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Initial Half-Sine Shâ pe, m = 1, n = l/2 . . . . . . 62 

3.1^ Nondimensional Critical Loading versus Initial 
Rise Parameters, Limit Point, Ritz Solution, 
Initial Half-Sine Shape, m = 2, n =1/2 . . . . . . 6 3 

3.15 Nondimensional Critical Loading versus Initial 
Rise Parameters, Limit Point, Ritz Solution/ 
Initial Half-Sine Shape, m = 3, n = l/2 . . "...":.• . . 6k 

3.16 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 1, n = 2 . . . . . . • • •••• • . 6 5 

3.17 Nondimensional Critical Loading versus Initial 
Rise Parameters, m — 2, n = 2 . . . . . . . . . . . 66 

3.18 Nondimensional Critical Loading versus Initial 
Rise Parameters, m ='3> n = 2 . . . ̂  . . . . . . . 67 

3.19 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 1 , n = l/2 . . . . . . . . . . 6S 

3.20 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 2, n = l/2 . . . . . . . . -.'.*' 69 

3.21 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 3> n = l/2 . . '...'. . . .... . 70 



LIST GF ILLUSTRATIONS (Continued) 

Figure Page 

3.22 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = ^.20, m = 2, n = 2,1/2 82 

3.23 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = 10, m = 2, n =2,1/2 .... . . . . . . . . . . . 83 

3.2^ Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e =30, m "= 2, n =2,1/2 . „ . . . . . . . . . . . . 8^ 

3.25 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Areh End Inertias to Arch Center Inertias, 
e = 3.^85, m = 3/n = 2,1/2 . . . . . . . . . . . . 85 

3.26 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = 10, m = 3, n =2,1/2 . . . . . . . . . . . . . . 86 

3.27 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = 30.0, m = 3, n = 2,1/2 . .,»..,. . . . . . . . . 87 

^.1 Total Potential Curve in the Configuration Space 
of the Generalized Coordinate a, . . . . . . . . . . 93 

k.2 Total Potential Contour Lines in the Configuration 
Space of the Generalized Coordinates a-, and a? . . . 9^ 

^.3 Total Potential Contour Lines in the Configuration 
Space of the Generalized Coordinates a, and ap, 
e = 8, qcr =(MPCL), m = 3 . . . . . . . . . 7 . . . 100 

k.k Total Potential Contour Lines in the Configuration 
Space of the Generalized Coordinates a| and Ep, 
e = 8, qcr = (MGCL), m = 3 . . . . . . . . . 7 . . . 101 

^.5 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MPCL), m = 1 . . 102 

U.6 Nondimensional Critical Loading versus Initial 
Rise Parameters, 'Half-Sine Shape, (MGCL), m = l . . 103 

^.7 Nondimensional Critical Loading versus Initial 



X 

LIST OF ILLUSTRATIONS (Continued) 

Figure Page 

Rise Parameters, Half-Sine Shape, (MPCL), m = 2 . .'. . 104 

4.8 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MGCL), m = 2 . . . 105 

4.9 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MPCL), m = 3 . . ... 106 

4.10 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MGCL), m = 3 . .; V 107 

4.11 Dynamic Ratio versus Nondimensional Initial Rise 
Parameters, m = 1 . . . . . . . . . . . ., . . .". . . 109 

4.12 Dynamic Ratio versus Nondimensional Initial Rise 
Parameters, m = 2 . . . . . . . . . . . . . . . . . . 110 

4.13 Dynamic Ratio versus Nondimensional Initial Rise 
Parameters, m = 3 . . . . . . . . . . . . . . . . . . Ill 

4.14 Nondimensional Critical Impulse versus Initial 
Rise Parameters, m = 1 . . . . . . . . . . . . . . . 120 

4.15 Nondimensional Critical Impulse versus Initial 
Rise Parameters, m = 2 . . . . . . . . . . . . . . . 121 

4.16 Nondimensional Critical Impulse versus Initial 
Rise Parameters, m = 3 . . . . . .. .. . . ." . . .. . . 122 

4.17 Possible Paths in the Configuration Space of the 
Generalized Coordinates for the Loading of Constant 
Magnitude and Finite ".Duration, e = 8, p = 1.0 . . . . 127 

4.18 Critical Conditions for the Loading of Constant 
Magnitude and Finite Duration/ e = 8,m = 3 . . . . . 



NOMEINCLATURE 

a = variable parameter, adjusts inertia distribution 

a, = symmetric mode generalized coordinate (r, = a, + e) 

ap = antisymmetric mode generalized coordinate 

A(x) = non-Uniform stiffness cross-sectional area 

A = uniform stiffness cross-sectional area 
u 

A = ratio of non-uniform to uniform cross-sectional areas 

A = minimum allowable cross-sectional area 
o 

DRz-̂ px = dynamic ratio of the quasi-static loading to the loading 
• of constant magnitude and infinite duration for minimum 

possible critical loadings 

DR/ x = dynamic ratio of the quasi-static loading to the loading 
•* ' of constant magnitude and infinite duration for minimum 

guaranteed loadings 

e = initial rise parameter, maximum w 

e = initial rise parameter specifically for uniform geometry 

e. ...'.'• . =• initial rise parameter specifically excluding uniform 
geometry 

E = Young's modulus 

I = Hamilton's integral 

In = arch end moment of inertia 

Ip = arch center moment of inertia 

l(x) = rion-uniform stiffness moment of inertia 

I -uniform stiffness moment of inertia 
u 

I :,",_ = ratio of non-uniform inertia to uniform inertia 

IMP = impulse per unit mass 



NOMENCIATUEE (Continued) 

length "between arch supports 

Lagrangian 

"bending moment 

exponent which relates inertia to area [l(x) = QA (x)] 

exponent which distributes inertia [l(x) = I (x/a) ] 

Euler "buckling load (simply supported) 

nondimensional axial loading, f= (L/p) Q/TTHEA 

transverse uniform loading 

transverse half-sine loading, maximum magnitude 

loading at which the critical kinetic energy is reached at 
the zero-loading saddle point, finite duration loading 

transverse half-sine loading for uniform geometry 

transverse half-sine loading for nonuniform geometry 

axial loading due to displacement from initial position, 
Q = e - q± .' 

radius of curvature 

time, dimensional 

kinetic energy 

non-dimensional critical time (finite duration) 

axial displacement 

admissible axial displacement functions 

stretching energy 

"bending energy ^ 

potential of external forces 

total potential energy 
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NGMENCLATLfEE (Continued) 

total potential energy functional for admissible displace
ment functions 

pth variation of the total potential, p = '1,2,3>• ••00 

uniform stiffness volume 

non-uniform stiffness volume 

nominiform to uniform volume ratio 

transverse position of the deflected reference line, 
measured from the x-axis 

initial transverse arch position of the reference line, 
measured from the x-axis 

admissible transverse reference line position functions 

axial coordinate 

constant which relates inertia to cross-sectional area 
[I(X) = cA

m(x) ] 

small positive parameter 

strain in the axial direction at any material point 

strain in the axial direction of positions on the reference 
line 

Euler strain 

curvature of the shallow arch 

augmented critical loading functional 

Lagrange multiplier 

nondimensional longitudinal coordinate (§= TTX/L) 

ratio of arch center to arch end moment of inertia 
[p = . y ^ = (L/2a + l)n] 

mass per unit volume 

axial stress 



NGMENCLATUrRE (Continued) 

nondimensional time 

dimensional quantity 

total derivative for quasi-static loadings 

partial derivative for dynamic loadings 

non-dimensional time derivative 



SUMMARY 

The problem of snap-through buckling of shallow arches with 

non-uniform stiffness under both quasi-static and dynamic loadings is 

investigated. Analyses of different stiffness distributions are per

formed to show the possible weight savings or increase in load carry

ing capability realized over the uniform geometry arch. In addition, 

conditions are determined to achieve a maximum load (snap-through) 

carrying capability design for an arch of specified volume, initial 

shape and length. No • attempt is made to find the desired stiffness 

distribution. 

For quasi-static loadings the geometries considered are the 

half-sine pinned arch with two symmetric stiffness distributions. The 

cross-sectional area-moment of inertia relation is I = a A where o is 

a positive constant and m = 1, 2, 3» The analysis, for the entire 

range of rise parameters, is accomplished through a Ritz-type technique 

and it includes both symmetric as well as antisymmetric snapping. 

Since closed form solutions for non-uniform geometries can only be 

achieved for axisymmetric behavior and specific stiffness distribu

tions, such analyses are used to provide a confidence factor for the 

approximate technique. 

A weight savings assessment is made by comparing the weight of 

the non-uniform geometry arch to that of uniformgeometry provided 

that they both have the same critical load (equal strength). Maximum 

weight savings up to 20 per cent are observed for the m = 3 geometry 
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depending upon the value of the rise parameter. The maximum weight 

savings observed for m = 2 are of the order of four to five per cent. 

For m - 1, the uniform arch is generally the strongest.' 

For dynamic loadings one particular inertia distribution is 

used since it yields the best strength for quasi-staticloadings. 

The following three cases of dynamic loadings are considered with a 

half-sine spatial distribution: 

1) Loading.of constant magnitude and infinite duration, 

2) Ideal impulse (DIrac-delta), 

3) Loading of Constant magnitude and finite duration. 

The method employed is one which relates critical conditions to 

characteristics of the total potential surface. Results are computed 

for a complete range of initial rise parameters and nonuniformlty 

parameters. In general, m = 3 is the best configuration for all 

dynamic cases. A 30 per cent maximum increase in load carrying capa

bility is realized for the load of constant magnitude and infinite 

duration arid a 20 per cent increase for the ideal impulse. For small 

finite duration times the increase is well above that realized for the 

infinite duration time. 

The optimization problem has as its objective the maximization 

of the critical load (snap-through) for a fixed volume of material. 

To obtain the critical load Trefftz' criterion is used, which is based 

on setting the first variation of the second variation of the total 

potential equal to zero. 

The equilibrium equations together with that obtained from 

Trefftz' criterion yield the critical loading (objective function). 
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Next, the augmented functional is formed for the constant volume con

straint and extremized vith respect to the cross-sectional area yield

ing an integrodlfferential equation. The solution is obtained by 

satisfying the equilibrium equations simultaneously vith the optimal-

ity condition subject to the constant volume constraint. 



CHAPTER I 

INTROIDQCTION 

1.1 Motivation 

Structural members of elastic materials have diversified uses 

as modern structural elements. The need for easier handling of 

industrial structural components, the advent of spaceflight and the 

development of synthetic materials which lend themselves to new fabri

cation processes enforce the need for new technology. Thus, the 

requirement of minimum weight for such structures is of paramount 

importance. The proper choice of material distribution yields the 

best design for minimum weight, 

Thin walled isotropic and orthotropic shallow panels are of 

importance in the above class of structures. Such structural elements 

are often subjected to both quasi-static and dynamic lateral loadings, 

It is important to know how the stiffness of the structure affects the 

response to such loads. One such response is snap-through buckling 

or oil-canning. Many authors have either theoretically or experi

mentally investigated uniform shallow arches under both quasi-static 

and dynamic loadings. For quasi-static loadings snap-through buckling 

is characterized by a visible and sudden jump from the prebuckled con

figuration to another nonadjacent or far equilibrium configuration, 

Although the quasi-static analysis is sufficient to enable one to cal

culate buckling loads when the load is applied slowly, there are other 
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problems of interest, such as loads which are applied with constant 

magnitude and finite duration (step loadings). If the walls of the 

structural panel or arch are sufficiently thin, snap-through can occur 

when this member is everywhere elastic, although inelastic effects 

can arise after bucfcling. ; Furthermore, large lateral displacements 

of these structural elements may cause adverse effects on the per

formance of the overall configuration. The snap-through load is often 

the basic load for establishing design criteria. 

1.2. Objective 

In this investigation the problem of snap-through buckling of 

low arches with non-uniform stiffness under both quasi-static and 

dynamic loadings is considered. In addition, parametric studies are 

performed to show the possible weight savings realized over the uni

form geometry arch. This is accomplished by comparing the weights of 

uniform and nonuniform stiffness geometries of equal strength. "Equal 

strength" means that the buckling load for the two geometries is the 

same provided that the length and the initial rise are equal. 

Finally, given a low arch of specified volume and length, 

optimality conditions are determined which lead to optimum stiffness 

distribution for maximum strength. 

The analysis of nonuniform stiffness shallow arches under both 

quasi-static and dynamic loads is accomplished through an approximate 

(Ritz-type) technique. Since closed form solutions for nonuniform 

geometries can only be achieved for axisymmetric behavior and specific 

stiffness distributions, such analyses are used to provide a confidence 



factor for the approximate technique. Also, exact solutions are 

available for a half-sine'pinned low arch of uniform geometry under 

a half-sine spatial distribution of the load for both quasi-static 

and dynamic application. The se solutions, through comparison, pro

vide a check to the approximate solution. 

The complete analysis, including comparisons, is presented 

through the following three tasks. The first task is to obtain a 

closed form solution to the pinned low arch loaded quasi-statically 

with a uniformly distributed transverse loading. The cross-sectional 

moment of inertia is taken to be l(x) =. I-(x/a). as shown in Figure 

2.1. The initial shape of the arch is taken to be parabolic. This 

task is presented in chapter two. The second task begins with an 

apprdximate solution to the above problem> assuming a two mode response. 

These two modes are taken to be symmetric and anti-symmetric with 

respect to the plane of structural symmetry. By comparing these 

results to those of task one a degree of confidence is established in 

the accuracy of the approximate solution. Included in the second 

task, the approximate solution is used to generate results for the 

following problems: Low half-sine pinned arches, with half-sine 

quasi-static loadings, and two different stiffness distributions, 

l(x) = 3Lrry and l(x) = Iyf") • Correlation of critical loadings 

for the different inertia cases and the constant volume condition is 

considered as a preliminary stesp towards optimization of low arches. 

Finally, in task three (Chapter IV) the approximate technique 

is used to generate results for the low half-sine pinned arch, with 

l(x) = IT("~/S under specified dynamic loadings applied with half-sine 



spatial distributions. These dynamic loadings are the loading of 

constant magnitude and infinite duration, the ideal impulse and the 

loading of constant magnitude and finite duration. The first two 

dynamic cases can be thought of as idealizations of the following two 

categories of "blast" loadings, respectively: 

1) "Blasts" of low decay rates and high decay times. 

2) "Blasts" of high decay rates and low decay times. 

In all three tasks the moment of inertia is related to the 

cross-sectional area by l(x) = or A (x) Where <y is an appropriate 

constant and m is taken to be one, two pr three. 

1.3. Historical Review 

The analysis of shallow arches with uniform geometry has long 

been a problem Of interest to many investigators. The design of 

rings and high arches with nohunifbrni stiffness has more recently 

received attention stemming from investigations of the optimum column. 

Following is a chronological list and brief discussion on relevant 

'works. ••"' 

Both quasi-static and d;yjiiamicî  

shallow arches have been studied by various methods. The significance 

of snap-through buckling, in so far as it illustrates certain impor

tant features in more; complicated buckling problems of plates and 

shells, was pointed out by Marguerre , who constructed a simplified 

2 
mechanical model to demonstrate these features. Timoshenko obtained 

an approximate solution to the problem of a low arch under a uniformly 

distributed load. Biezeno^ considered the problem of a low circular 



arch loaded laterally at the midpoint with a concentrated load. 

k 
Kaplan and Fung investigated the problem of pinned low arches of 

various initial shapes and spatial distributions of the lateral load. 

Their results show that a very shallow arch snaps through symmetri

cally, whereas a higher arch "buckles asymmetrically. They also ran a 

limited number of experimental tests, and their data is in good 

agreement with their theoretical predictions. In 1962, Gjelsvik and 

Bodner obtained an approximate solution to the problem of a shallow 

arch with a concentrated load at the midpoint of the arch and clamped 

boundaries. They also reported experimental results, and they showed 

good agreement between their experimental data and theoretical 

results. In 1965/ Simitses obtained solutions to the pinned and 

clamped low arch under a half-sine loading with an initial half-sine 

shape. Antisymmetric as well as symmetric modes of deformation were 

considered. The arch was shown to buckle antisymmetrically for suf

ficiently high initial rise parameters. Critical loads were calcula

ted for a complete range of initial rise parameters. In 1966, 

7 
Schreyer and Masur obtained an exact solution to the problem of a 

clamped low circular arch under uniform pressure and concentrated 

load at the midpoint. Contrary to the results of Ref. [6], they 

showed that for the concentrated load case the arch snaps symmetri

cally regardless of the value of the initial rise parameter. In 

ft 
1971, Dickie and Broughton considered a more complete class of these 

problems. They concerned themselves with both symmetric and asym

metric buckling of low arches subject to radial transverse loadings 
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and possessing either pinned ends, clamped ends or a combination of 

both. The type of loadings considered were both center point, uniform 

radial, and linearly varying radial^ Approximate series solutions 

were compared with experimental values. 

The problem of snap-through buckling of low arches with 

uniform stiffness under dynamic loads has been treated by many inves

tigators. Some relevant references are the works of Hsu, Kuo, arid 

Lee , and Hoff and Bruce . More recent works are those of Simitses , 

11 1? 
Lock , and Fulton and Barton ~. In 19^5 > Ref« [6] followed an energy 

surface approach to determine critical loadings as does Ref. [10]; 

however, Ref. [11] and Ref. [12] use a different criterion for buck

ling. Lock numerically integrated the equations of motion to 

determine stability criteria. In 1971> Pulton and Barton investi

gated the same arch by a finite difference approach. Stability 

criteria for Ref.,[11] and Ref. [12] consisted of examining peak 

values of the average displacement. The value of the load at which 

this peak displacement exhibited a sudden increase for a very small 

increase in loading was defined as the dynamic buckling load. Results 

for the symmetric mode were compared to that of Ref. [10]. The 

critical ideal impulse values were considerably lower than those of 

Ref. [10]. Antisymmetric mode results were plotted and correlated 

well with those of Ref. [11]; however, they yielded questionable 

"gaps in the dynamic buckling strength" as stated by Fulton and 

Barton . Both Ref. [10] and Ref. [6] show higher critical values 

which increase monotonically with the initial rise parameter. 



The study of structures for minimum weight started with 

Lagrange around 1770 when he arrived at an erroneous result. He 

determined that the strongest column should be one of constant cir-

• cular cross-section. The correct result was achieved by Clausen 

et al. in 1851 for simply supported columns with similar cross-

sections. If the moment of inertia, I, and the area, A, are related 

by I as ot A , then similar sections are associated with m = 2. He 

determined that the best shaped column had a volume of /3/2 times the 

volume of the uniform cylindrical column of the same load carrying 

capability. This problem was generalized and completely solved by 

Ik Keller who determined that, of all simply-supported columns with 

convex and similar cross-sections, "the strongest column has an 

equilateral triangle as its cross-section and is tapered along its 

length, being thickest in the middle and thinnest at its ends. Its 

buckling load is 6l„2 percent larger than that of a circular cylin

der ... For a uniform column triangular!zing was shown to increase the 

buckling load by 20*9 percent over that of a circular cylinder." This 

was further generalized by Tadjbakhsh and Keller to four types of 

16 ' 
boundary conditions. Keller and Nibrdson treated the problem of 

finding the height of the tallest column under its own weight. 

17 
Taylor recognized that the optimality relation between shape and 

• i r 

displacement obtained by Tadjbakhsh and Keller J could be obtained 

directly by minimizing the potential energy of the system with a 

volume constraint superposed/Salinas determined a general class 

. '19 
of problems for which this procedure applied. Prager and Taylor 

provided an exact solution for a simply-supported column for m equals 
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one. Closed form solutions for m equals three and a finite element 

displacement solution for m equals one, two and three for the column 

20 
with elastic restraints have been obtained by Simitses et al. 

Treatment of the corresponding problem of determining that shape of 

a high circular arch which has the largest critical buckling pressure 

of all high circular arches of given radius, central angle, and 

' • 2 1 • • 

volume has been performed by Wu . Wu allowed only inextensional 

deformation for m equals three. The optimality condition was found 

to be the same as for a column with m equals three. Following this 

22 work, Budiansky et al. have studied a class of such problems to 

include uniform radial loading and dead pressure loading or loadings 

which are constrained to remain parallel to their initial directions of 

application. Finally, a review of such works is discussed by Niordson 

23 2k 25 
and Pederson , Wasiutynaki and Brandt , and Sheu and Prager . 



CHAPTER II 

QUASI-STATIC CLOSED FORM SOLUTION 

2.1 Introduction 

The shallow arch is an important member of a class of structures 

used in industry. It is advantageous in many cases to minimize the 

weight of such a structure. In order to find a least weight structure 

it is important to choose a method which leads to accurate results with 

a minimum of effort and time. To establish the validity of an approxi

mate solution a degree of confidence must be confirmed by considering a 

closed form solution if possible. Ref. [3] outlines a procedure for a 

low arch with uniform geometry under a center point loading. The same 

method is used herein to determine critical uniform loadings for the 

symmetric shallow arch with the specified non-uniform stiffness 

2 T 
l(x) = I-(x/a) . Note that this expression is valid for a £ x £ a +;•—•• 

The arch is initially parabolic, uniformly loaded and has simply sup

ported ends as shown in Figure 2.1. The results obtained are compared 

to those of the approximate procedure in order to establish the degree 

of confidence. 

2.2 Assumptions 

The following assumptions apply to all subsequent quasi-static 

investigations: 

a) The linearly elastic material of the shallow arch is homo

geneous and isotropic. 
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2 

b) The slope is everywhere small (shallowness), (~TrJ « 1. 

c) The arch is thin. The thickness is much smaller than the 

typical arch dimension L, i.e. h « L. 

d) Cross-sectional planes "before deformation remain plane and 

normal to the deformed axis of the low arch after deforma

tion. 

e) The rate of load application is so small that it does not 

induce any appreciable dynamic effects in the response of 

the structure (static analysis). 

f) The cross-section of the low arch possesses a plane of sym

metry, and the loading is restricted to this plane. The 

possibility of lateral deflection is ignored. 

g) The cross-sectional moment of inertia, l(x), is related to 

the cross-sectional area, A(x), by the relation l(x) •== QA (x). 

In principle, m can have all positive values, thereby 

exhibiting a host of possible geometries. Results are only 

computed for m equals one, two and three which> for example, 

characterize a variable base and fixed height, variable 

base and height, and variable height and fixed base, 

respectively. 

2.3 General Method of Approach 

Equilibrium equations for the quasi-statically loaded arch with 

an initial parabolic shape are written on the deformed structure. 

From linear constitutive equations and nonlinear kinematic relations, 

due to finite rotations, the axial loading is related to deformations. 
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The transverse equilibrium equation is solved by introducing an 

exponential substitution to achieve the homogeneous solution and 

assuming a quadratic polynomial to acquire the particular solution 

for the axisymmetric behavior of the arch. The transverse and in-

plane equilibrium equations are reduced to a single nonlinear inhomo-

geneous quadratic equation in the transverse loading as a function of 

the axial loading, initial rise parameter, and the structural geome

try. From a plot of transverse loading versus axial loading, the 

transverse loading at which there is no increase for a small increase 

in the axial loading is defined as the critical snap-through loading. 

When the axial loading, corresponding to the critical transverse load

ing, reaches that of the 2nd buckling loading of a beam as a straight 

strut, then this is the lower bound of purely antisymmetric buckling 

since the strain energy of stretching for the curved member is shown 

to be equal to the strain energy of stretching for the member as a 

straight strut at this loading. The second buckling load can only be 

determined for uniform geometry. This lower bound corresponds to a 

particular initial rise parameter, e. The upper limit on e, for which 

the axisymmetric behavior is applicable, is estimated from the known 

value for uniform geometry. For rises less than this particular 

quantity buckling occurs at the limit point. An outline for the above 

procedure is described in Ref. [3] for a uniform geometry arch loaded 

by a center point loading. 

2,k Development of the Governing Relations 

Let w and w denote the initial undeformed and deformed 
o 
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configuration for the reference line of the low arch, respectively. 

Also, u represents the horizontal displacement of any point of the 

reference line. See Figure 2.1 for geometry and sign convention. 

Considering the above assumptions and notation one obtains the follow-

•' 2T 
ing kinematic relation, which i s nonlinear due to finite rotatioh s: 

Due to Assumption(b) 

e = e + ZK (2) 
•' O'' X . x ' 

where e is the reference line strain and z is the distance from the 
0 

reference line. H is the change in curvature of the reference line 

given by 

d2w -.2 

\=-i-fl <3) 
dx dx 

Denoting by Q and M the resultant axial force and resultant bending 

moment, respectively 

Q* = -T a dA 
°A x 

M = P za dA 
J A X 

Use of Assumption (a) andEquation 2 yields 

Q = - EA(x)eo (*0 



w 

I I I I I 1 I I I I I * T l T l < 
.Deformed Reference Line At-Undeformed 

Reference Line 

Section AX 

Figure 2.1. Geometry and Sign Convention for the Low Arch. 



Ik 

and 

M =-EI(X)HX (5) 

The equilibrium equations and proper boundary conditions for symmetric 

behavior are 

A 2 d 2w ,., N , N2 
d w 
dx dx 

o . Q*w ^ l(x-a) ^ (x-a) ic\ 

2 + El^T = q* ̂ I(lt ' «?*MifxT (6a) 

f = o :••; (6b) 

v(a) = f (a+|) =0 (7) 

Note that, because of the restriction of axisymmetric behavior, the 

domain of applicability of the governing equation is a £ x £ a + —.... 

Consideration of the kinematic equation, Equation 1, integration of 

Equation h over the length between arch supports, use of the fact that 

the ends are immovable and the behavior is symmetric yields 

, L L 
-.8- 7" o & + p P r?ij O 

2.5 Solution 

The initial shape of the nonuniform arch is (see Figure 2.1) 

wQ(x) = (4eVL
2)[x(2a+L-x) - a(a+L) ] (9) 



where 

e* = v (10) 
max 

With l(x) = I..(x/a) the governing differential equation, Equation 

6a, becomes one with variable coefficients. 

El//a^ ̂  + Q*w = q* % ^ - SH^L- - - ^ 
dx a L 

(ID 

The homogeneous equation can be reduced to 

d w dw ; Q*aw_ _ 

~2 - d ^ + i r ~ w = 0 

dz 1 

(12) 

wi/th constant coefficients by the exponential substitution x/a = ez, 

The solution to Equation 12 (See Ref. [28]) is 

wQ =.'JeZ (A sin pz + B cos gz) . (13) 

The par t i cu la r solution to Equation 11 i s given by 

w (x) = Cx + Dx"•+ F 

where the constants C, D and F are 

C • = ..- ( l o E I ^ * + a2L2q*)/(2 + ]^){2EI^?) 

(•1*0 

D = a2q*(L + 2a)/SET^2 

F = - a3q*(a + h). {ZEl^? 
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and k2 =Q*a2/EI1 

>- = #* -i) • 
The general solution, which is the sum of the particular and 

complementary solutions, involves two constants, A and B [see Equa

tion (13)]. These constants are evaluated from the boundary condi

tions, Equations 7. These constants are: 

A = {-[C(2a + L) + D][2a(2a + L)]1^2' 

- * K [ ^ 

B = a 2 ^ * ^ ^ - q*a2L2)/(2 + k 2 ) ^ ^ ) 

If the solution is substituted into Equation 8, then a 

nonlinear expression is obtained which relates q* and 0*. 

From this equation one obtains a plot of transverse 

loading versus axial lbading for any geometry desired. As an example 

see Figure 2.2 and Figure 2.3 for uniform geometry. Figure 2.2 repre

sents curves for initial rise parameters ranging from no snapping to 

the upper bound for axisymmetric snap-through. The curves of Figure 2.3 

represent solely axisymmetric buckling which is not the actual buckling 

mode realized for this range of initial rise parameters. Hence, the 

closed form solution is not applicable for this range. One similar 

curve is shown in Ref. [3] for the pinned arch under a center point 
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loading. Critical loadings versus initial rise parameters for non

uniform stiffness and constant volume are plotted in Figure 2.4 through 

Figure 2.6. Exact values are given in Table 3.1 through Table 3*3. 

Note that critical loadings and initial rise parameters are given in 

a nondimensionalized form. The nondimensionalized parameters q and e 

are given "by 

q = q*Po/EAue^ , Q = Q*8L2/tou and e = e*/PQ 

where 

p2 == f ]k r ro sir u' 

A and I are the area arid moment of inertia of the uniform geometry, 

2 
€-, is the Euler strain (rrp /L) and E is Young's modulus. Critical 
J!i O 

loadings are compared considering constant volume for each geometry. 

The constant volume condition becomes 

V = ^ = _ - 2 ^ = 1 (15) 
\ . T 

,1 JO. 

1F)L 

where 

V = A L 
u u 

(° -1) 
Vnu a 

A(x)dx 
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where 

r ., .n~ l/m A(x) = [(1^)1) J 

Thus, one obtains 

1 
, — m+n 
I , vlllr V>(T)OT + -S) ]E(P"-W I A - - 1 ) } 

and 

m+n m 

ii 6 i = *&*-.-V0 
u . .m 1 vm 

. (1 + l)^;-4 
where p = Ig/l-̂ , I-, and In are the cross-sectional inertias at 

and x = a + pj respectively. 

For n=2 one obtains 

^ = IlL(p
3/2 - l>/3a(p

l/2 - 1) . 

V u = . ^ + l ) / 2 ^ 2 

nu i 

V^ = 3 1 ^ 5 / 6 - l ) /5c^3(p^ - !) 

and 

Iu = I^p372 - 1)/3(P1/2- 1) ^ ; 

Iu = I1(p1/2 + l)2A;=aA2 

Iu = 271^ P5/6 - 1)3/125(P1/2 - I ) 3 . - - aA3 



Nondimensionalization is now possible for all nonuniform geometries 

considered. 

Substitution of the above solution into the expression for the 

axial loading, Equation 8, and integration over the length yields the 

following nondimensional quadratic equation in the transverse loading 

where the A.'s are functions of the axial loading and structural 

geometry. 

2 
Ai q + A 2 q + A3 = ° (!6) 

The A. »s are given "by 

- ^ = {[sin(23toY)](p2-l)A3]{(2k2^l)r^ + 3x/[Mp2-l)4] 

+ (l-2k2)/[28(pi.l)80]} + k2.(p*-l)^nY[I^ •+ l/2
8(p*-l)89] 

';.'.'.+ {[1 - ^03(2^^)2(^-1)/2&]{^.^/^^-l)8Q2 

• {-Y?[cos(3toY)/l6(p^l)4k2(2+k2) + F sin(3toY)] 

+ l/[l6(p*-l)V2(2^2)}} + (3/[8(p*-l)^ 

+ [(l+2k2)/l6(p2-i)i+k23(2+k2) ])cos(3>CnY) + ((l+2k2)r/3 

''"•••;- l/8(p2-i)4k2(2+k2)jsin(3^iY)]'•'.- 2r. 

- (l+2k2)/l6(p*-l)\23(2+k2^....+• p/t^8(p*-l)6k2.].;; 
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; +(p-H»*+i)/i:(i£)(8t)(^-i)6(a.fta)ai 

- P*(p*+l) / [ ( l6) (8)(p*- l ) 6 k 2 (2 + k 2 ) ] 

A i 
-JT— ^ {8(p2- l )3 k

2
s i n (2p^Y)/3}{2( l -2k 2 ) r^ .-' [Px/2(p2-l)^] 

TT eff ' 

. + l / [ 2 8 (p* - l ) 8 e ]} - {32(p2--l)3k2[l - cos(23toY) ] / 3}{3^ 

- 3 / [ 2 M - i ) ? e ] + (i-2k2)^[i6(p*-i)4]} 

+ [8p27(pll)3,{Y^co^ 

+ r sinOtov)] - l/c^Cp^-i^Ck^)]} 

- [^k23/(p*-l)(2-fk2)2]{y3/2[(2r 

+ (l42k2)/l6(p2"-l)Uk2p(2+k2))cos(3-toY) 

+ ( ( i42k 2 ) r /3 - l / [ 8 k 2 ( p 2 . l ) \ 2 ^ 2 ) ) s i n ( 3 t o Y ) ] - 2 r 

f ( ^ / [ ^ p i l l V p t S ^ 2 ) ] } : ; {8p/(p*-l)(2+k2)2} 

' ^ 3 / / 2 [ " (2F + ( i ^ J / ^ C P ^ ^ C ^ J ^ o s C P ^ Y ) 

+ ( l / [ S ( p i ^ 

+ 2r;+ ( l - fSk^j /^Cpi- i )^^ .^ 2 ) '}" 

li ! ' ""'" 
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^ . = [ A ^ p ? - i ) 5 - . s i n ( 2 ^ 
fl* 

+ ( i^2k 2 ) /2 8 (p*- i ) 8 e} 

+ [ ( 3 2 ^ 

+ [2 9 (p*- l ) 5 k*[r - cos(23>kiY) ]/3}f31^ - 3 /2 8 (p*- l ) 86 

+ ( l - 2 k 2 ) V 2 \ p * - l ) 4 } . ' + [ 2 5 6 ( p * - l ) k 2 3 / ( 2 + k 2 ) 2 ] ^ 3 / 2 ^ ( 2 r 

+ ( l+2k2) / l6( p2- l ) \ 2 3(2+k 2 ) )cos (3^Y) 

+ ( l / [ 8 ( p * - l ) \ 2 ( 2 4 k 2 ) ] - ( l+2k 2 ) ry3 ) s in (3 t eY) ]+2r 

+•;{i^k2)/£j£(Pi.i) V3(2+k2)]} ; ; r ^ ; # ; - ; ; : 

V--+'-.3?C^p*+i)/E3( 

• ' • ' V : m-2-

. ' ; + ^ k 2 ( p i - l ) ( p 2 m . l ) / [ ( . 2 / m ) ^ 

where' 

Y = 1 + L/2a = p* = ( I g / ^ ) ^ 

9 = k 4 ( k 2 4 2 ) 2 

r = { [ P 3 / 2 / ( p * - D 5 ] * + |[23sin(3^iY) - cos (3^ iV)] / [4 (p*- l ) 2 ]} / 

{Mp^-l)2k2(2+k2)[s:Ln(3toY) + 23cos(3-taY)]} 

X = f [ P 3 / 2 / ( p ^ - l ) 5 F + [23sin(3toY) - CQs(3toY)]/[^(p*-l)2]}/ 
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f = 

(Mp2- i ) 2 kW) 2 ) 

m+2 3m- l 3m-1 3m-1 

( ^ - 1 ) 2 # - I ) 2 (p*-)2] 
m+a m - 1 m-1 

fx = (-m->)2 # > 1 ) 2 '<£*> 
m-1 

2 

k^ =Q 

m+2 

( p 2 m - ) 
m 

-¥^ ( i ^ p tp^ -D^V 1 ) 



CHAPTER III 

QUASI-STATIC APPROXIMATE SOLUTION 

3.1 Introduction 

p 
The shallow pinned arch with l(x) = I_(.x/a) under a uniformly 

applied loading is investigated and a closed form solution is 

reported in Chapter II. This chapter deals with the same problem 

using an approximate technique with a two-mode response. These two 

modes are symmetric and anti-symmetric with respect to the plane of 

structural symmetry. The anti-symmetric mode is shown to be the 

governing one in Ref. [6] and Ref. [10] for uniform geometry and 

sufficiently high initial rise parameters. In this chapter a degree 

of confidence is established for the approximate technique as applied 

to the above problem by comparing results with those of Chapter II. 

As a subsequent stejythe approximate procedure is used for the half-

sine arch with l(x) = I..(x/a)2 in order to more completely investigate 

the effect of nonuriiformity on critical loadings. These two chosen 

inertia investigations may be thought of as a first step toward 

optimization of shallow arches lender quasi-static loadings. 

3.2 Governing Equations and Nondimensionalization 

Occasion arises, as in Chapter II, when one compares critical 

nondimensional loadings for different nonuniform stiffnesses, constant 

volume and a specified nondimensional initial rise parameter. In 

addition to the; nondimensionalizatioh parameters of Chap>ter II, one 



requires the following: 

v(x) = po n(§) 

x = ( L / T T ) § ';•• 

a. = a*/p , i = 1>2; amplitudes of modes (Equation 2l) 

V=lfl,?/w 
where 

P o = I u / A u 

«, = (TTPO/L)2 

I E = ^ I U / L 2 

By the procedure established in Chapter II the following are deter-

mined for n = i : 

Vnu= ••.2i1L(p3-ij/3o<p2-l) , m = l 

'. 1. 1 11 .' . 
Vm^ k^^-l)/3/(^--l) f m = 2 

. ; ' ^ ' ..• ± 1 • . A - •;• 
V . i = 6lfL(p3-l)/Ta3(p2-l) "-,. m = 3 
• n i l ;• -L. 

Iu = 2I1(p3-l)/3(p2-l) = 0 ^ , m = l 

•• - 5 ' 

I u = l 6 l 1 ( P
2 - l ) 2 / 2 5 ( p 2 - l ) 2 = o^ ••.; ' .•• m = 2 
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Iu =63l1(p
3-l)3/T3(p3-l)3>QA3 ., m = 3 

Knowing I and A and defining 

l 
.m 

m+n ,m-l 
7 mri \ 

1 (^s) '(AD 

and 

m 
I - . * m - l ' • • e v m - l 

Vfeffl #) 
one can now nbndimensionalize specified quantities in terms of the 

following parameters: 

T2 / 

1 1 

l2 .±^./l&f (1+ P2) 

1 I 1 I 
53 =9(c^6)3(Al)2/25I3(p2-l) 

n =2 

5l = aL
d/i1 

1 1 I 
52 -^L^p^D/^lfCp

2-!) 

53 =36^L2(p3-l)2/^(p2-l) 

n =?; 



3 1 

hL = (p
2-i)/3(p2-l) 

1 

h2 = (p
2+i)2A 

5 1 

h3 =2T(p
S-l)3/l25(p2-l)3 

n = 2 

h1=2(p
3-l)/3(p2-l) 

h0 = l6(p
2-l)2/25(p2-l)2 

h3 = 6
3(P

3-l)3/73(p2-l)3 

n = 2 

In order to obtain the total-potential energy one must develop 

certain relations. Letting the prime denote a total derivative with 

respect to § one acquires the following expression for Q* (see 

Equation 8). 

„ TT(a+L)/L ' p TT(a+L)/L ,, 

q*= - : ( P E / 2 ) / - / -Kir)2 . . - (Tio2]df/r ^ 
E JTTa/L ° JTra/L A d ) 

(IT) 

where A(§) = A(§)/A 
u 

M = pbiv l(§)[7£- lj'1 

where l(§) = l(§)/l 
u 

Next, the in-plane equilibrium equation is used in order 



to express the total potential solely in terms of the transverse 

position (w and consequently T)) of the reference line points. 

Forming the dimensional potential energies one acquires 

n(a+L)/L 2 : ? 2 n(a+L)/L . 

u* -A*^M& art- c^%?}•,//. . •,,;.•=«-
T - . • • * • na/L ' na/L A( §) 

n(a+L)/L _ o 

"£,-<W2">.r /T -iCWiCr-iTae 
T na/L 

n(a+L)/L 

^ L ^ W H f . §̂)[Ti > n0]as 
T na/L 

where 

T T • • T 

Therefore, the nondimensional total potential becomes 

>(19) 

V^W 

'.:••'•' T T ( a + L ) / L a 0 .2 TT(a+L)/L .,-

LJTra/L ° J JTTa/L A(§) 

TT(a+L)/L _ 0 

+ (2/n)f «§)[Tr - T^f d§ (20) 
m/L • ° 

n(a+L)/L 
+ (4/TT)WL

 q(5)[T1 " V35 



Page missing from thesis 



3^ 

1 1 1 

^ = (3-2TT2)/2W - TTp/4(p2. l)2 + TTp2A(p2-l) 

• 1 

) ± = - 16/2 TT T ^ / C P 2 - ! ) 2 . 

w i th 

| < a f ^ | 
D2 = ( l / T T 2 ) f / " " ' § 2 s in 2 2 

Tra/L 
JLS/TT) - a -.j]g)aS; 

<Pn=2 = P ^ - L / S O L 2 

m=l 

1 1 1 1 

cpn=2 = !]_(? - - l ) / 8 a L top 

1 1 1 1 

c p r i = 2 = l 3 ( p 2 - l ) / 2 ^ 3 I 2 ( p ^ l ) 

m=3 

cp ± = I£(p+l)/aii-
n = 2 
m=l -

1 1 3 
cp 1 - 3 I i ( p 2 - l ) / 2 ^ L 2 ( p 2 - l ) 

U=2 
m=2 

cp a = 5 I ^ ( p 2 - l ) / 3 a 3 L 2 ( p 3 - l ) 

n = 2 • . ' : : • • • ' . ' . • • • • . 

m=3 



and 

e =\ / (l28/n^)(p+p2+l)/[p+p2+l + (6/TT 2)(P-1)] )e 

for all m values. 

The equilibrium equations are 

r^r 2 - (32/3T^)e2 + ̂ a2] 

1 . "~ ' 

+ (^a)/TTgnicp)(p
2-l)2(r1-e) + <^^^= 0 (23) 

• • 1 

a2[r
2 - (32/3n2)e2 + fe2 - a^-l^/Tr^cp] = 0 

• Since, initially, a comparison with the exact solution is 

accomplished in order to obtain a measure of confidence for the 

approximate solution, a~ is set identically equal to zero. Once 

the degree of confidence is established, the approximate solution is 

used to generate results for the entire range of initial rise param

eters (antisymmetric buckling as -well). 

The equilibrium equation for symmetric response is: 

• . . i . 

t\ - [ ( 3 2 / 3 ^ ) e 2 - M p 2 - l ) 2 / n V ] r i = ^ (2*0 

where • 

• 1 

S = ^f-if/%p, - vhjzg^ 

It can be shown from Equation 2.k that there is no snap-through 

buckling for (see Figure 3^6)^ 



2 2 
e < ,/ 3^P -1) Z 8^, • ; 

Symmetric snapping (see Figure 3•?) terminates for (for details see 

Ref. [6] and Art. 3.̂ ) 

e = > 3TTt(p2-l)2/̂ gmcp 

The critical loading oectirsâ ^̂  point and becomes (see 

Fig. .3.8 and Ref. [6]) 

3 1 3 

*cr = <VTThm){(7^^/3
2)E(32/3T^)e2 - k ^ - l f / ^ f 

-f 2uie1(p2-l)2} (25) 

The above critical loadings for m=3> different p values/ and all 

initial rise parameters corresponding to limit point instability are 

shown in Figure 3.2 through Figure 3.5. Critical loadings for all 

three m values are shown in TaTSle "3.1 through Table 3.3. The difS-

crepancy betveen the Ritz and closed form solutions is greatest for 

uniform geometry and decreases as the non-uniformity in geometry 

increases. It is noted in Figure 3.2 through Figure3*5> for m=3> 

that the critical loadings predicted by the Ritz method are higher 

than those for the closed form solution. The worst discrepancy 

is for the lowest possible initial rise parameter and corresponds 

to approximately a 6.5 p>er;Cjent error. 

3.^ Shallow Half-Sine Arch with a Half-Sine Loading 

.-.'. Once confidence in the Ritz method is established with a two--



Figure 3.1 Tridimensional Critical Loading versus Initial Rise Parameters, Closed Form and Ritz 

Solutions, I-i/lp = 1*0« 
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Figure 3.2 Nondimensional C r i t i c a l Loading versus I n i t i a l Rise Parameters, Closed Form and Ritz 
Solutions, I - , / l 2 = 0.9, m = 3* n = 2. 
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Figure 3.3 Nondimensional Critical Loading versus Initial Rise Parameters, Closed Form and 
Ritz Solutions, I /I = O.k, m = Z> n = 2. 
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Figure 3.k Nondimensional Critical Loading versus Initial Rise Parameters, Closed Form 
and Ritz Solutions, i-,/l2
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Table 3.1 Critical Loadings and Initial Rise Parameters 
Shown in Figures 3.1 through 3*4, m=3> n=£. 

h/l2 R i t z Closed Form 

e ' q e r e q 
c r 

1.0 1,94 1.74 1.97 1.61 

3.00 3.71 3.00 •<••' 3.48 

4.00 7.20 4.00 6.82 

4.51 9.64 4.69 10.20 

0.9 1.94 1.75 ; 1.97 1.62 

3.00 3.71 3.00 , 3.48 

4,00 7.20 4.00 6.82 

4.51 9.64 k.G} 10.20 

0-. 4-.'. 2.12 2.12 2.19 2.10 

3.00 3.80 3.00 3.69 

4.00 7.28 4,00 7.06 

4.52 9.85 4.69 IO.58 

0.1 2.46 2.85 2.54 2.78 

3.00 3.90 3.00 3.83 

4.00 7.19 4,00 7.19 

4.67 10.50 4.84 11,48 



Table 3.2 Critical Loadings and Initial Rise Parameters, 
m=2, n=£. 

vv, Ritz Closed Form 

e qcr r 
e.. 

; qcr 

0.9 1.94 1.75 1.97 1.61 

3.00 3.71 3.00 3.48 

4.00 7.20 4.00 6.82 

4.51 9.64 4.69 10.20 

. 0.4 2.12 2.11 2.22 1.99 

3.00 3.77 3.00 3.68 

4.00 7.22 4.00 6.98 

4.52 9.82 4.70 10.51 

0,1 2.49 2.80 2.58 2.76 

3.00 3.73 3.00 3.82 

4.00 6.55 4.00 6.31 

4,73 10.31 4.91 11.27 



Table 3.3 Critical Loadings and Initial Rise Parameters, 
m=l> n=2^ 

vv. R i t z Closed Form 

e q c r e q 
^cr 

0.9 1.9^ .1.75 1.97 l . 6 l 

3.00 3.71 3.00 3.^8 

>.00 7.20 if.oo 6.82 

U.5.1 9.6k H.69 10.20 

O.k 2.16 2.11 2.26 2.05 

3.00 3.6U 3.00 3..6I 

k.QQ 6.93 U.00 6.8l 

^.60 9.82 ^.79 . 1 0 . 5 0 

0.1 2.77 2.86 2.85 2.82 

3.00 3.18 3.00 3.15 

U.00 5.80 k.bo '• 6.07 

5.26 10.51 5.^8 11.^5 
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mode representation, the problem is nov to investigate the pinned 

shallow half-sine arch under a half-sine loading for the two inertia 

distributions, l(x) = I T— J and l(x) = I-, (—J > and all m values. 

The total potential for n=2 and n=p becomes 

UT(ri,a2) = (g^h^JC^-e
2^)2 

1 • .. • 

+ i8(p2-l)2/tilii]C(^e
:j?i •- 8a|^] + aq^r^e), n=2 

and r(26) 

Vrl'a2> = (^9/l^)f4e2+4a
2)2 

a 
2 , ,2 +. [(p - l ^ T T h ^ C l r ^ ) 2 ^ - 8a2t] +'• Sq^r^e), n=^ 

/ 

The principle of the stationary value of the total potential leads to 

the following equilibrium equations for n = 2 and n = TJ, respectively: 

r
1 (

r
1 "

e +^a2)
 + (̂ /Trqjĝ Kp -1) (r^e) + ^ h ^ g ^ = 0 

a2[r
2-e2+^a

2-8t(p2-l)2/ngm9] = 0 

... '1 

^if^^+^J+^V^^kp^-i^ii^-e') + Bq^/e^ =° 

a2[r2-e2+^a2-8Kp ?- l)2 /Trgm9] = 0 

> n=2 

>n4 

(27) 

One defines % for n = 2 and n = ~ > respectively as 



*5 

i 2 
•QT = IfcoeCp -Ij-Aig^p. --^h /2ĝ .qj n=2 

O O "I 

.? = W ( p -1)' V-Tfĝ p - '.^h/g^p n=2 

The equilibrium equations for both n values become 

$ = [r1-e +4a2+4(o( p
2-l) /TT̂ cpUr̂  

1 

a2^rl"e +^ a
2"

8^P -1)/T7Sm9] = ° 

(28) 

(29) 

There are two possible solutions to the equilibrium equations 

1) .r-j. ̂  0 •,-.;. a2 = 0 

ii) rx £. 0 ,
 a2• > ° 

Case i and ii correspond to purely symmetric and to symmetric and anti

symmetric modes for a given rise parameter range. Since ap s 0 in case 

i, then 

r^-'.£e2,^ (30) 

Thus, there i s no p o s s i b i l i t y of snapping for (see Fig. 3*6) 

1 

e < 7 W p - l ) /TT^cp 

All possible quasi-static equilibrium positions are depicted in Figure 

3.5. Case ii is possible if 

/ T ~ ~ ~ ~ " : '••' 

/ n 2 
e * J-8,|f(p -1) /ngmcp 
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f-8^} 

''Am* 

Figure 3.5 Quasi-Static Equilibrium Positions in the ' (ri yâ :)-
Configuration Space. 
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Figure 3.6 Load-Deflection Curve Corresponding to No Snap-Through 
Buckling, Very Shallow Arch. 
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Figure 3.7 Load-Deflection Curve for Limit Point Instability. 



When antisymmetric modes are possible, the expression for ̂  and a? in 

terms of r are given below (obtained from the equilibrium equations), 

" \ 1 
T̂Tĝ cp 

(3^) 

k*l = e2 + 8t(:jph-.'iL)2'/TiB̂ q> - / ^ f / ^ ^ - l ^ ^ ^ f 

n P 

? = ̂ ( ^ ( p -i) /rrĝ cp 

l 

Figure 3.6 represents all possible positions of equilibrium. Figures; 

3.7 through 3.9 represent all of the possibilities of load-deflection 

paths depending upon the value of the rise parameter and the struc

tural geometry. Examining all equilibrium configurations for infini

tesimal disturbances, the sufficient conditions for stability (in the 

small) of quasi-static equilibrium positions are 

* \ A. 
dr. div3a2 

A * \ T 
Ba^S^ 3a, 

> 0 

The above conditions lead to the following two inequalities when buck

ling is governed by the symmetric mode (see Figures 3.7 and 3.8). 

•. ° V • • • ; • • • " , • • ' • • . 1 

r2 -; [e
2/3 - Mp-lJ^STTg^] > 0 

1 

r2 - [e2 + 8t(pn-l)2/TTK cp] > 0 



±9 

Therefore, in Figures 3,7 and 3.8, the equilibrium positions from -B 

to B are unstable (in the small). When "buckling is governed "by the 

antisymmetric mode the conditions for stability become (see Figure 

3.9) . 

1 • 

T\'-+ Ztu&^if-lf/Tlg^ >0 

U) + 2ijf > 0 

Therefore, the elliptic equilibrium positions of Figure 3.5 are 

unstable (in the small). 

Critical loadings are determined for a complete range of ini

tial rise parameters. The three critical ranges are as follows: 

/

I II 

WP 1 1-!) 2/^ < e <M^-lf'/rig^' I 

as in Figure 3.7, ibhe system will reach point B and snap through a sym

metric mode only. The critical loading at the limit point, B> becomes 

L*v<A^ cr 
n 1 x-2 -a)2/^*]2 

or, for n = 2, 

q i = ^/%>:8%^)Ee2 - M p n - i ) % ^ ^ 
cr.. 

and one sixteenth of Equation 32 for n = ^ . 

3) If i8tjr(pn-l)2/rr, 

1 

e <J- 2(u^t)(pn-l)2/Tigm9 > 



°2 

r i + k4 =. e 
2 + 8(p

n-i)2y 

^ 9 

Figure 3.8 Load-Deflection Curve and Corresponding (r ,a2) Equilibrium Ellipse for Limit 
Point Instability, Transient Aiitisymmetric"Moae. 
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2 ^ 8(pn-irY 

%>9 

Figure 3.9 Load-Deflection Curve and Corresponding (r,,ap) Equilibrium Ellipse for Purely 
Antisymmetrie Buckling. vn 

H 
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as in Figure 3«8, the system will reach point B and snap-through 

initially by a symmetric mode, The critical loading is still that 

given in case <*. 

Y) If « ^ / ^(UH-S^CP 1 1-!) 2/^^ , 

as in Figure 3«9> the system will reach point G and snap-through in 

an antisymmetric mode. The critical loading is determined by the 

antisymmetric equilibrium equations, Equations 31> evaluated at the 

rn coordinate of point C. Thus, for n = 2, 

1 1 .'.".: 

q± -. .*P(-Al)
2^^^ (33) 

cr 

and one sixteenth of the aTDo^ 

Before discussing the results; it is shown that the ratio of 

non-dimensional critical loads is equal to the ratio of dimensional 

critical loads. The same is true for initial rise parameters. First, 

one must determine, through the; npndimensionalization process, the 

dimensional critical loading (q* ), for both uniform and nonuniform 
c r 

stiffnesses, as a function of the nondimensional critical loading 

(q ) and the volume of the structure. 
• c r ' • ' • • • • ' 

nu 

£(a+L) 
= f ; A(i)d5 

Tta 
'•• L .• 

; 

§a+L) 1 

•48 
TO 
L 

qinu 

llnu 2_ I 
nEor 

3m-1 

Thus, 



3 3*-i 
^ 2 2 2 

Ofu 
Err 

= L 2 

cy 
m+1 

V u 'lu 

2 2 
„ ETT at „ 

q-x- =——- Y 
Inu T2 m-fl nu 

3m-1 
o 

'lmi 

Since e p = e* where p = I /A ro ro ir u 

e* = Qt 

m-1 
2 

V 
'u m-1 ii 

2 
u 

and 

JWL) 
,. , ' 

lU^) e* ' 

2 
m-1 

V - 3 J* , *c.s)is 
TTa 

L 

" TT T r a I 
L " L ' • . 

nu 1 
e 1 nu g 

a 
_ • •• . . . J L . . . • _ • ; 

Therefore , 

m-1 

e* = /-^rV 2 e 
nu /Tm-1 nu nu 

Equating non-uniform and uniform geometry volumes one obtains 

/e* 
/ nu 
\enu 

JL 
m-1 

I) 
2_ 

m-1 



JSS ) 

Thus, 

e* e 
nu _ nu 
e* e u u 

^lnu _ Inu 
qlu " qlu 

The generated data are presented graphically in Figures 3.10 

through 3.22. First, for n = 2 and m = 1 , 2 and 3, the data are shown 

in Figures 3.10 through 3.12 when buckling is governed by the sym

metric mode. These results are also tabulated in Tables 3.3 through 

3.5. It is seen that, for m = 1, nonuniform geometries realize a con

siderable decrease in load carrying capability over the uniform 

geometry, except for moderate nonuniformity. It should be noted that 

m = 1 is the case when only the base of the cross-sectional area is 

allowed to vary while retaining the same volume as the uniform arch. 

For m=2, critical loadings are greater than for uniform geometry 

except for extreme nonuniformity. Apparently, so much material is 

forced towards the center of the arch, for extreme nonuniformity, that 

the overall resisting stiffness becomes less effective in carrying the 

applied loading. For m = 3> only the height varies while retaining 

constant volume. This distribution of material realizes the highest 

critical loadings which increase with increasing nonuniformity for 



Figure 3.10 Nondimensional Critical Loadings versus Initial Rise Parameters, m = 1, n = 2, 



OH 

/ ^ = 0 0 1 

Figure 3.11 Nondimensional Critical Loadings versus Initial Rise Parameters, m = 2, n = 2, 
OA 



Figure 3-12 Nondimensional C r i t i c a l Loading versus I n i t i a l Rise Parameters , m = 3> n = 2, vn 
—] 
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Table 3.4 Critical Loadings and'Initial Rise Parameters 
Sham in Figure 3.10, m = 1, n = 2. 

\/:*2 e q 
cr 

1.0 2.00 1.57 

3.00 3.21 

4.00 6.29 

4.69 9.48 

0.9 2.02 1.62 

3.00 3.22 

4.00 6.29 
4.69 9M 

0.4 2.25 2.08 

3.00 3.39 

4.00 6.34 

4.79 9.76 

0.1 2.88 2.13 

3.00 2.83 

4.00 5.56 

5.47 11.Q4 

o.ooi 8.32 8.16 

10.00 10.74 

12.00 15.30 

13.81 21.00 
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Table 3-5 Cr i t i c a l Loadings and I n i t i a l Rise Parameters 
Shown in -Figure '"3.11* m = 2> n = 2. 

W e q 
cr 

1.0 2.00 1.57 

3.00 3.21 
k.OO 6.29 

h.69 9.^8 

0.9 2.02 1.62 

3.00 3.22 

^.oo 6.29 

k.68 9.kk 

O.k 2.21 2.08 

,3.00 3.37 
, U.oo 6.U9 

^.70 9.75 

0.1 2.59 2.75 

3.00 3.50 

^.00 .6.47 

^.92 10.82 

0.001 3.89 6.28 

5.00 ;9.3U 
6.00 13.^8 

6A6 15.93 



6o 

Table 3.6 Critical Loadings and Initial Rise Parameter: 
Shovn in Figure 3»12r m = 3? n = 2. 

i-,/12 e 9 
cr 

1.0 2,00 , 1.57 

3.00 3.21 

4. do : 6.29 

4.69 9.48 

0.9 2.02 1.62 

3.00 3.22 

4.00 : 6.29 

4.69' 9.^8 

0.4 2.20 2.09 

3.00 •••':• 3.49 

4.00 6.58 

4,69 9.78 

0.1 2;56 3.13 

3.00 3.99 

4.00 7.11 

4.86 11.03 

0.001 3.52 6.29 

4.00 7.62 

5.00 12.09 

5.73 16.17 



all initial rise parameters in this range. 

Data are also generated for n = ̂  a^d m = 1, 2 and 3 as shown 

in Figures 3.13 through 3.15 when buckling is also governed by the 

symmetric mode. These data are tabulated in Tables 3.7 through 3.9. 

For m = 1 and 2, geometries with il =-^ realize a better load carrying 

capability than those with n = 2. For m = 3> geometries with n = 2 

realize the best load carrying capability. 

For a certain range of initial rise parameters the antisym

metric mode governs buckling. Critical loadings versus initial rise 

parameters corresponding to this range are shown in Figures 3.l6 

through 3.21. Figures 3.1& through 3.l8 correspond to n = 2 and 

m = 1, 2 and 3. For m = 1, as the nonuniformity increases the criti

cal loadings, for the same initial rise parameter, become smaller. 

This is not the case when buckling is governed by the symmetric mode. 

For m = 2 and 3, as the nonuniformity increases the critical load 

carrying capability becomes greater. As is expected, geometries for 

m = 3 yield the best load carrying capability. A plot of critical 

loadings versus initial rise parameters is shown graphically in 

Figures 3.19 through 3.21 for n. =r-andi = 1, 2 and 3; when buckling 

is governed by the antisymmetric mode. For all m values, the nonuni

form geometry critical loadings are greater than those for uniform 

geometry and increase with increasing nonuniformity with the excep

tion of low initial rise parameters for m = 1. The best load carrying 

capability is again realized for m = 3. Furthermore, for m = 3, geom

etries with n = 2 yield higher critical loadings than those with . 

• 1 ' , • 



Figure 3»13 Nondimensional Critical Loadings versus Initial Rise Parameters, Limit Point, 
Ritz Solution, Initial Half-Sine Shape, m = 1, n = l/2. 

r\3 



Figure 3-1^ Nondimensional Critical Loading versus Initial Rise Parameters, Limit Point, 
Ritz Solution, Initial Half-Sine Shape, m = 2, n = l/2. ON 
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Figure 3.15 Nondimensional Critical Loading versus Initial Rise Parameters, Limit Point, 
Ritz Solution, Initial Half-Sine Shape, m = 3; n = l/2. o-\ 
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Figure 3«l6 Nondimensional Critical Loading versus Initial Rise 
Parameters, m = 1, n = 2. 
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Figure 3-17 Nondimensional C r i t i c a l Loading versus I n i t i a l 
Rise Parameters, m = 2, n = 2. 
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Figure 3«l8 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 3> n = 2. 
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Figure 3-19 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 1, n = l/2. 
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Figure 3.20 Nondimensional C r i t i c a l Loading versus I n i t i a l 
Rise Parameters, m = 2, n = l / 2 . 



70 

4 6 8 10 12 14 16 18 20 22 24 26 28 30 
e 

Figure 3«21 Nondimensional Critical Loading versus Initial 
Rise Parameters, m = 3> n = l/2. 



Table 3.7 Critical Loadings and Initial Rise Parameters 
Shown in Figure 3.13, m = 1, n = *•. 

1.0 2.00 1.57 

3,00 3.21 

4.00 6.29 

4.69 9.̂ 8 

0.9 2.02 1.62 

3.00 3.21 

4.00 6.29 

4.69 9.48 

0.4 2.22 2.01 

3.00 3.40 

4.00 6.29 

4.84 10.07 

0.1 2.46 2.38 

3.00 3.31 

4.00 5.96 

5.24 11.20 



72 

Table 3.8 Critical Loadings and Initial Rise Parameter! 
Shown in Figure 3.14, m = 2, n = i. 

Il/I2 e q 
cr 

1.0 2.00 1.57 

3.00 3.21 

4.00 6.29 

4.69 9.48 

0.9 2.02 1.62 

3.00 3.22 

4.00 6.30 

k.6$ 9.48 

0,4 2.18 2.01 

3.00 3.57 

4.00 6.50 

4.77 10.05 

0.1 2.31 2.33 

3.00 3.66 

4.00 6.64 

4.94 10.96 

0.001 2.35 2.37 

3.00 3.47 

4.00 6.43 

5 . 0 0 ; •>••• i i . i i 
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Table 3»9 Critical Loadings and Initial Rise Parameters 
Shown in Figure 3.1$, m = ' 3,; n = p. •'•;• 

V i 2 e %x 

1.0 2.00 1.57 

3.00 3.21 

^.00 6.29 

h.69 9.^8 

0.9 2.02 1.62 

3.00 3.22 

h.QO 6.29 

h.69 ?M 
0 . ^ 2.18 2.02 

3.oo 3.62 

^.00 6.59 
h.tf 10.08 

0 . 1 2.30 2 .3^ 

3.00 3.62 

^.00 6.59 

Mi 11.03 

0.001 2.33 2.^0 

3.00 3.69 

^.00 6.66 

^.95 10.99 
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Table 3.10 Critical Loadings and Initial Rise Parameters 
Shovn in Figure 3.16, m = 1, n = 2. 

h/h e 9i 
cr 

i . o > . 6 9 12.05 

10.00 37.50 

20.00 78.70 

30.00 119.30 

0.9 > . 6 9 12.05 

10.00 37.50 

20.00 78.70 

; 30,00 119.20 

O.k ^.79 12.le 

10.00 37.12 

20.00 77.97 

30.00 117.96 

0 .1 5.^7 1^.06 

10.00 35.08 

20.00 7^.60 

30.00 113.06 

0.001 13.81 33-06 

16.00 M K 5 5 

20.00 6I . I6 

30.00 98.57 



Table 3,11 Critical Loadings and Initial Rise Parameters 
Shovn in Figure B.ltv m = 2, n = 2. 

W ••> ^ i 
cr 

1.0 4.69 12.05 

10.00 37-50 

20.00 78.70 

30.00 II9.3O 

0.9 4.69 \ 12.01 

10.00 37.45 

20.00 78.65 

30.00 118.98 

0.4 4.70 12.41 

10.00 37^83 

20.00 79.33 

30.00 120.02 

0.1 4.92 13.78 

10.00 38.88 

20.00 81.60 

30.00 123.43 

0.001 6.46 20.41 

10.00 40.19 

20,00 87.04 

30.00 132.26 



Ta"ble 3.12 Critical Lbadings and Initial Rise Parameters 

Shown in Figure 3.18, m = 3> n = 2. 

K'h 

1.0 

0 .9 

0.4 

0 . 1 

0.001 

e 

k.69 

10.00 

20.00 

30.00 

h.69 

10.00 

20.00 

30.00 

k.69 

10.00 

20.00 

30.00 

4.86 

10.00 

20.00 

30.00 

5.79 

10.00 

20.00 

30.00 

q l cr 

12.05 

37.50 

78.70 

119.15 

12.05 

37.51 

78.78 

119.18 

12.45 
38.02 

79.71 

120.55 

l4.04 

40.19 

84.25 

127.^0 

20.65 

46.50 

98.89 

149.86 
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Table 3*13 Critical Loadings and Initial Rise Parameters 
Shown in Figure 3*19> m = i> n = ̂  . 

h'h 
c r 

1.0 k.69 

10.00 

20.00 

30.00 

12.05 

37.50 

78.70 

119.15 

0.9 ^..69 
10.00 

20.00 

30.00 

12.07 

37.52 

78.82 

119.23 

oX k.Qk 

10.00 

20.00 

30.00 

12.82 

38.01 

80.00 

121.07 

0 , 1 '%2k 

10.00 

20.00 

30.00 

1^.25 

38.38 

8 I .5 I 

123.52 
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Table 3.1^ Critical Loadings and Initial Rise Parameters 
Shown in Figure 3i20, m = 2, n = ̂ . 

\/%2. e q i 
cr 

1.0 k.69 12.05 

10.00 37.50 

20.00 78.70 

30.00 119.15 

0.9 ^.69 12.07 

10.00 37.53 

20.00 78.84 

30.00 II9.26 

OX k.JJ 12.80 
0 10.00 38.62 

20.00 81.15 

30.00 122.76 

0.1 k.9k 13.95 

10.00 ho.l6 

20.00 81+. 68 

30.00 128.18 

0.001 5.00 1 .̂15 

10.00 40.20 

20.00 84.88 

30.00 128.50 



Table 3.15 Critical Leadings and Initial Rise Parameters 
Shown in Figure 3.21, m = 3, n = £. 

yi- e qx 
cr 

1.0 ,h.69 12.05 

10.00 37.50 

20,00 78.70 

30.00 .....: I I 9 . I5 

0.9 h.69 12.07 

10.00 37.55 

V 20.00 78.87 

30.00 119,32 

O A k.l6- 12.83 

10.00 38.81 

20.00 81.52 

30.00 123.33 

0 .1 k.91 ii+.o4 

10.00 ^0.76 

20.00 85.88 

30.00 129.97 

0.001 ^.95 1^.28 

10.00 ^1.10 

20.00 85.35 

30.00 131.05 



3-5 Wei ght Savings 

Another objective, in addition to the comparison of critical 

loadings for constant volume, is to determine the weight savings, 

realized over the uniform geometry structure. Weight savings of a 

material with the same mass density are determined "by finding the 

ratio of volume for nonuniform stiffness to the volume for uniform 

stiffness at the same dimensional critical loading and the same 

dimensional initial rise parameter. Equating dimensional critical 

loadings (q* )y as shown before^ one obtains 
cr . . 

• 3 m - 1 . . 

- H ' : / i y 2 ' 

cr •.' -

where 

V 
v v. ... .... 

u 

Equating dimensional initial rise parameters (e*) one acquires 

m-1 
• e : , - , : -.••-. 2 ••: 

e-<i> 
From Ref. [6] the critical loadings for uniform geometry and symmetric 

and antisymmetric modes, respectively are 



8i 

•' 3 

<lu =eu+lM"^f 
cr 

cr 

By replacing e "by e and q by functions of e one obtains two 
U n c r 

equations vhich facilitate the determination of V for a complete range 

of initial rise parameters. The symmetric and antisymmetric mode 

relations are, respectively 

3m-l 

V 2 q 

m-1 

; , . - v 2 e 
lnu nu 

cr 

m-1 

.-f)^ m-1 2 enu = 0 

) (3*0 
m-1 

* 2 W -V* enu - 3[V 4 - I6f = 0 
cr 

From these two equations, Equation 3^, plots of V versus — are 

obtained, for h = 2 and -x and m = 2 and 3> as shown in Figures 3.22 

through 3.27. Figures ^ 

initial rise parameters of U.20, 10 and 30, respectively. T̂hesê  ini

tial rise parameters are chosen in order to provide knowledge of the 

entire range of values by considering low, intermediate and high initial 

rise parameters. For e = U.20, the maximum weight savings occurs at 

moderate nonuniformity, corresponding to about five per cent for n =p 

and four per.cent for n = 2. As the value of the initial rise parameter 

increases the maximum weight savings decreases and occurs at extreme 

nonuniformity, for both n values, as shown in Figures'-.3*23 and 3.2^. 



Figure 3.22 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = h.ZO, m = 2, n = 2,l/2. 
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Figure 3«23 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of-Arch End Inertias to Arch Center Inertias, 
e > 10, m = 2, n = 2,1/2. 



Qk 

Figure 3.2^ Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = 30/ m = 2, n = 2,l/2. 



85 

U»:» 

Figure 3.25 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e = 3-M5, m == 3/ n = 2,1/2. 



Figure 3.26 Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e =10, m = 3, n = 2 , 
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Figure 3•2? Ratio of Nonuniform to Uniform Volume versus the 
Ratio of Arch End Inertias to Arch Center Inertias, 
e =30,0, m = 3, n = 2,l/2. 



Weight savings for e=10 is only slightly better than at e =30. Figures 

3.25 through 3.27 show graphically V versus - for m = 3 and initial 

rise parameters of 3.485, 10 and 30, respectively. For all initial 

rise parameters and both n values, the maximum weight savings occurs 

at extreme rionuniformity. These figures show a proportional decrease 

in weight savings for Increasing initial rise parameters. Also, for 

m = 3, n = 2 geometries yield greater weight savings than n = p . The 

weight savings, for n = 2 , varies from about seven per cent to 20 per 

cent for high to low initial rise parameters. 

3.6 Concluding',,' Remarks 

The previous results are summarized by certain concluding 

remarks. First, the approximate technique is quite accurate. For 

m = 1 , the uniform arch is stronger than the nonuniform arch for n = 2 

arid the opposite is true for n = p except for very low initial rise 

parameters. As m increases, for both n values, the ndriuniform arch 

becomes stronger. The best weight savings occurs at low initial rise 

parameters. Overall/ n = T> geometries yield the best weight savings 

f or m = 1 and 2. Geometries, for n = 2, yield the best weight savings 

for m = 3.. Tlie -maximum weight savings real!ze4,^^ri:=v2:, 

per cent and about five per cent for n = p. Finally, it is observed 

that the trend in weight savings, for the geometries considered, is 

the same as those realized for the optimum pinned column investigated 

in Ref. [20]. 
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CHAPTER IV 

APPROXIMATE DYHAMIG SOLUTION 

^. 1 Introduction 

The previous quasi-static treatment is sufficient to enable one 

to calculate critical loadings against snap-through buckling when the 

loading is applied slowly. Shallow arches with nonuniform stiffness 

under dynamic loadings with half-sine spatial distributions are 

investigated herein. 

Geometry of the shallow pinned arch consists of an initial half-

sine shape where the inertia varies according to l(x) = .I-,'("~) . This 

distribution is chosen since it yields the best weight savings for an 

arch, with m = 3> under a quasi-static loading. A direct solution to 

the problem is to solve the governing nonlinear differential equations 

of motion under specified loadings, initial and boundary conditions 

for the dynamic response of the structure. This procedure is used by 

11 12 

Lock and Pulton and Barton . According to this approach the load

ing is considered to be critical when the motion (transverse displace

ment) becomes very large. The present method was first employed in 

Ref. [10] and it was improved in Ref. [6]. It associates critical 

conditions with characteristics on the total potential surface, and it 

is based on the fact that the Hamiltonian of the system is constant. 

It is shown that a rectangular step loading may cause buckling 

for specified critical loadings and release times ranging from zero to 



infinity. Moreoever, critical values are bracketed between a minimum 

possible and minimum guaranteed value. This method has been used 

successfully for uniform geometry. (See Ref. [6] and [29]*). 

k.2 General Methods 

The three cases of dynamic load application considered herein 

are constant load of finite duration applied suddenly and its two 

extreme cases when the release time approaches zero and infinity. The 

order considered is: 

1) Load of constant magnitude and infinite duration. 

2) The ideal impulse (Birac-delta function). 

3) Load of constant magnitude and finite duration. 

The total potential energy for the above cases is a function of the 

generalized coordinates, initial rise parameter, the magnitude of the 

applied loading and structural geometry. Static equilibrium positions 

are easily located on the total potential surface by using the 

principle of the stationary value of the total potential energy for 

the two-mode representation. For the shallow arch considered, the 

above method yields one, three or five static equilibrium points 

depending on the initial rise parameter and structural geometry. It 

should be noted that snap-through is not possible for less than three 

static equilibrium points. Since the total mechanical energy is con

served for a stationary and conservative system, one obtains T + tL, = 

Constant. If the initial total potential is defined to be zero, then 

T + UT = T. where T. is the initial kinetic energy which depends on 

the initial conditions imposed for the corresponding dynamic case 
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considered above. Critical values can then be bracketed by consider

ing possible paths on the total potential-surface. 

For the dynamic case of a load of constant magnitude and 

infinite duration, the initial kinetic energy (I?.) is zero and 

T + U,p =0. Since the kinetic energy is positive definite, the only 

possible positions (motion) on the total potential surface correspond 

to non-negative kinetic energy. Moreover, where Urn is positive there 

is no possibility of motion. At this point it is advantageous to 

present relevant definitions, previously defined in Ref\ [6], as 

follows: 

Possible Locus: A possible locus on the total potential sur

face is one which corresponds at every point of the locus to a non-

negative kinetic energy. 

Unbuckled Motion: Unbuckled motion of the system is defined as 

any possible locus on the total potential surface which completely 

encloses only the near equilibrium points. 

Buckled Motion: If the possible locus passes through or 

encloses other equilibrium points> or if the near equilibrium point 

becomes unstable, then the motion is defined as buckled. 

Minimum Possible Critical Loading (MPCL): The least upper 

bound of loadings for which all possible loci correspond only to 

unbuckled motion. At the (MPCL) there exists at least one possible 

locus on the potential surface which the structure can follow to 

"snap-through". 

Minimum Guaranteed Critical Loading (MGCL): The greatest lower 

bound of loadings for which no possible locus corresponds to unbuckled 
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motion. 

It is possible to investigate the total potential surface as 

the applied loading increases from zero. At some small loading, q_, 

the motion about point A is stable. This is shown in Figure k.1 for 

the potential surface consisting of three static equilibrium points 

and in Figure k.2 for the case; of five static equilibrium points. 

Where five static equilibrium points exist, there is the possibility 

of antisymmetric motion. As the loading is increased the total poten

tial surface changes until, at qTT, the motion is buckled. See point B 

in Figure 4.1b and point D in Figure 4.2b. Thus, snap-through may 

start symmetrically and then exhibit transient antisymmetric motion 

or it may begin snap-through in an antisymmetric mode. Whichever is 

the case, the first loading at which snapping can occur is defined as 

the minimum possible critical loading denoted by (MPCL). For solely 

symmetric deformation snap-through is guaranteed at the (MPCL). For 

the possibility of an antisymmetric mode, it is shown that the (MPCL) 

and the (MGCL) do not coincide. The (MGCL) is determined at q_.; see 

Figure k.2d., where the saddle points D and E just coincide with the 

near stable static equilibrium point A. Hence, for the possibility 

of an antisymmetric mode one can only bracket the critical loading 

between the (MPCL) and the (MC3CL). 

For the ideal impulsive loading the approach is the same as for 

the load of constant magnitude and infinite duration except for dif

ferent initial conditions. It is assumed that every material particle 

is instantaneously accelerated to a finite velocity before any dis

placement can occur. The applied loading is then released after this 
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qM>V.. 
Figure k.lc 

Figure k.l Total Potential Curve in the Configuration Space 
of the Generalized Coordinate a . 



u,=o 

Figure 4.2a 

qll>c"l 

Figure 4.2b 

Figure 4.2 Total Potential Contour Lines in the Configuration 
Space of the Generalized Coordinates a and a0. 



n d , 

^l l l^ l l 

Figure k.2'c 

i a , 

^ = 0 

qIV>C1«ll 

Figure k.2d 

Figure k.2 Total Po teh t ia l Contour Lines in the Configuration 
Space of the (jeneralized Coordinates a and a0 . 
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initial condition is reached. This is a close approximation for a 

blast loading of high decay rate and a short decay time. The initial 

kinetic energy is related to the initial impulsive energy, and the con

servation of mechanical energy is again considered. It is subsequently 

shown that if a great enough impulse is imparted into the arch initial

ly, snap-through will result for a certain range of initial rise 

parameters. This value is defined to be the minimum possible critical 

impulse. The minimum guaranteed .critical impulse is determined by 

finding the initial impulse necessary to cause the structure to over

come the highest potential, namely that of the central unstable equi

librium position. 

The critical conditions for the case of a loading of constant 

magnitude and finite duration consist of a critical time as well as a 

critical magnitude. A path of steepest descent and most shallow ascent 

is assumed. This critical path depends on structural geometry, initial 

rise parameter, and loading magnitude as well as the generalized coor

dinates. This path is analogous to the one realized by a ball, under 

constant gravitational force, rolling on such a potential surface. 

This path is assumed to yield the minimum possible critical values, of 

all possible paths. The constrained equation of motion is solved though 

integration in closed form over the corresponding path. The critical 

condition for snap-through is reached when enough kinetic energy is 

gained, for a given loading, to cause the arch to go to the far zero-

load stable equilibrium position. This occur's when the zero-load total 

potential less the loaded total potential, at the release coordinates, 

equals the zero-load total potential at its saddle point. This 
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can easily be seen by again considering conservation of mechanical 

energy. The critical impulse is the product of the critical loading 

and the critical release time (T ). 
o 

^.3 Solution 

4.3a Load of Constant Magnitude and Infinite Duration 

The total potential energy is 

TT - ̂  /• 2 2 , 2x2 8(p2-l) r/ ;2 2 
UT " I T (rl -;e- + HP + ̂ ^ [(ri"e) •«»• " & £ •']>-2^(p1^). 

Static equilibrium equations are obtained by using the principle of 

the stationary value of the total potential which yields 

rs + k2 _ e2 + iaM^-r = M#) 2 . !A 
L 1 2 TTĝ cp J l ; n^tp 2 ^ 9 

T2 + ̂ :.e2.M^ii!v = .0 
L 1 2 rrĝ cp X2 

Again, the existence of three or five equilibrium points depiends on 

structural geometry and the initial rise parameter. For 

; 

—" 2 7 - 2 
M p 2 - 1 ) /^"cp < e 5: /-8t|;(p2-l) /TTĝ cp 

there are three static equilibrium points r,,,r.2,r,' corresponding to 

symmetric buckling and for 

e & J-B^-lf/T,^ 
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there are five equilibrium points including antisymmetric mode saddle 

points. The second subscript on r, represents the near, center and 

far static equilibrium positions, respectively (or r__, r_ , r,-)•••' 

The total potential corresponding to purely symmetric buckling 

is a function of r,, e and q,, where the static equilibrium point 

(rp,0) is unstable (in the small). As discussed previously, the load

ing increases until snap-through is possible at (r,p,0) with zero 

kinetic energy. Due to zero initial conditions the total potential 

at (r p,0) is equal to zero. Thus one obtains 

qj. = I^(e-r^)/Trtv ][W9(r^ + e)
2/2 + Mp*-!) 2/^] . (35) 

cr 

Since (r1?,0) is a static equilibrium point, then 

' ' " " • • " • ' i • p : 

q i " [ s m l e - r i 2 ) / 7 T h
m ^ 2 n c P r i 2 ( T l 2 + e ) + ^ P 2 " 1 ) / sm^ 

' c r - •• • 

and the simultaneous solution of these two equations yie lds both q.. 

and -r-p as follows: 
c r 

MPCL = MGCL = - tbQ/3r\l.[*^l($ + e ) ( ^ + 2e) + 4co(p2-l)2J (36) 

and 

= e + -^ where Q = - 2e + ]f% - [~6cu(p2-l) / n g ^ j 

1 \2 For e £ 7-8f(p2-l) /ng_;<̂  the total potential depends on r^ap, 

e, and q as well as the structural geometry. The saddle points and 
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(r12>0) are unstable in the sittall. As discussed previously, when the 

loading becomes large enough the value of the total potential at the 

saddle points becomes zero and snapping is possible.See Figure"^ 

for e = 8. A further increase in-the load will eventually cause the 

saddle points to converge on (i n,0) where snap-throUgh is guaranteed. 

See Figure k.k for e = 8. Setting/the total potential at the saddle 

points equal to zero one acquires 

MPCL = - [2(^-lf/h^2lie + ̂ 8f(u>f2i|r)( pi-lf/vg^ (37) 

When the near equilibrium position coifeciSes with the saddle-points> 

the solution of the equilibrium equations with this (r ,0) yields 

the MGCL : 

MGCL = [8(p2-i;2/nhm3[u,e - U +.2))fa(&l)V*^p']. / (38) 

which is identical to^the antisymmetric quasi-static crltii^i^ ibad 

case. The system will snap-through symmetrically when the total 

potential at the symmetric unstable point equals zero, while it is 

positive at the antisymmetric saddle points. This occurs when 

Cn«pB^C/6(p^i)2].[2C/3..+ e][2f/3 + 2e] + nf.?C/3- + e] + 

- (u) + 2 » ^ 2 + dytpZ-lf/TTg^ = 0 (39) 

For this case, MGCL is still given by Equation (36). 

Minimum possible and minimum guaranteed critical loadings 

versus initial rise parameters are shown in Figures if"..5-. through ̂ .10, 

for m = 1 , 2 and 3 and a full range of initial rise parameters 



Ur=0, £=1.0 

1 2 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Figure k.3 Total Potential Contour Lines in the Configuration Space of the Generalized 
Coordinates a^ and a^, e = 8, qcr = (MPCL), m =3. 

H 
o o 



A \ it <* 
13 14 15 T6 17 18 19 20 21' 

Figure k.k T o t a l P o t e n t i a l Contour Lines in the Configurat ion Space of the General ized 
Coordinates a a n d a^, e = 8, q = (MGCL), m = 3 . 

H 
o 
H 
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MPCL 60 — 

Figure 4.5 Nondimensional Critical Loading versus Initial Rise 
Parameters, Half-Sine Shape, (MPCL), m = 1. 
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MGCL 60h 

Figure k.6 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MGCL), m = 1. 
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Figure 4.7 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MPCL), m = 2, 
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MGCL 60 — 

Figure h.Q Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MGCL), m = 2, 
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Figure 4 .9 Nondimensional C r i t i c a l Loading versus I n i t i a l 
Rise Parameters , Half-Sine Shape, (MPCL), m = 3. 
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MGCL60 

0 2 4 6 

Figure k.10 Nondimensional Critical Loading versus Initial 
Rise Parameters, Half-Sine Shape, (MGCL), m = 3, 
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corresponding to symmetric and antisymmetric buckling. Tables 4.1 and 

4.2 give the initial rise parameters corresponding to the limit of 

applicability of each governing mode. In Figure 4.11 through Figure 

4.13 and Tables 4.3 through 4.5, the dynamic ratios versus initial 

rise parameters, for the minimum possible and the minimum guaranteed 

critical loadings/ are plotted. The dynamic ratios are defined as 

follows: 

(DR)^ =MPCL/qi 

"cr 
(DR)^ = MGCL/qi 

cr 

4.3b Ideal Impulse 

For the zero-loading total potential 

UT -(2/TfhJ^fi [(r^-eXr^)i + ku\f 

;+Mp*-lf[(r1-e.)
2«,.-. 8a|>]]. 

the static equilibrium equations become 

( r ^ e ) ^ + e ^ + 4a2 + 40)(p
2-l) /rr̂ cp] 

[rx - e + 4a2 - 8i(f(p2.l) /ng^] a- = 0 

= 0 

(40) 

The f i r s t equation yields three possible roots, for a p = 0, as follows: 

r 1 = e 

' l = [- e ± ^ e 2 - I6(p2-1)2
 U)/TT^«P]/2 



Figure k.11 Dynamic Ratio versus Nondimensional Initial Rise Parameters, m =•!. 

H 
o vo 



Figure 4.12 Dynamic Ratio versus Nondimensional Initial Rise Parameters, m == 2, 

H 
H 
o 



Figure 4.13 Dynamic Ratio versus Nondimensional Initial Rise Parameters, m = 3, 

H H H 
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Table 4.1. Initial Rise' Parameter Bounds for (MPCL)** 
Limit Point ̂ stability, e 

hth 1 ' 
• 2 ' 

3 

0.001 10.1:842 

12.2523 
4.7667 

5.73^7 

4.2677 

5.1355 

o.4oo 2.7528 

4.1183 

2.7054 

4.0473 

2.6996 

4.0386 

0.900 2.4764 

4.OOO6 

2.4756 

3.9999 

2.4756 

3.9970 

**The lower limit applies to the (MGCL) as well as the (MPCL). 
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Table k.2. Initial Rise Parameter Bound for (MGCL) 
Antisymmetric Mode Limits. 

V ^ m = 1 2 3 

0.001 18.9J4- 8.85 T. 92 

O.kQO] 6.U9 6:k0 6.39 
0.900 6.36 6.35 6.35 
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Table 4.3. Dynamic Ratios for the ( M P C L ) , Half-Sine 
Loading, Initial Half-Sine Shape, m = 1. 

w - .9 JA - .k \l\ = .001 

• e . <<m)te , e • 

(D R)MP •• e . ' • • ; ' • • • (D R)MP 

2. hj6 0.800 2. 753 0.800 10.184 0.800 

4. 001 0.77k 3. 000 0.790 12.252 0.784 

6. 000 0 .731 h. 118 0.777 16.000 0.746 

10. 000 0.805 6. 000 0 .73^ 20.000 0.769 

20. 000 O.890 10. 000 O.806 30.000 0.827 

30. 000 0.923 20. 

30. 

000 

000 

O.891 

0.925 

45.000 0.882 



Table 4.4. Dynamic Ratios for the (MPCL), Half-Sine 
Loading, Initial Half-Sine Shape/ m = 2. 

1/12 = . 9 y i 2 

>RW 
2.476 0.800 2.753 

4.ooi 0.774 3.000 

6.000 0 .731 4.118 

10.000 0.805 6.000 

20.000 0.890 10.000 

30.000 0.923 20.000 

30.000 

.4 I-j/lg = .001 

< D R W e WMP 

0.800 10.184 0.800 

0.790 12.252 0.784 

0.777 16.OOO 0.746 

0 .73^ 20.000 O.769 

O.806 30.000 O.827 

O.891 45.000 0.882 

0.925 



Table 4.5. Dynamic Ratios for the (MPCL), Half-Sine 
Loading, Initial Half-Sine Shape, m = 3. 

Iji^ = .9 V ^ = ^ V ^ = •001 

e ... <*V e ;{*V e 
(DR)MP 

2.476 O.808 2.700 0.800 4.268 0.799 

3.000 0.795 3.000 0.788 5.000 0.784 

4.000 0.793 4.o4o 0.777 5.136 0.784 

6.000 0.732 6.000 0.736 6.000 0.747 

10.000 O.806 10.000 0.809 8.000 0.750 

20.000 0.891 20.000 0.893 10.000 0.794 

30.000 0.925 30.000 ' 0.926 20.000 

30.000 

O.883 

0.918 



The respective zero-loading equilibrium points are given as follows: 

i) for e < J l6(p2-l) cu/irgLcp there exists no far 

equilibrium point. Hence, oscillations take place about the near 

stable static equilibrium point (e/0). 

ii) for e £ /-8 (p2-l) ^Tr&rfP <. Jt6u<:p2-l) /wgmcp there a.re 

five static equilibrium points as follows: 

•' \ 

rn = e 1 " • • • 2 

a0 = 0 (i) 

r » — a = (^ F^CP2-!) + 2 ( u ^ t K l (i±v rl o*2* a2 ,/ 2 L :*** +
 (,^^ J C ' 

1- c^t ~2 tf2 LnVP T («42t): - * - - m ^ + ^ ^ J <->̂ > 

• 1 S " I " 2 <f ̂  " ^ ( P ^ - 1 ) ^ ^ ^ a
2 = ° (iv) 

•1- = " I + I V ^ " :^(:P?-l-)^««/Tlfi^9 a o = .0 •(••) *2 ~ y yyj J 

The corresponding expressions for the zero-loading total potentials 

'are 
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U™ = 0 p o i n t i 

„ _. le^iAil! fMi-if + J£ 
U T ~ TThffl L TTg^qj + (BtSy 

uT=i? o + y , 2 . i^^pii)2/^] [, 

points i i , i i i 

2 

point iv >(te) 

- e ^ - I ^ P 2 " 1 ) • /e^wp + ^ ( P 2 - ! ) 2 / " ^ ] 

UT = | ? [3e r ^e 2 , l^p*- l ) 2 /^J[e 2 

m 

r-~—• — - — ~ — — -
/ 2 '— 2 — 2 1 

+ e y e • •- l6uj(p2-l) /^cp + 8uj(p2-l) /TTĝ cpj point v 

Since the initial kinetic energy is nonzero and appli^ 

at the initial point (e,0), IL = 0, the initial path is the symmetrie 

mode, followed readily by the antisymmetric mode of deformation. One 

notes that the total potential is positive for points 11 through v f or 
• / i 2 " 

all e £ AL6CU(P2-1) /necp, where the equilibrium point iv is stable (in 

the small) and points 11, iii and v are unstable (in.the small). 

Therefore, snap-through is possible for all initial rise parameters 

in the above range. 

As for the case of a loading of constant magnitude and infinite 

duration, a critical ideal impulse can only be bracketed between upper 

and lower bounds in accordance with the definition of the MGCI and the: 
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MPCI. Since U 'is zero, then T + UT = T±. A critical condition is 

reached when T =0 at the unstable static equilibrium point of lowest 

potential. 

In order to find expressions for the critical impulse, one 

expresses the ideal impulse in terms of the initial kinetic energy. 

Denoting by IMP* the impulse per unit mass imparted into the arch by 

the loading one acquires IMP* dm = f—J dm. Neglecting rotary and 

longitudinal inertia the initial kinetic energy-impulse relationship 

becomes . 

: V \ -

• p 

where IMP* = Imp* cos (x-a-L/2) ^ for the half-s ine loading, 

Im**' = V % V f Aw Imp 

and C is a numerical integration constant given as (see Table k,6) 
m 

Cm = [ V L ( ^ ) ] [ / + i J ooS
2(x.;a-||ax] 

Thus, by relating the initial kinetic energy to the ideal impulse, 

conservation of mechanical energy yields the following expressions for 

critical impulses for m = 1, 2 and 3> respectively: (See Figure k.lk 

through Figure h.l6) 



Figure 4.11+ Nondimenslonal Critical Impulse versus Initial 
Ris6 Parameters, m = 1 . 
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Figure U.15 NondimensionalGritical Impulse versus Initial 
Rise Parameters, m = 2. 
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Figure k.l6 Nondimensional Critical Impulse versus Initial 
Rise Parameters, m — 3̂  
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] 

MGCI = ~ ^T T3e -
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( e ) 2 _ J8 ) ( i 6 ^ (p 2 - i } : - i r ( e ) 2 

np^ J L 
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TTP2 TTp2 
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I 22(l6)(top2)2 L 

C l 
P 

2 , , A ^ 2 . .± 
( e ) 2 _ ( l 6 ) ^ ( p ^ - l ) ^ p 2 l 
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__ .J, 
i o i ' JL •• o' i 2 

+ e / (e)
2 - (I6)^(p^l)^p^ + -(l6)(-6j.t(pg-l)

gtep?j ̂  m = 2 

.nilMiL^. / ( e ) 2 , (i6)(8)(25H(^-i)3(^-i)-[-(e)i 

c| 23(48)(p̂ -l)* / 3TT(P5-1)2 

P 

H-e/Ce) 2-^)^^)^^. 1? 3^ 1)-

3n(p -1)' 

J^3„,3 
1 a 

+..(3g)W(pM)3rtP -i)] , m , 3 

3n(p - l ) 2 

4.3c Load of Constant Magnitude and Finite Duration 

For this ease of constant load and finite duration, snapping1 

is possible for initial rise parameters for which the zero load total 

potential surface possesses five static equilibrium points (case ii 

r—J, 2 — — 
of section 4.3b). Therefore, e > Jl6(p2-±) m/nĝ cp. 

To determine the critical load, q.. , and corresponding 
cr 

critical impulse, q, T , one again considers conservation of mechani-
cr ° '•" 

cal energy. This yields 

'. Tj£ + Tq = Constant = 0 (̂ 3) 

for the loaded arch with zero initial potential and velocity. If at 
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T the system is at position (r,0,ap), the kinetic energy is 

-Û ,(r ,a» ) because of Equation V3. Also, at T , the loading 

vanishes and 

U° + T° = Constant =^-^^2G) + T°(r
10'

a2o) (^) 

From physical considerations and Equation ^3 one obtains 

^ l O ' V = T q ( r10' a20 ) = " ^ ^ l O ' ^ o ) 

Therefore, Equation Ml- yields 

U° + T° = U°(r10,a20) - ̂ (r 1 0,a 2 0)
; (V) 

A critical condition exists when the zero-load saddle point (r ^a^) 

is reached with zero velocity. Thus, 

U?(rlS'a2s) " " T ^ I O ' W " U T ( r 1 0 ' W -

Use of Equations 26 and k2 (points ii or iii) yields an expres

sion that relates the critical load to the release position r10 for 

any structural geometry. 

ql ( rl0- e ) = C ^ r C p ^ l ^ / T T l ^ ^ C p * - ! ) 2 ^ ^ •+ e2/(u^2f) ] (k6) 
cr . 

In Equation H6. the unknowns are r , q̂  . In addition to Equation h6 
cr 

one assumes the equation of the path and an equation which comes from 

integration of the equation of motion along the path, which is approxi

mately given "by the following: 
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/ 2 -̂  2 
l
2 = °>- J e + 8-t(P2-l) VTTfiWP *• ?1 * 6 

* " , v 2 

(*7) 
2 , ), 2 2 , 8j(p2-l) u£ ^ ^ /' 2 j D l , k v 2 / 

r l + S = e + n^cp ' • ^ S r l < V e + 8 ^ a - 1 ) /nVP 

(See F igures -If.3, k.k and ^ .1? ) 

The above path is believed to be a good approximation to the 

path of steepest descent and shallowest ascent tovard the zero load 

r i 2 

saddle point. For a given load and, e > / l6(p2-l) ou/ng, cp the path 

of motion on the total potential surface can be examined. (See Figure 

k.2.) For any load greater than or equal to the MGCL, the path of 

steepest descent and Shallowest ascent is the same as the locus of ; 

quasi-static equilibrium positions (See Figure 3.5); since the MGCL 

is equal to the minimum load at which buckling can occur quasi-

statically, (See Figure ^.2d). The range of loading magnitudes 

between the MPCL and the MGCL is only a small percentage of the over

all range. Since the critical conditions for these loadings are 

reached near the zero-load saddle point the difference in critical 

time, when using the path given by Equation kj versus the path of 

steepest descent and shallowest ascent, will differ only slightly. 

This is true for non-uniform as well as uniform geometry. For 

I,/lp = 0.001 the exact anti-symmetric path for the MPCL begins at 

r, =6.73 for e =8. The quasi-static equilibrium ellipse initiates 

at r = 6.15'.. Both the MPCL and the MGCL paths intersec for non

uniform as well as uniform geometries. Also, as the initial rise 

parameter increases this discrepancy decreases considerably. 



Figure k.lj Possible Paths in the Configuration Space of the Generalized 
Coordinates for the Loading of Constant Magnitude and Finite 
Duration, e = 8,p = 1.0. 



The equation of motion along the above path is found by 

Hamilton's principle with kinetic and potential energies expressed in 

terms of one independent generalized coordinate (r..). If Equations 47 

are differentiated with respect to time, one obtains 

a2 = 0 , !e2•'+ Q^-lf/ng^* r x *.e 

r——— m 

r . r n + 4 a ^ = u , - ? # T ^ rn < i | e 2 . + 8 f ( p 2 - l ) 2 M ±r± + 4a2a2 = 0 , ^ * r± <{e .+ 8 t ( p 2 - l ) / r^cp 

The coordinate a ? i s eliminated from the second of Equations 48. By 

using Equations kj. Thus, 

2-2 , .2 f 2 Qif i n N 2/ 21 
r l r l = ka2 Le + 8i|r(p2-l) /rr^cp -

The kinetic energy 

1 

T = ( W l ^ ^ - D / ^ f [Cm >* + D m a2.] ,. 

where C and Dm are numerical integration constants given in Tables 

4.6 and 4.7, and the total potential, given by Equation 26, become 

1 

T = (Vhm^ta
1(P

i-l)2M2mf Cj5 i\ 
P 

UT = ( ^ ' ^ - e 2 ) 2 + [8(0*.l)2/lH^](rre)
a».+:;2q1(r1-e) 

for the AB portion of the path shown in Figure 4.17 and 



Ta"ble h.6. Numerical Integration Constants for the 
Ideal Impulse, C . 

c l / l . l l l ci/io 
Cl/1000 

23.017^ 0.0875 0.036U 

C2/l.lll C2/10 C2/1000 

2.3987 0.1^56 0.0919 

C3/l.lll C3/io C3/iooo 

1.12888 0.1737 0.1270 
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Table U.7. Numerical Integration Constants for the 
Load of Constant Magnitude and Finite 
Duration, D . m 

P 

'fyl.lll- Vio ^l/lOOO 

22.5333 0,0599 0.0198 

D 2 / l . l l l VlO D2/1000 

2.373^ 0.1203 0.0666 

D 3 / l . l l l D3A0 
D3/iooo 

1.1209 O.I529 0.1020 
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T = [VhJ t^ tP 2 - ! ) V m f r̂ [Cm + V V ^ V * 1 ) ] 

P P 

Un = [ 6 ^ ( p 2 - l j . /£&BpLmJ+ mtpZ-tf/TihJtir^efu - 2 * ^ - ^ ) ] 

+ S q ^ r ^ J 

for the BC portion of the path. R is the square of the r, coordinate 

at point B in Figure 4.17 given ."by 

As the arch "becomes more uniform (p• —• l), the second term above reduces 

to 16. 

With zero initial conditions the equation of motion along path 

AB reduces to the following: 

r i = -

V T 2 ffi 

hmLa 

(nV i'l [ -(^/\)(ve2)2 

- [^ps-l^/rt^jtr^ej2 + -2q (e^)]. 

This yields the time to reach r , along AB 



rt) 1 2 
1 m e 

vV3?'*-1* 
p 

u T2 m 
hr» L < * 

m 
10 

dr. 

2 2N2 
C % * / \ ) ( V e ' ) " [WP2-D A V [ r i - e f + 2q1 . (e-r1) 

cr 

> (̂ 9) 

i 
and hy assuming a value of r.lrs on AB (e £ r,» £ */R) one obtains a . . .10 10 nr 

unique value for q, from Equation h6. The critical impulse is then 
cr 

given "by the product (qj_ TV) . By requiring continuity in speed at 

point B, the equation of motion along BC reduces to the following: 

<2 * ,A2JL 
{ W ( > * - I ) 7 I ^ 

r i = " 

+ [(2qi- rrtr/Mp
2-!) ) - .̂ ICi-i -V\]} 

cr 

•• ': I ; • I- • ' I-

- {Dmh/^/[4(pil)
2fCs^}f-6^(pil)Vhmn

2gm9 

P P 

A 5 
- [8«<p2-l)7nhm](e - ̂ r +-2q (e - ̂ T)} 

cr 
continued 
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tec+ (D - 4C )r? f m m N m nr 1 

• P P P 

r ? - R 
1 m 

which yields 

T 2 = / 

/ IT l _ J L _ _ L Lll. d 

' r i - H
m 

4 ,v2„m 
llha^^-lf/lI^P^-lfT^U^^m^J 

i , s2 + .[(2q * / ( p ^ - l f - W]CP 2 - ^T]} 
c r 

1 1 1 

- . ^ V ^ / W ^ - ^ ^ ^ ^ ^ P ^ X ^ 
p p 

* - 2 - [8«( p 2 - l ) 7 i V ( e . - J\) +Z<iL (e - v/IT) } 
cr 

N 

(50) 

and by assuming a value of r , Q on BC (</R~< r , Q £ - - ^ T I Equation 46 

yields a unique value for qj . I f r.. i s less than the value a t 

point C in Figure 4.17, To i s calculated "by integrat ion from 

[uje/(uH-2ijr)] to ZR in Equation 50 where [cue/(urt£»] i s r , Q a t the 

zero-load saddle point , point C, and qn > q where q-|_ a t point C 

i s given by 

t 
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Figure 4.18 Critical Conditions for the Loading of Constant 
Magnitude and Finite Duration, e = 8, m = 3. 
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qc = - [8t(p^-l)
2MmeJ[^ 

The time to reach point B (T-,) is determined from Equation ^9 

where the limits of integration are from A to B or e to 
T ^ 

-8i)r(p2-l) /ngcp, respectively. Finally, the time to reach r on BC 

is. 

*o- = Tl + T2 

and the critical impulse at i\. is the product of the critical load

ing arid the release time (q̂ _ T ). 

The calculations are carried out by a UNIVAC 1108 computer and 

are shown graphically in Figure k-.-lQ for e = 8 arid m. •= 3-

^.^ Concluding Remarks 

The previous results, for all three dynamic cases, are estab

lished for a complete range of initial rise parameters and nonuniform-

ity parameters. The salient results are summarized by certain con

cluding remarks. First, the nonuniform geometry results approach 

those of the uniform geometry arch. See Refs. [6,29]. For m=l, the 

uniform arch carries the highest loadings and impulses for all initial 

rise parameters. For m=2, the load and impulse carrying capability is 

increased with increasing nonuniformity. This increase is approxi

mately 10 per cent maximum increase for the loading of constant mag

nitude and infinite duration and the ideal impulse except for very low 

initial rise parameters in the case of the loading of constant magni

tude and infinite duration. For m=3, critical loadings increase with 
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increasing nonuniformity. The maximum increase is approximately 30 

per cent for the loading of constant magnitude and infinite duration 

and 20 per cent for the ideal impulse. For the loading of constant 

magnitude and finite duration it is noted ."that, for small release 

times, the load carrying capability is increased considerably over the 

uniform geometry arch, well above that realized for infinite time 

duration. It is obviously seen that for this case, m=3 is the best 

material configuration. Also, for the loading of constant magnitude 

and finite duration, as the critical release times approach zero the 

critical impulses approach the minimum possible critical impulse for 
i -

l/p ss .9, .1 and .001. As the critical release times become large, 

the critical loadings approach the minimum possible critical loadings 

for l/p = .9, .1 and .001. Finally, through this analysis it is 

demonstrated that for m=2 and 3 "the optimum arch for minimum weight 

or maximum load carrying capability must correspond to some nonuniform 

distribution of stiffness. 
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CHAPTER V 

OPTIMALITY CONDITIONS 

5.1v Introduction 

Optimization of structures and structural components is 

presently a vide field of interest. A host of diverse mechanical 

models are being investigated. The objective of optimal design varies 

depending on the mission requirements of the particular configuration. 

For a structural configuration the objective might be minimum cost, 

minimum weight, or maximum load carrying capability. Depending upon 

the presence and type of additional side requirements, such as some 

fixed geometric properties (size, shape, etc.) or limitations on 

stresses and deflections, it is possible that, by satisfying one 

objective, another one is also satisfied (i.e. duality between minimum 

weight and cost, etc.). 

In any structural optimization problem one must clearly specify 

the design objective and the geometric and behavioral constraints. 

The geometric constraints are usually associated with space require

ments such as lengths or areas. The behavioral constraints are 

associated with the response of the structure to the applied loadings. 

Limitations on maximum stress or maximum deflections are examples of 

behavioral constraints. All constraints can be classified as equality 

or inequality constraints. For certain constraints such as the shape 

of each structural element, the same problem must be investigated for 
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various values of the parameters such as changing the exponential 

value in the relation l(x) = QA (X) for the column, beam and the arch. 

In this chapter it is intended to determine the conditions that 

must be satisfied in order to achieve a maximum strength design. The 

statement of the optimization problem is as follows: Given a shallow 

arch of specified volume, initial,shape, and length find the distribu

tion of stiffness such that the critical load (at snap-through) is a 

maximum. No attempt is made in this thesis to find the desired stiff

ness distribution. 

5.2 Critical Conditions by Trefftz'30 Criterion 

Before it is possible to determine the conditions that lead to 

the optimum stiffness distribution, one must first obtain the objec

tive function. 

Since the objective in the optimization problem is maximization 

of the critical load (snap-through), the expression for the critical 

loading in terms of the structuralgeometry must be derived. This is 

accomplished by making use of the Trefftz criterion which is based oh 

setting the first variation of the second variation of the total poten

tial equal to zero (Refs. [31,32]). In order to obtain the expression 

for q , one must first start with the total potential, then determine• 

the first and second variations of the total potential with .respect to 

the nondimensionalized displacements, and finally obtain the first vari

ation of the second variation. The vanishing of the first variation of 

the total potential leads to the equilibrium equations and proper bound

ary conditions. Finally, the equilibrium equations and the stationary 
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(Euler-Lagrange equation) condition of the second variation 

are combined to obtain the expression for the objective function. 

Letting 7](§) = w('§) and u(§) = u(§) in Equation 20 for the total 

potential energy, one acquires 

£(a+L) 
UT[u,w] = (1/2TT) J" 

TO 
L 

^ ~(a+L) 

[2u + (w-)2 - (wp-2]dS // 

L f a f L ) 

+ (2/TT) / 

na 
L 

i(§)[w" >w^]2d§ 

jia+L) 

+ (Vn) J 
na 
L 

q(§)[w - VQ]d§ 

ill 

j m A(§) 
L 

J (53) 

J 
where 

I(5)-.!&, A ( | ) = ^ 1 
u 

( )-=^-l 
v ; d§ 

To acquire UT[u + eJ3(§),w +• C2Y( .§') ] now use u •= u + €-§(§) and 

A ^ 
w .= w + e0 y(§) where u and w make up a l l possible functions to be c on-

sidered and u arid w are those particular u and w making UL an extremum. 

Furthermore, v(§) and 0(§) are admissible functions of f and e, and &> 

are as small as one chooses in order to stay chose to ft and w i.e. to 

only get relative extremum. Thus, 
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£( a + L ) £(a+L) £(a+L) 
r ~ M + r «?)cr - ^ ] Y ^ § + r q(§)vdg 
TO A(§) J na TO 
L L L 

4 
+ — 

TT 
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{f [u' + il^)2-'^wj)?]l5}{f (Y')V 
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J n a A(£) J JTTa 

L L 
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Define 

I?T - UT = AUT ^ U ^ ^ y ^ . e ^ u j , ^ ] . * 4 2 ) [ u , e , € 2 , ? r , Y , e 2 ] + 0f(e3) (55) 

where the superscripts (1,2,3)' denote the order of the variation. 

One can conclude that 
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u, (2) _ 4 
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a.'?*«•> f(a+L) 

{I E«i»'+ . ^ V D d s } / / = f -
kTTa v TO A(g). 

L L 

By the p r i n c i p l e of the s t a t i o n a r y va lue of the t o t a l p o t e n t i a l , 

equ i l i b r ium i s c h a r a c t e r i z e d "by the van ish ing of t he f i r s t v a r i a t i o n 

(ni11). 
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The above contains both the equilibrium equations and the 
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boundary conditions. The 'equilibrium equations and the associated 

boundary conditions become [in terms of T](§) and u(§)] 

P" = 0 

[I(§)(n// - 1#.r + FT|*+.-q(«) = 0 

, , - na n( a-f-L) 
and at § = -7- or —*-=—*• 

Jj JJ 

either 

.r = 0 

SUM* - T\'Y*O 

[iCDOT '-.%)V + ?Tl '>o 

1 

u = 0 

or J> (59) 

71' * 0 

7] = 0 ^ 

Next, the method of determining the stability or instability of the 

prebuckled configuration is considered. The fundamental state of 

equilibrium is stable, when the second variation is positive definite. 

Therefore, when the buckling load is reached, the second variation 

becomes positive semi-definite, and the minimum value of the second 

variation is zero for some non-zero virtual displacement. Trefftz [30] 

observed that for the second variation to possess a non-trivial mini

mum the first variation of the second variation must vanish for 

certain non-zero values of the virtual displacements. For convenience 

~ (2) 
one forms a new functional H[w,y] which is nothing more than U,l ' with 

the elimination of B from the second variation due to immovable end 

supports. 
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Introducing y = Y + e„8, as "before, and defining i - H = 

H ' + H + higher order terms, one requires the vanishing of H ' 

for the second variation to possess a nontrivial minimum. 
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Integration by parts of the internal integrals, and setting H ' equal 

to zero yields 
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Due to kinematic boundary conditions, y is zero at the arch ends, 

Hence,,0 is zero there also. Thus, the above integral becomes 
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Integration "by parts again yields (with y = 8 = 0 at the boundaries) 
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na 
L 

# " % 

U g (62) 

\ J A 
\ IE 

L 
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Rearranging terms in the next to last integral one obtains the 

Euler-Lagrange equation and the associated boundary conditions for 

arbitrary variations [in; terms of Y(§)
 and T]( §,) ] 

f(a+L) 

I 
[i(5)(Y")]" + PY"+ T] 

rra 
// L 

T|VS 

; 

YW) 
-li. 

na A(§) 
L 

•= 0 (63) 

4- - ' Tra ^ TT(a+L) at § - — and -^—*-

either 

i(S)Y" = o 

and Y = 0 

or 

(64) 

Y' = 0 

Through this approach it is clear that the bifurcation or limit point 

critical load and corresponding primary path (symmetric response) 

positions are established through the simultaneous solution of Equa

tions 59 and 63 subject to their respective boundary conditions. 

It is observed that for the case of limit point stability (top-

of-the-knee buckling) one may assume that y(§) = CT](§), "where c is 

an arbitrary small constant, provided that T|(§)=e sin g, and combine 

the two governing equations., Equations 59 and 63, into one. First, 

Equation 63 becomes 
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J Ywi 
' na 

tutwy + *r +' r -r——- = o (65) 
?(a+L) 

"TO A(§) 
L 

Next, subtraction of Equation 63 from Equation 65 yields 

^(a+L) ^(a+L) 

qor(S) = lUs)ri''Y + 717 Ti^dg/f = ^ - (66) 
na Tra A(§) 
L L 

This equation is used in the next section to formulate an optimality 

criterion against top-of-the-knee snap-through buckling. 

5.k Formulation of the Optimality Criterion 

In order to maximize the critical loading for the constant volume 

equality constraint one must form an augmented functional containing the 

ancillary condition 

7W10 
, ,,. . . y 
J -A(s;aj a^ 
rra 

Since l(§) = A (§), the new augmented functional becomes (for the total 

order) 
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£(a+L) 

* " J * 
na 
L 

qcr(?)*S 

§a+L) 

•XltT IA<S): - V]d§ 
na 
L 

or 

£(a+L) 
* = / 

^(a+L) f(a+L) 

na 
L 

cxm(5)iC]'*M;" v w r . " ̂ frj 
na na A( § W 
L L / 

- X^AfSl'-.V) <*§ (6?) 

where A is a Lagrange multiplier. 

Extremization of A with respect to A(§) leads to the optimality 

condition . Since A = A + e\± and 

rm/_\ //-,// [A , "(5)^]"=m(m-l)A m - 2 ( i ) Tg + 2mAra-1 ^ + A m ^ ' " (68) 

one acquires 

£(a+L), 
X ( l )[A,Tl,e] = 0 = e f imA ( m- l )

1 /"+2m(m-l)A ( m-2 ) l £ 
i ra i TTa 

L 

/ # » « • > . . \ / L 
?(a+L) 

+ m(m-l)(m-2)A(m-3) 7," + „*( / T,"na§)[ / " ^f ] / 

° \f A?' A 
/ 

- xnL u(§)df (69) 
na 
L 
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Assuming that the functional has an extremum joining the variable end 

points and since the functional has an extremum compared to all 

admissible functions, it certainly has an extremum for those admissible 

functions with a vanishing value at the end points, i.e. fixed end 

points. Therefore, the above function, A(§), is a solution to the 

Euler-Lagrange equation and the necessary condition, V = 0, 

reduces to the vanishing of the associated boundary conditions. No 

associated boundary conditions exist for this problem since there are 

no first order functions of A(x) in \. See Ref. [33] for further details, 

Thus one acquires the integrodifferential equation 

^(m-l)^, •+ 2m(m-l)A(m-2)T);' + m(m-l)(m-2)A(lI,-3)T|; 

(70) 

n'ms. fz /-•;..'•/?. •-•»! 

as the optima lity condition, where A is a constant. This equation is 

only valid where A(§) is not prescribed. A constraint such as 

£(a+L) 
/.•'•••'•• ^ ( g ) [ * ( { ) • ' • - (A + p 2 ( § ) ) ] d l 

TTB 

could have been used to facilitate the task of preventing the cross-

sectional area from becoming smaller than an allowable minimum A . 
o 

An optimum design is achieved by satisfying the equilibrium' 



152 

equation simultaneously with the 

constant volume constraint. One 

element displacement method used 

Ref. [20]. • 

optimality condition subject to the 

possible approach is the finite 

successfully for the column in 



CHAPTER VI 

CONCLUDING REMARKS AND RECOMMENDATIONS 

Representation of deflections of the low arch by both symmetric 

and antisymmetric modes is shown to be very accurate by comparisons 

with the exact solution whenever possible and by comparing the limit

ing value of nonuniform geometry (l/p -• l) to that achieved for uni

form geometry. It is shown that, as for the uniform geometry case, 

the mode of buckling is symmetric for a low range of initial rise 

parameters. For higher initial rise parameters, which consist of the 

largest percentage, the antisymmetric mode governs. Furthermore, if 

only the symmetric mode is considered the analysis overpredicts the 

buckling loads and impulses for sufficiently high initial rise param

eters. It is seen that snap-through is possible for dynamic and 

quasi-static loadings depending on the nonuniformity and the initial 

rise parameter. Furthermore, critical dynamic loadings and impulses 

are bracketed between upper and lower bounds. 

Overall, m = 3 yields the best material distribution of the 

cross-sectional area. For quasi-static loadings, n = 2 and m = 3 

yield the highest critical loadings or the best weight savings corre

sponding to approximately 20 per cent for extreme nonuniform geometry. 

Thus, n = 2 is used to distribute the inertia for the dynamic cases 

considered. Geometry, for m = 3, shows approximately 20 per cent 

increase in impulse carrying capability for the ideal impulse and 
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approximately 30 per cent increase in load carrying capability for the 

loading of constant magnitude and infinite duration. For the loading 

of constant magnitude and finite duration, the load carrying capability 

is increased considerably, for small release times, well above that 

realized for the infinite time duration case. 

The optimality criteria are shown to be quite nonlinear and no 

closed form solution seems possible. A possible solution might be 

obtained by the finite element displacement method as is illustrated 

20 
in the literature for the optimum column. 

The optimality condition for bifurcation (asymmetric snap-

through) instability should be formulated. The optimum shape against 

bifurcation buckling could be different than that corresponding to 

limit point instability. The optimum inertia shape is expected to 

21 22 
be similar to that of the column problem. ' Furthermore, 

the approach used herein to establish optimality criteria for the 

low arch exhibiting snap-through is believed to provide a method 

for future investigations of a general class of such structures. 

The results obtained herein for m equals three are applicable 

to long shallow panels where the same applied loading is independent 

of the longitudinal direction and with the same boundary conditions 

2 
along the straight edges. This is accomplished by using E/(l-v ) in 

place of Young's modulus, and considering the constant base as unity. 

It is believed that studies for different boundary conditions 

will be important in selecting an optimum shape and in determining the 

effect on the critical buckling load. Investigations of geometric, 

material and loading imperfections are also worthy of consideration. 
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Antisymmetric geometric imperfections may cause a significant decrease 

in load carrying capability as well as an alteration of the optimum 

shape. Study of material inhomogenity and anisotropy, such as a 

laminated arch, is also recommended. Furthermore, the critical 

loadings and critical impulses for snap-through and the optimum shape 

may differ considerably for loadings applied antisymmetrically. 



156 

APPENDIX 

SPECIALIZATION OF THE CRITICAL LOADING 
FOR UNIFORM STIFFNESS DISTRIBUTION 

The uniform geometry shallow arch with pinned immovable ends 

and an initial half-sine sha.pe under a half-sine quasi-static loading 
00 

is now investigated. The complete series T)(§) = ?f + ) a sin n§ is 

employed where r.. = a, + e. Due to geometry and loading one requires 

the following: 

TfQ = e sin § 

I(§> =1.0 

A(§) =1.0 

qcr = q l sin T 
cr 

According to Equation 66 the expression for the critical loading 

becomes 

j(a+L) ^(a+L) 
q cr = \'.'+\ I Tl Tp§/J d§ 

rra rra 
L L 

and substitution of the above series into q leads to 
cr 

00 T"(a+L) 

q± sin § = e. sin § + ^ ( r r sin g_ + Y ii aR sin n§Jy- (r± sin § 
cr /~. TTa 

+ ) n ansin n§Vrx sin § + ) an sin n§jd§j 
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By performing the indicated integrations this expression becomes 

q± sin § 
cr 

= e sin § 

1 f 2 rv 2 2 T : '. e v 2 . _l-. + 2 L r l + Z n a n l r i Sln § + Z n a n S i n n § J _ 
2 2. 

Since each mode is independent the above equation is satisfied if the 

following set is satisfied. 

cr 
- • ? [ 4 * Z » a - y ( i ) 

o r 2 'r 2 21 
2 K + Z n a n J a 2 = ° 

(Hrl + £ n 2 #3 = ° > ( i i ) 

Equationsii imply that either all the a.'s (i=2,3,...••) are zero or 

2 2 2 
(r^ + n a ) vanishes. The only possible way that the latter can be 

true is for each independent mode to be zero which is trivial. Thus, 

all the generalized coordinates other than r-. are zero, and the solu

tion to i and ii is 

,3 
1 

V = e + 2- °r ^cr S - T (ill) 



and 

a = 0 , n = 2,3,k,'",* (iii) 
• n . 

The solution for the critical buckling loading, for the limit point, 

is obtained by solving set (iii) -with the two equilibrium equations 

(Hef. [6]) 

l(r2 .. e2 + n
2a^) r i + r±= $ = e - q^ (iv) 

Equation iv for symmetric snap-through (a = 0 ; limit point) becomes 

fcl - e2)rx + Pl = * (V) 

Equation v and iii reduce to r^k - e + 3r^] = 0. Since r £ 0, 

r i = v(e2 - k)/3. Thus 
cr 

%r = " I C(e2 " W3] 3 / 2 (vi) 

for the l imi t point or top-of-the-knee buckling. 
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