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SUMMARY 

This thesis presents a study in the application of certain non-

linear programming techniques to the multiple response problem, a typical 

problem that evolves through the use of response surface techniques. The 

research surveys the existing techniques and the utility of nonlinear 

programming models for the problem is investigated. 

The Hooke and Jeeves Pattern Search Technique is used as the 

optimization algorithm. The technique is adapted for use with either 

constrained or unconstrained problems. 

The multiple response problem is considered in three different 

configurations; 1) single objective function, with other responses 

treated as constraints and considered explicitly; 2) single objective 

function with implicit consideration of remaining responses as con-

straints; and, 3) a weighting function scheme wherein a composite func-

tion is made up of all responses which are individually weighted. 

No single model can be considered the best for all algorithms, 

but for the Hooke and Jeeves approach, the weighted function is to be 

preferred when compared with currently existing techniques found in the 

response surface field. 



CHAPTER I 

INTRODUCTION 

Problem Statement  

Response surface methodology is generally characterized by the 

attempt, through designed experimentation, to approximate a complex and 

unknown function 

= f( tl' t 2' ° '''n )  

by some low order polynomial 

0 = f(x l ,x 2 ,...,xn ) 

where the x i , i = 1,2,...,n, are coded from the natural variables, t., 

i = 1,2,...,n, and f represents the approximating function. It is as-

sumed that this function can only be derived through experimentation, 

where the effects of different levels of the decision variables are meas-

ured. The function is applicable only in the region of experimentation. 

The objective then is to optimize the function to determine the best 

operating levels on the variables for the process under analysis. Since 

the function, f, is a fitted surface, any optimal point found lying out-

side the region of experimentation cannot be considered valid and new 

experimentation must be undertaken to approximate a new function inlihat 

region. 

If a situation exists where more than one function must be opti- 
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mized, we have encountered the "multiple" response problem. For example, 

an experimenter may wish to maximize the yield of a process while simul-

taneously minimizing the percent of impurities in that yield, where both 

surfaces can be determined only through experimental means. 

Nonlinear programming is generally defined as any collection of 

techniques used in optimizing some mathematical function 

maximize f(X) 

subject to g i (X) 15 0 for i = 1,2,...,m 

hi (X) = 0 for i = 1,2,...,k 

where the objective function or some of the constraints, or a combination 

of these, are nonlinear. A great deal of research has been done inHnon-

linear programming. We concern ourselves here only with the partiOlar 

algorithm used in this research. 

Applications of nonlinear programming techniques to the field of 

response surface methodology have not been widely attempted. The intent 

here is to extend to the statistical literature some possible nonlinear 

programming techniques with respect to both the formulation and the solu-

tion of the multiple response problem. It is assumed throughout that 

low order polynomials have been fitted to all surfaces considered and 

are well-defined within the region of experimentation. Solutions exist-

ing outside the region of experimentation for any fitted surface are as-

sumed to be invalid and necessitate new experimental exploration before 

any nonlinear programming methods can be applied. A restatement f*the 

multiple response problem into a workable nonlinear programming form will 

be illustrated and a typical nonlinear programming technique applied. 
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The response surface problem is characterized by relatively few 

independent variables, generally not more than seven, and few constriiints. 

The fitted surfaces will generally not be higher than second order due 

to design difficulty and applicability, and seem to work well in most 

practical situations. The problem generally consists of a quadratic 

objective function and one or more constraints of no higher than second 

order. Range constraints on the variables are often present since an 

underlying assumption made throughout is that the objective function and 

possibly some of the constraints are derived as a result of performing 

designed experiments and therefore the surfaces are valid only over the 

specific region of interest in which the data were collected. In Chapter 

II an outline of the optimization method and development of the models 

is given. Three typical response surface problems are investigatediland 

considered in three different model forms and a nonlinear optimization 

technique applied. The results of this investigation are discussed in 

Chapter III. 

This research particularly considers the multiplicity of the 

response functions and some methods of handling them. The main thrust 

here is not to develop a new approach to optimization but rather to apply 

existing methods to a well-known problem, and particularly to contrast 

the methods investigated with the only methods presently used and re-

flected in the typical statistical literature. This represents a step 

in the direction of broadening the scope of solution approaches available 

to the statistician concerned with response surface methodology. Inl
I 
all 

F 
 

discussion the problem addressed will be considered a maximization prob- 

lem. 
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Literature Survey  

Very little has been reported in the response surface literatUre 

with respect to multiple response problems. Most proposed solution Pro-

cedures are graphical in nature. Early references, G.E.P. Box (1) and 

J. S. Hunter (11), only mention the multiple response problem and note 

that "it is interesting to look at" the superimposition of the two re-

sponse surfaces, but acknowledge that such methods would be difficult 

for more than two variables and impossible for greater than three vari-

ables. In 1959 Umland and Smith (18) used Lagrange multipliers to solve 

two convex response surfaces which measured yield and purity. For their 

particular problem the purity function was considered a constraining 

relationship and successively set to acceptable values. The yield func-

tion was then optimized subject to the constraining relation throughdthe 

use of Lagrange multipliers. The problem was in two variables and the 

results were favorably compared to graphical means of solution. In a 

comparable study, in 1960, Lind, et al., (12) used graphical means to 

optimize a yield-cost system for American Cyanimid where both relation-

ships were response surfaces. 

Not strictly in the multiple response area, but concerned with 

constrained optimization of response functions (into which form such 

multi-response problems can be placed) are three studies. Schrage (17), 

in 1958, used the method of steepest ascent and linear programming to 

optimize a catalytic cracking operation. Linear approximations were 

first applied to the nonlinear constraints and linear programming was 
ri 

applied sequentially. In 1959, Hoerl (9) introduced the constraint 
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2 
L  x. = X'X = C 

i=1 

where X' = (x l ,x2 ,...,xn), for use in ridge analysis but this still 

amounted to interpretation of the constrained problem through graphical 

means. Michaels and Pengilly (13) used Lagrangian multipliers applied 

to a response surface objective function and one algebraically derived 

cost constraint. 

In 1971 Myers (15) mentions the multiple response example of Lind 

and indicates the graphical approach to a solution. In 1973 Heller and 

Staats (8) absorbed the cost constraint (or cost objective function) 

into the yield objective function to form a net profit objective func-

tion and used the cost per unit as the basis for the distance metric of 

their n-space. Their objective function was subject to both algebraic 

and response surface constraints and the problem solution was arrived at 

through a method based on Zoutendijk's (19) method of feasible direc-

tions. Myers and Carter (16) (1973) address the multiple response prob-

lem in much the same manner as Umland and Smith. One response was re- 

stated in constraint form and the method of Lagrange multipliers applied. 

Myers and Carter, however, chose not to fix the constant value of the 

constraint but rather they selected "directly values of the Lagrange 

multipliers, p, in the region which gives rise to operating conditions 

on X, (a vector of independent or design variables)... that result in 

absolute maxima on yp  (the objective function), conditional on being on 

a surface of the constraint response". In the case of one constraint 

this evolves to a two-dimensional graphing of the Lagrange multiplirs 
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over the region in which feasible solution points exist. The diffi4ulty 

of extension to a larger number of constraints, although done in the 

reference cited for a specialized problem, negates the attractiveness 

of this method. 

Although the history of nonlinear programming is considerably 

richer than the more specific response surface area outlined previously, 

we will concern ourselves only with the literature that gives rise to 

the method actually used in solving the multi-response problem in this 

research. 

As a transition from the response surface methodology to non- 

linear programming let us mention the work of Carroll (3) in 1961 who 
r; 

introduced the Created Response Surface Technique (CRST) which restates 

the constrained problem into an unconstrained problem by means of incor-

porating the constraints into the objective function. A penalty constant 

is attached to each such constraint and has the effect of severely re-

ducing (in a maximization problem) the optimum value of the objective 

function. Through the sequential application of gradually reduced pen-

alty constants and unconstrained optimization techniques, this con-

strained problem reaches the same optimum value as the original objective 

function. This work serves as one of the forerunners of penalty and 

barrier function optimization techniques in the field of nonlinear pro-

gramming. 

1 ' 
Consideration of a large number of mathematical programming ch- 

niques is not necessary in order to introduce the basic methodology into 

the response surface area. Consideration of multiple responses and 

their model formulation is the main thrust of this thesis. With the 
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assumption that we have well-defined functions within the area of ihter-

est for the response surface it remains only to apply any effective 

optimization technique to the models developed. Two methods of treating 

the multiple objective function have arisen in the literature. 

Geoffrion, et al., (6) introduce a weighting function criterion 

in developing an approach to the multi-criterion optimization problem. 

The objectives are weighted according to different schemes, depending 

generally on their utility to the decision-maker. Dyer (4), in 1972, 

in a similar vein, applied the theory to a man-machine interaction 

algorithm for the solution of the multi-criterion problem. Geoffrion 

and Hogan (7) address the problem of coordination between different 

autonomous levels of organization. The Coordinator, or headquarters, 
II 

requests the local optimums and the directions of function value improve- 

ment from each of the subordinate levels, based on a specific set of 

data. Based on the preference function of the Coordinator, and in con-

sideration of the information received from the lower divisions, a direc-

tion and step size are decided upon, a new set of data generated, and 

the process continues, culminating in a best response for all functions. 

Such highly interactive algorithms are very dependent upon the type of 

optimization technique employed and are not investigated here. 

Scope of the Thesis  

For purposes of comparison of different models it is desirable 

that a programming technique that can consider both constrained and;Un-

constrained formulations be used. Although not specifically designed 

for constrained optimization, the Hooke and Jeeves pattern search (10) 



technique was adapted for use in either the constrained or unconstrained 

case. 

The approach is to first formulate the multiple response problem 

in two different configurations and then to apply a nonlinear program-

ming algorithm, the modified Hooke and Jeeves procedure, to these re-

stated problems. The intent is to compare the results of the formula-

tions and solutions, primarily from a qualitative standpoint. The re-

sults are compared to the original treatment of the problem. The effort 

is to present alternative approaches to the multiple response problem, 

emphasizing problems previously treated in the literature. This repre-

sents an initial step in the direction of applying nonlinear programming 

techniques to the multiple response problem. Previous published efforts 

ai 
in this field have been confined primarily to graphical means of solution. 



CHAPTER II 

MODEL DEVELOPMENT AND APPLICATION OF 
A NONLINEAR PROGRAMMING TECHNIQUE 

The Algorithm  

A brief outline of the modified Hooke and Jeeves pattern search 

technique will now be presented. The algorithm was considered particu-

larly well-suited for a number of reasons. (1) It is relatively simple 

when compared with gradient techniques. It requires no gradient compu-

tation and is simple from a programming standpoint. (2) The algorithm 

is adaptable to either constrained or unconstrained formulations and for 

this reason is particularly well-suited to the application intended here, 

i.e., the investigation of different multiple response models. Sin!de 

some of the models consider constraints and others do not it becomes 

important to have an equal basis from which to compare results. (3) The 

pattern search technique also may be more amenable to work already re-

ported in the response surface area. (4) Lastly, function evaluations, 

particularly in the weighting function approach, may prove more valuable 

than gradient techniques. 

A simplified flow chart is shown in Figure 1 for the general 

Hooke and. Jeeves pattern search technique. For simplicity we consider 

only three points. Let 

- the base point at the kth  iteration, XBase 

XB 	- the point around which explore moves are conducted,'and 

9 
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Figure 1 Hooke and Jeeves Pattern Search Technique Flew Chart 	ul 
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- any evaluated point around XB . 

Other notation is as follows, The step size of the explore move is *- 

noted by s;. I. i = 1,2,...,n, represents the number of coordinate dixec- 

tions; k is an iteration index; 	is an indicator function; and e repre- .. 

seats some predetermined small value greater than 0, The method follows 

basically the following steps: 

Initially
Base 	

k = 1, p 	1. 
-13 	)°  

Phase L (Exploratory move) 

It 	= n *I • go to Phase ll 

2 Otherwise, let X =X+ 0 , s. d i where T 

 d = 0 for Ij ; d = 1 for i=j. 

,?; if f(KT ) > f(XE ), let XB=XT , i=i+1, 	- 1, Return to Ster4 .1. 

4 Otherwise, check the value of p. If p= 1, set 0 = -1 and 

repeat Step 2. If p = -1, XB  remains the same, i=i+1, 0 	1, 

Return to Step 1. 

Phase II (Acceleration move) 

k+1 	 k+1 
If f(XT) > f (XBase ) 

 ' let XBase= XT , XB  = 2 	X_ base 

Set i = 1, and return to Phase I. 

2 Otherwise check the step size, s 

Base' 

If s 	e, Stop, XBase  is optimal, 

If s> e, let s = 	i1, XB = 	Return to Phase I. =  
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Constraints 

A variation has been made to the basic algorithm in order to adapt 

it for use with the constrained problems. Two categories of constraints 

are considered: (1) range or boundary constraints on the individual, 

variables, and (2) general constraints. The development of a modified 

pattern search to accomodate constraints demands that we consider both 

types. 

The first type, range constraints, are handled the same way for 

all models. If a constraint violation occurs during either an explore 

move or an acceleration move, the variable in question is simply retain-

ed at the boundary before the evaluation of the function. If the move 

is a success, the variable is retained at the bound and the algorithm 

continues in the remaining coordinate directions. If the move is a 

failure there is no problem since the next move in that variable direc-

tion will be away from the bound. 

General constraints may be treated differently by the different 

models. Generally, if any constraints of this type are violated, the 

point under consideration at the time that the violation occurs is 

rejected as a failure to improve the objective function value. 

The Models  

Two different approaches were taken to develop the models used in 

this investigation. One of these is subdivided into two considerations. 

The Type I model is the kind of formulation encountered in all of the 

response surface literature to this point. This approach restructures 

the problem from a multiple objective function type problem into one 
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which has only one objective function and some number of constraints. 

To do this, a decision must be made to treat one response as "most 

important", while the remaining r-1 of the responses are set at a partic-

ular level or a ceiling is placed upon their possible values. The orig-

final problem 

Max (f(X),y i (X)) 	i = 1,2,...,r-1 

st. gk (X) 5. 0 	 k = 1,2,...,m 

becomes 

Max f(X) 

st: y i (X) - ai  5 0 	i = 1,2,...,r-1 

gk(X) 
	0 
	

k = 1,2,...,m 

where ce, represent the maximum acceptable levels of the secondary o1jec-

tive functions. 

Two applications of optimization with constraints are considered. 

Type IA - explicit consideration 

Type IB - implicit consideration by means of a penalty function. 

Application of the modified Hooke and Jeeves algorithm to a constrained 

problem was one of the investigative goals. 

For the Type IA model the formulation is simply 

Max f(X) 

st. y i (X) - a  :5_ 0 	, 	i = 1,2,...,r-1 
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g
k 
 (X) < 0 
	

k = 1,2,...,m 

Any point which violates a constraint is treated as a failure and the 

search returns to the last best point. 

The form for the Type IB becomes: 

Max f(X) - P(max((y i (X)- a 1 ),0))
2 

, i = 1,2,...,r- 

	

st: gk (X) < 0 	 , k = 1,2,...,m 

where P represents a large penalty constant. The objective function 

therefore is reduced by the amount of the penalty function only if a 

restructured constraint, y i (X)- ai, is violated. Although the same 

approach can be made to all constraints, this investigation treats true 

constraints explicitly and considers only the restated objective func-

tions in the penalty context. The degree to which any constraint is 

violated is a function of the penalty size. 

The second model intuitively appeals in instances where mino4 
r. 

constraint violations can be permitted and in fact the previous work; 

done in the area (for example, see Umland and Smith) seems to indicate 

that the constraint value is not inflexible. Explicit consideration on 

the other hand, permits no violation of the fixed level of the constraint 

value. 

The second method of approach is a weighting factor scheme. The 

multiple responses are treated as objective functions and given weights 

as follows: 

Max wi .f(X) + w2.yi(X) 	
wr ' Yr -1 



st. 	gk (X) 	 k = 1,2,...,m 

In the treatment of the dual response problem the Ewi  = 1 in all 

cases. The nonlinear programming literature assigns the weights based 

on some subjective criteria and generally with some knowledge of the 

problem and its interactions. Although such knowledge might be  aval- 

able for our purposes, for the example problems dealing only with two 

responses the assumption that no knowledge is available is made. Rather, 

the objective is to give the decision-maker a series of results from 

which to make a decision. The weights are assigned on an incremental 

basis, successively varied over a suitably chosen range. The result is 

a list of responses for each objective function at each level of 

weighting. As shown in the example problems, an initial coarse incre-

ment can be assigned in order to determine the weights that yield the 

values desired. When those weights have been determined, a finer incre-

menting can take place and so forth to whatever degree required. 

Weighting Function Extension to  
a  Three-Response Problem 

In extending the weighting function approach to larger probleMs, 

namely more than two objective functions, certain factors become more 

important. It would appear that the attractive feature of enumerating 

the weights assigned over the unit interval is diminished since the 

number of different combinations required grows larger very quickly as 

the number of functions increase. Also, scaling might be required if, 

for example, one function, say f 1 , measures cost in thousands of dollars 

while a second response, f 2 , measures percent yield, on the scale of 
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0-1001— Since the composite objective function is the vehicle upon 

which the optimization technique works, the tendency would be, without 

scaling, to favor an optimal solution which maximized f
1 
alone. In 

effect, we implicitly weight f l  by 10
2
, the factor by which the average 

value of f 1 
is greater than that of f

2
. If we fail to take such scale 

difference into account, a great deal of time and effort is spent rej4 

fining our weights over the unit interval. 

We can, by careful scaling measures reduce the problem involved 

in the larger response case. Throughout the literature that deals with 

the weighted objective function some "marginal" value is assigned to 

the weights based on their worth to the decision-maker relative to the 

other objectives. No such steps were taken in the dual response case, 

but in the example that follows we are able to reduce the problem to a 

simple requirement for a preference order from the decision-maker. We 

assume, as in the two-response situation, that no specific value for any 

objective is required, but rather a choice of alternatives is the de-

sired goal. In fact, for the three objective function case, as in Oe 

example, 11 different levels for each function can be evaluated in 6 16 

iterations of the optimization technique. For four objectives, six 

levels can be evaluated in 56 iterations with the necessary reduction 

in refinement of the interval. In either case, a sufficient number of 

alternatives exist in tabular form for the decision-maker to made a 

choice. 

Scaling  

A scaling approach is presented which complements the basic 
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approach of evaluating over some preselected interval rather than pre-

setting an expected function value. As an example of the latter, let us 

say that a composite function F is made up of f
i 

as follows: 

F = w 1 f 1 + w2 f 2 + w3 f3 

where the values of the individual functions f., 	i=1,2,3 vary as follows: 

10,000 5 f i  5 20,000 

10 < f2  5. 50 

50 < f3  5, 1000 

It is important to note that these values are the extrema of the func-

tion values and do not represent any preference on the part of the 

decision-maker. Any preference is indicated by the weights, w i , i=1,2,3. 

For scaling purposes we introduce a scaling factor s i , =l,2,3 as follows: 

F = wl
s
1
f
1 
+ 
w2s2f2 

+ w
3
s
3
f
3

. 

The scaling factors serve to more equitably distribute the absolute , 

 magnitude of the individual function contributions to the composite 

function F. If we were to scale, for instance, by average f i values, 

f., so that all functions are expressed in terms of f
l' we could proceed 

as follows: 

f 2 (10) 	73 (10 2 ) 

F 	
+ w s 	 + w s 	 w 1

s
- 1 	2 2 T1  (lo

3
) 	3 3 	7 1(103) 
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Then, in order for each of the functions to be of the same order of 

magnitude and therefore of equal importance in contributing to the com-

posite function F, we set 

s l  = 1, 	s
2 
= 10 -2 	

and s 3 
= 10

-1 

which will reduce each contributing function to the same relative size. 

A variation of this approach has been used here in keeping wih 

the value range concept of the weighting function. Let 

F = 

	

f 2 ( S.
2'2 ) 	f3 (133 )  

w l s 1 (1-1 J 1) 	w2 s 2 f 
1  
(f 

 1, T 1
) 	w3s3 f l (f l ,T 1 ) 

where (f 1'  T 1  ) is the scaled range on f
l' 

and (f
1'  T i  ) represent the  

minimum and maximum, respectively of the f l , i=1,2,3. The problem then 

is to determine a range on the s i
, i=1,2,3 such that all functions con-

tribute equitably (in an absolute magnitude sense) to F. The absolute 

extrema on Si  obviously occur at the opposite extrema of the functions 

compared: 

1 	
f
1 

s. = — and 	8. = 
f. 

The range on s i 
is then between s i 

and s
i
, i.e., 

s i  < S. < s. 
1 	1 

Although this is the most conservative range, it precludes an eventual 

optimal solution in the vicinity of the extrema which would then require 
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more refinement. 

From the example: 

10,000 < f l  < 20,000 

10< f 2 < 50 

50 < f3  5_ 1000 

we find 

-- 20 000 	 10 000 - 200 
s 2 

= 	- 2000 
10 	 s2 = 

50 

--20 000 	
= 1,000 - 

10 000 
50 	 s3 

s
3 

= 	- 400 	
- 	 10 

Then 

O.< s. 	1 
1 

200 < s 2  5. 2000 

10 < s 3  < 400 

At this point each value for the s i , i=1,2,3 is multiplied by the p ire- 

ference weight assigned by the decision-maker, the interval determined 

based on the number of observations desired, and the optimization tech-

nique applied. 

Application - Examples  

The models indicated were applied to three response surface 

problems which are typical of those discussed in the literature. 
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The first problem is due to Umland and Smith (18), and consists 

of two response surface. The primary response, yield (y p ), and a 

secondary response, purity (y 5 ), is given in the equations below. 

	

y = 55.84 + 7.31x
1 
+ 26.65x 2  - 3.03x

2 
	6.96x

2 
+ 2.69x x 

	

2 	1 	2 	1 2 

yp  - predicted yield 

	

y
s 
= 85.72 + 21.85x

1 
+ 8.59x2 
	1 	2 
- 9.20x

2 
	5.18x

2 
- 6.26x x 

1 2 

- predicted purity 

It is assumed that xx
2 are independent factors, continuous and con-

trollabte by the experimenter. 

A graph of the fitted response surfaces is shown in Figure 2. 

Both functions are concave in the region of interest and the objective 

is to maximize both. There are no other explicit constraints. The 

approach that the authors used was to fix the secondary response at 

three different values - 95%, 92.5%, and 90% - below which the purity 

level should not move. They then proceeded to choose x
1 

and x
2 

to 

maximize yield using the method of Lagrange multipliers. Their results 

are shown below: 

Purity 	94.87 	92.47 	89.995 

Yield 	83.66 	86.73 	88.68 

x
1 	

0.965 	1.005 	1.075 

x
2 	

1.088 	1.316 	1.479 

It appears from the results that small violations of the imposed 
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Figure 2. Umlamd ald Smith Respells. Surfaces (after Umlamd amd Smith (18)) 
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purity constraint are not important in view of the nature of the problem. 

The next two problems are taken from an article by R. H. Myers 

and W. H. Carter (16). 

The authors first consider a dual response problem in three 

variables. The responses: 

2 
y = 65.39 + 9.24x

1 
+ 6.36x

2 
+ 5.22x3 
	1 	2 
- 7.23x

2 
- 7.76x

2 
- 13.

1
lx

3 

-13.68x
1
x
2 

- 18.92x 1 x3 - 14.68x
2
x3 
	 (1) 

2 	2 	2 
ys  = 56.42 + 4.65x 1  + 8.39x 2  + 2.56x 3  + 5.25x 1  + 5.62X 2  + 442x3  

+ 8.74)( 1 )( 2  + 2.32)( 1 )( 3  + 3.78x 2x3 	 (2) 

Range constraints are imposed on all x i  as follows: 

-2.5<x.<2.5 	i = 1,2,3 

The solution method of Myers and Carter for both problems is 

basically a combination of the method of Lagrangian multipliers and 

graphical analysis. The solution method is as follows. As before, 

two responses are defined, 

y
P 
 = b

0 
 + Rib + R'BR 

and 

YS 	
co  + Ric + Rid 	 (4) 

where X is a vector of independent or design variables, b and c are 
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vectors of first order regression coefficients, and B and C are matrices 

containing the second order regression coefficients. For example, 

b
11 

b
12

/2 	... b in/2 

b 22 	*** b 2n /2  

• 

sym b 
nn 

where the b id  are second order coefficients. The Lagrange function is 

L = ID ()  + R'b + R'BR - p(c o  + R'c + 	- k), 

44. where k is an acceptable level for y s . Setting 	= 0 results in 
OX 

(B-pC)R = 1/2(pc-b) 	 (5) 

The matrix of second partials is then found to be 

M(X) = 2(B - pC) 	 (6) 

The above equations hold irrespective of the value for k. It is ini l 

 this respect that the Myers and Carter method differs from previous, 

 approaches, notably Umland and Smith. Rather than fix ys  at a partic-

ular value, k, the approach is to select a range of values for p to 

insure that the matrix M(X), in eq. (6), is positive definite (for 

minimization) or negative definite (for maximization). 

For the case where C is definite, consider the quadratic form 

with matrix given by M(X), say, 

B 
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q = w'(B - pC)w 

Since C is symmetric definite there exists a non-singular matrix S such 

that 

S'BS = diag (X 1 ,X 2 ,...,Xn ) 

and 

S'CS = I
n 

Letting W' = V'S', we have 

q = V' diag 	-p,...,X n-p)V. 

where the Xis are the eigenvalues of the real, symmetric matrix T given 

by 

T = D (-1/2) QBQD (-1/2)  
2 	2 	' (8) 

(- 1/2 ) where D 2  - diagonal matrix containing the eigenvalues of C, D 2  

diagonal matrix containing the reciprocals of the square roots of the 

eigenvalues of C, and Q is the orthogonal matrix for which 

Q'CQ = D
2 

The eigenvalues of T are arranged in ascending order, X n  being 

the largest. From equation (7) we can see that for a negative definite 

M(X) it requires that p be greater than X n and for a positive definite 

M(X), p must be less than X 1 . The values for p thus determined are 

(7) 
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used in equation (5) to generate values of x representing points of con-

strained primary response. The authors then graph the results and chose 

the operating conditions for X which satisfy the desired constraint 

value. 

In an instance where C is indefinite solutions still exist if the 

matrix B is definite. Such conditions make computations only slightly 

more difficult. In situations where both matrices are indefinite, it is 

impossible to obtain a solution using this method. 

The approach can best be illustrated by an example. The problem 

considered here is as shown in equations (1) and (2). The problem is 

interpreted as one of maximizing y, without allowing y s  to become larger 

than 65. C in this case was found to be positive definite and so values 

of p greater than X
n 

are desired in order to maximize y p . The eigen-

values of T in equation (8) were found to be 

x = - 4.0617 	 X
2 
= - 0.9945 
	

X
3 
= 0.08017 

Therefore substitutions into equation (5) were made with values of 

greater than 0.08017 to generate values of x representing points of 	n- 

strained primary maximum response. Values of y p  and ys  were then com-

puted using equations (1) and (2) and the graphs of Figures (3) and (4) 

are the results. Figure (3) indicates operating conditions to insure 

constrained maximima of yp  for a given level of y s . Figure (4) plots 

maximum levels of y against fixed levels of y
s' 

The results are shown 

below. 
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yp 	 Y S 

74.04 	 65.23 

x l 
	

x
2 
	 x 3  

2.07 	 -1.15 	 -0.6 

kgain, violation of the bound on the secondary response does not seem to 

De deemed important. 

The third problem, also from Myers and Carter, extends the same 

solution method to a two variable problem with more than one constraint. 

The responses are as follows: 

y = 53.69 + 7.26x
1 
 - 10.33x2 
	1 	2 
+ 7.22x

2 
+ 6.43x

2 
+ 11.36x

1
x
2 

y = 82.17 - 1.01x - 8.61x 2  + 1.40x
2 

- 8.76x
2 

- 7.20x x 

	

1 	2 	1 	2 	1 2 

the fitted surfaces are shown in Figure (5). The authors also impose 

a constraint on the secondary response as follows: 

84 < y s < 88 

It is apparent from the Figure (5) that the constraint response can be 

retained within the limit imposed, between 84 and 88, while the primary 

response increases indefinitely. Because of this, an added constraint 

is introduced: 

2 	2 
xl x 2 5-  

The results are: 

yP 	 YS 
	 x l 	

x 2 

67.79 	 87.80 0.85 	 -0.6 
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Carter(1 6) ) 
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A Three - Response Example  

The three response example illustrated is a modified combination 

of the Umland and Smith and Myers and Carter problems: 

f
1 
represents the process yield (in pounds) 

Yield = f 1 = 558.4 ± 73.1x1 	 1 + 266.5x
2 

- 30.3x
2 	

2 
- 69.6x

2 
+ 26.9x

1
x
2 

f
2 

is a product purity (in percent) 

2 

	

Purity = f
2 
= 85.72 + 21.85x

1 
+ 8.59x

2 
- 9.2x - 5.18x

2 
	6.26x x2  

1 

f
3 

is a cost relationship (in dollars) 

Cost = f
3 
= 49,324 + 7143x

1 
- 10,366x

2 
+ 7

'
300x

1
2 
 + 6

'
450x

2
2  
 + 12,109x

1
x
2 

The ranges on the responses are as follows: 

1 < f i  5_ 953 

1< f 2  5_ 98.77 

25,000 5_ f 3  5 150,333 

These values represent the absolute extrema for the function values 4ith 
IP 

truncation at some points which are obviously infeasible. This rang; 

can be considerably reduced and refined by considering only feasible 

points within the design ranges, but have been left in this form for 

illustrative purposes. Using f l  as the base interval we get: 

-- 953 	 1 	--953 	 1  
s 2 
	

s3 - 	 - 2 	1 	s2 - 98.77 	3 	25,000 	3 	150,333 
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3 1  

yielding 

0 < s i  5 1 

0 < s 2  5. 953 

0 5 s 3  5 0.04 

Let us assume that the decision-maker assigns weights of 0.6 to f
l' 

0.03 

to f 2 , and 1.0 to f 3 . In multiplying the s!s by the respective weights, 

we derive composite weights, W i
, with 

i 
= w.s with values 

i 

0 5_ W 1 5 0.6 

0 < W 2  5 28.6 

0 < W 3 .5 0.04 

The composite form of the objective function becomes: 

F = W 1 f 1 + W 2
f
2 

- W
3
f
3 

where our interest is in maximizing the yield and percent and minimiling 

cost. 

If we take 11 observations in each interval our increments bed.ome 

0.06 from 0.0 to 0.60 on W 1, 2.86 from 0.0 to 20.3 on W 2, and 0.004 

from 0.0 to 0.04 on W 3. The results of applying the Hooke and JeeveS 

algorithm to the composite function as now formulated are shown in 

Chapter III. 



CHAPTER III 

RESULTS AND DISCUSSION OF RESULTS 

The Umland and Smith Problem  

Explicit Constraint Consideration  

The results of applying the Hooke and Jeeves algorithm when the 

secondary response is preset to a specific value (a lower limit, in this 

case) is shown in Table 9, Appendix B. Although the results for all 

starting points and initial step sizes appear relatively consistent,h 

some variation does occur. 	Based upon accepting the best value for 

runs made we arrive at the following findings: 

For the secondary response value (y 5 ) equal to 90.0%: 

he 

yp  = 88.6621 	ys  = 90.0011 x i  = 1.07266 x2  = 1.480 

For y s  set at 	92.5%: 

yp  = 86.5857 	ys  = 92.5008 x i  = 1.07603 x 2  = 1.280 

For y s  set 	to 95.0%: 

yp  = 83.4485 	ys = 95.0001 x 1  = 0.94438 x 2  = 1.080 

All values lie on or near the locus of points forming the inter-

section of the response surfaces at the fixed level value. However, 

because of the nature of the algorithm, the point on the constraint at 

which the search technique first crosses lies very close to the final' 

optimum point. Basically, a starting point that is very close to the 

constraint will cause the search to find as an optimum a nearby point 

on or near the constraint. Similarly, a point that is evaluated at or 

32 



33 

near the constraint will be found to be optimum also, although actually 

at some distance from the true optimum. 

It may be noted that a large number of values for x 2  in the ex-

plicit constraint consideration, Table 9, Appendix B, seem somewhat 

regular and appear rounded to the size of the initial step. Three con-

tributing factors and their interaction are responsible; (1) the nature 

of the search technique, (2) the nature of the constraint, and (3) the 

starting point. The search technique is such that the first direction 

explored is always the x i  direction. If an improvement occurs, that 

point becomes the new base point and subsequent directions explored. ,  

Because of the nature of the constraint, as seen in Figure 2, sub:seq' ent 
f. wl 

exploration moves in the x 2  direction will result in failures once the 

base point is sufficiently close to the constraint. Both functions Are 

concave in the region of interest and the feasible region lies beneath 

them. Therefore, for all feasible starting points, the same problem 

exists, since the constraint is approached from generally the same direc-

tion. The total effect is seen to be one of approaching the constraint 

only in the x i  direction once the search is within an initial step size 

distance from the constraint. The approach then must be one of a number 

of different starting points and starting step sizes, although, for the 

small range considered here, a tendency toward smaller initial step sizes 

might prove more efficient. The same difficulty occurs with other "arch 

algorithms also. In particular, the cyclic coordinate method, whereiili 

the optimum point found in the x l  direction would be the initial x 1  point 

since the moves would continue in the x l  direction until failure, which, 
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for this case would be the constraint itself. Any algorithms not haVing 

this difficulty would have to evaluate in all coordinate directions be-

fore any moves are made. The method of treating as failures points 

which violate constraints may prove inadequate for problems with more 

complicated constraints. For these problems, it may be necessary to use 

some algorithm designed to better handle constrained problems. For the 

response surface problem, the range of values on starting points is not 

generally too extensive and some enumeration scheme may be developed. 

The results for this problem, although depending somewhat on the start-

ing point: and the step size, are not unsatisfactory. Similar approaches 

are the only recourse in any non-convex optimizing attempts. 

Two features of this method of considering the multiple respon 

problem are readily apparent. A feasible starting point must be avai 

able or the algorithm never leaves the starting point. Also, no viola-

tion of the fixed level of the secondary response occurs. By treating 

violations as failures in the search this property is assured. 

The main advantage of this approach is that the decision-maker 

has an opportunity to strictly fix a bound on the response. Although 

such restrictions will cause lower values in the responses, as compared 

with the original results of Umland and Smith, shown below, for instance, 

no violations of the imposed constraints will occur. 

Purity (y s ) 	94.87 	92.47 	89.995 

Yield (y P ) 
	

83.66 	86.73 	88.68 

x 
1 
	 0.965 	1.005 	1.075 

x2 	 1.088 	1.316 	1.479 
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Implicit Constraint Consideration  
j. 

Implicit treatment of the imposed constraints yields much moreh 

consistent results as shown in Table 10, Appendix B. The penalty assign-

ed in this case was 1000. Varying the penalty value only varies the 

closeness of the secondary response value to the limit imposed. As is 

readily apparent, in no case is the value found further away than .001. 

Based on choosing the best value for the global optimum the following 

values are assigned: 

For y s 	90.0%: 

y 	= 88.6623 y s  = 89.9997 x i  = 1.08223 x 2 = 1.47497; 

For y s  z  92.5%: 

yp  = 88.6441 y s  = 92.4998 x 1  = 1.00562 x2  = 1.31055i 

For y s 	z 95.0%: 

y 	= 83.4562 y 	= 94.9992 x2 = .96643 x 2  = 1.07373 

Although the primary response values are slightly lower than those found 

by Umland and Smith, and constraints in each case violated, the secondary 

response values are very close to their limit, whereas Umland and Smith's 

values are further away. A feasible starting point is not required for 

this formulation. 

The advantage of this approach seems to lie in its consistency, 

The approach might be useful if the limit values are known, but are not 

required to be strictly adhered to. Additionally, by varying the penalty 

size, a point may be reached where the amount of constraint violati01 

can be considered insignificant. 
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Weighting Factors  

Results of the weighting factor method are shown in Tables 1 and 
1[11 

2. The results are included here because the advantage of this apprOach 

lies in the actual tabulation of the results. The results are most con-

sistent and compare favorably with the Umland and Smith results. The 

weighted objective function value is not given here as it has no com-

parison value. The weights in Table 1 were incremented by a value of .1 

and those in Table 2 were incremented by .01. The starting point in 

this case was X = (0.0,0.0) and the initial step size was 0.5. The same 

results occur irrespective of step size or starting point since we have 

no constraints per se in the problem. 

This approach seems particularly valuable if the expected level 

of a response process is not known, or little knowledge is availablei,  

about expected responses. Once a broad, coarse listing of response c-

pectations is made available, as in Table 1, a subjective determination 

can be made as to what levels are desired, and a finer set of runs can 

be made, as in Table 2. This particular example is used to illustrate 

the range of values that include the acceptable levels of 90.0%, 92.5%, 

and 95% for the purity response in this problem. The weighting function 

approach has the effect of taking the decision-making problem out of a 

subjective area and places it in a readily available tabular form. By 

looking at such a tabular display, a decision maker can see the marginal 

trade-off values he can expect for a change in any objective function 

value and determine the operating level accordingly. 
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Table 1, Weighting Function Results for the Umland and Smith 
Problem - Increment a  0.1 

VEI GHTS YP YS OPTIMAL X 

.00 1.00 64.2766 98. 7747 1. 13965 . 14063 

.10 .90 71.9067 98.3920 1.04907 .44482 

. 20 .80 77.2554 97.4614 .99219 . 701 66 

.30 . 70 81. 1500 96. 1723 .9 6484 .92383 

.40 . 60 84.1357 94.569 7 .96729 1.12207 

.50 .50 86.5505 92.5942 1.00195 1.30371 BI 

. 60 .40 88. 6508 90.0182 1.0739 7 1.47803 

. 70 .30 90.5984 86.3697 1.19629 1. 65234 

.80 .20 92.5010 80.5650 1.39185 1.83899 

.90 . 10 94.3086 69.9418 1.70813 2.05762 

1.00 .00 95.3624 46.8619 2.24902 2.34863 



Table 2. Weighting Function Results for the Umland and Smith 
Problem - Increment 	0.01 

IP 	GH TS YP YS OPTIMAL X 

.30 . 70 81. 1500 96. 1 723 .96484 .92383 

.31 .69 81.4870 96.0243 .9638 7 .94482 

.:', 2 . 68 81.8029 95.8791 .9 6301 .9 6484 

.33 . 67 82. 1237 95. 7247 .96289 .98535 

.34 . 66 82.4297 95.5706 .96240 1.00537 

. 35 . 65 8,-). 7341 95.4103 .96289 1.02539 

. 	'' 	A .64 >.' 3. 0238 95.2509 .962.89 1. 04492 

. 37 . 63 8'3. 3124 95.0850 .9 638 7 1.06445 

.38 . 62 83. 5957 94.9150 .9 6484 1.08398 

.3 0  . 61 83.8671 94. 7450 .9 6582 1. 10303 

.40 . 60 84. 1346 94.5704 .96777 1.12183 

.41 . 59 84.3973 94.3916 .96973 1.14062 

.42 . 58 84.6537 44. 2098 .971 68 1.15930 

.43 . 57 84.9067 94.0228 .97461 1.1 7773 

.44 . 56 85. 1556 93.8312 .97729 1.19 629 

.45 .55 85.4022 93. 6333 .98047 1.21484 

.46 .54 85. 6359 93.4382 .98438 1.23242 

.4 7 . 53 85.8749 93.2305 .98 779 1.25098 

.48 . 52 86. 1025 93.0244 .99219 1.26855 

.49 . 51 86.3307 92.8095 .99695 1.28638 

. 50 . 50 8 6. 5519 92.5928 1. 0019 5 1.30383 

. 51 .49 86. 7762 92.3640 1.00732 1.321 78 

.52 .48 86.9925 92. 1343 1. 01270 1.33936 
• 53 .47 87.2094 91.8945 1.01904 1.35693 
. 54 .46 87.4186 91. 6538 1.02563 1.37402 
. 55 . 45 87. 6336 91.3962 1.03320 1.391 60 
. 56 .44 87.8412 91.1372 1. 04004 1.40918 
.57 .43 88.046C) 90.8710 1.04785 1.42639 
. 98 .42 88.2471 90.5990 1.05615 1.44336 
. 59 .4 1 88. 4514 90.31 II 1. 064 70 1.46094 
. 60 .40 88. 6529 90.0149 1.0739 7 1.47827 
. 6 1 . 39 88.8 509 89. 7117 1.08374 1.49536 
. 62 .38 39.0506 89.3925 1.09424 1.51270 

38 
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Myers and Carter - Problem No. 1  

Weighting. Factors  

The tabular output for this problem is shown in Table 3-5. Th! '  

interval on the weights is progressively reduced from 0.1 to 0.001 as 

the region of interest is refined. The last tabulation is shown in 

Table 5. Finer incrementing can be easily accomplished to any degree 

and an appropriate operating level determined. 

In generating the actual data, different starting points and 

initial step sizes were used with virtually the same results found in 

all cases. In the table illustrated the starting point was 0.,0.,0., 

and the initial step size was 0.01. Large variations in starting points, 

from feasible to infeasible, and variation of starting step sizes front 

0.1 to 0.001 made a variation of less than 0.2 seconds of computer time. 

This is used to indicate only the small, absolute times involved. 

parisons between computer times for different runs has not been attempted 

due to the relative shortness of time for any run-two seconds being an 

upper limit-and the wide variation in times not necessarily due to the 

program or the problem. It appears that the implicit weight factor from 

the original work were w 1  between .687 and .688 and w 2  between .313 and 

.312. 

Explicit Constraint Consideration 

Some results of maximizing yp  while treating y s  as an explicit 

constraint and not allowing y s  to be larger than 65.0 are shown in Table 

11 in Appendix B. The value of y p  = 73.9145 compares favorably with the 

optimum value found by Myers and Carter of 74.04, while their value fo lr, 

y s  is 65.23, a violation of the constraint. The y s  value found with the 



Table 3. Weighting Function Results for the Myers and Carter 
Problem Ns. 1 - Increment = 0.1 

1)/EIGHTS 	YP 	 YS 	 OPTIMAL X 

. 00 1.00 59.2991 52. 7913 . 5199 -1. 1 781 .0813 

. 1 0 .90 61.7870 52.9141 . 61 1 7 -1.1293 .1258 

.20 .80 63.5690 53.2266 .6926 -1.0658 .1201 

. 30 . 70 65. 101 7 53. 7388 . 7857 -1. 0035 .0809 

.40 .60 66.6197 54.5621 .9 1 62 -.9549 .0074 

. 50 .50 68.3334 55.9824 1. 122 7 -.9406 -. 1102 

. 60 .40 70.6326 58.8522 1.4770 -.9920 -.3031 

. 70 .30 74. 6132 66. 5180 2. 1889 -1. 208 6 -. 6625 

.80 . 20 77.2015 73. 6279 2. 5000 -1. 1365 -.9324 

.90 . 10 78.0257 78.3282 2. 5000 -.8 701 - 1. 1000 

1.00 .00 78.3239 84.0932 2. 5000 -. 58 63 -1.2766 
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Table 4, Weighting Function Results for the Myers and Carter 
Problem No. 1 - Increment = 0.01 

GH TS 

. 60 	.40 

. 6 1 	. 39 

. 62 	. 38 

. 63 	. 3 7 

YP 

70. 6330 

70.9219 

71. 2345 

71. 5594 

YS 

58.8529 

59. 2955 

59. 79 50 

60. 3369 

1.4773 

1. 5254 

1.5797 

1.6365 

OPTIMAL X 

-.9924 

-1. 002 7 

-1.0168 

-1.0320 

-.3031 

-. 3289 

-.3566 

-.3859 

. 64 .36 71.9091 60.9458 1. 6988 -1. 0500 -.41 74 

. 65 . 35 72.2690 61.5997 1. 761 7 -1. 0 672 -.4500 

. 6 6 .34 72. 6761 62. 372 6 1.8357 -1.0906 -.48 73 

. 6 7 .33 73. 0924 63. 1990 1.909 6 - 1. 1 125 -. 524 

. 32 73. 5745 64. 2009 1.9992 - 1. 1438 -• 5688 

. 69 . 31 74. 0637 65.2655 2. 08 79 - 1. 1 730 -.6129 

. 70 .30 74.6131 66.5178 2.1883 -1.2078 -.6625 

41 
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Table 5, Weighting Function Results for the Myers and Carter 
Problem No. 1 - Increment = 0.001 

GiEd G1-1 TS YP YS OPTIMAL X 

. 680 	. 320 73.5 745 61i. 2009 1.9992 - 1. 1438 -. 5688 

. 68 1 	. 3 19 73. 6128 64. 28 24 2. 005 7 -1. 1453 5 719 

. 682 	. 3 18 73. 6606 64. 38 48 2.0146 -.1. 1486 -.5766 

. 683 31 7 73. 7074 64.4852 2. 022 7 -1. 1 508 *. 5807 

. 684 	. 31 6 73. 7627 64. 6048 2. 0328 -1. 1543 -. 58 59 

. 685 	. 31 5 73.8070 64. 70 08 2.0406 -1. 1 566 -.5898 

. 686 	. 3 14 73.8 619 64.8204 2. 0514 -1. 1 609 -. 594 

. 68 7 . 3 1 3 73.9 122 64.9307 2. 0605 1 641 -. 5992 11. 

. 688 312 73.9559 65.0268 2.0680 -1.1 660 -.603i 

. 689 	. 3 1 1 74. 0 1 4 6 65. 1 5 65 2. 0 79 3 - 1 . 1 705 -•605 6 

. 69 0. 3 1 0 74.0637 65.2655 2. 08 79 1. 1 730 -.6129 
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modified algorithm is 64.9997, within the constraint value imposed. The 

data in Table 11 seems to indicate a local optimum in the vicinity of 

1.5,-0.5,-0.6. This is to be expected since the primary response 	not 

concave. 

It appears that the problem encountered in the Umland and Smith 

problem is not found here. The constraints apparently do not tend 

cause a one-directional improvement. 

A feasible starting point must be available and Table 11 indicates 

the majority of feasible starting positions to the nearest whole number. 

The constraint in no case is violated. In instances where the secondary 

response level is absolute, this becomes an important feature. 

Implicit Constraint Consideration  

Example results of implicit treatment of the constraints are 

shown in Table 12, Appendix B. The different penalty values are used 

to illustrate that the variation in the penalty value only serves to, 

alter the degree to which a violation of a constraint occurs. For the 

1 ,  
penalty set equal to 100, for example, constraint violations are only 

as large as 0.0039, while for the penalty equal to 1000, the largest 

violation is 0.0007. The best values achieved using this method is 

yp  - 73.9442 and y s  = 65.0022. The values again are comparable to those 

found in the original work. The primary response value is slightly 

lower but the constraint is not violated to the same degree, 0.0022 in 

this case compared with 0.23 in the original work. A feasible starting 

point is not required for this method and it generally appears to yield 

quite good results. 
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Myers and Carter - Problem No. 2  

Weighting Factors  

The weighting function tabulation, Tables 13-16, Appendix B, 

appears somewhat inconclusive, since only four different points evolve. 

The answer is apparent when the response surfaces, shown in Figure. 5, 1 

 are inspected. The responses are such that, for maximizing the primary 

function, the secondary response, a hyperbolic function, can be unboOnd-

ed for either maximization or minimization. The imposition of a con--; 

straining relation on the y s  e.g., 84 < y s < 88, does not affect the 

unboundedness of the response. The only effective constraint is the one 

artificially imposed, 

2 	2 x i  + x 2  5_ 1 

The situation is further complicated by the fact that the contour of the 

imposed constraint closely parallels the primary response function cot-

tour in the 4th quadrant as illustrated in Figure 5. The result is a 

shown in Tables 13 and 14, where the optimum is achieved at only fourr 

points when the weights are incremented by 0.1. The point indicated in 

the table for values of w 1 between 0.1 and 0.6 closely corresponds to 

that found in the original work. A finer weighting scheme must be under-

taken between w l  = 0.7, w2  = 0.3 and w i  = 0.8, w2  = 0.2, as shown in 

Tables 15 and 16. 

Explicit Constraint Consideration  

The results of treating the secondary response and artificial con-

straint explicitly are shown in Table 17 in Appendix B. A situation 
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similar to that: which occurred in the explicit constraint consideration 

of the. Umiand and Smith problem, namely, a rounding effect of the second 

variable. The best point found is y p  = 67.5716 and ys  = 86.8056, both 

comparable to the Myers and Carter results. 

Implicit Constraint Consideration  

For this case, both the secondary response and the artificial 
H
on- 

straint were treated as penalty functions. The results are shown ,  

Table 18, Appendix B. The values for y p  are improved over other methods. 

The tendency appears for y s  to move to its lower limit, 84.0. In some 

instances either of the constraints are violated, but only marginally. 

Going along with what has been previously stated about this model, it 

seems that a rather larger increase in the primary response can be real-

ized at marginal violation of constraint. Again, it becomes a function 

of the judgement rendered by the decision-maker. 

Comparison of the Myers and Carter approach with the weighting,  

function method suggests an important aspect of the problem which de-

serves closer analysis, namely, marginal analysis. It is generally of 

importance to the decision-maker to be able to know what trade-offs an 
be made between the objective function and the constraint(s). For 

example, he may wish to study the increase in yield that can be realized 

at the expense of purity. Both of the approaches allow for such marginal 

analysis. In discussing this analysis emphasis will be on the Myers and 

Carter problem 111, although similar type analyses are equally applicable 

to any of the other problems. 

In the Myers and Carter approach determining trade-offs and 

operating conditions evolve basically again to a graphical analysis 
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From Figure (4) it is apparent that measuring the relationship between 

the: two responses is a simple matter of selecting one or the other of 

the responses to be of an acceptable level and reading the other re-

sponse from the plot shown. Similarly, for the operating conditiOns4 

the decision-maker enters the graph (Figure (3)) with an acceptable 

operating level for one response and reads the required operating values 

on the variables. Example values for the Myers and Carter problem 4#1 

are shown in Table 6. The results are very close to those obtained 

through the use of the weighting function as shown in Tables (3), (4), 

and (5). Extension to more than two responses would be impossible from 

a marginal analysis standpoint. The analysis using this approach is 

dependent upon the accuracy of the graphs generated and the accuracy to 

which they can be read. The weighting function approach, on the other 

hand, yields a tabulation directly of the values for all responses and 

the operating conditions on the independent variables as indicated 

the Tables (3), (4), and (5). 

Three Response Function  

The results of the use of the weighting function to the three 

response case are shown in Table 7. In Table 8 we can see the results 

of a small programming change which excludes points not found in the 

interval -1.5 to 1.5, the assumed design range constraints. The result 

is a reduction of listed solutions and a corresponding reduction of 

computer usage. The inclusion of the infeasible points in Table 7 is a 

result of computing at the extremes of the weight distribution. Based 

on the tabular form of the output, the decision-maker can decide what, 
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Table 6. Response Values and Operating Conditions for Myers and 
Carter Problem No. 1 obtained Graphically through the 
Myers and Carter Method 

x l  x2 x 3  

70.20 58.00 1 .35 -1,00 -0,25 

70.90 59.00 1,45 -1.00 -0.30 

71,40 60.00 1,60 -1,00 -0,35 

72.10 61,00 1,70 -105 -0.4p 

72,60 62.00 1.75 -1.10 -0, 

73.0o 63.00 1.85 -1,15 -0. 

73.50 64,00 1.90 -1.15 -0.60 

74.00 65,00 2.00 -1,20 -0.60 

74,30 66,00 2.10 -1,20 -0.65 

74,60 66.50 2.15 -1.20 -0.65 
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what weight range to further investigate, or simply choose the most pre-

ferred result from those listed. 

P. 



Table 7. Weighting Nmetien Results for the Throe-Response 
Problem - All Pelats 

4213ATS yli0L pLniT• COST 61DT1 ,1A+,. 	X 

• C.; .00 .04'3 - 21 91 ..)>. -. CIL.S"(o lik,,.... 	9 ....1,3. ....7.44 
.00 2.46 .036 -479.405 -62.53 23097.1 - 3. 47 15 J.:9;41 
.00 5.72 .032 240.701 9.72 23,339.6 -2.3674 2•3733  
.00 3.53 .023 554.43.3 43.69 "39343.2 -1.4140 2.0953 II' 
.00 11.44 .024 6.64.401 69.79 43673.3 -.3457 1.3262 
.1)0 14.30 .020 727.437 62.50 55434.2 -.4316 1.1600 
.00 17.16 .016 723.641 90.06 61969.3 .0477 - .77.31 
.00 20.02 .012 709.630 94.55 67363.3 .36 do .54.60 
.00 22.83 .003 634.365 97.11 73314.1 .0064 .3506 
.00 25.74 .004 661.107 96.39 73411.0 .91o0 .2219 
.00 23.60 .000 642.7,6 96 .77 63556.2 1.1396 .1406 
,06 .00 .036 -I559.55.3 -16 ,0.42 17027.5 - 4.6339 5.1261 
.06 2.36 .032 -177.751 -34.25 24739.4 -3.0004 3.3572 
.06 5.72 .026 339.493 26.66 34267.1 -1.9703 2.5443 
.06 6.56 .024 625.299 53.32 43469.4 -1.1639 1.0314 
.06 11.44 .02U 713.446 76.31 51769.3 -.3906 1.3144 
.06 14.30 .016 734.233 47 . 17 59154.2 -.1203 .9:132 
.06 17.16 .012 724.012 93.17 85761.2 ' .21449 .6500 
.06 20.02 .663 762.340 90.54 11353.9 .5367, .44J4 

.06 22.36 .004 679.690 93.23 77629.0 .0072 ;3360 

.06 25.74 .U00 662.731 ..-,,. 	.75 33351.6 1.115o ..2143 

.12 .00 .032 -1027.321 -115.29 19029.9 - 4.1723 4.5791 

.12 2.36 .023 71.663 - 9.35 27.1 57 .7 -2.6362 3.13,32 

.12 5.72 .024 50,3.114 41.61 37906.0 -1.5457 2.2268 

.12 3.53 .020 677.345 86.25 47302.6 - .4901 1.5420 

.12 11.44 .016 732.133 62.93 55759.6 -.331)3 1.1263 

.12 14.30 .012 735.635 91.17 63261.4 .9197 • 76 o7 

.12 17.16 .003 719.626 95.70 70113.3 .4912 .5492 

.12 20.02 .004 699.421 91.914 76041.0 .3092 .3393 

.12 22.43 .000 664.387 93.67 63214.4 1.0902 .2992 

.13 .00 .026 -532:335 -75.75 21245.9 -3.0130 4.3349 

.13 2.66 .024 274.242 12.53 31431.5 -2.2615 20674 

.13 5.72 .020 599.7, 34 54.70 41992.7 -1.3020 1.9241 

.13 3.56 .016 714.795 76.49 51501.0 -.0012 1.3331 

.16 11.44 .012 742.663 33.20 60133.5 -.0369  .9332 

.18 14.30 .01)6 735.965 94.46 63027.1 .4753 .0119 

.16 17.16 .004 719.304 97.55 75535.9 .7414 .4910 

.18 2u.02 .000 707.729 93.51 .33133.6 1.0625 .3937 

.24 .00 .024 -219.172 -41.43 24176.1 -3.1363 3 .95341.  

.24 2.36 .020 434.649 31.63 35450.3 =1.4670 2.4939 

.24 5.72 .016 667.629 66.20 46441.3 -.9417 1.8502 

.24 6.53 .012 739.654 43.65 56374.3 -.2931 1.1303 

.24 11.44 .003 749.647 92.03 85442.4 .2291 .6136 

.24 14.30 .004 740.366 96.93 74139.9 . bt)v 4 .0072 

.24 17.16 .060 73 2 .370 9o.22 63252.1 1.0336 .5036 

.30 .00 .020 74.433 -11.5'2 27776.2 -2.7111 3.0153 

.30 2.36 .016 553.465 4.3.40 39974-3 -1.4039 2.0303 

.30 5.72 .012 716.741 76.25 51314.3 -.0072 1.4010 

.30 3.53 .003 757.533 39.73 62142.3 .0393 .93 73 

.30 11.44 .004 700.304 95.93 73404.3 . 3..,4 .7413 

.30 14.30 .000 760.072 97.75 63614.7 1.0039 .0473 

.36 .00 .016 305.530 14.47 32010.4 ..4.4059 4.024 

.36 2.36 .012 651.314 63.22 45139.1 -1.0343 1.7342 

.36 5.72 .003 753.431 ..34.99 577/9.1 -.2137 1.1992 

.36 3.53 .004 777.965 94.51 70264.5 .426.) e399.) 

.36 11.44 .266' 739.267 96.99 3 4613 • 1 .9731 .792o 

.42 .00 .012 433.300 37.31 339/2.1 -1. 1 4/ 1 2.2363 

.42 2.36 .003 721.961 76•33 51/90.5 - .3949 1 • 4c.33 

.42 5.72 .004 739.791 92.15 01270.2 .3.32.7 1.0671 

.42 3.53 .1360 3'40.796 45.75 36-.50.1 ..-Ouc. .4320 

.43 .00 .304 620.343 5.5.1,9 43193.5 -1.,Wo2 i.JoUl 

.43 3.30 .004 737.433 37.43 029410.. ...43J3 1*31j3 

.43 5.72 .060 3 55.433 9 3. 51 90901.2 .10 1.44.:,4 

. 54 .1 , 0 .00,4 744.7,34 73 .04 34341 .3 - • 471-, 1 	•:-.)o.)._s 

.54 0 397.101 33 • 23 133909.4 1.1623 1.11/11 

.60 .03 .3136 954.6-4 40.34 19..1043. 4.2490 2.3494 
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Table 8. Weighting Function Results for the Three-Response 
Problem - Infeasible Points &eluded 

JEAGATS YlELE PUP1TY 1,007 X 

.00 14.30 .020 727.437 32.50 55434.2 -.3516 1.1000 

.00 17.16 .016 726.041 90.06 61969.3 . .01477 .7761 

.DC 20.02 .012 709.63 .0 94.55 67663.6 .3310 .5335 

.00 22.36 .003 634.665 97.11 73314.1 .0664 .3506 

.00 25.74 .004 661.107 93.39 76471.3 .910u :2219 

.00 26.60 .000 642.766 93.77 60556.2 1.1390 .14u6 

.06 14.30 .016 734.233 67.17 59154.2 -.i2.3 .93:-)2 

.06 17.16 .012 724.012 93.17 63761.2 '.2009 (3530 

.06 20.32 .004 702.240 96.54 71653.9 .5369 .4434 

.06 22.36 .004 679.69U 93.23 77029.0 .6672 .3000 

..06 25.74 .000 662.731 96.75 63351.6 1.115o :2146 

.12 11.44 .016 732.163 62.93 55159.6 -.30u5 1:1203 

.12 14.30 .012 735.635 91.17 63261.4 . .1147 :7667 

.12 17.16 .006 719.626 95.70 70113.3 .4'912 .549.2 

.12 20.02 .004 699.421 97.96 76641.0 .6092 :3695 

.12 22.63 .000 634.367 96.67 63214.4 1.0902 .4992  

.13 11.44 .012 742.663 36.20 60166.5 -.0609 .9502 

.13 14.30 .004 735.965 94.43 66027.1 . .3750 .6719 

.13 17.16 .004 719.609 97.55 75505.9 .7414 .4910 

.14 20.02 .000 707.729 96.51 33153.6 1.0025 .3957 

.24 4.53 .012 739.654 63.65 56374.3 -.2937 1.1500 

.24 11.44 .006 749.647 92.63 65442.4 .2291 .6156 

.24 14.30 .004 740.360 96.93 74139.9 .6594 .6072 

.24 17.16 .000 732.670 93.22 33252.1 1.0336 :5066 

.30 6.56 .006 757.563 69.76 6214.3 .0396 :9675 

.30 11.44 .004 760.304 95.96 72464.3 .5564 :7416 	. 

.30 14.30 .030 760.072 97.75 63614.7 1.34)39 .5376 

.36 5.72 .006 753.401 64.99 57779.1 -.2167 1.1992 

.36 3.53 .004 777.965 94.51 70264.5 '.4263 . .3994 

.36 11.44 .300 739.267 96.99 64516.1 .9741 .7926 

.42 5.72 .004 76.791 92.15 67276.2 .2527 1.0671 

.42 6.56 .000 620.796 95.75 66456.1 .9026 :9326 

.46 5.72 .000 655.466 93.51 90961.2 .9626 
-. 	. 
1.2256 

hl 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Certain conclusions arise from the investigation conducted. 

one nonlinear programming technique or one problem formulation can be 

shown to be best for all situations. The intent here has only been to 

explore several formulations for a specific algorithm, and to investi-

gate the results. 

The Type IA formulation lends itself to a firm fixing of a con-

straint level for any secondary response. The algorithm chosen here 

does not give the best results when used in conjunction with this ex7 

plicit manner of considering constraints. Application of nonlinear 

programming algorithms specifically designed for the constrained problem 

might prove a fruitful area for further investigation. 

Implicit consideration of constraints, as in Type IB, yields 

better results for optimum operating conditions then does either the 

Type IA, investigated here, or the original method used, usually 

Lagrange multipliers. As in the latter case, minor constraint viola-

tions occur. From the response surface literature it becomes evident 

that such violations are of minimal importance. Since the overall re-

sults obtained for the implicitly considered constraint problem are 

better than those of the explicitly considered constraint problem it 

appears that the former is to be preferred generally. While the investi- ] 

gation conducted here does not consider other types of algorithms it' 

51 
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seems that for the algorithm used here, a modified Hooke and Jeeves 

Pattern Search Technique, if some responses are to be restated and treat-

ed as constraints, then implicit treatment of such constraints is to be 

preferred to explicit treatment. 

Of the models investigated, and in the absence of specific re' 

quirements on the responses, the weighting function approach proVide' 

possibly the best approach to the multiple response problem. The ap-

proach is not confined to a fixed level for the secondary response as 

in the Umland and Smith approach. It also avoids the inherent inac- 

curacy of graphical analysis, as that of Myers and Carter, while pos-

sessing the attributes of simplicity and ease of marginal analysis. The 

tabular form of the results lends itself to simple evaluation of trade-

off values by the decision-maker for two responses, and to a certain 

extent, larger numbers of responses. While such analysis can be ac-

complished with other methods, notably Myers and Carter, that method'' 
ii 

remains a graphical solution. While relatively accurate data can bej, 

extracted from graphs, and the nature of the response surface proble 

does not demand extreme accuracy, the method of eventually arriving at 
such simple graphs is quite complex. The weighting function approach 

reduces the highly subjective area of decision making to a readily avail-

able tabular form and the approach is relatively simple for the typical 

response surface problem found in the literature. Discussion of the 

extension of the weighting function approach to problems with a larger 

number of objective functions has been undertaken and the conclusion 

seems to be that, while the extension is difficult, it is not impossible. 

The same conclusion cannot be arrived at when previous work in the area 
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is considered. The approach of Myers and Carter is dependent upon the 

nature of the fitted curves and, as such, application may be impossible 

for some problems. Their method of holding certain of the Lagrange 

multipliers fixed while varying others presents the same sort of dif-

ficulty as the weighting function with respect to number of iterations . 

Additionally, there is an intuitive interpretation and appeal for - thet . 

weighted objective function which might aid the decision-maker. 

Recommendations for continuation of this line of investigation 

fall into two categories; (1) application of different nonlinear program- 
, 

ming algorithms, and (2) development of different problem formulations. 

With respect to the first, it seems that application of different algo-

rithms could be fruitful from the aspect of determining degrees of ef-

ficiency measured against degrees of complexity. Particularly in the 

area of constrained optimization, algorithms specifically designed to 

handle the constrained case provide an entirely new approach. It would 

seem that gradient techniques, Zoutendijk's Methods of Feasible Direc-'. 

tions (19), or Fiacco and McCormick's (5) Penalty function approaches4 

provide possibilities for exploration. However in such application, 

simplicity and speed, especially in view of the typical response surface 

problem size, may be sacrificed. 

Other problem formulations need also to be investigated. Partic-

ularly the interactive techniques and their application to larger scale 

problems. Geoffrion (7), for instance, deserves consideration. In his 

approach a preference function receives information from the local func-

tions, as to both function values and operating conditions. Decisions 

are then made relative to new data based on this information which is 
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then distributed to the local functions and the cycle continues. Parts 

of this approach have been used here particularly the assignment of the 

weights involved. Completely interactive techniques have not been in-

vestigated and any extension of the methods shown here to large scale 

problems must include such methods. 
is 



APPENDIX A 

COMPUTER PROGRAMS  - MODIFIED HOOKS-JEEVES  PATTERN SEARCH 

Wsighting Function Model - Umland and Smith Problem  

DI MEN SION X< 2,2), G( 13), SC 2), DC 2,2),XMC 2,2000),Y( 2) 
X, PC 2), X 1( 2,2), PC 2) 

A=0.0 
P=1.0 
M=0 
KL= 1 
READ( 5,21)Z, STEP, PH, GH,JTEMP,JT 

26 FORMAT( 	3X, F3.1,5X, F3.1) 
Di) 2 ,J= 1,2 
SC )=STEP 

2 CONTINUE 
HEAD( 5,21)(XM( I ,K.L),I=1,2) 
DO 114 J=1,2 
PEAD( 5,21) < DC I , J ), I =1 2) 

21 FORMAT( ) 
114 CONTINUE 
115 JK= 10 

K 13=KL+ 1 
DO 34 1=1,2 
XMC I,KB)=XMCI,KL) 

34 CONTINUE 
6 J=1 

CALL ACCEL( A, B,J,JK,G,Z,ZKL, ZTEMP,X14, Kb) 
110 DO 81 J=1,2 

DO 111 1=1,2 
X( I,J)=XMC I,K13)+C S(J)*D(I,J) ) 

111 CONTINUE 
80 CALL EVAL(X,Y,J, 	p) 

9 FORMAT( 5X, F20• 10,5X, I 	) 
I FCJT• GT. J ) GO TO 11 
GO TO 50 

11 J T=JT- 1 
GO TO 82 

50 I FCYCJ ) •LE, Z ) GO TO 60 
?=Y(J) 
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82 DO 32 I =1, 2 
XM(I,KB)=XCI,d) 

32 CONTINUE 
GO TO 81 

60 I F(JT.L.T•Ll) GO TO 56 
GO TO 57 

56 JT=J 
MC=2 
GO TO 55 

57 J TrIdT+1 
MC=-1 

55 DO 31 N=1, 2 
X ICN,J)=X(N,J)-(MC*S(J)*D<N,J)) 
X (N,J)=X 1(N,J) 

31 CONTINUE 
GO TO 8 0 

27 FORMAT( 	3( F20. 10) ) 
81 CONTINUE 

T= 0 
M=M+ 1 
I FCI<COTINT. En. 1)60 TO 150 
I F(Z.LE•ZKL) GO TO 70 
GO TO 68 

150 I FC .LE..ZKL) GO TO 71 
68 K S=KB+ 1 

DO 37 I =1, 2 
XM( I, KS) =( 2*XMC I,KB))-XM( KL) 
Xm( I,XL)=XMC I ,KE5) 
XM(I,KB)=XMCI,KS) 

K CO UN T=1 
37 CONTINUE 

GO TO 6 
71 I F(ZTEMP.LE.ZKL) GO TO 72 

ZKL=ZIEMP 
Z =Z TEMP 
GO TO 68 

72 DO 38 I=1,2 
XM( I,K13)=XM( I,KL) 
K COUNT= 0 

38 CONTINUE. 
GO TO 6 

70 DO 112 ,..1=1, 2 
SC ,J)=. 5*S(d ) 

112 CONTINUE 
dT-= 0 
DO 113 d=1, 2 
I FC S(d). GT. GEO GO TO 110 

113 CONTINUE 

56 
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CALL EVAL(X,Y, A,S, 0, P) 
I F(NB. EQ. 1) GO TO 500 
GPI TE( 6, 52) Allis 0( ti), P(J), 001( I ,KB), 1=1, 2) 
N13=1 
GO TO 501 

500 WRITE( 6, 53)A, B, 0(J), P(J), (XM( I,KB), 1=1, 2) 
52 FORMAT(9X, 	GHTS 7X, 'YP',9X, 'YS °, I 3X, 'OPTIAI., 	"4" 

2( / ),8X, F4.2, IX, F4.2, 4X, F7. 4,4X, F7.4, 2X, 2( El 0. 5) ) 
53 FORMAT(0, 8X, F4. 2,1X, F4. 2,4X, F7. 4/ 4X, F7.4, 2X, 2( FI O. 5)) 
23 FORMAT( 3( F20. 6) ) 
24 FORMAT( 2( E20. 6) , 4X, 18,4X, I 4) 

501 F-1=A+. 1 
= 	. 1 

I F( A. GE. 1. 0) GO TO 88 
Z=-100000000 
DO 116 I=1,2 
XM( I,KL)=0. 0 

116 CONTINUE' 
K CO UN T=0 
DO 117 J=1,2 
S (4 ) = STEP 

117 CONTINUE 
J T=0 
GO TO 115 

88 END 

SUPPOUTINF ACCEL( A,13,J,JK, G, 1,ZKL,ZTEMP,XM,KR), 
DIMENSION XM( 2, 2000),X( 2,2), G( 13),XC( 2) 
DO 82 1=1, 2 
X0( I ) =XM ( 1, K B) 

12 FOFMAT( 2( F15. 7) ) 
X( I,J)=XC( I ) 

82 CONTINUE 
YK=( ( 55.84+ ( 7. 31*XC( 1) )+( 26. 65*XG( 2) )—( 3. 03*(XC( 1) 

X**2) ) ( 6.9 6*()(C( 2)**2) )+(2. 69*XC( 1)*XC( 2) ) )*A) 
X+( E.3*(85. 72-1-( 21.85*XC( 1) )4-(8. 59*XC( 2) )...(9. 2*(XC( 1) 
X**2) ) ( 5.18*(XC( 2)**2) )...( 6. 26*XC( I )*XC( 2) ) ) ) 

I F(JK. E0. 10) GO TO 47 
ZTEMP=YK 
GO TO 10 

4 7 Z:=YK 
ZKL=7, 
,a/l< 

10 FETUIRN 
END 
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SUBROUTINE EVALCX,Y.,J) 	B.," O.. P> 
DIMENSION X(2/ 2), (aC2),P(2),YC 2) 
61(J)=55.84“ 7.31*XC 1,d))+( 26. 65*X(2,J))-(3.03*(X( 1,J) 

X**2))-( 6.96*(X( 2,J)**2))+C 2. 69*X( I,J)*X(2,J)) 
P(d)=85. 72+(21.85*X(1,J))+(8.59*X(2,J))-(9.2*(XC 1,JY 

X**2))-( 58 18*(X(2,t1)**2))-( 6.26,1cX( 1,J)*X(2,/i)) 
Y(J)=(A*O(J))+CB*PCJ)) 
RETURN 
END 
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p. 

DIMENSION X( 3,3), 5( 3), L)( 3, 3) ,XM( 3,2000),Y( 3),X1( 3, 3) 
X, PC 3) 

N=0 
KL= I 
k EA D( 5,21 )Z, STEP, PR, GR, J TEM P, J T 

26 FOPMAT( /, 3X, F3.1,5X, F3.1) 
DO 2 J=1,3 
5(J)=STEP 

2 CONTINUE 
PEAD( 5,21) (XM( I , KL), I =1,3) 
DO 114 J=1,3 
READ( 5,21) ( D( 

1 FORMAT( ) 
114 CONTINUE 
115 JK=10 

C E3=KL+ 1 
On 3 la T 1 
XM( I ,K1:3)=Xt.1( I ,KL) 
:1=1 
X(I,J)=XM(I,KB) 

34 CONTINUE 
J=1 

6 GALL EVAL(X, ZTEMP, 1KL,Y,J,JK, P) 
110 DO 31 J=1, 3 

DO 111 1=1,3 
X( I ,J )=XM( I ,KB)+( S(J)*D( I ,J ) ) 

111 CONTINUE 
DO 33 1=1,3 
I F(X(I,J). 	2.5)X(I,J)=2.5 

F(X(1,4 ).LT.-2.5)X( I,J)=-2.5 
33 CONTINUE 
BO CALL EVAL (X, Z., ZTEMP,Z1-(1.,Y,J,JK, P) 

I F(dT. 	) 140 TO 11 
GO TO 50 

11 J T=J T® 1 
140 TO 82 

50 I F(Y Cti ).LE.7.) GO TO 60 
I F ( P( ) 	. 0* 0) GO TO 60 
Z =Y(J) 

R2 DO 32 I =1, 3 

XMC J, KB)=X( I, J) 
32 CONTINUE 

GO TO 31 
60 I F(JT.LT.J) GO TO 56 

GO TO 57 



131119104,111,601IMINANIL 

5 6 
M!%= I 
CO TO SS 

37 ti TL-1,1T+ 1 
MC= 0 

55 DO 31 N= 1, 3 
(N,d)=XM(N,KB).-.(MC*S(J)*D(N,d 

X (N,t1 )=X 1(1\1,t,l) 
31 CONTINUE 

00 TO 8 0 
27 E0 RViP:T ( , 3( .F2'0. 10) ) 
81 CONTINUE 

4.11T= 0 
M=M+ 1 
I 	K CO ONT. E0. 1) 00 TO 150 
I 	E. 7, L GO TO 70 
GO TO 68 

1 50 I E( .1_, 	7, Kt, ) GO TO 71 
68 KS= K H+ 1 

DO 37 I = 1, 3 
Xt1 ( I ,1-C 	=( 2. XM( I ,1CP) ) -XM( I , IKL) 

F- (XM( 	GT* 2. 5)XN( I AKS)=2e 5 
I E(X.M( I ,K 	 5)XM( I,KS) =-2. 5 
XM( I,KL)=X11( I,K9) 
XM( I,K'i3)=XP1( I,K5) 
x( .1 J o) =XM ( 

37 CONTINUE 
FC GO UN T=1 
ZKL=Z 

7 7 JK=8 
GO TO 6 

71 I E( Z TEMP. 1, E. ZKL) GO TO 72 
ZKL=ZTEMP 
7...=Z TEMP 
GO TO 68 

72 00 38 I =1, 3 
XM( I,KB)=XM( I ,KL) 

( 	=XN( I, KB) 
1,( CO UN T=0 

38 CONTINUE 
tiK=8 
GO TO 6 

70 DO 112 QJ= 1, 3 
S( 	=. 5*SC...1) 

1 12 CONTINUE 

60 



J T C 
DO 113 J:=-1/ 3 

F( !-;( ) • GT • 	) 
113 CONTINUE 

CALL. EVAL(X/ Z0 Z 
PD=P(t.1)+ 65. 
WRITE( 6, 53)Y(J) 

53 FORMAT( 2X/ 	' 
1,JPI TE( e, 54) (XM( 

54 FO A T ( 3X / '0 PT I 
23 FORMAT( 3( F20.6) 

1JPI TE( 	24)Z, Y( 
24 FORMAT( 2( F20.6) 

END 

GO TO 110 

TEMPIZKL/Y/J/JK/ P) 
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• PD 
/ F10.4/ 5X/ 'YS I/ F10.4) 
I/KR)/1=1/ 3) 
MAL X= 1 / 3( F12i 5) ) 

J)/M 
/ 4X/18/ 4X/14) 

 

SURPOUTIME EVAL(X/1/ZTEM13 /ZKL/Y/d/JK/ P) 
DIMENSION X( 3/ 3)/ P( 3),Y( 3) 
Y(J)=65039+(9. 24*X( 1/J))+( 6. 36*X( 2/J))+( 5. 22*X(3/t.1))-- 

X ( 7•23*(X( 	 7076*(X( 2/t1 )**2))•-(13•11*(X( 3/ti) 
X**2))-(13•68*X( 1/J)*X(2/J))-.(18•92*X( 1/t1 )*X( 3/J) ) 
X-.< 14. 68*X( 2,J )*X( 3p,i) 

P(t1)=.-80 5S+(40 65*X( Lot.) )+(8039*X(2,J))+(20 56*X( 3,J) -.)+ 
X( 5. 2.5*(X( Led )**2) )4- (5. 62*(X( 	)**2) )+ (40 22*(X( 3,J) 
X**2))+(80 74*X( 1,J)*X(2sJ))+(2032*X( 1p(J)*X(30J))+(30 
X>OCC 2,J )*X( 3,J)) 

I F(JK. EO• 10)GO TO 47 
F ( tIK • E • ) GO TO 10 

I V( P ( J) GT. O. 0) GO TO 11 
TEMP=YCJ ) 

12 JK=.9 
GO TO 10 

47 "?.;=Y(J) 
ZKL=7- 
JK=9 
GO TO 10 

11 7, TEMP=-.100000 
GO TO 12 

23 FORMAT( 5){, 2( F2O. 10)) 
0 OETURN 

END 
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imoilciL Caul:, traint Considerati 1°1 	er s amd Carter NO,,, ,2 

DI MEN 51 ON X(2, 2),P PC 2) , SC 2) 	2, 2), XM( 2, 2000),,,,y<f?) 
X ,N 2) , X IC 2,2) 

0 
1,(1.-= 

'F'Al,) ,( 5., 21) 	 STEP, PR, GH,3 TEMP, t..1 T 1iS E.  
1:;'n F-014 ( /, 3X, F3. I, 5X, F3, I) 

2 

P 	
) 

CON TI NUE 
HPI3JC 5, 2 1 ) C XM C I,KL ) 	=1,2) 
DO 1141 	=1,2 

EA1.;'( 5,21) ( D ( 	) 1=1,2) 
i FO HM1( ) 
.4 (1)1\5 T N UF.; 

1 I 

DO 341 I = 1, 2 
KILO =XM ( I, KL„ 

X ( I 9,,' -FM 1,XB) 
34 com LW 5E 

.1= 
6 C 	 ( X, 7, 7TE04P, 	L, 	3K, P, C4) 

1.)0 8; 	=1, 2 
DO 11  
X(1.,,I)=XN(I,Kb)+( 5(3)*D(1,3)) 

111 CONTINUE 
00 CALL EVAL(X,Z,ZTFMP,IKL,Yod,JK, P, 

9 FORMAT( 5X, F20.10,5X, I 2, ) 
I F(1T. rT. 	(4) TO 11 
CO TO 50 

1 	=;,.,1 
GO TO 02 

50 I ( Y ( ) 	E. 7, ) GO TO 60 
Z=Y(tj) 

82 DO 32 I =1, 2 
XM( Iii-(H)=X( 1,3) 

32 CONTINUE 
CO TO Fi 1 

60 I F( L./T. LT.L.1 ) GO TO 56 



CO TO 57 
56 JT=J 

MC=2 
GO TO 55 

57 JT =J T+ 
MC=-1 

55 DO 31 N=1,2 
X 1 (N,J)=X(N,J)—(MC*S(J)*DCN,J)) 
X(N,J)=X1(N,J) 

31 CONTINUE 
GO TO 80 

27 FORMAT( /, 3( F20,10) ) 
81 CONTINUE 

JT= 0 
M=M+ 1 

FC KCOUNT. EQ. 1) GO TO 150 
I 17 ( Z.LE.ZKL) GO TO 70 
CO TO 68 

150 I 1."( 	L E. Z KL ) GO TO 71 
68 S= K I 

DO 37 1=1,2 
XM( 1,KS)=( 2*XMC I,KB) )—XM( IoKL) 
XM( I,KL)=XMC 
XM( I,KH)=XM( IsKS) 
ZKL=1 
KCOUNT=1 

37 CONTINUE 
diK 
GO TO 6 

71 IF( ZTEMP.LE•ZKL) GO TO 72 
ZKL=ZTEMP 
Z=Z TEMP 
GO TO 68 

72 DO 38 1=1,2 
XM( I,K13)=XM( IsKL) 
X( 1,J )=XMC I,KB) 
K CO UN T=0 

38 CONTINUE 
JK=8 
GO TO 6 

70 DO 112 J=1,2 
SCJ)=. 5*S(J) 

112 CONTINUE 
JT= 0 
DO 113 J=1,2 

63 



I F( S(.1). GT. GH ) GO TO 110 
113 (1)NTINUE 

CALL EVAL(X,Z, ZTEMP,ZKL,Y,J,JK,P, 0) 
PE)=BASE+P(til 
GRITE( 6, 53) Q(41 ) PI) 

53 FORMAT( 2X, 'YP= ', F10.4, 5X, 'YS= 	F10.4) 
VT(' TE( 6, 54) (XM( I,K13), I=1, 2) 

54 FO RMAT( 3X, 'OPTIMAL X= 'a 3( Fl 2. 5) ) 
23 FORMAT( 3( F20. 6) ) 

R I TE ( 6, 59 ) Z M 
59 FORMAT( 5X, 'YTOT= F10.5, 10X, I 10) 
24 FORMAT( 2( F20. 6), 4X, 18, 4X, I 4) 

END 

SUaROUTINE EVAL(X, Z,Z TEMP, ZKL,Y,t1,,...1K, P, Q) 
DIMENSION X( 2, 2), 0(2), TC 2),R( 2), PC 2),Y( 2) 
0(4)=53. 69+( 7.26-*X( 1,J))-( 10. 33*X( 2,J) )+( 7. 22*(X 

X( 1,t1)**2))+( 6.43*(X(2,J)**2))+( 11.36*X( 1,J)*X( 2,J)) 
R(d)=- 1•83-( 1. 01*X( 1,J) )-..(8. 61*X( 2,J))+(1.4*(X 

X( 1,J)**2) )-(8e 76*(X(2,J)**2) )•..( 7. 2*X( 1,t..1)*X( 2,J)) 
R(d)=-4.0+P(J) 
T(J)=-1+(X( 1,J)**2)+(X( 2,d)**2) 
I F( P(J) 	O. 0) GO TO 71 
VAL1=0 

8 1 I F( H( ) • GT. 0.0) CO TO 72 
VAL2=0 

82 I F( T(d). GT. O. 0) GO TO 73 
VAL3= 0 

83 VAL= VALI+ VAL2+ VAL3 
GO TO 21 

71 VAL1=P(J)**2 
TEMP,-, - 100000000 

GO TO 81 
72 VAL 2=R( ,J )**2 

TEMP=- 1 00000000 
CO TO 82 

73 VAL3=TCL1)**2 
TEMP=-- 1 0000000 

GO TO 83 
21 Y(d)=0(J)-( 1000*VAL) 

I F( JK• EO. 1 0) GO TO 47 
I F(3K.E0•9)GO TO 10 

TEMP=Y ( J ) 
12 JK=9 

GO TO 10 
4 7 Z 	(J) 

ZKL=Z 
JK=9 

10 R ET URN 
END 
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APPENDIX B 

TABLES OF RESULTS 

Table 9, Explicit Constraint Condideration for Umland-Smith Probleni 

Step 	Start Pt. yp iter. 

Ys  '" 90.0% 

0,1 	0.0,1.0 88.6441 90.0001 1,03359 1.50000 26 
0.5,0.5 88.4564 90.0007 1.20527 1.40000 27 

0.01 	1.22,0.35 88.6568 90,0002 1.05162 1.49100 45 
0.5,0.5 87.8472 90.0004 1.32656 1.31000 31 
1,9,-0,023 86,3742 90.0010 1.47894 1.17300 29 
0,4,1.3 88.4842 90.0011 1,19628 1.40600 34 
0.3,0.6 88.6079 90.0004 1.14297 1.44000 30 
1.01,-0.35 88.6621 90.0011 1.07266 1.48000 44 

202112,5.0L5 87,6731 90.0009 1.35032 1,29040,  52 

Ys 	92. 5% 

0.5 	1.0,0.0 83.6472 92.5005 1.44019 1.00000 3C 
0.1 	1.0,0.0 81.9840 92,5004 1.53242 0.90000 27 

0. 7 ,0.7 86.0908 92.5006 1.20332 1.20000 21 
0.7,0.6 85,0380 92.5008 1.33301 1,10000 22 , 

0.01 	1,o,n.o 81.1059 92.5013 1.57225 0.82231 27 
0 .5, 0 .5 85.8748 92.5006 1.23722 1.17600 34 
0.6,1:1 86.5219 92.5005 0.90491 1.34700 24 
1.4,0,344 86.5857 92.5008 1.07603 1,28000 85 
0.7,0.7 85.9219 92.5005 	1.23034 	1.18100 28 
211, 0 . 6  85,2224 2.2M2.-_-1.A22.114.1 222 

ars  I' 95.0% 

0.5 	1.0,0.5 82.9725 95.0000 1.13367 1.00000 30 
1,2,0.2 82.3168 95.0004 1.21196 0.94609 37 

0.1 	1.2,0.2 82.9600 95.0008 1.12969 1.00000 24 
1,0 0 0.5 79.9925 95.0010 1.37969 0.80000 21 

0.01 	1,2 1 0.2 82.7399 95.0002 1.16234 0.98000 39 
1.0,1.0 83.3139 95.0001 1.05359 1,04000 19 
0.5,0,8 83.4485 95.0001 0.94438 1.08000 30 
1.0,0.5 80.5246 95.0012 1,34953 0.83000 30 
1,22,0.351 82.2655 95.0002 1.21736 0.94225 57 

0.01 	1.2,0.2 81.4626 95.0000 1.28700 0.88700 76 
1 
1 1 
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Table 10. Implicit Constraint Consideration for Umland-Smith Problem 

Step Start Pt. x
1  x2  iter, 

Ys  90.0% 

88.6442 
88,6443 
88.551 3 
88.6489 
88.5180 
88.6623 
87.7602 
87.7602 

89.9994 
89.9994 
89.9999 
89.9997 
89.9997 
89.9997 
89.9998 
89.9998 

1.03369 
1.03369 
1,17163 
1.10962 
1,18480 
1.08223 
1.33887 
1.33887 

1.50000 
1,50000 
1,42217 
1,45972  
1,41367 
1.47497 
1.30000 
1.30000 

35 
22 
322 
559 
97 
98 
29 
36 

0.5 

0,1 

7.0,3.0 
0 .5, 0 .5 
-3.0,0.7 
0,0,0.0 
0.5,0.5 
7.0,3,0 
0,0,0.0 
- 7. 0 , 0.7 

y3  ?k 92.5% 

0.5 0,5,0.5 86,6441 92.4998 1.00562 1.31055 72 
7.0,3.0 86,6441 92.4998 1,00562 1.31055 86 
-3.0,0.7 86.6375 92.4998 1.02649 1.30127 /7 
0.0,0.0 86.6441 92.4998 1.00562 1.31055 

0,1 0.5,0.5 86,5428 92.4998 1.09142 1.26879 1 3 
f 

7,0,3.0 86.6357 92.4999 1.02930 1.29997 5 
-3.0,0.7 86.6426 92.4990 0.99375 1.31563 9 
0.0,0.0 86.6359 92.4996 1.02930 1,30000. 1 

Ys 95 . 0°% 
0,5 7.0,3.0 83.4562 94.9992 0.96643 1.07373 719 

0.0,0.0 83.4562 94.9992 0.96643 1.07373 713 
-3.0,0.7 83.4543 94.9993 0.97473 1.07109 72 
0.5 ,0.5 83.4562 94.9992 0.96643 1.07373 705 

0,1 0.0,0.0 82.9606 94.9998 1.12988 1,00000 25 
7.0,3,0 82.9724 94.9999 1.12793 1.00114 100 
0.5,0.5 82,9606 94.9998 1.12988 1.00000 22 
-3.0,0.7 82.9606 94.9998 1.12988 1.00000 33 
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Table 11, explicit Constraint Consideration for Myers -Carter.Proble 
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Step Start Pt. Yp YS  xi 
x2 

iter, 

0.5 -1. ,-1.,0, 72.9136 65,0000 1.5000 -.4922 -.6018 32 
0 0 1 0„0,0. 73.7860 65.0000 1,8631 -.9078 -.6072 86 
0.01 0.0,0.,0. 72.9132 64.9999 1.5000 -.4925 -.6064 145 

0„0„1.0 73.0345 64.9998 1,5390 -.5352 -.6118 133 
0„0„-1.0 73.1507 65.o000 1.57812 - .57813 -.6139 46 
0,,-1.0,4.0 72.9136 65.0000 1.5000 -.4922 -.6118 29 
2,0,-2.0,1,0 72.8256 64.9998 1.5000 -1,8125 -.5635 17 
2,0,-2.0,-1.0 73.7412 64.9999 2,2578 -1.4375 -,6115 28 

0 .9- 1 . 0 .- 1 . 0  73.1507 65.0000 1.5781 -.5781 -.6139 46 
0,,-2,0,1,0 72,9136 65.0000 1.5000 -.4922 -.6018 23 
1.0,0.,0. 73.1507 65.0000 1.5781 -.5781 -.6139 45 
1,0,-1.0,0. 72.9136 65.0000 1.5000 -.4922 -.6018 28 
1.0,-1.0,1.0 72.9136 65,0000 1.5000 - .4922 -.6018 29 
1.0,-1.0,-1.0 72.9136 65.0000 1.5000 -.4922 -.6018 28 
-1.0,0 1 ,0, 73.9145 64.9997 2.1250 -1.250 -.6222 42 
-1,0,0.,1.0 73.0345 64.9998 1.5391 -.5352 -.6118 32 
1.0,-2.0,0. 72.9136 65.0000 1.5000 - .4922 -.6018 I. 	28 

72.9136 64.9998 1.5391 -.5352 -.6118 1 	32 
-1.0,1.0,0. 73.1507 65.0000 1.5782 -.5781 -.6139 48 
-1.0,1.0,-1.0 72.8256 64.9998 2.5000 -1.8125 - 05635  23 
-1.0, -1.0,1.0 72.9136 65.0000 1.5000 - .49219 - .6018 32 
-1.0,-1.0,0. 72.8356 64.9998 2.5000 -1.8125 -.56348 23 . 



68 

Table 12. Implicit Constraint Consideration for Myers-Carter Problem Xi. 1 

Step Start Pt. 

Penalty = 1000 
0.5 0..0.,0. 72.8273 65.0001 2.5000 -1.8123 -.5630 25 

-9';.,73.,-56. 71.5735 64.9991 1.1392 -.1230 -.5529 	. 36 
0,3 0„0.,0. 73.8772 65.0007 2.0997 -1.2000 -.5405 183 
0.1 0..0..0. 73.1419 64.9999 1.5752 -.5750 -.6150 47 

Penalty 	100 

0.5 0.,0„0. 73.3482 65.0034 2.4058 -1.6460 -.5438 1288 
-9 8.,73.,-56. 71.7244 65.0011 1.1759 -.1603 ...5595 60 

0,1 1.0,0,0,0. 72.6647 64.9989 1.4250 -.4125 ..5904 0 49 
0.,0.,0.5 73.7860 65.0000 1.86309 -.90781 -.607231 1  86 :  
0.,0.,0. 73.9442 65.0022 2.0697 -1.1703 -.6014 116 
2.0,-2.0,0. 73.791 8 65.0032 2.2469 -1.4113 -.5748 46 
1.0.-1.0,1.0 73.9437 65.0025 2.07774 -1.1807 -.6000 	; 89 
24.0,-5.34.0. 72.9422 65.0039 2.4928 -1.7838 -.5227 105 
4.1,.554,1.2 73.9439 65.0020 2.07601 -1.17842 -.6002 133 

0.01 0„0„0. 73.9437 65.0022 2.0553 -1.1519 -.6056 158 



Table 13. Weighting Function Results - Myers and Carter. NC. 
Increment = C.1 	Initial Stepsize = 0.1 

GH TS YP YS OPTIMAL X 

.0 1.0 67. 1895 8 7. 71 1 7 .82676 -.56250 

. 	1 .9 67. 1895 87. 71 1 7 .82676 -.56250 

.2 .8 67.2200 87* 59 77 .73906 -.67363 

.3 .7 67.2200 8 7. 59 77 .73906 -.67363 

.4 .6 67.2200 87.5977 .73906 •A. 67363 

.5 .5 67.2200 87.5977 .73906 -.67363 

.6 .4 67.2200 8 7.59 77 .73906 67363 

. 7 . 3 67.2200 8 7. 5977 . 739 06 - . 67363 

.8 2 67. 2589 8 7.49 61 .71406 70000 

.9 1 67. 2589 87.4961 •7140 6 - . 70000 

. 0 . 0 67. 2589 87.4961 . 71406 -. 70000 
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Table 14. Weightieg Palletise Results - Myers ad Carter No. 2 
Increment 0.1 	Iit1al Stepsize 0.5 

VE1 GH TS YP YS OPTIMAL X 

.0 1. 0 67. 1 78 6 8 7. 7247 . 79 688 -. 604 13 

. 	1 .9 67. 1984 8 7. 6571 75 78 1 -. 6524 7 

. 2 .8 67. 1984 8 7. 6571 . 7578 1 -.65247 

. 3 . 7 6 798 4 87.6571 . 7578 1 -. 6524 7 

.4 6 67. 1984 8 7. 6571 . 7578 1 -.65247 

.5 .5 67. 1984 8 7. 6571 . 7578 1 65247 

.6 .4 67.1984 87.6571 . 7578 1 -. 6524 7 

.7 .3 67.3792 8 7.2 158 .66138 -.75000 

.8 .2 70.4500 82.0200 .00000 -1.00000 

.9 . 	1 70.4500 82.0200 . 00000 -1.00000 

1.0 .0 70.4500 82.0200 . 00000 - 1 . 00000 



Table 15, Weighting Function Results - Myers ad Carter No, 2 
Increment = 0,01 	I Atial Stepsize =0.1 

F I 1-;1-4 T S 

. 	7.. 	. 30 

YP 

63.2200 

Y5 

87. 59 77 

OPTIMAL X 

• 739 06 	- . 6 73 63 

. 	7i .29 67.2200 8 7. 59 77 • 73906 -. 67363 

. 72 «28 67.2200 8 7. 59 77 . 73906 -.67363 

.73 .27 67.2200 87.59 77 • 73906 -.67363 

. 74 . 26 67.2200 8 7. 59 77 . 73906 -.: 67363 ; 

• L',„' 	'LI s.: 
. 75 . 25 67.2200 8 7. 59 77 • 73906 -., 6 73 63 

. 76 .24 67.2200 8 7. 59 77 . 73906 -. 673 63 - 

. 7 7 .23 67.2589 8 7. 49 61 .71406 -.70000 

.78 .22 67.2589 87. 49 61 . 71406 -.70000 

. 79 . 2 I 67. 2589 8 7.49 61 . 71406 -.70000  

.80 . 20 67.2589 8 7. 49 61 . 71 406 -.70000  
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Table 16. 
: 	 ! 

fighting Functien Results - Myers and Carter 
Increment = 0.01 	Initial Stepsize = 0.5 

72 

10EI OH TS 

	

. 70 	. 3 0 

	

. 71 	. 29 

yp 

6 7. 3 79 2 

67. 3 792 

YS 

8 7. 2 1 58 

8 7. 2 158 

OPTIMAL 

• 66138 

66138 

X 

-0 75000 

75000 

.72 .2? 6 7. 3 79 2 87.2153 • 66138 -. 75000 

. 73 . 2 7 67. 3 792 87.2158 • 66138 -. 75000 

. 74 . 2 6 6 7. 3 79 2 8 7.2158 .66138 -. 75000 

.75 .25 67.3792 87.2158 • 66138 -, 75000 

. 76 .24 70. 4500 82.0200 .00000 1.000 ' 0 

.77 .23 70.4500 82.0200 .00000 -1.00000 

. 78 .22 70.4500 82.0200 . 0 0 0 0 0 -1.00000 

. 79 .21 70.4500 82.0200 . 00000 -1.00000 

.80 .20 70.4500 82.0200 .00000 -1.00000 



Table 17. Explicit Constraint Considerationfr Myers and Cattnr 

•11117it.1.10MOMIII.017.7 ,10074■661.611.1ar 

Step Start Pt. 
z 

ys  x2 

0.1  67.57 1 6 868110 .56 0.60000 30000 
0.01 0.5,-0.5 67.2589 874961 0 e 71406 -.70000 

0.0,-0,2 67.5705 86.8046 0.59984 -.30000 
05 7,1.0997 80.9106(infs) -,24297 .97000 

0.2,-0.4 67.5256 86.8983 0.61297 -r.7900p 
-1„0,0,0 53.6500 845800 -1.00000 0,00000 

0,001 0.2,-0.4 67.5669 86.8152 0.60133 -.79900 
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Table 18©  Implicit Constraint Consideration for Myers a 

Step Start Pt, 	 yp 	 3 
	 xi  

0.5 0.0,0.0 68.0878 83.9998 0.99792 
0 . 1  7.0,-3.0 68.0864 84.0013 0.99786 

0.0,0.0 69.1847 83.9997 0.26660 
-3.0,-7.0 68.0863 84,0013 0.99785 

10 69.1846 83,9997 0.26660 

5 . n,> 5 . 0  68.0863 84.0013 0.99785 
2,0,-0,2 69.1824 83.9999 0.26651 

d Carter N s,2 

x2 

-.0965 
.0968 

-.9656 
-.0966 
-.96562 
-.09668 
-,,96551 
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