ti-, Zr- and Hf-containing complexes were

utilized in the bio-inspired, layer-by-layer fabrication of corresponding functional

inorganic oxide (i.e., TiO2, ZrO2, HfO2), thin films.

Si wafer templates were exposed, in alternating fashion, to aqueous protamine-

and titania or zirconia or hafnia precursor-bearing solutions. Protamine, a polycationic

peptide obtained from a variety of fish, possesses 31 amino acids, most of which are

arginines. Protamine is able to electrostatically bind to surfaces thatare negatively

charged and can induce the formation of TiO-, ZrO-, HfO- precipitates upon exposure to

the synthesized precursors. Subsequent pyrolysis of the protamine-derived coatings

yielded thin-film coatings consisting of networks of interconnected pores and titania or

zirconia or hafnia nanoparticles respectively.

The QCM-D results of the synthesized complexes indicated that the citrate

precursors, (i.e., ammonium Ti(citrate), ammonium Zr(citrate), ammoniumHf(citrate))

could not be utilized as precursors in the protamine-enabled layer-by-layer deposition

process, while the other five precursors (i.e., ammonium Ti(lactate), ammonium

Ti(mandelate), ammonium Zr(lactate), ammonium Zr(mandelate), ammonium

Hf(mandelate)) could be used as precursors in the protamine-enabled layer-by-layer

deposition process. Apart from ammonium Ti(mandelate), all the other four precursors



36

(i.e., ammonium Ti(lactate), ammonium Zr(lactate), ammonium Zr(mandelate),

ammonium Hf(mandelate)), followed the active volume deposition model, which

involves a transitional point from exponential to linear growth during the deposition

process. Ammonium Ti(mandelate) exhibited a linear growth during the deposition

process, which conformed to an active surface model. The AFM analyses of the samples

coated by these precursors coincided well with the QCM-D analyses. The ligandtype and

the metal element type had a significant influence on the deposition behavior of the

complexes.
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2.2 INTRODUCTION

Introduction to Biomineralization and peptide-enabled Layer-by-Layer deposition

Functional materials synthesized under mild conditions are of growing interest to

the materials research community and may find promising applications in a range of bio-

and nanotechnologies.1-4 If we turn our eyes to nature, we can find that nature possesses

an extraordinary and unique capability to assemble inorganic components into a wide

range of complex micro- and nanopatterned architectures under mild conditions.5-7

Learning from nature, we could perfect our ability to fabricate nanostructuredmaterials

for a wide variety of applications and shed light on fundamental mechanisms to elucidate

some nano and microscale phenomena in biomineralization.8-11 One of the most

investigated examples is the study of the role of biomolecules, such as silicatein and

silaffin, in the biosilification process.12-14 Various chemically-synthesized analogues of

silaffins, including a 19-amino-acid R5 peptide, homopolymers composed of key amino

acids, long-chain polyamines, short-chain amines and even mono-amines have also been

successfully employed for the rapid precipitation of nano-structured silica.15-19 Many

other peptides and proteins have also been discovered that are capable of inducing the

precipitation of inorganic materials, such as CdSe, GeO2, Fe3O4, Co3O4, Ga2O3, BaTiO3,

etc., that are useful in scientific and engineering applications.20-25 Morse, et al.26 found

that silicatein, an enzymatic biocatalyst purified from the glassy skeletal elements of a

marine sponge, is also capable of catalyzing and templating the hydrolysis, and

subsequent polycondensation, of a water-stable alkoxide-like conjugate of titanium to

form titanium dioxide at low temperature and pressure and of neutral pH. Sewell and

Wright27 reported that the R5 peptide, a bio-inspired analogue derived from the NatSil
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protein in the diatomCylindrotheca fusiformis, can form titanium dioxide in a

concentration-dependent manner from the nonnatural substrate, titanium bis(ammonium

lactato) dihydroxide. However, compared with silica, the biomimetic synthesesof titania

nanomaterials, and the associated mechanism under ambient conditions, are still not well

investigated and understood. It was reported that the electrostatic interaction between

biomolecules and inorganic species may play a crucial role in biomineralization.28–36

Fang, et al. employing the 31-residue peptide protamine (PA), with sequence

H3N+-ARRRRSSSRPIRRRRPRRRTTRRRRAGRRRR-CO2
-, as the mineralizing

polyamine to enable the Layer-by-Layer (LbL) deposition ofmineral oxides.37 The

process of LbL mineralization occurred by the alternating exposure of surfaces to

solutions containing protamine and a precursor of silicon- or titanium-oxide (Si-O or Ti-

O, respectively) in aqueous solutions at near-neutral pH. PA adsorbs to negatively-

charged mineral surfaces and induces the deposition of Si-Oor Ti-O upon exposure of

the protamine-coated surface to the mineral precursor. This process results in a newly-

formed surface with a negative charge for Si-O and Ti-O coatings, allowing for the

adsorption of more protamine and subsequent mineral oxide deposition. A graphic

representation of LbL mineralization is given in Scheme 1.1.37 The significance of the

electrostatic interaction of protamine and the mineral oxide surface was made evident by

Fang and co-workers, who showed a decrease in titania deposition when LbL was

attempted in solutions that were suff iciently acidic or contained high NaCl

concentrations.38 An acidic solution reduced the presence of negative chargeson the

m i n e r a l o x i d e s u r f a c e , w h i l e h i g h s a l t c o n c e n t r a t i o n s s c r ee n e d

the negative charges via Na+ Ions.
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Figure 2.1: The Protamine-induced Layer-by-layer (LBL) deposition of Ti-O, Si-O

coatings.37

LbL mineralization has been also performed to coat Ti-O or Si-O on CaCO3

spheres that contain entrapped enzymes.39-44 After the deposition of multiple mineral

oxide layers, the CaCO3 was dissolved and the protamine/mineral oxide coatings became

free-standing, resulting in an enzyme-containing solution encased by the mineral oxide

shell. LbL mineralization has also been utilized by Berrigan, et al. to deposit conformal

Ti-O coatings on porous anodic alumina membranes. These coatings were subjected to a

thermal treatment to remove organic material, leaving behind a semi-conductive TiO2

coating. Subsequent dissolution of the alumina template yielded aligned TiO2 nanotube

arrays that were then utilized in a photovoltaic cell.45

As the present work will demonstrate, other acidic oxide (pI < 7) besides SiO2 or

TiO2, such as ZrO2 and HfO2, can also be synthesized in a protamine-enabled layer-by-

layer fashion.
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2.3 EXPERIMENTAL PROCEDURES

The methods used to generate and characterize the TiO2, ZrO2 and HfO2 thin

films, using the synthesized Ti-, Zr-, and Hf-containing precursors discussed in Chapter 1

are discussed in this section.

The chemicals discussed in the Experiment Section are as below: deionized (DI)

water (18.2 MΩ·cm), protamine sulfate (Grade X, Sigma-Aldrich, St. Louis, MO), pH 8

Tris-HCl buffer (Alfa Aesar, Ward Hill, MA), 98% w/w H2SO4 (Alfa Aesar, Ward Hill,

MA), and 98% w/w H2O2 (Alfa Aesar, Ward Hill, MA).

2.3.1 Quartz Crystal Microbalance Characterization of Synthesized TiO-, ZrO-,

and HfO-bearing coatings

The potential for utilizing the synthesized Ti-, Zr-, Hf- complexes as precursors

for protamine-enabled layer-by-layer deposition was investigated with a quartzcrystal

microbalance with simultaneous dissipation monitoring (QCM-D, Q-sense E1 system,

Biolin Scientific, Inc., Vastra Frolunda, Sweden). Standard gold-coated quartz sensors

were coated with a thin layer (~50 nm) of SiO2 ( Model QSX303, Biolin Scientific, Inc.,

Vastra Frolunda, Sweden). The 1st, 3rd, 5th, 7th, 9th, 11th , and 13th harmonics were

measured simultaneously during all QCM-D experiments. The 5th harmonic was selected

for analysis because smaller harmonics (1st and 3rd) sensed larger areas that were affected

by the O-ring used to hold the sensor, and analyses with higher harmonics (11th and 13th)

became less sensitive with thicker coatings.

All sensors were cleaned by a 10 min. UV-ozone treatment (UV/Ozone

ProCleaner, Bioforce Nanoscience, Inc., Ames, IA, USA) followed by incubation for 30

min. in a 2% v/v sodium dodecyl sulfate (SDS, 99+% purity, Amresco, Solon, OH, USA)
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solution. The sensors were rinsed thoroughly with water, dried under nitrogen flow for10

min, and then cleaned by UV-ozone treatment for 10 min. QCM-D was used to examine

ten deposition cycles at a solution flow rate of 0.1 mL/min and 22℃.

For protamine-mediated deposition of TiO-, ZrO-, and HfO-bearing films, a

single cycle consisted of four steps: (1) exposure to protamine sulfate (100 ug/ml in pH

8 100 mM Tris-HCl buffer) for 10 min., (2) exposure to a buffer ( pH 8 100 mM Tris-

HCl) rinse for 5 min.; (3) exposure to a precursor solution (~5 mM in pH 8 100 mM

Tris-HCl buffer) for various times, t, according to the number of cycles; and (4)exposure

to a buffer ( pH 8 100 mM Tris-HCl) rinse for 5 min. The precursor solution exposure

time varied for each cycle due to changes in reaction kinetics, and precursor solutions

flow continued until the resonance frequency change plateaued (i.e.,∆F varied by less

than 1 Hz per min.), which indicated that the reaction of those precursors with the

deposited protamine was essentially completed.

QCM analyses of the protamine-enabled deposition of films using TiBALDH

from Sigma (serving as a control), ammonium Ti(lactate), ammonium Ti(citrate),

ammonium Ti(mandelate), ammonium Zr(lactate), ammonium Zr(citrate),ammonium

Zr(mandelate), ammonium Hf(citrate), and ammonium Hf(mandelate) complexes have

been completed.

2.3.2 Fabrication of LbL Protamine-Enabled TiO2, ZrO 2 and HfO2 Thin-Film

Coatings on Silicon Wafer Substrates

The QCM result analyses indicated that, none of the citrates yielded layer-by-

layer coatings by protamine. Thus, ammonium Ti(lactate), ammonium Ti(mandelate),

ammonium Zr(lactate), ammonium Zr(mandelate), ammonium Hf(mandelate) were



42

chosen as precursors for the protamine-enabled deposition of thin film coatings on silicon

wafer substrates.

(1) Fabrication of TiO2 Thin Films on Silica Wafer Substrates Using Ammonium

Ti(lactate) and Ammonium Ti(mandelate) Precursor Solutions

TiO-bearing films were deposited onto silicon wafer substrates (Wafernet, Inc.,

San Jose, CA, USA) that were incubated in a piranha solution (9M H2SO4 and 3M H2O2)

for 30 min. at room temperature. After rinsing with a large amount of water, thewafers

were rinsed in ethanol, and then dried with nitrogen at room temperature for 5 min. The

wafers were then cleaned by rinsing in ethanol, followed by water, and driedwith

flowing nitrogen at room temperature for 5 min. The wafers were then cut into 2 cm by 2

cm pieces for coating.

Prior to deposition, the Si substrates were incubated in a 100 mM pH 8 buffer

solution for at least 15 min to allow the surface to reach equilibrium. For each cycle, the

coating procedure was as follows: The silica wafers were first incubated in a 1 mg/mL

protamine sulfate solution in the 100mM pH 8 Tris-HCl buffer for 10 min to allow for

protamine binding to the silica surface. The protamine-treated substrates were rinsed

three times with the Tris-HCl buffer, and then incubated in a 4.82 ± 0.04 mM ammonium

titanium lactate complex solution (diluted directly from the original synthesized precursor

solution) fort minutes, wheret was based upon the time required for saturation according

to QCM-D measurements, which was as shown inTable 2.1. The Si wafer was then

rinsed three times in buffer to remove excess ammonium titanium lactate.

By repeating this deposition cyclen-1 times,n number of layers were deposited.

For the TiO-bearing coating, the deposition process was repeated for 1, 3, 5, 7, and 9
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times, which resulted in TiO-bearing Si substrates with coatings generated with a total of

2, 4, 6, 8, 10 cycles respectively. For each coating session, there were 2 Si wafers that

underwent the same procedure. After the coating process was finished, one specimenwas

rinsed with DI water and dried with flowing nitrogen at room temperature for5 min,

while the other was heated in a tube furnace (Lindberg / Blue M, NC USA) at a ramp rate

of 1.5 °C/min to 500°C (AutoFire® Controller, Orton Ceramic Foundation, OH, USA

outfitted with a k-type thermocouple, OMEGA Engineering, Inc., CT, USA) followedby

holding at 500°C for 4 hrs in air to allow for organic pyrolysis of the protamine.

When using the commercial TiBALDH solution from Sigma, the coating

procedure was exactly the same as above.

When using the ammonium Ti(mandelate) precursor, the coating procedure was

exactly the same as above except for substitution of the 4.82 ± 0.04 mM ammonium

Ti(lactate) solution with a 4.51 ± 0.05 nM ammonium Ti(mandelate) precursor solution.

After the coating and firing processes, 10 Si wafer substrates exposed to 2, 4,6, 8,

10 coating cycles, were characterized before & after firing by multiple analytical methods

(SEM, TEM, XRD, and AFM analyses).

Table 2.1. Precursor incubation times for protamine-enabled deposition using TiBALDH

from Sigma, synthesized TiBALDH, or ammonium Ti(mandelate) precursor.

Time
(min)

Cycles
1, 2 3, 4 5, 6 7, 8 9, 10

TiBALDH
from Sigam

5 10 15 20 30

Synthesized
TiBADLH

5 10 15 20 30

Ammonium
Ti(mandelate)

5 10 10 15 15
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(2) Fabrication of ZrO2 Thin-films on Silica Wafer Substrates Using Ammonium

Zr(lactate) and Ammonium Zr(mandelate) Precursor Solutions

The coating procedure was exactly the same as for the ammonium Ti(lactate)

complex, except for substitution of the 4.82 ± 0.04 mM ammonium Ti(lactate) precursor

solution with a 4.61 ± 0.03 mM ammonium Zr(lactate) precursor solution or a 4.42 ±

0.05 mM ammonium Zr(mandelate) precursor solution. The firing condition for these

coated samples consisted of a ramp rate of 1.5 °C/min to 600℃, followed by holding at

600℃ for 6 hrs in air.

After the coating and firing processes, 16 Si wafer substrates exposed to 2, 4,6, 8,

10, 12, 14, or 16 coating cycles, were characterized before & after firing by multiple

analytical methods (SEM, TEM, XRD, and AFM analyses).

(3) Fabrication of HfO2 Thin-films on Silica Wafer Substrates Using an Ammonium

Hf(mandelate) Precursor Solution

The coating procedure was exactly the same as for the coating process of the

ammonium Ti(lactate) complex, except for substitution of the 4.82 ± 0.04 mM

ammonium Ti(lactate) precursor solution with a 4.32 ± 0.03 mM ammonium

Hf(mandelate) solution. The firing condition for these coated samples consisted of a

ramp rate of 1.5 °C/min to 600℃, followed by holding at 600℃ for 6 hrs in air.

After the coating and firing processes, 16 Si wafer substrates exposed to 2, 4,6, 8,

10, 12, 14, 16 coating cycles, were characterized before & after firing by multiple

analytical methods (SEM, TEM, XRD, AFM).
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The incubation time for protamine-enabled LbL deposition using ammonium

Zr(lactate), ammonium Zr(mandelate) or ammonium Hf(mandelate) precursors was as

shown below inTable 2.2.

Table 2.2. Precursor incubation times for protamine-enabled deposition using ammonium

Zr(lactate), ammonium Zr(mandelate) and ammonium Hf(mandelate) precursors.

Time
(min)

Cycles
1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16

Ammonium
Zr(lactate)

5 10 10 15 15 20 20 30

Ammonium
Zr(mandelate)

5 10 10 15 15 20 20 30

Ammonium
Hf(mandelate)

5 10 10 15 15 20 20 30

2.3.3 Characterization of LBL Protamine-Enabled TiO2, ZrO 2, and HfO2 Thin

Film Coatings on Si Wafer Substrates

(1) Atomic Force Microscopy Characterization

Atomic force microscopy (AFM, Digital Instruments Nanoscope@ III, Tonawanda,

NY, USA) was conducted on protamine-derived films on silicon wafers aftern number of

deposition cycles (wheren varied for different precursors) before and after firing in air.

The measurements were conducted in tapping mode using 10 nm radius of curvature

general purpose probes (Mikromasch AFM NSC36, Mikromasch USA, San Jose, CA,

USA) with a spring constant of 0.6 N/m and a resonant frequency of 75 Hz. After

deposition was completed, a razor was used to make several cuts through the coating.

Thickness measurements were then conducted across the coated/uncoated boundary with
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a scan area of 10µm by 20µm defined with Nanoscope Analysis software V1.4r1 (Veeco

Instruments, Plainview, NY, USA).

Topographical images of the coated area on as-coated and heat treated films were

obtained over a 15µm by 15µm area. The images were plane-leveled and the root-mean

square roughness of the films was measured using Nanoscope Analysis software over

five different 5µm by 5µm areas.

AFM thickness measurements were conducted on the following samples: i)

protamine-enabled films before firing using TiBALDH from Sigma, synthesized

TiBALDH (i.e., ammonium Ti(lactate)), ammonium Ti(mandelate), ammonium

Zr(lactate), ammonium Zr(mandelate), or ammonium Hf(mandelate) precursors; and ii)

some of these protamine-enabled films after firing (for films using synthesized

TiBALDH (i.e., ammonium Ti(lactate), ammonium Ti(mandelate), and ammonium

Zr(mandelate) precursor).

(2) X-ray Diffraction Analyses of the TiO2, ZrO2, HfO2 Thin Films

X-ray diffraction (XRD) analyses were conducted with Cu Kα radiation using an

X-Pert Pro Alpha 1 diffractometer equipped with an incident beam Johannsen

monochromator and an X’ Celerator linear detector (PANalytical, Almelo, The

Netherlands). For titanium dioxide, zirconium dioxide, and hafnium dioxide, the samples

were scanned from 20 to 60 2θ with a step size of 0.02 and a preset time of 25 s. All

peaks were identified according to the JCPDS file. The samples characterized by XRD

analyses were: 6-cycles-coated Si wafer substates after firing using ammonium

Ti(lactate), ammonium Ti(mandelate), ammonium Zr(lactate), ammoniumZr(mandelate),

ammonium Hf(mandelate) precursor solutions.
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(3) SEM & TEM Characterization of the TiO2, ZrO2, and HfO2 Thin Films

Scanning electron microscopy was conducted with a field emission scanning

electron microscope (Leo 1530 FEG SEM, Carl Zeiss SMT Ltd., Cambridge, UK)

equipped with an energy dispersive X-ray spectrometer (INCA EDS, Oxford Instruments,

Bucks, UK).

A focused ion beam (FIB) instrument (Model Nova Nanolab 200, FEI, Oregon,

USA) was used to generate cross sections of the films. Ion milled thin foilcross sections

of the films were characterized with a transmission electron microscope (Model JEM

4000EX, JEOL, Tokyo, Japan) operated at 400 kV.

The samples characterized by SEM and TEM were: 6-cycles-coated Si wafer

substates after firing using ammonium Ti(lactate), ammonium Ti(mandelate), ammonium

Zr(lactate), ammonium Zr(mandelate), or ammonium Hf(mandelate) precursor solutions

(the same samples as for the XRD analyses).
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2.4 RESULTS AND DISCUSSION

2.4.1 Quartz Crystal Microbalance Characterization of Synthesized TiO-, ZrO-, and

HfO-bearing Coatings

The reaction kinetics of the protamine-enabled layer-by-layer deposition of the Ti-,

Zr-, Hf-containing complexes during each stage of the deposition process were examined

using QCM-D analyses. For the three Ti-containing precursors (i.e., ammonium

Ti(lactate), ammonium Ti(citrate), ammonium Ti(mandelate)), therewere a total of ten

depositions completed on a SiO2-coated sensor at pH 8.0, a flow rate of 100µL min-1 and

22℃. For the ammonium Zr(lactate), ammonium Zr(citrate), ammonium Zr(mandelate),

ammonium Hf(citrate), and ammonium Hf(mandelate) precursors, the total number of

deposition cycles went up to 16. To be consistent with the former work of J. D.

Berrigan46 on protamine-enabled deposition of TiO-bearing coatings using commercial

TiBALDH from Sigma, the 5th harmonic was selected for QCM-D

analyses. .

(1) Comparison of deposition behavior of Synthesized Ammonium Ti(lactate),

Ammonium Ti(citrate), or Ammonium Ti(mandelate) precursors vs. TiBALDH from

Sigma*

* For simplicity, synthesized TiBALDH was used to refer to the synthesized ammonium

Ti(lactate) complex.
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The frequency changes (∆F) of the 5th harmonic of the quartz crystal, during the

deposition using synthesized TiBALDH, ammonium Ti(citrate), ammonium

Ti(mandelate), or TiBALDH from Sigma, are shown inFigure 2.2.
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Figure 2.2: Quartz crystal microbalance data showing the frequency change during layer-

by-layer, protamine-enabled deposition using the following precursors over 10 cycles:a)

TiBALDH from Sigma, b) synthesized TiBALDH (ammonium Ti(lactate) complex), c)

ammonium Ti(citrate) complex, d) ammonium Ti(mandelate) complex.

From Fig. 2.2 it can be seen that for the ammonium Ti(citrate) complex, a very

small decrease in frequency (~ 10 Hz) occurred when running the precursor salt solution,

which meant that the amount of material deposited was quite low. Furthermore, when

running buffer through the sensor afterwards, the frequency returned to the original
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plateau, which indicated that the deposit had been largely washed off from the surface of

the sensor. This phenomenon repeated for 3 cycles, which indicated that this ammonium

Ti(citrate) complex was not effective as a precursor for the protamine-enabled layer-by-

layer coating method. As the QCM-D plots indicated, all of the other complexes (i.e.,

TiBALDH from Sigma, synthesized TiBALDH (ammonium Ti(lactate)), ammonium

Ti(mandelate)), did act as effective precursors for the layer-by-layer deposition by

protamine.

The evolution of -∆F, from QCM-D analyses of the above 3 precursors, versus the

number of deposition cycles, is presented inFig. 2.3. While the Sauerbrey model is

typically used to model thickness values from QCM data, the use of this model is limited

to rigid films exhibiting a change in dissipation (∆D) of less than 1.47 After 3 deposition

cycles,∆D was much larger than 1 per 10 Hz and the measured harmonics all became

divergent for all of the films. Therefore, the Sauerbrey relation between∆F and adsorbed

mass could not be used to accurately relate∆F to film thickness, and the QCM-D data

analysis was limited to analyses of trends in∆F.

From Figure 2.3, it can be seen that the synthesized TiBALDH and ammonium

Ti(mandelate) complex can both be successfully utilized in the protamine-enabled layer-

by-layer coating process on the SiO2 sensor. The TiBALDH from Sigma and synthesized

TiBALDH both exhibited an exponential fit over cycles 1-6, and transitioned to a linear

regime afterwards. For each cycle, the two precursors yielded similar deposition rates,

though the∆F values for synthesized TiBALDH were slightly higher than that of

TiBALDH from Sigma. The ∆F values for the ammonium Ti(mandelate) complex
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exhibited a linear fit from cycles 1 to 10, with much less deposition for each cycle

compared to TiBALDH from Sigma and synthesized TiBALDH.
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Figure 2.3: The ∆F evaluated using the 5th harmonic from QCM-D measurement of

protamine-enabled deposition using TiBALDH from Sigma, synthesized TiBALDH, or

ammonium Ti(mandelate) precursor solutions over 10 cycles. Error bars represent the

standard deviation recorded from two experiments. Cycles 1 to 6 of the protamine-

enabled TiBALDH and synthesized TiBALDH films were fit using an exponential

equation while cycles 6 to 10 were fit with a linear regression to determine the wet film

growth rate. For the ammonium Ti(mandelate) complex, cycles 1 to 10 were fit with a

linear equation.
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Figure 2.4: The linear dependence of ln(-∆F) with n for films prepared using TiBALDH

from Sigma or synthesized TiBALDH for deposition cycles 1 to 6.

For the synthesized TiBALDH,Equation 2.1was used to fit the behavior during

the first 6 deposition cycles with an R2 = 0.9856. For the TiBALDH from Sigma,

Equation 2.2 was used to fit the behavior during 1 to 6 deposition cycles with an R2 =

0.9867. For the ammonium Ti(mandelate) complex,Equation 1.3 was used to fit the

behavior during 1 to 10 deposition cycles with an R2= 0.9893.

∆F = -53+66(0.58*n) (2.1)

∆F = -348+266e(0.33*n) (2.2)

∆F = -14+52.2*n (2.3)
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A linear dependence of ln(-∆F), for the first six cycles withn was observed for

synthesized TiBALDH and TiBALDH from Sigma (Figure 2.4). The linear fit of

synthesized TiBALDH over cycles 1 to 6 yielded a reasonable fit (R2=0.9962) to

Equation 2.4. For TiBALDH from Sigma over cycles 1 to 6, a fit with R2= 0.9959, was

obtained forEquation 2.5.

ln(-∆F) = 3.63 + 0.67*n (2.4)

ln(-∆F) = 3.58+ 0.65*n (2.5)

From the plot inFigure 2.3, it was apparent that the exponential equation failed

to fit well data points for TiBALDH from Sigma and synthesized TiBALDH beyond the

sixth deposition cycle. After the sixth deposition cycle, the∆F of TiBALDH from Sigma

increased at a linear rate of 765 ± 47 Hz per cycle (R2=0.9887), and the∆F of synthesized

TiBALDH increased at a linear rate of 807 ± 53 Hz per cycle (R2=0.99749), which

suggested that an exponential-to-linear transition occurred at the sixth deposition cycle.

Prior work conducted by J. D. Berrigan in our lab demonstrated that the protamine-

enabled TiO-bearing films using TiBALDH from Sigma follow an active volume

mechanism.46 For a LBL deposition process that conforms to an active volume

mechanism, the exponential deposition would only be maintained for a limited number of

deposition steps before transitioning to a linear deposition regime. The synthesized

TiBALDH proved to behave similarly as TiBALDH from Sigma in the protamine-

enabled layer-by-layer deposition process, which both fall into the active volume

mechanism category. However, the ammonium Ti(mandelate) complex behaved

differently from the TiBALDH from Sigma and synthesized TiBALDH, as it obeyed a

linear growth from cycle 1 to cycle 10. This result indicated that the ligand type ofthe
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precursor had a significant effect on the deposition mechanism of the protamine-enabled

process.

One possible reason for the difference in deposition behavior of ammonium

Ti(mandelate) and ammonium Ti(lactate) is that, the deposit generated by protamine-

enabled ammonium Ti(mandelate) coating was more compact than that for the

ammonium Ti(lactate) coating. Thus, the protamine molecules inside the deposit were not

able to diffuse out in the following step of deposition, such protamine migration is

required for exponential growth behavior.46The∆D (dissipation change) vs.n (number of

deposition cycles) plots for protamine-enabled LbL deposition of ammonium

Ti(mandelate) and ammonium Ti(lactate) shown below in Fig. 2.5 were consistent with

more compact/rigid oxide films for the ammonium Ti(mandelate) precursor.
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Figure 2.5: Plot of ∆D vs. n using the 5th harmonic from QCM-D measurement of

protamine-enabled deposition using synthesized TiBALDH (i.e., ammonium Ti(lactate)),

or ammonium Ti(mandelate) precursor solutions over 10 cycles. Error bars representthe

standard deviation recorded from two experiments.
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It can be seen fromFig. 2.5 that, for each deposition cycle, the dissipation change

for films generated by protamine-enabled deposition using ammonium Ti(lactate) was

much larger than that for ammonium Ti(mandelate), which suggested that filmsgenerated

using ammonium Ti(mandelate) possessed lower viscoelasticity and thus was more

rigid/compact than the films generated using ammonium Ti(lactate). In thiscase, the

protamine molecules encapsuled in the films generated by ammonium Ti(mandelate)

were apparently not able to diffuse “out” of the film to react at the film/solution

interface.46 Thus, for the protamine-enabled LbL deposition using ammonium

Ti(mandelate), it follows an active surface model, instead of the active volume model

was obeyed.

( 2 ) Comparison of the deposition behavior of ammonium Zr(lactate), ammonium

Zr(mandelate), and ammonium Hf(mandelate) precursors

The frequency change (∆F) of the 5th harmonic of the quartz crystal during the

deposition process over 10 cycles with ammonium Zr(citrate), ammonium Zr(lactate),

ammonium Zr(mandelate), ammonium Hf(mandelate) or ammonium Hf(citrate)

precursors were shown inFig. 2.6.The evolution of -∆F from QCM-D analyses using the

above three precursors (i.e., ammonium Zr(lactate), ammonium Zr(mandelate) and

ammonium Hf(mandelate)) versus the number of deposition cycles is presented inFigs.

2.7 - 2.10. .

From Fig. 2.6, it can be seen that ammonium Zr(citrate) and ammonium

Hf(citrate) exhibited similar deposition behavior as for ammonium Ti(citrate) in the

previous section, in which the deposit generated with a given precursor solution has been
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largely washed off from the surface of the sensor during subsequent exposure to the

buffer solution. The underlying mechanism explaining why ammonium Zr(citrate),

ammonium Hf(citrate), and ammonium Ti(citrate), are ineffective precursors as for the

protamine-enabled, layer-by-layer coating method is not precisely known. A possible

reason for this big difference between the citrates and the other complexes (i.e., the

lactates and mandelates), could be that the citrate has a stronger complexation with the

metal ion,47,48 which makes it harder for protamine to strip the ligand off the precursor to

form TiO-, ZrO- and HfO-bearing coatings.
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Figure 2.6: Quartz crystal microbalance data showing the frequency change during layer-

by-layer, protamine-enabled deposition of the following precursors over 16 cycles: a)

ammonium Zr(lactate) complex, b) ammonium Zr(mandelate) complex, c) ammonium

Zr(citrate) complex, d) ammonium Hf(citrate) complex, e) ammonium Hf(mandelate)

complex.
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Figure 2.7: The ∆F evaluated using the 5th harmonic from QCM-D analyses of

protamine-enabled deposition using an ammonium Zr(lactate) complex over 16 cycles.

Error bars represent the standard deviation recorded from two experiments. Cycles 1 to

13 of the protamine-enabled, ammonium Zr(lactate) synthesized film were fitusing an

exponential equation while cycles 13 to 16 were fit with a linear regression.
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Figure 2.8: The ∆F evaluated using the 5th harmonic from QCM-D analyses of

protamine-enabled deposition using an ammonium Zr(mandelate) complex over 13

cycles. Error bars represent the standard deviation recorded from two experiments.

Cycles 1 to 9 of the protamine-enabled ammonium Zr(lactate) synthesized film were fit

using an exponential equation while cycles 9 to 13 were fit with a linear regression.
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Figure 2.9: The ∆F evaluated using the 5th harmonic from QCM-D analyses of

protamine-enabled deposition using an ammonium Hf(mandelate) complex over 15

cycles. Error bars represent the standard deviation recorded from two experiments.

Cycles 1 to 10 of the protamine-enabled ammonium Zr(lactate) synthesized film were fit

using an exponential equation while cycles 9 to 13 were fit with a linear regression.
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Figure 2.10: The linear dependence of ln(-∆F) with n of ammonium Zr(lactate) from

cycles 1 to 13, ammonium Zr(mandelate), or ammonium Hf(mandelate) complex from

cycles 1 to 9.
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From Fig. 2.7 to Fig. 2.9, it can be seen that the ammonium Zr(lactate),

ammonium Zr(mandelate), and ammonium Hf(mandelate) complexes could all be

successfully utilized in the protamine-enabled, layer-by-layer coating process on the

SiO2 sensor. Deposition with each of these precursors followed exponential behavior at

first, and transitioned to a linear regime, which was consistent with anactive volume

mechanism (as for TiBALDH from Sigma and synthesized TiBALDH (i.e., ammonium

Ti(lactate)).

For ammonium Zr(lactate),Equation 2.6 was used to fit the behavior during the

first 13 deposition cycles with an R2 = 0.9994. For ammonium Zr(mandelate),Equation

2.7was used to fit the behavior during 1 to 9 deposition cycles with an R2 = 0.99705. For

ammonium Hf(mandelate) complex,Equation 2.8 was used to fit the behavior during 1

to 9 deposition cycles with an R2= 0.99718.

∆F = 95.5+106exp(0.145*n) (2.6)

∆F = -184+188exp(0.21*n) (2.7)

∆F = -130+134exp(0.20*n) (2.8)

The linear dependence of ln(-∆F) for the first 13 cycles withn using ammonium

Zr(lactate), and of ln(-∆F) for 1 to 9 cycles withn using ammonium Zr(mandelate) and

ammonium Hf(mandelate) complexes, verified the exponential nature of the deposition

process (Figure 2.9). The linear fit for deposition with ammonium Zr(lactate) for cycles

1 to 13 yielded a reasonable value of R2=0.97127, as shown inEquation 2.9. For

deposition using ammonium Zr(mandelate), the behavior for cycles 1 to 9 yielded a fit
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with R2= 0.97797, as shown inEquation 2.10. For ammonium Hf(mandelate) complex,

the behavior for cycles 1 to 9 yielded a fit with R2 = 0.96207, as shown inEquation 2.11.

ln(-∆F) = 3.417 + 0.245*n (2.9)

ln(-∆F)=3.433+0.378*n (2.10)

ln(-∆F)=3.806+0.381*n (2.11)

From the data inFigs. 2.7 and 2.8, and in Fig. 2.9, it was apparent that the

exponential equation failed to fit data points beyond the 13th and 9th deposition cycles,

respectively. After the 13th deposition cycle, the -∆F of ammonium Zr(lactate) increased

at a linear rate of 98 ± 11 Hz per cycle (R2=0.9913). After the 9th deposition cycle, the -

∆F of ammonium Zr(mandelate) increased at a linear rate of 220 ± 16 Hz per cycle

(R2=0.9967), and the -∆F of ammonium Hf(mandelate) increased at a linear rate of 160 ±

15 Hz per cycle (R2=0.9994); that is, an exponential-to-linear transition occurred at the

13th cycle for deposition with ammonium Zr(lactate) and at the 9th cycle for deposition

with ammonium Zr(mandelate) and ammonium Hf(mandelate).

2.4.2 SEM & TEM Characterization of the TiO 2, ZrO 2, HfO2 Thin Film

(1) SEM analyses of Si substrates coated using ammonium Ti(lactate), ammonium

Ti(mandelate), ammonium Zr(lactate), ammonium Zr(mandelate), and ammonium

Hf(mandelate) complexes

Si wafer substrates coated with 6 deposition cycles using ammonium Ti(lactate),

ammonium Ti(mandelate), ammonium Zr(lactate), ammonium Zr(mandelate),and

ammonium Hf(mandelate) were examined after firing by SEM.
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It can be seen fromFig. 2.12 - Fig. 2.16that, by comparing these SEM images

with Fig. 2.11, a SEM control image of an uncoated Si wafer, the coatings on the Si

wafer substrates were all continuously and relatively uniform in appearance,which

demonstrated that all of the 5 synthesized precursors (i.e., ammonium Ti(lactate),

ammonium Ti(mandelate), ammonium Zr(lactate), ammonium Zr(mandelate),and

ammonium Hf(mandelate)) could be successfully utilized in the protamine-enabled

layer-by-layer deposition process. These results were consistent with the QCM analyses

for the 5 precursors.

250 nm

Figure 2.11: Secondary electron images of uncoated Si wafer substrate
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Figure 2.12: Secondary electron image of a TiO2-coated Si wafer generated with 6

deposition cycles using an ammonium Ti(lactate) precursor after firing at 500℃ for 4 hrs

in air.

250 nm

Figure 2.13: Secondary electron image of a TiO2-coated Si wafer generated with 6

deposition cycles using an ammonium Ti(mandelate) precursor after firing at 500℃ for 4

hrs in air.
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250 nm

Figure 2.14: Secondary electron image of a ZrO2-coated Si wafer generated with 6

deposition cycles using an ammonium Zr(lactate) precursor after firing at 600℃ for 6 hrs

in air.

250 nm

Figure 2.15: Secondary electron image of a ZrO2-coated Si wafer generated with 6

deposition cycles using an ammonium Zr(mandelate) precursor after firing at 600℃ for 6

hrs in air.
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250 nm

Figure 2.16: Secondary electron image of a HfO2-coated Si wafer generated with 6

deposition cycles using an ammonium Hf(mandelate) precursor after firing at 600℃ for 6

hrs in air.

From the secondary electron images above of the oxide-coated Si substrates, the

coatings were seen to be porous, which was consistent with the removal of the protamine

molecules in the films during firing.

( 2 ) TEM analyses of Si substrates coated using ammonium Ti(lactate), ammonium

Ti(mandelakte), ammonium Zr(lactate), ammonium Zr(mandelate), ammonium

Hf(mandelate) complexes

For TEM characterization, the same samples (i.e., 6-cycles-coated Si wafter

substrates by ammonium Ti(lactate), ammonium Ti(mandelate), ammonium Zr(lactate),

ammonium Zr(mandelate), and ammonium Hf(mandelate) after firing), were used as for

SEM analyses for consistency.
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TiO2
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50 nm 5 nm

Figure 2.17: TEM images of a TiO2-coated Si wafer generated with 6 deposition cycles

using an ammonium Ti(lactate) precursor after firing at 500℃ for 4 hrs (this is the same

sample as used in Fig. 2.12).

TiO2

Si

50 nm

5 nm

Figure 2.18: TEM images of a TiO2-coated Si wafer generated with 6 deposition cycles

using an ammonium Ti(mandelate) precursor after firing at 500℃ for 4 hrs (this is the

same sample as used in Fig. 2.13).
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ZrO2

Si

50 nm 5 nm

Figure 2.19: TEM images of a ZrO2-coated Si wafer generated with 6 deposition cycles

using an ammonium Zr(lactate) precursor after firing at 600℃ for 6 hrs (this is the same

sample as used in Fig. 2.14).

ZrO2

Si

50 nm

Figure 2.20: TEM images of a ZrO2-coated Si wafer generated with 6 deposition cycles

using an ammonium Zr(mandelate) precursor after firing at 600℃ for 6 hrs (this is the

same sample as used in Fig. 2.15).
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HfO2

SiSiO2

50 nm 5 nm

Figure 2.21: TEM images of a HfO2-coated Si wafer generated with 6 deposition cycles

using an ammonium Hf(mandelate) precursor after firing at 600℃ for 6 hrs (this is the

same sample as used in Fig. 2.16).

Figs. 2.17 - 2.21 reveal TEM micrographs of the TiO2, ZrO2, and HfO2

nanoparticle-bearing films obtained by protamine-enabled, layer-by-layer deposition

using five precursors. The TEM images of these coatings demonstrated that the layer-by-

layer deposition process using ammonium Ti(lactate), ammonium Ti(mandelate),

ammonium Zr(lactate), ammonium Zr(mandelate), and ammonium Hf(mandelate) were

successful in producing continuous and conformal coatings. FromFig. 2.17 - 2.21it can

be seen that, for the same number of deposition cycles (all these samples were coated

using 6 cycles), films generated with ammonium Ti(lactate) possessed the greatest

thickness of 38 ± 3.5 nm. Films generated with ammonium Ti(mandelate) were thinner,

around 16 ± 1.8 nm from the image, which coincided with the QCM-D analyses. Si wafer

substrates coated using ammonium Zr(lactate) and ammonium Zr(mandelate) for the

same number of cycles possessed similar thicknesses, 25 ± 1.1 nm, and 27 ± 1.3 nm
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respectively. The thickness of Si wafer substrate coated using ammonium Hf(mandelate)

was 15 ± 0.5 nm.

Figs. 2.17 - 2.21also revealed that the coatings after firing contained TiO2, ZrO2,

or HfO2 nanocrystals. For the ammonium Ti(lactate) coated sample, the crystals exhibit

lattice fringes withd-spacings of 3.52 and 1.89 Å, which corresponded, respectively, to

the (101) and (200) lattice planes of anatase TiO2. For the ammonium Ti(mandelate)

coated sample, the crystals exhibit lattice fringes with ad-spacing of 3.52 Å, which

corresponded to the (101) lattice plane of anatase TiO2. For the ammonium Zr(lactate)

coated sample, the crystals exhibit lattice fringes withd-spacings of 2.96, 2.56 and 1.82

Å, which corresponded, respectively, to the (111), (200), (220) lattice planes of cubic

ZrO2. For the ammonium Zr(mandelate) coated sample, the crystals exhibit lattice fringes

with d-spacing of 2.96 and 2.56 Å, which corresponded, respectively, to the (111) and

(200) lattice plane of cubic ZrO2. For the ammonium Hf(mandelate) coated sample, the

crystals exhibit lattice fringes withd-spacings of 2.82 and 3.14 Å, which corresponded,

respectively, to the (111) and (-111) lattice planes of monoclinic HfO2.

Overall, the SEM and TEM images for the Si wafer substrates coated using the5

precursors mentioned above demonstrated that these synthesized complexes were

effective for generating the corresponding TiO2, ZrO2 and HfO2 films by the protamine-

enabled layer-by-layer method.

2.4.3 X-ray Diffraction Analyses of the TiO2, ZrO 2, HfO2 Thin Films

X-ray diffraction (XRD) analysis of the coated Si wafter substrates generated with

6 deposition cycles using the ammonium Ti(lactate), ammonium Ti(mandelate),
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ammonium Zr(lactate), ammonium Zr(mandelate), or ammonium Hf(mandelate)

precursors after firing (the exact same samples as those in SEM and TEM

characterization) are shown inFig. 2.22 - 2.26.
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Figure 2.22: XRD analysis of a protamine-enabled TiO2-coated Si wafer substrate

generated with 6 deposition cycles using an ammonium Ti(lactate) precursor after firing

at 500℃ for 4 hrs in air.
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Figure 2.23: XRD analysis of a protamine-enabled TiO2-coated Si wafer substrate

generated with 6 deposition cycles using an ammonium Ti(mandelate) precursor after

firing at 500℃ for 4 hrs in air.
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Figure 2.24: XRD analysis of a protamine-enabled ZrO2-coated Si wafer substrate

generated with 6 deposition cycles using an ammonium Zr(lactate) precursor after firing

at 600℃ for 6 hrs in air.
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Figure 2.25: XRD analysis of a protamine-enabled ZrO2-coated Si wafer substrate

generated with 6 deposition cycles using an ammonium Zr(mandelate) precursor after

firing at 600℃ for 6 hrs in air.
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Figure 2.26:XRD analysis of a protamine-enabled HfO2-coated Si wafer substrate

generated with 6 deposition cycles using an ammonium Hf(mandelate) precursor after

firing at 600℃ for 6 hrs in air.
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From Fig. 2.22 & Fig. 2.23, XRD analysis of protamine-enabled coatings using

ammonium Ti(lactate) and ammonium Ti(mandelate) precursors after firingat 500℃ for

4 hrs in air yielded peaks for anatase titania (Powder Diffraction File No.01-71-1166).

Scherrer analysis of the most intense anatase TiO2 diffraction peak (near 2θ = 25.3°) in

Fig. 2.22, for the thin films generated with ammonium Ti(lactate), yielded an average

crystal size of 19 ± 1 nm. For the sample coated using ammonium Ti(mandelate), for

which the XRD analysis was shown inFig. 2.23, the average crystal size was 16.5± 0.8

nm.

XRD analysis of ammonium Zr(lactate) coated thin film generated with 6

deposition cycles after firing at 600℃ for 6 hrs (Fig. 2.24) yielded peaks of cubic

tazheranite ZrO2 (Powder Diffraction File No. 01-071-4810).There were another two

peaks with low intensity compared to peaks of ZrO2, both of which belonged to

monoclinic baddeleyite ZrO2 (Powder Diffraction File No. 01-075-4286). The peak at 2θ

= 28.128° corresponds to the (-111) plane of baddeleyite ZrO2, while the other at 2θ =

31.480° corresponds to the (111) plane of baddeleyite ZrO2. Scherrer analysis of the most

intense tazheranite ZrO2 diffraction peak (near 2θ = 30.3°) in Fig. 2.24 yielded an

average crystal size of 15.1 ± 0.7 nm.

The peak at 2θ = 33.017° in the XRD patterns for films generated using

ammonium Ti(mandelate) and ammonium Ti(lactate) (Figs. 2.22 & 2.23) was diffracted

by the main peak at 2θ = 69.235° which corresponds to the (100) plane of cubic silicon

(Powder Diffraction File No. 00-005-0565) of the Si wafer substrate. The XRD pattern of

an uncoated Si wafer substrate inFig. 2.27verified this. Similarly, the two peaks in the

XRD pattern of film generated using ammonium at 2θ = 33.017° and 2θ = 55.297° are



74

also from the Si wafer substrate, diffracted by the main peak at the (100) plane of cubic

silicon (Powder Diffraction File No. 00-005-0565).

Figure 2.27:XRD analysis of an uncoated Si wafer substrate. Green lines are for the

peaks of cubic silicon.

XRD analysis of ammonium Zr(mandelate) coated thin film generated with 6

deposition cycles after firing at 600℃ for 6 hrs (Fig. 2.25) yielded peaks of cubic

tazheranite ZrO2 (Powder Diffraction File No. 01-071-4810) with the same two peaks

from monoclinic baddeleyite ZrO2 as in the XRD pattern of ammonium Zr(lactate) coated

sample as shown inFig. 2.24. Scherrer analysis of the most intense tazheranite ZrO2

diffraction peak (near 2θ = 30.3°) inFig. 2.25yielded an average crystal size of 19.3 ±

1.2 nm.
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XRD analysis of ammonium Hf(mandelate) coated thin film generated with 6

deposition cycles after firing at 600℃ for 6 hrs (Fig. 2.26) yielded peaks of HfO2

(Powder Diffraction File No. 01-075-4290) with no side peaks at all. Scherrer analysis of

the most intense HfO2 diffraction peak (near 2θ = 31.3°) in Fig. 2.26 showed an

average crystal size of 14.7 ± 0.9 nm.

2.4.4 Atomic Force Microscopy Characterization of the TiO2, ZrO 2, and HfO2 Thin

Films

A razor was used to make several cuts through the films generated by protamine-

enabled deposition, so that AFM thickness measurements could be conducted between

the coated/uncoated regions. FromFig. 2.28 it can be seen that the coatings were peeled

off thoroughly by the razor from the Si wafer substrates. To make sure that the razoronly

peeled the coatings, and not the silica on the Si wafer surface, a scratch test was

conducted on a Si wafer. The test was conducted as follows: 1) a line was made by a

marker on a 2 cm * 2 cm Si wafer; 2) a cut was made by a razor through the marker line

(perpendicular to the line) on the Si wafer surface; 3) an AFM thickness measurement

was conducted on the razor cut region shown inFig. 2.29. The marker line was utilized to

position the cut region made by the razor. FromFig. 2.29 it can be seen that the cut

region by the razor was very smooth without any scratches. The results fromFig. 2.28

andFig. 2.29indicated that this razor cut method can work well to give an accurate AFM

thickness measurements of the films generated by protamine-enabled deposition.
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Figure 2.28: A typical Ex-situ AFM image (4 cycles of protamine-enabled deposition

using ammonium Ti(lactate)) between the boundaries of coated and uncoated regions of

Si wafer substrate
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Figure 2.29: Ex-situAFM image of the razor cut region in a scratch test.
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Ex-situ AFM thickness measurements were taken at the boundaries between

coated and uncoated regions on Si wafers to determine the dry film thickness as a

function of the number of deposition cycles. Error bars were used to indicate the standard

deviation calculated from these measurements. To be consistent with the QCM-D

characterization results of the six precursors (i.e., TiBALDH from Sigma, TiBALDH

synthesized (ammonium Ti(lactate)), ammonium Ti(mandelate), ammonium Zr(lactate),

ammonium Zr(mandelate), and ammonium Hf(mandelate)), the AFM thickness analyses

of the coated Si wafers after different number of deposition cycles by the 6 precursors,

before and after firing, were compared.

(1) AFM Thickness Analyses of Samples coated using TiBALDH from Sigma, or

Synthesized TiBALDH vs. Ammonium Ti(mandelate) precursors

For the coatingthicknessvs. n (number of deposition cycles) before firing, films

prepared using TiBALDH from Sigma and synthesized TiBALDH both exhibited an

exponential fit during cycles 1 - 6, and transitioned to the linear regime afterwards, which

was consistent with QCM-D analyses. The coating thickness values for each cycle of

ammonium Ti(lactate) and TiBALDH from Sigma were similar (Fig. 2.30& Fig. 2.31).

The thickness of films prepared using the ammonium Ti(mandelate) complex exhibited a

linear fit from cycles 1 to 10, which also coincided with the QCM-D results.



78

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

TiBALDH from Sigma
TiBALDH from Sigma
 Exponential Fit of TiBALDH from Sigma
 Linear Fit of TiBALDH from Sigma

Th
ic

kn
es

s/
n

m

Number of Deposition Cycles

Figure 2.30: Ex-situ AFM characterization of the evolution of film thickness with the

number of deposition cycles for protamine-enabled films using TiBALDH from Sigma,

after drying under flowing N2 gas for 5 min (after an even number of deposition cycles

before firing).
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Figure 2.31: Ex-situ AFM characterization of the evolution of film thickness with the

number of deposition cycles for protamine-enabled films using synthesized TiBALDH

and ammoniu Ti(mandelate), after drying under flowing N2 gas for 5 min (after an even

number of deposition cycles before firing).
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Figure 2.32: The linear dependence of ln(film thickness) with n (number of deposition

cycles) using an ammonium Ti(lactate) (synthesized), or commercial TiBALDH (from

Sigma) precursor, before firing.

For protamine-enabled deposition using an ammonium Ti(lactate) precursor

before firing,Equation 2.12was used to describe the first 6 deposition cycles with an R2

= 0.9956. For films prepared using TiBALDH from Sigma before firing,Equation 2.13

was used to describe the deposition behavior for cycles 1 to 6 with an R2 = 0.9917. For

films prepared with the ammonium Ti(mandelate) complex before firing,Equation 1.14

was used to describe deposition behavior for cycles 1 to 10 with an R2= 0.99029.

Thickness = -19.69565+17.11565exp(0.30809*n) (2.12)

Thickness =-10.16129+9.00058exp(0.40324*n) (2.13)

Thickness= -18+12.2*n (2.14)

The linear dependence of ln(thickness) with n for the first six cycles for films

prepared using synthesized TiBALDH and TiBALDH from Sigma are shown inFig. 2.32.

The linear fit for films prepared with synthesized TiBALDH for cycles 1 to 6 yielded a
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reasonable R2=0.9964, as described byEquation 2.15. For films prepared using

TiBALDH from Sigma, the deposition behavior for cycles 1 to 6 with R2= 0.98918.

ln(thickness) = 1.43 + 0.546*n (2.15)

ln(thickness) = 1.29 + 0.541*n (2.16)

From the plots inFig. 2.30 & 2.31, it was apparent that the exponential equation

failed to fit data points beyond the sixth deposition cycle. After the sixth deposition cycle,

the thicknessof films prepared using the ammonium Ti(lactate) precursor increased at a

linear rate of 53 ± 4 nm per cycle (R2=0.9995). Thethicknessof films prepared using the

TiBALDH from Sigma increased at a linear rate of 47 ± 5 Hz per cycle (R2=0.9919).

These results suggested that an exponential-to-linear transition occurred atthe sixth

deposition cycle for these films.

AFM thickness measurements were only conducted on the Si wafers coated by

ammonium Ti(lactate) (i.e. synthesized TiBALDH), or ammonium Ti(mandelate)

complex solutions after firing.

FromFig. 2.33 & 2.34, it can be seen that the evolution of the thickness of these

coated films after firing followed the same pattern as before firing; that is, films prepared

with synthesized TiBALDH precursor exhibited exponential deposition behavior from

cycles 1 to 6, and transitioned to a linear regime afterwards. The thicknessof films

prepared with the ammonium Ti(mandelate) complex exhibited linear deposition

behavior from cycles 1 to 10, which was also similar to the films before firing. However,

the thickness of the films decreased significantly after firing. These thickness results of

the films after firing also matched well with the TEM analyses. From TEM analyses, the
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film generated with ammonium Ti(lactate) for 6 cycles after firing possessed a thickness

of 38 ± 3.5 nm, and films generated with ammonium Ti(mandelate) for 6 cycles after

firing possessed a thickness of 16 ± 1.8 nm, while in AFM results, the film prepared with

the ammonium Ti(lactate) precursor for 6 cycles had a thickness of 41 ± 4 nm, the film

prepared with the ammonium Ti(mandelate) precursor for 6 cycles had a thicknessof 19

± 2 nm.
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Figure 2.33: Ex-situ AFM characterization of the evolution of film thickness with the

number of deposition cycles after firing of protamine-derived films generated using

synthesized TiBALDH and ammonium Ti(mandelate) precursors.
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Figure 2.34: The linear dependence of ln(film thickness) with n for fired films generated

with ammonium Ti(lactate) (synthesized) precursor.

For protamine-enabled films prepared using ammonium Ti(lactate) after firing,

Equation 2.17 was used to fit the deposition behavior for cycles 1 - 6 with an R2 =

0.9986. For films prepared using the ammonium Ti(mandelate) complex after firing,

Equation 2.18 was used to fit the deposition behavior for cycles 1 to 10 with an R2=

0.9857.

Thickness = -4.05+3.08exp(0.48*n) (2.17)

Thickness= -7.06+5.43*n (2.18)

The linear dependence of ln(film thickness) with n for the first six deposition

cycles for films prepared using ammonium Ti(lactate) (i.e., synthesized TiBALDH) after

firing is shown inFig. 2.34. For films prepared with synthesized TiBALDH, deposition

behavior followedEquation 2.19with R2=0.99419.

ln(thickness) = 0.295 + 0.612*n (2.19)



83

From the plot inFig. 2.33, it was apparent that the exponential equation failed to

fit data points beyond the sixth deposition cycle for films prepared with the synthesized

TiBALDH precursor. After the sixth deposition cycle, thethicknessof ammonium

Ti(lactate) after firing increased at a linear rate of 22 ± 3 nm per cycle (R2=0.9988),

which suggested that an exponential-to-linear transition occurred at the sixthdeposition

cycle.

(2) AFM Analyses of Samples coated using Ammonium Zr(lactate) or Ammonium

Zr(mandelate) vs. Ammonium Hf(mandelate) Precursors

The AFM thickness values for films on the Si wafer substrates of the coating with

ammonium Zr(lactate), ammonium Zr(mandelate) and ammonium Hf(mandelate)(before

firing) were shown inFigs. 2.35 - 2.40.
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Figure 2.35: Ex-situ AFM characterization of the evolution of film thickness for

protamine-derived films prepared using an ammonium Zr(lactate) precursor (after drying

for 5 min. in flowing N2(g) at room temperature).
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Figure 2.36: Ex-situ AFM characterization of the evolution of film thickness for

protamine-derived films prepared using an ammonium Zr(mandelate) precursor (after

drying for 5 min. in flowing N2(g) at room temperature).
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Figure 2.37: Ex-situ AFM characterization of the evolution of film thickness for

protamine-derived films prepared using an ammonium Hf(mandelate) precursor (after

drying for 5 min. in flowing N2(g) at room temperature).
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Figure 2.38: The linear dependence of ln(film thickness) with n for protamine-derived

films prepared using ammonium Zr(lactate) from cycles 1 to 12, before firing(after

drying for 5 min. in flowing N2(g) at room temperature).
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Figure 2.39 The linear dependence of ln(film thickness) with n for protamine-derived

films prepared using ammonium Zr(mandelate) from cycles 1 to 10, before firing(after

drying for 5 min. in flowing N2(g) at room temperature).
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Figure 2.40: The linear dependence of ln(film thickness) with n for protamine-derived

films prepared using ammonium Hf(mandelate) from cycles 1 to 10, before firing(after

drying for 5 min. in flowing N2(g) at room temperature).

From Figs. 2.35 - 2.37, it can be seen that the thickness growth pattern of the

coated substrates by all three precursors (i.e. ammonium Zr(lactate), ammonium

Zr(mandelate) and ammonium Hf(mandelate)) were in accord with the QCM-D results.

The AFM-derived film thickness was only measured on samples after an even number of

deposition cycles, while the transitional point from exponential to linear growth of films

prepared using ammonium Zr(lactate) via QCM-D analyses occurred in the 13th cycle.

FromFig. 2.35it can be seen that, by AFM, the transitional point was at about 12th cycle.

For ammonium Zr(mandelate) and ammonium Hf(mandelate), the case was similar. The

transitional points from exponential growth to linear in QCM-D analyses of ammonium

Zr(mandelate) and ammonium Hf(mandelate) were both at the 9th cycle while in Fig.

2.36andFig. 2.37such transitions appeared at about the 10th cycle. While the frequency

change for each cycle with ammonium Zr(mandelate) was a little higher than that of

ammonium Zr(lactate), the AFM thicknesses before firing for each cycle forthese two
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precursors were similar. There are several possible reasons for inconsistency of the

QCM-D and AFM results for films generated by protamine-enabled deposition using

ammonium Zr(lactate) and ammonium Zr(mandelate). Firstly, the Sauerbreymodel is

limited to rigid films exhibiting a change in dissipation (∆D) of less than 1 Hz.46 Thus,

after 4 deposition cycles, the frequency change of QCM-D results isn’t necessarily

proportional to the mass of the precipitates on the sensor during the deposition process.

Secondly, it can be seen fromFig. 2.41 that for each deposition cycle, the dissipation

change of films generated by protamine-enabled deposition using ammonium Zr(lactate)

was larger than that for ammonium Zr(mandelate), which suggested that film generated

using ammonium Zr(lactate) had larger viscoelasticity and thus was less rigid and had a

lower density than the film generated using ammonium Zr(mandelate). Thus, with higher

deposition frequency change, the films generated using ammonium Zr(mandelate) had

similar thicknesses as that for the films generated using ammonium Zr (lactate).
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Figure 2.41: Plot of ∆D vs. n using the 5th harmonic from QCM-D measurement of

protamine-enabled deposition using ammonium Zr(lactate) and ammoniumZr(mandelate)

precursor solutions over 16 cycles. Error bars represent the standard deviation recorded

from two experiments.
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For protamine-enabled films prepared using ammonium Zr(lactate) before firing,

Equation 2.20was used to fit the deposition behavior for cycles 1 - 12 with R2 = 0.97418.

For films prepared with ammonium Zr(mandelate) before firing,Equation 2.21was used

to describe the deposition behavior for cycles 1 - 10 with an R2 = 0.98375. For films

prepared with ammonium Hf(mandelate) before firing,Equation 2.22 was used to

describe the deposition behavior for cycles 1 - 10 with R2= 0.98935.

Thickness = -22.9+17.7exp(0.2*n) (2.20)

Thickness =-16.2+12.6exp(0.25*n) (2.21)

Thickness= -13.9+11.2exp(0.24*n) (2.22)

The linear dependence of ln(film thickness) with n for the first 12 deposition

cycles for films prepared using ammonium Zr(lactate), and for the first 10 cycles using

ammonium Zr(mandelate) and ammonium Hf(mandelate) before firing was shown in

Figs. 2.38 - 2.40. The linear fit of films prepared using ammonium Zr(lactate) for cycles

1 to 12 followed Equ. 2.23 with R2=0.94401. For films prepared using ammonium

Zr(mandelate), for cycles 1 to 10 deposition behavior followedEqu. 2.24 with R2=

0.94302. For films prepared using ammonium Hf(mandelate), the fitting equation is

shown inEqu. 2.25with R2= 0.96007.

ln(thickness) = 1.35 + 0.34*n (2.23)

ln(thickness) = 1.34+ 0.37*n (2.24)

ln(thickness) = 1.29+ 0.36*n (2.25)

From the plots inFig. 2.35 - 2.37, it can be seen that after the 12th deposition cycle,

the thicknessof films prepared using ammonium Zr(lactate) increased at a linear rateof
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32 ± 4 nm per cycle (R2=0.9989). After the 10th cycle, thethicknessof films prepared

using ammonium Zr(mandelate) increased at a linear rate of 30 ± 3.5 nm per cycle

(R2=0.99798). Thethicknessof films prepared using ammonium Hf(mandelate) increased

at a linear rate of 25.5 ± 2.8 nm per cycle (R2=0.99907). These results suggested that the

thickness growth mechanism of protamine-derived films prepared using these three

precursors followed the active volume model.

As the thickness growth patterns of the samples using by ammonium Zr(lactate),

ammonium Zr(mandelate), and ammonium Hf(mandelate) before firing were similar, the

AFM thickness measurements after firing were only conducted on the ammonium

Zr(mandelate) coated samples as shown below inFig. 2.42 & 2.43.
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Figure 2.42: Ex-situ AFM characterization of the evolution of film thickness for

protamine-derived films prepared using ammonium Zr(mandelate) precursor after firing.
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Figure 2.43: The linear dependence of ln(film thickness) with n for protamine-derived

films prepared using an ammonium Zr(mandelate) precursor after firing.

From Figure 2.42, it can be seen that the evolution of the film thickness of these

coated films prepared with ammonium Zr(mandelate), after firing followed the same

pattern as before firing. The transitional point from exponential to linear growth, obtained

from thethickness- n plot, occurred at the 10th cycle.

For protamine-enabled films prepared with ammonium Zr(mandelate) after firing,

Equ. 2.26was used to fit the deposition behavior for cycles 1 - 10 with R2 = 0.98555.

Thickness = -14.7+12.4exp(0.20*n) (2.26)

The linear dependence of ln(film thickness) with n for the first 10 cycles for films

prepared using ammonium Zr(mandelate) was shown inFig. 2.43. The linear fit for

cycles 1 to 10 followedEqu. 2.27with R2=0.9366.

ln(thickness) = 1.09 + 0.33*n (2.27)
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After the 10th deposition cycle, thethicknessof ammonium Zr(mandelate) after

firing increased at a linear rate of 9.5 ± 1.5 nm per cycle (R2=0.9926), which suggested

that an exponential-to-linear transition occurred at the 10th deposition cycle.

The thickness results of the film generated by protamine-enabled deposition using

ammonium Zr(mandelate) after firing also matched well with the TEM characterization

results. In TEM analyses, film generated with ammonium Zr(mandelate) for 6 cycles

after firing possessed the thickness of 27 ± 1.3 nm, while in AFM results, the film

prepared with the ammonium Ti(lactate) precursor for 6 cycles had a thicknessof 31 ±

2.4 nm.

Overall, the AFM thickness results for ammonium Ti(lactate), ammonium

Ti(mandelate), ammonium Zr(lactate), ammonium Zr(mandelate), ammonium

Hf(mandelate), before and after firing, were consistent with the QCM-D analyses in

confirming again that these five synthesized complexes did serve as effectiveprecursors

for the protamine-enabled layer-by-layer deposition of conformal TiO2, ZrO2 and HfO2

films.
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2.5 SUMMARY AND OUTLOOK

In this work, Ti-, Zr- and Hf-containing complexes with different types of ligands

(discussed in the previous chapter) were utilized in a protamine-enabled, layer-by-layer

deposition process for the fabrication of corresponding TiO2, ZrO2 and HfO2 thin films.

QCM-D analyses of these complexes indicated that the citrate precursors (i.e.,

ammonium Ti(citrate), ammonium Zr(citrate), ammonium Hf(citrate) complex solutions)

were ineffective in the layer-by-layer deposition process. Films prepared with ammonium

Ti(lactate) were thicker after every coating cycle than films prepared with ammonium

Ti(mandelate). The deposition behavior for the ammonium Ti(lactate) precursor was

consistent with an active volume model, which was similar to that for filmsprepared

using TiBALDH from Sigma. For films prepared with ammonium Ti(mandelate), linear

film growth occurred during the layer-by-layer deposition process. For films prepared

with ammonium Zr(lactate) and ammonium Zr(mandelate), the amount of deposition

amount per cycle was similar, and the protamine enabled layer-by-layer deposition

behavior was consistent with an active volume model” with a transitional point from

exponential to linear growth during deposition process. Films prepared using ammonium

Hf(mandelate) exhibited the same deposition behavior as for ammonium Zr(lactate) and

ammonium Zr(mandelate). However, the deposition amount of material for ammonium

Hf(mandelate) for each cycle was less than for ammonium Zr(lactate) andammonium

Zr(mandelate). The AFM analyses yielded similar deposition results.

The SEM, TEM, and XRD analyses of the coated substrates for all five precursors

after firing revealed that the TiO2, ZrO2, and HfO2 coatings were continuous and

conformal.
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From the QCM-D and AFM analyses, the metal and ligand types of the precursors

were found to affect the deposition behavior (i.e., the deposition amount, deposition

mechanism). Future work on the determination of the structure of the precursors by

multiple analytical methods may help in understanding the mechanisms for such

protamine-enabled deposition process. Furthermore, by synthesizing other aqueous

precursors for other transitional metals, the peptide-enabled layer-by-layer deposition

could be extended to the fabrication of other functional mineral oxide thin films for

various technological uses.
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CHAPTER 3: LAYER-BY-LAYER BIO-INSPIRED FBABRICATION

OF POROUS TIO2 NANO-FILM COATINGS WITH CONTROLLED

PORE SIZE ON MICROSPHERE RESONATORS

3.1 SUMMARY

A novel coating method, which can provide uniform pores in thin films based on

the established protamine-enabled layer-by-layer deposition process, was developed.

This process has been demonstrated on Si wafter substrates and glass microsphere

resonators. Carboxylated polystyrene spheres with different sizes (26 nm and 110 nm in

diameter) were used in this process to create pores.

SEM images of the coatings showed that the TiO2 coatings on both Si wafer

substrates and glass microsphere resonators fabricated by this novel layer-by-layer

method were continuous, uniform, conformal, and porous. QCM-D and AFM thickness

analyses indicated that this novel coating method exhibited an exponential deposition

behavior, as the established protamine-enabled layer-by-layer deposition proces.

However, the use of carboxylated polystyrene spheres resulted in a much higher

frequency change than for the original protamine method.

A porous TiO2-coated glass microsphere resonators was loaded with a green

fluorescence protein, bfloGFPal. Confocal fluorescence microscopy revealed ahigh

degree of loading of this green fluorescence protein.

This method can be extended to provide highly-porous coatings of other functional

materials than TiO2, such as ZrO2 and HfO2, that can be generated by the use of other

water-soluble salts described in the previous chapter.
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3.2 INTRODUCTION

3.2.1 Introduction to Electrostatic Layer-By-Layer self-assembly coating method

The ability to construct thin films on a variety of surfaces has multiple

applications. For example, coatings on medical devices can improve biocompatibility,

reduce the immunological response, and deliver a drug locally.3,6,10It is thus useful to find

a method to coat thin films with required properties on a variety of surfaces.Currently-

available thin film methods include spin coating and solution casting, thermal deposition,

polyion layer-by-layer assembly, chemical self-assembly, the Langmuir-Blodgett

technique, and free-standing films. The optimal combination of molecular order and

stability of films determines the practical usefulness of these technologies1–6

A primary advantage of the electrostatic layer-by-layer self-assembly technique is

its ability to coat thin films with ordered structure and nanometer thickness on supports of

various shapes and sizes. Thus, during recent years, it has been applied by researchers to

micropatterning7–9, nanobioreactors10,11, artificial cells12, drug delivery systems13-15, and

electronic devices16,17. The LbL technique is based on alternate adsorption of oppositely

charged materials, such as linear polycations and polyanions. Multilayers of materials can

be assembled on two-dimensional (2-D) supports of any area (slides, silicon wafers,

plastic surfaces) and on three-dimensional (3-D) micro/nano-templates (colloidal

particles, such as latex, or cells). Charged materials, including linear polyelectrolytes

(synthetic and natural), enzymes, antibodies, viruses and inorganic nanoparticles have

been used in 2-D and 3-D nanoassembly processes1–24. The architecture of the resulting

film can be designed with nanometer precision (in cross-section) to meet different
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requirements, such as thickness, biocompatibility, controlled permeability, targeting, and

optical or magnetic properties.

The assembly procedure is briefly shown inFig. 3.1. A substrate with negative

surface charge is incubated in the solution containing the cationic polyelectrolytes, and a

layer of polycation is adsorbed (step 1). Because the adsorption is carried out ata

relatively high concentration of polyelectrolytes, a number of ionic groups remain

exposed at the interface with the solution, and thus the surface charge is effectively

reversed. The reversed surface charge prevents further polyion adsorption. The substrates

are then rinsed with pure water to remove excess free polyions. The surface isthen

immersed in a solution of anionic polyelectrolytes (step 2). Again, a layer is adsorbed,

but now the original surface charge (negative) is restored and the surface is readyfor

further assembly (step 3). These two steps are repeated alternately until a layer of the

desired thickness is obtained.

Figure 3.1: The procedure of electrostatic layer-by-layer self-assembly on 2-D substrates

and 3-D micro/nanotemplates.
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From the introduction part in Chapter 2 of this thesis, it can be seen many

materials scientists have already applied this layer-by-layer self-assembly method in the

biomineralization field. The mechanism of peptide-enabled layer-by-layer fabrication of

functional mineral oxide thin films was illustrated in Figure 2.1.

Y. Fang, et al.25 and J. D. Berrigan, et al26 from the Sandhage group has done

appreciable work on the protamine-enabled layer-by-layer coating of TiO2 on different

substrates, such as diatoms, through-pore anodic aluminum oxide templates (TP-AAO),

etc. From J. D. Berrigan’s work illustrated in his Ph.D dissertation, theaverage pore size

of the TiO2 coating by this protamine method is very low. The pores in these coatings are

not big enough to be utilized for certain engineering purposes, such as dye loading. Thus,

a novel protamine/polystyrene-sphere coating method was conceived by Dr. Yunshu

Zhang from the Sandhage research group and developed by this author. The scheme of

this coating method is illustrated inFig. 3.2.

The key step of this revised protamine-enabled layer-by-layer deposition process

is bringing carboxylated polystyrene spheres into the coating process. These carboxylated

polystyrene spheres are commercially-available polymers with highly negativelycharges

and very uniform size. These polystyrene spheres can possess different uniform sizes

with different molecular weight. When the protamine-absorbed substrate is exposed to

the negatively-charged polystyrene spheres, the substrate surface became loaded with

polystyrene spheres, which changes the charges on the substrate surface to negative.By

exposing this negatively-charged substrate again to the protamine solution, another layer

of protamine molecules bind to the surface, which then can precipitate the precursors for

functional mineral oxides. After repeating the coating process for the desired number of
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cycles, the coating can be fired in oven under proper conditions, to remove all the

protamine molecules and polystyrene spheres, thus creating uniform pores of the same

size (similar to that of the polystyrene spheres in the unfired coating).

Figure 3.2: The protamine/polystyrene sphere-enabled Layer-by-layer deposition of TiO-

bearing coatings

3.2.2 Introduction to porous materials

Porous solids are of scientific and technological interest because of their ability to

interact with atoms, ions and molecules not only at their surfaces, but throughout the bulk

of the material28-34. According to the IUPAC definition, porous materials are divided into

three classes;microporous (pore size < 2 nm ), mesoporous (2 - 50 nm ), and macroporous

(>50 nm) materials35. Many kinds of porous materials, such as pillared clays, carbon

nanotubes and other related porous materials have been extensively described in the

literature36-38,43.

Well-known members of the microporous class are the zeolites, which provide

excellent catalytic properties by virtue of their crystalline aluminosilicate network.
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However, their applications are limited by the relatively small pore openings.Therefore,

pore enlargement has been one of the main aspects in zeolite chemistry research.39-42

Larger pores are present in porous glasses and porous gels, which were known as

mesoporous materials at the time of the discovery of MCM-41.44 The discovery of

ordered mesoporous solids of the MCM-41 type and related materials in the early1990s

has been a breakthrough in materials engineering, and since then there has been

impressive progress in the development of many new mesoporous solids based on

templating mechanisms related to the one used for the original MCM-41 syntheses.

Depending on the syntheses conditions, the silica source or the type of surfactant used,

many other mesoporous materials can be synthesized following the co-operative

assembly pathway45-47. In addition to the co-operative pathways, the true liquid crystal

templating pathway48 and nanocasting using already-formed ordered mesoporous

materials as hard templates49,50have been developed over the past few years.

The first-ordered mesoporous materials were prepared from ionic surfactants, such

as quaternary ammonium ions. The formation of the inorganic-organic composites is

based on electrostatic interactions between the positively-charged surfactants and the

negatively charged silicate species in solution. Che, et al. invented a synthetic route for

meso-porous silica by the use of anionic surfactants51,52. In their work, the negatively

charged head group of the anionic surfactant, such as palmitic acid or N-lauroyl-L-

glutamic acid, interacts with the positively-charged amine or ammonium groups of 3-

aminopropyltrimethoxysi-lane or N-trimethyoxysilylpropyl-N,N,N-trimethylammonium,

which are used as additives for co-condensation of TEOS (tetra ethyl ortho silicate).
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The mesopore size of these kinds of materials is primarily controlled by the length

of the alkyl chain of the surfactant used. However, the addition of auxiliary organic

molecules such as aromatics53, n-alkanes54, or fatty acid55 can lead to an expansion of the

mesopore size. Mixing of two alkyl ammonium surfactants with different alkyl chain

lengths can be used to fine-tune the pore size between those of the long and the short

chain surfactants56. Many silica-based mesoporous materials, but those with non-silica

frameworks, have been reported to be formed via these electrostatic assembly pathways.

In this work, commercially-available polystyrene spheres were utilized to create

pores of sizes similar to that of the polystyrene spheres. By incorporating the polystyrene

spheres in a layer-by-layer pattern in the coatings, pores were then createdin the coatings

after firing to pyrolyze the polystyrene spheres. The detailed mechanism for thiscoating

method was illustrated in the introduction above. As the polystyrene spheres are

commercially-available in several sizes (i.e., 26 nm, 52 nm, 110 nm, 200 nm, 400 nm

diameter), coatings with different sized pores can be fabricated using this method. In this

chapter, polystyrene spheres with 26 nm or 110 nm diameters were used in the coating

process.

Moreover, a porous TiO2-coated glass microsphere resonator was utilized to

encapsulate a green fluorescent protein, bfloGFPal58. Its optical properties are to be

investigated in collaboration with Dr. Robert Norwood’s research group at theUniversity

of Arizona.
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3.3 EXPERIMENTAL PROCEDURES

The chemicals used in these experiments are as follows: deionized (DI) water

(18.2 MΩ·cm), protamine sulfate (Grade X, Sigma-Aldrich, St. Louis, MO), carboxylated

polystyrene spheres (Bangs Laboratories, Fishers, IN), pH 8 Tris-HCl buffer (Alfa Aesar,

Ward Hill, MA), sodium dodecyl sulfate (SDS, 99+% purity, Amresco, Solon, OH, USA),

50% w/w TiBALDH (Ti(IV) bis-ammoniumlactato-dihydroxide, Sigma-Aldrich, St.

Louis, MO), Sylgard® 184 Silicone elastomer base (Dow Corning Corp., Midland, MI),

Sylgard® 184 Silicone elastomer curing agent (Dow Corning Corp., Midland, MI), 98%

w/w H2SO4 (Alfa Aesar, Ward Hill, MA), and 98% w/w H2O2 (Alfa Aesar, Ward Hill,

MA).

3.3.1 Protamine & Polystyrene Sphere Layer-By-Layer Coating of Si Substrates

A protamine & polymer sphere LbL coating process. without the use of mineral

oxide precursors, was first evaluated to determine the feasibility of the desired coating

method.*

Firstly, the silica wafer substrate was incubated in a 5 mg/mL protamine solution

in pH 8.0 Tris-HCl buffer for 10 min. After rinsing with this buffer for 3 times, the

substrate was exposed to a suspension (1 mg/mL) of polystyrene spheres (110 nm

diameter) for 10 min, followed by rinsing in the buffer 3 times. Three different such Si

wafer substrate samples were prepared with 1, 2, or 3 coating cycles.

*: This work was conducted by Dr. Yunshu Zhang in the Sandhage group.
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3.3.2 Comparison of the Protamine/polystyrene sphere-Enabled TiO2 Deposition

Process with Protamine-Enabled TiO2 deposition Process by Quartz Crystal

Microbalance analysis

Comparison of the TiO2 deposition behavior of the protamine-enabled process

with that of the protamine/polystyrene sphere-enabled process was investigated with a

quartz crystal microbalance with simultaneous dissipation monitoring (QCM-D, Q-sense

E1 system, Biolin Scientific, Inc., Vastra Frolunda, Sweden). Standard gold-coated quartz

sensors were coated with a thin layer (~50 nm) of SiO2 (Model QSX303, Biolin Scientific,

Inc., Vastra Frolunda, Sweden). The 1st, 3rd, 5th, 7th, 9th, 11th , and 13th harmonics were

measured simultaneously during all QCM-D experiments. The 5th harmonic was selected

for analysis because smaller harmonics (1st and 3rd) corresponded to large sensitivity

areas that should be affected by the O-ring used to hold the sensor, and analyses with

higher harmonics (11th and 13th) became less sensitive with thicker coatings.

All sensors were cleaned by 10 min. UV-ozone treatment (UV/Ozone ProCleaner,

Bioforce Nanoscience, Inc., Ames, IA, USA) followed by incubation for 30 min. ina 2%

v/v sodium dodecyl sulfate solution. The sensors were rinsed thoroughly with water,

dried under nitrogen flow at room temperature for 5 min, and then cleaned by UV-ozone

treatment for 10 min. QCM-D analysis was used over five deposition cycles at a solution

flow rate of 0.1 mL/min and 22℃.

For protamine-mediated TiO2 deposition, the process for each cycle was as

follows: 1) exposure to protamine (100 ug/ml in pH 8 100 mM Tris-HCl buffer) for 10

min.; 2) buffer (pH 8 100 mM Tris-HCl) rinse for 5 min.; 3) exposure to TiBALDH (5

mM in pH 8 100 mM Tris-HCl buffer) for various time according to the number of cycles,
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and 4) buffer (pH 8 100mM Tris-HCl) rinse for 5 min. The TiBALDH exposure time

varied for each cycle due to changes in reaction kinetics, and TiBALDH flow continued

until the resonance frequency change plateaued (i.e., until∆F varied less than 1 Hz per

min.), which indicated that the sensor surface had effectively completed thereaction of

TiBALDH with the deposited protamine.

For protamine/polystyrene-spheres (26 nm)-mediated TiO2 deposition, the process

was conducted as follows: 1) exposure to protamine (100 ug/ml in pH 8 100 mM Tris-

HCl buffer) for 10 min., 2) exposure to buffer (pH 8 100 mM Tris-HCl) rinse for 5 min.;

3) exposure to a 26 nm polystyrene spheres solution (100 ug/ml in pH 8 100 mM Tris-

HCl buffer) for 10 min., 4) exposure to a buffer (pH 8 100 mM Tris-HCl) rinse for 5 min.;

5) exposure to protamine (100 ug/ml in pH 8 100 mM Tris-HCl buffer) for 10 min., 6)

exposure to a buffer (pH 8 100 mM Tris-HCl) rinse for 5 min.; 7) exposure to TiBALDH

(5 mM in pH 8 100 mM Tris-HCl buffer) for various times according to the number of

cycles, and 8) exposure to a buffer (pH 8 100 mM Tris-HCl) rinse for 5 min; TiBALDH

exposure time varied for each cycle due to changes in reaction kinetics, and TiBALDH

flow continued until the resonance frequency change plateaued (i.e.,∆F varied less than 1

Hz per min.), which indicated that the sensor surface had effectively completed the

reaction of TiBALDH with the deposited protamine.

For protamine/polystyrene-sphere (110 nm)-mediated TiO2 deposition, the

procedure for each cycle was exactly the same as that for the 26 nm polystyrene sphere

method (except that the 26 nm polystyrene sphere suspension was replaced with the 110

nm polystyrene spheres suspension of the same sphere concentration).
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3.3.3 Layer-By-Layer Coatings of Porous TiO2 on Si Wafers and Glass Microsphere

Resonators with the Protamine/Polystyrene Sphere Method

(1): Fabrication of Porous Ti-O-bearing Coatings on Si wafers

Ti-O-bearing films were deposited onto silicon wafer substrates (Wafernet, Inc.,

San Jose, CA, USA) that had been incubated in piranha solution (9M H2SO4 and 3M

H2O2 in H2O) for 30 min. After rinsing with a large amount of water, the wafers were

then rinsed in ethanol, and dried with flowing nitrogen at room temperature for 5min.

The wafers were then cleaned by rinsing in ethanol followed by water, and dried with

flowing nitrogen at room temperature for 5 min. Next the wafers were cut into 1.7 cm by

0.7 cm pieces for coating.

Prior to deposition, the Si substrates were incubated in a 100 mM pH 8 Tris-HCl

buffer solution for at least 15 min to allow the surface to equilibrate with this this solution.

For each cycle, the coating procedure was as follows: 1) the silica wafers were incubated

in a 5 mg/mL protamine sulfate solution in the 100 mM pH 8 Tris-HCl buffer for 10 min.

(to allow for protamine binding to the silica surface); 2) the protamine-treated substrates

were rinsed three times with the Tris-HCl buffer, and then incubated in a100 ug/ml

suspension of 26 nm carboxylated polystyrene spheres (PS) for 10 min (to let the PS

microspheres attach to the protamine-binding surface of the silica wafers); 3) after rinsing

in buffer 3 times, the substrates were incubated in the protamine solution again for 10

min (to allow for protamine binding to the PS-treated surface), followed by rinsing in

buffer for 3 times; 4) finally, the substrates were exposed with a freshly-prepared solution

of 5 mM TiBALDH for 10 min. By repeating such deposition cycles,n number of layers

were deposited. Each specimen was cut in half lengthwise and heated to 500°C in atube
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furnace (Lindberg / Blue M, NC USA) at 1.5°C/min for 4 h (AutoFire® Controller, Orton

Ceramic Foundation, OH, USA outfitted with a k-type thermocouple, OMEGA

Engineering, Inc., CT, USA) in air to allow for organic pyrolysis of the protamine for

subsequent inorganic film thickness characterization after heat treatment.

By substituting the 26 nm diameter polystyrene sphere suspension with 110 nm

diameter polystyrene sphere suspension, another batch of TiO2-bearing Si wafers were

coated with the same process.

( 2 ): Porous Ti-O-bearing Coatings on GMRs (Glass Microsphere Resonators)

In order to allow for a high degree of loading of organic luminescent material

onto the surfaces of GMRs, conformal porous TiO2 coatings with different pore sizes

were applied to such GMRs via a LbL protamine/polystyrene-sphere-enabled deposition

process. The GMRs, obtained from the group of Pro. Robert Norwood (University of

Arizona), were exposed to a Piranha solution (9 M H2SO4 and 3 M H2O2 in H2O) for 2

hours. After rinsing several times with DI water, the GMRs were coatedwith porous

TiO2 via the protamine/polystyrene-sphere method using 2, 4, or 6 deposition cycles.

The coating procedures for protamine/polystyrene-sphere (26 nm & 110 nm)-

enabled deposition on GMRs were the same as for Si wafers illustrated above in Section

3.3.3.1. The only difference was that, to prevent the GMRs’ surface contacting with the

walls of the coating template (that would make the coatings on the GMR surface uneven

and have cracks with higher cycles), the GMRs (which were located at the ends of fibers)

were attached to cardboard which can stand above the well of the coating plates. The tip

GMRs could then be immersed in the coating solution without contacting the wallsof the

coating plates. This specially-designed apparatus is shown below inFig. 3.3.



110

A)

Resonatortip

B)

GMRcoating
plate

Figure 3.3: Coating apparatus for GMR samples: A) GMR (located at the end of a glass

fiber) attached to a cardboard support; B) GMR attached to cardboard standing above the

well of the coating plates.
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3.3.4 Atomic Force Microscopy Characterization

Atomic force microscopy (AFM, Digital Instruments Nanoscope@ III, Tonawanda,

NY, USA) was performed on protamine/polystyrene sphere (26 nm and 110 nm in

diameters)-derived films before and after the 500℃ heat treatment for 4 h in air

(1.5℃/min ramp rate) on silicon wafers aftern number of deposition cycles (wheren = 2,

4, 6). The measurements were conducted in tapping-mode using 10 nm radius-of-

curvature general purpose probes (Mikromasch AFM NSC36, Mikromasch USA, San

Jose, CA, USA) with a spring constant of 0.6 N/m and a resonant frequency of 75 Hz.

Half of the Si wafer surface was masked prior to deposition using a silicone elastomer

(Sylgard 184, Dow Corning, Co., Midland, MI, USA). The procedure to coat the silicone

elastomer was as follows: 1) the base and curing agent were thoroughly mixed togetherin

one container in a ratio of 10 parts base to one part curing agent, by weight; 2) the

mixture was gently agitated to reduce the amount of air introduced; 3) the mixture was

allowed to set for 30 min before pouring; 4) the mixture was poured onto a Si wafer

surface and then heated to 60℃ for 5 hrs. A half-surface-coated Si wafer was obtain by

peeling the elastomer coating off half of the Si wafer surface.

After deposition was completed, the elastomer mask was peeled off the surface,

and 10 thickness measurements were conducted across the coated/uncoated boundary

with a scan area of 10µm by 20 µm defined within the Nanoscope Analysis software

V1.4r1 (Veeco Instruments, Plainview, NY, USA).

Topographical images of the coated area, on as-coated and heat treated films,

were obtained over a 15µm by 15µm area. The images were plane-leveled and the root-
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mean square roughness of the films was measured using Nanoscope Analysis software

over five different 5µm by 5µm areas.

3.3.5 SEM Characterization

Scanning electron microscopy was conducted with a field emission scanning

electron microscope (Leo 1530 FEG SEM, Carl Zeiss SMT Ltd., Cambridge, UK)

equipped with an energy dispersive X-ray spectrometer (INCA EDS, Oxford Instruments,

Bucks, UK).

The samples characterized by SEM were as follows: 1) the Si wafer substrates

coated by only protamine & polymer spheres without the use of mineral oxide precursors

for 1, 2, or 3 cycles; 2) Si wafters coated with TiO2 by protamine/polystyrene-sphere

(both 26 nm and 110 nm)-enabled deposition using 4 cycles after firing at 500℃ for 4 hrs

in air; 3) glass microsphere resonators coated with TiO2 by the protamine/polystyrene-

sphere (both 26 nm and 110 nm)-enabled process using 4 deposition cycles after firing at

500℃ for 4 hrs in air.

3.3.6 Loading and Characterization of a Green Fluorescent Protein bfloGFPa into

the Porous TiO2-Coated Microsphere Resonators

The glass microsphere resonators coated with porous TiO2, by the

protamine/polystyrene-sphere (26 nm in diameter)-enabled process for 4 cycles after

firing at 500℃ for 4 hrs in air, were incubated in a solution of green fluorescent protein,

which was obtained from the cordate Branchiostoma florisae (identified by the Deheyn

group58). Exposure to this His-bfloGFPal solution in 100 mM phosphate-citrate buffer

(pH 6.0) was followed with extensive rinsing with the phosphate-citrate buffer.
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Confocal fluorescence microscopic analyses were conducted on the

TiO2/bfloGFPal-coated glass microsphere resonator with a UV confocal microscope

(LSM 510, Carl Zeiss MicroImaging, LLC, Thornwood, NY USA). Fluorescence

imaging was obtained with the use of 488 nm (30 mW Ar-ion) laser excitation.*

*: This work was conducted by Dr. Yunnan Fang in the Sandhage group.
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3.4 RESULTS AND DISCUSSION

3.4.1 Protamine & Polystyrene Spheres Layer-By-Layer Coatings on Silica Wafer

A protamine/polystyrene sphere LbL coating process without the use of mineral

oxide precursors was conducted on Si wafers to determine the feasibility of the desired

coating method. The SEM images of 1-, 2-, and 3-cycle-coated Si wafers by protamine

and polystyrene spheres (110 nm in diameter) are shown inFig. 3.4.

100 nm 100 nm

100 nm

Figure 3.4: SEM images of protamine & polystyrene sphere (110 nm)-coated Si wafer

surfaces after 1 (left above), 2 (right above), and 3 deposition cycles (left below).

It can be seen, fromFig. 3.4 that, the Si wafer surface was increasingly covered

from 1 to 3 cycles, which demonstrates the layer-by-layer nature of this coatingprocess.
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3.4.2 Comparison of the Protamine/polystyrene sphere-enabled TiO2 Deposition vs.

protamine-enabled TiO2 deposition by Quartz Crystal Microbalance

Comparison of the established protamine-enabled LbL deposition process with

the novel protamine/polystyrene sphere-enabled LbL coating method was made with a

quartz crystal microbalance analysis. The evolution of -∆F from QCM-D results of the

protamine/polystyrene sphere (26 nm & 110 nm)-enabled deposition process versus the

number of deposition cycles is presented inFig. 3.5 & 3.6. For protamine/polystyrene

sphere (26 nm & 110 nm)-enabled deposition, the polystyrene spheres and TiBALDH

incubation times varied during each cycle as shown in following Table3.1.

Table 3.1. Polystyrene spheres and TiBALDH incubation time used during

protamine/polystyrene sphere (26 nm & 110 nm)-enabled deposition

Time (min)

Cycles

1 2 3 4 5

26 nm PS 5 10 15 20 30

TiBADLH
after 26 nm PS

5 10 15 20 30

110 nm PS 5 15 25 40 60

TiBALDH after
110 nm PS

5 10 15 20 30

Owing to the measurement limitation of frequency in the quartz crystal

microbalance analyses, it was conducted only to the 5th coating cycle for this

protamine/polystyrene sphere method.
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Figure 3.5: The ∆F evaluated using the 5th harmonic from QCM-D measurement of

protamine/polystyrene sphere (26 nm & 110 nm)-enabled deposition and protamine-

enabled deposition process vs.n (number of deposition cycles). Error bars represent the

standard deviation recorded from two experiments. Data for cycle 1 to 5 of these 3

deposition processes were all fit using exponential equations.
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Figure 3.6: The linear dependence of ln(-∆F) with n for protamine/polystyrene sphere

(26 nm & 110 nm)-enabled deposition and protamine-enabled deposition from cycles 1 to

5.
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For protamine/polystyrene sphere (26 nm)-enabled deposition,Equ. 3.1 was used

to fit the deposition behavior with R2 = 0.9875. For protamine/polystyrene sphere (110

nm)-enabled deposition,Equ. 3.2 was used to fit the deposition behavior with R2 =

0.9943. For protamine-enabled TiBALDH deposition, the QCM-D analysis from the

previous chapter was shown.

∆F = -5022+4448exp(0.245*n) (3.1)

∆F = -1807+1450exp(0.384*n) (3.2)

The linear dependence of ln(-∆F) for 5 cycles of the protamine/polystyrene

spheres (26 nm & 110 nm) enabled deposition process verified the exponential nature of

the deposition process (Fig. 3.6). The linear fit of protamine/polystyrene sphere (26 nm)

deposition behavior yielded R2 = 0.9633, with the fitting Equ. 3.3. For

protamine/polystyrene sphere (110 nm) deposition behavior for cycles 1 to 5 obeyedEqu.

3.4 with R2 = 0.9544. For protamine-enabled TiBALDH depositions, the QCM-D

analysis from the previous chapter is shown.

ln(-∆F) = 4.983 + 0.986*n (3.3)

ln(-∆F) = 5.4+0.745*n (3.4)

From Fig. 3.5 & 3.6, it can be seen that the deposition amount for each cycle of

the protamine/polystyrene sphere method was much higher than for the original

protamine method without the incorporation of polystyrene spheres. One reason for this

enhanced deposition would be that, after polystyrene spheres were attached to the

protamine-saturated surface of the substrate, the roughness and surface area ofthe coated

surface would be much higher, with a relatively large number of negative charges on the
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coated surface. Hence, a much higher amount of protamine should be deposited on the

surface of Si wafer, leading to much more TiO2 deposition on the surface. The QCM-D

analyses showed that, for different sizes of polystyrene spheres (i.e, 26 nm and 110 nm

diameter), the difference in frequency change difference for each cycle wasnot large.

From Fig. 3.5 it seems that the 26 nm polystyrene sphere-coated process yielded a

slightly higher frequency change than for the 110 nm polystyrene sphere process.

3.3.3 SEM Characterization of Porous TiO2 Coatings on Silica Wafers and

Microsphere Resonators Generated by the Protamine/Polystyrene Sphere Method

The SEM images inFigs. 3.7 - 3.10revealed the morphology of porous TiO2

coatings on Si wafers and glass microsphere resonators. FromFig. 3.7, it can be seen that

the TiO2 coating on the Si wafer substrate was porous, with many pores ~ 30 nm in

diameter, which were similar to the diameter of the polystyrene spheres (26 nm).

Similarly, the SEM image of a TiO2 coating generated with the protamine/polystyrene

sphere (110 nm) method on Si wafer is shown inFig. 3.8. The film was also highly

porous with an average pore size around 92 nm, which was slightly lower than the sizeof

110 nm polystyrene spheres, perhaps due to the shrinkage of the pores during firing.

For the protamine/polystyrene sphere (26 nm and 110 nm)-coated glass

microsphere resonators, the SEM images of the coating on the surface are shown below

in Fig. 3.9 & 3.10. The TiO2 coating morphology on the glass microsphere resonators

was similar to that of the coated Si wafer substrates shown above. The coatings were both

highly porous with the pore sizes close to the sizes of polystyrene spheres used in the

coating process.
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100nm

Figure 3.7: Secondary electron image of a porous TiO2 coating generated by the

protamine/polystyrene sphere (26 nm) method on a Si wafer substrate using 4 deposition

cycles, after firing at 500℃ for 4 hrs in air.

100nm

Figure 3.8: Secondary electron image of a porous TiO2 coating generated by the

protamine/polystyrene sphere (110 nm) method on a Si wafer substrate using 4

deposition cycles, after firing at 500℃ for 4 hrs in air.
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100 nm

Figure 3.9: Secondary electron image of a porous TiO2 coating generated by the

protamine/polystyrene sphere (26 nm) method on a glass microsphere resonator substrate

using 4 deposition cycles, after firing at 500℃ for 4 hrs in air.

100nm

Figure 3.10: Secondary electron image of a porous TiO2 coating generated by the

protamine/polystyrene sphere (110 nm) method on a glass microsphere resonator

substrate using 4 deposition cycles, after firing at 500℃ for 4 hrs in air.
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The SEM images of the coatings on both Si wafers and glass microsphere

resonators reveal that this novel protamine/polystyrene sphere LbL deposition method

can create continuous, uniform, conformal and highly porous coatings on the substrates.

3.3.4 Atomic Force Microscopy Characterization

Ex-situ AFM thickness measurements were obtained at the boundaries between

coated and uncoated regions on Si wafers to determine the dry film thickness as a

function of the number of deposition cycles.

The AFM thickness results for Si wafers coated by the protamine/polystyrene

spheres (26 nm and 110 nm) enabled TiO2 deposition, both before and after firing, were

shown below inFigs. 3.11 - 3.14.

FromFigs. 3.11 & 3.12, it can be seen that the coating thickness vs.n (number of

deposition cycles) of 26 nm & 110 nm polystyrene sphere-coated samples, before firing,

exhibited exponential deposition behavior from cycles 1 to 6. This AFM result was

consistent to the QCM-D result in the previous section. The thicknesses of polystyrene

coated samples were much higher than for thin films generated by the protamine LbL

method. FromFig. 3.11, it can be seen that the thickness of 110 nm polystyrene coated

sample was slightly higher than that of the 26 nm polystyrene spheres coated sample for

the same number of coating cycles, while in the QCM-D results suggested the opposite.

This difference between the QCM-D and AFM analyses may indicate that the frequency

change from QCM-D analysis was not exactly proportional to the thickness of the

deposited material on the sensor. As mentioned in previous chapter, when the change in

dissipation (∆D) is larger than 1, the Sauerbrey relation between∆F and adsorbed mass

could not be used to accurately relate∆F to film thickness.
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For protamine/polystyrene sphere (26 nm)-enabled TiO2 deposition before firing,

Equ. 3.5 was used to fit the deposition behavior with R2 = 0.9936. For

protamine/polystyrene sphere (110 nm)-enabled TiO2 deposition before firing,Equ. 3.6

was used to fit the deposition behavior with R2 = 0.9947.

Thickness =47.14+17.1exp(0.466*n) (3.5)

Thickness =36.6+28.9exp(0.503*n) (3.6)

The linear dependence of ln(film thickness) with n for the first six cycles of

protamine/polystyrene sphere (26 nm & 110 nm)-enabled TiO2 deposition before firing

is shown inFig. 3.12. The linear fit over cycles 1 to 6 is shown inEqu. 3.7 with

R2=0.9565. For the 110 nm polystyrene sphere process, the fitting equation is shown in

Equ. 3.8with R2= 0.9837.

ln(thickness) = 3.92+ 0.413*n (3.7)

ln(thickness) = 3.96 + 0.442*n (3.8)
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Figure 3.11: The film thicknessfrom AFM measurements of protamine/polystyrene

sphere (26 nm & 110 nm)-enabled films and protamine-enabled films vs.n (number of

deposition cycles) before firing. Error bars represent the standard deviation obtained from

three experiments.
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Figure 3.12: The linear dependence of ln(film thickness) with n of protamine/polystyrene

sphere (26 nm & 110 nm)-enabled films and protamine-enabled films, before firing,for

2, 4, or 6 deposition cycles.
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For the samples after firing, fromFigs. 3.13 & 3.14, it can be seen that the

evolution of the thickness of these coated films after firing followed the samepattern as

before firing. The thicknesses of both 26 nm and 110 nm polystyrene sphere-coated

samples exhibited exponential deposition behavior from cycles 1 to 6. However, the

thicknesses of the samples after firing decreased greatly (by 43% to 59%) frombefore

firing.
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Figure 3.13: The film thickness from AFM measurements of protamine/polystyrene

sphere (26 nm & 110 nm)-enabled films and protamine-enabled films vs.n (number of

deposition cycles), after firing. Error bars represent the standard deviationobtained from

three experiments.
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Figure 3.14: The linear dependence of ln(film thickness) with n of protamine/polystyrene

sphere (26 nm & 110 nm)-enabled films and protamine-enabled films, after firing, for 2,

4, or 6 deposition cycles.

For protamine/polystyrene sphere (26 nm)-enabled TiO2 deposition after firing,

Equ. 3.9 was used to fit the deposition behavior with R2 = 0.9941. For

protamine/polystyrene sphere (110 nm)-enabled TiO2 deposition, after firing,Equ. 3.10

was used to fit the deposition behavior with R2 = 0.9897.

Thickness =51.14+7.71exp(0.618*n) (3.9)

Thickness =59.4+6.97exp(0.648*n) (3.10)

The linear dependence of ln(film thickness) with n for the first six cycles of

protamine/polystyrene sphere (26 nm & 110 nm)-enabled TiO2 deposition after firing

is shown inFig. 3.14. The linear fit of the 26 nm polystyrene sphere deposition behavior

yielded toEqu. 3.11 with R2=0.9639. For the 110 nm polystyrene sphere method, the

deposition behavior followedEqu. 3.12with R2= 0.9783.
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ln(thickness) = 3.52+ 0.397*n (3.11)

ln(thickness) = 3.59 + 0.417*n (3.12)

Overall, the AFM results of the films generated by this novel

protamine/polystyrene spheres method were consistent with the QCM-D results.Both

types of analyses confirmed that this method provided a much higher deposition amount

than that of the original protamine method for the same number of coating cycles.

3.3.5 Loading of a Green Fluorescent Protein bfloGFPal the Porous TiO2-Coated

Microsphere Resonators

A confocal fluorescence microscopy image of a TiO2/bfloGFPal-coated glass

microsphere resonator is shown below inFig. 3.15.

A) B)

Figure 3.15: A. Confocal fluorescence microscopy image of a blank GMR coated with

green fluorescent protein bfloGFPal ; B. Confocal fluorescence microscopy image of the

4-cycles protamine/polystyrene sphere (26 nm)-enabled porous TiO2-coated GMR

specimen after the loading of green fluorescent protein bfloGFPal.
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FromFig. 3.15, it can be seen that the porous TiO2-coated GMR could be loaded

with much more green fluorescence protein bfloGFPa than for the non-TiO2-coated GMR.

This means that the porous TiO2 coatings on GMR do help to encapsulate large protein

molecules into the resonator.
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3.5 SUMMARY AND OUTLOOK

A novel, low-cost, and facile modification of the established protamine-enabled

layer-by-layer deposition process has been developed to deposit highly porous TiO2

coatings on different kinds of substrates. The porosity of the resulting coatings could be

finely tuned by controlling a number of parameters, such as the size of the polymer

spheres, the number of layers/thickness of the coatings, and the concentration of

protamine.

The SEM images of the coatings indicated that the TiO2 coatings on both Si wafer

substrates and glass microsphere resonators fabricated by this novel layer-by-layer

method were continuous, uniform, and highly porous. QCM-D and AFM thickness

analyses indicated that this novel coating method exhibited exponential deposition

behavior as the established protamine-enabled layer-by-layer deposition process.

However, the use of carboxylated polystyrene spheres resulted in a much higher amount

of deposition on the substrate surfaces than for the original protamine method.

The porous TiO2-coated glass microsphere resonator was loaded with a green

fluorescence protein, bfloGFPal. Confocal fluorescence microscopy revealeda high

degree of loading of this green fluorescence protein.

This method can be extended to provide highly-porous coatings of other functional

materials than TiO2, such as ZrO2 and HfO2, that can be generated by the use of other

water-soluble salts described in the previous chapter.
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