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CHAPTER 1. INTRODUCTION 

III-nitride compound semiconductors, including gallium nitride (GaN), aluminum 

nitride (AlN), indium nitride (InN), their ternary and quaternary alloys, have recently 

attracted great attention as the most promising electronics and optoelectronic devices. By 

adjusting the direct bandgap energy of III-nitride materials, they can cover a wide 

spectral range from infrared (1772 nm) to deep-ultraviolet (200 nm) and are useful for 

optoelectronic devices such as light-emitting diodes (LEDs), photodiodes (PDs), and 

avalanche photodiodes (APDs). Unlike conventional semiconductors such as silicon (Si), 

indium phosphide (InP), and arsenide (GaAs), the wide and direct bandgap III-nitride 

materials provide high breakdown field, high electron drift velocity, and high thermal 

conductivity as well as structure, chemical, thermal stability, which make III-nitride 

materials suitable for device operating at high temperature and in harsh environments. 

Thanks to these advantageous properties, III-nitride-based semiconductors are well-suited 

for numerous applications in solid-state lighting, military systems, high-density optical 

storage, imaging systems, medical equipment, and space research.  

This dissertation will discuss III-nitride-based ultraviolet avalanche photodiodes 

(UV-APDs): Al0.05Ga0.95N p-i-n UV-APDs with high avalanche gain, 4×4 GaN p-i-n UV-

APDs arrays with large detection area, GaN p-i-p-i-n separate absorption and 

multiplication (SAM) UV-APDs. Following a brief introduction to the III-nitride material 

properties and epitaxial growth system, the development history and motivations of UV 

photodiodes (PDs) and technical difficulties to achieve high-performance UV-APDs are 

summarized. Experimental approaches to solve these technical challenges will then be 
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discussed, including the results obtained. Finally, the summary of work completed will be 

proposed. 

 

1.1 III-nitride Materials Properties 

The common crystal structure of III-nitride materials can exist three different 

crystallographic phases of wurtzite, zinc-blende, and rock-salt structures [1]. Recently, 

the growth of metastable zinc-blende structure has been reported because of their 

advantageous properties of higher carrier mobility and easier cleaving for laser diodes 

(LDs) processing [2, 3]. However, the (001) crystal planes of cubic substrates such as Si, 

MgO, and GaAs were used to stabilize and grow thin films of the zinc-blende structure. 

Also, the rock-salt structure can only remain stable at very high pressures. Therefore, 

under ambient conditions, most III-nitride materials have a wurtzite structure because of 

its higher thermodynamic stability than the zinc-blende or rock-salt structures.   
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Figure 1.1 The unit cell of the hexagonal wurtzite structure of III-nitride 

semiconductors. 

 

The wurtzite structure of III-nitride materials consists of two interpenetrating 

hexagonal close-packed (HCP) sublattices, which contain six atoms of each type, offset 

along the c-axis by 3/8 of the cell height. The wurtzite structure has a hexagonal unit cell 

and thus two lattice constants, a and c, as shown in Figure 1.1. For the ideal wurtzite 

structure, the lattice parameters are c/a=1.633. However, due to the electronegativity 

difference between the Group III and Group V atoms, the c/a ratio for AlN, GaN, and 

InN are 1.600, 1.626, and 1.616, respectively. The differences in the electronegativity 

create a dipole, resulting in polarization charge along the c-axis. The space group for the 

wurtzite structure is P63mc (C4
6v). In addition, specific important parameters related to 

structural, electronic, optical, and thermal properties are listed in Table 1.1 and Table 1.2. 
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Table 1.1. Lattice constant values for wurtzite III-nitride semiconductors [1]. 

Binary alloy a (Å) c (Å) 

InN 3.548 5.760 

GaN 3.189 5.185 

AlN 3.112 4.982 

 

Table 1.2 Important material properties of binary III-nitride compound 

semiconductors [4]. 

Binary alloy InN AlN GaN 

Bandgap [eV] 0.6~0.7 (direct) 6.2 (direct) 3.39 (direct) 

Crystal structure (stable phase) wurtzite wurtzite wurtzite 

Thermal expansion (Δa/a) 

[10-6/K] 
4 4.2 5.59 

Thermal expansion (Δc/c) 

[10-6/K] 
3 5.3 3.17 

Thermal conductivity (κ) 

[W/cm∙K] 
0.8±0.2 2 1.3 

Refractive index 2.93 2.15±0.05 2.33 

 

The strong and large ionic bonding component in III-nitride materials are created 

by nitrogen atoms that attribute to different lattice constants and bandgap energies. The 

bonding energy of GaN, AlN, and InN are 8.96 eV, 11.52 eV, and 7.72 eV, respectively. 

Therefore, III-nitride semiconductors are a promising candidate for photonic- and 

electronic applications, operating in high-power and high-temperature environments 

because of the tightly bonded structures with their strong bonding energies. 

One of the notable properties of the wurtzite III-nitride alloys is the large- and 

direct-bandgap. In general, the photons with an energy greater than the bandgap energy 
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are absorbed by semiconductor materials, creating an electron-hole pair (EHP) while the 

photons with an energy smaller than the bandgap energy are not absorbed. In the case of 

the photons with the energy less than the bandgap, the materials are transparent. The 

bandgap energy (Eg) is directly related to the wavelength (λ) of the energy of a photon 

according to the equation:  

 

 
𝐸𝑔 =

ℎ ⋅ 𝑐

𝜆
 (1.1) 

   

where h is the Plank’s constant and c is the speed of the light in free space.  

The bandgap energy (Eg) for InN, GaN, and AlN are 0.78±0.05 eV, 3.52±0.1 eV, 

and 6.1±0.1 eV, respectively, at room temperature [1, 5, 6]. As shown in Figure 1.2, 

therefore, the bandgap energy can cover from the deep-UV region (λ=200 nm; Eg: 6.2 

eV) to the infrared region (λ=1770 nm; Eg: 0.7 eV) by adjusting the composition of each 

binary component in the AlGaN, InGaN, AlInN, ternary or AlInGaN quaternary alloys. 

The bandgap energy of ternary alloys can be determined by the composition and bandgap 

energies of each alloy using Vegard’s law.  

 

 𝐸𝑔,𝐴𝑙𝑥 𝐺𝑎1−𝑥𝑁(𝑥) = 𝑥 ⋅ 𝐸𝑔,𝐴𝑙𝑁 + (1 − 𝑥) ⋅ 𝐸𝑔,𝐺𝑎𝑁 + 𝑏𝑥(1 − 𝑥) (1.2) 

 𝑎𝐴𝑙𝑥 𝐺𝑎1−𝑥𝑁(𝑥) = 𝑥 ⋅ 𝑎𝐴𝑙𝑁 + (1 − 𝑥) ⋅ 𝑎𝐺𝑎𝑁 + 𝑏𝑥(1 − 𝑥) (1.3) 
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where Eg is the bandgap energy, x is the % alloy composition, a is the lattice parameter, 

and b is the bowing parameter specific to each compound and obtained by experimental 

methods [7, 8]. 

 

 

Figure 1.2 Bandgap energy vs. lattice constant of III-nitride materials. 

 

1.2 Metalorganic Chemical Vapor Deposition  

The metalorganic chemical vapor deposition (MOCVD) process for the growth of 

III-nitride compound semiconductor materials was pioneered in 1968 by Manasevit who 

successfully demonstrated the epitaxial of GaAs [9]. The AlGaAs/GaAs solar cells and 

quantum-well injection layer as the first practical devices were grown using MOCVD by 

Dupuis et al., in 1977 and 1978 [10, 11]. The breakthrough was established in the late 
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1980’s by Ammono et al., who grew the first high-quality GaN thin films by MOCVD 

using AlN buffer layer [12] and successfully achieved Mg-doped GaN by the low-energy 

electron beam irradiation (LEEBI) treatment [13]. Recently, the metalorganic chemical 

vapor deposition (MOCVD) technique have been widely employed to produce III-nitride 

compound semiconductor devices such as laser diodes (LDs), light emitting diodes 

(LEDs), avalanche photodiodes (APDs), high-electron-mobility transistors (HEMTs), and 

solar cells, due to its versatility.  

In the MOCVD process, two or more materials in the gaseous phase are 

introduced into a chamber and pyrolyzed in an H2 or N2 ambient to chemically react with 

each other and form a solid material deposited on the heated wafer surface. The 

metalorganic (or alkyl) precursors that are either solid or liquid form at 300K are 

contained in an all-welded stainless-steel container, commonly called “bubbler”, and 

carrier gas is passed (or bubbled) through the liquid (or over the solid), transporting MO 

precursor molecules into the growth chamber. For the MOCVD growth of III-nitride 

materials, trimethylgallium (Ga(CH3)3, TMGa), triethylgallium (Ga(C2H5)3, TEGa), 

trimethylaluminum (Al(CH3)3, TMAl), and trimethylindium (In(CH3)3, TMIn) are 

commonly used for Group III precursors and ammonia (NH3) is used for Group V 

hydride precursors. Inert carrier gases, hydrogen (H2) and nitrogen (N2), are used to mix 

with the Group III and Group V precursors and carry the precursors to the reaction 

chamber. Diluted silane (SiH4) and bis-cyclopentadienyl magnesium (Mg(C5H5)2, 

Cp2Mg) are used as n- and p-type dopant precursors, respectively. The chemical reaction 

employing metalorganic and hydride precursors to form III-nitride epitaxial layer can be 

represented by the following equation: 
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𝑅3𝑀 (𝑔) + 𝐸𝐻3 (𝑔) → 𝑀𝐸 (𝑠) + 3𝑅𝐻 ↑ (𝑔) (1.4) 

where R is the alkyl group of CH3 or C2H5, M is the Group III metal atom such as Ga, Al, 

or In, E is the Group V atom such as N, and H is hydrogen. The chemical reactions 

occurring in the MOCVD growth process are extremely complicated and include a series 

of gas-phase and surface reactions, which can be categorized into four processes: gas 

input, pyrolysis, diffusion, and surface reaction. Then, any by-products formed during the 

epitaxial growth are pumped away with the carrier gases. 
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Figure 1.3 Schematic illustration of MOCVD epitaxial growth process (a) gas input 

(b) pyrolysis (c) diffusion (d) surface reaction. 

 

The MOCVD reactor system used in this study is an Aixtron 6×2” rotating disk 

reactor with close-coupled showerhead (CCSTM) geometry. The CCS technology can 

provide growth uniformity, resulting from the complete intermixed uniform distribution 

of gas phases. The temperature gradients within the chamber are controlled by the three-



 

 10 

zone heater system for maximizing temperature uniformity. A basic diagram of this 

MOCVD system is presented in Figure 1.4. 

 

 

Figure 1.4 Basic diagram of the MOCVD reactor system. 

 

1.3 Motivations for III-nitride Avalanche Photodiodes 

The ultraviolet (UV) spectral region is commonly classified by electromagnetic 

radiation with a wavelength range between λ~10 nm (X-rays) and λ~400 nm (violet), and it 

can be divided into three spectral bands: UVA for λ=400 nm~320 nm, UVB for λ=320 

nm~280 nm, UVC for λ=280 nm~shorter. The Earth’s atmosphere strongly absorbs UV 

radiation which directly comes from the Sun. However, the ozone layer and gases, such as 

oxygen and CO2, strongly absorb UV photons with a wavelength shorter than 290 nm. As the 
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result of this absorption, there is no significant energy at the Earth’s surface in the spectral 

range shorter than 290 nm, contributed by the Sun. Thus, UV photodetectors that respond in 

this region are called solar-blind photodetectors. In a similar way, UV photodetectors with a 

spectral response shorter than 400 nm, which cannot detect visible light, are defined as 

visible-blind photodetectors. 

The detection of UV radiation has become of great importance in numerous 

applications, including military systems, flame sensors, bio-agent detection, imaging 

systems, optical communication systems, and space research [14, 15, 16, 17, 18, 19, 20]. 

Conventionally, photomultiplier tubes (PMTs) and UV-enhanced Si photodetectors are 

used for these detection applications requiring fast response, high sensitivity, and low 

noise. Even though PMTs offer high sensitivity in UV detection with high optical gain > 

106, they are required to operate at the high voltage of 1-2 kV, and the photocathode must 

be cooled down to reduce the dark current [21, 22]. In addition, expensive optical filters 

must be needed to block visible solar radiation which results in high background noise, 

making them costly, bulky, and fragile. Compared to PMTs, UV-enhanced Si 

photodetectors with narrow bandgap energy (1.12 eV) offer several advantages that they 

can be fabricated into very small or large devices, and integrated with other Si-based 

devices using mature and advanced Si processing technology. However, they have high 

dark current and reliability issues caused by the degradation at Si/SiO2 interface after 

long-term exposure and also require expensive filters for visible- and solar-blind 

operation like PMTs. The commercial UV-enhanced Si avalanche photodiode (APD) by 

Hamamatsu shows a gain of 50 at λ=420 nm with spectral response range from λ=320 nm 

to λ=1000 nm [ 23 ]. As a replacement for conventional PMTs or Si APDs, UV 
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photodiodes (PDs) and avalanche photodiodes (APDs) based on wide-bandgap (WBG) 

semiconductors such as III-nitrides or SiC have generated a lot of interest for the reliable 

UV detectors because of their inherent properties of enhanced radiation hardness, 

intrinsic visible-blindness, thermal and chemical stability.  

 

1.3.1 SiC Avalanche Photodiodes 

Early studies of SiC-based APDs have been reported demonstrating low dark 

current, low multiplication noise and good visible blind performance owing to the 

relative maturity of this material and widely disparate ionization coefficients for electrons 

and holes [24, 25, 26, 27]. The high-quality passivation layer that consists of a thin 

thermal oxide layer capped by 300 nm of plasma-enhanced chemical vapor deposition 

SiO2 and available high-quality SiC substrates result in reduced leakage current from side 

wall as well as surface [28]. By applying a recessed-window structure, 4H-SiC APDs 

with a low dark current of 0.18 μA/cm2, maximum avalanche gain over 106, and a peak 

responsivity of 136 mA/W at λ=262 nm has been achieved by Prof. Campbell’s group at 

the University of Virginia [ 29 ]. Recently, 4H-SiC separated absorption charge 

multiplication (SACM) UV-APDs with a low breakdown voltage and 4H-SiC p-i-n UV-

APDs with p-layer formed by Al implantation have been reported to improve the 

performance of SiC APDs for UV detection [30, 31]. For detection in the solar-blind 

region, however, external filters should be required because of the indirect nature of the 

SiC bandgap.  
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Figure 1.5 Schematic cross section of a typical SiC-based p-i-n APD structure [32]. 

 

1.3.2 III-nitride Photodiodes 

The most important UV semiconductor photodetectors based on III-nitride 

materials are categorized into four fundamental modes: photoconductors, metal-

semiconductor-metal (MSM) detectors, Schottky barrier diodes, and p-n photodiodes. As 

shown in Figure 1.6 (a), photoconductors have the simplest form among the III-nitride 

photodetectors and comprise an absorbing semiconductor layer with two ohmic contacts 

at each end. The photogenerated electrons and holes are collected by opposite contacts. 

The first GaN UV photoconductors grown on a sapphire substrate using an AlN buffer 

layer, which exhibited a responsivity of 2,000 A/W at λ=365 nm under a 5 V bias, was 

demonstrated by Khan et al. [33]. The development of AlxGa1-xN photoconductors with a 

high responsivity (>100 A/W) was also reported [ 34 , 35 ]. Especially, persistent 

photoconductivity that the conductivity continues for minutes to hours after the removal 

of optical excitation has been reported for all of the III-nitride-based photoconductors 
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[36, 37, 38, 39]. Because of the combination of strong persistent photoconductivity, 

sublinear power response, and low UV/visible rejection, the use of III-nitride 

photoconductors is limited for many applications. 

 

 

Figure 1.6 Schematic structures of (a) photoconductors, (b) MSM photodetectors, 

(c) Schottky barrier photodiodes, and (d) PIN photodiodes. 

 

Schottky-barrier-based photodiodes such as Schottky barrier (metal-

semiconductor) and metal-semiconductor-metal (MSM) photodiodes offer the attractive 

advantages of fast response speed and large bandwidth capability [40, 41]. Figure 1.6 (b) 
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shows the schematic structure of an MSM PD that is made by forming two interdigitated 

Schottky-barrier contact on the semiconductor surface. And, as shown in Figure 1.6 (c), a 

Schottky barrier PD is made by forming a Schottky-barrier contact on the surface of the 

semiconductor absorbing layer. The ohmic contact is formed on the same absorbing layer 

where the Schottky-barrier contact is formed or on a conduction layer underneath the 

absorbing layer. In particular, MSM-PDs present better performance over other 

photovoltaic detectors, including fabrication simplicity, suitability for integration with 

FET preamplifier circuits, no p-type doping and mesa etching requirement, and low 

capacitance, that allow them to be used for solar-blind photodetectors. However, the 

potential limiting factors for MSM-PDs are the shadowing of the optical active region by 

interdigitated electrodes and the relatively large dark current that exist for the 

performance of these devices. In recent advances, MSM-PDs with a reduced dark current 

density of ∼1.4×10−9 A/cm2 and an avalanche gain of more than 1,100 under 365 nm UV 

illumination have been reported by F. Xie et al. [42]. Although back-illuminated and 

semi-transparent Schottky contacts were employed to overcome light blocking issue [43, 

44, 45, 46], it still makes them less suitable for high-sensitivity UV detection.  

The epitaxial structure of p-i-n photodiodes consists of a relatively thick intrinsic 

layer sandwiched between heavily doped n- and p-type layers with ohmic contacts 

formed on the surface of n- and p-type layers, as shown in Figure 1.6 (d). Owing to the 

APD’s attractive performance characteristics of lower dark current density, higher 

responsivity, higher detectivity, higher internal gain, and radiation-hardened, they have 

become useful for a wide range of applications. Moreover, as shown in Figure 1.7, APDs 

utilize the impact ionization process to create a number of photogenerated electron-hole 
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pairs, a process that offers larger internal gain and higher detection sensitivity than that of 

p-n photodiodes.  

 

 

Figure 1.7 Schematic representation of the multiplication process in an APD [47]. 

 

The common technical challenges involved in improved material quality, device 

structure design, fabrication process development including mesa etching and the 

passivation layer to achieve high-performance III-nitride-based UV-APDs. However, the 

realization of high-quality of III-nitride-based p-i-n UV-APDs has been hampered by 

high densities of defects and dislocations with defect density of 108~109 cm-2 originating 

from heteroepitaxial layers grown on lattice-mismatched substrates such as sapphire or 
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SiC, resulting in larger dark current density, device size limitations, low yield, and non-

uniformity of devices in an array format [48]. The lattice constant mismatch between 

sapphire and GaN substrate is significant at around 14%. These high defects can lead to a 

premature microplasma breakdown before the electric field in the depletion region can 

reach the bulk avalanche breakdown field [49, 85]. Also, for the conventional front-

contact device structures, n-type layer plays an important role in reducing the current 

crowding towards the edge of the mesa because of etching damage, and it may potentially 

lead to high leakage current and device failure by premature breakdown. Although a high 

doing and low resistivity in an n-type layer can be obtained relatively easily, achieving 

reasonable p-type doing in the III-nitride material system is still challenging because the 

activation energy of Mg acceptor in GaN is assumed to be ~160 meV and it increases 

with increasing Al composition [50, 51, 52, 53]. 

Because of the relative ease of growth, most of the early (Al)GaN-based APDs 

were designed for front-illuminated operation including p-i-n photodiodes [54], p-i-n 

APDs in linear operation [55, 56], separate absorption and multiplication (SAM) APDs 

[57]. For the front-illumination devices, a thick GaN buffer layer or n-type layer can be 

grown on a sapphire substrate, which helps to reduce the number of dislocation densities 

of the devices. Therefore, improvement of the material quality of device structures plays 

an important role to enhance the performance of III-nitride UV-APDs, especially for 

arrays. 

Recently, to address these technological challenges, (Al)GaN-based UV-APDs 

grown on high-quality bulk or “free-standing” III-nitride substrates with low dislocation 

density less than 106 cm-2 have been successfully demonstrated with not only extremely 
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low dark current and high avalanche gain [58, 59, 60, 61, 62] but also Geiger-mode 

operation [63, 64, 65]. Moreover, the back-illuminated (Al)GaN p-i-n UV-APDs [66, 67] 

and separate absorption and multiplication (SAM) UV-APDs [ 68 , 69 , 70 , 71 , 72 , 

73 , 74 , 75 ] have been investigated for achieving high maximum gain and low 

multiplication noise, due to higher hole ionization coefficient [76, 77]. However, native 

substrates or thick GaN/sapphire templates to grow UV-APD structure with superior 

crystalline quality cannot be used in the back-illumination without additional processing 

steps due to strong UV-light absorption by thick n-type GaN layer or native substrates.   

 

1.4 Scope of this Dissertation 

This thesis will discuss the MOCVD growth, fabrication, and device 

characterization of III-nitride-based ultraviolet avalanche photodiodes (UV-APDs). In 

Chapter 1, a brief introduction to the III-nitride material properties and epitaxial growth 

system, the development history of UV photodiodes (PDs), the motivations for III-

nitride-based UV-APDs, and technical difficulties to achieve high-performance UV-

APDs are summarized. In Chapter 2, the characterization methods of epitaxial layers and 

devices used in this study will be presented in detail. Chapter 3 reports on the growth, 

fabrication, and device characterization of Al0.05Ga0.95N p-i-n UV-APDs grown on free-

standing GaN and sapphire substrates. In Chapter 4, the GaN p-i-n 4×4 UV-APD arrays 

with large detection area will be reported. Chapter 5 focused on the demonstration of 

front-illuminated GaN p-i-p-i-n separation absorption and multiplication (SAM) UV-
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APDs with large detection areas by employing impact-ionization engineering. Finally, the 

summary of work performed in this dissertation will be provided in Chapter 6. 
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CHAPTER 2. MATERIAL AND DEVICE CHARACTERIZATION 

2.1 Introduction 

Several analysis and characterization techniques are utilized to measure the 

electrical- and optical properties of the devices and quality of epitaxial layer structure in 

the research on III-nitride semiconductor materials. This chapter will describe material 

characterization techniques of X-ray diffraction, photoluminescence, atomic force 

microscopy, scanning electron microscopy, and device characterization techniques of 

Hall-effect measurement, responsivity, transmission line measurement.  

 

2.2 Material Characterizations 

2.2.1 X-ray Diffraction 

The X-ray diffraction (XRD) is a powerful ex-situ analytical techniques for the 

characterization of crystalline materials. The XRD measurement is commonly used to 

determine the structural properties such as crystalline perfection, alloy composition, 

uniformity, the thickness of thin films or multilayers, and built-in strain and relaxation 

because of the advantages of convenient and non-destructive characterization [78]. The 

fundamental principle of XRD is based on Bragg’s law: 

 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃𝐵 (2.1) 
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where n is an integer determined by the order given, λ is the wavelength of X-rays, dhkl is 

the spacing between the planes in the atomic lattice, and θB is the Bragg’s angle. For a 

cubic crystal (a=b=c), the lattice spacing of the plane (h k l) is described by the following 

equation: 

 

1

𝑑ℎ𝑘𝑙
2 =

ℎ2 + 𝑘2 + 𝑙2

𝑎2
 (2.2) 

 

For a hexagonal lattice, the lattice spacing is expressed by the following equation: 

 

1

𝑑ℎ𝑘𝑙
2 =

4

3
(

ℎ2 + 𝑘2 + 𝑙2

𝑎2
) +

𝑙2

𝑐2
 (2.3) 

 

where a and c are lattice constants of the plane, and h, k, and l are the Miller indices of 

the plane of interest. 

The rocking curves (ω-scan) are primarily used XRD scan to determine the 

relative crystalline quality of different samples by comparing full width half maximum 

(FWHM) or linewidth of this broadened peak. In the ω-scan, the detector is kept at a 

fixed angle with respect to the primary beam (2θ) while the sample is rotated or rocked 

across the ω axis, perpendicular to the sample surface as shown in Figure 2.1. The 



 

 22 

limitation of the rocking curve is limited angular range of only ~1º so the information of 

large mismatched layers cannot be collected in a single scan. The large mismatched layer 

can be characterized by the alternative technique of the ω-2θ scan. The detector moves at 

a twice angular rotation rate of the sample (ω) so that the measured diffraction angle 

always remains 2θ with respect to the incident beam angle. Thus, diffraction peaks are 

narrower and do not overlap between layers in the diffraction spectrum. 

All XRD results presented in this dissertation are performed by using Philips 

X’Pert® MRD (Material Research Diffractometer) high-resolution (0.0001°) X-ray 

diffractometer as shown in Figure 2.1. 

 

Figure 2.1 Schematic diagram of a typical configuration of an X-ray diffractometer. 

 

2.2.2 Photoluminescence 

Photoluminescence (PL) is the spontaneous emission spectrum of light from a 

direct bandgap semiconductor material under optical excitation by a laser. The PL 
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measurement system is a powerful tool to determine the band gap energy of material and 

material quality, allowing contactless and non-destructive characterization. When the 

photon energy of incident beam higher than the bandgap energy of the material is 

absorbed, the electron-hole pairs are created and recombined via radiative recombination 

process by emitting light at the energy of the bandgap. The emitted photons are collected 

and analyzed by detectors, simple relationship between the energy of a photon and the 

corresponding wavelength of that photon is described by the following equation. 

 

𝐸𝑔 = ℎ𝑣 =
ℎ𝑐

𝜆
=

1249.8

𝜆
 (2.4) 

 

where Eg
 is the bandgap energy of the semiconductor materials in eV, h is Planck’s 

constant, v is the frequency of light, c is the speed of light, and λ is the wavelength in nm. 

In addition to the determination of the bandgap energy of semiconductor materials, the 

PL spectrum analysis can lead to evaluate material quality related to specific defects and 

impurities.  

The Accent Optical Technologies RPM-2000 system equipped with the 266 nm 

Q-switched Nd:YAG laser as an excitation source is used for measuring 

photoluminescence characteristics in this study.  
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2.2.3 Atomic Force Microscopy 

Atomic force microscopy (AFM), which was first developed in 1986 by Binning, 

Quate, and Gerber [79], is useful non-destructive measurement technique to provide 

three-dimensional surface topographies, growth mode, and defect density as a type of 

scanning probe microscopy (SPM). Figure 2.2 shows a schematic drawing of the simple 

operation of the AFM measurement system. As shown in Figure 2.2, the AFM consists of 

a sharp tip mounted at the end of a flexible cantilever that scans over the sample surface 

by raster scanning. As the tip approaches close proximity to the surface to be analyzed, 

the attractive or repulsive forces between the tip and the surface can be detected by 

measuring the deflection of the cantilever.  

There are three AFM basic operating modes that are contact mode, non-contact 

mode, and tapping mode. In contact mode, the overall forces are repulsive between the 

tip and the surface, and the deflection of the cantilever is kept constant. The tip is also 

dragged across the sample surface potentially resulting in surface damages, tip breakage 

or distorted image data influenced by frictional and adhesive forces. In contrast, the 

overall forces between the tip and the sample are attractive in the non-contact mode. The 

tip does not touch the sample surface and is oscillated at the resonance frequency, and the 

amplitude of the oscillation is kept constant. Therefore, low resolution image is obtained 

by non-contact mode and it can be hampered by the contaminant layer, which interferes 

with the oscillation of the cantilever. The tapping mode takes advantage of contact mode 

and non-contact mode described above. The tapping mode provides higher resolution 

minimizing sample damages, eliminating frictional forces by intermittently touching or 

tapping the surface, and oscillating with sufficient amplitude.  
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The AFM measurement system used in this study is Veeco Dimension 3100 

scanning probe microscope, operating in the tapping mode. 

 

 

Figure 2.2 Schematic diagram of atomic force microscope. 

 

2.2.4 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is most widely used to observe surface 

topography, morphology, composition, and fabricated devices, which used accelerated 

electrons as the source of illumination radiation. As shown in Figure 2.3, the electron 

source located at the top of an SEM column that generates a beam of electrons. The beam 

accelerated by the anode is focused as a fine point on the sample surface by the lens and 

scanned in a rectangular raster pattern across the sample surface. When the sample 
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surface is bombarded by fast-moving primary electrons with high energy, secondary 

electrons, backscattered electrons, and X-rays are released from the sample surface. The 

emitted secondary electrons with low energy are collected by secondary electron 

detectors and converted into a various signal that is transferred to the screen to produce 

high-resolution images of the sample. Over other electron microscopes such as 

transmission electron microscopy (TEM), SEM can characterize large and bulky samples 

without elaborate sample preparation steps. However, the electron microscopes must be 

utilized under the high vacuum to prevent electrical discharge from electron beams and to 

enable electrons to travel in straight lines.  

The SEM images used in this study are taken from Hitachi S-4700 FE-SEM that 

is a cold field emission high-resolution SEM.  
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Figure 2.3 Schematic illustration of a scanning electron microscopy column [80]. 

 

2.3 Device Characterizations 

2.3.1 Hall-Effect Measurement 

The Hall-effect measurement, which was proposed by L. J. Van der Pauw in 1958 

[ 81 ], is a simple characterization technique commonly used for determination of 

electrical properties of semiconductors such as the resistivity of the material, the mobility 

of the majority carrier, carrier type, and carrier concentration. To estimate the resistivity 

on an arbitrarily shaped sample from the Hall-effect measurement using van-der-Pauw 

model, the following conditions are required: 1) the contacts are at the boundary, 2) the 

contacts are negligibly small, and 3) the samples are uniformly doped and thick. An 

approximately 1×1 cm2 square sample with indium eutectic and Ni/Ag/Ni/Au metal 
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stacks for n- and p-type contact layers, respectively, is prepared in this study, as shown in 

Figure 2.4. 

 

 

Figure 2.4 A typical hall sample; a variation on Van der Pauw Geometry. 

 

According to van der Pauw method, the resistivity is given by 

 

𝜌 = 2.2666𝑡 (
𝑉43

𝐼12
+

𝑉23

𝐼14
) 𝐹 (2.5) 

 

where t is the sample thickness, I is the applied current, V is the measured voltage, and F 

is a correction factor based on sample symmetry (that are unity for perfect squares).  

The Hall effect can be observed when an electrical current flows through a sample 

placed in a magnetic field, which produces a transverse voltage that is perpendicular to 

the electrical current and the magnetic field [ 82 ]. In case of van der Pauw Hall 

measurement, the Hall coefficient (RH) is defined as  
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𝑅𝐻 =
𝑉𝐻 ⋅ 𝑡

𝐼 ⋅ 𝐵
 (2.6) 

where VH is the Hall voltage, t is the sample thickness, I is the applied current, and B is 

the applied magnetic field. Carrier concentration and mobility of the sample can be 

obtained from the Hall coefficient by following equations: 

 

𝑛 =
1

−𝑞𝑅𝐻
             𝑝 =

1

𝑞𝑅𝐻
 (2.7) 

𝜇 =
𝑅𝐻

𝜌
 (2.8) 

 

An Ecopia HMS-3000 Hall-effect measurement system is used in this study to 

perform the Hall-effect measurements. 

 

2.3.2 Responsivity 

The responsivity (R) and the quantum efficiency () are widely measured to 

evaluate the optical detector detection efficacy. The responsivity, which has a unit of 

amperes per watt (A/W), is defined as the ratio of photocurrent (Iph) to optical power 

(Wph) at a specified wavelength from the photodiode. The external quantum efficiency 
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(EQE) is the ratio of the number of carriers of photocurrent to the number of photons 

illuminated. 

𝑅 =
𝐼𝑝ℎ

𝑊𝑝ℎ
 [A/W] (2.9) 

𝜂 =
𝐼𝑝ℎ/𝑞

𝑊𝑝ℎ/ℎ𝜈
=

𝐼𝑝ℎ

𝑊𝑝ℎ
⋅

ℎ𝜈

𝑞
 (2.10) 

 

where Iph is the detected photocurrent of the photodiode, Wph is the incident optical 

intensity, h is the Planck’s constant, v is the photon frequency, and q is the electric 

charge. In addition, the responsivity is related to the quantum efficiency depending on the 

wavelength the responsivity by  

 

𝑅 =
𝜂𝑞

ℎ𝜈
=

𝜂𝑞𝜆

1.24
 (2.11) 

 

where λ is the optical wavelength in µm. 

Figure 2.5 shows a schematic drawing of the spectral response measurement 

system for this study [83]. To minimize the effect of environmental noise, an on-wafer 

DC probe station in a Faraday cage is used for the characterization of the fabricated UV-

APDs. As shown in Figure 2.5, the Newport Apex Illuminator with a 150 W Oriel xenon 

lamp, which can provide light illumination from 200 nm to 2400 nm, is used as the light 
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source. An optical chopper system is attached to the output window on the Newport Apex 

Illuminator to modulate the illumination light with a frequency of 100 Hz. Then the 

modulated illumination light goes into the 1200 l/mm holographic grating (Newport 

74162) in Cornerstone 260 ¼-m monochromator system to select single-wavelength 

optical signals. After the wavelength selection, the modulated single-wavelength light is 

coupled into UV fibers with 50- and 100-μm-diameter using a one-inch UV focus lens. 

The other end of the UV fiber is located on top of the fabricated UV-APDs under testing 

as close to the devices as possible. A calibrated Si-enhanced UV detector by Hamamatsu 

Inc. S2281-04 is used for optical power monitoring. An SRS 830 lock-in amplifier and an 

HP VEE program are used to detect the UV-APDs photocurrent and control the 

equipment for obtaining data, respectively. A Keithley Model 4200 Semiconductor 

Characterization System is used to apply constant voltages. The monochromator and the 

lock-in amplifier are controlled by a computer with a GPIB interface.  

 

 

Figure 2.5 The schematics of the spectral response measurement system. 

 



 

 32 

2.3.3 Transmission Line Measurement 

The transmission-line measurement (TLM) is most commonly used to determine 

the contact resistance between metal and semiconductor as well as sheet resistance of the 

semiconductor layer because of its simplicity and accuracy. The TLM patterns require 

additional mesa etching to confine the current flow to the area between metal pads and to 

reduce the fringe effect. After the mesa definition, metal pads with various spacing is 

deposited on the top of the mesa as shown in Figure 2.6.  

 

 

Figure 2.6 A typical transmission-line measurement (TLM) pattern showing the 

semiconductor mesa with metal pads. 

 

The parameters used in the measurement and calculations are shown in Figure 

2.6. Dx is the spacing between metal pads (µm), W is the width of a rectangular metal pad 

(µm), and L is the length of a rectangular metal pad (µm). As shown in Figure 2.7, the 
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contact resistance (Rc) and sheet resistance (Rs) can be extrapolated from the plot of 

measured resistance as a function of the spacing of metal pads.   

 

 

Figure 2.7 Plot of measured resistance as a function of a spacing between the metal 

pads. 

 

The sheet resistance of the semiconductor can be calculated from the slope using 

the following equation:  

 

𝑅𝑠 = 𝑆𝑙𝑜𝑝𝑒 ⋅ 𝑊 (2.12) 
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The intercepts with the x-axis and y-axis of the fitted line in Figure 2.7 are twice 

the transfer length, 2LT, and twice the contact resistance, 2RC, respectively. The transfer 

length is defined as the distance from the edge of the metal pad to the point that the 

contact voltage is 1/e of its maximum value, which is known as effective contact length. 

Then, the specific contact resistance that is related to the quality and the reliability of the 

devices can be calculated by following equations: 

𝐿𝑇 =
𝑅𝐶

𝑅𝑆
= √

𝜌𝐶

𝑅𝑆
 (2.13) 

𝑅𝑐 =
𝑅𝑠 ⋅ 𝐿𝑇

𝑊
 (2.14) 

𝜌𝑐 = 𝐿𝑇 ⋅ 𝑊 ⋅ 𝑅𝑐 (2.15) 
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CHAPTER 3. ENHANCEMENT OF III-NITRIDE 

ULTRAVIOLET AVALANCHE PHOTODIODES 

3.1 Introduction 

As discussed above, the difficulty in growing high-quality AlGaN layers by 

strained heteroepitaxy hinders the realization of high-performance ultraviolet avalanche 

photodiodes (UV-APDs) based on wide-bandgap AlGaN materials. The lattice mismatch 

and difference thermal expansion coefficients between foreign substrates and epitaxial 

layers lead to the cracking and/or bowing of material structures and other strain-induced 

defects. In particular, the high density of crystalline defects, mainly threading 

dislocations, of AlGaN layers in an active region results in high leakage currents, 

disturbed electric field distributions, and premature microplasma breakdown prior to 

reaching avalanche breakdown [84, 85], which causes detrimental effects on device 

performance and reliability in the APDs. In addition, n- and p-type AlGaN layers have 

limited doping efficiency [86, 87, 88]. The development of a low-resistivity n-AlGaN:Si 

layer is important for achieving high-performance UV-APDs because the low resistivity 

of the n-AlGaN layer can reduce current crowding towards the edge of the mesa, which 

causes the potential premature microplasma breakdown of devices.  

The use of low-dislocation-density GaN substrates has been reported for GaN p–

i–n UV-APDs via the growth of homoepitaxial GaN layers, resulting in more 

significantly reduced leakage currents and higher optical gains than those in the case of 

growth on the sapphire substrate [59, 61, 89]. In the case of AlGaN UV-APDs, the effects 
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of threading dislocations on the performance characteristics of UV-APDs are expected to 

be significant, but they have not been systematically explored.  

In this chapter, we report on the growth, fabrication, and device characterization 

of high-performance AlxGa1-xN p-i-n UV-APDs with strain management in n-type layers 

grown on free-standing (FS) GaN and sapphire substrates to address technological issues 

associated with crystalline defects and crack formation in AlxGa1-xN UV-APDs and 

reliability. 

 

3.2 Design, Epitaxial Growth, and Device Fabrication 

The epitaxial growth of Al0.05Ga0.95N p-i-n UV-APDs was carried out by 

metalorganic chemical vapor deposition (MOCVD) in a Thomas Swan reactor system 

with a 6×2″ closed-coupled showerhead (CCS) growth chamber. For a native GaN 

substrate, an n-type FS-GaN substrate made from a thick film grown by hydride vapor 

phase epitaxy (HVPE) with a threading dislocation density lower than 5.0×106 cm−2, was 

used. A GaN/sapphire template, grown on a c-plane sapphire substrate and composed of 

low- and high-temperature GaN buffer layers, followed by an approximately 3-µm-thick 

layer of unintentionally doped GaN, was used for the Al0.05Ga0.95N p-i-n UV-APDs on a 

sapphire substrate. The dislocation density of the GaN/sapphire template was estimated to 

be ∼5.4×108 cm−2 from the full-widths at half maximum (FWHMs) of the (002) and 

(102) X-ray diffraction (XRD) rocking curves [ 90 ]. Trimethylaluminum (Al(CH3)3, 

TMAl), trimethylgallium (Ga(CH3)3, TMGa), and ammonia (NH3) were used as 

precursors. Bis-cyclopentadienyl magnesium (Mg(C6H6)2, Cp2Mg) and diluted silane 
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(SiH4) were used as p- and n-type dopant precursors, respectively. Atomic-force 

microscopy (AFM), scanning electron microcopy (SEM), and X-ray diffraction (XRD) 

were employed to characterize the surface and crystalline quality of the epitaxial layer 

and device structures. XRD and photoluminescence (PL) were also used to evaluate the 

mole fraction of Al in the AlxGa1-xN layers. Hall-effect measurements were also carried 

out for the p-Al0.05Ga0.95N:Mg, n-Al0.02Ga0.98N:Si, and n-GaN layers under various 

growth conditions in order to measure the electrical properties. 

For a top-illuminated Al0.05Ga0.95N p-i-n UV-APD structure, shown in Figure 3.1, 

the epitaxial layer structure of UV-APDs on FS-GaN substrate and GaN/sapphire 

template consisted a 0.45-µm-thick n-GaN:Si layer (n~4×1018 cm-3), followed by a 0.15-

µm-thick n-Al0.02Ga0.98N:Si layer (n~4×1018 cm-3) for the step grading, a 0.3-µm-thick 

unintentionally doped Al0.05Ga0.95N drift region, a 0.1-µm-thick p-Al0.05Ga0.95N:Mg layer 

(p~5×1017 cm-3), and topped with a heavily doped 0.02-µm-thick p-Al0.05Ga0.95N:Mg++ 

([Mg]~1×1020 cm-3) contact layer. For the strain management and the crack-free growth 

of AlxGa1−xN p–i–n UV-APD structures, step-graded layers from the n-GaN:Si to n-

Al0.02Ga0.98N:Si layers were introduced instead of a thick n-Al0.05Ga0.95N:Si layer.  
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Figure 3.1 Schematic the cross-sectional structure of AlxGa1-xN p-i-n UV-APD 

grown on free-standing (FS)-GaN substrate and GaN/sapphire template. 

 

 

Figure 3.2 Scanning electron microscopy (SEM) image of fabricated AlxGa1-xN p-i-n 

UV-APDs with bonding pads. 
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X-ray diffraction ω-2θ scans near a GaN (004) diffraction peak are shown in 

Figure 3.3. Although both AlGaN p-i-n UV-APDs on FS-GaN substrate and 

GaN/sapphire template were grown under the same growth conditions, XRD peaks 

corresponding to each layer in their epitaxial layer structures slightly differed, which can 

be attributed to the difference in actual substrate surface temperatures caused by the 

thermal conductivities of the different substrates and the strain/bowing status of the 

growing surface depending on the substrate used [91]. 

 

 

Figure 3.3 HR-XRD ω-2θ scan results of (004) diffraction for the AlGaN p-i-n UV-

APDs on FS-GaN substrate and GaN/sapphire template. 

 

The doping calibration of n- and p-type in the AlxGa1-xN layers were performed 

for AlGaN p-i-n UV-APDs. For the optimization of n- and p-type AlxGa1-xN layers, we 

modified the SiH4 flow rates for the n-type AlGaN layer, and the growth rate and 
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precursors for the p-type AlGaN layer. The Hall-effect measurement results, plotted in 

Figure 3.4 and Figure 3.5, show that the reduced bulk and sheet resistivity of the n-

AlGaN:Si layer  (x ≤ 0.05) with an increasing SiH4 flow rates. Also, while the electron 

concentration linearly increases within the range of the SiH4 flow rates controlled in this 

study, the electron mobility decreases.  

 

 

Figure 3.4 Bulk and sheet resistivity of the n-AlxGa1-xN:Si layer (x ≤ 0.05) with 

various SiH4 flow rates measured by the Hall-effect measurement. 
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Figure 3.5 Free-electron concentration and mobility of the n-AlxGa1-xN:Si layer (x ≤ 

0.05) with various SiH4 flow rates measured by the Hall-effect measurement. 

 

The optimization of p-AlxGa1-xN:Mg layer was also performed, which improved 

the performance of the AlGaN p-i-n UV-APDs. The p-type electrical properties were 

studied with respect to the Al mole fraction (0.05<x<0.1) in the p-AlxGa1-xN:Mg layer. 

The growth rate of the p-AlxGa1-xN:Mg layer slightly changed from 1.0 μm/h to 0.8 μm/h 

for higher and lower Al compositions, respectively, by controlling group-III and group-V 

precursors to achieve a corresponding Al mole fraction and Mg doping efficiency. The 

Hall measurements of the p-AlxGa1-xN:Mg layers with various Al mole fractions were 

also performed to characterize the p-type electrical properties, as shown in Figure 3.6.  

Both bulk and sheet resistivity are relatively low in the case of the p-AlxGa1-xN:Mg layers 

with lower Al mole fractions but increase as the Al mole fraction increase. The increase 

in the resistivity of the p-AlxGa1-xN:Mg layer with an increasing Al mole fraction 



 

 42 

possibly originated from increased Mg activation energy at the higher Al mole fraction 

and reduced Mg incorporation at the higher growth rate [92, 93, 94].  In turn, because of 

the limited free-hole concentration and mobility, which depended on the Al composition, 

the resistivity of the p-AlxGa1-xN:Mg layer increases as the Al mole fraction increases.  

As a result, the optimized free-electron concentration of the n-AlxGa1−xN:Si layer 

(x ≤ 0.05) is estimated at n~4.0×1018 with a mobility value of µn~226 cm2/V-s. The 

optimized free-hole concentration of the p-Al0.05Ga0.95N:Mg layer is measured at 

p~5.1×1017 with a mobility value of µp~7 cm2/V-s, resulting in a resistivity of 1.7 Ω·cm 

at room temperature. 

 

 

Figure 3.6 Bulk and sheet resistivity of the p-Al0.05Ga0.95N:Mg layer with different Al 

mole fraction measured by the Hall-effect measurement. 
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Figure 3.7 Free-electron concentration and mobility of the p-Al0.05Ga0.95N:Mg layer 

with different Al mole fraction measured by the Hall-effect measurement. 

 

For the fabrication of top-illuminated devices, we formed circular mesas with 

sizes varying from 30- to 70-µm-diameter by inductively-coupled plasma reactive-ion 

etching (ICP-RIE) using a Cl2/BCl3/Ar carrier gas mixture. Ti/Al/Ti/Au and Ni/Ag/Ni/Au 

metal stacks were deposited by electron-beam evaporation and annealed by rapid thermal 

annealing (RTA) system for the n- and p-type ohmic contacts, respectively. In order to 

optimize annealing conditions for ohmic contact behavior, and n- and p-type AlGaN 

layers were annealed at various temperatures. The optimized annealing conditions for n- 

and p-type AlGaN layers were at 700℃ for 1 min under N2 ambient and at 450℃ for 1 

min under compressed dry air (CDA), respectively. The fabricated devices were then 

passivated by depositing a layer of SiO2 using plasma-enhanced chemical vapor 

deposition (PECVD) by accessing via-holes formed by a subsequent dry etching process. 

Finally, thick Ti/Au metal stacks for use as metal interconnects and bonding pads were 
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deposited by electron-beam evaporation. Figure 3.8 shows the fabrication process flow of 

Al0.05Ga0.95N p-i-n UV-APDs.  

 

 

Figure 3.8 The fabrication process flow of Al0.05Ga0.95N p-i-n UV-APDs.  

 

Moreover, the effect of ohmic contact using p-GaN:Mg++ and p-

Al0.05Ga0.95N:Mg++ capping layers on the top of p-Al0.05Ga0.95N:Mg layer were 

investigated. As shown in Figure 3.9 and Figure 3.10, no significant differences in the 

values of the Rsh and Rc are observed, indicating that the UV-APDs having different p-

type contact layers have similar electrical properties in the p-type layers.  
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Figure 3.9 p-TLM result of UV-APDs with p-Al0.05Ga0.95N:Mg++ contact layer. 

 

 

Figure 3.10 p-TLM result of UV-APDs with p-GaN:Mg++ contact layer. 
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3.3 Comparison of Al0.05Ga0.95N p-i-n Ultraviolet Avalanche Photodiodes Grown 

on Free-Standing GaN Substrate and GaN/sapphire Template 

The microscopic surface properties of the AlGaN p-i-n UV-APD epitaxial 

structures grown on the FS-GaN substrate and the GaN/sapphire template were 

characterized by AFM measurement. Figure 3.11 shows plots of the surface morphology 

and the corresponding root-mean-square (RMS) surface roughness of the structures with 

various AFM scan sizes. The RMS surface roughnesses of 1×1, 5×5, and 20×20 µm2 

scans with a height scale of 10 nm are ∼0.11, ∼0.28, and ∼2.27 nm for the structure 

grown on the FS-GaN substrate and ∼0.14, ∼0.34, and ∼2.33 nm for the structure grown 

on the GaN/sapphire template, respectively. Both UV-APD epitaxial structures have 

similar RMS roughness and well-developed atomic step-flow morphologies. However, 

the surface of the epitaxial layer grown on the GaN/sapphire template shows dislocation-

related surface features that are not observed in that grown on the FS-GaN substrate, as 

shown in the AFM surface images (5×5 µm2 scan) in Figure 3.12 and Figure 3.13. The 

density of the surface features of the structure on the GaN/sapphire template is estimated 

to be ∼7.6 × 107 cm−2. The improved surface property of the structure grown on the FS-

GaN substrate is believed to be a result of epitaxial growth on the low-dislocation-density 

substrate.  
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Figure 3.11 AFM RMS roughness of Al0.05Ga0.95N p–i–n UV-APDs grown on a FS-

GaN substrate (black squares) and a GaN/sapphire template (red circles) with 

different AFM scan areas. 
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Figure 3.12 AFM microscopic surface morphology of AlGaN p-i-n UV-APDs grown 

on a GaN/sapphire template: (a) with 1×1 µm2 scan with z-height scale of 5 nm; (b) 

with 5×5 µm2 scan with z-height scale of 10 nm. 

 

 

Figure 3.13 AFM microscopic surface morphology of AlGaN p-i-n UV-APDs grown 

on a FS-GaN substrate: (a) with 1×1 µm2 scan with z-height scale of 5 nm; (b) with 

5×5 µm2 scan with z-height scale of 10 nm. 
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Current-voltage (I–V) characteristics were measured using a Keithley 4200 

semiconductor characterization system. In Figure 3.14, the breakdown voltages (VBR) and 

dark-current densities of Al0.05Ga0.95N p-i-n UV-APDs grown on the FS-GaN substrate 

and the GaN/sapphire template are compared under various mesa sizes. The VBR values 

derived from the onset point of reverse breakdown measured without UV illumination 

and averaged dark-current densities taken from the reverse bias (VR) at 0 V<VBR were 

used for the plot. For the area-dependent VBR, UV-APDs grown on the same substrate 

show a relatively constant VBR regardless of the device sizes: The VBR values range from 

95 to 100 V for the UV-APDs on the FS-GaN substrate and from 87 to 89 V for those on 

the GaN/sapphire template. Since all the UV-APDs grown on the FS-GaN substrate and 

the GaN/sapphire template share nearly the same growth conditions, the difference in VBR 

might be attributed mostly to the defect-related crystalline quality of the UV-APDs. The 

dark current densities are significantly lower for the UV-APDs on the FS-GaN substrate 

than for those on the GaN/sapphire template. When device sizes are small (areas less than 

1,500 µm2), the difference is approximately one order of magnitude. When device sizes 

are large (areas larger than 2,500 µm2), the difference is about a factor of 2 or 3, as the 

dark-current density of the UV-APDs on the FS-GaN substrate increases with the device 

sizes. As dislocations in the device increase the dark-current density by a trap-assisted 

tunneling current at a certain reverse bias and produce premature microplasmas prior to 

the onset point of avalanche breakdown, the use of the FS-GaN substrate with a low 

dislocation density was responsible for the low dark current density and constant 

breakdown voltage of the UV-APDs.  
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Figure 3.14 Area-dependent dark-current densities and breakdown voltages of 

Al0.05Ga0.95N p–i–n UV-APDs grown on a FS-GaN substrate and a GaN/sapphire 

template. 

 

In addition to the dislocation-related dark-current density in the epitaxial 

structure, the increment in the dark-current density according to the mesa size in the UV-

APDs also revealed that surface leakage along the mesa sidewall may have led to the 

increase in the dark-current density. The differences in the dark current density according 

to the mesa sizes in each dark-current plot are 1.92×10−5 and 2.67×10−5 A/cm2 for the 

UV-APDs grown on the FS-GaN substrate and the GaN/sapphire template, respectively. 

The small changes in the dark-current density with respect to the mesa sizes in each plot 

indicated low surface leakage current despite the sharp mesa sidewall profile applied in 

this study. The low etch damage of the mesa definition and high-quality dielectric 
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passivation during the fabrication process possibly contributed to reducing the leakage 

current through the mesa sidewall surfaces.  

Figure 3.15 (a) and (b) show the reverse-biased I–V characteristics of a 40-µm-

diameter (corresponding to a mesa area of 1,256 µm2) Al0.05Ga0.95N p-i-n UV-APD 

grown on the FS-GaN substrate or the GaN/sapphire template, respectively. In Figure 

3.15 (a), the onset point of the VBR of the UV-APD grown on the FS-GaN substrate is 

∼100 V, and the dark current increases sharply above the onset point of VBR. 

Photocurrent distributions based on VR were obtained by UV light of λ = 280 nm, which 

illuminated the device from the front surface of the Al0.05Ga0.95N p-i-n UV-APDs. The 

avalanche gain was calculated by the difference between the photocurrent and the dark 

current at a VR normalized by the unity-gain photocurrent taken from the flat regime of 

the reverse-biased I–V plot. The avalanche gain is defined as: 

 

Avalanche Gain=
𝐼𝑝ℎ𝑜𝑡𝑜 − 𝐼𝑑𝑎𝑟𝑘

𝐼𝑝ℎ𝑜𝑡𝑜(𝑢𝑛𝑖𝑡𝑦) − 𝐼𝑑𝑎𝑟𝑘(𝑢𝑛𝑖𝑡𝑦)
 (3.1) 

 

 Since the stable current region of the photocurrent at a relatively low VR depends 

solely on photon absorption when the dark current related to the leakage current is 

subtracted from the photocurrent, the relatively flat current region was taken as the unity-

gain point. The estimated avalanche gain is about 82 at the onset point of VBR = 100 V 

and exceeded 5 × 105 beyond VBR = 102 V. This sharp increase in the avalanche gain 
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implies that the device underwent a strong avalanche multiplication process above the 

onset point of VBR.  

Figure 3.15 (b) shows that the dark-current density of the UV-APD grown on the 

GaN/sapphire template is higher than that of the UV-APD grown on the FS-GaN 

substrate in the entire reverse-bias regime and increases dramatically even at a low 

reverse bias. The averaged dark-current densities taken from 0 V < VR < VBR for each 

device are ∼3.1×10−6 and ∼6.5×10−5 A/cm2 for the 40-µm-diameter UV-APDs grown on 

the FS-GaN substrate and the GaN/sapphire template, respectively. The high dislocation 

density in the active region of the UV-APD grown on the GaN/sapphire template was 

responsible for the significantly greater dark-current density than that of the UV-APD 

grown on the FS-GaN substrate. In addition, the photocurrent of the UV-APD grown on 

the GaN/sapphire template remains flat up to VR of ∼30 V; then it increases exponentially 

with a reverse bias up to the onset point of VBR of ∼87 V, followed by a sharp increase 

above the onset point of VBR because of the active avalanche multiplication process. The 

gradually increased photocurrent at VR > 30 V is attributed to the trap-assisted leakage 

current promoted in the relatively high reverse-bias regime, indicating the high 

dislocation density in the active region of the UV-APD grown on the GaN/sapphire 

template. The calculated avalanche gain of the UV-APD grown on the GaN/sapphire 

template are ∼160 at VBR=88 V and exceeded 2×104 at VBR=93 V. From these observed 

low dark-current densities and the avalanche breakdown with a high avalanche gain 

measured for the UV-APDs grown on the FS-GaN substrate, we can infer that 

Al0.05Ga0.95N UV-APDs grown on the FS-GaN substrate can be efficiently used for 

applications of high-sensitivity UV optical detection. 
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Figure 3.15 Reverse-biased I–V characteristics for a 40-μm-diameter (corresponding 

to 1,256μm2) Al0.05Ga0.95N p–i–n UV-APD grown on (a) a FS-GaN substrate and (b) 

a GaN/sapphire template. 
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The onset point of the VBR of the Al0.05Ga0.95N UV-APD grown on the FS-GaN 

substrate is found at ∼95 V, and no premature microplasma breakdown is observed even 

in the multiple I–V scans of a large device with VR up to 90 V. Although UV-APDs 

grown on the FS-GaN substrate were robust and consistent with the multiple I–V scans, 

premature microplasma breakdown was frequently observed during the characterization 

of UV-APDs grown on the GaN/sapphire template. The compromised performance and 

reliability of the measured UV-APDs grown on the GaN/sapphire template, compared 

with those of the UV-APDs grown on the FS-GaN substrate, were attributed to the high 

defect density in the active region.   

 

3.4 Improvement of High-performance Al0.05Ga0.95N p-i-n Ultraviolet Avalanche 

Photodiodes Grown on Free-Standing GaN Substrate 

To investigate the surface and material quality of the Al0.05Ga0.95N p-i-n UV-APD 

structure with respect to the step-graded n-type layers, this study involved the preparation 

of two Al0.05Ga0.95N p-i-n UV-APDs grown on GaN/sapphire templates: One had an n-

AlxGa1−xN:Si layer with a constant Al mole fraction (x=0.05), and the other had step 

grading in the n-AlxGa1−xN:Si layer (x=0, 0.02).  At the same time, the total thickness of 

AlxGa1−xN and growth conditions for the other layers of the devices were kept identical, 

as shown in Figure 3.16. 
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Figure 3.16 Schematic the cross-sectional structure of AlGaN p-i-n UV-APD grown 

on GaN/sapphire templates without and with step grading in n-AlxGa1-xN:Si layer. 

 

Figure 3.17 (b) and (c) show the AFM surface images of the UV-APD epitaxial 

structure with a single n-Al0.05Ga0.95N:Si layer and step-graded n-GaN and n-

Al0.02Ga0.98N layers, respectively. The RMS surface roughness and the density of surface 

features for the structure with an n-Al0.05Ga0.95N:Si layer are ∼0.38 nm and ∼1.64×108 

cm−2, respectively, while those with step-graded n-layers are ∼0.34 nm and ∼7.6×107 

cm−2, respectively, as measured from multiple 5×5 μm2 scans. The surface of the device 

structure using step-graded n-AlGaN:Si layers exhibited improved morphology with 

lower surface roughness and about half the surface defect density as that of the structure 

with an n-Al0.05Ga0.95N layer.  
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Figure 3.17 AFM surface morphology of Al0.05Ga0.95N p-i-n UV-APDs grown on (a) a 

GaN substrate, (b) a GaN/sapphire template with an n-Al0.05Ga0.95N:Si layer, (c) a 

GaN/sapphire template with step-graded n-layers (n-Al0−0.02Ga1−0.98N:Si), and (d) 

shows an expanded image of the surfaece morphology in the dotted square of (b). 

 

The electric field distribution in the Al0.05Ga0.95N p-i-n UV-APD was calculated 

by a one-dimensional simulation as shown in Figure 3.18 at a reverse bias of VR=97.5 V 

that is an onset point of breakdown VBR. The maximum electric field in the device 

structure is about 3.2 MV/cm at VBR=97.5 V, which is the value in between the reported 

critical electric field of GaN (2.4~3.3 MV/cm) [66, 95, 96] and that of Al0.22Ga0.78N (3.5 
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MV/cm) [97].  Considering that the active layer is composed of Al0.05Ga0.95N layer, the 

electric field of 3.2 MV/cm calculated in this study is consistent with the values reported 

in literatures for avalanche breakdown multiplication.  

 

 

Figure 3.18 The electric field distribution of the Al0.05Ga0.95N p-i-n UV-APD at 

reverse bias of VR=97.5 V. 

 

In general, the extended depletion region into the n- and p-Al0.05Ga0.95N layer can 

drop the critical electric field, so that we need to apply higher reverse bias to have 

avalanche multiplication in the UV-APD structure. In addition, unintentionally thicker i-

Al0.05Ga0.95N layer can decrease the critical electric field as well as the partially expanded 

depletion region. In this study, even though the nominal thickness of the unintentionally 
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doped i-Al0.05Ga0.95N layer is 300 nm, the actual thickness of the i-Al0.05Ga0.95N layer 

may be different from the nominal value because of an error in thickness measurement 

using reflectance of certain light source and the Mg memory effect that results in delayed 

Mg incorporation until certain saturation point of a growth chamber is reached. This Mg 

memory effect can make gradually increased Mg atom concentration in the p-

Al0.05Ga0.95N layer near p-Al0.05Ga0.95N/i-Al0.05Ga0.95N junction according to growth 

conditions, which can act as an additional i-Al0.05Ga0.95N region. Thus, these 

unintentionally increased depletion areas would drop the critical electric field.  

As shown in Figure 3.19 (a), under dark condition, the Al0.05Ga0.95N UV-APD 

with a mesa size of 30-μm-diameter shows very low leakage currents of IR<1 pA, up to 

VR~60 V. For the VR greater than 60 V, however, the dark-current increases 

monotonically until the impact ionization process starts to dominate the current flow and 

reached IR~7 nA (equivalent to JR~810-4 A/cm2) at VR=97 V. Beyond this point, the 

dark-current starts to increase sharply with increasing reverse bias, suggesting the active 

impact ionization of excess carriers in the multiplication region. With repeated tests, the 

I-V characteristic of each test also showed the consistent breakdown voltage and leakage 

current behavior. Under the UV-light illumination with a peak wavelength of λ=280 nm, 

the photocurrent remains constant up to VR of 60 V and then exhibits an increase over the 

dark-current background when VR>60 V (see Figure 3.19 inset). The avalanche gain of 

the measured device is about 40 at the onset point of breakdown voltage (VBR) of 97.5 V 

and then rapidly increases with reverse bias. At a VBR =102 V, the avalanche gain reaches 

at a maximum value of higher than 2106. The significantly increased avalanche gain at 
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the high-reverse-bias regime indicated that the device experiences a firm avalanche 

multiplication process. 

 

 

Figure 3.19 Reverse bias I–V characteristics of an Al0.05Ga0.95N UV-APD with a 

mesa diameter of 30 μm with and without UV illumination at λ = 280 nm. 

 

Figure 3.20 presents the comparison of the VBR and the dark-current density of the 

Al0.05Ga0.95N UV-APDs with different mesa areas. The area-dependent properties of GaN 

UV-APDs having a similar p-i-n epitaxial layer structure grown on a GaN substrate are 

also plotted for comparison. The values of the VBR and the dark-current densities were 

derived from the onset point of breakdown and the averaged dark current density at the 

reverse biases between 0 V and 60 V, respectively. The VBR of the devices with different 

mesa sizes are in the range of between 94 V and 99 V. The difference in VBR between 
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Al0.05Ga0.95N and GaN UV-APDs may result from the slightly different thickness of the 

drift region. Even though the averaged dark-current density increases with the mesa area, 

the values are maintained less than 5×10−7 A/cm2 for all the mesa areas, which is also 

similar to those of the GaN UV-APDs [89]. 

 

 

Figure 3.20 Area-dependent breakdown voltages and dark-current densities of 

Al0.05Ga0.95N UV-APDs compared with GaN UV-APDs, both grown on GaN 

substrates. 

 

Figure 3.21 shows the photocurrent densities taken from the flat region of the 

reverse-biased I-V plots less than 60 V and the avalanche gain of Al0.05Ga0.95N UV-APDs, 

as a function of the mesa areas. The unity-gain photocurrent density shows relatively 

uniform distribution for all measured devices having different mesa sizes. However, the 

maximum avalanche gains of the devices measured at VR=102 V exhibits a decreasing 
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trend from 2×106 for the 30-μm-diameter device to 1.5×105 for the 60-μm-diameter 

device and then increases to 1×106 for the 70-μm-diameter device, which is an opposite 

trend from distribution of the dark-current densities according to mesa areas as shown in 

Figure 3.21, indicating detrimental effect of the leakage current on the avalanche gain. 

Although the maximum avalanche gain of the devices shows area-dependent behavior, 

resulting from the different leakage current because of the non-uniform defect density in 

the various mesa areas, the avalanche gain of greater than 1.5×105 regardless of mesa 

areas is significantly higher than that in the previously reported Al0.05Ga0.95N UV-APDs 

[58]. The extremely low leakage current before avalanche breakdown and the constant 

breakdown behavior, followed by the very high avalanche gain for the Al0.05Ga0.95N UV-

APDs, are ascribed to the improved crystalline quality of the epitaxial layer with the 

reduced defect density by inserting the n-AlxGa1-xN step graded layers for strain 

management and the optimized epitaxial layer structure. Furthermore, the low etch 

damage of the mesa and the high-quality dielectric passivation also plays an important 

role in the low leakage current and the stable avalanche breakdown despite the sharp 

mesa sidewall profile.  
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Figure 3.21 Photocurrent densities and avalanche gains of Al0.05Ga0.95N p-i-n UV-

APDs under UV illumination of λ=280 nm. 

 

As shown in Figure 3.22, the spectral responsivity of a 70-μm-diameter 

(equivalent mesa area of 3847 μm2) Al0.05Ga0.95N p-i-n UV-APD was also measured 

under various reverse biases. The zero-biased photocurrent exhibits a peak absorption 

wavelength at λ ∼ 354 nm that was equivalent to the band gap of the Al0.05Ga0.95N layer. 

Also, these Al0.05Ga0.95N devices exhibits an absorption cut-off wavelength of λ∼370 nm 

at zero bias, which is about 10 nm shorter than that of GaN p–i–n APDs. As the VR 

increased, the peak absorption wavelength shifted slightly to 362 nm owing to the Franz–

Keldysh effect in the multiplication layer, and the absorption cut-off wavelength 

significantly extended into the long-wavelength regime at high reverse biases, indicating 

that the depletion region extended into the p-type layer where the acceptor-state 

absorption could play a significant role in the broadening and red-shifting of the 
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absorption spectrum [59]. The device shows a peak responsivity of 43.4 mA/W at 354 nm 

under zero bias, corresponding to an external quantum efficiency (EQE) of ∼16%. 

However, at VR=80 V, the peak responsivity increases to 221.8 mA/W at 362 nm, 

corresponding to an EQE of ∼94%. The fully extended depletion region into the p- and n-

type regions, resulting from the increased VR, may be the origin of the improvement of 

the photoresponse. In addition, at VR > 90V, the significant increase in photocurrent is 

observed owing to the impact ionization as the Al0.05Ga0.95N p-i-n UV-APD approaches 

avalanche multiplication. We note that the front illumination used in this experiment will 

severely reduce the measured EQE owing to significant absorption in the p-Al0.05Ga0.95N 

layer.  
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Figure 3.22 Reverse-biased voltage-dependent spectral response of photocurrent for 

a 70-μm-diameter (corresponding to 3,826 μm2) Al0.05Ga0.95N p–i–n UV-APD grown 

on a FS-GaN substrate, measured at room temperature. 

 

3.5 Summary 

In conclusion, we report on high-performance Al0.05Ga0.95N p–i–n UV-APDs 

grown on a FS-GaN substrate with an avalanche gain higher than 5×105. The front-

illuminated Al0.05Ga0.95N UV-APDs grown on the FS-GaN substrate with various circular 

mesa from 30- to 70-μm-diameter showed low dark-current density and constant 

avalanche breakdown by using a step-graded n-type AlxGa1−xN:Si (x=0 and 0.02) layer 

instead of an n-Al0.05Ga0.95N:Si layer, while premature microplasma breakdown was 

frequently observed during the characterization of UV-APDs grown on the GaN/sapphire 

template. In addition, the avalanche gain of the Al0.05Ga0.95N UV-APD grown on the FS-
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GaN substrate was over an order of magnitude higher than that of comparable UV-APDs 

grown on the GaN/sapphire template. Moreover, a significantly improved photoresponse 

was observed at a reverse bias higher than 90 V, indicating the contributions of a strong 

avalanche multiplication process. We believe that the reduced dislocation density in the 

active layer of Al0.05Ga0.95N UV-APDs grown on the FS-GaN substrate is the dominant 

origin of the low dark-current density and suppressed microplasma breakdown of 

Al0.05Ga0.95N p-i-n UV-APDs, resulting in the significant improvement of device 

performance and reliability.   
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CHAPTER 4. DEMONSTRATION OF III-N ULTRAVIOLET 

AVALANCHE PHOTODIODE ARRAYS WITH LARGE 

DETECTION AREA 

4.1 Introduction 

As mentioned above, GaN p-i-n ultraviolet avalanche diode (UV-APD) arrays are 

well-suited for numerous applications in military systems, bio-aerosol detection, imaging 

systems, and space research because of the advantageous properties of III-nitride 

materials. In particular, to improve the collection efficiency and sensitivity for low-level 

light detection, several industries are promoting UV-APD arrays with a large detection 

area [98, 99]. The development of large-detection-area UV-APD arrays based on III-

nitride materials, however, has been hampered by high dislocation densities originating 

from heteroepitaxy, resulting in non-uniformity in electrical properties, low yield, and 

high leakage current as well as the premature microplasma breakdown. Moreover, as the 

detection area of photodiodes increases, these issues have become more critical [67]. 

Therefore, achieving the high crystalline quality of epitaxial layer structures with 

reduced-defect densities as well as optimizing the fabrication processes such as etching 

and passivation techniques that reduce sidewall leakage current are key to realizing high-

performance UV-APD arrays and yielding a larger detector size.  

In this chapter, we report on the material growth, device fabrication, and device 

characterization of 4×4 GaN p-i-n UV-APD arrays with a large detection area of 5,625 

µm2 for a single UV-APD element grown on a free-standing (FS) GaN substrate. 
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4.2 Design, Epitaxial Growth, and Device Fabrication 

The epitaxial growth of GaN p-i-n UV-APD arrays was carried out in a 

metalorganic chemical vapor deposition (MOCVD) reactor system equipped with a close-

coupled showerhead growth chamber.  The growth was performed on n-type Si-doped 

FS-GaN substrate with a threading dislocation density lower than 5×106 cm-2 that were 

grown by hydride vapor phase epitaxy (HVPE). Trimethylgallium (Ga(CH3)3, TMGa) 

and ammonia (NH3) were used as Groups III and V precursors, respectively. Diluted 

silane (SiH4) and bis-cyclopentadienyl magnesium (Mg(C5H5)2, Cp2Mg) were used as n- 

and p-type dopant precursors, respectively. As shown in Figure 4.1, the epitaxial layer 

structure of the GaN p-i-n UV-APD arrays consisted of a 2.3-µm-thick n-GaN:Si layer 

(n~4×1018 cm-3), followed by a 0.28-µm-thick unintentionally doped GaN drift region 

(n~2×1016 cm-3), and a 0.1-µm-thick p-GaN:Mg layer (p~1×1018 cm-3). Finally, a 15-nm-

thick heavily-doped p-GaN:Mg++ layer ([Mg]~1×1020 cm-3) was grown and formed an 

ohmic contact layer. To achieve improved crystalline quality and doping properties, the 

growth and doping parameters for each epitaxial layer of the GaN p-i-n UV-APD arrays 

were carefully optimized. X-ray diffraction (XRD), atomic-force microscopy (AFM), and 

Nomarski microscopy were used to characterize the surface morphology and crystalline 

quality of the epitaxial layer structure of GaN p-i-n UV-APD arrays on the FS-GaN 

substrate.   
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Figure 4.1 The epitaxial structure of GaN p-i-n UV-APD arrays grown on a free-

standing (FS)-GaN substrate. 

 

For the fabrication of top-illuminated GaN p-i-n UV-APD arrays, each element of 

the UV-APD arrays was patterned into a 75×75 µm2 square mesa by low-damage 

inductively coupled plasma reactive-ion etching (ICP-RIE) using a Cl2/BCl3/Ar carrier 

gas mixture. In this study, no attempt was made to fabricate tapered-mesa or double-mesa 

side-wall profiles that would further minimize leakage currents [ 100 ]. After mesa 

definition, Ti/Al/Ti/Au and Ni/Ag/Ni/Au metal stacks were deposited by electron-beam 

evaporation, followed by rapid thermal annealing (RTA) under optimized conditions on 

n- and p-type layers, respectively. A SiO2 passivation layer was deposited on the UV-

APD arrays using plasma-enhanced chemical vapor deposition (PECVD). This layer was 

selectively removed by subsequent ICP-RIE etching for accessing via holes. The 

passivation layer is indispensable for UV-APD arrays because it reduces the leakage 
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current through the mesa side-walls and prevents devices from undergoing premature 

breakdown under reverse bias. Finally, thick Ti/Au metal stacks were evaporated, 

forming interconnects and wire-bonding pads. 

 

 

Figure 4.2  Top-view of the SEM image of a 4×4 GaN p-i-n UV-APD array with a 

mesa size of 75×75 µm2 grown on a FS-GaN substrate. 
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Figure 4.2 shows a top-view SEM image of the fabricated front-illuminated 4×4 

GaN p-i-n UV-APD array. The GaN p-i-n UV-APD array consisted of 16 individual GaN 

UV-APDs, four square wire-bonding pads for n-type contacts at each corner connected to 

a common n-type contact around the periphery of the UV-APD array, and 16 rectangular 

wire-bonding pads for p-type contact layers along each side of the UV-APD array. The 

gap between adjacent UV-APDs was 7 µm.  

To investigate the electrical properties of the n- and p-type layers, the 

transmission line measurements (TLM) were used for n-GaN and p-GaN layers. In the 

TLM measurement results of both n- and p-type layers, the measured I-V curves showed 

a good linearity without a noticeable Schottky barrier, indicating that the contacts 

between the metal pads and the semiconductor layer have good Ohmic characteristics. 

The values of the Rsh and Rc are 15 Ω/□ and 6.90×10-5 Ω-cm2 for n-type contact layer, 

and 68K Ω/□ and 7.04×10-4 Ω-cm2 for p-type contact layer, respectively.  

 

4.3 Device Characterization of Individual Ultraviolet Avalanche Photodiodes with 

a Large Detection Area 

Figure 4.3 and Figure 4.4 show the reverse bias current-voltage (I-V) 

characteristics of individual UV-APDs simultaneously grown with UV-APD arrays and 

fabricated into independent devices with various mesa sizes and shapes. A Keithley 

Model 4200 Semiconductor Characterization System with a 150 W Oriel xenon lamp 

equipped with a monochromator system operating at a peak emission wavelength of 
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λ=280 nm was used to measure the dark current, the photocurrent, and the avalanche 

gain.  

 

 

Figure 4.3  Reverse bias I-V characteristics of a single GaN p-i-n UV-APD with a 

large detection area of 7,850 μm2 (a 100 µm-diameter circular mesa). 

 

In Figure 4.3, the single UV-APD with a large detection area of 7,850 µm2 (a 100 

µm-diameter circular mesa) exhibits a very low dark current density of JR_Dark<5.3×10-9 

A/cm2 up to a reverse bias of VR=40 V. The dark current of the single UV-APD increased 

until the impact ionization effect started to impact the current flow and a reached current 

density of JR_Dark=2.3×10-3 A/cm2 at VR=94 V, where the avalanche breakdown took 

place. Beyond this voltage, the dark current density increases sharply with reverse bias, 

suggesting active impact ionization under the high electric field in the multiplication 
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region. Under UV illumination at λ=280 nm, the photocurrent density is around 

JR_Photo=1.1×10-6 A/cm2 and remains constant approximately up to VR=50 V. However, 

the photocurrent density increases gradually with reverse bias and then shows a sharp 

increase at VR>94 V, behavior that is similar to that of the dark current density change 

according to reverse bias. The single UV-APD in Figure 4.3 shows an avalanche gain of 

around 36 at the onset point at a breakdown voltage of VBR=94 V and then quickly 

reached an avalanche gain higher than 5.2×104 at VBR>95.5 V.  

 

 

Figure 4.4 Reverse bias I-V characteristics of independent UV-APDs with various 

mesa sizes and shapes under the dark current condition. 
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The independent devices shown in Figure 4.4, fabricated with different mesa sizes 

and shapes for investigating the effect of the mesa area on device properties, exhibit 

almost identical reverse bias I-V characteristics in terms of dark leakage current and 

breakdown voltages. The onset points of the VBR of the independent devices with various 

mesa sizes and shapes were in the range of onset points of VBR=95.1±0.7 V.  

 

4.4 Uniformity and Reliability of 4×4 GaN Ultraviolet Avalanche Photodiode 

Arrays 

The uniformity of the UV-APD array, shown in Figure 4.5, was characterized by 

means of comparing the leakage currents of individual devices in the 4×4 GaN UV-APD 

array. Under the dark condition, shown in Figure 4.5 (a), the UV-APD array exhibit a 

uniform distribution of relatively low leakage current densities among all of the 

integrated UV-APDs except for two of them.  The uniformity of device performance in 

the 4×4 GaN UV-APD array was described by means of a standard deviation. The 

average dark current density of the UV-APD array was lower than JR_Dark=(6.5±1.8)×10-7 

A/cm2 at 50% of the average onset point of VBR.  The leakage currents of the two UV-

APDs were higher than those of the other devices in the UV-APD array, possibly 

resulting from either the non-uniform distribution of crystalline defects in the UV-APD 

array or the leakage of current through the sidewall of the UV-APDs. In addition, the 

average onset point of the VBR of the 16 devices was 95.9 V with a standard deviation of 

0.6 V.  
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(a) 

 

(b) 

Figure 4.5 Reverse bias I-V characteristics of 16 devices on a 4×4 GaN p-i-n UV-

APD array with a mesa size of 75×75 μm2 under (a) the dark current condition and 

(b) UV illumination with a peak wavelength of λ=280 nm. 
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Under UV-light illumination with a peak wavelength of λ=280 nm, shown in 

Figure 4.5 (b), 14 devices in the UV-APD array exhibit uniform photocurrent 

distributions. The average photocurrent density was lower than JR_Photo=(5.7±1.1)×10-6 

A/cm2 up to VR=50V, where the photocurrent density remained flat and then gradually 

increased with reverse bias. The identical reverse bias I-V characteristics among the 

individual UV-APDs in the array indicate that the electrical properties of the UV-APDs 

were uniform and stable despite the relatively large device area. We believe that the 

uniform electrical properties of the UV-APD array related to the low-defect-density of 

the epitaxial structure and the low plasma-induced etch damage during mesa formation as 

well as the high-quality of sidewall dielectric passivation. 

In Figure 4.6, the onset points of VBR and gains at the onset points of VBR are 

plotted for each 16 individual UV-APD in the 4×4 UV-APD array. The differences of the 

gain and the VBR properties among 16 individual UV-APDs may have originated from 

their slight differences in thicknesses, the doping of the multiplication layer, and/or from 

the non-uniform distribution of crystalline defects in the bulk substrates. Based on other 

reports of the uniformity of APD arrays [99, 101, 102], however, we believe that these 

differences between the VBR performance of independent devices and that of the devices 

in the array are negligible, and the gain performance of UV-APDs in the array is 

relatively uniform as well as the distribution of dark current and the photocurrent. 
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Figure 4.6 The onset points of VBR and the gains at the onset points of the VBR 

mapping of independent UV-APDs in the 4×4 UV-APD array. 

 

In addition to the confirmation of the uniformity of the devices in the UV-APD 

array, multiple reverse-bias I-V scans were performed for the selected devices along the 

diagonal of the 4×4 UV-APD array, starting from the left top (#1) to the right bottom 

(#4), to confirm the reliability of the UV-APD array. As shown in Figure 4.7, the four 

devices selected in the UV-APD array show almost the same JR_Dark and consistent VBR 

after four scans of the reverse bias I-V. The average JR_Dark before the onset point of VBR 

was measured to be lower than (2.6±0.6)×10-7 A/cm2 at 50% of the average onset point of 

VBR, and the VBR was observed at the 96.3±0.2 V for all measured UV-APDs. The stable 

and reliable electrical properties of the measured UV-APDs originate from the 

suppressed mesa-sidewall leakage currents and the local junction breakdown. The 

sophisticated device fabrication process, including passivation and dry etching 



 

 77 

techniques, and the low dislocation density of the epitaxial structure were responsible for 

the superior performance of the UV-APD array. 

 

 

Figure 4.7 Repetition of the reverse bias I-V characteristics of the selected four 

devices in the 4×4 GaN p-i-n UV-APD array. 

 

Figure 4.8 shows the bias-dependent spectral response of a selected device in the 

4×4 UV-APD array. At zero bias, the measured device in the UV-APD array exhibit a 

peak responsivity of 142 mA/W at λ=366 nm, corresponding to an external quantum 

efficiency (EQE) of 48%, with an absorption edge at λ=390 nm. At a reverse bias of 90 

V, however, the peak responsivity increases to 908 mA/W at λ=378 nm. The shift in the 

peak absorption wavelength from 366 nm to 378 nm with an increasing amplitude of the 
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reverse bias may have been related to the Franz-Keldysh effect [59]. In addition, the 

significantly broadened absorption edge into the blue band with increasing reverse bias 

indicated the extension of the depletion region into the doped layers as the electric field 

increased. The significant increase in the responsivity at a reverse bias higher than VR=90 

V was a result of carrier impact ionization as the UV-APD reached avalanche 

multiplication. 

 

 

(a) 
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(b) 

Figure 4.8 Voltage-dependent spectral response of the photocurrent for a GaN p-i-n 

UV-APD in the 4×4 UV-APD array at room temperature; (a) linear scale, and (b) 

log scale. 

 

4.5 Summary 

We have demonstrated 4×4 GaN p-i-n ultraviolet (UV) avalanche photodiodes 

(APDs) arrays with large detection area grown by MOCVD on the free-standing (FS) 

GaN substrates with a dislocation density lower than 5×106 cm−2. Optimized growth and 

doping parameters of the epitaxial p-i-n structure and a sophisticated UV-APD array 

fabrication process were applied to minimize both bulk and surface leakage currents, 

resulting in improved device performance and reliability. The onset points of avalanche 
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breakdown voltages of 16 devices in a UV-APD array were observed at a reverse bias of 

VR=95.9±0.6 V without premature junction breakdown or microplasma formation. In 

addition, the UV-APD array showed a relatively uniform and stable leakage current 

distribution among UV-APDs; the dark leakage current densities were below 

(6.5±1.8)×10−7A/cm2 at the VR = 48 V which was 50 % of the average onset point of VBR 

for all devices in the UV-APD array. Moreover, the reliable device performance of the 

devices in the UV-APD array was confirmed by multiple reverse-bias I-V scans. The 

spectral responsivity of a selected UV-APD significantly increased to 5,485 mA/W at λ = 

378 nm at VBR = 95 V for which the avalanche gain was higher than 5×104, indicating that 

strong carrier impact ionization was occurring in the GaN UV-APD with a large 

detection area.  
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CHAPTER 5. DEMONSTRATION OF P-I-P-I-N SEPARATE 

ABSORPTION AND MULTIPLICATION ULTRAVIOLET 

AVALANCHE PHOTODIODES 

5.1 Introduction 

As described above, wide-bandgap III-nitride-based avalanche photodiodes 

(APDs) are promising candidates for optical detection in the ultraviolet (UV) spectral 

region because of their potential capabilities of low dark-current density, large optical 

gain, small size, and low operating voltage as well as the possibility of Geiger-mode 

operation [60] [103][104]. In addition, III-nitride materials provide an intrinsic adjustable 

detection capability by controlling the bandgap energy and have excellent structural, 

chemical, and thermal stability suitable for harsh environments. Compared to 

photomultiplier tubes (PMTs), which are bulky and fragile, and Si-based photodiodes, 

which require optical filters for solar-blind detection, GaN-based UV-APDs are well 

suited to numerous applications in military systems, medical systems, imaging systems, 

and space research. However, if GaN-based UV-APDs are to be used as alternatives to 

PMTs and Si-based photodiodes, they require high sensitivity, large internal gain, and 

Geiger-mode operation with stable avalanche breakdown characteristics. 

Recently, a number of studies have investigated back-illuminated GaN p-i-n 

APDs and separate absorption and multiplication (SAM) APDs grown on sapphire 

substrates to achieve low multiplication noise and high maximum gain because of a 

higher hole ionization coefficient [66] [72] [76] [77]. However, the major issue for the 
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realization of high-performance back-illuminated GaN UV-APDs is the limitation of the 

availability of UV-transparent substrates. Moreover, because of strong UV-light 

absorption in the thick n-type GaN layer below the active region as well as in GaN native 

substrates, native substrates or thick GaN/sapphire templates with low dislocation 

densities cannot be used for back-illuminated UV-APDs without additional processing 

steps. Therefore, back-illuminated GaN UV-APDs should be grown on AlxGa1-xN or AlN 

layers with a thin n-type layer on UV-transparent substrates [63] [67] [68]. However, the 

lattice mismatch and different thermal expansion coefficients between the substrates and 

the epitaxial layers create high defect densities, including threading dislocations and 

strain-induced defects, which cause high leakage currents and premature junction 

breakdown, and eventually degrades the device performance of back-illuminated UV-

APDs [65].  

In this chapter, we demonstrate front-illuminated GaN p-i-p-i-n separation 

absorption and multiplication (SAM) UV-APDs with large detection areas grown by 

metalorganic chemical vapor deposition (MOCVD) on bulk GaN substrates with low 

defect density while achieving superior gain properties and reducing the breakdown 

voltage by employing impact-ionization engineering. 

 

5.2 Epitaxial Growth and Materials Characterization 

The epitaxial growth of GaN p-i-p-i-n UV-APDs with separate absorption and 

multiplication (SAM) regions was carried out by a metalorganic chemical vapor 

deposition (MOCVD) reactor system equipped with a close-coupled showerhead (CCS) 
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growth chamber. In addition, n-type Si-doped bulk GaN substrates with a threading 

dislocation density lower than 5×104 cm-2 were used in this study. Trimethylgallium 

(Ga(CH3)3, TMGa), trimethylaluminum (Al(CH3)3, TMAl), and ammonia (NH3) were 

used as Groups III and V precursors. Diluted silane (SiH4) and bis-cyclopentadienyl 

magnesium (Mg(C5H5)2, Cp2Mg) were used as n- and p-type dopant precursors, 

respectively. 

 

 

Figure 5.1 Schematic cross-sectional structure of GaN p-i-p-i-n SAM-APDs grown 

on a bulk GaN substrate. 

 

Shown in Figure 5.1 is the schematic cross-sectional structure of the fabricated 

GaN p-i-p-i-n SAM-APDs. The epitaxial layer structure consisted of a 1.0-μm thick n-
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GaN:Si layer (n~5.0×1018 cm-3), a 0.21-μm thick unintentionally doped GaN 

multiplication layer (n~1.5×1016 cm-3), a 90-nm thick p-GaN:Mg layer with graded [Mg] 

up to ~7.5×1018 cm-3 as the  charge layer, a 0.24-μm thick unintentionally doped GaN 

layer as the absorption layer, which contains a gradually decreasing doping tail of [Mg] 

to 2.5×1017 cm-3, a 30-nm thick p-Al0.05Ga0.95N:Mg layer ([Mg]~1.0×1019 cm-3) and a 20-

nm-thick heavily doped p-Al0.05Ga0.95N:Mg ohmic contact layer ([Mg]~1×1020 cm-3). For 

a front-illuminated electron-initiated multiplication process, the p-Al0.05Ga0.95N:Mg layer 

was introduced as a window layer instead of a p-GaN:Mg layer to reduce the UV-light 

absorption in the p-type contact layer.  

To investigate and confirm the actual doping profile and thickness of each layer, 

we employed secondary ion mass spectrometry (SIMS) measurement. SIMS depth profile 

results of Mg, Si, Ga, H, O and C for GaN p-i-p-i-n SAM-APDs with logarithmic scale, 

as function of depth from the sample surface, are shown in Figure 5.2. In addition, to 

examine surface morphology and crystalline quality of epitaxial layer structure, we used 

atomic-force microscopy (AFM), Nomarski optical microscopy, scanning electron 

microscopy (SEM) and X-ray diffraction (XRD). Also, Al mole fractions in AlxGa1-xN 

epitaxial layers were determined by XRD measurement as shown in Figure 5.3.  
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Figure 5.2 Secondary ion mass spectrometry (SIMS) distribution profiles of 

magnesium (Mg), silicon (Si), gallium (Ga), carbon (C), oxygen (O) for GaN p-i-p-i-n 

SAM-APD structure.  
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Figure 5.3 XRD ω-2θ scans GaN (004) diffraction condition of GaN p-i-p-i-n SAM-

APDs with p-Al0.05Ga0.95N:Mg window layer. 

 

In addition, to measure the electrical properties of p-Al0.05Ga0.95N:Mg and n-

GaN:Si layers, we employed the Hall effect system at 300 K. Hall measurement results 

showed that the free-hole concentration of p-Al0.05Ga0.95N:Mg was p~4.9×1017 cm-3 with 

a mobility of µp~7.4 cm2/V∙s, resulting in a resistivity of ~1.7 Ω-cm, and the free-electron 

concentration of the n-GaN:Si layer was n~5.0×1018 cm-3 with a mobility of µn~237 

cm2/V∙s at room temperature. 

The microscopic surface morphology of a GaN p-i-p-i-n SAM-APD wafer grown 

on the bulk GaN substrate and GaN/sapphire template. Figure 5.4 shows the microscopic 

surface morphology of the GaN p-i-p-i-n SAM-APD wafer grown on the bulk GaN 

substrate. The root-mean-square (RMS) surface roughness values of 1×1 µm2 and 5×5 

µm2 scans with a height scale of 10 nm are 0.113 and 0.137 nm, respectively. Figure 5.5 

shows the microscopic surface morphology of the GaN p-i-p-i-n SAM-APD wafer grown 
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on GaN/sapphire template. The RMS surface roughness values of 1×1 µm2 and 5×5 µm2 

scans with a height scale of 10 nm are 0.197 and 0.352 nm, respectively. The GaN p-i-p-

i-n SAM-APD wafer grown on the bulk GaN substrate reveals a smooth surface and a 

well-developed step-flow morphology without any visible nano-pit or dislocation-

induced surface features that are observed in that grown on the GaN/sapphire template. 

These results indicate that the GaN p-i-p-i-n SAM-APDs on the bulk GaN substrate have 

improved the quality of crystalline.  

 

 

Figure 5.4 AFM microscopic surface morphology of a GaN p-i-p-i-n SAM-APD 

grown on a bulk GaN substrate: (a) with 1×1 µm2 scan; (b) with 5×5 µm2 scan with 

z-height scale of 10 nm. 
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Figure 5.5 AFM microscopic surface morphology of a GaN p-i-p-i-n SAM-APD 

grown on a GaN/sapphire substrate: (a) with 1×1 µm2 scan; (b) with 5×5 µm2 scan 

with z-height scale of 10 nm. 

 

5.3 Device Fabrication and Characterization of GaN p-i-p-i-n SAM-APDs  

For the fabrication of front-illuminated GaN p-i-p-i-n SAM-APDs, the SAM-

APDs were defined into various mesa sizes from 1,963 µm2 to 10,000 µm2 by low-

damage inductively coupled plasma reactive-ion etching (ICP-RIE) in a Cl2/He carrier 

gas mixture using Ni etching mask, followed by dipping into HNO3 to remove the Ni 

etching mask. For n-type ohmic contact layer, Ti/Al/Ti/Au metal stacks were evaporated 

and annealed at 700 °C for 1 min under N2 ambient. Also, for p-type ohmic contact layer, 

Ni/Ag/Ni/Au metal stacks were deposited by e-beam evaporator, followed by rapid 

thermal annealing (RTA) process at 500 °C for 1 min under compressed dry air (CDA). 

To suppress mesa-sidewall leakage current and prevent premature breakdown under high 

reverse bias, a SiO2 passivation layer was applied under plasma-enhanced chemical vapor 
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deposition (PECVD) by accessing via holes opened by subsequent ICP-RIE etching. 

Finally, thick Ti/Au metal stacks were evaporated for metal interconnects and bonding 

pads. Neither tapered mesa nor wet-etching treatment techniques were employed in the 

GaN p-i-p-i-n SAM-APDs. 

To investigate the electrical properties of the n- and p-type layers, the 

transmission line measurements (TLM) were employed for n-GaN and p-Al0.05Ga0.95N 

layers. The current-voltage (I-V) measurement results of the TLM patterns are shown in 

Figure 5.6. In the TLM measurement results of both n- and p-type layers, the measured I-

V curves show a good linearity without a noticeable Schottky barrier, indicating that the 

contacts between the metal pads and the semiconductor layer have good ohmic 

characteristics. The values of the Rsh and Rc are 30 Ω/□ and 4.02×10-5 Ω-cm2 for n-type 

contact layer, and 76K Ω/□ and 2.29×10-3 Ω-cm2 for p-type contact layer, respectively.  

 

 

Figure 5.6 Transmission line measurements (TLM) I-V results for (a) n-type GaN 

layer and (b) p-type Al0.05Ga0.95N layer. 
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The calculated electric field distributions of the GaN p-i-p-i-n SAM-APDs at 

various reverse biases are shown in Figure 5.7. To conduct the simulation, Sentaurus 

TCAD and obtained relevant parameters used in the simulation by referring to reported 

papers. The polarization parameters for AlGaN materials were linearly interpolated using 

an online database for AlN and GaN [ 105 ], respectively. The drift-diffusion and 

Poisson’s models were employed in the simulation. The charge layer served as a field-

termination layer, which prevented further extension of the electric field from penetrating 

the lightly p-type doped absorption layer caused by the slow turn-off transient of the 

magnesium dopant source [106]. Moreover, the extension of the depletion region from 

the absorption layer is impeded by the decreased electric field in the graded p-type charge 

layer, and thus further increased the electric field in the depleted multiplication region. 

The maximum electric field profile in the multiplication region exceeded 3 MV/cm at the 

breakdown voltage (VBR) of 80 V, which approximately corresponds to the reported 

critical breakdown electric field in GaN APDs [66].  
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Figure 5.7 Voltage-dependent electric field distribution of a GaN p-i-p-i-n SAM-

APD. 

 

Figure 5.8 shows the comparison of dark current, photocurrent, gain properties 

between conventional GaN p-i-n UV-APDs and GaN p-i-p-i-n SAM-APDs having a 

mesa diameter of 30 µm on bulk GaN substrates. As shown in Figure 5.8, GaN p-i-n UV-

APDs with i-layer thickness of 280 nm reveal the onset point of breakdown voltage (VBR) 

of 89.5 V and maximum avalanche gain of 1.0×105 at reverse bias (VR) of 91 V. On the 

other hands, GaN p-i-p-i-n SAM-APDs shows the onset point of VBR of 73.5 V and 
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maximum avalanche gain of 7.4×106 at VR=76 V. These results implies that GaN p-i-p-i-n 

SAM-APDs with higher gain and lower breakdown voltages are more sensitive and less 

possibility to lead to device failure by micro-plasma formation than conventional GaN p-

i-n APDs. 

 

 

Figure 5.8 The comparison of dark current, photocurrent, gain properties between 

conventional GaN p-i-n UV-APDs and GaN p-i-p-i-n SAM-APDs on bulk GaN 

substrates. 
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Figure 5.9 (a) Reverse-bias I-V characteristics of a GaN p-i-n UV-APD with a mesa 

diameter of 30 µm on bulk GaN sustarate (b) Reverse-bias I-V characteristics near 

avalanche breakdown voltage.  

 

 

Figure 5.10 (a) Reverse-bias I-V characteristics of a GaN p-i-p-i-n SAM-APD with a 

mesa diameter of 30 µm on bulk GaN sustarate (b) Reverse-bias I-V characteristics 

near avalanche breakdown voltage.  
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The current-voltage (I-V) characteristics of the GaN p-i-p-i-n SAM-APDs were 

measured using a Keithley Model 4200 Semiconductor Characterization System under 

both dark condition and  UV illumination with a peak wavelength of λ=340 nm. Figure 

5.11 shows the dark-current density, the photocurrent density, and the calculated 

avalanche gain for the SAM-APD with a large detection area of 5,625 µm2. Under the 

dark-current condition, the leakage current of the SAM-APD exhibits a very low IR ~ 

7.0×10-14 A that corresponds to a current density JR_Dark<1.0×10-9 A/cm2 up to a reverse 

bias of VR=40 V. It then monotonically increases until reaching the onset point of VBR~73 

V, which is ~20 V lower than that of previously reported GaN p-i-n APDs [59]. The 

values of these experimental results are in close agreement with the value of the 

simulated results as shown in Figure 5.7. We believe that SAM-APDs with a lower 

breakdown voltage offer a reduced possibility of microplasma formation, lower DC bias 

for single-photon detection, and lower power consumption. Beyond this voltage, a sharp 

increase in the dark current density is observed. This steep VBR implies that the avalanche 

multiplication process by impact ionization in the multiplication region occurs 

predominantly under a high electric field, so can lead to higher photon detection 

efficiency. In addition, after multiple I-V scans, no microplasmas or premature junction 

breakdown from the sidewall were observed at reverse bias voltages over the onset point 

of VBR.  

Under UV illumination at λ=340 nm, the SAM-APD shows a photocurrent 

density of JPhoto=5.6×10-6 A/cm2, which remains constant up to a reverse bias of VR=50 

V. As the reverse bias increases, the behavior of the photocurrent density exhibits a 

similar trend to that of the dark-current density. The avalanche gain is calculated by the 
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difference between the reverse-biased photocurrent and the dark current divided by the 

difference between the unity photocurrent and dark current, which is taken from the flat 

portion of the I-V curves for a reverse bias up to VR=50 V. The avalanche gain of the 

SAM-APD in Figure 5.11 is 7.8×103 at the onset point of VBR ~73 V and reaches a 

maximum avalanche gain higher than 5.0×106 at VR=75 V. This sharp increase in the 

avalanche gain above the onset point of VBR indicates that the SAM-APD experiences a 

strong avalanche multiplication process. 

 

 

Figure 5.11 Reverse bias I-V characteristics of a GaN p-i-p-i-n SAM-APD with a 

mesa area of 75×75 µm2 under dark condition and UV-illumination with a peak 

wavelength of λ=340 nm.  
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The comparison of the onset point of VBR and the maximum gain properties of the 

SAM-APDs for various mesa areas from 1963 µm2 to 10,000 µm2 are shown in Figure 

5.12. The onset points of the VBR of the SAM-APDs with the mesa areas are almost the 

same in the range between 72.5 V and 73 V. Even though the maximum avalanche gains 

of the SAM-APDs slightly decrease to 8.0×105 as the mesa areas increase to 10,000 µm2, 

the maximum avalanche gains are higher than 8.0×105 regardless of mesa area. These 

results are significantly larger than those in previously published reports for GaN APDs 

with large detection areas, which suggests that the GaN p-i-p-i-n SAM-APDs are more 

sensitive than conventional p-i-n APDs [62, 65]. We believe that the uniform onset point 

of VBR of the SAM-APDs with various large detection areas can be attributed to the 

homoepitaxial growth with reduced dislocation densities and defects, low etching 

damage, and high-quality passivation layers on the mesa sidewall. Furthermore, the 

increased maximum avalanche gain and the reduced VBR of the SAM-APDs suggest that 

photo-generated electrons are transported to the multiplication region by the increased 

doping level of the charge layer through impact ionization engineering [107].  
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Figure 5.12 Area-dependent onset point of breakdown voltages and maximum 

avalanche gains. 

 

In order to investigate the mesa size effect and verify the stability of GaN p-i-p-i-

n SAM-APDs, multiple reverse-bias I-V scans of GaN p-i-p-i-n SAM-APDs with various 

mesa sizes and shapes were measured. As shown in Figure 5.13, the SAM-APDs with 

various mesa areas and shapes show almost identical reverse I-V characteristics and onset 

points of VBR. These results indicate that the SAM-APDs are stable and reliable. 
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Figure 5.13 Repetition of reverse bias I-V characteristics of GaN p-i-p-i-n SAM-

APDs with various mesa areas and shapes. 

 

The bias-dependent spectral response of the GaN p-i-p-i-n SAM-APD with a 

detection mesa size of 75×75 µm2 was measured under front illumination by an Oriel 

xenon lamp attached to a Cornerstone 260 monochromator/chopper system and a lock-in 

amplifier. The zero-biased photocurrent exhibited a peak responsivity of 42.5 mA/W at 

λ=366 nm, corresponding to an external quantum efficiency (EQE) of 14% with an 

absorption edge at 390 nm. At the reverse bias of 70 V, however, the peak responsivity 

increases to 320 mA/W at λ=376 nm. In addition, with increasing reverse bias, the peak 

absorption wavelength shifts slightly from 366 nm to 376 nm. Furthermore, compared to 

SAM-APDs with p-type GaN layer [57], the SAM-APD with the p-type Al0.05Ga0.95N 

layer presents relatively narrower responsivity ranges within shorter wavelength regions. 

This finding confirms that the p-type Al0.05Ga0.95N layer serves as the window layer, 
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resulting in a reduced UV-light in the p-type contact layer. Thus, it also results in more 

photo-generated electrons in the absorption layer. For further enhancement of the 

responsivity and the EQE of front-illuminated SAM-APDs, we can also use the higher-

Al-composition p-type AlxGa1-xN layer, or the thicker absorption layer. 

 

 

Figure 5.14 Reverse-voltage-dependent spectral response of a GaN p-i-p-i-n SAM-

APD with a mesa area of 75×75 µm2. 
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Figure 5.15 Reverse-voltage-dependent spectral response of a GaN p-i-p-i-n SAM-

APD with a mesa area of 75×75 µm2. 

 

5.4 Summary 

GaN p-i-p-i-n SAM UV-APDs with large detection area grown on low-

dislocation-density bulk GaN substrates by MOCVD have been demonstrated. For the 

front-illuminated SAM-APD structures, a p-Al0.05Ga0.95N:Mg layer was introduced as a 

window layer for the reduction of the UV absorption in the p-type contact layer. After 

multiple I-V scans, the fabricated SAM-APDs showed stable and low leakage current 

density JR_Dark<1.0×10−9A/cm2 up to the reverse bias of VR=40 V. Under UV illumination 

at λ = 340 nm, the SAM-APDs exhibited large avalanche gains greater than 8.0 × 105 at a 

reverse bias of VR>72.5 V regardless of mesa areas increasing to 10,000 μm2. Moreover, 

the onset points of the VBR of the SAM-APDs for all mesa areas were around 73 V. We 
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believe that the lower onset values of VBR and the large avalanche gains of the SAM-

APDs are attributed to optimized homoepitaxial growth, sophisticated fabrication 

processing, and the Mg-graded p-GaN charge layer designed by employing impact-

ionization engineering. 
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CHAPTER 6. RESEARCH SUMMARY 

For the past decade, III-nitride compound semiconductors have attracted great 

interest in the most promising electronics and optoelectronic devices such as light-

emitting diodes (LEDs), photodiodes (PDs), and avalanche photodiodes (APDs). The 

large and direct bandgap of III-nitride materials, which provide high breakdown field, 

high electron drift velocity, and high thermal conductivity as well as structure, chemical, 

thermal stability, allow them to be excellent candidates for the devices operating at high 

temperature and in harsh environments. Moreover, because of their potential advantages 

of high receiver sensitivity, low noise, low dark-current densities, and high optical gain, 

avalanche photodiodes (APDs) based on III-N materials are useful in detecting light in 

the ultraviolet (UV) spectral region as replacements for photomultiplier tubes (PMT) or 

Si-based APDs and arrays. However, if these photodiodes are to be considered as 

replacements for PMTs or Si-based APDs and arrays in many detection applications, they 

need to achieve high sensitivity, high internal gain, high uniformity, fast response, and 

Geiger-mode operation for photon-counting applications with stable avalanche 

breakdown characteristics.  

The improvement of high-performance Al0.05Ga0.95N p-i-n UV-APDs have been 

described in this work. The realization of high-performance AlGaN-based UV-APDs is 

still challenging mainly because of difficulties in growing high-quality AlGaN layers on 

lattice-mismatched foreign substrates such as sapphire and SiC. The high density of 

crystalline defects in GaN and AlGaN layers grown by strained heteroepitaxy results in 

compromised performance characteristics. To address technological issues, the AlxGa1-xN 
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p-i-n UV-APDs (x=0-0.05) structures were epitaxially grown on a c-axis n-type free-

standing (FS)-GaN substrate with reduced defect densities and GaN/sapphire template by 

a metalorganic chemical vapor deposition (MOCVD) system. In addition, the effect of 

strain management layer in n-type layers is reported as a way to further minimize 

additional crystalline defects resulting from the lattice mismatch between GaN and 

AlGaN. In conclusion, the Al0.05Ga0.95N p-i-n UV-APDs with step-graded n-type AlxGa1-

xN:Si layer grown on FS-GaN substrate showed low dark current and high avalanche gain 

higher than 5×105 at a reverse bias of VR>94 V. Also, with multiple times reverse bias I-V 

scans, the Al0.05Ga0.95N p-i-n UV-APDs on FS-GaN substrates exhibited stable and 

constant reverse biased I-V characteristics without premature microplasma breakdown 

that was frequently observed on the Al0.05Ga0.95N p-i-n UV-APDs on GaN/sapphire 

template. 

The uniform and reliable 4×4 GaN p-i-n UV-APD arrays with large detection size 

of 75×75 µm2 have been discussed in this work.  The UV-APD arrays with large 

detection area have been sought for improving collection efficiency and sensitivity. 

However, the issues related to high dislocation densities in the epitaxial layers grown on 

lattice-mismatched substrates become more critical as the detection area of photodiodes 

increases. In order to reduce the defect densities, the 4×4 GaN p-i-n UV-APD arrays were 

grown on n-type FS-GaN substrates with dislocation densities <5×106 cm-2. In order to 

confirm the uniformity of a 4×4 GaN p-i-n UV-APD arrays, the dark current and 

photocurrent of individual devices in the array were measured. The dark current density 

of the UV-APD array is below (6.5±1.8)×10-7 A/cm2 at the reverse bias of VR=48 V. In 

addition, the average onset point of breakdown voltages of 16 devices of the array is 
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96±0.6 V without observation of microplasmas. Furthermore, multiple reverse-bias I-V 

scans were performed for selected devices in the 4×4 GaN p-i-n UV-APD array to verify 

the reliability and stability.  

The GaN p-i-p-i-n UV-APDs with separate absorption and multiplication (SAM) 

regions with large detection area have been demonstrated in this work. Recently, SAM-

APD structures have been widely investigated in order to achieve the low multiplication 

noise and high maximum gain. A c-axis n-type bulk GaN substrate with dislocation 

densities < 5×104 cm-2 was used for the high-quality GaN p-i-p-i-n SAM-APD structure 

to reduce defect densities. In addition, for a front-illuminated UV-APD structure, a p-

Al0.05Ga0.95N:Mg layer was introduced as window layer instead of a p-GaN:Mg layer for 

minimization of UV absorption in  p-type contact layer and a Mg-graded p-GaN charge 

layer was inserted. The onset point of VBR of measured SAM-APD was 73 V, which is a 

lower VBR than the conventional p-i-n UV-APDs and no microplasmas were visually 

observed after multiple reverse-bias I-V scans. In addition, under illumination at λ~340 

nm, the UV-APD exhibited a maximum avalanche gain > 8.0×105 at the reverse bias of 

VR>72.5 V. 
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