
REDOX ACTIVE TYROSINE RESIDUES IN  

BIOMIMETIC BETA HAIRPINS 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Robin S. Sibert 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Chemistry and Biochemistry 

 

 

 

 

 

 

 

Georgia Institute of Technology 

August 2009 



REDOX ACTIVE TYROSINE RESIDUES IN  

BIOMIMETIC BETA HAIRPINS 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Bridgette Barry, Advisor 

School of Chemistry and Biochemistry 

Georgia Institute of Technology 

 Dr. Jake Soper 

School of Chemistry and Biochemistry 

Georgia Institute of Technology 

   

Dr. David Collard 

School of Chemistry and Biochemistry 

Georgia Institute of Technology 

 Dr. Ingeborg Schmidt-Krey 

School of Biology 

Georgia Institute of Technology 

   

Dr. Mira Josowicz 

School of Chemistry and Biochemistry 

Georgia Institute of Technology 

  

   

  Date Approved: July 3
rd

, 2009 



 

To my sister, Alicia. More than anything, I want you to understand how God uses our 

perseverance to accomplish His amazing works within us. I look forward to seeing the 

fruit of your endurance. I love you! 

  

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

 

 I would like to thank my parents who have always been there to cheer me on and 

help me aim high in my educational endeavors. I thank them also for all of their love and 

support. I thank my brothers and sisters at the Greater Atlanta Church of Christ. I 

appreciate every encouraging word and prayer that they have offered over the past three 

years. I especially thank Dyneka Russell and Anne Magloire for being wonderful friends, 

confidants and study partners. I thank Dr. Bridgette Barry her support. I have become a 

better scientist as a result of her guidance. I also wish to thank the former and current 

members of the Barry Lab: Dr. Shana Bender, Dr. Jun Chen, Dr. Ian Cooper, Tina 

Dreaden, David Jensen, James Keough, Adam Offenbacher, and Brandon Polander for 

their valuable input.   

 

 

 

 

 

 



 v 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES vii 

LIST OF FIGURES viii 

LIST OF SYMBOLS AND ABBREVIATIONS x 

SUMMARY xii 

CHAPTER 

1 INTRODUCTION  

1.1 Hierarchy of Protein Formation 1 

1.2 Secondary Structures in Proteins 2 

1.3 Considerations for Designing Beta Hairpins 3 

      1.4 PSII and the Need for Model Peptides to Exam the Redox    

Properties of Tyrosine               8 

1.5 Figures 14 

1.6 References 27 

2 PROTON COUPLED ELECTRON TRANSFER IN A BIOMIMETIC PEPTIDE 

AS A MODEL FOR ENZYME REGULATORY MECHANISMS  

2.1 Abstract 28 

2.2 Introduction 29 

2.3 Materials and Methods 30  

2.4 Results and Discussion 37 

2.5 Summary 43 

2.6 Acknowledgments 44 



 vi 

2.7 Figures 46 

2.8 References 56 

3 CONTROL OF PROTON AND ELECTRON TRANSFER IN DE NOVO 

DESIGNED, BIOMIMETIC BETA HAIRPINS  

3.1 Abstract 61 

3.2 Introduction 63 

3.3 Materials and Methods 66 

3.4 Results 69 

3.5 Discussion 78 

3.6 Summary 85 

3.7 Acknowledgments 86 

3.8 Figures 90 

3.9 References 102 

      4    CONCLUSIONS   

 

 

 

 

 

 

 

 

 



 vii 

LIST OF TABLES 

Page 

Table 1.1: Phi and Psi dihedral angles of residues i+1 and i+2 in beta hairpins. 4 

Table 1.2: Summary of beta sheet propensity data. 10 

Table 2.1: Electrochemical and EPR studies of peptide A and tyrosine. 41 

Table 3.1: Extinction coefficients, wavelength maxima, and pK values for 

                 tyrosinate in solution and in beta hairpin peptides. 73 

Table 3.2: Parameters used to fit the electrochemical titration data. 76 

Table 3.3: Parameters used to evaluate fits to the electrochemical data, recorded 

                 on peptide F (Arg12Ile). 77 

 

 



 viii 

LIST OF FIGURES 

Page 

Figure 1.1: Hierarchical organization of protein structure. 14 

Figure 1.2 Structural elements of a beta hairpin. 15 

Figure 1.3: Schematic of a β-turn. 16 

Figure 1.4: Comparison of a hairpin 2:2 and a hairpin 3:5. 17 

Figure 1.5: Effect of mutations in the turn sequence of on the beta hairpin 

   conformation of tendamistat residues 15-23. 18 

Figure 1.6: Comparison of CαH chemical shift values for RYVEVXGOKILQ. 19 

Figure 1.7: Conformation of KKYTVSINGKKITVSI and SINGKKITVSI. 20 

Figure 1.8: Two-dimensional (NOESY) NMR spectrum of SINGKKITVSI. 21 

Figure 1.9: Effect of pH on the conformation of KKYTVSING‟KKITVSI. 22 

Figure 1.10: Structure and complexity of photosystem II. 23 

Figure 1.11: Environment of the redox active tyrosines in the D1 and D2 

     polypeptides of photosystem II. 24 

Figure 2.1: Structures of peptide A, IMDRYRVRNGDRIHIRLR. 46 

Figure 2.2: Portions of the 
1
H/

1
H ROESY spectrum acquired at 600 MHz 

     

       showing the interstrand contacts between Y5 and H14 in peptide A.       47 

 

Figure 2.3: Summary of NMR data.             48 

 

Figure 2.4:  Optical titration of peptide A and tyrosine.          59 

 

Figure 2.5: EPR spectra of tyrosyl radical.            50 

 

Figure 2.6: One-dimensional NMR spectrum of peptide A at pH 11.        51 

 

Figure 2.7: FT-IR spectrum of peptide A at pH 11.           52 

 

Figure 2.8: Square wave voltammetry of tyrosine and peptide A solutions.        53 



 ix 

 

Figure 2.9: Effect of pH on peak potential of peptide A, peptide C, and tyrosine.       54 

 

Figure 2.10: Electrostatic maps of tyrosine and tyrosyl radical.         55 

 

Figure 3.1: Environment of redox-active tyrosines  in peptide A and in PSII.       90 

 

 

Figure 3.2: Predicted structures and cross-strand interactions for beta hairpin 

                   

       peptides.                 91 

 

Figure 3.3: Circular dichroism of RNase A at pH 5.                          92 

 

Figure 3.4: Circular dichroism of beta hairpin peptides at pH 5.0.                93 

  

Figure 3.5: Circular dichroism of beta hairpin peptides at pH 11.0.          94 

 

Figure 3.6: Absroption spectra of tyrosine in solution and beta hairpin peptides  

                    

      at pH 5 and pH11.                          95 

 

Figure 3.7: Optical titration of tyrosine in solution and in beta hairpin peptides, 

 

        monitoring the absorbance at 295 nm.            96 

 

Figure 3.8: Electrochemical titrations of beta hairpin peptides.          97 

 

Figure 3.9: Electrochemical titration of peptide F (R12I).                 98 

 

Figure 3.10: EPR spectra of tyrosyl radicals in solution and in beta hairpin peptides 

        

         at pH 5.0 and 108 K.                    99 

 

Figure 3.11: EPR spectra of tyrosyl radicals in solution and in beta hairpin peptides  

          

                     at pH 11.0 and 108 K.                   100 

 

Figure 3.12: EPR spectra of tyrosyl radicals in beta hairpin peptides at pH 5.0 and  

          

                    and 108 K.              101 

 

 



 x 

LIST OF SYMBOLS  

 

∆ δ Hα  alpha proton chemical shift 

P680
+
  primary electron donor of photosystem II 

YD  tyrosine D 

YZ  tyrosine Z 

Tm  melting temperature 

 

LIST OF ABBREVIATIONS 

 

Ala or A  alanine 

Asn or N  asparagine 

Asp or D  aspartic acid 

Cha  cyclohexylalanine 

Gly or G  glycine 

His or H  histidine 

Ile or I  isoleucine 

Phe or F  phenylalanine 

Pro or P  proline 

Thr or T  threonine 

Trp or W  tryptophan 

Tyr or Y  tyrosine 

Val or V  valine 

CD  circular dichroism 

EPR  electron paramagnetic resonance 



 xi 

FT-IR  Fourier transform-infrared 

NMR  nuclear magnetic resonance 

UV  ultra violet 

PCET               proton coupled electron transfer 

 

 

 

 

 

 



 xii 

SUMMARY 

 

Biomimetic peptides are autonomously folding secondary structural units 

designed to serve as models for examining processes that occur in proteins. Although de 

novo biomimetic peptides are not simply abbreviated versions of proteins already found 

in nature, designing biomimetic peptides does require an understanding of how native 

proteins are formed and stabilized.  The discovery of autonomously folding fragments of 

ribonuclease A and tendamistat pioneered the use of biomimetic peptides for determining 

how the polypeptide sequence stabilizes formation of alpha helices and beta hairpins in 

aqueous and organic solutions. A set of rules for constructing stable alpha helices have 

now been established. There is no exact set of rules for designing beta hairpins; however, 

some factors that must be considered are the identity of the residues in the turn and non-

covalent interactions between amino acid side chains. For example, glycine, proline, 

aspargine, and aspartic acid are favored in turns.  Non-covalent interactions that stabilize 

hairpin formation include salt bridges, pi-stacked aromatic interactions, cation-pi 

interactions, and hydrophobic interactions. The optimal strand length for beta hairpins 

depends on the numbers of stabilizing non-covalent interactions and high hairpin 

propensity amino acids in the specific peptide being designed. Until now, de novo 

hairpins have not previously been used to examine biological processes aside from 

protein folding. This thesis uses de novo designed biomimetic peptides as tractable 

models to examine how non-covalent interactions control the redox properties of tyrosine 

in enzymes.  



 xiii 

Photosystem II provides an example of how non-covalent interactions may alter 

the redox properties of tyrosine. Photosystem II contains two redox active tyrosine 

residues, Tyr 161 in the D1 polypeptide and Tyr 160 in the D2 polypeptide. Both Tyr 161 

and Tyr 160 contain hydrogen bonds to nearby histidines, yet the two tyrosines are 

functionally distinct. Tyr 161 mediates electron transfer between the primary donor, 

P680
+
. Tyr 160 is involved in assembly of the manganese cluster. Moreover, Tyr 160 and 

Tyr 161 have different midpoint potentials and their tyrosyl radicals have different 

lifetimes. The 2.9 Å crystal structure of photosystem II reveals that a pi-cation interaction 

between Tyr 160 and neighboring arginine residue (Arg 272CP47) may contribute to the 

difference in redox properties of Tyr 160 and Tyr 161. 

We have incorporated tyrosine into five de novo designed biomimetic beta hairpin 

peptides: peptide A, peptide C, peptide D, peptide E, and peptide F. The amino acid 

content of the peptides was systematically altered to determine how non-covalent 

interactions with amino acids modulate the redox properties of tyrosine in enzymes. In 

peptide A, tyrosine is involved in an aromatic interaction with histidine, a hydrogen bond 

with arginine, and a pi-cation interaction with a second arginine. These non-covalent 

interactions were varied by single or double amino acid substitution in peptides C 

through F, and the concomitant alterations in the redox properties of tyrosine were 

analyzed by EPR spectroscopy, electrochemical titration, and optical titration.  

Electrochemical titration of peptide A revealed that oxidation of tyrosine is 

coupled with protonation of histidine. Substitution of histidine by cyclohexylalanine 

(peptide C) or by valine (peptide D) eliminated this PCET reaction. Electrochemical 

titration of peptide A also showed that the aromatic interaction between tyrosine and 



 xiv 

histidine is associated with a 50 mV decrease in the redox potential of tyrosine. However, 

removal of the hydrogen bond with arginine (peptide F) or the pi-cation interaction 

(peptide E) reversed this decrease in redox potential. 

Optical titrations were used to predict the pK of tyrosine in peptides A through F. 

The pKs of tyrosine in peptides A, C, D, and F were indistinguishable. Removal of the 

Tyr 5-Arg 16 hydrogen bond (Peptide E) decreased the pK of tyrosine from 9.3 to 8.3 and 

caused small changes in the EPR spectrum of peptide E at pH 5.0.  

These data demonstrate that the proton transfer to histidine, the hydrogen bond to 

arginine, and the pi-cation interaction create a peptide environment that lowers the 

midpoint potential of tyrosine. Moreover, these interactions contribute equally to control 

the midpoint potential. The data also show that hydrogen bonding is not the sole 

determinant of the midpoint potential of tyrosine. Finally, the data suggest that the Tyr 

160D2-Arg 272CP47 pi-cation interaction contributes to the differences in redox 

properties between Tyr 160 and Tyr 161 of photosystem II. 
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CHAPTER 1 

INTRODUCTION 

1.1 Hierarchy of Protein Formation 

In nature, proteins perform functions ranging from enzymatic catalysis to creating 

channels by which charged particles enter or exit cells. Often, the function of a protein 

can be determined by examining its structure. The structure of native proteins consists of 

a hierarchical organization of primary, secondary, tertiary, and quaternary structure.
1,2

 

Figure 1.1 shows an example of the four levels involved in native protein formation. 

Primary structure is the amino acid sequence of the protein‟s polypeptide chains.
2
 The 

amide linkages that join amino acids in the primary structure are called peptide bonds; 

they create the polypeptide backbone.
2
 Secondary structure forms when the backbone 

C=O and N-H groups hydrogen bond with one another, giving rise to specific folding 

patterns, such as helices, pleated sheets, and turns.
2
 In helices, the backbone is twisted so 

that hydrogen bonding occurs between C=O and N-H groups within a single polypeptide 

strand, while pleated sheets form when two or more polypeptide strands hydrogen bond.
2
  

Amino acid side chain interactions help stabilize secondary structures as they form.
2
 

Interaction of different secondary structural elements leads to the formation of tertiary 

structure.
2
 If the protein contains multiple polypeptide chains, those chains can associate 

via non-covalent interactions to give the quaternary structure of the protein.
2
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1.2 Secondary Structures in Proteins 

The two most common forms of secondary structural motifs found in native 

proteins are alpha helices and beta sheets.
2
 The torsion angles, psi (Ψ) and phi (Φ), of the 

polypeptide backbone specify alpha helix and beta sheet conformations.
2
 Psi is the 

dihedral angle affected by rotation around Cα-NH bond. Phi is the dihedral angle affected 

by rotation about the Cα-C‟O bond.  In alpha helices, Ψ is -47
o
 and Φ is -57

o
.
1
  In addition 

to characteristic psi and phi angles, alpha helices also contain 3.6 residues per turn and 

have a distance (pitch) of 5.4 angstroms between turns.
2
  The backbone hydrogen 

bonding pattern of alpha helices is such that the C=O group of the nth amino acid residue 

points toward the N-H group of the n+4 residue.
2
 The amino acid side chains point 

outward from the helical axis. In beta sheets, psi and phi vary depending on whether the 

strands in the sheet are parallel or anti-parallel. Anti-parallel beta sheets have Ψ and Φ 

angles of 135
o
 and -139

o
, respectively.

1
 Parallel beta sheets have Ψ and Φ angles of 113

o
 

and -119
o
, respectively.

1
 The hydrogen bonding pattern in beta sheets is called a two-

residue repeat. As a result of this pattern, the beta sheet has a hydrogen bonded face and a 

non-hydrogen bonded face. The side chains of the component amino acids extend 

outward from the backbone toward the hydrogen bonded or non-hydrogen bonded face in 

an alternating pattern. 
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1.3 Considerations for Designing Beta Hairpins 

1.3.1 Turn Sequence 

 Beta hairpins consist of two anti-parallel beta strands connected by a short loop 

sequence.
3
  Βeta turns are composed of up to four residues (i through i+4, with the loop 

region corresponding to residues i+1 and i+2) and are classified by their Ψ and Φ 

dihedral angles (Figure 1.2 and 1.3).
3
 Table 1.1 shows dihedral angles for nine possible 

beta turn conformations. Beta hairpins are named as hairpins X:Y, where X is the number 

of residues in the loop and Y is the number of residues in the turn that do not occur in the 

strand.
3,4

  For example, a beta hairpin with a loop containing three residues and one 

hydrogen bond closing the loop would have five residues in the turn that are not 

considered to be a part of the strand. This beta hairpin would be classified as a hairpin 3:5 

(Figure 1.4A).  The smallest beta turn that can lead to beta hairpin formation contains a 

two-residue loop closed by two hydrogen bonds, to give four total residues in the turn.
3,5

 

This type of beta hairpin is called a hairpin 2:2 (Figure 1.4B).
3,5
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Table 1.1 Phi and psi dihedral angles of residues i+1 and i+2 in beta turns 
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Statistical analysis of beta hairpins in native proteins by Sibanda and Thornton 

revealed that beta hairpins usually contain type I‟ and type II‟ turns.
6
 The high occurrence 

of type I‟ and type II‟ turns in beta hairpins was attributed to the compatibility between 

the natural right handed twists of the turns and the natural twist of beta sheets formed by 

anti-parallel strands.
6
 This explanation was confirmed experimentally by Haque and 

Gelman by examining the NMR spectra of 16-mer peptides containing D-Pro or L-Pro at 

the  i+1 turn position and D-Ala or L-Ala at the i+2 turn position.
7
  

The turn sequence defines the overall conformation of the beta hairpin. Figure 1.5 

shows the peptide sequences examined by De Alba using NMR spectroscopy.
8
 Residues 

15-23 of native tedamistat forms a β-hairpin 2:2 with a type I Trp-Arg turn. Substitution 

of Ser 12, Trp 18, Arg 19, and Tyr 20 with Asn 17, Pro 18, Asp 19 and Gly 20 leads to 

formation of a β-hairpin 3:5. Moreover, in native tendamistat, Tyr 15, Gln 16, and Ser 17 

are facing Gln 22, Ser 21, and Tyr 20, respectively. In the mutant peptide, Tyr 15, Gln 16, 

and Asn 17 are facing Ala 23, Gln 22, and Ser 21, respectively. In other designed 

peptides examined by De Alba 
9
, single amino acid substitutions also altered the β-

hairpin strand register. 

 Two-residue loop sequences are most attractive for designing beta hairpins.  Two 

strategies for constructing beta hairpins involve incorporation of either a D-Pro-Gly turn
10

 

or an L-Asn-Gly turn, as observed by NMR spectroscopy.
11

  In Figure 1.6, the vertical 

axis shows the change in CαH chemical shift values for each amino acid when the 

designed peptides are compared with the random coil peptides. A change in the CαH 

chemical shift value of 0.1 ppm or greater for consecutive amino acids suggests beta 

sheet formation. In peptides containing the D-Pro-Gly turn or the L-Asn-Gly turn, the CαH 
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signals shift downfield by 0.1 ppm or more, as expected for polypeptide sequences that 

adopt beta sheets in solution. The CαH downfield shifts of the D-Pro-Gly peptide were 

larger than those yielded by the L-Asn-Gly peptide, indicating that the D-Pro-Gly turn is a 

stronger beta hairpin promoter than the L-Asn-Gly turn in the peptides examined. No 

clear trend was observed in the chemical shift index for the peptide containing an L-Pro-

Gly turn. Therefore, these results, reported by Stanger and Gelman also indicate that the 

conformation of the amino acids in the turn sequence affects beta hairpin formation. 

Although Stanger and Gelman reported that the D-Pro-Gly turn promoted a more stable 

beta hairpin in their peptides, the L-Asn-Gly loop sequence is found more often in type I‟ 

turns in crystalline proteins than the D-Pro-Gly loop sequence.
12

 Several other studies 

have successfully designed folded beta hairpins using the L-Asn-Gly turn.
11,13-15

  In fact, 

the efficacy of the L-Asn-Gly turn was proven in an experiment comparing a 16-mer beta 

hairpin (KKYTVSINGKKITVSI) with its truncated 11-mer counterpart (SINGKKITVSI) 

(Figure 1.7).
13

  Figure 1.8 shows the two-dimensional (NOESY) NMR spectrum of 

SINGKKITVSI. NOESY NMR spectroscopy is useful for analyzing long distance 

interactions between protons in peptides and proteins. In Figure 1.8 the signals located 

symmetrically off of the diagonal line are called cross-peaks and show the proton 

chemical shifts resulting from the through-space interactions of amino acid side chains. 

Two-dimensional NMR cross-peaks between S6 and K11, I7 and K10, and I7 and N8 

showed that the 11-mer still adopted a beta hairpin conformation in solution, despite not 

having any of  the stabilizing hydrophobic interactions that were present in the 16-mer 

(Figure 1.8). 
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1.3.2 Side Chain-Side Chain Interactions 

The amino acid side chains in beta hairpins can have through space, long-distance 

non-covalent interactions with one another. Once beta turn nucleation occurs, these side-

chain interactions help stabilize the beta hairpin conformation. Griffiths-Jones and co-

workers demonstrated this point by performing a pH titration and mutation studies on the 

16-residue beta hairpin peptide, KKYTVSINGKKITVSI.
11

 In their work, changing the 

pH of the peptide solution from 5.5 to 2.2 decreased the value of ∆δCαH (∆δCαH is defined 

as the difference in the proton chemical shift values for a given amino acid in a random 

coil sequence and in a beta sheet) for all 16 residues in the peptide (Figure 1.9). 

Apparently, lowering the pH led to protonation of the C-terminal carboxylate group and 

subsequent removal of a salt bridge between the CαCOO- of I16 and the CαNH3
+

 of K1, 

causing destabilization of the hairpin structure. In the same peptide, Y3A and V5A 

mutations were used to test the effects of removing hydrophobic interactions from the 

sequence. No beta hairpin structure could be detected via NMR spectroscopy of the 

mutated peptides.  

The energetic contributions of different types of side-chain interactions have been 

reported. Waters and Tatko compared the contribution of a pi-stacked aromatic 

interaction with the contributions of a hydrophobic interaction, and a mixed 

aromatic/hydrophobic interaction in designed peptides Ac-RX1VOVNGKGIX2Q-NH2.
16

  

X1 and X2 are Phe and Phe, Phe and Cha, Cha and Phe, or Cha and Cha. Phe denotes 

phenylalanine and Cha denotes cyclohexylalanine. Sequences containing the Phe-Phe 

aromatic interaction or the Cha-Cha hydrophobic interaction had similar ∆H
o
 values of 

about -4 kcal/mol relative to random coil peptides. Sequences containing the mixed 
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aromatic/hydrophobic interactions (Phe-Cha or Cha-Phe) were less stable, with ∆H
o
 

values of -2.3 kcal/mol and -3.2 kcal/mol. Therefore, it was concluded that attractive 

interactions between pi-stacked aromatic residues or hydrophobic residues promote beta 

hairpin formation.
16

 However, pi-stacked aromatic interactions impart specificity on the 

polypeptide sequence. These results were later corroborated by Kiehna and Waters in 

different peptides (FRTVFVPGOFITQF, ERTVFVPGOFITQK, and 

ARTVFVPGOFITQA) for which ∆G
o
 was calculated to be -0.2 to -0.3 kcal/mol (0.8-1.3 

kJ/mol).
17

  

Ciani and co-workers used 16-mer hairpins containing zero, one, or two side 

chain salt bridges to quantify the energetic contribution of salt bridges to beta hairpin 

formation.
18

 Their work showed that the presence of one salt bridge stabilizes the beta 

hairpin by about 1.2-1.3 kJ/mol. Two salt bridges stabilize the hairpin by 3.6 kJ/mol.  The 

fact that the actual energetic contribution of two salt bridges is greater than the sum of the 

energetic contributions of the individual salt bridges indicates that the two salt bridges 

cooperatively stabilize the beta hairpin. Ramirez-Alvarado also showed that inclusion of 

a Lys-Glu salt bridge in the designed hairpin BH8 led to a more stable hairpin structure 

than when Lys and Glu were substituted with Ala residues.
14

  

 

1.3.3 Beta sheet forming tendencies of the amino acids 

 The beta sheet forming tendencies of the 20 naturally occurring amino acids was 

determined by Smith, Withka, and Regan by measuring Tm and ∆∆G of model proteins 

derived from the B1 domain of staphylococcal IgG binding protein G.
19

 B1 contains four 

anti-parallel beta strands that are diagonally crossed by a single alpha helix. In native B1, 
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Thr 53 is solvent-exposed and its side chain extends from the face of the sheet that is 

opposite the helix. Therefore, Thr 53 was substituted with each of the 20 amino acids. 

Thr 53 is in close contact with Ile 6 and Thr 44; thus, Ile 6 and Thr 44 were mutated to 

Ala to limit interactions between guest amino acids at position 53 and neighboring side 

chains of the host protein. Their results showed that substitution of Val, Ile, Thr, Phe, 

Tyr, or Trp at position 53 yielded model proteins with the highest melting temperatures 

(Tm) and the lowest ∆∆G values. Substitution of Ala, Asp, Gly, or Pro yielded model 

proteins with the lowest Tm values and highest ∆∆G values. So, Val, Ile, Thr, Phe, Tyr, 

and Trp are the best beta sheet forming amino acids, while Ala, Asp, Gly, and Pro are the 

worst beta sheet forming amino acids. Table 1.2 shows that Smith‟s calculations correlate 

well with results reported in a similar study performed by Kim and Berg 
20

 and with 

statistical surveys performed by Chou and Fasman.
21,22
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Table 1.2 Summary of beta Sheet propensity data
36 
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1.4 PSII and the Need for Model Peptides to Exam the Redox Properties of Tyrosine 

In green plants and cyanobacteria, photosystem II (PSII) uses energy derived from 

sunlight to catalyze the oxidation of water and the reduction of plastoquinone. Tyrosine 

161 of the D1 polypeptide in PSII facilitates this process by oxidizing the manganese 

cluster and reducing the primary donor P680
+
.  A second tyrosine residue, Tyr 160 of the 

D2 polypeptide is not required for catalytic activity
23

, but may be required for assembly 

of the manganese cluster.
23,24

 In addition to performing different functions, Tyr161D1 

and Tyr160D2 also have different redox properties.
25-31

 Tyr161D1 has a midpoint 

potential of 1 V
28

 and a lifetime on the microsecond to millisecond timescale.
26,27,29

 

Tyr160D2 has a midpoint potential of 760 mV
25

 and a lifetime on the minutes to hours 

timescale.
30,31

 Although efforts have been made to determine how the redox properties of 

tyrosine and its derivative compounds are regulated, the origin of the differences between 

Tyr161D1 and Tyr160D2 is still unclear.  

One explanation for the differences between Try161D1 and Tyr160D2 is that 

their redox properties are controlled by interactions with nearby amino acids.  The 2.9 Ǻ 

crystal structure shows that Tyr161D1 hydrogen bonds with His190D1 and is 5.08 Ǻ 

from a salt bridge formed by Asp170D1 and Arg357CP43.
32

  In the D2 polypeptide, 

Tyr160D2 also forms a hydrogen bond with a histidine residue (His189D2) and is 6.95 Ǻ 

from an Arg180D2-Asp333D2 salt bridge.
32

 However, the D2 polypeptide contains two 

additional arginine residues, Arg294D2 and Arg272CP47.
32

  Arg272CP47 is 7.81 Ǻ from 

Tyr160D2 and is positioned for a pi-cation interaction with this redox active tyrosine.
32

  

This putative pi-cation interaction may be responsible for the differences in redox 

properties observed when Tyr160D2 and Tyr161D1 are compared. Pi-cation interactions 
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are expected to contribute ~13 mV to the decrease in midpoint potential observed for 

Tyr160D2.
33

 

In the studies presented here, we examine how the protein sequence controls the 

redox properties of tyrosine by incorporating a single tyrosine residue into small 

biomimetic beta hairpins. The beta hairpins were designed using the concepts discussed 

in section 1.3. These beta hairpins serve as tractable models in which the non-covalent 

interactions with tyrosine are systematically altered so that the subsequent effect on the 

proton affinity of tyrosine, and the midpoint potential and spin density distribution of the 

tyrosyl radical can be determined. The necessity of such biomimetic beta hairpins is 

understood by considering the complexity of photosystem II. Photosystem II is a 356 kD 

enzyme.
32

 PSII consists of 13 intrinsic protein subunits, 3 extrinsic protein subunits, 2 

antenna proteins (CP43 and CP47), and 2 reaction center proteins (D1 and D2). In 

addition to these 20 protein subunits, PS II also contains 35 chlorophyll molecules, 25 

lipids, 12 carotenoids, 1oxygen evolving complex, 1 heme b, 1 heme c, 1 non-heme iron, 

3 plastoquinones, and 2 pheophytins.
32

  

In order to unambiguously determine how interactions with vicinal amino acids 

influence the redox properties of tyrosine, the interactions of interest must be isolated 

from all other protein components and enzymatic cofactors.  This has been accomplished 

for the hydrogen bonding interaction by synthesizing phenol derivatives that contain 

pendant bases.
34

 However, in that study, the bases were covalently attached to the phenol 

compound so that any alteration in the midpoint potential might also be attributed to an 

inductive effect. In another study, the effect of the pi-cation interaction on the midpoint 

potential was predicted using helical maquettes.
35

 But in that study theoretical evidence 
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for pi-cation induced alterations in the midpoint potential of tyrosine was presented with 

no supporting experimental evidence.  The beta hairpins used in the studies presented 

here provide a system in which the influence of hydrogen bonding, pi-cation interactions, 

and aromatic interactions on the midpoint potential can be examined without the 

restriction of a covalent attachment. Moreover, these studies present experimental 

evidence that such interactions lower the midpoint potential of tyrosine. 
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1.5 Figures 

   

Figure 1.1 Hierarchical organization of protein structure. This figure was 

reproduced with permission from Venkatraman et al (1999).
20 
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Figure 1.2 Structural elements of a beta hairpin. The beta hairpin consists of two β-

strands connected by a four-residue β-turn. Elements that contribute the beta hairpin 

structure are (A) the strand length (B) side-chain interactions (C) backbone hydrogen 

bonding (D) the sequence and conformation of the turn (E) the identity of the residues in 

the loop. This figure was reproduced with permission from Stotz and Topp (2004). 
3
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Figure 1.3 Schematic of a β-turn. The arrows in the structure indicate Φ and Ψ dihedral 

angles at the  i+1 position. The table shows Φ and Ψ values for the i+1 and i+2 positions 

in type I, type I‟, type II, and type II‟  beta turns. This figure was reproduced with 

permission from Stotz and Topp (2004). 
3
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Figure 1.4 Comparison of a hairpin 2:2 and a hairpin 3:5. This figure was adapted 

with permission from De Alba et al.
21 
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Figure 1.5 Effect of mutations in the turn sequence on the beta hairpin conformation of 

tendamistat residues 15-23. In native tendamistat (A), the turn is composed of S17, W18, 

R19, and Y20. In the mutant (B), S17, W18, R19, and Y20 are replaced with N17, P19, 

D19, and G20.  This figure was adapted with permission from De Alba et al  (1997).
8
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Figure 1.6 Comparison of CαH  chemical shift values for RYVEVXGOKILQ.  X = D-Pro, 

L-Arg, or L-Pro. Reproduced with permission from Stanger and Gellman (2008).
10
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Figure 1.7 Conformation of KKYTVSINGKKITVSI (A.) and SINGKKITVSI (B.).  In 

the truncated hairpin, hydrophobic interactions between Y3 and V14, T4 and T13, and 

V5 and I12 have been removed. This figure was adapted with permission from Griffiths-

Jones et al (1998) 
13
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Figure 1.8 Two-dimensional (NOESY) NMR spectrum of SINGKKITVSI. Signals along 

the diagonal are the chemical shift values of protons in the composite amino acids from 

the one-dimensional spectrum. The symmetric off-diagonal signals arise from through-

space interactions between protons on the composite amino acids. The alpha proton 

region is shown in A.  The amide proton region is shown in B. This figure was 

reproduced with permission from Griffiths-Jones et al (1998).
13

 



 22 

  
Figure 1.9 Effect of pH on the conformation of beta hairpin KKYTVSINGG‟KKITVSI. 

The NMR CαH chemical shift index is shown in A. Decreasing the pH from 5.5 to 2.2 

reduces the beta sheet population of the peptide. The proposed effects of decreasing the 

pH from 5.5 to 2.2 on the beta hairpin structure are shown in B. Lowering the pH disrupts 

a terminal salt bridge between and may lead to (i) fraying of the hairpin at the C- and N- 

termini or (ii) co-operative unfolding of the entire hairpin. This figure was reproduced 

with permission from Griffiths-Jones et al (1999).
11
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Figure 1.10. Structure and complexity of photosystem II.  The bullets give details 

concerning the mass and number of protein subunits and cofactors in photosystem II. The 

structure was obtained with permission from Guskov et al.
32
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Figure 1.11. Environment of the redox active tyrosines (Tyr161D1 and Tyr160D2) in the 

D1 and D2 polypeptides of PSII (PDB ID 3BZ1
32

). The solid lines indicate distances 

between tyrosine and neighboring amino acids, and the dotted lines represent hydrogen 

bonds. The RasMol molecular visualization tool was used to depict histidine (violet), 

arginine (cyan), and aspartic acid (yellow) residues within 10.0 Ǻ of the tyrosine (green). 
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PROTON COUPLED ELECTRON TRANSFER IN A BIOMIMETIC 

PEPTIDE AS A MODEL FOR ENZYME  

REGULATORY MECHANISMS 

Reproduced with permission from “Proton Coupled Electron Transfer in a Biomimetic 

Peptide as a Model for Enzyme Regulatory Mechanisms.” Sibert, R.; Josowicz, M.; 

Porcelli, F.; Veglia, G.; Range, K.; Barry, B. A., Journal of the American Chemical 

Society,2007, 129; 4393-4400. Copyright 2007 American Chemical Society 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

2.1 Abstract 

Proton-coupled electron-transfer reactions are central to enzymatic mechanism in 

many proteins. In several enzymes, essential electron-transfer reactions involve oxidation 

and reduction of tyrosine side chains. For these redox-active tyrosines, proton transfer 

couples with electron transfer, because the phenolic pK of the tyrosine is altered by 

changes in the tyrosine redox state. To develop an experimentally tractable peptide 

system in which the effect of proton and electron coupling can be investigated, we have 

designed a novel amino acid sequence that contains one tyrosine residue. The tyrosine 

can be oxidized by ultraviolet photolysis or electrochemical methods and has a potential 

cross-strand interaction with a histidine residue. NMR spectroscopy shows that the 

peptide forms a β-hairpin with several interstrand dipolar contacts between the histidine 

and tyrosine side chains. The effect of the cross-strand interaction was probed by electron 

paramagnetic resonance and electrochemistry. The data are consistent with an increase in 

histidine pK when the tyrosine is oxidized; the effect of this thermodynamic coupling is 

to increase tyrosyl radical yield at low pH. The coupling mechanism is attributed to an 

interstrand Tyr-His interaction, which stabilizes the tyrosyl radical. A similar interaction 

between histidine and tyrosine in enzymes provides a regulatory mechanism for 

enzymatic electron-transfer reactions. 
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2.2 Introduction 

Redox-active tyrosine residues mediate long-distance electron transfer reactions 

in several enzymes.
1
 For example, in photosystem II (PSII), Tyr 161 of the D1 

polypeptide (TyrZ) participates in water oxidation by reducing the primary donor P680
+
 

and by oxidizing the manganese cluster.
2
 Tyr 160 in the D2 polypeptide (TyrD) is also 

redox-active but is not required for water oxidation {reviewed in ref 3}. In addition to 

TyrZ in PSII, tyrosyl radicals are essential for catalytic activity of prostaglandin H 

synthase,
4 

ribonucleotide reductase (RNR),
5
 and galactose oxidase.

6
 Elucidation of the 

environmental factors, which influence the structure and function of the radical, will 

provide insights into the control of the activity in these enzymes. EPR studies of 

isotopically labeled tyrosinate have revealed that tyrosine oxidation occurs from the 

aromatic ring, generating a neutral radical with spin density located on the 1, 3, and 

5carbon atoms and on the phenolic oxygen.
7,8

 Additionally, rotation around the C1-Cα 

bond alters the EPR line shape.
7,8

 In dipeptides, pentapeptides, and PSII, evidence for 

spin density delocalization to the amide group has been obtained see ref 9 and 

references therein. Oxidation of a protonated tyrosine at neutral pH values is coupled 

with the deprotonation of the phenolic oxygen.
10

 This coupling of electron and proton 

transfer is due to a dramatic decrease in the pK of the phenolic oxygen in the radical 

state.
10

 Therefore, changes in the pK of the proton-accepting group can alter the free 

energy of the oxidation/reduction reaction.
11

 In direct coupling reactions, the proton and 

electron movement may be simultaneous, sequential, or nonsynchronous.
12

  

 According to Marcus theory, one of the factors influencing the electron-transfer 

rate is the oxidation potential of the redox-active cofactor.
13

  Previous work has reported 
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a shift in tyrosine redox potential in designed helical proteins that contain tyrosine 

residues.
14,15

  In one study, the observed increase was attributed to the non-polar 

environment and to shielding of the aromatic side chain from potential proton 

acceptors.
14

 More specific intermolecular interactions with hydrogen bonded and charged 

groups are also expected to shift the midpoint potential.
11

 The effect of non-covalent 

interactions on the potential of redox-active cofactors, such as hemes, iron sulfur clusters, 

and other metal centers, has been systematically explored in peptide models or maquettes 

for examples, see refs 16-24. Also, peptide bond formation may change the midpoint 

potential of a redox active amino acid residue, if spin density delocalization occurs to the 

peptide bond.
9
 To develop a peptide system in which the effect of specific 

intermolecular and covalent interactions on tyrosyl radical can be probed, we designed an 

18 amino acid sequence (Figure 2.1A, Peptide A), which we predicted would fold into a 

β-hairpin polypeptide for previous examples of designed β-hairpin peptides, see refs 

25,26. This peptide exhibits an interstrand proton-coupled electron-transfer reaction 

between a histidine and the redox-active tyrosine. Our data suggest that thermodynamic 

coupling between electron and proton transfer decreases the midpoint potential of the 

redox-active tyrosine at low pH values. 

 

2.3 Materials and Methods 

2.3.1 Samples. Peptide A, IMDRYRVRNGDRIHIRLR, and peptide C, 

IMDRYRVRNGDRI[Cha]IRLR, in which a cyclohexylalanine (Cha) is substituted for a 

histidine, were synthesized by Sigma Genosys (The Woodlands, Texas). The peptides 
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were purified to 95% homogeneity by the manufacturer. Mass spectrometry was used to 

verify the sequence, and the purity was determined by analysis of the reversed phase 

HPLC chromatogram. 

2.3.2 NMR Spectroscopy. The NMR samples had a concentration of 1mM in 90% 

1
H2O/10% 

2
H2O and were buffered with 10 mM sodium phosphate, pH 5.0. NMR spectra 

were recorded using a Varian Unity spectrometer operating at 600 MHz at a temperature 

of 25 °C. An inverse detection triple-resonance probe was used. Resonance assignments 

were performed using two-dimensional 
1
H/

1
H TOCSY (75 ms mixing times) and 

1
H/

1
H 

ROESY (100, 200, 350 ms mixing time) experiments.
27

 Water suppression was achieved 

using the WATERGATE technique.
28

 Spectra were collected with 256 complex data 

points in the t1 dimension and 1024 in the t2 dimension. TOCSY spectra were acquired 

using a DIPSI-2 pulse sequence.
29,30

 The spectral widths were 8 kHz on both the t1 and t2 

dimensions. The DQF-COSY spectrum
31,32 

was acquired on the 800 MHz Varian Unity 

spectrometer using 512 complex data points in the t1 dimension and 2048 in the t2 

dimension. The DQF-COSY data were apodized with a 90shifted sine bell in both 

dimensions prior to zero filling to 2048 _ 4096 data matrices to obtain the maximum 

digital resolution for coupling constant measurements. Proton chemical shifts were 

referenced to internal 3-(trimethylsilyl) propionic acid (TSPA). NMR spectra were 

processed using NMRPipe
33

 and analyzed using SPARKY.
34

 2D spectra were processed 

with a sine bell window function shifted by 90. The data were zero filled to twice their 

size before Fourier transformation. In the ROESY spectrum obtained with a mixing time 

of 300 ms, ROE cross-peaks were integrated and used for the structure calculations. The 

ROE volumes were calibrated using the average ROE volume from resolved aromatic 
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vicinal protons of Tyr 5. The ROE volumes were classified as strong, medium, and weak, 

corresponding to distance restraints of 1.9-2.7 Å, 1.9-3.3 Å, and 1.9-5.0 Å, respectively.
35

 

Structure calculations were performed using XPLOR-NIH,
36,37

 starting from extended 

structures and using random simulated annealing calculations.
38

 An initial high-

temperature phase consisting of 6000 restrained molecular dynamics steps of 0.5 fs each 

was performed at a temperature of 1000 K. During this stage, all of the force constants 

were kept fixed. Subsequently, a molecular dynamics cooling phase comprised of 3000 

steps of 0.5 fs each was employed, with the temperature decreasing from 1000 to 100 K 

during this interval. To refine the generated conformers, a second simulated annealing 

was carried out starting at 2000 K, including the full van der Waals potential. The 

temperature was decreased from 2000 to 0 K. During the high-temperature steps, the 

dihedral angles were constrained using a harmonic potential with a force constant of 200 

kcal/mol. A final minimization of 500 steps was performed using the Conjugated 

Gradients Method. A total of 147 ROEs (78 inter- and 69 intra-residue) was used in the 

calculations. All the ROEs were unambiguously assigned, and since stereo-specific 

assignments could not be made pseudo atoms were employed using the center of mass 

approach. The backbones of all the structures generated give an identical fold with 

RMSDs on the average backbones within 0.5 Å. A total of 50 structures were generated 

by the simulated annealing protocol. 20 structures were then accepted for further analysis. 

The conformers generated were accepted on the basis of the lowest ROE violations. The 

analysis was carried out using the “accept.inp” routine included in the XPLOR software 

package. The 20 structures showed no violations of ROE constraints higher than 0.5 Å, 

bond angles higher than 5°, and bond lengths higher than 0.05 Å. The covalent geometry 
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of the conformers generated was analyzed using PROCHECK_NMR.
39

  For one-

dimensional NMR studies at pH 11, samples were prepared to a concentration of 4 mM in 

90% 
1
H2O:10% 

2
H2O at pH 11 using 10 mM borate buffer. The pH was adjusted with 

NaOH. The spectra were collected on a 500 MHz Bruker spectrometer at 25
o
C, using 128 

scans and 64 K data points. Water suppression was achieved using the WATERGATE 

technique. The data were processed using Mestre-C v.23 and IgorPro software. 

2.3.3 FT-IR Spectroscopy. Solutions of 50 mM peptide A, buffered with 10 mM borate-

NaOH, pH 11, were used. Absorbance spectra (Figure 2.7) were collected at room 

temperature on a Magna 550 spectrometer (Nicolet, Madison, WI), equipped with a MCT 

detector. The detector was cooled at least 30 minutes prior to data collection. The sample 

holder was a Hansen cryostat (RG Hansen & Associates, Santa Barbara, CA). The 

spectrometer was purged with nitrogen gas throughout data acquisition in order to 

minimize water vapor. Spectral were as follows: resolution, 4 cm-1; mirror velocity, 1.57 

cm/s; apodization function, Happ-Genzel; levels of zero filling, one. Data were collected 

for 200 sec and on two different samples. Buffer contributions were subtracted 

interactively, and the resulting spectrum reflects hydrogen bonding to the amide bonds of 

peptide A. 

2.3.4 UV Spectroscopy and pK Determination. pH titrations were conducted to measure 

the pK of the tyrosine in peptide A and in tyrosine solutions. Changes in tyrosine 

protonation were monitored by measuring the absorbance at 270 (TyrOH) nm and 

dividing by the sum of the absorbance at 270 (TyrOH) and 295 (TyrO-) nm.
14

 A Hitachi 

U-3000 UV-visible spectrophotometer and 1 cm path length cuvettes were employed. 

The tyrosine or peptide concentration was 50 µM, and 10 mM MES-NaOH (pH 4.0-5.5), 



 35 

10 mM HEPES-NaOH (pH 6.0-8.0), 10 mM boric acid-NaOH (8.5-10.5), or 10 mM 

CAPS-NaOH (pH 11.0-11.5) were employed as buffers. Experiments were performed on 

two different samples and then averaged. Experiments performed with a different choice 

of buffering agent gave the same result.  

2.3.5 EPR Spectroscopy. The tyrosine or peptide A concentration was 1.0 mM, and either 

10 mM sodium phosphate-NaOH (pH 5) or 10 mM boric acid-NaOH (pH 11) was used 

as a buffer. EPR spectra were collected on a Bruker EMX spectrometer (Billerica, MA). 

Spectra were recorded at 103 K through the use of a Wilmad (Buena, NJ) flowthrough 

dewar. The radical was generated with a 266 nm photolysis pulse using methods 

previously described.
9
 After baseline correction, spectra were integrated twice using Igor 

Pro software (Wavemetrics, Lake Oswego, OR). Experiments were performed on two 

different samples and averaged. 

2.3.6 Electrochemistry. Tyrosine (0.01 mM), peptide A (0.05-0.1 mM), and peptide C 

(0.1 mM) samples were prepared in buffered solutions that contained 0.2 M KCl and 10 

mM sodium acetate-NaOH (pH 4.0-5.5), 10 mM sodium phosphate (pH 6.0-7.8), 10 mM 

boric acid-NaOH (8.0-9.5), or 10 mM CAPS-NaOH (pH 10.0-11.8). Square wave 

voltammetry measurements were performed on a computer controlled CH Instruments, 

Inc. (Austin, TX) electrochemical workstation. The experiments were conducted in a 

three-electrode cell, equipped with a 3 mm diameter glassy carbon working electrode 

from Bioanalytical Systems, Inc. (West Lafayette, IN), a platinum foil counter electrode, 

and a reference electrode, Ag/AgCl in 1 M KCl, E = 0.22 V (NHE). In order to eliminate 

junction potential between the reference electrode and the test solution an electrolytic 

junction filled with 1 M KNO3 was used. The sample was purged with nitrogen gas 
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during data collection. Oxidation was initiated with a holding time of 2 s at 0.1 V and 

then scanned up to 1.1 V. Data were collected in increments of ∆E =  0.004 V. The 

square wave frequency, f, was 5 Hz, and the amplitude, A, of the applied pulse was 0.025 

V (scan rate ν = f * A = 125 mV/s). The parameters were optimized in relation to the 

maximum value of peak current and peak width (half peak potential). The data were fit to 

a baseline manually, and the centroid was used to derive 

the peak potential. Experiments were performed on two to four samples and averaged, 

and experiments conducted with different buffers gave similar results. A standard, 

hexaamine ruthenium(III) chloride (Strem Chemicals, Newburyport, MA) at 2.5 mM in 1 

N KCl, was run on each day of data acquisition. The averaged value for this standard was 

-0.18± 0.01 V. Experiments performed with a different choice of buffering agent gave the 

same result. The pH dependence of the peak potential was analyzed using Igor Pro 

software. The data for tyrosine and peptide C were fit with the following equation: Em = 

E* - 0.06 log[{10
-pKox

 + 10
-pH

}/{10
-pKred

 + 10
-pH

}], which describes the influence of a 

single ionizable group on the midpoint potential of a single electron-transfer reaction.
40,41

 

In this equation, E* is the extrapolated midpoint potential at pH 0, and pKox and pKred are 

the pK values of the tyrosine side chain in the oxidized (tyrosyl radical) and reduced 

forms, respectively. In trial fits, E* and pKred were estimated from the data and then 

varied so as to minimize the chi-square value. In the resulting best fit to both the tyrosine 

and the peptide C data, pKox was equal to 0 (see ref 10) and pKred was equal to 10.0 (see 

optical titration data, Figure 2.3). E* was equal to 1.33 V for tyrosine and 1.28 V for 

peptide C. For peptide C, equations including the protonation of more than one titratable 

group gave a less reliable fit to the data, as assessed by the chi-square value. 
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For peptide A, data, describing the pH dependence of the peak potential, were fit with the 

following equation, Em ) E* - 0.06 log [[({10
-pH

}
3
 + {10

-pH
}

2
 * {10

-pKox1
}) + ({10

-pH
} * 

{10
-pKox1

} * {10
-pKox2

}) + ({10
-pKox1

} * (10
-pKox2

) * {10
-pKox3

})]/[({10
-pH

}
3
 + {10

-pH
}

2
 * 

{10
-pKred1

}) + ({10
-pH

} * {10
-pKred1

} * {10
-pKred2

}) + ({10
-pKred1

} * (10
-pKred2

) * {10
-

pKred3
})]], which describes the influence of three titratable groups on the midpoint 

potential of a one-electrontransfer reaction.
40,41

 Initial values of the pK values were 

estimated from observed inflection points in the data, and the initial value of E* was 

estimated by extrapolation. E* and the pK values were then varied to optimize the chi-

square value. In the final fit, the three values of pKox were equal to 0 (pKox1, assigned to 

tyrosine), 8.0 (pKox2, assigned to histidine), and 4.5 (pKox3, assigned to aspartic acid). The 

three values of pKred were equal to 10.0 (pKred1, assigned to tyrosine), 7.0 (pKred2, 

assigned to histidine), and 4.0 (pKred3, assigned to aspartic acid). In the final fit, E* was 

equal to 1.09 V. Inclusion of only one or two titratable groups in the equation gave a less 

reliable fit to the data, as assessed by the chi-squared value. 

2.3.7 Calculations. Electronic structure calculations were performed on gas-phase models 

of tyrosine and a tyrosyl radical with the Kohn-Sham density-functional theory (DFT) 

using the hybrid exchange functional of Becke
42,43 

and the Lee, Yang, and Parr 

correlation functional44 (B3LYP). All electronic structure calculations were performed 

with the GAUSSIAN03 suite of programs.
45

 The singlet tyrosine was modeled by an 

anionic tyrosine (with a proton on the phenolic oxygen) in the A conformation, as 

previously defined.
46

 The tyrosyl radical was modeled by an anionic tyrosyl (with a 

deprotonated phenolic oxygen) in the A conformation.
46

 The molecules are anionic due to 

the negative charge on the carboxylate group. These gas-phase model structures have 
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been quite successful in previous studies of tyrosine and tyrosyl vibrational spectra.
46

 

Geometries were obtained using the 6-31++G(d,p) basis set,
47

 as in ref 46. Integrals 

involving the exchange-correlation potential used the default numerical integration mesh 

with a maximum of 75 radial shells and 302 angular quadrature points per shell pruned to 

approximately 7000 points per atom.
48

 Geometry optimizations were done in redundant 

internal coordinates with the default convergence criteria.
49

 Maps of the electrostatic 

potential were created from B3LYP/6-311++G(3df,2p) single-point calculations.
47

 The 

electrostatic potential was mapped onto an isodensity contour at 0.001 au using the 

gOpenMol suite of programs.
50

  

 

2.4 Results and Discussion 

Peptide A, IMDRYRVRNGDRIHIRLR (Figure 2.1A), was designed with an amino acid 

composition that promotes β-sheet formation,
51

 an Asn-Gly type I‟ turn sequence,
52

 two 

salt bridges,
53

 and a Tyr-His aromatic interaction.
54

 As a control, another peptide (peptide 

C) was synthesized in which His 14 was replaced with cyclohexylalanine (Cha). NMR 

spectroscopy was used to determine the structure of peptide A at pH 5.0. Representative 

data and a complete list of all observed ROE values are presented in Figures 2.2 and 2.3. 

As predicted, the peptide forms a well-ordered β-hairpin (Figure 2.1B). The chemical 

shift index of Hα reported in Figure 2.3B displays only positive deviations from the 

random coil values. Excluding the terminal residues, an average of 10 ROEs per residues 

were detected, resulting in a well-ordered backbone structure with an ~0.5 Å RMSD 

(Figure 2.3C). A plot summarizing the backbone ROEs and 
3
JHN-HR is reported in Figure 

2.3A. The average minimized structure (Figure 2.1C) obtained from the simulated 
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annealing calculations shows that the two aromatic residues Tyr 5 and His 14 are co-

facially aligned. The interstrand ROEs between these residues are highlighted in Figure 

2.2, showing that the distances between the protons of His 14 and Tyr 5 are less than 5 Å. 

This offset, stacked orientation is typical of π-π interactions in proteins.
55

 Tyr 5 is also 

located within ~5 Å of Arg 16 and Asp 3. The average, minimized structure suggests that 

Arg 16 forms a salt bridge with the cross-strand Asp 3 (Figure 2.1C) and that Arg 16 

forms a hydrogen bond to the Tyr 5 phenolic oxygen through the arginine ε-NH group 

(Figure 2.1C).  

The effect of these intermolecular interactions on the pK of the tyrosine side chain 

in peptide A was investigated. This experiment was performed by monitoring the 

deprotonation of the tyrosine side chain through optical spectroscopy. There was no 

significant shift of the pK when tyrosine solutions were compared to peptide A (Figure 

2.4). This can be rationalized by reference to the averaged and minimized peptide NMR 

structure (Figure 2.1C), which shows that the arginine, which is hydrogen bonded to the 

tyrosine, is also involved in a salt bridge with aspartate. The effect of this arginine-

aspartate interaction is to neutralize the charge on the arginine side chain.  

Tyrosine can be oxidized photochemically by 266 nm UV photolysis, and the 

resulting neutral radical can be detected and quantitated by EPR spectroscopy (Figure 

2.5). Microwave power saturation curves for tyrosine and peptide A samples were 

measured at both pH 5 and pH 11. These experiments showed that the P1/2 values for the 

tyrosyl radical in the tyrosine and peptide samples were significantly altered, when the 

two samples are compared. For peptide A, the values were 1.8 mW at pH 11 and 1.6 mW 

at pH 5.0. For tyrosine, the values were 0.5 mW at pH 11 and 0.7 mW at pH 5. 
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Accordingly, EPR experiments were conducted at 0.2 mW, at which no significant 

saturation or power broadening would be expected in either sample. The difference in 

P1/2, when the tyrosine and peptide A samples are compared, provides support for the 

conclusion that the peptide tyrosyl radical is involved in an interstrand, non-covalent 

interaction at both pH values and is not in an exclusively aqueous environment.  

Under non-saturating microwave power conditions at 0.2 mW, the EPR spectra 

recorded in tyrosine (Figure 2.5B and D) and peptide A (Figure 2.5A and C) samples 

showed small differences in line shape, which mainly corresponded to broadening of the 

peptide A EPR line shape. Observed differences in the EPR signals (Figure 2.5) are 

consistent with a difference in the distribution of side chain conformers in the peptide or 

with a redistribution of spin density, which could be caused by hydrogen bonding 

between the arginine side chain and the tyrosyl radical.
7,9

 The origin of this effect is 

interesting and can be pursued by eventual isotopic labeling of the tyrosyl radical in 

peptide A and by EPR simulations. A contribution to the EPR spectrum from an oxidized 

histidine side chain is unlikely due to the reported redox potentials of histidine and 

tyrosine.
56,57

  

The EPR spectra were doubly integrated in order to quantitate the amount of 

signal. The 266 nm optical properties of the samples at 103 K were similar. The results 

show that, at pH 11, the yield of the neutral radical was indistinguishable in peptide A 

and tyrosine (Figure 2.5A and B, Table 2.1). However, there was a significant increase in 

radical yield in the peptide at pH 5.0, relative to tyrosine were solutions (Figure 2.5C and 

D, Table 2.1). These EPR results could be consistent with a change in the redox potential 

of the tyrosine side chain at low pH, if there is no difference in non-radiative decay rate.  
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Table 2.1. Electrochemical and EPR studies of peptide A and tyrosine samples
 

 

Sample 

 

pH 

 

Voltammetry 

Peak Potential (V)
a
 

 

EPR 

Radical Yield
b 

Peptide A 5.0 0.97  0.01 97  12 

Tyrosine 5.0 1.02  0.01 65  9 

Peptide A 11.0 0.69  0.01  119  15 

Tyrosine 11.0 0.70  0.01 112  10 

a
Peak potential versus NHE.  

b
Relative yield derived by double integration of the tyrosyl radical EPR spectrum under      

non-saturating conditions. 

 

Upon photo-ionization of tyrosine at room temperature, the solvated electron can be 

detected optically, so the eventual electron acceptor in both samples is likely to be 

solvent {reviewed in ref 1}. The issue of the non-radiative decay rate can be pursued in 

future experiments.  

At pH 11, the one-dimensional NMR spectrum shows no collapse of the Hα 

region, indicating that the peptide is folded (Figure 2.6). At pH 11, complete structural 

determination for peptide A was not attempted because of rapid exchange of the amide 

protons.  However, the one-dimensional spectrum shows chemical shift dispersion in the 

Hα region. Chemical shift dispersion is characteristic of folded proteins.
2
 FT-IR 

measurements at a concentration of 50 mM also provide evidence for β-strand content at 

pH 11 (Figure 2.7).  

To test the idea that there is a change in tyrosine redox potential in peptide A, 

square wave voltammetry was employed {see refs 14,57}. Representative 

voltammograms for tyrosine and peptide A are presented in Figure 2.8. The tyrosine 

oxidation reaction has been shown to be irreversible in voltammetric experiments, but in 
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previous work, the observed peak potentials can be corrected to give redox potentials.
57

 

In our experiments, there was no significant (<2%) effect of scan rate and concentration 

on the measured potentials for peptide A,
14

 suggesting that any correction factor is 

negligible. In previous work on a tyrosine-containing designed peptide, the correction 

was reported as 0.02 V.
14

 Because we are not deriving any thermodynamic quantities in 

our analysis of the electrochemical data, we report the uncorrected peak potentials. For 

tyrosine, data had to be recorded at a low concentration to avoid increased data scatter 

due to a putative sample-electrode interaction.  

The potential for tyrosine at pH 7 was in good agreement with results in ref 57 

after correction for NHE (+0.22V), when the same concentration was used.
58

 In Figure 

2.9, the peak potential of tyrosine was determined as a function of pH at pH values 

between 4 and 12. For tyrosine solutions, the results (Figure 2.9, open triangles) show 

that, as expected, the potential increases linearly with decreasing pH under the pK (10.0) 

of the tyrosine phenolic oxygen. The observed, absolute value of the slope between pH 4 

and 10 is 63 mV/pH unit. This slope is in reasonable agreement with the expected slope 

(59 mV/pH unit) for an electron-transfer process in which both a proton and an electron 

are transferred at 25 °C.
57

 The data were fit (Figure 2.9, open triangles, dashed line) with 

a modified Nernst equation, in which it is assumed that a single proton-transfer reaction, 

in this case, the protonation of the tyrosine side chain, influences the potential.
40,41

 

However, the pH dependence of the peak potential (Figure 2.9, squares) for tyrosine-

containing peptide A reveals a more complex reaction process. Peptide A data were fit 

best with a model in which three ionizable groups, attributed to aspartic acid, histidine, 

and tyrosine, influence the potential (solid line). In particular, two pK values of 7.0 and 
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8.0 are evident as inflection points (Figure 2.9, arrows) in the data.
41

 These pK values are 

attributed to the cross-strand histidine (His 14), which has dipolar contacts with the 

tyrosine side chain (Tyr 5) (Figure 1B and C). This conclusion is supported by studies of 

peptide C, a peptide A variant in which cyclohexylalanine is substituted for His 14 and in 

which these turning points are not observed (Figure 2.9, circles, dot-dashed line). From 

the slope change at each inflection point, the value of 7.0 is assigned to the pK of His 14 

in the reduced state and the value of 8.0 is assigned to the pK of His 14 in the oxidized 

state {see ref 41 and references therein}. In peptide A (solid line), pK values of 0 

(oxidized state) and 10 (reduced state) were attributed to Tyr 5, and pK values of 4.5 

(oxidized state) and 4.0 (reduced state) were attributed to Asp 3. A pK of 7.0 is typical of 

the histidine side chain in proteins. As observed in Figure 2.9 and the associated fit, when 

the tyrosine side chain in peptide A is oxidized, the pK of the histidine increases by ~1 

pH unit. Therefore, in the pH range from 7.0 to 8.0, the histidine side chain protonates 

when the tyrosine side chain is oxidized, and the oxidation reaction between pH 7.0 and 

8.0 results in the net transfer of a proton from the tyrosine to the histidine. In the ranges 

from pH 8.0-10.0 and 4.5-6.9 (Figure 2.9), the absolute values of linear slopes derived 

from the data are 51 ± 9 mV/pH unit and 53 ± 3 mV/pH unit, respectively. As stated 

above, these values are consistent with the expected one proton-one electron reaction. 

The change in slope (to 27 ± 6 mV/pH unit) in the pH range between 7.0 and 8.0 may be 

due to the close overlap of the histidine pK values. As observed in Table 2.1, the 

consequence of this proton-coupled electron-transfer reaction is to favor tyrosyl radical 

formation at low pH. If one considers thermodynamic linkage of the oxidation and 

reduction reactions, the expected alteration in midpoint potential for a one unit pK change 
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is a decrease of 59 mV at 25 °C {nF∆Em = RT ln(Kox/Kred)}.
11,41

 When tyrosine and 

peptide A are compared, a 0.050 V decrease in peak potential in peptide A is observed at 

pH 5 (Table 2.1). Moreover, the cyclohexylalanine variant shows a confirmatory increase 

in peak potential at low pH, when compared to peptide A (Figure 2.9, circles). Taken 

together, these data suggest that histidine protonation and tyrosine oxidation are 

thermodynamically linked in peptide A.  

 

2.5 Summary 

Our results show that peptide bond formation and proton transfer involving 

histidine can alter the redox potential of tyrosine, even when the histidine and tyrosine 

are not directly hydrogen bonded. To understand the basis of this interaction, electrostatic 

maps were calculated
46

 for tyrosine (Figure 2.10A) and for the tyrosyl radical (Figure 

2.10B). As observed in Figure 2.10, oxidation of tyrosine is associated with an increase in 

negative charge on the phenolic oxygen, which may stabilize the positive charge on the 

histidine side chain. In turn, the protonated imidazole group will stabilize the tyrosyl 

radical, relative to tyrosine. Thus, our results suggest a novel method by which the 

protein environment can alter tyrosyl radical function and control electron-transfer rates. 
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2.7 Figures 

 

 

Figure 2.1. Structures of peptide A, IMDRYRVRNGDRIHIRLR. A.The primary 

sequence, predicted hydrogen bonds, and predicted cross-strand interactions with tyrosine 

(green) are shown. B. The overlap of the 20 lowest energy structures, as derived from 2-

D NMR spectroscopy at pH 5.0, is presented. Only five amino acid side chains (see part 

A, green) are shown. C. Interactions with the tyrosine, Y5, in the averaged, minimized 

NMR structure are shown. Hydrogen atoms are omitted, and hydrogen bonds are shown 

as dotted lines. 
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Figure 2.2. Portions of the 
1
H/

1
H ROESY spectrum acquired at 600 MHz showing the 

inter-strand contacts between Y5 and H14 in peptide A. Dipolar correlations between β-

protons (top panel) and between α- and β-protons (bottom panel) of Y5 and H14. See 

Materials and Methods for experimental conditions. 
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Figure 2.3. Summary of the NMR data:  A. short- and long-range ROEs, B. the Hα 

chemical shift index, and C.the root-mean-square deviations of the backbone atoms (Cα, 

NH, C„) for the conformational ensemble calculated using simulated annealing 

procedures. See Materials and Methods for more information.  
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Figure 2.4. Optical titration of the peptide A (∆) and tyrosine solutions (■). Fraction 

tyrosine is defined as [Tyr]/{[Tyr] + [TyrO
-
]}. See Materials and Methods for 

experimental condtions. 
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Figure 2.5. EPR spectra of tyrosyl radical, generated by UV photolysis, in peptide A at 

pH 11 A. and pH 5 C. For comparison, spectra generated from tyrosinate at pH 11 B. and 

from tyrosine at pH 5 D. are also shown. Spectral conditions were as follows:  microwave 

frequency, 9.21 GHz; power, 200 μW; modulation amplitude, 3 G; modulation 

frequency, 100 kHz; time constant, 655.36 ms; conversion time, 163.84 ms; number of 

scans, 4; temperature, 103 K. See Materials and Methods for experimental conditions. 
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Figure 2.6. One-dimensional NMR spectrum of Peptide A at pH 11.  The CHα region of 

the spectrum is shown. The chemical shift dispersion of the 1-D NMR spectrum suggests 

that peptide A folds at pH 11. 

ppm 
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-  

Figure 2.7.  FT-IR spectrum of peptide A at pH 11. Observation of two bands at 1622 

and 1668 cm
-1

 is consistent with significant beta sheet content in the peptide at this pH. 

See Materials and Methods for experimental conditions. 



 53 

 

Figure 2.8. Square wave voltammetry of tyrosine and peptide A solutions. The anodic 

current versus applied potential are plotted for tyrosine at pH 5 C. and pH 11 D. and for 

peptide A at pH 5 A.and pH 11 B. For the assignment of peak potentials, see Table 2.1. 

See Materials and Methods for experimental conditions. 
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Figure 2.9. Effect of pH on the peak potential of the anodic waves, as assessed by square 

wave voltammetry, for peptide A (■), peptide C (●), and tyrosine solutions (∆). In some 

cases, the error bars are smaller than the symbols used to represent the points. Data were 

fit with equations describing a model in which oxidation is coupled to protonation of one 

(peptide C, dot-dashed line and tyrosine, dashed line) or three (peptide A, solid line) 

ionizable groups.
40,41

 See the Materials and Methods section for details concerning the 

fits. As expected, the tyrosine and peptide C data (∆ and ●, respectively) were fit well 

with a model in which protonation of the tyrosine phenolic oxygen (pK= 0, oxidized state 

and 10, reduced state) influences the potential (dashed and dot-dashed lines). Peptide A 

data were fit best with a model in which three ionizable groups influence the potential 

(solid line). In peptide A (solid line), pK values of 0 (oxidized state) and 10 (reduced 

state) were attributed to tyr, pK values of 8.0 (oxidized state) and 7.0 (reduced state) were 

attributed to his, and pK values of 4.5 (oxidized state) and 4.0 (reduced state) were 

attributed to an aspartic acid. The arrows show inflection points assigned to histidine in 

peptide A. 
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Figure 2.10. Electrostatic maps of tyrosine A. and the tyrosyl radical B. in their anionic 

forms. The molecules are anionic due to the negative charge on the carboxylate group. 

The colors correspond to the value of the electrostatic potential in atomic units; red colors 

are more positive, and blue colors are more negative. 
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3.1 Abstract 

Tyrosine side chains are involved in proton coupled electron transfer reactions 

(PCET) in many complex proteins, including photosystem II (PSII) and ribonucleotide 

reductase.  In particular, PSII contains two redox active tyrosines, which have different 

protein environments, midpoint potentials, and roles in catalysis. Designed biomimetic 

peptides provide a tractable system, which can be used to investigate how the protein 

matrix controls these PCET reactions.  In a previous report, PCET reactions were shown 

to occur between a tyrosine (Tyr 5) and a cross-strand histidine (His 14) in a designed, 18 

amino acid beta hairpin peptide.  In this peptide, the single tyrosine is hydrogen bonded 

to an arginine residue, Arg 16, and a second arginine, Arg 12, has a pi-cation interaction 

with the tyrosine.  The effect of these interactions was to lower the midpoint potential of 

Tyr 5 at low pH values and to cause redox changes in the pK of His14.  In this report, 

four additional peptides are used to characterize the effect of hydrogen bonding and 

electrostatic interactions on these PCET reactions. Circular dichroism shows that all the 

sequences form stable beta hairpin peptides, and electron paramagnetic resonance 

spectroscopy shows that the structural environment of the tyrosyl radical is not 

significantly altered by most substitutions.  Optical titration of the peptides reveals that 

the pK of tyrosine is not significantly altered by removal of His14 or Arg12.  However, 

substitution at the hydrogen bonding Arg16 decreases the pK of Tyr5 from 9.3+0.1 to 

8.3+0.1.  Electrochemical titration measurements confirm that histidine substitutions 

eliminate PCET reactions.  Removal of Arg 16 or Arg 12 has no effect on PCET, but 

increases the midpoint potential for tyrosine oxidation by approximately 50 mV at all 

tested pH values.  The effects of arginine substitution are consistent with the change in 
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midpoint potential, which is observed for the PSII redox-active tyrosine residues.   Taken 

together, the results show that a pi cation interaction, hydrogen bond, and PCET between 

tyrosine and histidine alter the functional properties of redox active tyrosine residues.  In 

particular, these interactions can contribute equally to the control of midpoint potential 

and, thereby, reaction rate. 
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3.2 Introduction 

Beta hairpins are common secondary structural motifs found in proteins.
1-3

 Since 

the discovery of the first autonomously folding beta hairpin
4
 monomeric hairpins have 

proven to be useful systems in which to quantify the non-covalent interactions involved 

in protein folding.
5-19

 Specifically, NMR studies on model peptides have revealed that 

aromatic interactions
17,20,21

, cation-pi interactions
5,19

, and salt bridges
6,20

 play significant 

roles in stabilizing the hairpin structure. Simultaneous incorporation of salt bridges into 

beta hairpins have been shown to stabilize the hairpin structure by 3.6 kJ/mol.
6
 Individual 

salt bridges contribute 1.2-1.3 kJ/mol to hairpin stability.
6
 Aromatic interactions provide 

0.2-0.3 kcal/mol (0.8-1.3 kJ/mol) of stabilization to beta hairpins.
20

   Elucidation of 

structural elements, which facilitate beta hairpin formation, has enabled de novo design 

of biomimetic peptides.
22

 These peptides can then serve as simple and functional models 

of more complex native proteins.
22

  

Here, we employ de novo designed beta hairpins to investigate how the protein 

environment controls tyrosine oxidation in enzymes. A similar approach has been used 

previously to explore the effect of non-covalent interactions on the redox potential of 

hemes, iron sulfur clusters, and other metal centers in peptide models.
23-31

  Our previous 

work used a beta hairpin peptide to study electron transfer reactions involving a redox 

active tyrosine (Figure 3.1A).
32

  

Redox active tyrosines are found in several enzymes, including photosystem II
33-

39
 ribonucleotide reductase,

40-44
 prostaglandin synthase

45-48
, and galactose oxidase.

46,47,49
  

In electron transfer in these proteins, the tyrosine side chain is transiently oxidized to 

form a neutral tyrosyl radical, Tyr●.  Because the pK of the phenolic oxygen is 
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dramatically altered by oxidation
50

, redox active tyrosines can participate in proton 

coupled electron transfer (PCET) reactions in proteins.
51

  

Photosystem II (PSII) contains two redox-active tyrosine residues, Tyr 161D1 

(TyrZ) and Tyr 160D2 (TyrD).
52,53

  Tyr 161D1 (Tyr Z) is located in the D1 polypeptide 

of PSII (Figure 3.1B).  This redox active tyrosine participates in water oxidation by 

reducing P680
+

 and oxidizing the manganese cluster.
54-57

 Tyr 160D2 (TyrD) (Figure 3.1C) 

is located in the D2 polypeptide of PSII and is not required for oxygen evolution.
55,56,58,59

 

Tyr 160D2 (TyrD) redox reactions may be involved in the assembly of the manganese 

cluster.
58,60

 Tyr 161D1 (TyrZ) and Tyr 160D2 (TyrD) have midpoint potentials that differ 

by ~200 mV.
57,61

  The radicals have dramatically different decay times.  Tyr 161D1● 

(TyrZ●) has a μs to ms lifetime
62-64

, while Tyr 160D2● (TyrD●) has a lifetime on the 

order of minutes to hours.
65,66

  The protein environmental interactions, which give rise to 

these energetic and kinetic differences, are still not understood. 

X-ray crystal structures of PSII have been reported.
67-72

 The 2.9 Å crystal 

structure of cyanobacterial photosystem II shows that the environments of Tyr 161D1 

(TyrZ) and Tyr 160D2 (TyrD) differ in the detailed placement of histidine, arginine, and 

aspartic acid side chains (Figure 3.1B and 3.1C) near the redox active tyrosine.  Tyr 

161D1 (TyrZ) is predicted to hydrogen bond with His 190D1 and is 5.08 Å from an Asp 

170D1-Arg 357CP43 salt bridge.  Tyr 161D1 (TyrZ) also may interact electrostatically 

with a second histidine and aspartic acid residue (Figure 1B).  Tyr 160D2 (TyrD) is 

predicted to form a hydrogen bond with His 189D2 and is 6.95 Å from an Asp 333D2-

Arg 180D2 salt bridge.  In addition, Tyr 160D2 (TyrD) has a potential pi-cation 

interaction with a second arginine, Arg 272 of the CP47 subunit at 7.81 Å, and an 



 65 

electrostatic interaction with a third arginine, Arg 294D2 at 6.48 Å, which are not found 

in the environment of Tyr 161D1 (TyrZ).   Although pi-cation interactions typically occur 

between amino acids separated by 6 Ǻ or less, some pi-cation interactions occur over 

distances up to 10 Ǻ.
73

  

The electron transfer rate in proteins is responsive to changes in distance and 

midpoint potential.
74-76

  A number of redox active tyrosine model systems have been used 

to examine how function is controlled by the responsive protein matrix. Studies involving 

phenol derivatives with pendant bases have shown that hydrogen bonding alters the 

reduction potential of tyrosine.
77

   Tyrosine and tryptophan residues have been linked to 

ruthenium photosensitizers, which resulted in model complexes for proton-coupled 

electron transfer from amino acids.
78

  In designed helical proteins, the redox potential of 

tyrosine was found to be modulated by placement in a non-polar environment and by 

shielding from proton acceptors.
79,80

  

In a recent study, we described a beta hairpin peptide, 

IMDRYRVRNGDRIHRILR (peptide A), in which PCET reactions between Tyr5 and 

His14 modified the midpoint potential of the single tyrosine residue.
32

   In peptide A, 

Tyr5 is hydrogen bonded to an arginine residue, Arg16, and a second arginine, Arg12, 

has a possible pi-cation interaction with the tyrosine.  Here, we report results obtained 

from studies of four additional beta hairpin peptides, in which substitutions were made at 

His14, Arg12, and Arg16.  The results show that hydrogen bonding, pi-cation, and PCET 

interactions alter the midpoint potential of redox active tyrosines.  In addition, hydrogen 

bonding and pi-cation interactions with tyrosine alter the pH range over which PCET 

reactions occur. 
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3.3 Materials and Methods 

3.3.1 Peptide synthesis. Peptide A (IMDRYRVRNGDRIHIRLR), peptide B 

(IMDRYRVRNGDVIRIRLR), peptide C (His14Cha) (IMDRYRVRNGDRI[Cha]IRLR), 

peptide D (His14Val; Arg12Ala) (IMDRYRVRNGDAIVIRLR), peptide E (Arg16Ile) 

(IMDRYRVRNGDRIHIILR), and peptide F (Arg12Ile) (IMDRYRVRNGDIIHIRLR) 

were synthesized by Sigma Genosys (The Woodlands, TX). The peptides were purified to 

95% homogeneity by the manufacturer. Mass spectrometry was used to verify the 

sequence, and the purity was determined by analysis of the reverse phase HPLC 

chromatogram. The peptides were used without further purification. 

3.3.2 Circular dichroism.  A JASCO J-810 CD spectropolarimeter equipped with 

a thermostated cell holder was employed.  CD samples were prepared to concentrations 

between 0.1 mM and 0.2 mM in 5 mM acetate buffer at pH 5.0 or 5 mM borate buffer at 

pH 11.0, and were filtered using Acrodisc
®

 25 mm syringe filters with 0.45 µm HT 

Tuffryn membrane prior to data collection. The spectra were collected between 186 nm 

and 250 nm in 1 mm quartz cells at a scan speed of 50 nm/min.
81,82

 Four to twelve scans 

were averaged to generate each spectrum, and three to five spectra were collected and 

averaged for each peptide.  A baseline was recorded using 5 mM acetate buffer or 5 mM 

borate buffer, and the baseline was subtracted manually.  Spectral conditions were as 

follows: sensitivity, 100 mdeg; data pitch, 1 nm; scanning mode, continuous; scan speed, 

50 nm/min; response time, 1 sec; bandwidth, 1 nm.    

3.3.4 pK determination. A Hitachi U-3000 spectrophotometer equipped with 1 cm 

path length cuvettes was employed.  The samples were prepared to a concentration of 50 
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µM and buffered using 10 mM MES-NaOH (pH 5.5), 10 mM HEPES-NaOH (pH 6.0-

8.0), 10mM boric acid-NaOH (pH 8.5-9.5) or 10 mM CAPS-NaOH (pH 10.0-11.5).  The 

solutions were filtered using Acrodisc
®
 25 mm syringe filters with 0.45 µm HT Tuffryn 

membrane. Backgrounds were recorded at each pH using the appropriate buffer.  The 

optical spectrum was recorded between 200 nm and 350 nm, as a function of pH.  

Spectral conditions were as follows: slit width, 2.0 nm; scan speed, 120 nm/min. 

Deprotonation of tyrosine was monitored by measuring the change in absorbance at 295 

nm, at which TyrO
-
 contributes.

83
  The 295 nm absorption was corrected for baseline 

instabilities by subtracting out the absorbance at 330 nm.  Data were obtained for two to 

six different samples and were averaged.  Extinction coefficients were calculated for 

tyrosinate by substituting the pathlength of the cuvettes, the measured absorbance of each 

sample at pH 11.0, and the sample concentration into Beer‟s law.  

3.3.5 Electrochemistry.  Square wave voltammetry measurements were performed 

on a computer-controlled CH instruments, Inc. (Austin, TX) workstation. The 

experiments were conducted in a three-electrode cell, equipped with a 3 mm glassy 

carbon working electrode from Bioanalytical Systems, Inc. (West Lafayette, IN), a 

platinum counter electrode, and a reference electrode (Ag/AgCl in 1 M KCl, E = 0.22 V 

(NHE)). The sample concentrations were 0.05 mM in 0.2 M KCl and 10 mM sodium 

acetate-NaOH (pH 4.5-5.5), 10 mM sodium phosphate-NaOH (pH 6.0-7.5), 10 mM boric 

acid-NaOH (pH 8.0-9.5) or 10 mM CAPS (pH 10.0-11.5). The sample was purged with 

nitrogen gas during data collection. Oxidation was initiated with a holding time of 2 s at 

0.1 V and then scanned up to 1.1 V. Data were collected in increments of ΔE = 0.004 V. 

The square wave frequency, f, was 5 Hz, and the amplitude, A, of the applied pulse was 
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0.025 V (scan rate ν = f*A = 125 mV/s). The data were fit to a baseline manually, and the 

centroid was used to derive the peak potential. Three trials were performed and averaged 

for each peptide.  

3.3.6 EPR Spectroscopy. EPR spectra were collected on a Bruker EMX 

spectrometer equipped with a standard TE cavity (Billerica, MA).
37,84

 Spectra were 

recorded at 108 K using a Wilmad (Buena, NJ) flow-through liquid nitrogen dewar. The 

samples were prepared to a concentration of 1 mM at pH 5.0 and pH 11.0 in 5 mM 

sodium phosphate-NaOH (pH 5.0) buffer or 5 mM boric acid-NaOH (pH 11.0) buffer. 

The radical was generated with a 266 nm photolysis pulse.
37,84

 Baseline correction of the 

spectra was performed using Igor Pro software (Wavemetrics, Lake Oswego, OR). The 

samples were flashed in the EPR cavity with fifty laser flashes with a pulse energy of 50-

60 mJ. Spectral conditions were as follows: microwave frequency, 9.2 GHz; microwave 

power, 200 μW; modulation amplitude, 3 G; modulation frequency, 100 kHz; scan time, 

168 s; number of scans, 4; time constant, 655 ms. Data were obtained for two different 

samples and were averaged.  At pH 5.0, the g values for the radicals were, 2.0042 for 

tyrosine solution, 2.0037 for peptide A, 2.0041 for peptide C (His14Cha), 2.0043 for 

peptide D (Arg12Ala; His14Val), 2.0037 for peptide E (Arg16Ile), and 2.0043 for peptide 

F (Arg12Ile).  At pH 11.0, the g values for the radicals were, 2.0042 for tyrosine solution, 

2.0042 for peptide A, 2.0041 for peptide C (His14Cha), 2.0043 for peptide D (Arg12Ala; 

His14Val), 2.0043 for peptide E (Arg16Ile), and 2.0044 for peptide F (Arg12Ile). These 

values are indistinguishable. 
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3.4 Results 

3.4.1 Peptide design.  Figure 3.2 shows the amino acid sequence and predicted 

cross-strand interactions for peptides A through F.  The ProtParam tool was used to 

compute the physico-chemical properties of the peptides.
85

  Sequences were predicted to 

be stable and soluble in water.  The peptides were designed with a net charge of +1 or +2 

to ensure solubility and a pI of greater or equal to 11.  Each peptide contains a single 

tyrosine residue, at least one salt bridge,
6,20

 a type I‟ Asn-Gly turn,
8,9

 and several amino 

acids with high propensities for forming beta sheets.
13,14

  Peptide A, peptide E (Arg16Ile), 

and peptide F (Arg12Ile) also contain an aromatic interaction
17,20,21

 between Tyr 5 and 

His 14.  

In the NMR structure of peptide A
32

, Tyr 5 accepts a hydrogen bond from the -

NH of Arg 16.  The structure also showed a pi-stacked aromatic interaction between Tyr5 

and His14 and a possible pi-cation interaction between Tyr5 and Arg 12, which are 7.81 

Å apart.  In peptides C and D, His 14 is replaced by cyclohexylalanine and valine, 

respectively.   This replacement is expected to disrupt PCET.  In peptide D, Arg 12 is 

substituted with Ala. In peptides E and F, Arg 16 and Arg 12 are substituted with Ile to 

assess the role of the hydrogen bond and pi-cation interaction. 

3.4.2 Peptides A-F form beta hairpin structures. Circular dichroism (CD) 

spectropolarimetry was used to verify that peptides C, D, E, and F form beta hairpins in 

aqueous solution. The CD spectrum of RNase A (Figure 3.3), which contains beta sheet
86

 

was used as a control.  At 20
o
C, the RNase A spectrum exhibits a minimum at 210 nm, 

which shifts to 200 nm when the temperature is increased to 80
o
C.  The minimum shifts 
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back to 210 nm upon cooling RNase A back to 20
o
C. These results are in agreement with 

results in the literature.
86

  

Figure 4 presents the CD spectra of peptide A (Figure 3.4A), peptide B (R12V; 

H14R) (Figure 3.4B), peptide C (His14Cha) (Figure 3.4C), peptide D (His14Val; 

Arg12Ala) (Figure 3.4D), peptide E (Arg16Ile) (Figure 3.4E), and peptide F (Arg12Ile) 

(Figure 3.4F). These experiments were conducted at pH 5.0, and thermal denaturation 

experiments were performed on each peptide.  Peptide A (Figure 3.4A) served as a folded 

control, because previous NMR experiments have shown that the peptide is folded at this 

pH.
32

 NMR spectra of peptide B (Figure 3.4B) indicate that it is a random coil; therefore, 

peptide B served as an unfolded control.  

 At 20
o
C, the CD spectrum of peptide A (Figure 3.4A) exhibits a minimum at 197 

nm. At 80
o
C, the amplitude of the minimum decreases by 7 mdeg and its location shifts 

slightly to 200 nm. Additionally, a second broad minimum appears at 221 nm when 

peptide A is heated.  The original amplitude and location of the CD minimum of peptide 

A is regained by cooling the sample back to 20
o
C. The spectra of peptide A also contain 

an isodichroic point at 207 nm. Thus, peptide A experiences reversible thermal 

denaturation at pH 5.0. Therefore, the CD data indicate that, as expected, peptide A forms 

a beta hairpin at pH 5.0.  

The CD spectrum of peptide B (Figure 3.4B) displays a shallow minimum at 200 

nm at 20
o
C. At 80

o
C, the spectrum exhibits minima at 201 nm and 221 nm. Unlike 

peptide A, the amplitude of the minimum at 200 nm at 20
o
C is only 2 mdeg larger than 

the amplitude of the 201 nm minimum at 80
o
C. These results suggest that, as expected, 

peptide B does not form a beta hairpin at pH 5.0.  
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At pH 5.0 and 20
o
C, the CD spectra of peptide C (His14Cha) (Figure 3.4C), 

peptide D (His14Val; Arg12Ala) (Figure 3.4D), peptide E (Arg16Ile) (Figure 3.4E), and 

peptide F (Arg12Ile) (Figure 3.4F) all display 197 nm minima, which shift to 200 nm 

upon heating, like peptide A.  Also, like peptide A, the spectra of peptides C through F 

each contain a broad minimum at 221 nm at 80
o
C, and undergo reversible thermal 

denaturation between 20
o
C and 80

o
C.  Thus, the data support the conclusion that peptides 

C through F form beta hairpin structures at pH 5.0.  

CD spectra were also collected for the peptides A, C (His14Cha), D (Arg12Ala; 

His14Val), E (Arg16Ile), and F (Arg12Ile) at pH 11.0 (Figure 3.5). Peptides A (Figure 

3.5A), peptide C (His14Cha) (Figure 3.5B), and peptide D (Arg12Ala; His14Val) (Figure 

3.5C) display reversible thermal denaturation between 20
o
C and 80

o
C. These data support 

the conclusion that peptides A, C (His14Cha), and D (Arg12Ala; His14Val) are stably 

folded at pH 11.0.  

At pH 11.0 and 20
o
C, peptide E (Arg16Ile) displayed a shallow minimum at 199 

nm. (Figure 3.5D).  Increasing the temperature to 80
o
C decreased the amplitude of the 

minimum and shifted the minimum to 201 nm.  Cooling peptide E (Arg16Ile) back to 

20
o
C (post-melt) shifted the minimum back to 199 nm.  The spectrum collected at 80

o
C 

has an isodichroic point with the 20
o
C pre-melt spectrum at 203 nm. This isodichroic 

point shifts to 208 nm when compared with the 20
o
C post-melt spectrum.   These data 

support the conclusion that peptide E (Arg16Ile) forms a stable beta hairpin structure at 

pH 11.0. 

At 20
o
C, peptide F (Arg12Ile) displayed a shallow minimum at 198 nm at pH 11.0 

(Figure 3.5E).  Increasing the temperature to 80
o
C increased the amplitude of the 
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minimum and shifted it to 201 nm.  Cooling peptide F (Arg12Ile) back to 20
o
C (post-

melt) shifted the minimum back to 198 nm.  However the amplitude of the 20
o
C post-

melt minimum is larger than the amplitude of the 20
o
C pre-melt minimum.  These data 

support the interpretation that peptide F can adopt a beta hairpin structure at pH 11.0 

under some conditions. 

3.4.3 pK determination. Optical titration curves were used to assess the effect of 

substitutions on the pK of Tyr 5 in peptides A, C (His14Cha), D (Arg12Ala; His14Val), 

E (Arg16Ile), and F (Arg12Ile) (Figures 3.6 and Figure 3.7).  Tyrosinate and tyrosine are 

distinguishable in the UV region by the deprotonation-induced red shift of the 270 nm 

absorption band (Figure 3.6).  The deprotonation can be monitored at 295 nm in a 

titration experiment (Figures 3.6 and 3.7).  Table 3.1 gives tyrosinate wavelength maxima 

and extinction coefficients for the peptides (Table 3.1). To determine the pK of tyrosine 

in solution and in peptides, we performed a least square fit of the optical titration curves 

to the Henderson-Hasselbach equation. The data for tyrosine in solution, peptide A, and 

peptide D (Arg12Ala; His14Val) were fit between pH 4.0 and pH 10.5. Because the 

concentration of tyrosinate was independent of pH between pH 4.0 and pH 8.0 for these 

samples, the lowest pH used for peptides C (His14Cha), E (Arg16Ile), and F (Arg12Ile) 

was pH 5.5 in order to conserve the samples. The data for peptide C (His14Cha) and 

peptide F (Arg12Ile) were fit between pH 5.5 and 10.5. The data for peptide E (Arg16Ile) 

was fit between pH 5.5 and pH 10.0.  In the titration curve for peptide F (Arg12Ile), the 

concentration of tyrosinate decreases sharply as the pH increases above pH 10.5. This 

may be explained by hydrolysis of the peptide above pH 10.5. Therefore, for tyrosine in 

solution and for peptides A, C (His14Cha), D (Arg12Ala, His14Val), and F (Arg12Ile), 
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data collected beyond pH 10.5 were not included. For peptide E (Arg16Ile), we included 

data up to pH 11.0 to show its unique second equivalence point, which is present between 

pH 10.0 and pH 11.0. The circular dichroism spectra for peptide E (Arg16Ile) at pH 11.0 

(Figure 3.5D) indicate an intact beta hairpin at pH 11.0. 

 

Table 3.1.   Extinction coefficients, wavelength maxima, and pK values for tyrosinate in 

solution and in beta hairpin peptides
†
 

 

Sample
a 

 

λmaxTyrO
-
 (nm) 

εTyrO
-
295 

(L mol
-1

cm 
-1

) 

 

pKD 

 

Chi
2 

Tyrosine 

 

 

291.6 1664 9.8  0.1 1.11 x 10
-10

 

Peptide A 

 

 

295.8 1300 9.3  0.1 1.22 x 10
-10

 

Peptide C 

(H14Cha) 

 

293.6 2146 9.4  0.1 1.81 x 10
-10

 

Peptide D 

(R12A;H14V) 

 

293.6 1400 9.4  0.1 5.04 x 10
-10

 

Peptide E 

(R16I) 

 

293.0 3776 8.3  0.1 3.99 x10
-10

 

Peptide F 

(R12I) 

293.0 2911 9.6  0.1 8.45 x 10
-10

 

 
†
pK values were derived from a least squares fit to the data in Figure 3.7, using the 

Henderson-Hasselbach equation, [Tyr-O
-
] = [(10

pH-pK
)*(Total Concentration)]/[1+10

pH-

pK
] and Igor Pro software (Wavemetrics, Osewego, OR)  The chi

2
 values were used to 

evaluate the quality of the fit.  The data were fit between pH 5 and 11, except for peptide 

E, which was fit between pH 5 an 10.
  

 

a
Sequence variations are shown in parentheses. 
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As a control, the pK of tyrosine in solution was determined and found to be 9.8 ± 

0.1 (Table 3.1), which is close to the value of 10.17 ± 0.02 reported in the literature.
83,87

 

The pK of Tyr 5 in peptide A is 9.3 ± 0.1.  The pK values of tyrosine in peptides C 

(His14Cha), D (Arg12Ala; His14Val), and F (Arg12Ile) are 9.4 ± 0.1, 9.4 ± 0.3, and 9.6 

± 0.1, respectively.  These data support our previous conclusion that His14 does not 

influence the dissociation constant of Tyr 5.
32

 They also show that Arg12 does not 

influence the dissociation constant of Tyr 5. However, the titration curve for peptide E 

(Arg16Ile), in which the hydrogen bond to Arg 16 is eliminated, (Figure 3.7E) appears to 

contain two equivalence points.  Fitting the low pH transition gave a pK of 8.3 ± 0.1 for 

the first equivalence point. These data support the conclusion that the hydrogen bond to 

Arg 16 does alter the proton affinity of the phenolic oxygen.  The presence of two pK 

values in peptide E (Arg16Ile) suggests that high pH values alter non-covalent 

interactions with Tyr 5. 

3.4.5 Electrochemical titrations. To analyze the effects of non-covalent 

interactions on tyrosine oxidation, we performed electrochemical titrations of peptides C 

through F using square wave voltammetry.  The potential for tyrosyl radical formation 

was plotted versus pH for each sample (Figure 3.8).  The side chains of aspartic acid, 

tyrosine, and histidine have pK values within the pH range of the electrochemical 

titration.  The electrochemical data from the peptides (Figure 3.8) were fit with a Nernst 

equation in which one or more ionizable groups influence the potential
32

, and chi
2
 values 

were used to evaluate the quality of the least square fits (Table 3.2).   As an example of 

this procedure, Figure 3.9 and Table 3.3 show the results of fitting peptide F (Arg12Ile) 

data with one, two, or three ionizable groups.  The chi
2
 value decreases with the inclusion 
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of more inflection points (Table 3.3).  The quality of the fit (Figure 3.9, solid line) 

improves with the inclusion of three ionizable groups, which are present in the peptide. 

While the fit illustrated in Figure 3.9C adequately represent the data, the simulation 

cannot be regarded as a unique fit. 

 The data for peptide A were fit with the Nernst equation in which three ionizable 

groups, Asp 3, Tyr 5, and His 14, influence the potential (Figure 3.8, solid lines).  In 

fitting the data from each peptide, the pKred of Tyr was fixed at either 9.8 (tyrosine in 

solution), 9.4 (peptide A, peptide C (His14Cha), and peptide D (Arg12Ala; His14Val)), 

8.3 (peptide E (Arg16Ile)), or 9.6 (peptide F (Arg12Ile)), depending on the pK derived 

for the corresponding sample by optical titration experiments (Table 3.1). The pKox of 

Tyr was fixed at 0.
32,50

  The fit to the peptide A data (Figure 3.8, solid lines) predicts 

inflection points at pH 3.1, 5.6, 6.0, and pH 8.9 (Table 3.3).  The inflection points at pH 

3.1 and 5.6 are attributed to Asp 3 in the Tyr
red

 and Tyr
ox

 forms of the peptide, 

respectively (Table 3.3).   This result is consistent with a tyrosine-oxidation induced 

electrostatic perturbation of this amino acid. The inflection points at pH 6.0 and 8.9 are 

attributed to redox-induced changes in the proton affinity of His 14 in the Tyr
red

 and Tyr
ox

 

forms of the peptide, respectively.
32
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Table 3.2.  Parameters used to fit the electrochemical titration data (Figure 3.8)
† 

 

 

Sample 

 

E
*
 

(V) 

S 

(V/pH) 

 

Tyr
ox

 

 

Asp
ox

 

 

His
ox

 

 

Tyr
red

 

 

Asp
red

 

 

His
red

 

 

Chi
2
 

 

Tyrosine
a
 

 

 

1.35 

 

0.07 

 

0.0 

 

- 

 

- 

 

9.8 

 

- 

 

- 

 

2.25 x 10
-3 

 

Peptide A
b 

 

 

 

1.69 

 

0.20 

 

0.0 

 

5.6 

 

8.9 

 

9.4 

 

3.1 

 

6.0 

 

2.15 x 10
-3

 

Peptide C
c
 

(H14Cha) 

 

1.29 0.06 0.0 5.8 - 9.4 4.8 - 5.28 x 10
-3

 

Peptide D
c
 

(R12A;H14V) 

 

1.31 0.06 0.0 6.3 - 9.4 5.2 - 6.57 x 10
-3

 

Peptide E
b
 

(R16I) 

 

2.05 0.24 0.0 5.2 7.3 8.3 3.5 5.8 2.96 x 10
-3

 

Peptide F
b
 

(R12I) 

1.91 0.19 0.0 6.7 8.9 9.6 4.6 7.1 4.59 x 10
-3

 

 

†
Parameters were derived by performing a least squares fit of the data to the Nernst 

equation using Igor Pro software. The chi
2
 values were used to evaluate the fits. The pK 

values reported for Tyrred and Tyrox were determined from the optical titration data 

(Tyrred) (Figure 3.7 and Table 3.1) and from the literature (Tyrox).
83,87

  
 

a
The data were fit to the Nernst equation: Em = E* - S log[{10

-pKox
 + 10

-pH
}/{10

-pKred 
+ 10

-

pH
}], which describes the influence of one ionizable group on the midpoint potential of 

tyrosine. 

 
b
The data were fit to the modified Nernst equation: Em = E* - S log[[({10

-pH
}

3
 + {10

-pH
}

2
 

* {10
-pKox1

}) + ({10
-pH

} * {10
-pKox1

} *{10
-pKox2

}) + ({10
-pKox1

} * (10
-pKox2

) * {10
-

pKox3
})]/[({10

-pH
}

3
 + {10

-pH
}

2
 * {10

-pKred1
}) + ({10

-pH
} * {10

-pKred1
} * {10

-pKred2
}) + ({10

-

pKred1
} * (10

-pKred2
) * {10

-pKred3
})]], which describes the influence of three ionizable 

groups on the midpoint potential of tyrosine.  

 
c
The data were fit to the modified Nernst equation: Em = E* - S log[[({10

-pH
}

2
)+({10

-pH
} 

* {10
-pKox1

})+({10
-pKox1

} * {10
-pKox2

})]/[({10
-pH

}
2
)+({10

-pH
} * {10

-pKred1
})+({10

-pKred1
} * 

{10
-pKred2

})]], which describes the influence of two ionizable groups on the midpoint 

potential of tyrosine. 
 

d
pK values of ionizable groups associated with oxidized tyrosine. 

 
e
pK values ionizable groups associated with singlet reduced tyrosine. 
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Table 3.3.  Parameters used to evaluate fits to the electrochemical data, recorded on  

peptide F (Arg12Ile)  (Figure 3.9)
† 

 

# of 

Ionizable 

Groups 

 

 

E
*
 (V) 

 

S 

(V/pH) 

 

 

Tyr
ox

 

 

 

Asp
ox

 

 

 

His
ox

 

 

 

Tyr
red

 

 

 

Asp
red

 

 

 

His
red

 

 

 

Chi
2
 

One
a
 

 

1.35 0.07 0.0 - - 9.6 - - 1.10 x 10-
2
 

Two
b
 

 

1.69 0.20 0.0 - 7.6 9.6 - 5.6 6.15 x 10
-3

 

Three
c
 1.29 0.06 0.0 6.7 8.9 9.6 4.6 7.1 4.59 x 10

-3
 

 
†
Parameters were derived by performing a least squares fit of the data to the Nernst 

Equation using Igor software. The chi
2
 values were used to evaluate the fits. The pK 

values reported for Tyrred and Tyrox were determined from the optical titration data) 

(Tyrred) (Figure 3.7 and Table 3.1) and from the literature (Tyrox).
83,87 

 

a
The data were fit to the Nernst equation: Em = E* - S log[{10

-pKox
 + 10

-pH
}/{10

-pKred 
+ 10

-

pH
}], which describes the influence of one ionizable group on the midpoint potential of 

tyrosine. 

 
b
The data were fit to the modified Nernst equation: Em = E* - S log[[({10

-pH
}

2
)+({10

-pH
} 

* {10
-pKox1

})+({10
-pKox1

} * {10
-pKox2

})]/[({10
-pH

}
2
)+({10

-pH
} * {10

-pKred1
})+({10

-pKred1
} * 

{10
-pKred2

})]], which describes the influence of two ionizable groups on the midpoint 

potential of tyrosine. 

 
c
The data were fit to the modified Nernst equation: Em = E* - S log[[({10

-pH
}

3
 + {10

-pH
}

2
 

* {10
-pKox1

}) + ({10
-pH

} * {10
-pKox1

} *{10
-pKox2

}) + ({10
-pKox1

} * (10
-pKox2

) * {10
-

pKox3
})]/[({10

-pH
}

3
 + {10

-pH
}

2
 * {10

-pKred1
}) + ({10

-pH
} * {10

-pKred1
} * {10

-pKred2
}) + ({10

-

pKred1
} * (10

-pKred2
) * {10

-pKred3
})]], which describes the influence of three ionizable 

groups on the midpoint potential of tyrosine.  

 
d
pK values of ionizable groups associated with oxidized tyrosine. 

 
e
pK values ionizable groups associated with singlet reduced tyrosine. 
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Previously, we predicted pK values of Tyr 5, Asp 3, and His 14 by fitting the data 

to linear segments between pH 4.0 and 4.5, pH 4.5 and 7.0, pH 7.0 and 8.0, pH 8.0 and 

10.0, and pH 10.0 and pH 11.8.
32

 Using that method, the pKs were predicted from the 

intersections of the linear segments, yielding pKox values of 0, 4.5, and 8.0 for Tyr 5, Asp 

3, and His 14, respectively and pKred values of 10.0, 4.0, and 7.0 for Tyr 5, Asp 3, and 

His 14, respectively.
32

 These results were also consistent with oxidation-induced changes 

in the pK values of Asp 3 and His 14.
32

  

Figure 3.8 presents electrochemical data, acquired from peptide C (His14Cha) 

(Figure 3.8A), peptide D (Arg12Ala; His14Val) (Figure 3.8B), peptide E (Figure 3.8C), 

and peptide F (Figure 3.8D).  Fits to the data are shown superimposed as the dotted line 

(Table 3.2).  For comparison, electrochemical data derived from peptide A are also 

shown in each Figure 3.8 panel, with a fit superimposed as a solid line (Table 3.2).  As 

expected, substitution at His 14 in peptide C (His14Cha) (Figure 3.8A) and peptide D 

(Arg12Ala; His14Val) (Figure 3.8B) eliminates the His 14 inflection points at pH 6.0 and 

8.9 (Table 3.2), which are observed in peptide A. Also as expected, the His 14 inflection 

points are still present in the titration curves for peptide E (Arg16Ile) and peptide F 

(Arg12Ile), although the range over which the inflection points occur is altered (this 

alteration is discussed below). This result is consistent with our previous work
32

 , which 

showed that the PCET reactions in peptide A involve His 14 as the proton acceptor.   

Moreover, removal of His 14 in peptides C (His14Cha) and D (Arg12Ala; His14Val) 

increases the redox potential at low pH values. 

  Peptide C (His14Cha) (Figure 3.8A) contains a single amino acid substitution at 

His 14. Peptide D (Arg12Ala; His14Val) (Figure 3.8B) contains two amino acid 
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substitutions, one at His 14 and one at Arg 12.  In addition to eliminating the PCET 

reaction, these substitutions in peptide C (His14Cha) and peptide D (Arg12Ala; 

His14Val) also alter the pK values of Asp 3. The single substitution at His 14 in peptide 

C (Figure 3.8A) increases the pK of Asp 3 in the Tyr
red

 form  (pK change=1.7) (Table 

3.2). These two alterations increase the pK of Asp 3 in the Tyr
ox 

(pK change=0.7) and 

Tyr
red

 (pK change=2.1) forms of the peptide (Table 3.2).   

Figure 3.8C presents electrochemical titration data acquired from peptide E 

(Arg16Ile), in which the hydrogen bond between Arg 16 and Tyr 5 is eliminated.  In 

peptide E (Arg16Ile) (dotted line), a ~50 mV change in midpoint potential is observed at 

all pH values, when the data are compared to peptide A (solid line).  Fits to the data show 

that the pK of His 14 in the Tyr
ox

 form of peptide E (Arg16Ile) decreases from 8.9 to 7.3 

due to the substitution at Arg 16 (Table 3.2).  The fits also show that removal of the Arg-

Tyr hydrogen bond lowers the pK of His 14 by only 0.2 pK units in the Tyr
red

 form of the 

peptide (Table 3.2).  These modifications are consistent with a decrease in the strength of 

the Tyr 5-His 14 interaction, perhaps due to a change in the distance between Tyr 5 and 

His 14. Table 3.2 also shows that the pK values for Asp 3 in the Tyr
ox

 and Tyr
red

 forms 

are not significantly altered (pK change is less than 0.5) by substitution at Arg 16.  In 

peptide A, Asp 3 accepts a hydrogen bond from Arg 16. Insensitivity of the Asp 3 pK to 

Arg 16 substitution in peptide E indicates that Asp 3 accepts a hydrogen bond from Tyr 5 

when Arg 16 is removed. 

Figure 3.8D presents electrochemical titration data of peptide F (Arg12Ile) (dotted 

line), in which the putative pi-cation interaction between Arg 12 and Tyr 5 has been 

eliminated. The data show inflection points similar to those observed in peptide A (solid 
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line). In peptide F (Arg12Ile) (dotted line), a ~50 mV change in midpoint potential is 

observed at all pH values, when the data are compared to peptide A (solid line).  

Substitution at Arg 12 significantly increases the pK of Asp in the Tyr
ox

 and Tyr
red

 forms 

of the peptide (Table 3.2).  This result is consistent with a change in the strength of the 

Asp 3-Arg 12 hydrogen bond upon removal of the Tyr 5-Arg 12 pi-cation interaction. 

The pK of histidine in the Tyr
red

 form is also increased, but the pK of His in the Tyr
ox

 

form is not affected.  

3.4.6 EPR spectroscopy.  A tyrosyl radical can be generated in tyrosine solutions 

and in the beta hairpin peptides by UV photolysis.
34-36

 The resulting neutral radical has 

electron spin density on the 1‟, 3‟, and 5‟ carbon atoms of the aromatic ring and on the 

phenolic oxygen.
34,89,90

  Changes in the electron spin density distribution and in the 

conformation at the Cβ-C1‟ dihedral angle can also be detected as changes in EPR 

lineshape.
34,89

  

Figures 3.10A and 3.11A presents the EPR spectrum of the tyrosyl radical in 

tyrosine solution (black) and peptide A (red spectrum) at pH 5.0 and 11.0, respectively. 

As expected, tyrosine solutions exhibit an EPR spectrum with a g value of 2.0042, an 

overall splitting of ~20 G, and partially resolved hyperfine splittings.
89

 Small changes in 

EPR lineshape, when peptide A and tyrosine solution are compared, are most likely due 

to the different tyrosyl radical conformation in the peptide.
32,89

 In tyrosine solution the 

EPR spectrum of the tyrosyl radical exhibits small pH-induced changes (Figure 3.12A). 

In peptide A, however, no significant alterations in the radical spectrum is observed 

between pH 5.0 and pH 11.0 (Figure 3.12B).  This result is consistent with the conclusion 

that the immediate environment of the tyrosyl radical is not modified by pH changes. 
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Peptide C (His14Cha) (Figures 3.10B and 3.11B, black), peptide D (Arg12Ala; 

His14Val) (Figures 3.10C and 3.11C, black), and peptide F (Arg12Ile) (Figures 3.10E 

and 3.11E, black) exhibit tyrosyl radical spectra, which are similar to peptide A (each 

panel, red) both at pH 5.0 (Figure 3.10) and at pH 11.0 (Figure 3.11).  Again, no 

significant changes in EPR lineshape are observed with pH change (Figure 3.12C, D, and 

F), suggesting that the structure of the peptide near the tyrosyl radical is pH independent.  

This result demonstrates that His 14 and Arg 12 substitutions have no significant 

influence on the conformation of the peptide tyrosyl radical or its spin density 

distribution at either pH value.    

Figure 3.10D (black) and 3.11D (black) present the EPR spectrum of tyrosyl 

radical in peptide E (Arg16Ile), in which the hydrogen bond between the tyrosyl radical 

and Arg 16 is eliminated.  This substitution slightly alters the EPR lineshape, compared 

to peptide A (red), at pH 5.0 (Figure 3.10D, black), but has no significant impact at pH 

11.0 (Figure 3.11D, black).  The spectral change can be observed in a comparison of the 

EPR data at the two pH values (Figure 3.12E), in which increased amplitude is observed 

at g=2 at pH 5.0 (red).  This result suggests that tyrosyl radical conformation may be 

slightly pH dependent in this peptide
91

, perhaps because the stabilizing hydrogen bond 

has been eliminated, and a new hydrogen bond has been formed. 

 

3.5 Discussion 

3.5.1 Structural characterization of beta hairpin peptides. We have designed four 

18-mer polypeptides, in which we have investigated the effect of non-covalent 

interactions on tyrosine redox properties.  Circular dichroism was used to verify that the 
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peptides form beta hairpins in aqueous solution at pH 5.0.  CD data of peptides C through 

F exhibited a minimum at 197 nm at pH 5.0 and 20
o
C. This is unusual because beta 

sheets in proteins commonly exhibit a CD minimum at 210 nm
92-94

, while random coils 

yield a minimum near 200 nm.
92

 However, it is common for monomeric beta hairpins to 

exhibit atypical CD spectral features.
93

 In fact, circular dichroism of beta hairpins is 

known to be complicated by factors including the presence of aromatic amino acids in the 

peptide sequence and twisting of the hairpin structure.
92-94

 Indeed, peptides C through F 

all contain one or two aromatic amino acids.  To determine if twisting of the beta hairpins 

may contribute to the CD spectra of peptides C through F, we compared their CD spectra 

with the spectrum generated by peptide A. The NMR structure of peptide A confirms that 

this peptide adopts a twisted beta hairpin conformation at pH 5.0.
32

 The CD spectrum of 

peptide A also exhibits a well defined minimum at 197 nm, suggesting that peptides C 

through F form twisted beta hairpins at pH 5.0.  

Thermal denaturation experiments were performed to gain additional support for 

folding of peptides C through F. As expected, peptides A, all exhibited reversible thermal 

denaturation between 20
o
C and 80

o
C at pH 5.0.  This result is unlikely to occur in un-

ordered or random coil peptides. Moreover, the CD spectra of peptides A, C (His14Cha), 

D (Arg12Ala; His14Val), E (Arg16Ile), and F (Arg12Ile) between 20
o
C and 80

o
C each 

contained an isodichroic point at 207 nm. An isodichroic point is indicative of a two-state 

folding transition.
95,96

  

To determine the pH dependence of beta hairpin formation in peptides A through 

F, CD spectra were also collected at pH 11.0. Similar to the results at pH 5.0, all of the 

peptides displayed a CD minimum at 198 nm or at 199 nm at pH 11.0 and 20
o
C. Peptides 
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A, C (His14Cha), D (Arg12Ala; His14Val), and E (Arg16Ile) also exhibited reversible 

thermal denaturation with isodichroic points at 203 nm or 208 nm. Conversely, for 

peptide F (Arg12Ile) the amplitude of the 20
o
C post-melt spectrum was larger than the 

amplitude of the 20
o
C pre-melt spectrum.  

Taken together, the CD data support the conclusion that peptides A, C 

(His14Cha), D (Arg12Ala; His14Val) and E (Arg16Ile) form stable beta hairpin 

structures at pH 5.0 and at pH 11.0.  Peptide F (Arg16Ile) also forms a stable beta hairpin 

at pH 5.0.  However, because alterations in the data are observed after thermal 

denaturation, we conclude that peptide F (Arg16Ile) can form a beta hairpin at pH 11.0 

under some conditions.  The fact that electrochemical and EPR data from this peptide are 

well behaved at pH 11.0 also supports this conclusion. This conclusion may also explain 

why the optical data for peptide F (Arg12Ile) show a dramatic decrease in the 

concentration of tyrosinate at pH 11.0, since the light source may cause temperature-

dependent changes in the conformation of peptide F (Arg12Ile). 

3.5.2 Substitutions at His14 eliminate PCET reactions.  Peptides in which 

substitutions are made at His 14 eliminate inflection points in the electrochemical 

titration data.  This observation is consistent with our previous conclusion that oxidation 

of Tyr 5 in peptide A is thermodynamically coupled with PCET to this histidine.
32

 

Because the pK of His 14 increases with tyrosine oxidation, protonation of histidine will 

occur between pH 6 and 9 when the tyrosine is oxidized.  This oxidation-induced 

protonation of His 14 is an example of a PCET reaction, in which the electron goes to one 

acceptor (solvent) and the proton goes to a second acceptor, the imidazole ring. 
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Our electrochemical data show that the effect of histidine protonation is to 

decrease the midpoint potential of the tyrosine at low pH values.  This has been 

previously attributed to electrostatic stabilization of electron density on the phenolic 

oxygen
32

 in the tyrosyl radical.  Because Tyr 5 and His 14 are not hydrogen bonded, the 

PCET reaction likely occurs through a network of water molecules between Tyr 5 and 

His 14.  

3.5.3 Hydrogen bonding controls the conformation of Tyr 5. The NMR structure 

of peptide A shows that Tyr 5 accepts a hydrogen bond from Arg 16.
32

 The effect of the 

Tyr 5-Arg 16 hydrogen bond on the structure of the tyrosyl radical was examined by 

comparing the optical titration and EPR data for peptide E (Arg16Ile) with the data for 

peptides A, C (His14Cha), D (Arg12Ala; His14Val), and F (Arg12Ile). Similarities 

between the optical titration data and the EPR spectra of  peptides A, C (His14Cha), D 

(Arg12Ala; His14Val), and F (Arg12Ile) suggest that the Tyr 5-Arg 16 hydrogen bond 

persists in these peptides, despite removal of His 14 (peptide C and peptide D) or Arg 12 

(peptide D and peptide F). When the Tyr 5-Arg 16 hydrogen bond is eliminated in 

peptide E, however, the optical titration curve displays two equivalence points which 

indicate pK values of 8.3 and ~10.5 for Tyr 5. Moreover, the EPR spectrum of peptide E 

(Arg16Ile) is similar to the spectrum of peptide A at pH 11.0, but displays an increase in 

amplitude at g=2 at pH 5.0. The similarities between the spectra of peptide E and peptide 

A at pH 11.0 are explained by the fact that Tyr 5 accepts a hydrogen bond from Arg 16 in 

peptide A and can still accept a hydrogen bond from an arginine residue (Arg 12) in 

peptide E (Arg16Ile). The increased amplitude of the EPR spectrum at g=2 (pH 5.0) for 

peptide E (Arg16Ile) is attributed to formation of a new hydrogen bond upon removal of 
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Arg 16. In fact, Tyr 5 can donate a hydrogen bond to Asp 3 in peptide E (Arg16Ile). The 

fit for the electrochemical titration curve of peptide E (Arg16Ile) predicted that the pK of 

Asp 3 in the Tyr
ox

 and the Tyr
red

 form of peptide E (Arg16Ile) is unperturbed by removal 

of Arg 16. Because Asp 3 accepts a hydrogen bond from Arg 16 in peptide A, this result 

suggests that Asp 3 still accepts a hydrogen bond from a nearby amino acid in peptide E 

(Arg16Ile). This nearby amino acid is most likely Tyr 5. Thus, in peptide A, the hydrogen 

bond with Arg 16 restricts the conformation of Tyr 5. Removal of the Tyr 5-Arg 16 

hydrogen bond releases this restriction so that Tyr 5 can donate a hydrogen bond to Asp 3 

at pH 5.0 and accept a hydrogen bond from Arg12 at pH 11.0 via pH dependent rotation 

about its C-C bond.   

3.5.4 Substitutions at Arg16 increase tyrosine midpoint potential and alter the pH 

range over which PCET reactions occur.  Elimination of the hydrogen bond between Arg 

16 and Tyr 5 gives a 50 mV increase in potential at all examined pH values.  The NMR 

structure of peptide A shows that Tyr 5 is hydrogen bonded as the proton acceptor.  The 

observed increase in potential can be rationalized because oxidation of tyrosine has been 

shown to result in the migration of electron density to the phenolic oxygen of the radical.  

The effect on midpoint potential in peptide E (Arg16Ile) is consistent with stabilization of 

electron density on the tyrosyl radical phenolic oxygen through the Arg 16-Tyr 5 

hydrogen bond.
32

 These data suggest that hydrogen bonds to redox active tyrosines can 

decrease the tyrosine midpoint potential, as predicted from model compound studies.
77

 

As previously stated, substitution at Arg 16 does not alter the pK of Asp 3 in the oxidized 

or reduced state of peptide E (Arg16Ile), probably because in peptide E (Arg16Ile) Asp 3 

accepts a hydrogen bond from Tyr 5 at low pH values. Therefore, another explanation for 
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the increased midpoint potential is that interaction with the negatively charged Asp 3 

destabilizes the electron density on the tyrosyl radical. At high pH values the EPR data 

suggest that Tyr 5 accepts a hydrogen bond from Asp 12 in peptide E (Arg16Ile), yet the 

midpoint potential of Tyr 5 is still ~50 mV higher in peptide E (Arg16Ile) than in peptide 

A. This increased midpoint potential is thus attributed to a decrease in the strength of the 

Tyr 5-His 14 aromatic interaction that results from rotation of Tyr 5 about its Cα-Cβ 

bond. Indeed, the pK of His 14 in the Tyr
ox

 form of peptide E (Arg16Ile) decreases by 1.6 

units compared to peptide A. 

3.5.5 Substitutions at Arg12 increase tyrosine midpoint potential and alter the pH 

range over which PCET reactions occur.  The NMR structure of peptide A suggests that 

Arg12 and Tyr 5 have a pi-cation interaction.   Elimination of the putative electrostatic 

interaction between Arg12 and Tyr 5 (peptide F (Arg12Ile)) gave a 50 mV increase in 

potential at all examined pH values.  The observed increase in potential can be 

rationalized as destabilization of electron density on the tyrosyl radical phenolic oxygen 

by removal of the pi-cation interaction.  These data suggest that pi-cation interactions 

with redox active tyrosines can decrease tyrosine midpoint potential in enzymes. 

Peptide F (Arg12Ile) also exhibited increases in the pK of Asp in both the Tyr
ox

 

and Tyr
red

 forms.  The pK of histidine in the Tyr
red

 form increased, but there was no effect 

on His pK in the Tyr
ox

 form.  The effect on the His 14 pK in the Tyr
red

 form suggests that 

a pi-cation interaction with tyrosine can alter the pH range over which PCET reactions 

occur in enzymes. The alterations in Asp 3 pK values may be due to small changes in the 

Arg 16/Asp 3 salt bridge distance when a substitution is made at Arg 12.  Peptide D 

(Arg12Ala; His14Val), which contains two amino acid substitutions, one at His14 and 
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one at Arg 12, also showed increases in the pK of Asp 3 in both the Tyr
ox

 and Tyr
red

 

form.  These alterations in Asp 3 pK values may also be due to small changes in the Arg 

16/Asp 3 salt bridge distance. 

3.5.6 Comparison with PSII tyrosyl radicals. PSII contains two redox active 

tyrosines, Tyr 161D1 (TyrZ) (Figure 3.1B) and Tyr 160D2 (Tyr D) (Figure 3.1C).  The 

midpoint potential of TyrZ
57

 is ~200 mV higher than the potential of TyrD.
57

  Both 

tyrosines are predicted to hydrogen bond to histidine.
67-69,71,72

  Therefore, the detailed 

placement of other amino acids in the protein environment must account for the observed 

potential difference.  Figure 3.1B and C show that the placement of arginine residues may 

contribute to functional differences between the two redox active tyrosines.  For TyrZ 

(Figure 3.1B) Arg 357 in the CP43 subunit is 7.58 Å away.  For TyrD (Figure 3.1C), 

Arg180 in the D2 polypeptide is 6.95 Å away, a second arginine, Arg 272 in the CP47 

subunit, is located 7.81 Å away, and a third arginine, Arg 294 in the D2 polypeptide is 

located at 6.48 Å.   Near TyrZ, Arg 357 has a salt bridge interaction with Asp 170 in the 

D1 polypeptide, and, near TyrD, Arg 180 has a salt bridge interaction with Asp 333 in the 

D1 polypeptide.  However, the arginine from the CP47 subunit (Arg 272), located near 

TyrD, may have a pi-cation interaction with the tyrosyl radical.  The distance between 

TyrD and Arg 272 is 7.81 Ǻ. In other proteins, pi-cation interactions occur over distances 

as long as 10 Å with most pi-cation pairs separated by 6 Å or less.
73

   Such a pi cation 

interaction would be expected to contribute ~13 mV
33

 to the decrease in potential 

observed when TyrD and TyrZ are compared, though calculations from one study suggest 

that the pi-cation interaction increases the midpoint potential of a tryptophanyl radical 
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cation.
97

 The effect of pi-cation interactions on the midpoint potential of aromatic 

radicals may thus be context dependent.  

 

3.6 Summary 

  Our studies of beta hairpin peptides provide a model for PCET reactions in 

proteins.  In beta hairpin peptide A, proton transfer occurs to a cross strand histidine 

when tyrosine is oxidized.  The tyrosine and histidine are not directly hydrogen bonded, 

but PCET can occur through bridging solvent.  A hydrogen bond to tyrosine or a pi-

cation interaction with tyrosine cause pH-independent decreases in midpoint potential.  

Pi-cation and hydrogen bonding interactions also alter the pH range over which PCET 

reactions occur.  Moreover, hydrogen bonding controls the conformation of tyrosine. 

Protonation of the histidine, the pi-cation interaction, and the hydrogen bond contribute 

approximately equally to the alteration in midpoint potential.   
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3.8 Figures 

 

 
 

Figure 3.1. Environment of redox-active tyrosines in peptide A and in PSII.  A. shows 

Tyr 5 in peptide A
32

, B. shows Tyr 161D1 (TyrZ) in PSII
68

, PDB ID 3BZ1 and C. shows 

Tyr 160D2 (TyrD) in PSII47, PDB ID 3BZ1. The solid lines indicate distances between 

tyrosine and neighboring amino acids, and the dotted lines represent hydrogen bonds. The 

RasMol molecular visualization tool was used to depict histidine (violet), arginine (cyan), 

and aspartic acid (yellow) residues within 10.0 Ǻ of the tyrosine (green). 
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Figure 3.2. Predicted structures and cross strand interactions for beta hairpin peptides. In 

peptide A, tyrosine and interacting residues are shown in red.  Sequence alterations are 

shown in green in peptides C through F. The sequence of peptide B 

(IMDRYRVRNGDRIVIRLR) is not shown because it is an unfolded control sequence. 
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Figure 3.3. Circular dichroism of RNase A at pH 5.0. The spectra were collected at 20

o
C 

(-, pre-melt), 80
o
C (-), and 20

o
C (-, post-melt).  See Materials and Methods for spectral 

conditions.         
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Figure 3.4.  Circular dichroism of beta hairpin peptides at pH 5.0.  The panels show data 

acquired from A. peptide A, B. peptide C (His14Cha), C. peptide D (H14V; R12A), D. 

peptide E (R16I), and E. peptide F (R12I). The spectra were collected at 20
o
C (-, pre-

melt), 80
o
C (-), and 20

o
C (-, post-melt). See Materials and Methods for spectral 

conditions. 
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Figure 3.5.  Circular dichroism of beta hairpin peptides at pH 11.  The panels show data 

acquired from A. peptide A, B. peptide C (H14Cha), C. peptide D (H14V; R12A), D. 

peptide E (R16I), and E. peptide F (R12I). The spectra were collected at 20
o
C (-, pre-

melt), 80
o
C (-), and 20

o
C (-, post-melt). See Materials and Methods for spectral 

conditions. 
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Figure 3.6.  Absorption spectra of tyrosine in solution and beta hairpin peptides at pH 5 

(red) and 11 (black). The panels show data acquired from A. tyrosine, B. peptide A, C. 

peptide C (H14Cha), D. peptide D (H14V; R12A), E. peptide E (R16I), and F. peptide F 

(R12I). See Table 3.1 for spectral parameters and Materials and Methods for spectral 

conditions.  
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Figure 3.7. Optical titration of tyrosine in solution and in beta hairpin peptides, 

monitoring tyrosinate absorbance at 295 nm. The panels show data acquired from A. 

tyrosine, B. peptide A, C. peptide C (H14Cha), D. peptide D (H14V; R12A), E. peptide 

E (R16I), and F. peptide F (R12I).  The error bars represent one standard deviation.  See 

Table 3.1 for the pK values and the Materials and Methods for spectral conditions. 
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Figure 3.8. Electrochemical titrations of beta hairpin peptides. The titration curve of 

peptide A is shown in each panel.  The panels also show data acquired from A. peptide C 

(H14Cha), B. peptide D (H14V; R12A), C. peptide E (R16I), and D. peptide F (R12I).  

The solid lines show the results of fitting the data to the Nernst equation.  The error bars 

represent one standard deviation.  See Table 3.2 for fit parameters and Materials and 

Methods for spectral conditions. 
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Figure 3.9. Electrochemical titration of peptide F (R12I).  The data are repeated from 

Figure 3.8D.  The solid lines show the results of fitting to Nernst equations, involving the 

influence of A. one, B. two, or C. three ionizable groups. The error bars represent one 

standard deviation.  See Table 3.3 for fit parameters and Materials and Methods for 

spectral conditions. 
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Figure 3.10.  EPR spectra of tyrosyl radicals in solution and in beta hairpin peptides at 

pH 5.0 and 108 K.  The radicals were generated by UV photolysis. The spectrum of 

peptide A (red) is shown in each panel.  The panels also show spectra (black) acquired 

from A. tyrosine, B. peptide C (H14Cha), C. peptide D (H14V; R12A), D. peptide E 

(R16I), and E. peptide F (R12I). To compare spectral linewidth, the spectra were 

normalized for amplitude differences. See Materials and Methods for spectral conditions. 
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Figure 3.11.  EPR spectra of tyrosyl radicals in solution and in beta hairpin peptides at 

pH 11.0 and 108 K.  The radicals were generated by UV photolysis. The spectrum of 

peptide A (red) is shown in each panel.  The panels also show spectra (black) acquired 

from A. tyrosine, B. peptide C (H14Cha), C. peptide D (H14V; R12A), D. peptide E 

(R16I), and E. peptide F (R12I). To compare spectral linewidth, the spectra were 

normalized for amplitude differences.  See Materials and Methods for spectral conditions. 
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Figure 3.12.  EPR spectra of tyrosyl radicals in beta hairpin peptides at pH 5.0 (red) and 

11.0 (black) and 108
 
K. The radicals were generated by UV photolysis.  The panels show 

spectra acquired from A. tyrosine, B. peptide A, C. peptide C (H14Cha), D. peptide D 

(H14Val; R12A), E. peptide E (R16I), and F. peptide F (R12I).  To compare spectral 

linewidth, the spectra were normalized for amplitude differences.  See Materials and 

Methods for spectral conditions. 

 



 102 

3.9 References 

 

 1. Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577-2637. 

 

 2. Milner-White, E. J.; Poet, R. Biochemical Journal 1986, 240, 289-292. 

 

 3. Sibanda, B. L.; Thornton, J. M. Nature 1985, 316, 170-176. 

 

4. Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.; Nieto, J. 

L. Journal of American Chemical Society 1993, 115, 5887-5888. 

 

5. Burghardt, T. P.; Juranic, N.; Macura, S.; Ajtai, K. Biopolymers 2002, 63, 

261-272. 

 

6. Ciani, B.; Jourdan, M.; Searle, M. S. Journal of the American Chemical 

Society 2003, 125, 9038-9047. 

 

7. De Alba, E.; Rico, M.; Jimenez, M. A. Protein Science 1997, 6, 2548-

2560. 

 

8. Griffiths-Jones, S. R.; Maynard, A., J.; Searle, M. S. Journal of Molecular 

Biology 1999, 292, 1051-1069. 

 

9. Griffiths-Jones, S. R.; Maynard, A. J.; Sharman, G. J. Chemical 

Communications 1998, 789-790. 

 

 10. Hutchinson, G. E.; Thornton, J. M. Protein Science 1994, 3, 2207-2216. 

 

11. Phillips, S. T.; Piersanti, G.; Bartlett, P. A. Proceedings of the National 

Academy of Sciences 2005, 102, 13737-13742. 

 

12. Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L. Protein Science 2001, 

10, 1381-1392. 

 

 13. Smith, C. K.; Regan, L. Science 1995, 270, 980-982. 

 

 14. Smith, C. K.; Withka, J. M.; Regan, L. Biochemistry 1994, 33, 5510-5517. 

 

15. Stanger, H. E.; Gellman, S. H. Journal of the American Chemical Society 

1998, 120, 4236-4237. 

 

16. Syud, F. A.; Stanger, H. E.; Gellman, S. H. Journal of the American 

Chemical Society 2001, 123, 8667-8677. 

 

17. Tatko, C. D.; Waters, M. L. Journal of the American Chemical Society 

2002, 124, 9372-9373. 



 103 

 

18. Tatko, C. D.; Waters, M. L. Journal of the American Chemical Society 

2004, 126, 2028-2034. 

 

 19. Tatko, C. D.; Waters, M. L. Protein Science 2004, 12, 2443-2452. 

 

 20. Kiehna, S. E.; Waters, M. L. Protein Science 2003, 12, 2657-2667. 

 

 21. Waters, M. L. Biopolymers 2004, 76, 435-445. 

 

22. Stotz, C. E.; Topp, E. M. Journal of Pharmaceutical Sciences 2004, 93, 

2881-2894. 

 

23. Cochran, F. V.; Wu, S. P.; Wang, W.; Nanda, V.; Saven, J. G.; Therien, 

M. J.; DeGrado, W. F. Journal of the American Chemical Society 2005, 

127, 1346-1347. 

 

24. Discher, B. M.; Noy, D.; Strzalka, J.; Ye, S.; Moser, C. C.; Lear, J. D.; 

Blasie, J. K.; Dutton, L. P. Biochemistry 2005, 44, 12344-54. 

 

25. Gibney, B. R.; Huang, S. S.; Skalicky, J. J.; Fuentes, E. J.; Wand, J. A.; 

Dutton, L. P. Biochemistry 2001, 40, 10550-10561. 

 

 26. Jones, G. I.; Vullev, V.; Braswell, E. H.; Zhu, D. Journal of the American  

Chemical Society 2000, 122, 388-389. 

 

27. Kennedy, M. L.; Gibney, B. R. Journal of the American Chemical Society 

2002, 124, 6826-6827. 

 

28. Lombardi, A.; Nastri, F.; Pavone, V. Chemical Reviews 2001, 101, 3165-

3189. 

 

 29. Shearer, J.; Long, L. M. Inorganic Chemistry 2006, 45, 2358-2360. 

 

30. Shifman, J. M.; Moser, C. C.; Kalsbeck, W. A.; Bocian, D. F.; Dutton, P. 

L. Biochemistry 1998, 37, 16815-16827. 

 

31. Zhuang, J.; Amoroso, J.; Kinloch, R.; Dawson, J.; Baldwin, M.; Gibney, 

B. R. Inorganic Chemistry 2006, 45, 4685-4685. 

 

32. Sibert, R.; Josowicz, M.; Porcelli, F.; Veglia, G.; Range, K.; Barry, B. A. 

Journal of the American Chemical Society 2007, 129, 4393-4400. 

 

33. Barry, B. A.; Pujols-Ayala, I. Biochimica et Biophysica Acta 2004, 1655, 

205-216. 

 



 104 

34. Barry, B.; Babcock, G. T. Proceedings of the National Academy of 

Sciences 1987, 84, 7099-7103. 

 

35. Barry, B. A.; El-Deeb, M. K.; Sandusky, P. O.; Babcock, G. T. The 

Journal of Biological Chemistry 1990, 265, 20139-20143. 

36. Boerner, R. J.; Barry, B. A. Journal of Biological Chemistry 1993, 268, 

17151-17154. 

 

37. Vassiliev, I. R.; Offenbacher, A. R.; Barry, B. A. Journal of Physical 

Chemistry B 2005, 109, 23077-23085. 

 

38. Kouglougliotis, D.; Tang, X. S.; Diner, B.; Brudvig, G. W. Biochemistry 

1995, 34, 2850-2856. 

 

39. MacDonald, G. M.; Bixby, K.; Barry, B. A. Proceedings of the National 

Academy of Sciences 1993, 90, 11024-11028. 

 

40. Seyedsayamdost, M. R.; Chan, C. T. Y.; Mugnaini, V.; Stubbe, J.; 

Bennati, M. Journal of the American Chemical Society 2007, 129, 15748-

15749. 

 

41. Barry, B. A.; Einarsdottir, O. Journal of Physical Chemistry B 2005, 109, 

6972-6981. 

 

42. Chang, M. C. Y.; Yee, C. S.; Nocer, D. G.; Stubbe, J. Journal of American 

Chemical Society 2004, 126, 16702-16703. 

 

 43. Larsson, A.; Sjoeberg, B. M. EMBO Journal 1986, 5, 2037-2040. 

 

44. Seyedsayamdost, M. R.; Yee, C. S.; Reece, S. Y.; G, N. D.; Stubbe, J. 

Journal of the American Chemical Society 2006, 128, 1562-1568. 

 

 45. Wu, G.; Kulmacz, R. J.; Tsai, A. Biochemistry 2003, 42, 13772-13777. 

 

46. Kulmacz, R. J.; Palmer, G.; Tsai, A. L. Molecular Pharmacology 1991, 

40, 833-837. 

 

47. Malkowski, M.; Ginell, S.; Smith, W.; Garavito, R. Science 2000, 289, 

1933-1938. 

 

48. Smith, W. L.; Eling, T. E.; Kulmacz, R. J.; Marnett, L. J.; Tsai, A. L. 

Biochemistry 1992, 31, 3-7. 

 

49. Whittaker, M.; Whittaker, J. The Journal of Biological Chemistry 1990, 

265, 9610-9613. 

 



 105 

50. Dixon, W. T.; Murphy, D. J. Chem. Soc. London, Faraday Trans. II 1976, 

72, 1221-1230. 

 

51. Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Chem. Rev. 2003, 

103, 2167-2201. 

 

52. Barry, B. A.; Babcock, G. T. Proceedings of the National Academy of 

Sciences 1987, 84, 7099-7103. 

 

53. Boerner, R. J.; Barry, B. A. The Journal of Biological Chemistry 1993, 

268, 17151-17154. 

 

54. Babcock, G. T.; Blankenship, R. E.; Sauer, K. FEBS Letters 1976, 61, 

286-289. 

 

55. Debus, R.; Barry, B.; Sithole, I.; Babcock, G.; McIntosh, L. Biochemistry 

1988, 27, 9072-9074. 

 

56. Gerken, S.; Brettel, K.; Schlodder, E.; Witt, H. T. FEBS Letters 1988, 237, 

69-75. 

 

57. Metz, J. G.; Nixon, P. J.; Rögner, M.; Brudvig, G. W.; Diner, B. A. 

Biochemistry 1989, 28, 6960-6969. 

 

58. Rutherford, A. W.; Boussac, A.; Faller, P. Biochimica et Biophysica Acta 

2004, 1655, 222-230. 

 

59. Vermaas, W. F. J.; Rutherford, A. W.; Hansson, O. Proceedings of the 

National Academy of Sciences 1988, 85, 8477-8481. 

 

60. Ananyev, G.; Sakiyan, I.; Diner, B. A.; Dismukes, G. Biochemistry 2002, 

41, 974-980. 

 

61. Boussac, A.; Etienne, A. L. Biochimica et Biophysica Acta 1984, 766, 

576-581. 

 

62. Dekker, J. P.; Gorkom, H. J. V.; Brok, M.; Ouwehand, L. Biochimica et 

Biophysica Acta 1984, 764, 301-309. 

 

 63. Hoganson, C. W.; Babcock, G. T. Biochemistry 1988, 27, 5848-5855. 

 

64. Rappaport, F.; Blanchard-Desce, M.; Lavergne, J. Biochimica et 

Biophysica Acta 1994, 1184, 178-192. 

 

 65. Styring, S.; Rutherford, A. W. Biochemistry 1987, 26, 2401-2405. 

 



 106 

 66. Vass, I.; Styring, S. Biochemistry 1991, 30, 830-839. 

 

67. Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata, S. 

Science 2004, 303, 1831-1838. 

 

68. Guskov, A.; Kern, J.; Gabdulkhakov, A.; Boser, M.; Zouni, A.; Saenger, 

W. Nature Structural and Molecular Biology 2009, 16, 334-342. 

 

 69. Shen, J. R.; Kamiya, N. Biochemistry 2000, 39, 14739-14744. 

 

70. Shen, J. R.; Kamiya, N. Advances in Photosynthesis and Respiration 2005, 

22, 449-467. 

 

71. Zouni, A.; Kern, J.; Loll, B.; Fromme, P.; Orth, P.; Krauss, N.; Saenger, 

W.; Biesiadka, J. In Proceedings of the 12th International Congress on 

Photosynthesis; Luttge, U., Osmond, B., Voesenek, R., Eds.; Thieme: 

Stuttgart, 2002; Vol. In press., p S05-003. 

 

72. Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Krauß, N.; Saenger, W.; 

Orth, P. Nature 2001, 409, 739-743. 

 

73. Gallivan, J. P.; Dougherty, D. A. Proceedings of the National Academy of 

Sciences 1999, 96, 9459-9464. 

 

74. Gray, H. B.; Winkler, J. R. Proceedings of the National Academy of 

Science USA 2005, 102, 3534-3539. 

 

75. Moser, C.; Page, C.; Farid, R.; Dutton, P. Journal of Bioenergetics and 

Biomembranes 1995, 27, :263-274. 

 

76. Moser, C. C.; Page, C. C.; Dutton, P. L. Photochemical and 

Photobiological Sciences 2005, 4, 933-939. 

 

77. Rhile, I. J.; Markle, T. F.; Nagao, H.; G, D. A.; Lam, O. P.; Lockwood, M. 

A.; Rotter, K.; Mayer, J. Journal of the American Chemical Society 2006, 

128, 6075-6088. 

 

78. Lomoth, R.; Magnuson, A.; Sjodin, M.; Huang, P.; Styring, S.; 

Hammarstrom, L. Photsynthesis Research 2006, 87, 25-40. 

 

79. Di Bilio, A. J.; Crane, B. R.; Wehbi, W. A.; Kiser, C. N.; Abu-Omar, M. 

M.; Carlos, R. M.; Ruchards, J. H.; Winkler, J. R.; Gray, H. B. Journal of 

the American Chemical Society 2001, 123, 3181-3182. 

 

80. Tommos, C. S.; Skalicky, J. J.; Pilloud, D. L.; Wand, J.; Dutton, L. 

Biochemistry 1999, 38, 9495-9507. 



 107 

 

81. Hilario, J.; Kubelka, J.; Keiderling, T. A. Journal of the American 

Chemical Society 2003, 125, 7562-7574. 

 

82. Moraes, L. G. M.; Fazio, M. A.; Vieira, R., F.F.; Nakaie, C., R.; Miranda, 

M. T. M.; Schreier, S.; Daffre, S.; Miranda, A. Biochimica et Biophysica 

Acta 2007, 1768, 52-58. 

 

83. Ishimitsu, T.; Hirose, S.; Sakurai, H. Chemical and Pharmaceutical 

Bulletin 1976, 24, 3195-3198. 

 

84. Ayala, I.; Range, K.; York, D.; Barry, B. A. Journal of the American 

Chemical Society 2002, 124, 5496-5505. 

 

85. Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R. D.; 

Bairoch, A. Nucleic Acids Research 2003, 31, 3784-3788. 

 

86. Navon, A.; Ittah, V.; Laity, J. H.; Scheraga, H. A.; Haas, E.; Gussakovsky, 

E. E. Biochemistry 2001, 40, 93-104. 

 

 87. Ishimitsu, T. Talanta 1983, 30, 879-883. 

 

88. Range, K.; Ayala, I.; York, D.; Barry, B. A. Journal of Physical Chemistry 

2006, 110, 10970-10981. 

 

89. Barry, B. A.; El-Deeb, M. K.; Sandusky, P. O.; Babcock, G. T. The 

Journal of Biological Chemistry 1990, 265, 20139-20143. 

 

90. Evelo, R. G.; Hoff, A. J.; Dikanov, S. A.; Tyryshkin, A. M. Chemical 

Physics Letters 1989, 161, 479-484. 

 

91. Hulsebosch, R. J.; Brink, J. S. v. d.; Niewenhuis, S. A. M.; Gast, P.; Raap, 

J.; Lugtenburg, J.; Hoff, A. J. Journal of the American Chemical Society 

1997, 119, 8685-8694. 

 

92. Johnson, C. W. Annual Review of Biophysics and Biophysical Chemistry 

1988, 17, 145-166. 

 

93. Ovchinnikova, T. V.; Shenkarev, Z. O.; Nadezhdin, K. D.; Balandin, S. 

V.; Zhmak, M. N.; Kudelina, I. A.; Finkina, E. I.; Kokryakov, V. N.; 

Arseniev, A. A. Biochemical and Biophysical Research Communications 

2007, 360, 156-162. 

 

94. Searle, M. Journal of the Chemical Society, Perkins Transactions 2 2001, 

2, 1011-1020. 

 



 108 

95. Jarvet, J.; Dambert, P.; Bodell, K.; Eriksson, L. G.; Grslund, A. Journal of 

American Chemical Society 2000, 122, 4261-4268. 

 

96. Maynard, A. J.; Sharman, G. J.; Searle, M. Journal of the American 

Chemical Society 1998, 120, 1996-2007. 

 

97. Hoganson, C. W.; Tommos, C. Biochimica et Biophysica Acta 2004, 1655, 

116-122. 



 109 

 

CONCLUSIONS 

 Tyrosine is a key cofactor involved in electron transfer in photosystem II (PSII),
1,2

 

prostaglandin H synthase
3
, galactose oxidase

4
, and ribonucleotide reductase.

5
 In 

particular, photosystem II provides an excellent example of how the redox properties of 

tyrosine can be altered by the enzymatic environment. PSII contains two redox active 

tyrosine residues, Tyr 161D1 (Tyr Z) and Tyr 160D2 (Tyr D), located in the D1 and D2 

polypeptides, respectively.
6-10

 Although both tyrosine residues are redox active, Tyr 

161D1 (Tyr Z) is responsible for reduction of the primary donor, P680
+
,
37

 while Tyr160D2 

(Tyr D) is associated with assembly of the manganese cluster.
11

 Both Tyr 161D1 (Tyr Z) 

and Tyr 160D2 (Tyr D) are hydrogen bonded to histidine residues. Tyr161D1 (Tyr Z) 

hydrogen bonds to His 190, while Tyr 160D2 (Tyr D) hydrogen bonds to His 189.
6-10

 

However, the radical formed by Tyr 160D2 (Tyr D) has a lower midpoint potential and a 

longer lifetime than the radical formed by Tyr 161D1 (Tyr Z).
1,13-14

  The  2.9 Ǻ crystal 

structure of the D2 polypeptide of PSII shows a potential pi-cation interaction between 

Tyr 160D2 (Tyr D) and Arg 272 of the CP47 subunit
7
 that may explain why the redox 

properties of Tyr 160D2 (Tyr D) are different from Tyr 161D1 (Tyr Z).  

Being inspired by photosystem II, we have designed five beta hairpins, peptides 

A, C, D, E, and F, which each contain a single tyrosine residue. These beta hairpins were 

used as tractable models for studying how the redox properties of tyrosine are controlled 

by hydrogen bonding, pi-cation interactions, and proton coupled electron transfer 

reactions with neighboring amino acids. The NMR structure of peptide A confirmed that 

it forms a beta hairpin at pH 5.0. The NMR structure also showed that tyrosine 

participates in a hydrogen bond with arginine, an aromatic interaction with histidine, and 
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a possible pi-cation interaction with a second arginine. Circular dichroism 

spectropolarimetry confirmed that the peptides A, C, D, E, and F form beta hairpins at pH 

5.0 and pH 11.0. 

Electrochemical titration was performed on the designed peptides.  A least 

squares fit to the Nernst equation showed that the pK of His14 increases from 6.2 to 8.9 

with oxidation of tyrosine in peptide A.  We concluded that this oxidation-induced 

increase in the pK of His14 is consistent with a proton coupled electron transfer reaction 

between Tyr5 and His14. Replacement of His 14 by cyclohexylalanine (peptide C) or by 

valine (peptide D) confirmed this conclusion by eliminating the PCET reaction.  

Electrochemical data also showed that protonated histidine decreases the midpoint 

potential of tyrosine at low pH values in peptide A. To explain this result, electrostatic 

maps of tyrosine and of the tyrosyl radical were calculated. The electrostatic maps 

showed oxidation-induced movement of electron density from the aromatic ring to the 

phenolic oxygen. Therefore, we concluded that protonated histidine stabilizes electron 

density on the phenolic oxygen. 

The electrochemical titration curve of peptide E showed that substitution of the 

hydrogen bonded arginine increases the midpoint potential of tyrosine by 50 mV at all 

examined pH values. Since electrostatic maps of tyrosine and the tyrosyl radical showed 

migration of electron density from the aromatic ring to the phenolic oxygen upon 

oxidation of tyrosine, we concluded that the Tyr5-Arg16 hydrogen bond stabilizes the 

electron density on the phenolic oxygen of tyrosine as the radical is formed. 

The electrochemical titration curve of peptide F showed that substitution of Arg 

12, which forms a pi-cation interaction with Tyr 5, increases the midpoint potential of 
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Tyr 5 at all examined pH values. This result was also attributed to stabilization of 

electron density on the phenolic oxygen of tyrosine as the radical is formed.  

Taken together, our studies of beta hairpin peptides provide a model for PCET 

reactions in proteins. The data also show that a hydrogen bonding or a pi-cation 

interaction with tyrosine lowers the midpoint potential of tyrosine by stabilizing electron 

density on the phenolic oxygen. As an explanation for differences in the redox properties 

of Tyr 161D1 (TyrZ) and Tyr 160D2 (TyrD), the data presented in these studies show 

that protonation of histidine, hydrogen bonding, and the pi-cation interaction contribute 

equally to the midpoint potential of tyrosine. 
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