
EFFECTIVE AND SCALABLE BOTNET DETECTION IN
NETWORK TRAFFIC

A Thesis
Presented to

The Academic Faculty

by

Junjie Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
August 2012

EFFECTIVE AND SCALABLE BOTNET DETECTION IN
NETWORK TRAFFIC

Approved by:

Professor Wenke Lee, Advisor
College of Computing
Georgia Institute of Technology

Professor Patrick Traynor
College of Computing
Georgia Institute of Technology

Professor Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Professor John Copeland
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Nick Feamster
College of Computing
Georgia Institute of Technology

Date Approved: June 04, 2012

To my family,

for their endless love and support.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Prof. Wenke Lee, for

his invaluable guidance and support during my PhD study. Prof. Lee has been a

wonderful advisor. I am always inspired by his principle of conducting high-quality

and impactful research, his vision on new research problems, and his breadth of

knowledge. I have benefited tremendously from his professional training. Prof. Lee

sets an excellent example as a great and successful researcher and professor that I

can follow through my future career.

I would like to thank other members of my dissertation committee, Prof. Mustaque

Ahamad, Prof. Nick Feamster, Prof. Patrick Traynor, and Prof. John Copeland.

Their insightful comments and invaluable suggestions have significantly improved the

quality of my dissertation work.

A special thank goes to Dr. Yinglian Xie, Dr. Fang Yu, Dr. Jack W. Stokes,

and Dr. Christian Seifert, for mentoring me during my summer internships at Mi-

crosoft Research. Their support and advice are indispensable for the completion of

my dissertation work.

I would also like to express my deep gratitude to Prof. Roberto Perdisci, Prof.

Guofei Gu, and Dr. Xiapu Luo, for all the valuable work done together that leads

to the completion of this dissertation. I am especially grateful to Paul Royal, Dr.

Christopher P. Lee, and Robert Edmonds, for providing me with experimental data. I

want to thank Dr. Kapil Singh, Dr. Abhinav Srivastava, Martim Carbone, Manos An-

tonakakis, Long Lu, David Dagon, Dr. Monirul Sharif, Takehiro Takahashi, Brendan

Dolan-Gavit, Ikpeme Erete, Daisuke Mashima, Yacin Nadji, Chengyu Song, Xinyu

Xing, Tielei Wang, and everyone in the GTISC lab for their assistance in research as

iv

well as friendship.

I would like to thank my parents, Hong Zhang and Zhenzhi Zhang, for their

unconditional love and endless support. I am indebted to my wife, Rui Dai, for

helping and supporting me all the time. Without their love, I would not have been

able to complete this work.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Background . 1

1.1.1 The Infection Phase of Botnets 2

1.1.2 The Control Phase of Botnets 4

1.1.3 Existing Botnet Detection Approaches 5

1.2 New Challenges . 6

1.3 Dissertation Overview . 8

1.4 Organization . 10

II DETECTING DRIVE-BY DOWNLOAD ATTACKS 12

2.1 Motivation . 12

2.2 Related Work . 16

2.3 System . 19

2.3.1 HTTPTraces . 20

2.3.2 Hostname-IP Mapping . 21

2.3.3 Identification of Central Servers 23

2.3.4 Regular Expression Generation 25

2.4 Evaluation . 31

2.4.1 Experimental Setup . 31

2.4.2 Experimental Design . 32

2.4.3 Experimental Results . 33

2.5 Discussion . 44

vi

2.6 Summary . 45

III DETECTING PEER-TO-PEER BOTNETS 47

3.1 Motivation . 47

3.2 Related Work . 50

3.3 System . 52

3.3.1 Problem Formulation . 52

3.3.2 System Overview . 52

3.3.3 Traffic Volume Reduction . 55

3.3.4 Identifying P2P Clients . 57

3.3.5 Identifying Persistent P2P Clients 61

3.3.6 P2P Botnet Detection Algorithm 62

3.3.7 Scalability Optimization . 65

3.4 Evaluation . 69

3.4.1 Experimental Setup . 69

3.4.2 Experimental Design . 72

3.4.3 Experimental Results . 73

3.5 Discussion . 84

3.6 Summary . 86

IV BOOSTING THE SCALABILITY OF BOTNET DETECTION SYS-
TEMS . 87

4.1 Motivation . 87

4.2 Related Work . 90

4.3 System . 91

4.3.1 System Overview . 91

4.3.2 Flow Capture . 93

4.3.3 Flow Correlation . 101

4.4 Evaluation . 103

4.4.1 Experimental Setup . 103

4.4.2 Experimental Design . 105

vii

4.4.3 Experimental Results . 106

4.5 Discussion . 116

4.6 Summary . 118

V CONCLUSION AND FUTURE WORK 120

5.1 Conclusion . 120

5.2 Future Work . 122

5.3 Closing Remarks . 123

REFERENCES . 125

viii

LIST OF TABLES

1 Comparison of different detection methods 17

2 An example of an HTTPTrace . 21

3 HTTPTraces for experiments . 32

4 Examples of signatures . 34

5 Evaluation results . 34

6 The first example of a central server 36

7 The second example of a central server 36

8 The percentage of domains/IPs and HTTPTraces verified 39

9 The percentage of domains/IPs and HTTPTraces verified for each period 39

10 Evaluation results for the “twitter” signature 41

11 Keywords for detection . 43

12 P2P applications . 56

13 Notations and descriptions . 56

14 Measurement of features . 56

15 Examples of fingerprint cluster summaries 63

16 Payload of flows in a fingerprint cluster of a Bittorrent application . . 63

17 Statistics of network traffic in our academic network 71

18 Traces of popular P2P applications 71

19 Traces of botnets . 72

20 Bot traces overlaid with P2P application traces 73

21 Experimental results . 74

22 Fingerprint cluster summaries for 3 Bittorrent clients 75

23 Fingerprint cluster summaries for 5 potential Skype clients 75

24 Fingerprint cluster summaries for P2P bots 76

25 Fingerprint cluster summaries for the Storm botnet and the Waledac

botnet . 77

26 The evaluation of the ΘBGP parameter, Cntbirch = 4000 and Θbot = 0.95 83

ix

27 Detection rates and false positive rates for different values of Θbot and
Cntbirch . 84

28 Background traces . 104

29 Botnet traces . 104

30 Condition for FlexSample . 107

31 Packet sampling rates using condition in Figure 10 in FlexSample [14] 107

32 Packet sampling rates for B-Sampling 108

33 Packet sampling rates for FlexSample 108

34 Packet sampling rates for SGS . 109

35 Packet sampling rates for the random sampling algorithm 109

36 Packet sampling rates using different parameters 109

37 Detection rates of cross-epoch correlation using B-Sampling 111

38 Detection rates of cross-epoch correlation using FlexSample 112

39 Detection rates of cross-epoch correlation using the random sampling
algorithm . 113

40 Detection rates of fine-grained detectors 115

41 Performance of fine-grained detector (in seconds) 116

42 The percentage of packets investigated by fine-grained detectors based
on DPI . 116

x

LIST OF FIGURES

1 An example of a centralized botnet 4

2 An example of a P2P botnet . 4

3 Multiple steps in a drive-by download attack 13

4 An example of a malware distribution network 14

5 An illustration of existing drive-by download detection methods . . . 18

6 The system architecture . 20

7 Hostname-IP mapping . 22

8 Discover MDNs and identify central servers 25

9 An example of a signature tree . 27

10 Detection results on a daily basis . 35

11 ∆ (time interval) in weeks . 40

12 Active days for the central server and exploit servers (60 days) 41

13 Active days for the central server and exploit servers (zoom-in view for
first 7 days) . 42

14 System overview . 52

15 CDF of flow sizes . 59

16 Example of identify P2P hosts based on flow-clustering analysis . . . 61

17 Partition hosts to M distributed nodes 68

18 Number of hosts identified by each processing component 74

19 Hierarchical tree on persistent P2P hosts 77

20 System performance with different values of CntBirch 80

21 System performance with workload distribution 81

22 Architectural overview . 92

23 The architecture of the packet sampling component 94

24 An example of cross-epoch-correlation 103

25 The average detection rate for cross-epoch correlation, over different
values of PerExp . 110

xi

26 Scalability of cross-epoch correlation 114

27 The average detection rate (over SRT s) of cross-epoch correlation using
B-Sampling . 114

xii

SUMMARY

Botnets represent one of the most serious threats against Internet security since

they serve as platforms that are responsible for the vast majority of large-scale and

coordinated cyber attacks, such as distributed denial of service, spamming, and in-

formation stolen. Detecting botnets is therefore of great importance and a number

of network-based botnet detection systems have been proposed. However, as botnets

perform attacks in an increasingly stealthy way and the volume of network traffic

is rapidly growing, existing botnet detection systems are faced with significant chal-

lenges in terms of effectiveness and scalability.

The objective of this dissertation is to build novel network-based solutions that

can boost both the effectiveness of existing botnet detection systems by detecting

botnets whose attacks are very hard to be observed in network traffic, and their

scalability by adaptively sampling network packets that are likely to be generated by

botnets. To be specific, this dissertation describes three unique contributions.

First, we built a new system to detect drive-by download attacks, which represent

one of the most significant and popular methods for botnet infection. The goal of our

system is to boost the effectiveness of existing drive-by download detection systems

by detecting a large number of drive-by download attacks that are missed by these

existing detection efforts.

Second, we built a new system to detect botnets with peer-to-peer (P2P) com-

mand&control (C&C) structures (i.e., P2P botnets), where P2P C&Cs represent cur-

rently the most robust C&C structures against disruption efforts. Our system aims

to boost the effectiveness of existing P2P botnet detection by detecting P2P botnets

xiii

in two challenging scenarios: i) botnets perform stealthy attacks that are extremely

hard to be observed in the network traffic; ii) bot-infected hosts are also running

legitimate P2P applications (e.g., Bittorrent and Skype).

Finally, we built a novel traffic analysis framework to boost the scalability of exist-

ing botnet detection systems. Our framework can effectively and efficiently identify a

small percentage of hosts that are likely to be bots, and then forward network traffic

associated with these hosts to existing detection systems for fine-grained analysis,

thereby boosting the scalability of existing detection systems. Our traffic analysis

framework includes a novel botnet-aware and adaptive packet sampling algorithm,

and a scalable flow-correlation technique.

xiv

CHAPTER I

INTRODUCTION

1.1 Background

A botnet is defined as a collection of bot-infected computers (a.k.a bots) that are re-

motely controlled by an attacker (a.k.a botmaster) via a command and control (C&C)

channel in order to commit a variety of malicious activities [36]. Botnets can serve as

platforms capable of launching various large-scale and coordinated cyber attacks such

as spamming [39], distributed denial of service (DDoS) attacks [4], phishing [28], click

fraud [64, 62, 21], search engine abuse [44, 43], and information theft [17]. Dating

back to 2007, Vint Cerf, who is recognized as one of fathers of Internet, estimated

that up to a quarter of all computers are part of botnets [61]. The following five years

unfortunately have experienced an aggravation of the botnet threat. On the one hand,

botnets grow fast in terms of both population and diversity, and they have started

to contaminate emerging infrastructures such as as smart phones [24] and industrial

control systems [63]. On the other hand, botnets become increasingly stealthy and

robust, introducing great challenges against detection and disruption efforts. As a

consequence, botnets have been recognized as one of the most serious threats against

Internet security and even national security.

It is therefore imperative to detect, mitigate, and prevent botnets. Building botnet

detection systems is of fundamental importance since it serves as an indispensable

step for further mitigation and prevention actions. Network-based botnet detection

systems are particularly desired due to their visibility of network behaviors of all

hosts in monitored networks and their tamper-resistant nature as a result of complete

system-level isolation from bot-infected hosts. In order to detect botnets, we divide

1

the life cycle of a botnet into two critical phases according to its definition, namely

the infection phase and the control phase.

1.1.1 The Infection Phase of Botnets

The infection phase is referred to as the phase in which a clean host is infected by a

bot binary and then becomes a member of a botnet.

A variety of approaches could be used by attackers for botnet infection. Among

them, the scanning-and-exploiting approach has been used for decades, from tradi-

tional worm propagation [75] in the 1980s to recent IRC-based bot propagation [59]

and Conficker bot propagation [67]. In a scanning-and-exploiting attack, an attacker

compromises a victim host by first initiating a network connection to a vulnerable

service on that host and then injecting malicious content through the established

connection in order to exploit that service. A successful exploitation can lead to the

delivery a bot binary to the victim host, and such binary will subvert the host and

turn it into a member of a botnet. The scanning-and-exploit approach has enabled

astonishing success in worm propagation: in July of 2001, Code-Red worm propa-

gated to more than 359,000 computers in less than 14 hours. Approximately ten

years have passed, such infection approach is still used and still function as an im-

portant approach for botnet infection: a recent study of global scanning events [96]

indicated that many botnets still adopt the scanning-and-exploiting approach for in-

fection. However, the scanning-and-exploiting approach has an intrinsic drawback:

an attacker or a bot needs to initiate and establish a network connection to the victim

host so that exploit content could be delivered. As operating system vendors tend

to disable unnecessary services in their operating systems and network operators are

inclined to stop network connections initiated from uninvited hosts by using firewalls,

the scanning-and-exploiting approach gradually loses its effectiveness. This motivates

attackers to look for powerful alternatives for bot infection.

2

Spam-based infection serves as an optional solution. In a spam-based infection at-

tempt, an attacker can send a spam email , which encloses bot binary, to a victim user

and then attract the user to install the binary. While such approach seems promis-

ing given the popularity of email service, its effectiveness is significantly constrained

because of the widely deployed spam detection systems [13, 71, 92], and especially its

dependence of victim users’ interaction (i.e., users have to install the bot binary).

With the advent of web 2.0, web browsers become the dominating network ap-

plications, and thus leveraging web browsers for bot infection attracts great endeav-

ors from attackers. Web-based malware infection approaches can be generally cat-

egorized into two classes, namely social-engineering-based infection approaches and

drive-by download attacks [11]. Similar to spam-based infection attacks discussed

above, social-engineering-based attacks require victim users’ interaction. A typical

social-engineering-based attack is the rogue security software attack [57]. In such at-

tacks, using security software (e.g., anti-virus tools) as camouflage, attackers host bot

binaries in a website and attract innocent users to install them. While the dependence

of users’ interaction may hinder the effectiveness of social-engineering-based attacks,

drive-by download attacks, on the contrary, take action without users’ consent. In

a drive-by download attack, an attacker embeds malicious content in the webpage

visited by a client browser. When the vulnerable browser renders the webpage, the

malicious content will attempt to exploit the vulnerability in the browser, which is

usually introduced by poorly designed but unfortunately widely used plugins. A suc-

cessful exploit causes the bot executable to be downloaded and executed, turning

the victim host into a bot. The popularity of web browsers, the widely used vul-

nerable plugins on various browsers, and the independence of users’ consent enable

the unparalleled significance of drive-by download attacks. For example, the most

notorious botnets such as Zeus [7] and Torpig [17] have used drive-by downloads for

infection. Recent studies also revealed that drive-by download attacks have served as

3

!"!#$%&'%&#!"#$%&#'()

()**+,-#

Figure 1: An example of a centralized botnet

!"##$%&'

!"#$%&#'()

Figure 2: An example of a P2P botnet

the primary way for malware infection [8].

1.1.2 The Control Phase of Botnets

The control phase is referred to as the phase in which bot-infected hosts are controlled

and coordinated by botmasters to launch cyber attacks.

In the control phase, botmasters rely on command&control (C&C) channels to

control and coordinate their bots. Different structures could be used by botmasters

to build C&C channels, such as centralized structures, namely centralized botnets,

and peer-to-peer structures, namely P2P botnets. As illustrated in Figure 1, bots

in a centralized botnet contact a single C&C server in order to fetch commands and

report information back. Centralized C&Cs have been widely used mainly due to

its simplicity. However, centralized C&Cs structures suffer from the single-point-of-

failure problem, where the whole botnet will be disrupted if the central C&C server

4

is taken down.

In order to overcome such limitation, botmasters recently use P2P structures to

organize their bots. As illustrated in Figure 2, all bots in a P2P botnet form a P2P

network, and each bot can serve as a client and a server. The botmaster can inject a

command into the P2P network and other bots will seek the command and execute

it. Without central C&C servers, P2P botnets offer great resilience, since even if

a significant portion of a P2P botnet is taken down the remaining bots may still

be able to communicate with each other and with the botmaster. Modern botnets

have started to use P2P C&Cs. Notable examples of P2P botnets are represented

by Nugache [68], Storm [66], Waledac [37], and even Confiker [67], which has been

shown to embed P2P capabilities.

1.1.3 Existing Botnet Detection Approaches

Detecting botnets in the infection phase is crucial, since it can either protect clean

hosts from being compromised or prevent bot-infected hosts from engaging in ma-

licious activities at their early stage. BotHunter [35] is dedicated to detect bot in-

fection based on a pre-defined infection dialog model. Its current implementation

mainly leverages scanning-and-exploiting attacks. To be specific, it correlates the

“inbound scan”, “inbound exploit”, “binary download”, “C&C communication”, and

“outbound scanning”. Since drive-by download attacks have dominated scanning-

and-exploiting attacks, BotHunter may expand its detection capability by extending

the infection dialog model in order to cover drive-by download attacks. A natural

way is to incorporate a new event that indicates a connection to a website used for

the drive-by download attack. Such websites, which are used for drive-by downloads,

could be identified by drive-by download detection systems. Drive-by download de-

tection systems could not only enhance BotHunter, but also help network operators or

search engines to block those websites used for drive-by download attacks to prevent

5

bot infection caused by these websites. Therefore, building drive-by download detec-

tion systems is very important. A number of drive-by download detection systems

have been proposed [11, 41, 51, 56, 91]. These systems share the same characteristic:

relying on exploit content or bot binaries presented to browsers for detection.

Although detecting botnets in their infection phase is vital, it is not sufficient.

A major reason is that infection activities could be carried out beyond the visibility

of deployed network-based detection systems. For example, a computer could be

infected by a bot binary from a physically connected USB stick, thereby not arousing

any malicious network traffic. As a consequence, building botnet detection systems

focusing on botnets’ control phase becomes necessary. Since C&Cs are essential for

botnets, current detection systems detect C&C channels in network traffic. So far, a

few botnet detection systems have been proposed. The representative ones include

BotSniffer [33], BotMiner [36], TĀMD [78], and Rishi [40]. These systems experience

either of the following two characteristics: i) performing deep packet inspection (DPI)

to analyze packet content, and ii) observing attacks initiated by botnets. For example,

Rishi [40], BotSniffer [33], and TĀMD [78] detect centralized botnet C&Cs in network

traffic by identifying synchronized network communications that share similar packet

payload. BotMiner [36] is capable of detecting both centralized and P2P botnets

by discovering groups of hosts that share both similar communication patterns and

similar attacks.

1.2 New Challenges

These proposed network-based detection systems, which can be used to detect botnets

in either the infection phase [35, 11, 41, 46, 51, 56, 91] or the control phase [40, 35,

33, 36], have shown promising detection performance. However, as both botnets and

the Internet are actively evolving, these detection systems are faced with two major

challenges: the stealthiness of botnets’ attacks and the huge volume of network traffic.

6

First, in reaction to the intensive growth of law enforcement on punishing cyber

crimes, botmasters tend to instruct their botnets to perform attacks in an increasingly

stealthy way for evading detection. Such stealthy attacks arouse little anomaly and

thus become extremely hard to be observed in the network traffic. Take drive-by

download attacks as an example, in order to evade detection, attackers could attempt

to identify the existence of detection systems first and only deliver exploits and bot

executables to hosts that are unlikely to be detectors. As demonstrated in a case study

in [47], approximately 56% drive-by download attacks were missed by the existing

state-of-the-art detection methods. Additionally, recent study [94] has confirmed

that botnets have started to leverage popular email services to send spams, instead

of directly sending spams from bot-infected computers. To be specific, a botmaster

instructs his/her bots to sign in popular email service (e.g., Hotmail) using hijacked

accounts and then send spams through the email service. Such malicious intentions,

including signing in and then sending email to popular email service, are very hard

to be observed in the monitored networks. Consequently, existing botnet detection

systems may fail. For example, systems including [11, 41, 46, 51, 56, 91] could fail to

detect a huge number of drive-by download attempts due to the absence of exploits

and bot executables. Without observing attacks, BotMiner [36] also lacks evidence

to perform correlation between communication patterns and attack patterns.

Second, as the population of networked computers and devices is huge and keeps

exploding, the volume of network traffic is high and grows fast. Such huge volume

of traffic demands great scalability for network-based detection systems, meaning

that the detection systems need to process a large volume of network traffic effi-

ciently. However, as most of existing botnet detection systems [40, 33, 78, 36] rely

on deep packet inspection (DPI) to analyze packet content, which is computation-

ally expensive, their scalability is significantly constrained. As a consequence, when

these detection systems are deployed in high-speed or high-volume networks, they

7

may not be able to afford to perform detailed analysis for all network traffic related

to bot-infected hosts and thus fail to detect bots.

To summarize, existing network-based botnet detection systems may fail to detect

botnets, which represent one of the most serious threats against Internet security, as

a result of two practical challenges. First, their effectiveness is significantly limited

due to botnets’ stealthy attacks, which are very hard to be observed in network

traffic. Second, their scalability is greatly constrained due to their dependence of

deep packet inspection compounded with the fast growing volume of network traffic.

New network-based botnet detection systems are therefore needed to address these

challenges.

1.3 Dissertation Overview

The objective of this dissertation is to build effective and scalable network-based

botnet detection systems. The dissertation presents network-based solutions that

can boost both the effectiveness of existing botnet detection systems by

detecting botnets whose attacks are very hard to be observed in network

traffic, and their scalability by adaptively sampling network packets that

are likely to be generated by botnets . To be specific, this dissertation describes

three unique contributions.

First, we built a new system to detect botnets in their infection phase. To be

specific, we designed a system [47] to detect drive-by download attacks, which rep-

resent one of the most significant and popular methods for botnet infection. The

goal of our system is to boost the effectiveness of existing drive-by download detection

systems by detecting a large number of stealthy drive-by download attacks that are

missed by these existing detection efforts. In order to accomplish this goal, our sys-

tem bootstraps from a set of drive-by download attacks detected by existing systems.

It then aggregates individual drive-by download attacks that result in the same bot

8

executable into a malware distribution network (MDN). Our system further identifies

MDNs that have central servers, where a central server covers the vast majority of

drive-by download attacks in a MDN. Since central servers are stable and highly likely

to be used for malicious purposes, we generate regular expression signatures based on

URLs of central servers and then leverage the signatures for drive-by download detec-

tion. Experimental results based on an Internet-scale dataset have demonstrated that

our system can boost the number of drive-by download attacks by 96% while only

introducing an extremely low false positive rate (7.4 ∗ 10−5%). We also found that

our system can detect 93,488 drive-by download attacks in average 172 days earlier

than several popular public domain/IP reputation systems.

Second, we built a new system to detect botnets in their control phase. Partic-

ularly, we designed a system to detect botnets with peer-to-peer (P2P) C&C struc-

tures [48], where P2P C&C structures represent currently the most robust C&C

structures against disruption efforts. The goal of our system is to boost the effec-

tiveness of existing P2P botnet detection by detecting P2P botnets in two challenging

scenarios: i) botnets perform malicious activities in a stealthy way and thus their

malicious activities are extremely hard to be observed; ii) bot-infected hosts are also

running legitimate P2P applications (e.g., Bittorrent and Skype). In order to fulfill

this goal, our system first identifies all hosts engaging in P2P communications in the

networks (a.k.a, P2P clients), no matter they are legitimate P2P applications or P2P

bots. Our system further extracts fingerprint clusters to profile P2P clients. Based on

the obtained fingerprint clusters, our system finally identifies as a botnet a group of

P2P clients that are persistently active on the underlying hosts and at the same time

participate in coordinated search behaviors. Experimental results based on real-world

network traces have demonstrated that our system can achieve high detection rate

(100%) and low false positive rate (0.2%).

Finally, we built a novel traffic analysis framework to facilitate the deployment

9

of existing botnet detection systems in high-speed and high-volume networks. As we

have discussed, the vast majority of botnet detection systems rely on deep packet

inspection (DPI). Since the DPI-based analysis is computationally expensive, these

systems may suffer from limited scalability on processing a large volume of traffic from

high-speed or high-volume networks. The goal of our work is to boost the scalability of

existing detection systems. In order to achieve this goal, we proposed a novel traffic

analysis framework. Our framework can effectively and efficiently identify a small

percentage of hosts that are likely to be bots, and then forward the network traffic

associated with these hosts to existing detection systems for fine-grained analysis,

thereby boosting the scalability of existing detection systems. Our traffic analysis

framework includes a novel botnet-aware and adaptive packet sampling algorithm and

a scalable flow-correlation technique. The packet sampling algorithm is bot-aware so

that it can focus on capturing packets that are likely related to botnets; it is adap-

tive so that it can maintain the actual packet sampling rate close to a pre-defined

sampling rate. The flow-correlation technique identifies network communications ex-

periencing persistent similarity, which represents a typical behavior of botnet C&Cs.

Experimental results based on real-world network traffic demonstrated that our sys-

tem can enable existing detection systems to achieve good detection performance by

only inspecting a small percentage of network traffic (e.g., 5%).

1.4 Organization

The rest of the dissertation is organized as follows:

1. In Chapter 2, we discuss the design of a new system to detect drive-by down-

load attacks. We present our survey on existing drive-by download detection

techniques and compare them to our system. We then elaborate on the design

of processing components, including identifying malware distribution networks

and generating regular expression signatures. The experimental evaluation in

10

terms of detection rate, false positive rate, and early detection is finally dis-

cussed.

2. In Chapter 3, we discuss the design of our P2P botnet detection system. We

introduce the definition of fingerprint cluster, and present the clustering-based

algorithm to derive fingerprint clusters from network traffic. We also present

how to use fingerprint clusters to profile P2P applications. The features and

the algorithm used for isolating P2P bots from legitimate P2P applications are

also discussed. We subsequently present our evaluation results.

3. In Chapter 4, we describe our design of a traffic analysis framework aiming to

boost the scalability of existing botnet detection systems. The design of the bot-

aware packet sampling algorithm and the design of the scalable flow-correlation

are presented. The evaluation based on real-world dataset is presented, fol-

lowed by the comparison between our sampling algorithm and other sampling

algorithms.

4. Chapter 5 summarizes our contributions and discusses potential future research

directions.

11

CHAPTER II

DETECTING DRIVE-BY DOWNLOAD ATTACKS

2.1 Motivation

As discussed in Section 1.1, the life cycle of a botnet can be divided into two phases,

namely “infection phase” and “control phase”. Detecting botnets in the infection

phase is very important and useful since it can protect clean hosts from being infected

or prevent bot-infected hosts from performing malicious activities in their early state.

Various approaches could be used for bot infection. Among them, drive-by download

attacks become one of the most significant and popular approaches.

Drive-by download attacks are referred to as the download of malware through

vulnerable web browsers without users’ consent [11]. In drive-by download attacks,

attackers embed malicious content in either the original webpage visited by the user,

denoted as the landing page, or some content directly, or indirectly, referenced by

the landing page, which is usually hosted on a compromised web server. When a

web browser renders these webpages, the malicious content attempts to exploit the

vulnerability in the browser. A successful exploit attempt often causes malware to be

downloaded and executed, converting the underlying operating system to a malware-

infected victim such as a bot. Since drive-by download attacks take advantage of web

browsers, the most popular Internet applications, and do not require users’ interac-

tion, they have dominated the traditional scanning-and-exploit approaches [11], and

they have served as the primary way for malware infection [8, 65].

Multiple steps are usually involved in a drive-by download attack, as illustrated

in Figure 3. The malicious content embedded in the compromised webpage, which

is initially rendered by the browser, usually does not directly exploit the browser.

12

Figure 3: Multiple steps in a drive-by download attack

Instead it redirects the browser to other redirection servers which either provide ex-

ternal webpage content or further redirect to additional servers. After visiting one

or more, possibly benign, redirection servers, the browser will eventually encounter

a malicious redirection server which further redirects to the servers that attempt to

exploit the browser and download malware. The malicious redirection server can be

used to manage the attacks and decide the exploit server to use, which has the best

matching set of exploits (e.g., IE exploits for IE browsers). A set of different drive-

by downloads can be managed by the same attacker for a particular purpose (e.g.,

distributing the same malware binary for a botnet) and therefore form a malware

distribution network (MDN). In this chapter, we define a MDN to be a collection

of drive-by downloads that serve the same malicious objective such as distributing

related malware executables.

Several methods [11, 41, 46, 51, 56, 91] have been proposed to detect drive-by

download attacks and are described in detail in Section 2.2. Most of these meth-

ods [11, 41, 51, 56, 91] rely on the malicious webpage content returned by servers used

for exploits or malware distribution to detect the attacks. For example, [11, 41, 56, 91]

require the exploit content whereas [51] needs the downloaded binary. These systems

may fail to detect a large number of drive-by download attacks (i.e. false negatives)

13

Figure 4: An example of a malware distribution network

if no exploit is detected for several reasons. First, the attackers may be aware of IP

addresses of the detection systems. In this case, they can feed detection systems with

benign content. Additionally, the detectors may not be configured correctly to match

an attack. For example, the detector may present an unpatched version of Internet

Explorer, but the malicious landing page may target a FireFox vulnerability. Finally,

since the exploit and malware distribution servers may be hosted on compromised

servers, their stability will be affected by the network churn. So when the detection

system visits these servers, they may be temporally unavailable and thus no exploit

attempt occurs in the victim’s browser. Although incapable of detecting drive-by

download attacks, WebCop [46] (see Section 2.2 for details) can handle this prob-

lem since it is based on the URLs of exploit/malware-distribution servers. However,

the hostnames, IP addresses or the parameter values in the URLs can be frequently

changed to make WebCop ineffective since it matches the entire URL of the malicious

executable.

In this chapter, we will present a novel drive-by download detection system,

namely ARROW [47]. The objective of our method is to boost the effectiveness

of existing drive-by download detection systems by detecting a large number of drive-

by downloads that are missed by them. In order to achieve this objective, we leverage

14

the URL information of the central servers in MDNs (See Section 2.3), where a central

server is a common server shared by a large percentage of drive-by download samples

in the same MDN. The example of an MDN with a central server is presented in

Figure 4, where “3b3.org” serves as a central server. A central server usually provides

certain critical information to make the drive-by download successful, and it is not

necessarily the server used for exploit attempts or malware distribution. For example,

it can be a redirection server used to optimize the MDN performance. A central server

can even be a legitimate server where certain information is retrieved to calculate the

location of the exploit servers dynamically, as presented in Section 2.4.3.3. To be

specific, our method bootstraps from the drive-by download samples detected using

existing methods, where we first aggregate drive-by download samples into MDNs

based on the malware (i.e., hash value) information or the URL of the exploit server.

For each MDN, we next discover the central servers if they exist. We further gener-

ate signatures in the form of regular expressions based on the URLs for the central

servers. These signatures can then be distributed to a search engine or browsers

to detect drive-by downloads. The lower half of Figure 5 illustrates our method.

These signatures can boost the detection coverage in three ways. First, if a drive-by

download attempt reaches the central server without hitting the servers for exploit

attempts or malware distribution, our signatures can still detect the attack. Second

for a drive-by download attempt, if there is only a URL request to the central server

without malicious webpage content returned, our signatures can still detect it since

the signatures are independent of the webpage content. Third, the signatures are in

the form of regular expressions, which can capture the structural patterns of a central

server’s URL and therefore outperform exact string matching used by WebCop.

We have implemented our method in a system named ARROW and validated

it using data generated from a large-scale production search engine. As presented

in the experimental results in Section 4.4, our method can significantly increase the

15

detection coverage by 96%, with an extremely low false positive rate (7.4 ∗ 10−5%).

It can also detect tens of thousands of drive-by download attacks in average 172 days

compared to several popular public domain/IP reputation systems. In summary, we

made the following contributions:

1. We provide a method to identify malware distribution networks from millions

of individual drive-by download attacks.

2. By correlating drive-by download samples, we propose a novel method to gener-

ate regular expression signatures of central servers of MDNs to detect drive-by

downloads.

3. We build a system called ARROW to automatically generate regular expression

signatures of central servers of MDNs and evaluate the effectiveness of these

signatures.

2.2 Related Work

Since drive-by download attacks have served as the primary way for malware infection,

including bot infection, great efforts have been spent to analyze and detect web-

based malware attacks. Existing detection methods, summarized in Table 1, can be

categorized into 2 classes, namely top-down and bottom-up. The table also illustrates

how ARROW compares to prior work based on other features including whether the

detection examines the content or the URL of the webpage, uses the results of the

static or dynamic crawler, and correlates multiple instances of an attack.

The top-down approach for drive-by detection adopts a crawler-scanner based

architecture. For drive-by downloads, the crawler collects URLs by traversing the

dynamic web graphs in the forward direction, while in parallel, a scanner identifies

16

Table 1: Comparison of different detection methods
Approach Page URL static dynamic Correlation of multiple

Content crawler crawler Drive-by Downloads

HoneyMonkey [91] X X

Crawler-Based Spyware Study [11] X X X

Capture-HPC [25, 27] X X

IFrame [65] X X

PhoneyC [41] X X

Malicious JavaScript Detection [56] X X X

Blade [51] X X

WebCop [46] X X

ARROW X X X

drive-by download attempts. The scanner could be a client honeypot using signa-

ture [26] and anomaly detection [25] methods. By rendering a URL, the scanner in-

vestigates the suspicious state change of the operating system or analyzes the webpage

to detect drive-by downloads. The first seven systems presented in Table 1 belong

to the top-down category. The upper-left part of Figure 5 presents the architecture

of HoneyMonkey as an example for the top-down approach. Most of the drive-by

download detection approaches [11, 27, 41, 51, 56, 65, 91] fall in the top-down cate-

gory. For example, a high-interaction client honeypot scanner [25] has been used to

dynamically execute the webpage content [11, 27, 91]. Provos et al. [65] also adopted

high-interaction client honeypots to conduct large-scale measurements of drive-by

downloads in the wild. Nazario [41] proposed a lightweight, low-interaction client

honeypot called PhoneyC to detect drive-by downloads by analyzing the webpage

content. Cova et al. [56] developed a machine learning-based detector to investigate

the JavaScript embedded in webpage content for drive-by download detection. Re-

cently, Lu et al. [51] designed a detector to identify drive-by downloads by correlating

user action and the binary downloading events. These approaches have shown promis-

ing results. However, their effectiveness is significantly limited by the availability of a

successful response with malicious content from a drive-by download attack. The lack

of a malicious response will make these approaches ineffective and thus may introduce

a large number of false negatives.

To deal with the limitations introduced by analyzing webpage content, Stokes et

17

Figure 5: An illustration of existing drive-by download detection methods

al. [46] proposed a bottom-up based approach, called WebCop, to identify webpages

that host malicious binaries. WebCop takes two inputs, i) a set of URLs for malware

distribution sites that are contributed by a large number of anti-malware clients, and

ii) a static web graph. WebCop traverses the hyperlinks in the web graph in a reverse

direction to discover the malicious landing pages linking to the URLs for malware

distribution sites. In Figure 5, the upper-middle part illustrates the architecture of

WebCop. Nevertheless, WebCop has two limitations. First, WebCop uses an exact

match to discover the malware distribution sites in the web graph, which may easily

introduce false negatives especially when the parameter values are changed. Second,

the web graph is based on static hyperlinks, which limit the detection of WebCop. For

example, a malicious landing page may redirect the browser to the exploit server only

if its dynamic content (e.g., malicious JavaScript code) is executed in the browser.

Therefore, a static web graph has very limited visibility of the route from malicious

landing pages to the malware distribution sites.

18

Provos et al. [65] proposed a method to discover malware distribution networks

from drive-by download samples. This method requires the parsing and matching

operation of the webpage headers (e.g., Referer) and content (e.g., JavaScript), which

is heavyweight. Furthermore, the attackers could potentially obfuscate the webpage

content to prevent their MDNs from being discovered. In contrast, ARROW identifies

MDNs by aggregating drive-by download samples into different groups according to

the malware hash values and URL information of exploit servers. Although this

method provides less information of MDNs for measurement purpose (e.g., the number

of redirection steps) compared to [65], it provides enough information for ARROW

to detect central servers. In particular, this approach is more efficient and robust,

which can identify more MDNs given a large number of drive-by download samples.

Automatic signature generation based on network information has been studied

in previous work [42, 70, 74, 87, 92, 97] and has been used to detect various attacks.

For example, most [42, 74, 87, 97] focus on worm fingerprinting. Perdisci et al. [70]

generate signatures to detect HTTP-based malware (e.g., bots). AutoRE [92] out-

puts regular expression signatures for spam detection. Compared to these methods,

ARROW mainly differentiates itself by detecting a different attack (a.k.a, drive-by

download). Although ARROW uses a similar approach to build keyword-based sig-

nature trees proposed by Xie et al. [92] to detect spams, it is customized for drive-by

download detection since drive-by downloads have different characteristics compared

to those of spams (e.g., “distributed” and “bursty”), which are critical to guide Au-

toRE to build the signature tree.

2.3 System

The architectural overview of ARROW is presented in Figure 6. The input of the

system is a set of HTTPTraces, which will be described in Section 2.3.1, and the

output is a set of regular expression signatures identifying central servers of MDNs.

19

Figure 6: The system architecture

ARROW has three major processing components. The first component, Hostname-

IP Mapping, discovers groups of hostnames that are closely related by sharing a large

percentage of IP addresses. The second component, central server identification, ag-

gregates individual drive-by download samples which form MDNs and then identifies

the central servers. For an MDN with one or more central servers, the third compo-

nent generates regular expression signatures based on the URLs and also conducts

signature pruning. The following sections elaborate on each component.

2.3.1 HTTPTraces

HTTPTraces are initially collected from a cluster of high-interaction client honey-

pots, and an HTTPTrace example is presented in Table 2. Each honeypot visits the

URL of the landing page and executes all of the dynamic content (e.g., JavaScript).

By detecting state changes in the browser and the underlying operating system and

file system, a honeypot can identify whether the landing page is suspicious. The sus-

picious landing page and other URLs consequently visited are recorded. If any exploit

content is detected on a webpage, the crawler will also record its corresponding URL

in “exploitURLs”. Otherwise “exploitURLs” is set to be empty. Simply visiting a

webpage with no user interaction should never cause an executable to be written to

the file system. If the high-interaction client honeypot detects that an executable

is written to disk, the file’s hash value (e.g. SHA1) is stored in “bHash”. The IP

address corresponding to the hostname involved in each URL is also recorded. Ei-

ther the non-empty “exploitURLs” or the non-empty “bHash” implies that a drive-by

download attack has been successfully launched and detected, where “isDriveBySucc”

20

Table 2: An example of an HTTPTrace
HTTPTrace

Landing Page www.foo.com/index.php

URLs

www.bar.com/go.js
www.redirect.com/rs.php
www.exploit.com/hack.js
www.malware.com/binary.exe

IPs

www.bar.com - 192.168.1.2
www.redirect.com - 192.168.1.3
www.exploit.com - 192.168.1.4
www.malware.com - 192.168.1.5

exploitURLs
www.exploit.com/hack.js
www.malware.com/binary.exe

bHASH 4A19D50CBBBB702238....358

isDriveBySucc True

is set as TRUE. Otherwise, “isDriveBySucc” is set as FALSE. It should be noted that

“isDriveBySucc=FALSE” may indicate a false negative. For example, the exploit con-

tent is hosted in a compromised server and is temporally unavailable at the moment

of detection. Although “isDriveBySucc” is set to be FALSE in this case, this exploit

webpage is still considered to be harmful to other users.

2.3.2 Hostname-IP Mapping

We typically use a hostname or an IP address to represent a server. However, attackers

can introduce great diversity of hostnames and IP addresses for an individual server.

On one hand, IP addresses may exhibit great diversity due to fast-flux techniques [80,

85], where one hostname can be resolved to a large number of IP addresses. In

this case, using the IP address to represent one server decreases the possibility of

identifying central servers that share the same hostname but distribute to different

IP addresses. On the other hand, attackers can register a number of hostnames (and

thus domain names) and resolve them to one or a small pool of IP addresses. In this

case, if we use a hostname to represent one server, we may fail to identify central

servers with the same IP address but different hostnames.

In order to eliminate the diversity introduced by hostnames and IP addresses for

21

Figure 7: Hostname-IP mapping

representing a server, we design a data structure named Hostname-IP Cluster

(HIC) to represent a group of hostnames that share a large percentage of IPs. A

similar technique [69] was proposed to discover fast-flux networks. Each HIC has

a set of hostnames and a set of IP addresses, denoted as HIC = {SHost, SIP}. We

follow the steps below to discover HICs:

1 As the initialization phase, for each hostname (hi) we have observed

in the HTTPTraces, we identify all of the IP addresses resolved for hi

(IP1, IP2, . . . , IPn). We initiate one HICi using HICi.SHost = {hi} and

HICi.SIP = {IP1, . . . , IPn}.

2 Suppose we have N Hostname-IP clusters, denoted as HIC1, . . . , HICN . For

each pair of HICi and HICj, we investigate rHIC =
|HICi.SIP∩HICj .SIP |

|HICi.SIP∪HICj .SIP |
, the

overlap of the IP addresses of the two clusters. If rHIC > THIC , where THIC is a

pre-defined threshold and 0 ≤ THIC < 1, we first merge the second cluster into

the first cluster using HICi.SIP = HICi.SIP ∪ HICj.SIP and HICi.SHost =

HICi.SHost ∪ HICj.SHost and then discard HICj.

3 Repeat step 2 until no HICs are merged into other clusters.

THIC is a pre-defined threshold to determine whether two HICs should be merged

or not. A small value for THIC indicates a relaxed condition. For example, THIC = 0

22

means that if two HICs share a single common IP, they are going to be merged

together. This may introduce significant noise in the merged HICs. A large value

of THIC enforces a strong condition for two HICs to be merged. For example, a

THIC value close to 1 requires that two HICs share almost the same IPs. This may

significantly decrease the possibility of merging more related HICs. In the current

system, we set THIC = 0.5.

Figure 7 gives an example of identifying Hostname-IP clusters, where Hostname1

and Hostname2 share 3 out of 4 IP addresses (rHIC = 75%) and are grouped in one

cluster. After identifying all the HICs, we use the index of each HIC to replace the

hostname in each URL. For instance as described in Figure 7, the URLs of hostname1/

t.php?s=1 and hostname2/t.php?s=2 will be represented as HIC1/t.php?s=1 and

HIC1/t.php?s=2. Therefore, instead of taking hostname1 and hostname2 as two

different servers, we use the HIC to discover their relationship and represent them

as a single server.

2.3.3 Identification of Central Servers

To identify the MDNs with one or more central servers, we need to first discover

MDNs from a set of HTTPTraces. In ARROW, we use the hash value of the malware

executable (“bHash”) and URLs of exploit webpages (“exploitURLs”) to aggregate

HTTPTraces into MDNs. On one hand, we group all HTTPTraces with the same

value of “bHash” into one MDN. It is possible that multiple organizations may install

the same malware causing the two groups’ MDNs to be merged. This should not be a

major problem for the following reason. For malware that is automatically generated

from a toolkit, a malicious executable is often customized for each attacker yielding

different executable hash values: these similar attacks will be grouped into separate

MDNs. On the other hand, for each URL in “exploitURLs”, we identify its corre-

sponding HIC and group all the HTTPTraces with same HIC index into one MDN.

23

For each MDN, we do not consider the landing pages as candidate URLs for discov-

ering central servers, since they are usually compromised websites that are unlikely

to serve as central servers. Also, we do not consider the URLs of “exploitURL” as

candidate URLs; therefore, the identified central servers are likely used for redirection

purpose.

After we aggregate all of the HTTPTraces into different MDNs, we eliminate (i.e.

filter) the MDNs with a small number of HTTPTraces since small MDNs have a higher

likelihood of incorrectly identifying central servers. For example, an MDN with two

HTTPTraces may have a high probability of belonging to the same advertisement

network, and thus the benign, advertisement server will be incorrectly identified as

a central server in the MDN. Therefore ARROW only identifies MDNs containing

more than THTTPTrace drive-by download samples where THTTPTrace is currently set

as THTTPTrace = 20.

Then for each MDN, we identify the central servers as the nodes (represented

by an HIC index) that are contained in a majority of the HTTPTraces. Given an

MDN with K HTTPTraces where each trace contains a collection of URLs, we have

first replaced the hostname for each URL using its corresponding HIC. For each

HIC, we determine the count, C, of the number of HTTPTraces employing this

HIC. If rcen = C
K

is greater than the pre-defined ratio Tcen, where 0 ≤ Tcen ≤ 1,

we take this HIC as a central server. We conservatively set Tcen with a large value

(currently Tcen = 0.9) to guarantee the “central” property of the central server. For

any two MDNs sharing one or more central servers, we merge them together into

a new MDN. The shared central servers are taken as the central servers for the

new MDNs, while the other central servers are discarded. This operation eliminates

redundant central servers without compromising their coverage, and thus reduces

the total number of signatures and consequently computationally expensive, regular

expression matching operations. Also by merging smaller MDNs, we increase the

24

Figure 8: Discover MDNs and identify central servers

number of URLs corresponding to each central server, which helps to generate more

generic signatures. Figure 8 illustrates an example of discovering MDNs and central

servers. In Figure 8, S1, S2 and S3 are initially identified as central servers since most

of the HTTPTraces corresponding to “Malware1/2/3” (bHash1/2/3) contain S1/2/3.

The central server S1, which is shared by two MDNs, is ultimately identified as the

central server for the newly merged MDN. Although S2 is discarded, S1 still guarantees

its coverage of drive-by download samples in this MDN.

2.3.4 Regular Expression Generation

In this section, we discuss how to generate regular expressions corresponding to the

central servers in order to detect additional HTTPTraces exhibiting drive-by down-

load attempts. There are two straight forward approaches to using the central server

information to detect HTTPTraces of drive-by downloads. One option is to use the

network level information of central servers (i.e. hostname and IP address). For ex-

ample, if any URL in an HTTPTrace contains the hostname or IP address of any

25

central server, this HTTPTrace will be labeled as suspicious. However, this detection

approach is too coarse and may introduce a large number of false positives, especially

when the central server is benign such as the example described in Section 2.4.3.3.

Another option is to use exact string matching of URLs in the MDNs corresponding

to central servers. For example, if any URL in an HTTPTrace exactly matches any

of the URLs of central servers, this HTTPTrace will be labeled as suspicious. How-

ever, this approach is too specific resulting in a huge number of false negatives. For

example, a simple change in values for the parameters in the URL makes the exact

match fail. These examples provide motivation to design generic signatures that can

capture the invariant part of the URLs for central servers and also give an accurate

description of the dynamic portion of these URLs. Thus ARROW generates regular

expression signatures for each central server by investigating the structural patterns

of its corresponding URLs.

To generate regular expressions, ARROW follows two steps:

1. For each central server in a MDN, generate tokens out of all the URLs that are

contained in this MDN and corresponding to the central server, and then build

the signature tree according to the coverage of each token.

2. Identify the branches with high coverage, and then generate signatures in the

form of regular expressions.

These items are discussed in detail in the next two sections.

2.3.4.1 Token and Signature Tree Generation

Since URLs are well-structured strings, ARROW generates tokens based on the struc-

ture of each URL. ARROW collects tokens for the following 5 categories: the HIC

index, the name for each directory, the name of the file, the suffix of the file and the

name of the parameters. The information from the last four categories indicates the

information of the toolkit that attackers use to organize the MDNs. For example, the

26

Figure 9: An example of a signature tree

name of the directory represents the directory or the sub-directory that organizes the

scripts. The suffix of a script, which implies the script language, is usually identical

in the same MDN for a script with the same functionality, even if the file names differ

from each other. Taking the 7 URLs in Figure 9 as an example, we find the set of

tokens as {HIC1,default,index,.php,?id=,&category=,upload,&class=,peer,

test,exploit,?vuln=,fig,script,image,src,bin,include,temp}.

We build the signature tree based on the approach introduced in [92]. We denote

the set of all URLs as Uall, and the set of URLs containing one token/node Ni as UN
i .

The set of URLs covered by a particular branch B = {Nroot, N1 . . . Ni} is given by

UB
i , where UB

i = UN
root ∩ UN

1 · · · ∩ UN
i . To build the tree, two operations are defined:

building the root node and building the child nodes. To build the root node, the

token with the largest coverage of the URLs is taken as the root (Nroot). To identify

the child node(s) for one node Ni in branch B = {Nroot, N1 . . . Ni}, we follow the two

steps below.

1. Let UB
Rest = UB

i and Setnodes = {Nroot, N1 . . . Ni}.

2. If UB
Rest = ∅, exit. Otherwise, for each node Nj /∈ Setnodes, select the one

with maximum |UB
Rest ∩ UN

j | as the child node. If max(|UB
Rest ∩ UN

j |) == 0,

27

exit. Otherwise, suppose this node is Nk, then let UB
Rest = UB

Rest − UN
k and

Setnodes = Setnodes ∪ Nk. Repeat Step 2.

Returning to Figure 9, an example of the signature corresponding to the 7 URLs is

presented. Since the HIC index, HIC1, is always contained in all of the URLs, we

take it as the root of the tree.

2.3.4.2 Signature Generation

For each branch in the signature tree, we obtain more specific patterns for a subset

of URLs as we approach the leaves. To learn the general pattern representing the

URLs, we define a node Ni as a critical-node if |UN
i |/|Uall| ≥ R and none of its child

nodes satisfy this condition where the threshold 0 ≤ R ≤ 1. We name the branch

from the root to this critical-node as a critical-branch. In Algorithm 1 we describe

a method to identify each critical-node. We run this algorithm multiple times by

decreasing R until all the URLs are covered by the critical-nodes, which is described

in Algorithm 2. In our system, we initialize R = 0.3 and α = 0.9. For the signature

tree described in Figure 9, we identify the critical-nodes by following the steps below.

1. R = 0.3. Identify critical-node “&category=”.

2. R = 0.3 ∗ 0.9. Identify critical-nodes “&class=” and “?vuln=”.

After identifying the critical-nodes in the signature tree, we traverse the tree to find

the branches from the root to each critical-node. The nodes in one of these branches

composite one set of candidate tokens. For each token, we further investigate its

average distance from the beginning of the URLs. For one set of candidate tokens,

we sort the tokens according to the average distance and then obtain a sequence of

candidate tokens. For the example above, ARROW generates three sequences:

28

Algorithm 1: IdentifyCriticalNode(curNode, R, N)

curNode: one Node in the tree.
R: the threshold (0 < R < 1).
N : N = |Uall|.
numRest: global variable initiated as |Uall|.

begin

if curNode.isCriticalNode() then
return;

Boolean flag = true;
foreach Node oneNode in curNode.getChildNodes() do

if
|UB

oneNode|
N ≥ R then

flag = false;
break;

if flag &&
|UB

curNode|
N ≥ R then

curNode.setCriticalNode();
numRest = numRest − |UB

curNode| ;
return;

else

if curNode.isLeaf() then
return;

else

foreach Node oneNode in curNode.getChildNodes() do
IdentifyCriticalNode(oneNode, R, N);

end

Algorithm 2: ExploreTree(R)

R: the threshold (0 < R < 1).
N : N = |Uall|.
numRest: global variable.
α: decreasing ratio.

begin
numRest = |Uall|;
while numRest > 0 do

IdentifyCirticalNode(rootNode, R, N);
R = R ∗ α;

end

1. seq1 = { HIC1,default,.php,?id=,&category= }

2. seq2 = { HIC1,default,.php,?id=,&class= }

3. seq3 = { HIC1,default,.php,exploit,?vuln= }

29

Next, for each pair of consecutive tokens (and also for the last token and the end

of URLs), we investigate the following properties of the strings that reside between

them.

1. Are these strings identical?

2. The minimum and maximum length of the strings.

3. Are the characters in these strings lower or upper case?

4. Are the characters in these string letters or numbers?

5. Enumerate special characters (e.g., “.” and “?”) in these strings.

Finally, we summarize these properties in order to generate the regular expression. If

these strings are identical, we directly present such string in the regular expression.

Otherwise, we describe the properties in the regular expression format. For our

running example, we obtain the three regular expressions:

1. reg1 = HIC1/[a-z]{3,5}/default/[a-z]{5,6}.php?id=[0-9]{1}&category=[0-9]

{1}

2. reg2 = HIC1/[a-z]{3,3}/default/[a-z]{4}.php?id=[0-9]{1} &class=[0-9]{1}

3. reg3 = HIC1/[a-z]{4,7}/default/exploit.php?vuln=[0-9]{1}

We further refer to the hostnames and IP addresses in HIC1. We generate the

domain names for the hostnames and replace HIC1 using the domain names and

IP addresses to get the regular expression signatures. For example, if HIC1 =

{{cnt1.foo1.com, cnt2.foo1.com, cnt1.foo2.com}, {192.168.1.2, 192.168.1.4}}, we re-

place HIC1 using foo1.com, foo2.com, 192.168.1.2 and 192.168.1.4 for reg1,

reg2 and reg3. For example, reg3 will be extended to be four signatures:

1. reg3.1 = foo1.com/[a-z]{4,7}/default/exploit.php? vuln=[0-9]{1}

30

2. reg3.2 = foo2.com/[a-z]{4,7}/default/exploit.php? vuln=[0-9]{1}

3. reg3.3 = 192.168.1.2/[a-z]{4,7}/default/exploit.php? vuln=[0-9]{1}

4. reg3.4 = 192.168.1.4/[a-z]{4,7}/default/exploit.php? vuln=[0-9]{1}.

It is possible that some signatures are prone to induce false positives during detec-

tion. For example, a signature may be too general corresponding to a legitimate do-

main name. To decrease the possibility of false positives, we apply signature pruning.

To be specific, we evaluate each signature using a large set of legitimate HTTPTraces,

where each HTTPTrace is associated with a high-reputation landing page. We discard

any signature successfully matching any URL in these legitimate HTTPTraces.

2.4 Evaluation

We have implemented a prototype system named ARROW, and evaluated it using a

large volume of HTTPTraces. The HTTPTraces, described in Section 2.3 and Table 2,

were collected by evaluating their landing pages using a production cluster of high-

interaction client honeypots. The following sections describe the experimental setup

and evaluation results.

2.4.1 Experimental Setup

Among all the HTTPTraces produced by the honeypot cluster, we randomly selected

a set of 3.5 billion HTTPTraces (Stotal) obtained from February and March of 2010.

Out of Stotal, 1, 345, 890 HTTPTraces (denoted as Smalicious) are identified as drive-by

download attacks. The remaining HTTPTraces are taken as the unlabeled dataset

(denoted as Sunlabeled). In order to obtain benign HTTPTraces for signature prun-

ing and evaluating false positives for popular landing pages, we use the following

approach. We first collect a list of 87k URLs with high reputation scores that were

recently confirmed by the analysts, where a high reputation score for a URL indi-

cates an extremely low probability that its webpages are associated with malicious

31

Table 3: HTTPTraces for experiments
Trace Number of samples

Stotal 3,500,000,000

Smalicious 1,345,890

Sunlabeled 3,498,654,110

Sbenign1 10,811,805

Sbenign2 10,733,282

activities including drive-by download attacks, phishing, scamming, and spamming.

We then randomly divide this list into two sublists and collect HTTPTraces whose

landing pages contain one of these hostnames or URLs. The set of HTTPTraces cor-

responding to the first sublist (denoted as Sbenign1) is used for signature pruning. The

remaining HTTPTraces (denoted as Sbenign2), which correspond to the second sublist,

are used for false positive evaluation. Table 3 summarizes the number of HTTPTraces

included in each data set described above, indicating a large-scale evaluation of the

ARROW system.

The ARROW system applies regular expression signatures to match URLs in

HTTPTraces. Regular expression matching is naturally computationally expensive.

To speed up the matching process, we first aggregate the domain name and IP address

associated with each signature into a set. For a URL, only in case its domain name

or the corresponding IP address is contained (by a fast hash-based operation) in that

set, signature matching is applied. The matching process is further implemented

in a large-scale distributed computing infrastructure. Since the signatures will only

match on rare occasion, the computational overhead to match ARROW signatures is

negligible.

2.4.2 Experimental Design

We structured our experiments in four parts:

1. We compare the drive-by download attacks that are detected by ARROW sig-

natures to those (Smalicious) that are detected by existing detectors. Essentially

32

we want to answer two questions: i) what is the coverage of ARROW signatures

on drive-by download attacks that are detected by existing detectors? ii) how

many new attacks can ARROW signatures detect?

2. Without knowing the ground truth for all benign HTTPTraces in our evalua-

tion dataset, false positives generated by ARROW signatures become a major

concern. Since it is extremely hard, if not impossible, to enumerate all benign

samples among 3.5 billion HTTPTraces, we instead leverage several popular

public domain/IP reputation systems to study false positives. The intuition is

that if we find a domain or an IP associated with a signature is malicious, the

HTTPTraces that match with this signature will be labeled as malicious.

3. We will show how many days in advance ARROW can detect those drive-by

download attacks compared to those popular public domain/IP reputation sys-

tems.

4. We also demonstrate how ARROW can discover a sophisticated MDN, which

leverages “twitter.com” as the central server to distribute malware, and how

ARROW signatures detect more drive-by download attempts compared to de-

ployed detection systems.

The following section will elaborate on the experimental results.

2.4.3 Experimental Results

We first ran ARROW on the Smalicious HTTPTraces to discover Hostname-IP Clusters

and identified 14, 648 HICs. Some hostnames show strong fast-flux patterns. For

example, one HIC has only 6 hostnames but 1, 041 IP addresses, while another HIC

has 34, 882 hostnames which resolve to a single IP address. The HIC structure

can effectively discover and represent the relationship among such hostnames and IP

addresses.

33

Table 4: Examples of signatures
Signature

twitter\.com\/trends\/daily\.json\?date\=2[0-9&-]{10,10}callback\=callback2

experimentaltraffic\.com\/cgi\-bin\/009[0-9a-zA-Z?=/.]{4,101}

saeghiebeesiogoh\.in\:3129\/js

qsfgyee\.com\:3129\/js

google\-analitics\.net\/ga\.js\?counter\=[0-9]{1,2}

servisesocks5\.com\/el\/viewforum\.php\/[0-9a-z]{32,32}\?spl\=mdac

chura\.pl\/rc\/pdf\.php\?spl\=pdf_ie2

trenz\.pl\/rc\/getexe\.php\?spl\=m[a-z_]{3,6}

Table 5: Evaluation results
Metric |Hd| |Ha| |Ha ∩ Hd| |Ha − Hd|

|Ha∩Hd|
|Hd|

|Ha−Hd|
|Hd|

Value 1,345,890 1,612,166 320,310 1,291,856 23.8% 96.0%

After representing each server with the HIC index, ARROW follows the approach

described in Section 2.3.3 to identify MDNs and central servers. For the HTTPTraces

in Smalicious that are identified as drive-by download attacks by grouping them based

on “bHash” or the HIC index of each URL in “exploitURLs”, ARROW identified

6, 937 MDNs in total and 97 MDNs (1.4%) using one or more central servers. Since

each central server is represented by an Hostname-IP-Cluster (HIC), these 97 MDNs

involve 104 central servers, which contain 918 hostnames and 190 IPs. By analyz-

ing the URLs for the central servers of these 97 MDNs, ARROW generated 2, 592

regular expression signatures. After pruning these signatures with Sbenign1, ARROW

produced 2, 588 signatures including the examples presented in Table 4.

The obtained signatures could be used for detection. We apply all the signa-

tures to the 3.5 billion HTTPTraces in Stotal. We name Hd as the set of suspi-

cious HTTPTraces already detected by the high-interaction client honeypots, where

Hd = Smalicious. Ha denotes the set of suspicious HTTPTraces that are detected by

the signatures generated by ARROW. Table 5 compares the result of the suspicious

HTTPTraces detected by existing honeypots and signatures from ARROW. The col-

umn labeled Ha∩Hd

Hd
illustrates that these central server signatures have a coverage of

34

10 20 30 40 50 60
0

5

10

15
x 10

4

Days

of

 S
us

pi
ci

ou
s

H
TT

P
Tr

ac
es

existing approaches

existing approaches+arrow

(a) The deployed method v.s. ARROW

10 20 30 40 50 60
0

2

4

6

8

10
x 10

4

Days

of

 S
us

pi
ci

ou
s

H
TT

PT
ra

ce
s

arrow
only detected by arrow

(b) ARROW

Figure 10: Detection results on a daily basis

35

Table 6: The first example of a central server
Domain/IP Confirmed by

reputation systems?

Domains mysterio.info YES

64.202.189.170 YES
IP 193.104.27.242 NO

193.105.184.226 NO

Table 7: The second example of a central server
Domain/IP Confirmed by

reputation systems?

lhooretb.info YES
pyyriwd.info NO
tikkiac.info NO
bissiqe.info NO

Domains . . . NO
(totally 114) xassid.info NO

pyyriwb.info NO
assiqd.info NO
miisee.info NO

IP 66.197.213.165 YES

23.8% of the HTTPTraces detected by existing approaches. The columns of “Hd”

and “Ha” indicate that ARROW signatures identify more suspicious HTTPTraces.

In particular, the ARROW signatures contribute a large number of new suspicious

HTTPTraces (96.0%.) Figures 10(a) and 10(b) present the number of suspicious

HTTPTraces detected by ARROW compared to the existing approach on a daily ba-

sis. Such boosted detection results demonstrate the significant advantage using AR-

ROW as a parallel drive-by download detection system to existing honeypot-based

detection techniques.

2.4.3.1 Evaluating False Positive Rate

In this section, we will focus on false positive evaluation. The ideal solution to evaluate

false positives requires ground truth, which is referred to as all benign HTTPTraces.

Given the fact that existing detection systems may introduce a huge number of false

negatives, it is not a feasible approach to take those HTTPTraces, which are not

36

labeled as “malicious” by existing detection systems, as benign HTTPTraces. An

alternative approach for acquiring ground truth is to verify each HTTPTrace by

collaborating with website operators. For example, we can contact the operator who

manages a certain landing page to investigate whether the HTTPTrace associated

with this landing page was compromised during our detection period. Unfortunately,

simply because of the scale of the dataset we studied (i.e., 3.5 billion HTTPTraces),

this solution is practically impossible. In order to address this challenge, we instead

leverage the maliciousness of domains or IPs involved in ARROW signatures. It is

a practically feasible approach since several popular domain/IP reputation systems,

which can suggest the maliciousness of a certain domain or IP, are publicly available,

such as support.clean-mx.de and www.malwaredomains.com. Specifically, if the

domain or the IP address in a signature is confirmed as “malicious”, we will take

HTTPTraces detected by this signature as malicious.

However, these reputation systems may suffer from limited visibility of whole ma-

licious network infrastructure. Consequently, they may miss many malicious domains

and IPs that are detected by ARROW. Table 6 and Table 7 present two examples

to illustrate this problem. For instance, a center server contains one domain (“mys-

terio.info”) and three IP addresses, among which only the domain and one IP are

confirmed as “malicious” by the reputation systems. However, a manual investiga-

tion using search engine of the remaining two IPs revealed their great suspiciousness.

For the second central server, 114 IP addresses are resolved to one single IP address,

and only one domain and the IP address are verified as “malicious” by the reputa-

tion systems. However, the remaining domains appear to be generated by certain

random domain generation algorithm [54], which is commonly used by attackers. In

fact, many of these domains were actually confirmed to be malicious based on manual

search. Therefore, apart from only focusing on the reputation of domains and IPs,

37

we consider the reputation of a central server, which is presented by an Hostname-

IP-Cluster (see Section 2.3.2), a group of domains and IPs sharing the same network

infrastructure. Intuitively, more domains or IPs in a central server are malicious, the

higher probability their corresponding network infrastructure is used for malicious

purpose. In our evaluation, we follow a very conservative way: we label a central

server as “suspicious” if either all domains or all IPs in this central server are verified

as “malicious” based on the domain/IP reputation systems. Given a “suspicious”

central server, we label its remaining domains and IPs, which have not been verified

as “malicious” yet, as “suspicious”. Returning to the central server in Table 6, 100%

of its domains , “mysterio.info”, is labeled as “malicious”, and hence we take this

central server as “suspicious”. As a result, “193.104.27.242” and “193.105.184.226”

will be labelled as “suspicious”.

Following aforementioned approaches, we have verified totally 506 (55%) out of

918 domains and 190 IPs as “malicious” using several popular domain/IP reputation

systems. Further, we labeled 97 out of 104 central servers as “suspicious”, which

result in another 396 (43%) suspicious domains and IPs. Finally, 16 (2%) domains

and IPs are neither “malicious” nor “suspicious”, and we label them as “potentially

benign”. The first row in Table 8 presents the percentage of domains/IPs labelled as

“malicious”, “suspicious”, and “potentially benign”, respectively. The second row in

the same table present the percentage of newly detected HTTPTraces that can match

with those signatures, whose domains/IPs are labeled as “malicious”, “suspicious”,

and “potentially benign”, respectively. According to the table, we can find that

the vast majority (92.4%) of newly detected drive-by attacks are associated with

malicious domains/IPs and a significant percentage (7.4%) of them are associated

with suspicious domains/IPs, leaving a tiny portion of 0.2% (2,600 HTTPTraces) as

potential false positives.

We also match these signatures against all URLs in Sbenign2. Out of total 10, 733, 282

38

Table 8: The percentage of domains/IPs and HTTPTraces verified
malicious suspicious potentially benign

Domains/IPs 55% 43% 2%

HTTPTraces 92.4% 7.4% 0.2%

Table 9: The percentage of domains/IPs and HTTPTraces verified for each period
≤ Jan 2010 Feb & March 2010 ≥ April 2010

34.5% 56.7% 8.8%

legitimate HTTPTraces, only 2 HTTPTraces are matched with the signatures. This

indicates that ARROW signatures introduce negligible low false positive rate for those

landing pages with high reputation (e.g., landing pages that are popular and well-

maintained).

To conclude, ARROW signatures yield 2,600 potential false positives in Stotal (3.5

billion HTTPTraces) and 2 false positives in Sbenign2 (11 million HTTPTraces). Such

experimental results demonstrate an extremely low false positive rate of 7.4 ∗ 10−5%

(2602 out of around 3.5 billion HTTPTraces).

2.4.3.2 Early Detection

While the vast majority (92.4%) of newly detected are finally verified by public

domain/IP reputation systems, ARROW signatures show significant advantage by

achieving early detection. On the one hand, among 506 domains and IPs that are

verified by the reputation systems, we successfully acquired exposure dates for 468 do-

mains and IPs (corresponding to 89% drive-by download attacks). On the other hand,

since our dataset were obtained in Feb and March 2010, we get ARROW signatures at

the last day of March 2010. Then we can evaluate how many days in advance we can

use ARROW signatures to detect drive-by download attacks compared to the knowl-

edge acquired from popular public domain/IP reputation systems. As presented in

Table 9, 34.5% drive-by download attacks could be detected using reputation systems

before Feb 2010, and 56.7% can be detected during Feb and March 2010. However,

39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >= 21
0

0.05

0.1

0.15

0.2

0.25

∆ (time interval) in weeks

P
er

ce
nt

ag
e

of
 d

riv
e−

by
 d

ow
nl

oa
ds

Figure 11: ∆ (time interval) in weeks

8.8% drive-by download attacks (93,488 attacks) could not be detected based on rep-

utation systems before the last day of March 2010, at which time ARROW signatures

are generated for detection. For each of these 93,488 HTTPTraces, we calculate ∆

as the time interval between April 1, 2010 (the detection time for ARROW) and the

public exposure date for a domain or an IP in the used reputation systems. Fig-

ure 11 presents the distribution of ∆, which demonstrates that ARROW signatures

can detect these drive-by download attacks much earlier compared to those reputation

systems. The average ∆ is 172 days.

2.4.3.3 Case Study for the Twitter Signature

Out of the signatures generated by ARROW, “twitter.com” appears in one signature

in Table 4. This signature identified a large number of 135, 875 suspicious HTTP-

Traces as described in column “Ha” in Table 10, contributing 8.4% (135875
1612166

) of all

detected suspicious HTTPTraces. Since “twitter.com” is a well known website used

for social networking and microblogging, false positives are a concern. In this sec-

tion, we conduct a detailed analysis of all HTTPTraces matched by the “twitter.com”

signature to assess whether or not it is a false positive.

First, we briefly describe why twitter was involved in a large number of drive-by

download attacks. Manual analysis reveals that a suspicious webpage retrieves the

40

Table 10: Evaluation results for the “twitter” signature

Metric |Ha| |Hd|
|Ha−Hd|

|Hd|
|Hk| ReflectRate(Hk,Ha)

Value 135,875 60,159 125.9% 119,774 99.6%

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

N−th Day

In
de

x
O

f C
en

tra
l/E

xp
lo

it
Se

rv
er

Exploit/Malware Hostname

Central Server ("twitter" signature)

Figure 12: Active days for the central server and exploit servers (60 days)

week’s top trending terms using Twitter’s API, dynamically constructs a hostname

from these changing terms, and then instructs the browser to retrieve the exploit from

the server corresponding to that hostname. A detailed description of the script that

performs these actions can be obtained from a website dedicated to raising awareness

of online threats [6].

Figure 12 and its zoom-in view Figure 13 present the temporal patterns of the

MDN identified by the “twitter.com” central server. The X-axis illustrates the days

the hostname appears in our collected HTTPTraces over time, whereas the Y-axis rep-

resents the index into the set of dynamically generated hostnames based on Twitter’s

API. As the graph illustrates, the hostname is switched on a regular basis represent-

ing a strong fast-flux pattern, while the central server (“twitter.com”) remains stable.

This architecture introduces a great challenge for the detection techniques that iden-

tify the server responsible for hosting the actual exploit. In this MDN, this server

changes every few days. However, the signature generated by ARROW captures the

central server, which is the most stable point over time. Therefore, signatures gener-

ated by ARROW can detect a large number of the suspicious HTTPTraces, even if

41

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

N−th Day

In
de

x
O

f C
en

tra
l/E

xp
lo

it
Se

rv
er

Exploit/Malware Hostname

Central Server ("twitter" signature)

Figure 13: Active days for the central server and exploit servers (zoom-in view for
first 7 days)

the corresponding server hosting the exploit changes or is temporarily unavailable.

To assess the false positive rate of the signature, we need to further categorize the

matched HTTPTraces. The column Ha is described previously. In addition, 60, 159

HTTPTraces, denoted as Hd in Table 10, in the Ha traces have been identified as

drive-by downloads by the existing approach. These HTTPTraces in Ha can be

classified as follows into three categories:

1. The client honeypot retrieves the exploit from the aforementioned server and is

compromised. The client honeypot can successfully detect the drive-by down-

loads in this scenario.

2. The client honeypot makes a request to the exploit server but fails to retrieve

the exploit.

3. The client honeypot visits “twitter.com”, but no further connection attempts

are made to the exploit server.

Manual analysis reveals that an HTTP request to the server hosting the exploit

contains specific keywords as part of the URL’s path. These keywords are listed in

Table 11 and would be an indication of malicious intent (categories 1 and 2 above).

42

In total, 119, 774 or 88.15% of HTTPTraces match these keywords as described in

column “Hk” in Table 10 leaving a large portion of 11.85% as potential false positives.

Since no subsequent requests are made after “twitter.com” has been contacted for

category 3, it is challenging to obtain evidence on whether these HTTPTraces also

have malicious intent. However, if we assume that a compromised server hosts a large

number of similar malicious webpages, we can further assess the malicious intent of

these HTTPTraces. We do so with a function called ReflectRate , which expresses the

rate of suspicious HTTPTraces based on that assumption.

Table 11: Keywords for detection
keywords “/tre/ ”, “/nte/ ”, “/ld/ ”, “.exe”

The ReflectRate is calculated as follows. We use ht to represent an HTTPTrace

and H to denote a set of HTTPTraces (H = {ht1, ht2, . . . , htn}). We further use the

functions LP () to return the landing page for an HTTPTrace and Host() to obtain the

hostname of a URL. Given H , we introduce a function HostSet() to indicate the set

of hostnames in the landing pages, HostSet(H) = ∪n
i=1{Host(LP (hti))}. We then de-

fine a function Reflect(H1, H2) to return a set of HTTPTraces Hr = Reflect(H1, H2),

where Hr = {hti|hti ∈ H2, Host(LP (hti)) ∈ HostSet(H1)}. Hr represents a subset

of HTTPTraces in H2, whose landing pages are hosted on servers (e.g., HostSet(H1))

that have been confirmed to serve malicious webpage content. Based on these func-

tions, we define ReflectRate(H1, H2) = |Hr|
|H2|

. For example, suppose H1 = {ht1, ht2}

is a set of suspicious HTTPTraces detected by existing methods, where LP (ht1) =

www.foo.com/index.php and LP (ht2) = www.bar.com/index.php. We also find

HostSet(H1) = { www.foo.com, www.bar.com}. Assume we are also presented with

a set of unlabeled HTTPTraces H2 = {hta, htb, htc, htd}, where LP (hta) = www.foo.

com/contact.php, LP (htb) = www.foo.com/test.php, LP (htc) = www.bar.com/

temp.php and LP (htd) = www.test.com/index.php. We can classify three out of

four HTTPTraces in H2 as suspicious, which is Reflect(H1, H2) = {hta, htb, htc}, since

43

Host(LP (hta/b/c)) ∈ HostSet(H1). The resulting ReflectRate(H1, H2) would be 75%.

Applied to our case study of “twitter.com”, we obtain a ReflectRate of 99.6%

leaving 0.4% or 544 of the identified traces as potential false positives as shown in the

last column of Table 10.

2.5 Discussion

Our evaluation has shown that the ARROW system successfully boosts detection of

suspicious pages with an overall low false positive rate of 7.4 ∗ 10−5%. The ability

to run ARROW in production may be compromised if the signatures cause popular

websites to be detected as malicious (i.e. false positives). Strategies to reduce the

likelihood of this happening, such as white listing or clustering based on page char-

acteristics, are left for future work. Signature pruning is based on a large data set of

benign HTTPTraces. Collecting a comprehensive dataset of definite benign traces,

however, is very hard in practice. One could collect URLs corresponding to the most

popular queries in the search engine logs or URLs that are most popular in the ISP or

enterprise networks with the assumption being that popular webpages are less likely

to host drive-by downloads. Nevertheless, as attackers usually compromise legitimate

sites to hijack its traffic as an entry point into their MDN, this assumption may not

always hold true. It may result in some signatures being pruned that shouldn’t have

been and some HTTPTraces being incorrectly marked as false positives. However,

given that malicious webpages are overall quite rare among popular webpages (e.g.,

0.6% of the top million URLs in Google’s search results led to malicious activity ac-

cording to [65]), the vast majority of HTTPTraces collected in such a way will indeed

be benign and can be used for pruning and evaluation.

Evasion may be another concern with our system. Similar to other drive-by down-

load detection systems, by knowing our detection algorithm, attackers can always

44

carefully redesign the attack strategy to evade our detection. For example, the at-

tackers can generate a different binary for each time of an attack, which will in

consequence cause different binary hash values and thus prevent ARROW from ag-

gregating them into the same MDN. To deal with this problem, more information,

such as the similarity of different binaries or behavior characteristics [55, 70, 86], can

be adopted to aggregate polymorphic malware into MDNs. The attackers can also de-

centralize the MDNs to eliminate the central servers or hide the MDN structure from

the client (e.g. through server side includes instead of redirect chains.) As the MDNs

identified by ARROW do not provide comprehensive coverage on all HTTPTraces

(with current coverage 23.8%) identified by traditional methods, it is an indication

that some of these evasion techniques are used today. These are accepted shortcom-

ings of our approach, and we will look towards refining our existing algorithm and

exploring new approaches to detect MDNs as part of our future work.

2.6 Summary

Drive-by download attacks have become the primary approach used for malware in-

fection. Therefore, detecting drive-by download attacks is an extremely important

task since it can help us detect bots in the infection phase, thereby preventing bots

from performing malicious activities in their early stage. We have shown that by

aggregating data from a large number of drive-by download attempts, we are able to

discover both simple malware distribution networks as well as more complex MDNs

including one or more central servers. We have conservatively estimated that 1.4%

(97 out of 6,937) of MDNs employ central servers. While this percentage is cur-

rently small, the overall coverage of these complex MDNs is 23.8% (320,310 out of

1,345,890 malicious traces) which is reasonably large considering the small number of

actual MDNs with central servers. Going forward, we expect the number of attackers

employing sophisticated methods to manage their operations to grow.

45

The major hurdle for deploying ARROW to detect MDNs utilizing central servers

and block all landing pages which redirect to these servers is developing ways to

accurately identify false positives. This problem is generic to any method attempting

to solve this problem and is not a reflection of the proposed system. We have shown

that the regular expression signatures have a very low false positive rate of 7.4∗10−5%.

However, it is not practical to employ an army of analysts to investigate all signatures

generated by the system, particularly given the highly dynamic ecosystem being used

by attackers today. Developing better, automated methods of assessing the purpose

of these central servers in the absence of a successful attack needs to be a focus of

future research. Without access to this ideal system in the near term, it may be

prudent to restrict internet content from users (i.e. not display the webpages from

a search query or serve ads which redirect to the central server) in order to err on

the side of caution. While this may potentially penalize legitimate content providers

initially as the system is deployed, having a method for an individual organization to

understand the underlying cause of any true false positives and a method to quickly

rectify any errors will help balance the competing objectives of providing end users,

the potential bot-infection victims, with the widest range of content while keeping

them safe from harm.

46

CHAPTER III

DETECTING PEER-TO-PEER BOTNETS

3.1 Motivation

In Chapter 2, we focus on detecting botnets in the infection phase. While detect-

ing botnets in the infection phase is of great importance, it is not sufficient. The

major reason is that certain infection activities may fly under the radar of deployed

network-based detection systems. For example, a computer could be infected by a

bot binary from a physically connected USB stick, thereby not arousing any malicious

network traffic. As a consequence, detecting botnets in the control phase becomes

indispensable, which is the focus of this chapter.

In the control phase, botmasters rely on C&C channels to control and coordinate

bots. Botmasters could build the C&Cs with different structures, such as centralized

structures and peer-to-peer (P2P) structures. In a centralized structure, all bots in a

botnet contact one (or a few) C&C server(s) owned by the botmaster. Centralized

C&C channels based on the IRC or HTTP protocol have been used by many botnets due

to their simplicity and availability of open-source, reusable C&C server code. How-

ever, centralized C&C servers represent a single point of failure. Therefore, attackers

have recently started to build botnets with a more resilient C&C architecture, using

a peer-to-peer (P2P) structure [76, 66, 67] or hybrid P2P/centralized C&C struc-

tures [37]. Bots belonging to a P2P botnet (i.e., a botnet that uses P2P-based C&C

communications) form an overlay network in which any of the nodes (i.e., any of the

bots) can be used by the botmaster to distribute commands to the other peers or

collect information from them. While more complex, and perhaps more costly to

manage compared to centralized botnets, P2P botnets offer higher resiliency, since

47

even if a significant portion of a P2P botnet is taken down (e.g., by law enforcement

or network operators) the remaining bots may still be able to communicate with each

other and with the botmaster. Notable examples of P2P botnets are represented by

Nugache [68], Storm [66], Waledac [37], and even Confiker, which has been shown

to embed P2P capabilities [67]. Storm and Waledac are of particular interest because

they use P2P C&C structures as the primary way to organize their bots, and have

demonstrated resilience to take-down attempts.

To date, a few approaches for detecting P2P botnet have been proposed [36, 72,

79]. BotMiner [36] finds groups of hosts within a monitored network that share

similar communication patterns with outside machines and at the same time perform

similar malicious activities, such as scanning, spamming, launching remote exploits,

etc. If such groups of hosts exist, they are considered to be part of a botnet and

an alarm is raised. The intuition is that bots belonging to the same botnet will

share similar C&C communication patterns, and will respond to the botmaster’s

commands with similar malicious activities. Unfortunately, modern botnets are using

more and more stealthy ways to perform malicious activities. For example, some

botnets may send spam through large popular webmail services such as Gmail or

Hotmail [94]. Such activities are very hard to detect through network flow analysis,

due to encryption and overlap with legitimate webmail usage patterns, thus making

BotMiner ineffective. BotGrep [72] analyzes network flows collected over multiple

large networks (e.g., ISP networks), and attempts to detect P2P botnets by analyzing

the communication graph formed by overlay networks. Starting from a global view

of Internet traffic, BotGrep first identifies groups of hosts that form a P2P network.

To further differentiate P2P botnets from the legitimate P2P networks (e.g., P2P file

sharing networks), BotGrep requires additional information to bootstrap its detection

algorithm. For example, BotGrep may use a list of nodes in a communication (sub-

)graph that are related to honeypot hosts, or may leverage the detection results from

48

intrusion detection systems. However, acquiring both a sufficiently global view of

Internet communications and enough a priori information to bootstrap the detection

algorithm may be very challenging and makes the detection results (which in [94]

were mainly based on simulations) heavily dependent on other systems, thus limiting

the real-world applicability of BotGrep. Recently, Yen et al. [79] have proposed an

algorithm that aims to distinguish between hosts that run legitimate P2P file sharing

applications and P2P bots. However, the proposed algorithm [79] does not take

into account the fact that some popular legitimate P2P applications may not exhibit

network patterns typical of P2P file sharing applications. For example, Skype, a very

popular P2P-based instant messenger, does not usually behave in a way similar to file

sharing applications. For example, large file transfers through Skype are usually rare,

compared to its use as an instant messenger or voice-over-IP (VoIP) client. Therefore,

Skype’s P2P traffic may cause a significant number of false positives. Moreover, the

algorithm in [79] is not able to detect bot-compromised hosts that exhibit mixed

legitimate and botnet-related P2P traffic (e.g., due to users running a file sharing

P2P application on machines compromised with P2P bots).

In this chapter, we present a novel botnet detection system that is able to identify

stealthy P2P botnets, whose attacks are very hard to be observed in the network

traffic. Our approach identifies P2P bots within a monitored network by detecting the

C&C communication patterns that characterize P2P botnets, regardless of how they

perform malicious activities in response to the botmaster’s commands. To accomplish

this task, we first identify all hosts within a monitored network that appear to be

engaging in P2P communications. Then, we derive statistical fingerprints of the P2P

communications generated by these hosts, and leverage the obtained fingerprints to

distinguish between hosts that are part of legitimate P2P networks (e.g., file-sharing

networks) and P2P bots. Unlike previous work, our system is able to identify stealthy

P2P bots within a monitored network even when the P2P botnet traffic is overlapped

49

with traffic generated by legitimate P2P applications (e.g., Skype) running on the

same compromised host.

To summarize, our work makes the following contributions:

1. A new flow-clustering-based analysis approach to identify hosts that are most

likely running P2P applications, and estimate the active time of the detected

P2P nodes.

2. An efficient algorithm for P2P traffic fingerprinting, which we use to build a

statistical profile of different P2P applications.

3. A P2P botnet detection system that can effectively and accurately detect P2P

bots, even when they perform malicious activities in a stealthy, non-observable

way. In addition, our system is able to identify bot-compromised machines, even

when the P2P botnet traffic is overlapped with traffic generated by legitimate

P2P applications (e.g., Skype) running on the same compromised machine.

4. A scalable system design based on computationally efficient detection algorithm

and load-balance workload distribution.

5. An implementation of our detection system and an extensive experimental eval-

uations. Our experimental results show that i) the system can detect P2P bots

with a detection rate of 100% and 0.2% false positive rate, ii) the system achieves

great scalability, processing more than 80 million flows within 1 hour.

3.2 Related Work

As P2P botnets become robust infrastructures for various malicious activities, they

have attracted a lot of efforts from researchers [76, 66, 81, 67, 20]; the most no-

table and studied P2P botnets are Nugache [76], Storm [66, 81], Waledac [37], and

Confiker [67]. A few approaches have been proposed that can be used for P2P botnet

50

detection [36, 72, 79], which have been discussed in Section 3.1. BotHunter [35] was

proposed to detect a bot, centralized or P2P, in its infection phase if the infection

behaviors are consistent with the infection model used by BotHunter. However, bots

now use a wide variety of approaches for infection (e.g., drive-by downloads), which

may not be consistent with BotHunter’s infection model.

Our work focuses on the detection of P2P botnets using network information.

Compared with the existing approaches, the design goals of our approach are differ-

ent in that: 1) our approach does not assume that malicious activities are observable,

unlike [36]; 2) our approach does not require any botnet-specific information to make

the detection, unlike [72]; and 3) our approach aims to detect the compromised hosts

that run both P2P bot and other legitimate P2P applications at the same time, un-

like [79]. To achieve these design goals, our system includes multiple components.

The first one is a flow-clustering-based analysis approach to identify hosts that are

mostly likely running P2P applications. In contrast to existing approaches of identi-

fying hosts running P2P applications [83, 73, 82, 15, 60], our approach differs from

them in the following ways: 1) unlike [73], our approach does not need any content

signature because encryption will immediately make content signature useless; 2) our

approach does not rely on any transport layer heuristics (e.g., fixed source port) used

by [82, 83], which can be easily violated by P2P applications; 3) we do not need

training data set to build a machine learning based model as used in [15], because

it is very challenging to get traffic of P2P botnets before they are detected; 4) in

contrast to [60], our approach can detect and profile various P2P applications rather

than identifying a specific P2P application (e.g., Bittorrent); and 5) our analysis ap-

proach can estimate the active time of a P2P application, which is critical for botnet

detection.

51

Phase I: Identify P2P hosts

DNS

Packets

Traffic

Filter

Phase II: Identify P2P Bots

NetFlow
Coarse-Grained

Detection

Coarse-Grained

Detection

Fine-Grained

Detection
Bots

N
e
tw
o
rk
 T
ra
ffi
c

Fine-Grained

Detection

(distributed)

Figure 14: System overview

3.3 System

3.3.1 Problem Formulation

Our goal is to monitor the network traffic at the edge of a network (e.g., an enterprise

network), and identify whether any of the machines within the network perimeter has

become part of a P2P botnet. In particular, we consider the scenario in which bots

perform malicious activities in a stealthy way, for example spam-bots that send spam

through stolen or malicious web-mail accounts (e.g., Gmail or Hotmail accounts) [94],

whose malicious activities are very hard to detect from traffic analysis. In general, we

assume that the bots’ malicious activities may not be easily observable, and therefore

we only focus on their C&C communication patterns. We assume that at least two or

more machines within the monitored network are part of the same P2P botnet, and

leverage the similarity in communication patterns across multiple bots for detection

purposes.

3.3.2 System Overview

P2P-based botnets rely on a P2P protocol to establish a C&C channel and communi-

cate with the botmaster. As such, we intuitively assume that P2P bots exhibit some

network traffic patterns that are common to other P2P client applications (either

legitimate or malicious). Therefore, we divide our systems into two phases.

52

Phase I: At the first phase, we aim at detecting all hosts within the monitored

network that appear to be engaging in P2P communications, as shown in Figure 14.

We analyze raw traffic collected at the edge of the monitored network (e.g., an enter-

prise network), and apply a pre-filtering step (discussed in Section 3.3.3) to reduce

the data volume and only consider network flows that are potentially related to P2P

communications. Then, we analyze the remaining traffic and extract a number of

statistical features (described in Section 3.3.7.1), which we use to isolate flows related

to P2P communications from unrelated flows, and identify candidate P2P clients.

Phase II: In the second phase, our botnet detection system (detailed in Sec-

tion 3.3.6) analyzes the traffic generated by the candidate P2P clients and classifies

them into either legitimate P2P clients or P2P bots. The architecture of our botnet

detection system is based on a number of observations.

1. First, bots are malicious programs used to perform profitable malicious activi-

ties. They represent valuable assets for the botmaster, who will intuitively try

to maximize their utilization. As a consequence, bot programs usually make

themselves persistent on the compromised system and run as long as the sys-

tem is powered on. This is particularly true for P2P bots, because in order

to have a functional overlay network (the botnet), a sufficient number of peers

needs to be always online. In other words, the active time of a bot should be

comparable with the active time of the underlying compromised system. If this

was not the case, the botnet overlay network would risk to degenerate into a

number of disconnected subnetworks, due to the short life time of each single

node. On the other hand, the active time of legitimate P2P applications is

determined by users. For example, some users tend to use their file-sharing

P2P clients only to download a limited number of files, before shutting down

the P2P application [30]. In this case, the active time of the legitimate P2P

53

application may be much shorter compared to the active time of the underlying

system. Based on this observation, our botnet detection system first estimates

the active time of a P2P client and eliminates those hosts that are running P2P

applications with short active time, compared to the underlying system. It is

worth noting that some users may run certain legitimate P2P applications for

as long as their machine is on. For example, Skype is a popular P2P application

for instant messaging and voice-over-IP (VoIP) that is often setup to start after

system boot, and that keeps running until the system is turned off. Therefore,

such Skype clients (or other “persistent” P2P clients) will not be filtered out at

this stage.

2. In order to discriminate between legitimate persistent P2P clients and P2P

bots, we make use of the following observations: 1) bots that belong to the same

botnet use the same P2P protocol and network, and 2) the set of peers contacted

by two different bots have a much larger overlap, compared to peers contacted

by two P2P clients connected to the same legitimate P2P network. While

the first observation is obvious, the second observation deserves explanation.

Assume that two hosts in the monitored network, say hA and hB, are running the

same legitimate P2P file-sharing application (e.g., Emule). The users of these

two P2P clients will most likely have uncorrelated usage patterns. Namely,

it is reasonable to assume that in the general case the two users will search

for and download different content (e.g., different media files or documents)

from the P2P network. This translates into a divergence between the set of

IP addresses contacted by hosts hA and hB (remember that at this stage we

are only considering the P2P traffic generated by the hosts). The reason is

that the two P2P clients will tend to exchange P2P control messages (e.g.,

ping/pong and search requests) with different sets of peers which “own” the

content requested by their users, or peers that are along the path towards the

54

content. On the contrary, if hA and hB are compromised with P2P bots, one

of the characteristics of the bots is that they need to periodically search for

commands published by the botmaster [81]. This typically translates into a

convergence between the set of IPs contacted by hA and hB.

To summarize, in order to detect P2P bots we follow the high-level steps reported

below:

1. Identify the set H of all hosts engaged in P2P communications.

2. Identify the subset P ⊆ H of P2P clients whose active time is similar to the

active time of the underlying systems.

3. Identify the subset B ⊆ P which exhibit similar P2P communication patterns,

and have a significant overlap of the set of contacted peers. We classify the

hosts in set B as P2P bots.

To illustrate the statistical features and motivate the related thresholds used by

our system, we used five popular P2P applications (see Table 12) for 24 hours to collect

their traffic traces. For the Bittorrent application, we generated two separate 24-hour

traces (T-Bittorrent and T-Bittorrent-2). In this section we report a number of

measurements on the obtained traffic traces to better motivate some of our design

choices. Table 14 reports the feature values measured on the collected traffic traces.

The notation used for our statistical features is summarized in Table 13.

We now describe the components of our detection system in more details.

3.3.3 Traffic Volume Reduction

As a first step, we want to filter out network traffic (and their sources) that is unlikely

to be related to P2P communications. This is accomplished in part by passively

analyzing DNS traffic, and identifying network flows whose destination IP addresses

were previously resolved in DNS responses. The reason is that P2P clients usually

55

Table 12: P2P applications
P2P Apps Version Protocol

Bittorrent 6.4 Bittorrent

Emule 0.49c Kademlia

Limewire 5.4.8 Gnutella&Bittorrent

Skype 4.2 Skype

Ares 2.1.5 Gnutella&Bittorrent

Table 13: Notations and descriptions
notation Description

Tp2p the active time of P2P application

Nf the number of failed connections per hour

No-DNS Peers the percentage of flows associated with no domain names

Nclust the number of clusters left by enforcing Θbgp and Θp2p

Nbgp the largest number of unique bgp prefixes in one cluster
ˆTp2p the estimated active time for P2P application

Table 14: Measurement of features

Trace Tp2p Nf No-DNS Peers Nclust Nbgp
ˆTp2p

T-Bittorrent 24hr 1602 96.85% 17 12857 24hr

T-Emule 24hr 318 99.99% 8 1133 24hr

T-Limewire 24hr 1278 99.97% 36 5661 24hr

T-Skype 24hr 81 99.93% 12 12806 24hr

T-Ares 24hr 489 99.99% 16 1596 24hr

56

contact their peers directly, by looking up IPs from a routing table for the overlay

network, rather than resolving a domain name (a possible exception may be when

a peer bootstraps into a P2P network by looking up domain names that resolve to

stable super-nodes). This observation is supported by Table 14 (No-DNS Peers),

which illustrates the percentage of flows whose destination IP addresses were not

resolved from a domain name. It confirms that the vast majority of flows generated

by P2P applications do not have destination IPs resolved from domain names. The

remaining small fraction of flows are either related to bootstrapping (e.g., in the case

of bittorrent.com and skype.com) or for downloading advertisement content from

popular websites. Since most non-P2P applications (e.g., browsers, email clients, etc.)

often connect to a destination address resulting from domain name resolution, this

simple filter can eliminate a very large percentage of non-P2P traffic (see Section 3.4)

while retaining the vast majority of P2P communications.

3.3.4 Identifying P2P Clients

After traffic volume reduction we consider the remaining traffic, and for each host h

within the monitored network we identify three flow sets (we call “outgoing” those

flows that have been initiated by h):

1. Stcp(h): flows related to successful outgoing TCP connections.

2. Sudp(h): flows related to successful outgoing UDP (virtual) connections.

3. So(h): flows related to failed outgoing TCP/UDP connections.

We consider as successful those TCP connections with a completed SYN, SYN/ACK,

ACK handshake, and those UDP (virtual) connections for which there was at least one

“request” packet and a consequent response packet.

57

P2P applications act as both clients and servers. A node in a P2P network can

initiate (TCP or UDP virtual) connections to its peers and accept connections initi-

ated by other peers. In client-mode, P2P nodes periodically probe their peers with

ping/pong messages to maintain a view of the overlay network (usually for routing

purposes), or search for content. A consequence of this behavior is the fact that

P2P nodes will often generate a large number of failed outgoing flows. The reason is

that P2P networks are usually characterized by a significant node churn [30], due to

previous nodes that leave the network and new nodes that join it (the churn is intu-

itively correlated with users that turn on or off their P2P applications or machines).

Therefore, a node that sends a ping message to a known peer will often discover that

the peer is not up anymore (no pong is received, thus causing a failed connection).

At this point, we retain all hosts that generated at least a successful outgoing

TCP or UDP connection, and that generated more than a predefined number Θo of

outgoing failed TCP/UDP connections. Namely, we retain a host h if |Stcp(h)| +

|Sudp(h)| > 0 AND So(h) > Θo, and discard all other hosts (it is worth noting that

here we are only considering those flows that passed the DNS-based traffic volume

reduction filter described in Section 3.3.3). Table 14, reports the number Nf of failed

outgoing connections per hour for different P2P applications. We can see that P2P

applications typically generate a large number (from several tens up to thousands) of

failed connection attempts with other peers. Therefore, we conservatively set Θo = 10.

What we just described is a “Coarse-Grained Detection of P2P Clients” that al-

lows us to focus on candidate P2P nodes. We further apply a “Fine-Grained Detection

of P2P Clients” to prune away hosts that are not actual P2P nodes. For example, we

want to eliminate hosts that made it into the list of candidate P2P nodes by chance

(e.g., because of scanning behavior). To this end, we first consider the fact that

each node of a P2P network frequently exchanges a number of control messages (e.g.,

ping/pong messages) with other peers. Also, we notice that the characteristics of

58

450 500 550
0

0.2

0.4

0.6

0.8

1

Flow Size (Byte
sent

 + Byte
recv

)

C
D

F

450 500 550
0

0.2

0.4

0.6

0.8

1

Flow Size (Byte
sent

 + Byte
recv

)

TCP
UDP

TCP
UDP

T−Bittorrent T−Bittorrent−2

(1,1,145,319,UDP)

(1,1,145,310,UDP)

(5,3,346,170,TCP)
(1,1,145,319,UDP)

(5,3,346,170,TCP)

(1,1,145,310,UDP)

Figure 15: CDF of flow sizes

these messages, such as the size and frequency of the exchanged packets, are similar

for nodes in the same P2P network, and vary depending on the P2P protocol and

network in use. In addition, we notice that a node will often exchange control mes-

sages with a relatively large number of peers distributed in many different networks,

where each network can be represented by its BGP prefix. Figure 15 describes the

distribution of flow sizes for two Bittorrent traces, where a large number of flows

share similar sizes.

To identify flows corresponding to P2P control messages, we first apply a flow

clustering process intended to group together similar flows for each candidate P2P

node h. Given sets of flows Stcp(h) and Sudp(h), we characterize each flow using a

vector of statistical features v(h) = [Pkts, Pktr, Bytes, Byter], in which Pkts and

Pktr represent the number of packets sent and received, and Bytes and Byter repre-

sent the number of bytes sent and received, respectively. We then apply a clustering

algorithm (described in Section 3.3.7.1) to partition the set of vectors (i.e., of flows)

Vtcp(h) = {v(h)i}i=1..|Stcp(h)| and Vudp(h) = {v(h)i}i=1..|Sudp(h)| into a number of clus-

ters. Each of the obtained clusters of flows, Cj(h), represents a group of flows with

similar size. For each Cj(h) (notice that each vector can be mapped back to the

flow it describes), we consider the set of destination IP addresses related to the flows

59

in the clusters, and for each of these IPs we consider its BGP prefix (using BGP pre-

fix announcements). Finally, we count the number of distinct BGP prefixes related

to destination IPs in a cluster bgpj = BGP (Cj(h)), and discard those clusters of

flows for which bgpj < Θbgp. We call fingerprint clusters the remaining cluster of

flows. Therefore, each host h can now be described by a set of fingerprint clusters

FC(h) = {FC1, .., FCk}. We label h as P2P node if FC(h) 6= ∅, namely if h generated

at least one fingerprint cluster.

We applied clustering-based flow analysis to the sample traces of 5 P2P clients.

Nbgp in Table 14 presents the maximum number of distinct BGP prefixes of destination

IPs in a fingerprint cluster. We therefore conservatively set the threshold Θbgp = 50,

which is much smaller than the measured Nbgp.

Figure 16 illustrates an example of the flow clustering process for a P2P node.

Flows corresponding to ping/pong and peer-discovery share similar sizes respec-

tively, and therefore they are grouped into two clusters (FC1 and FC2). Since

the number of destination BGP prefixes involved in each cluster is larger than Θbgp,

we take FC1 and FC2 as its fingerprint clusters. A fingerprint cluster summary,

(Pkts, Pktr, Bytes, Byter, proto), presents the protocol and the average number of

sent/received packets/bytes for all the flows in this fingerprint cluster. Examples

of fingerprint cluster summaries for two Bittorrent traces, including T-Bittorrent

and T-Bittorrent-2, and one Skype trace, are illustrated in Table 15. “(1 1 145 319,

UDP)” and “(1 1 109 100, UDP)” are shared by both Bittorrent sample traces. The

payload of flows corresponding to these two fingerprint clusters are illustrated in Ta-

ble 16. It reveals that the fingerprint cluster of “(1 1 145 319, UDP)” represents the

flows for node discovery, and that of “(1 1 109 100, UDP)” contains the flows for

ping/pong.

60

Host P2P

App

Network

Flows

Clustering

......

......

Fingerprint Cluster 1

(FC1)

Fingerprint Cluster 2

(FC2)

T(FC1)

T(FC2)

PING/PONG
Peer Discovery

ˆTP2P = max(T (FC1), T (FC2))

T
s
y
s

T
P

2
P

Two-level

(Birch +

Hierarchical)

Figure 16: Example of identify P2P hosts based on flow-clustering analysis

3.3.5 Identifying Persistent P2P Clients

As we mentioned at the beginning of Section 3.3, P2P bots make themselves persistent

into the compromised system, and run for as long as the system is powered on. Based

on this observation, the fist component in the “Phase II” of our system (“Coarse-

Grained Detection of P2P Bots”) aims at identifying P2P clients that are active for a

time TP2P close to the active time Tsys of the underlying system they are running on.

While this behavior is not unique of P2P bots and may be representative of other P2P

applications (e.g., Skype clients that run for as long as a machine is on), identifying

persistent P2P clients takes us one step closer to identifying P2P bots.

To estimate Tsys we proceed as follows. For each host h ∈ H that we identified as

P2P clients according to Section 3.3.7.1, we consider the timestamp tstart(h) of the

first network flow we observed from h and the timestamp tend(h) related to the last

flow we have seen from h. Afterwards, we divide the time tend(h) − tstart(h) into w

epochs (e.g., of one hour each), denoted as T = [t1, ..ti, .., tw]. We further compute

a vector A(h, T) = [a1, ..ai, .., aw] where ai is equal to 1 if h generated any network

traffic between ti−1 and ti. We then estimate the active time of h as Tsys =
∑w

i=1 ai.

The challenge is how to accurately estimate the active time of a P2P application.

61

Since a P2P application periodically exchanges network control (e.g., ping/pong) mes-

sages with other peers as long as the P2P application is active, we can leverage the ac-

tive time of a fingerprint cluster, which represents flows of control messages, in order to

estimate the active time of the corresponding P2P application. For each host h (again,

we consider only the hosts in H, which we previously identified as P2P clients) we con-

sider the set of its fingerprint clusters FC(h) = {FC1, ..FCj.., FCk} (see Section 2.3),

and for each fingerprint cluster FCj we compute a vector A(FCj, T) = [aj
1, ..a

j
i , .., a

j
w]

where an element aj
i is equal to 1 if the fingerprint cluster FCj contains a flow be-

tween ti−1 and ti, otherwise aj
i = 0. We compute the active time of a fingerprint

cluster FCj as T (FCj) =
∑w

i=1 aj
i . Finally, we estimate the active time (TP2P) of a

P2P application as ˆTP2P = max(T (FC1), ..T (FCj), ..T (FCk)).

If the ratio r(h) =
ˆTP2P

Tsys
> ΘP2P , we say that h is running a persistent P2P

application, and add it to a set P of candidate P2P bots. Host h will then be input

to our botnet detection algorithm (see Section 3.3.6), where h will be represented

by a set of persistent fingerprint clusters for h, denoted as FCp(h) = {FC1
i , .., FCj

k}

where T (FCi)/Tsys > ΘP2P for any FCi ∈ FCp(h).

As illustrated in Table 14, the estimated active time ˆTP2P is the same as the

actual active time (TP2P) of the P2P application, which demonstrates that ˆTP2P can

accurately approximate TP2P . As we can see from Table 14, when we leave a P2P

application running for as long as the machine is on (24 hours for this particular

experiment) we obtain a ratio r(h) = 1. Therefore, we decided to conservatively set

ΘP2P = 0.5. Nclust in Table 14 illustrates the size of FCp(h), the number of fingerprint

clusters (FCs) whose BGP (FC) > Θbgp and T (FC) > Θp2p.

3.3.6 P2P Botnet Detection Algorithm

Once we have identified the set P of candidate P2P bots, we apply our botnet detec-

tion algorithm, which has been implemented in the second component in the “Phase

62

Table 15: Examples of fingerprint cluster summaries
Trace Fingerprints

T-Bittorrent

1 1 145 319, UDP
1 1 109 100, UDP
1 1 146 340, UDP
5 3 346 170, TCP
1 1 145 310, UDP

T-Bittorrent-2

1 1 145.01 317.66, UDP
1 1 109 100, UDP
1 1 146 342, UDP
5 3 346 170, TCP
2 2 466 461, UDP

Trace Fingerprints

Skype

1 1 74.58 60, UDP
1 1 78 60, UDP
1 1 75 60, UDP
1 1 76 60, UDP
1 1 79 60, UDP

Table 16: Payload of flows in a fingerprint cluster of a Bittorrent application
Fingerprints flows outgoing content incoming content description

1 1 145 319, UDP
1 d1:ad2:. . . find node1:. . . :y1:qe d1:rd2:. . . nodes208:. . . :y1:re
2 d1:ad2:. . . find node1:. . . :y1:qe d1:rd2:. . . nodes208:. . . :y1:re peer discovery
. . . d1:ad2:. . . find node1:. . . :y1:qe d1:rd2:. . . nodes208:. . . :y1:re

1 1 109 100, UDP
1 d1:ad2:. . . :ping1:. . . :y1:qe d1:rd2:. . . :y1:re
2 d1:ad2:. . . :ping1:. . . :y1:qe d1:rd2:. . . :y1:re ping/pong
. . . d1:ad2:. . . :ping1:. . . :y1:qe d1:rd2:. . . :y1:re

II” of our system (“Fine-Grained Detection of P2P Bots”). At this stage, our objec-

tive is to differentiate between legitimate persistent P2P clients and P2P bots. As

we mentioned at the beginning of Section 2.3, our detection approach is based on

the following observations: i) bots that belong to the same botnet use the same P2P

protocol and network, and ii) the set of peers contacted by two different bots have a

large overlap, compared to peers contacted by two P2P clients connected to the same

legitimate P2P network. Accordingly, we look for P2P clients that are running the

same protocol and connect to the same P2P network, and whose sets of contacted

destination IPs overlap significantly. We do so by introducing a measure of simi-

larity between the fingerprint clusters, and then grouping P2P clients according to

similarities between their respective fingerprint clusters.

We proceed as follows. For each host h ∈ P, we consider the set of persistent

fingerprint clusters FCp(h) = {FC1, .., FCk} (see Section 3.3.7.1). For each FCi ∈

FCp(h), we compute the average number of bytes sent, Bytes,i, and received, Byter,i,

in all flows in FCi (remember that each fingerprint cluster FCi is a cluster of flows).

63

Also, for each cluster FCi we extract the set of peers Πi, i.e., the set of all destination

IPs for the flows in FCi. Therefore, each fingerprint cluster FCi can be summarized

by the tuple (Bytes,i, Byter,i, Πi). This allows us to define a notion of distance

between fingerprint clusters. In practice, we define two separate distance functions

as follows

i) dbytes(FCi, FCj) =
√

(Bytes,i − Bytes,j)
2 + (Byter,i − Byter,j)

2

ii) dIPs(FCi, FCj) = 1 −
|Πi∩Πj |

|Πi∪Πj |

and then we define the distance between two hosts ha and hb as

dist(ha, hb) = min
i,j

(

λ ∗
dbytes(FC

(a)
i , FC

(b)
j) − minB

maxB − minB
+(1 − λ) ∗ dIPs(FC

(a)
i , FC

(b)
j)

)

where

• FC
(x)
k is the k-th fingerprint cluster of host hx

• minB = mini,j dbytes(FC
(a)
i , FC

(b)
j)

• maxB = maxi,j dbytes(FC
(a)
i , FC

(b)
j)

• λ is a predefined constants, which we set to λ = 0.5.

After computing the distance between each pair of hosts (i.e., each pair of candi-

date P2P bots in set P), we apply hierarchical clustering, and group together hosts

according to the distance defined above. In practice, the hierarchical clustering algo-

rithm will produce a dendrogram (a tree-like data structure) as shown in Figure 19.

The dendrogram expresses the “relationship” between hosts. The closer two hosts are,

the lower level they are connected at in the dendrogram. Two P2P bots in the same

botnet should have small distance and thus are connected at lower level (forming a

dense cluster). Even if these P2P bots’ traffic is overlapped with traffic of legitimate

P2P applications, the distance between two bot-compromised hosts is decided by the

64

minimum distance of their respective fingerprint clusters. Since the distances of fin-

gerprint clusters from botnet P2P protocols have smaller distance compared to those

from legitimate P2P protocols (due to bots’ large overlap of peer IPs), the minimum

distance will stem from fingerprint clusters of P2P bots instead of legitimate P2P

applications. Therefore, two bot-compromised hosts running legitimate P2P appli-

cations will still exhibit small distance. We then classify hosts in dense clusters as

P2P bots, and discard all other clusters and the related hosts, which we classify as

legitimate P2P clients. In practice, we cut the dendrogram at Θbot (Θbot ∈ [0, 1]) of

the maximum dendrogram height (Θbot ∗ heightmax).

To set Θbot, we assume that: a) we do not have a labeled data set of botnet traffic;

b) the distance between two legitimate P2P applications is much larger than that

between two bots belonging to the same botnet (as motivated above). Therefore, we

conservatively set Θbot = 0.95.

3.3.7 Scalability Optimization

System scalability becomes a serious concern as the traffic volume increases. There-

fore, we need to evaluate and improve the scalability of proposed system to enable its

deployment in high-speed and high-volume networks. In this section, we first identify

the performance bottleneck of the proposed system and then present our design to

improve system performance. In the following discussion, we will use n to represent

the number of flows generated by a host and N to represent the number of hosts in the

monitored network. Out of 5 system components, “traffic filter” can be implemented

with O(n) operation, where flows only need to be scanned once to decide whether their

IPs are matched with any DNS responses. The “Coarse-Grained Detection of P2P

Clients” and “Coarse-Grained Detection of P2P Bots” share the similar performance,

where both of them scan the flows once to obtain the number of failed connections,

and the active time for P2P applications and hosts. The remaining two components,

65

“Fine-Grained Detection of P2P Clients” and “Fine-Grained P2P Detection of P2P

Bots”, involve clustering operation (a.k.a., pairwise comparison). The “Fine-Grained

P2P Bot Detection” compares the similarity of two persistent P2P clients. Given

the small percentage of potential P2P clients in the ISP network (e.g., 3%-13% as

reported in [32]) and even smaller portion of persistent P2P clients, this component

is unlikely to introduce performance bottleneck. For example, given a typical /16 ISP

network with 65,536 hosts, if we assume that 8% hosts use P2P clients and further as-

sume that half of them are persistent, then this component will only needs to process

2,221 hosts. The “Fine-Grained P2P Client Detection” component, however, may

introduce significant performance overhead. It calculates the pairwise distance of all

successful outgoing flows from each host, and conduct such calculation for all hosts

that are identified in the previous component. Since the number of queries initiated

by a host could be huge and a large number of hosts still remain after the “Coarse-

Grained P2P Client Detection” component (e.g., around 30% in our evaluation), this

component will likely have the computational complexity of O(N ∗ n2), which could

be prohibitively high. Therefore, the performance bottleneck is the component of

“Fine-Grained P2P Client Detection”.

We follow two directions to eliminate the performance bottleneck. First, we im-

prove the performance of the clustering operation, which groups the similar flows into

a single host. Second, we distribute the flow-clustering workload for all the hosts into

a set of computation nodes (e.g., the Map-Reduce infrastructure) to parallelize the

computation.

3.3.7.1 Clustering Performance Improvement

Instead of directly using the clustering algorithm with O(n2) computational complex-

ity, we design a two-level clustering scheme to improve the performance of clustering

66

operation. First, we use BIRCH [84], a streaming clustering algorithm with time com-

plexity O(n), to efficiently identify at most Cntbirch sub-clusters from the sets of TCP

and UDP flows respectively. Cntbirch is a pre-defined parameter and the distance of

two flows is defined as the Euclidean distance of [Pkts, Pktr, Bytes, Byter]. Second,

for each sub-cluster, we aggregate flows in it and represent it using a vector, where

this vector describes the average value of each feature [Pkts, Pktr, Bytes, Byter] of

flows in this sub-cluster. We further apply hierarchical clustering with DaviesBouldin

validation index [58] on top of the vectors (sub-clusters), and find clusters of vectors,

where each cluster represents a set of similar vectors (sub-clusters). Since we obtain at

most Cntbirch sub-clusters from the first-level clustering, the computational complex-

ity for the hierarchical clustering is bounded by O(Cnt2birch). For all the sub-clusters

belonging to a cluster, we finally group the flows in these sub-clusters to the same

cluster of flows. For this two-level clustering scheme, the computational complexity

to process the flows of one P2P node is mainly bounded by O(n+Cnt2birch). Currently

we configure Cntbirch = 4000 (the evaluation of system performance over Cntbirch is

presented in Section 3.4.3.5).

3.3.7.2 Load-Balance Workload Partition

Since the flow analysis based on two-level clustering is independent for each host,

we can distribute the analysis workload to a set of computation nodes, where each

node only needs to perform clustering-based flow analysis for a subset of hosts. The

problem can be formulized as follows: given N hosts denoted as H = {h1, h2, ...hN}

and M computation nodes denoted as C = {c1, c2, ...cM}, how we can partition H

into M exclusive subsets HS1, HS2..HSM so that the computation time, which is

the maximum execution time for each node T = max(exc(ci, HSi)), is minimized.

exc(ci, HSi) returns the execution time for HSi on ci. Theoretically, given the as-

sumption that each computation node has the same capacity, T is minimized when

67

F()

h_1 h_2 h_3 h_i h_j h_N

F(h_N)

F(h_N)/M

Partition_1 Partition_2 Partition_M

{h_1, h_2} {h_3, ..., h_i} {h_j, ..., h_N}

Node_1 Node_2 Node_M

Figure 17: Partition hosts to M distributed nodes

exc(ci, HSi) is equal to each other. Therefore, our goal is to evenly partition the

workload of N hosts to M computation nodes.

To achieve an even distribution of the workload, we need a function that estimates

the workload (e.g., execution time) for each host, denoted as f(hi). However, it does

not exist an explicit expression describing the relationship of execution time and the

volume of flows for a host. Therefore, we adopt an empirical approach to derive this

function. As each host hi initiates two sets of successful outgoing TCP and UDP flows

(Stcp(hi) and Sudp(hi)), we first introduce a function g(hi) that returns the number

of flows from hi, where g(hi) = |Stcp(hi)|+ |Sudp(hi)|. Second, we randomly sample a

small number of K hosts (e.g., K = 10) from H , denoted as U = {h1
i , h

2
j , . . . , h

K
n }, and

get a set of flow-set sizes denoted as V = {v1, v2, . . . , vK} = {g(h1
i), g(h2

j), . . . , g(hK
n)}.

We further apply the two-level flow-clustering analysis on each host in U , and obtain

their execution time, denoted as T = {t1, t2, . . . , tK}. Given V = {v1, v2, . . . , vK}

and T = {t1, t2, . . . , tK}, we can finally use regression method to learn a function

68

t̄i = φ(vi) that estimates the execution time from the volume of flows. Since the

two-level flow-clustering algorithm has less than O(n2) time complexity, we use the

linear regression model. By incorporating function g(), we can get the expression

that estimates the execution time t̄i given an host hi, where t̄i = f(hi) = φ(g(hi)).

After getting f(hi), we introduce a cumulative function F (hi) =
∑w=i

w=1 f(hw). We

assign hi to the dth (d = 1, 2...M) computation node if (d − 1) ∗ F (hN)
M

< F (hi) ≤

d ∗ F (hN)
M

. Figure 17 illustrates this procedure.

By following these two approaches, we successfully eliminate the performance

bottleneck by reducing the computational complexity from O(N ∗ n2) to O(N
M

∗ (n +

Cnt2birch)).

3.4 Evaluation

In this section we present an evaluation of our detection system.

3.4.1 Experimental Setup

We evaluated the performance of our detection system using real-world network traf-

fic, including traffic collected from our academic network, traffic generated by popular

P2P applications, and live P2P botnet traffic.

The traffic we collected from our academic network came from a span port mir-

roring all traffic crossing the gateway router (around 200-300Mbps) for the college

networks. We used Argus [1] to efficiently collect network flow information of the

traffic between internal and external networks for one entire day. Along with various

flow statistics we also recorded the first 200 bytes of each flow payload, which we used

to identify known legitimate P2P clients within our network. To reduce the volume

and noise in our network traces, we excluded all traffic related to email servers, DNS

servers, and planetlab nodes from our botnet detection analysis. The DNS traffic

was collected simultaneously with the network flow information, using dnscap, to

69

keep track of all the domain-to-IP mappings needed to perform traffic volume reduc-

tion. Overall, we observed 953 active hosts, as reported in Table 17. We refer to the

traffic collected from our academic network as NETCoC .

In order to establish some ground truth in terms of what hosts are running P2P ap-

plications, we used a signature-based approach that matches the signatures from [95]

onto the first 200 bytes of each network flow. We further manually investigated each

of these hosts to eliminate false positives (we found some spurious signature matches

deriving from traffic towards SMTP servers that we were not able to pre-filter, and

a few web requests towards our departmental website). After manual validation, we

identified a total of 3 hosts that were running Bittorrent , which in the following

we denoted as “BT1@C”, “BT2@C” and “BT3@C”. Furthermore, there exists no

signature that can match P2P traffic generated by Skype, since Skype communica-

tions are encrypted. However, using the statistical traffic fingerprints, we were able

to identify 5 likely Skype clients within our network (we discuss this in more de-

tail in Section 3.4.3.1), denoted as “Skype1@C”, “Skype2@C”, .., “Skype5@C”. We

refer to the network traces corresponding to these 8 P2P clients as NETP2P@CoC .

One possible reason why we found only a few (fewer than expected) P2P hosts is

that our college network is well-managed and the usage of file sharing applications is

highly discouraged. In addition, the vast majority of the hosts we have monitored are

desktops managed by the college, where regular users have no permission to install

software including Skype.

In order to increase the number and diversity of P2P nodes in our network, we

ran 5 popular P2P applications, whose name and version are listed in Table 12. We

ran each of the 5 P2P applications in two different (virtual) hosts for several hours

(e.g., 24 or 5 hours) simultaneously. Each host was represented by a WindowsXP

(virtual) machine with a public IP address selected within a /24 network. Given a

P2P application among the 5 we considered, we manually interacted with one instance

70

Table 17: Statistics of network traffic in our academic network
Trace duration # of TCP / UDP flows # of clients

t-c 24h 61,745,989 / 20,226,837 953

Trace duration # of domains # of IPs

t-dns 24h 328,965 268,753

Table 18: Traces of popular P2P applications
Trace Dur # of flows # of Dst IPs Avg Flow Size

Bittorrent-1/2 24 hr 250960/297785 17337/17657 68310/350205

Limewire-1/2 24 hr 229215/638103 11602/64994 1003/2038

Emule-1/2 24 hr 58941/110821 6649/14554 124267/22681

Skype-1/2 24 hr 88927/49541 10699/6264 514/1988

Ares-1/2 5 hr 17566/21756 1918/3118 69373/24755

(on one host) to simulate typical human-driven application usage behavior, and we

fed the second instance of the application (on the second host) with automatically

generated user-interface input. This artificial user input was simulated using an

AutoIt [2] script that randomly selects contents to be downloaded or uploaded using

the P2P application at random time intervals. Therefore, overall we obtained 10

additional network traces related to traffic generated by P2P applications (Table 18

shows some statistics related to these network traces). We refer to these network

traces as NETP2P .

In addition, we were able to obtain network traces for two popular P2P botnets,

Storm and Waledac. Both traces were collected by purposely running Storm and

Waledac malware samples in a controlled environment, and recording their network

behavior. The Storm traces included 13 different bot-compromised hosts, while the

Waledac included 3 different bot-compromised hosts, as shown in Table 19. It is

worth noting that both traces were collected at a time when the two botnets were fully

active, before any successful takedown attempt was carried out by law enforcement

or network operators. We refer to these network traces as NETbots.

71

Table 19: Traces of botnets
Trace duration size # of bots

Waledac 24hr 1.1G 3

Storm 24hr 4.8G 13

3.4.2 Experimental Design

We structured our experiments in five parts:

1. Evaluate the effectiveness of identifying and profiling P2P applications using

statistical fingerprint clusters. (see Section 3.4.3.1)

2. Evaluate the detection performance by pretending that a number of machines

in our network have been compromised with either Storm or Waledac (Sec-

tion 3.4.3.2).

3. Determine whether our system is able to detect P2P bots running on compro-

mised machines that are also running legitimate P2P clients at the same time

(Section 3.4.3.3).

4. Estimate the detection performance in special cases, where only two bots or no

bot (e.g., a “clean” network) appear in the monitored networks (Section 3.4.3.4).

5. Analyze the system scalability (Section 3.4.3.5).

6. Analyze the effect of system parameter Θbot (Section 3.4.3.6).

We prepared four data sets for evaluation, D1, D2, D′
1 and D′

2. We obtained D1

as follows: For each host (denoted as hp2p) of both 16 P2P bots (in NETbots) and

10 P2P applications (in NETP2P), we randomly selected one host (denoted as hCoC)

from trace NETCoC , and we overlaid hp2p’s traffic to the hCoC ’s traffic. We aligned

the start time of the hCoC ’s traffic according to the start time of its corresponding

hp2p’s traffic. If the duration of hCoC ’s traffic was th and that of hp2p was tp, where

th > tp, we only kept the first tp of hCoC ’s traffic. In effect, we simulated the scenario

72

Table 20: Bot traces overlaid with P2P application traces
Bot P2P App Before Overlaying (Bot) After Overlaying (Bot+P2PApp)

of flows # of DstIPs avg flow size # of flows # of DstIPs avg flow size
Waledac1 Emule1 341784 850 12829 452645 15338 55688
Waledac2 BT2@C 319119 760 11372 361135 1359 348708
Storm1 Limewire1 200237 6390 1342 429458 16635 1714
Storm2 BT3@C 275451 7319 1337 310667 8307 3381
Storm3 Bittorrent2 133955 5584 1344 432464 23261 172945
Storm4 Skype4@C 171471 7277 1280 199101 7520 1266
Storm5 Skype1 164917 6686 1328 214548 13137 1307
Storm6 Ares1 220459 6618 1307 238063 8543 6244

where the P2P bots/applications are running persistently in the underlying hosts. D1

represents the scenario that a host is compromised by a P2P bot and some legitimate

P2P applications are active in the same monitored network.

For D2, we randomly selected half (8) of the P2P bots from NETbots. Then for

each of the 5 P2P applications we ran, we randomly selected one out of its two traces

from NETP2P and overlaid its traffic to the traffic of a randomly selected host from

NETCoC . We further randomly chose 3 P2P hosts from NETP2P@CoC identified in

the first experiment (Section 3.4.3.1). We finally overlaid each of 8 P2P bot traces

to each of the selected 8 P2P traces (5 from NETP2P and 3 from NETP2P@CoC), as

illustrated in the first two columns in Table 20. D2 represents the scenario that a

host, which is compromised by a P2P bot, has an active legitimate P2P application

running at the same time.

We use D′
1 to represent a “clean” network, where no host is compromised by P2P

bots. We got D′
1 by simply removing all the hosts overlaid with bots’ traces from

NETbots. In order to get D′
2, we randomly selected hosts compromised by two bots

for each botnet from D2 and discarded the rest of the hosts overlaid by the traces

from NETbots. So D′
2 represents the scenario in which only two bots from each botnet

exist in the monitored network.

3.4.3 Experimental Results

Table 21 summarizes the experimental results in Section 3.4.3.2, 3.4.3.3 and 3.4.3.4,

where we set the parameters as Θbot = 0.95 and Cntbirch = 4000. The effect of varying

73

Table 21: Experimental results
TP FP Data Description

1 100% 0.2% D1 bots overlaid with host

2 100% 0.2% D2 bots overlaid with P2P host

3 100% 0.2% D′
2 only two bots

4 − 0.2% D′
1 a “clean” network

953

316

34 31 18

Total Traffic

Filter

P2P Clients Persistent

P2P Clients

P2P Bots

of hosts after each component

Figure 18: Number of hosts identified by each processing component

Θbot and Cntbirch is discussed in Section 3.4.3.5.

3.4.3.1 Identifying and Profiling P2P Applications

We applied our detection system on data set D1. The number of hosts kept after

each step is presented in Figure 18. Traffic reduction using DNS traffic significantly

reduced the number of hosts and the number of flows we needed to process, thereby

greatly reducing the workload for the coming steps. For example, as illustrated in

Figure 18, other components only need to process approximately one-third of the

hosts (316 out of 953) after traffic reduction.

Our system identified 34 hosts as P2P clients in total. These 34 hosts are com-

posed of i) all 16 P2P bots, ii) all 10 hosts with 5 popular P2P applications we

have tested, and iii) 8 other hosts in the college networks. For those 8 hosts, 3 are

Bittorrent-related hosts (a.k.a, BT1@C, BT2@C and BT3@C), which have been

verified by the content-based signatures. The remaining 5 identified hosts do not

74

Table 22: Fingerprint cluster sum-
maries for 3 Bittorrent clients

Trace Fingerprints

BT1@C

1 1 109 100, UDP
1 1 109 91, UDP
1 1 104 178, UDP
1 1 319 145, UDP
1 1 145 319, UDP

BT2@C
1 1 145 319, UDP
1 1 75 75, UDP
1 1 65 65, UDP

BT3@C 7 6 1118 1767, TCP

Table 23: Fingerprint cluster sum-
maries for 5 potential Skype clients

Trace Fingerprints

Skype1@C

1 1 73 60, UDP
1 1 76 60, UDP
1 1 75 60, UDP
1 1 72 60, UDP
1 1 74 60, UDP

Skype2@C
1 1 75 60, UDP
1 1 74 60, UDP
1 1 76 60, UDP

Skype3@C

1 1 72 60, UDP
1 1 74 60, UDP
1 1 79 60, UDP
1 1 76 60, UDP

Skype4@C 1 1 73 60, UDP

Skype5@C
1 1 74 60, UDP
1 1 75 60, UDP

match any content-based signature. We present their fingerprint cluster summaries

(Pkts, Pktr, Bytes, Byter, proto) in Table 22 and Table 23.

The fingerprint cluster summaries for 3 Bittorrent clients are presented in Ta-

ble 22. For BT1@C and BT2@C, “(1 1 145 319 UDP)” is consistent with one finger-

print cluster of a sample Bittorrent trace described in Table 15. The fingerprint of

BT3@C is different from other two, which may represent another version implemen-

tation of the Bittorrent protocol.

The fingerprint cluster summaries for the remaining 5 unknown P2P hosts are

presented in Table 23. By referring to Table 15, their fingerprint cluster summaries

are very close to those of the Skype trace. For example, “(1 1 75 60, UDP)” is shared

by most of these clients and the sample Skype traffic. This indicates that these 5

hosts are mostly likely Skype clients.

Some fingerprint cluster summaries for Storm and Waledac are presented in Ta-

ble 24. P2P bots in the same botnet exhibit great similarity on fingerprint clusters,

75

Table 24: Fingerprint cluster summaries for P2P bots
Trace Fingerprints Trace Fingerprints

Storm1

2 2 94 554, UDP

Storm2

2 2 94 554, UDP
2 2 94 1014, UDP 2 2 94 1014, UDP
2 2 94 278, UDP 2 2 94 278, UDP
.

Waledac1

4 3 224 170, TCP

Waledac2

4 3 224 170, TCP
3 3 186 162, TCP 3 3 186 162, TCP
5 4 286 224, TCP 5 4 285 224, TCP
.

while their fingerprint clusters are different compared to those of another P2P bot-

net and legitimate P2P applications (e.g., Bittorrent and Skype). We applied our

system on D2 to investigate whether our system can effectively profile different P2P

applications if a bot-compromised host is also running a legitimate P2P application.

Table 25 presents several fingerprint cluster summaries for two bots overlaid with le-

gitimate P2P applications, Waledac2+BT2@C and Storm4+Skype4@C. For the example

of Waledac2+BT2@C, we found that its fingerprint clusters come from two applications,

where “(1 1 145 139, UDP)” and “(1 1 75 75, UDP)” are from Bittorrent protocol

(referring to the second row in Table 22), and “(4 3 224 170, TCP)” together with

“(3 3 185 162, TCP)” are from Waledac (referring to Table 24).

These experimental results demonstrate that our system can effectively identify

hosts engaging in P2P communications. In addition, the generated fingerprint clusters

can effectively profile P2P applications.

3.4.3.2 Detecting P2P Bots

We applied our system on D1 to detect P2P bots. As we discuss in Section 3.4.3.1, the

system identified 34 P2P hosts. By estimating the active time of the P2P application

for each of the 34 hosts, our system identified 31 hosts exhibiting persistent P2P

communications.

For these 31 hosts, our system constructs a hierarchical tree (Figure 19(a)) by

76

Table 25: Fingerprint cluster summaries for the Storm botnet and the Waledac

botnet
Trace Fingerprints

Waledac2+BT2@C

1 1 145 319, UDP (Bittorrent)
4 3 224 170, TCP (Waledac)
3 3 185 162, TCP (Waledac)
1 1 75 75, UDP (Bittorrent)
. . .

Storm4+Skype4@C

2 2 94 554, UDP (Storm)
2 2 94 1014, UDP (Storm)
1 1 73 60, UDP (Skype)
. . .

S
k
y
p
e
2
@
C

B
T
1
@
C

E
m
u
le
2

W
a
le
d
a
c
1

W
a
le
d
a
c
3

W
a
le
d
a
c
2

A
re
s
2

S
k
y
p
e
3
@
C

S
k
y
p
e
1
@
C

B
it
to
rr
e
n
t1

S
k
y
p
e
2

L
im
e
w
ir
e
2

S
to
rm
2

S
to
rm
6

S
to
rm
1
0

S
to
rm
3

S
to
rm
7

S
to
rm
1

S
to
rm
1
1

S
to
rm
9

S
to
rm
1
2

S
to
rm
8

S
to
rm
1
3

S
to
rm
5

S
to
rm
4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Cluster Dendrogram

hclust (*, "single")

Cut: 0.475

D
is
ta
n
c
e

B
T
3
@
C

S
to
rm
2

S
to
rm
6

S
to
rm
1
0

S
to
rm
1
1

S
to
rm
9

S
to
rm
1
3

S
to
rm
8

S
to
rm
4

S
to
rm
5

S
to
rm
1
2

S
to
rm
3

S
to
rm
1

S
to
rm
7

W
a
le
d
a
c
1

W
a
le
d
a
c
2

W
a
le
d
a
c
3

S
k
y
p
e
2
@
C

B
T
1
@
C

A
re
s
2

A
re
s
1

E
m
u
le
1

E
m
u
le
2

S
k
y
p
e
3
@
C

S
k
y
p
e
1
@
C

B
it
to
rr
e
n
t1

B
it
to
rr
e
n
t2

L
im
e
w
ir
e
1

L
im
e
w
ir
e
2

S
k
y
p
e
1

S
k
y
p
e
2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Cluster Dendrogram

hclust (*, "single")

Cut: 0.475164544800102

D
is
ta
n
c
e

Cut at Cut at

13 Storm Bots 3 Waledac Bots 3 Waledac Bots 13 Storm Bots

(a) On Data Set D1 (bots are not overlaid with legitimate P2P apps) (b) On Data Set D2 (bots are overlaid with legitimate P2P apps)

Θbot ∗ hightmax = 0.47516

Θbot ∗ hightmax = 0.475

h
ig

h
t m

a
x

Figure 19: Hierarchical tree on persistent P2P hosts

77

evaluating the distance (dist(ha, hb) defined in Section 3.3.6) between P2P hosts.

P2P bots share same P2P protocol and have large overlap of the peer IP addresses

in fingerprint clusters, thereby resulting in small distances and dense clusters in con-

sequence. As shown in the Figure 19(a), both Storm and Waledac bots have small

distances to each other and form dense clusters respectively. We cut the tree at

Θbot ∗ heightmax = 0.475 (Θbot = 0.95) to identify dense clusters. As a consequence,

three clusters are identified and therefore a total of 18 hosts were labeled as suspi-

cious. All 16 P2P bots were detected, resulting in a high detection rate of 100% and

a low false positive rate of 0.2% (2/953). The false positives appear to be two Skype

clients. The reason for these two false positives is the conservatively configured value

of Θbot, which is close to 1.

3.4.3.3 Detecting P2P Bots Overlaid with P2P Applications

We applied our detection system on data set D2 to evaluate the detection accuracy

when a bot-compromised host happens to run a legitimate P2P application. Table 20

presents some statistics of the bot traces before and after overlaying legitimate P2P

application traces. Some of bot-compromised hosts’ traffic profiles are significantly

distorted after traffic overlaying. For example, after overlaying BT2@C (a real P2P

client identified in the college network) traffic to the Waledac2 traffic, the average flow

size is increased from 11372 to 348708 and the number of destination IP addresses,

which are involved in the successful outgoing connections, is also increased from

760 to 1359. It is because the Bittorrent application could be actively used for

downloading/uploading files, thereby dominating the traffic profile of the host. In

this case, if we use the traffic profile of the entire host (e.g., the average flow size

and number of destination IP addresses) to detect the bot, the bot behavior will be

concealed by the Bittorrent traffic. As a consequence, the detection approaches

such as [79], which use the traffic profile of the entire host for detection, will lose

78

effectiveness.

However, since our system leverages fine-grained information of fingerprint clus-

ters, which describe the profiles of P2P applications instead of entire host, it can

still detect bots even if their underlying hosts are running legitimate P2P applica-

tions. The hierarchical tree for detection is presented in Figure 19(b), where Waledac

bots and Storm bots still form dense clusters. Compared to the hierarchical tree in

Figure 19(a), the tree structure in Figure 19(b) stays stable, which is not affected

by the overlaid legitimate P2P applications. It is because the distance of two bot-

compromised hosts is based on the minimum distance of fingerprint clusters from two

P2P bots, the new fingerprint clusters introduced by the P2P application would not

affect the minimum distance.

In D2, our system identified 26 P2P clients, where 25 out of them exhibit persistent

P2P behaviors. With Θbot = 0.95, we cut the tree at 0.475, and identify three groups of

hosts (18 in total). Among these 18 suspicious hosts, all 16 P2P bots are successfully

identified with a low false positive rate (0.2%). The detection result is not affected

by the overlaid traffic from legitimate P2P applications. This demonstrates that our

system can effectively detect bots even if bot-compromised hosts run legitimate P2P

applications.

3.4.3.4 Detection Performance in Special Cases

It is possible that in the monitored network, only two hosts are compromised by bots

from the same botnet. We applied our system on data set D′
2, and achieved the

detection rate of 100% and false positive rate of 0.2%.

It is also possible that the monitored network is “clean”, where no host is com-

promised by P2P bot. In this case, the false positive is a concern. We applied our

system on D′
1, which simulates a “clean” network environment, where we get a low

false positive rate of 0.2%.

79

50 hours

29 hours

5 hours

2.5 hours

0

10

20

30

40

50

60

10000 8000 4000 2000

R
u

n
n

in
g

 T
im

e
 (

in
 h

o
u

rs
)

of sub-clusters

Figure 20: System performance with different values of CntBirch

3.4.3.5 Analyzing The System Scalability

We optimize the system scalability by designing a two-level clustering-based flow

analysis scheme and distributing workload to achieve parallel computation. Two pa-

rameters are involved respectively, Cntbirch and M . Cntbirch represents the expected

number of sub-clusters from BIRCH. As Cntbirch decreases, the second-level hier-

archical clustering operation will process less sub-clusters and thus achieve better

performance. Figure 20 presents the system running time on a single computation

node as we decrease the value of Cntbirch. By reducing Cntbirch from 10, 000 to 2, 000,

the system performance is improved by 95% (from 50 hours to 2.5 hours). M rep-

resents the number of computation nodes we can use to distribute the workload. As

M increases, each node processes less workload. Figure 21 illustrates the system

running time as we increase M from 1 to 10 (Cntbirch = 4000). We randomly pick

10 hosts to run them in a host to obtain regression model, whose time consumption

is ignorable. For each value of M , we repeat the experiments 5 times and report

the average running time. As demonstrated in the experimental results, distributing

system workload can significantly improve the system performance. For example, the

running time is reduced from 5 hours to 0.69 hours by partitioning the workload to 10

hosts. We also compare our load-balance partition strategy to the random-partition

80

method. As indicated in Figure 21, our design performs better. All of these experi-

ments achieve the same detection accuracy with 100% detection rate and 0.2% false

positive rate.

5

2.6

1.1
0.69

5

3.1

1.8

1.3

0

1

2

3

4

5

6

1 2 5 10

S
y

st
e

m
 R

u
n

n
in

g
 T

im
e

 (
in

h
o

u
rs

)

of Servers

Load-Balance Partition Random Partition

Figure 21: System performance with workload distribution

3.4.3.6 Analyzing The Effect of System Parameters

While the measurement in Section 2.3 motivates the parameter values for Θo and

Θp2p, we study system parameters Θbpg and Cntbirch in this section.

Θbpg is used to identify fingerprint clusters, where each fingerprint cluster is likely

to contain network flows corresponding to the same type of P2P control messages for

a particular P2P application. Therefore, the ideal solution to obtain the Θbpg value

has three steps. First, given the network flows generated by a P2P application, we

perform clustering-based flow analysis in order to obtain flow clusters. Second, we

perform content analysis in order to label as fingerprint clusters those flow clusters

whose flows contain control messages. Finally, we can enumerate the number of dis-

tinct BGP prefixes in each fingerprint cluster and select the minimum value for Θbpg.

While not impossible, such solution suffer from a great practical challenge since it is

practically extremely hard to get all P2P applications, especially P2P bots. There-

fore, in our current system, we estimate the value of Θbpg based on empirical studies.

To be specific, we first run several popular P2P applications (e.g., five applications

81

in Table 14), and then perform clustering-based flow analysis. Further, for each ap-

plication, we get the maximum number of BGP prefixes in a cluster, as indicated in

each entry in the Nbgp column in Table 14. Obviously, the Θbpg value should not be

larger than the minimum value, denoted as Bmin (Bmin = 1133 in this specific case),

in the Nbgp column. Otherwise, our system will miss the chance to detect certain P2P

applications. Therefore, the value of Θbpg should fall into the range of [2, Bmin]. Prac-

tically, we tend to obtain a small value in this range, by considering the possibility

that bots may be more stealthy compared to a popular P2P application, thereby con-

tacting a smaller number of peers/networks. However, the side-effect of a small Θbpg

is that it may identify some small clusters, whose flows are not used for P2P control

messages, as fingerprint clusters. Fortunately, such problem could be mitigated by

our system since we investigate the temporal persistence of each fingerprint cluster

and only use persistent fingerprint clusters to evaluate the distance between two P2P

clients. In our current system, we conservatively set Θbpg to be a small value (e.g.,

50) in this range. However, we evaluated different Θbpg values covering a large range

inside [2, Bmin]. Table 26 presents the evaluation results, including the number of

fingerprint clusters, persistent fingerprint clusters, number of detected bots, and false

positives, where Cntbirch = 4000 and Θbot = 0.95. As illustrated in the table, as Θbpg

increases, the number of fingerprint clusters and persistent fingerprint clusters drops.

Particularly, if Θbpg is extremely small (e.g., 2), it may identify many small clusters as

fingerprint clusters and consequently introduce a large number of false positives. For

example, the system generates 13 false positives if we set Θbpg = 2. Similarly, if Θbpg

is too large, it may discard those fingerprint clusters for P2P bots, resulting in a huge

number of false negatives. For example, all bots are missed when Θbpg ≥ 1000. How-

ever, our system has demonstrated it effectiveness over a large range of Θbpg values.

For example, our system achieves great detection performance when Θbpg falls into a

large range of [30, 200]. Such experiment implies that [3.5%Bmin, 40%Bmin] would be

82

Table 26: The evaluation of the ΘBGP parameter, Cntbirch = 4000 and Θbot = 0.95
ΘBGP # of fingerprint # of persistent # of detected # of false

clusters fingerprint bots positives
clusters

2 24,185 2,840 16 13
10 3,884 2,445 16 5
20 2,311 1,973 16 5
30 1,709 1,522 16 3
40 1,399 1,268 16 2
50 1,200 1,104 16 2
60 1,069 997 16 2
70 942 879 16 2
80 820 768 16 0
90 724 682 16 0

100 656 621 16 0
150 409 393 16 0
200 305 297 16 0
500 92 91 16 0
800 27 26 9 0

1000 15 14 0 0
1600 12 11 0 0

a feasible configuration.

Cntbirch may introduce a trade-off between system efficiency and effectiveness. For

example, by decreasing Cntbirch, the system has less vectors to process in Hierarchical

clustering and thus increase the system efficiency. However, a small Cntbirch may force

dissimilar flows to be aggregated into the same sub-cluster and therefore into the same

fingerprint cluster, resulting in inaccurate fingerprint clusters. To evaluate Cntbirch,

we conducted the following experiments. We applied our system D2 with different

Cntbirch values, including 2000, 4000, 8000 and 10000. For each Cntbirch value, we

further adopted different Θbot (i.e., 0.1, 0.3..0.95) values to evaluate the detection rate

and false positive rate. The results of detection rate (DR) and false positive (FP)

rate are described in Table 27. The experimental results indicate that the detection

performance is stable over a large range of Cntbirch (e.g., ≥ 4000) and Θbot ∈ [0.7, 0.95]

is a good candidate value. This experiment also suggests that 0.8 or 0.9 may be a

better value for Θbot. This implies that when a labeled data set of P2P botnet traffic

83

Table 27: Detection rates and false positive rates for different values of Θbot and
Cntbirch

Θbot

Cntbirch - 0.1 0.3 0.5 0.7 0.8 0.9 0.95

2000
DR 0 0 2/16 3/16 16/16 16/16 16/16
FP 0 0 0 0 0 0 2/953

4000
DR 2/16 3/16 3/16 16/16 16/16 16/16 16/16
FP 0 0 0 0 0 0 2/953

8000
DR 2/16 3/16 3/16 16/16 16/16 16/16 16/16
FP 0 0 0 0 0 0 2/953

10000
DR 2/16 3/16 3/16 16/16 16/16 16/16 16/16
FP 0 0 0 0 0 0 2/953

is available we can tune this threshold (Θbot) to find a better trade-off between false

positives and false negatives.

In summary, our system can effectively detect all the P2P bots with a very low

false positive rate, even if the bot-compromised hosts are running legitimate P2P

applications. Our system is stable over a large range of values for system parameters

and shows great scalability.

3.5 Discussion

For practical deployment, the system can be configured to automatically run daily. In

this case, Argus and dnscap collect flow and DNS data in real-time and our detection

system analyzes the data in batches at the end of each day. The memory consumption

is mainly constrained by the maximum number of flows per host.

If botmasters get to know about our detection algorithm, they could attempt to

modify their bots’ network behavior to evade detection. This situation is analogous

to evasion attacks against other intrusion detection systems. Since our detection algo-

rithm is based on differentiating P2P protocols used by P2P bots from legitimate P2P

applications, botmasters may instruct the bots to join existing legitimate P2P net-

works, and use legitimate P2P networks to propagate commands. The initial version

of Storm adopted this strategy. However, such approach exposes the botnet to sybil

84

attacks, where researchers can infiltrate the P2P network and enumerate/detect the

bots [81]. Therefore, current P2P botnet, including Storm and Waledac, isolate their

own P2P network from existing legitimate P2P networks. Botmasters may leverage

our traffic volume reduction component to evade detection. For example, the bot-

master may set up a malicious DNS server, and instruct each bot to query this server

before contacting any peer, asking the malicious DNS server to return a response

containing the peer’s IP address. In this case, our traffic reduction component would

eliminate the corresponding flows from the analysis. To avoid this evasion attempt,

we could filter traffic based only on DNS responses for popular domains, i.e., domains

queried by a non-negligible fraction of hosts in the monitored networks. Bots could

also intentionally try to reduce the number of contacted peer IPs (or BGP prefixes)

or the active time of the bot, in order to bypass the P2P client identification or the

component that detects persistent P2P applications. However, such techniques could

have a serious negative impact on the resiliency of the C&C infrastructure and limit

the usability of the entire botnet. Another evasion approach could exploit the Θp2p

threshold. For example, the P2P bots could exchange traffic for a short period of

time, then go idle for several hours, and repeat this pattern. However, this evasion

technique is equivalent to increasing the churn rate for the P2P nodes, which may

eventually bring to a complete disruption of the overlay network [30]. Bots could also

randomize their P2P communication patterns to prevent our system from getting an

accurate profile of P2P protocols. For example, bots could inject noise into network

flows related to P2P control messages. In this case, we could use other features (e.g.,

the distribution of flow sizes) to profile the P2P protocols. A P2P botnet could also

attempt to reduce the overlap between peers contacted by the bots. For example,

the botnet could partition the peers into different sets and ask each bot to contact

disjoint sets of peers. Such technique may require a lot of efforts for the design and

operation of the P2P botnets. We leave the analysis of such complex botnets to future

85

work. We should always strive to develop more robust defense techniques. Combining

different complementary detection techniques to make the evasion harder is one of

the possible directions that we intend to explore in our future work.

3.6 Summary

Detecting botnets in their control-phase is of great importance. In this chapter, we

present a novel botnet detection system that is able to identify botnets with P2P

C&Cs, which represent currently the most robust C&C structures against disruption

efforts. Especially, our system aims to detect all P2P botnets, even in the case

in which their attack behaviors are extremely hard to be observed in the network

traffic. To accomplish this task, we first identify all hosts within a monitored network

that appear to be engaging in P2P communications. Then, we derive statistical

fingerprints of the P2P communications generated by these hosts, and leverage the

obtained fingerprints to distinguish between hosts that are part of legitimate P2P

networks (e.g., file-sharing networks) and P2P bots. We also optimize the scalability

of our system to achieve great efficiency to process a large volume of data. We

have implemented a prototype version of our system, and performed an extensive

experimental evaluation. Our experimental results confirm that the proposed system

can detect stealthy P2P bots with a high detection rate and a low false positive rate,

and also achieves great scalability.

86

CHAPTER IV

BOOSTING THE SCALABILITY OF BOTNET

DETECTION SYSTEMS

4.1 Motivation

Due to the severity of botnet threats, botnet detection has attracted intensive research

efforts. As a result, a number of detection systems have been proposed, and most of

them [45, 40, 33, 9, 23, 78, 89, 36] focus on detecting botnets in the control phase.

These systems have demonstrated promising detection results. However, these sys-

tems may suffer from limited scalability when they process a huge volume of network

traffic, which is typical for high-speed and high-volume networks. Their limited scala-

bility mainly stems from their dependence of deep packet inspection (DPI) techniques,

based on which they perform fine-grained analysis on the payload of network packets.

For example, BotHunter [35] uses a payload-based anomaly detector and a signature-

based detection engine. BotSniffer [33] and Rishi [40] need to parse the content of IRC

communications. TĀMD [78] inspects packet payloads to compute content similarity

scores. BotMiner [36] requires DPI to perform activity-plane (A-Plane) monitor-

ing, such as binary downloading and remote exploit detection. Although BotMiner’s

communication-plane (C-Plane) analysis does not require DPI, it suffers from scal-

ability issues that prevents its deployment in high-speed networks (Section 4.4.3.2).

While these systems have shown promising results, because DPI is computationally

expensive, they cannot be directly deployed in high-speed or high-volume networks

without special (usually very expensive) hardware support. Furthermore, even when

special hardware support is available, most of the proposed techniques may still not

be able to keep up with the traffic, due to the relatively high computational cost of

87

their traffic analysis algorithms. Load-balancing (i.e., distributing traffic and com-

putation to multiple processing units) may represent a possible solution. However, a

deployment of these systems in load-balancing requires special design and significant

changes to the existing detection algorithms.

In this chapter, we will present our contribution on boosting the scalability of

botnet detection systems. To be specific, we propose a new packet sampling and

scalable spatial-temporal flow correlation approach that aims to efficiently and effec-

tively identify a small number of suspicious hosts that are likely bots. Their traffic

can be forwarded to fine-grained botnet detectors for further analysis. This allows

us to significantly reduce the amount of traffic on which fine-grained analysis such as

DPI is applied. Thus, we boost the scalability of botnet detection for high-speed and

high-volume networks.

Network flow analysis typically requires far fewer resources than DPI. However,

collecting precise network flow information in high-speed networks is challenging, be-

cause we may not be able to afford to process every packet in the network. In order

to solve this problem, packet sampling techniques are commonly employed to reduce

the number of packets to be processed. For example, uniform sampling and its vari-

ant periodic sampling are among the most popular packet sampling techniques, and

they allow a network operator to reconstruct approximate network flow information.

However, their limitation is that they are able to reconstruct relatively precise in-

formation about large flows (i.e., flows that carry a high number of packets), such

as media streaming flows, but may poorly approximate or miss outright information

about small and medium flows. In order to address this issue, some new sampling

algorithms have been recently proposed. For example, FlexSample [14] is a pro-

grammable framework where a network operator can set conditions to increase the

sampling rates packets from specific traffic subpopulations (e.g., packets in small and

88

medium flows). Unfortunately, because different botnet implementations may intro-

duce strong diversity in the properties (e.g., flow size) of their C&C communication

flows, it is challenging to set conditions that allow FlexSample to sample packets

targeted for a wide range of botnet C&Cs. For example, flows of HTTP-based C&Cs

are usually small (i.e., short lived) while those related to IRC-based C&Cs are in-

trinsically larger. In order to address this problem, we introduce a new adaptive

sampling technique. Our sampling technique is botnet-aware since it is driven by

intrinsic characteristics of botnets such as group similarity, where the group simi-

larity reflects the fact that bots belonging to the same botnet share similar C&C

communication patterns. We also propose a new scalable spatial-temporal correla-

tion approach to identify hosts that share persistently similar communications. That

is, we aim to identify hosts in a network that persistently share similar communica-

tion patterns for a relatively long (not necessarily continuous) period of time. Our

spatial-temporal flow correlation analysis is motivated by the following observation.

Because of their (illegal) economy-driven nature, botnets are used by the botmasters

for as long as possible to maximize profits (e.g., several months, or until the botnet

is dismantled by law enforcement), so their C&C communications will be active for

a relatively long period of time.

Our work makes the following contributions:

1. We propose a network traffic analysis approach for botnet detection in high-

speed and high-volume networks. The objective of our analysis is to efficiently

and effectively narrow down suspicious hosts that are likely to be bots. The

network traffic generated by these suspicious hosts can then be forwarded to

fine-grained botnet detectors for further analysis.

2. We introduce an adaptive sampling technique based on group similarity, an

intrinsic characteristic of botnets, to sample packets that are likely related to

C&C communications with high probability.

89

3. We propose a new scalable spatial-temporal correlation analysis to identify hosts

in a network that share persistently similar communication patterns, which is

one of the main characteristics of botnets.

4. We implemented a proof-of-concept version of our system, and evaluated it us-

ing real-world legitimate and botnet-related network traces. Our experimental

results show that the proposed approach is scalable and can effectively detect

bots with a small number of false positives, which can be further reduced by

fine-grained botnet detection systems.

4.2 Related Work

Researchers have proposed many approaches to detect botnets. Some of the ap-

proaches [23, 89, 9, 40, 45] are designed for detecting botnets with IRC-based C&Cs,

relying on analysis of packet content for detection. Some other detection approaches

are driven by specific attack information (i.e., spam). Ramachandran et al. [12]

used DNSBL to identify bots for spamming, while Zhao et al. used Hotmail logs

in BotGraph [94]. Hu et al. [90] proposed RB-Seeker to detect redirection botnets

based on spam and network flow information. Compared to these approaches, our

system mainly uses packet header and network flow information, indicating a wider

deployment. Some detection algorithms uses correlation approaches. BotHunter [35]

associates IDS events to a pre-defined bot infection dialog model for detection. Bot-

Sniffer [33] leverages the homogeneity of messages and activities to identify botnet

C&Cs. Yen et al. [78] proposed TĀMD to detect bots by aggregating traffic which

shares the same external destination, similar payloads and OS platforms. BotMiner

[36] is a protocol- and structure-independent botnet detection system using clustering

techniques. These systems depend on DPI-based components, which limit their us-

age in high-speed networks. In our system, we design botnet-aware packet sampling

algorithm and scalable spatial-temporal flow correlation approach for efficient and

90

effective botnet detection, which aims at the deployment in high-speed networks.

Various sampling algorithms have been proposed to reduce the amount of data

the network devices have to process in high speed networks and infer the traffic statis-

tics based on the sampled packets. Most of them focus on sampling large flows and

improving their estimation accuracy [93]. Recently researchers proposed approaches

to focus on sampling packets in small flows. Kumar et al. [10] and Hu et al. [22] pro-

posed algorithms to sample packets in small flows. However, their overall sampling

rate depends on the Zipfian nature [88] of Internet and thus they cannot achieve a pre-

defined target sampling rate. Ramachandran et al. [14] designed FlexSample, which

can sample packets based on pre-defined conditions. FlexSample can be configured

to capture packets in small/medium flows while keeping a target sampling rate. How-

ever, characteristics of network flows for botnet C&Cs exhibit great diversity among

different botnets and thus it is very challenging to propose good conditions to describe

all the flows of botnet C&Cs. Therefore, these existing sampling algorithms maybe

ineffective to sample packets for botnet C&Cs. In contrast to the above sampling

algorithms, our algorithm is driven by the intrinsic characteristics of botnet C&Cs,

and thus our sampling algorithm captures more botnet packets related flows given a

certain sampling rate.

4.3 System

4.3.1 System Overview

As shown in Figure 22, our botnet detection framework has three components: Flow-

Capture, Flow-Correlation, and Fine-Grained Detector.

The Flow-Capture module aims to monitor the traffic at the edge of high-speed

networks to gather network flow information based on the sampled packets. The

Flow-Capture module is further divided in two components: Packet-Sampling and

Flow-Assembler. Packet-Sampling is a botnet-aware sampling algorithm. Given an

91

Traffic Filter

Packet-

Sampling

Flow-

Assembler

Flow-

Aggregation

Cross-Epoch

Correlation

Sampled Packets

Flow-Capture

Flow-Correlation

High-Speed Network

Watch List

Detection of

Similar

Malicious

Activities

Per_Exp

SR_Target

Correlation

IRC

Message

Correlation

Bots

Suspicious IPs

Correlated

pair of IPs

Fine-Grained

Detector

Figure 22: Architectural overview

overall target sampling probability (SRTarget), it samples packets likely related to

botnet C&C communications and delivers them to Flow-Assembler, along with their

corresponding instant sampling probabilities (Section 4.3.2). The Flow-Assembler

assembles sampled packets into raw flows (defined in Section 4.3.2.2).

The Flow-Correlation module groups flows output by Flow-Assembler into C-flows

(defined in Section 4.3.3.1). A C-flow is an abstraction introduced in BotMiner [36] to

represent the C&C communication patterns of potential bots. Each C-flow represents

a view of the communication patterns from a monitored host to a remote service over a

certain epoch (e.g, 12 hours). Flow-Correlation applies a scalable clustering algorithm

over the C-flows to identify hosts that exhibit similar communication patterns towards

machines outside the monitored network. This step is similar to the C-Plane analysis

performed by BotMiner [36], but there are two fundamental differences. First, we use

a significantly more efficient flow clustering process (see Section 4.3.3.2), compared

to BotMiner, which can handle large traffic volumes typical of high-speed networks.

Second, unlike BotMiner, our Flow-Correlation module performs cross-epoch correla-

tion to identify hosts that show persistently similar communication pattens, a telltale

sign of botnets. Any pair of hosts that exhibit persistently similar communication

92

patterns will then be labeled as suspicious hosts (potential bots) and delivered to the

Fine-Grained Detector for further in-depth analysis. The Fine-Grained Detector can

then focus on monitoring the packets related to only the suspicious IPs provided by

our Flow-Correlation module, thus reducing the overall cost of the botnet detection

process.

The design and implementation of the Flow-Capture and Flow-Correlation mod-

ules and the detection framework are the main contributions of this work. Existing

DPI-based botnet detectors can be plugged within our framework with little or no

modification to constitute the Fine-Grained Detector module. We developed a Fine-

Grained Detector derived from BotMiner [36] and BotSniffer [33], and we plugged it

into our botnet detection framework. In particular, we used two components: i) an

implementation of the malicious activities detector derived from BotMiner’s A-Plane

monitor, which can identify groups of similar malicious activities based on the attack

features (e.g., the scanned port, the exploits or binary content), and ii) BotSnif-

fer’s IRC-based botnet detection module. Similar to the Cross-Plane correlation in

BotMiner, the correlation component correlates communication patterns and activity

patterns to detect bots. Any pair of IPs that share persistently similar communication

patterns (generated by Flow-Correlation) and similar malicious activities (generated

by the malicious activities detector) are labeled as bots by the correlation component.

And any host identified by the BotSniffer’s IRC-based botnet detection module will

be labeled as bot.

4.3.2 Flow Capture

The Flow-Capture performs packet sampling and reassembles raw flows using a novel

botnet-aware adaptive sampling algorithm, which we call B-Sampling. Our B-Sampling

algorithm leverages the intrinsic characteristic of bots, namely group similarity, to

guide the sampling procedure. Given a pre-defined target sampling rate, B-Sampling

93

Figure 23: The architecture of the packet sampling component

adaptively tunes the instant sampling probabilities for different categories of IPs. For

example, priority will be given to packets related to IPs that share similar commu-

nication patterns, while keeping the overall sampling rate close to the overall target

sampling rate SRTarget. The target sampling rate is usually suggested by the process

capacity of the monitor device and the traffic speed of the monitored network. For

example, the monitor device with capacity of Capdevicebps and the network with the

speed of Capnetworkbps indicate SRTarget = Capdevice

Capnetwork
.

4.3.2.1 Packet Sampling

As described in Figure 23, Packet-Sampling has four components: Counting-Sketch,

Sampling-Sketch, Synchronized IPs Detector (SID), and Priority-based Sampling

Probability Calculation (PSPC). Counting-Sketch tracks the number of packets sent

from a SrcIP to a DstIP. After each time interval of T , Packet-Sampling transfers

the Counting-Sketch to the SID, and then resets the Counting-Sketch to 0 for next

interval. The end of each time interval also triggers the SID and PSPC to identify IP

addresses with synchronized behaviors and recalculate the instant sampling probabil-

ity for each category of IPs. Sampling-Sketch gets the instant sampling probability

94

for a packet and decides whether this packet is going to be sampled.

Counting/Sampling Sketch The Counting-Sketch is a table indexed by

Hash(SrcIP ||DstIP) for TCP and UDP packets, where each entry in the table

is defined as a track-flow. Each entry contains a pair of IPs (SrcIP and DstIP) and

a counter cnt, which represents the number of packets for this pair of IPs. For TCP

packets, the entry keeps SYN/SYNACK flag. On arrival of a packet, the SrcIP and

DstIP will be recorded and the counter in the corresponding entry will be increased by

1. The Counting-Sketch only handles the packets from internal networks to external

networks. Such design can simplify the system implementation by just monitoring

the separated physical line for outgoing traffic. Moreover, it reduces the time and

memory consumption to access the table. Counting-Sketch is reset to be 0 after the

time interval T (currently 15 minutes).

Each entry in Sampling-Sketch records a category/set of IPs, a counter of packets

related to these IPs, a sampling probability and a priority. On arrival of a packet,

Sampling-Sketch checks the category of this packet based on its SrcIP and DstIP. It

then finds the instant sampling probability (pi) for the corresponding category and

samples this packet with probability pi. The sampled packets, together with their

sampling probabilities, are sent to Flow-Assembler.

Synchronized IPs Detector The SID identifies two kinds of hosts with synchro-

nized behaviors: i) syn-servers: the hosts in external networks whose clients have

similar network behaviors; ii) syn-clients : the hosts in internal networks that share

similar network behaviors to multiple destination hosts.

The detection of syn-servers is motivated by the network behavior of C&C servers

for centralized-based botnets, where their clients (bots) are synchronized and thus

share similar network behaviors. For the legitimate servers, especially the popular

ones, their clients’ behaviors usually diverse from each other due to various usage

95

patterns of different users. The detection of syn-clients is motivated by the network

behaviors of P2P-based C&Cs. P2P-based bots usually actively query their peers to

maintain the overlay P2P network for botnet C&Cs. Such behaviors will cause many

similar connections to multiple peer bots.

To detect syn-servers and syn-clients, we introduce “homo-server” and “similar-

client”.

1. Homo-server: We aggregate entries in Counting-Sketch based on each DstIP.

For each DstIP that has at least two SrcIPs, we calculate the variance of the

track-flow sizes. We sort the variances and get the medium value vmedium. For

one DstIP, if its variance vi < vmedium, we mark it as a homo-server. Otherwise,

we take the server as non-homo-server if it has at least two SrcIPs.

2. Similar-clients: We keep an array of bins (denoted as B in Algorithm 3) and

a pre-defined size R (currently R = 10). Each bin bi is represented by its

center that is the average size of track-flows in this bin. For a flow with size

L, if |L − bi.center| ≤ R, we insert this track-flow into bi and then update the

bi.center. Otherwise, we build a new bin and insert this flow into it. In each

bin, if we find a pair of SrcIPs and each of them has more than C (currently

C = 10) flows (e.g., connecting to C different DstIPs), we take this pair of

SrcIPs as similar-clients.

On identifying the syn-clients, we currently discard the TCP and UDP track-

flows with size smaller than 10 to avoid potential false positives generated by popular

network services like DNS or by the scanning-like behaviors. On identifying the

homo-servers, we ignore the TCP track-flows with size of 1 or with only SY NACK

flag. A TCP track-flow with size of 1 indicates an unsuccessful connection. The

96

Algorithm 3: Identify Synchronized Hosts

Input: Counting Sketch, Setd, tcur

Output: Setd: Records for syn-clients/servers.
begin

foreach Record R ∈ Setd do
if tcur − R.timestamp ≥ Trec then

Remove R from Setd;

foreach DstIP dhi in the Counting Sketch do
if dhi is homo-server then

Arr.get(dhi).score+ = stepup ;
if Arr.get(dhi).score ≥ THsyn−server then

setd.add(dhi, tcur); Arr.get(dhi).score = THsyn−server;

if dhi is non-homo-server then
Arr.get(dhi).score− = stepdown ;
if Arr.get(dhi).score ≤ THdown then

Arr.get(dhi).score = THdown;

foreach SrcIP shi in the Counting Sketch do
if shi is similar-client then

Arr.get(shi).score+ = stepup ;
if Arr.get(shi).score ≥ THsyn−client then

setd.add(shi, tcur); Arr.get(shi).score = THsyn−client;

else
Arr.get(shi).score− = stepdown ;
if Arr.get(shi).score ≤ THdown then

Arr.get(shi).score = THdown;

return Setd;
end

flag of SYNACK indicates a TCP connection initiated from external networks, which

is unlikely a connection for botnet C&Cs. Bots usually initiate connections to ex-

ternal C&C servers for two reasons. First, the widely deployed firewall/NAT devices

block the connections initiated from external networks. For example, researchers have

shown that more than 40% storm bots are behind a firewall or NAT [20]. Second,

the dynamic IPs make it very hard for C&C servers to initiate connections to bots

with dynamical IPs accurately.

For each time interval T , we identify the homo-servers and similar-clients. We

97

accumulate evidence over multiple intervals to decide whether a host is syn-server or

syn-client. We keep each syn-server and syn-client in the Sampling Sketch for Trec

(currently Trec = E/2, where E is one epoch of 12 hours) from its last update. The

algorithm is described in Algorithm 3. THsyn−server/client is the threshold of the score

to identify syn-server/client. THdown is the lower bound of the score. stepup/down is

the step to increase/decrease the score. We set THsyn−server/client = 4, THdown = −10,

stepup = 1, and stepdown = 0.2. Record represents one data structure for IP and time

stamp. Arr is an array of scores indexed by the hosts and tcur is the time stamp

derived from current packet. If one record in Arr is not updated from its last update

for TArr (currently TArr = E/2), we can eliminate it from Arr.

Algorithm 4: Priority-based Sampling Algorithm
Input: Pt, f1, f2, . . . , fn

Output: p1, p2, . . . , pn

begin

budget = 1;

foreach i = 1 . . . n do

if fi == 0 or budget ≤ 0 then

pi = 0;

continue;

else

pi = budget ∗ Pt
fi

;

pi = pi > 1?1 : pi;

budget− = pi ∗
fi
Pt

;

return {p1, p2, . . . , pn};

end

Sampling Probability Calculation We dynamically calculate the sampling prob-

ability for each category of IPs to fulfill two targets: i) to get as many packets as

possible that are related to syn-clients or syn-servers; ii) to keep the actual sampling

98

rate close to the target sampling rate.

To keep the actual sampling rate close to the pre-defined sampling rate, a scheme

for allocating instant sampling probabilities for different categories has been proposed

by Ramachandran et al. [14]. However, this scheme requires pre-configured budgets

for different categories. Inappropriate allocated budgets may affect the packet sam-

pling process. For example, the inadequate budget for synchronized IPs will cause the

lost of packets related to botnet, while the over-allocated budget for synchronized IPs

would be a waste of the resources. To fully utilize the resources to capture packets, we

design a sampling algorithm named Priority-based Sampling Probability Calculation

algorithm. The principle for this algorithm is as follows: under a pre-defined sam-

pling rate, we use the available resources (budget) to capture as many packets in the

first priority category as possible. The remaining available resource will be used to

capture as many packets as possible in the next level priority category. Such process

will continue until there is no further category or no available resource. Algorithm 4

shows this approach. Pt is the pre-defined target sampling rate. {f1, f2, . . . , fn} is

the fraction of packets in each category where priority1 > priority2 · · · > priorityn.

{p1, p2, . . . , pn} is a set of instant sampling rates for different priorities and budget is

for the available budget.

The following equation illustrates how the budget allocation helps the sampling

component to keep a target sampling rate. Suppose there are a total of K packets and

the target sampling rate is Pt. Given n categories and suppose each category has fi

fraction of the total packets and we give budget bi to this category, we can calculate the

sampling probability for category i as pi = Pt
bi

fi
. In this case, the number of sampled

packets Q and overall sampling rate would be Q =
∑n

i=1 Kfipi = K
∑n

i=1 fi(Pt
bi

fi
) =

KPt

∑n
i=1 bi. According to this equation, as long as

∑n
i=1 bi = 1, the overall sampling

rate Q
K

would be Pt, the target sampling rate. Since fi cannot be obtained precisely in

advance, we dynamically estimate fi using WMA (weighted moving average) based

99

on the observed value for it in the previous and current intervals, which is fi =

w1f
prev
i + w2f

curr
i where w1 = 0.2 and w2 = 0.8 in our current design. The system

can dynamically assign priority1 or priority2 to syn-servers or syn-clients. The fewer

the packets related to one of these two categories, the higher priority it has. The

intuition behind such design is to use enough resource to build the accurate flows

for the category that requires least resource. In practice, operators can also fix the

priority or introduce more categories/priorities based on known knowledge (e.g., a

category for the packets that are sent to confirmed bot peers). The packets related

to the rest of IPs are labeled as the lowest priority (priority3).

4.3.2.2 Flow Assembler

The Flow-Assembler assembles sampled packets to generate raw flows, where each

raw flow is identified by 5-tuple key (SrcIP, SrcPort, DstIP, DstPort, Proto). For

TCP flow, the first two handshake packets (SYN and SYNACK) can be used to

identify the flow direction. However, since packet sampling may result in the loss of

TCP handshake packets, we use following approaches to identify TCP flow direction.

First, if one of these two handshake packets is sampled, we can easily identify the

flow direction. Second, for a TCP flow without TCP handshake packets sampled,

we take this flow as it is initiated from internal networks (e.g., its SrcIP is from

internal network). These approaches guarantee that every TCP flow from internal

network will be attributed to the correct direction. Flow-Assembler outputs a flow if

the flow is finished (e.g., the TCP FIN/RST flag is observed) or it expires (e.g., no

packet comes for this flow for 10 minutes). For one raw flow, we record information

including timeStart, timeEnd, sizeActual (# of packets observed), byteActual (# of bytes

observed) and sizeEst. sizeEst is the estimated flow size based on the sampled packets

and their corresponding instant sampling probabilities. Suppose there are n packets

for one raw flow and each packet has bi bytes and sampling probability of pi, we

100

compute the metrics for this raw flow as follows: sizeEst =
∑n

i=1
1
pi

, sizeActual = n,

byteActual =
∑n

i=1 bi.

4.3.3 Flow Correlation

The goal of Flow-Correlation is to identify hosts with persistently similar commu-

nication patterns. By evaluating the capacity of the fine-grained detectors and the

monitored network, operators can estimate the percentage of hosts PerExp (as de-

scribed in Figure 22) that fine-grained detectors can afford to monitor. For example,

if we assume that the traffic is evenly distributed over the hosts in the monitored

network, the capacity of a fine-grained detector (Capdetectorbps) and the network

speed (Capnetworkbps) indicate a PerExp = Capdetector

Capnetwork
. The Flow-Correlation compo-

nent identifies groups of hosts (up to PerExp) that share most similar communication

patterns and show persistence.

4.3.3.1 Flow Aggregation

We use C-flow to represent the communication pattern from a host to a remote host

and port. We define a C-flow as a set of raw flows sharing same tuple of (SrcIP,

DstIP, DstPort, Proto) in a certain epoch E (currently E = 12hours), denoted as

c = {f1, . . . , fn}. To get C-flows, we filter out the raw flows that satisfy either of two

conditions: i) The raw flow is initiated from external network to internal network,

where the reason is discussed in Section 4.3.2.1. ii) The raw flow has traffic in only

one direction, which indicates an unsuccessful connection. We represent a C-flow

(c = {f1, . . . , fn}) using the following 10 features.

1. The means and variances of fph (the number of flows per hour), ppf (the

number of packets per flow), bpp (the number of bytes per packet), pps (the

number of packets per second), which have similar definition in BotMiner [36].

We use sizeEst to compute ppf and pps, while byteActual

sizeActual
is used for bpp.

101

2. fphmax: the maximum number of flows per hour.

3. timem: the median time interval of two consecutive flows.

4.3.3.2 Cross-Epoch Correlation

Given PerExp, cross-epoch correlation identifies pairs of IPs where each pair shares

persistently similar communication patterns for at least M epochs out of totally N

epochs (M ≤ N).

We get a set (G) of C-flows over multiple epochs, and each C-flow has an epoch-

tag. After clustering C-flows, we get a set of clusters {g1, g2, . . . , gn} where each

cluster gi represents a set of similar communication patterns (G = g1 ∪ g2 ∪ · · · ∪ gn).

For C-flows in one cluster gi, we further aggregate them into different groups (denoted

as {c1
i , c

2
i . . . cN

i } and gi = c1
i ∪c2

i · · ·∪cN
i) according to their epoch-tags. For example,

cj
i represents the C-flows that are similar in jth epoch (spatial-similarity). For each

cluster gi, if a pair of SrcIPs share at least M common groups, it indicates that they

share persistently similar communication patterns over at least M epochs. Therefore,

we label this pair of SrcIPs as suspicious. We denote the percentage of all the detected

suspicious IPs over all the SrcIPs as Per. Figure 24 presents an example of cross-

epoch correlation. A/B/C/D is the C-flow associated with the host hA/hB/hC/hD,

and the remote host and port of A/B/C/D are not necessarily to be the same over

multiple epochs (e.g., A represents < hA, hremote, portremote >). Some similar C-flows

associated with hA/hB/hC/hD are clustered together in a cluster gi. By investigating

the epoch-tag related to each C-flow, we aggregate these C-flows to three groups

(c1/c2/c3), as described in the left part of Figure 24. The right part of Figure 24

presents that hA and hB share 3 common groups, which indicates that they share

similar communication patterns for 3 epochs. If we set M ≤ 3, hA and hB are labeled

as suspicious.

To get clusters of C-flows that represent similar communication patterns, we use

102

A, B, C

A, B

A, B, D

cluster: gi

group: c1

group: c2

group: c3

A, B

cluster: gi

c1

c3

c2

Figure 24: An example of cross-epoch-correlation

clustering algorithm. BotMiner uses two-level clustering scheme (X-Means and Hier-

archical) that cannot scale well for large number of C-flows as shown in Figure 26.

To process C-flows in an efficient manner, we use a scalable clustering algorithm

Birch [84]. Given a certain value of “diameter”, Birch can first efficiently discover

clusters of C-flows within such distance. Second, cross-epoch correlation can detect

suspicious IPs based on the clustering results. We repeat these two steps by increasing

the value of “diameter”. This process terminates when the percentage of suspicious

IPs Per for the next step reaches at the expected percentage PerExp or the number

of rounds reaches at a pre-defined MaxRound (currently 50).

4.4 Evaluation

We implemented a prototype system and evaluated it using traces of real-world net-

work traffic and different botnets.

4.4.1 Experimental Setup

We mounted our monitors on a span port mirroring a backbone router at the college

network (200Mbps-300Mbps at daytime) to collect data. The traffic covers various

applications and we believe such kind of traffic provides good traces to evaluate our

103

Table 28: Background traces
Trace # of Pkts Dur Info

Mar25 205,079,914 12h header
Mar26 280,853,924 24h header
Mar27 318,796,703 24h header
Mar28 444,260,179 24h header

Mar31 102,487,409 1.5h full

Table 29: Botnet traces
Trace Dur Bots

Bot-IRC-A 4days 3
Bot-IRC-B 4days 4

Bot-HTTP-A 4days 3
Bot-HTTP-B 4days 4
Bot-HTTP-C 4days 4

Bot-P2P-Storm 4days 2
Bot-P2P-Waledac 4days 3

system. The dataset contains TCP and UDP headers for continuous 3.5 days and

full packets for 1.5 hours in Table 28. We eliminated a B/16 subnet for dynamic

IPs allocated for wireless connections, which are frequently changed and can not

accurately represent the same hosts for multiple epochs. We observed a total of 1460

different IP addresses in 3.5 days. We also collected 1.5 hour traces with full payload.

We collected the traces of 7 different botnets including IRC-, HTTP- and P2P-

based botnets, as described in Table 29. Bot-IRC-A and Bot-HTTP-A were collected by

running bot instances (“TR/Agent.1199508.A” and “Swizzor.gen.c”) in multiple hosts

in the honeypot. Bot-IRC-B and Bot-HTTP-B/C were generated using Rubot [52], a

botnet emulation framework. In Bot-HTTP-B, bots periodically contacted the C&C

server every 10 minutes. And in Bot-HTTP-C, the bots contacted the C&C server in a

more stealthy way by adding a random time interval between 0 to 10 minutes on each

time of visiting. Both of them conducted scanning attack on receiving the “scan”

command. Bots in Bot-IRC-A send packets much more frequently to C&C server in

the IRC session, resulting in much larger C&C flows compared to Bot-IRC-B. We

collected traces of two P2P-based botnets, Storm [76] and Waledac [37], by running

104

binaries in the controlled environment.

After aligning the timestamp of each packet in botnet traces according to the

time of the first packet in background traces, we mixed 3.5 consecutive days of bot-

net traces into the college traces by overlaying them to randomly picked client IPs in

college network. We took one epoch E as 12hr so there are 7 epochs in total. The

filter covers major local DNS, email servers in the college, the IP ranges of the pop-

ular service networks (e.g., MICROSOFT, GOOGLE, YAHOO, SUN, etc.), popular

content distribution networks (e.g., AKAMAI) , whose IP ranges are unlikely to be

used for Botnet C&Cs, and IPs of top 10, 000 alexa domains (corresponding to 12230

IPs).

4.4.2 Experimental Design

We structured our experiments in three parts.

First, we will study the effectiveness of our sampling algorithm. To be specific, we

will investigate whether the actual sampling rate achieved by our sampling algorithm

is close to the pre-defined target sampling rate. We will also present packet sampling

rates for those packets that are generated by botnets.

Second, we will study the effectiveness of the cross-epoch correlation method.

Particularly, we will show the scalability of the correlation method, and evaluate its

effectiveness together with the packet sampling algorithm.

Finally, we will investigate the percentage of packets that fine-grained botnet

detectors need to perform DPI-based analysis by using our traffic analysis framework.

This helps us estimate how much our system can boost the scalability of existing

botnet detection systems.

105

4.4.3 Experimental Results

4.4.3.1 Evaluation of Sampling Algorithm

We evaluated B-Sampling algorithm using the mixed traces with different target sam-

pling rates (0.01, 0.025, 0.05, 0.075 and 0.1). We further perform comparison with

following popular sampling algorithms:

1. FlexSample [14]: FlexSample is a state-of-the-art sampling algorithm that can

be configured with different “conditions” for different purposes. FlexSample

used a specific condition illustrated in Table 30 (Figure 10 in FlexSample [14]) to

capture botnet packets by allocating the majority of budgets to packets related

to “servers with high indegree of small flows”. However, since the number of

infected machines could be small in real-world, the “high fan-in” feature may not

hold and thus will probably miss the botnet packets. As illustrated in Table 31,

this condition causes very low sampling rates on botnet packets in our traces.

Therefore, we modify the condition and only use the condition related to flow

size for FlexSample. We configured FlexSample using a condition presented in

Table 30 with (size ≤ 20, budget = 0.95), which means that FlexSample uses

95% resource to capture the packets in flows with sizes smaller than 20.

2. Sketch Guided Sampling [10]: Sketch Guided Sampling (SGS) algorithm lever-

ages a sketch for sampling, where each entry in the sketch keeps the number of

packets observed for this flow. The sampling rate for a packet, which belongs to

a flow with size s, is f(s) = 1
1+ǫ2s(2α−1) . According to this formula, SGS enables

higher sampling rates for packets belonging to small flows (e.g., s is small),

which is similar to FlexSample. However, in contrast to B-Sampling, FlexSam-

ple, Random Sampling, and Periodic Sampling, SGS cannot maintain a target

sampling rate. Its actual sampling rate heavily depends on the distribution of

the flow size. For example, if the flow size follows Zipfian distribution, where

106

Table 30: Condition for FlexSample
vars = 1
conditions = 1
var 1 := srcip.srcport.dstip.dstport.prot
var 1 in (0, 20]: 0.95

Table 31: Packet sampling rates using condition in Figure 10 in FlexSample [14]
SRT SRI−A/B SRH−A/B/C SRStorm SRWaledac

0.025 0.003/0.01 0.013/0.011/0.01 0.006 0.008
0.05 0.006/0.018 0.023/0.019/0.017 0.012 0.015

large flows carry the vast majority of packets, the actual sampling rate will be

low. In our experiment, we use the same parameter values in [10], where ǫ = 0.1

and α = 1.

3. Random Sampling: Random sampling algorithm is a widely deployed sampling

algorithm. It gives each packet with probability r (r is the predefined sampling

rate), and therefore it can well approximate the pre-defined target sampling

rate. Periodic sampling algorithm is a variant of random sampling algorithm.

Instead of sampling each packet with sampling rate of r, it samples the nth

packet, where n = 1
r
.

The experimental results for B-Sampling, FlexSample, SGS, and random sampling

algorithms are presented in Table 32, Table 33, Table 34, and Table 35, respectively.

The analysis of experimental results is discussed as follows:

1. In each table, the first column (SRT) reports pre-defined target sampling rates

and the second column (SRActual) presents the actual sampling rates achieved

by each sampling algorithm. According to the results, B-Sampling, FlexSample,

random sampling, and periodic sampling algorithm can keep the actual sampling

rates close to the target sampling rates. The actual sampling rates from B-

Sampling algorithm are a little higher compared to the target sampling rates.

It is mainly due to the fact that we set the time interval, which we used to tune

the instant sampling rates for different categorizes, is large (e.g., 15 minutes).

107

Table 32: Packet sampling rates for B-Sampling
SRT SRActual SRIRC−A/B SRHTTP−A/B/C SRStorm SRWaledac

0.01 0.012 0.65/0.68 0.55/0.69/0.68 0.02 0.02
0.025 0.027 0.93/0.92 0.72/0.93/0.93 0.16 0.18
0.05 0.052 0.96/0.96 0.74/0.96/0.96 0.48 0.48
0.075 0.076 0.97/0.97 0.75/0.97/0.97 0.72 0.7
0.1 0.1 0.98/0.98 0.76/0.98/0.98 0.83 0.81

Table 33: Packet sampling rates for FlexSample
SRT SRActual SRIRC−A/B SRHTTP−A/B/C SRStorm SRWaledac

0.01 0.01 0.001/0.07 0.06/0.07/0.06 0.05 0.07
0.025 0.025 0.002/0.16 0.16/0.17/0.16 0.11 0.16
0.05 0.05 0.004/0.32 0.32/0.35/0.33 0.23 0.33
0.075 0.075 0.006/0.48 0.50/0.50/0.48 0.33 0.48
0.1 0.1 0.008/0.6 0.6/0.64/0.61 0.41 0.61

So the actual sampling rates for B-Sampling algorithms can be closer to the

target sampling rates by further reducing such time interval. SGS algorithm

is not adaptive, and hence it cannot maintain a pre-defined sampling rate.

As presented in the second column in Table 34, SGS results in a high actual

sampling rate (20%) in our monitored network.

2. The remaining columns report the sampling rates related to different types of

botnet-related packets, where we “zoom” in the sampled packets and evaluate

the actual sampling rates for packets of each botnet. For example, the column of

SRIRC−A/B reports the actual sampling rates for packets in Bot-IRC-A and Bot-

IRC-B using different sampling algorithms. We can find that B-Sampling cap-

tures a higher percentage of botnet packets, compared to FlexSample, and ran-

dom sampling algorithms. For example, considering the second row (target sam-

pling rate is 0.025), B-Sampling achieves a sampling rate of 0.93 (SRIRC−A/B, B

column) while FlexSample achieves that of 0.002 (SRIRC−A/B, F lex column) for

packets in Botnet-IRC-A, where the C&C flows are large flows. The remaining

columns report a comparison of B-Sampling and FlexSampling on the sampling

rates for other botnets. As we can see, B-Sampling achieves higher sampling

rate for botnet-related packets, compared to other sampling algorithms. The

reason is that the feature of flow size and server in-degree are not intrinsic for

108

Table 34: Packet sampling rates for SGS
SRT SRActual SRIRC−A/B SRHTTP−A/B/C SRStorm SRWaledac

- 0.2 0.007/0.093 0.96/0.96/0.96 0.58 0.89

Table 35: Packet sampling rates for the random sampling algorithm
SRT SRActual SRIRC−A/B SRHTTP−A/B/C SRStorm SRWaledac

0.01 0.01 0.01/0.01 0.01/0.01/0.01 0.01 0.01
0.025 0.025 0.025/0.025 0.025/0.025/0.025 0.025 0.025
0.05 0.05 0.05/0.05 0.05/0.05/0.05 0.05 0.05
0.075 0.075 0.075/0.075 0.075/0.075/0.075 0.075 0.075
0.1 0.1 0.1/0.1 0.1/0.1/0.1 0.1 0.1

botnets and different botnets can diverse greatly regarding these features. Ran-

dom sampling algorithms cannot focus on capturing packets that are likely to

be related to botnets, and therefore they give the same sampling probability to

all packets.

We evaluated the parameters, C and stepup, in the B-Sampling algorithm in Sec-

tion 4.3.2.1. Given SRT = 0.05, we report the experimental results in Table 36. The

results demonstrate that the results of B-Sampling are stable over these values.

Table 36: Packet sampling rates using different parameters
C, stepup SRActual SRI−A/B SRH−A/B/C SRStorm SRWaledac

10, 0.8 0.051 0.97/0.96 0.71/0.96/0.96 0.50 0.49
10, 0.5 0.051 0.96/0.95 0.61/0.96/0.95 0.51 0.51
10, 1.2 0.052 0.96/0.96 0.77/0.96/0.96 0.46 0.46
5, 1 0.052 0.96/0.96 0.74/0.96/0.96 0.46 0.46
15, 1 0.052 0.96/0.96 0.74/0.96/0.96 0.48 0.48

4.4.3.2 Evaluation of Flow Correlation

In this section, we will evaluate the detection accuracy and scalability of our cross-

epoch correlation technique. We set M = x
N
2
y (N = 7, M = 3), which means that

two hosts sharing similar communication patterns for any 3 out of 7 epochs will be

labeled as suspicious.

Given SRT and PerExp, each cell in Table 37 shows the detection rate of bots(/23)

and percentage of noises(/1460) identified by Flow-Correlation using B-Sampling.

The results show that Flow-Correlation can achieve high detection rate with low

109

0.01 0.025 0.05 0.075 0.1
Target Sampling Rates SRT

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

 D
et

ec
ti

on
 R

at
es

 o
f

C
ro

ss
-E

p
oc

h
 C

or

0.92 0.93 0.95 0.95
0.91

0.43

0.72 0.73

0.80
0.86

B-Sampling

FlexSample

Figure 25: The average detection rate for cross-epoch correlation, over different
values of PerExp

PerExp. For example, with PerExp ≥ 5%, for all the SRT evaluated, Flow-Correlation

can successfully identify all the bots. While for the very low PerExp (e.g., 2% and 3%),

more than half of the bots were still captured. We also compared the detection rate

of Flow-Correlation using B-Sampling to that of Flow-Correlation using FlexSample

(in Table 38). The comparison results for using B-Sampling algorithm and using the

random sampling algoirithm is presented in Table 39. Figure 25 illustrates the average

detection rates over different PerExp for each target sampling rate. The comparison

results show that by using B-Sampling, Flow-Correlation can achieve higher detection

rate compared to both FlexSample and the random sampling algorithm.

Figure 26 presents the time consumption (in a 4G memory and 2-core CPU com-

puter) for cross-epoch correlation and the C-Plane clustering of BotMiner as the num-

ber of C-flows increases. We configured Birch to run MaxRound = 50 to simulate the

process of identifying up to PerExp suspicious hosts. The exponential time increment

for C-Plane clustering of BotMiner indicates its limited scalability. The cross-epoch

correlation shows linear pattern and its linear regression model is t = 0.0035x.

Figure 27 presents the mean and standard deviation for detection rates by Flow-

Correlation with B-Sampling for different M , given PerExp (5% or 10%) for all SRT .

First, the results demonstrate the effectiveness of cross-epoch correlation. When no

110

Table 37: Detection rates of cross-epoch correlation using B-Sampling
SRT For each PerExp, TP(bots/23), FP(noises/1460)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.01 48%, 0.1% 83%, 0.5% 96%, 1% 96%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 6% 100%, 8%
0.025 52%, 0% 87%, 0.5% 100%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 7% 100%, 8%
0.05 48%, 0.1% 100%, 0.3% 100%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 5% 100%, 7% 100%, 7%
0.075 48%, 0.2% 100%, 0.3% 100%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 7% 100%, 8%
0.1 39%, 0.3% 78%, 0.8% 100%, 1% 100%, 2% 100%, 3% 100%, 3% 100%, 5% 100%, 5% 100%, 7% 100%, 8%
1 30%, 0.5% 65%, 0.8% 96%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 5% 100%, 7% 100%, 8%

111

Table 38: Detection rates of cross-epoch correlation using FlexSample
SRT For each PerExp, TP(bots/23), FP(noises/1460)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.01 22%, 0.6% 30%, 2% 30%, 2% 39%, 3% 52%, 4% 52%, 5% 52%, 6% 52%, 7% 52%, 8% 52%, 8%
0.025 22%, 0.6% 39%, 1% 52%, 2% 87%, 3% 87%, 3% 87%, 5% 87%, 6% 87%, 7% 87%, 7% 87%, 8%
0.05 17%, 0.6% 43%, 1% 70%, 2% 87%, 3% 87%, 4% 87%, 4% 87%, 5% 87%, 7% 87%, 7% 87%, 7%
0.075 30%, 0.4% 57%, 1% 83%, 2% 87%, 3% 87%, 3% 87%, 4% 87%, 6% 96%, 6% 96%, 7% 96%, 8%
0.1 22%, 0.3% 65%, 1% 83%, 2% 96%, 2% 96%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 7% 100%, 8%

112

Table 39: Detection rates of cross-epoch correlation using the random sampling algorithm
SRT For each PerExp, TP(bots/23), FP(noises/1460)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.01 13%, 0.6% 13%, 1% 22%, 2% 22%, 3% 22%, 4% 22%, 5% 22%, 6% 22%, 7% 35%, 8% 35%, 9%
0.025 17%, 0.7% 30%, 1% 30%, 2% 30%, 3% 39%, 4% 39%, 5% 39%, 6% 43%, 7% 43%, 8% 43%, 9%
0.05 22%, 0.6% 34%, 1% 40%, 2% 40%, 3% 40%, 4% 52%, 5% 52%, 6% 52%, 7% 52%, 8% 52%, 9%
0.075 22%, 0.6% 26%, 1% 43%, 2% 52%, 3% 52%, 4% 52%, 5% 52%, 6% 52%, 7% 52%, 8% 52%, 9%
0.1 17%, 0.7% 43%, 1% 52%, 2% 52%, 3% 52%, 4% 52%, 5% 52%, 6% 52%, 7% 52%, 8% 52%, 9%

113

0 200000 400000 600000 800000 1000000
Number of c-flows x

0

20000

40000

60000

80000

100000

120000

140000

160000

T
im

e
 C

o
n
su

m
e
d
 t

 (
in

 s
e
c
o
n
d
s)

t=0.0035x

Xmeans+Hier Clustering

Cross-Epoch Correlation

Figure 26: Scalability of cross-epoch correlation

1 2 3 4 5 6 7
of epochs required (M)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Av
g

De

te
ct

io
n

Ra
te

 fo
r d

iff
er

en
t S

R
T

0.54

0.98
1.00

0.98
0.96

0.94

0.82

0.74

1.00 1.00 1.00
0.99

0.94

0.82

PerExp=0.05

PerExp=0.1

Figure 27: The average detection rate (over SRT s) of cross-epoch correlation using
B-Sampling

114

Table 40: Detection rates of fine-grained detectors
SRT For each PerExp, TP(bots/23), FP(noises/1460)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.01 48%, 0 83%, 0 96%, 0 96%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.025 52%, 0 87%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.05 48%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.075 48%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.1 39%, 0 78%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
1 30%, 0 65%, 0 96%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0

cross-epoch correlation is used (M = 1), many legitimate IPs show stronger similarity

than bots in a single epoch. Therefore, given a certain PerExp, more than 50% bots

are missed. While cross-epoch correlation can effectively eliminate these legitimate

IPs that show strong similarity in one epoch but do not have persistently similar

patterns. For example, cross-epoch correlation with M = 2 can successfully detect

most bots. Second, the results indicate that cross-epoch correlation is not sensitive

to the value of M . For example, for M = 3/4/5, the cross-epoch correlation achieves

similar detection rate. Such observation also indicates that N
2

is a good value for M .

4.4.3.3 Botnet Detection

Fine-grained botnet detector inspects all the packets related to suspicious IPs detected

by Flow-Correlation. Using 1.5hr trace mixed with botnet traces, we evaluated the

detection rate and performance of the fine-grained detector.

By analyzing the similarity among IRC messages, “IRC Message Correlation”

component in our detector detected bots in Bot-IRC-A/B. Other bots were detected

by the “Correlation” component. For example, Bots in Bot-HTTP-B/C trigger alerts

when they scan the local network. Bot-HTTP-A bots trigger alerts when they make

update requests. Storm and Waledac trigger alerts when they discover peers. These

bots were detected by correlating such activities/alerts with corresponding pairs of

IPs from Flow-Correlation. Table 40 presents the detection rates and false positive

rates for the fine-grained detector for different SRT s and PerExps. The corresponding

cells in Table 42 present the percentage of packets that our fine-grained detector needs

115

Table 41: Performance of fine-grained detector (in seconds)
With Flow-Corr (PerE = 5%, M = 3) direct

SRT 0.01 0.025 0.05 0.075 0.1 1
Per of Pkts 1.7% 2.9% 2.1% 3% 4.3% 2% 100%

T ime 33s 39s 35s 40s 49s 33s 858s

to inspect. For most combinations of SRT and PerExp, our framework can reduce

traffic volume by more than 90% for fine-grained detector but still keep high detection

rates and low false positives. For example, for SRT = 0.01 and PerExp = 0.05, the

fine-grained detector can detect all bots with false positive of 0, and it only needs to

focus on 1.7% percentage of packets.

Table 41 presents the performance comparison, including the percentage of packets

inspected and the processing time of the fine-grained detector in two situations: i)

the detector is directly applied, ii) the detector is applied with Flow-Correlation and

B-Sampling (PerExp = 0.05 and M = 3). By using Flow-Correlation, fine-grained

detector to reduce 95% time to process off-line traces, indicating a great workload

reduction in real time.

Table 42: The percentage of packets investigated by fine-grained detectors based on
DPI

SRT For each PerExp, Percentage of Packets
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 0.1% 0.4% 1% 1.5% 1.7% 3.3% 3.5% 4.1% 4.2% 5%
0.025 0.2% 0.7% 1.2% 2.6% 2.9% 3.5% 3.8% 4% 4.2% 6%
0.05 0.6% 0.6% 1% 1.8% 2.1% 2.2% 2.7% 2.7% 3.3% 3.5%
0.075 0.6% 0.6% 2% 3% 3.2% 3.8% 4.5% 4.5% 4.4% 5%
0.1 0.2% 0.9% 1.3% 3.7% 4.3% 4.3% 4.6% 4.6% 5.5% 6.2%
1 0.7% 0.6% 1% 1.7% 1.9% 3.4% 3.3% 3.3% 4.9% 6.1%

4.5 Discussion

To answer the question “how high speed networks our approach can handle?”, we

consider the performance of two key components, B-Sampling and cross-epoch corre-

lation. B-Sampling is intended to be implemented with hardware support, where we

can design the Counting-Sketch and Sampling-Sketch in fast memory (e.g., SRAM)

116

while the SID and PSPC in slow memory (e.g., DRAM). The system can periodi-

cally but parallel read the data from SRAM to DRAM for identifying synchronized

hosts and computing sampling probabilities, and then write the sets of IPs to SRAM.

And for Counting-Sketch, recent study has shown the hardware implementation of

a specific hash function with a throughput of over 10Gbps [19], indicating the po-

tential performance of 10Gbps of B-Sampling with hardware implementation. Given

an expected time consumption of 2hr for cross-epoch correlation, the linear model

t = 0.0035x (in seconds) implies 2M C-flows. If we assume the number of C-flows is

proportional to the traffic volume (e.g., 200K C-flows in our experiment is correspond-

ing to 200Mbps), 2M C-flows correspond to a network with speed of 2Gbps. Since

2Gbps is less than the potential performance of 10Gbps of B-Sampling, such results

indicate that our approach can be used in 2Gbps networks (e.g., campus backbone

networks) and has the potential to be deployed in faster network as the expected time

consumption of cross-epoch correlation increases.

Because of our assumptions on the persistent use of coordinated C&Cs in a botnet,

any evasion attempts that violate our assumptions will likely succeed if the botmaster

knows our algorithms, similar to any evasion attacks against an IDS. Bots may inten-

tionally manipulate their communication patterns to decrease sampling probabilities

or evade cross-epoch correlation. For example, bots can randomize communication

patterns (e.g., number of packets per flow) to evade the syn-client/server detection.

One potential solution is to dynamically tune the parameters used for identifying syn-

servers and syn-clients for each round (e.g., randomly select 1
4
, 3

4
quantiles or medium

value of variances for identifying syn-server, and choose R and C from a pre-defined

set of values/ranges for identifying syn-clients). Another solution is for B-Sampling

to incorporate information from other systems. For example, we can set a category of

IPs in rouge networks [16] or malicious fast-flux networks, which are likely related to

117

botnets, to sample more related packets. For cross-epoch correlation, we can incor-

porate more detection features (e.g., using packet payload information for some tight

clusters to do light-weight content checking) to make the evasion more difficult. Due

to the nature of the arms race in existing intrusion detection and evasion practice,

we should always study better and more robust techniques as a defender. Combining

different complementary detection techniques to make the evasion harder is one pos-

sible future direction. We leave a deeper and more extensive study to handle these

evasion attempts as future work.

4.6 Summary

Botnet detection in high-speed and high-volume networks is a challenging problem.

Given the severity of botnets and the growing interest from ISPs to defend against

botnets, research on botnet detection in high-speed and high-volume networks is

important. In this chapter, we have described a solution to this problem, which

includes a botnet-aware adaptive packet sampling algorithm and a scalable spatial-

temporal flow correlation approach. The adaptive packet sampling technique uses

network characteristics of botnet C&Cs to capture more packets related to bots and

adaptively tune the sampling probabilities to keep a target sampling rate. The flow

correlation approach exploits the essential properties of botnets and detects bots

by identifying hosts with persistently similar communication patterns. Evaluation

using real-world network traces shows that our proposed solution yields good per-

formance. The sampling algorithm can capture more botnet packets in comparison

to pre-defined sampling rate and outperforms the state-of-the-art adaptive sampling

algorithms. Based on the sampled packets, the correlation algorithm can successfully

and scalably pinpoint various types of bots (including IRC-based, HTTP-based, and

P2P-based). This approach will help the fine-grained botnet detectors to focus on

inspecting packets from a smaller amount of suspicious traffic, thus allowing them to

118

operate on increasingly more high-speed networks.

119

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Serving as platforms responsible for the vast majority of large-scale and coordinated

cyber attacks, botnets have been recognized as one of the most serious threats against

Internet security. Botnet detection therefore becomes fundamentally important. A

number of network-based botnet detection systems have been consequently proposed.

However, these systems are faced with two new challenges, which may significantly

limit their practical use. First, botnets tend to be increasingly stealthy on performing

cyber attacks. As a result, botnet detection systems that rely on the observation of

attacks in network traffic may lose their effectiveness. Second, the volume of net-

work traffic grows fast, requiring botnet detection systems to process a huge amount

of information efficiently. However, existing botnet detection systems mainly rely

on deep packet inspection for detection, thereby suffering from limited scalability.

My dissertation focuses on addressing these two challenges by buidling three novel

systems.

First, we have designed a system, named ARROW [47], to detect drive-by down-

load attacks, which represent one of the most significant and popular methods for

botnet infection. ARROW boosts the effectiveness of existing detection systems by

detecting a large number of stealthy drive-by download attacks that are missed by

them. By designing this system, we made the following contributions:

• We provide a method to identify malware distribution networks from millions

of individual drive-by download attacks.

• By correlating individual drive-by download attacks, we propose a novel method

120

to generate regular expression signatures of central servers of malware distribu-

tion networks to detect drive-by downloads.

• We have built a system to automatically generate regular expression signatures

of central servers of MDNs and evaluate the effectiveness of these signatures.

The next piece of our work concentrates on building system to detect P2P botnets.

Our system aims to effectively detect P2P botnets, even in the case that their attacks

cannot be observed in the network traffic. Our system is also capable of detecting

P2P botnets even if the bot-infected hosts are running legitimate P2P applications

simultaneously. Our work made multiple contributions:

• We propose a novel flow-clustering-based analysis approach to identify and pro-

file hosts that are engaging in P2P communications.

• We design new features and algorithms to detect P2P botnets independent of

the observation of botnets’ malicious activities.

• We have developed a scalable detection system based on efficient clustering

algorithm and load-balance workload distribution. We also evaluate the effec-

tiveness and efficiency of our system.

The third piece of our work focuses on boosting the scalability of existing network-

based botnet detection systems. Our system can effectively and efficiently identify a

small portion of hosts that are likely to be bots, and then suggest existing detection

systems to perform DPI-based analysis on packets related to those suspicious hosts

instead of all hosts. Consequently, the existing detection systems only need to inves-

tigate a small portion of network traffic and their scalability is thus boosted. In this

piece of work, we made the following contributions:

121

• We introduce a botnet-aware adaptive packet sampling technique based on

group similarity, an intrinsic characteristic of botnets, to sample packets that

are likely related to C&C communications with high probability.

• We propose a new scalable spatial-temporal correlation method to identify hosts

in a network that share persistently similar communication patterns, which is

one of the main characteristics of botnets.

• We have implemented a proof-of-concept version of our system, and evaluated

it using real-world legitimate and botnet-related network traces. Our experi-

mental results show that the proposed approach is scalable and can effectively

detect bots with few false positives, which can be further reduced by fine-grained

botnet detection systems.

5.2 Future Work

While a number of problems to build effective and scalable network-based botnet

detection systems have been addressed in this dissertation, our research work also

suggested new research directions discussed as follows:

• Botnet Detection Based on Heterogeneous Information Correlation

The severity of cyber-attacks has accelerated the deployment of various de-

tection and monitoring systems, such as antivirus software, DNS monitoring

system, network flow collection system, and spam traps. A growing body of

information collected from diverse systems makes possible the opportunity to

study and detect botnets from multiple perspectives. Therefore, building an in-

tegrated detection system that can correlate information from these monitoring

systems is a promising direction. However, it is a challenging task because of

the heterogeneous nature and sheer volume of the information. We believe our

work on leveraging DNS and network flow for P2P botnet detection (Chapter 3)

122

and designing scalable botnet detection systems (Chapter 4) will provide useful

information to explore this direction.

• Botnet Mitigation A natural step after botnet detection is mitigation. How

to strike the balance between minimizing the botnet threats and maintaining the

usability of bot-infected hosts remains a challenging problem. Designing novel

mitigation techniques that can integrate mitigation strategies from different

levels (e.g., process, system, and network) would be a promising direction.

• Botnet Detection in Emerging Infrastructures Driven by incredible prof-

its, attackers are always actively expanding their malicious ecosystems by con-

taminating emerging infrastructures. A number of botnets that operate on

smart phones have been identified, introducing great threats against personal

data and cellular networks. Stuxnet [63], a bot targeted industrial control sys-

tems, was identified in 2009 and reportedly interfered with the operation of

Iran’s nuclear facility. As a consequence, leveraging our knowledge learnt from

detecting bontets in Internet to proactively defeat botnets and other malware

in emerging infrastructures will demonstrate great importance and deserves ex-

ploration in the future.

5.3 Closing Remarks

This dissertation addressed important research problems in botnet detection. Specif-

ically, our work focused on addressing new challenges presented to existing botnet

detection systems, which are introduced by the evolution of both botnets and the

Internet. We first built a novel system to detect drive-by downloads, which serve as

the primary way for botnet infection. Further, we proposed a new P2P botnet detec-

tion system. We finally presented a new traffic analysis framework that can boost the

scalability of existing botnet detection systems. Together, our contributions boost the

effectiveness and scalability of existing botnet detection systems. Due to the nature

123

of arms race in existing security area, attackers and their attacks are always actively

evolving, which requires us to identify and act on emerging challenges. We believe

the solutions presented in this dissertation will be helpful for future research in this

direction.

124

REFERENCES

[1] “ARGUS: Auditing Network Activity.” http://www.qosient.com/argus/.

[2] “AutoIt Script.” http://www.autoitscript.com/autoit3/index.shtml.

[3] “DNSCAP: DNS traffic capture utility.” https://www.dns-oarc.net/tools/

dnscap.

[4] “TCP SYN Flooding Attacks and Common Mitigations.” RFC 4987.

[5] “CAIDA Analysis of Code-Red.” http://www.caida.org/research/security/

code-red/, 2001.

[6] “Hackers Use Twitter API To Trigger Malicious Scripts.”
http://blog.unmaskparasites.com/2009/11/11/hackers-use-twitter-api-to-
trigger-malicious-scripts/, 2009.

[7] “Zeus Spreading Through Drive-by Download.”
http://www.scmagazine.com/zeus-spreading-through-drive-by-
download/article/158691/, 2009.

[8] “Drive-By Download Attacks Were the Biggest Online Threat Last Month.”
http://news.softpedia.com/news/Drive-By-Download-Attacks-Were-the-
Biggest-Online-Threat-Last-Month-170525.shtml, 2010.

[9] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-Scale Botnet De-
tection and Characterization,” in Proc. USENIX HotBots, 2007.

[10] A. Kumar and J. Xu, “Sketch Guided Sampling – Using On-Line Estimates
of Flow Size for Adaptive Data Collection,” in Proc. IEEE INFOCOM, 2006.

[11] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A Crawler-
based Study of Spyware on the Web,” in Proc. NDSS, 2006.

[12] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing Botnet
Membership Using DNSBL Counter-Intelligence,” in Proc. USENIX SRUTI,
2006.

[13] A. Ramachandran, N. Feamster, and S. Vempala, “Filtering Spam with
Behavioral Blacklisting,” in Proc. ACM CCS, 2007.

[14] A. Ramachandran, S. Seetharaman, and N. Feamster, “Fast Monitor-
ing of Traffic Subpopulations,” in Proc. ACM IMC, 2008.

125

[15] A.W. Moore and D. Zuev, “Internet Traffic Classification Using Bayesian
Analysis Techniques,” in Proc. ACM SIGMETRICS, 2005.

[16] B. Stone-Gross, A. Moser, C. Kruegel, E. Kirda, and K. Almeroth,
“FIRE: FInding Rogue nEtworks,” in Proc. ACSAC, 2009.

[17] B. Stone-gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,

R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet:
Analysis of a Botnet Takeover,” in Proc. ACM CCS, 2009.

[18] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel, D. Steiger-

wald, and G. Vigna, “The Underground Economy of Fake Antivirus Soft-
ware,” in Proc. WEIS, 2011.

[19] B. Yang, R. Karri, and D.A. McGrew, “Divide and Concatenate: An
Architectural Level Optimization Technique for Universal Hash Functions,” in
Proc. of the Design Automation Conference, 2004.

[20] B.B. Kang, E.C. Tin, and C.P. Lee , “Towards Complete Node Enumera-
tion in a Peer-to-Peer Botnet,” in Proc. ACM ASIACCS, 2009.

[21] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich, and

Vern Paxson, “What’s Clicking What? Techniques and Innovations of Today’s
Clickbots,” in Proc. DIMVA, 2011.

[22] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen, “Accurate
and Efficient Traffic Monitoring Using Adaptive Non-linear Sampling Method,”
in Proc. IEEE INFOCOM, 2008.

[23] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer, “Using Machine
Learning Techniques to Identify Botnet Traffic,” in Proc. IEEE WoNS, 2006.

[24] C. Mullaney, “Android.Bmaster: A Million-Dollar Mobile Botnet.”
http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-
mobile-botnet, 2012.

[25] C. Seifert and R. Steenson, “Capture - Honeypot Client (Capture-HPC).”
https://projects.honeynet.org/capture-hpc, 2006.

[26] C. Seifert, I. Welch, and P. Komisarczuk, “HoneyC - The Low-
Interaction Client Honeypot,” in Proc. NZCSRCS, 2007.

[27] C. Seifert, R. Steenson, T. Holz, B. Yuan, and M. A. Davis, “Know
Your Enemy: Malicious Web Servers.” http://www.honeynet.org/papers/mws/,
2007.

[28] C. Whittaker, B. Ryner, and M. Nazif, “Large-Scale Automatic Classifi-
cation of Phishing Pages,” in Proc. NDSS, 2010.

126

[29] C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation Mod-
eling and Analysis,” in Proc. ACM CCS, 2002.

[30] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer Net-
works,” in Proc. ACM IMC, 2006.

[31] F. Yu, Y. Xie, and Q. Ke, “SBotMiner: Large Scale Search Bot Detection,”
in Proc. ACM WSDM, 2010.

[32] G. Bartlett, J. Heidemann, C. Papadopoulos, and J. Pepin, “Estimat-
ing P2P Traffic Volume at USC,” Tech. Rep. ISI-TR-2007-645, USC/Information
Sciences Institute, 2007.

[33] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command and
Control Channels in Network Traffic,” in Proc. NDSS, 2008.

[34] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley, “Worm
Detection, Early Warning and Response Based on Local Victim Information,”
in Proc. ACSAC), 2004.

[35] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter:
Detecting Malware Infection Through IDS-Driven Dialog Correlation,” in Proc.
USENIX Security, 2007.

[36] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Anal-
ysis of Network Traffic for Protocol- and Structure-Independent Botnet Detec-
tion,” in Proc. USENIX Security, 2008.

[37] G. Sinclair and C. Nunnery, and B. B. Kang, “The Waledac Protocol:
The How and Why,” in Proc. Intl. Conf. Malicious and Unwanted Software,
2009.

[38] G. Stringhini, T. Holz, B. Stone-Gross, C. Kruegel, and G. Vigna,
“BOTMAGNIFIER: Locating Spambots on the Internet,” in Proc. USENIX Se-
curity, 2011.

[39] J. Cheng, “Report: Botnets Sent Over 80% of All June Spam.”
http://arstechnica.com/security/news/2009/06/report-botnets-send-over-
80-of-all-spam-in-june.ars, 2009.

[40] J. Goebel and T. Holz, “Rishi: identify bot contaminated hosts by IRC
nickname evaluation,” in Proc. USENIX HotBots, 2007.

[41] J. Nazario, “PhoneyC: A Virtual Client Honeypot,” in Proc. USENIX LEET,
2009.

[42] J. Newsome, B. Karp, and D. Song, “Polygraph: automatically generating
signatures for polymorphic worms,” in Proc. IEEE Symposium on Security and
Privacy, 2005.

127

[43] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi, “deSEO:
Combating Search-Result Poisoning,” in Proc. USENIX Security, 2011.

[44] J. P. John, F. Yu, Y. Xie, M. Abadi, and A. Krishnamurthy, “Searching
the Searchers with SearchAudit,” in Proc. USENIX Security, 2010.

[45] J. R. Binkley and S. Singh, “An Algorithm for Anomaly-based Botnet De-
tection,” in Proc. USENIX SRUTI, 2006.

[46] J. W. Stokes, R. Andersen, C. Seifert, and K. Chellapilla, “WebCop:
Locating Neighborhoods of Malware on the Web,” in Proc. USENIX LEET, 2010.

[47] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee, “ARROW: Generating
Signatures to Detect Drive-By Downloads,” in Proc. WWW, 2011.

[48] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
Stealthy P2P Botnets Using Statistical Traffic Fingerprints,” in Proc. IEEE
DSN-DCCS, 2011.

[49] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N. Feamster,
“Boosting the Scalability of Botnet Detection using Adaptive Traffic Sampling,”
in Proc. ACM ASIACCS, 2011.

[50] K. Wang, and S. J. Stolfo, “Anomalous Payload-based Network Intrusion
Detection,” in Proc. RAID, 2004.

[51] L. Lu, V. Yegneswaran, P. Porras and W. Lee, “BLADE: An Attack-
Agnostic Approach for Preventing Drive-By Malware Infections,” in Proc. ACM
CCS, 2010.

[52] Lee, C. P., Framework for Botnet Emulation and Analysis. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, Nov. 2008.

[53] M. A. Rajab, L. Ballard, P. Marvrommatis, N. Provos, and X. Zhao,
“The Nocebo Effect on the Web: An Analysis of Fake Anti-Virus Distribution,”
in Proc. USENIX LEET, 2010.

[54] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and D.

Dagon, “Detecting Malware Domains at the Upper DNS Hierarchy,” in Proc.
USENIX Security, 2011.

[55] M. Bailey, J. Oberheide, J. Andersen, Z. Morley Mao, F. Jahanian,

and J. Nazario, “Automated classification and analysis of internet malware,”
in Proc. RAID, 2007.

[56] M. Cova, C. Kruegel, and G. Vigna, “Detection and Analysis of Drive-
by-Download Attacks and Malicious JavaScript Code,” in Proc. ACM WWW,
2010.

128

[57] M. Cova, C. Leita, O. Thonnard, A. Keromytis, and M. Dacier, “An
Analysis of Rogue AV Campaigns,” in Proc. RAID, 2010.

[58] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On Clustering Valida-
tion Techniques,” J. Intell. Inf. Syst., vol. 17, no. 2-3, pp. 107–145, 2001.

[59] M.A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A Multifaceted
Approach to Understanding the Botnet Phenomenon,” in Proc. ACM IMC, 2006.

[60] M.P. Collins and M. K. Reiter, “Finding Peer-to-Peer File Sharing Using
Coarse Network Behaviors,” in Proc. ESORICS, 2006.

[61] N. Anderson, “Vint Cerf: One Quarter of All Computers Part of a Botnet.”
http://arstechnica.com/old/content/2007/01/8707.ars, 2007.

[62] N. Daswani and M. Stoppelman, “The Anatomy of Clickbot.A,” in Proc.
USENIX HotBots, 2007.

[63] N. Falliere, L. O. Murchu, and E. Chien, “W32. Stuxnet Dossier,” tech.
rep., Symantec Security Response, 2011.

[64] N. Provos, J. McClain, and K. Wang, “Search Worms,” in Proc. ACM
WORM, 2006.

[65] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All Your
Iframes Points to US,” in Proc. USENIX SECURITY, 2008.

[66] P. Porras, H. Saidi, and V. Yegneswaran, “A multi-perspective analysis
of the Storm (Peacomm) worm,” in Computer Science Laboratory, SRI Interna-
tional, Technical Report, 2007.

[67] P. Porras, H. Saidi, and V. Yegneswaran, “Conficker C Analysis.”
http://mtc.sri.com/Conficker/addendumC/index.html, 2009.

[68] R. Lemos, “Bot software looks to improve peerage.”
http://www.securityfocus.com/news/11390, 2006.

[69] R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious
Flux Service Networks through Passive Analysis of Recursive DNS Traces,” in
Proc. ACSAC, 2009.

[70] R. Perdisci, W. Lee, and N. Feamster, “Behavioral Clustering of HTTP-
based Malware and Signature Generation using Malicious Network Traces,” in
Proc. USENIX NSDI, 2010.

[71] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser, “De-
tecting Spammers with SNARE: Spatio-temporal Network-level Automatic Rep-
utation Engine,” in Proc. USENIX Security, 2009.

129

[72] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov,
“BotGrep: Finding P2P Bots with Structured Graph Analysis,” in Proc.
USENIX Security, 2010.

[73] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-Network
Identication of P2P Traffic Using Application Signatures,” in Proc. WWW, 2004.

[74] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting,” in Proc. USENIX OSDI, 2004.

[75] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in
Your Spare Time,” in Proc. USENIX Security, 2002.

[76] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of
the Storm and Nugache trojans: P2P is here,” in USENIX; login, vol. 32, no. 6,
2007.

[77] Symantec, “The State of Spam, A Monthly Report September 2008.”
http://eval.symantec.com/mktginfo/enterprise/other_resources/

b-state_of_spam_report_09-2008.en-us.pdf, 2008.

[78] T. F. Yen and M. K. Reiter, “Traffic Aggregation for Malware Detection,”
in Proc. DIMVA, 2008.

[79] T. F. Yen and M. K. Reiter, “Are Your Hosts Trading or Plotting? Telling
P2P File-Sharing and Bots Apart,” in Proc. ICDCS, 2010.

[80] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
Detecting Fast-Flux Service Networks,” in Proc. NDSS, 2008.

[81] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measure-
ments and Mitigation of Peer-to-Peer-based Botnets: A Case Study on Storm
Worm,” in Proc. USENIX LEET, 2008.

[82] T. Karagiannis, A.Broido, M. Faloutsos, and Kc Claffy, “Transport
layer identification of P2P traffic,” in Proc. ACM IMC, 2004.

[83] T. Karagiannis and K. Papagiannaki, and M. Faloutsos , “BLINC:
Multilevel Traffic Classification in the Dark,” in Proc. ACM SIGCOMM, 2005.

[84] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large Databases,” in Proc. ACM SIGMOD, 1996.

[85] The Honeynet Project, “Know Your Enemy: Fast-Flux Service Networks;
An Ever Changing Enemy.” http://www.honeynet.org/papers/ff/, 2007.

[86] U. Bayer, P. Milani, C. Hlauschek, C. Kruegel, and E. Kirda, “Scal-
able, Behavior-Based Malware Clustering,” in Proc. NDSS, 2009.

130

[87] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, “An Archi-
tecture for Generating Semantics-Aware Signatures,” in Proc. USENIX SECU-
RITY, 2005.

[88] W. Fang and L. Peterson, “Inter-AS Traffic Patterns and Their Implica-
tions,” in IEEE Global Internet Symposium, 1999.

[89] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting
Botnets with Tight Command and Control,” in Proc. IEEE LCN, 2006.

[90] X. Hu, M. Knysz, and K. Shin, “RB-Seeker: Auto-detection of Redirection
Botnets,” in Proc. NDSS, 2009.

[91] Y. M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,

and S. King, “Automated Web Patrol with Strider HoneyMonkeys: Finding
Web Sites That Exploit Browser Vulnerabilities,” in Proc. NDSS, 2006.

[92] Y. Xie, F. Yu, K. Achan, R. Panigraphy, G. Hulten, and I. Osip-

kov, “Spamming Botnets: Signatures and Characteristics,” in Proc. ACM SIG-
COMM, 2008.

[93] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online Identifi-
cation of Hierarchical Heavy Hitters: Algorithms, Evaluation, and Applications,”
in Proc. ACM IMC, 2004.

[94] Y Zhao, Y. Xie, F. Yu, Q. Ke, and Y. Yu, “BotGraph: Large Scale
Spamming Botnet Detection,” in Proc. USENIX NSDI, 2009.

[95] Z. Li, A. Goyal, Y. Chen, and A. Kuzmanovic, “Measurement and Diag-
nosis of Address Misconfigured P2P Traffic,” in IEEE INFOCOM, 2010.

[96] Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Analysis of Large-
Scale Botnet Probing Events,” in Proc. ACM ASIACCS, 2009.

[97] Z. Li, M. Sanghi, B. Chavez, Y. Chen, and M. Kao, “Hamsa: Fast
Signature Generation for Zero-day Polymorphic Worms with Provable Attack
Resilience,” in Proc. IEEE Symposium on Security and Privacy, 2006.

131

