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A Fingerprint Method for Variability and
Robustness Analysis of Stochastically Controlled
Cellular Actuator Arrays

David L. MacNair and Jun Ueda

Abstract— This paper presents a “Fingerprint Method” for Many research efforts searching for these underlying rules
modeling and subsequently characterizing stochasticallycon-  of natural movement focus on the variability of motor system

trolled actuator arrays. The actuator arrays are built from  iming spike generation. This variability in motor command
small actuator cells with structural elasticity. These cdk are

controlled using a bistable stochastic process wherein altells results in variability of muscle forces(Harris and Wplpert

are given a common input probabmty (Contro|) value which 1998, ChUI’Ch|and et al., 2006, JoneS et al., 2002, Ste|n,et al
they use to determine whether to actuate or relax. Arranging 2005; Todorov, 2005; Todorov, 2002; Hamilton et al., 2004;
the cells in different networks gives different actuator aray Qsu et al., 2004). Harris and Wolpert showed that the stahdar

properties, which must be found before the actuator arrays an deviation (SD) of the commanded signal varies proportignal
be applied to manipulators. The fingerprint method is used to

describe and automatically generate every possible stocsc With the mean of the command signal (Harris and Wolpert,
actuator array topology for a given number of cells, and to 1998). They argued that this “signal-dependent” noise ptay
calculate actuator array properties such as: travel, requied central role in motor control and that movements are orgathiz
actuator strength/displacement, force range, force variace, and to minimize the variance at the endpoint. When taking a

robustness for any array topology. The properties of sevefa qintto-point motion, for example, Harris and Wolpert zeg
illustrative examples are shown and a discussion covers the

importance of the properties, and trends between actuator aay th_at the OF_’“_ma' strategy Is to reach_the_ desired endp_omt
layouts and their properties. Finally, results from a validation ~With the minimum error due to the noise in the motor sig-
experiment using a stochastically controlled solenoid aay are nals. The trajectory, velocity, and acceleration for thetiomo

presented. are determined by solving this optimization problem. They

keywords Stochastic Control, Force Variability, Cellulardiscovered that the calculated trajectories accordinghts t

Control System, Muscle, Compliant Actuator, Actuator A{rracriterion are similar to the stereotypical human motions, o
Topology natural movements (Harris and Wolpert, 1998). Todorov et al

(Todorov, 2005) suggested that this optimization strategy
equivalent tomin(3_(c*)), the optimality principle in muscle
force generation(RD. Crowninshield, et al., 1981; Van Biigh
. INTRODUCTION and Gielen, 1999; Buchanan and Shreeve, 1996; Prilutsky,
Generation of natural movements, or the movements creaff0); that is, a minimization of the sum of muscular stress,
by biological systems including humans and animals, has be® raised to a powerg, which is subject to the force/torque
one of the biggest scientific questions discussed in phygyjol constraints of a given task. Although physiologically-®ds
for decades. Based on visual perception of “biological owti cost functions with this structure have been used in biome-
(Johansson, 1973; Troje, 2002) humans can easily disshgu¢hanics and physiology to predict redundant muscle forces,
between motions created by artificial systems such as robégsphysiological meaning was not clear. Simmons et al. has
and those of humans, and human natural movements agplied this concept to optimal control of a standard 2-DOF
stereotypical (RD. Crowninshield, et al., 1981; Van Bothuimanipulator with non-redundant planar rotary joints (Sioms
and Gielen, 1999; Buchanan and Shreeve, 1996; PrilutsRjd Demiris, 2005), however signal-dependent noise was
2000; Dickinson et al., 2000; Nozaki et al., 2005). Exclgdincomputed and merely added to the control signal to mimic
small individual differences, motions with the same objext @ natural system, but this noise never exists in AC/DC rotary
such as arm-reaching or walking, tend to be very simil&Rotors. This is the beginning of a bottom-up approach, but
among different people. Stereotypical adaptation prasessarge gaps still remain. The work presented by Harris and
are also observed in neurological patients (Davies, 200f/0lpert is intuitively understandable and a likely solutito
Krishnamoorthy et al., 2003; Reisman and Scholz, 2003)€e natural movement problem, but more effort is needed to
Together, these observations imply the existence of gendigach fully conclusive results.
rules for coordination of multiple muscles to generate raitu  The contrast between the actuators used in biological sys-
movements. tems (i.e., muscles) and robotic systems (e.g., rotary DC
motors) is another possible cause of the difference between

David L. MacNair (corresponding author) and Jun Ueda ark Gitorge W.  moyements of humans and machines. Biological muscles are
Woodruff School of Mechanical Engineering, Georgia Ingétof Technology,

801 Ferst Drive, Atlanta, GA 30332-0405. E-mail: david.m#o@gatech.edu, comp_letely di_ﬁer_ent from thei_r electroma_gnetic countetp,
jun.ueda@me.gatech.edu both in constitution and function. (Martini and Bartholome
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2006; Jacob et al., 1982; Yamaguchi, 2001; Kostyukov, 1998; other fast acting linear actuators so long as the same
Hospod et al., 2007; Tyreman and Molloy, 2003; Stern et atontrol method, cell definition, and cell structure are uSdw
1997). They are energy efficient, compact, light weightunatultimate goal of this project is to understand the mechamitm
rally compliant, and silent. As new robotic actuator tedbno generating natural movements of skeletal mechanismsrdrive
gies are studied, one of the goals is to invent artificial feusdy the stochastically controlled actuator arrays preskirie
actuators with these properties. In recent years, gregress this paper and inspired by biological muscles.
in the development of new actuators has been presented using
e.g., shape memory alloys (Srinivasan and McFarland, 2001; [l. STOCHASTICALLY CONTROLLED CELLULAR
Fu et al., 2004), pneumatic rubber actuators (Sanchez,et al. ACTUATORS INSPIRED BY BIOLOGICAL MUSCLES
1998; Caldwell and Tsagarakis, 2002), conductive polymersthe detailed mechanism of biological muscles is still un-
(Hara et al., 2004; Plante and Dubowsky, 2006; Shahinpq@{own: however, biological muscles suggest importantgiesi
et al., 2000), and piezoelectric materials (Uchino, 19900-C g;idelines for new robot actuators. Muscles are dynamic
way et al., 2007; Niezrecki et al., 2001; Canfield and Freckel siems with high degrees of internal freedom and relativel
2000; Dogan et al., 1997; Dogan et al., 1994; Hagrt"”g’ 1994w inputs and outputs. A muscle is composed of numerous
Janker et al., 1999; Newnham et al., 1993; Onitsuka et alarcomeres, small functional units which contract to plevi
1995). These novel actuators are particularly useful in mmvarying levels of displacement and stiffness, and inteforak,
assistive technologies (Veneman et §1I., 2007; Alexandat. et velocity, and displacement receptors, i.e. Golgi tendaans
1992; Krebs et al,, ; Lee and Sankai, 2002; Perry and RosgRg muscle spindles (Martini and Bartholomew, 2006; Jacob
2006; Toth et al., ; Tsagarakis and Caldwell, 2003; Ueda.et l; 51 1982: Hospod et al., 2007; Tyreman and Molloy, 2003;
2008a; Ming et al., 2008) and biomedical robotic applia@io giern et al., 1997). In vertebrates, impulses from the brain
Beyond the obvious engineering benefits, use of these ngy carried by the spinal cord to motor neurons which in
actuator technologies in robotic systems gives reseaam®r r, distribute the impulses to the muscle fibers, via syinapt
experimental platform to explore the basis behind humagminals at neuromuscular junctions, and activate the sar
motion and robotic duplication of this motion. comeres. It is known that the activation of sarcomeres is a
It is known from prior literature that the activation Ofginchastic process, rather than a deterministic conteslatise
sarcomers is not governed by deterministic control, but & ihe diffusion of calcium ions at these junctions (Kitarmur
instead affected by a stochastic process due to the diffusfio 5,4 Yanagida, 2003). The brain does not know or control
calcium ions (Kitamura and Yanggida, 2003). It is unknown tg,o displacement or force of any given sarcomer, only the
what extent this or other properties affect whether a moveme,erall muscle. This is part of the inspiration being using
is perceived to be natural, but developing artifical muscles siochastic process to control the actuator arrays. Due to
with stochastic properties will hopefully shed more light 04 large redundancy of sarcomeres, Golgi tendon organs,

this active research area. The stochasticity in networks ha,scle spindles, motor neurons, etc., even if some fraction
been attracting increased attention from broad acadere&saryt the components are not functional the rest of the funetion

such as computer science (robust computer networks),gyolcbomponents can compensate to maintain total functionality
(robustness of human immune systems), and urban engigeefifyjs s critical for biological systems, and very useful whe
(robust transportation networks) (Shooman, 2002; Juliad. e reproduced in robotic actuators.

2008; Alon, 2006; Stelling et al., 2002; Nagurney and Qiang, The |ast author proposed a new architecture for robot
2007; Singer, 2006), all of which serve as references whgpyators inspired by muscle properties, which in turn has a
designing and analyzing the stochastic systems. The s0cha,qential to be a novel approach to synthesize biologieally
actuator arrays proposed by the last author's group (Ueala tinspired actuators (Ueda et al., 2006; Ueda et al., 2007c;
2006; Ueda et al., 2007c; Ueda et al., 2008c; Ueda et gleqa et al. 2008c: Ueda et al., 2008b: Ueda et al., 2007b:
2008b; Ueda et al., 2007b; Ueda et al., 2007a; Odhner et @l et al., 2007a). This concept, named “stochastic eellul

2006; Odhner and Asada, 2008) was selected as the examplgator,” connects small PZT actuator units, shown in Fig.
basis for the arrays in this paper due to its stochastic eatui, in series or in parallel to compose a macro-size actuator

The actuator arrays also have spring-like compliancy aimd 55y A new structure called a “nested rhombus multi-layer
that of organic muscle, so hopefully the two propertiestoge echanism” (Ueda et al., 2007c; Ueda et al., 2008c; Ueda

provide an effective test bed for a bottom-up approach tdystug¢ al., 2008b) was proposed to amplify the displacement of
biological muscle and natural motion.

This paper presents a novel fingerprint method used describe
and automatically generate every possible stochastiatostu
array topology for a given number of cells, and to calculal
actuator array properties such as: travel, required amtua
strength/displacement, force range, force variance, abdist-
ness for any array topology. (MacNair and Ueda, 2009). Tl
proposed analysis is experimentally validated using anside
actuator array; however the same properties and calcofati€
can be easily extended to systems using different actu
types such as pneumatic cylinders, piezoelectric actsiator

. 1. Piezoelectric cellular actuator array
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piezoelectric ceramic actuators, such as lead zircorateate Unforced Relaxed Length  Forced Relaxed Length,
(PZT), in order to create a novel actuator unit with 20- l
30% effective strain; which is comparable to natural slatlet
muscles(Martini and Bartholomew, 2006; Jacob et al., 1982)
This mechanism drastically mitigates the drawbacks of PZT,
i.e. its extremely small strain of only 0.1 % (Uchino, 1997).

In addition to the strain amplification, the mechanisms are
sufficient to produce “muscle-like” compliance in the ad¢tua :
unit (Ueda et al., 2007c; Ueda et al., 2008c; Ueda et al., = ____i
2008b). These actuators are extremely compact and easg to us i
as building blocks in arrays for wide ranges of requirements
in terms of force and displacement.

Figure 2 shows the concept of controlling a vast number of
actuator units (Ueda et al., 2007b). Instead of wiring many
control lines to each individual cell, each cellular actuat
has a stochastic local control unit that receives a broaeldas
signal from a central control unit and changes its state in a
simple ON-OFF manner (Selden et al., 2006). This stochastic
coordination, named “stochastic recruitment,” was ireghir
by the calcium diffusion process in the signal transduction Unforced Active Length  Forced Active Length
of muscles (Kitamura and Yanagida, 2003) and drastically
improves wiring and addressing issues. The ON-OFF contfad. 3. Cell states and associated lengths
does not require high-performance actuator driver ciscaiitd
it resolves the problem associated with hysteresis of the ac
ator material. The stochastic cellular actuator array BB®a ||| M ODELING AND CHARACTERIZING RECONFIGURABLE
high robustness against failure of the actuator units. fistic ACTUATOR ARRAY TOPOLOGIES
control theory (Kushner, 1965; Kushner, 1967; Doob, 1990) , i
proves the system stability, and despite having no detestitin A+ Modeling a single actuator array cell
coordination, the ensemble of the cellular actuators rhpus For the purposes of this paper, a cell is a component of an
tracks a given trajectory even if, for example, 30% of théscelactuator array consisting of a stack of piezoelectric dotsa
fail(Ueda et al., 2007b). surrounded by a nested displacement amplification streictur
Ueda et al., 2008b), as shown in Fig. 1. The piezoelectric
ctuator stack moves from a relaxed length to a shorter

. X actuated length when activated and back to its relaxed Hengt
topology where actuator cells were connected in series

2 . . en deactivated. Assuming the external force acting on the
physical interaction among cells was neglected. This PaR&l|| does not overpower the actuator, the relaxed and a&ctuat

presents a method to generate and analyze compl_ex E_i(?tu?et%ths of the actuator are constant. The amplificatiorciira
array topologies where actuator cells are connected iasen deforms according to the actuator displacement and forces

parallgl, or a mixture of both, interacting through mecleahi applied externally to the cell, as shown in Fig. 3. As long
compliance. as the amplification structure is kept in the linearly etasti
portion of the stress strain curve, the structure acts as a
linear spring. This is easily accomplished since the malteri
amplification structure does not deform by 20% linearly, but
rrz=====mceceaeeca— Actuator cell rather the geometry of the structure allows for the amplified
(Compliant actuator displacement. The bending which does occur is close enough
+ stochastic controller) 4 gjastic bending of the high silicon bronze structure to be
considered linear. Activating the piezoelectric actuattack
preloads the amplification structure (spring). If the celes

no external force, this will cause the cell to shrink to the
cell's unforced activate length. Alternatively, if the fth of

the cell is held constant, this will cause a force on the ewler
constraint directly proportional to the change in length of
the piezoelectric actuator stack. For this reason, each cel
is modeled as a spring with a pure force generator acting
in parallel. Figure 4 shows an equivalent system model for
a piezoelectric actuator with an amplification structurbisT
model is applicable for any number of nesting levels (Ueda

Although the characteristics of broadcast control havenbe
investigated (Ueda et al., 2007b), this used only a simpheyar

Broadcast
controller

=1)
i

Fig. 2. Stochastic broadcast control of cellular actuatoaya

Actuator array

Aggregate displacement/force
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Equivalent spring constant

A

—> Ax,

PZT stack
actuator

Kigaa

Amplification
mechanism

Pure force generator

is V; . and the force ofV; is IV; . Nodes have no equations
or given values.

2) Cell: Acell(C; for j = 1,2,---,J whereJ is the number
of cells) has one variable, the displacement from the relaxe
unforced length {;), and three given values: the cell spring
constant k;), the cell relaxed unforced lengttX(), and the
pure force generator equivalent fordg;J. Assuming all cells
have the same force capability’), £; = F when the cell is
active andF; = 0 when the cell is relaxed. Cells also have

three constituent equations. Equation (1) sets the pasitfo
the nodeN; ; (node on the right) equal to the position of node
N; (node on the left) plus the combined distance of the relaxed
unforced length X;) and the displacement from the relaxed
unforced lengthd;). Equation (2) sets the force through node
et al., 2008b), but does not consider inertial or dampingoeéf Vi €qual to the cell spring constart;j times the displacement
Note that this paper uses piezoelectric actuators for eleanp(d;) plus the pure force generator forck;}, and Equation (3)
however the same modeling and techniques are applicaffes the same for nod¥; ;.

to compliant systems using different actuator types such as
pneumatic cylinders, solenoids, or other fast acting linea

(a) Rhombus mechanism (b) Simplified model

Fig. 4. Simplified representation of compliant actuatot cel

Nit1o — Niw —d; X; 1
actuators. +L ’ J J (1)
Nig—kj-dj = Fj 2

B. Modeling an actuator array
) ) 3) Spacer: A spacelS, fory =1,2,---,Y whereY is the

Any one dimensional actuator array can be represenigdher of spacers) is used to represent a constant length in
using four different element types, each having a certajfl 5ctyator array. They have no variables but have one given
number of variables, equations, and constants. F|gure\5$hqla|ue’ the length of the spaceq,]. Spacers also have two
an exz_imple topology. The_element types are shown in TablSduations. Equation (4) sets theyposition of ndde, (node
and Fig. 6, and are described below: ~ on the right) equal to the position of nodé (node on the

1) Node: A node §; for i = 1,2,---,n wherén iS |efy plus the length of the spaceq,). Equation (5) sets the

the number of nodes) is an imaginary unit used to connggtqe through nodeV; . ; equal to the force through nodé;.
the physical element types and to mathematically track the

position and force along the actuator array. Nddeand node

N,,, the first and last nodes, are on the ends of the actuator (4)
array and only have one attached element each. These are used (5)

to represent the connection to the external environmerit. Al

other nodes are attached to two elements, one on the left and) Expander: Expanders connect a single node on one side

one on the right. Nodes have two variables. The positioN,of 0 multiple nodes on the other side without adding length
to the system. This allows multiple cells to run in parallel,

amplifying the force capacity and increasing redundancy of

Ni+1,w - Ni,z = Qy

Niyrp = Niy = 0

fw O =Node the actuator. Expanders have no variables or given valugs, b
. _ haveh,. equations wheré,, is the number of nodes connected
B =Cell
D = Spacer
e
*E and } = Expanders N k T
" N, 0 —1—0
. . N,/ N, ‘ F, s
Fig. 5. Representation an actuator array topology i if 4 !
X, ‘
TABLE | !
ACTUATORARRAY ELEMENT TYPES (a) Node (b) Cell

[ Type [ Variable | Equations | Constants | N N o

Node: Position N; — - N, N., i+l i+1

Force N; ¢ ‘—4 N; Ny -OR- N, N
(1) Spring Constank; q,, N. N, ©
Cell j Disp. d; Egs. (2) Unforced LengthX " !
?3) Force Generator ForcEj; (c) Spacer (d) Expander
Spacery — Eqgs. (4),(4) Length g,

- . ’ - 1g. ©. ements types used in creating actuator arrays
Expander Egs. (6),(7) Fig. 6. El yp d i ing y.
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ot -

IE I 0O H O H ........ .[=§].O
Fig. 7. A topology that cannot be represented with a fingetpri I: : ! : :
IE |:I: L1 L2 ' e ]_/1 'Lk
by the expandeth,. —1 of the equations follow the form shown L1 L2 L3 14
in (6) and make the positions of all of the connected nodes (a) System 1 (b) System 2
equal. The final equation, (7), adds the forces on the larger _
side of the expander and sets the result equal to the forceféh 8. Example array topologies
the smaller side. If a physical expander has length, a sin 00001= &1 L
spacer can be connected in series on the smaller side of """"‘g ~ L “Lap &
idealized expander. . -&E
P 00001 O 0111:)’) = (l’l——O}—‘ . 0} y
Ni,x - Nz‘+1.,x =0 00001 0 10000= &10 lizl__o
Ni_x o Ni+2.z =0 00001 O O 0. o
L Niie. — 6 ]
N’L’x N’L+3’x =0 ( ) Incoming Front Mid-Layer Back Outgoing
: Nodes Structure Nodes Structure Nodes
Nij—Nig1f—Niyojs—Nigzg—---=0 (7) Fig. 9. System 1, layer 2 fingerprint description example
1, ) s [ s [ s -

Note that the equations list nodes sequentially about each
element, but the node numbers will not necessarily be sequen

tial. See Fig. 6 for what the node numbers correspond to fgid-layer nodes, as shown in Fig. 9. The front structure can
each element's description. be represented b¥,, numbers, wheré:,,, is the number of

mid-layer nodes for layer m. Each front structure number is a
hexadecimal representation of which incoming nodes cdnnec
. _ to the corresponding mid-layer node. The first front streestu
A. Fingerprint structures number, for example, shows which incoming nodes connect
Actuator arrays can be represented as lists of cells, spacéirectly to the first mid-layer node. In Fig. 9, the front stiure
and expanders with each element in the list knowing whigiould be represented b1, & E, &10]. The representation
nodes it connects to, but this method is bulky and makesn be decoded by converting the front structure numbers
describing and encoding actuator array topologies difficuto binary. &1 corresponds t@0001 which means that the
In order to more simply and compactly represent compldist mid-layer node connects only to the first incoming node.
actuator arrays, a layer based description, or fingerpiont, &£ corresponds t01110 meaning the second mid-layer node
actuator array topologies was developed. connects to incoming nodes 2, 3, and&4l0 corresponds to
The fingerprint assumes the actuator array can be separdfe@)0 meaning the third mid-layer node connects to incoming
into layers with each layer having the length of an unforcgtpde 5. Care must be taken to not mistakenly read the front
cell when the actuator array is fully relaxed and no externairucture number backwards, for instance mistaking 10800 a
forces are applied. This means it can only describe systef@inecting to the incoming node one instead of incoming node
which have no internal forces when all cells are relaxédive.
and the array experiences no external force. For exampleThe back structure can be represented by 2 numbers per
topologies shown in Fig. 7 cannot be represented. Followingid-layer node. These two numbers represent the number of
this assumption is generally a good design practice sincells and the number of spacers connected to that mid-layer
internal forces can lead to buckling of actuator array segme node. Cells are always considered to connect to lower oudgoi
so the fingerprint method is considered robust enough ode numbers and spacers to higher outgoing node numbers
represent those systems most likely to be used in practieghen both cells and spacers connect to the same mid-layer
An additional assumption holds that all cells are identicalode. This is discussed below. -1 for both the number of cells
or that the data holding additional cell properties is doreand the number of spacers is used to signify the end of the
elsewhere, however storage of this additional data is gdigier actuator array, which the build algorithm explicitly looks to
not difficult. This separates the geometry of the topologyrfr find the last layer. Having two 0's on any layer would représen
the force properties of individual cells. a discontinuity, an error in the fingerprint. Having a 0 foe th
In order to represent an actuator array, it is first brokewumber of cells or number of spacers would not represent
into layers of equal length as shown in Fig. 8. The layem error on any layer except the last since it is possible to
break occurs just after the cells or spacers of the currgstlahave a layer with only cells or only spacers (only spacers
and before the next set of expanders (or cells if no expandamuld increase array length). The final fingerprint stacles th
exist in the next layer). Each layer can be represented &sinfront structure numbers on top of the back structure numbers
parts, the front structure and the back structure, whichieshdor mid-layer node in each layer. The final matrices for each

IV. FINGERPRINT REPRESENTATION
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layer are3 x h,, matrices which are appended to form the This translates to00001 + 01110 + 10000 = 11111 =
final fingerprint. For example, the array in Fig. 8 (a) has the 25 —1 = &1F.

following fingerprint: 2) Sum of the last 2 rows of any layer equals the number of
incoming points for the next layer and must be greater
&1 ] &1 &E &10| &1 &6 &8 | &IF than zero. ,
5 1 1 9 9 9 1 1 @) 3) The last layer must have -1's for the number of cells
0 0 0 0 0 0 0 1 and the number of nodes.

Similarly, the array in Fig. 8 (b) has . . .
D. Fingerprint generation

&1 | &3 &3 | &3 In order to do an in-depth survey of actuator array proper-
2 2 (2 21 (9) ties, a method of generating all possible actuator arragltep
1 1 ] -1 gies given a fixed number of cells was needed. Since infinite
topologies exist even given a finite number of cells, spacers
B. Outgoing structure convention were not included in the automatic generation of fingerprint

The convention of putting cells above (lower node numbe}- is makes the problem manageable, but does potentially

spacers helps avoid confusion. System 1 of Fig. 10 is showr 0ve Some good topologies. Future work will address this

not following the convention while system 2 is an identicar-o <" however the cell-only arrays provide valuable inisig

topology which does follow the convention. System 3 shOV\?snd spacers can always be added back manually. Analysis

how system 1 would be misinterpreted when the conventi?r[llc;(;ee%ures shown later still apply when this constraint is

is not followed. When interpreted according to the state . .
The auto-generation problem was broken into a layer by

convention, an algorithm would put the lower cell in syste . X
1, layer 2, in direct parallel with the upper cell when it Motrniyer iterative approach. Each layer was then further broke

the incoming connection for layer 3 (as shown by system ﬂ)own into its front section, which contains the information

System 2, which correctly follows the convention, would b ' blr|ng|ng the incoming nodes down o a pertam ngmber
of mid-layer nodes, and its back section, which contains the

written as: . . ; : .
information for expanding each mid-layer node to a certain
&l | &1 &2 | &5 &2 | &3 number of cells and outgoing nodes, as was shown in Fig. 9.
2 1 1 1 1 1 (10) For each front section, all of the possible methods for con-
0 0o 1 0o 0 1 necting the incoming nodes were explored using a recursive

function. This function took in a binary input;, showing

which incoming nodes were not yet connected for the current
C. Fingerprint spot-check test case. For example, in Fig. 11 incoming nodes 2 and 4
are not connected, thus the input would be 1010 which. The
Winction iterates upward in binary from= 1to s = 2+ — 1
wherel, is the length ofi. Eachs has 0’s concatenated to the

1) The top row's numbers should occupy every incomingt side until it is the same length asand is then subtracted
connection point, no more than the number of connec-

tion points, and each incoming connection points can
only be used once. This can be shown by adding tl

Properties which are necessary for a correct fingerpr
include:

Incoming Nodes

binary numbers of the first row tog(_ether. The resu - 1 2 and 4 are not connected
should be equal t@"” — 1 where h; is the number & 2
of incoming nodes. For example, Layer 2 Fig. 8 (a = WO Input:  a=1010
had the incoming connection numbégésl, & E,&10]. & o3 i‘f'
z =1..bmn(2~—-1}=1...1111
® Byo! . [[&2m(&8] )[&8 &2), [&10]
ot o—[:% I H}_o €= g ’
: }Q —O—#—01 [| 1N 1 1010 01 ™o Lo 1o 170
o ‘; 00 1 0010 00 1 0 DX{ooo 1X0 1
Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4 1/0/ 1 N 1000 }/0 0\[\11 IA’—I] N I/Fl] l\kll
(a) System 1 (b) System 2
0 1.6 1IN0 1 1010 01 1010
" M 0 1 1000 10 1 1010
}Q O = Node 1/[(1]7>\01/L/1]M[<1] 0010 o/a’l\{\l] 0000
I - cen
:o:ol ™~ 1 0 L0 e 1o D™No L6 1\p 1.0
Layer 1 Layer 2 Layer 3 Layer 4 > - et ;\M ! 00 1 1IX0 1 1 1IX160 IM
(c) System 3 | O/t{ 0 \Nl %1] N’ 0/[{1] 1\[:1] O/FI] N o A1 0\[:1]

Fig. 10. Outgoing structure convention example Fig. 11. Front section autogeneration example
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from a element-wise. If there are any resulting -1's theis . e gy =
tossed out, otherwise is stored in hex in array asc;. This 0 ) 3) (4) (5)

becomes front structure number as part of a fingerprint layer
To finish generating the front structure for each statgdhe {:3_3_‘
function is called recursively with an input ef, = a — ¢. ) (7)’_‘3‘[3*?87 ) (10)
No additional level of recursion is made for inputsaf = 0.
The function returns the structure (11)dfhasL entries with [3 j 1 Ij I 1 Ij
L>1.

(11) (12)

(13) (14) (15)
[017 recursmﬂ]; e [cl7 recursmﬂu RIS [CL] (11) [315716) E@;}D Eﬁ;g) Eﬁ__(l()) 3 20)

From the example illustrated in Fig. 11, the first entrycin -
is &2 representing a connection to only incoming node 2. The™ (21) Q2) (23)
next layer of recursion then takes in an inputt610—0010 =
1000 and returnsz8. When the function finishes, the result ig9- 13. Automatically generated 23 topologies for 5 cells
a structure of all of the frontal connection possibilitiesch
of which can have one or more mid-layer nodes. Since each
mid-layer node must have at least one cells attached to it, V. ANALYSIS OF ACTUATOR ARRAY PROPERTIES
those frontal connections which have more mid-layer nodxs
than remaining cells are tossed out. :

Another recursive function is run to generate the badfumber of Cells (J): As the number of cells increases, the
structure for each front structure. This function takestia t 2Ctuator array cost increases, the power requirementisess
number of mid-layer nodes and the number of cells left @d the actuator array has a larger volume and mass. Inegeasi
be placed, and returns all of the back connection possitsilit CellS also generally increases the actuator array displene
The function iterates fromy = 1 to g = G where( is given and/or force capacity and decreases the normalized varianc
by G = z—m+1, z is the number of remaining cells, and Actuator Array Travel : For the purposes of this paper,
is the number of remaining mid-layer nodes. The number Bf¢ actuator array displacement is considered to be half the
cells connected to the first mid-layer node is equal to currefffference between the relaxed unforced length and theeacti
value of iteration,g. The upper limit of the iteration is due Unforced length, i.e.A/2 in Fig. 14. The relaxed unforced
to the need for each mid-layer node to have at least one ¢g[fgth is the length of the actuator array when all cells are

attached. The result function is then recursively callethwi€laxed and no external force is applied; this is also cameid
w remaining cells determined by = z — g ando mid-layer {0 be the minimum length. Similarly, the actuated unforced

nodes determined by = m — 1. length is the length when all cells are active and no external

Figure 12 shows a process tree for how the fingerprir{tegrce is applied. This length is shorter than the minimum

were generated for actuators with 4 cells. All actuatorsrbe ngth. The actuator array travel spans from the relaxed
with agsin le incoming node and a numbér of cells. The froqJ forced length (minimum actuator array length) to thissplu
end for Iager lis alwg\ 41, and the back end useé betweel displacement, as shown in Fig. 14. This assumption is
1 and J Zells whereJy i ’the total number of cells Theexplored further in the discussion about the use of actuator
o arrays in antagonistic pairs and ensures no compressioesor
second and subsequent layers take each of the previouslayer. .
exist across cells due to other cells activating.

configurations and generate all of the possible conflguua\tlol:orce Function 7 is a function of the probability input and

for that layer. When the function is called with no remainin{;ne current actuator array length which yields the force an

cells, the last layer is always filled in to connect all migida actuator array will provide. For a given lenath. a command of
nodes to a single output node and put -1's for the number o y P ' 9 gt

cells and the number of spacers.

Figure 13 shows the connection possibilities for 5 cells. A
The number of topologies for 2 — 8 cells are: 2 topologies for Active Unforced"HF
2 cells, 4 topologies for 3 cells, 9 topologies for 4 cells, 23 Length
topologies for 5 cells, 65 topologies for 6 cells, 199 topits
for 7 cells, 653 topologies for 8 cells, 2283 topologies for ~ Relaxed Unforced Travel
9 cells, and 8467 topologies for 10 cells, respectively. For Length I
example, the computational time for 10 cells was 324 [s] by
MATLAB running on a QuadCore 2.83GHz processor. The A2
number of topologies and the computation time for genegatin

all of the topologies increases exponentially with the namb
of cells.

Actuator array properties

Fig. 14. Actuator array travel explination
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Fig. 12. Tree representing the automatic generation of @ffprints for all 4 cell topologies
3 Most Critical Cell Broken

0% input probability will give the minimum possible force in Mo Crita! Cell Broken 2 Most Citcal Cell Broken O

achieve a desired mean force output.

Requlred ACtuatOr FOrCe/DlSpIaCement (RAD / RAF)EaCh Percent of Original Force Percent of Original Force Percent of Original Force
piezoelectric or other type of linear actuator must haveasti ~ “™"*** Remalning 28 527% Remaining: 0.0%
a certain force capacity, or required actuator force, ireotd O =Nede W -Working Cell [}~ Broken Cel

ensure it is able to actuate fully when loaded. Each actuag?é' 15,
must also have a certain displacement which it will move to,
but not beyond, whenever activated. For the purposes of this

paper, it is assumed that there are no compression forche in t . . . _
orse than simply having a non-functional cell since a non-

actuator array. This is a design restriction such that when ey tional cell still h tact liant struct d
actuator array is in its relaxed unforced state no compmssiunC ional cell still has an intact compliant structure an

exists across any cell (considered good design practiog), 'tﬂ? t% nvo laffegt ton r;]ea:rbyt/ fé”s T\t/vo tr?bursrtness;nnle?;ures}
is a result of the previously mentioned antagonistic palyge € develope P characterize actuator arrays erms ‘o
assumption. robustness. The “Minimum Cell Loss to Uncontrollability”

Variance Function This is a function of the input probability (MCLU) defines, in the worst case scenario, how many cells

value and the current actuator array length which yields t uId have to break to have zero controllable force capacity
expected variance in the output force for an actuator arr t Worst thillutre Force Functlﬁ : (Wflt:FFg s kthe force
While the mean force output will remain constant for hetion an actuator array can achieve after breaking angive

constant input probability value, the actual force outpilt WI umbfr OL'tS rr;)cl)sttczlt:c]?l cells (thel cetlls _Iv_vhhlch rethuItsthe
vary over time. The larger the force variance, the farthemfr owest achievable total force once lost) ese two measure

the mean value the force is likely to be at any point in timé'® ks),hlownt;]n F'gl 15thS° Iotngtas forces (I)Inbthebellcttuaftor zirray
Variance will lead to a greater potential for positioningogr are below this vaiue, ne actuator array will be able o fiamc
with open-loop control. and have time to cope after the break of any cell.

Robustness (MCLU, WFFF) The worst case failure of a cell
is a break; meaning’; and k; for the cell are always zero, B- Relationship generation

making the broken cell and aII cells connected in seriesao th To analyze the properties of the actuator arrays, the elemen
broken cell seem to vanish from the array. This is considereduations described in Section IlI-B are arranged intoethre

Robustness measure: “minimum cell loss to unctialifity”=3.
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systems of linear equations, or relationships, which aem th
used to solve for internal variables. Each relationshipsisis

of an A matrix containing the coefficients of the internal

variables in the element equationsBavector containing the
internal variables themselves, andCavector containing the
given values (the right hand side of each equation). Thesyst
of linear equations is then solved using

B,=A;'C, s={f,d,c}

(12)
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Nijp=1 (15)

3) Displacement relationship: The displacement relation-
ship is used to determine the unforced relaxed length and
unforced actuated length of the actuator array. The relatio
the same as the force relationship except that (13) is cltange
to (16) which sets the force in node 1 and thus the actuator
array output force equal to 0. When run with all cells relgxed

Depending on the type of ana'ysis' these matrices Contm will giVe the unforced relaxed |ength and when run with

slightly different elements. Matrices\;, By, C; are for
force relationship analysisA., B., C. are for controllability
analysis, and4,4, B4, C, are for displacement relationship
analysis.

1) Force relationship: The force relationship identifies all

all cells activated it will give the unforced activated lémgf
the system.

Niy=0 (16)

node forces given that certain cells are active and the twtua

array has a given overall lengtiX{,;). This relationship uses
the element equations exactly as they appear in Table | boit
adds (13) and (14), where nodeis last node in the system.
In the cell equations, the values of constéitare filled in as

a

ﬁ:. Example actuator topology representation

1) Force relationship analysis. An actuator array shown
in Fig. 17 can be represented by (17). Assume that the both

either ' or 0 based on whether the cell is currently active ognds, represented by the first nods;] and the last node

relaxed. Equation (12) solves f@, the internal variables of
the system. The force output for the actuator array is equal
the force in node 1, a component of veciBr;.

Niz=0 (13)

Nn,z = Xtot (14)

2) Controllability relationship: The controllability relation-

ship is used to determine if an actuator array has any centrol
lable force capacity. The relationship is the same as theefor

relationship except for two differences. First, the pure-force
generator force in the cell equation is moved to the left side

the equation as an unknown for all cells. This unknown force
is assumed to be the same for all cells regardless of topology

since the intent is to check for controllability, not to exfily
solve for individual cell forces. Second, (15) is addedisgtt

(Ng), are fixed andh; = {0, 1} becomes 1 when thgth cell

i§ operational, and 0 when the cell is broken. These equation
are further represented by a matrix-vector form as shown in
(18).

%;i i 2(t0t }Mount points
N3,y — Noyp—di =X,
Naj—bi-ki-di=b - F
Ns.o — Nyg —do = Xo
Naij—by-ky-dy=bs-Fy
Ns g —by-ky-dy="0bg-Fy
Nl,:c - NQ,I =0

Nl,a; - N4,z =0
Nij—=Noy—Nyy=0

Cell Equs.

(17)

the force in node 1 and thus the actuator array output force
equal to a test force of 1. Note that any non-zero test force
is applicable. The test force of 1 is given for simplicity. If
the A, matrix is full rank, the actuator array can change the
exerted force by activating or relaxing cells. Figure 16veho

2
examples of an uncontrollable actuator arrays. )

Now — Noy =0 Expander Eqns.

N6.,:6 7N5,x =0
Ng,f — N3,y — N5 5y =0

Displacement relationship analysis: Assume that the end

(V) is fixed and the other endVg) has a forceF;ot applied,

which can be zero. (19) gives the equations of the displaneme

B =Working Cell P = Spacer
¥ =Broken Cell
(a) (b)

Fig. 16. Uncontrollable actuator arrays examples. In (Bjusictional cells
are negated by broken cells and unable to produce a force iactuator array.
In (b) spacers, constant length units, do not allow cell &@n to affect the
length of the actuator array and internally cancel the forceeated by the
cells.

Fig. 17.

relationship.

G

Example array: two actuator cells are connectedamaliel
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1 0 0 0 0 0 0 0 0 0 0 O 0 0 Ni» 0
0 0 O 0 0 0 0 0 0 0O 1 0 0 0 Ny Xiot
0 0 -1 0 1 0 0 0 0 0O 0 0 -1 0 No X4
0 0 O 1 0 0 0 0 0 0 0 0 —by -k 0 Ny ¢ by -
0 0 O 0 0 1 0 0 0 0 0 0 —by -k 0 N3 by -
0 0 O 0 0 0 -1 0 1 0 0 O 0 -1 N3 ¢ X5
0 0 O 0 0 0 0 1 0 0O 0 0 0 —bs - ko Ny _ by - Iy (18)
0 0 O 0 0 0 0 0 0 1 0 0 0 —bs - ko Ny y by - Iy
1 0 -1 0 0 0 0 0 0 0O 0 0 0 0 Ns 0
1 0 0 0 0 0 -1 0 0 0 0 O 0 0 Ns ¢ 0
01 0 -1 o0 0 0 -1 o0 0 0 O 0 0 Ne » 0
0 0 O 0 -1 0 0 0 0 0O 1 0 0 0 N, ¢ 0
0 0 O 0 0 0 0 0O -1 0 1 0 0 0 dq 0
00 0 0 0 -1 0 0 0 —-101 0 o |lda | o |
—_——  ——
Ay B; C,
x;i ; ())(wt } Mount points
N3, — Ny, —di =Xy
%1’”“' ; (})7, }Mount points Nog—0bi-ki-di —b1- feom=0
6. tot NB.,f*bl'kl'dl*bl'fcom:O
N3, — Noop—di = X, Nev— Niw—dy = Xo Cell Eqns.
S0 0L RO UL T Cell Eqns. Nsp—ba-ky-da— b2+ feom =0 (20)
NS,w_N4,z—d2:X2 le_N2$:0
Nog—bo-ko-do=bo- (19  Nio— Nip=0
Ns,fbe'kQ'd2:b2'F2 Nl.’f*N27f*N4f:0
Niy—Noy=0 Nﬁ"a; B N37$ —0 ' Expander Eqns.
Nl,a; N N4’I =0 Nﬁ:z - N5:1 =0
Nip=Noj =Ny =0 Expander Eqns. Ne,f — N3y — N5 ;=0

NG,J} - N3,z =0
N6.,:6 - N5,a: =0
Ng,f — N3,y — N5 s =0

Ny, —1=0---Test force of 1 for Node 1

D. Property calculations

The actuator array travel’N/2) is the first property cal-
Only the second equation changes from (18). By choo#tpg culated for each actuator array. This is generated by using
as the same aB; in (18) and the displacement relationship to calculate the unforctkeel
length (V,, . with all cells relaxed and},; = 0) and unforced
activated length §,, , with all cells activated and’,; = 0).
As stated in section 5.1, the actuator array travel spama fro
the relaxed unforced length to this plus the displacement, a
Caq=[0,Fros, X1,b1Fy, b1 F1, Xo, boFy, b2 F5,0,0,0,0,0,0]”, was shown in Fig. 14. The force function and force variance
function are calculated usind s, By, andC; from the force
relationship.C'; can be separated into a vector containing the
force components¥) and a vector containing all of the other
componentsH) as shown in (22).@) contains two duplicate
matrix-vector formA, can be obtained. force entries for each cell, and each cell's pure-force can b
modeled as an independent Bernoulli trial multiplied by the
3) Controllability analysis. To investigate the robustnesspure-force capacity of the cellf() as shown in (23), where
properties, the equations in (20), a modification of (17§ ais the random value generated by the cell and the input
used. In () f.om IS @ common force among all cells for a tesprobability as well as the expected value of the Bernoui tr
force given to the node 1. This expands the original matrikne mean, or expected value, Bf; is calculated using (24)
form as shown in (21). (Hines et al., 2008).
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0 0
0 Xtot
0 X,
—by 0
—by 0
0 X
—by 0
Ay —by {Bf } =10 (21)
0 ! 0
——
0 B. 0
0 0
0 0
0 0
0 0
"0 1 000000O0O00O00O0O0O 0 1]
N———
A, C.

the mean force will increase linearly with increasing input
lof G H probability a_nd/or at_:tuato_r array length. The variancecfiom
0 r 7 is a quadratic function with roots at= 0 andp = 1, and a
maximum atp = 0.5.
Given that a certain actuator array topology has already
0 Ci been chosen, a designer can find the Required Actuator
F} + 0 (22) Force/Displacement (RAF/RAD) for a desired force function
Fj F} 0 () by first finding a unit force functions() for the actuator
0 Cit3 array given allf; = 1, ¥j. A scaling factor ¢) can be found
: using (26).

.
F, { L-fy p>mj (23) V=7 (26)
The scaling factor can then be plugged in forﬁllin the
0 force relationship. Solving the force relationship Bry will
: provide the forces in the nodes connected to each cell. This

(') is the required actuator forc& AF;, for each cell since it is
fiop the force the actuator driving the cell must be able to achiev
E[Bs] = A" fj_ . +A;' H (24) RAF; tends to be the same as the pure-force generator force,

jo P F; for all cells only in uniform topologies, such as with stiyct
parallel or strictly serial actuator arrayRAF; may need to
: be scaled for certain cell designs to match the amplificatfon
0 the spring structure. For example, if an amplification dtrces
decreases the force of a piezoelectric actuator by 20 tithes,
of B can be calculated using (25): ac_tualﬁ]AFj vvtl:: bde 20 times higher than thB AF; calculated
3 ) using this method.

0 This method of calculating the required actuator force as-
: sumes all cells will have the same force capacity requirémen
Designers of actuator arrays may decide to have a different
1-p) distribution of force capacitiesf;'s, in an array. If this is
1-p) (25) the case, the distribution should be used instead of unijorm
assigning allf; =1 (j = 1,---,J). Choosing this distribution
is an optimization problem and is outside the scope of this
paper. Once the scaling factor is foun”i;l,can be found using

Since each of the Bernoulli trial is independent, the varéan

Var [Bs] = A;'-

S
=
oo

The force function isE[N,f], an entry inE[B]. Likewise fi=1fixv (27)
the variance function isVar[Ny ], an entry in Var[B].
The force function is a linear function which shows thaind is used in the force relationship to determité F;.
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The Required Actuator Displacement (RAD) for each cell

is calculated using (28): oilEkRo 0‘[:}0{:}0

RAD; = i—j (28)
J &1 | &15 &l | &1 | &1 | &1 | &1 &1 | &3 | &3
This may vary from cell to cell depending on the cell sprin% 4 | -1 } { | U S (O O R ] { 2 | 2 | -1 ]
constant, but it is the distance that must be achieved by the | -1 000 ]o0 |-l 00 | -1
cell's actuator when activated to get the correct pureeanc A B C

the cell. A displacement greater or less than D will
affect the analysis and control of the actuator array. Inesom

&1
3
0

&7
1
0

&F
2
0

&3
4
0

& F
-1
-1

cases, it may be easier to choose an appropriate springaoonst
given f; and a fixed displacemenRAD;. In this case, (28)
would be solved fokk; instead ofRAD;.
The minimum cell loss to uncontrollability (MCLU) and
the worst failure force function (WFFF) are calculated us-
ing a combination of the controllability relationship arftet
force relationship. First the system is input into the force &1 ] { &1
relationship with all cells active and with the actuatoragrr -1 4
at its minimum travel. The most critical cell is determined a -l 0
the cell carrying the highest force. This cell is then broken D E
and the resulting actuator array is checked for contrditgbi
using the controllability relationship. If the actuatoray still  rig. 18, Example actuator arrays analyzed using the fingerprethod
has a controllable force, it is once again fed into the force
relationship with all cells active to determine the WFFFisTh
process is repeated until the actuator array is unconiella
The number of breaks required to make the actuator ar
uncontrollable is the Minimum Cell Loss to Uncontrollatyili

r%gl loss to uncontrollability (MCLU), and the percentage
reduction between the original force function and the worst
failure force function (WFFF) after breaking the most cati
cell. A had the lowest RAD and RAF while B had the highest.
VI. NUMERICAL EXAMPLES A also had the lowest displacement while B had the highest,
Figure 18 shows five actuator arrays which are analyzeghowing the trade-off between strength and displacement. B
the results are shown below. In the analysis, all cells habi@d a much longer travel than the other systems due to each
a spring constant ok; = 1 for all j = 1,---,J. The cell having an additive effect on the overall displacemertt a
force function,r, was selected such that the maximum outp@ince each actuator had to have a greater displacementen ord
force was 1 when the actuator array was not stretched. Tieeget the desired force function, Array A had the greatest
cells making up each topology are identical; however th@bustness from both the MCLU and WFFF measurements
RAD, RAF, and displacement vary between topologies. Figuréhile C and E were tied as the second best. B and D were
19 shows the force probability density functions (PDFs) fdroth tied for the worst case, despite D having a parallel
actuator array D. This graph shows the different forces Wwhistructure. This shows how having a parallel structure can
can be immediately achieved along with the probability thénprove robustness, but does not necessarily do so. E was
each point is reached given an input probability. Figure Z#own as a contrast to the 4 cell examples to show how
shows a graphical representation of the force functionclwvhiadditional cells can improve the variance curve, strength (
is identical for all cases by choice. This figure shows how tH&AF), or displacement. It also shows how cases with fewer
mean force changes linearly with respect to input prokgbilicells can have more desirable properties, such as strength
and displacement. Figure 21 shows the force variance cur{sver RAF) when E is compared to A or displacement when
for all of the actuator arrays. Interestingly, the samearase E is compared to B.
curves were obtained for arrays A, B, and C. Increasing the
number of cells in an actuator topology generally results VII. EXPERIMENTAL VALIDATION
in a lower variance, as in E. Additionally, when cells do i
not uniformly carry the internal forces, as observed for B Solénoid actuator array
they have a higher variance. The largest variance for anyin order to validate the theories presented in this paper, a
actuator array is obtained when the command signal, or inmaienoid based actuator array was developed. The array con-
probability, is 0.5. This can be seen in the examples andssted of eighteen Magnet-Schultz of America (MSA) S-06683
understandable since all of the actuator units will undedlyt solenoids, in a custom designed housing. The housing and
turn on if an input probability of 1 is given and off if an inputconnections between the solenoids and springs were printed
probability of 0 is given. using a Dimension bst 768 rapid prototyper. The solenoids
Table 1l shows the number of cells, actuator array travedach acted against two Lee Spring Co. LC 026EE 14M springs
required actuator force/displacement (RAD/RAF), minimurset in parallel, giving the same preloading effect as diseds
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TABLE I
EXAMPLE ACTUATORARRAY PROPERTIES
Topology | A ] B [ C | D | E ]

Number of Cells 4 4 4 4 10

Actuator Array Travel 0.125 2.0 0.5 0.667 0.5
Required Actuator Displacement 0.250 1.000 | 0.500 | 0.667 | 0.333
Maximum Required Actuator Force 0.250 1.000 | 0.500 [ 1.000 | 0.500

Minimum Cell Loss to Uncontrollability 4 1 2 1 2
% Reduction After Losing Most Critical Cel| 25.0 % | 100.0% | 33.3% | 100.0% | 33.3%

0 - 100
0.1 90 g 0.08] —Rw— A
-
0.2- 30 Lg —&#—B
2z 03 < Mo 2 0.06f —6—C
= 1 g = o
§ 0.4 g‘ 60 S D
— G
o R R -—-=F
g 0 s |0 S 0.04f
2 06 £ 40 2
s | /& e
=l o - -
-7 30 5 i " ~~.
o S 0.02 - ~
. 20 £ .7 RN
~
0.9 | 10 0 24 X
1 0 0 0.2 0.4 0.6 0.8 1
0 01020304 0506070809 1 Input probability

Normalized output force

- . . . Fig. 21. Force variance of example arrays using normalipeceffunction
Fig. 19. Force probability density function for actuatoragrD.

as shown in Fig. 23. Due to limited output capability through
the PC'’s parallel port, the cells were grouped accordinggo F
24 so that all eighteen cells could be controlled with ongyhei
signal channels. This grouping also eliminated any moments
which could have been generated due to an actuator firing on
only one side of the actuator array. This was necessary (o kee
with the one-dimensional analysis presented in this pdje.
fingerprint of this actuator array is represented by

‘ &1 | &F | &F
— 100 4 4 -1 1. (29)
50 0 0 -1

o Currentlength  One of the cells on each layer consisted of three actuators
80 100 (% of Travel) : . .
while the others had two each. This detail could not be
included in the fingerprint without encoding additionaldnf
_ _ , mation. Since each actuator adds a small portion of the cells
g 20. Normalized force function for all array topologies strength, the results of the experiment were averaged ewer t
runs, and only 2 of the eight cells were affected the overall
results didn’t not have a much greater variance than the mode
for a piezoelectric cell. Figure 22 (a) shows one solenold ce The LabView program took in an input probability value
The cells were arranged into layers of three cells by thrée ceand, for each trial, generated eight random numbers. If the
with all of the cells on each layer acting in parallel. Two ofandom number for a control channel was less than the
these layers were placed in series with one another giviag thput probability value, that control channel would acajat
actuator array shown in Fig. 22 (b). Each cell had a combinetherwise it would relax. The solenoids provide a validatio
spring constant of 438.7 N/m and maximum displacement of the principles presented in this paper, but due to their
2.5 cm which gave the effect of a 11.1 N pure force actingigh mass relative to their strength and their slow response
across the 438.7 N/m spring. Given the layout of the cells, thtime they were not suitable to test using a high frequency
gave the actuator array a holding force capability of 200 N atochastic control scheme. Additionally, due to limitasan
its minimum length with an overall displacement capabitity the solenoid’s force capacity at maximum stroke lengthheac
5 cm. trial began with the actuator array at its unforced relaxed
The actuator array was controlled using LabView on a Péngth. An input probability value was input and the cells

15

10

Force

05

20 40 60

Input Probability Value (%)

Fi
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(a) Solenoid actuator cell (b) Actuator array

Fig. 22. Solenoid actuator array experimental setup Fig. 24. Coupling among solenoid actuator array units. $with the same
number were treated as belonging to the same cell.

l Solenoid
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Fig. 23. Solenoid actuator array control diagram
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actuated accordingly. The actuator array was then strétchén. 25. Solenoid actuator array experimental resultsst@ws the mean
f0 a preset length and the force required to achieve HRES OUIeraes il wes Oy Ieay, ©)shovs hemee b e force
stretch was measured using an OmegaDyne LCM703-50 force
transducer. This allowed the experiment to test the actuato
based on the holding force capacity of the solenoid as ogpose
to the significantly lower force at maximum stroke length. as long as the minimum and maximum forces at the endpoints

of the actuator array’s travel have been identified and the
B. Force variance controller has knowledge of the actuator array’s curremgti.

. _ o . Additionally, combining displacement and force sensorgwi
Trials were run with input probability values ranging fromy,q o ator array, the current belief of a manipulator and

ziro to one W|tfh a step SI‘ZedOf 0.1 E!vmg r;l]total ofhlthmal?ts payload can also be continuously updated by higher level
The minimum force require to achieve the stretc_: WNEN MR ntrollers and learning techniques for more accurate jpaani
cells were active was subtracted from all data points and t Btion. With these sensors. the actuator array can also be

data was normalized such that the maximum force reqL“rsgntinuously calibrated so that it remains robust and ateur
to achieve the stretch when all cells were active was 1. Ven despite multiple cell failures

Fig. 25(a) and (b), the normalized mean and variance of theThe variance of the muscle is a measure of the difference
forces were calculated from the results for each of the 11 .

. - ; etween the force commanded and the force delivered by an
input probability values and are shown along with the exgebct

. . 2 actuator array at any given point in time. Since the cells
curve obtained by the analysis presented in this paper. o . . .
; : change position rapidly ( 200 Hz for piezoelectric actuator
The experimental mean force and force variance curves . .
: arrays), each instantaneous error provides only a smat err
closely matched the values calculated using the methods . . .
. : ) L in~the overall impulse delivered and averages out quickly.
presented in this paper. Errors did exist in both but were . .
) . . o . Increasing the number of cells in an actuator array generall
expected due to the inherent error in using a probabilityeairi

svstem and due to inaccuracies in the force transducer l_|0\é¥ers the normalized variance; however variance alsaescal
y : L?p with increasing force capacity. Cells which uniformlyrga

more trials been run at each of the input probability valueﬁ1 . .
. e internal forces generally have a lower variance. These
the experimental results would have more closely apprahch

. (ﬁ)served roperties are able to aid designers in creatingsar
the theoretical values. The errors were low, and the redolts prop L 9 Tays
. : however the reverse analysis is especially challengingtdue
validate the proposed analysis.

the many design variables which must be manipulated to give
any desired set of properties. The possible set of progagie
also discrete (non-continuous) for any array when indialdu
The linearity and constant slope for each actuator arragll properties are pre-selected. For these reasons, dperp
allows a controller to directly command a desired mean foréecuses on the forward analysis and leaves the reverserndesig

VIII. DI1SCUSSION
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process to designers for their individual optimality atitie and the worst failure remaining force. Both of these measure

It should be noted that while one design criteria majecome useful when an actuator array failure is critical to
be to minimize the variance, which can made arbitrarilihe application of the manipulator. The proposed analysis w
small by adding additional cells and adjusting the topoJogyalidated by numerical examples and experiment.
arrays could be likewise constructed with larger variartoes
aid the development of theories regarding natural movement
This can provide evidence in support or against optimizatio
techniques, such as minimization of jerk or minimization of This research was partially supported by NSF grant Cyber-
control signal, contributing to research on the generatibn Physical Systems ECCS-0932208.
natural movement and serving as a platform for future robots
using natural movements.

The relationship between the input probability and varganc
shown in Figs. 21 and 25(b) is quadratic and does not mondexander, M., Nelson, M., and Shah, A. (1992). Orthotics,
tonically increase, while the variance is expected to iasee adapted seating and assistive devicediatric Rehabili-
monotonically and proportionally with respect to the com- tation, pages 186-187.
mand input in biological systems (Harris and Wolpert, 19984lon, U. (2006). An introduction to systems biology: design
Maximum voluntary force may not be the maximum that a principles of biological circuits. CRC Press.
biological muscle can potentially generate; voluntarycés Buchanan, T. and Shreeve, D. (1996). An evaluation of opti-
may be limited at the command level. The association between mization techniques for the prediction of muscle activatio
the input probability and variance could be approximated by patterns during isometric taskdournal of biomechanical
a proportional function for a limited range, for example; fo  engineering, 118:565.
p=0.0~04. Caldwell, D. and Tsagarakis, N. (2002). Biomimetic actusto

Future work will intensively investigate this difference in prosthetic and rehabilitation applicationgechnology
between the artificial cellular actuator arrays and bialagi  and Health Care, 10(2):107-120.
muscles in terms of variability. Note that Harris and WotpefCanfield, S. and Frecker, M. (2000). Topology optimiza-
needed to introduce the “Size Principle” or an orderly regui  tion of compliant mechanical amplifiers for piezoelectric
ment law in a top-down manner, assuming motor neurons actuators. Sructural and Multidisciplinary Optimization,
that produce small forces are the first to be recruited and 20(4):269-279.
are followed by those that produce larger forces in ord&hurchland, M., Afshar, A., and Shenoy, K. (2006). A central
to recreate the proportional relationship (Jones et al0220 source of movement variabilitiNeuron, 52(6):1085-1096.
The artificial actuator systems, too, may need to introdu€®nway, N., Traina, Z., and Kim, S. (2007). A strain
additional constraints in terms of the requirement ordere O  amplifying piezoelectric MEMS actuatodournal of Mi-
possibility is to take into account the force capacity ddgra  cromechanics and Microengineering, 17(4):781-787.
tion due to temperature when an actuator unit is exertingl@vies, P. (2000). Steps to Follow: The Comprehensive
constant force for a while. Treatment of Patients with Hemiplegia. Springer.

Another future area of research concerns giving cells afor@ickinson, M., Farley, C., et al. (2000). How animals move:
profile over time followed by a recharge period. This could An integrative view.Science, 288(5463):100.
more closely model biological muscle and would create tH&ogan, A., Uchino, K., and Newnham, R. (May 1997). Com-
need for constraints on the range of the probability input, POsite piezoelectric transducer with truncated conicalen
perhaps even limiting it tgp = 0.0 ~ 0.4 or less, since  caps “cymbal*.Ultrasonics, Ferroelectrics and Frequency
actuating all cells would be followed by a period of no force Control, IEEE Transactions on, 44(3):597-605.
capacity despite a large probability value. It could aldoval Dogan, A., Xu, Q., Onitsuka, K., Yoshikawa, S., Uchino,
for higher force density actuators which act against a gprin K., and Newnham, R. (1994). High displacement ce-
to provide large forces at the expense of requiring a reeharg ramic metal composite actuators (moonidyroelectrics,
time to recoil the spring. 156(1):1-6.

Doob, J. L. (1990). Stochastic Processes (Wley Classics

Library). Wiley-Interscience, reprint edition.

Fu, Y., Du, H., Huang, W., Zhang, S., and Hu, M. (2004). TiNi-

This paper presented a fingerprint method for modeling and based thin films in MEMS applications: a reviegensors
subsequently characterizing stochastically controlletiator & Actuators. A. Physical, 112(2-3):395-408.
arrays, which were inspired by biological muscle and thdaertling, G. (1994). Rainbow Ceramics- A new type of ultra-
desire to create natural movements. The method automgtical high-displacement actuator.American Ceramic Society
generates complex actuator array topologies and calsulate Bulletin, 73(1):93-96.
the properties of the arrays such as travel, required amtuatamilton, A., Jones, K., and Wolpert, D. (2004). The scaling
strength/displacement, force range, force variance, abdst- of motor noise with muscle strength and motor unit number
ness. The association between a input probability and force in humans.Exp Brain Res, 157:417-430.
variance was investigated and two robustness criteria wétara, S., Zama, T., Takashima, W., and Kaneto, K. (2004).
introduced, the minimum cell loss to controllability faié Artificial muscles based on polypyrrole actuators with éarg
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