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SUMMARY

Vehicle motion and tire forces have been estimated using extended Kalman filters for

many years. The use of extended Kalman filters is primarily motivated by the simultaneous

presence of nonlinear dynamics and sensor noise.

Two versions of extended Kalman filters are employed in this thesis: one using a de-

terministic tire-force model and the other using a stochastic tire-force model. Previous

literature has focused on linear stochastic tire-force models and on linear deterministic

tire-force models.

However, it is well known that there exists a nonlinear relationship between slip variables

and tire-force variables. For this reason, it is suitable to use a nonlinear deterministic tire-

force model for the extended Kalman filter, and this is the novel aspect of this work.

The objective of this research is to show the improvement of the extended Kalman filter

using a nonlinear deterministic tire-force model in comparison to linear stochastic tire-

force model. The simulation model is a seven degree-of-freedom bicycle model that includes

vertical suspension dynamics but neglects the roll motion. A comparison between the linear

stochastic tire-force model and the nonlinear deterministic tire-force model confirms the

expected results. Simulation studies are performed on some illustrative examples obtaining

good tracking performance.

ix



CHAPTER I

INTRODUCTION

The need to reduce the risk of human lives and human errors while driving a vehicle in

low-traction conditions, such as ice, snow, gravel or wet pavement, has motivated the devel-

opment of electronic stability control systems. These systems have proven to be helpful in

reducing vehicle crashes. Research in the area of systems and controls has improved these

electronic stability control systems. The automotive industry has always had a goal of de-

veloping more accurate systems. Stability control systems use accelerometers, gyroscopes,

and tachometers to measure certain signals. However, the components of the vehicle body

velocity vector are needed to implement stability control systems, yet no sensor for these

signals is available. For this reason, it is necessary to estimate the velocity vector of a

vehicle accurately.

For the scientific community, velocity estimation is an old issue. In 1958, Wintergerst

[30] tried to determine the velocity of moving bodies by means of the Doppler effect. Then,

in 1966, Detchmendy [5] tried to solve the problem of controlling the attitude of a space

vehicle using noisy measurements of one angular velocity. The motivation for this approach

was to remove two of the three rate gyros from a space vehicle attitude-control system.

However, all of these approaches were inaccurate due to the noise in the sensors.

During the 1960’s, Rudolf E. Kalman developed an algorithm to solve the noise problem.

The name of this algorithm is the Kalman filter. Thanks to this filter, the position and

the velocity of an object can be estimated given only a sequence of observations, each of

which includes some noise or error. In fact, the research in this field increased because

of space industry. Many projects were trying to apply linear optimal control and filtering

theories to space vehicles. In 1971, Mehra [11] tried to apply the Kalman filter theory to

the velocity estimation problem. In [11], Mehra compared the performance of several non-

linear filters for the real-time estimation of the trajectory of a re-entry vehicle from its radar

1



observations. Then, in 1979, Ramachandra [13] tried to solve the estimation problem using

a one-dimensional dynamic model to estimate the optimum steady-state position, velocity

and acceleration of a vehicle moving with a constant acceleration perturbed by a zero-mean

plant noise. Ramachandra continued to work on this problem, and he published another

paper, [14], in 1984. In this paper, Ramachandra used a two-dimensional Kalman tracking

filter to obtain optimum estimates of position, velocity, and acceleration of an aircraft whose

acceleration was perturbed due to maneuvers and/or other random factors.

However, velocity estimation in the space industry and in the automotive industry is

approached differently due to tire-road friction. For this reason, in [8], Kiencke tried to esti-

mate the adhesion characteristics during cornering by observing the lateral vehicle dynamics.

In the following years, many researchers focused their efforts on this area of research. In Yi

[31], Fukada [6], Stephant [21], Canudas [4], Muller [12], Lee [10], Wang [29], and Shim [18],

the authors tried to estimate the tire-road friction coefficient by taking into account the

nonlinear characteristics of tires. In [1], Alvarez also tried to estimate the tire-road friction

coefficient using a LuGre dynamic model.

Other authors focused on other specific aspects of the vehicle. For example, Venhovens

[28] worked in the application of stochastic state estimators in vehicle dynamic control.

Moreover, Vahidi [27] estimated the vehicle mass and road grade, and Sivashankar [19]

described a method for vehicle yaw rate estimation. Furthermore, during the three last

years, Stephant focused on the estimation of vehicle sideslip angle in many articles [24], [23],

[22], and [25]. Finally, in [26], Ungoren did a study in lateral speed estimation methods.

Since the global positioning system (GPS) was developed for the public market, some

authors have worked in methods of estimating several vehicle states using GPS data. In [3],

Bevly utilizes GPS velocity measurements to determine the inertial sensor errors using a

kinematic Kalman filter estimator. In [7], Kehl describes a methodology to guide a vehicle

along a predefined path using GPS measurements. In [17], Ryu estimates the sideslip angle,

the longitudinal velocity, roll, and grade of a vehicle using inertial sensors and a GPS system.

However, in this thesis, the focus is on the comparison of the results of the paper

“Nonlinear State and Tire Force Estimation for Advanced Vehicle Control,” [15] that Laura
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Ray published in 1995 with the results of a related approach proposed here for the first

time. In this paper, Ray used a nine degree-of-freedom vehicle model and an analytic tire-

force model to simulate true vehicle motion, and a five degree-of-freedom vehicle model to

implement the Kalman filter. In [15], Ray tried to solve the velocity-estimation problem

using a stochastic tire-force model. Ray used a set of sensors to measure the steer angle, the

brake torque, the yaw rate, the front and rear wheel angular velocities, and the longitudinal

and lateral accelerations of the vehicle. However, in [15], Ray did not consider the aspect of

trying to use a nonlinear deterministic tire-force model, and, consequently, this is why Ray

was obligated to measure brake torque (a signal that cannot realistically be measured). The

proposed approach removes the need for brake torque measurement by replacing a linear

stochastic tire-force model with a nonlinear deterministic tire-force model.

The purpose of this thesis is to implement extended Kalman filters to estimate the

longitudinal and lateral velocities of a seven degree-of-freedom vehicle. Following is the

approach used in this thesis:

First, the implementation of a kinematics-based estimation approach is discussed to

show that this approach is not accurate. Then, the implementation of an extended Kalman

filter is presented using a linear stochastic approach. The linear stochastic approach uses

a stochastic tire-force model in the extended Kalman filter. After this, a nonlinear deter-

ministic approach is implemented. For the nonlinear deterministic approach, a nonlinear

deterministic tire-force model is used. Finally, a comparison between these two approaches

is completed to show the improvement of the nonlinear deterministic approach over the

linear stochastic approach.
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CHAPTER II

VEHICLE MODEL

The purpose of this thesis is to implement extended Kalman filters to estimate the longi-

tudinal and lateral velocities of a seven degree-of-freedom vehicle. However, before trying

to do the implementation of the extended Kalman filters, it is critical to specify the real

model that it is going to be used for the simulation of the vehicle.

2.1 Nonlinear Model

Computer simulations of the actual vehicle motion are going to be done using a high-

order, nonlinear vehicle model and an analytic tire force model. The model used to do

this simulation is the one described in [15]. The vehicle is only going to have a single

front and rear wheel, no roll motion and the model includes vertical suspension dynamics.

However, the model used in this thesis is different with respect to the model used in [15].

The simulation model is simpler than the model used in [15]. The vehicle is going to be on

a flat road. Schematic and signs conventions corresponding to the seven degree-of-freedom

vehicle are defined in Figure 1 and Figure 2.

2.1.1 Equations of Motion

Now, let’s specify the equations of motion of the vehicle. The equations of motion are as

follows:

v̇x =
1
m

[Fxf cos δf − Fyf sin δf + Fxr] + r vy (1)

v̇y =
1
m

[Fyf cos δf + Fxf sin δf + Fyr] − r vy (2)

ṙ =
1
Iz

[Lf (Fxf sin δf + Fyf cos δf ) − Lr Fyr] (3)

ω̇f =
1
Iw

[−RwFxf − KbTb] (4)

ω̇r =
1
Iw

[−RwFxr − (1 − Kb)Tb] (5)
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Figure 1: Seven degree-of-freedom bicycle model (top view).
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where vx and vy are the longitudinal and lateral velocities respectively, r is the yaw rate,

ωf and ωr are the front and rear wheel angular velocities, δf is the front steer angle, Tb is

the applied braking torque, and Fxf , Fyf , Fxr and Fyr are the front and rear longitudinal

and lateral tire forces. For small θ, using Figures 1 and 2, the following equations can be

written:

z̈s =
1

mb
[−Ksf (zs + Lfθ) − Bsf (żs + Lf θ̇) − Ksr(zs − Lrθ) − Bsr(żs − Lrθ̇)](6)

θ̈ =
1
Ip
{−(hf + Rw)Fxf cos δf + (hf + Rw)Fyf sin δf − (hr + Rw)Fxr

−Lf [Ksf (zs + Lfθ) + Bsf (żs + Lf θ̇)]

+Lr[Ksr(zs − Lrθ) + Bsr(żs − Lrθ̇)]} (7)

where zs is the sprung mass vertical displacement, θ is the body pitch angle, żs is the first

time derivative of the sprung mass vertical displacement, and θ̇ is the first time derivative

of the body pitch angle. For this model, the following state vector is going to be used:

x(t) = [vx vy r ωf ωr zs θ żs θ̇]T (8)

In the model, m is the total mass, mb is the mass of the vehicle without the mass of the

front and rear wheels mf and mr, Rw is the radius of the wheel, Lf is the distance from

the center of gravity to the front axle, Lr is the distance from the center of gravity to the

rear axle, hf is the vertical distance from the center of gravity to the center of the front

wheel at equilibrium, hr is the vertical distance from the center of gravity to the center of

the rear wheel at equilibrium, Iz is the moment of inertia of the vehicle about its yaw axis,

Iw is the moment of inertia of the wheel about its axle, Ip is the moment of inertia of the

vehicle about its roll axis, Kb is the fixed proportion of braking applied to the front wheel.

The spring and damping constants Ksf , Bsf , Ksr and Bsr in (6) and (7) are the lumped

parameters associated with the passive suspension system and tires.

2.1.2 Inputs and Outputs

The input vector of the real model is as follows:

u1(t) = [δf Tb] (9)
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The measurement equation (or output equation) is as follows:

z(t) = [r ωf ωr ax ay]T + n(t) (10)

where ax and ay are the longitudinal and lateral accelerations of the vehicle. n(t) is a white

Gaussian measurement noise. The variance of n is R. ax and ay can be written as:

ax = v̇x − r vy (11)

ay = v̇y + r vx (12)

The control inputs and the outputs are measured using a set of sensors. All these sensors

are assumed to be on the vehicle. To measure the signals, accelerometers, gyroscopes,

tachometers, torque sensors, and position sensors are used.

2.2 Tire Model

In this section, the tire model is going to be described. The tire model is used to simulate

the true tire forces of the vehicle. The tire model that is going to be used is the one in [9].

The front and rear normal forces at the tire-road interface are as follows:

Fzf = −Ksf (zs + Lfθ) − Bsf (żs + Lf θ̇) + mfg + mb
Lr

Lf + Lr
g (13)

Fzr = −Ksr(zs − Lrθ) − Bsr(żs − Lrθ̇) + mrg + mb
Lf

Lf + Lr
g (14)

where g is the acceleration of gravity. The front and rear wheel slip angles αf and αr are

as follows:

αf = δf − tan−1
(

vy + Lf r

vx

)
(15)

αr = − tan−1
(

vy − Lr r

vx

)
(16)

The magnitudes of the front and rear axle velocities are as follows:

vf =
√

(vy + Lf r)2 + v2
x (17)

vr =
√

(vy − Lr r)2 + v2
x (18)

The front and rear longitudinal and lateral wheel slips are as follows: sxf

syf

 =
1
vf

 Rw ωf cos αf − vf

Rw ωf sinαf

 (19)
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 sxr

syr

 =
1
vr

 Rw ωr cos αr − vr

Rw ωr sinαr

 (20)

The resultant front and rear wheel slips are as follows:

sresf
=

√
s2
xf + s2

yf (21)

sresr =
√

s2
xr + s2

yr (22)

However, it is essential to know the friction coefficient µ to have a tire model. Therefore,

the resultant front and rear friction coefficients are as follows:

µresf
= (c1(1 − e−c2 sresf ) − c3 sresf

)λ (23)

µresr = (c1(1 − e−c2 sresr ) − c3 sresr)λ (24)

where c1, c2, and c3 are the Burckhardt coefficients, and λ is a scalar. Now, the front and

rear longitudinal and lateral tire forces can be known accurately. The tire-force equations

are as follows:  Fxf

Fyf

 =
µresf

sresf

Fzf

 sxf

syf

 (25)

 Fxr

Fyr

 =
µresr

sresr

Fzr

 sxr

syr

 (26)

Consequently, the true model of the vehicle is as follows:

ẋ(t) = f [x(t) , u1(t)] (27)

z(t) = h[x(t) , u1(t)] + n(t) (28)

where f [x(t) , u1(t)] and h[x(t) , u1(t)] are specified using equations (1) to (7) and equations

(10) to (26) respectively.

2.3 Simulation

In this section, we are going to simulate the true model. Firstly, we are going to specify the

simulation parameters, the Burckhardt coefficients, the inputs and the initial conditions for

the state vector of the true model.
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The software Matlab is used for the simulation. It is well known that the theory is

different from the practice when an algorithm is written in a computer. Therefore, some

problems to implement a simulation in a computer have been found. In theory, the equations

that we presented in this chapter are the right ones for the model of the vehicle. However,

in the tire model we have equations (25) and (26), and if the slip is zero, the numerator

and the denominator are both zero and the computer cannot calculate the forces. For this

reason, an if else has been integrated into the algorithm.

L’Hopital’s Rule has been used to solve this problem. Thanks to equations (13) to (26),

Fxf and Fyf can be written as:

 Fxf

Fyf

 =


(c1(1− e

−c2 sresf )− c3 sresf
)λ Fzf sxf

sresf

(c1(1− e
−c2 sresf )− c3 sresf

)λ Fzf syf

sresf

 (29)

From equation (21), sxf and syf are the x and y components of the vector where sresf
is

the magnitude. In the first equation of equation (29), sxf is not a problem because if the

resultant of the vector goes to zero, the components x and y of the vector also goes to zero.

Moreover, Fzf is not dependent on sresf
due to equation (13), and λ is a scalar. Therefore,

the focus is only on
(c1(1− e

−c2 sresf )− c3 sresf
)

sresf
.

To use l’Hopital’s Rule, the derivation of the numerator and the denominator of this

fraction with respect to sresf
must be done. Therefore, the result is as follows:

lim
sresf

→0
c1 c2 e−c2 sresf − c3 = c1 c2 − c3 (30)

Consequently, the end result is as follows:

lim
sresf

→0
Fxf = 0 (31)

Therefore, the following assumption is made to simulate the system in the computer:

if sresf
> 0.001

Fxf =
µresf

sresf
Fzfsxf

else

Fxf = 0

(32)
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Table 1: Simulation Parameters

Parameter Value Parameter Value
m 1301 kg Rw 0.33 m
mb 1171 kg Iw 4.07 kg-m2

mf 70 kg Ksf 30000 N/m
mr 60 kg Ksr 35000 N/m
Lf 1 m Bsf 5000 N-s/m
Lr 1.45 m Bsr 4500 N-s/m
Iz 1627 kg-m2 Ip 2035 kg-m2

hf 0.53 m Kb 0.6
hr 0.52 m g 9.81 m/s2

Table 2: Burckhardt Coefficients

Parameter Value
c1 1
c2 26
c3 0.25

The case for Fyf is treated in the same way.

The simulation parameters and the Burckhardt coefficients are given in Tables 1 and

2. The real plant is doing the following: the inputs Tb = 1400 N-m and δf = 0.05 rad

are applied at t = 0, and at t = 1.8 sec these inputs change to Tb = 0 N-m and δf = 0

rad. Moreover, at t = 0.6 sec, the coefficient of friction µ changes from 0.85 to 0.3. The

Burckhardt coefficients in Table 2 gives a coefficient of friction µ of 0.85. Consequently, for

t ≤ 0.6, λ = 1, and for t > 0.6, λ = 0.3
0.85 . The simulation stops at t = 3 sec. For the true

model, the inputs δf and Tb are shown in Figure 3.

In the following equations, vx0 , ωf0 , and ωr0 are the initial conditions for the longitudinal

velocity, and the front and rear wheel angular velocities. The values taken for vx0 , ωf0 , and

ωr0 in the simulation are as follows:

vx0 = 25 m/s (33)

ωf0 =
vx0

Rw
rad/s (34)

ωr0 =
vx0

Rw
rad/s (35)

11
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Figure 4: States vx, vy, r, ωf , and ωr for the true model.

For the true model, the initial state vector (8) is as follows:

x0 = [vx0 , 0, 0, ωf0 , ωr0 , 0, 0, 0, 0]T (36)

The states vx, vy, r, ωf , and ωr are shown in Figure 4.

In Figure 5, a trajectory of the vehicle on the plane is represented. At time t < 0, the

vehicle is in straight ahead driving. Then, at time t ≥ 0, the vehicle starts to brake and to

turn until t = 1.8 sec, while the coefficient of friction µ is changing at time t = 0.6 sec.

2.4 Kinematics-Based Estimation

In this section, we are going to see if the true motion of the vehicle can be estimated using

a kinematics approach. The vehicle is considered as a rigid body, and here the wheels of
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Figure 5: Trajectory of the vehicle on the plane.
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the vehicle are not taken into account. Equations (17) and (18) can be written as:

~vf =

 vx

vy + Lf r

 (37)

~vr =

 vx

vy − Lr r

 (38)

In this section, we assume zero slip. For this reason, vectors ωf and vf agree in magnitude

and in direction. Therefore, we have

~vf =

 Rw ωf cos δf

Rw ωf sin δf

 (39)

Using the same idea for ωr and vr, we have

~vr =

 Rw ωr

0

 (40)

Thanks to equations (37), (38), (39), and (40), we find the following equations for vx and

vy:  vx

vy

 =

 Rw ωf cos δf

Rw ωf sin δf − Lf r

 (41)

 vx

vy

 =

 Rw ωr

Lr r

 (42)

Due to (41) and (42), we have two ways to calculate vx and vy. For this reason, we are

going to do the average between these two methods to calculate vx and vy. Finally, for the

kinematics approach, vx and vy can be written as: vx

vy

 =

 Rw ωf cos δf + Rw ωr

2

Rw ωf sin δf −Lf r + Lr r
2

 (43)

From Figure 6, we can see that the kinematics approach is not accurate. We can

conclude that we have a tradeoff, if we want to rely on simple equations, the estimator is

going to be really simple, but with easy computations, we have a lot of error. We see that
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Kinematics Approach.
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we cannot assume zero slip. Slipping wheels can only be considered with friction model

and dynamics. For this reason, let’s consider now the linear stochastic approach and the

nonlinear deterministic approach using an extended Kalman filter.
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CHAPTER III

EXTENDED KALMAN FILTERS

3.1 Linear Stochastic Approach

3.1.1 Design Model

In the linear stochastic approach, the design model is different from the simulation model.

For the design model, not all the equations specified in the previous chapter are used, only

equations (1) to (5). In this approach, the suspension dynamics are neglected but the state

vector x(t) is augmented using differential equations for each force. To model each force,

the model in [20] is used. The model is the following:
ḟ0

ḟ1

ḟ2

 =


0 1 0

0 0 1

0 0 0




f0

f1

f2

 + w (44)

where f0 is the force, f1 and f2 are first and second derivatives of the force, and w is a

white Gaussian noise. The variance of w is Q. This model is used for Fxf , Fyf , Fxr and

Fyr. Now, the state vector for this design model is as follows:

xdes(t) = [vx vy r ωf ωr Fxf Ḟxf F̈xf Fyf Ḟyf F̈yf Fxr Ḟxr F̈xr Fyr Ḟyr F̈yr]T (45)

The input vector is the same as in equation (9).

3.1.2 Implementation of the Extended Kalman Filter

In this section, an extended Kalman filter is described for the purpose of estimating the

state vector and the tire forces Fxf , Fyf , Fxr and Fyr of the design model. For the extended

Kalman filter, the state vector is as follows:

x̂des(t) = [v̂x v̂y r̂ ω̂f ω̂r F̂xf
˙̂
F xf

¨̂
F xf F̂yf

˙̂
F yf

¨̂
F yf F̂xr

˙̂
F xr

¨̂
F xr F̂yr

˙̂
F yr

¨̂
F yr]T (46)

The continuous extended Kalman filter is implemented using Matlab and the ode45 func-

tion. The filter equations are as follows:

˙̂xdes(t) = f̃1(x̂des(t), u1(t)) + K(t)[z(t)− h(x̂des(t), u1(t))] (47)

18



K(t) = P (t)BT (t)R−1(t) (48)

Ṗ (t) = A(t)P (t) + P (t)AT (t) + L(t)Q(t)LT (t) − K(t)R(t)K−1(t) (49)

where

A(t) =
∂f̃1

∂xdes

∣∣∣∣∣
x̂des

(50)

L(t) =
∂f̃1

∂w
(51)

B(t) =
∂h

∂xdes

∣∣∣∣
x̂des

(52)

Q(t) = E(w(t)w(t)T ) (53)

R(t) = E(n(t)n(t)T ) (54)

f̃1 is defined using equations (1) to (5), and (44) for each force Fxf , Fyf , Fxr and Fyr.

3.2 Nonlinear Deterministic Approach

3.2.1 Design Model

In the nonlinear deterministic approach, for the design model, equations (1) to (3), and (6)

to (7) from the simulation model are used. Moreover, we are also going to estimate the

scalar λ in (23) and (24) using the following equation:

λ̇ = 0 (55)

Therefore, the state vector for the design model is as follows:

xdes(t) = [vx vy r zs żs θ θ̇ λ]T (56)

In contrast to the linear stochastic approach which uses the friction model in (44), for the

nonlinear deterministic approach, the suspension states zs, żs, θ, and θ̇ are in the state

vector for the design model (56). We need these suspension states to know the normal

forces Fzf and Fzr in (13) and (14) to calculate the friction model. Moreover, the input

vector is different from the simulation model. The input vector is as follows:

u2(t) = [δf ωf ωr] (57)

Note that brake torque is not included as in (9).
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3.2.2 Implementation of the Extended Kalman Filter

An extended Kalman filter is used to estimate the state vector and the tire forces Fxf , Fyf ,

Fxr and Fyr of the design model. For the extended Kalman filter, the state vector is as

follows:

x̂des(t) = [v̂x v̂y r̂ ẑs
˙̂zs θ̂

˙̂
θ λ̂]T (58)

The continuous extended Kalman filter for this approach is also implemented using Matlab

and the ode45 function. The filter equations are as follows:

˙̂xdes(t) = f̃2(x̂des(t), u2(t)) + K(t)[z(t)− h(x̂des(t), u2(t))] (59)

K(t) = P (t)BT (t)R−1(t) (60)

Ṗ (t) = A(t)P (t) + P (t)AT (t) − K(t)R(t)K−1(t) (61)

where

A(t) =
∂f̃2

∂xdes

∣∣∣∣∣
x̂des

(62)

L(t) =
∂f̃2

∂w
(63)

B(t) =
∂h

∂xdes

∣∣∣∣
x̂des

(64)

R(t) = E(n(t)n(t)T ) (65)

f̃2 is defined using equations (1) to (3), (6) to (7), and (55).
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CHAPTER IV

SIMULATION AND RESULTS

In this Chapter, a comparison between the linear stochastic approach and the nonlinear

deterministic approach is done. The simulation parameters and the Burckhardt coefficients

are given in Tables 1 and 2 in Chapter 2. The equation (32) is also used to implement the

extended Kalman filter in both approaches. The real plant is going to behave as in Chapter

2. For the linear stochastic approach, the initial conditions are as follows:

x̂des0 = [vx0 − e, e, e, ωf0 , ωr0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (66)

where (66) is the initial extended Kalman filter state vector (see equation (46)), and e

represents an offset between the true value and the assumed value in the filter. The error

covariance matrix for the extended Kalman filter P0 is initialized with a 17 × 17 diagonal

matrix with 106 in the diagonal. R(t) and Q(t) are the variances of the noises n(t) and w(t)

of the equations (10) and (44). We have

E(n(t)n(s)T ) = R0δts (67)

E(w(t)w(s)T ) = Q0δts (68)

where R0 is a 5 × 5 diagonal matrix with the vector [0.00001, 0.1, 0.1, 0.01, 0.01] in the

diagonal, and Q0 is a 17 × 17 diagonal matrix with 0.1 in the diagonal. For the nonlinear

deterministic approach, the initial conditions are as follows:

x̂des0 = [vx0 − e, e, e, 0, 0, 0, 0, 1.1]T (69)

where (69) is the initial extended Kalman filter state vector (see equation (58)). For the

simulation, in the extended Kalman filter, λ is initialized with an error of 0.1 (see equations

(23) and (24)). The error covariance matrix for the extended Kalman filter P0 is initialized

with an 8 × 8 diagonal matrix with 106 in the diagonal. R(t) is the variance of the noise
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n(t) of the equation (10). We have

E(n(t)n(s)T ) = R0δts (70)

where R0 is a 5 × 5 diagonal matrix with the vector [0.00001, 0.1, 0.1, 0.01, 0.01] in the

diagonal.

Eight different simulations are done using 4 different values for e for each approach. The

values used for e are 0.1, 0.3, 0.5, and 1. For the case e = 0.1, for vx, the linear stochastic

approach tracks the true signal a little bit better than the nonlinear deterministic approach

(see Figures 7 and 8). However, for vy, r, and the forces Fxf , Fyf , Fxr and Fyr, the nonlinear

deterministic approach has better results than the linear stochastic approach (see Figures

7 to 10). For the case e = 0.3, for vx, vy, r, and the forces Fxf , Fyf , Fxr and Fyr, the

nonlinear deterministic approach has better results in comparison to the linear stochastic

approach (see Figures 11 to 14). For the case e = 0.5, for vx, vy, r, and the forces Fxf ,

Fyf , Fxr and Fyr, the nonlinear deterministic approach has better results than the linear

stochastic approach (see Figures 15 to 18). For the case e = 1, for vx, vy, r, and the forces

Fxf , Fyf , Fxr and Fyr, the results of the nonlinear deterministic approach are better than

the results of the linear stochastic approach (see Figures 19 to 22).

However, these simulations are done in Matlab using the ode45 function with an error

tolerance of 0.0008. In fact, we have a tradeoff between the precision of the results and the

number of points that we calculate for the simulation. For Matlab, an “estimated error in

each integration step must satisfy |e(i)|<=max(RelTol*abs(y(i)),AbsTol(i)” where y

is the solution vector. This error must be less than or equal to the acceptable error, which is

a function of the specified relative tolerance, RelTol, and the specified absolute tolerance,

AbsTol. Matlab defines the relative error tolerance as “a measure of the error relative to

the size of each solution component.” The relative error tolerance applies to all components

of the solution vector. In fact, it controls the number of correct digits in all solution

components, except those smaller than thresholds AbsTol(i). For Matlab, AbsTol(i) is

“a threshold below which the value of the ith solution component is unimportant.” Absolute

error tolerances apply to the individual components of the solution vector. The absolute
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Table 3: Time Step Statistics

Linear Stochastic Approach Nonlinear Deterministic Approach
Minimum 5.02 × 10−13 1.91 × 10−18

Average 6.66 × 10−5 3.20 × 10−5

error tolerances determine the accuracy when the solution approaches zero.

In Figures 7 to 22, the data have been produced using ode45 with RelTol and AbsTol

both equal to 0.0008. This was done in an effort to make the comparison between the two

extended Kalman filters fair. However, close inspection of Figures 7 to 22 reveals that the

plant signals computed for the two cases are somewhat different. This undesirable feature

must be related to the lengths of the time steps selected by ode45. In fact, the time step

statistics are as shown in Table 3. Since the nonlinear deterministic case is computed with

smaller steps, it is believed that the plant signals exhibited for that case are more accurate.

To summarize, for all the cases e = 0.1, e = 0.3, e = 0.5, and e = 1, the nonlinear

deterministic approach tracks better the true signal than the linear stochastic approach in

this kind of comparison (see Figures 7 to 22).
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Figure 7: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Linear Stochastic Approach with e = 0.1.
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Figure 8: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Nonlinear Deterministic Approach with e = 0.1.
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Figure 9: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Linear Stochastic Approach with e = 0.1.
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Figure 10: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Nonlinear Deterministic Approach with e = 0.1.
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Figure 11: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Linear Stochastic Approach with e = 0.3.
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Figure 12: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Nonlinear Deterministic Approach with e = 0.3.
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Figure 13: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Linear Stochastic Approach with e = 0.3.
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Figure 14: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Nonlinear Deterministic Approach with e = 0.3.
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Figure 15: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Linear Stochastic Approach with e = 0.5.
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Figure 16: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Nonlinear Deterministic Approach with e = 0.5.
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Figure 17: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Linear Stochastic Approach with e = 0.5.
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Figure 18: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Nonlinear Deterministic Approach with e = 0.5.
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Figure 19: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Linear Stochastic Approach with e = 1.
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Figure 20: Actual Motion (solid lines) and State Estimates (dashed lines) for vx, vy, and r for the
Nonlinear Deterministic Approach with e = 1.
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Figure 21: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Linear Stochastic Approach with e = 1.
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Figure 22: Actual Motion (solid lines) and State Estimates (dashed lines) for Fxf , Fyf , Fxr and Fyr

for the Nonlinear Deterministic Approach with e = 1.
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CHAPTER V

CONCLUSION

The main objective of this work was to estimate the longitudinal and lateral velocities of

a vehicle using extended Kalman filters. This chapter summarizes the conclusions of this

work and discusses possible extensions of the results.

In this work, vehicle dynamics are well-defined, and have been a subject studied by

scientists across the years. However, tire force modeling is still a problem, and many

researchers are still working on it. In this thesis, three main approaches were implemented:

one using a kinematics approach, and the others using a linear stochastic friction model,

and a nonlinear deterministic friction model. This work showed the improvement of the

results by using the nonlinear deterministic friction model instead of the linear stochastic

friction model and the kinematics approach. The kinematics approach uses a really simple

estimator, and the results found in Chapter 2 show that if you assume zero slip, you have a

lot of error. Moreover, from the results in Chapter 4 for the linear stochastic approach, we

can conclude that it is a good approach if you do not have a lot of error between the true

model and the estimation model. Finally, from the results in Chapter 4 for the nonlinear

deterministic approach, we can conclude that this approach tracks the signal accurately in

the cases of this work. Furthermore, we need to remember that in the linear stochastic

approach we are obligated to measure brake torque because we do not use a nonlinear

deterministic tire-force model. The nonlinear deterministic approach does not need the

measurement of the brake torque by replacing the linear stochastic tire-force model with

a nonlinear deterministic tire-force model. Therefore, this is the main advantage for the

nonlinear deterministic approach in comparison to the linear stochastic approach.

Moreover, the results found in this thesis can be extended to more general situations.

First, in 2000, M.C. Best [2] developed a linear deterministic approach to solve this kind of

problems. Therefore, a comparison between this approach and the nonlinear deterministic
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one can be done.

Furthermore, in [16], Ray implemented a linear stochastic approach in an eight-degree-

of-freedom four-wheel vehicle. Consequently, the nonlinear deterministic approach can be

generalized to a four-wheel vehicle, and then a comparison can be done between these two

approaches.

Finally, the algorithm used in this thesis can be improved trying to use a fixed step

algorithm and not the ode45 function in Matlab that uses a variable step. Another way to

improve the algorithm is to use an approximate theory of static analysis to calculate the

normal forces. This theory is shown in [9]. In this theory, we suppose no vertical motion

using a balance of moments. This theory is a pure approach for a two wheel model. Thanks

to this theory, we are not going to calculate the suspension states zs, żs, θ, and θ̇, for this

reason, the algorithm is going to be faster.
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