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SUMMARY 

Building energy benchmarking, offering initial building energy performance 

assessment, is a crucial tool for decision makers and facility managers to promoting the 

efficient use of energy among different properties. Traditional benchmarking models are 

mostly constructed in a simple benchmark table, comparing basic statistics of energy use 

of different properties. But they are very often subject to human judgement and are not 

capable of dealing with complex situations when multiple inputs and outputs are involved. 

Later on, linear regression model is utilized for building energy benchmarking, but it is still 

limited due to its various assumptions and the uncertainty of its prediction power. Recently, 

data envelopment analysis (DEA) has been utilized for benchmarking building energy, but 

existing DEA models have not been utilized to its optimum potential and are subject to 

limitations such as high sensitivity to outliers. 

This research intends to propose an integrated approach for building energy 

benchmarking analysis in the multifamily industry. DEA model will be chosen in this 

research as it has been understudied despite its possibilities. A systematic peer-wise 

multifamily building energy benchmarking model based on the DEA method is the 

expected outcome of this research. The proposed model is expected to be capable of 

selecting appropriate variables to be included in the model, remediating errors in the 

dataset, considering weather impact on building energy consumption, and detecting 

outliers that may distort the final efficiency score.  

This research intends to build on and contribute to the existing body of knowledge 

for building energy benchmarking, filling in the gaps of the knowledge in the existing DEA 



 xiii 

building energy benchmarking method. The scope of this research is multifamily properties 

from different geographical regions in the United States. The proposed research has the 

potential to improve energy consumption by ranking properties based on different 

efficiency scores. Research deliverables are expected to provide decision makers and 

facility managers with the crucial information for building energy improvement. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The global contribution from buildings towards energy consumption has been 

steadily increasing by approximately 20-40% in developed countries, exceeding other 

major sectors (Pérez-Lombard, 2008). The concept of energy certification for buildings 

was emerged in the early 1990s with the overall objective of saving energy consumption 

without compromising comfort, health and productivity levels (Pérez-Lombard, 2009).  

It is argued that 30% or more energy usage is reduced in businesses by effective 

energy management practices, including assessing energy performance, setting energy 

saving goals, and regularly evaluating progress (Energy Star, 2008). Energy performance 

benchmarking of buildings is an integral part of this effort. For instance, Energy Star 

certification of buildings showed that comparing the energy use of buildings with other 

buildings nationwide help identify the opportunities of potential saving and the best 

practices that can be replicated (Energy Star, 2008).  

Building energy benchmarking is required for adopting an energy certification 

scheme, promoting energy efficiency, and reducing energy consumption. It demonstrates 

the current level of consumption, the value of potential improvement, and the prospects for 

additional savings (EPBD, 2003). It promotes efficient energy consumption in the real 

estate market, identifies energy efficiency measures, and supports regulations of building 

efficiency (ASHRAE, 2015). It also helps to understand the opportunities lost by low 

energy performance, as well as the potential benefits of enhancing energy efficiency.  
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A lack of systematic building energy benchmarking method exists for the 

multifamily industry. Currently, most research is conducted based on examples in other 

sectors or industries, and very few research has bene conducted in the multifamily industry. 

The data of the existing benchmarking models are not enough pre-processed, often 

resulting in operating on garbage-in-garbage-out mechanism. That means if the input 

variables are carefully selected and outliers are not detected for the model, irrespective of 

the detail of the model, output will not be informative. The models themselves are not 

tailored towards the full consideration of relevant factors that may impact building energy. 

The generated results are not well explained, making the end users unaware of how to read 

and understand the results and identify potential areas of improvements. Gaps in the current 

body of knowledge for building energy benchmarking are expected to be filled in by this 

thesis. 

1.2 Dissertation Organization 

This research aims to provide a method for building energy benchmarking with the 

focus on the multifamily industry using DEA model. Table 1 provides a brief summary of 

the contents of each chapter.  

Table 1 – Title and description of each dissertation chapter 

Chapter Descriptions 

1. Introduction This chapter introduces background of this research. 

2. Literature Review This chapter reviews the multifamily building energy 

consumption and existing building energy benchmarking 

methods, both industrially and academically. 

3. Objectives, Scope, and 

Hypothesis 

This chapter discusses the objective, scope, and 

corresponding hypothesis of this research. 
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(Table 1 continued) 

4. Research Methodology This chapter elaborates the methodology of this research 

in details, including variable selection, error remediation, 

model formulation, outlier detection, and efficiency 

analysis 

5. Results and 

Interpretations 

Based on the methodology elaborated in previous 

chapter, this chapter delivers the results and provides 

interpretations for those results 

6. Conclusions This chapter summarizes the results findings, addresses 

the limitations, and discusses future research 
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CHAPTER 2. LITERATURE REVIEW 

Each multifamily property is often characterized by a series of unique features, such 

as location, age, number of buildings, number of occupants, occupancy rate, etc. The 

variety of features of among properties can create a wide range of energy consumption 

levels. This research focuses on developing and testing a systematic building energy 

benchmarking framework to potentially improve the energy consumption by providing 

decision makers and facility managers with meaningful information. 

The following literature review covers current energy consumption level of the 

multifamily industry in the United States. The review also discusses both industrial best 

practices and current academic research of building energy benchmarking methods, none 

of which is developed for the multifamily industry. Limitations of current methods are 

summarized and a research needs statement is derived from the review. 

2.1 Multifamily Building Energy Consumption in the U.S. 

Energy continues to be a world-wide issue after decades due to consistently 

growing consumption on yearly basis and limited amount of production. In 2010, the world 

primary energy consumption was 514 quadrillion British thermal units (Btu). The five 

largest consuming countries in that year were China, U.S., Russia, India, and Japan, and 

they consumed 19.4%, 18.9%, 5.9%, 4.6%, and 4.3% respectively. OECD Europe 

consumed 15.5%, and the all other countries consumed the rest 31.4% (EIA, 2016). Figure 

1 summarizes the proportion of world primary energy consumption for major consumers. 
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Figure 1 – Proportion of world primary energy consumption in 2010 

The primary energy consumers in the U.S. can be categorized into four categories: 

the residential building sector, the commercial building sector, the industry sector, and the 

transportation sector. Among that 18.9% of world primary energy consumption, or 

approximately 97.5 quadrillion Btu, consumed in the U.S., the residential building sector 

counted for 22.5%, the commercial building sector counted for 18.6%, the industry sector 

counted for 30.8%, and the transportation sector counted for the rest 28.1% (PNNL, 2012). 

Figure 2 summarizes the proportion of U.S. primary energy consumption for different 

sectors.  
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Figure 2 – Proportion of U.S. primary energy consumption in 2010 

There are three different industries for primary energy consumption in the 

residential sector in the U.S.: the single-family industry, the multifamily industry, and 

mobile homes. In 2005, the residential building sector consumed 21.54 quadrillion Btu, out 

of which the single-family industry consumed 80.5%, the multifamily industry consumed 

14.9%, and mobile homes constitutes consumed the rest 4.6%. Figure 3 summarizes the 

proportion of the residential sector primary energy consumption for different industries 

(PNNL, 2012). 
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Figure 3 – Proportion of the residential sector primary energy consumption in 2005 

Due to the increasing awareness of energy saving and advantage of technology 

innovation, there is a clear trend toward increasing energy efficiency in the residential 

building sector. Homes built between 2000 and 2005 utilized 44.7 thousand Btu per square 

foot of heated floor space, which is 14% less than homes built in 1980s and 40% less than 

homes built before 1950 (PNNL, 2012). Figure 4 summarizes the energy efficiency in the 

residential sector by vintage.  
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Figure 4- Energy efficiency level in the residential sector by vintage 

Although multifamily industry is not consuming as much as energy consumed by 

the single-family industry, it is the least efficient industry in the residential sector in terms 

of energy consumed per square foot of heated floor space. In 2005, the multifamily industry 

consumed 78.3 thousand Btu per square foot of heated floor space, which is 41% more than 

that is consumed in the single-family industry. Figure 5 summarizes the energy efficiency 

of different industries in the residential sector. 
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Figure 5 – Energy efficiency level of different industries in the residential sector 

2.2 Building Energy Benchmarking Industrial Practices 

There are two major agencies in the current market providing building energy 

performance benchmarking and certification issuance services: Energy Star portfolio 

manager and ASHRAE building energy quotient. This section reviews both methods, 

discusses their benchmarking methodology, and reveals the limitations of current industrial 

practices. 

2.2.1 Energy Star Portfolio Manager 

Energy Star portfolio manager provides commercial buildings with an Energy Star 

score on a 1 – 100 scale as an assessment of its energy performance. The score is calculated 
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performance. The score measures the energy efficiency of a particular building compared 

with a peer group of buildings in the Commercial Building Energy Consumption Survey 

(CBECS).  

To determine the score, Energy Star will compute both the actual source energy use 

intensity (EUI) and the predicted source EUI. Actual source EUI is the total energy 

consumption divided by gross floor area. Predicted source EUI is calculated by utilizing a 

regression equation that has been previously set up. Physical features and usage details of 

the building are the input of the regression equation, and the predicted EUI is the output. 

Efficiency ratio is later on calculated by actual source EUI/predicted source EUI. An 

efficiency ratio smaller than 1 means that the building is actually consuming less energy 

than it would have “theoretically” consumed based on the energy consumption 

performance of its peers. The Energy Star score is finally determined by the efficiency ratio 

percentile of the building. 

In September 2014, Energy Star portfolio manager released Energy Star score for 

multifamily housing. Same methodology was adopted to calculate Energy Star score for 

multifamily housing, but based on different survey data from an industry survey conducted 

by the Federal National Mortgage Association (Energy Star, 2014c). The model utilizes 

independent variables such as unit density, bedrooms per unit, low rise or not, and some 

weather information to predict the EUI of a property, and it has 23.87% explanatory power 

(R2) (Energy Star, 2014c). 

2.2.2 ASHRAE Building Energy Quotient 
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ASHRAE building energy quotient (bEQ) is another energy rating program that 

provides both as-designed and in-operation energy performance assessments. Instead 

assignment a 1 – 100 scale score, ASHRAE provides buildings with letter-grade ratings 

with A+ representing zero net energy and F representing unsatisfactory. The letter-grade 

rating provides a particular building with a peer group energy performance comparison 

from the database of ASHRAE. 

To determine both as-designed and in-operation ratings, ASHRAE will compute 

both standard EUI and metered EUI. Standard EUI is the source energy use computed using 

standard occupancy and operational schedules, while metered EUI is the actually measured 

source energy use. Both EUI’s are later on compared with the median EUI of similar 

property type in CBECS. As-designed bEQ is calculated by standard EUI/median 

EUI*100, and in-operation bEQ is calculated by metered EUI/median EUI*100. The 

calculated bEQ can be converted to letter-grade rating using a bEQ scale definition table. 

2.3 Current Building Energy Benchmarking Methods 

Currently, there are three building energy benchmarking methods: simulation, 

statistical analysis, and data envelopment analysis (DEA). This section reviews each 

method, discusses their applications and limitations, and explains why a new systematic 

building energy benchmarking method is needed. 

2.3.1 Simulation 

The simulation method calculates theoretical energy consumption by setting up a 

mathematical model. The theoretical energy consumption is then compared with the 
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observed energy consumption in order to evaluate the energy consumption performance 

(Lee, 2008). There are a number of tools to calculate the energy performance of a building 

through detailed dynamic simulation models, and the process generally involves 

developing a detailed numerical description of the building, with standard occupancy and 

activity templates (Hernandez et al, 2008). Federspiel et al. (2008) applied simulation 

method to construct a typical building energy model as the benchmark that represented the 

minimum amount of energy required to meet a set of basic functional requirements of 

laboratory buildings, and compared the actual energy consumption with the benchmark. 

Carriere et al. (1999) utilized the U.S. Department of Energy building simulation software 

(DOE-2 model) to study the design and efficient operation of HVAC systems in 

commercial buildings for potential energy saving.  

In general, the simulation method reveals the ideal energy consumption of a 

building or the energy consumption with standardized weather and operating conditions 

(Olofsson et al., 2004). Although simulation is one of the most popular methods to study 

the effect of different factors on building energy use, its application for developing a 

benchmarking system is limited (Chung et al, 2006). The simulation method cannot be 

commonly used for existing buildings due to the difficulty of collecting simulation 

variables, such as the heat conductivity of walls and the properties of building materials. 

(Lee and Lee, 2009).  

2.3.2 Statistical Analysis 

There are three types of statistical analysis for building energy benchmarking: 

simple statistics method, normalization ranking method, and regression analysis method. 
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The simple statistics method gathers the energy consumption data of a group of properties 

and calculates several common statistics for comparison. Sharpe utilized the average and 

the median of office building energy consumption to establish an energy-efficiency 

benchmarking framework, based on the data collected in CBECS. It is found that medians 

are more reliable comparators than averages because averages can be strongly influenced 

by a small number of buildings with excessive energy consumption, especially when the 

sample is small (Sharpe, 1996). Besides, the information that can be conveyed when 

averages and medians are used as the benchmark is very limited – the energy efficiency of 

an individual building can be either above or below the benchmark (Wu et al., 2010). 

The normalization ranking method incorporates the concept of EUI, often 

calculated by normalizing the energy usage with respect to the floor area. It identifies 

outperformers and underperformers by simply ranking the EUI of each building among the 

sample group to determine its corresponding rating of energy consumption performance. 

Buildings with EUIs in the best quartile are termed “Good Practices” and are set as target 

for other buildings to emulate (Bordass, 2005). This method has also been used to evaluate 

the energy consumption performance of commercial buildings (Birtles and Grigg, 1997). 

Later on, curve of cumulative percentile distribution of normalized EUI, also known as the 

benchmarking curve, is also on implemented to ranking building energy consumption 

performance on a more granular level (Wu et al., 2010). ASHRAE utilizes the ratio of both 

standard and metered EUI to median EUI to calculate as-designed bEQ and in-operation 

bEQ, where median EUI is estimated based on CBECS (ASHRAE 2009). Despite the 

simplicity of implementation, the normalization ranking method is limited in scope. It 

cannot normalize other factors related to the building energy efficiency such as property 
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age, number of occupants, etc., which may cause energy usage in specific buildings to be 

higher (or lower). 

Regression analysis method utilizes the EUI of each building as dependent 

(response) variable and several other building characteristics, such as building age and 

internal floor area as independent (explanatory) variables. The objective is to construct a 

multivariate regression model of the independent variables to explain variations in EUIs as 

the response variable. The developed regression model will be used to predict EUI given 

certain values of explanatory variables of each building. Eventually, the predicted EUI will 

be compared with the actual EUI of each building to construct a benchmarking table. For 

instance, Energy Star Portfolio Manager defines the percentile distribution of the ratio of 

actual source EUI to predicted source EUI as the efficiency ratio, and utilizes that for 

benchmarking (Energy Star, 2014a). Chung et al. (2006) developed a multiple linear 

regression model for supermarket buildings in Hong Kong to predict normalized EUI with 

standardized values of explanatory variables as the input, deriving a benchmarking table 

for end-users. Wu et al. (2010) also utilized a multiple linear regression model to 

benchmark energy efficiency of hotel buildings with different operation standards in 

Singapore. 

Although the regression analysis method is commonly used for building energy 

benchmarking, it is subject to several significant limitations: 

 The assumption that regression errors are normally distributed may not hold 

given the large variety of building characteristics. If the normal distribution 

assumption is violated, then the percentile-based benchmarking table will 

become unbalanced. The main problem with unbalanced benchmarking is 
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that the analysis results will become unreliable to use as building energy 

efficiency rankings become very sensitive to small changes in the EUI. 

 The assumption that explanatory variables have no or little multicollinearity 

may not hold given the high correlation between building characteristics. 

For example, the number of apartments in a building can be highly 

correlated with the number of washing machines in a building. 

 The predictive power of the linear regression model may be uncertain. The 

relationship between the predicted EUI and building characteristics (model 

coefficients) is not linear and it can change over time due to the variation of 

the sample group. 

 The wellness of the fitted regression model may be neglected. The ratio of 

actual EUI to predicted EUI measures both the actual energy efficiency and 

variation of outcomes that are not explained by the model. For example, the 

regression baseline model estimated by Energy Star for multifamily housing 

in the United States has 23.87% explanatory power (i.e., adjusted R2 = 

22.66%) indicating that there is a large modeling error due to unexplained 

factors or data errors (Energy Star, 2014 c). 

2.3.3 Data Envelopment Analysis 

DEA is a data-oriented approach for evaluating the performance of a set of 

homogeneous entities called decision-making units (DMUs) (Cooper et al., 2011). DEA is 

a peer-to-peer comparison method that evaluates the relative performance of a DMU in a 

pool of comparable DMUs. Several inputs and multiple outputs are considered in relative 

performance assessment. DEA utilizes linear programming technique to compute a non-

parametric frontier as the benchmark to assess the performance efficiency of DMUs. In the 

context of building energy benchmarking, DEA treats each building as a DMU in a multi-
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input/multi-output environment and computes an overall optimal frontier as the benchmark 

from the data in hand. Buildings located on the frontier are efficient DMUs that have 

generated the maximum outputs for their levels of inputs, and other buildings are evaluated 

based on their overall performance relative to that of the buildings on the frontier. Unlike 

regression method, DEA does not estimate parameters for the model, but it identifies a non-

parametric frontier that constitutes the outperformers of the group. The performance of one 

DMU in the DEA model is dependent on its relative performance compared with the 

frontier, i.e., the performance of other DMUs in the model.  

DEA has been utilized for benchmarking building energy consumption. Önüt and 

Soner (2006) applied DEA method to benchmark energy usage of 32 five-star hotels based 

on utility billing data and identified the most energy-efficient (called “best practices”) 

hotels as the ones that are on the frontier. Lee (2008) collectively utilized multiple linear 

regression to find out the predicted EUI of units evaluated and DEA method to calculate 

overall energy efficiency, using the predicted EUI as output and the observed EUI as input. 

Lee and Lee (2009) developed a DEA model to benchmark energy efficiency of 47 

government office buildings and divided the overall energy efficiency into scale factor and 

management factor. Grösche (2009) used data from the U.S. residential energy 

consumption survey (RECS) to develop a DEA model to measure energy efficiency 

improvements of single-family residential buildings. It was concluded that a substantial 

part of the variation in energy scores is due to climatic influences but households have 

nevertheless improved their energy efficiency. Hui and Wan (2013) employed DEA 

method to study the energy benchmarking of hotels in Hong Kong and showed that DEA 

provides a helpful benchmarking framework for understanding efficiency within an 
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organization that uses a variety of resources to provide a complex set of services in multiple 

locations. Lu et al. (2014) utilized DEA method to benchmark the energy consumption of 

90 multifamily properties. They calculated the energy efficiency in a time series manner 

for twelve months. Most recently, Wang et al. (2015) utilized a two-stage DEA method to 

benchmark the energy consumption of 189 one-story single-family buildings in Woodbine, 

Iowa, combining DEA method with Tobit regression for further efficiency analysis. 

2.4 Problems and Needs Statement 

By comparing all three methods mentioned above, I found that both simulation 

method and statistical analysis have several intrinsic limitations for building energy 

benchmarking, while DEA is the one with a lot of potential but is has not been fully 

explored. In summary, current applications of DEA method for building energy 

benchmarking are subject to six main problems that highly limit their applications for 

energy benchmarking in the multifamily sector: 

1. Very little of the current research is conducted based on the context of the 

multifamily industry; 

2. None of the existing research shows how to handle missing or incorrect variable 

values in the dataset. It is quite common to have missing or incorrect variables 

in the dataset collected by property managers. Simple removal of a record with 

a missing or incorrect value may result in insufficient number of data records 

and eminent risk of changing the shape of the efficient frontier; 

3. Most current research (Önüt and Soner, 2006; Lee, 2008; Lee and Lee, 2009, 

Grösche, 2009; Hui and Wan, 2013) does not take into account the issue of 

outliers. The results of DEA are sensitive to outliers and can be misleading if 
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outliers exist. (Tran et al., 2010; Lu et al., 2014; Khezrimotlagh, 2015; Wang 

et al., 2015); 

4. Several of the existing DEA models (Önüt and Soner, 2006; Lee, 2008; Lu et 

al., 2014; Wang et al., 2015) consider EUI as an input variable. However, one 

of the main assumptions in the definition of efficiency measure under the DEA 

formulation, the convexity axiom, may be violated if EUI is considered as an 

input variable (Emrouznejad and Amin, 2009); 

5. None of the existing research distinguishes between controllable variables 

(such as number of tenants in a building) and non-controllable variables (such 

as weather conditions). However, it is crucial to differentiate controllable 

variable from non-controllable variables because: (a) Property managers 

simply do not have any control over the weather conditions; and (b) The 

weathers conditions cannot be scaled up or scaled down; 

6. None of the existing research of building energy benchmarking conducts the 

sensitivity analysis of the efficiency scores derived from DEA model, but those 

scores are subject to change, and sometimes may even be very volatile.  

Table 2 summarizes problems addressed by current DEA application for building 

energy benchmarking and problems to be addressed by the proposed research. 
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Table 2 – Problems of current DEA application for building energy benchmarking 

Problems of current research 
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1. Type of building         

1-1. Hotel ●    ●    

1-2. Government office  ● ●      

1-3. Residential – single-family    ●   ●  

1-4. Residential – multifamily       ●  ● 

2. Remediate missing/incorrect values        ● 

3. Detect and remove outliers      ○ ○ ● 

4. Misuse EUI as input variable ● ●    ● ●  

5. Consider non-controllable variables        ● 

6. Conduct sensitivity analysis        ● 

(●: fully addressed; ○: partially addressed) 

The need for a DEA model that benchmarks building energy in the multifamily 

industry, therefore, still exists. The model needs to be able to handle missing/ incorrect 

values in the dataset, detect and remove outliers from influencing end results, exclude the 

usage of EUI, and consider controllable and non-controllable variables differently. 

Detailed efficiency analysis needs be conducted and corresponding interpretations needs 

to be given. Additionally, sensitivity analysis is also needed to measure the stability of 

results given by the DEA model.  
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CHAPTER 3. OBJECTIVES, SCOPE, AND HYPOTHESIS 

In order to understand the goal, purpose and methodology of this research, the 

objective, scope and hypothesis must be defined. In the subsections to follow, each of these 

research components are discussed. 

3.1 Objectives 

The major objective of this research is to create a new DEA-based approach for 

benchmarking energy efficiency in buildings in the multifamily sector to address the major 

limitations of existing DEA models. To achieve this objective, several necessary secondary 

objectives are listed: 

 To find a method that remediates missing or incorrect values for instances 

in the dataset 

 To establish a mechanism that accurately and effectively detects outliers in 

the dataset 

 To select appropriate variables to be included in the DEA model and 

provide justification for the selection 

 To build up a DEA model that differently handles controllable variables and 

non-controllable variables 

 To quantitatively measure the stability of efficiency scores of each DMU 

across the entire period 

3.2 Scope 
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The proposed research will only focus on the multifamily industry of the residential 

sector, other than other industries of the residential sector such as single-family or mobile 

homes, or other sectors such as commercial or industrial sector. The data of both energy 

consumption and building characteristics will be provided by a third-party organization, so 

the proposed research will not focus on data collection, but on data preparation, model 

formulation, and results interpretation. The only data needs to be collected in this research 

is the weather information of the place where each property is located, which can be 

accessible from publicly available database The energy consumption analyzed in this 

research is the total energy consumption for each property. The research will only focus on 

DEA method, other than several other methods as summarized in the literature review part.  

3.3 Hypothesis 

After reviewing existing research and current practices regarding building energy 

benchmarking, the following hypotheses were generated by the researcher and will be 

testing using the research methodology described in the next chapter: 

 A method can be found to remediate missing or incorrect values for 

instances in the dataset 

 A mechanism can be established to accurately and effectively detects 

outliers in the dataset 

 Appropriate variables for the DEA model can be selected and justifications 

can be provided accordingly 

 A DEA model that handles controllable variables and non-controllable 

variables differently can be built up 
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 The stability of efficiency scores of each DMU across the entire period can 

be quantitatively measured 
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CHAPTER 4. RESEARCH METHODOLOGY 

This chapter defines the foundational components for this research and describes in 

detail the methodology for each of the research components. Section 4.1 reviews the 

variable selection for DEA model in past research, and justifies how to choose appropriate 

without violating the convexity assumption of DEA model. Section 4.2 discusses the 

method of remediating data errors in this research. Section 4.3 explains how to take weather 

influence into consideration for building energy benchmarking. Section 4.4 covers the 

model formulation using both constant return to scale (CRS) model and variable return to 

scale (VRS) model, and discusses how to differentiate controllable variables and non-

controllable variables in DEA model. Details of detecting and removing outliers in dataset 

will be elaborated in Section 4.5. Section 4.6 introduces and explains the three different 

efficiency scores that DEA model generates. Lastly, the sensitivity and stability analysis of 

the results of DEA model is presented in Section 4.7. Figure 6 shows the methodology 

flowchart of the proposed research. Each component of the flowchart is discussed in the 

following sections. 
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Data Collection and Processing

Variable Selection
 Literature review
 Expert opinions
 DEA assumptions

Weather Influence Consideration
 Location of each property
 HDD, CDD, TDD

Data Error Remediation
 Error data identification
 Linear regression prediction
 Significance test

DEA Model Formulation
 Constant return to scale
 Variable return to scale
 Non-controllable variables
 Exclude any ratio variable

Model Formulation

Outliers Detection
 Compute lambda matrix
 Calculate number of occurrences
 Calculate cumulative weight
 Set up thresholds 

Results and Analysis

Efficiency Analysis
 Overall efficiency
 Pure technical efficiency
 Scale efficiency
 Relationship analysis
 Time series analysis
 Distribution analysis

Window Analysis
 Set up window size
 Focus on pure technical 

efficiency
 Analysis of statistics

 

Figure 6 – Methodology flowchart of the proposed research 

4.1 Variable Selection 

A drawback of DEA model is that the inclusion/exclusion of variables can affect 

the results (efficiency scores), and there is no way to test the appropriateness of each input 

and output variable (Hui and Wan, 2013). It makes selecting appropriate variables to be 

included in the DEA model extremely important, as inappropriate variable selection may 

lead to unreliable benchmarking results. The selection of variables is always dependent on 

the availability of data. Three principals should be considered in selecting appropriate 

variables for constructing DEA model:  

1. Conduct literature review to examine the experience of other researchers on 

the same or similar industry;  

2. Seek subject matter experts’ opinions; 

3. Make sure variables included would not violate any fundamental 

assumptions of DEA model.  

These principals are described in more details below. 
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4.1.1 Summary of Variable Selection in Existing Research 

A comprehensive literature review is conducted on variable selection for all DEA 

models applied to different building types when benchmarking energy efficiency. Details 

are shown in Table 3.  

Table 3 – Summary of variables used for DEA building energy benchmarking 
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Input Variables        

Number of employees ●       

Energy consumption   ● ● ●   

EUI ● ●      

Outdoor temperature      ●   

Relative humidity     ●   

Weather normalized EUI      ● ● 

Output Variables        

Hotels        

Annual total revenue ●       

Food & beverage covers     ●   

Room nights     ●   

Room guests     ●   

Building characteristics        

Age of properties      ● ● 

Basement type       ● 

Buildings conditions       ● 

Floor area   ● ●   ● 
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(Table 3 continued) 

Number of apartments      ●  

Number of bathrooms       ● 

Number of bedrooms      ●  

Number of buildings      ●  

Number of fridges    ●    

Number of parking lots      ●  

Number of washing machines      ●  

Type of AC systems       ● 

Tenants        

Number of occupants   ● ●  ● ● 

Occupant intensity  ●      

Occupancy rate ●       

Total number of guests ●       

Weather Conditions        

Average outdoor temperature  ● ●     

Average hours of rain  ● ●     

CDD    ●    

HDD    ●    

Three characteristics about variable selection for building energy benchmarking 

using DEA method can be seen from Table 1: (1) The number of input and output variables 

used in the existing DEA models is within a range of 4-8 with the average value of 6; (2) 

There is a big inconsistency in the utilization of output variables that most output variables 

are selected only once in the existing DEA models. The only two variables that have been 

utilized more than twice in the existing research are:  floor area (3 times) and number of 

occupants (4 times); and (3) There is also big discrepancy in the utilization of input 

variables. Energy consumption, EUI, and weather normalized EUI have all been used in 

different DEA models.  
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The variable selection process should also incorporate the factors that are important 

in the perspective of property managers, and can be adjusted accordingly based on the 

opinions from different subject matter experts.  

The output variable discrepancy can be explained by the fact that buildings in 

different industries may have different energy consumption features. Besides, the 

availability of data may also be a concern. The biggest problem here, however, is the 

discrepancy of the selection of input variables. Out of the seven existing DEA models cited 

in Table 3, three models used energy consumption (kWh for electricity) as the input, two 

models used floor area normalized energy consumption (i.e., EUI) as the input, and two 

models used weather and floor area normalized energy consumption (the weather 

normalized EUI) as the input. 

4.1.2 The Inclusion of Ratio Variables in DEA Model 

It is important to take into account that different building sizes and outdoor weather 

conditions have big influence on building energy consumption. However, simple 

normalization of energy consumption by floor area or weather conditions may violate one 

of the main assumptions in the definition of efficiency measure underlying DEA method: 

the convexity axiom (Emrouznejad and Amin, 2009).  

Let’s consider the following made-up example, shown in Table 4 and Figure 7, as 

the case when convexity axiom would be violated if EUI is included as an input variable.  
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Table 4 – Example of violating convexity axiom using EUI as input variable 

DMU building 

Energy 

consumption 

(kWh) 

Floor area 

(ft2) 

EUI 

(kWh/ft2) 

Occupants 

(number) 

B1 300 150 2 8 

B2 135 100 1.35 5 

B3 150 200 0.75 3 

As shown in Figure 8, 𝐵1 and 𝐵3 determines the efficient frontier, and 𝐵2 is an 

inefficient DMU in this case. According to convexity axiom of DEA, the convex 

combination of 𝐵2 and 𝐵3, 𝐵23 = 𝛼𝐵2 + (1 − 𝛼)𝐵3, 𝛼 ∈ [0,1] ,should also be a feasible 

solution and stands on the right hand side (R.H.S.) of the frontier. Assume 𝛼 = 0.5, we can 

calculate the convex combination of 𝐵2 and 𝐵3 based on EUI and occupants as 

𝐵23(𝐸𝑈𝐼) = 0.5 × 𝐵2(𝐸𝑈𝐼) + 0.5 × 𝐵3(𝐸𝑈𝐼) = 1.05 

𝐵23(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠) = 0.5 × 𝐵2(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠) + 0.5 × 𝐵3(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠) = 4 

However, the actual convex combination of two buildings should be calculated as 

𝐵23
∗ (𝐸𝑈𝐼) =

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐵23

𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝐵23 

=

1
2

(𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐵2 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐵3)

1
2

(𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝐵2 + 𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝐵3)

=

1
2

(135 + 150)

1
2

(100 + 200)
= 0.95 

By plotting 𝐵23 and 𝐵23
∗  in Figure 8, we see that 𝐵23 is within the feasible solution 

area, but 𝐵23
∗  is not. It is therefore concluded that the ratio variables (such as EUI) cannot 
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be utilized directly in the DEA model due to the likelihood of violating the assumption of 

the model. 

 

Figure 7 – Illustration of the convexity assumption of DEA model 

Emrouznejad and Amin (2009) provided two solutions if any variable in the DEA 

model is in the form of ratio: (i) Treat the numerator and denominator separately as input 

or output variables in the model; or (ii) Calculate the correct convex combination of the 

ratio variable to be included in the model. This research chooses to model based on the first 

recommended solution for the following two reasons: (a) Both the numerator (energy 

consumption) and denominator (floor area) of the ratio variable (EUI) in this case are 

known and it is easy to separate them; and (b) There is no reason to treat floor area 

differently from several other output variables, such as number of occupants or number of 

washing machines. For example, if energy consumption per floor area (EUI) can be utilized 
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as input variable, then why can energy consumption per capital (energy consumption / 

number of occupants) not be utilized as input variable?  

4.2 Data Error Remediation 

There are generally two types of errors in the data for DEA analysis: missing values 

or incorrect values. One of the fundamental assumptions of the original DEA method is 

that all the data required are available, because missing values cannot be handled by the 

original DEA models (Smirlis et al., 2006). Incorrect values are hazardous for DEA 

analysis when the values of input variables are unreasonably small or the values of output 

variables are unreasonably large, and either case could change the DEA frontier 

dramatically. For example, an apartment with more than 400 residents having only three 

bedrooms in the building is apparently incorrect data. However, no method of remediating 

data errors, such as missing or incorrect values in the dataset was proposed in the past by 

other research for building energy benchmarking. A simple method that has often been 

used is to deleting any instance with a missing or incorrect value and use the rest of data 

for DEA modeling, but this method is subject to two main limitations: (a) Deleting too 

many instances that affect the reliability of the DEA model; or (b) Dramatically changing 

the shape of the DEA efficient frontier by deleting potential efficient DMUs and 

consequently affecting the efficiency scores of the remaining DMUs.  

DEA is able to locate inefficient units more powerfully when the sample size 

(number of instances in the dataset) exceeds the total number of output and input variables 

(Sherman and Gold, 1985). Three criteria need to be considered in constructing a proper 

DEA model: (1) The sample size should be greater than twice the product of the number 
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of input and output variables; (2) The sample size should be greater than three times of the 

sum of the number of input and output variables; and (3) The total number of perfectly 

efficient DMUs (with score of 100) in the final results should not exceed one third of the 

sample size (Avkiran, 2006). 

Data errors can occur on both the input variable side (i.e. energy consumption) and 

the output variable side (i.e. building characteristics). Multiple linear regression technique 

can be utilized to remediate data errors on the output variable side, as the properties features 

are likely to be linearly related with each other. The linear regression technique is not 

capable of remediating data errors on the input variable side because of the limitations of 

regression method discussed in Section 2.3.2. Detailed procedures are proposed as follows: 

1. Delete DMUs with input variable data error or with more than one output 

variable data error, and keep DMUs with no error (good DMUs) or with only 

one output variable error; 

2. Separate good DMUs from DMUs with only one output variable error; 

3. Iteratively build multiple linear regression model with one output variable as 

dependent variable each time and all other output variables as independent 

variables using good DMUs 

4. For each DMU with only one output variable data error, recalculate the value 

of that output variable using corresponding regression model built in step 3 

Several concerns need to be taken into consideration when utilizing multiple linear 

regression to remediate data errors. First, buildings in the dataset need to be homogeneous; 

otherwise, the prediction power of linear regression models are limited. Second, the method 
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remediates DMUs with only one output variable error, and is not intended to remediate 

DMUs with more than one output variable error or with input variable errors, both of which 

will not be included for further analysis. Finally, linear regression models are subject to 

independent variable significance test and determination of coefficient (𝑅2) before they 

can be utilized for calculation; and insignificant independent variables should not be 

included in the model. 

4.3 Weather Influence Consideration 

Because of the significant impact of weather conditions on building energy, it is 

critical to take into account the weather effect when benchmarking building energy 

consumption, particularly if buildings are from different geographical locations. Previous 

research has utilized total degree days (TDD) as proxy of temperature related energy 

consumption when benchmarking building energy consumption (Grösche, 2009; Lu et al., 

2014; Wang et al., 2015).  

Degree-days are a common energy accounting practice, and each degree deviation 

from a predefined balance point temperature is counted as a degree-day (Amato, A.D. et 

al, 2005). It is based on a V-shape temperature energy consumption relationship as shown 

in Figure 8, and energy demand is at minimum when the temperature is at balance point as 

the outside climatic conditions produce the desired indoor temperature (Jager, 1983; Amato 

et al., 2005).  
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Figure 8 – Illustration of balance point temperature for degree days (Jager, 1983) 

When the daily average outside temperature is below the balance point temperature, 

it generates heating degree days (HDD) as it requires additional energy to heat the building 

up. On contrast, it generates cooling degree days (CDD) when the daily average outside 

temperature is above the balance point temperature as it requires additional energy to 

cooling the building down. For example, if the balance point temperature is 65oF, and the 

average daily outdoor temperatures of the week are 45oF, 50oF, 55oF, 60oF, 65oF, 70oF, and 

75oF, then the weekly HDD is 50 (20+15+10+5=50), and the weekly CDD is 15 (5+10=15). 

The TDD is defined as the summation of HDD and CDD. Most energy analyses commonly 

use a base temperature of 65oF as the balance point threshold (Amato et al., 2005), so this 

research will use 65oF as the balance point temperature.  

4.4 DEA Model Formulation 



 34 

Mathematically, DEA energy benchmarking model can be formulated following 

the linear programming technique suggested by Charnes et al. (1978) as 
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(1) 

where 𝜂0 is the DEA efficiency score of Building 0 under consideration; 𝑦𝑟𝑗,  𝑥𝑖𝑗 

(all positive) are the known outputs and inputs of the 𝑗 th building; 𝑢𝑟 , 𝑣𝑖 ≥ 0 are the 

variable weights to be determined by the solution of this problem and are constrained to be 

nonnegative in order to avoid any input or output being assigned a negative weight; 𝑛 is 

the number of buildings in the dataset; 𝑠 is the total number of outputs; and 𝑚 is the total 

number of inputs. If the solution of Model (1) is 𝜂0 = 1, then Building 0 is considered to 

be 100% efficient. 

Model (1) above, also known as the CCR model, is a nonlinear programming 

formulation of an ordinary fractional programming problem (Charnes et al., 1978), but it 
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can be equivalently transformed into a linear programming problem as follows (Cooper et 

al., 2011) 
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(2) 

4.4.1 Constant Return to Scale 

Since the advent of the CCR model, the economic connect of returns to scale (RTS) 

has been widely studied within different frameworks provided by these models (Banker et 

al., 2004). There are generally three forms of RTS: increasing returns to scale (IRS), 

constant returns to scale (CRS), and decreasing returns to scale (DRS). IRS represents 

outputs increase more than the proportional increase of inputs; CRS represents outputs 

increase proportionally as inputs increase; and DRS represents outputs increase less than 

the proportional increase of inputs.  

To relax the computation intensity, the linear programming problem in model (2) 

can be transformed into its corresponding dual form as follows 
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(3) 

where 𝜃0 is the DEA efficiency score of Building 0 that is under consideration; 𝜆𝑗 

is the decision variable of the dual problem; 𝑦𝑟𝑗,  𝑥𝑖𝑗, 𝑚, 𝑠, and 𝑛 would have the exactly 

same meaning and constraints as defined in Model (1). If the solution of Model (3) is 𝜃0 =

1, then Building 0 is considered to be 100% efficient. 
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Figure 9 – Illustration of CRS DEA model 

Model (3) is essentially looking for a virtual efficient building on the frontier for 

building 0, and compares the performance of that virtual building with building 0. Figure 

9 graphically illustrates how Model (3) works in a simplified one-input-one-output 

scenario. Assume we have building 0 with (input, output) being (5,3), and we have four 

additional buildings in the dataset for benchmarking: 𝐴 (2,2) , 𝐵 (3,5) , 𝐶 (6,7) , and 

𝐷 (9,8). Model (3) would first construct a CRS frontier (the solid line in Figure 9) by 

connecting the origin with any of 𝐴, 𝐵, 𝐶, or 𝐷 that gives the largest slope. The dashed line 

is a virtual horizontal line for illustration purpose, which starts from building 0  and 

intersects CRS frontier and output axis at 𝑌  and 𝑋 , respectively. The virtual efficient 

building, 𝑌, can then be found by scaling down the actual efficient building, 𝐵, along the 
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CRS frontier. Finally, it compares the performance of Building 𝑌 with building 0, given 

that they have the same level of output, and calculates the efficiency score of building 0 as 

  

0
0

X

XY
  (4) 

Model (4) is known as the CRS model as the frontier is constructed using only one 

single line, depicting any change of the input would change the output proportionally.  

4.4.2 Variable Return to Scale 

Based on the CRS DEA model, a variable return to scale (VRS) DEA model is 

proposed by Banker et al. (1984) as 
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(5) 
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As shown in the above equation, the VRS model has one additional constraint that 

the summation of all the lambdas is equal to 1  when compared to CRS model. This 

additional constraint limits the search of virtual efficient target to be the convex 

combination of efficient DMU’s on the frontier, rather than scaling up or down any 

individual efficient DMU.  

 

Figure 10 – Illustration of VRS DEA model 

Figure 10 graphically illustrates how Model (5) works in a simplified one-input-

one-output scenario. Assume we have the same buildings in Figure 9: building 0 (5,3), 

𝐴 (2,2), 𝐵 (3,5), 𝐶 (6,7), and 𝐷 (9,8). Model (5) would first construct a VRS frontier by 

connecting all efficient DMU’s (A, B, C, and D in this case). Again, the dashed line is a 

virtual horizontal line for illustration purpose, which starts from building 0 and intersects 



 40 

VRS frontier and output axis at 𝑌 and 𝑋, respectively. The virtual efficient building, 𝑌, can 

then be found by calculating the convex combination of building A and building B. Finally, 

it compares the performance of building Y with building 0, given that they have the same 

level of output, and calculates the efficiency score using Equation (4).  

4.4.3 Non-Controllable DEA Model 

DEA models benchmark performance based on constructing efficient DMU by the 

scaling or convex combination of existing DMUs. That scaling or convex combination, 

however, would make little sense if we have non-controllable variables such as weather 

conditions in the model, because they cannot be varied at the discretion of either property 

managers or tenants. However, those weather conditions need also be taken into 

consideration because they would make an impact on building energy consumption.  

Based on the previous CRS and VRS models, a non-controllable variable (NCN) 

model can be further expressed as (Cooper et al., 2006): 
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(6) 

where 𝑥𝑖  is the 𝑖th input variable of all DMUs; 𝑦r  is the 𝑟th output variable of all 

DMU’s; 𝑋𝐶  is the set of all controllable input variables; 𝑋𝑁  is the set of all non-

controllable input variables; 𝑌𝐶  is the set of all controllable output variables; and 𝑌𝑁 is the 

set of all non-controllable output variables. 𝐿 and 𝑈 set the lower bound and upper bound 

of the summation of weights, respectively. If 𝐿 = 0 and 𝑈 = +∞, then we have a CRS 

model; if 𝐿 = 𝑈 = 1, then we have a VRS model. Model (6) essentially treats controllable 

variables, both input and output variables, and non-controllable variables differently by 

making controllable variables scalable and non-controllable variables constant.  

4.5 Outlier Detection 
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Outliers are outlying observations that appear to deviate markedly from other 

observations of the sample in which they occur (Grubbs, F.E., 1969). One of the concerns 

about using non-parametric models, such as DEA is the existence of outliers 

(Khezrimotlagh, 2013), because they may dramatically change the shape of DEA efficient 

frontiers and give misleading efficiency scores to other non-efficient DMUs. The goal of 

identifying and removing outliers is to make the remaining DMUs more comparable and 

therefore, the efficiency scores more meaningful, as DEA is a peer-to-peer comparison 

method. There are two types of outliers that will be detected and removed: super-efficient 

and super-inefficient DMUs. 

Previously, Lu et al. (2014) and Wang et al. (2015) utilized a data cloud analysis 

method to identify outliers for DEA model to benchmark building energy. The method 

takes one variable at a time, and iteratively calculates the log ratio of data volume change 

when one or more observations are removed. The approach identifies the outlying 

observations based on the log ratio of volume change. This method, however, is subject to 

two main limitations: (a) It takes only one variable each time, which limits one of the most 

appealing advantages of DEA method that it can simultaneously consider multiple input 

and output variables (Tran et al., 2010); and (b) The identified observations are 

geographically (spatially) outlying observations but they may not necessarily be the 

outliers in the context of the DEA formulation as outliers in the DEA method are simply 

those super-efficient or super-inefficient DMUs.  

An effective and easy method to detect super-efficient outliers is suggested by Tran 

et al. (2010). Recall that parameter 𝜆𝑗 in CRS model (Model (3)), VRS model (Model (5)), 

and NCN model (Model (6)) represents the weight assigned to the 𝑗th DMU to construct 
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the virtually efficient DMU for evaluating DMU0. To find the efficiency scores of all 𝑛 

DMUs, the corresponding model needs to be solved 𝑛 times, generating an 𝑛 × 𝑛 matrix, 

𝑀𝜆, containing all the 𝜆’s as follows 
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(7) 

The 𝑖th row and 𝑗th column of 𝑀𝜆 represents the weight assigned to the 𝑗th DMU 

to construct the virtually efficient DMU for evaluating the 𝑖th DMU. Outliers that perform 

significantly better than other DMUs are the ones that would always be selected to 

construct the virtually efficient DMU. They can therefore be identified through the number 

of occurrences during the construction of virtually efficient DMU as 
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Where 1{𝜆𝑖𝑗 > 0}  is an indicator function and it returns 1 if 𝜆𝑖𝑗 > 0  is true; 

otherwise 0. The outliers can also be identified through the cumulative weight during the 

construction of virtually efficient DMU as 
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Outliers are DMUs performing significantly better than their peers, so they are the 

ones with surprisingly high number of occurrences and value of cumulative weight. After 

each time running the model and calculating the corresponding 𝐶𝑗 and 𝑆𝑗 (𝑗 =  1, … , 𝑛), 

the DMU with 𝐶𝑗 and 𝑆𝑗 higher than certain thresholds would be identified as the outlier 

and be removed from the dataset. Although the thresholds can be subjective and were not 

discussed in the literature proposing this method, potential thresholds will be suggested in 

a later chapter. The process stops once a desired degree of convergence in the weights has 

been reached (Tran et al., 2010).  

After those super-efficient DMUs are identified and removed, significant increases 

of the efficiency scores of most DMUs are expected. We can re-run the DEA model based 

on the rest of data and try to identify the other type of outliers, those super-inefficient 

DMUs. This can be done by checking the efficiency scores of all DMUs in the rest of data, 

and those very low scores, for example 0.2 or less, are suspicious and can be identified as 

super-inefficient outliers (Cooper et al., 2011). 

4.6 Efficiency Analysis 

Three different efficiencies can be generally produced and analyzed via DEA model 

when benchmarking building energy consumption: overall efficiency, pure technical 

efficiency, and scale efficiency (Chauhan et al., 2006; Lee, 2008; Lee and Lee, 2009; Wang 

et al., 2015). Figure 11 illustrates how each efficiency is calculated using the same example 

shown in Figure 9 and Figure 10: building 0 (5,3), 𝐴 (2,2), 𝐵 (3,5), 𝐶 (6,7), and 𝐷 (9,8). 
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Figure 11 – Illustration of different efficiency scores in DEA model 

In Figure 11, two solid lines represents the CRS efficient frontier and VRS efficient 

frontier, respectively, which is the same as shown in Figure 9 and Figure 10. Again, the 

dashed line is a virtual horizontal line for illustration purpose, which starts from building 

0 and intersects VRS frontier, CRS frontier, and output axis at 𝑍, 𝑌, and 𝑋, respectively. 

All three types of efficiencies can then be calculated as follows (Chauhan et al., 2006; Lee, 

2008; Lee and Lee, 2009; Wang et al., 2015): 
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Overall efficiency is a measure by which DMUs are evaluated for their performance 

relative to the best DMU in the comparison pool, and its value is influenced by scale 

efficiency (Chauhan et al., 2006). Scale efficiency represents the efficiency level in terms 

of scale of economics. Pure technical efficiency is the efficiency that has the scale influence 

removed, and it generally represents the efficiency level of management practices. Each of 

the above three efficiency scores has a range of 0 to 100%, and the higher the efficiency 

score, the more efficient the performance. A DMU receiving 100% efficiency score is an 

efficient DMU, and one receiving less than 100% is inefficient.  

The relationship among the three efficiencies is given as (Chauhan et al., 2006; Lee, 

2008; Lee and Lee, 2009): 

    efficiency Scale  efficiency  technicalPure efficiency Overall   (11) 

In the context of building energy benchmarking, pure technical efficiency 

represents the goodness of management practices. Namely, higher pure technical efficiency 

score means that the facility manager is managing the property in a more energy-efficient 

manner. Scale efficiency represents the level of energy efficiency in terms of the scale of 

the building, such as the floor area of the building and number of bedrooms in a building. 

In fact, the efficiency score calculated from the CRS model is overall efficiency, 

and the one calculated from the VRS model is pure technical efficiency. Scale efficiency 

can therefore be derived as overall efficiency divided by pure technical efficiency.  

4.7 Window Analysis 
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Input variables of DMUs in this study are the energy consumptions of buildings 

over multiple time periods (months), and it is likely that the performance of a particular 

building varies a lot from time to time. Window analysis is therefore often suggested to 

measure the sensitivity and stability of efficiency scores of DMUs when dealing with time 

series data. 

Let 𝑛  be the number of DMUs to be analyzed, 𝑇  be the total number of time 

periods, and 𝑘 (𝑘 ≤ 𝑇) be the window size, i.e. the number of periods in each window. The 

number of windows, 𝜔, can be therefore calculated as 𝜔 = 𝑇 − 𝑘 + 1, and the number of 

DMUs in each window can be calculated as 𝑛𝑘. Table 5 shows an example of creating 

window analysis on DMUs with 𝑇 = 12 periods (months) from January 2009 to December 

2009, 𝑘 = 3, and therefore 𝜔 = 10.  
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Table 5 – Periods corresponding to each window in DEA window analysis 

Windows Periods Corresponding to Each Window 

Window 1 Jan-09 Feb-09 Mar-09          

Window 2  Feb-09 Mar-09 Apr-09         

Window 3   Mar-09 Apr-09 May-09        

Window 4    Apr-09 May-09 Jun-09       

Window 5     May-09 Jun-09 Jul-09      

Window 6      Jun-09 Jul-09 Aug-09     

Window 7       Jul-09 Aug-09 Sept-09    

Window 8        Aug-09 Sept-09 Oct-09   

Window 9         Sept-09 Oct-09 Nov-09  

Window 10          Oct-09 Nov-09 Dec-09 



 

 49 

For each window, DMUs are not only compared with other DMUs in the same 

window, but also with DMUs from other periods. For instance, in Window 1, DMU 1 in 

period of Jan-09 is not only compared with the other 𝑛 − 1 DMUs in period of Jan-09, but 

also compared with itself and the other 𝑛 − 1 DMUs in periods of Feb-09 and Mar-09. 

With that being said, the model would consider there are 𝑛𝑘 DMUs in each window and 

treat the same DMU from different periods as different DMUs. In window analysis, a DMU 

that is efficient in most periods, regardless of the window, is likely to be truly efficient 

relative to other DMUs. On the contrast, a DMU that is only efficient in certain periods of 

certain windows may be efficient because of external circumstances (Yue, 1992).  

Results of window analysis can be presented in the format shown in Table 5, with 

each period replaced by the efficiency score for that period. In Table 5, each period from 

Mar-09 to Oct-09 would have three efficiency scores calculated from three different 

windows, and the average of those three efficiency scores can be taken to reflect the level 

of efficiency for that period. Several other statistics, such as average, standard deviation, 

range, etc. across the entire period (twelve months in this case) can also be calculated to 

reflect the sensitivity and stability of efficiency scores of DMUs. 

An important parameter in window analysis is the determination of the window 

size. If the window size is too small, there may not be enough DMUs analyzed in the 

current window period and thus not enough discrimination in the results. On the other hand, 

if the window size is too large, DMUs may become not comparable because significant 

changes may have occurred in a wide range of period (Cooper et al., 2011). Unfortunately, 

there is no current theory supports the determination of window size (Cullinane et al., 
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2004), and a commonly utilized window size is three periods (Yue, 1992; Cullinane et al., 

2004). The same window size of three periods is also chosen for this research. 
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CHAPTER 5. RESULSTS AND INTERPRETATION 

5.1 Dataset and Variable Selection 

The proposed approach is applied to a dataset provided by a utility management 

and energy service company in the multifamily housing industry. It contains the 

information about both building characteristics and energy consumption of 124 low-rise 

(1-4 floors) multifamily properties in 15 different states in the United States, such as 

Georgia, North Carolina, and Virginia.  

Based on the literature review on variable selection for all DEA models applied to 

different building types when benchmarking energy efficiency, it is found that two output 

variables are commonly utilized in DEA models for building energy benchmarking: total 

floor area and the number of occupants. Those two variables would also be selected for 

this research. According to consultation with industrial experts and data provider, four 

additional output variables are also selected to be included in this research: number of 

apartments, number of bedrooms, number of washing machines, and number of parking 

spaces.  

Of course, the input variable, energy consumption, should also be included. Energy 

consumption data includes 12 monthly electricity usage of each property from January 

2009 to December 2009. One thing to notice is that this research would not utilize EUI, 

which is commonly used in previous research (Önüt and Soner, 2006; Lee and Lee, 2009; 

Lu et al., 2014; and Wang et al., 2015), as an input variable due to the fact that including 

any ratio variable may violate the convexity assumption of DEA model as discussed in 
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Section 4.1. This research would rather treat monthly energy consumption as input variable 

and floor area as output variable. Table 6 summarizes major statistics of input and output 

variables to be included in this research. 

Table 6 – Summaries of major statistics of input and output variables  

 Minimum Mean Std. Dev. Maximum 

Input variable     

Monthly energy (Kwh) 370 68,002 228,278 3,787,374 

Output variable     

Total floor area (SF) 42,850 376,369 252,070 1,699,453 

# of residents 83 706 737 5,500 

# of apartments 80 335 214 2,346 

# of bedrooms 1 541 309 2,530 

# of parking spaces 25 560 300 1,872 

# of washing machines 1 261 155 936 

As Table 6 suggests, there is a wide range of values for both input and output 

variables. Particularly, there are instances in the dataset that do not make any sense and 

cannot be directly used by DEA model for building energy benchmarking. For example, a 

property with 386 residents inside has only one bedroom. Further steps of remediating data 

errors are therefore needed and will be conducted in the next section.  

5.2 Data Errors Remediation 

To give more detailed information about how many DMUs are good or problematic, 

and further how many problematic DMUs can be remediated, we classify all DMUs in the 

dataset into four categories based on the discussion in Section 4.1: good DMUs, DMUs 

with input data errors, DMUs with only one output data error, and DMUs with more than 
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one output data errors. Table 7 outlays the number of DMUs in each of those four 

categories before remediating data errors. Recall that DMUs in category three, i.e. with 

only one output data error, are the ones we are trying to remediate.  

Table 7 – Number of DMUs in each category before remediating data errors 

 Number of DMUs 

Total DMUs 124 

Good DMUs 89 

DMUs with input data errors 15 

DMUs with only one output data error 19 

Data error with # of washing machines 18 

Data error with # of bedrooms 1 

DMUs with more than one output data errors 1 

As shown in Table 7, DMUs with only one output data error either have error in 

the number of washing machine or the number of bedrooms. The regression model that 

treats the number of washing machines as the dependent variable and all other output 

variables as independent variables using good DMUs is: 

 NANWM  00.174.23  (12) 

where 𝑁𝑊𝑀 is the number of washing machines, and 𝑁𝐴 is the number of apartments. 

Other output variables are not selected in the regression model because they are not 

significant (i.e. p-values are > 0.05). The p-value of 𝑁𝐴 in this model is < 0.001, and 

𝑅2 = 0.84. 
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The regression model that treats the number of bedrooms as the dependent variable 

and all other output variables as independent variables using good DMUs is: 

 NRNPSNANB  13.016.027.154.45  (13) 

where 𝑁𝐵 is the number of bedrooms, 𝑁𝐴 is the number of apartments, 𝑁𝑃 is the number 

of parking spaces, and 𝑁𝑅  is the number of residents. Other output variables are not 

selected in the regression model because they are not significant (i.e. p-values are > 0.05). 

The p-value of 𝑁𝐴 in this model is < 0.001, of 𝑁𝑃𝑆 in this model is 0.003, of 𝑁𝑅 in this 

model is < 0.001, and 𝑅2 = 0.89. 

Because 𝑅2 values are high and independent variables are significant in both linear 

regression models, they can be utilized to remediate data errors. Table 8 outlays the number 

of DMUs in each of the four categories after remediating data errors. 

Table 8 – Number of DMUs in each category after remediating data errors 

 Number of DMUs 

Total DMUs 124 

Good DMUs 108 

DMUs with input data errors 15 

DMUs with only one output data error 0 

DMUs with more than one output data errors 1 

The process of data error remediation is in fact the process of building linear 

regression model and using the built model for prediction, which is computationally 

efficient and can be done in polynomial time. 
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5.3 Model Formulation 

As shown in Figure 11, properties in the dataset for this research are from different 

states in the U.S., so the weather influence on building energy consumption needs to be 

taken into consideration as discussed in Section 4.3. Monthly TDD data of each property 

is collected from weather data depot (WDD, 2016) by specifying the zip code for each 

property and fixing the balance point temperature at 65oF.  

The complete data set for DEA model of this research has eight variables in total, 

including one input variable and seven output variables. Table 9 summarizes major 

statistics of all variables to be included in the DEA model for this research. 

Table 9 – Summaries of major statistics of input and output variables of this 

research  

 Minimum Mean Std. Dev. Maximum 

Input variable     

Monthly energy (Kwh) 370 71,546 238,188 3,787,374 

Output variable     

Total floor area (SF) 42,850 339,653 148,359 900,000 

# of residents 83 704 662 4,477 

# of apartments 80 314 123 936 

# of bedrooms 118 531 268 2,520 

# of parking spaces 25 563 299 1,872 

# of washing machines 25 292 133 936 

Monthly TDD 93 403 204 1,547 

The reason energy consumption is modeled as an input variable is based on the 

principal of DEA modeling that variables need to be minimized are input variables and 

variable need to be maximized are output variables. By using DEA model for building 
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energy benchmarking, we are either trying to minimize the building energy consumption 

while maintaining the same level of scale (such as floor area), or we are trying to maximize 

the scale while maintaining the same level of energy consumption.  

Both CRS NCN DEA and VRS NCN DEA models are utilized in this research to 

calculate the corresponding efficiency scores of each DMU in each period as discussed in 

Section 4.4 and Section 4.6. Monthly TDD would be treated as an non-controllable output 

variable, or 𝑌𝑁 in model (6), and all other variables would be treated as controllable input 

or output variables.  

Both CRS NCN DEA and VRS NCN DEA models are linear programming 

problems, and they are modeled in Excel and solved by Excel Solver in this research. The 

Excel Solver solves linear programming problems using Simplex algorithm, which is a fast 

and efficient algorithm for solving linear programming problems. The model should 

iteratively choose one property as the target DMU at a time, and should run through the 

entire period (twelve months in this research). 

5.4 Outlier Detection 

Based on the discussion in Section 4.5, super-efficient outliers are DMUs with large 

number of occurrences and high cumulative weight when constructing the virtually 

efficient DMU, as shown in Equation (8) and Equation (9), respectively. 𝑀𝜆, as shown in 

Equation (7), would be calculated after running the DEA model. Table 10 summarizes the 

number of occurrences and cumulative weight of potential outlying DMUs, those that are 

referenced at least once to construct the virtually efficient DMU.  
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To detect real outliers, thresholds for number of occurrences and cumulative weight 

need to be set up. DMUs having both numbers higher than the thresholds are identified as 

outliers. Although Tran et al. (2010) did not specify the thresholds in their research, I would 

suggest utilize median plus 2x standard deviation as the threshold. Any DMU with both 

number of occurrences and cumulative weight higher than median plus 2x standard 

deviation can be considered as significantly larger than the vast majority, and can therefore 

be identified as an outlier. Notice that the threshold criteria are not unique, and I am just 

suggesting one possible solution. The reason I chose median instead of average is that any 

extremely large number can increase the average significantly.  

Table 10 – Summary of potential outlying DMUs for January 2009 

DMU 
Number of 

occurrences 
Cumulative weight 

3 61 20.97 

5 46 8.80 

18 11 2.34 

30 5 1.59 

59 4 2.40 

63 8 3.55 

66 1 1.00 

67 11 4.15 

69 2 1.68 

70 20 3.74 

73 29 9.45 

75 1 1.00 

79 2 1.29 

80 3 1.72 

102 88 41.78 

104 2 1.58 
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Table 11 – Threshold criteria to detect outliers for January 2009 

 
Number of 

occurrences 
Cumulative weight 

Median 6.50 2.37 

Std. Dev. 25.55 10.66 

Median + 2x Std. Dev. 57.59 23.69 

 

Table 11 summarizes the threshold for number of occurrences and cumulative 

weight to detect outliers in January 2009. Based on those thresholds, one DMU in Table 

10 can be identified as outliers: DMU 102, which has both the number of occurrences and 

cumulative weight higher their respective thresholds. Recall that energy consumption in 

this research is a time series, and has data from January 2009 to December 2009 for twelve 

months. Outliers therefore need to be removed every month. The process should be 

repeated for every month, and each time should incorporate the energy consumption and 

TDD of that particular month for outlier identification and removal.  

After repeating the outlier detection process twelve times, 15 outliers were detected 

and removed from the original 108 DMUs, leaving 93 DMUs for further analysis. Recall 

our discussion in Section 4.5 that the above process identifies super-efficient outliers only, 

and the other type of outliers, the super-inefficient outliers, can be identified by choosing 

DMUs with efficiency score smaller than 0.2 (Cooper et al., 2011). So 76 DMUs are 

eventually left for comparison and efficiency score analysis. 
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Figure 12 shows the efficiency scores of all 108 DMUs before outliers are detected 

and removed in January 2009. As the figure shows, around 1/4 of DMUs are scored under 

10%, and around 1/3 DMUs are scored under 20%. Those scores do not really mean that 

half of the properties did a very bad job in terms of building energy consumption, but it 

simply indicates that some super-efficient properties are in the dataset and are utilized as 

benchmark to measure the performance of other properties. This is not supposed to be the 

case as DEA is a peer-to-peer comparison tool, and DMUs included in the DEA model 

need to be comparable, namely no DMU is super-efficient or super-inefficient, or the 

resulting efficiency scores are otherwise misleading and useless.  
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Figure 12 – Efficiency scores of all DMUs before outlier detection in January 2009 

 

Figure 13 – Efficiency scores of all DMUs after outlier detection in January 2009 
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Figure 13 shows the efficiency scores of all 78 DMUs after outliers are detected 

and removed in January 2009. As the figure shows, no DMU receives a score below 20%, 

and more than 80% DMUs receive scores above 40%. The vast majority DMUs receive 

scores between 40% and 90%. One thing to notice is that it is important to do sanity check 

and make sure that the size of the new data set after removing outliers is large enough based 

on the three rules of thumb discussed in Section 4.2. Notice that only 32 DMUs are 

removed as outliers throughout the entire outlier detection process, but at least 39 DMUs 

(around 1/3 of the number of DMUs in Figure 12) would have otherwise been removed 

because of their super low efficiency score (under 20%) if we did not conduct outlier 

detection. 

Recalling the three rules of thumb when checking sample size, it compares the 

number of DMUs in the dataset with the number of input and output variables. There are 

76 DMUs in the final dataset, one input variable, and seven output variables. The sample 

size is greater than twice the product of the number of inputs and output, and it is also 

greater than three times the sum of the number of inputs and outputs. By further checking 

Figure 13, it is clear that the number of efficient DMUs does not exceed one third of the 

sample size. So the final dataset after outlier detection and removal satisfies the conditions 

previously mentioned and it can be used for further analysis.   

The outlier detection and removal is based on the results of model formulation as 

discussed in Section 5.3, and the additional computational load is the calculation of both 

thresholds and identification of outliers, both of which can be done in polynomial time. 

The process identifies and removes DMUs that are either super-efficient or super-

inefficient, making the rest of DMUs more comparable and appropriate for peer-to-peer 
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comparison, as suggested in Figure 12 and Figure 13. Without out the outlier removal 

process, some extreme outcomes may be generated in the later efficiency analysis section, 

such as an outcome with only a very small portion of DMUs reaching 100% efficiency, 

while the vast majority of DMUs are scored under 20% efficiency.  

5.5 Efficiency Analysis 

According to the discussion in Section 4.6, three types of efficiency scores can be 

generated from the DEA model and analyzed: overall efficiency, pure technical efficiency, 

and scale efficiency.  
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Figure 14 – Distribution of three efficiency scores for all properties in January 2009 

Figure 14 shows the distribution of three efficiency scores for all properties in 

January 2009. Around 25% of properties have a pure technical efficiency score higher than 

80%, and more than 45% of properties have a pure technical efficiency score higher than 

60%. From the scale efficiency perspective, around 60% of properties have a scale 

efficiency score higher than 80%, and around 70% of properties have a scale efficiency 

score higher than 60%.  

The distribution of three efficiency scores from February 2009 to December 2009 

are also plotted and presented in Appendix A. Similar conclusions can be made from those 

of January 2009, which tells that the energy efficiency of properties under management are 

stable in general. 
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Figure 15 – Relationship between pure technical efficiency and overall efficiency in 

January 2009 

Figure 15 reveals the relationship between pure technical efficiency and overall 

efficiency. It is clear to see that there is an up-trending relationship, and the correlation 

between them is 0.84, which means a higher pure technical efficiency would generally 

suggest a higher overall efficiency.  

Figure 16 reveals the relationship between scale efficiency and overall efficiency. 

It can still be seen that there is an up-trending relationship, and the correlation between 

them is 0.30, which means a higher scale efficiency would generally suggest a higher 

overall efficiency. 
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Figure 16 – Relationship between scale efficiency and overall efficiency in January 

2009 

 

Figure 17 – Relationship between pure technical efficiency and scale efficiency in 

January 2009 
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Although both scale efficiency and pure technical efficiency would have an impact 

on overall efficiency, the correlation between pure technical efficiency and overall 

efficiency is much larger than that between scale efficiency and overall efficiency, which 

implies poor energy efficiency is largely attributed to poor energy management. 

Figure 17 reveals the relationship between pure technical efficiency and scale 

efficiency. There is a slight downward trending relationship, and the correlation between 

them is -0.25, which means a higher scale efficiency would generally suggest a slightly 

lower pure technical efficiency. Additionally, the scattered plot also verifies one of the 

observation we had from Figure 14, that most buildings have a very high scale efficiency.  

In fact, the relationships between those three efficiency scores found in this research 

are consistent with previous research (Lee and Lee, 2009).  
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Figure 18 – Relationship between three efficiency scores from January 2009 to 

December 2009 

Figure 18 reveals the relationship between all three efficiency scores from January 

to December. The correlation between overall efficiency and pure technical efficiency is 

around 0.8; the correlation between overall efficiency and scale efficiency is between 0.4 

and 0.6; and the correlation between pure technical efficiency and scale efficiency varies 

between -0.3 to 0.1 and the correlation is negative for most time. The relationship makes 

sense in general because recall that overall efficiency is calculated by the product of pure 

technical efficiency and scale efficiency.   
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Figure 19 – Three efficiency scores of DMU 19 from January 2009 to December 

2009 

Figure 19 shows all three efficiency scores of DMU 19 from January 2009 to 

December 2009. It shows that DMU 19 had stable values for all three efficiency scores. 

The scale efficiency fell between 0.8 and 1, and both pure technical efficiency and overall 

efficiency fell between 0.6 and 0.8 for most time. The scale efficiency was relatively more 

stable across the entire period. It is interesting to find scale efficiency scores of most 

properties are relatively more stable than the other two efficiency scores, and they usually 

fall in between 80% and 100%. This actually makes intuitive sense because scale efficiency 

actually reflects the level of efficiency in terms of scale of building, which is generally 

supposed to be stable and unlikely to change from month to month. 
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Figure 20 – Three efficiency scores of DMU 3 from January 2009 to December 2009 

The knowledge of efficiency scores over time provides valuable insight about the 

energy performance of properties. For example, Figure 20 illustrates all three efficiency 

scores of DMU 3 from January 2009 to December 2009. It shows that DMU 3 generally 

performed very well across the entire period with pure technical efficiency at 100% across 

the entire period, which means that the management practice of DMU 3 in terms of energy 

consumption is excellent. However, its overall efficiency showed some volatility and 

dropped to around 20% in December, resulting a corresponding drop of its scale efficiency 

score, meaning that there are some other DMUs reaching a more significant performance 

improvement in the summer season. 

As the DEA is a peer-to-peer benchmarking method, the performance of one DMU 

in the model is dependent on its relative performance compared with the efficient frontier. 

Adding one DMU to the existing data may or may not change the shape of the frontier. If 
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the added DMU does not change the frontier shape, then it is safe to run the model as it is 

and there is no need to rebuild the model. However, if the added DMU changes the frontier 

shape, then the model needs to be rebuilt and the efficiency scores of all other DMUs may 

also change accordingly. One easy and quick way to check whether model rebuild is needed 

is to evaluate the added DMU using the existing model, and if the efficiency score of the 

added DMU is less than 100%, then model rebuilt is not needed.  

5.6 Window Analysis 

As previously discussed in Section 4.7, there is a deterministic linear relationship 

between the number of windows and the size of each window. However, there is no current 

theory supports the determination of window size (Cullinane et al., 2004), and a commonly 

utilized window size is three periods (Yue, 1992; Cullinane et al., 2004). The same window 

size of three periods is also chosen for this research and the results window analysis can be 

presented in a similar format shown in Table 5. 

To be consistent with previous efficiency analysis and for better comparison, I 

selected the same DMUs for window analysis, and Table 12 and Table 13 show the results 

of window analysis for DMU 19 and DMU 3, respectively. One thing to notice is that the 

efficiency score in window analysis for a certain period should not exceed that in efficiency 

analysis for the same period. This is simply because the efficiency score can only decrease 

or remain the same by incorporating more DMUs into analysis. 

Several statistics can be analyzed from window analysis. The average efficiency 

score of each property for each month and for the entire period can be calculated to show 

how well it performs in each month and for the entire year. Note that the moving average 
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is not as good as simple average as it mixes efficiency scores from different months and 

does not show the performance at a given time. The standard deviation of efficiency scores 

can also be calculated, and it shows the volatility of performance of a particular property. 

Finally, the range of efficiency scores can be utilized to give an overview of how widely 

the scores are distributed. 

The interpretation of scores in window analysis is essentially the same with that 

from efficiency analysis. For example, as shown in Table 13, DMU 3 was scored 51.5% in 

December 2009. It means that DMU 3 was 51.5% efficient among all other DMUs for the 

month of December 2009. The other way to understand can be that the most efficient 

property consumes only 51.5% of the energy DMU 3 consumed in December 2009, and its 

scale is at least as large as that of DMU 3. 
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Table 12 – Results of pure technical efficiency window analysis for DMU 19 

Windows Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Jul-09 Aug-09 Sept-09 Oct-09 Nov-09 Dec-09 

Window 1 53.89% 53.73% 53.73%          

Window 2  52.39% 52.82% 68.72%         

Window 3   52.43% 67.44% 62.41%        

Window 4    67.66% 65.01% 65.41%       

Window 5     68.65% 65.49% 62.85%      

Window 6      72.57% 64.29% 66.61%     

Window 7       63.25% 66.11% 83.31%    

Window 8        66.97% 76.53% 71.80%   

Window 9         70.97% 67.89% 67.42%  

Window 10                   69.03% 66.75% 63.73% 

Average 53.89% 53.06% 52.99% 67.94% 65.36% 67.82% 63.46% 66.56% 76.94% 69.57% 67.09% 63.73% 

Mean SD LDY LDP          

65.00% 7.31% 12.34% 30.92%          

Notes: Mean (average score for the twelve month period) 

 SD (standard deviation for the period) 

 LDY (largest difference between scores in the same month) 

 LDP (largest difference between scores across the entire period) 
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Table 13 – Results of pure technical efficiency window analysis for DMU 3 

Windows Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Jul-09 Aug-09 Sept-09 Oct-09 Nov-09 Dec-09 

Window 1 100% 100% 100%          

Window 2  100% 100% 100%         

Window 3   100% 100% 100%        

Window 4    100% 100% 79.46%       

Window 5     100% 88.43% 83.28%      

Window 6      100% 89.50% 94.67%     

Window 7       81.61% 93.04% 100%    

Window 8        93.96% 100% 100%   

Window 9         100% 98.75% 87.57%  

Window 10                   100% 84.67% 51.50% 

Average 100% 100% 100% 100% 100% 89.30% 84.80% 93.89% 100% 99.58% 86.12% 51.50% 

Mean SD LDY LDP          

94.21% 10.40% 20.54% 48.50%          

Notes: Mean (average score for the twelve month period) 

 SD (standard deviation for the period) 

 LDY (largest difference between scores in the same month) 

 LDP (largest difference between scores across the entire period) 
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Figure 21 – Average pure technical efficiency score of DMU 19 from window 

analysis between January 2009 and December 2009 

The monthly average pure technical efficiency score of DMU 19 from window 

analysis is plotted in Figure 21, and follows similar trend as shown in Figure 19. The 

efficiency score is relatively stable across the entire period. The mean efficiency score of 

DMU 19 is 65.00%, and its standard deviation is 7.31%. The largest difference in one 

month is 12.34%, which happened in September 2009. The largest difference across the 

entire period is 30.92%, which happened between February 2009 and September 2009. 

Those two differences mean that the efficiency score of each month is relatively stable, but 

the performance across the entire period is relatively volatile.  
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Figure 22 – Average pure technical efficiency score of DMU 3 from window analysis 

between January 2009 and December 2009 

The monthly average pure technical efficiency score of DMU 3 from window 

analysis is plotted in Figure 22. Different from DMU 19, the window analysis results show 

some information different from the trend as shown in Figure 20. In Figure 20, the pure 

technical efficiency of DMU 3 is 100% across the entire period, which means the 

management practice was excellent all year long. Although the efficiency scores shown in 

window analysis are still pretty high, volatilities occur. Particularly in December 2009, the 

pure technical efficiency score dropped to around 50%. The mean efficiency score of DMU 

3 is 94.21%, and its standard deviation is 10.40%. The largest difference in one month is 

20.54%, which happened in June 2009. The largest difference across the entire period is 

48.50%, which happened between the first five months of 2009 and December 2009.  

Compared with DMU 19, DMU 3 has a higher average efficiency score but a higher 
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standard deviation as well. It represents that DMU 3 is generally more efficient than DMU 

19, but December 2009 needs be to further examined to find why significant efficiency 

score drop happened in that month.  
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CHAPTER 6. CONCLUSIONS 

This chapter intends to summarize and offer concluding remarks for this research. 

Particularly, it addresses the research objectives presented in Chapter 3. Major findings of 

the research, limitations of the research, and future areas of this research for further 

expansion are also discussed in this chapter. 

6.1 Concluding Remarks 

This research proposed a new DEA-based approach for benchmarking energy 

efficiency in buildings in the multifamily sector and addressed the major limitations of 

existing DEA models. Five research objectives were presented in Chapter 3, and these 

research objectives and a summarized discussion for each of them are presented as follows: 

Research objective 1: To find a method that remediates missing or incorrect values 

for instances in the dataset 

A method utilizing multiple linear regression technique was proposed in this 

research to remediate data errors, such as missing or incorrect values. 20 DMUs 

with only one output error were remediated, and they can be utilized for further 

efficiency analysis instead of being deleted.  

Research objective 2: To establish a mechanism that accurately and effectively 

detects outliers in the dataset 

A mechanism based on the occurrence and cumulative weight of each DMU 

when constructing the virtually efficient DMUs was proposed in this research to 
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detect super-efficient outliers in the dataset. Different from traditional outlier 

detection method, such as data cloud analysis, the proposed method considers all 

input and output variable at the same time, and identifies outlier based on its impact 

on the efficient frontier. Super-inefficient outliers are also taken into consideration 

in this research. 

Research objective 3: To select appropriate variables to be included in the DEA 

model and provide justification for the selection 

Although the appropriateness of variable selection is hard to be tested (Hui 

and Wan, 2013), three principles to of variable selection for DEA method were 

proposed in this research: literature review, consultation of industrial expert, and 

consideration of DEA assumptions. Most important, this research pointed out that 

EUI, a commonly used input variable in past research, is not an appropriate variable 

to be included in the model with corresponding justifications provided as well. 

Research objective 4: To build up a DEA model that differently handles 

controllable variables and non-controllable variables 

One of the common limitation of past research is to treat controllable and 

non-controllable variables of DEA model in the same way. A DEA model that 

handles the two types of variables different is proposed in this research. This makes 

very much realistic sense because non-controllable variables, such as weather 

impact, are simply out of property mangers’ control and are therefore not a factor 

can be scaled up or scaled down. 
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Research objective 5: To quantitatively measure the stability of efficiency scores 

of each DMU across the entire period 

Window analysis is introduced and implemented in this research to measure 

the stability and sensitivity of efficiency scores of DMUs across the entire period. 

As the results shown in Chapter 5.6, efficiency scores are subject to change when 

the performance of other DMUs are changing, and window analysis provides 

information of how stable the currently received efficiency score actually is. 

The new DEA model is applied to benchmark energy efficiency in 124 buildings in 

the multifamily sector considering factors representing total energy consumption, building 

characteristics, and local weather conditions. This research contributes to the state of 

practice through providing a new energy benchmarking tool to facility managers and 

building owners that strive to relatively rank the energy-efficiency of their properties and 

identify low-performing properties as investment targets to enhance energy efficiency. 

The entire modeling and analytical process is conducted in Excel, making it easier 

for facility managers and building owners to replicate the process and benchmarking 

properties under their management by themselves. The variables to be selected in the model 

can be adjusted according to different variable selection priority and data availability. 

6.2 Limitations 

One limitation of the proposed research is on variable selection. As mentioned in 

both Section 4.1 and Section 5.1, variable selection of this research is based on literature 

review and subject matter experts’ opinions. But the final decision of variable selection is 
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limited by the data availability. For example, the type and number of HVAC system in the 

building is an important factor that can influence building energy efficiency, but it was not 

selected in this research due to data unavailability. 

Because DEA method is a peer-to-peer comparison, it does not create a fixed 

parametric model for benchmarking purpose, and the shape of the efficient frontier 

identified by the method is also subject to change as new data points come in. This feature 

of DEA method can create concerns as DMUs are not always compared with the same 

efficient frontier, but reasonable justifications can also be provided that each DMU is 

always compared with the top performers (efficient frontier) within its peer group. On the 

other hand, the regression method creates the regression model as a fixed baseline for 

benchmarking purpose, and building energy efficiency is evaluated based on its relative 

performance to that fixed baseline.  

One limitation of using a fixed baseline, such as a regression model as adopted by 

Energy Star Portfolio Manager, for benchmarking purpose is that it is still unclear how 

often the fixed baseline should be updated. As Energy Star Portfolio Manager creates 

regression model based on survey data provided by an external organization, the update of 

the fixed baseline is also limited by data availability. The other limitation of using a fixed 

baseline is that property managers are not sure whether the appropriate selection process is 

taken to select a peer group of properties for benchmarking, and whether their properties 

are really evaluated against similar properties.  

6.3 Future Research 
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As previously mentioned, the proposed research is limited by data availability. 

Therefore, one area of future work is to collect more data and try adding different relevant 

variables to enhance the quality of the model. Potential variables can be primarily classified 

into two folds: features of property and features of tenants. On the property side, variables 

may include property age, number of bathrooms, number of clothes dryers, number and 

type of HVAC system, number and type of lightening, etc., as these are the factors that 

would have large impact on building energy consumption. On the tenant side, variables 

may include occupancy rate, i.e. the presence and number of occupants, which is one of 

the most factors important energy efficiency of HVAC systems (Yang and Becerik-Gerber, 

2016). More interestingly, it can also consider the factor of human social behavior on 

building energy efficiency, which represents a significant untapped potential for end-use 

building energy efficiency improvement (Lopes et al., 2012). 

Another area of future work is to explore the reasons of significant efficiency 

change. As in the example of DMU 3 represented in Section 5.5, the analytical results 

suggest that overall efficiency score dropped and experienced significant volatilities in 

December 2009. It was further inferred that it might be because other DMUs had significant 

improvements in that month and the increase of energy consumption for DMU 3 is more 

significant than its peers as the weather gets cold. But the influencing factors behind the 

analytical results remain undiscovered and discussions and interviews with the property 

manager are further needed. 
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APPENDIX A. EFFICIENCY SCORE DISTRIBUTION BETWEEN 

FEBRUARY AND DECEMBER 

This appendix shows results of the number of properties for three efficiency scores 

in different ranges for the rest of the year, namely from February 2009 to December 2009. 

In fact, several other results can also be presented such as efficiency score at individual 

property level from time-series perspective. I find this efficiency score distribution 

particular important because it provides the property manager an overview of all properties 

under management from time-series perspective. 

 

Figure A1 – Number of properties for three efficiency scores in different ranges in 

February 2009 
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Figure A2 – Number of properties for three efficiency scores in different ranges in 

March 2009 

 

Figure A3 – Number of properties for three efficiency scores in different ranges in 

April 2009 
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Figure A4 – Number of properties for three efficiency scores in different ranges in 

May 2009 

 

Figure A5 – Number of properties for three efficiency scores in different ranges in 

June 2009 
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Figure A6 – Number of properties for three efficiency scores in different ranges in 

July 2009 

 

Figure A723 – Number of properties for three efficiency scores in different ranges in 

August 2009 
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Figure A8 – Number of properties for three efficiency scores in different ranges in 

September 2009 

 

Figure A9 – Number of properties for three efficiency scores in different ranges in 

October 2009 
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Figure A10 – Number of properties for three efficiency scores in different ranges in 

November 2009 

 

Figure A11 – Number of properties for three efficiency scores in different ranges in 

December 2009 
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