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SUMMARY

The problem of snap-through buckling of shsliov_arches with

) non;uniform stiffness'under both quasi-static'and"djnamic losdingsfis_.
investigsted. -Analyses of different stiffness distributions are per-
formed to show the. possible weight savings or increase in lcad carry- .
ing_cepability realized;over tne uniform geometry_arch. In addition,_

_ conditions are determined_to'BChieve etmaximum load (snep-throuéh)l:
carrying-cstability design-forlen srcn ofvspecified'volume,:initisl |
‘shape and length. No attempt is made to find the desired stiffness
Catstribution. - | o o

For qussi;static'loadings the geometries considered are ther'

_ half—sine pinned_srch with two_symmetric-stiffneSs:distributions. The

crossesectional'areeemoment of inértia relationlis-I =q A" where o is

a pbsitive constant and:m'= l, 2 3."ﬁhe analysis, for the entire'

range of rise parameters, is accomplished through & Ritz-type technique;

' and it includes both symmetric as well ss antisymmetric snapping.

'Since closed form solutions for non-uniform geometries can only be -

 achieved for_axisymmetrig behavior and SP991ficjst1ffness_distribu- o

'tions,isuchzanslyses'ere’used to'provide.atconfidence factor for the -

3 approximate technique._

A weight savings assessment is made by compsring the weight of

__the non-uniform geometry arch to that of uniform geometry provided |
that they both hsve the seme critical 1oad (equal strength) Maximum

weight savings up to 20 per cent are observed for the m 3 geometry




:kvi

depending upon the value of-thefrise parameter. 'The maximum weight

_.savings observed for m = 2 are of the order of four to five per cent

i'-.For m l, the uniform arch is generally the strongest

For_dynamic loadings one particular inertia distrihutiontis-
used:since it'yields'the hest strength Tfor quasi-static 1oadings."
The following three cases of dynamic loadings are considered with a
| half-sine spatial distribution: |
”:l)'_Loading of constant magnitude and infinite duration,

2) Ideal impulse (Dirac-delta), | | |

3) Loading of constant magnitude and finite duration..
3 -The method employed is one which relates critical conditions to -
haracteristics of the total potential.surface Results are computed
for a complete range of initial rise parameters and nonuniformity ,_.
parameters; In general, m =3 is the best configuration for all
dynamic-cases. A 30 per cent maximum increase in load carrying capa--
bility is: realized for the load of constant magnitude and 1nfinite |
E:duration and & 20 per cent increase for the ideal impulse.. For-small'
finite duration times the increase is well above that- realized for. the.;-'
’ "infinite duration time. | - | . |
The optimization problem has as its objective the maximization

of the critical load (snap through) for a fixed volume of material

TO-obtain the-critical-load Trefftz' criterion is used, which 15 based- T

i+ 1 setting the first variation of the second variation of the total

potential equal to zero.

The equilibrium equations together with that obtained from
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Neit;'the augmeﬁted'functional is formed for the.coﬁétéht volume con-
_straihf and e;tremized_ﬁith respect o thé;crossaseétibnal;ﬁreé_yield-
"ing en integrodifferential equati'onj'.. The fsolut-i'dn_"_fia obtained by o
satisfying:the_éduilibfium equgtiohs simnitanéously ﬁith.the optimai-

- ity condition subject to the constant volumﬁ'conStrqint. '




" CHAPTER I
'.._'mRoDUCTION .

1.1 Mbtivation | .
Structural members of eleetic materials have diversified uses
as modern etructural elements. The need-for-eeeier-hendling of
industrisl structural components, the advent of spaceflight and the
.development of synthetic materials which lend themselves to new fhbri-
_cation proceeeee enforce the need for new technology. Thus, the _. |
requirement of minimum weight for euch structiures ie of paramount

"importance. The proper ¢hoice of material distribution yielde the |

= best design Por minimum weight.

Thin walled isotropic and orthotropic shallow panels are of

impdrtance_in the above class of structures. Such structural elements

are often subjected to both quasi-static and dynamic lateral losdings.

It ie'importantlto know how'the etiffneee~offthe struoture affeetS'thehh
liresponse to such loade. One such responee ie snap through buckling

or oil-canning. Lb.ny authors have either theoretically or experi—
'mentally investigeted uniform shallow archee under both quasi- static_
_and dynamic loedinge; Fbr-quaei-static loadinge snap through buckling-ih
is characterized by a v1sib1e and sudden jump from the prebuckled con-
_ figuration to another nonadjacent or far equilibrium configuration.
Although the quasi static analyaie is suffioient to enable one to cal-

culate buckling loads when the load is applied slowly, there are other -




- i-problems of interest, such as loads vhich are applied with constant o

-magnitude and finite duration (step loadings) If the walls of the'

structural penel or arch are sufficiently thin, snap through can occur.i_z

:when this member is.everywhere elastic, although inelsstic effects

- ‘can arise after buckling. Furthermore, large lateral displacements
" of these structurel elements may ceuse adverse effects on the per-
."fonmonce of the overall configuration. The snap-through 1oad is often_i

‘the basic load for establishing design criteria. o

'1.2. Objecti
‘In this investigation the problem of snep-through buckling of

-;low arches with non-uniform etiffness under both quasi static and

o _'dynamic loadings ie considered. - In addition; parametric studies are

performed to show the possible weight savings realized over the uni-

' ~ form geametry arch._ This 15 accomplished by comparing the weights of

'uniform and nonini form stiffness geametries of equal strength. nlﬁhual "'_,'

'istrengt " means: that the buckling load for the two geometries is the=;

!".same provided that the length and the initial rise are equal.

Finally, given a low arch of specified volume and length, L L

optimality conditions are determined which lead to optimum stiffness o
-"t,distribution fOr maximum strength S

| The analys1s of nonuniform stiffnees shallow arches under_both
quaei static and dynamic loads is accomplished through an approximate
: (Ritz-type) technique.: Since closed fonm solutious for nonuniform .
'geometries cen only be achieved for axisymmetric behevior and specific'

.istiffness distributions, such analysea are used to provide a confidence.




factor for the approximate technique. Also, exact solutions are
available for. a half-sine pinned low arch of . uniform geometry under
a. half-sine spatial distrihution of the 1oed for ‘both quasi static
| and-dynamic application.' These solutions, through comperison, pro-“

'.vide a check to the approximate solution.

| : The cqmplete analysis, including comparisons, is presented

- through the following three:tasks. The first task is to ohtainpa

closed form solution to the pinned low arch. loaded Cjuasi'—staticslly

. with a uniformly_distributed transuerse loading, The.cross-sectional

' momentJQflinertiapis tahen_tO'be I(x) =.Il(x/a)? as showm in Figure
_-é,l.'.The;initial shape of the arch?is tahen to.he_perabolic,' This |

tasklis,presented in chapter two. The seéond'tash'beginsfyith_sn\

. approximate solution to the above problem,.. assuming‘a “two mode respons_e;
These two modes are taken to be symmetric and anti- symmetric with
'lrespect to the plsne of structunal symmetry. By comparing these
results to those of task one a degree of confidence is established in
the accuracy-of the approximate solutionr Ineluded in the second-

itask, the approximate solution is used to generate results for the

-following problems*' Low half-sine pinned arches, with half-sine

- quasi- ststic 1oadings, and two different stiffness distributions,

Ix) = Il(s)2 and I(x) =1 ( )l/ 2 Correlation of critical 1oadings
: for the different inertia cases and the constant volume condition is
'considered as a preliminary step towards optimization of low arches.:wirj
Finally, in task three (Chapter IV) the approximate technique N
s used to generate results for the low half-sine pinned srch, with

I(x) = I —)? under specified dynsmic loadings applied with half—sine L

T




spatial distributions. These djnsmic losdings are the loading of
constant magnitude:and infinite duration, the ideal'impulse and - the

losding of constant magnitude snd finite duration. The first o

- dynamic cases can be ‘thought of as ideslizetions of - the following o

_categories of "blast" 1oadings, respectively
1) "Blasts" of low decay rates and “high decay times.

2) "Blasts" of high decsy rates ‘and low decay times,
| In all three tasks the mOment of inertia is related to the
croas;sectional area by I(x) o A (x) whére o is an appropriate

.. constant and m is taken to be one, two or three.

1, 3; Historical Review

. The analysis of shallow arches with uniform geometry has long '_i

been"a problem of interest o many investigators. The design of

rings and high arches with nonuniform stiffness has more recently

received attention stemming from 1nvestigations of the optimum colnmn.'

Following is a chronological list and brief discussion on relevant ;

"works.*”

isﬁallow arches have been studied by various methods. The significancei.ﬁ'f
of snap-through buckling, in 80 far as it 1llustrates certain impor- o

tant features in more complicated buckling problems of plates and _f o

shells, was pointed out by Mhrguerrel, who constructed a simplified

'_mechanical model to demonstrate theee features. Timoshenkoe-obtained .
: ;an approximate solution to the problem of a low arch under a uniformly : Lo

distributed load,_ Biezeno3 considered the problem_of-a 1ow'circular o

Both quasi-static and dynemic loading applioations of unifonm ?”'

-



'arch“loaded'1aterallytat the midpoint with a concentrated-load;

“Kaplan and FunglL investigated-the'problem of pinned low srches or_'p

verious initial shapes and spatial distributions of the lateral load.

hTheir reaulte Bhoﬁ that a very-shallow arch snaps'through symmetri-

cally, whereas a higher arch buckles aaymmetrically They also ran &

1imited number of experimental teete, and their deta 18 in good.

agreement with' their theoretical predictions, In 1962, Gjelevik and

5

Bodner obtained an approximate solution to the problem of a shellow

arch with a concentrated load at the midpoint of the arch and clamped

' boundaries._ They alao reported experimental results, and they showed a

good agreement between their experimental deta and theoretical

resulta. In 1965, Simiteea6 obtained solutions to the pinned and

'-clamped low arch under a half-sine loading with an initial half—eine

shape. Antisymmetric as well as symmetric modee of defonmation were

| 'considered. The arch wes ehown to buckle antiSymmetrically for suf-'

ficiently high initial rise'parameterB, Critical loads were calcula-'

ted for a'compiéﬁe renge'of'initial rise perametefé;7 In 1966,
| Schrey'er and. MassurT
' a-clamped 1ow circular arch under uniform pressure and . concentrated
.load at the midpoint. Contrary to the results of Ref [6], they
showed that for the concentrated 1oad caae the -arch. snaps symmetri- -
R cally regardless of the value of the initi=l’ rise parameter. In
| 1971, Dickie and Broughton8 considered a more complete claes of these

'problemsi. They concerned themselves with both symmetric and aeym--

gmetric.buckling.of_low archee subject to,radial transvereecloadinge .

obtained an exact ‘solution to the problem of e':r o

I A



énd possessing either pinned ends, fclamped_ends or a. cdmbinat_i_on of

both, The type of loedings eonsideredfwere both center point;'unifanm S

"radial, 'and'-linearly varyi-ng radial. Approximate seriee aolutions
Iwere compared with experimental values, | |

The problem of snap—through ‘buckling of low arches with _
.uniform stiff‘nesa under dynamic 1oe.ds hss been treated ‘by many inves— ..
’ tigators. Some relevant referencee are the ‘works of Hsu_, _Kuo,.and_ |

?, and Hotf and Brucel®, More recent works are. those of simitaesés'

Loekll,-.and Pulton and Bartonla. In '1965 » Ref. [6_] followed an energy

Lee

surface 'approach to'detemne 'critical loadinge as does Ref, [10];
however, Ref, [11] and Bef. [12] use a different criterion for buck-
1 ling._ Lockll numerieally integrated the equations of motion to |
determine stability criteria. In 1971, Fulton and lae.rtonl2 imresti-'-
gated the .- sane- a__roh._,'by a fini_te differen_,ee approach, Stability |
'-c'rite.ria- for. Ref.[ll] and Ref. [12] eon'siated of examining peak
values of the . average displacement._ 'I'he va.lue of the load at which
thia peak dieplacement exhibited a sudden increase for a very amall E
Fincrease in loading vas defined as the dynamic buckling load.' Results'f
.for the aymmetric mode were compared to that of Ref. [10] The -
'.critical ideal impulse values were considera‘bly lower than thoae of |
Ref [10] Antisymmetric mode results were plotted a.nd correlated
- well with those of Ref. [11], however, they yielded questionable
| ge.pe in the dynamic 'buckling strength" as etated by Fulton and : ..
'Bar_tonm. Both Ref [10] and Ref [6] Bhow higher critical values

.. which ,i;h_crease mo_n_ot_onica.lly w_i-th “the _initi_al-_ri_ee _:p_a_ramete_rl_. =




The etudriof structures for.ﬁiuimum'wéight.Qtartéa with

- Lagrange around 1776 when 'he:.arrived-_at_ an erroneoli_s result.- | He
.debemin'ed " that ‘the -etroné;e_sé column should be one .of conste.nt 'c'ir--.

cnla.r cross;sectiOn; The corﬁc‘b-'i*es’ult was achieved by Clauseri_

‘et al.13 in 1851 for simply supported columns with eimilar cross—

sections-. If ‘the nement of inertia, I, and the ares, A, are rela.ted

by I =¢ A" 3 then eimilar eect.ions are associated with m = 2 -l-Ie;'

'_determined that the best shaped colum had a volume- of ,/3/2 time's.‘.c.be "

- volume of the uniform cylindrical colum of the ssame load carrying

. _ 'cepability. This problem was generelized and completely solved by

Ke.lle'r]_'h who._d_et_emined the.t, of all. simply—-supported columns with. _
conVex and similar cross-se ctions,' “the strongest column hee an -
E equileterel triangle a8 its cross—eection and is 'bapered along its

| .'length., being_ thickest in the midc_lle_ _an_d____ ‘bhix_mest a-t.i‘bel ends, Its

| buckling load is 61'.2:' nercent.' larger than 'l:hat o_f. a circular cjrl‘_in-'._
der . . For a_uniform colmnn triangnlerizing was ehown to __1ﬁ¢;egse. the
buckling load.b'y__20.9__1_:’ercentIover:the.’.c'oi‘ e.ei'rculer cylinder "'__. T_hie
: _wgg'fgrth;r géﬁeféiized byfreajbakhsh_andixeileflél£p_fouritjpés'bf |
"-bonnde;rrchnd'iiione. Keller and Niordeonl6 .t-r.eeteld -th.e.- problem -'of o
finding the height of the’ tallest column under ita own weight. |
Taylor T recognized t.hat the optimality relation between ehe.pe e.nd
- _ displacement obtained by Tadjbakheh and I{«a-:l.le::'lS coruld be obtained
_=directly by minimizing the poten‘t.ial energy of the system with a. |

: _vol_um_e c_ons_tra-int superposed. _Sal.'_uua.sl8 _-d_et_ermined a general class:

of .problems for which "l':his 'procednre applied. Pra.ger and Taylor]'_9

: provided an exact solution for a eimply-supported column f'or m equals




| one, Closed -form sclutions forl m equsls three snd a finite eiement '-
displscement solution for m equals one, two and three’ for 'bhe colmnn
with elastic restraints have been obtained by Simitses et al.2 .
.Treatment of the corresponding pro‘blem of determin-ing tha-t shape of |
a “high circular arch which hss the Largest critical buckling pressurc _
of all high c:chular arches of given radius, central angle, and
volume has been -perfomed_ by-Wu Wa sllowed ocnly 1nextensiona1 _ |
deformation for m eq_uais. th.'r'ee.. The optima.l_l.ity condit.io'n vas found
to be the sa.uie' as for a'cclilihn wi‘_bh _m..eqtials th'ree.' .Following this
-work, _M_iensky .'e-t 3'1.22 have Studied & clsss of such problems .to-__
incbid'é wniform _ra.d'isl__loa_.dipg-aﬁgi dead p'res_s_tire__._:]_oading_ or loadings |
which 'are--constreined : to remsin psrsilel ._to_.._."t.heir _initial_ _direc-bion's of__.'.'
application. . Fina.lly, a review. of such works is dis.cus.sed by_ Niordsoﬁ- ..

and__Pedersc:n23 ’ Wasiutyna.ki and Brandt2h, and Sheu and Prageras:;- e




. CHAPTER II
 QUASI-STATIC CIOSED FORM SOLUTION.

‘2.1 Introduction

The.ahallow arch is an important mEmber of a”class of structures

~

used in indaetry. It is advantageous in many cases to minimize the

weight of'such'a'structure. In order to find a 1eastlweight structure .

“it:is important to choose ! method which leads to accurate results with

a -minim.lm of effort and time, To establish the val:l.dit;y' of an ‘approxi-

mate.solution a’degree of confidence must be confinmed by conaldering a

' fcloaed-form:aolatiqn if possible.' Ref. [3] outlines & procedare for a

low erch with uniform geometry ﬁnd‘ei-’ a 'cént-er"- point loading. The seme "

".method is used herein to determine critical uniforn, loadinga for the
symmetric shallow arch wlth the 3pec1f1ed nom-unlfonm stiffness _ 
I(x) = I (x/a) . Note that this expression is valid'for a's x < a +v§1
~ The arch ia initially parabollc, unlformly loaded and hae simply sup- o
-..ported ends as shown in Figure 2.1, The reaults obtained are compared
”;hto those of the approximate procedure in order to establiah the degree

.;of confidence.'

.2 As@x_@ tions
The following assumptlons apply to all subsequent quaai static
_investigationa" .

a) “The linearly elastic material of the shallow arch is homo-

geneous aud isotropic.-_':

T IR
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‘The slope ia everywhere small (shallowness), dx) <<el.

The arch is thin. The thickness is much smaller-than the

typical arch dimension Ly i.e. h <« L

Croes-eectional planes before deformation remain plane and
normal_to tne deformed aria of the_low arcbrafter deforma—__.
tion. | |

The rate of load application 13 80 small that it does not .

induce any appreciable dynamic effects in the response of '

the structure (static analysis)
The cross section of the low’ arch posseaaes a plane of sym-,

metry, and the loading is restricted to this plane. Ther"b

' possibility of lateral deflection is ignored. -

The cross-sectional moment of inertia, I(x), is related to

the cross-sectional ares, A(x), by the relation I(x) = aﬂ (x)

In-principle, m can have all-positive values, thereby
exhibiting a host of p0331ble geometries. .Results are only'

computed for m equals one, two and three Which, for example,',--

' ’characterize a variable base and fixed height, variable L

“-base and height, and variable height and fixed base,_r

.respectively.-

273v Geﬁerai'Method of'gppfoaeh a

Equilibrium equations for the’ quasi-etatically loaded arch with

an initial parabolic shape are written on the deformed etructure."l'f

From linear=constitutive equatione and nonlinear kinematic relations;

due to finite:rotationé; the'axiallloading:ia'related7£ordeformational”:'




1

The transverse equilibrium equation is solved by introducing an
exponential substitution to achieve the homogeneous solution and
| assuming-a quadratic polynomial_to acquire the particular solution
;for the axisymmetric;hehavior of the arch, The,transverse and_in-

. Planeﬂequilihrium equations are reduced to a single nonlinear inhomo-

geneous quadratic equation in the transverse loading_as a function of

the axial loading, initisl rise parameter, and the structural geome- ”
| try. From & plot of transverse loading versus axial loading, the
transverse loading at which there is no increase for a small increa&e'
in the'axial loading.is.defined_as theIcriticalfsnaprthrough-loading.
" When the sxial loading,corresponding'to the critical transverse load-
ing,reaches that_Of;the ?nd buckling_loading of a"beamdas g straight'
strut,then_tnis is:the_ldwer bound of purely.antisymmetric'buckling.“ '
| since-the;strain_energy of.stretching_for:thgﬁcurred member_isishown'__
; tp:be équsi'tb_thé strainfenergy 6f stretching'for the ﬁemtefdas a.
straight-strut-at this loading. The second buckling load can only be
_determined for uniform geometry._ This lower bound corresponds to a
'particular initial rise parameter, e. The upper limit on e, for which
| the axisymmetric behavior is applicable, is estimated from the known '

-'value'for uniform geometry. For rises less than this particular

quantity buckling occurs at the limit point. An outline for the above i

1'procedure is described in Ref [3] for & uniform geometry arch loaded

*by a center point loading. d

T2,k ”névelapmént{affthefob%erﬁiqgfBelatibhs;

Let w_ exd v denote the initial undeformed and deformed




configurati-on_ for the reference line of the low arch, _réapectiirely. _
 Also, u 'rei:re:sents the 'hor'izontal di@lacement of any'point of ‘the

reference' line. See Figure 2. 1 for geometry and sign convention. a

Considering the above assumptions a.nd notation one obtaina the follow-_ o

. 'ing kinematic relatlon which is nonlinear due to finite rotatione- =

o= d () f'(fﬁ‘f').]_- S
e___;'__eo__f znx | o o (2) |

' where co is the reference l:lne strain and z is the distance from the
reference— line. n. is the change in curvature of the reference l:.ne

' gi’t*en by

s:"i_i_'

. w2
R
A =TTt

. (3)

_Denoting by Q and M the resultant axial force and resultant bending_ o

- moment, respectively

Q¥ = I-IAZ_ox'.@AC |
S

| _.UI_SG' Of.ASSDJﬁiit:ioﬁ;- (a)and Eq__uation._ 2 y,ielda A |
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2- Cenlrmd

L
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Figure 2.1. Geometry and Sign jT.','omr'en;'t._,i.gjn; for' the Low. Arch,

13




i

; and;'
.M -g..EI(X)-ﬁx. e S -(5)
The.eqdilibrium eeuafionsiend prepef bouﬁdery'eonditiohe.for symmetfic
behavior are N

2 d2w

A q* L x- a; X-8a o (6a)
- dx dx2 I x ZEI x) .

_ o :

s
=

0o

‘l

o
b

. b0

Note thet, because of the restriction of axisymmetric behavior, the
domain of applicability"of the goverhing'equatioﬁ is 'é < x <a +% -

: Consideration of the kinematic equation, Equation 1, integration of

Equation h over the: length between arch supports, use of the fact that N

. the ends are immovable end the behavior is symmetric yields

%; e -+I N R

25 Solution

The 1nitial shape of the nonunifbrm arch ig (see Figure 2, l)

w (x) (he*/L )[x(Qa+L—x) - a(a+L)] "e], Le:“(gji
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vhere .
et =w_ . T ()
With I(xJ';all(xfa)agthe governing differential”equation, Eguation
" 6a, becomes orie With variable coefficients. R

| - | 2
& 8e¥BI.x” .
Exlec 9 = L(J;‘e_a). el -.'aeLe}- S an

| The homogeneous eguation can be reduced to-
=S -wrtEY=° L e o

wi;t.h constant coefﬁcients vy the exponential substitution x/a = e .

The solution to Equa'bion 12 (See Ref. [28]) is
\/3 (A sin Bz + ZB cos Bz) | ; ] o (13) |
The particular solut.ion tc; E.:qu.efzt.i;;i'__ll ilé'.g'ive:r; by " |
'-wé-(g)-ecx?'.;, . | | S
. where the COnEfE'Ii;l:t.‘S C',-'.'D- and F are .
| Ci*—-.- (16EI e¥ + a 2y q*)/(2 + k )(2EI i2 )

: a?q*(n'+ﬂ2a)?2Exlk?

n

F = - a¥(a + L)/
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and = Qra”/EL,

J(k '11)

The genefal 801ution, which is the eum of the particnler'and'"- 3
..complementery solutions, involves two constants, A and B [see Equa--l
tion (13)]. These constants are evaluated from the boundary condi~

'tione, Eqnations.T. These constants are:ﬁ

A= { [o(2a + 1) + D][2s(2s + L) ]1/2

RS [(a[kl.) 2t8ex ¥ 2er” )J[EB sin B {n 2a+L .

(ﬁ{n QS:L)]}A&[Bin 34n 23+L).+ 2ﬂ(co 3{n 23+L)]

=52(f8€*k25i14q*aetzi-/te-+'k2)'<'k"*’r-_2ﬂi1)f R

If the'sointion is suhetituted into_Eqnafionfé, then-a'
_nonlinear'enpression 18 obtained which relates q*.and.Q*. |

From thls equation one obtains a plot of traneveree .
1oading versns axial loading for any geometry desired, As an example f.'
.see Fignre 2.2 and Figure 2 3 for uniform geometry. Figure 2 2 repre- :
sents curves for. initial rise parameterl ranging from no snapping to  _
_ the upper bound for axisymmetric snap-through | The curvee of Figure 2. 3
represent golely axisymmetric buckling which il not the actual buckling
:_mcde realized-for this range.of initial rise parameterse Hénce, thelf;
:closed form solntion 15 not applicable for this range. One.sinilaf*

curve is shown in Ref. [3] for the pinned arch under & center point
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loading. Criticsal loadings versus initial rise;parameteré for non-

v

uniform stiffhéss and constant volume.are plotted in'Figure 2.& through

Figure 2.6. Exact values are given in Table 3.1 through Table 3.3.

_Note'that3criti¢al loadings and initial rise parameters are given in

a nondimensionalized form. The nondimensionalized pargmeters q_aﬁd-e__

.afe.given by"
< g% /EA 2, Q= g*81%/MEI  and e -.é'-*/ -
9= 9Py u%E.’ I * S Po
where

o = Tu/Ay

Au and Iu are the aréa aﬂd moment of inertia of the unifofm'geometry, '

.éE is the Euler_strai?'(ﬂpb/L)2 end E is Young's modulus, Critical Ti'“ |

'loadihQS'hré'COﬁparéchdnsidering cénstant volume;fOr'eacH geometry. |

The conStant'volume condition becomes

where
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where

Thus, cne obtains

(—é) e + )] np RAGD)

and -

(11*'ﬁjﬁ(5ﬁf-iijm'

where po= 12/11, I1 and 12 are the cross-sectional inertias at

'and X =a + g, respectively

~ For n#a ‘one obtains

V -1 I-(r33/2 1)/3a(pl/2 _1')_"_

- nu

v 1/2 1/2 12

nu o

vn# = 311231(95/6 1)/5 1/3( 1/2 .1) :.:'

L(p™' " + 1) /2%

and

% f?TH(P”- - 153/125(9'1/ L

X=8 . -

8
o
ro

23




el

NondiménSionalization{is noﬁf§685£tle for all nonﬁnifbrmfgeometrieS'
'considered.

Substitution of" the above solution into the expressian for the
K _

| axial loading, Equation 8 and integraticn over the length yields the L

folldwing nondimensional quadratic equation in the transverse loading

- where the A

i's are functions of the axial loading and structural

: geomgtry.
A FA Gt A3=0 (1)
The Ai 's qre.-.gifén' by

g = (lein(epan) Xo2-1) /) ((ai 1)1 ¢ p/ti(sEa)*)

- (;i-éﬁ?)/ré?( Ae) ¢ G » At
R "_+ {[1 - cos(QB{nY) ](p'a'-l) /283(Br - Ea/es(p -8 o]
+ (l-2k ),¢16(1::E 1" } + {pa/[h(p’f 1)311
[ y?[cos(a«tnv)/ls(pi’ 1) k2(2+k ) * r sin(atnvl)]h |
;'+ 1/[16(;,% 1) (24 )]} N [ﬂf[3(p 1) (2+k )]}{ﬁ/Q[ 21“7.”.
S ) a6(eh ) e (o )])cos(ﬂ{m?) + ((1+2k /e
2 1/8(;“ l)hk2(2+k ))sin(smv)] -er - | |

| .= (l+2k )/1'5(92 l)hk25(2+k%} + P/[128(p% 1)
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o+ (eueb/tas R Dead?)

CLdtanasedntiesdy

+ @R/ (A% - (e
| _:'_.f'E'Bp%_/ (.p'-%'-ﬁl) J}_EY%[&:__o'é‘( sm?:)_/léke( péli)‘l.*(':émé) -

sreman] - visE &Ry

| f.' f;tﬁx?ﬁ/tp§41)(2+k?)?j{}3fafcar'~: ;i_f;7 ffgﬂe. -
e 1@25 /16 p%-.l) h2e(21) );o_s(sﬁxy) o
g '_('.(-?l“ef)l“/ﬁ"t-:13[31]:2_(9%:-:1)-_1}(:2#1_5.2).)ai;it_ﬁatn?)fj : 2r
- :,..El-l-_21.{2..'.)7.[1.6._(.9%..;!_)..,'“"1;2.3(_é+k?__) 1} - .{8?/:('_‘-_,%__'1_')(é,r-k_a)z']f-f . |

_ + (l/[B(p%-l)th( 2+k2)] = (1+2k2)r/3 )Bm(ﬂmy) ] L

S s et/ e Aty oteesd) |

A v

C e e,
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2k = 2B smmestay) p1ex-1? +p/metnt

. u t#%zkéjzgé(b%;l)sé]_ . .

| ..f+_,:(éé)‘:(pf%-ﬁn%?kﬁm][r?-_4'1)28_<pi‘?.;_5_89‘1-'-. o
% f29'<'p%--1>5k“t1 - cos(284ay) J/é}[érz 5/28'(95 -'1)89' o
(e )x/2 (p% 1%} + [256(p2 1)k 3/(2+k2)23{9r3/2[ (21"- -
ER (1+ek )/16( 6% 1) kB2 ))cos(a-:nv)
(1/[8(9* 1% 2(2nd)] - (142%° )r/s)sin(smv)J +2r

+ (w61 B(2+k )J} IR

o+ 32(P+p2+1)/[3(92'1) (2+k )2 1- *-'

m-2

| + 1+l:2(p 1)(92m-1)/[(-2/m)f2e
.,-where: = |
-'-'y'_='1-'+jL/éa ,% - :(I-éﬁl,;-;-' o

._ e'- k (k +2)

r= {[p"‘/a/(p% i) J%‘ + [aaam(e-:nv) - cos(sm)l/[h(p?-ﬂ Jl/ T

{u(p% 122242 )[sin(Beay) + 2BcOE(B&1Y)]]

X {[,,3/2/(9% 1)51% A raasm(sm) - cos(ﬂm) J/Wp?-l) o




o P%-l)?k“(-2+k2)2} |

. f ='(P-'gm"l) ¢ /[(l +§) 2 .(F_%_l')_'g ]
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* CHAPTER II1 =
QUASI-STATIC APPROXIMATE SOLUTION

3,1 Introduction =

| The snaliow'pinned'areh with I(x) ='Ii(x/a)2 under a.nnifonnlytl.
applied 1oading'is_investigated and a closed form SOlutiOn is
reported'in.Chapter II; This chapter deals'sith the same problem
: using.an'approximateltechniQue with a two-mode response. These two
modes are sjnmetrio.and anti-symmetric vith-respect to the plane of. .
strUCtnral'symnetry.i The'anti-synmetric mOdetis shown to be the .
_governing one in_Ref- [6]5and Réf; {10] forluniform.gsonetrydand'
sufficiently.highdiﬁitiai rise parameters.:'In this‘ehapter a degree
of confidencaris:estabiished for.the approximate technique as appliedf
to the above'problem by oomparinglrssults with.tHOBe of Chapter“II.
As a subsequent steg the approximate procedure is used for the half.-
sine arch with I(x) I (x/a)% in order to more completely investigate
IL the effect of nonuniformity -on critical 1oadings. These two chosen-”:-
inertia investigations may be thought of as a first step toward

. optimization of shallow arches under quasi-static loadings.

3. 2 Governi_g Equations and Nondimensionalization

Occasion arises, as in Chapter II, when one compares critical

' nondimensional loadings for different nonuniform stiffnesses, constant-3- S

volume and & specified nondimensional initial rise parameter.' In:“

addition;-to-the.nondimensionalizetion parameters of Chapter II, one
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.reqluir_e_s' the following
w(x) =p  WE

- =~(‘:L/T_')§ -

a, =a¥/p , 1< 1,2; emplitudes of modes (Equation 21).

=
i

< W0y/P e T
.whére_ .

- Ps = Iu/ Au

ol
"

= (my/1)°

By the procedure estabiishe_d in .Chap_’oér__II. the following are det'er--f-" _

min_ed-'for n .="—é:

. nu
.15 11
Vo= u_:irggpe-__l)/sa (6°-1)

B o
o

1071

[

n

0
|
1
B
i
o

o = 60,0507 /25(6%0)% =

Vs, we

| 2'_I.I1(_-’53"1)/3('92-1) =ah, , : o S mel




5

u -

Knowing I end A and defining :

= .

(I /A )(L /I ) = (1 3 ': (p -1)1
 and

m

.._..h_--I./I . (1) (im—_l

' one- can now.nondimensionalize specified5Quantities in'term§10ffthé'3

following parameters: -
g =al/I)

I

ge =(Q‘Lh/h11)§ ( ]_+ ng) | - L ._ _. n=2 .

| , - 11 o B
= 9( oL )3(p 1) /2513(p -1) )

Eh ?21‘2;/'1.1.'-
8a=‘+a2L2<921)/51§(p21) B S
83 = 36 (p -1) /h913(p -1)%

'"_::'

- 30,
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3 i )
h, = (o°-1)/3(p°-1) |
(B e aez
s 1

= 27( p3-1)3/125(_ o2)3 . b

by

hy '-=  2( é?-l.)/ 3(-92-1.)*

Pl

g = 6317757
In order to _-ozl';ta_:_ln': the total poteritial energy .o:'_ae' must dévelop |
certain relations. Lletting the prime denote a total derivative with '
respect to £ one acquires the :"'fdlibﬁihgn_ expression for Q% (see
Equation 8). - .
n(a+L)/ )/T

= (@./2)F ) - (10)%jee/f
SR ey

'_ zrg)

e K(O) MO,

__;u'= g;?ﬁ'?fSJrﬂg - 1] : IR . ;:;..\ ;;:;(iS).:._
uhere K9 -'=._:'I‘.j§>’./iu- -

Fext, the in-plane equilibrium equation is used in order -
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. to express the total potential solely 1n terms of the transverse
poaition (w and consequently ﬂ) of the reference line points

Forming the dimenaional pqtentialhcnergies one-acquires;.

rr(a+L) /L e )

o (TS o s -
(%mmﬂ _@g ()]ﬂ/my M9: .

_ugT=( eEL/an)j | :(g)_[n;._.-__n”f L (¢0)

P U(5+L)(L_;-_ '. ; o
Oy = Gt/ a0k
| where

. _-"[-j'-!-:'; U* i+ U¥ 4 U¥. )
T Bg By Pp

Therefore, the nOndiménsional.total-potential'becomes:

- U = hU /P QEL

4 2 n(a+L)fL S _
:- (1/en){,r M (n‘) Jag} ﬂa/L | K?i?' e

. (2/w)f I(;)[n” wfe (20

)/
4 (h/n)f /L q(g)m - M lag

b




Page missing from thesis



¢n=2

=
o

111

, = (32r)/2in - mp/ulP1)% & mp M)

=-16/2n D2/-(.'p2__'1.).2_

with o

Pn=p

. mal

)

m=L

e
L

' me3

-
= o

m

3. ﬁ(a + —)/1,

=y sasm e[(ms/n) - - —](L)as,'

1 .
= F'EI'];/E:"@L2 g

| 1 '1  -1 . _1_'
-Il(p -l)/BaL{n

T3P0 /23 1 (600)

"

(/e

.1. 3_.
= 312(9 —1)/2a 1 (p -1)

11 -1"2

| ='5__I§(p -l)/3a3L(p -1)
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and

H

/(128/n )(p+p +1)/[p+p +1 + (6/11 )(p 1)] e
for all m velues.ﬁ

.The.equilibrium‘éoﬁatfons'éfé';;.--

1[r - (32/311 )e + 4a21

l

+ (ll-u,p/ﬂgmq;)(p -l) (r -"') + qhmfzsm'?{?"' 0 o | .. | (23)

'1
aetr - (32/3n )e + haa - 8*(9 l) /nemoj
Since, inltially, a comparison with the exact solution is-
.accomplished in order to obtain & measure of confidence for the

approximate solutlon is set identically equal to zero. Once
B2

the degree of confidence is estahlished, the approximate solution is.

used - to generate-resulte for the entire range_of initial rise param- -

eters (antisymmetric buckling 8s well).

The equilibrium equation for symmetric response 13'

1

3 - i) - N T L AL RENCOR

~where L
P '
S 5 e, o
§ = boelp fl)'/ﬂzmo_--qhm/2gm9
It can be shown from Equation 2h that there 1s no enap-through

'buckling for (see Figure 3 6)
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n T
- 2 2 .
e < v/gna(p--l) /ngo. .
Symmetric snapping (see Figure 3 T) terminates for (for details see
Ref. [6] and. Art, 3&) L

- -y

=.~Z 3mylp -1)"/hg, 0.

The critical loading ‘oceurs’ &t the’ limit point and becomes (see
' Fig. 3.8 and Ref. [6]) | |

. EEER - _ _3._

Gep = (4/,) (g, 9/ PIL(32/37)6° - als®-1)%/ e 0
B L
sele0%) (=)

. The'abofe“critiCalfloadings for m:Bj dﬂffereﬁt’pfsalues} and all

initial rise parameters corresponding to limit point instability are

gshown 1in Figure 3 2 through Figure 3 5 Critical loadings for all -

' three m values are shoun in Tavre 3.1 thrOugh Table 3. 3. eme "drs--.. .

R crepancy between the Ritz and closed form solutions is greatest for
: uniform geometry and decreases as the non-uniformity in geometry _
increases.. It is noted in Figure 3.2 through Figure 3.9, for m=3,
that the criticsl loadings predicted by the Ritz method are higher '
' than those for the-closed form solution. The worst discrepancy

Zis for the lowest possible initial rise parameter and. corresponds

- to approximately e 6 5 per cent error.

- 3.h 'Shallow'Half-Siné Arch with'a'ﬁalf-SinetLoadiné

36

'_.Oncezconfidence'in:ﬁhe Ritz meihOd_isfestaolished'wifh'a'fwos -
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Figure 3.1 Nondimensicnal Critical Loading versus Initial Rise Parameters, Closed Form and Ritz .
Solutions, Il/I2 = 1.0. :
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Figure 3.2 Nendimensional Critical Loadlng versus Initial Rise Parameters, Closed Form and Ritz
Sclutions, I /I =0.9, m=3,n=2.
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- Figure 3.3 Nondimensional Critical Loading versus Initial Rise Parameters, Closed Form and
Ritz Solutions, Il/I2 =04, m=3, n=2,
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Figure 3.4 Nondimensional Critical Loading versus Initial Rise Parameters, Closed Form
and Ritz Solutions, Il/I2 =0.1, m=3, n=2,
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Table 3 l Critical Loadings and - Initial ‘Rise Parameters-

Shown in Flgures 3.1 through 3 L, m=6, n=2

'f-11/12

" Ritz

- Closed Form

er

B o ol

Lo

1.9k
3,00
- hooo

i ll-.Sl

:;:1,7h;
371
= 7120' -3:-

. 9,64 o

97
3.00 &
k.00

ho69 -

1.61

3.8
_ '6.'.“82 .
©10.20

3,00
koo

b5y

:51;757-f ,
3L
7.20
- 9.64

Ll
3,00 ..
hoo
69

e
348

6.82 o

'10 20

a2

© k00
- bose

22
380

7.28

S 2a9
3.00

k;00

S 2,107
. 3.69
7,06
10.58 -

- 3.00
koo

2.8
© 390
- T7.19

i, 6T . -

10.50

2. Su" |
}h.oo"._
R

C383
11,48

,  41_”'
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" Table 3.2 Critical Loadings and Initial Rise Parameters,

I/, . Ritz. . Closed Fom

e . ' e ' .
I . T -

09 Lo LTS 19T L6l
' 0 3.00 . - 371 3.00 . 3.48
Cboo . T200 booo o 6.82
bS1 9.6k bE9 . 10.20

ok 22 2l 0 222 .99

| 0300 37T 3.00 0 3.68
4,00 722 400 6.98 .
W52 982 - k7o 1051

0.1 2k 2.8 258 2.6 . |
s 3w s o3|
L B00 655 koo o &31 o h
S b3 10031 ko o aer o




Teble 3.3 Critical Loadings and Initial Rise Parameters,

1,/1, " Ritz Closed Form

S Y% s : Yy

0.9 = 1.94 L7 19T 1.6
3,00 3.1 3,00 3.48
400 T20 - koo - 6.82

k51 9.64 - k69 . 10.20

ok 2,16 o211 2.260  2.05
3.000 3.64 3.00 .. 3.61
hoo . 6.93 koo - 6.81
460 9.82 W79 10.50

0.1 2797 2.8 2.8 2.8

0 3.00° 318 300 3.5 .
k00 580 k400 60T
5,26 - 10,51 - - 5.8 1lbs




‘mode representation, ‘the problem is now to investig&"?e the pinned
' shallow half-sine arch under & half-sine'lbadihg for the tuo inertia

distributiOns, I(x) = 1(3)

) and I(x) = Il(a)z and all m values

. The total potential for n=2 and n--2 becomee
U, (r a ) ( /h )(r -e +ha )2 I e o T
: 1792 gm‘P LT

+ (857 1)/, J(r,-e)% - Bagy] + 29,(r -e), ne2

Cama (e

Culrey) = (g,9/165,) (5 Pad® e T
- .
v;f**f(??‘l’?/eﬂﬁmif‘?i*¢>?w:ffﬁaéﬁl +20y(rye), g

. The- principle of the stationary value of the total potential leads to

the follcwing equilibrium equatione for n=2 and n = -;", respectively.

r (r -e +ha2)_ + (hw/ﬂq:gm)(p 1) (r -e) + qlh /2amcp = 0 |
S o
aé[rl-.e +_1|-'e2-8¢'( pz..-.l')../'_ngmcp] = o '
r (r -e +h32) + (hw/ﬂgmfp)(p -1) (r 1)+ 8q /e <P =0

3 T R o

| 'serri.e%i-w 1) me 01 = o

. One defines § for n.=2 and n = %‘, respectively as .

e




ks

r | o“'-: o oo

a) =.hwE(E?;l)2jﬂgm¢ - ql m/25m¢ . : f.'. o o :n=£' o
: Cy f. o : ' '.{  - : _;;-»_- ' f(28) |
TR S

e

The equilibrium equations for both ﬁ;vaiugs'become-3
.2 2,2, .5 .2 :
§'=:[r1‘e *432+““£F_‘1) /“gmwjr; S o R
oy o (e
a2[?1f6:+h?2'8*(°_“L)/“Em¢3 =

oxﬁhere-are two possible solutions to the equilibrium equations -

._'1) | rl.# 0 ,.;_' 8, Q
ity rp & 0, _o'.aé'ﬁ 0
Case i ‘and ii correspond to purely symmetrio and to symmetric and anti-

symmetric modes for a glven rlse parameter range. Since a, = O-in-case-

i, then ;_.r
: _. o.-_;:o R T | - P A
ri_- [e?'f;h“(pe';)ef"ém¢]ri =7§7f; | -_f i¥=._ o_l | (30)”if__,

Thus,’ there is oo possibility of,Snoppingofor (zee Fig..3.6)

Y A S |
e'<;v/hd(gé;ﬂjézhgm¢. e

'All posslble quasi statio equilibrium positions are- depicted 1n Flgure

3 5 Caae i1 is possible if .

o S R |
¢z ;/-81:( - 1)_2-/frgmgp

. e
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.$+4a§ é+3gf}41¢

TG ®

Flgure 3.5 Quasi- Static Equilibrium Positions in the (r

1’2) ."“
' Configuration Space .
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Figure 3.6 Load-Deflection Curve Correaponding 'bo No Snap-Through |

Buckling ’ Very Shallow Arch. _

— O

Figure 3.7 Load-Deflection Curve for Limit Foint Instability.
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‘When entisymmetric modes are possible, the expression for ¥ and 8, in

terms of ry are.given,belowﬂ(obtained f?om.tﬁe-eqﬁilibnium.equations)n
¥ = r, Wued(p"1)%/ng_¢

AR Rl ALAA A4

- S S TR

e = ¢+ By("-1) e - ey T/16(6-1) w2y)

Figure 3;6_repnesents'all poSSIblelpositions.of equiiibriun; Figuresf
3.7 throughi3.9'represent'sll of.the-possibilities-of'load-deflectioﬁs_:'
~ paths depending upon the value of the rise pafsmetef and'the struc-
'tufal-geometry. Examining all equilibrium configurations for infini-ﬁt
-'tesimal disturbances, the- sufficient conditions for stability (in the

small) of quasi-static equilibr1um positions are

¥y

I .

2 .y 3rges,
" _ .
[

L ”"éxoﬁfff'
[ %% I;f.:?aezf B

_The above conditions lead to the following two inequalities when buck- B
_ling is governed by the symmetric mode (see Figures 3 T and 3 8)
| | _1 . g TE L
ry '--[62/3 hw(p -1) /3ﬂemcp] >0

rir;-te2'+_8¢(phflj2/ngm¢j.>“o |

N




#9_

Therefore, in Figures 3.7 and ‘3.8, the equllibrium poertlone from -B
‘to B are unstable {in the small), When buckling is. governed 'by the |
entis‘yme_j:ri'c' mode the conditions for .st'_abi-lity' become ( see 'F_:I.gure
3.9) | | | | |
o o o o
ri + 2_-(:wF2t)(Ipn-'1’)'2:]ﬂémt s0

w+ 2¢ ;>. 0 -

Therefore, the elliptic equili‘brium poe:ltione of Figure 3.5 are a
' unstable (in the smell)

Critical loadings are determined for 8 complete range of ini- .

tial rise-paramete_rs. _ The three crit.ieal rangee are as follows

3 T -
o) If. J/%u(pnil)afnsmy <ex JIBY(p -l) /ﬂgm¢ P

as in Figure 3.7, the ‘8ysten will resch point.B and snap through & sym- .

. metric mode only The _cr-itioai.-'loading_ at the limit p'o'in't-,".--Bj ) "beecxﬁes-"-.:'

R D S G
or, for n.= 2,
3 i L "i - l
er.

= and one sixteenth of Equation 32 for n = -%'. o

o .

8) 1 faﬂpﬁ_-’m)z/ngﬁ; se <:['2(ee¢)(--p"7n?./ﬁsn;¢ s

e mim o= I

S PP T s




. Figure 3. 8 Load-Deflection Curve and Correaponding (r &) Equilibrium Ellipse for Limit

Point Insta'blllty, Transient AntisymmetriclMog

Y-




— — e T Sy —— b —

-Figure 3. 9 Load-Deflection Curve. and Corresponding (r
. _ ' Ant.isynnnetric mckling.

l,a ) Equilibrium Ellipse for Purely
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as in Figure 3.8, the system will reach point B and enap-through
initially by a symetric mode. The critical loading is Still that
given in case a. - |

e A
Y)If - ezf '2-(-.“2.?:)("_“-'1)2/_11%:;: ’. )

" as in Figure 3.9, the system will ;;aea"‘faim“c"ana ‘:éﬁ'&p-—"‘l‘;hrough fn
an entisymetric mode. The critical Loading is determined by the
antisymmetric equilibrium equations, Equations 31, evaluated at the
B rl.coordinate of poinp C. Thus, for n= 2, -
B PR - PN 2 L 8el o™ 2, e N :
=B -1)7/mh J{-(wre¥)[e” + 8y(p ~1)"/mg @] +.ue) (33
“er - . _ T | N _._
-_'and one . aixteen‘th of the- ar“bove for'n -% _
 Béfore discussing the results, it is shown that the ratio of

; nonedimensional critical-loads is equal to_the rgtio of_dimensional

critical'loeds "The aeme is true for'ihitial rise parameteré._ First,'.

: one must determine, through the nondimensionalization process, the .

'dimensional critical loading (q{ ), for both uniform and nonuniform j"

cr
: stiffhesaes, as a function of the nondimensional critical loading

(ql ) and the volume of the structure.
er , _ _

Yy *Q'J‘- | A(E)d§=" J ag{ | L |7

Thus,
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and

‘Therefore;

Equeting non-uniform end uniform geometry voluﬁes' oné obtains

m-1 m-1 . -
_eilil_=e—ﬁ S
v/ Nu/
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2 | 2
: 3m-1 - AL 311'1: 1
* - #*
-qlnu\ . - M
qinu_ ' %y
' 'I'lms,'-
'e*. &
B R
e{: e

o _ dne

_q{u - Yu

The generated date are‘pr:eseﬁt;ed .graphic'ally in Figures 3.10
'.through' 322 Firat., for n =2 and m =.'1,' 2 and 3,'the data _are-shdﬁ-i_l- '.
in Figures 3.10 through 3.12 when butkling is governed by thelsym- e
nie’t.ric mode. ..Thes'e results are also tabulated in Tables 3'.3 through
3.5. It is seen that, for m = 1, nonuniform geometr'ie_s realize a con-
siderable de’crease' in load carryirig capability over the uniform |
geometry, exéept. for moderate ncnUniform-ity. It shoﬁld be noted that
n=1 :'L__a_'t.he' éase_ifhén only the basge of't.he.'cross-sec’-t.iona'l sfr.e'a is
“‘allowed -'I::.o. vﬁary': while retaining. the seme volume _as_l the uniform -arch,
For' m=2, criﬁical_ loadmgs é.re_ g;_eqter than for uﬁiform geometry
except fo;‘ éxtreme nOnunifor'rnitjr. Appaz"\_ently;: éo mﬁch mﬁ_terial is-
forced towards t_h..e cgnte; of the arch, f‘o:; gxtrem\.e_._. h;&nun_iforﬁity, t.hat

_ the overall resisting sfiffn‘ess becomes leaé effe'c_‘t.i_vé in carfjin_g '_the' _
applied'loaaing. For m = 3, only the height:varies'whilehfetaining |
fconStght volﬁme. This distribution of matérial.reéliges_the highést

c-ritica]_. lo'adj,_ngs_which-__iqu_'e_as.e with increasing nonuniformity_for -




Uer* /4

Figure 3.1C

Ndndimensional Critical Loadings versus Initial Rise Parameters, m =1, n =2,

Qs



Figure 3.11 Nondimensional Critical Loadings versus Initial Rise Parameters, m =2, n = 2,

95



Figure 3.12 Nondimensional Critical Loading versus Initial Rise Parameters, m =3, n = 2.
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Table 3.4 Critical Loadings and Initial R:Lse Parameters :

Shown 1n Figure 3. lO, m = l, n -2-._. _

I/,

'ﬂ L;0' S

2.00 -

300
"h,00

4,69

1.57

3,81

6.29

- 9.48

0.9 S

202

1 3.00-
-~ k.00 B
oL h?691fﬂ-ﬂ

1.62

322

_ 6;29 o
,Q;FT,:_

0.

2,25

s
4,00
479

2,08

339
6.34

9.76

0.1 o

2,88
3,00
k.00
ST

2,13

2,83
5.56

' 11;Qh"'

S 0.001

. 832
10,00
e

L1381 .

8.16

C10.7h
115.30

L 2.00

er




Table 3. 5 Critical Loadinga a.nd Ini‘bial Rise Parameters

ShovminFigure3ll,m—2 n-2

-_ 1'?1'; o

cr

L Lo |

2.00
3.00
. koo

S b 69

Lot

321
629
C9u

'-_0.9;" |

2.02

3.00

b0
468

on62
322

629

BRI

a2
R
Choo
b0

2.08 .
331
- 6.k9-
975

0.1

. 3,00
oo S
::.;4.925. I.”

5 75._: |
o 3 0
6T

10 82

0.001

- 3.89
- 6.00
6.46

- 6.__28
o
13.48 -
..: 15f93:

- 59




. Table 3. 6 Critical Loadings and Initial Rise Para.meters E

_ShowninFigure312,m-3,n—2

-Il(;a - B ..g' | o ._.,-. ' EQCf :

R !.3 00_  . ".f'-ff-3 o
O owmoo T 629
o ." ;.#'69T: L . 9.48 .
30 3
hoo 0 629
| b9 T 9.8
Sok 220 2009
: . mé 9w
_1 0'1 = _". -_.2:56':f'f“' f”'_; 3;13
o 300 399
R £ S
w8 . 1103

0.000 - 352 . V6.29 o
o koo T7.62
5.00 . 12.09
5.73 . 167
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all initial rise parameters in this range.

Data are also g-eae_rma for n .—.% and W= 1, 2 and 3 as ‘shown |
in Figures 3.l3 through'jllS nhen buckling is elso governed.by the'
aymmetric mode.” Theaeniata'are tabulated in Tableai3 T through 3.9.
For m . =1 and 2, geometries with n ~‘% realize a better load carrying )
capahility than those with n = 2 For m 3, geometries with n= 2
realize the best load carrying capability. |

For & certain range "of initial rise parameters the antiaym-
metric mode governs-huckling. Critical-loadingS'veraus initial rise'

' parameters corre_eponding to this range are shown in Figurea 3.16-

through 3.21;"Figurea 3,16 through 3,18 correspond'to n=2and

m=1, 2 end 3. Form=1, as the nonuniformity increases the criti-

cal loadings, for the same initial rise parameter, become emaller.

This is not the case when buckling is governed by the symmetric mode.‘

For m = 2 and 3, as the nonuniformity increaaes the critical load

carrying;capahility beccmes greater, As is expected, geometries for

=3 yie"l-d"the best lo&d earrying :capa'bility. A plot of critical

.loadings veraus initial rise parametera ia shown graphically 1n __h
Figures 3. 19 through 3.21 for n =% and m = .1, 2 and 3, when mcklmg_._ .

is governed hy the antisymmetric mode. For-all'm values, the nonuni—

_form geometry critical 1oadings are greater than those for uniform . | I
geometry and increase with increasing nonuniformity with the excep-
tion of low-initial rise parameters for m = l, The best 1oad carrying o

capability ia'again'realiZed'for m = 3, Furthermore, for m-= 3, 8eom- | A

etries with n. = 2 yield higher critical loadinga than thOSe with

|—J

'_n 5




Figure 3.13 Nondimensionel Critieal Loadings versus Initial Rise Parameters, Limit Point,
Ritz Solution, Initial Half-Sine Shape, m = 1, n = 1/2,

<9
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Figure 3.14% Nondimensional Critical Loading versus Initial Rise Parameters, lelt Point,
Ritz Solution, Initial Half-Sine Shape, m = 2, n = 1/2,
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Figure 3,15

Nondimensional Critical Loading versus Initial Rise Parameters, Limit Point,
Ritz Solution, Initial Half-Sine Shape, m = 3, n = 1/2.
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Figure 3.16 HNondimensional Critical Loading versus Initial Rise
Parameters, m =1, n = 2, '
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Figure 3,17 Nondimensional Critical Loading versus Inltlal
Rise Parameters, m=2, n=2,
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Figure 3,18 Nondimensionel Critical Loading versus Initial

Rise Parameters, m = 3, n = 2,
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Figure 3.19 Nondimensional Critical Loading versus Initial
Rise Parameters, m = 1, n = 1/2.
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Figure 3.20 Nondimensional Critical Loading versus Initial
Rise Parameters, m =2, n = 1/2.
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Figure 3.21 Nondimensional Critical Loading versus Initisl
Rise Parameters, m = 3, n = 1/2,
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Table 3. 12 Critical Loadings and Tnitial Rise Parameters :
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' Table 3 13 Critical Loadings and Initial Rise Parameters
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| Table 3 15 Critical Loadings and Initial Risi Parameters
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3. 5 Weight Savings _

80

Another obJective, in addition to the comparison of critical ;

loadings for constant volume, is to determine the weight savings :

L realized over the uniform geometry structure. Weight savingszof'sf

”'_material with the-same mass=density-are determined by finding the

ratio of volume for nonuniform stiffness to the volume for uniform -

| stiffness at. the ‘seme dimensional critical lcading and the same

dimensional initial rise psrameter. Equating dimensional critical .

‘loadings (q¥ ), BS-Shoﬁn=before, ne obtains

1. m bet
'flnuér _f;l) 2
er
where'-.
v
V=g,
N

Equating dimensional initial rise parsmeters (e¥) one acquires .

o om
e kﬁ"-"

From Ref [6] the critical loadings for unifonm geometry and symmetric

-and sntisymmetric modes,’ respectively are
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9, =y * k—al—)[_.(--e‘u - 4)/3]
R 2
G, Tt Mo 26T

By replacing ey by e, and'q by funetions of e.ﬁ one obtains two _:'
- Yor :

equations which facilitate the determination of V for & complete range i

of initial rise parameters.. Thegsymmetric and antisymmetric_mode_'.' o

relations are, respectively

C -l __9_1__-__1__ R | 1 [

'T_From these two equations, ‘Equation. 3k, plots of V versus % are
obtained, for W o= 2 and % and m = 2 and 3, as shown in Figures 3. 22

°3, Eh for m'=2, correepond to .

Rk ks

through 3 27. Figures 3.,29,- ¥
.initial rise parameters of l, 20, 10 and 30, respectivefy. ‘These ini--.

tial rise parametere are- chosen in order to provide knowledge of the

3 entire range of values by considering low, intermediate and high initial

_rise'parameters. For e = b, 20, the maximum weight savings occurs-at-

moderate nonuniformityy corresponding to about five per cent be‘II = %f}f

and four per cent for n =2, As the value of the initial rise parameter

increases the maximum weight savings decreases and oeeurs at extreme

.nonuniformity3 for;bothgnevalues,lasrshown_in.Figures-3523-and.3o24,
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Figure 3. 22 Ratio of anunlform to Uniform Vblume versus the

Ratio of Arch End Inertias tq Arch Center Inertias,
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Figure 3. 23 Ratio of Nonuniform to Uniform Volume versus the

“Ratio of Areh End Inertiss to Arch Center Inertias,'

e=10,m=2, n-2,1/2. .
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Figure 3, 2h Ratio of Nonuniform to Uniform Volnme versus the_"

8l

Ratio of Arch End Inertiae to Arch Center Inertias,*_:

e=3o,m=2,n_21/2
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Figure 3 85 Ratio of Nonuniform to Uniform Volume versus the

Ratio of Arch End Inertias to :Arch Center Iner‘bias, o
e-3l+85,m=3,n.—21/2 _
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Figure 3 26 Ratio of Nonuniform to Unif'orm Volume versus. the

 Batio of Arch End Inertiss to Arch Center Inertias', o

e-lO,m-3,n-21/2
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Figu,re 3.27 Ratio of Nonuniform to Uniform Volume versus the

Ratio of Arch End Inertias to Arch Center Inertias,'
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Weight ss.ving-s for e= 10 is only slightly better then at e =30. Figqr-e_s--:
3 25 through 3 27 show graphically v versus% for m 3 and':_init_ial
rise parameters of 3, 1!-85, 10 s.nd 30, respectively For all i.ni.tial
rise parameters and ‘both n values, the maximum weight savings ocours
at extreme nonunl-formity.- 'I'hese figures show & proportional deerease |
: in weight savings for increasing initial rise parameters. Also, _for _ |

‘The

m = 3; n=2 geometries yield greater weight sa.vmgs than =%

weight savings, fOI‘ n=2, varies from about seven per cent to 20 per '

cent for high to low initial rise parameters._

3, 6 Concluding Remarks
The pre#i'ous results are strij}nsriseﬁ.by certain con'(:luding'
'remarks. First, the sp’prox-ima'te telchniqﬁe i ou'ite accurate'. For
1, the u.niform arch is stronger than the nonunlform arch for- n = 2 |

-an'd the o‘pposite-i_s_ true for n = % e}_ccept for very low Initial rise
X Para'mete_rs. As m inc.rés.l'sels; for bothn vialues, the nonuniformarCh
become-s stronéér;' --"me-':&'st irei'g'ht"savings -oc'cu.rs-- .st' low init'isl.- ride
p_ara_meter's. Overall, n. = -— geometries yield the best weight aavings

-' _fo.'r"m' = 1 and 2.' Geometri-es, for n: 2, yield the best weight savings :
_ for. m =3. The. maximum weight savings realizedhsi!ss:n = 2 isah@u%&@

per cent and about five per cent for n -.51 Finally,-__- it 1s -_obse_med__ s

thet the trend_ '111__“‘_'_31'81}1_3 sav_ir_t_gs s ror ‘the _geom_e_tries_:_ c-onsrdered-,l -:I_.'_s_'-."

the. same s's _thoﬁse _res'li-zed" for -the. optimum pinned column I_in_\'_rest'i'gsted.. .. _.

1n Ref. [20],
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 CHAPTER IV
: APPRoxmAIE DYNAMIC somlon

4,1 Introduction

~ The prevzous quasi static treatment is suff1c1ent to enable one
'_to calculate critical 1oadings-against:snap-through buckling when the - -
'loading is applied alowly; Shallow arChes with nonunifonm stiffhess
under dynamic loadings with half-sine spatial distributions are
inveet.igated herein. '

Geometry of the shallow pinned arch consists of an initial half-
sine shape where the inertia varies according to I(x) ) This
.distrihution is:chosen since_it yields the hest welght savings for;an :
arch,-with'm'= 3, underia quasifstatic_loadingr' A direct solution to
the prOhlem is to solre the governing-nonlinear differential equations
of motion under specified loadings, initial and boundary conditions o

. for the dynamic response of the structure. This procedure is used by
_Lock}l'and:Fulton and-Bartonlg.f According to this approach the 1oad-
'ing is considered_to_be critical when the motiOn_(transverse displacee -
ment) hecomes rery large. The present method-uas first employed.in'
Bef. [lO]-and.it.was improred'in Ref. [6].. It aSsociates critical-
'.conditions-uith characteristics on_the'total potential'surface,andfit o
- is 'based on the fact that the I-Iam'iltonian. of'the .systen is 'co'nsta.nt.. |
Tt is shown that a rectangular step loading may cause buckling

for specified critical loadings and releaae times ranging from zero to_n

fprap, O

i T
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infinity, = Morecever, critical values arE_bracketed befﬁeen-a minimun
possible and minimum guaranteed value, This method has been used :

successfully for uniform geometry. (See Ref.. [6] and [29] ).

h 2 General MEthods

The - three ctises of dynamic ‘1osd application considered ‘herein
| ‘are eonstant ldad of finite duration applied suddenly and its two
extreme cases when the release.time_approaches zerO-and-infinity. Tné
order considered ig: | : o - . |
1) Load of constant magnitude snd infinite duration. -
2) - The ideal impﬁlse-LBirac-delta function). s
3) Load of constant magnitude and finite durstion. - |
' _.The'totalapotential energy for the.above cases 18 & funotion-of the p'
y gen'eralized coo'rd-inates ’ initlial rise parameter, the. magxaitude o-f'the _
_applied loading and structural geometry.. Static equilibrium positions o
are easily located on the total potential surface by using the | )
principle of the stationary value of the total potential energy for ﬂh
the two-mode representation. For the shallow arch considered, the ”H
' above ‘method yields one, three or five static equilibrium points
depending on the initial rise parameter and structural geometry. Itf'.-
should Dbe noted that.snap—through'is not possible for less than three..
static equilibrium points.' Since the total mechanical energy is oonl
served for a stationary and eonservative system, one obtains T+ UIII =
Constant. If the initial total potential is defined to be 2Er0, then-

T +-U =T where Ty is the initial kinetic energy which depends on o

T 1 i.
'-the initial conditions imposed for the eorresponding dynamic case'

v e T, JBR
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.c0nsidered above. -Critical ualues ¢an then be'bracketed:by.considéf- ;
ing possible paths on the total potential surface.
For the dynamic case of & 1oad of constant magnitude and
infinite duration, the initial kinetic energy (T ) is zero and
._T + UT_= ‘0. . Since the kinetic energy is positive definite, the only
possible nositions (motion) on the total potential surface correspond
to"nonenegative kinetic energy, Moreover, where U& is:positive therel_."
 is no-possibility of motidn. At this point it is advantageous to
_present relevant definitions, previously defined in Ref, [6], as : f.l
follows: __ o o o
' fossible'Locus*' A possible locus on the total potential sur-
face is one which corresponds at every point of the 1ocus to a non-
.negative kinetic energy. | _ _ ; | |
Unbuckled Motion°' Unbuckled motion of the system is defined as
any'possible locus on the total potential surface which canpletely
encloses-onlyutheinear equilibrium points, ] | o :
| BuCRled Mbtion' If the possible locus passes through or_'
encloses other equilibrium points, or if the riear equilibrium point
.becomes unstable, then the motion is defined as buckled. . | '
| Minimum Possible Critical Loading (MTCL)- The 1east uéfer :
bound of loadings for which all possible loci correspond only to
unbuckled motiom.. At the (MPCL} there exists at least one possible
locus on the potential surface which the structure can follow to
" Snap-through" | - |

Minimum Guaranteed Critical Loading (MGCL) ' The greatest lower
bound of loadings fOr which no possible locus corresponds to unbuckled s

e B




motion. _

It 1s possible to investiéate.the'total potential gurfece as
the applied loading increases from zero, At some small loading, qI,
the motion sbout point A is stable. This is shown in Figure h 1 for f'i
the potential surface consistingsof three:static"equilibrium points;_'
and in Figure 4.2 for the case of five'static eqnilibrinm peints._'~
:WhEre five static'eqnilibriumppoints-enist;fthere is the possibility
‘of antisymmetric'motion. ‘A5 the loading is increased the'total poteﬁ-
tial surface changes until, at. qII’ the motion is buckled See point b
in Figure 4.1b and point D in Figure 4.2b. Thus, snap-through msy
_start symmetrically and then exhibit tran51ent antisymmetric motion.
or it may begin snap-through in an antisymmetric mode. Whichever is
the case, the first loading at which snapping can occur is defined as _c
the minimnm-possible critical loading denoted by (MPCL) For solely :
symmetric deformation snap through is guaranteed at the (MPCL) For '
the possibility of an antisymmetric mode, it is shown that the (MPCL)
.and the (MECL) do not coincide._ The (MGCL) is deterudned at qIV’ see ;Ql.
Figure h 2d, where the saddle points D and E just coincide with the :
'.near stable static equilibrium.point A, thce, for the-possibility =

of an antisymmetric mode one can only bracket the critical 1oading R

- between the (MPCL) and the (MECL)

For the ideal impulsive loading the approach is the same as for_
the load of constant magnitude and infinite duration except for dif—
ferent_initial conditions. 'It-is.assumed-that every material particle

is instantaneously accelerated to a finite velocity before any dis-,]
' placement can occur, The applied loading is then released after thisfa.
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initial condition is reached. This is & close approximation for.a '_

- blast loading of high decay rate and a short decay time, The 1nitia1 '
kinetic energy 1s'related to the-initial impulsive energy, and the_con-
serration of mechanical energy is'again considered - It is suhseQuentlya
shown that if a great endugh impulse is imparted into the arch initial-
1y, anap-through will result for a certain range of initial rise -
parameters._ This velue is defined to be the minimum possible_critical -
.impulse. The ninimumiguaranteed.pritical impulse is determined byri: |
finding the initial.impulse necessary to'cause thetstructure toﬂover-_ ;
. come the highest potential, namely that of the central u.nstahle equi-

' 1ibrium position. | . .

The critical conditions for the case of & loading of constant t
magnitude and finite duration consist of a critical time as well as &

.criticalsmagnitude. A path of steepest descent and most shallow ascent

.'_ is assumed This critical path depends - on structural geometry, initial

rise parameter, and loading magnitude as well as the generalized coor-

dinates. 'This path is analogous to the one realized-by a hall, under.-l'
constant gravitational force, rolling on such a potential surface. |

| This path is assumed to yield the minimum poss1hle critical values of ”f
.all possible paths. The constrained equation of-motion is solved though:f;
, 1ntegration 1n closed form over the corresponding path 'The'critical;ft -
| condition for snap through is reached when enough kinetic energy is.

igained, for a given 1oading, to- cause the arch to go to the far zero-__-

'1oad stable equilibrium position._ This occurs when the'zero-load total ,{-.3-

potential less the loaded total potential, at the release coordinates,

equals the zero-load total potential at its saddle point. This_;“p'l




o1

can easily be seen by again conaidering conaervation of mechanical
. energy. The critical impulse is the product of the critical loading

and the. critical release time (T ). .

h 3 Solution

h, 3a Load of Constant Magnitude and Infinite Duration o

The total potential energy is

Static equilibrium equations.are obtained by usingfthe:prineiple:of__

‘the stationary value of the -tota’lfpotent'i_“a'l vhich ylelds

‘ Again, the existence of three or. five equilibrium pointa depends on e

_ atructural geometry and the initial rise parameter. For '

| jm-p%-n?zew <os feﬂp%:laewx |

there are three static equilibrium points r l,r12,r13 corresponding to -

' symmetric buckling and for '




98

- there are fiﬁé_equilibrium-boints.inciuding antiSymmétric mode saddle -
points, The second subscript.oﬁ ry represents the near, center and .
- far static equilibrium positions, respectively (or ros r12’_r13)'ll_ I
| The total potential correqunding to purely symmetric bﬁckling

-'ié_a funptipn_of rl; e and qq wherezthe_static eqﬁilib¢ium pﬁint_ |
, (le,Q)fis uhstéblé3(ih the éma}i). 'As @iscussed prévigﬁsl&, the 1o§d—.
ing 1ncréaseé until'thp-through is poséible at (rlQ;O)'witﬁ Zero o
 .kihét1é'éherg$; Due to zero initial conditions the total potential

at (r)5,0) is equal to zero.- Thus éne obtains -
. e =[gm(e-rl2)/nhm]["‘l’(r12+ 'é-)a/? "‘J*W(P%—l)e/gm] . (35) -
Sime-(rlé’.o:)' 'ié'.la'fa‘?atic equilibriu _.Poin.:‘-"-"_: then. :
i, = Caem /o (),gmj B

and the simultaneous solution of these two equations yields both ql o
.anq r12 as; follcws.:_l_

-MPCL = MGCL - [hC/3ﬂh ] ﬂgm¢(—£ + e)(-g-g + 2e) + hu(p ] (36)1:

and

. ., = € +

| jf*"h"%-

L Co ol IE  .' -
Cvhere ¢ =-2e 4 5 - [ﬁd'p%il).afn%¢]=.__. o

For e E*JZB*(ﬁE 1) /ngm¢ the total potential depends on - rl, )5  _

' e, ‘and ql aS'well Aas the structural geametry.' The saddle points and
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,0) are unstable in the small As discussed previously, when the

1oad1ng becomes large enough the value of the total potential at ‘the

saddle points becomes zZero and euapping is possible. "See Figure h 3

for e =8, A further increase in:the load will- eventually ceuse the

:saddle points to. converge on (v l,0) where snap- through is guaranteed

See Figure L, b for e =8, Setting the total potential at the saddle

points equal to zero one acquires l

MECE = - fe(::%-l) /ralfzee + J8¢(or2¢)(p'5 3 /ﬂsmcp] (€08

When the near equllibrium position coihefﬁes w1th the sadﬂIe-points; )

the solution of the_equilibriumuequationa,with this (rll,o)-yielde o

the MGCL

- et = -[B(p%_-;:'-?/ﬂﬁﬁa[qse..' - o + ,2‘#);#*( pé—l)zzﬂem]. | . . .-__(_-33-)'

which is identical to‘fﬁe antiSymmetric quasi static crftf%al IOad

case, The system will snap through symmetrically when the total

o potentiel at the symmetric unstable point equals zero, while it is

B positive at the antisymmetric saddle points.- This oocurs when .'.’-'

[mpgm;/stp?- 1) ][2CX3 + e][2C/3 + 2e] + a,[ec/3 + e] +

| For this. case, MGCL is 8ti1l given by Equation (36)

Minimum possible and minimum guaranteed eritical loadings

veraus initial riSe parametere are shown, in Figures h 5 through h 10,

. for m. l, 2 and 3 and a full range- of initial rise parameters ,“gf:
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Figure 4.5 Nondimensional Critical Loading versus Initial Rise
Parameters, Half-Sine Shepe, (MPCL}, m = 1,
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Figure 4,6 Nondimensional Critical Loading versus Initial
Rise Parameters, Half-Sine Shape, (MGCL), m = 1.
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Figure 4,8 Nondimensional Critical Loading versus Initial
Rise Parameters, Half-Sine Shape, (MGCL), m = 2,
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Figure 4.9 Nondimensional Critical Loading versus Initial
Rise Parameters, Half-Sine Shape, (MPCL), m = 3.
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Figure 4.10 Nondimensional Critical Loading versus Initial
Rise Parameters, Half-Sine Shape, (MGCL), m = 3.
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oorreeponding to aymmetric aod antisymmetric bﬁckling; NTablea h'l andj.
_h 2 give the initial riee parameters corresponding to the 1imit of
'applicability of each governing mode. - In Figure , ll through Figure
h 13- and Tables 4, 3 through b, 5, the dynamic ratios versus initial '
'rise parameters, for the minimum possible and the minimum guaranteed
'critical 1oadings, are. plotted The dynamic ratios are defined as

- fO:LlCiWB.
gy (g =,

4, 3b deal ;mpulse _
' For the zero-loading total potential S

'UT_?_(?/ﬂhm){?i?—_E(rl-é)(r1+e) + Eaglgf_;e-
IRTIR SURV- TN SRR Rt
+ (1) (r,-e) w - Ba3 41}

| theiéﬁatio equiiibrium'eQuations_become'_

<

y o - | '-_L'_;', o

[ry - ¢+ bag - 8(s%-1) /e 9] 8y =0

‘The first equation ylelds three possible roots, for &, = 0, as follovs:

o = [:/ Z. 16(9%1)2 w/ﬂamw]/2
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Table 4.1. Initial Rise Parameter Borunds for (MPCL)**
| © Limit Point Instability, e

.11(12' m= 1 “ i o 2 :-t-r;:ﬁ 3

. 0,001+ - - 10,2842 - 4 7667 | ' h;267$-

122523 ¢ 5.T3WT o 5.1355

0.k00 - 2.7528 ' -'_2;705h . 2.6996
| 1183 - . hoob73 ~4.0386

0.900 2476 . 2.4756 2.4756
| k0006 . 3.9999  3.9970

*ﬁThefldwer limit applies to'the*(MGCL)~gajwe11 as the-(Mrcb)i
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. Table k4.2,

Antisymmetric Mode Limita.

Inltial Rise Parameter Bound. for (MBCL)

635

11/12 m = 1 2. 3

0.001 18,94 8.85 1.9 |

~ o.koo - 6.h9 6.0 6,39
0,900 6,36 © 6.35
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Teble 4.3. Dynamic Retios for the (MPCL), Half-Sine
: .- Loading, Initiel Half-Sine Shape, m = 1.

11k -

Il/iz_s_.h

| 112:2 # 001

 11/12 %.;9

. e

g

e

(DR

2,476 0.800
4,001 0. 77k

6,000 0.731

10,000 0.805
20,000 - 0.890

30,000 0.923

2,753
3.000

4.118

6.000
10.000 -
20.000
. 30.000

0.800
O-QT%

C0.TTT
- 0.734
~ 0.806
- 0,891
. 0.925

10,184
12,252
16,000
20,000
30.000
:1}5.--.000 o

0.800
0,764
0.7h6
0. 769

0.827_"

0.882
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Table 4.4, Dynsinic Ratios for the (MPCL),_HalfQSine-__
~ Loading, Initial Half-Sine Shape, m =2. -

: Il/;2 =.9 . ._11/12 =.b s - 11/;2a= .001

2476 0.800 - 2.753  0.800 10,185  0.800 -
B0l L 0.7TTH . 3.000 0.790 - 12.252 0,78k
. 6.000 0.731 k118 0.7 16,000 0,746
10,000 - - 0.805 . 6000 0734 20,000 . 0.769

20.000 - 0.8%0  10.000 0.806 = 30.000 -  0.827 -

30,000 0.923 - 20.000 . 0.801 . k5.000 - 0.882
- T 30,000 0,925 el




. Tgble k.5. Dynamic Ratios for the (MPCL), Half-Sine
- - Loeding, Initial Half-Sine Shape, m = 3.- -
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/=9

I/1, =k

Iljle =.001

. (%R),p -

e :(DR)MP_

e

(D),

2,476 0.808
3.000 . 0,795
~ b.000 0.793

6.000 0,732

10,000 0.806

20.000 - 0,89

30,000 0.925

i'2;Tbo: 0.800
3,000 . 0.788

4,040 ' 0.777

6.000 0.736 _'

10,000 - 0.809

120,000 0.893
30,0000 0.6

4,268

.~ 5.000
5,136
6,000
8,000

© 10,000

20,000

0.799
0.78%
0.784
0. 747
0.750

0.79h

0.883




'_ f‘ive static equili'brium points as follows-

AT

The respective zero-loading equili'brium points are given as followw

i) for e « Jlé(pé 1) w/ﬂgmcp there exists no far

: 'equilibrium point'. Hence, oscillations take place a'bout the near c

_gtable static equill'brium point (e,O)

i:l) for e 2 J 8- (p% 1) /rrgmcp < JL6m(p l) /'rrgmcp there a.re

r,=e 8y =0 (1)
r. = _J-ﬂi
1 w2 §
- e g l 2 | ) _. % . . . <
g3/ ey gm0 G |
T = 5 +‘él‘ /ee - 1_6('-93—1)2w/"8m¢ 8, =0 " (v) J

. T_he-correspbnd-—iﬁg exp_res's_idh.s "f_‘of the _zero;.fl.'oﬁdiné £o£él pote_l_i'tiéls. |

are




=0 R | . point i

_U'r
o 16'!2(9 lL [k(g -lL w+-2'f potnte 11, 111 |

[se +,/ - 164 62-1) /’ﬁaqu] [

fnoint=iv"' be) -

- e,/é |- 16%9% 1) famﬂcp + Bcn(rflt 1)5 /rrsm?]

g e [ [T AT ] [

e / & - 165;(#%-1)2/%"? + ouk p%?]i)é/'_'gmﬂp]_ sotnty

o 'Since the initial kinetic -energy is nonzero ‘and appire& symmetrically o

et the initial point (e,O),-- = 0, the initial path is the symmetric'

'mode, followed readily by the antisymmetric mode of deformation.: One_

- notes that the total potential is positive for points ii through v for ;t

alle 2 J{;Sdp 1) /ﬂgm:p, where the equili'brium point iv 13 stable (in

the Bmall)-and points 11,-111 and v are unstable (in the'small)

Therefore, enap through is possible for all initial rise parameters _i:'

in the above range."

As ror the -eaé‘é'ofi-a' :1oa'd1ng" of 'éon'sf.ant "ﬁa-gni'tude ‘and infi'n:lt'e

duration, a critieal ideal impulse can only be bracketed between uppert

: and 1ower bounds in accordance with- ‘the: definltion of the MECI and the,;jl .
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T
. “resched when T = 0 st the unstable static equilibrium point of lowest - -

'MPGI. Since U, is zero, then T +Up =T,. A critical condition is

potent jal,

QT erewwn s e -

In order to find expressions for the critical impulse, cne
-expreeses the . ideal impulse in terms: of the initial kinetic energy. _
Denoting: by IMP* the impulse per unit mass imparted into the arch by . l: _i _ ;
the loading one acquires IMP* im = (—#) dm, Néglecting rotary and N i

at
'longitudinal inertia the initial kinetic energy—impulse relationship

becomes.;_'.
___. | 2(%[; ) . N
T, ='_.[hgﬁ';' =, ][u: (o2 —1) /uL ] < (Imp)

where IMP* Imp* cos (x-a L/2) - fbr the half-sine loading,---

end C_ ie e numericel integration constant,giveﬁ ast(seegmableﬁh;G)"
A S : . o B

[=J L]

AR (e ax]

- " a

' Q
o |B

:. Thus, by relating the initial kinetic energy to the ideal impulse,
conservation of mechanical energy yields ‘the following expressions for.
critical impulses for- n = l, 2.and 3, respectively. (See Figure L)
through Figure N 16) DR
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Figure b, lLL Nondimensional Critical Im:pulse versus Initial o

Rise Parameters , b = 1.
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Flgure 4,15 Nondunensaonal Critical Impulse versus Initial
Rise Parameters, m = 2. :




- CRITICAL IMPULSE x19

Figure h.16 Nondimensional Critical Impulse versus Initial
Rise Parameters, m= 3, o .
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w2 @) -4 J%M : ]

S B e e

e s % R
2,3 2.1)3 (¥ hoo(p®-1)(p2-1)3
52y T 9% = ]

B O VR LS

ym=3

ST Ay e [T N

T3 - (16) ¢(p§ l)
et = "2%(_16')(&1;*)%"[33 -,/ _(e) o me-1) J[(e)
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_ 2 (16 -1} 4in 16)(8 -l £n I
+ e (e).- . ) *%: 1)) . P. ; I..)( %:gﬁ ) é? ; m = 2.

1 .
A
1(F 1)1 . [3e -

2 23(48)(p et
p

o l
(o - L8@EIE: 1)3(p AT

2

3ﬂ(p -l)

MGCI = l
2

_ N |
e -(é) (16)(8)(25”(92 1)3(° 0 R

3ﬂ(p 1)
: | 1 3 o
Ls)(eu)(p'f 1)34(°-1 _l] =3

3n(p -1)%

4.3¢c Load of'COnstant Magnitude and Finite Duration
For this csSe of constant load'and finite'duration, snapping‘-
is possible for initial rise parameters for which the zero load total

potential surface possesses five static equilibrium points (case ii

of section k. 3b) Therefore, e :-Vhﬁ(pa-l) uVﬂEm¢

To determine the critical load, ql ', ‘and. corresponding L

criticsl 1mpulse, ql To’ one again considers conservation of mechani—
cr :
‘cal energy. This yields

for the loaded arch with zero initisl potential snd velocity. If at
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TO the system is at position (rlo’&20)5 the kinetic energy is
q . ] :'Il\ -.' .. . ) . " .
-UT(rlo,aeo) because of Eguat10nﬁh3. Also, at.TO,:the loading

vanishes and

U, + T = Constant =7,

p+ 10 s ._,,(r 0% )+T°(r 10°%20) O

From physical cOnsideretions and EQﬁetioh.h3 oneaobtains
. _ -. | q.: o
T (rlo’aeo) =T (rlo’aeo) = - Up(rygr8s0)

Therefore, Equation hh_yields
Up+1° = T(rlo’aeo) - U ( Mortag) S S 2

A critical condition exists when the zero-load saddle point (r s,aas)

is reached with zero velocity. Thus,
o e e ) c9%yr e ).
U rlS’aES) = Up(rygr8a) = Uplrygreng)-
: Use of Equetiohe'26 and L2 (pointe ii-or-iii) vields an exp?es-
sion that relates the crltical load to: the release position rlo for
any etructural geometry. - |

q.ler(%io"é)ﬁ'f [1‘6_*2_( p%_-l)e"/nhmj[-_é_(p%;l)'?/ngmcp + &/ (M'IJ')'] (46)

In Equation h6 the unknowns are Tio ql . In addition'to Equation 46

. one assumes the equatlon of the path and &n equatlon whlch comes from

integration’ of the. equation of motion along the path, which is approxi-

mately given by the following

—_—— A -
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ap = 0, 4/e2“+ 8¢(P%?l)2/ﬁsmsl‘.?i <€

2_1% .
-r§+hag=e?+%!ér:)—.-£¢5r <je +8¢‘(p%l)fﬂgmcp

(8ee Figures 4.3, 4.4 and E.lT) |
The'abovelpath is believed to be & good approximation to the

path of steepest descent and shallowest ascent toward the zero load

saddle point. For a given load and, e > d/ﬁ—kpé 1) m/ﬂgm¢ the path
of motion on the’ total potential surface can be examined. (See Figure
h.2) For any load greaterfthan or equal to the.MGCL,'the path of
steepest descent and shallowest ascent is the same as the locus of -
quasi static equilibrium positions (See Figure 3.5) since the-MGCL
.is equal to the minimum load at which buckling can occur quaS1—
~statically. (See Figure k.2d). The range of loading magnitudes_

| _between the MPCL and the MGCL is only - small percentage of the over-
all range. Since the critical conditions for these loadings are.u;
'reached near the zero-load saddle point the difference in critical
time,-when using the path given by Equation hT versus the path of
steepest descent and shallowest ascent, will differ only slightly.
This is true for non-unifbrm as well as. uniform geometry. For

I /I = Q0. 001 the. exact anti symmetric path for the MPCL begins at
Ty = 6.73. for e = 8 ‘The quasi-static equilibrium ellipse initiatee
at r, = 6 15 Both the MPCL and the MGCL paths intersec for non-

iform as well as uniform geometries. Also, as the initial rise

parameter increases this discrepancy decreases considerably.

()




_rlf'- ‘_”1 1
[T RETR

- 2MGCL

Saddle Point [
" _-MPCL-SaddIePoint

Figure 17 Possible Paths in the Configuration Space of the Generalized '

- Coordinates for the Loading of Constant Magnitude and Finite
Duration, e =8, p = 1.0.
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The equation of motion along thé above path is found by
Hamilton's prinéiple'with kinetie and potential energiés expressed in
terms of one independent generalized coordinate (rl). If Equations 47

are differentiated with respect to time, .one obtains

ymo, [ ot mege, 5o .
o - | (18)

o ' . L : .
rify + bajs, =0, ﬁ% sr) < /;? + 8y( pe-l)g/ﬂgmcp

The coordinate a, is eliminated from the second of. Equations hB.;'"By' -

: using Equations hT. Thug, )
2-2 2 2
r] l [é + 8¢(p2 l) /ngmp -7 ] _

The kinetic energy _..
'.l . .
(ugm/h )[ux(p -1)/ TG £+, 451 5

" ‘where C and D are numerical integration constanta given in Tables .

| h 6 and h (f agd the total potential, glven by Equation 26, become

=_(8¥¢Mh;?(r§-e?)2.+ [B(p%-l)e/nﬁm](rl-e)2w +L2ql(ri5e)

-

for the AB portion.of the path shown in Pigure 4.17 and




Tsable 4,6, Ninnerical Integration Consta.nt.s for the
Idea.l Impulae,_ ”

p

G %00 0 Crn000
23.017h 0.0875 - . - 0.0364
271111 Co/10 €2/1000
2.3987 . 0.1456 ' - 0.0919

CSBpan %0 0 C3/1000

112888 0737 0.1270




Table b.7. Numerical Integration Comstants for the
Load of Constant Magnitude and Finite
_Du_t_'ation ’ Dm" '

P

. D‘l/l; L B D-i/lO S | 'Dl/lOOO. :
22.5333  0.0599 0.0198
Pojran -]_32/_10 B P2/1000
2.3734 0.1203 0.0666
D3/_1_-.m | D30 'D3/1doo
11,1209 - . 0.1529 - . 0.1020
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= [hgm/hﬁ][hIl_('p%fl)Q/dLem]m FlC + D, --rifh(Rm_-ri)_]

Up = [64¥7(p2-1)"*/n g, 1+ .-E8(9_2'-_1-)- --/ﬂhm][(:lfi-e) w -~ 2¥(R -r])]
-+ 29, (x;=e}
for the BC portion of the path. R is. the square of the rl coordinate
at point B in Figure ke, lT given by )
By =4 Wep=-L ﬂ8m¢ .

As the arch becomes more uniform (p —~ 1), the second term above reduces
to 16.
With 2ero initial conditions the equation of motion along path

AB reduces to the following"

=1

. hﬁL o

ﬂ[(%whxre)

(51)

Yo
.'krblk{

- Bt /my)(ry-0)? 4 20y (er)]

élong AB

This yields the time to reach Ti0
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dry

and by assuming a value-pf'rl

o on AB (e sr, = /ﬁ;) one obtains a

unique value for gy, - from Eguation 46. The critical impulse is then

given by the product'(qlcr_Tl)._ By requiring continuity in speed at

point B, the equétion’of motionvalong BC reduces to the following:

1

m—

BB i ”_  - . _'_"- L
(8a"12(5-1)%/ (2, 4($2-1)? ]
" f + [(2ql ﬁh;l/h(p%-l)e) - beellr; - Vﬁ:]] |

__ﬂ%fgﬁgay/[h(péhlJEjgggngT}{;6hy(p%;l)gyhmHE%Ep
P : _ p. . : . _

N G S OO WA N Wl B
o er

m

__cohtinued

=L a9y

?ﬂgm}iéfﬁgef)(ri;#m)} *  '“




zero-load saddle poznt, point C, and qlcr > q where ql

is given by
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IhR cC_ + (
o m T om -
o 2 5 p P
j ry - Rm
which yields
A
4R CE (D P'i E)re
/R g ___.p _p1 ..
1 -'Rm : .
2= [ T (50)
T . 2, 1 2 ir " 2 2
10 _{_-%PL (p2-1)°/[I,4(p%-1)" T g, H2(wr29)(r-R )
L i 2 . : _ .
+-[(2ql¢rnhm/h(pz-l) - bae)r, - /R 1}
1 I 3
- {Dyh, T 2R 2-1)2 e ngm][ 6hy(p -1) /h ua gmcp |
' P TN -Y . 2 /;_' |
N - [Bu(p®-2)"/mh I(e - VR))® +29) (e - VR))] )
_ . ' . o Ter . : .
| and by assuming a value of ¥ on BC G/Fﬁ <ry w+2¢) Equatlon h6
yields a unlque value for Nept - If. rl is less than the value at
point C in-Figure bo17, 5 18 calculated by 1ntegration from
[ug/(uﬁ2¢)] to /“_-in Equation 50 where [aﬁ/(aﬁ2¢)] is r. 10 at the
&t point C
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_* mode transition

. ] i | | 1 ]

Figure h _18 Critical Conditions for the Loading of Constant

‘Magmitude and Finite Duration, e=8,n= 3
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The time- to reach polnt B (Tl) is detenmined fram Equation 4o

where the limits of integration are from A to Bore to

v/8¢(p2 1) /"gm¢” respectlvely. Finally, ‘the tlme to reach r.. on BC _1

lO
is :

_ and the critical-impulsé at rlo

ing and the release time (qlc

The calculationa are carried out by & UNIVAC 1108 computer and -

are shown graph;cally in Figure h 18 for e 8 an& m 3 o P

"h.h_hConcluding'Remarks.

The ffevibuslrésﬁlts; for.allﬁfhréé dynaﬁic_cﬁseé,*are:estab; 
'1iéhed_£or'a cbmplete':ange of.initialiriée paramefe;a and noﬁunifo;m-
ity paramétefs{: The saiient:reéulfé afé:summdrized:by certain con- .
.cludihg :eﬁarks...First,fthé nonﬁhiform:geumétry results apprbhéh :

those of the uniform géqhétry'arch.' Sée7Ref5} [6,29];3”F6r:m=1;_thé

uniform aréh-éarries the highest loadings and-impulses for all ihitial_

rise paramétéfs. For m-2, the load and impulse carrying capabillty is
increased ﬁiﬁh increasing nonuniformity. Thls increase is approxi-

mately 10 per'cent meximum increase for'the:loading of constant mag-

‘nitude and 1nfinite duratlon and the 1deal impulse except for very lcw

- initial rise parameters in the case of the loading of constant magni-

tude and infinite_duration, For m=3, critical loadings increase with

is the product of the critical load-
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increasing nonunifOrmity The maximum 1ncfease is epproxlmately 30
~per cent for the loading of constant magnitude and infinite duration
' and 20 per cent for the ideal impulse. For the loading of constant
magnitude and finite duration it is noted that for small release
times, the load carrying capability is increased con51derably over the_
uniform geometry arch, well above that realized for infinite time
duration, Io is obviously séen that for fhis case, m=3 1e_theebest o
material configufationq Also, for the loading-of constant megnitude
e _ o L
and finite duretion, as the critical release.times eppfoach zefo the :
| _ cri‘bical impu].ses approach the minimum possible critical impulse for
l/p =.,9, .1 and .001. As the critical release times become large,l-
the ¢ritiecal loadings approach the minimum possible critical loadings
for 1/p = .9, .1 &nd .00L. qually, through this anslysis it is
demonstrated that for_m=2 and 3 fhe optimum arch for minimum weight
or maximum load -carrying capability must .correspond to some noounifbm '

distribution of stiffness.




'CHAPTER V
| OPTIMALITY CONDITIONS |

5 1. Introduction

optlmization of structures and structural components is
presently a wide field of interest. A host of diverse mechanieal
models are being inVEstigated The objective of optimal design varies
depending on the mission requirements of the particular configuration.
For & structural configuration the objective might be minimum cost,’
minimum weight, or maximum.loao'carrying'capability.. Depending_npon.
the presence'and t&peiof adaitional side requirements, such as some
fixed geometrlc properties (size, shspe, ete, ) or limitations'on

- stresses and deflections, it is possible that, by satisfying one

objective, another one is also satisfied (i e duality between minimum -

weight and cost, etc ) |

| In any structural optimization problem one must clearly specify
-the design objective and the geometric and behavioral constraints.

The geometric constralnts are usually assooiated with spaoe_reguire—.
ments such as_lengths or areas. The_beharioral constraints are
associated with_the response of the strncture.to the applied loadings.

Limitations on maximum strese or maximum deflections are examples of

-behavidral,constraints. All constraints_oanIbe_clsssified as equality

or ineqUality_constraints. For certain constraints such as the -shape

of each structural element, the same problem must_be_investigated for
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‘various values of the parameters snch.es chenging the exponential
value in the relation I(x) = ed™(x) for the_colunn,:beem and the arch.
In this chapter it is intended to determine the conditions that
‘must be satisfied in order to achieve-elmaximnm‘strength design; The =
statement'of.the optimization problem is as followsi Given a shelldw
arch of sﬁecifiea volume,_initialfshepe,-snd length find the distribu-
tion of stiffness such that the critical load (at snep—througn) is s i
meximum No attempt is made in this thesis to. find the desired stiff-

" ness distribution.

5.2 Critical Conditions by Trefftz'>° Criterion'i:

Before: it is- possible to determine the conditions thet ‘lead to
“ the optimum stiffness distribution, one must first obtain the objec-

tive function.
" Bince the objective in the’ optimization problem is maximizetion

of the criticel load (snep-through), the expression for the critical

'loading in terms of the structural geometry must, be derived. This i1s

accomplished by making use of the Trefftz criterion which: is bssed on -

'setting the first vsriation of the second varietion of the total poten-:.

tiel egqual to-zero (Refs. [31,32])”" In ordeér to ~obtain the-expression
- for 9y ORE must first start with the total potentiel, then determine

 the first end second variations of the total potential with resPect to

the nondimensionaiized displacements, end finally obtain the first vari-
ation of the second variation.- The vanishing of the first variation of'

the total potential leads to the equillbrium equations and proper bound-

ary condit__i__ons. : F:Lnally, _the equilibrinm_-equations and the stationary

————
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(Euler-Lagrange equation) condition of the second variation
are combined to obtain the exp:’re_ésion for the objective function.
Letting_'n(g)- = W(g) and u(g) =4G(g) in Equation 20 for the total

potential energy, one ascquires

o | Eled) o 2 )2 T(asL) ;15_‘
U, [T,%] = (3/2m), : o + (#1)° - (#)%]a | —
L7 = (/e I_ms. | [_u for e /Im A(g)
. . = 5)
ety | |
s(e/m [ HeE” - @ TFae o - (53)
, e . : : . . . .
| T .
O Hew | -
+ (/m [ o§)¥ - ¥ @ )
L.
where
= . I . A g » 4 o

‘I‘..o aéquire I?T[ﬁ'-i- e.lﬁ-(g)-,ﬁ" + e2y(§)] ﬁo_vq’ use 4 = @ + eiﬁ.(g) and

.. 13 =W +'32 y(g) 'where ﬁ atnélm"l> .make'up a-l‘l.ppssible ﬂmﬁ.tions -to.be con-
sidered and & ard & are those partidtilar 4 end W making Uy &n extremun.
Mtherﬁére, Y(g)'_aﬁd B(g) are. admissilllale'ﬁmction's of € and’ e ond &
are as small as oﬁe chooses in order to étay chqse' to Wandg & i-.e. to

only get relative extrjemum. Thus,
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1-r(za.+L) . : :
+ (,,) Q(§)(w + eev - a8
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"(a+L) | ' B -/ —(a+L)_&_g_
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= () {Iﬁ @ ) ) Jag} fe 35
| -(a+L) . | S | . h TT(a-'._L) )
+ (5) Iﬁé 1(5)’”’ - _v"_f;]ed;_+ ( )me q(s)[w L
-"-(a+L) R —(a+L) L(a+L) .
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(55)

“%a+L) “%a+L) | T(a4L)
W - as+ [ a(g)vag
IT_@ | A(g)} IE KO - FIv"ae + Iﬁ
L L
' 1'r(a+L) o 1-’(&+L) )
i [3+ 2('*") l(”')e}:g}{f (v ag/
T
T(8+L) 1’(a+L) | .
L1, 1 d -
IE K(g)}f]’@ (§)[Y] g 8.2
T L |
N —E(a#-L) o (9-+L)_s— 3
= B’ + e Wy a8t / o(e;)
+ = {J’_? [315._+°2w‘/]§} IE_' A(g) + IEi.
Define .
Oy - Uy = 40y = Ur(l'l)'[.f"’?’ e.'a_’."i".':é’e-.lz',"l".“g) .E"_T’E"i’ﬁ"". .‘2] + o(e])

wvhere the supér-script-s_(l,aﬁ) denote the order of the variation.

One cen conclude 'I:.hat

_' . '"(a+L) |
-U§1)=;- | [ + 1(-%“) (~')2]d§}
ﬂ(&'l'L) . 1T(su-L)
{IEE’ B dg/f£§ A(g) l
L ' ..L




| Ba) £(a"L)
S\ e --«mf}g}{r v
%( a+L)~éL . %(&-FL)
- e - W lv'ag
‘r.@. - A(§)} i ‘rnﬁ "
L | L
%ka+L)_
+I a(g)vag €y
ma
=
N ﬂ(au,) e
o =2 |{ [~' 1(”') (~')2]as}{f (v")ag/
_L; b
L(a+L) o Newy .,
e -A(E)} _frn KT | e
- -
N (e (34_.1.) ar.
ta ﬂﬁ I:elB + vy ]dg} /‘rﬂg K('.g.) n
-}-L'L' L.  J-

1k

, (56)

.
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"By the pr"i'xiciple of the stationary value of tne' total potenfiél, -

equilibrium is characterized by the vanishing of the first variation

(U(l’)




w3

L(a+L) | . "(a+L)

Pe-] g c(“') - (@) J}dg/jﬁ e

T

where

: e 'ﬁ _#II-/A' . -and'.l'.'

Thus, integratioﬂ.by.pgrfs of Ugl) yields

. | ey
’ ( (l)[W’Y:GQ:u:B) lJ = 0 = & Iﬂa {[I(g)(ﬁw ¥7) J

L

S Hesry "(a+L) -
L+ B ] +q(§)}vd§+s]J | P’Eds‘n?'l B G ¢
| | | | L(a+L)
+ egi(g)[ﬁ”-'ﬁ”]y

tma
L

IR&+L)

N4 +[1(§)(~” 1|

- Thejébove-cohtéins'both the equilibrium equations and the associated
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‘boundary conditions. - The ‘equilibrium equations, and the associated

boundary conditions become [in terms of M(&) and u(k)]

Y =;0 | .;_...: :. . E . ' T
O YT+ 70 5(0) =0
| ..Iarld at g —ﬂfi Ior_ﬂ(aT*I-")f
either S o o or > .;(59)
F=0 nja' j'__ _ ’7_Q' ”]s=91
ey (H - “”)'*;Q | ;;f S e . '{;,i =0
'_Ei('g_)('n"_*- no)] +P'11= 0 | n =0

-NExt, the method of detetmining the stability or instability of the
..prebuckled configuration is considered.i The-fundamental state of

_ equilibrium is stable, when the second variation is positive definite. '
Therefore, when the’ buckling load is reached, the second variation

becomes positive semi definite, and the minimum value of the second :

| -variation is . zero for some non-zero virtual displacement- Trefftz-E%&]

'obServed that for the second variation to possess a non—trivial mini-

:_mum the first. variation of the second variation must vanish for

certain non-zero vslues of the virtual displacements. For convenience :

-one forms a new functional HEw,Y] which is nothing more than U(e) with
_the elimination of B from ‘the second variation due to 1mmovable end

-supports.
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(60):

Introdﬁcing Y=Y+ €.8, as before, and defining R-n-=

_ 3
H1), 52

for the second variation to possess a nontrivial minimum,

| :'-E(ail-L) '-

&%ﬁ“y=%ﬁ;.ﬁ

L .

+ higher order’téfmég one reqpires the fanishing of

ey

FRESEEE
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Integration by.parﬁs 6f'the'internél'iﬁtegr&ls; and'setting'H(;) equal

. to zero yields }

'%¥a+L)

o Masw) Hasr)
Vol -l VoS

$ 23 y%" - of yle’ + ¥ | —E— L N

: -E( a+L)

J/

.

——

L

R

Due to kinemstic bdﬁﬁdary cqhditibns,_v is zero at\the.afch ehds._

Hence, .8 18 zero there also.
®s > ZEro b

%¥a+L)

Thus, the above integral becomes




N

9> dg

1k

Integration by parts again yields (with y = § = O.at the boundaries)

urs |

) ) "L—( a+L_)

0 =2Iy'e’|
T
%( a+L). 3 o
+ [ (2LT v"Y" + 2[Fy")” Jeag
na = i _
L
( 1) \
o L( a+L)~”
Ta+L) Jna  Fr0ag
i L Y + ;}-’ﬂ

Hasr)
srrra' : 'W”ng
T
: g(a-l-L)—d—s . .
Iz
na
L

>d§ (62)




- 18

Rearranging terms in the next to last integral one obtains the
Buler-Lagrange eguation and the associated boundary conditions for

arbitrary variations [in terms -of ¥(§) and TM(&)]

%'(éfL'_), -
. | ; '.Iﬂé 1ydg
M) + By + =0 - - (83)
. E(a+L) : :
[ o=
m  A(g)
L
at E 21%? and Eﬁg:gl
. | | \
either ' L or _
- | | (6
i(g)'\{” =0 . _ . : ..Yl =0

Through this approach it is clear that the blfUrcation or limit point

critical load and correspondlng prlmary path (symmetrlc response)

‘positions are established through the simultaneous solutibn of Equa-

tions 59 and é3 subject tg their fespective boundary conditions.

It is obséffed tha£ for the case of limit point stability {top-
of-the-knee buckling)-one méy assume that y(g)_: éﬁ(g); where ¢ is |
an arbitrary émail‘cbnétant, provided thﬁt.n(g) = e sin §, and comﬁine

the two governing équations; Equations 59 and 63, into one. Fifst,

‘Equation 63 becomes
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E(3+L)
,r_ - nnag
_ : L _ _
[HE)T) + 217 + 1" 2 =0 (65)
- L_'(a+L)
_ r —gg
“ma A(E)
L
Next, subtraction of Equation 63'from Equation 65 yields -
. %(a+L) %ka+L) - _
. = LA i # d : :
a, (&) = [(Hemi1” + '] n“nag/f 45 (¢6)
| m- m A(§) '
L L
optimality

~This equation is used in the next section to formulate an

criterion against ﬁbp—of-the-knee snap=-through buckling.

5,4 Formulation of the bptimality Criterion
In order to maximize the critical loading for the constant volume

equality constraint one must form an augmented functional conteining the

ancillary condition

‘;'.'1(8+L) —~

] - A(g)ag =

J_’IE 184 mn
L

Since I(g) = A"(g), the new sugmented functional becomes (for the total

order)
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M)  Naw)

| = f a, (g)dg - j Ag) - VHe
- [ACS)

or

| ,%(a+L) . o fle). o gl
\ =I ¢ [ﬁm(g)n;]# +T‘Qﬂa n”mg/‘rna I i’?’é’)’-
. ' T S /j

CEEY - P fag - (&7)
whére kl is = -La'g'range multiplier.
Exfremizatiqn of ) with respect to ﬁ(g) leads to the optiﬁality .

N
-~ condition. Since A & A % ep and |

(A (g)‘no] = m(m-l)im' (g) 7+ 2n Fn-1 ng ﬂ-im ng o (68)

one acquires'

| TTa+L)}“ | |
. (1)[A:n:ej =0=¢ l‘ < (m-l),rg#q_ 2m(m l)A(m 2) Tb
| /M) Ker) \
+ mtm-n(m em(‘“ REIE Q" e (J‘ -3/
m N\ B
L L

i Q T "‘1} deee S (e
e ' | o
\1 - | S
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Assuming that the functionol has an extremum joining.the.variable.eod
poihto and sioce the functioool has an extremum compared to all
admissible functions, if'certainly has en extremum for those admisoibio
functions with a vanishing value at the end points, i.e. fixed end
points. Thercfore, the'above function, A(£), is a solution to the
Euler-lagrange equation chd the neCessar&'condition, l(l) =0

| reduces to the vanishing of the associated boundary-conditions, No’}
‘asgociated bouodary conditions exist for.fhis problem since there are

no first order functions of A(x) in A. See Ref;.t33] for further details,

Thus.dne acquires thefintegrodifferential'equation

mmdh +ammnﬁman+mmlxmmﬁm””
M oy /Ty - _ ..' o . 1(70)
£(8+L) -E(a+L) \ E(o+L) SN2
+9 _:-'.n*"’ndg\ | % 2 B . L) = A
T\ & 'J/ m Ay A\ m A o
LT . r . L .

as the optimality condition, where 1 is a constant ThlS equatlon is

_only valid where ﬁ(g) is not prescribed. A constraint such ap

| L(a+L)
I Ag(g)[A(g) -(a, +1 (;))]dg

Ta

L .

‘could have been used to faciliﬁaté_thé.task-of.ﬁfe#enting the cross-
sectional area from becoming smaller ‘than’ an allowable minimum Ao'

An optimu design is achieved by satisfying the equilibrium
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equation simultanedusly with the optimality cbnditidn'éﬁbject to the
constant volume cohstraint. One possible approach is the finite

_elemént displacement method used successfully for the column in

Ref. [20].
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| CHAPTER VI

CONCLUDING REMARKS AND RECOMMENDATIONS

Representation of deflections of the low arch by both symmetric'

and antisymmetric modes is shown to be very accurate by comparisone
with the exact solution whenever possible and'by cqmparing the limit-.
ing value of nomunifonm geometry (1/9 - 1) to that achieved for uni-
form gecmetryr. It is shown that, as for the unifbrm geometry case,
the mode_of3huckiing is symmetric for a low range of initial rise =
parameters. For higher initial rise parameters, which consiet of the
largeet percentage, the antisymmetric mcde governs. Furthermore, if
only the symmetric'mode is cqneidered “the analysis overpredicts the.
‘buckling loads and impulsee for sufficiemtly_high initial rise param-
eters. It is eeen.that snep-throﬁgh is.poseible for dynamic-end
quasi static loedings depending on the nonunifonm1ty and the initial
rise parameter. Furthermore, criticel dynamic loadings and impulsee
_ are bracketed between upper and lower bounds.
_overa_ii_, n = 3 yields the best materiel_die_triﬁﬁtiqn of the

cross-sectionel area. For quasi-static'loadings, ﬁ = 2'end m =_3

yield the highest critical loadings or the ‘best weight sav1ngs corre-

i sponding to approximately 20 per cent for extreme nonunlform geometry.'

Thus, n =2 is used to. distribute the inertia for the dynamic cases -
- considered. Geometry, for m = 3, shcws approximately 20 per cent

increase in impulse_carrying capability for_the ideal impulse_and
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approximately 30 per cent increass in load carrying'capability for the

loading of constant magnitude and infinite duration. For the'loading

. of constant magnitude and finite duration, the load carrying capability

is increased considerably, for small release times. well above that
.realized forsthe infinite time.duration case., -

The optimality-criteriaare'shown.to be ouite.nonlinear and-no
_closed form solution seems possible._ A -possible solution might be
obtained by the_finite:element displacement method as is illustrated
in the-literature.for'the optimm column,ZC '

The optimality ‘conditich: for bifurcation (asymmetric snep-
through) instability should be formulated The optimum shape against
bifurcation buckling could he different than that corresponding'tol
limit.point instability. The optimum inertia shape is expected to,

21,22

be similar to that of the column problem. Furthenmore,

the approach used-herein to establish optimality criteria.for the
low arch exhibiting snap- through is believed to provide a method
'for future investigations of a general class of such structures.
The results obtained herein for m equals three are applicable
 to long shallow panels where the same applied loading is independent E
of the longitudinal direction and with the same boundary conditions
along the straight edges. This is accomplished b& using-E/[l-v?) in
place of Young's modulus, and cousideringlthe constant base_as unity.'
It is believed that studies fbrpdifferent_boundary conditions
will be'important.infselecting an optimum shape'and in determining the
'oeffect on the critical'buckling load. InvestigatiOns of geometric,

material and loading imperfections are also worthy of consideration.
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Antisymmetric geometric imperfections may cause a significant decrease

in léad carrying capability as well as an alteration of the optimum
shape; Stﬁ&y of materiai inﬁcmogenity énd anisotropy, such:aé“a
laminated arch, ié ﬁlso recommended, Furthermoré, the dfitical
;ogdings and critical impulses for snap-through end the.oﬁtimum shape

may differ considerably for loadings applied antisyﬁmetrically;
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. APPENDIX

'SPECTALIZATION OF THE CRITICAL LOADING
FOR UNIFORM STIFFNESS DISTRIBUTION
" The uniform geometry shallow arch with pinned immovable ends
~ and an initisl half-sine shape under a half-sine quasi-static loading
is now investigated. The cominlete sei‘i'es_ ﬁg) = 'ﬂo + Z an'sin ng is

=a. +e. Due to geometry and loadiz]ig one requires

employed where '-rl =a

the following:

~

G eeane

i(g) = 1.0

A(g) = 1.0

oy = g, sin§
“er

. According to Equation 66 the expression for the critical loading

' beco'm-e.s-.
o Xewy —(a+L)
qcr o= "ﬁ;.ﬂ' + Fﬁ”- J“na B N#rﬁigfl‘l

L . L

‘and subs-tituﬁio_n of the above series into qc leads to
-—(a+L) _
91 sin § e sin § + (r sin € + Zn a_ sin n§)[f (rl gin §

cr

-

'n2an51n.h§>(rl siﬁ £+ Z"'aﬁ' 'sin. n§)ﬂ§}
2 .

-+

n~ig -
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By performing the indicated integrations this expression becomes

9y sin € = e sin £
o Ter: '
na, -sin ngJ

"
=
+
o~] 8
S P
o .
. S
Lz 2
—
. @
hel
=
o
+
I\)[\/‘g

Since each mbde is independent the above equa.tidn is satisfied if the

Tollowing set 1s satisfied.

_ T . . _ _ N
o o REAIAD e
cr o :
-
E[rl + Z neai] a, = 0
_ . N é é'i_ : S . _: _ | Co ) .L
(g)[rl + 0 %}"3"" o 5 ()

Equations ii imply _t.hat either sll the .ai.'s (i=2, 3.,_;'; .} .are'.z'ero' of

(r?_ + heai Ivani's_hes. 'The only possible v}ay that ‘.c.he. 1a£ter can be

true 1s for each independent mode to beé zero -wﬁiéh is trivial. Thus,
. ali the generalized :coordihates gther ‘than ry.are zero, and the solu-

tioh_to-i and ii is

. =ea_f-—2—- or @ E"é"'__ . : . | (iii)

er cr
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‘and

a =0, Cn=2,3kee - (444)

The solution for the critical bﬁckling loading, for the limit point,
is obtained by solving set (iii) with the two equilibrium équations

{Ref. (61 -

l'=.ﬁ'= é.,.ql.' _._. o | (1v)

%(ri - e + naai)rl +r
Equation iv for symmetric snap-through (an = 0; 1imit point) becomes

1,2 2, e o |

E(rl - e )rl +ry o= g o . -~ {v)

Equation v and 111 reduce to ri[h_f e” + 3r11 = 0. S8ince r, £ 0,

vy =N - 03 mus
cr- o -
g, =302 -wmaRt (v1)

cr

for the 1imit point or top-of-the-knee buckling.
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