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CHAPTER I 

INTRODUCTION 

Consider the following military problem. A logistical commander 

in a recently established theater of operations is receiving ammunition 

at an ocean terminal for immediate shipment to a forward area. The only 

trucks available to transport the ammunition are being received at 

another terminal for ultimate shipment forward. Since there exists a 

road network of limited capacity, the logistical commander is faced 

with the problem of determining the routing of trucks which will allow 

the maximum number of trucks to proceed to the ammunition supply point 

and then to deliver both the trucks and the ammunition to the forward 

area. Of course, road capacities may not be violated. The road 

network can be represented as shown in Figure 1. The lines represent 

roads with the capacity of each road indicated beside its corresponding 

line. The circles represent road junctions or terminal points. Traffic 

may flow in both directions simultaneously along any road; however, 

the sum of the flows in both directions may not exceed the capacity 

of the road in question. The problem then is to identify that flow 

pattern, represented by arrows, which maximizes the flow of trucks from 

the source of trucks through the source of ammunition to the delivery 

point. 

Now consider a second problem. A communication system designer 

has been told to establish a message center for an existing communication 



Figure 1. Road Network 

Figure 2 . Communication Network 
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N E T W O R K . A L L M E S S A G E S A R E TO P A S S THROUGH T H E M E S S A G E C E N T E R A N D T H E 

M E S S A G E C E N T E R M U S T B E L O C A T E D AT AN E X I S T I N G I N S T A L L A T I O N . OF C O U R S E , 

I T I S D E S I R A B L E TO M A I N T A I N T H E M A X I M U M P O S S I B L E M E S S A G E FLOW U N D E R 

T H E G I V E N C O N D I T I O N S . T H E C O M M U N I C A T I O N NETWORK C A N B E R E P R E S E N T E D 

A S SHOWN I N F I G U R E 2. T H E L I N E S R E P R E S E N T C O M M U N I C A T I O N L I N K S W I T H 

T H E C A P A C I T Y OF E A C H L I N K I N D I C A T E D B E S I D E I T S C O R R E S P O N D I N G L I N E . 

T H E C I R C L E S R E P R E S E N T C O M M U N I C A T I O N I N S T A L L A T I O N S . A S I N T H E C A S E OF 

T H E F I R S T P R O B L E M , TWO-WAY C O M M U N I C A T I O N FLOW I S P O S S I B L E A L O N G A N Y 

L I N K ; H O W E V E R , F O R A N Y L I N K T H E S U M OF T H E FLOWS I N B O T H D I R E C T I O N S 

M A Y NOT E X C E E D I T S C A P A C I T Y . T H E P R O B L E M T H E N I S TO I D E N T I F Y THAT 

E X I S T I N G I N S T A L L A T I O N W H I C H , I F A L L FLOW I S R E Q U I R E D TO P A S S THROUGH 

I T , A L L O W S T H E M A X I M U M C O M M U N I C A T I O N FLOW B E T W E E N T H E S E N D I N G 

I N S T A L L A T I O N S A N D T H E R E C E I V I N G I N S T A L L A T I O N S . 

T H E S E TWO P R O B L E M S A R E E X A M P L E S OF T H E T Y P E OF P R O B L E M W I T H 

W H I C H T H I S P A P E R W I L L B E C O N C E R N E D . WE W I L L R E T U R N L A T E R TO T H E S E 

P R O B L E M S A S I L L U S T R A T I O N S OF T H E M O R E G E N E R A L P R O B L E M TO B E D E V E L O P E D . 

L E T U S NOW B E G I N TO D E F I N E S O M E B A S I C I D E A S A N D TO S U R V E Y T H E A P P R O 

P R I A T E R E S U L T S OF O T H E R S W H I C H W I L L L E A D TO A M O R E P R E C I S E S T A T E M E N T 

OF OUR P R O B L E M A N D I T S S O L U T I O N . 

D E F I N I T I O N 

A N U N D I R E C T E D N E T W O R K , G = ( N ; E ) , C O N S I S T S OF A F I N I T E S E T , N , 

OF N E L E M E N T S , INL, I = 1 . . . N , A N D A S U B S E T , E , OF T H E U N O R D E R E D P A I R S , 

( N ^ , ° F T H E E L E M E N T S I N N . 

I N T E R P R E T I N G G A S A G R A P H , N I S A S E T OF N O D E S ( V E R T I C E S , P O I N T S ) 

A N D E I S A S E T OF U N D I R E C T E D E D G E S ( A R C S , L I N K S ) C O N N E C T I N G T H E N O D E S . 
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I n t h e t w o e x a m p l e p r o b l e m s , t h e c i r c l e s a r e t h e n o d e s a n d t h e l i n e s 

a r e t h e e d g e s . W i t h o u t l o s s o f g e n e r a l i t y , w e w i l l e l i m i n a t e s e l f 

l o o p s f r o m c o n s i d e r a t i o n . T h a t i s , w e w i l l n o t c o n s i d e r e d g e s w h i c h 

a r e o n l y i n c i d e n t w i t h a s i n g l e n o d e . 

D e f i n i t i o n 

A s s o c i a t e d w i t h e v e r y e d g e i s a n o n - n e g a t i v e r e a l n u m b e r , 

c ( N . , N . ) , w h i c h w i l l b e i n t e r p r e t e d a s t h e c a p a c i t y o f e d g e , ( N . , N . ) . 

^* 3 ^* 3 

C a p a c i t y m a y b e t h o u g h t o f a s t h e a b i l i t y o f a n e d g e t o t r a n s p o r t c 

u n i t s o f a c e r t a i n c o m m o d i t y d u r i n g a u n i t o f t i m e . 

D e f i n i t i o n 

L e t N , N t e N , s 4- t , b e s p e c i a l n o d e s c a l l e d r e s p e c t i v e l y t h e 

s o u r c e a n d s i n k . L e t u s a l s o r e f e r t o t h e s e n o d e s u n a m b i g u o u s l y a s 

s i m p l y s a n d t . 

D e f i n i t i o n 

A c u t s e p a r a t i n g s a n d t i s a s u b s e t o f E s u c h t h a t i t s r e m o v a l 

w i l l d i s c o n n e c t s f r o m t a n d n o p r o p e r s u b s e t o f i t w i l l h a v e t h e s a m e 

p r o p e r t y . 

D e f i n i t i o n 

A m i n i m u m c u t s e p a r a t i n g s a n d t , d e n o t e d ( s ; t ) , i s a c u t s u c h 

t h a t t h e s u m o f t h e c a p a c i t i e s o f t h e e d g e s i n t h e c u t i s m i n i m a l . 

D e f i n i t i o n 

L e t c ( s ; t ) b e t h e s u m o f t h e c a p a c i t i e s o f t h e e d g e s i n t h e 

m i n i m u m c u t s e p a r a t i n g s a n d t , o r s i m p l y t h e c a p a c i t y o f t h e m i n i m u m c u t . 

D e f i n i t i o n 

A f l o w f r o m s t o t i n a n u n d i r e c t e d n e t w o r k o f v a l u e , v ( s ; t ) , i s 

a t w o - d i m e n s i o n a l v e c t o r m a p p i n g , [ f ( N . , N . ) , f ( N . , N . ) ] , f r o m E i n t o t h e 
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non-negative reals that satisfies: 

I fCN^iy - I fC^.Nj) = v(s;t), if j = s 

0 , if j ± s,t 

(1) 

-v(s;t), if j = t 

|f(N±,K ) - f(N ,N±)|lc(N±,N ), all i, j (2) 

f (N±,N ) >_ 0, all i, j , (3) 

where f(N.,N.) represents flow in edge (N.,N.) from N. to N. and f(N..N ) 

represents flow in edge (N_̂ ,N_.) from N to N_̂ . 

If 

f(N.,N.) - f(N±,N )-f(N , N ± ) , all i, j, (4) 

then (2) and (3) may be rewritten simply as 

|f1(N±,N )|±c(N±,N ), all i, j. 

Note that f'(N.,N.)>0 implies that the direction of flow is from i J 
N. to N.. Also, since f'(N.,N.) = -f'(N.,N.), f'(N.,N.)<0 implies i J 1 J j l j l 
flow from N. to N.. 

i J 

We may now formalize a "single-commodity, max-flow" problem for 

undirected networks. This problem is 
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M A X I M I Z E : V ( S ; T ) 

S U B J E C T T O : 

I F ( H N ) - I F ' ( N N ) = V ( S ; T ) , I F J = S 

0 , I F J 4 S , T 

- V ( S ; T ) , I F J = T 

F ( ' ( N I , N . ) | < C ( N I , N . ) , A L L I , J . 

T H I S I S T H E W E L L - K N O W N N O D E - A R C F O R M U L A T I O N OF T H E " S I N G L E - C O M M O D I T Y , 

M A X - F L O W " P R O B L E M D E V E L O P E D B Y F O R D A N D F U L K E R S O N (1) . A N E Q U I V A L E N T 

F O R M U L A T I O N A L S O A P P L I E S TO T H E C A S E OF D I R E C T E D N E T W O R K S . 

D E F I N I T I O N 

L E T V * ( S ; T ) B E T H E M A X I M A L V A L U E OF V ( S ; T ) . 

D E F I N I T I O N 

A C H A I N FLOW F R O M S TO T OF V A L U E , H ( S ; T ) , I S A FLOW OF V A L U E , 

H ( S ; T ) , D I R E C T E D A L O N G A N U N I N T E R U P T E D S E Q U E N C E O F N O D E S A N D E D G E S B E G I N 

N I N G AT S A N D T E R M I N A T I N G AT T . S U C H A S E Q U E N C E I S C A L L E D A C H A I N FROM 

S TO T . 

P R O B L E M B Y T H E U S E OF A N O D E L A B E L I N G A L G O R I T H M W H I C H D E T E R M I N E S B O T H 

V * ( S ; T ) A N D T H E A P P R O P R I A T E R O U T I N G OF FLOWS THROUGH T H E N E T W O R K . T H I S 

A L G O R I T H M I S G I V E N I N A P P E N D I X A . T H E Y H A V E A L S O SHOWN T H A T : 

F O R D AND F U L K E R S O N H A V E S O L V E D T H E " S I N G L E - C O M M O D I T Y , M A X - F L O W ' 

( I ) V * ( S ; T ) = C ( S ; T ) 
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(ii) If the edge capacities are integral, then v*(s;t) will be 

integral. 

(iii) If a flow of value, v(s;t), exists, then it may be decom

posed into chain flows of value, h_^(s;t), i = 1 . . . m, where m is the 

number of chains in the decomposition, such that 

m 
I h (s;t) = v(s;t). 
i=l 1 

They have also given an algorithm to accomplish this chain decomposition. 

A modification of this algorithm is given in Appendix B. 

Now an obvious generalization of the "single-commodity, max-flow" 

problem is to allow more than one commodity to flow between appropriate 

pairs of sources and sinks. Specifically, we will concern ourselves with 

the "two-commodity, max-flow" problem. 

Definition 

Let N , N E N, S» ̂  t», £ = 1,2 be respectively the source and s^ t̂  
sink for commodity t. Again we will refer to these nodes unambiguously 

as S^ and t̂ , t = 1,2. 

Definition 

A proper disconnecting set for two pairs of nodes is a subset of 

E such that its removal will disconnect S^ from t̂ , £ = 1,2, and no 

proper subset of it will have the same property. 

Definition 

A minimum proper disconnecting set separating S^ from t̂ , L = 1,2, 

is a proper disconnecting set such that the sum of the capacities of the 
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E D G E S I N T H E P R O P E R D I S C O N N E C T I N G S E T I S M I N I M A L O V E R A L L D I S C O N N E C T I N G 

S E T S . L E T T H I S S E T B E D E N O T E D B Y ( S ^ , S ^ ; T ^ , T ^ ) . R O T H S C H I L D A N D 

W H I N S T O N (4) R E F E R TO T H I S S E T A S A M I N I M U M D O U B L E - C U T . 

D E F I N I T I O N 

L E T C ( S ^ , S ^ ; T ^ J T ^ ) B E T H E S U M OF T H E C A P A C I T I E S OF T H E E D G E S I N 

T H E M I N I M U M P R O P E R D I S C O N N E C T I N G S E T W H I C H D I S C O N N E C T S S ^ FROM T ^ , 

t = 1,2. M O R E S I M P L Y WE W I L L R E F E R TO T H I S S U M A S T H E C A P A C I T Y OF T H E 

M I N I M U M P R O P E R D I S C O N N E C T I N G S E T OR as T H E C A P A C I T Y OF T H E M I N I M U M 

D O U B L E - C U T . 

D E F I N I T I O N 

L E T N ^ - N I N D I C A T E A S I N G L E N O D E F O R M E D B Y C O M B I N I N G N O D E S A N D 

ISL . T H A T I S , B Y C O N N E C T I N G N O D E S A N D N W I T H AN E D G E OF I N F I N I T E 

C A P A C I T Y . 

D E F I N I T I O N 

A T W O - C O M M O D I T Y FLOW I N A N U N D I R E C T E D NETWORK OF V A L U E , 

V ( S ^ ; T ^ ) + v C s ^ J T ^ ) , I S A F O U R - D I M E N S I O N A L V E C T O R M A P P I N G , 

[ F - ( N . , N . ) , F _ ( N . , N . ) , F . ( N . , N . ) , F . ( N . , N . ) ] , F R O M E I N T O T H E N O N - N E G A T I V E 1 I J 1 J I 2 L J 2 J I ° 

R E A L S THAT S A T I S F I E S : 

I F 2 ( N N K ) - I F ^ N , N ) = V ( S 1 ; T 1 ) , I F J - S 

0 , I F J t S 1 , T 1 

- V ( S 1 ; T 1 ) , I F J = T 

I F 2 ( N J , N K ) - I F 2 ( N . , N . ) = V ( S 2 ; T 2 ) , I F J - S 2 

0 , I F J / s
2 » t 2 

- V ( S 2 ; T 2 ) , I F J = T 
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f (N.,N.)-f (N N )| + |f (N ,N )-f (N ,N )|<_c(N N ), all i,j (5) 
- L 1 J - L j l ^ ^ - J ^ J -̂ J 

f (N N ), f (N N ) ̂ 0 , all i,j. (6) 
-L 1 J ^ 1 J 

If we define f./(N.,N.) and f '(N.,N.) analogously to f'(N.,N.) for l i j 2 l j i j 
single-commodity flows, then (5) and (6) may be rewritten simply as 

|f '(N ,N )| + |f '(N ,N )|<_c(N N ), all i,j 

Note the critical fact that opposing flows of different commodities may 

not be cancelled. 

Now the "two-commodity, max-flow" problem may be formalized as 

follows: 

Maximize: v ^ ; ^ ) + v(s2;t2> 

Subject to: 

I f »(N ,Nk) - I f 1
,(N ±,N ) = v(s ;t ) , if j - s 

k J i J 

0 , if j ± s
1>ti 

~ V^ Sl ; tl^ » i f J = ti 

f 2
f(N ±,N ) - v(s 2;t 2), if j = S 2 

0 , if j ¥ s2,t 

-v(s 2;t 2), if j - *2 
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If, 1(N.,N.) + | f ( N . , N . ) <c(N.,N.), for all i,j 
1 1 1 j 1 1 2 l j — i J 

Definition 

Let MAX[v(s^;t^) + vCs^jt^)] be the maximal value of 

v(s^;t^) + vCs^Jt^) in the previous definition. 

Hu (2) has solved the "two-commodity, max-flow" problem using 

an algorithm involving flow exchanges which determines both 

MAX[v(s^;t^) + vCs^Jt^)] and the appropriate routing of flows through 

the network. He has also shown that: 

(i) A solution to the "two-commodity, max-flow" problem always 

exists and there are, at least, two solutions (possibly identical) 

of which one has the property that 

v(s 1;t 1) * v*(s 1;t 1) 

and the other has the property that 

v(s 2;t 2) = v * ( s 2 ; t 2 ) . 

(ii) MAX[v(s 1;t 1)+v(s 2;t 2)]=MIN[c(s 1-s 2;t 1-t 2),c(s 1-t 2;t 1-s 2)]. 

This result has also been shown by Rothfarb, Shein and Frisch (3). 

(iii) A solution to the "two-commodity, max-flow" problem is feasi

ble only if 



1 1 

v(s 1;t 1) <_ c(s 1;t 1) 

v(s 2;t 2) < c(s 2;t 2) 

v(s 1;t 1) + v(s 2;t 2) <_ c C s ^ s ^ t ^ t ^ ) 

(iv) If the capacities of all edges are even integers, then 

MAX[v(s 1;t 1) + v(s 2;t 2)] will be an integer. 

Definition 

Let 

v + ( s 1 ; t 1 ) = MAX[v(s 1;t 1)+v(s 2;t 2)] - v*(s 2;t 2) 

and 

v + ( s 2 ; t 2 ) = MAX[v(s 1;t 1)+v(s 2;t 2)] - v * ^ ; ^ ) . 

It should be noted that Hu's first result guarantees the 

existence of v +(s^,t^) and v + ( s 2 , t 2 ) . Now using this definition, it 

follows that Hu's first result may be rewritten: At least two solu

tions (possibly identical) to the "two-commodity, max-flow" problem 

exist such that 

MAX[v(s 1;t 1)+v(s 2;t 2)] = v * ^ ; ^ ) + v + ( s 2 ; t 2 ) 

= v + ( s 1 ; t 1 ) + v * ( s 2 ; t 2 ) . 

Rothschild and Whinston (4) have also solved the "two-commodity, 

max-flow" problem and have shown that MAX[v(s,;t-) + v(s ;t )] will be 
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an integer if the capacities of the edges are integer (not necessarily 

even) and at each node the sum of the capacities of all incident edges 

is an even integer. This is called an Euler network. Arinal (5) has 

recently presented another algorithm for finding maximal, two-commodity 

flows. Rothschild and Whinston (6) have developed a method for solving 

a specialization of the "two-commodity, max-flow" problem, where 

s^ = t^ and s^ = t^ in an Euler network. 

Now let us turn to the task of precisely defining our problem. 

Definition 

A funnel-node flow is a single-commodity flow which passes through 

a specified node other than s or t. Such a node will be called a funnel-

node and will be represented by a. More specifically a funnel-node flow 

in an undirected network of value, v(s;a;t), is a four-dimensional 

vector mapping, [f ±(N ±,N ),f 1(N N ±),f 2(N ±,N ),f 2(N , N ± ) ] , from E into 

the non-negative reals which satisfies: 

v(s;a), if j = s 

0 , if j i s,a 

•v(s;a), if j = a 

v(a;t), if j = a 

0 , if j i a,t 

•v(a;t), if j = t 
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f 1(N i,N ),f 2(N ±,N ) >_0, all i,j 

v(s;a;t) = v(s;a) = v(a;t). 

Now defining f'(N.,N.) and f '(N..N.) as before we obtain a precise 1 i j 2 l j 
statement of the "funnel-node, max flow" problem. 

Maximize: v(s;a;t) 

Subject to: 

I f »(N ,N ) - I f 1'(N.,N ) = v(s;a), if j = s 
k J i J 

0 , if j f s,a 

-v(s;a), if j = a 

I f 2'(N ,N k) - I f »(N ,N ) = v(a;t), if j = a 
k J i J 

0 , if j ^ a,t 

-v(a;t), if j = t 

f 1'(N i,N j)|+|f 2'(N i,N j)|£c(N i,N j), all i, j 

v(s;a;t) - v(s;a) = v(a;t). 

Definition 

Let v*(s;a;t) be the maximal value of v(s;a;t). 
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The similarity of the "furine1-node-max flow" problem and the 

"two-commodity, max-flow" problem is evident. The constraint sets 

are identical with the exception that in the funnel-node problem 

(i) t x = s 2 

(ii) v(s;a) = v(a;t) 

Now with the addition of constraint (ii), the function to be maximized 

is exactly one-half of that which is to be maximized in the "two-

commodity, max-flow" problem. We will investigate the effect of these 

differences in the next chapter. 
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CHAPTER II 

MAXIMAL FUNNEL-NODE FLOWS 

In this chapter we will establish the principal result of this 

thesis by the statement and proof of a theorem. We will then use the 

theorem to develop and demonstrate an algorithm for the construction 

of maximal funnel-node flows in undirected networks. 

1. "Funnel-Node, Max-Flow" Theorem 

If G = (N,E) is an undirected network, then 

v*(s;a;t) = MIN{v*(s;a), v*(a;t), *iMAX[v(s;a)+v(a;t)]}. 

Ploofi. The strategy of proof will be: 

(i) Establish two upper bounds on v*(s;a;t). (Lemmas 1 and 2 ) . 

(ii) Using lemmas 1 and 2 and the results of Hu, determine 

v*(s;a;t) for all possible values of v*(s;a), v*(a;t), v +(s;a) and 

v +(a;t). (Lemmas 3a, 3b, and 4 ) . 

(iii) Show that 

MIN{v*(s;a), v*(a;t), 1aMAX[v(s ;a)+v(a; t) ] } 

yields the appropriate value of v*(s;a;t). (Lemmas 5a, 5b, and 6 ) . 

Lemma 1 

v*(s;a;t)<MIN[v*(s;a), v*(a;t)] 
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Vfioofa. Suppose the lemma is not true. Then, 

v*(s;a;t)>MIN[v*(s;a), v*(a;t)]. 

Consider two cases: 
Case 1. If v*(s;a)>y*(a;t), then v*(s;a;t)>v*(a;t). 

But since v*(a;t)>y(a;t), this clearly violates the definition of 
v(s;a;t) which requires that for any funnel-node flow to be feasible, 
v(s;a;t) - v(s;a) = v(a;t). 

Case 2. If v*(s;a)<v*(a;t), then v*(s;a;t)>v*(s;a). 
As in Case 1 this again violates the definition of v(s;a;t). 

Q.E.D. 
Lemma 2 

v*(s;a;t)<isMAX[v(s;a)+v(a;t)] . 

MAX 

%MAX[v(s;a)+v(a;t)] .a)-v(a;t) [ v ( s ; a ) + v ( a ; c ) 1 

>_ ̂ MAX[2v(s;a;t)] 

>_ MAX[v(s;a;t)] 

>_ v*(s;a;t) 

Q.E.D. 

We now determine v*(s;a;t) for all possible values of v*(s;a), v*(a;t), 
v+(s;a) and v+(a;t). 
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Lemma 3a 

v*(s;a;t) = v*(s;a) if and only if v*(s;a)<y +(a;t). 

Vtioofa. We first prove the sufficiency of the assumption. Let 

v*(s;a)<y +(a;t). By Lemma 1, v*(s;a;t)<y*(s;a). Now consider two 

cases. 

Case 1. v*(s;a) = v +(a;t). In this case the flow cor

responding to v*(s;a) and v +(a;t) is a feasible funnel-node flow with 

value v*(s;a). Thus it is optimal. 

Case 2. v*(s;a)<v +(a;t). Now, from the flow solution 

yielding v*(s;a) and v +(a;t), successively reduce flow along chains from 

a to t up to an amount 6 = [v +(a;t)-v*(s;a)]. This new flow is a feasi

ble funnel-node flow and has value v*(s;a). Therefore, it must be 

optimal. 

We now prove the necessity of the assumption. Let 

v*(s;a;t) = v*(s;a). Recalling the previously discussed work of Hu, 

if we let s^ = s, ~ t and s^ = t^ = a, then the "two-commodity, 

max-flow" problem becomes: 

Maximize: v(s;a)+v(a;t) (8) 

Subject to: v(s;a)<c(s;a) 

v(a;t)^c(a;t) 

v(s;a)+v(a;t)<c(s,a:a,t). 

At least two optimal solutions (possibly identical) exist. They are 
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v*(s;a) 

v (a;t) 
and 

v +(s;a) 

v*(a;t) 

Thus MAX[v(s;a)+v(a;t) ] = v*(s;a)+v +(a;t) = v +(s;a)+v*(a;t) . 

Now by Lemma 2, v*(s;a;t)<^MAX[v(s;a)+v(a;t)] or 

2v*(s;a;t)^[v*(s;a)+v +(a;t)]• But v*(s;a;t) = v*(s;a). Therefore, 

2v*(s;a)£[v*(s;a)+v +(a;t)] or v*(s;a)<y +(a;t). 

Q.E.D. 

Lemma 3b 

v*(s;a;t) = v*(a;t) if and only if v*(a;t)<y +(s;a). 

As in Lemma 3a. 

It should be noted that there is no problem concerning the 

existence of v*(s;a;t) under the conditions imposed by Lemmas 3a and 3b 

We have assumed the existence of the appropriate single-commodity flows 

and in Case 2 of each lemma we have reduced one of the flows which does 

not violate feasibility. 

Lemma 4 

v*(s;a;t) = %MAX[v(s;a)+v(a;t)] if and only if v*(s;a)>y +(a;t) 

and v*(a;t)>y +(s;a). 

VK.OO^. We first prove the sufficiency of the assumptions. Let 

v*(s;a)>y"'"(a; t) and v*(a; t)>y"'"(sia) . By Lemma 2 we know that 

v*(s;a;t)<}gMAX[v(s;a)+v(a;t)]. Then, if we can show the existence of 

a funnel-node flow such that v(s;a;t) = %MAX[v(s;a)+v(a;t)], we will 

have proven the desired result. 

Case 1. v*(s;a) = v +(a;t). By Lemma 3a, 

v*(s;a;t) = v*(s;a) = %[v*(s;a)+v (a;t)] = ^MAX[v(s;a)+v(a;t)]. 
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+ 

Case 1, 

Case 2. v*(a;t)=v (s;a). The argument proceeds as in 

Case 3. v*(s;a)>v +(a;t) and v*(a;t)>v +(s;a). 

We begin by stating a well-known property of linear programs: If 

and are two different optimal solutions to a linear programming 

problem, then 

av 1 + (l-a)v2, 0<a<l, 

is also an optimal solution. 

Now using this property and again recalling the work of Hu, 

v*(s;a) 

v +(a;t) 
+ (1-a) 

v +(s;a) 

v*(a;t) 

is also an optimal solution to (8) if 0<_a<l. But we wish to impose the 

additional constraint that v(s;a) = v(a;t). Therefore, if we can 

demonstrate for 

v*(s;a) 

v +(a;t) 
+ (1-a) 

v +(s;a) 

v*(a;t) 

+ J
5{v*(a;t)+v (s;a)} 

+ ^{v*(a;t)+v (s;a)} 

(9) 

+ v*(s;a)>v (a;t), 

+ v*(a;t)>v (s;a) 



2 0 

THAT A I S C O N T A I N E D I N THE C L O S E D I N T E R V A L [ 0 , 1 ] , THEN WE W I L L HAVE 

SHOWN THE E X I S T E N C E OF A S O L U T I O N S U C H THAT 

V ( S ; A ; T ) = % M A X [ V ( S ; A ) + V ( A ; T ) ] 

AND THE S U F F I C I E N C Y OF THE A S S U M P T I O N S W I L L HAVE B E E N P R O V E N AND THE 

E X I S T E N C E OF THE FLOW SHOWN. S O L V I N G E I T H E R E Q U A T I O N OF ( 9 ) FOR A , 

S I N C E BOTH Y I E L D THE SAME V A L U E , WE O B T A I N 

„ _ V * ( A ; T ) - V ( S ; A ) 
+ 

2 [ V * ( S ; A ) - V ( S ; A ) ] 

NOW S U P P O S E A I S NOT C O N T A I N E D I N THE C L O S E D I N T E R V A L [ 0 , 1 ] , THEN 

E I T H E R A < 0 OR A > L . 

C A S E 1 . I F 

+ 
V * ( A ; T ) ~ V ( S ; A ) < 

2 [ V * ( S ; A ) - V + ( S ; A ) ] 

THEN V * ( A ; T ) < V + ( S ; A ) . BUT T H I S I S A C O N T R A D I C T I O N . 

C A S E 2 . I F 

V * ( A ; T ) - V + ( S ; A ) 

2 [ V * ( S ; A ) - V ( S ; A ) ] 

THEN V * ( A ; T ) + V ( S ; A ) > 2 V * ( S ; A ) . BUT S I N C E 
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v* (a; t)+v+(s; a) = v*(s;a)+v+(a;t), it follows that 

v*(s;a)+v+(a;t)>2v*(s;a) or v*(s;a)<v+(a;t). But this also is a 

contradiction. We therefore conclude that 0<_a<l and that 

v*(s;a;t) = %MAX[v(s;a)+v(a;t)]. 

We now prove the necessity of the assumptions. Let 

v*(s;a;t) = %MAX[v(s;a)+v(a;t)] or 

2v*(s;a;t) = v*(s;a)+v+(a;t) = v+(s;a)+v*(a;t). (10) 

Assume the result is not true, that is v*(s;a)<v+(a;t) or 

v*(a;t)<v+(s;a) or both. 

Case 1. v*(s;a)<v+(a;t). Substituting in (10) we obtain 

2v*(s;a;t)>2v*(s;a) or v*(s;a;t)>v*(s;a). But this contradicts Lemma 1. 

Case 2. v*(s;a)<v+(s;a). The argument proceeds as in 

Case 1. 

Case 3. v*(s;a)<v+(a;t) and v*(a;t)<v+(s;a). This case 

is a subset of cases 1 and 2. 

Q.E.D. 

Let us summarize our results to this point in Table 1. It can 

be seen that we have established the value of v*(s;a;t) for all possible 

values of v*(s;a), v*(a;t), v+(s;a) and v+(a;t). It should be noted 

that if v*(s;a) = v+(a;t), we have determined two expressions for 

v*(s;a;t). From Lemma 3a we obtained v*(s;a;t) = v*(s;a). Since 

v*(s;a) = v+(a;t) implies that v*(a;t)>_v+(s;a), we obtain from Lemma 4, 

v*(s;a;t) = %MAX[v(s;a)+v(a;t)] or v*(s;a;t) = ̂ [v*(s;a)+v+(a;t)]. 



Table 1. Summary of Results 

Relationship of 
v*(s;a) to v +(a;t) and v*(s;a;t) 

v*(a;t) to v+(s;a) 

v*(s;a)<y +(a;t) v*(s;a) 

v*(a;t)<y +(s;a) v*(a;t) 

v*(s;a)>y +(a;t) and ^MAXlXs ;a)+v(a; t) ] 
v*(a;t)>v +(s;a) 
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But since v*(s;a) = v (a;t), v*(s;a;t) = v*(s;a) and we have shown 

that the two expressions for v*(s;a;t) are identical. A similar 

argument can be made in the case of v*(a;t) = v+(s;a). 

What remains to be done is to show that the proper value of 

v*(s;a;t) is given by the expression 

MIN{v*(s;a), v*(a;t), %MAX[v(s;a)+v(a;t)]} 

This will be done in Lemmas 5a, 5b and 6. 

Lemma 5a 

v*(s;a;t) = v*(s;a) if and only if 

MIN{v*(s;a), v*(a;t), ^MAX[v(s;a)+v(a;t)]} = v*(s;a). 

First we prove the sufficiency of the assumption. Let 

v*(s;a)<y*(a; t) and v*(s;a)<^MX[v(s;a)+v(a;t) ]. Now 

v*(s;a)<%MAX[v(s;a)+v(a;t)] implies that v* (s ;a) <y+(a; t) . By Lemma 3a, 

v*(s;a;t) = v*(s;a). 

We now prove the necessity of the assumption. Let 

v*(s;a;t) = v*(s;a). By Lemma 3a, v*(s;a)<y+(a;t). Since 

v*(a; t)>_v"'"(a; t) , v*(s;a)<-y*(a; t) . Now by Lemma 2, 

v*(s;a;t)<%MAX[v(s;a)+v(a;t)] or v*(s;a)<^MAX[v(s;a)+v(a;t)]. 

Q.E.D. 

Lemma 5b 

v*(s;a;t) = v*(a;t) if and only if 



24 

2. A L G O R I T H M 

T H E " F U N N E L - N O D E , M A X - F L O W " T H E O R E M L E A D S D I R E C T L Y TO T H E 

F O L L O W I N G A L G O R I T H M FOR T H E C O N S T R U C T I O N OF M A X I M A L F U N N E L - N O D E FLOWS 

M I N { V * ( S ; A ) , V * ( A ; T ) , * S M A X [ V ( S ; A ) + V ( A ; T ) ] } = V * ( A ; T ) . 

A S I N L E M M A 5a. 

L E M M A 6 

V * ( S ; A ; T ) = ^ M A X [ V ( S ; A ) + V ( A ; T ) ] I F A N D O N L Y I F 

M I N { V * ( S ; A ) , V * ( A ; T ) , % M A X [ V ( S ; A ) + V ( A ; T ) ] } = ^ M A X [ V ( S ; A ) + V ( A ; T ) ] . 

F I R S T WE P R O V E T H E S U F F I C I E N C Y OF T H E A S S U M P T I O N . L E T 

% M A X [ V ( S ; A ) + V ( A ; T ) ] < Y * ( S ; A ) A N D % M A X [ V ( S ; A ) + V ( A ; T ) ] < Y * ( A ; T ) . T H E R E 

F O R E , V * ( S ; A ) + V + ( A ; T)<_2v*(S; A ) OR V + ( A ; T ) < Y * ( S ; A ) . S I M I L A R L Y , 

V + ( S ; A ) < Y * ( A ; T ) . BY L E M M A 4, V * ( S ; A ; T ) = % M A X [ V ( S ; A ) + V ( A ; T ) ] . 

WE NOW P R O V E T H E N E C E S S I T Y OF T H E A S S U M P T I O N . L E T 

V * ( S ; A ; T ) = % M A X [ V ( S ; A ) + V ( A ; T ) ] . T H E N B Y L E M M A 4, 

V * ( S ; A ) > V + ( A ; T ) A N D V * ( A ; T ) > Y + ( S ; A ) . T H E R E F O R E , 

^ M A X [ V ( S ; A ) + V ( A ; T ) ] = ^ [ V * ( S ; A ) + V + ( A ; T) ] [ V * ( S ; A ) + V * ( S ; A ) ] = V * ( S ; A ) . 

= % [ V + ( S ; A ) + V * ( A ; T ) ] < ^ [ V * ( A ; T ) + V * ( A ; T ) ] = V * ( A ; T ) . 

Q . E . D . 

T H U S T H E T H E O R E M I S T R U E . 
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in an undirected network: 
Step 1. Solve for v*(s;a) and v*(a;t) using the algorithm 

given in Appendix A. 
Step 2. Construct a new network G' by the addition to G of 

a node s' and edges (s',s) and (s',t) each with infinite capacity. 
Now solve for v*(s';a) using the algorithm given in Appendix A. 

Step 3. Determine 

v*(s;a;t) = MIN[v*(s;a), v*(a;t), *2v*(s';a)]. 

If v*(s;a;t) = 0, stop. No flow is possible. 
Step 4. Construct a new network G" by the addition to G of a 

node s" and edges (s",s) and (s",t) each with capacity equal to v*(s;a;t 
Solve for v*(s";a) using the algorithm given in Appendix A. Decompose 
the flow pattern obtained into a flow from s" through s to a and a flow 
from a through t to s" using the algorithm given in Appendix B. 
Remove node s" and edges (s",s) and (s",t). The result is a "funnel-nod 
max-flow" from s through a to t. See Figure 3 for flow chart. 

The use of v*(s';a) to determine the value of 
MAX[v(s;a)+v(a;t)] in Step 2 of the algorithm is a consequence of 
the second result of Hu. That result is 

MAX[v(s1;t1)+v(s2;t2)] = MINtcCs^-s^t^-t^ , c(s -t2; t^-s^ ]. 

But for our problem ŝ =s, s2=t^=a and t 2
= t* Making these substitu

tions, Hu's result is 



Compute 
v*(s;a) 

Compute 
v*(a;t) 

Add node s' and edges (s',s), (s',t) 
each with infinite capacity to G 

Compute 
v*(s f;a) 

Determine 
v*(s;a;t) = MIN[v*(s;a), v*(a;t), ^v*(s';a)] 

Add node s" and edges (s",s), (s",t) 
each with capacity equal to v*(s;a;t) 

to G 

Construct flow pattern 
for v*(s";a) 

Decompose flow into flow from 
s" to s to a and a to t to s" 

Remove nodes s" and 
edges (s",s), (s",t) 

Figure 3. Flow Chart 
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MAX[v(s;a)+v(a;t)] = MIN[c(s-a;a-t), c(s-t: a]. 

But (s-a; a-t) implies that a is in both components of G which 

violates the definition of a cut. Therefore this case cannot exist 

and 

MAX[v(s;a)+v(a;t)] = c(s-t; a). 

Thus we can determine MAX[v(s;a)+v(a;t)] by computing v*(s-t; a) or, 

equivalently, by computing v*(s';a). 

Since the algorithm involves only the use of finite processes, 

it is itself finite. 

3. Example Problems 

We now return to the first problem presented at the beginning of 

Chapter I. Let s represent the terminal at which trucks are being 

received, a represents the terminal at which ammunition is being 

received and t the point of delivery for both trucks and ammunition. 

Figure 4 is a graphical representation of the road network. Note that 

the road capacities are indicated by the number beside each edge. 

The reader will recall that we wish to determine the routing of trucks 

through the network such that the flow of trucks from s through a to 

t is maximal. Using the "single-commodity, max-flow" algorithm, we 

determine v*(s;a) = 11, v*(a;t) = 11 and v*(s';a) = 8. Appending 

node s" and edges (s";s) and (s";t) both with a capacity of 8 and 



Figure 4. Road Network 

Figure 6 , Flow Pattern for v*(s;a;t) 



solving for v*(s";a), we obtain the flow pattern shown in Figure 5. 

Note that the number beside each edge indicates the flow through the 

edge. The direction of flow is indicated by a bold-faced arrow. Now, 

decomposing the flow into flow from s" through s to a and flow from 

a through t to s", we obtain the maximal funnel-node flow pattern 

shown in Figure 6. Note that flow directed from s to a is indicated 

by a bold-faced arrow and flow directed from a to t is indicated by 

a broken arrow. 

by requiring that the logistical commander not only send forward the 

maximum amount of ammunition but that, given that requirement, he 

also send forward the maximum number of trucks. That is, he desires 

to determine the flow pattern corresponding to the problem: 

A simple extension to the first example problem may be formed 

Maximize: [v(s;t)+v*(s;a;t)] 

Subject to: 

v*(s;a), if j = s 
0 

, if j ± s,a 

-v*(s;a), if j = a 

v*(a;t), if j = a 
0 if a. t 
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I f » ( N , N ) - I f 3
, ( N . , N ) = v ( s ; t ) , i f j = s 

k - 1 i J 

0 , i f j i s , t 

- v ( s ; t ) , i f j = t 

| f / ( N . , N . ) | + | f » ( N . , N . ) | + | f ' ( N . , N . ) | < c ( N . , N . ) , a l l i , j 

' 1 l j 1 1 2 l j 1 1 3 i j ' - i j 

v * ( s ; a ) = v * ( a ; t ) = v * ( s ; a ; t ) 

w h e r e f ' ( N . , N . ) i s t h e f l o w t h r o u g h e d g e ( N . , N . ) e G f r o m s t o t o t h e r 

t h a n t h a t t h r o u g h a . 

B u t w e h a v e s h o w n t h a t v * ( s ; a ; t ) c a n b e r e p r e s e n t e d b y v * ( s " ; a ) 

a n d t h e r e f o r e t h e p r o b l e m m a y b e r e w r i t t e n a s : 

M a x i m i z e : [ v ( s ; t ) + v * ( s M ; a ) ] 

S u b j e c t t o : 

£ f i 2 , ( W " I f i 2 , ( W = v*<s";a>' i f j = s" 
k J i J 

0 , i f j i s M , a 

- v * ( s ' ; a ) , i f j = a 

I f ' ( N N ) - I f ' ( N N ) = v ( s ; t ) , i f j = s (11) 

k ^ s "
 J 3 k i^s" J 1 3 

0 , i f j j s , t 

- v ( s ; t ) , i f j = t 
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|f 1 2
,(N.,N j)| + |f3'(Ni)Nj)|_ic(N;L,Nj)> alii, j 

where f ^ ' C N ^ N ) is the flow through edge (N^N^eG" from s" to a. 

Except for the requirement in (11) that the summations not 

include f3'(s,sM), f '(s",s), f '(t.s") and f '(s",t), this is a 

"two-commodity, max-flow" problem on G" in which one of the two 

commodities has been maximized by the "single-commodity, max-flow" 

algorithm. With the exception noted, this is exactly the initial 

condition required by Hu's "two-commodity, max-flow" algorithm. (The 

reader is referred to the paper by Hu for the details of this algorithm.) 

We now show that the use of Hu's algorithm will, in effect, 

eliminate the exception and, therefore, it may be used to solve the 

problem. Since the algorithm guarantees that the flow of the commodity 

that is initially maximal will remain maximal, the edges appended to 

form G" will always be capacitated with flow, v(s",a) and the applica

tion of the algorithm will always result in 

f3'(s,s") = 0, f '(s",s) = 0, f3'(t,s") = 0 and f '(s^t) = 0. Thus 

the use of Hu's algorithm will insure that the conditions required by 

(11) are met and, therefore, the algorithm will yield a valid result 

to MAX[v(s;t)+v*(s;a;t)] after the usual decomposition of the flow 

pattern corresponding to v*(s";a) is performed. Figure 7 shows the 

result of the application of this procedure to the original road net

work. Note that v*(s;a;t) is still equal to 8; however, we can now 

send three trucks from s to t without passing through a. Thus, 



Flow from 3 to a 

Flow from a to t 

Flow from s to t but not through a 

Figure 7 . Flow Pattern for MAX [ v ( s ; t)+ V-H- ( s ; a; t)] 

Figure 8. Augmented communication Network 
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MAX[v(s;t)+v*(s;a;t)] = 11. 

We now examine the second example problem. If we append nodes 

s and t and edges with infinite capacity between s and all sending 

installations and between t and all receiving installations, we 

obtain the graphical representation of the communication network shown 

in Figure 8. The reader will recall that we desire to determine that 

node, N_., such that v*(s;N ;t) is maximal for N = x, y, z. The 

results of the appropriate computations are contained in Table 2. 

It can be seen that the communication system designer would locate the 

message center at the installation represented by node y. 



Table 2. Computational Results for Second Example Problem 

Node x Node y Node z 

v*(s;x) = 16 

v*(x;t) = 16 

Jav*(s' ;x) = 8 

v*(s;y) = 18 

v*(y;t) = 26 

".v*(s';y) = 15 

v*(s;z) = 18 

v*(z;t) = 13 

*2V*(s';z) = 10 



35 

CHAPTER III 

CONCLUSIONS AND RECOMMENDATIONS 

The principal results of this thesis are: 

(i) The concept of a funnel-node flow in an undirected network 

has been defined. 

(ii) An algorithm has been presented which computes the maximal 

value of a funnel-node flow by three applications of a "single-commodity, 

max-flow" algorithm and determines the maximal flow pattern by an 

additional application of a "single-commodity, max-flow" algorithm 

and the application of a chain flow decomposition algorithm. 

Further research is recommended in three general areas of study. 

These are: 

(i) An investigation of the applicability of well-known, single-

commodity flow results to funnel-node flows. Of particular interest 

would be those results pertaining to minimal cost flows. Since we 

have shown that funnel-node flows can be represented by a single-

commodity flow, it seems likely that this area of research might prove 

fruitful. 

(ii) An attempt to produce results similar to those of this 

thesis for directed networks and for more than one funnel-node. It is 

the conjecture of the author that the "Funnel-Node, Max-Flow" Theorem 

is also valid for directed networks. It seems likely that an argument 

similar to the one developed in this thesis could be made for directed 

networks, if a result similar to the first result of Hu could be 
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established for these networks. Of course, even the truth of this 

conjecture would not lead directly to an algorithm as there would 

still be the difficulty of determining ^MAX[v(s;a)+v(a;t)]. There 

is presently no known method of determining this value. An attempt 

to develop results for more than one funnel-node seems to be directly 

tied to the ability to solve multicommodity flow problems for more 

than two commodities. Except for very special cases, these problems 

have not been solved. It might be profitable, however, to try to 

identify the cut sets of these problems and to relate, not only, the 

capacity of these sets to a maximal flow value but to investigate 

the relationship between the number of times that a flow traverses 

the edge of a cut set and maximal flow value. 

(iii) Some interesting results in the analysis of networks might 

be generated by defining a flow center as a node, ]SL, such that 

MAX{MAX[v(N.,s)+v(N.,t)]}. 
N. 1 1 1 

These results might lead to a procedure for characterizing networks 

relative to the value of this flow center. The second example 

problem found such a flow center with the additional constraint that 

v(N ±;s) = v(N ±;t). 
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APPENDIX A 

"SINGLE-COMMODITY, MAX-FLOW" ALGORITHM 

The following is the Ford and Fulkerson algorithm for the 

construction of maximal single-commodity flows. 

Step 1. (Labeling Process). Every node is always in one of 

three states: Unlabeled, Labeled and unscanned, Labeled and scanned. 

Initially all nodes are unlabeled. Assign the label [-,e(s)=°°] to s. 

Node s is now labeled and unscanned. To all unlabeled nodes N, 
k 

connected to Nj by an edge, assign the label: 

(i) [N|, e ( N K ) ] , if 0£f(Nj,Nk)<c(Nj,Nk) 

(ii) [N , e(Nk)], if f(Nk,N )>0 

where e(N ) = MIN[e(N.), f(N ,N.)+c(N.,N )]. (Note that a negative flow 

k J K J J K. 
in an edge means that the flow is in the opposite direction to the 
original flow in that edge.) When all N have been labeled, N. is con-

k J 
sidered to be scanned and may be disregarded during the remainder of this 

step. Continue this process until: 

(i) Node t is labeled. Go to Step 2. 

(ii) No additional labels can be assigned and node t is not 

labeled. Stop. The current flow is optimal. 

Step 2. (Flow Change). Starting at t replace f(N.,N ) by 
f(N.,N. )+e(t), if N is labeled [N+, e(N.)] or replace f(N.,N.) by j k k j k k j f(N, ,N.)-e(t), if N, is labeled [N., e(N,)]. Continue this process k j k j k 
until node s is reached. Remove all labels and return to Step 1. 
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(Note that this algorithm computes v*(s;t). If maximal flow between 

a different source and sink is desired, appropriate substitutions must 

be made.) 
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A P P E N D I X B 

F L O W D E C O M P O S I T I O N A L G O R I T H M 

T H E F O L L O W I N G I S A M O D I F I C A T I O N O F T H E F O R D A N D F U L K E R S O N 

A L G O R I T H M F O R T H E C H A I N D E C O M P O S I T I O N O F A F E A S I B L E F L O W . 

L E T F ( N _ ^ , N ^ ) D E N O T E T H E F L O W T H R O U G H E D G E ( I \ L , N ^ ) I N T H E 

M A X I M A L S I N G L E - C O M M O D I T Y F L O W P A T T E R N O B T A I N E D U S I N G T H E A L G O R I T H M 

G I V E N I N A P P E N D I X A . L E T F ^ ( N _ ^ , N . ) D E N O T E A F L O W T H R O U G H E D G E 
2 

( N _ ^ , N J ) I N A F L O W P A T T E R N F R O M S " T H R O U G H S T O A . L E T F ( N _ ^ , N _ . ) 

D E N O T E A F L O W T H R O U G H E D G E ( N _ ^ , N ^ ) I N A F L O W P A T T E R N F R O M A T H R O U G H T 

T O S " . 

S T E P 0. S E T F 1 ( N I , N J = 0 A N D F 2 ( N I > N _ . ) = 0. 

S T E P 1. ( I D E N T I F Y C H A I N F L O W 1 ) . A S S I G N L A B E L , [ S " , E ( S ) ] , 

T O N O D E S W H E R E E ( S ) = [ F ( S " , S ) - F ^ ( S " , S ) ] . T O A S I N G L E U N L A B E L E D N O D E 
N F O R W H I C H F ( N . , N ) - F 1 ( N . , N )>0 A S S I G N T H E L A B E L , [ N . , E ( N ) ] , K J K J K J K 
W H E R E E ( N ) = M I N [ E ( N . ) , F ( N . , N ) - F 1 ( N . , N ) ] . C O N T I N U E T O A S S I G N K J J K J K 

L A B E L S U N T I L A H A S B E E N L A B E L E D . G O T O S T E P 2. 

S T E P 2. ( F L O W C H A N G E ) . R E P L A C E F 1 ( N . , N ) B Y [ F 1 ( N . , N ) + E ( A ) ] 
J K J K 

F O R A L L E D G E S I N T H E C H A I N F L O W F R O M S " T O A F O R M E D I N S T E P 1. I F 

F ^ ( S " , S ) ^ F ( S " , S ) , R E M O V E A L L L A B E L S A N D R E T U R N T O S T E P 1. O T H E R W I S E , 

G O T O S T E P 3. 

S T E P 3. ( I D E N T I F Y C H A I N F L O W 2 ) . A S S I G N L A B E L , [ S " , E ( T ) ] , 
2 

T O N O D E T W H E R E E ( T ) = [ F ( S " , T ) - F ( S " , T ) ] . N O D E T I S N O W L A B E L E D . 

I N G E N E R A L S E L E C T T H E L A S T L A B E L E D N O D E N ^ . . T O A S I N G L E U N L A B E L E D N O D E 

N K F O R W H I C H [ F ( N ^ , \ ) - F 1 ( N J , \ ) - F 2 ( N ^ , N F C ) ]>0, A S S I G N T H E L A B E L 



[N.,e(N.)], where e(N,) =MIN[e(N.), f (N. ,N, )-f 1(N. ,N, )-f 2(N. ,N ) ]. j k k j j k j k j k 
Continue to assign labels until a has been labeled. Go to Step 4. 

2 
Step 4. (Flow Change). Replace f (N.,N ) by 

J K 

2 2 f (N. ,N.) = f (N.,N. )+ (a) for all edges in the chain flow from s" k j j k 
2 

to a formed in Step 3. If f (s",t)^f(t,s"), remove all labels and 

return to Step 3. Otherwise stop. The flow has been decomposed. 
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