
Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

USING WEB SERVICES TO FOSTER GLOBAL COLLABORATION IN
SOUND DESIGN

James A. Ballas and Justin Nevitt

Naval Research Laboratory
Code 5585

Washington, DC, USA
james.ballas[justin.nevitt]@nrl.navy.mil

ABSTRACT

The migration of client-server systems to web services using
Service Oriented Architecture (SOA) design principles is
widespread and likely to dominate the future evolution of
computing. Use of web services is especially challenging for
streaming content such as that which would be used for sound
design. This paper describes the principles of a Service
Oriented Architecture (SOA) and ways that it could support
sound design and foster global collaboration across the web.

1. INTRODUCTION

The current trend in the computer industry is to migrate from
client-server, point-to-point systems to Service Oriented
Architecture (SOA) systems that provide loosely coupled
components that are available as web services and that can be
composed into functional workflows. SOAs are widely
deployed for text content, such as search and e-commerce, but
are not widely used for streaming content. This paper begins
with a definition of SOA and its advantages. This is followed
by a description of SOA components. The paper concludes
with a description of how SOA can be used to support sound
design. Our optimism about the potential use of SOA for sound
design is based on our success in implementing web service
systems in other domains that incorporate many of the same
components as those described here [1] [2].

1.1. Service Oriented Architecture

 SOA is a system in which services are deployed and registered
by providers and able to be discovered and used by consumers.
These elements exist as the SOA triangle [3], illustrated in Fig
1.

The benefits of SOA are obtained if the enterprise is

designed according to the following principles:
x distributed components that function independent of their

physical location;
x loosely coupled components that can be invoked as

needed;
x granular services that can be configured into workflows;
x platform independence achieved by adherence to platform-

agnostic standards and specifications;
x discoverable components reachable through public

interfaces.

In turn, the following benefits can be realized:

Ease of Deployment. A web service means that your code
only has to be deployed at one site in the enterprise. Updating
will only require redeployment to this single site.

Reuse. The deployment of core functions as services greatly
increases the efficiency of code writing and execution. These
core functions do not have to be replicated throughout the
enterprise but instead are deployed at one endpoint with a
public interface.

Agility. Software development is a time-intensive task that
requires money, man hours, and other resources. SOA allows
for rapid development of new functionalities to react to
customers’ needs. Using a technology called Business Process
Execution Language (BPEL, which is described in more detail
later in this paper), users can join separate pieces of
functionality (services) together to form a new business process
or workflow. The orchestration of several services takes a
fraction of the time it would take to hand code a new
application or adapt a legacy system with the same functionality
[4].

1.2. Service Description

The use of web services depends on publicly available service
descriptions. The specification of a service requires a Web
Service Description Language (WSDL) document as well as
data descriptions in the form of xml schema documents. The
WSDL describes the interface, ports, messages, and binding for
a web service. The schema documents are XML Schema
Definitions (XSD) that include standard data types (e.g., string,
integer) that are recognized universally, as well as unique data

Figure 1. The Service Oriented Architecture
(SOA) triangle that illustrates the fundamental

design of a web services system.

ICAD08-1

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

types that are defined for the particular web service. Universal
data types might include data types that have been established
by an international standards body (besides Oasis, which is the
controlling organization for the web). For example, one set of
metadata that is commonly used is that from the Dublin Core
Metadata Initiative (DCMI). While the DCMI is well
developed for some domains, it is notably sparse with respect to
audio, containing only the following metadata definition for
sound among its basic types:

<rdf:Description
rdf:about="http://purl.org/dc/dcmitype/Sound">

 <rdfs:label xml:lang="en-US">Sound</rdfs:label>
 <rdfs:comment xml:lang="en-US">A resource primarily

intended to be heard.</rdfs:comment>
 <dcterms:description xml:lang="en-US">Examples

include a music playback file format, an audio compact
disc, and recorded speech or
sounds.</dcterms:description>

 <rdfs:isDefinedBy
rdf:resource="http://purl.org/dc/dcmitype/" />

 <dcterms:issued>2000-07-11</dcterms:issued>
 <dcterms:modified>2008-01-14</dcterms:modified>
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Class" />
 <dcterms:hasVersion

rdf:resource="http://dublincore.org/usage/terms/history/
#Sound-003" />

 <dcam:memberOf
rdf:resource="http://purl.org/dc/terms/DCMIType" />

 </rdf:Description>

There are other metadata documents that address aspects of
audio material. The Digital Library Foundation has defined the
Metadata Encoding and Transmission Standard (METS.XSD)
that includes elements to encode descriptive, administrative,
and structural metadata about digital objects, including digital
audio recording; but as with the DCMI, there is little in its
specification that is audio related.

1.3. Service Registration and Discovery

For web services to be used in new workflows, they have to be
registered in the equivalent of a “yellow pages.” The primary
method by which services are registered and discovered
(located) in a SOA is through common registries based on the
Universal Description, Discovery, and Integration (UDDI)
specification. UDDI is, in effect, like a phonebook for web
services; both the service location and a technical description of
the service offerings are available.

When the UDDI specification was being developed, several
public registries were available until 2006, but were shut down
with the conclusion of the successful testing of the UDDI
technology1. While the UDDI specification is supported in
commercial products (e.g., Microsoft’s Office suite has a web
services toolkit, which includes search as part of its Visual
Basic system), there is limited public registry. One exception is
http://seekda.com/, which uses crawlers to find service

1See http://uddi.microsoft.com/about/FAQshutdown.htm for a
description of the decision to shut down the public test UDDI
servers.

specifications (WSDL files), as well as to provide a mechanism
to register services. Its directory is searchable through a
browser, but not through the UDDI inquiry operation. A search
using “audio” resulted in 86 hits. Fifty-two of these were
Amazon’s E-Commerce Service, which includes a capability for
a vendor to describe the audio format of a product. The
remaining 34 hits were for a variety of services including
services to upload, download, create and play audio files, as
well as to retrieve audio attributes. The service description
includes an availability metric, generated by periodically testing
the service.

Seekda.com also provides a mechanism to test the web
services it has registered. For example, faces.com has defined a
set of services to support sharing of photos and music, as well
as blogging. Audio files are added to tunefeeds using a SOAP
operation called Tunefeed_AddAudioInfo (string Signature,
string AudioListXml, string AuthKey).

1.4. Service Binding

Use of services requires an application that can send and receive
SOAP over HTML. This application will attach to the service
endpoint through a process called binding. A notional binding
specification for an Audio Design service is as follows:

 <wsdl:binding name="AudioDesignerServiceBinding"
type="tns:AudioDesignService">

 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>

 <wsdl:operation name="DesignRequest">
 <soap:operation soapAction="" style="document"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
 <wsdl:input>
 <soap:body use="literal"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

This binding defines an operation called DesignRequest,

that will receive an incoming message and respond with an
outgoing message. The formats of these messages are defined
in other segments of the WSDL. For example, an input
message called “DesignRequest” would include three parts
when defined as follows:

<wsdl:message name="DesignRequest">
 <wsdl:part name="RequestDescription"
type="xsd:string"/>

 <wsdl:part name="AudioOutFileName"
type="xsd:string"/>

<wsdl:part name="DataInFileName" type="xsd:string"/>
 </wsdl:message>

1.5. Service Orchestration

Service Orchestration is a technology that links services
together to create workflows which exhibit greater functionality

ICAD08-2

http://seekda.com/
http://uddi.microsoft.com/about/FAQshutdown.htm

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

when working with a suite of services than when working with
individual services. Electronic business might utilize
orchestration to implement a workflow that finds products from
vendors, gets a vendor selection from a user, does electronic
billing, generates purchase orders, and contacts a shipper for
pickup and delivery of the product.

Orchestration technology is described in the BPEL4WS
(Business Process Execution Language for Web Services)
specification. The summary of the specification from the
OASIS technical committee is as follows:

BPEL4WS is an XML-based language enabling users to
describe business process activities as Web services and
define how they can be connected to accomplish specific
tasks. WS-BPEL is designed to specify business processes
that are both composed of and exposed as web services.

In 2007 IBM, SAP, Oracle, BEA, Adobe and Active
Endpoints formally submitted the BPEL4People extension and
WS-HumanTask specification to OASIS for approval. WS-
HumanTask and BPEL4People are standards proposed to
expand on BPEL’s specification. They allow BPEL to
completely model a business process, including complex human
tasks and interactions. BPEL4People is a specific set of
extensions to the BPEL (WS-BPEL 2.0) language that outlines
a human task much like a call to a service. It allows service
orchestrators to include human interactions at the orchestration
level (BPEL4People). WS-HumanTask is the web services
specification that describes the human tasks, assignments of
people to tasks, and task parameters such as human role, task
assignment (to a person) and task deadline. With this extension
of the BPEL language, orchestration of workflows moves
beyond machine-to-machine and specifically includes human
activities.

1.6. Service Security

Web services typically will require some type of security to
restrict the use of the services, and the data that these produce,
to authorized users. As web services have been adopted widely
for business, service security is an established technology.
Several types of security are available. On the wire security is
provided by the use of secure socket layer (SSL) transport. This
is simpler to implement than one might expect. It requires SSL
certificates that are digital signatures. These can be self-signed
or can be obtained from government or private organizations.
With certificates in hand, they are loaded into the appropriate
keystores, and the web server is configured for SSL operation.
User authorization requires a second level of security
employing username and passwords to authenticate users. A
moderate level of security can be obtained by requiring a
username/password to gain access to a web site, but typically
these are html forms that employ the INPUT type=password
which simply echoes “*” when the user types the password.
The actual password is not secured and is passed back from the
browser as clear text.

A stronger method to restrict access is to employ
username/password as described by the SAML specification.
This encrypts the username and password in the header of the
web service call. Currently, skilled Java programming is
required to implement this capability. But as web services
become more established, out of the box implementations will
become common, especially for open sourced, Linux-based
systems.

1.7. Content Discovery

Search capability is currently driving the economy of the web,
most clearly demonstrated by the success of Google. The
commercial search companies succeed by producing, indexing,
and owning metadata about web content. But web sites often
have internal search capability, demonstrating that content
discovery can be implemented on any database. The U.S.
Department of Defense invested in and demonstrated the
feasibility of federated search technology. This is a design that
uses a central query service to receive user input, parse it, and
then transmit the queries to data providers through a search web
service (SWS) specification. The data providers employ their
own method of searching their data bases, and return messages
with hits and URL links to the data itself. A similar design is
behind Amazon’s Open search specification.

A major limitation of content discovery capability is that it
does not function well for media, unless the files have been
tagged. However, by incorporating content analysis services,
such as audio classifiers, into a search workflow, a functional
search of web audio content could be achieved. The content
analyzers would be designed to expose their capability as a web
service. The workflow would apply these services to databases,
and return the results back to the user.

2. WEB SERVICES FOR STREAMING CONTENT

The web services paradigm is a powerful one that can be
applied to many different IT problems. There has yet to be
much done with web services in the area of streaming audio
content. This is expected, as the basic specifications for web
services heavily emphasize text-based content. Nonetheless,
the potential applications of a web services framework for
streaming audio content are extensive. After overcoming
certain hurdles inherent to conducting business with loosely
coupled entities, one will be able to do many of the normal
auditory processing tasks usually relegated to thick apps on
workstations. All the advantages of using web services will
follow. Potential applications are described in the following
sections.

2.1. Sonification application

Imagine that a developer has invented an algorithm that creates
a particularly useful sonification of data. Using this algorithm,
a stock broker would like to construct a live sonification of
stock watch data that is available in xml form from a web
service. The resulting sonification would be available from a
streaming server, and the broker has a webapp to listen to the
audio stream from this server. If all these functions existed as a
web service, one could easily orchestrate them together to get
the desired effect. In addition, if you later decided to use a
different data source or a different sonification algorithm, you
could substitute those with ease. The architecture for this is
illustrated in Fig 2.

2.2. Search application

Imagine that a sound designer is tasked with finding an
archetype example of a particular voice utterance and has
available an immense library of audio recordings from the radio

ICAD08-3

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

industry; however, the designer cannot listen to more than one
recording at a time. A web service orchestration that combines
a speech-to-text service and a search service would provide a
solution. The speech-to-text service would be called to generate
the text of the audio recordings, and its output would be
searched by the search service. In practice, the audio
recordings would probably be pre-indexed, just as the Google
appliance is used to crawl the web searching for and indexing
documents. Such a crawler would be an enterprise
implementation of machine listening. The architecture for this
application is illustrated in Fig 2, which happens to be the same
architecture for the sonification application.

Figure 2. Service Oriented Architecture to create,

manipulate, render and deliver audio content.

2.3. Sound design application

Imagine that a company develops and hosts musical sound
editing software that is completely web based. This capability
uses a set of web services that interface with sound generation
services. All of the computation is performed on a centralized
server. The user’s computer has only a light-weight web
application. This release is widely adopted by a global
community of sound designers. The architecture for this is
illustrated in Fig 2, an architecture that is also the basis of the
previous two examples.

2.4. Architecture summary

These examples require an architecture with the following
components:
x a streaming server that can be controlled by a publicly

available web service;
x web services that can perform computations on audio

content, including generating it under algorithmic control,
searching audio files and classifying audio segments;

x orchestrations of publicly available web services including
the service controlling the streaming server;

x web applications that can access these web services and
receive streaming content.

The following section describes examples of the

components illustrated in Fig 2.

2.5. IBM Streaming Server

The development of a suite of web services for audio design and
its applications is notably advanced by IBM’s Streaming Server
(http://www.alphaworks.ibm.com/tech/streamingengine). This
server can be hosted in Apache Tomcat, an open source web
server. It has a WSDL that defines the web service calls that
can be made, and can generate media streams from recorded or
live sources using the Real Time Streaming Protocol (RSTP) for
control and the Real-time Transport Protocol (RTP) for
transport. RSTP is a tape-like control protocol (e.g., play,
pause, record). The media streams that are currently supported
are MP3 audio and MPEG-4 video. The WSDL defines 147
elements, 88 messages, and 88 operations (e.g., as start and stop
the server, etc). One of the operations is
createLiveAssetSession. This operation expects a message with
the following elements:

<element name="createLiveAssetSession">
<complexType>
<sequence>

<element name="name" type="xsd:string"/>
<element name="srcType" type="xsd:int"/>
<element name="srcHost" type="xsd:string"/>
<element name="srcPort" type="xsd:int"/>
<element name="srcName" type="xsd:string"/>
<element name="mcast" type="xsd:boolean"/>
<element name="archName" type="xsd:string"/>
<element name="archDur" type="xsd:int"/>

 </sequence>
</complexType>

The response is simply a Boolean that the session was or

was not created. This example from the WSDL illustrates the
control that an application can have over this server, such as the
URL source (srcHost is the URL of the live source; srcPort is
the IP port at this URL). The WSDL definition of the message
elements does not enumerate what is expected in the parts of
this message, but these could be easily added. The streaming
server has been tested and we have verified that it can be
controlled through web service calls that conform to the WSDL
specification2.

2.6. Audio Computation

While a streaming engine can deliver content, and a web
services streaming engine can be controlled through web
service calls, the actual media content has to come from some
other source. An example of audio computation technology that
can be quickly demonstrated, but that also has impressive
growth capability, is the python-based boodler system
(http://sourceforge.net/projects/boodler/). This is a system to
generate soundscapes, using agents that start, stop, and
parametrically manipulate sound segments. It can produce raw
sound files as well as MP-3 and it can be exposed as a web
service using SOAPy (http://sourceforge.net/projects/soapy).

2 After starting the server and verifying its operation, we loaded
the WSDL into the eclipse Web Services Explorer, and
successfully made calls to the published operations.

ICAD08-4

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

Another type of audio computation would be analysis
technology that would take sound files (either recorded or live)
and extract features about the sound such as its source event.
For example, one of us has recently published source code for
an audio classifier [5]. This classifier determines whether a
sound might be classified as a propeller airplane. The algorithm
uses statistical properties of the sound to make this
classification, and the final decision algorithm could be
modified for other types of events. This code could be
converted to Java, and hosted as a web service. Alternatively,
the windows executable could be exposed as a web service
through the Java Runtime.exec() method. We have successfully
implemented this option and confirmed that the classifier can be
called as a web service and will correctly process the files that
have been specified in the web service call.

2.7. Orchestration

A streaming server and audio computation services are critical
components of this SOA, but their usage requires a
development environment such as Eclipse as well as an
experienced programmer. An alternative to these is the web
services orchestration design and deployment environments
offered by several vendors. ActiveBPEL Designer is an
environment we have been using to construct web services
workflows. The Designer produces BPEL code that is executed
by an open source BPEL engine that is hosted in a web services
container such as Apache Tomcat. An example of an
orchestration design is illustrated in Fig 3. This workflow
receives a request to create a live source, checks whether the
server is started (and if not, starts the server), enables the Real
Time Streaming Protocol (RTSP) on the server, copies the
parameters for the live source into a web server message to the
streaming server, and finally sends the message to create the
service to the streaming server. The result of this request is
returned to the user to complete the workflow. This design
could be easily modified to call ancillary services such as those
described in previous sections (e.g., create a soundscape).

2.8. Browser Applications

The last component in Fig. 2 is the web application, typically a
browser, that can utilize the web services and receive the
streaming content. Two issues associated with any browser
application are real-time rendering and proprietary coding. It is
well established that the protocol typically used for text content
(e.g., HTTP) is not designed for streaming content. The RTSP
and the Real-time Transport Protocol (RTP) were developed to
support streaming applications. RTSP uses a tape-like control
interface (e.g., play, pause, record). Streaming servers such as
QuickTime and its open source version, Darwin, utilize
RTP/RTSP as does the IBM streaming server described earlier.
Utilization of these protocols can sometimes cause issues if
firewalls have been configured to block their use or if the server
is using the UDP transport layer and it is blocked.

Figure 3. BPEL workflow to control an instance of the IBM

Streaming Server, starting it if necessary, enabling RTSP, and
creating a live source. This visual design is saved as a

deployable file that is executed by a BPEL engine.

The second issue associated with the browser is proprietary
coding, such as that utilized by Adobe Flash. In order to
improve real-time performance, streaming content is often
compressed and encoded. While proprietary coding might
provide some features that are not available in an open coding
scheme, its use in a SOA enterprise will require all the web
services to use that proprietary format. Unless the commercial
vendor offers a decoder, services that require access to the raw
waveform could not be developed. For example, a service that
would generate metadata for the audio content would need
access to the raw audio. The widely used MP3, which is the
audio layer of MPEG-1, is a proprietary format, and its use
must be licensed for commercial applications (see
www.mp3licensing.com). Open source coders/decoders are
available for applications that need access to the raw audio.
Finally, the browser will need a player application that is
capable of handling the protocols, coding, and the computer’s
audio hardware. Alternatively, IBM’s alphaworks has another
suite of technologies, IBM Presenter and IBM Viewer, that also
could be incorporated into a web services system
(http://www.alphaworks.ibm.com/tech/personalpresenter).

Besides hosting a player, the browser would host the
interfaces to other web services that are illustrated in Fig 2.
Once a suite of services is available, workflows could be
composed and the BPEL orchestration can include
BPEL4People capability that would add user control and
feedback to a workflow process.

ICAD08-5

http://www.mp3licensing.com/
http://www.alphaworks.ibm.com/tech/personalpresenter

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

3. CONCLUSION

The payoff of SOA lies in the potential to incorporate data
sources, search engines, user-facing services (user interfaces),
computational services and other computer capabilities hosted
locally but available globally. Data from financial, government,
or entertainment sources could be tied to sonification algorithms
which would be generating audio content for the streaming
server. Sound designs could be collaborative enterprises with
individuals hosting disparate services such as filters, effects,
generators, mixers, and renders. A SOA that is focused on
sound and its design would be an enabling framework for global
collaboration.

4. ACKNOWLEDGMENTS

The preparation of this paper was sponsored by the U.S. Naval
Research Laboratory. The views and conclusions expressed in
this paper are those of the authors and do not reflect the official
policies, either expressed or implied, of the U.S. Navy.

5. REFERENCES

[1] D. Jones, K. Kerr, R. Carr, J. Olsonbaker, J. Cook, T. Tsui,
D. Brown, J. Ballas, J. Stroup, K. Wauchope, & L. Aker
(2005). Environmental Visualization and Horizontal
Fusion. Proceedings of the Battlespace Atmospheric and
Cloud Impacts on Military Operations (BACIMO)
Conference, October12-14, Monterey, CA.

[2] J. Nevitt and D. Brown. A Search Relevance Algorithm for
Weather Effects Products. Memorandum Dec 2005-Oct
2006, Naval Research Laboratory, Washington, DC, 2006.

[3] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S.
Dustdar, Towards recovering the broken SOA triangle: a
software engineering perspective. In 2nd international
Workshop on Service Oriented Software Engineering: in
Conjunction with the 6th ESEC/FSE Joint Meeting,
Dubrovnik, Croatia, September 03 - 03, 2007, IW-SOSWE
'07. ACM, New York, NY, pp. 22-28.

[4] M. Juric, B. Mathew, and S. Poornachandra. Business
Process Execution Language for Web Services.
Birmingham, AL: Packt, 2006.

 [5] J. A. Ballas, D. Brock, and H. Fouad, An Introduction to
Sound Classification. In K. Greenebaum & R. Barzel,
Audio Anecdotes III: Tools, Tips, and Techniques for
Digital Audio, Natick, MA: A K Peters, 2007.

ICAD08-6

	1. INTRODUCTION
	1.1. Service Oriented Architecture
	Ease of Deployment. A web service means that your code only has to be deployed at one site in the enterprise. Updating will only require redeployment to this single site.
	Reuse. The deployment of core functions as services greatly increases the efficiency of code writing and execution. These core functions do not have to be replicated throughout the enterprise but instead are deployed at one endpoint with a public interface.
	Agility. Software development is a time-intensive task that requires money, man hours, and other resources. SOA allows for rapid development of new functionalities to react to customers’ needs. Using a technology called Business Process Execution Language (BPEL, which is described in more detail later in this paper), users can join separate pieces of functionality (services) together to form a new business process or workflow. The orchestration of several services takes a fraction of the time it would take to hand code a new application or adapt a legacy system with the same functionality [4].

	1.2. Service Description
	1.3. Service Registration and Discovery
	1.4. Service Binding
	1.5. Service Orchestration
	1.6. Service Security
	1.7. Content Discovery

	2. WEB SERVICES FOR STREAMING CONTENT
	2.1. Sonification application
	2.2. Search application
	2.3. Sound design application
	2.4. Architecture summary
	2.5. IBM Streaming Server
	2.6. Audio Computation
	2.7. Orchestration
	2.8. Browser Applications

	3. CONCLUSION
	4. ACKNOWLEDGMENTS
	5. REFERENCES

