Illustration, Explanation and Navigation
of Physical Devices and Design Processes

Nathalie Grué
nath@cc.gatech.edu

GIT-CC-94/26

A Masters Thesis
Presented to
The Academic Faculty

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Computer Science

The Committee:

Dr. Ashok Goel (Advisor)
Dr. T. Govindaraj
Dr. Mark Guzdial

Dr. Margaret Recker

Georgia Institute of Technology
May 1994

This work has been supported by grants from Georgia Tech’s Educational Tech-
nology Institute, College of Computing, Graphics, Visualization and Usability
Center, and Cognitive Science program. In addition, it has been indirectly sup-
ported by the National Science Foundation (grant IRI1-92-10925), the Office of
Naval Research (contract N000/4-92-J-1234), and Northern Telecom.

ILLUSTRATION, EXPLANATION AND
NAVIGATION

OF PHYSICAL DEVICES AND DESIGN
PROCESSES

Approved:

Dr. Ashok K. Goel, Chair

Dr. T. Govindaraj

Dr. Mark Guzdial

Dr. Margaret Recker

Date approved by Chair

1l

ACKNOWLEDGMENTS

This work and my master’s studies in general would not have been possible without
the efforts and assistance of many people to whom I will always be in debt.

First, I thank Dr. Ashok Goel. Dr. Goel has been an outstanding advisor.
He provided me with the opportunity to conduct this research, the funding for my
master’s studies and an excellent group of researchers with whom to collaborate. Dr.
Goel’s advice and constructive criticisms have been very significant to the progress
of this work.

Dr. T. Govindaraj and Dr. Margaret Recker contributed in setting the goals of
this research and advising on its progress. Their course on educational technology
stimulated my interest in intelligent tutoring systems and provided many ideas for
the development of CANAH-CHAB.

Dr. Mark Guzdial provided interesting advices on the use of visualization tools
to improve the interface of CANAH-CHAB.

Drs. Goel, Govindaraj, Recker and Guzdial provided challenging critiques on
earlier drafts of this thesis. Their constructive criticisms helped to make explicit the
contributions and limitations of this research. They also provided detailed comments
that helped to significantly improve the presentation of this thesis. Drs James Foley
and John Stasko provided feedback on CANAH-CHAB’s interface.

The research reported in this thesis has immensely benefited from input by several
people as well. Mr. Andrés Gémez de Silva Garza played an important role in the
implementation of CANAH-CHAB. His contributions have been especially significant

in the development of the illustrations of the design processes. Mr. Michael Donahoo

v

also helped with some aspects of the implementation of CANAH-CHAB’s explanatory
capabilities.

Ms. Eleni Stroulia provided help in expressing the design processes of KRITIK2 in
the language of Structure-Behavior-Function models. She and Mr. Sambasiva Bhatta
provided very useful help and advice during my two years of studies and the conduct
of this research.

This work has been supported by grants from Georgia Tech’s Educational Technol-
ogy Institute, College of Computing, Graphics, Visualization and Usability Center,
and Cognitive Science program. In addition, it has been indirectly supported by
the National Science Foundation (grant IRI-92-10925), the Office of Naval Research
(contract N000/4-92-J-1234), and Northern Telecom.

The friends I have come to know and work with during my two years at the College
of Computing are too numerous to mention here. Nonetheless, they are indirectly
responsible for much of my work and education while at Georgia Tech. Ms. Fabienne
Derain provided practical advice and support during my studies at Georgia Tech. Mr.
Vincent Garnier and Mr. Frédéric Vindreau have helped me time and time again to
unwind and relax after a long day.

Finally, I am very grateful for the patience and support of my family. I am thankful
to my brother, Bruno Grué, who initiated my interest in Computer Science, and to
my sisters, Line Grué for sharing her interest in education and Maryse Piquiaud, for
pushing me to go on with my studies. I am especially thankful to my parents, Maurice
and Odette Grué, for their unlimited faith in me even though they were never really
sure of what I was studying during the past two years. My parents are probably not
aware that they supported me way beyond the call and duty of a parent, and that
many of my accomplishments are attributed to their influence, role model, and never

ending love and patience.

Contents
ACKNOWLEDGMENTS
LIST OF FIGURES
SUMMARY
Chapters
I. INTRODUCTION
1.1 Overview
1.1.1 Background
1.1.2 Motivation
1.1.3 Goals
1.1.4 Hypotheses
1.2 CANAH-CHAB
1.2.1 Product
1.2.2 KRITIK2
1.2.3 Architecture of CANAH-CHAB
1.2.4 Examples

1.2.4.1 Design Objects
1.2.4.2 Design Processes

II. SBF MODELS AND META MODELS
2.1 The SBF Models of Design Objects

2.2 The SBF Meta Model of Domain and Process Knowledge

III. USE OF SBF MODELS
3.1 CANAH-CHAB’s Graphical Interface

3.2 Illustration of Physical Devices and Design Processes

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Motivation
Issues
Illustration Techniques

SBF Models and Illustration of Physical Devices
SBF Meta Models and Illustration of Design Processes

CANAH-CHAB’s Scenario

3.3 Explanation of Physical Devices and Design Processes

3.3.1
3.3.2

Motivation
Issues
Explanation Techniques

iii
vil

ix

— = =
— O OO OO kW DN -

3.3.4

3.3.5 SBF Meta Models and Explanation of Design Processes

SBF Models and Explanation of Physical Devices

3.4 Navigation through Physical Devices and Design Processes

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

Motivation

Issues

Navigation Techniques

Navigation in the SBF Model of a Physical Device

Navigation in the System’s Memory

IV. DISCUSSION
4.1 Results and Contributions

4.2 Limitations and Critiques

4.3 Related Work

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

SBF Models of Physical Devices

SBF Meta Models of Problem Solvers
Similarity Between Models of Devices and Systems

Illustration and Explanation of Devices
Illustration and Explanation of Processes
Case-Based Design

4.4 Future Research

4.4.1
4.4.2

4.4.3
4.4.4

Scaffolding
Interface Development

Evaluation
Articulation of the User’s Reasoning Activities

A. CANAH-CHAB: USER MANUAL

B. CANAH-CHAB: DESIGN OF A FLASHLIGHT CIRCUIT

vi

LIST OF FIGURES

KRITIK2’s Task Structure.

CANAH-CHAB’s Architecture

The Function of an Electrical Circuit

The Light Behavior of an Electrical Circuit
The Electricity Behavior of an Electrical Circuit
The Overall Design Task

The Design Task before Design Adaptation
The Incomplete Design Adaptation Task
The Repair Task

The Complete Design Task

KRITIK2’s Memory of Devices

e e el e e
— = OO0 ~IT Uk W —

)

Structure-Behavior-Function Language for Physical Devices
SBF Model of an Electrical Circuit in KRITIK2’s Memory.
Structure-Behavior-Function Language for Problem Solvers
Task Semantics

Method Semantics

Domain Concept Semantics

Problem Variable Semantics

IO O W —

The function of a Nitric Acid Cooler

The Behavior of the Nitric Acid in a Nitric Acid Cooler
More Information about a Transition

Transition using the Function of a Component

The Behavior of the Water in a Nitric Acid Cooler

The Complete Design Adaptation Task

An Information Screen: The Possible Causes of Differences
Justification of the Result of the Retrieval Task

.1 The Top Level Task Screen: the Design Task

.2 Functional Specification

.3 Design Task Screen: After Problem Elaboration
4 Output of the Problem Elaboration: Probes

.5 Design Task Screen: Before Case Retrieval

.6 Design Task Screen: After Case Retrieval

.7 KRITIK2’s Memory of Design Cases
8
9
1
1
1
1
1
1

T WO —

Function of the Flashlight Circuit

Light Behavior of the Flashlight Circuit
0 Electricity Behavior of the Flashlight Circuit
1 Design Task Screen: Before Design Adaptation
2 Design Adaptation Task Screen: Before Computation of Differences
3 Design Adaptation Task Screen: After Computation of Differences
4 Comparison of Functional Differences
5 Design Adaptation Task Screen: Before Diagnosis

DO OETTTITI I PR wwwwow NNNNNNN

vii

.16 Design Adaptation Task Screen: After Diagnosis

.17 Possible Faults for the Functional Differences

.18 Design Adaptation Task Screen: Before Repair

.19 Repair Task Screen: Before Model Revision

.20 Repair Task Screen: After Model Revision

.21 Function of the New Device

.22 Light Behavior of the New Device

.23 Electricity Behavior of the New Device

.24 Repair Task Screen: Before Verification

.25 Repair Task Screen: After Verification

.26 Comparison of the Desired and Achieved Functions of the Device
.27 Design Adaptation Task: After Repair

.28 Design Task Screen: After Design Adaptation

.29 Design Task Screen: Before Case Storage

.30 Case Storage Task Screen: Before Index Learning
.31 Case Storage Task Screen: After Index Learning

.32 Indices

.33 Case Storage Task Screen: Before Memory Placement
.34 Case Storage Task Screen: After Memory Placement
.35 Modified Memory of Design cases

.36 Complete Design Task

esiivsiuvivelvviveluvivslusivslvsivviveluovivelushvoluvhveluvivy

viil

X

SUMMARY

This work addresses three issues in intelligent tutoring systems. First, how to ex-
plain and illustrate the functioning of physical devices. This capability is useful for
understanding and using past designs. The second issue is how to illustrate and
explain the reasoning of an expert designer. This capability is often required for
supporting learning by observation. Finally, might the same kinds of representations
and processes support these two capabilities? This thesis explores how Structure-
Behavior-Function models of physical devices and Structure-Behavior-Function meta
models of an autonomous design system help to address these issues. The Structure-
Behavior-Function model of a device (or a system) explicitly specifies its structure,
its function and its internal behaviors that map its structure into its function. This
research has resulted in a system called CANAH-CHAB that provides an interactive
graphical interface to an autonomous design system called KRITIK2. It illustrates
and explains both the physical devices in KRITIK2’s memory and the processes by
which it generates new design. In addition, CANAH-CHAB enables a user to navigate

KRITIK2’s memory and access the stored designs.

CHAPTER I

INTRODUCTION

1.1 Overview

This work explores three issues in intelligent tutoring systems. First, how to explain
and illustrate the functioning of physical devices. This capability is useful for under-
standing and using past designs. The second issue is how to illustrate and explain
the reasoning of an expert designer. This capability is often required for support-
ing learning by observation. Finally, might the same kinds of representations and
processes support these two capabilities? The goal of this research is to develop an
enabling technology for addressing these issues. In particular, this thesis investigates
how Structure-Behavior-Function models of physical devices and Structure-Behavior-
Function meta models of an autonomous design system can help to address these
issues. The Structure-Behavior-Function (SBF) model of a device (or a system) ex-
plicitly specifies its structure, its function and its internal behaviors that map its
structure into its function.

This research has resulted in a system called CANAH-CHAB! that provides an
interactive graphical interface to an existing autonomous design system called KRI-
TIK2. CANAH-CHAB illustrates the conceptual design of engineering devices such as
heat-exchangers and electrical circuits. It illustrates and explains both the physical

devices in KRITIK2’s memory and the processes by which it generates new designs.

2

1“Canah” and “chab” are Mayan words that mean “learning” and “designing,” respectively. The

system was developed jointly with Andrés Gémez de Silva Garza.

In addition, CANAH-CHAB enables a user to navigate through KRITIK2’s memory

and access the stored designs.
1.1.1 Background

Computer Aided Design (CAD) tools and systems enable the representation and
visualization of the structure and geometry of complex design objects such as car
engines and airplanes ([Majumder, Fulton and Shilling 1990]). They can provide
different views of the shape and the geometry of these devices, and the parts and
components they are made of. For example, they offer two dimensional and three
dimensional views of these objects, enabling a good visualization of the objects as
they are, or would be, in the real world.

However, CAD tools support only some “low-level” tasks such as drafting and
drawing, geometric and solid modeling, numerical computing and constraint propa-
gation. While they provide a limited degree of flexibility in sketching, analyzing and
refining design solutions, they are useful mainly for configuration design and design
layout but not for conceptual design.

These observations have led to several proposals for the development of computer-
based tools and environments for interactively supporting conceptual design. For
example, Fischer et al. have developed the JANUS system for supporting indirect
collaboration among members of design teams engaged in conceptual design [Fischer
et al. 1992]. Fischer shows that design construction kits are necessary for good
design but that they are not sufficient. In order to assist the user in constructing
interesting and useful artifacts, construction kits also need to provide knowledge to
distinguish “good” from “bad” designs. To help improve design problem solving,
JANUS provides access to the reasoning process that led to a past design. It uses the
issue-based method [Rittel 1972] to describe the design rationale, and the knowledge

base includes a catalog of designs.

In an experimental system for supporting conceptual design called BOGART,
Mostow [1989] explored the issue of the reuse of the process of design instead of
merely the product of design. BOGART uses derivational analogy [Carbonell et al.
1989] for supporting circuit (re-)design by mechanically replaying the recorded his-
tory of design decisions made in a previous design. It has been used to help design
simple NMOS digital circuits, and its techniques have also been applied to mechanical

design and algorithm design.
1.1.2 Motivation

The long term goal of this research is to build an interactive design and learning envi-
ronment that can support “high-level” tasks of conceptual design, such as the gener-
ation and analysis of designs in engineering domains, and also support the learning of
these tasks. A general issue in the development of such a system is to determine the
kinds of knowledge this environment should provide to the users in order to support
conceptual design (and learning). Kolodner [1991, 1993] has suggested providing ac-
cess to libraries of past design cases. The ARCHIE system [Pearce et al. 1992] was
an early attempt in developing computer-based case libraries to support conceptual
design of new office buildings. The system provides architects with a library of past
design cases to help them in two subtasks of conceptual design: design generation
and design critiquing. A design case in ARCHIE contains specifications of the goals,
plans and outcomes of a specific design. One of the lessons learned from ARCHIE was
that design problem solving seems to involve several types of knowledge in addition to
that of design cases, e.g., design principles and guidelines are needed to generate new
designs, and domain models are useful in critiquing proposed designs. The lessons
learned from ARCHIE were taken into account in the ASKJEF project [Barber et al.
1992]. ASKJEF supports software engineers in designing human-machine interfaces.

It provides software engineers access to a computer-based library that contains several

types of knowledge such as design cases from the domain of human-machine interface
design, design stories from other domains, design principles and guidelines, design
objects, and prototypical designer errors. The knowledge and interface organization
ideas of ASKJEF led to a new version of ARCHIE called ARCHIETUTOR [Goel et al.
1993]. The goal of ARCHIETUTOR is to support design teaching in beginning archi-
tectural classes. The system provides access to knowledge of design cases, domain
models and design principles and guidelines.

One of the key lessons from the ARCHIE, ASKJEF and ARCHIETUTOR projects is
that it is not sufficient to provide access to a library of past design cases. In addition
to a library of static cases, the environment needs to provide access to dynamic
knowledge of (1) how the design works, i.e., how the structure of the design delivers
its behavior, and (ii) how the design process works, i.e., how an expert designer creates

and analyzes new designs. These lessons have led to the work described here.
1.1.3 Goals

This research describes three capabilities that an intelligent tutoring system should
have in order to give user access to knowledge of physical devices and to make the
knowledge and reasoning of an autonomous design system transparent and explicit

to the users.

Ilustration: This thesis describes the content of graphical illustrations useful for
presenting dynamic knowledge about design objects and processes to the user. It
shows how to illustrate devices so that their functioning is made explicit. It also
shows how to illustrate the tasks and methods involved in the design activity and the

knowledge used by an autonomous system.

Explanation: To improve the user’s understanding of the design process, the in-

telligent tutoring system needs to generate explanations about the design system’s

reasoning and justifications of the methods and strategies it uses.

Navigation: In order for a user to acquire a good understanding of the functioning
of a device, she should be able to browse through the different conceptual views of the
device. The system also needs to support navigation through the system knowledge
so that the user can explore the content and the organization of the system’s memory.
The goal of this research is to develop an enabling technology for (i) exposing the
user to dynamic knowledge of physical devices and design processes, (ii) generating
explanations about the functioning of devices and about the design processes, and
(iii) enabling the user to navigate through external representations of devices and
design processes. Instead of providing the user with access to the reasoning process
of a human expert designer, this work illustrates an autonomous design system.
One can adopt two views to the development of the above capabilities in intelligent
tutoring systems: a cognitive view and a technological view. The former leads to
explorations of the different kinds of illustrations and explanations that may help real
users in their design and learning tasks. On the technological side, one can explore
the representations and processing needed for illustrative and explanatory purposes.
This work has focused entirely on the technological side, and addresses the following
questions: (i) How to explain and illustrate the functioning of physical devices? (ii)
How to illustrate and explain the design processes involved in an expert designer’s
reasoning? (iii) Do these abilities require fundamentally different representations and

processes?

1.1.4 Hypotheses

This thesis explores the following hypotheses: (i) Structure-Behavior-Function models
of physical devices [Goel 1989, 1991a, 1991b] enable illustration and explanation of
how physical devices work; (ii) Structure-Behavior-Function meta models of reasoning
processes [Stroulia and Goel 1993, 1994] enable illustration and explanation of how
the design process (as instantiated in an autonomous design system) works; (iii)
The successful use of SBF models and meta models for the two different abilities
would indicate that the same kind of content theory, representation scheme, and
presentation mechanism can be used to express knowledge about physical devices

and design processes.

1.2 CANAH-CHAB

1.2.1 Product

CANAH-CHAB, the product of this research, is an interactive computing environment
that uses an autonomous design system, KRITIK2 ([Goel 1991a, 1991b, 1992], [Goel
and Chandrasekaran 1989, 1992], [Bhatta and Goel 1992, 1993]), as the design ex-
pert. It supports illustration, navigation and explanation of physical devices and of
KRITIK2’ s reasoning processes. It has been developed on a Sun Sparc Station using
the Common Lisp Object System and the Garnet interface development tool ([Myers
and Zanden 1992, Myers 1990]).

1.2.2 KRITIK2

Instead of developing a complete new autonomous system that would perform design,
our work directly builds on KRITIK2. The design process performed by KRITIK2 and
the physical devices it knows about and designs are illustrated and explained by

CANAH-CHAB.

KRITIK2 is a cognitively-inspired autonomous design problem-solving and learning
system that operates in the domain of engineering devices such as electrical circuits
and heat exchangers. It takes as input the user’s specification of the function that is
desired, and provides as output a description of the structure of a device that produces
the function. It uses multiple types of knowledge in solving design problems, for
example, past design cases and Structure-Behavior-Function (SBF) models of how the
specific devices stored in the design cases actually work. A design case is indexed by
the functions delivered by the stored design and acts as an index into the SBF model
of the stored design. Given a design problem, KRITIK2 solves it by first elaborating
on the functional specification of the problem, and retrieving from its case memory a
design that delivers a function similar to the desired one. It then identifies candidate
modifications to the structure of the retrieved design by analyzing the SBF model
of the design, executes the required modifications on the design structure to produce
a candidate design, and revises the SBF model of the retrieved design to produce
an SBF model for the candidate design. The system then evaluates the candidate
design by qualitatively simulating the SBF model. If the design fails then KRITIK2
attempts to redesign it. If it succeeds, then KRITIK2 uses the SBF model of the new
design as a causal explanation to learn the indices for storing the new design case and
associated SBF model in memory, and stores them for potential reuse in the future.

A problem-solving task in this framework is specified by the information it takes as
input and the information it produces as output. A task can be accomplished by one or
more methods, each of which decomposes it into a set of simpler subtasks. A method
is specified by the subtasks it sets up, the control it exercises over their processing,
and the knowledge it uses. The subtasks into which a method decomposes a task
can, in turn, be accomplished by other methods, or, if the appropriate knowledge

and procedures are available, they can be solved directly. This enables KRITIK2 to

opportunistically select a problem-solving method depending on the current subtask
it is addressing. Since the system may select different methods for different subtasks,
this enables KRITIK2 to integrate several reasoning strategies such as case-based and
model-based reasoning and to shift from one strategy to another depending on the

needs of the current subtask. KRITIK2’s task structure for design is illustrated in

Figure 1.1.
F
DESIRED SELECTION
K
ELABORATION DESIGN-CASES

F
SIMILAR
S
ASSOCIATED
B AssociaTED }*

K
SUBSTANCE-MEMORY

F
ELAB-DESIR

ORDERING
K REPAIR PLAN
RETRIEVAL ORDERING-HEURISTICS SELECTION
-
K
REPAIR-PLAN-MEMORY
F gesT-maTCH K
S DETERMINATION REPAIR-PLAN
B ASSOCIATED OF DIFFERENCES
ASSOCIATED K MODEL
FDESIRED REVISION
K
ADAPTATION FUNCTIONAL-DIFF B ASSOCIATED
DIAGNOSIS B MODIFIED
F MopiFiED K s ASSOCIATED
BEST-MATCH SIMILAR /ASSOCIATED ~ASSOCIATED
S moDIFIED s R VERIFICATION
ASSOCIATED { SpossiBLeFAULT } Ke
B MopiFiED DESIRED
ASSOCIATED REPAIR
K F MODIFIED
FUNCTI ; BEST-MATCH
STRUCTURE
R REVISION
STORAGE INDEX LEARNING K
K S ASSOCIATED
BASSOCIATED s
K K MODIFIED
DESIGN-CASE EXISTING-MODEL ASSOCIATED

K
USEFUL-INDICES

CASE STORAGE
K bESIGN-cASE

Figure 1.1: KRITIK2’s Task Structure.

1.2.3 Architecture of CANAH-CHAB

CANAH-CHAB provides an interactive graphical interface to KRITIK2. It has access
to all the knowledge of KRITIK2. In particular, it uses the SBF models of physical
devices defined in KRITIK2 to graphically illustrate and explain the functioning of
such design artifacts to the users. Further, it views KRITIK2 as an abstract device and
explicitly models its reasoning process. It uses these SBF meta models of KRITIK2
to illustrate and explain how the system generates new designs. The architecture of

CANAH-CHAB and its relation to KRITIK2 is illustrated in Figure 1.2.

CANAH-CHAB

ILLUSTRATION ILLUSTRATION
AND EXPLANATION AND EXPLANATION
OF PHYSICAL OF HOW KRITIK2
DEVICES PERFORMS DESIGN

A \

SBF MODEL
OF KRITIK2
KRITIKZ&

SBF MODELS DOMAIN
OF DEVICES KNOWLEDGE

Figure 1.2: CANAH-CHAB’s Architecture

10

CANAH-CHAB invokes KRITIK2 to provide the user with an illustration of how
the latter performs a design task. It graphically illustrates a set of problem-solving
examples. The user may observe the design process and the knowledge used by
KRITIK2 in addition to accessing the illustrations and explanations of past devices
in the context of these illustrative examples. CANAH-CHAB also supports navigation

through KRITIK2’s memory of physical devices.
1.2.4 Examples

1.2.4.1 Design Objects

CANAH-CHAB provides graphical representations of both the devices retrieved from
KRITIK2’s memory, and the new devices created by KRITIK2. The design objects
are physical devices such as electrical circuits, heat exchangers, etc. To illustrate
the functioning of such devices, CANAH-CHAB provides the user with a screen repre-
senting the function it achieves. Figure 1.3 is an example of CANAH-CHAB's screen
illustrating the function of an electrical circuit. The function of this device is to
produce a certain amount of light.

The means by which the function of a device is achieved is explained in the SBF
model of the device by its internal causal behaviors. Figure 1.4 shows an illustration
by CANAH-CHAB of the main behavior of the electrical circuit that produces light.
Figure 1.5 shows the secondary behavior of this device. It represents the behavior of

the electricity in this circuit.

11

Rrctioel Secifiction of the Gase : LTHMERIUE

GIAVSHE MEES SEE SIS
HERCIY mr
& OKE o NBEIY
wits 10 _— lesseigtem
S B B S
LGEEHVIR

11

Otfer G5
Y Bt G

_# | the | |

Figure 1.3: The Function of an Electrical Circuit

1.2.4.2 Design Processes

CANAH-CHAB currently illustrates graphically the domain and process knowledge of
KRITIK2. The reasoning of KKRITIK2, while it is solving a problem, is captured in
its SBF meta models in terms of tasks, methods, and domain concepts. These are
illustrated by CANAH-CHAB in screens identifying the tasks that KRITIK2 is currently
performing while it is solving a problem. Figure 1.6 shows the first task screen in
CANAH-CHAB. It presents to the user the design task in terms of the Case-Based

Reasoning method it is going to use and the subtasks that are set up by this method.

12

Beviar of the cese: LIHERIUE

Sae® Sael
re.iy ree:iy
d NBEIY ¢ NBELY
nh lesseigtem
B TS

Torton® |
=
sz |
Cirer Gss
[—— S
_# | the | |

Figure 1.4: The Light Behavior of an Electrical Circuit

Figure 1.6 shows the four subtasks, Problem Elaboration, Case Retrieval, Design
Adaptation, and Case Storage, that KRITIK2 performs, along with their respective
procedures or methods. It also shows the input, here a functional specification, to
the first subtask.

CANAH-CHAB provides a set of screens presenting the user with the input and
output of the subtasks and uses highlighting features to notify to the user which
tasks have already been performed, what is the current task and what subtasks are

left. Figure 1.7 shows the task screen once Problem Elaboration and Case Retrieval

Beviar of the cese: LIHERIUE

fevicr: Electriciby Bibesd

Sate:h Seteh
HERCITY HECRCIY
& OrE d arE d
wts0 wlts10
s s

—
mmir |
e
Cther Bmvicr(§) : Light-Rdmvior
Ofer Gess
B Bt G
e | e | |

Figure 1.5: The Electricity Behavior of an Electrical Circuit

13

have been performed, with their respective inputs and outputs. Figure 1.7 shows

that Design Adaptation is done by applying the Model-Based Adaptation method.

Figure 1.8 shows the representation of the subtasks set up by this method. It

illustrates a deeper level of KRITIK2’s task decomposition. In the same way, the

Design Adaptation’s subtask of Repair is done by applying the Model-Based Method

shown in Figure 1.9. Once the low level task has been performed, CANAH-CHAB

presents the result at a higher level of decomposition. Figure 1.10 shows the resulting

knowledge and overall tasks performed by KRITIK2 to produce a new design.

14

_# | the |

Figure 1.6: The Overall Design Task

CANAH-CHAB not only illustrates the design objects and the design processes, it

also illustrates the domain objects used by KRITIK2 and defined in the SBF meta

model of the system’s reasoning as domain concepts. An example of this kind of

object is the memory of past design cases used by KRITIK2. Figure 1.11 shows

CANAH-CHAB’s illustration of KRITIK2’s memory of design cases.

Tk Nttt Ihizs Pt retétat
[N CeeBml] mdm Haristics
Rrc e Design Frc Sec I >
- L
Boes Rerieal |ESCMIch Tree Saxch
Bt Maich Dsicn
Rrc e ozt
e |
Sz
= | = .

Figure 1.7: The Design Task before Design Adaptation

15

Tk Mtk Sitzss Bt
N Qpizion
Bt Mich Desicn Mkl-Beeeed | = Firdfire-
Rcge /] Mo It Bt Diffrmces | qeediff
Bt Mith Diaysis Mukl-Beeeel
Fomm EEETEN S
Hrc e
Bt Mith Razir Mkl-Beeeel
Frchiffs Rt
RssRalts
Help Qrtine Bt

Figure 1.8: The Incomplete Design Adaptation Task

16

A AL

Ntk Shizds: Pl retétiat
Mgkl Bl Betlith Mkl Smcte
Rzir ol Roisin [Nl Rplicetion
Res Bt
R Verificetion : Ml sl

the | |

Figure 1.9: The Repair Task

17

N CeeBml] mdm Haristcs
= E)=l==
- L
BOEs 2 Reren |ESLMED Tree Sath
Bt Maich Dsicn
Rrc e ozt
G
Nl o
= | = .

Figure 1.10: The Complete Design Task

18

A Cases
Caze Mooy . i Vi
A Property
V|
- L= | [] -
R e e AL Funcion |
o a N Lt o Function
SiphricAcidader] n
/
NitricZciderler]
SihricAidder]
< >
=N E EE

Figure 1.11: KRITIK2’s Memory of Devices

19

20

CHAPTER 11

SBF MODELS AND META MODELS

This thesis describes the use of SBF models of physical devices to illustrate and
explain the functioning of design artifacts and the use of SBF meta models of an
autonomous design system to illustrate and explain the design processes to a user
in an intelligent tutoring system. This chapter of the thesis discusses the knowledge

contained in these models, and their representation and organization.

2.1 The SBF Models of Design Objects

Design Object: For each design in its memory, KRITIK2 comprehends how it

works in terms of an SBF model. The SBF model of a design case specifies the
functions of the device, its structure, and the internal causal processes that explain
how its structure accomplishes its functions. The language of SBF models is one kind
of functional representation scheme for representing knowledge about the function-
ing of a device [Sembugamoorthy and Chandrasekaran 1986]. Figure 2.1 shows the
general Structure-Behavior-Function language for physical devices, as it is used in
KRITIK2.

The function of the device is the observable behavior which was intended by
the designers of the artifact. A device may exhibit many behaviors, some of which
were not meant by its designers but are either necessary to support the functions
of the device or are simply spurious. The causal model of the device consists of a

set of internal causal processes that describe the device operation resulting in the

21

© FUNCTION OF A DEVICE

A
achieved by
CAUSAL BEHAVIOR
_— B £ R —
Transition1 Transition2 Transition3
FUNCTION OF
STRUCTURAL
COMPONENTS

Figure 2.1: Structure-Behavior-Function Language for Physical Devices

accomplishment of its function. The causal model of a design case constitutes an
explanation for the accomplishment of its function, in terms of the functioning of
its structural elements and the laws of physics. Finally, the structure of the device
consists of the structural elements of the device and their structural relations. Figure

2.2 shows the SBF model of an electric circuit in KRITIK2’s memory®.

!This graph, representing the SBF model of an electrical circuit in KRITIK2’s memory, was taken

from [Bhatta and Goel 1993].

L5V

o

(a) 1.5~volt Electric Circuit (EC1.5)

"GIVEN" state of Function of EC1.5

BY-BEHAVIOR:

pointer to the behavior "Deliver 1.5 volts

transition_

™

transition

stateg

UNDER-CONDITION-STATE

USING-FUNCTION ALLOW electricity of Switch

state2 of Behavior-Close-Switch

AS-PER-DOMAIN-PRINCIPLE

ELECTRICITY
loc: Bulb
voltage: 1.5 volts

LIGHT
intensity: 6 lumens

AS-PER-DOMAIN-PRINCIPLE
intensity = Efficiency * Current * Current * Resistance

Kirchoff’s Law

il {USING-FUNCTION CREATE light of Bulb

(c) Behavior "Produce Light" of EC1.5

stateq_4 loc: Ty

states o || loc: Ty

ELECTRICITY
G:VtEN' loc: Battery
stateq voltage: 1.5 volts

LIGHT
MAKES:| |oc: Bulb

statez | intensity: 6 lumens

STIMULUS: Force on Switch

BY-BEHAVIOR: pointer to the behavior
"Produce Light"

(b) Function "Produce Light" of ECL.5

ELECTRICITY

voltage: 0 volts

USING-FUNCTION PUMP electricity of Battery

ELECTRICITY

voltage: 1.5 volts

(d) Behavior "Deliver 1.5 volts" of Battery

Note: All locations are with reference to camponents in this design.
All labels for states and transitions are local to this design.

Figure 2.2: SBF Model of an Electrical Circuit in KRITIK2’s Memory.

23

Structure: The SBF models are based on a component-substance ontology similar
to the ontology used earlier in the consolidation method for deriving the behaviors of a
device from the behavioral interactions between its structural components [Bylander
and Chandrasekaran 1985, Bylander 1991]. Thus, physical devices are viewed as
consisting of a set of connected components, through which substances flow. As
the device substances flow, they are modified by the functioning of the components
through which they flow. These substance transformations and their effects on the
components functioning give rise to the device’s intended functions.

The structure of the device is described hierarchically in terms of its constituent
structural elements. The structural elements of a device may be primitive com-
ponents, such as a battery, or they may be complex structures, such as an air-
conditioning unit, which can themselves be further described in terms of their struc-
tural elements. Each structural element, except for the overall structure of the device,
points to another structural element of which it is a part. In addition to the part of
relation between structural elements, other structural relations, such as connectiv-
ity, containment, and spatial proximity are explicitly represented in the structure
schema. Finally, each structural element points to the set of behavioral transitions in
the device’s causal model that affect the particular element or are affected by it.

The primitive structural elements of a device are its components and substances.
The primitive components of a device are described in terms of their structural prop-
erties, other components of which they can be viewed as particular instantiations, and
their modes of operation. For each different mode of operation, a primitive component
exhibits a set of primitive functions.

The substances of a device are described in terms of properties and other sub-
stances of which they are instances, and they can be physical, such as water, or

abstract, such as heat.

24

Functions: Physical devices can perform several different kinds of functions, such
as control functions, prevention functions, maintenance functions, and transforma-
tion functions. Currently, KRITIK2 deals with transformation functions, which are
described in terms of an initial and a final behavioral state. In addition to the two
behavioral states, the description of the device function includes a pointer to the inter-
nal causal behavior responsible for the transformation. The function description also
includes the stimulus from the external environment which triggers the transforma-
tion process, and sometimes, conditions, external to the device, which are necessary

for the device functioning.

Internal Causal Behaviors: As substances flow through the device components,

their properties may change and also the mode of operation of the components may
change. The sequence of these states and state transitions constitute the internal
causal processes or internal causal behaviors of the device. As it has been discussed
in the previous paragraph, the intended function of the device acts as an index to the
internal behavior which explains the transformation from the initial state, given(F),
of the function to its final state, makes(F'). This behavior is called the primary be-
havior of the device. For each device, however, there may be other, internal behaviors,
supporting the primary one, which are equally important for the device functioning,
and which may also result in observable phenomena which are not part of the de-
vice function. Fach behavior explains the qualitative changes in one substance of the
device.

In SBF models, knowledge of causal behaviors is represented as directed acyclic
graphs (DAGS), where the behavioral states constitute the nodes of the graph and

the state transitions its edges.

25

Behavioral State: A behavioral state is a partial description of the state of an

element of the device, either a component or a substance, at a particular point in the
device functioning.

A substance behavioral state specifies the previous and next states in the behavior
sequence, and also the enabling transition, the transition which results in the state,
and the transition which follows the state.

If it is a substance state, then the schema representing it specifies the type of
the substance being described, the location of the substance at the time, and a set
of property-value-unit tuples. The type of a substance is a pointer to a conceptual
memory of substances which contains all the different kinds of substances KRITIK2
knows about.

If it is a component state, the state description specifies the type of the component,
its mode of operation at the time, and a set of parameter-value-unit tuples. The type
of a component is a pointer to a prototypical component in KRITIK2’s conceptual

memory of components.

Behavioral State Transition: A behavioral state transition is a partial descrip-

tion of a transformation of some device element during the functioning of the device.
A behavioral transformation of a device element may be explained at several levels
of abstraction and detail. Thus, the state-transition schema may include a pointer to
another behavior, which explains in more detail the transformation described by that
transition. For example, a by-behavior pointer results in the hierarchical organization
of the device internal behaviors. In addition to pointing to a more detailed behavior,
a state transition may explain a behavioral transformation in terms of the function
of a structural element of the device, or in terms of a physics principle. Moreover,

the transition schema may be annotated with qualitative equations describing the

26

changes to the values of different substance properties and component parameters
because of the transition.

A state transition may be conditioned upon the co-occurrence of specific behav-
ioral states in the device, or the co-occurrence of other state transitions, or specific
structural relations among the device elements. The explicit specification of such
conditions is included in the state-transition schema. The language of SBF mod-
els provides a typology of conditions for describing the interactions of the different
internal causal processes of a device: wunder-condition-state, under-condition-state-
transition, under-condition-structural-relation.

The state-transition description also includes pointers to the behavioral states
preceding and succeeding it, i.e., the behavioral state which enables the transition
and the state into which the transition results. The state transitions, in addition
to being causal transitions, capture an implicit temporal ordering of events in the
device functioning. Since, in general, the cause temporally precedes the effect, the
antecedent state temporally precedes the consequent state. Moreover, the conditions
on the transition implicitly capture temporal co-occurrence, i.e., if a state transition

is dependent upon another transition then they occur at the same time.

2.2 The SBF Meta Model of Domain and Process Knowledge

To help the users acquire some notions of design processes, the system has to com-
municate the design tasks and problem-solving methods. This is not possible without
an explicit declarative representation of the domain and process knowledge used by
the system. The previous section discussed the language of SBF models to repre-
sent the functioning of simple engineering devices in KRITIK2. Indeed, the same
language can be used to capture the functioning of KRITIK2. In a different project

called AUTOGNOSTIC, Stroulia and Goel [1993, 1994] have viewed problem solvers as

27

abstract devices and how their functioning can be described in terms of the Structure-
Behavior-Function (SBF) models that are used in KRITIK2 to model physical devices.
Just like work on KRITIK2 led to the development of a SBF language for representing
and organizing knowledge of the functioning of a physical device, similarly work on
AUTOGNOSTIC has led to the development of a related SBF language for specify-
ing knowledge of the reasoning tasks and methods employed by a problem solver in
solving a problem. Figure 2.3 shows the general framework of Structure-Behavior-

Function meta models. In CANAH-CHAB, this SBF language for problem solvers is

TASK
Function

achieved by
METHOD
Subtask1 Subtask?2 Subtask3 Info
State4

Behavior

Elementary Tasks

and Knowledge
Structure

Figure 2.3: Structure-Behavior-Function Language for Problem Solvers

28

used to specify the design strategies that KRITIK2 uses. This way, the design of
CANAH-CHAB takes advantage of the task-structure analysis of KRITIK2.

The vocabulary provided by the SBF semantics allows the representation of the
domain knowledge and process knowledge of the system. The reasoning processes of
KRITIK2 can be captured in the SBF language by defining the tasks and subtasks it

sets up, the methods it uses and the objects from the domain that are involved.

Tasks: A task can be characterized in terms of its input and output, which are the
substances that flow as arguments into the procedure that will carry out the task, the
name of the procedure that will carry out the task, the list of methods by which the
task can be solved, the prototypical (generic) task that this task is an instance of, and
the conditions under-condition under which the task should be performed. Figure
2.4 shows the general semantic used to describe the tasks and subtasks performed by

KRITIK 22.

Methods: A method is characterized in terms of the task to which it is applicable,
the subtasks it sets up, the control operator it imposes on the subtasks, and the
conditions under which this method is applicable. Figure 2.5 shows the general
semantics used to describe a method used by KRITIK23. The control slot contains a
nested list, where tasks within the same nesting scope are performed as specified in
the opening of the nest scope, that is serial, parallel or loop.

The control operators are the syntactic operations on the organization of the task
structure. Two tasks are either serial to one another, or can be executed in parallel,
or there is a loop thread around one, or a set of them. Each control operator has a

name and particular information that needs to annotate one of its instantiations.

2This graph, representing task semantics, was taken from [Stroulia and Goel 1994].
3This graph, representing method semantics, was taken from [Stroulia and Goel 1994].

29

Tsk(task) := (name, prototype, instantiations, info-stateinput, info-statequtput,
semantics, by-methods||procedure, subtask-of, under-conditions)
where
name, the name of the task.
prototype := Tsk, a task that accomplishes a transformation equivalent to or more
general than the transformation of the current task.
instantiations,
info-stateinput := {Info-Type}*, the input information.
info-stategutput := {Info-Type}*, the output information.
semantics,
by-methods := M, a list of methods potentially applicable to the task.
procedure, the name of the program module which accomplishes the task,
i.e. whose functional abstraction the task is for the leaf tasks only.
subtask-of := Tsk, the task which this task is a subtask of.
under-conditions := p(info-statejyput)”, a set of predicates on the input information
of the task, under which it is meaningful to accomplish the task.

Figure 2.4: Task Semantics

M(method):= (name, under-conditions, applied-to, subtasks, control, procedure)

where
name, the name of the method.
under-conditions := p(info-state)*, a set of predicates that needs to be true

in order for the method to be applicable to the task. The types of information on
which these predicates are applied are all information types , the values of which
have been produced before the method selection.

applied-to := Tsk, the task to which the method is applicable.

subtasks := Tsk™, a set of subtasks into which the method decomposes the task
it is applied to.

control := ctrl-op(subtasks(M))*, a set of control operators applied to the subtasks
of the method. Control operators define a partial order among these subtasks.
They define precedence among tasks, potential parallelism and repetition of tasks
until a condition is met.

procedure,

Figure 2.5: Method Semantics

30

Domain Concepts: The types of information that KRITIK2 uses for its design

task are represented at an abstract level of domain concepts. The domain concepts
represented in CANAH-CHAB are DESIGN-CASE, DESIGN-FUNCTION, FAULT,
DIFFERENCE, COMPONENT, SUBSTANCE, ROOT-NODE, MEMORY-NODE,
PROPERTY-NODE, VALUE-NODE, PROPERTY, VALUE, etc. These are the con-
cepts of the domain of reasoning, and as such they have attributes, other than their
name. An interesting issue is that some of these concepts do exist in the world, such
as COMPONENT and SUBSTANCE, while some of them do not but are rather or-
ganizational concepts imposed by the mental model used to represent the world, such
as PROPERTY-NODE and VALUE-NODE. The concepts of the former kind can be
discussed in a manner dependent on the domain but independent of the reasoning
task that operates on them. The concepts of the latter kind require a commitment on
the model and, as such, a commitment to the tasks that will make use of it. Figure

2.6 shows the general semantics of a domain concept?.

Problem variable: Problem variables are instances of domain concepts used by

the reasoner. A problem variable is specified in terms of its semantic and syntactic
types and of the values it can take. Figure 2.7 shows the general semantics of a

problem variable®.

4This graph, representing domain concept semantics, was taken from [Stroulia and Goel 1994].
5This graph, representing problem variable semantics, was taken from [Stroulia and Goel 1994].

31

DC(domainconcept) := (name, domain, attributes, identity-test, relations, produced-by, input-to)
where
name, the name of the domain concept.
domain, the data structure with the legal values for the object; only the
enumerated objects have domains, and usually this is the case for the objects that
directly refer to objects in the world, as opposed to conceptual objects.
attributes := (name, function, type)*, the set of attributes characteristic of the
world object. Each one of them is specified in terms of a name, a definition of a
function evaluating its value given an instance of the domain concept object
type, and its type which can be either another domain concept
or a number.
identity-test, the definition of a function to evaluate identity in the domain of the concept.
relations := (name, table)*, the set of domain relations applicable to the domain
concept. Each one of them is specified in terms of a name and an association
table where the knowledge of the problem solver regarding this relation resides.
produced-by := T*, the set of tasks that can produce as output such domain concept object.
input-to := T%, the set of tasks that use such domain concept object as input.

Figure 2.6: Domain Concept Semantics

Problem-Variable := (semantic-type, syntactic-type, value)

where
semantic-type := DC, a domain concept of which this type of information is an instance.

syntactic-type := simple, multiple, specifying whether this information type consists
of one or a set of domain concepts.
value, the value the problem variable can have.

Figure 2.7: Problem Variable Semantics

32

CHAPTER III

USE OF SBF MODELS

The use of SBF models and meta models helps the system designer make the func-
tioning of physical devices and the reasoning processes of an autonomous system
explicit to the user so that she has a better understanding of the objects and activ-
ity performed by the system. In order to make the design objects and the design
processes explicit to and understandable by the user, this thesis proposes to provide
the system with three necessary features: Illustration, Explanation and Navigation.
Using the SBF language enables CANAH-CHAB to possess (i) models of the devices on
which KRITIK2 is working and their functioning, and (ii) meta models of KRITIK2’s
conceptual knowledge and process knowledge. How this knowledge is organized in
CANAH-CHAB and how the system was built are discussed in section 3.1. The use
of SBF models to support illustration, explanation and navigation capabilities is dis-

cussed in the other sections of this chapter.

3.1 CANAH-CHAB’s Graphical Interface

The graphical interface of CANAH-CHAB has been designed using the Garnet user
interface development environment [Myers 1990]. The Garnet environment contains a
set of tools to design and implement highly-interactive, graphical, direct manipulation
user interfaces. It is implemented in Common Lisp and interfaces to the X window
manager. It provides an extension of Common Lisp with some syntax for object-

oriented programming and constraints.

33

The Garnet system provides a set of widgets which are collections of windows,
buttons, menus, scroll bars, etc., that was used to create the graphical interface of
CANAH-CHAB. In addition to this environment, the Garnet system provides a set
of object-oriented language features. In particular, it supports a prototype-instance
model for graphical objects [Lieberman 1986] that enables a dynamic, flexible defini-
tion of graphical objects and facilitates their reuse. It enables the definition of a pro-
totype for a particular kind of object and supports the creation of as many instances
of this object as needed. This feature is very useful in the design of CANAH-CHAB's
interface since the same kind of knowledge is displayed many times throughout the
system. For example, CANAH-CHAB contains the definitions of the prototypes of the
graphical objects that represent the state of a substance, a transition between two
states in the SBF model of a physical device, a task with its input, output, method
and subtasks, etc. Each time it wants to display a specific state, transition, etc., it
creates a specific instance of the appropriate prototype.

Interaction between CANAH-CHAB and the user is done through the use of in-
teractors [Myers 1990] which are encapsulations of input device behaviors. In the
current interface, the interactions are handled through the use of the mouse. How-
ever, keyboard inputs can also be handled by the system and should therefore be used
in future versions of CANAH-CHAB.

The information and commands to load and run CANAH-CHAB are provided in
Appendix A. A complete sequence of screens from a session of CANAH-CHAB is pro-
vided in Appendix B. It shows the illustration and explanation of the design of a

flashlight circuit.

34

3.2 Illustration of Physical Devices and Design Processes

3.2.1 Motivation

As discussed before, an intelligent tutoring system has to provide users with access to
knowledge of physical devices and their functioning, and the knowledge and reason-
ing processes of an expert designer. In order to understand the autonomous design
system’s processes, and also acquire skills from it, it is necessary for the knowledge
used by the system to be presented to the user. KRITIK2 uses three different kinds of
knowledge. First of all, the system has some deep knowledge about the functioning
of devices. This knowledge is captured in the SBF models of physical devices and has
been discussed in section 2.1. The system’s understanding of how devices work needs
to be presented to the user so that users can also acquire some necessary knowledge
about the devices’ functioning. The comprehension of existing devices will help them
solve subsequent design problems, by identifying when a previous design is applicable
and adapting it in order to obtain the desired function.

The second kind of knowledge that any system in general, and CANAH-CHAB in
particular, has is the knowledge about the domain in which it is operating. A memory
of previous design cases, a memory of the existing substances in the world along with
their properties, general guidelines, libraries of the functions of components, etc., are
the kinds of knowledge a user also needs to acquire in order to master the design
activity. Therefore, domain knowledge also has to be presented to the user.

The third knowledge that the system possesses is about the reasoning strategies
involved in the activity. CANAH-CHAB’s meta models specify the tasks and subtasks
to perform, and also the methods that can be applied to each task. This functional and
strategic knowledge, in addition to the domain knowledge and the knowledge of the
devices’ functioning, need to be explicitly stated by the system and presented to the

user. Reasoning strategies form an important and necessary part of the knowledge

35

that the user needs to acquire to fully master the activity. Making the system’s
reasoning processes explicit to the user is a necessary step to facilitate the design

skills learning.
3.2.2 Issues

The important question is how and when to present information about the devices, the
domain, and the processes to the user. The amount of knowledge that the system has
is large and could even be larger in the future. It is impossible to present to the user
all the information at the same time. Therefore, relevant parts of the knowledge need
to be provided at the appropriate times. The issue now becomes how to present parts
of the information in such a way that it is accessible and comprehensible to the user.
The solution we propose is to illustrate the knowledge captured by the SBF models of
physical devices and the SBF meta models of KRITIK2’s reasoning. Each SBF model
provides enough information about a device to illustrate and explain its functioning.
And the meta models of the system’s domain and process knowledge capture all the
relevant information to illustrate the design process, as instantiated in KRITIK2. The
information captured by the SBF models and meta models of KRITIK2 is graphically

presented to the users in CANAH-CHAB in the context of some illustrative examples.

3.2.3 Illustration Techniques

Since the information to present is of different kinds, standard techniques are used
to illustrate them. First of all, both graphical and textual illustration are provided
depending on the type of information. KRITIK2 only presents some information
about the evolution of the artifact in a text format that was difficult to understand
and follow.

CANAH-CHAB presents information about the devices and the knowledge graphi-

cally. In order to follow the consistency guideline, it uses the same graphical standards

36

to represent the same kind of information. For example, all the behavioral states are
represented by some blocks with information about the substance and the location
inside, while all the behavioral transitions are specified by arrows between two states
and a pointer to general information about the transition. Figure 1.5 shows an exam-
ple of the illustration of the states and transitions in the causal model of an electrical
circuit. CANAH-CHAB takes advantage of the object-oriented features provided in
the Garnet interface development tool for these graphical objects. Another benefit
of the prototype-instance model of this tool is that it enables the modification of the
illustration of all the instances of a type of object such as state, transition, tasks,
methods, inputs, etc., by modifying only the overall prototype of this object.

Since the domain knowledge and the process knowledge of the system are not flat,
tree-like representations are used to illustrate the different levels when it is necessary.
Figure 1.6 illustrates the decomposition of KRITIK2’s task structure.

Highlighting techniques are also used throughout the illustration in order to show
the relevant or current information the user needs to look at in a particular concept.
For example, in Figure 1.6 of the design task and its subtasks, the current task to

be performed by the system is highlighted using a thick-lined frame.

3.2.4 SBF Models and Illustration of Physical Devices

As it has been discussed before, CANAH-CHAB illustrates the functioning of physical
devices by graphically presenting the knowledge captured in the SBF models of the
physical devices known or designed by KRITIK2. Different graphical objects have
been designed corresponding to the different information contained in these mod-
els. A device and its functioning are illustrated by the function of the device, its
behavior(s) and its structure. To each one of these views corresponds a particular
kind of “screen” that contains the relevant information. CANAH-CHAB’s interface

provides the user with three buttons to display the different views of the qualitative

37

description of a physical device: Function, Behavior and Structure. The user can
select one of these to display a particular view of a physical device, i.e., to display the
information explaining its function, its internal causal behaviors or it structure. The
structure view of the device hasn’t yet been graphically implemented even though the
information is available in KRITIK2’s SBF models of physical devices. In Figure 3.1,
representing the function of a nitric acid cooler, the buttons concerning the different

views are visible on the right part of the screen.

A
Rrctioel Secification of the Gese : NIRICACD-CIIERL
GV SHE MKES SHE SIMILB
NIRICACD NIRICZCD
& lostion: a Jotion: ph
—_—
o EAE B/ Bmi: & BENE
tepesirel OHFI-EIR tepEe?
[RREES [RRES
d HOHE & HOWEE
) e
LTFRSERSEID LIERSEREID
ftin_|
tainig BT atainig BT
& MQIIE & MOIIE Rigir
bl Tet2 #
RS [RHES (s ey
Cirer Gsss
A\ Bt G
« >
| e | B |

Figure 3.1: The function of a Nitric Acid Cooler

38

Two other buttons enable the user to display the functioning of other physical
devices, whose functions are closely related to the desired function, or to display the
functioning of the device that is the best match for a given design problem.

In CANAH-CHAB, the object representing a state is a roundtangle (rectangle with
round corners) containing slots for information such as the name of the substance, the
properties and values of the substance, the location (if specified) and the name and
properties of the substance contained (e.g., heat) if it exists. The slots of an instance
of such an object are filled by accessing the information contained in the SBF models
of a physical device. Two instances of this prototype are displayed in Figure 3.1
showing the function of an acid cooler. The state on the right is the one that this
acid cooler device makes, given the state that is displayed on the left. This function
is achieved by a particular behavior whose name is displayed between the two states.
The user can either click on this name or on the “behavior” button to display the
internal causal behavior that enables the achievement of this function. Figure 3.2
shows the resulting display of the overall behavior of an acid cooler.

The object representing a transition between two states is a set of arrows, a name
identifying the transition and also an interactor that enables the user to click on the
name to get more information about this transition. The graphical illustration of
a transition is provided in Figure 3.2. Clicking on the name of a transition makes
visible a menu that provides the user with a choice of available information concerning
this transition. In the Nitric Acid’s behavior shown in Figure 3.2, the result of the
user clicking on the name of the transition is displayed in Figure 3.3.

In Figure 3.3, showing the behavior of the nitric acid in the nitric acid cooler
example, the menu is visible on the right side of the screen. In this example, the user
can ask for more information about the function used to achieve this transition, in

which case a window pops up telling the user that the transition occurs because of

Bimviar of the case: NIRICZCIDAOOER-L

Saed) Satedl
[NIRICZCD \ [NRCACD \
& laztion: @) & loztion: g
d TBENE d BERIRE
tepeze] tepmze?
KRS TERES
d HOHE o HOHEE
=@ed e
LIERSHREDD LIFRSHREDD
& MQUIE o MOIIE Rimic
tet-] teet2
NG NG ot |
Cther Bavicr(s) : Heet-Veher
Ofer Ges
Bt G
< ——
e | e | e |

Figure 3.2: The Behavior of the Nitric Acid in a Nitric Acid Cooler

the function of a component of the device. Figure 3.4 shows this pop-up window.

39

Another choice by the user would have been to click on “By Behavior” in the menu.

This shows that the transition about which the user is asking for more information

occurs under the condition that another internal causal behavior of the physical device

is achieved. Clicking on this new option would immediately lead to the display of the

behavior of the water in this device. The internal causal behavior of the water in the

Nitric Acid Cooler is shown in Figure 3.5.

40

Biaviar of the case: NIRIC2CIDAOOER-1 Trasition: P
g A
Blaviar: Oeall-Bieviar
Saed) Satedl
([NmCED \ [NmeAD \
o Tt 1 & Tzt o SR
d TBENE d BERIRE By Rimia
tEmEauel tEpEeire? 3 Tepoal Astractia
KRS [ERES PRaaeric Rigtas
¢ HOIRE ¢ HOEE S
el e
LIERSHREDD LIFRSHREDD
e Rrddm
taining HRT = atairing HAT
& MQUIE o MQTIE Riar
hestl test=2

Cther Bavicr(s) : Heet-Veher
Ofer Ges
v BCe
< —— >
| e | B |

Figure 3.3: More Information about a Transition

3.2.5 SBF Meta Models and Illustration of Design Processes

CANAH-CHAB illustrates the knowledge and reasoning of KRITIK2 by providing
graphical screens representing the information contained in SBF meta models of KRI-

TIK2’s design processes.

Tasks screens: Tasks and subtasks are represented on the screen as rectangular

objects. Any instance of a task or subtask object contains, in text, the name of the

specific task that it represents. Input/output data types are represented by arrows

41

fthe ase: NORICZACID<OOER-1 TarsitiorD
Tre tasitin Tastior® aors
\sirg tre firctim Rp
Seted Setedl Feomet Nobde
[NweaD \ [NmCxD s
i <imim - Ehee
§ TERIE & BERIRE By Bmi
tepEsrel tepEshe? 3 Tepoal Astractian
[ERES [KRES PRaaeric Rigtas
¢ HOEE ¢ HOEE S
=) e
ITERSERSOD IESEREND
otainirg HIT mm& catainig HIT
& MQIIE o MOIUE Rémior
tet1)

licx(s) : Het-Veer
Ofer Gess
\| B G
[—— ~
_# | _athe | |

Figure 3.4: Transition using the Function of a Component

flowing into or out of task rectangles labeled with text descriptions. Figure 3.6 shows
the completed task of adaptation as a rectangle on the left of the screen.

The adaptation task is performed in KRITIK2 by using the “model-based adapta-
tion” method. As shown in Figure 3.6, a method is represented as an oval containing
the name of the specific method and is positioned to the right of the task to which it
applies. Procedures are represented by their names in text.

The subtasks initiated by a method are displayed on the right of the oval repre-

senting that method. In Figure 3.6, the subtasks of the design adaptation task are

42

A
Blaviar of the ase: NORICACIDOOER-L
Bimviar: Heb-Weber
SaeB Sae3]
[WHER \ [WIR \
o lostio: (5 o loztion: 6 a
d TBENE d BERIRE d
iciiEbics] tepEeire3
KRS TERES
d HOHE o HOHEE d
el 22
LIERSHREDD LIFRSHREDD
. - e)
& MQIIE & MOIIE d Rigir
ret=3 T3 #
NG = e |
Cther Bavicr(s) : Oeall-Bavicr
Ofer Ges
v BCe
« >
| e | B |

Figure 3.5: The Behavior of the Water in a Nitric Acid Cooler

presented vertically since they occur serially. The three subtasks in this example are
the computation of functional differences, diagnosis and repair. These subtasks are

represented by the same graphical objects used for the task of design adaptation.

Information Screens: CANAH-CHAB not only illustrates to the user the tasks and

subtasks performed by KRITIK2 and the methods used in the design process, it also
illustrates the knowledge used by the system as input to these tasks and the results of

the transformation. Information screens are textual or graphical illustrations of the

43

B Nt Stizds Betepti:
N Qpizin
Bstlam Iesin MEs | s |CRtiod Firdire
Rcge /| Mo Aipztion BetMtch Diffrms |UCOES geodiff
Bt tth Diayesis Mok
R ESEEEED

Hrc e
Fichfs ot > (e
R ailts

_# | the | |

Figure 3.6: The Complete Design Adaptation Task

input and output data types used by the system. Figure 3.7 shows an information
screen illustrating the result of the diagnosis task performed by KRITIK2. It presents
the possibles causes of differences between the desired function of a device and the

function of the device that was retrieved from the memory of devices.

44

The Furckiorel. Diffeverces Might Be Casd By:
* Tre DIRCILY poportiarel effedt of
tre mawer Gacity of anporat Bib
inbdeviar Ligt-Rdaviar.
* The DIRCILY proportiarel effedt of
the paraeter ity of copoat: Btery
inldaviar Eledricity-Biraviar.

_# | the | |

Figure 3.7: An Information Screen: The Possible Causes of Differences

3.2.6 CANAH-CHAB’s Scenario

In addition to being able to graphically show tasks and methods on the screen,
CANAH-CHAB is able to show KRITIK2’s design problem-solving process to users by
graphically representing problem solving control structure through a task structure
when tracing through illustrative examples of problem solving. Situating the design
activity in real examples enables the presentation of the different kinds of knowledge
used by the system in their contexts. Therefore, the knowledge about the domain and

the functioning of devices is provided when it is relevant and necessary to the user in

45

the overall problem solving example. Furthermore, it enables the user to ground the
acquired knowledge in the real world.

The user is presented with a graphical illustration of the design problem solving
process in the following manner. CANAH-CHAB invokes KRITIK2 to solve a given
design problem from a set of pre-defined problems. KRITIK2 solves the problem
using a case-based reasoning method. The results from KRITIK2 are interpreted and
displayed by CANAH-CHAB. CANAH-CHAB presents the user with a sequence of task
screens that show KRITIK2’s design process. Between task screens, it also illustrates
the memories of the system, the functioning of physical devices, and other information
screens, as appropriate.

The previous scenario led to the following scheme for showing the flow of problem

solving in the context of illustrating a particular sample problem:

o KRITIK2’s design expertise can be illustrated by presenting a sequence of screens

to the user.

e Screens in the sequence graphically represent task structure information or spe-
cific instances of input/output data types (instantiated in the context of the

current example).

e The user displays the next screen in the sequence by clicking on the continue

button provided at the bottom of CANAH-CHAB’s screens.

e Task screens indicate the currently active (sub)tasks by highlighting the outlines

of the rectangles that represent them.

o Task screens indicate subtasks that will be executed in the future by making

the outlines of their rectangles into dotted lines.

46

e Task screens indicate terminated subtasks by representing them with normal

rectangles.

e Task screens do not show the inputs or outputs of subtasks that have not yet

been executed.
e Task screens do not show the outputs of currently-active (sub)tasks.

o The states of tasks, and the visibility of their inputs and outputs, change from

one task screen to the next in the screen sequence.

o KRITIK2’s code was augmented so as to transfer control to CANAH-CHAB, which
then invokes the appropriate screens, at the appropriate places during its exe-

cution.

Figure 1.6 and Figure 1.7, shown previously, are examples of task screens. An
example of a sequence of screens shown by CANAH-CHAB in an illustrative example

of KRITIK2 solving a design problem is provided in Appendix B.

3.3 Explanation of Physical Devices and Design Processes

3.3.1 Motivation

In addition to illustrating the functioning of physical devices and the design process,
design and learning environments must provide explanations of the functioning of
these devices and how the reasoning of an autonomous design system works. In
the master-apprentice relationship, the master generally explains what he is doing
and why while he is performing the activity. This phase of the relationship is very
important since it forces the master to articulate his reasoning and to make explicit the
knowledge he uses. It enables the apprentice to acquire concepts that are otherwise

implicit and justifies the actions of the master. The environment needs to provide

47

explanations and justifications of the knowledge it uses, the tasks and subtasks it

performs, and the methods it selects.
3.3.2 Issues

The main problem in explaining the functioning of physical devices and design pro-
cesses is deciding the amount of detail and information that an explanation should
contain. It should be detailed enough so that the user gets a clear understanding of
what it was supposed to explain, but not too detailed so that the user can under-
stand the general idea and not get lost in low level details. Another issue that arises
is deciding when to expose the user to some explanations. Should the system provide
explanations all the time? Or should the user ask for explanations about something

she hasn’t understood or is not sure about?

3.3.3 Explanation Techniques

In order to not overload the user with explanations that might not be needed, the
presentation of explanations should be optional. Nevertheless, the user should always
be able to ask for an explanation at any time while using the system. Making expla-
nations discretionary to the user might even facilitate the learning of the activity. In
addition to the content of the explanation, the users must reflect about the activity
and decide when more information and a complete explanation are needed.

Access to explanations should be available at all times and made easy by the use
of a graphical button on the screen that gives access to a menu of explanations. It is
necessary to note here that the explanation part concerns the system’s reasoning and
the knowledge it uses, not the commands and features of the system interface. The
later are provided separately by a “help” button.

In order to provide efficient explanations, the explanation button should be

context-sensitive. The explanation queries are restricted to the current part of the

48

activity that the system and the user are looking at, but the content of the expla-
nations might deal with other parts of the system’s knowledge and reasoning, if it is
necessary. Furthermore, because of the hierarchical nature of the knowledge organi-
zation and the task structure, the explanations can be of different levels. This solves

the issue of the level of detail that should be provided.

3.3.4 SBF Models and Explanation of Physical Devices

The qualitative view of devices, captured in the SBF models of physical devices, ex-
presses an explanation of the functioning of these devices. By illustrating the SBF
model of a device and making the knowledge contained in the model explicit and
transparent, the user is provided with an explanation of how the device works. In
CANAH-CHAB, the functioning of physical devices is explained to the user by graphi-
cally representing the content of SBF models. How the system works is explained by
providing the internal causal processes or behaviors of a device. Figures 3.1 through
3.5, shown before, provide an example of the explanation of the functioning of a nitric

acid cooler.

3.3.5 SBF Meta Models and Explanation of Design Processes

The advantage of using SBF meta models of the design processes is that the system
can perform some simulation. It, therefore, allows the system to generate explicit
explanation about the reasoning processes while other systems can only provide the
user with some previously generated explanations. In systems of the latter kind,
explanations about the knowledge and the task are pre-recorded by the designers of
the system and concern only the actual behavior of the system. On the other hand,
when an intelligent tutoring system such as CANAH-CHAB has a meta model of an
autonomous design system’s processes, it can generate the explanations itself.

Using the knowledge captured in the SBF meta models of KRITIK2’s design pro-

49

cess, CANAH-CHAB can generate justifications and explanations of expected behav-
iors. It can explain a task, justify the use of a method, simulate the result of the
process given a particular specification and justify some results. Figure 3.8 shows
the justification for the retrieval of two cases from KRITIK2’s memory of past device

designs given a functional specification.

|
Rrctioel Secification of the Gase : LTHMERIUE
GNEN SIIE MEES SHE SIMILB
HERCOY re:iy
& OEE d NS
wts10 _— leseidtem
Wais sy
Tree is a FRERY-SETATZATIN seecialization fron RIORNIE frr the atfrite VIIKE gecified in FIGEHT
Trere is 2 WIE SR TN gecializtion fron IRERYNIE fir the o te VATS5-10 gecified in RICSRC Frctin
Tre \BIENIE of VOIS0 hes BERBET(S), RR
Te WIENIE o OIS0 tes (BCRECN(S), RA Blada
There is a BROBRIY-SRCA IZATON geecialization fron ROORNIE for the atiribte INBNEITY gecified in FIGSRS
There is ro WIE ST TN seialization of the REERYATE Souure
Tre RERYNIE of INNETTY hes AECRECT(s), LIGTFERIUE
2o |
| e | B |

Figure 3.8: Justification of the Result of the Retrieval Task

50

3.4 Navigation through Physical Devices and Design Processes

3.4.1 Motivation

In addition to the illustration of its domain and process knowledge, a system must
provide navigation through them to the user. Navigation can not only provide flexi-
bility, it can also support the exploration of the system by the user, therefore giving
her the initiative to learn more about the system’s memory of past design cases, its
conceptual knowledge and its processing knowledge.

Allowing the user to browse through the system’s knowledge enables her to see
parts of the knowledge that maybe weren’t directly provided by the illustrative ex-
amples. Both the content and the form of the information presented are different.
Navigation enables the user to have a more complete view of one kind of knowledge.
For example, browsing through the case memory provides the user with a general
presentation of all the design cases in memory. An illustration of the design problem-
solving activity would have only presented the user with the best matching case,
and would have situated it in the context of the retrieval task with other forms of

knowledge, such as knowledge about substances, components’ function, etc.
3.4.2 Issues

Two issues arise when talking about navigation through the system’s knowledge.
The first issue, which was also a problem for illustration, is that the knowledge of
the system can be large. What are the navigation techniques or guidelines to make
browsing through complex spaces efficient? The second issue is that users tend to get
lost when they navigate through large systems. Therefore, we need to provide hints

to the user to allow her to know “where she is” in the system’s knowledge.

51

3.4.3 Navigation Techniques

In order to avoid having the users get lost while browsing through the system, stan-
dard techniques suggest providing context to the user. Providing general graphical
context associated with visual clues to situate the current position enables the user to
visualize where she is navigating, what kind of organization she is browsing through
and what kind of information she is looking at, etc. Figure 1.7 shows how the context
for the retrieval task is provided before going deeper inside the browsing of the task
in Figure 1.8. It shows the ordering and hierarchy of the tasks, combined with other
information.

To support effective browsing in large complex spaces, standard techniques also
suggest using several levels of display. For example, the retrieval task is displayed in
two different windows, so that it shows the hierarchy of the information displayed. In
order to support faster navigation through complex hierarchical displays, the system

also provides direct access facilities such as in the case memory.

3.4.4 Navigation in the SBF Model of a Physical Device

To provide the user with a better understanding of the functioning of physical devices,
CANAH-CHAB supports navigation through the SBF models of devices. The user can
navigate between the different Structure, Behavior, and Function views of a device
in order to get a more general understanding of its functioning. Figures 3.1 through
3.5 show the different views of a nitric cooler and how the user can navigate between

these illustrations.

3.4.5 Navigation in the System’s Memory

Using SBF meta models of the system’s knowledge and reasoning enables the user to
have access to the complete knowledge base used by the autonomous design system.

The user can, for example, browse through the memory of past design cases, the

52

memory of substances, physics principles, etc. The advantage of using SBF meta
models of the design processes is that the browsing can be guided by the system. In
general, browsing is an activity initiated by the user and completely unguided by the
system. But with meta models, the system can perform some simulation and restrict
the browsing space depending on some user/system defined conditions. For example,
given a particular design problem, the system can restrict the memory of design cases
to the cases that are relevant to the problem, i.e., cases that could be adapted to

produce the desired solution.

53

CHAPTER IV

DISCUSSION

4.1 Results and Contributions

This thesis describes an enabling technology to support the illustration of the func-
tioning of physical devices and of autonomous design systems. CANAH-CHAB, the
product of this research, also supports explanation of how physical devices and de-
sign processes work. Furthermore, it supports navigation through the memory of
KRITIK2.

This research has shown that (i) SBF models of physical devices enable the il-
lustration and explanation of how physical devices work; (ii) SBF meta models of
an autonomous design system enable the illustration and explanation of the design
process, as instantiated in the system, and (iii) the use of SBF models and SBF meta
models for the two abilities indicates that the same kind of content theory, represen-

tation scheme and presentation mechanisms may be sufficient for the two abilities.

4.2 Limitations and Critiques

The current version of CANAH-CHAB suffers from several limitations. First, the struc-
ture of a physical device, defined by its components and their relations are not yet
graphically presented in CANAH-CHAB. Another observation concerning CANAH-
CHAB is that it is maybe too faithful to KRITIK2 concerning the description of the
design process. KRITIK2’s view of design as information-transformation processes

is somewhat limiting, other methods should, therefore, be proposed to support the

54

design task. In the version of KRITIK2 used for CANAH-CHAB, values are only tex-
tual symbols for which KRITIK2 has an ordering. A more recent version of KRITIK2
deals with numerical values instead of symbols. The version of KRITIK2 used by
CANAH-CHAB needs to be updated to accept these numerical values.

Second, CANAH-CHAB currently allows only limited user interaction. For exam-
ple, in the current version of the system, the user can only move forward between
the screens illustrating the design process. Providing backward navigation capabili-
ties would enable the user to re-display information or trace backward through the
reasoning of the system. Enabling the user to select the task or method to illustrate
would provide even more flexibility in the use of CANAH-CHAB. Another limitation
of the interaction capabilities of CANAH-CHAB is that, in its current stage of devel-
opment, it does not let the user make any choice concerning the reasoning processes.
The user can’t suggest the use of a particular case to solve a problem or can’t choose
to apply a particular method to solve a task.

Third, the interface of CANAH-CHAB needs considerable improvement to be usable.
For example, some terms such as “state:29” and “transition:38” that CANAH-CHAB
displays would be completely meaningless to a potential user and need to be modified.
This limitation of CANAH-CHAB’s interface is due to the fact that SBF models of
devices, as they are implemented in KRITIK2, contain information describing the
functioning of devices in terms that are useful and meaningful for KRITIK2’s task of
design problem solving but were not meant to be displayed to the user.

Another critique about CANAH-CHAB’s interface concerns the fact that all the
information is provided in a static, boring manner. Adding animation to the system
would better illustrate the flow of information in the reasoning processes and the flow

of substances in the physical devices.

99

4.3 Related Work

This work connects with several lines of research in Artificial Intelligence, design, and
interactive systems such as qualitative models of physical devices, meta models of
problem solvers, the similarity between these two kinds of models, illustration and
explanation of physical devices, illustration and explanation of reasoning processes,

and case-based design.

4.3.1 SBF Models of Physical Devices

SBF models are qualitative models that capture an understanding of the functioning
of physical devices at three levels: the function of a device, the internal causal be-
haviors by which this function is achieved, and the structure of the device enabling
these behaviors. Vasandani and Govindaraj [1994] have previously used SBF mod-
els in a computer-based instructional system, called TURBINIA-VYASA, that trains
operators to troubleshoot and diagnose faults in marine power plants. The simula-
tor, TURBINIA, is based on a hierarchical representation of subsystems, components,
and primitives and uses the qualitative approzimation scheme described in [Govin-
daraj 1987]. At the highest level, the system knowledge is represented by schematics,
functional subsystems and fluid paths. The lowest level of description of the system
knowledge is at the component level and has three attributes: structure, function and
behavior. In TURBINIA-VYASA, a component’s structure refers to its connections to
other components, the fluids carried by it, the gauges that are attached to it, and its
association to a schematic or a functional system. The functional knowledge about
a component is its intended use in the system and its contribution to higher level
functions. Knowledge of a component’s behavior concerns its states. In TURBINIA-
VYASA, the structural knowledge and the behavioral knowledge are different under

the normal and failed modes of the system.

56

The SBF models of physical devices used in KRITIK2 evolve from earlier models:
functional representation ([Sembugamoorthy and Chandrasekaran 1986]) and consol-
idation (Bylander and Chandrasekaran 1986], [Bylander 1991]). Within KRITIK and
KRITIK2, SBF models have been used for a variety of tasks such as case retrieval [Goal
1992], design adaptation [Goel 1991a, 1991b], design verification and redesign [Goel
and Prabhakar 1991], index learning [Bhatta and Goel 1992, 1993b], and analogical
design [Bhatta, Goel and Prabhakar 1994].

4.3.2 SBF Meta Models of Problem Solvers

In earlier work, Allemang [1990] has viewed a program code as a device and repre-
sented it in the functional representation language. Similarly, Weintraub [1991] has
viewed a diagnostic problem solver as a device and represented its functioning in
the functional representation language. Recently, Johnson [1993] has modeled how
SOAR ([Laird, Rosenblum and Newell 1986]) solves problems in the functional rep-
resentation scheme.

In the AUTOGNOSTIC system, Stroulia and Goel describe an approach in which a
path-planning problem solver for pedestrians, called ROUTER, is viewed as an abstract
device and its functioning is described using the SBF language. In AUTOGNOSTIC,
the SBF meta model is used to support problem solving, monitoring and blame as-
signment. In CANAH-CHAB, the same SBF language is used to capture the knowledge
and reasoning processes of an autonomous design system, KRITIK2. In this work, the
SBF meta models are used to support the illustration and explanation of the design

Processes.

4.3.3 Similarity Between Models of Devices and Systems

In the context of knowledge acquisition, Davis discussed the concept of meta-

knowledge [Davis 1979]. Davis developed a system, called TEIRESIAS, that provides an

57

“advice-taking” interface to MYCIN [Shortliffe 1976], an expert system that diagnoses
and prescribes treatment for infectious diseases. TEIRESIAS operates by working on
sample problems given by an expert. The expert who disagrees with its conclusion
is invited to follow the chain of reasoning that led to that conclusion until the point
where a conclusion was reached when it shouldn’t have or was not reached when it
should have been. The expert provides new knowledge to the system to correct the
mistake. In TEIRESIAS, knowledge acquisition is enabled because the program can
“know what it knows”. TEIRESIAS can not only use its knowledge directly, but it is
also able to examine it, abstract it, and direct its manipulation. In TEIRESIAS, the
object-level representations, describing the external world, are expressed in terms of
rules. The meta level representations, describing the internal world of representations
of the system, are also captured in terms of rules. It is interesting to note that the
same kind of representations are used at both level.

In his work on meta-planning, Wilensky [1984] has shown the similarity between
the knowledge about the world and the knowledge about the planning process itself.
In the planner, the knowledge about the world is expressed in terms of goals and
plans. Wilensky has shown that knowledge about the planning process can itself be
formulated in terms of higher-level goals and plans called meta-goals and meta-plans.
He shows that meta-goals and plans can be used by the same understanding and
planning mechanisms that process ordinary goals and plans.

The same stance has been adopted in CANAH-CHAB. The same SBF language
is used for describing knowledge about physical devices and knowledge about the
reasoning processes that operate on these physical devices. Both SBF models of
physical devices and SBF meta models of an autonomous design system are used in
CANAH-CHAB to support uniformity of presentation and the similarity of processing.

SBF models and meta models are used for illustration, explanation and navigation.

58

4.3.4 Illustration and Explanation of Devices

The illustration and explanation of physical devices is a classical issue in intelligent
tutoring systems. SOPHIE, designed to teach troubleshooting in electrical circuits,
was perhaps one of the first intelligent tutoring systems in an engineering domain
([Brown, Burton and de Kleer 1982], [Brown and Burton 1986]). The work on So-
PHIE motivated much research on qualitative reasoning. Forbus [1984], for example,
developed a qualitative process theory to describe the behavior of physical processes
in terms of time intervals over which things happen or remain true. His work focuses
on predicting what will happen in the next time interval and on explaining what
has already happened. As mentioned earlier, our approach to the illustration and
explanation of physical devices is with SBF models. SBF models differ from Forbus’
view in that the qualitative process theory is general and derivational while the SBF
models used in CANAH-CHAB are specific and compiled.

Ask How It WORKS [Kedar et al. 1993] is a prototype of an intelligent inter-
active manual for devices. It is based on an intelligent training system, called ASK
Systems [Schank 1991], that trains people by providing dialogs with experts. Instead
of modeling students, the device and the reasoning process, ASK indexes informa-
tion by answers and follow-up questions. ASK How IT WORKS builds on DEDAL
[Baudin et al. 1993], a hypermedia system that conceptually indexes documents on
mechanical devices, and on an ASK system’s ability to navigate the indexed material

through trainees’ questions.

4.3.5 Illustration and Explanation of Processes

In GUIDON, Clancey [1987] built a tutor on top of MYCIN [Shortliffe 1976], a rule-
based system that diagnoses and prescribes treatment for infectious diseases. Clancey

identifies the different kinds of knowledge that must be made available for a tutor

99

to function effectively: the performance expertise, that is augmented with support
information and metalevel abstractions, and the pedagogical expertise, that is explic-
itly represented in terms of rules which refer to general representation scheme but
not the contents of the domain. The problem with the rule-based implementation
of the tutorial module is that GUIDON has difficulty following students and students
have problems in acquiring MYCIN’s expertise. The reason for this is that MYCIN’s
rules represent compiled expertise which is obscure to the students. In order to rem-
edy GUIDON’s shortcomings, Clancey and his team built a new version of MYCIN,
called NEOMYCYN. The novelty in NEOMYCIN is that the control structure is a set of
domain-independent set of metarules which explicitly represent a hierarchically orga-
nized reasoning strategy for medical diagnosis. The domain-independent mechanisms
of NEOMYCIN are captured in a heuristic classification system, called HERACLES.
It includes a reasoning strategy, expressed as metarules and tasks, and a language
of relations between objects. The work on NEOMYCIN and HERACLES led to a new
explanatory interface, GUIDON-WATCH [Richer and Clancey 1985]. In this new inter-
face, the explanation of the reasoning process was expressed in the language of tasks.
In CANAH-CHAB, the tasks and subtasks structures are similar to those in Clancey’s
work. However, the formulation in CANAH-CHAB is closer to Chandrasekaran’s work
on task structure decomposition [Chandrasekaran 1990] and on explanation using the
task structure decomposition [Chandrasekaran, Tanner and Josephson 1989].

In another line of this research, the emphasis is on the visualization of the design
processes. In GIL [Merrill et al. 1992], an interactive learning environment that sup-
ports students’ problem solving as they learn LISP programming, the students can
make their reasoning explicit. GIL provides graphical representations of program-
ming to illustrate the students’ reasoning process. In this graphical tutor for LISP

programming, network structures that depict the flow of function calls are used to

60

visually represent LISP programs. These structures are used to help learners visualize
the abstract concepts associated with functional programming, thus facilitating their
learning of this non-traditional programming paradigm. One difference between GIL
and CANAH-CHAB is the granularity of the objects represented in the nodes of net-
work structures. In GIL these nodes represent individual LISP instructions, whereas
in CANAH-CHAB they are generic reasoning tasks, abstracted away from any particu-
lar implementation (even though KRITIK2 does provide a specific implementation of
them). In addition, GIL’s graphical representations are used to guide learners during
the solution of specific programming problems by letting users compose networks of
LISP instructions by selecting them from menus, clicking on them to ask for help,
etc. In the current version of CANAH-CHAB, on the other hand, the graphical repre-
sentations cannot be manipulated by the users, and serve more as didactic facilitators

for the system’s explanations and illustrations of problem solving.

4.3.6 Case-Based Design

Kolodner [1991] has advocated the use of libraries of past design cases to support
problem solving. ARCHIE [Pearce et al. 1992] provides architects with a library of past
design cases in the context of conceptual design of new offices building. It supports
design generation and design critiquing. ASKJEF ([Barber et al. 1992]) is a case-based
design system that, in addition to a library of past designs, provides access to design
guidelines and principles in the domain of interface design. ARCHIETUTOR [Goel
et al. 1993] is a new version of ARCHIE that takes into account the lessons learned
form ASKJEF about providing access to domain knowledge. ARCHIE2 [Domeshek
and Kolodner 1991] is a newer version of ARCHIE whose emphasis is on ensuring that
the important lessons from each past design are communicated to the users.
CANAH-CHAB can also be seen as a case-based design system. It provides access

to an external memory of past design cases. However, important lessons learned from

61

ASKJEF and ARCHIETUTOR have been taken into consideration. For instance, in ad-
dition to information about design objects and the domain knowledge, the intelligent
tutoring system also illustrates and explains the design processes. CANAH-CHAB is

an attempt to provide both kinds of information.

4.4 Future Research

4.4.1 Scaffolding

With some modifications, the CANAH-CHAB system could also be used as a scaffolding
tool, by helping the user and guiding her while she is trying to solve some problems.
The SBF meta models of the design process make it possible for CANAH-CHAB to
provide advice to the user. In the current version of CANAH-CHAB, the user observes
KRITIK2 solving a design problem but does not interact with it. A different version
had been implemented earlier, but is still incomplete, where the problem specification
was provided by the user to CANAH-CHAB who transmitted it to KRITIK2 in order to
solve the given problem. This means that the illustrative and explanatory purpose of
CANAH-CHAB could be modified to serve as a design tool showing the processes that
led to a design. Furthermore, instead of invoking KRITIK2 at each step of the design,
CANAH-CHAB could prompt the user in the design task, invoking KRITIK2’s SBF
meta models when the user needs support. As mentioned earlier in the explanation
section, the system can simulate a problem and generate the solution with explana-
tions. CANAH-CHAB could, therefore, guide the user through the different steps of
the task, prompting for methods and simulating the result of a task when the user

doesn’t know what to do.

62

4.4.2 Interface Development

The primary goal of this thesis was to provide an enabling technology to support
the illustration and explanation of both physical devices and design processes. Thus,
interface development in CANAH-CHAB has not received much attention and it is not
clear whether the system’s current interface is usable. CANAH-CHAB wouldn’t be
meaningful to a user at its current stage of development. Future work on CANAH-
CHAB should lead to a better interface, first by providing terms that would be more
meaningful to the potential users than the ones that are currently captured in the
SBF models of physical devices in KRITIK2.

Future work on CANAH-CHAB also needs to support a wider range of user interac-
tions. Interaction facilities are available in the Garnet environment so future versions
of CANAH-CHAB should include more navigating abilities for the user. In particular,
at the level of the illustration of the tasks and methods, the user should be able to
go backward in the sequence of screens and even to select the tasks or methods that
she wants to see illustrated. These features would provide more flexibility in the use
of CANAH-CHAB.

One of the benefits of using meta models to illustrate the system’s knowledge
and reasoning processes is that it provides the ability for user-controlled illustrations.
CANAH-CHAB expresses KRITIK2’s knowledge, the organization of its memories, the
ordering of the tasks to perform, and the methods applicable in a language inde-
pendent of their representations. Therefore, this knowledge could be illustrated in
different formats, i.e., textually, graphically, via graphs, trees or tables, depending on
the user’s choice.

Even though CANAH-CHAB provides some navigational capabilities, the informa-
tion illustrated by the system is presented in a rather “static” way. Looking at the

nature of the information displayed, it could be interesting to add software visualiza-

63

tion features to the system ([Stasko and Patterson 1992]). Indeed, some animation
programs could be used to illustrate the reasoning processes, viewed as information
flowing through subtasks, and the physical devices, described with some substances
flowing through components. Using a software visualization system, such as TANGO
[Stasko 1990], could enable a smooth animation of the functioning of the physical de-
vices and of the reasoning processes, instead of the sequence of screens that CANAH-

CHAB'’s interface is made of in the current version.
4.4.3 Evaluation

While CANAH-CHAB’s interface is being improved, there should also be research on
characterizing the category of users this intelligent tutoring system is intended for.
The emphasis of this thesis was on the enabling technology to support the illustration,
explanation and navigation of physical devices and design process. However the
cognitive side of this research should also be addressed in the future. Describing the
knowledge of the target users would also be very helpful in developing the “right”
interface for them.

Once the interface of CANAH-CHAB has been improved, it should be tested by a
sample population of the potential users in order to evaluate the understandability
of the illustrations and explanations, the usefulness of the navigation capabilities and

also the nature of what users learn from CANAH-CHAB.

4.4.4 Articulation of the User’s Reasoning Activities

Using a language such as the SBF language not only enables the explicit representa-
tion of the system’s knowledge and reasoning, it also provides a target language for
the user to articulate her own reasoning and actions. The system exposes the user
to a formal language, and gives her a vocabulary with which she can formulate her

reasoning and communicate with others about the activity.

64

Furthermore, it might potentially enable the user’s reflection on this articulation
of the reasoning process. In the context of design, Schoen [1987] has argued that
reflection is a fundamental constituent of design problem solving and learning. Re-
flection can help a student become a more skilled designer, one who produces better
quality designs because she can recognize and avoid potential errors of reasoning,
and one who produces designs more efficiently because she understands the interde-
pendencies among design decisions, the applicability conditions of problem-solving
methods, and the potential sequencing of the subtasks they set up. This issue of
learning through reflection is critical if we are to create an environment that not only
supports designers in creating new designs but also enables them to become better
designers.

Providing a language to represent the system’s reasoning enables users to make use
of this vocabulary to explicitly and formally articulate their own reasoning concerning
the processes and knowledge involved in the activity of design. Articulating their
reasoning using this language can help them identify their mistakes. It can also give
rise to a generalization of the activity by abstracting the reasoning away from the
provided context. The use of models of the design processes and objects can therefore
support reflection. Supporting these articulation capabilities is also a future direction

of research for CANAH-CHAB.

65

APPENDIX A

CANAH-CHAB: USER MANUAL

This section discusses how to load and run CANAH-CHAB. Instructions are included

for running several demonstrations.

CANAH-CHAB’s Directory: The files for KRITIK2 are available in the ktu-

tor/Adaptation, ktutor/Examples, ktutor/Memory and ktutor/System di-
rectories. The files concerning CANAH-CHAB are in the ktutor/Tutor/demo direc-

tory, and all the following commands need to be typed from this directory.

Loading the Garnet Software: To load the Garnet software, type the following:

/usr/local/bin/garnet; it will automatically load many Garnet files and also the

Common LISP interpreter.

Loading Garnet Objects: Once the default Garnet stuff has been loaded, load

the additional Garnet items that are needed for CANAH-CHAB (e.g., code for handling

mouse clicks and for displaying different types of graphical objects), by typing: (load
“Kt-init1A”).

Setting the Package: Set the active package in the LISP environment to KRITIK2

and CANAH-CHAB’s by typing: (setf *package*® (find-package ’ka)).

66

Loading CANAH-CHAB: Load the graphical file loader, which also automatically

loads KRITIK2’s code (modified to communicate with CANAH-CHAB), by typing:

(load “gdemo”).

Starting a demo: To start the graphical illustration and explanation by CANAH-

CHAB of the design of a physical device, type (new-cbr problem-name), where
problem-name identifies a particular problem. Among the examples that are cur-
rently available, problem5 illustrates the design of a flashlight circuit, problem1
illustrates the design of a nitric-acid cooler, and problemc illustrates the design of
a buzzer circuit.

For example, type (new-cbr problem5) to run the illustration of the design of
the flashlight circuit. The screens displayed by CANAH-CHAB during this example

are shown in Appendix B.

Starting a new demo: To start a new illustration, type (do-cleanup) and it will

reset the system, then type (new-cbr problem-name), as it was described above.

Quitting CANAH-CHAB: First, double-click on the Ezit button at the bottom of the

screen to end any graphical demonstration. To end CANAH-CHAB's session and quit

the Garnet environment, type (quit) and the operating system prompt will reappear.

67

APPENDIX B

CANAH-CHAB: DESIGN OF A FLASHLIGHT
CIRCUIT

This section provides a sequence of screens from a session of CANAH-CHAB illus-
trating and explaining the design of a flashlight circuit. The commands to run this
session were provided in Appendix A. This session corresponds to the flashlight circuit
problem, called problem$ in Appendix A.

The user interacts with the system by clicking on the screens with the mouse.
At the bottom of each screen, three buttons are visible. The Help button, on the
left, is meant to provide hints to the user on the functioning of CANAH-CHAB and its
interface. This button is not active yet. The Ezit button, on the right, enables the
user to close the display window, quit the session and go back to the Garnet prompt.
The Continue button, in the middle, enables the user to go on to the next screen of

CANAH-CHAB.

68

Figure B.1 shows the first screen that is presented to the user during a session of

CANAH-CHAB. It shows the top level design task screen, i.e., the general decomposi-

tion of the Design task, as it is going to be performed by KRITIK2. The user clicks

on the Continue button to display the input to the Design task.

_rtie |

Figure B.1: The Top Level Task Screen:

the Design Task

69

Figure B.2 shows the problem that is going to be solve by KRITIK2. It represents
the functional specification of a physical device, in this case, a flashlight circuit. The

user clicks on the Continue button to go on with the design problem solving.

A
el St
GAN SEE MXES SIRE SIMILB
ey
d R
—_— BIE
AaR
d INESIY
EIHFEN
I0EB
\
R] >
_#p | Gatine | B |

Figure B.2: Functional Specification

70

Once the user has clicked on the Continue button, the top level task screen is
re-displayed. The output of the problem Elaboration subtask consists of some probes
that are going to be used to retrieve a case and appears on the right of the subtask
in Figure B.3. The user clicks on the Continue button to see the illustration of these

probes.

_me | _rtie | = |

Figure B.3: Design Task Screen: After Problem Elaboration

71

Figure B.4 shows that KRITIK2 is going to use the property intensity of the

substance light, specified in the functional specification of the problem, as probe in

its memory of cases. The user clicks on the Continue button to display the next

subtask of the Design task.

Tre possible sbstance properties thet ean ke ussd
as dee into Desion Gase Mayy ares

Ligt

— INBNEITY

_me | _rtie |

Figure B.4: Output of the Problem Elaboration: Probes

Figure

72

B.5 shows the top level task screen again. It shows that the probes

displayed in Figure B.4 are going to be used as input for the Case Retrieval subtask.

The user clicks on the Continue button to to display the result of the Case Retrieval

task.

= mﬁm i BB > R

oitie | = |

Figure B.5: Design Task Screen: Before Case Retrieval

73

Figure B.6 shows that the output of the Case Retrieval subtask is the best match-

ing design case found in the memory of cases using the probes. The user clicks on

the Continue button to display KRITIK2’s memory of design cases.

” e F o

_ (€:2] Jsorimiretion

_rtie | = |

Figure B.6: Design Task Screen: After Case Retrieval

74

The memory of past design cases is displayed, as shown in Figure B.7. It shows

the organization of the devices’ models in KRITIK2’s memory. The user clicks on the

Continue button to display the best matching case retrieved from the memory.

A Cases
(6= -
Mooy)
- Property
ity ohre ltzp Trtersity
A .
. 4 A gt Lt Function
SihricAcd el n
/
F— Acidity: 17
NitricAcid el
L Acidity: HOH
SihricAcd el
[>
_# | _tine | _Be |

Figure B.7: KRITIK2’s Memory of Design Cases

75

The best matching case retrieved by KRITIK2 is displayed by CANAH-CHAB. Fig-
ure B.8 shows the function of the case Light-Produce that was retrieved from KRI-
TIK2’s memory. The user clicks on the Behavior button or on Light-Behavior to
display the internal causal behaviors of the device, as shown in Figure B.9. The user
could also click on the Continue button to go on with the design problem solving.

The result of the latter is shown in Figure B.11.

A
Fudtionl Seecification of the Gase : ITHIMRIUE
GMEN SHIE MEES SIHIE STMILB
HEIRCITY ey
d UEE d NEEY
wlts10 _— lesseidten
s By Baviar: RS
TIIHPEHAER
|
Bwix |
e |
Ctrer Gss
Y Bt Gee
< —— >
_me | _rtie | = |

Figure B.8: Function of the Flashlight Circuit

76

Figure B.9 shows the behavior of the substance light in the model of the retrieved
device. The user clicks on FElectricity-Behavior to display the other behavior of the
device, as shown in Figure B.10. The user could also click on the Function button to
redisplay the function of the device shown in Figure B.8, or on the Continue button

to go on with the design problem solving (Figure B.11).

A
Blmvicr of the ese: LIGIRERIUE
Saed® Sae D
rie:iy ey
d INBEY d INBELY
" ,
TUES RSB
o
x|
e |
Cther Bmvicr () : Eledtricity B¥evior
Cher Gss
Y Bt Gee
< >
_#p | Gatine | B |

Figure B.9: Light Behavior of the Flashlight Circuit

77

Figure B.10 shows the behavior of the substance electricity in the model of the
retrieved device. The user clicks on the Continue button to go on with the design
problem solving (Figure B.11). The user could also click on the Function button to
redisplay the function of the device shown in Figure B.8, or on Light-Behavior to

re-display the other behavior of the device, as shown in Figure B.9.

A
Riwvicr of the ese; LIGIMERDIE
Saeth
HECRCITY (
& WTEE & WEE d
wlts0 alts10
- LJ L
Tarsitions Trarsiton:6 %
=
e |
Cther Bimvicr () Light-Bmvicr
Cher Gss
Y Bt Gee
< >
_#p | Gatine | B |

Figure B.10: Electricity Behavior of the Flashlight Circuit

78

Figure B.11 shows that the best matching case and the functional specification of

the desired device are used as input to the Design Adaptation subtask. The user clicks

on the Continue button to display how the Design Adaptation subtask is achieved

using the Model-Based Adaptation method.

= mﬁm Ssecil oS S

.
Hoes Ririesl ~ |BECMEh Tree Sch

_rtie | = |

Figure B.11: Design Task Screen: Before Design Adaptation

79

Figure B.12 shows the task screen representing the decomposition of the Design
Adaptation task using the Model-Based method. The user clicks on the Continue

button to display the result of the Computation of Functional Differences.

_me | _rtie | = |

Figure B.12: Design Adaptation Task Screen: Before Computation of Differences

80

Figure B.13 shows that the output of the first subtask of Design Adaptation is a

list of functional differences. The user clicks on the Continue button to display the

functional differences.

Bk Mttt Stizde: Proreiebetht
o Qptatian
Bt Mich Desion Mokl-Beserl .|t i Firdire-
W Idptation Abptetion Bt Mitth Differares Rrchiffs qedft
! Mt
Ryzir Mrel-Feserl
Roziir
_ | e |

= |

Figure B.13: Design Adaptation Task Screen: After Computation of Differences

81

Figure B.14 shows the result of the comparison between the desired functional
specification and the function of the retrieved case. The user clicks on the Continue

button to re-display the Design Adaptation screen.

Goparism of Fudbiael Secificaias:
Desired Frddan of Tatified
Rrddm Reread Differeces

&=

Given St

Sisae Eledricity

Pty etz ltae

\ahe: wlts-10 wlts-10

Mies Sae

Stsare: Ligt

Bropety: Intesity fligisysiiny X

\ale lesseidiemn FIGTEEN

_me | _rtie | = |

Figure B.14: Comparison of Functional Differences

82

Figure B.15 shows that the functional differences and the case retrieved are used

as input to the Diagnosis subtask. The user clicks on the Continue button to display

the output of the Diagnosis subtask.

=" Netra: Stz oot
Bt Mach Dsicn Mrk-Beed — | Rtosl : FirdHfire-
RrcSe Attion Aittio EsCMich Diffeges e qeedift
Bt Mach Diayosis Nk Bred
Rrc Diffs Metfod
s Reic
=

_rtie | = |

Figure B.15: Design Adaptation Task Screen: Before Diagnosis

83

Figure B.16 shows that the result of the Diagnosis subtask is a list of possible

faults explaining the functional differences. The user clicks on the Continue button

to display the output of the Diagnosis subtask.

=" Netra: Stz Broeletétro
Bt Mach Desion MHBe | - | uctioal : FirHire-
RrcSe Attion Aittio EsCMich Diffeges e qeedift
Bt Mach Diayesis Mgkl Bl
Ruchis _ EEBE > i
s Reic
=

_rtie | = |

Figure B.16: Design Adaptation Task Screen: After Diagnosis

84

Figure B.17 shows the output of the Diagnosis subtask, i.e. , a list of possibles

causes for the functional differences. The user clicks on the Continue button to display

the next subtask of the Design Adaptation task.

The Fudtiarell Diffeverces Midt Be Casad By:
* Tre DRCILY pprtiarel effect of
the raeter Gecity of copoet Bilb
inkeaviar Lidh-Riaviar.
* Tre DIRCILY prportiarel effect of
the mrawer ity of coprat: Bttery
inbdhaviar Fledricity Blraviar.

_me | _rtie |

Figure B.17: Possible Faults for the Functional Differences

85

Figure B.18 shows that the input to the last subtask of Design Adaptation consists

of the functional specification, the retrieved case, the list of functional differences, and

the list of possible faults. The user clicks on the Continue button to display how the

Repair subtask is achieved using the Model-Based Repair method.

Bk Netra: Stz oot
Bt Mach Desicn MHEe | - | uctioal : FirdHfire-
RrcSe Attion At EsCMich Diffeges e qeedift
Bt Mach Diayosis Mgkl Bl
Rrclifs FRE > e
Hre Sz
Bt lath Rezir M- Fse]
FrcDiffs Feir
Ress Fallfs
=R | i | | s |

Figure B.18: Design Adaptation Task Screen: Before Repair

86

Figure B.19 shows how the Repair task is decomposed into two subtasks: Model

Revision and Verification.

result of the Model revision subtask.

The user clicks on the Continue button to display the

Netrak: St oot

Frcge -
BstMich Mkl B Elath Mrkl Smuchre
Rrchifs Rgir | EebS Reisicn Rylitin
Ros Falts RsRls

Diedfictin ! Mgkl Bl

! ! SmiaHm

= ==l N

Figure B.19: Repair Task Screen: Before Model Revision

87

Figure B.20 shows that the output of the Model Revision subtask is the new
SBF model describing the desired device. The user clicks on the Continue button to

display the function of the new device.

B Mttt Sitzde: Bt vtk
FuT S .
BstMich Razir Mkl B Blath Mkl Smuchre
Whffs Rt R Diffs Risin [MerMIEL Relicatin
Rs s Bshils
| s
_ | e | B |

Figure B.20: Repair Task Screen: After Model Revision

88

Figure B.21 shows the function achieved by the new device. The user clicks on

the Behavior button or on Light-Behavior to display the internal causal behaviors of

the device, as it is shown in Figure B.22. The user could also click on the Continue

button to go on with the design problem solving. The result of the latter is shown in

Figure B.24.

Fudtiosl Secification of the Gase : FREBD
GMN SAIE MEES SAIE STMILB
HEIRCITY jre:y
& OEE o AR
=10 _— HIE
s By Bfmutior: QIR
HERCTYBHVER-A
o NEELY
FIGIFRN
TIMRE
_ntin |
Bmix |
Smoe |
[—————————————
_m | e | = |

Figure B.21: Function of the New Device

89

Figure B.22 shows the behavior of the substance light in the model of the new
device. The user clicks on FElectricity-Behavior to display the other behavior of the
device, as shown in Figure B.23. The user could also click on the Function button to
redisplay the function of the device shown in Figure B.21, or on the Continue button

to go on with the design problem solving (Figure B.24).

Blaviar of the case: EREBD

S S | fHpomet BIR

x|
e |
Cther Blmvricr(s) : Electricity-Bdevicr—2A
[————————— ~
_me | _rtie | = |

Figure B.22: Light Behavior of the New Device

90

Figure B.23 shows the behavior of the substance electricity in the model of the
new device. The user clicks on the Continue button to go on with the design problem
solving (Figure B.24). The user could also click on the Function button to redisplay
the function of the device shown in Figure B.21, or on Light-Behavior to re-display

the other behavior of the device, as shown in Figure B.22.

Baviar of the case: EREBD

HETRCTY

& WUKE & WUKE (cf
walts0 walts10
was \as

—
e |
Cther Biavriar(s) : LichtBeriar—A
[——— =
_m | e | = |

Figure B.23: Electricity Behavior of the New Device

91

Figure B.24 shows that the last subtask of Repair, i.e., the Verification subtask,

takes as input the desired functional specification and the new model. The user clicks

on the Continue button to display the result of the Verification subtask.

Nttt Siizdks: Broslreitat
Fuc Sme N
BstMich Mkl B Blath Mrkl Smuchre
Rchfs Fezir RcOffs) Redsen [NovMEEL Feliction
R Balts Rsshis
Ny MEL Smilation
Hp Qrtine Exit

Figure B.24: Repair Task Screen: Before Verification

92

Figure B.25 shows that the result of the Verification subtask is a comparison

between the desired and the achieved functions of the devices. The user clicks on the

Continue button to display the comparison between the functions.

Netra: Stz Broelietétro
Frcge -
BstMich Mkl B Blath Mrkl Smuchre
Frchfs Ryzir Rrehiffs Redsip e Replicetion
Rss Balts RwRis
Rrcge rifictio : Mgkl Bl
NewMcEL OS> it
Hp Qrtine Bt

Figure B.25: Repair Task Screen: After Verification

93

Figure B.26 shows that the desired function of the device and the one achieved

after revision of the model are equivalent. The user clicks on the Continue button to

re-display the Design Adaptation task screen.

Canparism of Desired Fadbion ad Fundsion of Revisad Modkl :
Dessirer] Rrct-icreil Seeci ficetion:
GMN SIHE MYES SIHE
HECRCITY (prie:iy \
d& WUKE & aR
wlts10 _— HIE
\ais AR
d NEEY
EICHEN
Fudtion Adhieved by Revisad Model.: RS
GMIN SHE MEES SHE
d WTEE d R
wlts10 E—— BIE
s QIR
& INESIY
ECHEN
.
_# | _tine | _Be |

Figure B.26: Comparison of the Desired and Achieved Functions of the Device

94

Figure B.27 shows the achieved subtasks of the Design Adaptation task. The user

clicks on the Continue button to display the result of the Design Adaptation task.

Mtk Sizdks: Bosl et

o Qrptaton

Best Mith Markl-Beeal —— | f Ructasl . FirdHfire-

g Xittio EsCMich Diffeges |cOffs qeedift
Best Mith Diagyrsis MoEl-Beeeel
Fuchis _ EEBE > i
Hrc §ee
Best Mith Rgair Murkl-Besal
b IR s
RssRaits

_#=e | etz | Lme |

Figure B.27: Design Adaptation Task: After Repair

95

Figure B.28 shows that the Design Adaptation subtask has been completed and

that its output is the new SBF model of the device. The user clicks on the Continue

button to display the next subtask of design.

B Mttt Sitzde: Bt vtk
. o
Bdes X Rpeal [BSCMED Tree Srch
Bt Math Desin
Rrc S Abptation
D e 1
Soae
_ | e | B |

Figure B.28: Design Task Screen: After Design Adaptation

96

Figure B.29 shows that the new model of the device is used as input to the Case

Storage subtask. The user clicks on the Continue button to display how the case

Storage subtask is achieved using the Discrimination Tree Reorganization method.

B Mttt Sitzde: Bt vtk
. o
Bdes X Rpeal [BSCMED Tree Srch
Bt Math Desin
Rrc e Adgdation
e
NavlgEL o
_ | e | B |

Figure B.29: Design Task Screen: Before Case Storage

97

Figure B.30 shows how the case storage task is decomposed into Index Learning

and Memory Replacement subtasks. The user clicks on the Continue button to display

the output of the Index Learning subtask.

Bk Stizse: B ettt
MEl-Baeeel
G Tox Tox
Norlrkl Soae Learirg Learig
' My ; [&:2)
' Plamet Plasat

_rtie |

Figure B.30: Case Storage Task Screen: Before Index Learning

98

Figure B.31 shows that the output of the Index Learning subtask is a list of

indices. The user clicks on the Continue button to display the resulting indices.

B Sfizds: Borslredetio:
Mrkl-Besd
Ce Trokx _ Trokx
Novirkl Soap lamiy ~ [THES Learirg
My [&:2)
Plaeet Plaet

oitie | = |

Figure B.31: Case Storage Task Screen: After Index Learning

99

Figure B.32 shows that the indices, under which KRITIK2 is going to store the

new case in its memory of design cases, are the three properties of the substances

present in the device: Voltage, Color, and Intensity. The user clicks on the Continue

button to display the next subtask of the Case Storage task.

The Trdlices Under Which the Naw Gase Will Be Stored Are:

lolirzeS
Ao

Tntersity

_me | _rtie |

Figure B.32: Indices

100

Figure B.33 shows that the new model and the indices are used to store the new

case into KRITIK2’s memory of design cases. The user clicks on the Continue button

to display the result of the Memory Placement subtask.

Tk Shizgs: Bosi oMok

Mukl-Besad
[€::] Trox Trox

Novirkl Soap lamiy ~ [THES Learirg
DNaw MuEl Mry (€:2]

Trdices Placmet Placget

_rtie |

Figure B.33: Case Storage Task Screen: Before Memory Placement

101

Figure B.34 shows that the result of Memory Placement subtask is the new design

case stored into KRITIK2’s memory. The user clicks on the Continue button to display

the modified memory of design cases.

Tk Shizgs: Jriaabicilziso

MooEl-Besd
G Trox Trox

Novirkl Soap lamiy ~ [THES Learirg
Naw Ml My G

Tdes Plaet Mo G Pt

_rtie |

Figure B.34: Case Storage Task Screen: After Memory Placement

102

Figure B.35 shows the modified memory of design cases, where KRITIK2 has

stored the new device (problem5). The user clicks on the Continue button to display

the complete design task screen.

Cases
C==
Mooy .
Property
i e ; .
NitricAcicrer] BrerGe Ligt-Bradre Ligt-Rolee Function
Sifhriccidaries] Be BrHe
— Acidity: v L \eltze: aIs0 L Trtersity: FEIGIEN
NitricZcidrder1 Be BHer
L Acidity: HIH
SifhricZcidarier1
[—— >
L= | [othe_ | |

Figure B.35: Modified Memory of Design cases

103

Figure B.36 shows the complete decomposition of the Design task into four sub-

tasks with their respective inputs and outputs. The user double-clicks on the Exit

button to end CANAH-CHAB’s session.

Mttt Sitzde: Bt vtk
. o
Bdes X Res [BSCMED Tree Sech
Bt Math Desin
Rrc S Abptation
e
NavlgEL o
_ | e | B |

Figure B.36: Complete Design Task

104

Bibliography

[Allemang 1990] D. Allemang. Understanding Programs as Devices. PhD Thesis. The Ohio
State University. 1990.

[Barber et al. 1992] J. Barber, S. Bhatta, A. Goel, M. Jacobsen, M. Pearce, L. Penberthy,
M. Shankar, R. Simpson and E. Stroulia. ASkKJEF: Integration of Case-Based and Multi-
media Technologies for Interface Design Support. Proceedings of the Second International
Conference on Artificial Intelligence in Design, pp. 457-476. Kluwer Academic. 1992.

[Baudin et al 1993] C. Baudin, S. Kedar, J. Gevins and V. Baya. Question-Based Acqui-
sition of Conceptual Indices for Multimedia Design Documentation. Eleventh National
Conference on Al. Washington D.C. 1993.

[Bhatta and Goel 1992] S. Bhatta and A. Goel. Use of Mental Models for Constraining
Index Learning in Experience-Based Design. Proceedings of the AAAI workshop on Con-
straining Learning with Prior Knowledge, pp. 1-10. San Jose, CA. 1992

[Bhatta and Goel 1993] S. Bhatta and A. Goel. Model-Based Learning of Structural In-
dices to Design Cases. Proceedings of the IJCAI workshop on ”Reuse of Designs: An
Interdisciplinary Cognitive Approach”, pp. A1-A13. Chambery, Savoie, France. 1993.

[Bhatta, Goel and Prabhakar 1994] S. Bhatta, A. Goel and S. Prabhakar. Innovation in
Analogical Design: A Model-Based Approach. To appear in Proc. of the Third Interna-
tional Conference on Al in Design (AID’94), Lausanne, Switzerland. 1994.

[Brown, Burton and de Kleer 1982] J. S. Brown, R. Burton and J. de Kleer. Pedagogical
Natural Language and Knowledge Engineering Techniques in SOPHIE I, II, III. In In-
telligent Tutoring Systems, S. Derek and J. S. Brown, (Ed). New York: Academic Press.
1982.

[Brown and Burton 1986] J. S. Brown and R. Burton. Reactive Learning Environments For
Teaching Electronic Troubleshooting. In Advances in Man-Machine Systems Research. W.
Rouse. (Ed). JAI Presslnc, Greenwich, CT. Vol. 3. 1986.

[Bylander and Chandrasekaran 1985] T. Bylander and B. Chandrasekaran. Understanding
Behavior Using Consolidation. Proc. Ninth International Joint Conference on Artificial
Intelligence, pp. 450-454. 1985.

[Bylander 1991] T. Bylander. A Theory of Consolidation for Reasoning about Devices.
Man-Machine Studies. Vol. 35, pp. 467-489. 1991

[Carbonell et al 1989] J. Carbonell, C. Knoblock and S. Minton. PRODIGY: An Integrated
Architecture for Planning and Learning. In Archilectures for Intelligence, Lawrence Erl-
baum. 1989.

105

[Chandrasekaran 1990] B. Chandrasekaran. Design Problem Solving: A Task Analysis. Al
Magazine, pp. 59-71. Winter 1990.

[Chandrasekaran, Tanner and Josephson 1989] B. Chandrasekaran, M. Tanner, and J.
Josephson. Explaining control strategies in problem solving. IEFE FEzxpert. Vol. 4 No.
1, pp. 9-24. 1989.

[Clancey 1987] W. Clancey. Knowledge-Based Tutoring: The GuipoN Program. Cam-
bridge, MA. MIT Press. 1987.

[Clancey 1993] W. Clancey. GUIDON-MANAGED Revisited: A Socio-Technical Systems Ap-
proach. Journal of Artificial Intelligence In Education. Vol. 4 No. 1, pp. 5-34. 1993.

[Davis 1979] R. Davis. Interactive Transfer of Expertise: Acquisition of New Inference
Rules. Artificial Intelligence. Vol. 12, pp. 121-157. 1979.

[Domeshek and Kolodner 1991] E. Domeshek and J. Kolodner. Towards a Case-Based Aid
for Conceptual Design. In Int. Journal of Expert Systems Research and Applications. Vol.
4 No. 2, pp. 201-220. 1991.

[Fischer et al. 1992] G. Fischer, J. Grudin, A. Lemke, R. McCall, J. Ostwald, B. Reeves
and F. Shipman. Supporting Indirect Collaborative Design with Integrated Knowledge-
Based Design Environment. Human-Computer Interactions. Vol. 7 No. 3, pp. 281-314.
1992.

[Forbus 1984] F. Forbus. Qualitative Process Theory. Artificial Intelligence. Vol. 24, pp.
85-168. 1984

[Goel 1989] A. Goel. Integration of Case-Based Reasoning and Model-Based Reasoning for
Adaptive Design Problem Solving. Doctoral Dissertation. Department of Computer &
Information Science. Ohio State University. 1989.

[Goel 1991a] A. Goel. A Model-based Approach to Case Adaptation. Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Sociely, pp. 143-148. Lawrence
Erlbaum Associates. 1991.

[Goel 1991b] A. Goel. Model Revision: A Theory of Incremental Model Learning. Proceed-
ings of the Fighth International Conference on Machine Learning, pp. 605-609. Chicago.
1991.

Goel 1992] A. Goel. Representation of Design Functions in Experience-Based Design. In
g g
Intelligent Computer Aided Design, pp. 283-308. D. Brown, M. Waldron and H. Yoshikawa
(editors). North-Holland. 1992.

[Goel and Chandrasekaran 1989] A. Goel and B. Chandrasekaran. Functional Representa-
tion of Designs and Redesign Problem Solving. In Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence, pp. 1388-1394. Morgan Kaufmann
Publishers. 1989.

106

[Goel and Chandrasekaran 1992] A. Goel and B. Chandrasekaran. Case-Based Design: A
Task Analysis. In Artificial Intelligence Approaches to Engineering Design, Volume II:
Innovative Design, pp. 165-184. Tong and D. Sriram (editors). Academic Press. 1992.

[Goel et al. 1993] A. Goel, M. Pearce, A. Malkawi and K. Liu. A Cross-Domain Experiment
in Case-Based Design Support: ARCHIETUTOR. Proceedings of the AAAI Workshop on
Cuase-Based Reasoning, pp. 111-117. 1993.

[Goel and Prabhakar 1991] A. Goel and S. Prabhakar. A Control Architecture for Model-
Based Redesign Problem Solving. In Procs. of the IJCATI 1991 Workshop on Al in Design.
Sydney, Australia. 1991.

[Govindaraj 1987] T. Govindaraj. Qualitative Approximation Methodology for Modeling
and Simulation of Large Dynamic Systems: Applications to a Marine Power Plant. IEFE
Transactions on Systems, Man and Cybernetics. Vol. SMC-17 No. 6, pp. 937-955. 1987.

[Johnson 1993] K. Johnson. Exploiting a Functional Model of Problem Solving for Error
Detection in Tutoring. PhD Thesis. The Ohio State University. 1993.

[Kedar et al. 1993] S. Kedar, C. Baudin, L. Birnbaum, R. Osgood and R. Bareiss. AsK
How IT WoRKs: An Interactive Intelligent Manual for Devices. INTERCHI’93. 1993.

[Kolodner 1991] J. Kolodner. Improving Human Decision Making Through Case-Based De-
cision Aiding. In AT Magazine. Vol. 12 No. 2, pp. 52-68. 1991

[Kolodner 1993] J. Kolodner. Case-Based Reasoning. San Mateo, CA. Morgan Kaufmann
Publishers. 1993.

[Laird, Rosenbloom and Newell 1986] J. Laird, P. Rosenbloom and A. Newell. Chunking in
SOAR: The anatomy of a General Learning Mechanism. Kluwer Academic Publishers.
Boston. 1986.

[Majumder, Fulton and Shilling 1990] D. Majumder, R. Fulton and J. Shilling. Designer
In The ICAD Environment : The information Perspective. In proceedings of the 1990
ASME International Compulers in Engineering Conference and Ezxposition. C. Born, W.
Rasdorf and R. Fulton (Eds). 1990.

[Merrill, Reiser, Beekelaar and Hamid 1992] D. Merrill, B. Reiser, R. Beekelaar, and A.
Hamid. Making Processes Visible: Scaffolding Learning with Reasoning-Congruent Rep-
resentations. Proceedings of the Second International Conference on Intelligent Tutoring
Systems, pp. 103-110. Springer-Verlag. 1992.

Mostow 1989] J. Mostow. Design by Derivational Analogy: Issues in the Automated Re-
g g
play of Design Plans. Artificial Intelligence. 1989.

[Myers 1990] B. Myers, D. Giuse, R. Dannenberg, B. Vander, D. Kosbie, P. Marchal, E.
Pervin, A. Mickish and J. Kolojejchick. The Garnet Toolkit Reference Manuals: Support
for Highly-Interactive, Graphical User Interfaces in Lisp. Technical report CMU-CS-90-
117-R. School of Computer Science. Carnegie Mellon University. June 1991.

107

[Myers and Zanden 1992] B. Myers and B. Zanden. Environment for rapidly creating in-
teractive design tools. Visual Computer. Vol. 8, pp. 94-116. 1992.

[Pearce et al. 1992] M. Pearce, A. Goel, J. Kolodner, C. Zimring, L. Sentosa and R. Billing-
ton. Case-Based Design Support: A Case Study in Architectural Design. In IFEFE Fzpert.
Vol. 7 No. 5, pp. 14-20. 1992.

[Recker and Pirolli 1993] M. Recker and P. Pirolli. Modeling Individual Differences in Stu-
dents’ Learning Strategies. Journal of the Learning Sciences. In Press.

[Richer and Clancey 1985] M. Richer and W. J. Clancey. GUIDON-WATCH: A graphic inter-
face for viewing a knowledge-based system. IEFE Computer Graphics and Applications.
Vol. 5 No. 11, pp. 51-64. 1985

[Rittel 1972] H. Rittel. On the Planning Crisis: System Analysis of the First and Second
Generations. Bedriftsokonomen. Vol. 8, pp. 390-396. 1972.

[Schank 1991] R. Schank. Case-Based Teaching: Four experiences in Educational Software
Design. Technical Report. Northwestern University. Institute for the learning Sciences.
1991.

[Shortliffe 1976] E. Shortliffe. Computer-Based Medical Consultation: MYCIN. American
Elsevier. New York. 1976.

[Schéen 1987] D. Schéen. Educating the Reflective Practitioner. Jossey-Bass Publishers.
1987.

[Sembugamoorthy and Chandrasekaran 1986] V. Sembugamoorthy and B. Chandra-
sekaran. Functional representation of devices and Compilation of Diagnostic Problem
Solving Systems. In Fzperience, Memory and Reasoning, J. Kolodner and C. Riesbeck
(editors). Hillsdale, New Jersey: Erlbaum, pp. 47-73. 1986.

[Stasko 1990] J. Stasko. TANGO: A Framework and System for Algorithm Animation. IEEF
Computer. Vol. 23 No. 9, pp. 27-39. 1990.

[Stasko and Patterson 1992] J. Stasko and C. Patterson. Understanding and Characterizing
Software Visualization Systems. IFEFE Visual Languages Workshop’92, pp. 3-10. Seattle,
WA. 1992.

[Stroulia and Goel 1993] E. Stroulia and A. Goel. Using SBF Models of Problem Solving
for Reflective Learning. Proceedings of the IJCAI Workshop on Fzplanation and Problem
Solving, pp. 33-42. 1993.

[Stroulia and Goel 1994] E. Stroulia and A. Goel. Functional Representation and Reasoning
for Reflective Systems. Applied Artificial Intelligence. To appear 1994.

[Vasandani and Govindaraj 1994] V. Vasandani and T. Govindaraj. Knowledge structures
for a computer-based training aid for troubleshooting a complex system. In The Use of
Computer Models for Fxplication, Analysis and Experiential Learning, D. Towne (editor).
NATO ASI Series F, Programme AET. Springer-Verlag. To appear. 1994.

108

[Weintraub 1991] M. Weintraub. An Explanation-Based Approach to Assigning Credit.
PhD Thesis. The Ohio State University. 1991.

[Wilensky 1984] R. Wilensky. Meta-Planning: Representing and Using Knowledge About
Planning in Problem Solving and Natural Language Understanding. In Cognitive Science.
Vol. 5, pp. 197-234. 1984

[Winston 1992] P. Winston. Artificial Intelligence (3rd ed.). Addison-Wesley. 1992.

