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A Fingerprint Method for Variability and
Robustness Analysis of Stochastically Controlled

Cellular Actuator Arrays
David L. MacNair and Jun Ueda

Abstract— This paper presents a “Fingerprint Method” for
modeling and subsequently characterizing stochasticallycon-
trolled actuator arrays. The actuator arrays are built from
small actuator cells with structural elasticity. These cells are
controlled using a bistable stochastic process wherein allcells
are given a common input probability (control) value which
they use to determine whether to actuate or relax. Arranging
the cells in different networks gives different actuator array
properties, which must be found before the actuator arrays can
be applied to manipulators. The fingerprint method is used to
describe and automatically generate every possible stochastic
actuator array topology for a given number of cells, and to
calculate actuator array properties such as: travel, required
actuator strength/displacement, force range, force variance, and
robustness for any array topology. The properties of several
illustrative examples are shown and a discussion covers the
importance of the properties, and trends between actuator array
layouts and their properties. Finally, results from a validation
experiment using a stochastically controlled solenoid array are
presented.

keywords: Stochastic Control, Force Variability, Cellular
Control System, Muscle, Compliant Actuator, Actuator Array
Topology

I. I NTRODUCTION

Generation of natural movements, or the movements created
by biological systems including humans and animals, has been
one of the biggest scientific questions discussed in physiology
for decades. Based on visual perception of “biological motion”
(Johansson, 1973; Troje, 2002) humans can easily distinguish
between motions created by artificial systems such as robots
and those of humans, and human natural movements are
stereotypical (RD. Crowninshield, et al., 1981; Van Bolhuis
and Gielen, 1999; Buchanan and Shreeve, 1996; Prilutsky,
2000; Dickinson et al., 2000; Nozaki et al., 2005). Excluding
small individual differences, motions with the same objective,
such as arm-reaching or walking, tend to be very similar
among different people. Stereotypical adaptation processes
are also observed in neurological patients (Davies, 2000;
Krishnamoorthy et al., 2003; Reisman and Scholz, 2003).
Together, these observations imply the existence of general
rules for coordination of multiple muscles to generate natural
movements.
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Many research efforts searching for these underlying rules
of natural movement focus on the variability of motor system
timing spike generation. This variability in motor commands
results in variability of muscle forces(Harris and Wolpert,
1998; Churchland et al., 2006; Jones et al., 2002; Stein et al.,
2005; Todorov, 2005; Todorov, 2002; Hamilton et al., 2004;
Osu et al., 2004). Harris and Wolpert showed that the standard
deviation (SD) of the commanded signal varies proportionally
with the mean of the command signal (Harris and Wolpert,
1998). They argued that this “signal-dependent” noise plays a
central role in motor control and that movements are organized
to minimize the variance at the endpoint. When taking a
point-to-point motion, for example, Harris and Wolpert argue
that the optimal strategy is to reach the desired endpoint
with the minimum error due to the noise in the motor sig-
nals. The trajectory, velocity, and acceleration for the motion
are determined by solving this optimization problem. They
discovered that the calculated trajectories according to this
criterion are similar to the stereotypical human motions, or
natural movements (Harris and Wolpert, 1998). Todorov et al.
(Todorov, 2005) suggested that this optimization strategyis
equivalent tomin(

∑
(σk)), the optimality principle in muscle

force generation(RD. Crowninshield, et al., 1981; Van Bolhuis
and Gielen, 1999; Buchanan and Shreeve, 1996; Prilutsky,
2000); that is, a minimization of the sum of muscular stress,
σ, raised to a power,k, which is subject to the force/torque
constraints of a given task. Although physiologically-based
cost functions with this structure have been used in biome-
chanics and physiology to predict redundant muscle forces,
its physiological meaning was not clear. Simmons et al. has
applied this concept to optimal control of a standard 2-DOF
manipulator with non-redundant planar rotary joints (Simmons
and Demiris, 2005), however signal-dependent noise was
computed and merely added to the control signal to mimic
a natural system, but this noise never exists in AC/DC rotary
motors. This is the beginning of a bottom-up approach, but
large gaps still remain. The work presented by Harris and
Wolpert is intuitively understandable and a likely solution to
the natural movement problem, but more effort is needed to
reach fully conclusive results.

The contrast between the actuators used in biological sys-
tems (i.e., muscles) and robotic systems (e.g., rotary DC
motors) is another possible cause of the difference between
movements of humans and machines. Biological muscles are
completely different from their electromagnetic counterparts,
both in constitution and function. (Martini and Bartholomew,
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2006; Jacob et al., 1982; Yamaguchi, 2001; Kostyukov, 1998;
Hospod et al., 2007; Tyreman and Molloy, 2003; Stern et al.,
1997). They are energy efficient, compact, light weight, natu-
rally compliant, and silent. As new robotic actuator technolo-
gies are studied, one of the goals is to invent artificial muscle
actuators with these properties. In recent years, great progress
in the development of new actuators has been presented using,
e.g., shape memory alloys (Srinivasan and McFarland, 2001;
Fu et al., 2004), pneumatic rubber actuators (Sanchez et al.,
1998; Caldwell and Tsagarakis, 2002), conductive polymers
(Hara et al., 2004; Plante and Dubowsky, 2006; Shahinpoor
et al., 2000), and piezoelectric materials (Uchino, 1997; Con-
way et al., 2007; Niezrecki et al., 2001; Canfield and Frecker,
2000; Dogan et al., 1997; Dogan et al., 1994; Haertling, 1994;
Janker et al., 1999; Newnham et al., 1993; Onitsuka et al.,
1995). These novel actuators are particularly useful in human
assistive technologies (Veneman et al., 2007; Alexander etal.,
1992; Krebs et al., ; Lee and Sankai, 2002; Perry and Rosen,
2006; Toth et al., ; Tsagarakis and Caldwell, 2003; Ueda et al.,
2008a; Ming et al., 2008) and biomedical robotic applications.
Beyond the obvious engineering benefits, use of these new
actuator technologies in robotic systems gives researchers an
experimental platform to explore the basis behind human
motion and robotic duplication of this motion.

It is known from prior literature that the activation of
sarcomers is not governed by deterministic control, but is
instead affected by a stochastic process due to the diffusion of
calcium ions (Kitamura and Yanagida, 2003). It is unknown to
what extent this or other properties affect whether a movement
is perceived to be natural, but developing artifical muscles
with stochastic properties will hopefully shed more light on
this active research area. The stochasticity in networks has
been attracting increased attention from broad academic areas
such as computer science (robust computer networks), biology
(robustness of human immune systems), and urban engineering
(robust transportation networks) (Shooman, 2002; Julius et al.,
2008; Alon, 2006; Stelling et al., 2002; Nagurney and Qiang,
2007; Singer, 2006), all of which serve as references when
designing and analyzing the stochastic systems. The stochastic
actuator arrays proposed by the last author’s group (Ueda etal.,
2006; Ueda et al., 2007c; Ueda et al., 2008c; Ueda et al.,
2008b; Ueda et al., 2007b; Ueda et al., 2007a; Odhner et al.,
2006; Odhner and Asada, 2008) was selected as the example
basis for the arrays in this paper due to its stochastic nature.
The actuator arrays also have spring-like compliancy similar to
that of organic muscle, so hopefully the two properties together
provide an effective test bed for a bottom-up approach to study
biological muscle and natural motion.

This paper presents a novel fingerprint method used describe
and automatically generate every possible stochastic actuator
array topology for a given number of cells, and to calculate
actuator array properties such as: travel, required actuator
strength/displacement, force range, force variance, and robust-
ness for any array topology. (MacNair and Ueda, 2009). The
proposed analysis is experimentally validated using a solenoid
actuator array; however the same properties and calculations
can be easily extended to systems using different actuator
types such as pneumatic cylinders, piezoelectric actuators,

or other fast acting linear actuators so long as the same
control method, cell definition, and cell structure are used. The
ultimate goal of this project is to understand the mechanismof
generating natural movements of skeletal mechanisms driven
by the stochastically controlled actuator arrays presented in
this paper and inspired by biological muscles.

II. STOCHASTICALLY CONTROLLED CELLULAR

ACTUATORS INSPIRED BY BIOLOGICAL MUSCLES

The detailed mechanism of biological muscles is still un-
known; however, biological muscles suggest important design
guidelines for new robot actuators. Muscles are dynamic
systems with high degrees of internal freedom and relatively
few inputs and outputs. A muscle is composed of numerous
sarcomeres, small functional units which contract to provide
varying levels of displacement and stiffness, and internalforce,
velocity, and displacement receptors, i.e. Golgi tendon organs
and muscle spindles (Martini and Bartholomew, 2006; Jacob
et al., 1982; Hospod et al., 2007; Tyreman and Molloy, 2003;
Stern et al., 1997). In vertebrates, impulses from the brain
are carried by the spinal cord to motor neurons which in
turn distribute the impulses to the muscle fibers, via synaptic
terminals at neuromuscular junctions, and activate the sar-
comeres. It is known that the activation of sarcomeres is a
stochastic process, rather than a deterministic control, because
of the diffusion of calcium ions at these junctions (Kitamura
and Yanagida, 2003). The brain does not know or control
the displacement or force of any given sarcomer, only the
overall muscle. This is part of the inspiration being using
a stochastic process to control the actuator arrays. Due to
the large redundancy of sarcomeres, Golgi tendon organs,
muscle spindles, motor neurons, etc., even if some fraction
of the components are not functional the rest of the functional
components can compensate to maintain total functionality.
This is critical for biological systems, and very useful when
reproduced in robotic actuators.

The last author proposed a new architecture for robot
actuators inspired by muscle properties, which in turn has a
potential to be a novel approach to synthesize biologically-
inspired actuators (Ueda et al., 2006; Ueda et al., 2007c;
Ueda et al., 2008c; Ueda et al., 2008b; Ueda et al., 2007b;
Ueda et al., 2007a). This concept, named “stochastic cellular
actuator,” connects small PZT actuator units, shown in Fig.
1, in series or in parallel to compose a macro-size actuator
array. A new structure called a “nested rhombus multi-layer
mechanism” (Ueda et al., 2007c; Ueda et al., 2008c; Ueda
et al., 2008b) was proposed to amplify the displacement of

Fig. 1. Piezoelectric cellular actuator array
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piezoelectric ceramic actuators, such as lead zirconate titanate
(PZT), in order to create a novel actuator unit with 20-
30% effective strain; which is comparable to natural skeletal
muscles(Martini and Bartholomew, 2006; Jacob et al., 1982).
This mechanism drastically mitigates the drawbacks of PZT,
i.e. its extremely small strain of only 0.1 % (Uchino, 1997).

In addition to the strain amplification, the mechanisms are
sufficient to produce “muscle-like” compliance in the actuator
unit (Ueda et al., 2007c; Ueda et al., 2008c; Ueda et al.,
2008b). These actuators are extremely compact and easy to use
as building blocks in arrays for wide ranges of requirements
in terms of force and displacement.

Figure 2 shows the concept of controlling a vast number of
actuator units (Ueda et al., 2007b). Instead of wiring many
control lines to each individual cell, each cellular actuator
has a stochastic local control unit that receives a broadcasted
signal from a central control unit and changes its state in a
simple ON-OFF manner (Selden et al., 2006). This stochastic
coordination, named “stochastic recruitment,” was inspired
by the calcium diffusion process in the signal transduction
of muscles (Kitamura and Yanagida, 2003) and drastically
improves wiring and addressing issues. The ON-OFF control
does not require high-performance actuator driver circuits and
it resolves the problem associated with hysteresis of the actu-
ator material. The stochastic cellular actuator array alsohas a
high robustness against failure of the actuator units. Stochastic
control theory (Kushner, 1965; Kushner, 1967; Doob, 1990)
proves the system stability, and despite having no deterministic
coordination, the ensemble of the cellular actuators robustly
tracks a given trajectory even if, for example, 30% of the cells
fail(Ueda et al., 2007b).

Although the characteristics of broadcast control have been
investigated (Ueda et al., 2007b), this used only a simple array
topology where actuator cells were connected in series and
physical interaction among cells was neglected. This paper
presents a method to generate and analyze complex actuator
array topologies where actuator cells are connected in series, in
parallel, or a mixture of both, interacting through mechanical
compliance.

+

- Actuator array

Actuator cell

(Compliant actuator 

+ stochastic controller)
on/off

OFF ONOFF ON

Broadcast 

controller

Aggregate displacement/force

Fig. 2. Stochastic broadcast control of cellular actuator array

Fig. 3. Cell states and associated lengths

III. M ODELING AND CHARACTERIZING RECONFIGURABLE

ACTUATOR ARRAY TOPOLOGIES

A. Modeling a single actuator array cell

For the purposes of this paper, a cell is a component of an
actuator array consisting of a stack of piezoelectric actuators
surrounded by a nested displacement amplification structure
(Ueda et al., 2008b), as shown in Fig. 1. The piezoelectric
actuator stack moves from a relaxed length to a shorter
actuated length when activated and back to its relaxed length
when deactivated. Assuming the external force acting on the
cell does not overpower the actuator, the relaxed and actuated
lengths of the actuator are constant. The amplification structure
deforms according to the actuator displacement and forces
applied externally to the cell, as shown in Fig. 3. As long
as the amplification structure is kept in the linearly elastic
portion of the stress strain curve, the structure acts as a
linear spring. This is easily accomplished since the material
amplification structure does not deform by 20% linearly, but
rather the geometry of the structure allows for the amplified
displacement. The bending which does occur is close enough
to elastic bending of the high silicon bronze structure to be
considered linear. Activating the piezoelectric actuatorstack
preloads the amplification structure (spring). If the cell sees
no external force, this will cause the cell to shrink to the
cell’s unforced activate length. Alternatively, if the length of
the cell is held constant, this will cause a force on the external
constraint directly proportional to the change in length of
the piezoelectric actuator stack. For this reason, each cell
is modeled as a spring with a pure force generator acting
in parallel. Figure 4 shows an equivalent system model for
a piezoelectric actuator with an amplification structure. This
model is applicable for any number of nesting levels (Ueda
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Fig. 4. Simplified representation of compliant actuator cell

et al., 2008b), but does not consider inertial or damping effects.
Note that this paper uses piezoelectric actuators for examples,
however the same modeling and techniques are applicable
to compliant systems using different actuator types such as
pneumatic cylinders, solenoids, or other fast acting linear
actuators.

B. Modeling an actuator array

Any one dimensional actuator array can be represented
using four different element types, each having a certain
number of variables, equations, and constants. Figure 5 shows
an example topology. The element types are shown in Table I
and Fig. 6, and are described below:

1) Node: A node (Ni for i = 1, 2, · · · , n where n is
the number of nodes) is an imaginary unit used to connect
the physical element types and to mathematically track the
position and force along the actuator array. NodeN1 and node
Nn, the first and last nodes, are on the ends of the actuator
array and only have one attached element each. These are used
to represent the connection to the external environment. All
other nodes are attached to two elements, one on the left and
one on the right. Nodes have two variables. The position ofNi

= Node

= Cell

= Spacer

and = Expanders

Fig. 5. Representation an actuator array topology

TABLE I

ACTUATOR ARRAY ELEMENT TYPES

Type Variable Equations Constants

Node i PositionNi,x – –
ForceNi,f

(1) Spring Constantkj

Cell j Disp. dj Eqs. (2) Unforced LengthXj

(3) Force Generator ForceFj

Spacery – Eqs. (4),(4) Lengthqy

Expander – Eqs. (6),(7) –

is Ni,x and the force ofNi is Ni,f . Nodes have no equations
or given values.

2) Cell: A cell(Cj for j = 1, 2, · · · , J whereJ is the number
of cells) has one variable, the displacement from the relaxed
unforced length (dj), and three given values: the cell spring
constant (kj), the cell relaxed unforced length (Xj), and the
pure force generator equivalent force (Fj). Assuming all cells
have the same force capability (F ), Fj = F when the cell is
active andFj = 0 when the cell is relaxed. Cells also have
three constituent equations. Equation (1) sets the position of
the nodeNi+1 (node on the right) equal to the position of node
Ni (node on the left) plus the combined distance of the relaxed
unforced length (Xj) and the displacement from the relaxed
unforced length (dj). Equation (2) sets the force through node
Ni equal to the cell spring constant (kj) times the displacement
(dj) plus the pure force generator force (Fj), and Equation (3)
does the same for nodeNi+1.

Ni+1,x − Ni,x − dj = Xj (1)

Ni,f − kj · dj = Fj (2)

Ni+1,f − kj · dj = Fj (3)

3) Spacer: A spacer (Sy for y = 1, 2, · · · , Y whereY is the
number of spacers) is used to represent a constant length in
the actuator array. They have no variables but have one given
value, the length of the spacer (qy). Spacers also have two
equations. Equation (4) sets the position of nodeNi+1 (node
on the right) equal to the position of nodeNi (node on the
left) plus the length of the spacer (qy). Equation (5) sets the
force through nodeNi+1 equal to the force through nodeNi.

Ni+1,x − Ni,x = qy (4)

Ni+1,f − Ni,f = 0 (5)

4) Expander: Expanders connect a single node on one side
to multiple nodes on the other side without adding length
to the system. This allows multiple cells to run in parallel,
amplifying the force capacity and increasing redundancy of
the actuator. Expanders have no variables or given values, but
havehe equations wherehe is the number of nodes connected

(b) Cell

(c) Spacer (d) Expander

(a) Node

Ni,f Ni,f

Ni,x
kj

Fj

kj

Fj
Ni Ni+1

Xj

dj

Ni+1Ni

qm

Ni Ni

Ni+1

Ni+2

Ni+3

Ni+1

Ni+2

Ni+3

-OR-

Fig. 6. Elements types used in creating actuator arrays
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Fig. 7. A topology that cannot be represented with a fingerprint

by the expander.he−1 of the equations follow the form shown
in (6) and make the positions of all of the connected nodes
equal. The final equation, (7), adds the forces on the larger
side of the expander and sets the result equal to the force on
the smaller side. If a physical expander has length, a single
spacer can be connected in series on the smaller side of the
idealized expander.







Ni,x − Ni+1,x = 0
Ni,x − Ni+2,x = 0
Ni,x − Ni+3,x = 0

...

(6)

Ni,f − Ni+1,f − Ni+2,f − Ni+3,f − · · · = 0 (7)

Note that the equations list nodes sequentially about each
element, but the node numbers will not necessarily be sequen-
tial. See Fig. 6 for what the node numbers correspond to for
each element’s description.

IV. F INGERPRINT REPRESENTATION

A. Fingerprint structures

Actuator arrays can be represented as lists of cells, spacers,
and expanders with each element in the list knowing which
nodes it connects to, but this method is bulky and makes
describing and encoding actuator array topologies difficult.
In order to more simply and compactly represent complex
actuator arrays, a layer based description, or fingerprint,for
actuator array topologies was developed.

The fingerprint assumes the actuator array can be separated
into layers with each layer having the length of an unforced
cell when the actuator array is fully relaxed and no external
forces are applied. This means it can only describe systems
which have no internal forces when all cells are relaxed
and the array experiences no external force. For example,
topologies shown in Fig. 7 cannot be represented. Following
this assumption is generally a good design practice since
internal forces can lead to buckling of actuator array segments,
so the fingerprint method is considered robust enough to
represent those systems most likely to be used in practice.
An additional assumption holds that all cells are identical
or that the data holding additional cell properties is stored
elsewhere, however storage of this additional data is generally
not difficult. This separates the geometry of the topology from
the force properties of individual cells.

In order to represent an actuator array, it is first broken
into layers of equal length as shown in Fig. 8. The layer
break occurs just after the cells or spacers of the current layer
and before the next set of expanders (or cells if no expanders
exist in the next layer). Each layer can be represented using2
parts, the front structure and the back structure, which share

L1            L2              L3      L4

L1            L2                  Lk-1      Lk

(a) System 1 (b) System 2

Fig. 8. Example array topologies

Fig. 9. System 1, layer 2 fingerprint description example

mid-layer nodes, as shown in Fig. 9. The front structure can
be represented byhm numbers, wherehm is the number of
mid-layer nodes for layer m. Each front structure number is a
hexadecimal representation of which incoming nodes connect
to the corresponding mid-layer node. The first front structure
number, for example, shows which incoming nodes connect
directly to the first mid-layer node. In Fig. 9, the front structure
would be represented by[&1, &E, &10]. The representation
can be decoded by converting the front structure numbers
to binary. &1 corresponds to00001 which means that the
first mid-layer node connects only to the first incoming node.
&E corresponds to01110 meaning the second mid-layer node
connects to incoming nodes 2, 3, and 4.&10 corresponds to
10000 meaning the third mid-layer node connects to incoming
node 5. Care must be taken to not mistakenly read the front
structure number backwards, for instance mistaking 10000 as
connecting to the incoming node one instead of incoming node
five.

The back structure can be represented by 2 numbers per
mid-layer node. These two numbers represent the number of
cells and the number of spacers connected to that mid-layer
node. Cells are always considered to connect to lower outgoing
node numbers and spacers to higher outgoing node numbers
when both cells and spacers connect to the same mid-layer
node. This is discussed below. -1 for both the number of cells
and the number of spacers is used to signify the end of the
actuator array, which the build algorithm explicitly looksfor to
find the last layer. Having two 0’s on any layer would represent
a discontinuity, an error in the fingerprint. Having a 0 for the
number of cells or number of spacers would not represent
an error on any layer except the last since it is possible to
have a layer with only cells or only spacers (only spacers
would increase array length). The final fingerprint stacks the
front structure numbers on top of the back structure numbers
for mid-layer node in each layer. The final matrices for each
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layer are3 × hm matrices which are appended to form the
final fingerprint. For example, the array in Fig. 8 (a) has the
following fingerprint:





&1
5
0

∣
∣
∣
∣
∣
∣

&1 &E &10
1 1 2
0 0 0

∣
∣
∣
∣
∣
∣

&1 &6 &8
2 2 1
0 0 0

∣
∣
∣
∣
∣
∣

&1F
−1
−1



 (8)

Similarly, the array in Fig. 8 (b) has




&1
2
1

∣
∣
∣
∣
∣
∣

&3
2
1

∣
∣
∣
∣
∣
∣

· · ·

∣
∣
∣
∣
∣
∣

&3
2
1

∣
∣
∣
∣
∣
∣

&3
−1
−1



 . (9)

B. Outgoing structure convention

The convention of putting cells above (lower node number)
spacers helps avoid confusion. System 1 of Fig. 10 is shown
not following the convention while system 2 is an identical
topology which does follow the convention. System 3 shows
how system 1 would be misinterpreted when the convention
is not followed. When interpreted according to the stated
convention, an algorithm would put the lower cell in system
1, layer 2, in direct parallel with the upper cell when it wrote
the incoming connection for layer 3 (as shown by system 3).
System 2, which correctly follows the convention, would be
written as:





&1
2
0

∣
∣
∣
∣
∣
∣

&1
1
0

&2
1
1

∣
∣
∣
∣
∣
∣

&5
1
0

&2
1
0

∣
∣
∣
∣
∣
∣

&3
−1
−1



 (10)

C. Fingerprint spot-check

Properties which are necessary for a correct fingerprint
include:

1) The top row’s numbers should occupy every incoming
connection point, no more than the number of connec-
tion points, and each incoming connection points can
only be used once. This can be shown by adding the
binary numbers of the first row together. The result
should be equal to2hI − 1 where hI is the number
of incoming nodes. For example, Layer 2 Fig. 8 (a)
had the incoming connection numbers[&1, &E, &10].

Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

(a) System 1 (b) System 2

(c) System 3

=  Node

=  Cell

=  Spacer

Fig. 10. Outgoing structure convention example

This translates to:00001 + 01110 + 10000 = 11111 =
25 − 1 = &1F .

2) Sum of the last 2 rows of any layer equals the number of
incoming points for the next layer and must be greater
than zero.

3) The last layer must have -1’s for the number of cells
and the number of nodes.

D. Fingerprint generation

In order to do an in-depth survey of actuator array proper-
ties, a method of generating all possible actuator array topolo-
gies given a fixed number of cells was needed. Since infinite
topologies exist even given a finite number of cells, spacers
were not included in the automatic generation of fingerprints.
This makes the problem manageable, but does potentially
remove some good topologies. Future work will address this
issue, however the cell-only arrays provide valuable insight
and spacers can always be added back manually. Analysis
procedures shown later still apply when this constraint is
relaxed.

The auto-generation problem was broken into a layer by
layer iterative approach. Each layer was then further broken
down into its front section, which contains the information
for bringing the incoming nodes down to a certain number
of mid-layer nodes, and its back section, which contains the
information for expanding each mid-layer node to a certain
number of cells and outgoing nodes, as was shown in Fig. 9.

For each front section, all of the possible methods for con-
necting the incoming nodes were explored using a recursive
function. This function took in a binary input,a, showing
which incoming nodes were not yet connected for the current
test case. For example, in Fig. 11 incoming nodes 2 and 4
are not connected, thus the input would be 1010 which. The
function iterates upward in binary froms = 1 to s = 2La − 1
whereLa is the length ofa. Eachs has 0’s concatenated to the
left side until it is the same length asa and is then subtracted

Fig. 11. Front section autogeneration example
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from a element-wise. If there are any resulting -1’s thens is
tossed out, otherwises is stored in hex in arrayc ascl. This
becomes front structure number as part of a fingerprint layer.
To finish generating the front structure for each storedcl, the
function is called recursively with an input ofan = a − cl.
No additional level of recursion is made for inputs ofan = 0.
The function returns the structure (11) ifc hasL entries with
L > 1.

[c1, recursion] ; · · · ; [cl, recursion] ; · · · ; [cL] (11)

From the example illustrated in Fig. 11, the first entry inc

is &2 representing a connection to only incoming node 2. The
next layer of recursion then takes in an input of1010−0010 =
1000 and returns&8. When the function finishes, the result is
a structure of all of the frontal connection possibilities,each
of which can have one or more mid-layer nodes. Since each
mid-layer node must have at least one cells attached to it,
those frontal connections which have more mid-layer nodes
than remaining cells are tossed out.

Another recursive function is run to generate the back
structure for each front structure. This function takes in the
number of mid-layer nodes and the number of cells left to
be placed, and returns all of the back connection possibilities.
The function iterates fromg = 1 to g = G whereG is given
by G = z−m+1, z is the number of remaining cells, andm
is the number of remaining mid-layer nodes. The number of
cells connected to the first mid-layer node is equal to current
value of iteration,g. The upper limit of the iteration is due
to the need for each mid-layer node to have at least one cell
attached. The result function is then recursively called with
w remaining cells determined byw = z − g ando mid-layer
nodes determined byo = m − 1.

Figure 12 shows a process tree for how the fingerprints
were generated for actuators with 4 cells. All actuators begin
with a single incoming node and a number of cells. The front
end for layer 1 is always&1, and the back end uses between
1 and J cells whereJ is the total number of cells. The
second and subsequent layers take each of the previous layer’s
configurations and generate all of the possible configurations
for that layer. When the function is called with no remaining
cells, the last layer is always filled in to connect all mid-layer
nodes to a single output node and put -1’s for the number of
cells and the number of spacers.

Figure 13 shows the connection possibilities for 5 cells.
The number of topologies for 2 – 8 cells are: 2 topologies for
2 cells, 4 topologies for 3 cells, 9 topologies for 4 cells, 23
topologies for 5 cells, 65 topologies for 6 cells, 199 topologies
for 7 cells, 653 topologies for 8 cells, 2283 topologies for
9 cells, and 8467 topologies for 10 cells, respectively. For
example, the computational time for 10 cells was 324 [s] by
MATLAB running on a QuadCore 2.83GHz processor. The
number of topologies and the computation time for generating
all of the topologies increases exponentially with the number
of cells.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23)

Fig. 13. Automatically generated 23 topologies for 5 cells

V. A NALYSIS OF ACTUATOR ARRAY PROPERTIES

A. Actuator array properties

Number of Cells (J): As the number of cells increases, the
actuator array cost increases, the power requirement increases,
and the actuator array has a larger volume and mass. Increasing
cells also generally increases the actuator array displacement
and/or force capacity and decreases the normalized variance.
Actuator Array Travel : For the purposes of this paper,
the actuator array displacement is considered to be half the
difference between the relaxed unforced length and the active
unforced length, i.e.,∆/2 in Fig. 14. The relaxed unforced
length is the length of the actuator array when all cells are
relaxed and no external force is applied; this is also considered
to be the minimum length. Similarly, the actuated unforced
length is the length when all cells are active and no external
force is applied. This length is shorter than the minimum
length. The actuator array travel spans from the relaxed
unforced length (minimum actuator array length) to this plus
the displacement, as shown in Fig. 14. This assumption is
explored further in the discussion about the use of actuator
arrays in antagonistic pairs and ensures no compression forces
exist across cells due to other cells activating.
Force Function τ is a function of the probability input and
the current actuator array length which yields the force an
actuator array will provide. For a given length, a command of

Active Unforced
Length

Relaxed Unforced
Length

Travel

∆

2/∆

Fig. 14. Actuator array travel explination
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Fig. 12. Tree representing the automatic generation of a fingerprints for all 4 cell topologies

0% input probability will give the minimum possible force in
the actuator array, a command of 100% will give the maximum
possible force, and the command to mean-force relationship
is linear between the two. A controller uses this function to
achieve a desired mean force output.
Required Actuator Force/Displacement (RAD / RAF)Each
piezoelectric or other type of linear actuator must have at least
a certain force capacity, or required actuator force, in order to
ensure it is able to actuate fully when loaded. Each actuator
must also have a certain displacement which it will move to,
but not beyond, whenever activated. For the purposes of this
paper, it is assumed that there are no compression forces in the
actuator array. This is a design restriction such that when the
actuator array is in its relaxed unforced state no compression
exists across any cell (considered good design practice), and
is a result of the previously mentioned antagonistic pairs
assumption.
Variance Function This is a function of the input probability
value and the current actuator array length which yields the
expected variance in the output force for an actuator array.
While the mean force output will remain constant for a
constant input probability value, the actual force output will
vary over time. The larger the force variance, the farther from
the mean value the force is likely to be at any point in time.
Variance will lead to a greater potential for positioning error
with open-loop control.
Robustness (MCLU, WFFF)The worst case failure of a cell
is a break; meaningFj and kj for the cell are always zero,
making the broken cell and all cells connected in series to the
broken cell seem to vanish from the array. This is considered

Percent of Original Force 

Remaining: 0.0%

Percent of Original Force 

Remaining:28.52%

Percent of Original Force 

Remaining: 69.25%

= Node = Working Cell = Broken Cell

Most Critical Cell Broken 2 Most Critical Cell Broken
3 Most Critical Cell Broken

No Controllability

Fig. 15. Robustness measure: “minimum cell loss to uncontrollability”=3.

worse than simply having a non-functional cell since a non-
functional cell still has an intact compliant structure and
little to no affect on nearby cells. Two robustness measures
were developed to characterize actuator arrays in terms of
robustness. The “Minimum Cell Loss to Uncontrollability”
(MCLU) defines, in the worst case scenario, how many cells
would have to break to have zero controllable force capacity.
The “Worst Failure Force Function” (WFFF) is the force
function an actuator array can achieve after breaking a given
number of its most critical cells (the cells which results inthe
lowest achievable total force once lost). These two measures
are shown in Fig. 15. So long as forces on the actuator array
are below this value, the actuator array will be able to function
and have time to cope after the break of any cell.

B. Relationship generation

To analyze the properties of the actuator arrays, the element
equations described in Section III-B are arranged into three
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systems of linear equations, or relationships, which are then
used to solve for internal variables. Each relationship consists
of an A matrix containing the coefficients of the internal
variables in the element equations, aB vector containing the
internal variables themselves, and aC vector containing the
given values (the right hand side of each equation). The system
of linear equations is then solved using

Bs = A
−1
s Cs s = {f, d, c} (12)

Depending on the type of analysis, these matrices contain
slightly different elements. MatricesAf , Bf , Cf are for
force relationship analysis,Ac, Bc, Cc are for controllability
analysis, andAd, Bd, Cd are for displacement relationship
analysis.

1) Force relationship: The force relationship identifies all
node forces given that certain cells are active and the actuator
array has a given overall length (Xtot). This relationship uses
the element equations exactly as they appear in Table I but also
adds (13) and (14), where noden is last node in the system.
In the cell equations, the values of constantFj are filled in as
eitherF or 0 based on whether the cell is currently active or
relaxed. Equation (12) solves forBf , the internal variables of
the system. The force output for the actuator array is equal to
the force in node 1, a component of vectorBf .

N1,x = 0 (13)

Nn,x = Xtot (14)

2) Controllability relationship: The controllability relation-
ship is used to determine if an actuator array has any control-
lable force capacity. The relationship is the same as the force
relationship except for two differences. First,Fj the pure-force
generator force in the cell equation is moved to the left sideof
the equation as an unknown for all cells. This unknown force
is assumed to be the same for all cells regardless of topology
since the intent is to check for controllability, not to explicitly
solve for individual cell forces. Second, (15) is added setting
the force in node 1 and thus the actuator array output force
equal to a test force of 1. Note that any non-zero test force
is applicable. The test force of 1 is given for simplicity. If
the Ac matrix is full rank, the actuator array can change the
exerted force by activating or relaxing cells. Figure 16 shows
examples of an uncontrollable actuator arrays.

= Spacer= Working Cell

= Broken Cell

(a) (b)

Fig. 16. Uncontrollable actuator arrays examples. In (a) all functional cells
are negated by broken cells and unable to produce a force in the actuator array.
In (b) spacers, constant length units, do not allow cell actuation to affect the
length of the actuator array and internally cancel the forces created by the
cells.

N1,f = 1 (15)

3) Displacement relationship: The displacement relation-
ship is used to determine the unforced relaxed length and
unforced actuated length of the actuator array. The relation is
the same as the force relationship except that (13) is changed
to (16) which sets the force in node 1 and thus the actuator
array output force equal to 0. When run with all cells relaxed,
this will give the unforced relaxed length and when run with
all cells activated it will give the unforced activated length of
the system.

N1,f = 0 (16)

C. Example actuator topology representation

1) Force relationship analysis: An actuator array shown
in Fig. 17 can be represented by (17). Assume that the both
ends, represented by the first node (N1) and the last node
(N6), are fixed andbj = {0, 1} becomes 1 when thej-th cell
is operational, and 0 when the cell is broken. These equations
are further represented by a matrix-vector form as shown in
(18).

N1,x = 0
N6,x = Xtot

}

Mount points

N3,x − N2,x − d1 = X1

N2,f − b1 · k1 · d1 = b1 · F1

N3,f − b1 · k1 · d1 = b1 · F1

N5,x − N4,x − d2 = X2

N4,f − b2 · k2 · d2 = b2 · F2

N5,f − b2 · k2 · d2 = b2 · F2







Cell Eqns.

N1,x − N2,x = 0
N1,x − N4,x = 0
N1,f − N2,f − N4,f = 0
N6,x − N3,x = 0
N6,x − N5,x = 0
N6,f − N3,f − N5,f = 0







Expander Eqns.

(17)

2) Displacement relationship analysis: Assume that the end
(N1) is fixed and the other end (N6) has a forceFtot applied,
which can be zero. (19) gives the equations of the displacement
relationship.

N1

E1

N2 N3

N4 N5

N6

E2

C1

C2

Fig. 17. Example array: two actuator cells are connected in parallel
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Cf

(18)

N1,x = 0
N6,f = Ftot

}

Mount points

N3,x − N2,x − d1 = X1

N2,f − b1 · k1 · d1 = b1 · F1

N3,f − b1 · k1 · d1 = b1 · F1

N5,x − N4,x − d2 = X2

N4,f − b2 · k2 · d2 = b2 · F2

N5,f − b2 · k2 · d2 = b2 · F2







Cell Eqns.

N1,x − N2,x = 0
N1,x − N4,x = 0
N1,f − N2,f − N4,f = 0
N6,x − N3,x = 0
N6,x − N5,x = 0
N6,f − N3,f − N5,f = 0







Expander Eqns.

(19)

Only the second equation changes from (18). By choosingBd

as the same asBf in (18) and

Cd = [0, Ftot, X1, b1F1, b1F1, X2, b2F2, b2F2, 0, 0, 0, 0, 0, 0]T ,

matrix-vector formAd can be obtained.

3) Controllability analysis: To investigate the robustness
properties, the equations in (20), a modification of (17), are
used. In ()fcom is a common force among all cells for a test
force given to the node 1. This expands the original matrix
form as shown in (21).

N1,x = 0
N6,x = Xtot

}

Mount points

N3,x − N2,x − d1 = X1

N2,f − b1 · k1 · d1 − b1 · fcom = 0
N3,f − b1 · k1 · d1 − b1 · fcom = 0
N5,x − N4,x − d2 = X2

N4,f − b2 · k2 · d2 − b2 · fcom = 0
N5,f − b2 · k2 · d2 − b2 · fcom = 0







Cell Eqns.

N1,x − N2,x = 0
N1,x − N4,x = 0
N1,f − N2,f − N4,f = 0
N6,x − N3,x = 0
N6,x − N5,x = 0
N6,f − N3,f − N5,f = 0







Expander Eqns.

N1,f − 1 = 0 · · ·Test force of 1 for Node 1

(20)

D. Property calculations

The actuator array travel (∆/2) is the first property cal-
culated for each actuator array. This is generated by using
the displacement relationship to calculate the unforced relaxed
length (Nn,x with all cells relaxed andFtot = 0) and unforced
activated length (Nn,x with all cells activated andFtot = 0).
As stated in section 5.1, the actuator array travel spans from
the relaxed unforced length to this plus the displacement, as
was shown in Fig. 14. The force function and force variance
function are calculated usingAf , Bf , andCf from the force
relationship.Cf can be separated into a vector containing the
force components (G) and a vector containing all of the other
components (H) as shown in (22). (G) contains two duplicate
force entries for each cell, and each cell’s pure-force can be
modeled as an independent Bernoulli trial multiplied by the
pure-force capacity of the cell (fj) as shown in (23), wherer
is the random value generated by the cell andp is the input
probability as well as the expected value of the Bernoulli trial.
The mean, or expected value, ofBf is calculated using (24)
(Hines et al., 2008).
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Fj =
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1 · fj p > rj
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(23)
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Since each of the Bernoulli trial is independent, the variance
of B can be calculated using (25):
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The force function isE[N1,f ], an entry inE[B]. Likewise
the variance function isV ar[N1,f ], an entry in V ar[B].
The force function is a linear function which shows that

the mean force will increase linearly with increasing input
probability and/or actuator array length. The variance function
is a quadratic function with roots atp = 0 andp = 1, and a
maximum atp = 0.5.

Given that a certain actuator array topology has already
been chosen, a designer can find the Required Actuator
Force/Displacement (RAF/RAD) for a desired force function
(τ ) by first finding a unit force function (σ) for the actuator
array given allfj = 1, ∀j. A scaling factor (ν) can be found
using (26).

ν =
τ

σ
(26)

The scaling factor can then be plugged in for allf̂j in the
force relationship. Solving the force relationship forBf will
provide the forces in the nodes connected to each cell. This
is the required actuator force,RAFj , for each cell since it is
the force the actuator driving the cell must be able to achieve.
RAFj tends to be the same as the pure-force generator force,
Fj for all cells only in uniform topologies, such as with strictly
parallel or strictly serial actuator arrays.RAFj may need to
be scaled for certain cell designs to match the amplificationof
the spring structure. For example, if an amplification structure
decreases the force of a piezoelectric actuator by 20 times,the
actualRAFj will be 20 times higher than theRAFj calculated
using this method.

This method of calculating the required actuator force as-
sumes all cells will have the same force capacity requirement.
Designers of actuator arrays may decide to have a different
distribution of force capacities,fj ’s, in an array. If this is
the case, the distribution should be used instead of uniformly
assigning allfj = 1 (j = 1, · · · , J). Choosing this distribution
is an optimization problem and is outside the scope of this
paper. Once the scaling factor is found,f̂j can be found using

f̂j = fj × ν (27)

and is used in the force relationship to determineRAFj .
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The Required Actuator Displacement (RAD) for each cell
is calculated using (28):

RADj =
f̂j

kj

(28)

This may vary from cell to cell depending on the cell spring
constant, but it is the distance that must be achieved by the
cell’s actuator when activated to get the correct pure-force in
the cell. A displacement greater or less than theRAD will
affect the analysis and control of the actuator array. In some
cases, it may be easier to choose an appropriate spring constant
given f̂j and a fixed displacement,RADj . In this case, (28)
would be solved forkj instead ofRADj .

The minimum cell loss to uncontrollability (MCLU) and
the worst failure force function (WFFF) are calculated us-
ing a combination of the controllability relationship and the
force relationship. First the system is input into the force
relationship with all cells active and with the actuator array
at its minimum travel. The most critical cell is determined as
the cell carrying the highest force. This cell is then broken
and the resulting actuator array is checked for controllability
using the controllability relationship. If the actuator array still
has a controllable force, it is once again fed into the force
relationship with all cells active to determine the WFFF. This
process is repeated until the actuator array is uncontrollable.
The number of breaks required to make the actuator array
uncontrollable is the Minimum Cell Loss to Uncontrollability.

VI. N UMERICAL EXAMPLES

Figure 18 shows five actuator arrays which are analyzed;
the results are shown below. In the analysis, all cells have
a spring constant ofkj = 1 for all j = 1, · · · , J . The
force function,τ , was selected such that the maximum output
force was 1 when the actuator array was not stretched. The
cells making up each topology are identical; however the
RAD, RAF, and displacement vary between topologies. Figure
19 shows the force probability density functions (PDFs) for
actuator array D. This graph shows the different forces which
can be immediately achieved along with the probability that
each point is reached given an input probability. Figure 20
shows a graphical representation of the force function, which
is identical for all cases by choice. This figure shows how the
mean force changes linearly with respect to input probability
and displacement. Figure 21 shows the force variance curves
for all of the actuator arrays. Interestingly, the same variance
curves were obtained for arrays A, B, and C. Increasing the
number of cells in an actuator topology generally results
in a lower variance, as in E. Additionally, when cells do
not uniformly carry the internal forces, as observed for D,
they have a higher variance. The largest variance for any
actuator array is obtained when the command signal, or input
probability, is 0.5. This can be seen in the examples and is
understandable since all of the actuator units will undoubtedly
turn on if an input probability of 1 is given and off if an input
probability of 0 is given.

Table II shows the number of cells, actuator array travel,
required actuator force/displacement (RAD/RAF), minimum
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Fig. 18. Example actuator arrays analyzed using the fingerprint method

cell loss to uncontrollability (MCLU), and the percentage
reduction between the original force function and the worst
failure force function (WFFF) after breaking the most critical
cell. A had the lowest RAD and RAF while B had the highest.
A also had the lowest displacement while B had the highest,
showing the trade-off between strength and displacement. B
had a much longer travel than the other systems due to each
cell having an additive effect on the overall displacement and
since each actuator had to have a greater displacement in order
to get the desired force function,τ . Array A had the greatest
robustness from both the MCLU and WFFF measurements
while C and E were tied as the second best. B and D were
both tied for the worst case, despite D having a parallel
structure. This shows how having a parallel structure can
improve robustness, but does not necessarily do so. E was
shown as a contrast to the 4 cell examples to show how
additional cells can improve the variance curve, strength (or
RAF), or displacement. It also shows how cases with fewer
cells can have more desirable properties, such as strength
(lower RAF) when E is compared to A or displacement when
E is compared to B.

VII. E XPERIMENTAL VALIDATION

A. Solenoid actuator array

In order to validate the theories presented in this paper, a
solenoid based actuator array was developed. The array con-
sisted of eighteen Magnet-Schultz of America (MSA) S-06683
solenoids, in a custom designed housing. The housing and
connections between the solenoids and springs were printed
using a Dimension bst 768 rapid prototyper. The solenoids
each acted against two Lee Spring Co. LC 026EE 14M springs
set in parallel, giving the same preloading effect as discussed
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TABLE II

EXAMPLE ACTUATOR ARRAY PROPERTIES

Topology A B C D E

Number of Cells 4 4 4 4 10
Actuator Array Travel 0.125 2.0 0.5 0.667 0.5

Required Actuator Displacement 0.250 1.000 0.500 0.667 0.333
Maximum Required Actuator Force 0.250 1.000 0.500 1.000 0.500

Minimum Cell Loss to Uncontrollability 4 1 2 1 2
% Reduction After Losing Most Critical Cell 25.0 % 100.0% 33.3% 100.0% 33.3%
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Fig. 19. Force probability density function for actuator array D.

Fig. 20. Normalized force function for all array topologies

for a piezoelectric cell. Figure 22 (a) shows one solenoid cell.
The cells were arranged into layers of three cells by three cells
with all of the cells on each layer acting in parallel. Two of
these layers were placed in series with one another giving the
actuator array shown in Fig. 22 (b). Each cell had a combined
spring constant of 438.7 N/m and maximum displacement of
2.5 cm which gave the effect of a 11.1 N pure force acting
across the 438.7 N/m spring. Given the layout of the cells, this
gave the actuator array a holding force capability of 200 N at
its minimum length with an overall displacement capabilityof
5 cm.

The actuator array was controlled using LabView on a PC

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

Input probability

V
ar

ia
n

ce
 o

f 
O

u
tp

u
t 

F
o

rc
e A

B

C

D

E

Fig. 21. Force variance of example arrays using normalized force function

as shown in Fig. 23. Due to limited output capability through
the PC’s parallel port, the cells were grouped according to Fig.
24 so that all eighteen cells could be controlled with only eight
signal channels. This grouping also eliminated any moments
which could have been generated due to an actuator firing on
only one side of the actuator array. This was necessary to keep
with the one-dimensional analysis presented in this paper.The
fingerprint of this actuator array is represented by
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One of the cells on each layer consisted of three actuators
while the others had two each. This detail could not be
included in the fingerprint without encoding additional infor-
mation. Since each actuator adds a small portion of the cells
strength, the results of the experiment were averaged over ten
runs, and only 2 of the eight cells were affected the overall
results didn’t not have a much greater variance than the model.

The LabView program took in an input probability value
and, for each trial, generated eight random numbers. If the
random number for a control channel was less than the
input probability value, that control channel would actuate;
otherwise it would relax. The solenoids provide a validation
of the principles presented in this paper, but due to their
high mass relative to their strength and their slow response
time they were not suitable to test using a high frequency
stochastic control scheme. Additionally, due to limitations in
the solenoid’s force capacity at maximum stroke length, each
trial began with the actuator array at its unforced relaxed
length. An input probability value was input and the cells
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(a) Solenoid actuator cell (b) Actuator array 

Fig. 22. Solenoid actuator array experimental setup
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Fig. 23. Solenoid actuator array control diagram

actuated accordingly. The actuator array was then stretched
to a preset length and the force required to achieve this
stretch was measured using an OmegaDyne LCM703-50 force
transducer. This allowed the experiment to test the actuator
based on the holding force capacity of the solenoid as opposed
to the significantly lower force at maximum stroke length.

B. Force variance

Trials were run with input probability values ranging from
zero to one with a step size of 0.1 giving a total of 110 trials.
The minimum force required to achieve the stretch when no
cells were active was subtracted from all data points and the
data was normalized such that the maximum force required
to achieve the stretch when all cells were active was 1. In
Fig. 25(a) and (b), the normalized mean and variance of the
forces were calculated from the results for each of the 11
input probability values and are shown along with the expected
curve obtained by the analysis presented in this paper.

The experimental mean force and force variance curves
closely matched the values calculated using the methods
presented in this paper. Errors did exist in both but were
expected due to the inherent error in using a probability driven
system and due to inaccuracies in the force transducer. Had
more trials been run at each of the input probability values,
the experimental results would have more closely approached
the theoretical values. The errors were low, and the resultsdo
validate the proposed analysis.

VIII. D ISCUSSION

The linearity and constant slope for each actuator array
allows a controller to directly command a desired mean force
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Fig. 24. Coupling among solenoid actuator array units. Units with the same
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Fig. 25. Solenoid actuator array experimental results. (a)shows the mean
force generated, which was highly linear. (b) shows the variance in the force
which was close to the values calculated using the fingerprint method.

as long as the minimum and maximum forces at the endpoints
of the actuator array’s travel have been identified and the
controller has knowledge of the actuator array’s current length.
Additionally, combining displacement and force sensors with
the actuator array, the current belief of a manipulator and
its payload can also be continuously updated by higher level
controllers and learning techniques for more accurate manip-
ulation. With these sensors, the actuator array can also be
continuously calibrated so that it remains robust and accurate
even despite multiple cell failures.

The variance of the muscle is a measure of the difference
between the force commanded and the force delivered by an
actuator array at any given point in time. Since the cells
change position rapidly ( 200 Hz for piezoelectric actuator
arrays), each instantaneous error provides only a small error
in the overall impulse delivered and averages out quickly.
Increasing the number of cells in an actuator array generally
lowers the normalized variance; however variance also scales
up with increasing force capacity. Cells which uniformly carry
the internal forces generally have a lower variance. These
observed properties are able to aid designers in creating arrays,
however the reverse analysis is especially challenging dueto
the many design variables which must be manipulated to give
any desired set of properties. The possible set of properties is
also discrete (non-continuous) for any array when individual
cell properties are pre-selected. For these reasons, this paper
focuses on the forward analysis and leaves the reverse design
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process to designers for their individual optimality criteria.
It should be noted that while one design criteria may

be to minimize the variance, which can made arbitrarily
small by adding additional cells and adjusting the topology,
arrays could be likewise constructed with larger variancesto
aid the development of theories regarding natural movement.
This can provide evidence in support or against optimization
techniques, such as minimization of jerk or minimization of
control signal, contributing to research on the generationof
natural movement and serving as a platform for future robots
using natural movements.

The relationship between the input probability and variance
shown in Figs. 21 and 25(b) is quadratic and does not mono-
tonically increase, while the variance is expected to increase
monotonically and proportionally with respect to the com-
mand input in biological systems (Harris and Wolpert, 1998).
Maximum voluntary force may not be the maximum that a
biological muscle can potentially generate; voluntary forces
may be limited at the command level. The association between
the input probability and variance could be approximated by
a proportional function for a limited range, for example, for
p = 0.0 ∼ 0.4.

Future work will intensively investigate this difference
between the artificial cellular actuator arrays and biological
muscles in terms of variability. Note that Harris and Wolpert
needed to introduce the “Size Principle” or an orderly require-
ment law in a top-down manner, assuming motor neurons
that produce small forces are the first to be recruited and
are followed by those that produce larger forces in order
to recreate the proportional relationship (Jones et al., 2002).
The artificial actuator systems, too, may need to introduce
additional constraints in terms of the requirement order. One
possibility is to take into account the force capacity degrada-
tion due to temperature when an actuator unit is exerting a
constant force for a while.

Another future area of research concerns giving cells a force
profile over time followed by a recharge period. This could
more closely model biological muscle and would create the
need for constraints on the range of the probability input,
perhaps even limiting it top = 0.0 ∼ 0.4 or less, since
actuating all cells would be followed by a period of no force
capacity despite a large probability value. It could also allow
for higher force density actuators which act against a spring
to provide large forces at the expense of requiring a recharge
time to recoil the spring.

IX. CONCLUSION

This paper presented a fingerprint method for modeling and
subsequently characterizing stochastically controlled actuator
arrays, which were inspired by biological muscle and the
desire to create natural movements. The method automatically
generates complex actuator array topologies and calculates
the properties of the arrays such as travel, required actuator
strength/displacement, force range, force variance, and robust-
ness. The association between a input probability and force
variance was investigated and two robustness criteria were
introduced, the minimum cell loss to controllability failure

and the worst failure remaining force. Both of these measures
become useful when an actuator array failure is critical to
the application of the manipulator. The proposed analysis was
validated by numerical examples and experiment.
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