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SUMMARY 

The conventional process for developing an optimal design for nonlinear optical responses 

is based on a trial-and-error approach that is largely inefficient and does not necessarily 

lead to an ideal result. Deep learning can automate this process and widen the realm of 

nonlinear geometries and devices. This research illustrates a deep learning framework used 

to create an optimal plasmonic design for metamaterials with specific desired optical 

responses, both linear and nonlinear. The algorithm can produce plasmonic patterns that 

can maximize second-harmonic nonlinear effects of a nonlinear metamaterial. A 

nanolaminate metamaterial is used as a nonlinear material, and a plasmonic patterns are 

fabricated on the prepared nanolaminate to demonstrate the validity and efficacy of the 

deep learning algorithm for second-harmonic generation. Photonic upconversion from the 

infrared regime to the visible spectrum can occur through sum-frequency generation. The 

deep learning algorithm was improved to optimize a nonlinear plasmonic metamaterial for 

sum-frequency generation. The framework was then further expanded using transfer 

learning to lessen computation resources required to optimize metamaterials for new design 

parameters. The deep learning architecture applied in this research can be expanded to 

other optical responses and drive the innovation of novel optical applications.     
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CHAPTER 1. INTRODUCTION 

The goal of this thesis research was to create trained deep learning algorithms to 

inversely design metamaterial structures for optimal linear and nonlinear optical responses. 

The research shows the capabilities for linear, second harmonic, and sum-frequency  

nonlinear optical responses. Expanding on the deep learning algorithms, the research shows 

the ability to boost the framework to be able to handle linear and nonlinear optical 

responses with a wider set of parameters.  

1.1 Background 

In general, inverse design in photonics is a method used to identify a set of 

parameters to define a photonic structure or device given the desired optical responses. 

This contrasts with traditional design processes of a back and forth, trial and error method 

starting with candidate patterns from empirical guesses, using parametric sweeps to slightly 

adjust parameters, and at times never reaching the desired goal due to limitations such as 

computing power, or geometric candidates.  

Since the use of artificial neural networks (ANN) for inverse design can lead to 

fast, accurate, and sometimes counterintuitive results that cannot be achieved by traditional 

methods, it has been at the forefront of many research problems as large as wind turbine 

design, and even for smaller applications such as plasmonics [1-5]. 

The essence of deep learning is to learn from sizable datasets using algorithms 

loosely arising from models of biological nervous systems [6-10]. Deep learning has 

evolved quite remarkably in the last few years, outgrowing the designation as a subset of 

machine learning [11, 12]. The basic application of a deep learning model is that once 
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trained on a labeled set of data, can perform classification of data using ANNs with multiple 

layers of artificial neurons – hence the term ‘deep’ learning. The power of the ANN’s 

increasing complexity allows for the achievement of accuracy that can equal and 

sometimes even exceed human performance [13-15]. 

Plasmonics is a field that studies and utilizes the optical properties of metal-

dielectric interfaces on nanometer-scale structures. Plasmonic structures can serve as unit 

cells for metamaterials to find new phenomena, or to prove existing theories. Periodic unit 

cells, such as a plasmonic structure, lead to a metamaterial whose properties are drawn 

from the periodic structure, as well as the individual cells [16-18]. 

When designing plasmonic metamaterials and metasurfaces for the purposes of new 

phenomena, the linear optical regime, such as spectral control, dispersion engineering, and 

beam steering, has been well-researched, so can be used to validate a deep learning 

framework [19-21]. In the nonlinear regime, there is much to be explored.  

Optical nonlinear processes include frequency mixing, such as second-harmonic 

generation (SHG), sum-frequency generation, optical rectification, as well as the Pockels 

effect and optical Kerr effect. Nonlinear optics is essential for the generation of new 

spectral components and active control of light. 
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Figure 1.1 – Energy level description of a) linear optics such as reflection where the 

frequency, ω, of the light remains the same, and b) nonlinear optics such as second-

harmonic generation, where the frequency of the input light is doubled to 2ω. The 

upwards pointing arrows indicate the incident light, and the downward pointing 

arrows are indicative of the output. 

1.2 Tailored optical responses  

The most important factor in linear optics is that monochromatic light entering a 

linear system will maintain its frequency, the light may be delayed, polarized, or otherwise 

acted upon but the frequency will be unchanged. This is illustrated in Fig 1.1a. In linear 

optics, the polarization of the material system, or the dipole moment per unit volume, 

describes the linear relationship between induced polarization and the electric field 

strength,   

𝑷 =  𝜀0𝜒
(1)𝑬.       (2.1) 
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In this polarization equation, the ε0 represents the permittivity of free space, χ(1) is the linear 

susceptibility, and E is the electric field strength [22]. 

Linear optical phenomena such as spectral control, dispersion engineering, and 

beam steering take advantage of the linear material properties like the refractive index of 

materials which is related to the linear susceptibility.  To tailor linear optical responses, 

linear full wave simulations depend upon the linear material properties for phase control 

or amplitude modulation.  

On the other hand, nonlinear optics is when the polarization, P, non-linearly 

depends on the electric field strength, E. For nonlinear optics, the polarization is expressed 

as a power series: 

𝑷 = 𝜀0[𝜒
(1)𝑬 + 𝜒(2)𝑬𝟐 + 𝜒(1)𝑬𝟑 + ⋯ ] 

= 𝑷𝟏 + 𝑷𝟐 + 𝑷𝟑 + ⋯ .   (2.2) 

Here, the χ(n) terms represent the nth order nonlinear optical susceptibilities, so the second- 

and third-order, etc. All the χ(n) terms are in fact tensors that depend on the applied field 

frequencies, as will be shown later. To refer to a specific polarization, for example, the 

second-order nonlinear polarization, we use:  

𝑷𝟐 = 𝜀0𝜒
(2)𝑬𝟐.      (2.3) 

General second-order nonlinear processes include second-harmonic generation, and 

sum-frequency generation. Both of these are frequency mixing processes that occur due to 

the applied electric field interacting with the nonlinear properties of the material allowing 
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for the generation of radiation at the second-harmonic frequency, as shown in Figure 1.1b, 

or sum-frequency [22].  

 

Figure 1.2 – Example of a metamaterial that is periodic at a sub-wavelength scale. 

The sub-wavelength scale is an important property of metamaterials. 

1.3 Metamaterials 

A metamaterial a material engineered to have electromagnetic functions usually 

not found in conventional materials, that derives its properties from the unit structure or 

meta-atoms and periodicity [23-24]. Another distinguishing factor is that these meta-
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atoms, and periodicity are at a subwavelength scale, as shown in Figure 1.2.  

Metamaterials can be designed for both linear and nonlinear optical responses. 

 

Figure 1.3 – Schematic of the ABC nanolaminate stack with second order nonlinear 

properties when light is incident at an angle. 

While bulk thin-film nonlinear materials like LiNbO3 are commercially available, 

an easy to fabricate and thinner film is possible using an ABC nanolaminate [25-28]. An 

ABC nanolaminate is a nonlinear metamaterial created using a repetition of thin films of 
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three different layers, an A, B, and C layer, repeated as ABCABC, as illustrated in Figure 

1.3.  

When using materials that have inversion symmetry, such as silicon, under the 

electron dipole approximation, there are no even order nonlinear effects, such as second-

order effects, meaning there is no nonlinear susceptibility of the second type. At each of 

the layer interfaces, such as at A-B, or B-C, centrosymmetry is broken in the axis normal 

to the layers.  

Once the centrosymmetry is broken, there can be second order nonlinear effects, or 

a nonlinear susceptibility in the bulk material along the perpendicular direction [25-28]. To 

utilize the break in centrosymmetry, the incident light is at an angle in order to possess a 

non-zero field component along the axial direction, inducing a second order nonlinear 

susceptibility.  

With a TiO2-Al2O3-HfO2 ABC nanolaminate, following the material and geometric 

parameters from the successful demonstration by Alloatti et al., the manmade nonlinear 

oxide composite requires a simple deposition technique, such as atomic layer deposition 

(ALD), and can have an easily controllable thickness on the order of tens of nanometers, 

whereas thin-film bulk materials require complicated growth methods to get a crystalline 

structure, and typically the thickness is on the order of hundreds of nanometers [25].  

The ABC nanolaminate is also a better choice, as it is compatible with silicon, 

which opens the door to numerous integrated optics applications on CMOS compatible 

platforms. Silicon is very important for integrated optics but is limited for second order 

nonlinear optics due to its centrosymmetry. 
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Figure 1.4 – Illustration of surface plasmons. At a metal-dielectric interface, the 

electromagnetic field at the interface excites and causes collective coherent 

oscillations (surface plasmons) of free electrons leading  to a created charge density 

oscillations called surface plasmon polaritons. 

1.4 Plasmonic structures 

Plasmonic structures are often used in metamaterials as the surface plasmon effect 

can be taken advantage of. To explain this, we begin with surface plasmon polaritons 

(SPPs) [29]. The conduction band of metals, such as gold and silver, have free electrons. 

When a plasmonic structure creates a metal-dielectric interface, the electromagnetic field 

at the interface excites and causes collective coherent oscillations of free electrons, as 

shown in Figure 1.4. The oscillations lead to created charge density oscillations which we 

call SPPs [30]. The coherent oscillations of the free electrons are the surface plasmons.  
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Figure 1.5 – Illustrated here is the confinement of surface plasmons in a nanoparticle 

leading to localized surface plasmons (LSPs). 

The SPPs are electromagnetic waves that propagate along the metal-dielectric 

surface. As the wavelength of the SPPs are shorter than the incident wavelength, they can 

have large field enhancements, as described in Figure 1.5. The tight electric field 

confinement leads to a plasmon resonant frequency that can be tuned by the plasmonic 

geometry, refractive index of the plasmonic and surrounding material [31]. Characterizing 

the surface plasmons can be done through a few techniques including surface enhanced 

Raman scattering [32].   

For metamaterials, periodic unit cells with plasmonic structures can lead to 

interesting optical phenomena, both in the linear and nonlinear regime. The plasmonic 
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structures have an effect even in the nonlinear regime, as the nonlinear polarization, P, is 

still also dependent on the linear optical response. 

 

Figure 1.6 – Illustration of the MuCulloch-Pitts Neuron. McCulloch and Pitts were 

the first to put forth a mathematical mode for a neural network [33]. 

1.5 Deep Learning 

While deep learning as a field is relatively new (~20 years), it’s basis can be traced 

back to 1943 when Walter Pitts and Warren McCulloch created a mathematical neural 

network model, the McCullock-Pitts neuron, as illustrated in Figure 1.6 [34]. Even so, it 

wasn’t until 1959 when machine learning was coined and created. Arthur Samuel is 

considered the father of machine learning, and it all began with computer programs 
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designed to play checkers [35]. From there, the field was born, and grew to include artificial 

neural networks, convolutional neural networks, gradient based learning, and much more.  

 For the inverse design of photonic structures, two separate deep learning methods 

are needed. One to generate patterns, beyond conventional geometries, and another to 

predict the optical response of patterns and optimize a pattern for the required needs. There 

are two general types of models – generative and discriminative. A generative model uses 

a probabilistic model to describe a data set. Using the probabilistic model, sampling can 

allow the generation of new data.  

The other type is a discriminative model, this is more of a predictive model. The 

discriminative model, once trained on a dataset with classes, identifies the boundaries 

between the classes using conditional probability. For example, if a data set has a number 

of labelled animal images, “Dog”, “Cat”, “Cow”, etc., the model creates probability vectors 

for each class of animal. Given a new picture to classify, the model labels the image using 

the conditional probabilities.   

For pattern generation, it seems natural to lean on a generative model, such as a 

variational auto-encoder. In order to predict the optical response of a photonic structure 

pattern as an image, a convolutional neural network(CNN) is perfect [13]. CNNs are 

designed to process arrays, like images, and find patterns in the data, through the use of 

multiple convolutional layers. The convolutional layers are made of convolutional kernels 

which identify patterns in the images in subsections. All of the kernels and layers working 

together yield data predictions for patterns.     
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CHAPTER 2. NONLINEAR OPTICS AND DEEP LEARNING 

This chapter is intended to give a deeper understanding into the nonlinear optics 

and deep learning used for the research conducted in this thesis. An overview of sum-

frequency generation, nonlinear susceptibility, and deep learning examples will provide 

necessary background for the concepts put forth in later chapters. 

2.1 Nonlinear Optics 

It can be said that linear optics is noticed as a child – looking in a mirror and seeing 

a reflection, or when searching for the pot of gold at the end of a rainbow. Linear optics is 

displayed all around us, and thereby makes it much easier to grasp as it can be simply 

demonstrated for the most general cases of refraction, reflection, and diffraction.  
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Figure 2.1 – Example of linear optics where an incident ray in a material with a 

refractive index of n1 hits the surface with a refractive index of n2. This results in a 

reflected ray and a refracted ray. 

We can describe a linear optical response as one where monochromatic light entering 

a linear system maintains its frequency, an example of which is in Figure 2.1. While the 

light may be delayed, polarized, or otherwise acted upon, its frequency will remain 

unchanged. This is described through a polarization equation in Chapter 1. It is important 

to note that in a linear case, the refractive index is related to the linear susceptibility, or χ(1) 

that is mentions in Equation 1.1. It can further be elucidated as such: 𝑛 =  √𝜒(1) + 1. 
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Figure 2.2 -  Image illustrating how a green laser pointer functions [1]. 

On the other hand, nonlinear optics is much more complex, and in most scenarios, 

the processes can’t be visualized without an expensive or complex setup. Even a simple 

example of how a green laser pointer works, relies on trust and imagination between the 

teacher and audience as shown in Figure 2.2. It is a much more hidden process.  

Nonlinear optics can be described as frequency mixing processes. Frequency mixing 

processes that occur dur to the applied electric field interacting with the nonlinear 

properties of a material allow for the generation of radiation at different frequencies.  

As described in Chapter 1, a nonlinear material can have a nonlinear susceptibility, 

for example the second order nonlinear susceptibility would be referred to as χ(2). More 

specifically, these nonlinear susceptibilities are tensors, so we would actually refer to the 

2nd order susceptibility as χijk
(2), where i, j, and k are the cartesian components of the 

field[2].  

It is possible to reduce the tensor components to a contracted notation for simplicity.  
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𝑑𝑖𝑗𝑘 =
1

2
𝜒𝑖𝑗𝑘

(2)
       (2.1) 

This can further be simplified using Kleinman’s symmetry to assume dijk is 

symmetric in the last two indices, leading to dijk = dil[2]. Where: 

𝑗𝑘: 11 22
𝑙: 1 2

     
33 23, 32
3 4

     
31, 13 12, 21

5 6
.    (2.2) 

Leading to a 3 × 6 nonlinear susceptibility tensor: 

𝑑𝑖𝑙 = [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

𝑑14 𝑑15 𝑑16

𝑑24 𝑑25 𝑑26

𝑑34 𝑑35 𝑑36

].     (2.3) 

Using the contracted notation, we can describe the nonlinear polarization of 

second-harmonic generation as such: 

[

𝑃𝑥(2𝜔)
𝑃𝑦(2𝜔)

𝑃𝑧(2𝜔)

] = 2𝜖0 [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

𝑑14 𝑑15 𝑑16

𝑑24 𝑑25 𝑑26

𝑑34 𝑑35 𝑑36

]

[
 
 
 
 
 
 

𝐸𝑥(𝜔)2

𝐸𝑦(𝜔)2

𝐸𝑧(𝜔)2

2𝐸𝑦(𝜔)𝐸𝑧(𝜔)

2𝐸𝑥(𝜔)𝐸𝑧(𝜔)
2𝐸𝑥(𝜔)𝐸𝑦(𝜔)]

 
 
 
 
 
 

.    (2.4) 

 Generally, the way that the elements of nonlinear susceptibility tensors are 

calculated are by first identifying the nonvanishing elements and their symmetries based 

on the crystalline structure of the material. Then the nontrivial elements are 

experimentally measured.  
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Figure 2.3 – Energy level description of sum-frequency generation. Two photons of 

frequencies ω1 and ω2 combine to form a photon of frequency ω3 = ω1 + ω2. 

2.2 Sum-Frequency Generation 

Second-harmonic generation is a specific case of sum-frequency generation (SFG). 

In second-harmonic generation, two photons of the same frequency, ω, are effectively 

combined to form a single photon of double the frequency, 2ω. We can say the second-

harmonic generation is a process where ω+ ω →2ω, when interacting with a nonlinear 

material. In sum-frequency generation, two photons of different frequencies, ω1 and ω2, 

interact to result in the formation of a photon with a frequency of the sum of the two 

photons, ω3 = ω1 + ω2 as shown in Figure 2.3.  

The nonlinear polarization, P(ω1 + ω2)  = 2ε0χ
(2)E(ω1)E(ω2), further shows the 

similarity to the second-harmonic generation.  
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The full nonlinear polarization for sum-frequency generation, in the contracted 

notation, is as follows, 

(

𝑃𝑥(𝜔1 + 𝜔2)
𝑃𝑦(𝜔1 + 𝜔2)

𝑃𝑧(𝜔1 + 𝜔2)

) = (

𝑃𝑥(𝜔3)
𝑃𝑦(𝜔3)

𝑃𝑧(𝜔3)

) =

𝜖0 (

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16

𝑑21 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26

𝑑31 𝑑32 𝑑33 𝑑34 𝑑35 𝑑36

)

(

 
 
 
 

𝐸𝑥(𝜔1)𝐸𝑥(𝜔2)
𝐸𝑦(𝜔1)𝐸𝑦(𝜔2)

𝐸𝑧(𝜔1)𝐸𝑧(𝜔2)

𝐸𝑦(𝜔1)𝐸𝑧(𝜔2) + 𝐸𝑧(𝜔1)𝐸𝑦(𝜔2)

𝐸𝑥(𝜔1)𝐸𝑧(𝜔2) + 𝐸𝑧(𝜔1)𝐸𝑥(𝜔2)

𝐸𝑥(𝜔1)𝐸𝑦(𝜔2) + 𝐸𝑧(𝜔1)𝐸𝑦(𝜔2))

 
 
 
 

  (2.5) 

, and can be simplified for the ABC nanolaminate as follows, 

𝑷𝒙(𝜔1 + 𝜔2) = 𝝐𝟎𝛘𝒙𝒙𝒛[𝐸𝑥(𝜔1)𝐸𝑧(𝜔2) + 𝐸𝑧(𝜔1)𝐸𝑥(𝜔2)] 

𝑷𝒚(𝜔1 + 𝜔2) = 𝝐𝟎𝛘𝒙𝒙𝒛[𝐸𝑦(𝜔1)𝐸𝑧(𝜔2) + 𝐸𝑧(𝜔1)𝐸𝑦(𝜔2)]

𝑷𝒛(𝜔1 + 𝜔2) =  𝝐𝟎𝛘𝒛𝒙𝒙[𝐸𝑥(𝜔1)𝐸𝑥(𝜔2) + 𝐸𝑦(𝜔1)𝐸𝑦(𝜔2)] + 𝝐𝟎𝛘𝒛𝒛𝒛[𝐸𝑧(𝜔1)𝐸𝑧(𝜔2)]

(2.6) 

from these equivalencies, χxxz = d15 = d24, χzxx = d31 = d32,and χzzz = d33 [2, 3]. 

Utilizing the physics of sum-frequency generation, a process of photonic 

upconversion can take place. In nonlinear optics, upconversion is described as sum-

frequency generation. Two, or more, photons are absorbed, and a photon of a shorter 

wavelength is emitted. This frequency mixing allows for the detection of light otherwise 

unable to be counted using available imaging processes. Sum-frequency generation is most 

utilized in spectroscopy, developed for the use of studying interfaces such as gas-liquid 

interfaces.   

In this research, sum-frequency generation is used for photonic upconversion in 

order to convert infrared light to the visible regime. This research has many very important 
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applications. One important application for SFG upconversion of near infrared signals is 

for low-cost night vision/low light imaging systems. The uses for these imaging systems 

range from defense applications to autonomous vehicles and more. 

SFG requires two incident beams of light, so the set up can be described as a pump-

probe system. In this scenario, two infrared incident light sources – one of significance to 

be converted, and the other for the upconversion process, are focused on a nonlinear 

material such as an ABC nanolaminate. The resulting light in the visible regime would then 

be collected. For the ABC nanolaminate to be used as a nonlinear metamaterial, a 

plasmonic structure is required, in order to take advantage of the surface plasmon effect, 

as explained earlier.  

Utilizing a deep learning framework, consisting of a pattern generator and a 

simulator, the geometry of the plasmonic device can be optimized, thereby optimizing the 

strength of the emitted visible light from the metamaterial allowing for more efficient SFG 

upconversion. 

2.3 Deep Learning 

Successful implementations of discriminative models will be introduced in this 

section for the design of photonic devices. Additionally, work accurately predicting optical 

responses of photonic structures with a deep learning model will be presented to show the 

growing and viable field. Such deep-learning-based methods enable the fast evaluation of 

the design performance of photonic structures during their computationally intensive 

optimization [4]. 
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2.3.1 Design of Metallic Metasurfaces and Metamaterials  

 

Figure 2.4 – Metasurfaces and metamaterials designed for amplitude and chirality 

manipulation are shown. a–c) “H” shaped metallic metasurface design. a) Schematic 

of the shape and parameters of the nanostructure. b-c) The simulated, measured, and 

deep learning retrieved spectra of the design when the incident light is horizontally 

and vertically polarized. The inset in b shows the SEM image of the fabricated. d–f) 

Chiral metamaterial design. d) Schematic of the designed chiral metamaterial. The 

inset is the zoomed-in structure of a single meta-atom unit. e) Desired, predicted, and 

simulated circular dichroism (CD) spectra. The insets list the retrieved geometric 

parameters. f) Predicted full reflection spectra along with the full-wave simulation 

results [4]. 
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The suggestion of solving the inverse design of nanostructures in metasurfaces was 

first offered by Malkiel et al. using a few parameters through a bidirectional designed 

neural network [5]. Figure 2.4a shows the ‘H’ shaped particle. In order to solve the design 

problem, two networks are collectively built – a geometry predicting network (GPN) and 

a spectrum predicting network (SPN). Given a specific spectral response, the GPN predicts 

the geometric parameters, and then the spectrum of the input geometry is approximated by 

the SPN.  

This is done as follows, during training, the GPN output is fed into the SPN. The 

idea is that if given a pair of geometries and their corresponding spectra as a training pair, 

minimizing the loss between the training pair and the GPN and SPN output lead to a usable 

architecture. Upon creating this bidirectional network and the subsequent training, it can 

be utilized to generate various desired responses for various designs by changing the 

objectives of the GPN.  

An example, given two spectral behaviors with incident x and y polarized light, of 

a retrieved structure and the related SEM of a fabricated nanostructure is shown in Figure 

2.4 b and c. The network-predicted, FEM simulated, and measured results of nanostructure 

are presented by solid, dashed, and circled lines, respectively. Analogous strategies 

leveraging two networks, one for simulating optical responses and one for calculating 

design geometries and parameters, have also been shown to be powerful in other design 

applications such as broadband highly reflective metasurfaces [6]. 

Figure 2.4d shows another bidirectional strategy that was developed and extended 

to the design of multilayered chiral metamaterials [7]. The chiral metamaterials unit cell is 
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composed of two stacked split ring resonators (SRRs) fabricated from gold. Circular 

dichroism (CD) is a measure of chirality and is used to characterize the chirality of the 

metamaterial. CD is the difference in absorption between the left and right circularly 

polarized incident light.  

Again, here the overall network architecture utilizes the bidirectional framework, 

although two such networks are used. One is a primary, to learn the mapping between the 

optical spectra and design space, and the other is an auxiliary network, which tackles the 

relationship between the corresponding structure parameters and the CD. The addition of 

the auxiliary network further improves the accuracy of the prediction and design.  

Figure 2.4e and f show an example of a predicted structure and its corresponding 

optical responses. The red line in Figure 2.4e represents the desired CD, and the simulated 

CD from the network shown by the dashed lines match the desired response. The simulated 

spectrum of the retrieved structure is given in Figure 2.4f.  

2.3.2 Design of High DOP Photonic Device 

Deep neural networks can be leveraged for the design of photonic systems with a 

high degree of freedom (DOF), with the capability of performing regression and 

classification of high dimensional data points.  
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Figure 2.5 – Shown here are discriminative models for the design of high degree of 

freedom photonic devices. a) This is the design strategy and network architecture for 

1 × 2 integrated photonic power splitters with various target splitting ratios. The 

etched pixels or holes represent the power splitters. The spectral response at the ports 

is simulated by the forward deep neural networks, and the choice of etching or not 

etching each pixel or hole is decided by the inverse network given a desired splitting 

ratio. b-c) CNNs are used to optimize a 2D photonic crystal nanocavity with CNNs. 

b) Illustration of the photonic crystal configuration. The circles indicate air holes 

formed in a silicon slab. c) Configuration of the neural network that can capture the 

relationship between the displacements of air holes and the Q factors of the photonic 
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crystal. The optimization is performed by treating the hole displacements as variables 

and iteratively optimize them through backpropagation [4]. 

A demonstration of a neural network enabled design of silicon-on-insulator based 

1×2 integrated photonic power splitters with various target splitting ratios is presented in 

Figure 2.5a. The etched pixels represent a collection of holes or the power splitters in a 

binary image in Figure 2.5a. Another bidirectional network is implemented in this work as 

well. The forward simulation, or spectral response prediction at the output ports for a given 

structure encapsulate on of the network models. The other is for the identification of the 

optimal power splitter with the desired splitting ratio, or the backward design. As the only 

choices are if each hole of the splitter are to be etched or not etched, essentially a binary 

decision, a classification problem can be the inverse design process model [8]. 

CNNs with shared weights performing cross-correlation operations are adopted to 

efficiently process high dimensional data, because of the increasing DOF of the design 

problems. The local correlation of spatial information in images can be captured by a CNN. 

As such, given a photonic device, a CNN is an ideal candidate to process images 

representing photonic patterns and the spectral responses of the device. CNNs have been 

utilized in various optical problems, such as the inverse scattering problem, wave-front 

correction, digital coding metasurfaces, and the pre-diction of optical properties in complex 

photonic and materials systems [4, 9-15]. A few examples of photonic devices designed 

with CNNs will be discussed.  

Asano and Noda reported work that utilizes a neural network consisting of CNNs 

to simulate the Q-factor (or quality factor) of photonic crystals and optimize that through 
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backpropagation [16]. An example of a heterostructure 2D photonic crystal nanocavity is 

shown in Figure 2.5b. The aim of the optimization is to identify the positions of these air 

cavities to maximize the Q-factors given a certain initial structure.  

Figure 2.5c describes the network architecture, a CNN is concatenated by a fully 

connected network in order to predict the Q-factor of the input structure. It is quite 

important to note that by relying on their capability of processing large dimensional data, 

CNNs have become an indispensable architecture that deal with photonic devices with the 

high DOF [17, 18]. 

2.3.3 Generative Model - VAEs 

Discriminative models can predict forward simulation with extraordinary accuracy 

to enable various optimizations of parameters defining photonic structures and their 

materials. However, when the dimension of the design space grows beyond thousands, it 

is unfeasible to generate sufficient data to train a surrogate model. Generative models, in 

this situation, are a great candidate to reduce the dimensionality of the design space in order 

to assist the universal optimization. Here, we will focus on the deep generative model of 

VAEs [19]. 

VAEs, as an essential member of deep generative models, have been implemented 

to reduce the dimensionality of photonic nanostructures and their related physical 

properties for efficient optical design. VAEs were utilized by Ma et al. to encode meta-

atoms of metamaterials and their optical responses, enabling the investigation of the 

complex structure-performance relationship without extensive data collection [20].  
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Figure 2.6 – Photonic structure design using a VAE-based strategy. a) The framework 

of the VAE network utilized for the design and characterization of reflective 

metamaterials. A latent space encoded with a set of meta-atoms and their optical 

responses leads to latent variables that are sampled for the inverse design in response 

to a specific objective. b–d) Specified on-demand reflection spectra input to the model 

to be designed for. e–g) Unit cells of the VAE-designed meta-atoms are shown in the 

insets and their optical responses for the corresponding inputs as shown in b–d [4]. 
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A deep generative model of the design and characterization of a metamaterial is 

illustrated in Figure 2.7. To have similar designs and optical responses automatically 

amassed together, the metamaterial and its corresponding optical responses are encoded 

into the same latent space. Therefore, by sampling the latent space, candidate designs can 

be generated given strict requirements in the decoding process of the latent vectors. Three 

examples of generated metamaterial designs for on-demand spectra from the proposed 

generative model are shown in Figure 2.7b-g.  

Figure 2.7b-d show the requested on-demand reflected spectra 40 THz – 100 THz, 

and the generated metamaterial designs together with their simulated spectra are displayed 

below in Figure 2.7e-g, respectively. Looking at the simulated and input spectra, it can be 

seen that they replicate one another. Similar techniques have also been applied to the design 

of multi-layered chiral metamaterials that satisfies various chiroptical response 

requirements [4]. 

2.3.4 Optimization 

As a stand-alone technique, machine learning can analyze high dimensional 

complex datasets in order to capture the essential features for the simulation of the physical 

responses and the design of photonic structures. Even though traditional optimization 

algorithms, such as adjoint methods, genetic algorithms, and particle swarm optimization, 

have significant successes optimizing of photonic structures and devices, some drawbacks 

of these traditional optimization algorithms prevent their use as effective approaches for 

the design of high DOF devices in a universal manner. 
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Black-box optimization algorithms, such as simulated annealing, random search, 

and evolutionary algorithms, on the other hand, do not seek the gradients to iteratively 

update the parameters [4]. As an alternative, they stochastically update the structural 

parameters through probabilistic methods or by emulating physical and/or biological 

processes in order to identify a solution in a global manner.  

However, without the gradient information from the problem’s physical model, 

immense iterations of computation are necessary to explore the space to yield an optimal 

solution. These redundant computations limit black-box optimizations utilized in the 

design of photonic structures, materials, and devices that require computationally intensive 

simulations.  

In order to ease the unnecessary and redundant computation, Hegde proposed a 

strategy that pairs a deep neural network with an evolutionary algorithm [21, 22]. The 

network model proposed, is trained as a surrogate model that partially replaces the 

expensive simulation for the preselection and optimization of optical thin-film systems [4]. 

This surrogate model enables massive, parallelized simulation thereby significantly 

reducing the time necessary for evaluating the fitness/cost function during optimization. 

Effectively, the network model is equivalent to a cache that stores the calculated results, 

but with a markedly compressed size, for the quick evaluation of the physical responses of 

photonic devices without the need for continual computations.  

Generative models can be incorporated into optimizations, in this manner serving 

as a way to reduce dimensionality, bringing down the DOF. GANs, VAEs, and other 

machine learning algorithms can be used to construct a compact sparse representation of 
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photonic devices in a latent space with lessened dimensionality. It is also much more 

efficient to search the latent space of the generative models as compared to performing 

optimization on the original high-dimensional dataspace. 
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CHAPTER 3. LINEAR AND SECOND HARMONIC NONLINEAR 

OPTICAL RESPONSES 

The research described in this chapter shows the capabilities for linear and second 

harmonic nonlinear optical responses. Deep learning algorithms are created and trained to 

inversely design metamaterial structures for optimal linear and nonlinear optical responses. 

3.1 Framework design for deep learning algorithm 

In order to optimize an arbitrary pattern to create an optimal photonic structure, a 

deep learning framework is used, as parameter-sweeping and standard geometries cannot 

yield the most enhanced optical response. This algorithm can be used to optimize a 

photonic structure for linear responses [1].  

The framework can be broken into three parts, the generator, the simulator, and 

the optimizer. The generator is used to create 2D patterns that translate into the photonic 

structure. Once patterns can be generated, the simulator uses the generator to find the 

related optical response [2].  
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Figure 3.1 – General deep learning framework. (a) Overall flow of the generator, an 

algorithm used to represent the patterns in the training data using a probability 

density function (PDF). The generator is based on a Variational Autoencoder (VAE), 

and the PDF is used by the encoder and decoder to represent a pattern as a latent 

vector, v, through ‘encoding’, and then transformed v into a reconstructed pattern 

through ‘decoding’. (b) By randomly sampling v, we can use the decoder from the 

generator to create patterns. These patterns are passed through the simulator, and a 

predicted optical response is output. In order to optimize a pattern to a specific optical 

response, an optimizer based on an Evolution Strategy (ES) is utilized. Passing 

through a system of selection, reproduction, and mutation, the optimizer circles back 

to try different v's searching for better patterns until the closest fit is found. The final 

output is the best pattern for the desired parameters, and optical response [3].   
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To target a desired response, the optimizer is used to find the best pattern for the 

response requested. The generator algorithm is based on a variational auto-encoder 

(VAE), as shown in Figure 3.1a. First, 10,000 arbitrary created patterns (64×64 pixel 

images) form a training set for the generator.  

The patterns are then passed through an encoder, which is a neural network. The 

purpose of the encoder is to ‘encode’ the data into a latent space, or probability density 

function, with a standard deviation, σ, and mean, µ, which represents all the possible 

patterns.  

Then, a randomly sampled latent vector, v, can be fed to a decoder, which is 

another neural network, based on the same latent space, and be ‘decoded’ into a pattern. 

If a pattern is encoded, the output is a latent vector, and if that same v is input into the 

decoder, the output will be a reconstruction of the input image.  

The generator allows for the creation of patterns that were not in the original data 

set, which can lead to a pattern with a response better than if inverse design was not 

utilized. 

The simulator is based on the architecture of ResNet18 and is used to predict the 

linear optical response for the input image. To train the simulator, 10,000 patterns are 

created from the generator. Data collected from a full-wave simulation for linear 

responses is used to train the simulator. Once trained, the generator is used to produce 

patterns for the simulator to predict respective optical responses.  

We adapted an Evolution Strategy as out optimizer in the framework, as shown in 

Figure 3.1b. Through a process of selection, reproduction, and mutation, while evaluating 
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a fitness score for the pattern, patterns that maximize the linear optimal response are 

created. 

 

Figure 3.2 – Results of on-demand inverse design. a) Target Gaussian-like spectra. 

The desired spectra Txx and Tyy at the input, shown as the solid lines, are two randomly 

generated Gaussian-like curves, and the Txy and Tyx are zeros across the frequency 

range of interest. The generated patterns in the unit cell are depicted in the lower 

right corner of each panel, and the FEM-simulated spectra of the resultant 

nanostructures are represented in dashed lines. b) Target notch filters. he desired 

spectrum Txx at the input has a band-stop transmission feature with specific central 

frequency and bandwidth. All these examples demonstrate the effectiveness of the 

framework, which can generate nanostructures that resemble the on-demand spectra 

fed at the input, and faithfully replicate major features in terms of the spectral 

location and the bandwidth. 
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To validate the data learning framework, two sets of experiments for on-demand 

designs are performed[1]. Figure 3.2a shows the results if the input spectra Txx and Tyy are 

set to be two randomly chosen, Gaussian-shaped curves, and Txy and Tyx are set to zero 

throughout the frequency range of interest. The output inversely designed patterns are 

shown in the insets of Figure 3.2a, the dashed lines identify the actual linear response 

from a full-wave simulation of the pattern, and the solid lines represent the desired input 

transmission spectra for the framework.  

These results are distinctive as the independent manipulation of Txx, Tyy, Txy and 

Tyx is not readily achievable through conventional human design approaches, while our 

framework is able to accomplish simultaneous control of Txx, Tyy and suppression of Txy, 

Tyx.  

Also, while independent manipulation of the transmission spectra is possible with 

the framework, the inversely designed patterns don’t always exactly correspond to the 

desired transmission spectra. The reason being that not all desired input spectra can be 

achieved by the photonic structures in the given parameters. 

In Figure 3.2b, we set the input Txx as a notch filter without any specifications for 

the Tyy, Txy and Tyx components. We note that within the family of single-layered metallic 

metasurfaces, it is not possible to identify a metasurface that perfectly replicates ultrasharp 

spectral features such as the steep cut-off slopes. However, the framework is able to 

generate a structure that accurately replicates the primary features of the desired filter, 

including the central frequency and bandwidth of the stop-band.  

We also note that although the transmittance spectra are set as the design objective 

in these experiments, any photonic responses such as the diffraction behavior, optical 
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chirality, and field localization can be used as the intended design criteria without further 

adjustment of our framework.  

These results show that the data learning framework created can be used for the 

inverse design of photonics structures to optimize linear optical responses.  

3.2 Deep learning inverse design for Second-Harmonic Generation  

There has been recent related research that discusses applications of inverse design 

and nonlinear optics using materials which have non-zero nonlinear optical susceptibilities 

[4-9]. The purpose of this research is to use inverse design to find an optimal plasmonic 

structure in order to induce the second harmonic generation and maximize the efficiency 

of the SHG of an ABC nanolaminate with normal incidence, where the second-order 

response is zero at normal incidence.  

The deep learning algorithm finds the relationship between the parameters, the field 

profile, the χ(2), and the SHG response to provide an optimal pattern for the metamaterial. 

The optimized plasmonic structure is designed with strong field confinement near the ABC 

nanolaminate and augmented symmetry engineering near the ABC nanolaminate, which 

will induce the second-harmonic generation in the ABC nanolaminate due to the electric 

field distribution in the few tens of nanometers range.  

Using tailored algorithms to solve the challenging inverse design problem, 

previously unsolvable with conventional methods, of arbitrary topology with almost 

infinite degrees of freedom, the inverse design will allow the optimization of the metal 

pattern with user-defined constraints [1, 10]. This can be easily extended to output best 
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possible patterns for a number of scenarios given additional data relating to the new 

parameters, for example a different nonlinear material, or periodicity. 

The goal of this research is to use a deep learning framework to find a 

metamaterial structure with an arbitrary plasmonic structure atop a nonlinear ABC 

composite material, that induces a maximal SHG response from the ABC composite. The 

pattern that will be fabricated as the plasmonic structure is based on a 64×64 canvas, 

meaning the inverse design problem essentially has over 24096 degrees of freedom. 

Employing deep learning allows the solution of this problem, which cannot be solved 

using traditional parameter sweeping methods and geometries for true optimization.  

 

Figure 3.3 – Illustration of metamaterial device, as well as the material composition. 

(a) Schematic illustration of the ABC nanolaminate devices and definition of the TE 

and TM polarization of the incident fundamental light. Without plasmonic structures 

to generate an electric field with a z-component, the ABC nanolaminate will not emit 

a substantial second-harmonic response in the z-direction. (b) The nanolaminate is 
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comprised of three periodic layers, TiO2, Al2O3, and HfO2 and the plasmonic 

structure is patterned above the nanolaminate. (c) XPS survey spectra of the 

fabricated ABC nanolaminate consisting of TiO2, Al2O3, and HfO2 [3]. 

The general parameters for the metamaterial shown in Figure 3.3a are periodicity, 

p = 360 nm, thickness of the ABC composite, tABC = 75 nm, thickness of the gold 

plasmonic structure, tAu = 45 nm, and normal incident wavelength, λω = 850 nm. For the 

ABC composite, the individual layers also had specified thicknesses as seen in Figure 

3.3b, the thickness of the Al2O3 layers, tAl2O3 = 0.9 nm, the thickness of the HfO2 layers, 

tHfO2 = 0.9 nm, and the thickness of the TiO2 layers, tTiO2 = 0.3 nm.  

However, for the simulation portion of this research, the ABC nanolaminate was 

treated as a homogenized material with nonlinear susceptibilities. Referring back to 

Chapter 2, we can look at the nonlinear polarization to describe the second-harmonic 

response due to the nonlinear material. The nonlinear polarization of the layered 

structures with geometric features along the z-axis is calculated using this equation, 

(

𝑷𝒙(𝟐𝝎)
𝑷𝒚(𝟐𝝎)

𝑷𝒛(𝟐𝝎)

) = 𝝐𝟎 (
𝟎 𝟎 𝟎 𝟎 𝛘𝒙𝒙𝒛 𝟎
𝟎 𝟎 𝟎 𝛘𝒙𝒙𝒛 𝟎 𝟎
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 (3.1) 

where, 

𝑷𝒙(𝟐𝝎) = 𝟐𝝐𝟎𝛘𝒙𝒙𝒛𝑬𝒙(𝝎)𝑬𝒛(𝝎) 

𝑷𝒚(𝟐𝝎) =  𝟐𝝐𝟎𝛘𝒙𝒙𝒛𝑬𝒚(𝝎)𝑬𝒛(𝝎)

𝑷𝒛(𝟐𝝎) =  𝝐𝟎𝛘𝒛𝒙𝒙(𝑬𝒙(𝝎)𝟐 + 𝑬𝒚(𝝎)𝟐) + 𝝐𝟎𝛘𝒛𝒛𝒛𝑬𝒛(𝝎)𝟐

                    (3.2) 
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and the χ(2) susceptibilities used are χzzz = 0.667 pm/V,  χxxz = 0.254 pm/V, and χzxx = 

0.225 pm/V [11, 12]. 

 

3.2.1 Deep Learning Framework 

For this research, the deep learning framework outlined in section 3.1 was 

utilized. The framework is illustrated in Figure 3.1. These patterns are run through a full-

wave simulation to find the actual SHG responses. The fundamental light electric field 

components are used to calculate the electric field components of the nonlinear response 

using the induced polarization of the ABC composite. Data collected from the full-wave 

simulation is used to train the simulator. Once trained, the generator is used to produce 

patterns for the simulator to predict respective SHG responses.  

 

Figure 3.4 – Linear and nonlinear simulations based on deep learning algorithm. (a) 

The scatter plot is a comparison of predicted SHG enhancement values from the deep 
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learning simulator and actual SHG enhancement values from a full-wave simulation 

for the same set of patterns. The dotted line represents x=y, and the strong correlation 

between the line, and scattered points shows the simulator is very accurate for a wide 

range of SHG enhancement values. The histogram above the graph represents the 

spread of the predicted SHG enhancement values for the patterns from the simulator, 

and the histogram to the right represents the distribution of actual SHG enhancement 

values for the same patterns from a full-wave simulation. The SHG enhancement was 

calculated based on an unpatterned surface. The inset patterns in the graph are 

examples of patterns from the highlighted points in the scatter plot. The pattern in 

the top right is the pattern used for further simulation and fabrication in the paper. 

(b) Cross-sectional view, along the central x-direction or the length of the pattern, of 

the normalized z-component of the electric field with incident TM polarized light at 

a wavelength of 840 nm. The strong field enhancement due to the TM polarized light 

indicates that the SHG response induced in the ABC nanolaminate will be much 

higher when exposed to TM polarized light as compared to TE polarized light. (c) 

Calculated transmission spectra for TE and TM polarized light on the plasmonic 

ABC nanolaminate device [3]. 

The accuracy of the simulator, trained and modified for SHG responses, can be 

seen in Figure 3.4a, where 1000 patterns produced from the generator are run through 

both the full-wave simulation for the accurate SHG value, and the simulator, for the 

predicted value. The dotted line highlights the 1-1 correlation between the two. The 

histograms show that the spread of SHG values follows an expected curve for both the 

full-wave simulation data and simulator data. The whole image illustrates the reliability 
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and accuracy of the simulator algorithm. The optimizer is used to identify the pattern 

with the highest SHG response for the given parameters, and the resulting pattern is 

shown in the top right corner of Figure 3.4a.  

The linear response, the field enhancement, and transmittance, of the identified 

optimal plasmonic structure was calculated using a full-wave simulation, as shown in 

Figure 3.4b and 3.4c, respectively. The plasmonic structure induces an electric field with 

a z-component, and the resonance in the linear response shows that a wavelength of 840 

nm with TM-polarized light will lead to the most effective field enhancement. Utilizing 

the optimal field enhancement leads to a maximal SHG response from the ABC 

nanolaminate. 

 

Figure 3.5 – Enhancement of the SHG from the ABC nanolaminate with the deep-

learning designed plasmonic structure as well as linear and nonlinear measurements 

for the ABC nanolaminate device. (a, b) Visualization of a unit cell of ABC 
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nanolaminate device, and the control alumina device with an Al2O3 film, both with 

the same deep-learning optimized gold structure on the surface. (c) SEM image of the 

fabricated plasmonic structure on the ABC nanolaminate. The scale bar at the bottom 

represents 500 nm.  (d) Experimental linear transmission spectra for TE and TM 

polarized light. The linear response for the ABC nanolaminate device is similar to the 

calculated linear response in Figure 3.4. The resonance wavelength of 840 nm will be 

used as the fundamental wavelength for subsequent nonlinear measurements. (e) 

Experimental SHG responses of the respective devices. The blue and red dots are 

from patterned ABC and alumina devices. The cyan dots represent the response from 

bare, unpatterned ABC nanolaminate. (f) Power dependence of the ABC patterned 

nanolaminate. The green line in the double logarithmic plot represents a slope of 2, 

confirming the second-order nature of the response. The inset shows the SHG 

spectrum for an incident wavelength of 850 nm measured from 370 nm-470 nm, to 

show the nature of the second harmonic response [3]. 

3.2.2 Experimental Results  

For the experimental section of this research, two devices are fabricated – a 

device with the ABC nanolaminate and the gold pattern, as well as an alumina control 

device with an Al2O3 layer of the same thickness, replacing the ABC nanolaminate layer, 

below the same gold pattern, as shown in Figure 3.5a and 3.5b. The purpose of the 

alumina control device is to measure the nonlinear response due to the gold nanoparticle, 

to eventually differentiate the SHG response due to the ABC nanolaminate, and the SHG 

response from the gold structure. To ensure that the ABC nanolaminate was fabricated 
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correctly, an XPS analysis was done, the results are displayed in Figure 3.3c and 

demonstrates that all three oxides are present in corresponding ratios to the layer 

thickness. An SEM image, Figure 3.5c, was taken of the ABC nanolaminate device to 

validate that the patterned device closely matches the optimal plasmonic shape found 

through the deep learning algorithm. Figure 3.5d is the measured linear transmission 

response for the ABC device under both TM- and TE- polarized illumination at normal 

incidence. As the refractive index of the ABC nanolaminate (n = 1.714) and alumina (n = 

1.7591) are similar, the linear responses are as well.  

Comparing Figure 3.4c and Figure 3.5d, we can see that the simulated and 

experimental linear responses are in agreement, the slight differences are due to 

fabrication irregularities which are to be expected. The linear responses also indicate that 

the maximum SHG response for the ABC device should be expected at a wavelength 840 

nm due to the resonance. The resonance in the linear response indicates that the 

plasmonic structure leads to the most extinction of light at the peak.  

The optical nonlinear characterization in Figure 3.5e is the SHG response from 

the ABC nanolaminate. The device is excited by a fundamental wavelength, λω, ranging 

from 740 to 940 nm, with a step size of 10 nm, from TM-polarized laser pulses at a 

constant intensity. The blue dots represent the SHG response from the patterned ABC 

device, the brown dots represent the frequency doubled output from the patterned control 

device, and the cyan dots represent the generated second-harmonic signal from the 

unpatterned ABC surface. The SHG values were evaluated by photon counting the 

intensity of the signal, and clearly show enhancement of the unpatterned ABC surface.  
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The last column of panels, Figure 3.5f, contains the power dependence plot for the 

ABC device. The plot shows the relationship between the fundamental light that is input, 

Iω, and the intensity of the output SHG response, I2ω, on a log-log scale. The solid line 

represents I2ω ∝ Iω
K, where K = 2, the quadratic dependency verifies the second-order 

nature of the signal. Referring to the SHG spectra, the maximum peaks show that the 

ABC device has clearly higher response, but to compare the two values is misleading. A 

proper comparison of the SHG response due to the plasmon induced second-harmonic 

response can be conducted by comparing the output polarization results.  
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Figure 3.6 – Induced second harmonic response from ABC nanolaminate and SHG 

output polarization results for the devices. (a, b) For the patterned ABC device, the 

SHG output polarization in plotted in polar plots for TE and TM polarized incident 

fundamental light, respectively. The blue dots are the measured SHG response, and 

the red curve is the calculated SHG response. In (b), the green dots represent the SHG 

response induced from the ABC nanolaminate. The cyan circle best fits the SHG due 

to the ABC nanolaminate. (c, d) SHG output polarization plots for the patterned 

control device for TE and TM polarized incident fundamental light, respectively. The 

measured second-harmonic signal values are the blue dots, and the calculated second-
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harmonic response is shown as the red curve. We expected the TE polarized incident 

light to lead to similar responses in the patterned ABC device, and the control device, 

and that is seen in (a) and (c). The loss of linear polarization observed in (a) and (b) 

indicate that the second harmonic response does not stem solely from the plasmonic 

structure and that is further confirmed by the degeneration of the peanut shape in (b) 

[3]. 

The SHG output polarization characterization reveals the presence of an SHG 

signal from the ABC nanolaminate under normal incidence. Figure 3.6a and 3.6b show 

the output polarization of the ABC device for TE- and TM-polarized incident 

fundamental light, respectively. The blue dots are the experimental data taken at every 5o, 

and for the TE-polarization, the red peanut or two-lobe shape represents the data 

collected after a linear polarizer. The TM-polarization plot shows a wider shape than 

normally expected for an SHG signal. The peanut or two-lobe shape is expected for an 

SHG response, as the frequency doubled output is linked with the polarization angle.  

Comparing this plot to the alumina control device for TE- and TM-polarized 

incident fundamental light (Figure 3.6c and 3.6d, respectively) elucidates the difference. 

It is essential to realize that for the control device, both the TM- and TE-polarized 

incident fundamental light lead to peanut shapes with a very tight ‘waist’, having zero 

waist indicates the light is linearly polarized, along the TM and TE polarization, 

respectively.  

For the patterned ABC device with incident TE-polarization, it is easy to see that, 

while similar to the control device, the waist of the peanut is wider, or no longer perfectly 
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linearly polarized, with a nonzero ellipticity. Analyzing the incident TM-polarized 

fundamental light figure gives us a better insight into the phenomena.  

In Figure 3.6b, the red curve represents the peanut best fit curve from the control 

device, we can refer to that as the polarization due to the gold pattern. The green dots in 

the figure were calculated by subtracting the measured SHG due to the gold pattern, from 

the measured SHG response of the patterned ABC device, to find the SHG response 

stemming solely from the ABC nanolaminate. The circle best fits the calculated data. 

Referring to the output polarization of the incident TE-polarized fundamental light, we 

can see there must be a very small circle relating to the ABC composite polarization 

present there too.  

This shows that there is a large presence of the SHG response due to the gold 

pattern, which is why the earlier comparison of the ΔI2ω from the SHG spectra was 

misleading. To separate the SHG response from the plasmonic structure and the SHG 

response of the ABC composite, the incident TM-polarized fundamental light output 

polarization is crucial.  

We have demonstrated an inversely designed plasmonic structure that maximizes 

the second-harmonic generation in an ABC nanolaminate nonlinear metamaterial. Further, 

we were able to differentiate the optical nonlinear response due to the plasmonic structure, 

and the response due to the χ(2) of the ABC nanolaminate. The deep learning algorithm is 

a robust and flexible means for inverse design tasks that can lead to new and exciting 

metamaterial designs. Traditional guess-and-check methods involving parameter 

sweeping, and simple geometries cannot guarantee optimal results for complex nonlinear 

responses.  
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Occasionally, traditional methods also cannot reach a solution for certain desired 

optical responses. The deep learning framework utilized in this research is a capable 

instrument that can be applied to a variety of nonlinear optical responses, and more 

challenging applications. It is important to note that in this research, a single unit structure 

is designed and described. There have been many multi-unit structures identified and 

studied for plasmonic and nonlinear optical purposes. These include meta-lens and antenna 

structures [13-15].  

Multi-unit patterns can increase the applications of the research and allow for more 

precise optimization. However, this research specifically highlighted single unit structures 

to simplify the algorithm in order to show the enhancement of nonlinear generation of light 

in the ABC nanolaminate is possible and successful.  

Using the deep learning algorithm, our results represent the ability to optimize and 

demonstrate the nonlinear optical response of a thin-film nonlinear material using a 

plasmonic metamaterial device. The plasmonic ABC nanolaminate structure also allows 

for further investigation of optical phenomena that can be applied to areas such as 

integrated optics, as the ABC nanolaminate is compatible with inorganic materials and 

CMOS technology. The results of this research expand the scope of inverse design 

applications and shows the potential for new optical nonlinear phenomena.  

3.2.3 Further Fabrication and Experimental Details 

3.2.3.1 Device Fabrication 

The fabrication process starts with depositing ABC nanolaminates on the glass 

substrate (Corning, C1737 glass) via atomic layer deposition technique (Cambridge Fiji 
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Plasma Atomic Layer Deposition System). The ABC layer is composed of 3.57 Å of 

TiO2, 9.56Å of Al2O3, and 9.11Å of HfO2 layer, the ABC layer deposition is repeated 

34 times to get a 756 Å thickness of the ABC nanolaminate, following the material and 

geometric parameters of the ABC from Alloatti et al[16].  

After the ABC nanolaminate is fabricated, the gold nanoparticles are formed on 

top of the nanolaminates in a three-step process: (i) standard electron beam lithography 

(E-beam litho., Elionix ELS-G100 EBL system) using poly(methyl methacrylate) 

(PMMA) as the positive tone electron resist, (ii) E-beam evaporation of 3 nm/45 nm 

Cr/Au metal, and (iii) an overnight lift-off process in acetone to resolve the plasmonic 

structures.  

3.2.3.2 Linear Optical Characterization 

A tungsten halogen lamp (B&W Tek BPS 120) is used as a broadband light 

source to characterize the linear response of the device. The polarization of the input light 

source is controlled by a set of linear polarizers and half waveplates. The transmittance 

spectra of the device at a normal incident angle is focused on the sample using 10× 

objective (NA: 0.25) and collected with a 20× objective (NA: 0.4).  

 

The light collected by the objective is delivered to the spectroscopy system 

(Princeton Instrument Acton SP 2300i with PIXIS 400B camera). For the reflectance 

spectra of the device, a 20× objective (NA: 0.4) is used to both focus and collect the light. 

3.2.3.3 Nonlinear Optical Characterization 

The excitation source for the nonlinear optical characterization is a tunable 

Ti:Sapphire ultrafast oscillator (Spectra-Physics, Mai Tai HP, 690–1040 nm) with a 100 
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fs pulse duration and 80 MHz repetition rate. The power and polarization state are 

controlled by a set of halfwave plates and a Glan polarizer. The fundamental beam is 

delivered and focused on the device via a 10× objective (NA: 0.25), which results in a 

spot size of ~20 μm on the sample.  

Both the fundamental light and the harmonic generated light from the sample are 

collected by a 20× objective (NA: 0.4), where the fundamental wave is eliminated as it 

passes through the bandpass filter. The harmonic signal is then characterized by the 

detector system which is composed of a monochromator (Princeton Instruments, 

IsoPlane) with a charge-coupled device (CCD) camera (Princeton Instruments, Pixis 

400B).  

The state of polarization of the harmonic generated signal is analyzed by using a 

rotating polarizer. The peanut or lob-shaped pattern shown in the polar diagram was 

formed by collecting the portion of the intensity of the harmonic generated light that 

passes through the rotating polarizer. 

3.2.4 Additional Calculations and Details 

3.2.4.1 SHG Conversion Efficiency 

The conversion efficiency, 𝜂 =
𝑃𝑎𝑣𝑔

𝑆𝐻

𝑃𝑎𝑣𝑔
𝐹𝑊, for the ABC patterned device was calculated 

using the average fundamental wave power, 𝑃𝑎𝑣𝑔
𝐹𝑊 = .00133𝑊, and the average second 

harmonic power, 𝑃𝑎𝑣𝑔
𝑆𝐻 ,which was calculated. To calculate 𝑃𝑎𝑣𝑔

𝑆𝐻 , first the integrated 

counts, 𝑁𝑐, were calculated from the intensity counts without post-processing multiplied 
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by the software control gain,  

𝑁𝑐 = 14181 𝑐𝑜𝑢𝑛𝑡𝑠 ∗ 2 (
𝑒−

𝑐𝑛𝑡
) = 28362 (𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠).  

 

The integrated counts were multiplied by the saturation counts and divided by the 

spectrometric well capacity, 300 ke-, to get the photoexcited electrons,  𝑁𝑐 =
𝑁𝑒

𝜁
, 𝜁 =

300𝑘𝑒−

65535𝑐𝑜𝑢𝑛𝑡𝑠
=

4.5777𝑒−

𝑐𝑛𝑡𝑠
, 𝑁𝑒 = 129832.7274𝑒−. The photoexcited electrons are then 

divided by the quantum efficiency of the sensor at λSH,  

𝑁𝑒 = 𝑄𝐸 × 𝑁𝑃𝑖𝑥𝑖𝑠, 𝑄𝐸 =  .6644, 𝜆𝑆𝐻 = 420𝑛𝑚,  𝑁𝑃𝑖𝑥𝑖𝑠 = 195413.5 𝑝ℎ𝑜𝑡𝑜𝑛𝑠.  

 

Using the total transmission and effective surface, this can be converted to the 

photons emitted at the device,  𝑁𝑃𝐻 =
𝑁𝑃𝑖𝑥𝑖𝑠

𝑇𝑡𝑜𝑡𝑎𝑙×𝑆𝐸𝑓𝑓
, 𝑇𝑡𝑜𝑡𝑎𝑙 = 0.10088628, 𝑆𝑒𝑓𝑓 =

0.10262345,𝑁𝑃𝐻 = 1.88745 × 107 ≈ 1.9 × 107𝑝ℎ𝑜𝑡𝑜𝑛𝑠. The SH energy is calculated 

as follows,  

𝐸𝑆𝐻 = 𝑁𝑃𝐻 ×  
ℎ𝑐

𝜆𝑆𝐻
= 1.9 × 107 ×

1.24

0.420
× 1.6022 × 10−19 = 8.986 × 10−12𝑊 ∙ 𝑠.  

Which leads us to the average power of the SH emission and conversion 

efficiency,  

𝑃𝑎𝑣𝑔
𝑆𝐻 = Φ𝑒 =

𝐸𝑆𝐻

𝑡𝑒
=

𝐸𝑆𝐻

60𝑠
= 1.4977 × 10−13 𝑊, 𝜂 = 1.126 × 10−10 . 
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Figure 3.7 – Linear transmittance measured for the (a) alumina control device, and 

the (b) ABC nanolaminate device [3]. 

3.2.4.2 Experimental Linear Response 

Experimental linear transmission spectra for TE and TM polarized light. The 

linear response for the alumina control device is similar to that of the ABC nanolaminate. 

The resonance of the alumina device in Figure 3.7 is slightly different due to the minor 

difference in the refractive indices of the two materials.  

3.2.4.3 ABC Film Fabrication 

The TiO2, Al2O3, and HfO2 (ABC) nanolaminates on the glass substrate were 

deposited via atomic layer deposition technique (Cambridge Fiji Plasma Atomic Layer 

Deposition System). The deposition temperature was 200 °C and the deposition rate of 

TiO2, Al2O3, and HfO2 was 0.51 Å/cycle, 1.195 Å/cycle, and 1.139 Å/cycle, respectively.  

First, the refractive index of each film was characterized by ellipsometry (J.A. 

Woollam, M-2000), where the films were deposited up to 100 nm separately on the glass 

as shown in Figure 3.3a.  
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Figure 3.8 – Film characterizations. (a) Real part of the refractive index of TiO2, 

Al2O3, and HfO2. (b) Real and imaginary part of refractive index of ABC 

nanolaminate.  (c) XPS results of prepared ABC nanolaminate on glass substrate [3]. 

Next, 756 Å thickness of the ABC nanolaminate was deposited on the glass 

substrate, and the refractive index and the composition of the film were characterized by 

ellipsometer and X-ray photoelectron spectroscopy (XPS, Thermo K-Alpha XPS, a 

monochromated small-spot XPS system), respectively. As shown in Figure 3.8c, both 

results clearly show that the ABC nanolaminate was well deposited on the glass substrate.  

        

Figure 3.9 – Sample of 10,001 patterns created for training data to be run through 

Comsol to generate 10,001 SHG responses [3].  

3.2.4.4 Pattern Optimization 

After the structure was confirmed, 10,001 patterns were created in order to begin 

generating a set of training data. The patterns created were based on simple geometries, 
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which were then transformed to create a set of 10,001 patterns. It is important to note that 

these patterns are all single unit patterns, and not multi-unit patterns. Figure 3.9 shows a 

sample of patterns. 

 

Figure 3.10 – 40 randomly generated patterns from the VAE [3]. 
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These patterns were then used in conjunction with a Comsol model of the Au-

LiNbO3 structure to generate 10,001 SHG responses. These responses can be considered 

the training data for the inverse design algorithms. Once the SHG responses were collected, 

a Variational Autoencoder (VAE) was used to be able to randomly generate patterns for 

the inverse design capabilities, sample images are in Figure 3.10.  

The next step was to use the VAE to generate random patterns, and then to be able 

to predict the SHG value for each pattern. To do so, a simulator based on the ResNet19 

architecture was used. To train the simulator, the 10,001 SHG responses and patterns were 

split into training and validation sets of sizes 8,201 and 1,800, respectively. Once the 

simulator model was trained, preliminary SHG responses, with no optimization, could be 

found. 

 

Figure 3.11 – Sample patterns with their actual SHG values from a full-wave 

simulation and the predicted from the algorithm. The values are SHG enhancement 

with arbitrary units for ease of comparison [3]. 

To see if the algorithm resulted in correct SHG responses, a few patterns were run 

through a full-wave simulation to compare the predicted (from the algorithm) and actual 
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values (from the full-wave simulation) as shown in Figure 3.11. Figure 3.11 also shows 

what the patterns look like when converted to .dxf files, the grey patterns shown are the 

.dxf files. This file conversion was necessary to be able to calculate the SHG values in the 

full-wave simulator. .dxf files are similar to the format used in cad software. The 

conversion also results in a loss of fine features.   

Once the algorithm was found to be accurate, optimization was implemented 

utilizing an Evolution Strategy. Once applied, the algorithm could search for specified 

SHG values. 

    

Figure 3.12 – Patterns returned from the algorithm optimized for (a) no SH 

generation, and (b) maximum SH generation [3]. 

Figure 3.12 shows that there is slight variation in the patterns that have maximum 

SH generation. This alludes to fabrication differences not largely affecting the SHG. 

  

a b 
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CHAPTER 4. SUM-FREQUENCY GENERATION  

The objective of the sum-frequency generation research was to expand upon the 

demonstrated ability to optimize materials for linear optical responses and a nonlinear 

second harmonic optical response to other linear and nonlinear optical responses and 

advance the current data learning framework. Utilizing the framework from the previous 

research in Chapter 3, we can optimize a similar structure for sum-frequency generation.  

In the previous framework for SHG, the geometries were single unit structures [1]. 

For this research, we will build upon the existing Compositional Pattern-producing 

Network (CPPN). A CPPN is essentially an ANN with genetic algorithms. The prior 

research used a VAE with no genetic evolution. Effectively, a CPPN can create infinite 

resolution encoded patterns. 

The purpose of this device is to upconvert a near infrared (NIR) signal to the visible 

regime. This research has many very important applications. Using a lab fabricable 

nonlinear metamaterial such as the ABC nanolaminate decreases the cost and thickness of 

the device. Such as easy to fabricate device can also be easily manufactured.  
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Figure 4.1 – Illustration of SFG nonlinear metamaterial device. The schematic shows 

the ABC nanolaminate with a periodic plasmonic structure atop. The incident 

infrared light, ω1 and ω2, is normal to the surface of the metamaterial device. The 

plasmonic structures here generate a z-component of electric field, allowing the ABC 

nanolaminate to emit visible light, ω3 through sum-frequency generation. The 

nanolaminate is comprised of three periodic layers, TiO2, Al2O3, and HfO2 and the 

plasmonic structure is patterned above the nanolaminate. 

4.1 SFG Nonlinear Metamaterial Parameters 

The device parameters are as follows, periodicity, p = 380 nm, ABC nanolaminate 

thickness, tABC = 75 nm, gold plasmonic thickness, tAu = 45 nm, incident IR wavelengths, 
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λ1 = 800 nm and λ2 = 1550 nm, output wavelength, λ3 = 528 nm. A schematic of the device 

is shown in Figure 4.1. 

Once the device parameters are finalized, the full-wave simulation of sum-

frequency generation in such a device was created. In this instance, Comsol was used as 

the full-wave simulation software. The full-wave simulation was validated in a number of 

ways, but most importantly by comparing the results of the sum-frequency generation 

simulator with the same parameters of the second-harmonic generation device.  

As earlier described, SHG is a special case of SFG, where both incident frequencies 

are identical, and the output is double the incident frequency. Following this, computing 

the sum frequency generation where ω1 = ω2 led to the same results as shown in Chapter 

3.  

4.2 Data Learning Framework Update 

The general framework for this work, focused on SFG, is similar to that from the 

SHG research, in that a pattern generation network and simulator network are required[1]. 

Given the SFG nonlinear metamaterial parameters, utilizing a pattern generator and 

simulator, we can find an optimal plasmonic geometry for the device to maximize the sum-

frequency generation.  
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Figure 4.2 – Compositional Pattern Producing Network Architecture. The CPPN 

works by defining the image canvas into a grid of pixels with coordinates. Each pixel 

is then run through the CPPN and an intensity value is output. This is repeated for 

each pixel leading to a canvas full of generated intensities, in other words, an image. 

As part of this data learning framework, here a CPPN is used for pattern generation. 

Previously a Variational Auto-Encoder was used and single unit geometries were 

generated. As SFG is a more complex process than SHG, a decision to utilize multi-unit 

geometries led to the need for a CPPN. Figure 4.2 shows the architecture of a CPPN.  

The possibilities of complex CPPNs were highlighted in 2006 by K. Stanley, and 

it’s use has only skyrocketed since then[2]. As described in Chapter 1, ANNs can be used 

to perform the classification of data with multiple layers of artificial neurons. CPPNs are a 

version of ANNs that also use genetic algorithms as an evolution method[3].  
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In order to truly understand the idea behind CPPNs, some background on activation 

functions is required. The way that ANNs work depends on artificial neurons. In ANNs, 

an activation function allows for the ‘learning’ of complicated patterns that might occur in 

the data. This is crucial for deep learning applications to be able to ‘learn’ and more 

importantly ‘create’ or ‘identify’ from patterns that humans can’t easily find in large and 

complex data sets.  

Activation functions add nonlinearities to networks, letting the networks essentially 

do more complex procedures. These functions effectively determine the neural network 

output using equations. These equations range from step and sigmoid functions to 

hyperbolic tangents and the identity function. Some examples of activation function plots 

are shown in Figure 4.2 in the CPPN architecture.  

This collective use of varied activation functions leads to the naming of CPPNs – 

compositional pattern-producing networks. This also allows for the infinite number of 

possible geometries as the results can be sampled at any resolution. Practically speaking, 

in this research, CPPNs permit the generation of both single and multi-unit geometric 

structures for the plasmonic pattern.  

The use of genetic algorithms comes to play in the choice of activation functions 

for each iteration or evolution. Not every pixel will go through the same relationship of 

activation functions, which is why CPPN’s can create such complex patterns. 
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Figure 4.3 – Sample of patterns used as training data for CPPN. 10,000 patterns were 

used to train the CPPN or pattern generator. 



70 

 

 

Figure 4.4 – Randomly generated patterns from CPPN. A variety of single and multi-

unit geometries can be seen. There are also patterns that contain ‘holes’ that were not 

present in the patterns generated by the VAE. All of these show the increase in 

possible geometries when using the CPPN architecture for pattern generation. 

For the maximization of SFG in our device, the CPPN pattern generator is crucial. 

Figure 4.3 shows a sample of patterns used to train the CPPN, and Figure 4.4 shows a 

sample of randomly generated patterns from the CPPN.  
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Once the pattern generator was created, then a deep learning simulator could be 

used to simulate the sum-frequency generation for any plasmonic geometry atop our 

nonlinear metamaterial. A similar simulator as described in Chapter 3, again based on a 

ResNet18 architecture, was created.  

 

Figure 4.5 – Accuracy of simulator tested with 1,000 newly generated patterns run 

through both a full-wave simulator, and the simulator algorithm in arbitrary units. 

The dotted line represents a 1-1 correlation between the actual and predicted values. 
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The values near 10-9 represent a large SHG response, the values near the origin of the 

graph represent smaller SHG responses. 

4.3 Sum-Frequency Generation Optimization 

To train the simulator, 10,000 patterns were randomly generated from the CPPN. 

Then those patterns were input into the full-wave simulator to produce what will be called 

‘actual’ SHG values. Both the patterns and corresponding SHG values are then used for 

training and validation of the simulator. Once the simulator was trained, the accuracy of 

the SHG ‘prediction’ needed to be tested.  

The CPPN was used to generate 1,000 new patterns. These patterns were then run 

through the full-wave simulator for ‘actual’ SHG values, and then also run through the 

simulator for ‘predicted’ SHG values. The results are plotted in Figure 4.5. The values have 

arbitrary units, but the trend is significant, the following the 1-1 correlation of the dotted 

line, indicating good accuracy of the simulator. 

Accuracy verification means that the results from the simulator algorithm can be 

trusted. Given a randomly generated pattern for the plasmonic structure, the simulator can 

predict the SHG. The last step is optimization. Utilizing an Evolution Strategy such as in 

Chapter 3, through a process of selection, reproduction, and mutation, the simulator can be 

modified to output a pattern for a particular SHG value [2].  
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Figure 4.6 – Results from Evolution Strategy for optimal plasmonic geometry to yield 

maximal SHG response. 

For instance, searching for a pattern that does not lead to a second-harmonic 

response would lead to a completely covered canvas indicating a gold mirror would be the 

plasmonic device. Figure 4.6 shows the results for a maximal SHG response for the 

plasmonic ABC nanolaminate device. All four patterns look similar but do have minor 

variations. The SHG response for this pattern is an order of magnitude above anything in 

the accuracy test in Figure 4.5. 

 

Figure 4.7 – Optimized structure and split ring resonator (SRR) with similar 

parameters. The optimized structure had a significantly higher second-harmonic 

nonlinear optical response as compared to the split ring resonator. 
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To show that the optimal result is indeed due to the unusual shape, and not the 

resemblance to a split ring resonator (SRR), a similarly shaped split ring resonator was 

simulated in a full-wave simulator to compare the results, as shown in Figure 4.7. The SRR 

had an SHG value two orders of magnitude less than the optimal shape. 
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CHAPTER 5. DATA LEARNING FRAMEWORK 

ENHANCEMENT – TRANSFER LEARNING 

When tackling a new problem, such as finding a metamaterial device with a specific 

optical response, each time the required parameters change, a new set of training patterns 

and corresponding optical response data will need to be created. Doing so, increases the 

data requirement to reuse the current data learning framework for a new optical response.  

This is because, while new patterns are created, new full-wave simulation training 

data for these patterns will need to be run as well. In order to alleviate data requirements 

for the future, transfer learning can be implemented. Transfer learning uses the data sets 

already created, finds relationships between them, and requires a much smaller input of 

new training data to simulate a different set of parameters[1, 2].  

This use of transfer learning would allow the easy and fast optimization of a much 

wider range of parameters for nonlinear optical responses. Once transfer learning has been 

implemented, we can quickly optimize new patterns for new parameters.  

5.1 Transfer Learning Background 

Transfer learning, in essence, is the ability to reuse an already trained neural network 

model for a new problem. This is assuming that the two models are trying to solve similar 

problems, otherwise the already ‘learned’ information would not lead to accurate results. 

The major selling point, of course, is the reduced amount of computation and data required 

to train the new model [1-8].  
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Transfer learning by itself of not an algorithm, but a method or technique that can be 

used to alleviate the resource concerns in network training. This is not only useful for new 

problems where the collection of training data is unwanted albeit possible, but for scenarios 

where the new similar problem does not have data that can be produced for training [6].  

The technique dates back to 1976 when Bozinovski and Fulgosi explicitly addressed 

the method to train neural networks [9, 10]. Even so, it wasn’t until the 1990’s that the 

method took off, largely due to the work of Pratt and Thrun [8, 11, 12].  

Transfer learning is currently used in numerous fields such as image processing, 

speech recognition, and natural language processing. The most daily use of transfer 

learning can be seen when speaking to Alexa or Siri and these systems being able to 

distinguish and understand multiple speakers and languages.  

It can be a challenge balancing the performance of the new model with the usage of 

pre-trained results as there are positive relationships between parameters as well as non-

useful information that must be distinguished.  
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Figure 5.1 – Example to of the use of transfer learning to utilize a network trained to 

for image recognition a new problem of tumor classification. The convolution layers 

have trained weights transfer, along with fine-tuning, and the fully connected layers 

are trained with new data [2]. 

5.2 Transfer Learning Method 

In transfer learning, there are two important processes, retraining and fine-tuning. 

Retraining refers to taking the pre-trained model that exists and contains generalized 

relationships between the input parameters and retraining the weights of the various layers 

for the new problem. Fine-tuning is where the model is trained further to increase the 

accuracy of the output. This is illustrated in an example in Figure 5.1 [2].  

As described by Pan and Yang, transfer learning can be defined based on a domain 

and task [7]. The domain, 𝒟 = {𝒳, 𝑃(𝑋)}, consists of the feature space, 𝒳, and the 
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marginal probability distribution, 𝑃(𝑋), where 𝑋 = {𝑥1, … , 𝑥𝑛} ∈ 𝒳. What this means is 

that for a problem dealing with pattern classification, the feature space, 𝒳, is the space 

containing the vectors xi where the ith term refers to some pattern, and 𝑋 is a specific 

training sample.  

Given a domain, 𝒟, we can then describe the task, 𝒯 = {𝒴, 𝑃(𝑦|𝑥)}, as containing 

two parts, the label space or set of all labels, 𝒴, and the objective or target predictive 

function, 𝑃(𝑦|𝑥), with a new instance of 𝑥. More specifically here, 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝒴, 

creating training pairs of data {𝑥𝑖 , 𝑦𝑖} [7].  

Assuming we have only one source domain and one target domain, 𝒟𝒮 and 𝒟𝒯, 

respectively. Then we can say, 𝒟𝒮 = {(𝑥𝒮1
, 𝑦𝒮1

), … , (𝑥𝒮𝑛𝒮
, 𝑦𝒮𝑛𝒮

)}, where 𝑥𝒮𝑖
∈ 𝒳𝒮 is the 

data instance, and 𝑦𝒮𝑖
∈ 𝒴𝒮 is the corresponding class label. Similarly, 𝒟𝒯 =

{(𝑥𝒯1
, 𝑦𝒯1

), … , (𝑥𝒯𝑛𝒯
, 𝑦𝒯𝑛𝒯

)}, where 𝑥𝒯𝑖
∈ 𝒳𝒯 is the input, and 𝑦𝒯𝑖

∈ 𝒴𝒯 is the 

corresponding output [7]. 
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Figure 5.2 – Illustration of the types of transfer learning based on the definitions by 

Pan and Yang [7]. The classification is based on the source, 𝑺, and target, 𝑻, domain, 

𝓓, and task, 𝓣. Based on the similarities of the domain and tasks of the source and 

target, the method of transfer learning can be classified into three main types, 

inductive, unsupervised, and transductive. 

5.3 Types of Transfer Learning  

The way that neural networks sometimes work, is that they focus on detecting the 

largest most general information and each subsequent layer focuses on more target-specific 

details or features [13-18]. Transfer learning mostly focuses on the early to mid-layers, as 

the deepest layers are saved for retraining.  For example, if the original model was used to 

distinguish cars, and the goal of the new model is to distinguish trucks, the first layers 

would be focused on figuring out what a vehicle looks like, and the last layers would mostly 
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be focused on separating cars from other vehicles. Three main types of transfer learning 

techniques that exist, inductive, transductive, and unsupervised as shown in Figure 5.2.  

Inductive transfer learning: For this type, the source and target tasks are different. 

Here 𝒯𝒮 knowledge transfers in inductive learning an improved generalization for the  𝒯𝒯. 

The goal here is to improve the execution of the objective predictive function, 𝑃(𝑦|𝑥). 

Transductive transfer learning: In this type, the source and target tasks are the same, 

but the domains are distinct. Meaning that there is no labelled data in the target domain, 

but a lot of labelled data in the source domain exists.  

Transductive transfer learning can be further categorized into two cases: 1) The 

feature spaces between the domains are different, 𝒳𝒮  ≠ 𝒳𝒯; 2) Domain adaptation, where 

the feature spaces between the domains are the same, 𝒳𝒮 = 𝒳𝒯 , but the marginal 

probability distributions of the input data are not, 𝑃(𝑋𝑆) ≠ 𝑃(𝑋𝑇). 

Unsupervised transfer learning: Unsupervised transfer learning is similar to inductive 

transfer learning, as the target tasks of the source and domain are different. The distinction 

is that there is also no labelled data in the source and target domains. The goal here is to 

solve unsupervised learning tasks like clustering and dimensionality reduction in the target 

domain [7].  
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Figure 5.3 – Transfer learning applied to plasmonic metamaterial for linear optical 

response. a-b) Source design parameters for ω1 and target design parameters for ω2, 

respectively. c-d) Required training data pairs for source and target, the source (c) 

has a large dataset of 8000 pairs, the target (d) requires a much smaller training 

dataset of 1000 pairs. 
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5.4 Transfer Learning Applied to Linear Optical Problems 

It is important to note that in transfer learning, the pattern generation network is not 

the network in question, but rather the simulation network. As transfer learning can benefit 

the training of networks for new problems, a sample case was implemented as a proof of 

concept. Figure 5.3 shows a generalized schematic for the work.  

 We begin with a simulation neural network that is trained for a specific problem – 

a periodic plasmonic structure with an incident normal light at 800 nm. The periodicity of 

the structure is p = 380 nm, and the gold plasmonic thickness is tAu = 45 nm. Training data 

for this structure with various plasmonic geometries exist, and the network has been 

trained, so it can predict the linear optical transmission response for any pattern in the latent 

space of the pattern generation given an incident light of 800 nm.  

 If we wanted to do the same thing, simulate the linear optical response for a 

plasmonic pattern, given the same structure parameters, but a different wavelength, new 

training data would need to be collected. In this scenario, that would be 8,000-10,000 
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atterns and their corresponding linear optical responses. However, by implementing 

transfer learning, we can reduce that computation to a matter of a few hundred. 

 

 

Figure 5.4 – Transfer learning process illustrated. Beginning with a source network 

that is already trained, the common inner layer is frozen and used for the target. Then 

new outer layers are created and trained with the new training data. An optional step 

of fine-tuning is possible by unfreezing the inner layers and training the whole 

network with the new data again. 

The process is similar to what is illustrated in the example in Figure 5.1 and is shown 

in Figure 5.4. There are four basic steps to this method. First, a beginning model is needed. 
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In this case, the neural network model that is trained for incident 800 nm light. Second, 

layers that contain the generalized relationships, need to be ‘frozen’ [19-22]. Skipping this 

step would remove all the ‘learned’ data and would result in basically training the network 

from scratch. Freezing the data always the new network to take the important sharable 

information for itself.  

On top of these frozen layers, we have the third step, which is creating new outer 

layers that will be trained with the new data. Finally, fine-tuning of the network is optional, 

but will make sure the results will be as accurate as possible. Fine-tuning involves training 

the new neural network, including unfreezing the frozen layers, with the target task’s 

training data. This slightly adapts the pre-trained learning to the new scenario.  

 

Figure 5.5 – Training and validation loss for the original neural network (source - a) 

and the new network (target - b). 



86 

 

 The results of this research can be summarized by Figure 5.5. The loss while 

training and validating the neural network for the new parameter – wavelength – is 

acceptably low. This shows that the method of transfer learning can successfully be 

implemented to reduce computation resources.  
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CHAPTER 6. CONCLUSION 

The focus of the research presented in this thesis is the intersection between deep 

learning and plasmonic metamaterial devices. Specifically, creating a deep learning 

framework that has demonstrated the capability of optimizing plasmonic metamaterial 

structures for linear optical responses, and two nonlinear optical responses – second-

harmonic generation, and sum-frequency generation[1, 2]. The secondary goal was to 

decrease the computational resources through a framework advancement by implementing 

transfer learning. All of this results in a framework that can be expanded to any nonlinear 

optical response, and multiple design parameters. The following sections will briefly 

highlight and conclude the work completed in the previous chapters. 

6.1 Deep Learning Framework  

As discussed earlier, traditional guess-and-check methods for solving plasmonic 

design problems with specific optical responses in mind is an intensive process that does 

not always lead to the best solution. Automating the process through the use of a deep 

learning framework not only makes the search more efficient, but also opens the door to 

new geometries not conventionally available. This is demonstrated in Chapter 3, first for 

linear optical responses, and then for nonlinear second-harmonic optical responses.  
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Figure 6.1 – Schematic of deep learning framework, accuracy results for SHG optical 

responses, and plasmonic nonlinear metamaterial device. a-b) Deep learning 
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framework including the pattern generation system in a and the simulation process 

in b. c) Accuracy of the simulator and spread of data represented shows that the deep 

learning framework results can be used to optimize the desired structure for SHG 

responses d) Optimized plasmonic nonlinear metamaterial structure schematic 

showing the ABC nanolaminate beneath the optimized plasmonic pattern [1]. 

In this deep learning framework described in Figure 6.1, there are two major parts – 

the pattern generator and the simulation process. Figure 6.1a explains how a Variational 

Autoencoder method is used to encode the possible patterns into a latent space. The latent 

space can then be sampled for latent vectors that are then decoded into 64×64 pixel canvas 

images. These images represent a plasmonic metamaterial device, where each canvas is a 

single unit of a periodic structure. Once we can generate possible geometries, or patterns, 

at will, it is then necessary to approximate the corresponding optical response for the device 

containing the sampled pattern.  

Figure 6.1b illustrates the method by which such approximation takes place. Through 

training using data collected from a full-wave simulation, we are able to predict the optical 

response for each device in the latent space of the VAE. This is further expanded into an 

optimization process to find the best pattern for the corresponding optical response desired. 

Chapter 3 discusses the results for a linear optical response initially, then later discusses 

the results when second-harmonic generation is the optical response targeted.  

The deep learning framework’s accuracy for SHG responses is displayed in Figure 

6.1c. The plot represents patterns whose SHG response was both predicted through the 

deep learning framework, and actually calculated using a full-wave simulation. The 1-1 
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correlation indicates good accuracy of the results. The pattern in the top right corner is the 

optimized structure for the desired optical response.  

Shown in Figure 6.1d is a schematic of the optimized structure atop an ABC 

nanolaminate. The ABC nanolaminate is the nonlinear metamaterial utilized in this 

research [3]. It is unique, in that with normal incident light, there will be no second-

harmonic generation. Light at a non-zero incident angle is necessary to induce a second-

harmonic response in the material, as discussed in Chapters 1 and 3. The ABC 

nanolaminate is comprised of three repeating oxide layers as shown in Figure 6.1d.  

 

Figure 6.2 – Experimental results for the SHG optimized device. a-b) Schematics of 

the unit structures of the ABC and control device, respectively. c) SEM image of the 
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ABC device. d-e) Output polarization results for TM polarized incident light for the 

control and ABC device, respectively. The blue dots represent the output polarization 

experimentally measured. The red two-lobe shape represents second-harmonic 

response due to the plasmonic. The green dots represent the SHG response induced 

from the ABC nanolaminate, and the cyan circle is the best fit of the SHG due to the 

ABC nanolaminate. 

For the optimized plasmonic nonlinear metamaterial designed for SHG, experimental 

measurements were performed in order to validate the deep learning framework. Figure 

6.2 summarizes the results from Chapter 3. Essentially, not only was the deep learning 

framework validated, but it was also experimentally extracted that the ABC nanolaminate 

had a significant induced SHG response due to the plasmonic device above it.  

The results of Chapter 3 indicate that the deep learning framework is a viable method 

to optimize structures for linear and nonlinear optical responses. In addition, the usage of 

the ABC nanolaminate allows for thin-film nonlinear metamaterial devices to be created. 

The resulting deep learning framework could be further investigated for other nonlinear 

optical responses, and that is what the research in Chapter 4 discusses.  

6.2 Sum-frequency Generation Optimization 

Chapter 4 builds upon the research conducted in Chapter 3 and expands the work for 

nonlinear sum-frequency generation. As explained in Chapter 2, second-harmonic 

generation is a special case of sum-frequency generation, so this research generalizes the 

work done in Chapter 3. Although the deep learning framework is similar, adjustments 
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were made to improve the framework and resulting patterns, the major adjustment being 

the replacement of the VAE with a Compositional-pattern producing Network.  
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Figure 6.3 – Summary of Chapter 4 results. a) Schematic of nonlinear plasmonic 

metamaterial device for sum-frequency generation. b) CPPN methodology. c) Results 

of the evolution strategy optimization for the desired SFG response. 
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The metamaterial parameters set for the SFG optimization involved a plasmonic 

structure atop an ABC nanolaminate, similar to Chapter 3, as shown in Figure 6.3a. The 

biggest difference in terms of the physics between Chapter 3 and Chapter 4 is the 

involvement of two different incident wavelengths. As with sum-frequency generation, the 

output frequency is the sum of the input frequencies. This required a new full-wave 

simulation in order to create accurate training data.  

To widen the possible geometries, a CPPN was implemented. The way that a CPPN 

works is illustrated in Figure 6.3b. As described in Chapter 4, a CPPN gives rise to an 

infinite number of possible patterns. The pattern generator in Chapter 3 was limited to 

single unit structures, here with the CPPN, multi-unit structures are possible. Various 

samples of patterns able to be produced by the CPPN are also shown in Chapter 4.  

Finally, utilizing a similar simulation process as Chapter 3, an optimized structure 

through the use of an evolution strategy was found. The finalists, as seen in Figure 6.3c, 

represent a new geometry not conventionally used. Chapter 4 also discusses the possibility 

that a split ring resonator, the traditional geometry most closely related to the optimized 

structure, being of similar SFG response. The full-wave simulation comparison resulted in 

a difference of two orders of magnitude between the two, with the optimized pattern being 

superior.  

The results of the research conducted in Chapter 4, reveals that the conclusions of 

Chapter 3 were indeed correct. That research could be furthered for other nonlinear optical 

responses. As other second-order nonlinear responses, physics-wise, are similar to sum-

frequency generation, it seems that the deep learning framework can be used as-is simply 
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with new training, for those responses. The framework can also be expanded for other order 

nonlinear responses such as third order responses. As long as a full-wave simulation can 

be created for the nonlinear optical response, this framework can be used to optimize a 

corresponding plasmonic nonlinear metamaterial device.  

6.3 Transfer Learning Framework Advancement 

When discussing the expanded use of the deep learning framework, the issue of 

training and computation resources comes up. If the only difference between the original 

parameters and the new parameters, for example, is a slightly smaller periodicity, why is it 

necessary to create new training data pairs and retrain the neural networks with those? This 

problem can be solved with transfer learning, as described in Chapter 5.  

The research completed in Chapter 5 posited the question of using a source network 

for a plasmonic metamaterial device that was trained for one wavelength and using a 

transfer learning method to train a target network using less computational resources.  
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Figure 6.4 – Schematic of the plasmonic metamaterials for linear optical transmission 

response and transfer learning method from Chapter 5. 

Figure 6.4b illustrates the method that was effectively used to employ transfer 

learning to the linear system, a schematic of which is illustrated in Figure 6.4a. 

As discussed in Chapter 5, the use of transfer learning was successfully implemented 

and lead to a network whose loss was comparable to the source network. The loss 

calculated during training is also shown in Chapter 5. This indicates that the methodology 

used here can be extended for other similar uses.  

Although the implementation for transfer learning in Chapter 5 is for a linear optical 

response, the method can be used for any optical response. This method can be used to 

decrease the computation resources for a new desired parameter, and this technique allows 

for a broader application of the deep learning framework for optical responses, both linear 

and nonlinear.  
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6.4 Outlook 

This dissertation expands the scope of possible devices for optical phenomena. With 

the plasmonic ABC nanolaminate combined with the deep learning framework, 

applications include, but are not limited to, integrated optics, CMOS technology, low-cost 

lowlight/night vision for autonomous vehicles and defense application.  

Not only does this enable the optimization of devices, but also generates patterns that 

one would not think of. The possible efficiency improvement of devices is something that 

could transform current optical devices.  

With the future advancements in machine learning, the concepts and results of this 

research could develop into even more efficient frameworks for designing advanced 

devices for virtual reality, bio-photonics, integrated semiconductor devices and more. The 

potential for innovation is incredible, and possible as shown in this thesis. 
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