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CHAPTER I

INTRODUCTION

In recent years one of the interests of the microwave group at Georgia
Institute of Technology has been the study of the microwave spectra of symmetric
top molecules having three identical quadrupolar nuclei. A. A. Wolf (1) studied
the quadrupole hyperfine structure in the J = 1 to 2 and the J = 2 to 3 rotational
transitions o-f CHCI 3 and CFCls. From his work he obtained values for the quad-
rupole coupling constants, eqQ, and the rotational constants, B, for both mole-
cules, C. R. Nave (2) studied the spectrum resulting from the combined Stark
and quadrupole interactions in the J = 1 fo 2 rotational transitions in PCl3 and
POCI3 and obtained values for the dipole moments of both these molecules.

The gquadrupole interaction theory used by the ahove researchers was
originally developed by Svidzinski (3). Wolf made some corrections to Svidzinski‘*s
work and applied the corrected theory to his own data, Nave extended the theory
as used by Wolf to include the Stark interaction for the J = 1 to 2 transition and
applied this theory to PC1 3 and POCI1 3°

The original objective of the research reported here was to determine
values for the quadrupole coupling constant and the dipole moment of the symmet-
ric top molecule, bromoform (CHBrS). The J = 2 to 3 rotational transition of

CHBr 3 is the lowest that can be studied with present equipment in the microwave

group. Therefore, the Stark plus quadrupole interaction theory used by Nave was



extended to cover this transition.

Unfortunately, efforts to measure the J = 2 to 3 transition in CHBI'3 were
unsuccessful, The intensity of the spectrum was too weak to be observed with
present equipment. For this reason, the attempt to study CHBI'3 was abandoned,
and a new objective determined. The new objective was threefold: to develop
the theory used by Nave to apply to the J = 2 to 3 transition in CHCI 3 and CFCl g°
to check its validity for this transition, and to determine the dipole moments of
these molecules,

As far as this researcher can ascertain, no microwave measurements of
the dipole moments of these molecules have been made to date, A. L, McClellan
(4) lists values that several researchers have found for the dipole moments of
CHC]L3 and CFCI3. These values range from 0.9 debye to 1.86 debye for CHCl3
and were obtained from measurements of the dielectric constant of that molecuie
in its gaseous state. Two values for the dipole moment of CFCI 3 have been repor-
ted, 0.45 debye and 0.53 debye using the same method. Microwave determinations
of dipole moments are much more accurate than dielectric determinations (5).

Checking the validity of the J = 2 10 3 theory for the combined Stark and
quadrupole interactions requires accurate knowledge of the bond angle, the quad-
rupole coupling constant, the Stark field, and the dipole moment of the molecule
in question. The bond angles used in the caleculation are those found by Loubser
(6) and by Jen and Lide (7). The quadrupole coupling constants are those found
by A, A. Wolf, Although P, N. Wolf (8) and Long (9) made microwave determi-

nations of eqQ@, these values were not used because A. A, Wolf has shown that the



theory used by these researchers in their determinations was incomplete (10).
The dipole moments and the Stark fields used in checking the theory are those
measured hy the author.

Data were taken with a Stark modulated spectrograph. Data gathering
techniques and operating principles of the Stark modulated spectrograph are dis-
cussed in Chapter II, In Chapter HI, relevant theory and its application to dipole
moment determinations are discussed. In Chapter IV, computer programs and

analysis of data are discussed, and in Chapter V results are summarized.



CHAPTER II
DATA COLLECTION PROCEDURES

The equipment used in this research was a conventional Stark modulated
spectrograph, which has been described by Clayton (11), Long (12), and Nave (2).
This type of spectrograph is very sensitive and accurate, and it is well suited to
the measurement of weak lines. In this chapter, attention is given to electronic
design features which result in such sensitivity and accuracy and to the data col-
lection procedures used in this research.

A gas whose microwave spectrum is to be studied is contained at low pres-
sure in the Stark cell of the spectrograph. This cell is & 17 foot length of rectang-
ular waveguide in which a conducting plate or septum has heen inserted. The
septum extends the entire length of the waveguide and is electrically insulated
from the waveguide walls. The plane of the septum is parallel to the broad dimen-
sion of the waveguide. The spacing between the septum and either parallel wall
is 0.481 em (13). A 30 kHz square-wave voltage is applied between the septum
and the walls of the cell. The effect of the square-wave voltage is to subject the
gas alternatingly to a Stark electric field of 0 volts/cm and V/0. 481 volts/cm,
where V is the amplitude of the square-wave voltage. The gas in the cell is kept
at low temperature by placing dry ice on top of the waveguide.

Microwave energy is emitted into the Stark cell at one end. This energy

comes from a klystron oscillator which is tuned slowly over the frequency range



of interest., At the other end of the Stark cell is a crystal detector. The micro-
wave power at the detector will fluctuate at the rate of 30 kHz if the amount of
incoming microwave energy absorbed by the gas is different for the Stark-field-
on case and the Stark-field-off case. The magnitude and phase (with respect to
the square-wave voltage on the Stark electrode) of the 30 kHz signal at the detec-
tor is electronically determined, and this information is displayed graphically
by an Esterline Angus graphic ammeter.

A detailed accounting is given below to the two different technigues used
to tune the kiystron and to measure its frequency and to the manner in which the

30 kHz signal is processed.

Tuning Techniques and Freguency Measurements (Method #1)

Part of the measurements were made using a double phase-lock stabiliza-
tion technique to tune the klystron over the frequency ranges of interest. This
technique involves the use of two klystrons, a source klystron and reference
klystron, and has been described by Narath and Gwinn (14), and by Nave (15).
Here the technique is illustrated by an example.

While studying the spectrum of CHCI3 it was necessary to tune the source
klystron from 19. 810 gHz to 19,870 gHz. This tuning was achieved by first
stabilizing the reference klystron at 9. 830 gHz, then phase-locking the source
klystron at 19,810 gHz, and finally tuning the source klystron over the frequency
range, 19.810 to 19.870 gHz., The technigues involved are discussed below.

Stabilizing the Reference Klystron at 9.830 gHz

With a model DY-2650A Dymec Oscillator Synchronizer, a klystron can



be stabilized at any frequency at which it can oscillate and which satisfies the

relation
FREQUENCY = N x 100 MHz + 30 MHz (1I-1)

where N is any positive integer less 124.

Figure la shows how a klystron whose frequency is to be stabilized is
connected to the Dymec Synchronizer. A fraction of the microwave energy leav-
ing the klystron is fed to the input terminals of the Dymec. If the klystron is
oscillating at a frequency satisfying equation II-1, then no correction voltage is
developed. (See discussion about phase below.) If the klystron has begun to drift,
then a correction voltage is developed by the Dymec, and this voltage is applied
to the reflector of the klystron to correct the drifi.

Figure 1b is a block diagram illustrating what happens inside the Dymec.
The incoming 9. 830 gHz microwave signal is mixed with all the harmonics of an
internally generated 100 MHz signal. One of these harmonics (in this case the
98 th harmonic) beats with the microwave frequency to produce a 30 MHz beat
note, Thisbeat rote is amplified in the IF amplifier section of the synchronizer,
The amplified 30 MHz beat note and an independent internally generated 30 MHz
reference signal are fed to the phase comparator section.

If the two 30 MHz signals are exactly 900 out of phase, then no error vol-
tage is generated by the comparator. I on the other hand, the klystron has begun
to drift, thereby causing the phase relationship between the two 30 MHz signals

to change from 900, then a correction voltage is developed by the phase comparator,
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and this voltage is applied to the reflector of the klystron to correct the drift.

Phase Comparator. Figure lc illustrates the phase comparator circuit.

The 30 MHz beat note is fed into the tuned circuit of the phase comparator at 1.
The voltages at 2 and b are equal in magnitude, (Eif/ 2), and 180° out of phase,
Because of the diode in the upper half of the circuit, the capacitor between
¢ and d can only be charged by the two voltages: Eref and (Eif/ Z)a. Because of
the high resistance between ¢ and d, this capacitor cannot significantly discharge
during the time interval of the period of the 30 MHz reference signal. The voltage
across this cépacitor, therefore, reaches a value which is the magnitude of the

vector sum of Eref (max) and (Eif/z)a (max),

|E voltage across c-d = [E, ¢+ (E (I1-2)

51| - £/2)a .
Similarly, the diode, resistor, and capacitor in the bottom half of the circuit
result in the voltage across e-c being equal to the magnifude of the vector sum

of Eref (max) and (Eif/Z)b (max),

IESZ! = voltage across e-c = ]ﬁr + ( {-3)

et " Egoly |-

From the vector diagrams in Figure 2 it can be seen that if Eref is 900

out of phase with E. ., then |E Sl| = |E szl and the correction voltage is
= i 1 = -— =
E_ = correction voltage & s1 |- |E - | =o0.

But, if the phase difference is other than 900, then a correction voliage is gene-

rated. This correction voltage properly applied to the klystron refliector corrects
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the klysiron drift, which was the cause of the phase shift.
Thus, once the reference klystron is locked-in at 9, 830 gHz, it is
sfabilized at that frequency.

Phase-locking the Source Klystron at 19. 810 gHz

Phase-lock stabilization of the source klystron at 19. 810 gHz involves
principles similar to those involved in phase lock stabilization described for the
reference klysiron. As in the case of the reference klystron, the correction
voltage applied to the reflector of the source klystron is developed by the phase
comparator section of a Dymec Synchronizer, The phase comparator compares
two MHz signals - an internally generated reference signal and a 30 MHz beat
note amplified in the IF section,

However, in phase-lock stabilization of the source klystron, the 30 MHz
beat note is produced outside of the Dymec and fed directly into the IF section
bypassing the Dymec Mixer section. The 30 MHz beat note is the result of mix-
ing three signals in a crystal mixer: a sample of the 19,810 gHz output of the
source klystron, the 9.830 gHz output of the reference klystron, and a 120 MHz
signal from a variable frequency oscillator (a Hewlett-Packard Transfer Oscillator
tunabte from 100 to 200 MHz). Figure 3 shows how a 30 MHz beat note results
from mixing the three signals,

If the source klystron drifts, then the beat note will drift and the phase
comparator will generate a correction voltage which will correct the klystron's

drift. Thus, the source klystron is phase-locked at 19. 810 gHz.



19.810 GHZ
FROM SOURCE

19. 660 GHz
{Z2nd HARMONIC OF

KLYSTRON REFERENCE KLYSTRON)
A B
150 MHz 120 MHz
FROM TRANSFER
BEAT NOTE (ABOVE) 0OSC| LLATOR
(A + B) C
Figure 3. The Creation of a 30 MHz Beat Note

Three Signals: A, B, C.

150 MHz
BEAT NOTE

= (A + B)

30 MHz
BEAT NOTE

(A+ B+ C)

by Mixing

T



12

Tuning the Source Klystron

If the transfer oscillator frequency is slowly changed, then the 30 MHz
beat note will tend to change, and the correction voltage generated by the Dymec
will cause the frequency of the source klystron to change in such a way that the
30 MHz beat note maintains it's frequency and 900 phase relationship with the
Dymec 30 MHz reference signal.

For example, if the transfer oscillator is tuned from 120 MHz to 121 MHz,
then in order to maintain the 30 MHz beat note the source klystron frequency must
be corrected from 19. 810 to 19. 811 gHz.

The source klystron was tuned from 19, 810 gHz to 19. 870 gHz by slowly
tuning the transfer oscillator from 120 to 180 MHz. Because the error voltage
generated by the phase comparator was not sufficient in magnitude to electrically
tune the klystron over the entire range of interest, it was necessary to connect
the correction voltage not only to the reflector of the source klystron but also to
a switching device that controlled a motor which mechanically tuned the klystron
when error voltages were generated.

Frequency Measurements

To determine precisely the source klystron frequency it is necessary to
know the exact frequencies of the reference klystron and the transfer oscillator
and to know the lock-in scheme {i.e. the relationship among the source klystron,
reference klystron, and transfer oscillator frequencies).

The reference klystron frequency is determined approximately by a wave-

meter measurement and inferred exactly from the knowledge that this frequency
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must satisfy equation II-1. The accuracy of the wave meter is sufficient to
enable a determination of N.

The transfer oscillator frequency is measured exactly by a Hewlett-
Packard 5245 L Electronic Counter. The counter works as follows: an extremely
stable internal crystal oscillator generates a 1 MHz signal. The transfer oscil-
lator signal is mixed with a harmonic of that 1 MHz signal. One can select
which harmonic is mixed from any of the following frequencies: 50, 60, 70, ...
500 MHz. The lowest frequency harmonic is chosen such that the beat note formed
has frequency between 0 and 13 MHz. The counter counts the number of cycles in
the beat note for one tenth of a second (measured against the internally generated
1 MHz signal) and periodically displays the result. From a knowledge of this
count and knowledge of the frequency of the harmonic, the transfer oscillator
fredueﬂcy can be inferred.

The lock-in scheme for the source oscillator can be determined from a
rough measurement of its frequency with a wave meter and from knowledge of the
frequencies of the transfer oscillator and the reference klystron., Once the above
is known the exact source frequency can be inferred. An example illustrating the
technique is discussed in Appendix A.

Accuracy of Frequency Measurements (Method #1)

The precision to which the source frequency can be determined is related
to the precision to which the frequencies of the transfer oscillator and the reference
klystron can be determined. One source of error in the determination of the trans-

fer oscillator's frequency results from drift in the 1 MHz crystal in the HP
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Electronic Counter. This signal was compared with the signal from WWVB
(at 60 kHz) and found to be accurate to one part in 108.

Another possible source of error is drift in the 100 MHz crystal oscil-
lator in the Dymec which controls the reference klystron frequency. This oscil-

lator has been found to be accurate to one part in 107.

Tuning Techniques and Frequency Measurements (Method #2)

An alternative method for tuning the source klystron and for measuring
its frequency is to use a beat note technique. In this technique the equipment is
set-up as shown in Figure 4.

The klystron is tuned mechanically by a slow motor, Unlike tuning in the
double phase-lock stabilization fechnique, there is no electric tuning or stabili-
zation of the source klystron by application of correction voltages to the reflector.

Frequencies are measured by mixing the outputs of the source klystron
and a Micro-Now Frequency Multiplier Chain. The fundamental frequency of the
Multiplier Chain can be set to any frequency in the interval 4.979 MHz to 5. 006
MHz. During an experiment this frequency is measured with the Hewlett Packard
52451 Electronic Counter. Among the strongest harmonics found in the output of

the Frequency Multiplier Chain are those satisfying the relation

Output Harmonic = 10 x N x (fundamental frequency)

where N is a positive infeger. In other words, strong ocutput signals occur at

approximately every harmonic of 50 MHz,
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Suppose that it is known that the approximate frequency of a Stark compo-
nent to be measured is 14825 MHz., Suppose further that the fundamental frequency
of the Frequency Multiplier Chain has been set at 5. 00000 MHz, that the HRO 60
National radio receiver has been set at 24 MHz, and that the klystron is being
tuned from approximately 14820 to 14830 MHz. When the klystron frequency
reaches 14824 MHz, a 24 MHz beat note is heard in the receiver. This beat note
results from the 14824 MHz klystron signal mixing with the 2960th harmonic of
the 5,00000 MHz fundamental of the Frequency Multiplier Chain at 14800 MHz,

As the klystron is tuned siill further upward in frequency another beat
note is heard when the klystiron frequency reaches 14826 MHz. This 24 MHz
beat note results from the mixing of the kilystron signal with the 2970th harmonic
of the 5, 00000 MHz fundamental of the Frequency Multiplier Chain at 14850 MHz,

If an indication is made on the recording chart whenever a beat note is
heard, the chart would have the appearance shown in Figure 5. By ascertaining
the position of the center of the Stark component and interpolating, the frequency
of the Stark component can be determined.

The precision to which the klystron frequency can be determined is
related to the precision to which the fundamental frequency of the Frequency
Multiplier Chain can be determined., This measurement in turn depends on the
stability of the 1 MHz crystal oscillator in the HP Electronic Counter. As men-

. . . , . 8
tioned earlier, the stability of this oscillator is accurate to one part in 10,

Processing the Detector Ouiput

The 30 kHz signal from the crystal detector is connected to several



VU —

STARK

| COMPONENT
!
11
L ] L
MARKER CORRESPCNDING MARKER CORRESPONDING
TO KLYSTRON FREQUENCY TO KLYSTRON FREQUENCY
OF 14824 MHZz OF 14826 MHz

Figure 5. Beat Note Markers on a Recording Chart.

LT



18

electronic devices as is schematically indicated in Figure 6. The 30 kHz
reference signal generated within the PAR Lock«in Amplifier is used to control
the frequency and phase of the Stark Field. The situation is indicated in Figure 7
a and b.

If the frequency of the source klystron is such that absorption occurs when
the Stark field is on, but not when it is off, then the microwave power fluctuation
at the crystal detector is as shown in Figure 7c. After the detector output is fed
through the tuned preamplifier, the 30 kHz signal appears as shown in Figure 7d.
It should be noted that the signals at a and d are 1800 out of phase,

The 30 kHz signal from the preamplifier is fed to the lock-in amplifier,
which contains a phase comparator similar to that shown in Figure 1c. Signals
a and d of Figure 7 are compared where a is the reference signal.

Referring to Figure 1lc¢, if the preamp signal, E p’ (labeled Ei £ in

pream

the diagram) at b and the reference signal are in phase, then

lESZ = |Eref " Epreamp b| - IEref| * |Epreamp‘
and — — —
lESll - lEref " Epreamp a|= [Erefl - ‘Epreampl'

Thus, E =1IE_|- ==
0 | Sll |ESZ| 2 IEpreampl ’
This situation is illustrated by the vector diagram of Figure 8a.
By similar reasoning it can be shown that if absorption occurs only when

the Stark field is off and not when the field is on, then E'0 is a positive voltage as
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shown in Figure 8b. In general, if absorption occurs both when the Stark field
is on and when it is off, then E0 is proportional to the difference between micro-
wave absorption in absence of Stark field and microwave absorption in presence
of Stark field.

In any case, as the source klystron is tuned over the frequency range of
interest, EO varies between plus and minus values. A pilot of Eo versus source
klystron frequency is made by an Esterline Angus Graphic Ammeter. Frequency
is measured periodically by making a mark on the recording chart.

Clearly a possible source of error in this process of data taking is the
delay in human response between the time the HP Electronic Counter has displayed
a count (or abeat noteis heard in the HRO 60 receiver) and the time an indication
is made on the recording chart. This error is reduced by making runs over the
frequency range of interest in pairs: one run going up in frequency, the other

going down, and averaging.

Data Gathering Techniques

On either side of the J = 2 to 3 rotational lines of C]S‘Cl3 and CHCl3 are
three groups of Stark lines. The frequency separations of these lines from the
center of the J = 2 to 3 rotational line were measured for several different values
of Stark voltage. The technique for measuring the separation was to take the
average of 10 runs, 5 up in frequency and 5 down, over the Stark line of interest,
As is discussed in Chapter 1V, graphs of frequency separation versus Stark field
were made for each Stark component measured. These graphs were used to

determine dipole moments.
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To check theoretically calculated spectra with experimentally measured
spectra several runs were made over frequency ranges of interest; a range of
frequencies about the rotational line center and extended ranges on either side
of the rotational line, These runs and the theoretical calculations are discussed

in Chapter TV.



24

CHAPTER Il

THEORY

Quadrupole Interaction Theory

CF35013 and CH35CI3 are symmetric top molecules having three identical
quadrupolar nuclei each with spin 3/2, If the quadrupole interaction is ignored,

the Hamiltonian operator for the total molecular energy has the form

H= Hel * HV1'b * I—Irot’

where Hel’ Hvib’ and H refer to the electronic, vibrational, and rotational

rot
energies respectively. The matrix of this Hamiltonian is diagonal in a represen-

tation of the form

u= *yel( T) inb(v) L J, K, M),

where I' |, v, and J, K, M are appropriate quantum numbers for electronic, vibra-
tional, and rotational states.

If the quadrupole interaction term, H_, is added to the Hamiltonian opera-

Q’
tor above, then a new representation must be found in which to compute the Hamil-
tonian matrix. It is desirable that this new representation have two important
properties: matrix elements are calculable within it, and the basis functions can

be classified according to symmetry type under interchange of the identical nuclei,

Thig last property makes it easier to find eigenfunctions which satisfy the Pauli
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Exclusion Principle.

After the energy levels and corresponding eigenfunctions have been
computed, frequencies and intensities of transitions between energy levels must
be determined. In the sections which follow more detailed discussion is given
to the form of the quadrupole interaction operator, to the basis functions used in
the computation of the Hamiltonian matrix, and to the determination of frequen-
cies and intensities.

The Quadrupole Interaction Operator

The electrostatic interaction between a nucleus and the remainder of elec-

trons and nuclei in an atom or molecule is given by (16)

= o_% L, &1
H —z ee /|r. -r | —+y eieprp /ri %(coseip)

ip ipt
where ep is the charge of the pth proton with position vector _I:p in the nucleus ,
in question and ei is the charge of the ith electron or proton with position vector
?i in the remainder of the atom or molecule, eip is the angle hetween the vectors
?i and ?p and P{ is the Legendre function corresponding to the value of £ .
The gquadrupole interaction term corresponds to 4= 2 in the above series,

therefore the quadrupole interaction Hamiltonian is

r 2
H. = e.e
Q y P2 {cosg ip)'

Using the spherical harmonic addifion theorem this interaction operator can be

expressed as
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- q r 2 2 2
Ha=), (e B c@ oy ct (o8 )=(v-@, @
ipg I 4
where e
@) _ i (2)
v =) T O (88,
1
@ _ 2 (2
Q. —Z ey Ty Co (8,8,
P

and the C;z) are spherical harmonics of order 2.

This notation and form of expressing the quadrupole interaction operator has
been chosen to agree with the notation in the paper by A. A. Wolf (17) and to
make apparent the fact that this operator can be expressed as the product of two
spherical tensor operators of rank 2, Svidzinski (18) has shown that the total
guadrupole interaction operator of three identical quadrupolar nueclei in 2 sym-
metric top molecule can be written as three times the interaction energy of one

of them. Thus the total quadrupole interaction operator is given by

Hy = 3(V-Q). (I-2)

The Hamiltonian Matrix

The set of all functions of the form

3
U=y, (1) ¥y ) ¥, @OKM) 1w (3/2,m),

where u, (3/2, m ) is the nuclear angular momentum eigenfunction of the ith quad-
i i

rupolar nucleus which has spin 3/2 and azimuthal quantum number m., theoretically
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could be used to compute the Hamiltonian matrix. If this set were used matrix
elements would be difficult to compute; the matrix would be infinite and probably
impossible to diagonalize; and if eigenfunctions could be found, it would be diffi-
cult to separate all those that satisfy the Pauli-Exclusion Principle from the rest.
Simplification results if certain off-diagonal elements can be ignored and only a
finite set of basis functions need be considered; if the basis functions chosen are
eigenfunctions of the total angular momentum with quantum number F, and if the
basis functions are characterized by definite symmetry type. These concepts are
discussed in succeeding paragraphs.

At room temperature and below most CHCl3 and CFCl 3 molecules are in
their lowest electronic and vibrational states. The ground vibrational state is
doubly degenerate, and the members of this pair will be identified by the index v
which takes on the values 0 and 1. The higher electronic and vibrational levels,
and the rotational levels of different J are widely spaced compared to the splitting
produced by the quadrupole interaction. Therefore, in the calculation of the
interaction energy it is a good approximation to assume that only ground state
electronic and vibration eigenfunctions need be considered and that the interaction
operator does not link states of different J quantum number.

With this approximation each J level ig considered separately and finite
matrices result. For the J = 2 splittings a complete set of basis functions is
the set of 3200 functions of the form

3

UE=2) = y_, (ground state) ¥, (v=0 or 1) ¥__ (ZKM).ITl w (3/2,m,).
1:
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For the J = 3 splittings there are 4648 basis functions of the same form but with
the J quantum number equal to 3. These functions are more explicitly enumera-
ted in Appendix B.

A More Convenient Representation. In order to take advantage of the

Wigner-Eckart Theorem and Racah's algebra of irreducible tensor operators in
the calculation of matrix elements, a coupling scheme is chosen in which F, the
total angular momentum quantum number (f" =T+ 7T ) is a good quantum number,

I is the total spin guantum number (f': I—; +f:?. + f3) of the three quadrupolar nuclei,
and v represents all other appropriate quantum numbers. In this representation

the basis functions have the form

U () =‘1’e1(ground state) ‘yvib (v=0,1) v (F,I,J,v).

total ang. mom.

Several such sets of basis functions can be created. One such set is described
below.

Nuclear eigenfunctions characterized by a total nuclear spin, I, can be
expressed as linear combinations of various products of individual nuclear spin

eigenfunctions,

¥

N i‘ ammmul

(3/2,m_ju_(3/2, m_)u (3/2,m_), (II-3)
mlmzm3 123 172 273 3

Utotal Spin(I’ MI)

where 8 mm are appropriate coefficients, In fact one possible way to develop
17273

such functions is to couple the spins of nuclei 2 and 3 to get an intermediate spin,

L, and then couple this spin with the spin of nucleus 1. If this procedure is
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followed, the explicit expressions for the resulting eigenfunctions are

(L, I, M) = Z u,(3/2,m )u,(3/2, m )u,(3/2, m,)

m
m myMamy

Utotal spin
(IT1-4)
.(3/2 m23/2 m, 13/2 3/2 Lmﬂ(3/2 mleLls/z LIM,)

where the terms (jlmlj m_ i

P 1] 2Jm) are vector coupling coefficients.

Basis function§ characterized by a given total angular momentum, F, can
be constructed by taking appropriate linear combinations of the product of rota-

tional and total nuclear spin eigenfunctions

y (vIK, LI, FM ) =

total angular momentum

4 .Y = 0 or 1). OI-5
el(ground state vib (v or 1) ( )

(M IM | UFM,) U

M IMJ total spin(LIMI)' 1yrot(JKMJ )

where (IM,JM | 18] FM_) are vector coupling coefficients.
A. A, Wolf (19) has shown that in the representation above, the matrix

elements of the quadrupole interaction Hamiltonian of nucleus 1 are given by
/] J I/ F F I/ J
+I +
viK', T, F!HQ WIK,I, F) = (-1) { 0 I 1 (II-6)

LI |V | vara (i || 1

/
where FIJ
2J I



30

is the Wigner six-J symbol of the inclosed quantities. Values for six-J symbols

are tabulated in Rotenberg's The 3-J and 6-J Symbols (20). The only values of

/
the reduced matrix elements, (vJK||V||vJK), which will ultimately be needed

are (19)
2
_ (2J+1)[ 3K -J(J+1)] gcos o
(vIK||V]|vJK) = | (23+3)(23+2) 2T 1)23(20-1)1 /2 (r-7)
and
(vd1 ||V||VJ—1): (2d+1)J(J+1)g(cos o -1) (IT1-8)

21 (20+3)(23+2)(2T+ 1)2d(2J-1) ] /2
= (vJ-1{| v ||vIY),

where o is the Cl1-C-Cl angle of the molecule in question and q is the second
2

derivative of the potential with respect to the bond axis, %}-—g— The reduced ma-
/
trix element, (3/2,L,1 |{Q|{3/2,L,1), has been evaluated by Wolf (19) and found

fo be

3/2+L+1+2

/
(3/2,L,1 || Q]| 3/2,L,1) = (-1) (T1I-9)

. 2 I L
- peryef +1) ]1/2 8/ }(3/2 [1Q]| 8/2).
I 3/2 2

The reduced matrix element, (3/2]]Q|| 3/2), has the value,/5eQ, where e is the
electronic charge, and Q is the quadrupole moment of any one of the identical
nuclei.

At this point it is helpful to be aware of two facts. First, if the basis

functions of equation ITI-5 are suitably arranged, the Hamiltonian matrix factors
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into a series of non-zero submatrices along its diagonal. Each of these sub-
matrices has elements linking states with the same F, MF’ | K|, and J guantum
numbers, but not necessarily the same L, K, and I quantum numbers, The situ-
ation is depicted in Figure 9.

The second fact is that the sets of basis functions spanning the space of
cach submatrix are not unique. In the next section, basis functions of each sub-
matrix will be constructed such that their behavior under the interchange of two
identical nuclei is known,

Satisfying the Pauli Exclusion Principle. According to the Pauli Exclusion

Principle, if any two of the identical fermions (the spin 3/2 quadrupolar nuclei)
are interchanged, the state functions of the Hamiltonian must change sign. That
is, acceptable eigenfunctions of the Hamiltonian must change sign under the single
interchange of any two identical nuclei. Eigenfunctions exhibiting this kind of
behavior are said to have A2 symmetry type.

If the Hamiltonian of Figure 9 were diagonalized, the resulting eigen-
functions would not necessarily have the appropriate overall symmetiry. The
problem, then, is to develop for each submatrix a set of basis functions with
overall symmetry A2.

The first step in the construction of the new set of basis functions is fo
modify the total nuclear spin functions appearing in equation III-5. The Hamil-
tonian is unchanged by permutations of the identical nuclei, Therefore, if spin
functions are chosen which will serve as basis functions for one of the irreducible

representations of the group of permutations of three objects, then there will be



Figure 9.

Form of Hamiltonian Matrix in the Representation
of Equation IITI-5,

A
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no matrix elements of the Hamiltonian linking spin functions of different symmetry

type (21). Such spin functions have the form

Uiotat spint™ic! = /i G(w,, L, D u (L, I) (IO-10)

where the coefficients, G(wk, L, I) are called genealogical coefficients. The
index, w, , indicates that the basis functions belong to the wth irreducible repre-
sentation and behave like the kth row of that representation. In Appendix C, the
behavior of basis functions under the action of the group operations is shown for
the two one dimensional and the one two dimensional irreducible representations.
Values for the genealogical coefficients are also given in Appendix C.

When nuclear spin functions of the form of equation III-10 are used and
appropriately arranged in each of the submatrices of the Hamiltonian, then these
submatrices divide into smaller submatrices along the diagonal. Each of these
smaller submatrices has elements linking only states with nuclear spin functions
of the same symmetry. The situation is shown in Figure 10,

At this point a typical basis function has the form

¥ =¥ ¥ = -
{vJK, wkI, FMF) el(ground state) Vib(v 0or 1) (II1-11)

N
L (]ZMIJMJ‘IJFMF)utOt al Spin(I,MI,wk) ¥ KM
M. M.

and the general expression for a matrix element is (22)

/
(vIK’, wkI’, F |3HQ |vaK, wIF)=(- I+ F (MMI-12)
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Figure 10.

AZ NUCLEAR FUNCTION

E NUCLEAR FUNCTIONS

The Form of a Typical Submatrix when Spin Functions,
u(WkI), are used.

ne
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¢ F I/J\

/2
?..JI,r

/
IK 1| v vIK)3/2 1@ |3/2 21+ 1)1+ 1)}

— /
' / 3/2 1 L
3/2+1L+1
& en®# o 11 {1 3/0 2}G(wk,L,I)

Since further modifications to the sets of basis functions are still needed,
and the notation is already cumbersome, it is convenient to collect those terms
involving only spin quantum numbers and define a nuclear reduction coefficient
by

/
C(wk,I/,I) - 3-n! It (21+1)(21/ w1y] /2 (TII-13)

- / A
) yrew ,1,1) VB oLoL Gw, I, 1
N (- ) (Wk! s I 3/2 2 (wk.’ ’ )

In Appendix C are listed the reduction coefficients needed forthe J=1%t0 2, K=1
and the J = 2 to 3, K =1, 2 calculations. Substituting equation III-13 into III-12

one gets

vk ,wkI/, F|H,, |vIK, w1, F) = (- )3/ 24+ F { g 3/ ‘II} (TI1-14)

@Ik ||V || var)3/2 )@ 13/2) € (w1, 1),

If any of the submatrices indicated in Figure 10 is diagonalized, the resul-
tant eigenfunctions, which are linear combinations of basis functions, would be
characterized by the symmetry of only the nuclear spin part of the wavefunctions.
However, what is needed is a method by which eigenfunctions of overall A2

symmetry can be found.
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Consider any one of the submatrices of nuclear spin symmetry, Al, A2,
or E shown in Figure 10, Each of these submatrices is spanned by a set of
basis functions of the form indicated in equation II-11. However, it is more
convenient to span the spaces of these submatrices with functions which are cer-
tain linear combinations of the functions in equation IOI-11. Some of these linear
combinations will result in basis functions with A2 overall symmetry (23) - viz.
1. In an Al or A2 submatrix if the quantum number, K, is equal to zero

or an integral multiple of three, then basis functions of the form

A 1V

¥(v,E LF)=1/ /2 [¥(vIK,A _,LF) ¥ (1- 15)

JK’ 1,2’ 1,2’

?(VJ—K,A I: F)]

1,2

have A2 overall symmetry, where the - sign is used for an Al submatrix
and the + sign is used for an A2 submatrix,
2. In any E submatrix if K is not zero and not an integral multiple of three,

then basis functions of the form

J+v

¥Y(V,E 1, B, L F) = 1/2 [¥ (WK, E,, I, F) - (-1) (IT1- 16)

JK’
) J+v
¥ (vI-K,E,, L F)}) +i/2[¥(VIK,EL F) + (-1)

¥ (vI-K,E, L F) ]

have A2 overall symmetry.
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3. No other linear combinations of the functions of the form of III-11 yield
basis functions having overall A2 symmetry.

There are no non-zero matrix elements linking states of A2 overall
symmetry with states of non-A2 overall symmetry (21). Therefore, one can
group the matrix elements linking basis functions of A2 overall symmetry into
still smaller submatrices and diagonalize these submatrices, The eigenfunctions
of these submatrices will then have A2 overall symmetry.

Thus, the Pauli Exclusion Principle is satisfied by only accepting those
eigenfunctions resulting from the diagonalization of an A2 (overall) submatrix,

Transition Frequencies and Intensities

The relative intensity of a rotational transition in a2 molecule is propor-
tional to the square of the matrix element of the electric dipole moment operator
between initial and final states, When the matrices of the quadrupole interaction
are diagonalized the state function corresponding to a hyperfine level is given by

Wolf {24) in the following form

.
W (B T)=/ B wEp . wIF Mp),

where the quantities, B are the matrix elements of the diagonalizing transfor-

I
mation. The index T is used to distinguish states corresponding to different
eigenvalues.

Choosing the space fixed axis to be in the direction of the electric field,

noting that the dipole moments of CFCl 3 and CHCI3 lie along their molecular axes,

and using the Wigner-Eckart theorem and Racah's algebra of irreducible tensor
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operators, A. A, Wolf gets the expression

2 2
_ (J+1) -K 2 i f
N= 33+ 1) d (2F +1){2F +1)
2
Jj+I+Ff+1 Jl Fi I
Z. BTI T I (-1) 1;‘f Jf 1 (IO-17)

for the relative intensity of the transition between a J = 2 hyperfine level and a
J = 3 hyperfine level. In this expression d is the dipole moment. The frequency

of any such line is given by

Frequency = [Freq. of rotational transition]+ [J = 3 HFS ]
-[ =2 HFS] ,
where [ J = 3 HFS] is the hyperfine splitting of the J = 3 level.
A, A, Wolf further notes that for the case J = 3, K = 2 the reduced matrix
element (vJK || v || vJK) vanishes so that all of the quadrupole hyperfine levels
are degenerate. ''The infensities of the lines involving these levels were computed

using B,,. = 1 for each value of I, calculating the intensities corresponding to dif-

TI
ferent values of I separately, and adding all of the intensities corresponding to the

same frequency.! (25)

The Combined Stark and Quadrupole Inferaction

The Hamiltonian operator for the combined Sfark and quadrupole interactions

has the form,

HQ+S = HQ + HS’

where H_ is the quadrupole interaction operator discussed in the preceding

Q
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section, and H is the Stark interaction operator. The Stark interaction operator

S

can be written in the spherical tensor notation of Edmonds (16) as

¥ =) e |
S ;(1“1LL E_,

where u can take on the values -1, 0, 1. E refers to the applied electric field
and d to the electric dipole moment of the molecule. In terms of cartesian com-

ponents, the spherical components of these quantities are given by

-1 () .. (1) 1 .
d = — (d d E_ = E-1E
1 e (@ ' +idy") 1 +/-2(x1y)
1)y _ L) -
dO = dz EO = EZ
+1 1 -1
) =% &-w®) s - T oE .

The representation used to compute the quadruple interaction Hamiltonian
matrix is also used to compute the combined Stark and quadrupole Hamiltonian

matrix, therefore a typical matrix element has the form

/77 /

(v IKw,IM_[H

ors R IMD) = (LU TH L+ (e g L), m-19)

F

Before discussing the evaluation of the terms on the right, it is helpful to look at
the overall form of the Hamiltonian matrix. Since neither the quadrupole inter-
action operator nor the Stark interaction operator links states having different MF

quantum numbers, a suitable arrangement of matrix elements results in a matrix
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of the form shown in Figure 11 -~ that is, a series of submatrices strung along
the diagonal. Each of the submatrices has elements which link states of the same
MF quantum number. Further arrangement of matrix elements within each sub-
matrix can result in a Hamiltonian matrix having the form shown in Figure 12 —-
that is, each submatrix is further subdivided into two matrices, one of which is
characterized by the fact that it links only states of A2 overall symmeiry.

As in the quadrupole case, eigenfunctions having the required A2 symmetry
result from diagonalizing only the A2 submatrices.

Equations III-14 and III-16 enable one to evaluate the quadrupole terms.
It should be noted that these terms only link states for which F/ = F and V/= v.

Using the Wigner-Eckart theorem and appropriate equations from Edmonds,

C. R. Nave (26) has derived an expression for the Stark term

/

/ / - -
(vIK, WI, FM [ H|v IK, WI, F M_) = @asly-1yT T F Mptl-Kl

/
/ 1/2| F 1 F J 1 J)\ JJg F I
/ -
[(2F+1)1F +1)] SM_0 M (K 0 -K {F J 1}Ed‘ (T-20)
F F

. /

The expressions, F 1 F
'MF 0 MF

and J 1 J
K 0 -K

are 3-J symbols of the inclosed quantities. Values for 3-J symbols have been

/
tabulated by Rotenberg (20). Only terms for which v = v+ 1 are non-zero. Note
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Figure 11. Form of Hamiltonian Matrix for Combined Stark and
Quadrupole Interaction.
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however that due to properties of the 3-J symbol, non-zero elements result for
F /-F = 0, + 1 only. Non-zero matrix elements linking states of different J

are ignored. This approximation is reasonable since the Stark splittings for the
electric field strengths of interest are small compared to the rotational energy
level separations,

The transition frequencies are given by

Frequency = [ unperturbed rotational transition frequency] (I-21)

+ [J = 3 splitting] - [J = 2 splitting ] .

The intensity of a transition between two eigenstates is proportional to the square
of the matrix element of the dipole moment operator linking the two states.
C. R. Nave (27) has derived the following expression for the intensity of a tran-

sition between eigenstates characterized by the symbols f1 and £2:

u // /
1=| ) (VIKIFM_J )vJ KIF M_|f.)
¥ i
LF,F,
viv

i
-(VJKIFMFId(l) |vJ KIF M)

!/ /
where (VJKIFMF |d(1) |v J KIF MF) is given by equation I1I-20 if the E is dropped
from that equation. Equation II-22 holds for the case where the microwave field

is parallel to the Stark field.

Stark Effect in the Absence of Quadrupole Splitting

If the Stark field is sufficiently strong, then the Stark interaction term

in equation I11-19 is much larger than the quadrupole interaction term, and to
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a good approximation one can ignore the quadrupole term entirely. C. R, Nave
(13) has shown that the expression for the magnitude of the Stark splittings on
either side of a rotational transition for the case where the quadrupole interaction

is ignored,

2M KV 0.50348 MHz , (I1-23)

T J@+1)d+2)d | debye volt/em

Av

can be applied in the case where the Stark interaction is much stronger than the
quadrupole interaction. In this expression, V is the stark voltage, d is the
separation between the Stark electrode and the waveguide walls, J is the rotational
guantum number of the lower level, and nis the dipole moment.

For the J = 2 to 3 transition the values that M JK can have in equation III-23
are one, two, and four. The intensity of any of these splitting is proportional to
the square of the matrix element of dipole moment operator linking the initial and
final states. Using expressions for dipole moment matrix elements from Townes
and Schawlow (28), one obtains the following expression for the square of the dipole

moment matrix element,

- MJ)2= uzl:(.n 1)2- KZ:“: (J+l)2—Mi] o

(J+1)2(2J+1)(2J+3)

(J+1, X, MJ l p'operator
Thus, 64:80:25 is the ratio of intensities for the Stark components corresponding
to M JK equaling one, two, and four respectively.

As is discussed in Chapter IV, equation III-23 is uséd in the determination

of the dipole moments of CHCI3 and CFCI3
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Pressure Broadening

Of all the factors contributing to the broadening of spectral lines, the
largest by far is pressure broadening {29). At low pressures and over a 5 to 10
MHz region about a rotational line, the Van Vleck and Weisskopf pressure broad-

ening equation can be approximated by

y = —2 (- 25)

(v - ) (bD)

where C is a constant
b is the line width parameter
p is the gas pressure
v 0 is the natural molecular frequency
Y is the absorption coefficient,.

The line width parameter, b, can be determined from the equation
A v=2bp

where A Vis the width of the line at half-maximum (30).
When making theoretical calculations which are to be compared with actual
recordings of data, one must take pressure broadening effects into account, since

an overlap of lines can affect the spectrum appearance.
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CHAPTER IV
ANALYSIS OF DATA

In order io facilitate the analysis and interpretation of data, several
computer programs were written in the course of this research:

1. BESTFIT a program to determine the siope and y-intercept of the best
(Least Squares) straight line fit to a series of points, (xi, yi).
This program was used in the determination of dipole moments
for CHCI3 and CFCl3.

2. KISZERO a program which computes the frequencies and intensities of all
J = 2 to 3, K= 0 quadrupole transitions. This program also
compuies a pressure broadened spectrum over any specified
frequency range of interest,

3. KONETWO a program which computes the frequencies and intensities of all
J =210 3, K=1, 2 quadrupole transitions. This program also
computes a pressure broadened spectrum over any specified
frequency range of interest.

4, PBRTAPE a program which computes a. the frequencies and intensities of
all 3 =2 to 3, K =1, 2 quadrupole transitions and b, the frequen-
cies and intensities of 2l1 J = 2 to 3, K =1, 2 combined Stark and |
quadrupole transitions. This program also computes 3 pressure

broadened spectra over any specified frequency range of interest:
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a, a quadrupole spectrum, b. 2 combined Stark and guadrupole
spectrum, and ¢. a difference spectrum resulting from spectrum
""a" being subtracted from spectrum "b". One of the options of
this program causes a tape to be made of all computed frequen-
cies and intensities,

5. PBRTEST a2 program which computes several pressure broadened spectra
corresponding to different values of pressure and line width
parameter in equation III-25. Input data to this program consists
of the tape information computed by PBRTAPE and data cards
containing the values of pressure and line width parameter for
which pressure broadened spectra are to be computed,

Of these programs, PBRTAPE was by far the most useful and indispen-
gible to the research. A printout of this program is included in Appendix D. The
logic and operation of this program are discussed in Appendix E,

PBRTAPE takes between one and one and a half hours of computer time
(Processor and I0) to run and thus from this fact alone one can see how handi-
capped the research would have been without this program or its equivalent.

In the sections which follow, theoretical calculations are compared with

experimental measurements.

Electriec Dipole Moment Determinations

Eguation III-23 for the frequency separation of Stérk components from

a main rotational line becomes

8w =0.04196 (M;K)u E (IV-1)
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for the J = 2 to 3 rotational transition. A Vvis the frequency separation in MHz;
K is the electric dipole moment of the molecule in debyes; and E is the strength
of the Stark electric field in volts/cm, Since the quantity M JK can take on the
values one, two, and four for this transition, a graph of frequency separation
plotted against Stark field consists of three straight lines passing through the
origin,

The dipole moment of a given molecule is related to the slope of any of

these lines by the following relation:

slope (in MHz/volt/cm)
0.04196 (M K)

i (in debyes) = (IV-2)

As mentioned in Chapier 1I, frequency separations cof the Stark components from

the J = 2 to 3 rotational line in CHCl3 and CFCI3 were measured for several dif-

ferent values of the Stark electric field. These frequency separations are plotted

against the field strength in Figures 13 and 14 for CHCl3 and CFCl3 respectively.

These measurements were made using the double phase-lock stabilization technique,
For both molecules, the measurements made on the Stark component

corresponding to M _K equal to two were the most reliable. That Stark component

J
is the most intense of the three. Therefore, dipole moment determinations were
based on measurements made on that component,

A Least Squares fitting technigque was used to find the best straight line
fit to the M JK equal to two component for each molecule. From the slopes of these

lines, the molecular dipole moments of the molecules were determined. In order

to have some measure of the reliability of results, the 90 per-cent confidence
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intervals for each of these slopes was computed. These intervals were calculated
as follows:

1, In a student's T-{able (found in any standard book of statistical tables) the
appropriate t-value was delermined for the line in question (The appropriate t-
value is the one corresponding to (N-2) degrees of freedom, where N is the num-
ber of measured points on the line.),

2. The standard deviation of the slope, Sb’ was computed using the equation

Sy \/Z (7; )/ |(N-2) = (x; - %),
1

1
and 3. The 90 per-cent confidence interval in the slope was calculated as the

product, Sbt.

Since the measurements made on CHCl3 using the double phase-lock
stabilization technique yielded points widely scattered from the straight line of
best fit, it was decided to repeat the dipole moment determinations for both CHCI3
and CFCl 3 using the beat note technique, Figures 15 and 16 are plots of the fre-
quency separation of the second Stark component versus electric field for CHCl3
and CFCI3 respectively, using this technigue.

In Table 1, the author's measured values for the dipole moments of CHCIS

and CFCl3 are compared with values obtained by other researchers, The author's

results are stated at the 90 per-cent confidence level,

Comparison of Observed with Calculated Spectra

Using the pressure broadening formula, III-25, several pressure broadened
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Table 1.
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Electric Dipole Moment Measurements of

CHC 13 and CFCl3 in the Gaseous State

Molecule w in debye Method Researcher and Reference
CHCl3 ¢.9 Dielectric constant | Sanger, R., Physik, z. 27,
556-63 (1926).
1.00+0.01 |Dielectric virial Buckingham, A,D., and Raab, R,
coefficient E., J.Chem, Soc,,5511-23 (1961).
1.03 Dielectric constant | Ramaswamy, K. L., Proc.
Indian Sci. 2A , 364-77 (1935).
1,06 Dielectric constant | Sircar, 8.C., Indian J. Phys. 3,
197-208 (1928).
1. 07 Dielectric constant | LeFevre, R.J., Wand, Russell
P.,J.Chem. Soc., 491-5 (1936).
1,86 Dielectric constant | Maryott, A.A., Hobbs, M.E.,
and Gross, P.M,, J. Am, Chem,
Soc. 62, 2320-4 (1940).
1.0256+0.04 | Stark Effect Present work, Method 1
1,04 +0,01 Present work, Method 2
CFCl3 0.45+0.01 |Dielectric constant | Roberti, D.M., Kalman, O.F. &
Symth, C. P., J. Amer. Chem.
Soc. 82, 3523-6 (1960).
0.53 Dielectric constant | Fuoss, R.M., J. Amer, Chem,
Soc. 60, 1633-7 (1938).
0.46+0,02 | Stark Effect Present work, Method 1

0.46+0. 02

Stark Effect

Present work, Method 2
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spectra for CHC1_ were computed for different values of the product, bp. Four

3
of these spectra are reproduced in Figures 17 through 20 corresponding to the
product, bp, having values 0.25, 0,50, 0,75, and 1,0 MHz respectively. Figure
21 is a reproduction of the spectrum of [)HCI3 made under conditions similar to
those for which the computed spectra were calculated.

Three observations are made in comparing the calculated and measured
spectra. First, the calculated specirum corresponding fo bp = 0.5 MHz resem-
bles the measured spectrum most closely. Second, the calculated spectra indi-
cate the great effect pressure broadening can have on the appearance of spectral
lines. For example, in Figure 17, line A is more intense than lines B and C. In
Figures 18-20 these relative intensities are reversed. Further, as the pressure
broadening effect is increased the spectral lines lose their distinctiveness.

The third observation is that the computed spectra more closely resemble
measured spectra below the rotational line center than above. Although the exact
reason for this discrepancy is not known, several possible contributing factors
can be listed: 1. The calculated spectrum is made for the molecule in its ground
vibrational state, but included in the measured spectrum are weaker spectra due
to excited states that can exist. 2. The strength of the measured spectrum is
very close to the sensitivity limits of the microwave spectrograph, and background
noise may not be of a random nature, 3. The K = 0 lines whose contribution is
not taken into account in the calculated spectrum may have more than the expected
neglibile effect on the spectrum,

The calculated spectrum of CFCI3 for bp = 0.25 MHz is shown in Figure 22

and the measured spectrum is shown in Figure 23,
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For this molecule it was possible to make measurements at a low enough pressure

that lines B and C were resolved and Line A was more intense than B or C.

Using the beat note technique, the frequencies of A, B, and C were

measured for both CHC1 3 and CFCl1

3

The results of these measurements are

compared with A. A, Wolf's measurements and with predicted values in Table 2.

Table 2,

the J = 2 - 3 Transitions of CHCl3 and CFCla.

Frequencies of the High Intensity Lines in

Molecule Source Operating Conditions A B C
A.A. Wolf®D | 178°C, 5 Hg, 300v/cm | 19810.21 | 19812.24 |19812. 66
+0. 04MHZ | +0. 08MHz | +0. 08MHz
CHCI, | Present work -78°C, 15 Hg, 3¢1v/cm| 19810.25 |19812.45 |19812.45
+0.,07 +0. 07 +0.07
Computed See Fipgure 18 19810.25 |{19812.50 |19812.50
+0.20 +0.2 +0.2
A. A, woi®2) _78°C, 15 Hg, 200v/cm| 14792.82 |14794.72 |14795. 44
+0. 03 +0.05 +0. 05
CFCl, | Present work -78°C, 15 Hg, 457v/cm| 14792.75 |14794.78 |14795.41
+0. 07 +0.07 +0, 07
Computed See Figure 22 14792.75 |[14794.75 |[14795,25
+0.2 +0.2 +0.2

Since the purpose of this table is to compare calculated and observed quad-

rupole splitting the rotational constant has been adjusted to make the calculated

frequency of line A agree with the measured frequency. The calculated frequencies

of lines B and C then fall within the experimental errors of the measured B and C.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Dipole moment measurements for CHCI3 and CFCl1 q Were made using
both the Double Phase-Lock Stabilization technique and the Beat note technique.
Using weighted averages of the results of these measurements, the dipole moment
of CHC]3 was found to be 1.04 + 0, 02 debye and the dipole moment of CFCl3 was
found to be 0.46 + 0. 02 debye. The weighting factors were inversely proportional
to the square of the size of the 90 per-cent confidence interval.

Inherently, the double phase-lock stabilization technique (method 1)
should be more accurate than the beat note technique {(method 2), and it is there-
fore recommended that attempts to make measurements using this technique not
be abandoned. There are several possible factors contributing to the erratic
measurements that this researcher obtained when using method 1. The Stark
square-wave generator used with method 1 did not produce as good a square-
wave pattern as the new solid staie square-wave generator used with method 2,
Also, different klystrons had to be used in the fwo measurements, and there is
reason to believe that a more stable klysiron was used with method 2 than with
method 1.

Calculated pressure broadened spectra according'to equation III-25 com-
pare well with measured spectra when proper values for the product, bp, are

used, Although the comparison is not perfect; nevertheless, the similarity of
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the calculated and measured spectra lead one fo have confidence in equations
NI-17, 22, and 25, From Table 2 values for the line width parameter, b, can
be estimated for CHC]3 and CFC]3 as 0.028 + 0,014 MHz/mmHg and 0. 014 +
0. 007 MHz/mmHg, respectively.

The fact that the line width parameter for CHCI3 is larger than the line

width parameter for CFC1_ is consistent with the result stated by Townes and

3
Schawlow (33) that the line width parameter is proportional to the square of the
matrix element of the dipole moment operator between initial and final states.
The agreement between the calculated and measured spectra illustrated
by the figures and the closeness of the measured and calculated frequencies for

lines A, B, and C in Table 2 confirm the theory to the degree of accuracy of the

measurements.
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DETERMINING THE EXACT FREQUENCY OF THE SOURCE KLYSTRON

-AN EXAMPLE-

Suppose the following conditions hold:

1. The reference klystron is locked-in at 9. 830 gH=z.

2. The transfer oscillator's output is at 0, 133 gHz.

3. A wavemeter reading of the source klystron's frequency is 19. 82 gHz,

One can infer the exact frequency of the source klystron by following the reasoning

discussed below,

The second harmonic of the reference klystron's frequency is given by

2nd Harmonic (ref. klystron) = 2 x 9, 830 gHz = 19,660 gHz, (A-1)

The beat notes resulting from mixing this second harmonic with all the harmonics

of the transfer oscillator's output are

N 19, 394
Beatnotes = 19.660 — n (0, 133) =[19, 527 gHz (A-2)
19,660
19.793
19. 926
where n is any positive integer, L

Since the source klystron is stabilized by a double phase-~lock stabiliza-~
tion technique, the possible frequencies at which the source klystron can be locked

are plus or minus 30 MHz from the frequencies given by equation A-2:



Possible frequencies For Source Klystron

= 19.660 +n (0.133) + .030 =

4

19,
19,
19,
19.
19,
19,
19,
19,
19,
19,

364
424
497
567
630
690
763
823
896
956

gHz.

68

The wavemeter reading of 19, 82 gHz enables one to conclude that the

source frequency is in fact 19. 823 gHaz.
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ENUMERATION OF BASIS FUNCTIONS
The first set of basis functions considered in this thesis had the form:

U(vJKM_, m_,m ground state) (B-1)

g Ty My, M) =¥,

1(

3
- ¥ ik (v=0or lwrot(J, K, MJ) m ui(3/2 mi).
i=1
For J = 2 there are 3200 distinct functions of this form, This fact becomes more
apparent when one realizes that v can take on two values (0 or 1), that M 3 and K
each can take on 5 values (-2, -1,0,1,2), and that each of the three m, can take
on four values (-3/2, ~1/2,1/2,3/2). Thus there are 2 x 52 x 43 = 3200 distinct
basis functions for the J = 2 level,
For the J = 3 level the only difference is that M 3 and K each can take on
7 values (-3,-2,-1,0,1,2,3), However, basis functions for which K is + 3 are
not used since the selection rule on K for a transition fromJtoJ+ 1is AK=10
and the J = 2 level has no basis functions corresponding to K = 3, Thus, it is
only necessary to consider 2 x 7x5 x 43 = 4480 distinct basis functions for the
J = 3 levels,
The space spanned by the basis functions of the form given in equation
B-1 is the same space that is spanned by the basis functions which are ultimately
used in the calculation of the Hamiltonian matrix. Yet, one can note that the

computer program PBRTAPE does not compute any K = 0 levels or transitions.
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There are two reasons why those levels and transitions are not computed:

1, The Stark splittings for the K = 0 levels are small at the low values of electric
field strength used and thus the K = 0 spectra in the Stark-field-on case and in the
Stark-field-off case are essentially the same and the difference spectrum which

is recorded is zero, and 2. PBRTAPE already takes one and one half hours to

run with the transitions it does compute. The effect of ignoring the K = 0 spectrum
is that only 2560 functions are needed to span the J = 2 level and only 3584 functions

to span the J = 3 level,
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Table 3.

The Permutation Group on Three Objects

GROUP ELEMENTS

REPRESENTATION
(0) (123) (132) (23) (31) (12)
A 1 1 1 1 1 1
A 1 1 1 -1 -1 -1
L . N/ ! /
o ML=\ s \/ -1 /1 N o
E 2 2 2 2 ( | 2 2 2
| y '
MNB 1 “l\;[ﬁ _1 ;, \ \ L8 -1 h-/3 1
NN / V22 o N2 2 fIN Tz 2

S~

g4



Table 4.

The Genealogical Coefficients

Ay Ay E E,
3 2 9 3 1 3 5 1 1 3 2] 7
2 2 2 2 2 2 2 2 2 2 2 2
,;/_1? +‘\/l5_
6 ~-V%
- /1 ﬂ *1 :\/é_ :\/:_’7_
10 15 +Vig ' tV¥i5
5 \/1_
2 + A= + +
\/; TS | 1
\/‘é- '\/Z- '\/E ;\/‘g 1
10 15 1 +Vio |TVis | *

¥
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Table 5, The Reduction Coefficients

ca®, 2,2 45 o, - BT
cw®, 3, =1 C®y 39 - G
C(Ey % %’ = ;4513 C(E,, % §)= :59
CEy % % - L51_ C(E,, % -;-)= 355
b5 b
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IR 3Q AR QIR R 2 2R M AR QI R IR DR 2R DL 2R QAR AU N M AN R R M R W W

REGTHN

QUADRUPOLE HYPERFINE STRUCTURE AND STAR« EFFECT FOR SYMMETRIC~TNP

MOLECULES wITH THREF IDENTICAL AQUADRUPQLAR NUCLFI

CALCULATES J=22 TO =3 SPFCTRUM WITH AND WITHOUT STAR« FIELD,
PRESSURE HBROADENS AND TAXES DIFFERENCE OF RESULTANT SPECTRA

INPUT DATA CONSISTS OF cL=X=CL BOND ANGLE IN RANDIANS, TME
QUANRUPOLE COUPLING CONSTANT EQQ IN MC/SEC», THE DIPOLE MOMENT IN
DFBYE, THE STARK FIFLD IN MC/SEC=DEBYE (l.E.» (V/D1x,50348), AND
THE LINE WIDTH PARAMETER TN MHZ., THE LINE WIDTH PARAMETER 1§
THE HALF=+IDTH OF A SINGLE LINE AT HALF=-MAXMIUM IN MHZ,
THIS PROGRAM REQUIRFS THREE DATA CARDS IN THE FNLLOWING ORDFR1
CARD 1t PUT THE ~AME AND CHEMICAL FORMULA NF THE MOLECULE TN
THE FIRST 36 SPACES.
CARPD 2t USING FREE FIELD PUT IN ORDER THE FOLLOWING PARAMETERS:!
ALPHAY ¢THE ROND ANGLF IN RADIANS), EQQ, MU, EFIELD
AND LupP ¢LINE WIDTH PARAMFTER).
CARD 3t THIS CONSISTS OF ONE NUMBER AND A COMMA AND TELLS THE
COMPUTER WHTCH OPTION IS REING USED. THE OPTIONS ARE AS

FOLLOWSt

WHAT = 0 MEANS NO CARD QUTPUT.

WHAT = 1 MEANS CARD DUTPUT FOR QUADRUPOLE SPECTRUM,
WHAT = 2 MEANS CARD DUTPUT FOR STARK SPECTRUM,

MHAT = 3 MEANS CARD DUTPUT FOR COMRINED SPECTRUM,
WHAT & MEANS AN DUTPUT DATA TAPE IS MADF,

=
A GRAPH NF THE vARINUS SPECTRA CAN BE MADE By USING THE QUTPUT
CARDS ON THE GRA9HING MACHINE,
THE pUTPUT DATA TAPF CONTAINSS '
NIULP1,PAR1), PEAKIP1,PAR11, NUILPAR1), PEA¥{[PAR1] =
T.E. ALL THFE AUADRUNOLE PLUS STARK FRFAUFENCTES AND INTENSTITTIES
AND ALL THE QUADRUPNLE FRFQUENCTIES AND INTENSITIES,

INTEGER PARSNUSMINISEXC,EXPTsP1,PARLSFIL,MFL 3 %

INTEGER MF2, 11572521 5C1oMINGsMINISEXPION»SsF32FXPEIF1sF2sV1,V2,

NoeTs JoKaMsMINY G NTsN2,N3 MF30KQ» JBaK1»JAS JBsK2sLs WHATS
REAL SUMINTI,INTI,0 WP, SUMINT,IO1,FQ1,FQ2,MFQ § %
REAL MEF»TR1»TR2.MF22,F12,F22s112sSPLIT3,FQQ3,FREQS %

00000100
¢0000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
0Qo01000
00001100
060001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
con03200
00003300
00003400
00003500
00003600
00003700

LL


file:///iame

oEAL SMi:Jl:J?:J3’L1pL21L3!M1SMZJM?’MUQEFIELD’TE3JTE4 | I 4

REAL ALPHAL»ALP,SUMISDIPOLE» INT»SPLITST2,T35TRASTRD,
SUMXZ2,SUMY2,5PRODITS,FREQISFRER2,SPLIT2,FQQ 3 %

ALPHA A1, A2, A3, Ali» ASs A6}

ARRAY ALP2.BFTA2r0:4,0141,FACTE=10221] 3 %

ARRAY B1r0t1,124,1:6512347,B20{n11,114,127,12881,FGY[01348],

RI112,123»0t 151200138, 19,EGY2L07487 3 %

ARRAY NUL»PEAKI[OS1000V,FI112,183,0015134,119] 5 X

ARRAY A,Y»DGIOt45s01451sPEAKSNUIL12B,119001»5JSY[014,016,017Y 3 %

ARRAY THJSE13611!6-1371 | I 4

FIL.E IN CRR{Z,10+3

FILE PBRTAPE 2¢2,1023, SAVE 180);

FILE QUT LINE 16¢2,1%) 3 %

FILE OQUT PUNCH 0¢2,10)3

LIST SNAFU ¢TRA»TRNDsTRA=TRD)»

INP (N»FOR T ¢ 1 STEP 1 UNTIL N 0O
FOR J . 1 STEP %t UNTIL N DO ALI,J)) 3

FORMAY IN LETTERS(AAGYS

FORMAT QUT HEADINTL(/TTRANSITIONS JS1sF=T,12,"/2,y="512,

"IN JE2sF =M 12,/ 25V, 12)s X
SUMINTFC"SUM NF INTENSITIES 5 ", F10,8) » %

MH{"MATRIX FOR J="s12s" MFe",12,7/2") , %

ILC/"TRANSITIONS J=3 ¢ J=2 FOR MF=",12,"/2 FOR K =", I11) , ¥
HEAD2("TRANSITINONS FROM J=22,K22,F=2",12,"/2 70 .j=3,K=2"),
INT2{XOsF10.4s%XT2F12.8:sX9:F10,4)»

PLOTEX10,2F20.8) » %

Muec/" DIPOLE MOMENT =",F5,2," DEBYEsFELECTRIC FIELD = "»r8.3»

" MC./(SEC=DEBYEY» STARK VOLTAGE ="»F7.3/) » %

QUADLI (/" QUARRIPNLE COUPLING CONSTANT EQQ =2m,F8.3»%, BOND ANGLE™

" OHAL=X=HAL =",F8,2) » %

NAMEC/"QUARRUPNLE SPECTRA FOR "» 6A6)»

NAMESC(/"QUADRUPOLE PLUS STARK INTERACTION SPECTRUM FNR "5 AA6),»

PBSH("Y LWP =™sFb6,3," MHZ,"/),

THe /XS5 J2m, 1357 LEVEL"XBo"d="5 13" LEVEL® e X9» *SPLITTING"»X10,»
WINTENSTTY"™

00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00008700
00004800
00004900
00005000
00005100
00005200
00005300
00005400
00005500
00005600
00005700
00005800
00005900
00004000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
c0006800
00006500
00007000
00007100

» 00007200

HEAD3(/X5,% 032 LEVEL™,X10,"INTENSITY",X10,"SPLITTING TN MC"/), 00007300

INTENSITYC(XA5F10,8s%9sF10.8sXT»F12:,62XTsF12,8,76) » %

00007400

82



PLOT2¢/X10,F7.3,3F20.,8) , %

MEAD

INZC/"TRANSITINNS =™, 12,",F=",12,"/2,uyz",12,
"OTO UM, 12, FeY,12,%/2,y=",12) , %

JHC"TRANSITIONS J="213-" TN JUs%eI3s",K="»13) » X
PRSHZ2(/X9»"FREQUENCY™s X9, "QUADRUPOLE"»X13,"STARK™» X115
"QUADRUPOLE "™/X11,"IN MC",X12,"SPECTRUM™,X14,"SPECTRUM",X8,
"MINUS STARK") , %

EMTY

(/X9,"PRNCESSNR TIME IS "»F10.65"™ MIN, IN TIME IS ",

FiN.6s" MIN®Y}

FORMAT OUT CHECK ("TRA=",F13,8:X9,"TRD=">F13,8:5X9,"DIFFE",F7.4),

00007500
00007600
00007700
00007800
00007900
00008000
00008100
00008200
00008300
00008400

EIG ("DERENERATE EIGENVALUFE==ORTHONORMALIZED VECTOR 1S="3,00008%00

NATA ¢"INPUT MATRIX IS™), X

00008600

PRS12C/"PRESSURE RRNDADENED SPECTRUM FOR J=1 T0O =2 TRANSITIONS™),00008700
PBS23(/"PRESSURF BROADENED SPECTRUM FOR 4=2 TO J=3 TRANSITIONS™)»00008800

FORM
"FOR

DGN ¢"DIAGONALTZED MATRIX IS"™) 3 %
AT DIVZRD(™ZERN DENDMINATOR REACHED IN VECTOR CALCULATION®
JE"13,"K=",13,", VECTOR FOLLOWING IS INVALID™) » %

EXDEGC("EXACT DEGENFRACY FOR EIGENVALUE®™»I3s"., SCHMIDT PROCESS™
¥ BREAKS DOWN™Y 5 %

INTEGER PROCEDURE MIN2(P1,P2,P3,P4) } %
YALUE P1,P2,P3,P4 ;3 %
INTEGFR P1sP2,P3,P8 1t %
REGIN IF P1<P2 AND P1<P3 AND P1<P4 THEN MINZ2eP1 } %

IF P2<P1 AND P2<P3 AND P2<PA4 THEN MIN2¢P2 ; %
IF P3<P1 AND P3<P2 AND P3<P4 THEN MINZ2eér3 3 %
IF P4<P1 AND P#<P2 AND PASP3 THEN MIN2«PA ; END

REAL PRACEDURE rACACSY 3 % CALCULATES rFACTORIAL OrF S

REAL

REAL

VALUE S 3 INTEGER § 3 %
FACAeIF S5¢0 THEN 0 ELSE IF S< 2 THEN 1 ELSE FACA(S=~13x%S
PROCEPURE DEL(D1,D2,D3Y 3 %
VALJE D1,D2,D3 ¢ REAL D1,D2,D3 § %
DEL ¢ SORT(FALTIDI+N2=D3IxFACTINI~D2+D3IXFACTI=D1+D24+Nn3Y/
FACTID1I+D2+D34+1)) 5 % .
PROCENDURE SHMK( )t 2025035010221 3)
VALUE J1,J2,Jd3sL150L2,13 3 %
REAL  J1532,J3sL15L2s13 3 %

REGIN %

00008900
00009000
00009100
00009200
00009300
00009400
00009500
00009600
00009700
00009800
00009900
$00010000
00010100
00010200
100010300
00010400
60010500
00010600
00010700
00010800
00010900
00011000
00011100

6L



SM1€D 3 MINIEMIN2C I +J2=03,J1+L2=L35L1+J2~L3sL1+L2~J3) 5 % 00011200

rOR X¢0 STEP 1 UNTIL MIN3 DO BFGIN % 00011300
F3e FACTIKIXFACTLJ1+J2=J3=K] % 00011400
XFACTUJY+L2«L3=KIxFACTIL1+2~L3"KIxFACTI=J1=L1+J3+L3+K) ¥ 00011500
XFACTI=2=L 24341 3+KIXFACTILL#{ 2=J3=K] § ¥ 00011600
TF F3>0 THEN SM1eSM1 + (IF BOOLEANCK) THEN =1 FLSE 1) % 00011700

XFACTLJY+J2+L1+L2+1=KI/F3 3 END 300011800

SUMK ¢« SM1 ; % 00011900
ENAY 00012000
REAL PRNCENURE STY.rJl,J2,d3sL1sL250L3) § % 00012100
¥ CALCULATES WIGNER 6= COEFFICIENTS 00012200
VALME U152, 03s015025013 3 % 00012300

REAL JIsJ2, 0351151213 3 % 00012400
REGIN , 00012500
FXPL ¢ J1+J2+L14L2 1 % 00012600

IF ABSCJ1+J2)2J3 AND ABSCJ1=J2)<J3 THEN % 00012700

SIXJ «(TF BNOLEANCEXP1) THEN =1 ELSE 1) ¥ 00012800
XDELCJL 25 J3IXDELCL 1,025 03)XDELC L5251 3) 00012900

X SUMKCJ1,J2503sL15025L3)0% DELCLY,J2,03) X 00013000

ELSE SIXJeO 3 % 00013100

ENA: ¥ 00013200
REAL PRNOCENURE S'UMK2(J1sJ25J3sM1sM25M3) 3 % 00013300
VALUE J1s 32, Jd3sM1sM2,M3 3 & 00013400

REAL  J1,02,J3sM15M2,M3 3 % 00013500
REGIN % 00013600
SM1€0 § MINIMINZ (142032 1=M1s J24M2,100) § % 00013700

FOR KeO STEP 1 UNTTL 4IN3 DN BEGIN ¢ 00013800
F3e(FACTERIXFACTIJI4J2=U3=KIxFACTLJI=M1=K1x 00013900

FACTL.2¢M2 = IXFACTIJ3=J2+MI+KIXFACTEJ3m )1 wM24K]) 500014000

IF F3>0 THEM SM1eSM1 + (IF BONLEANCKY THEN =i ELSE 1)/F3 3 ENNJO00014100
SUMK2 ¢ Su1 3 % 00014200

FNN: % 00014300
REAL PROCENURE THRFEJCJ15 25035 MIsM2,M3) 5 % 00013400
% CALCULATES WIGNER 3~ CNEFFICIENTS 00014500
VALUE 1502, J3sM1sM2,M3 3 % 00014600

REAL  J1502,J3sM15M2,M3 3 % 00014700
REGIN % 00014800
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FYPY1 & J1aJ?2=M3 1 % 00014900

1F M14M2+443#40 THEN THREEJ«0 ELSE % 00015000
THREE . ¢ (TF BOOLEANCEXP1) THEN =1 FLSE 1Y % 00015100
XSART(FACTLU1+J2=J3IxFACTLU1=~J2+J3] % 00015200
XFACTI=J1+02+J3IxFACTIJL+MIIXFACTL U1 ~M1] XFACT[J24M2] 00015300

XFACTL J2-M2 IxFACTIJI+M3IIxFACT(U3=M31/FACTIU14J2493411) 00015400
XSUMK2CJ15J25J3,M1.M25M3) 5 % 00015500

FNns X 00015600
REAL PROCEDURE QnPeJsF15,11,12,V15K) 3 Noo15700
% CALCULATES QUADRU-OLE INTERACTINN MATRIX ELEMENT 00015800
VALUE J»F1,T15712,V15K 3 2 00015900
REAL JsFis11572,V1,K 3 % 00016000
BEGTN INTEGER EXP4,EXPS 3 % 00016100
EXPae 2 + 3/2 +J+F1 3 E£XPSe J+V1+3 3 & 00016200

IF ¥ =1 THEN 00016300
ADPe (=1)*EXPAXSIXICP5JrJdoF 112,11 IXSART(5) 00016400
XCALP2E(2XT1413/2,(2%12+41)/2IXSORTC(2%J+1IX{IxK*2=Jx( J+1)) 00016500
XALP/SQRT((2xJ+3Ix{(2%J+2)%2Xjx(2xJ=1)) 00016600
+(=1)*FEXPSxBETA2L(2x11+1)/2,(2%12+1)/21xSQRT(2xJ4+1) 00016700
XAX(J+1I)x(ALP=1)/(2XxSART((2xJ+3Ix(2x)+2Ix2xJIx(2%J=1)))IxFQQ 00016800

Fi.SE 00016900
QDP¢ (=1 I*EXr4xSIXJ(2,J0JsF1a12,T1IXSORT(5) 00017000
XALP2I(2XT1+1)/2,{2%x]2+1)/2IXSART(2xJ+1IX{IXK*2=d%({ J+1)) 00017100
XALP/SQRT(r2xJ+3)%({2xJ+23%2xIx(2xJ=1)) x EQQ 3 00017200

END 500017300
REAL PROCEDURE STARK(Js PsT1sF15F2sMFsK) 3 % 00017400
% CALCULATES STARK EFFECT MATRIX ELEMENT 00017500
VALUE JsT1sF1-F2,MFKs P 5 % Q0n17600
REAL 15 1isF1sFr2,MFsK» P 3 % 00017700
REGIN EXP6¢Fi+F2+Ti=MF=K 3 % 0ooLr800
STARKe (TF BODLEAYCEXP6) THEN ={ ELSE 1)XTUREEJIFi-1-F25=MFo0oMF) 00017900
XSARTCL2%F 14§ IXL2xXF241 ) I%SIXI(JeFisT115F2:JPs1) % 00018000

XSART 22X g+ 1 It 2% P+ 1) IXTHREFJ(JIPs o 19 Ks =Ko OYXMUXEFIELD } % 00018100
END ¢ % 0001A200
PRNCEDURE CLEARACAY 3 % 00018300
ARRAY Af0s0C1 3 % 00018400
BEGIN % 00018500

18



FOR I¢1 STEo 1 ONTIL 4 Dn FOR Je¢t STEP 1 UNTIL 4 NO AfIsJ 10300018600

END cLEARA 1 %
INTEGER PROCEDURE MIN(P1,P2) } %
VALUE P1,P2 3§ %
INTEGER Pi,P?2 1 %«
IF P1 <« P2 THEN MIN « P1 FLSE %
MIN ¢« PY ; ¥
PROCEDURE MATRIXSRINT (NsMsA) 3 %
VALUE NyM 5 %
INTEGER NoM 3 %
ARRAY ATO»0) ;5 %
BEGIN %
FORMAT NUT FMT ¢"ROW™s13,%2,"COL"»I3,5F20.8 Y } %
INTEGER T»sJ.K 3 X%
LIST ROW ¢ T»JsFOR Ke¢ t STEP 1 UNTIL MIN! DO Afl,KY ) 3 %
FOR T « 1 STEP 1t UNTIL N DO ¢ %
EGIN %
MINY ¢« 5 3 %
J &« t 3 WHILE J € M DO %
REGIN ¢
“RYITE CLINEsFMTsROW) 3 %
1l « K } %
MINT € MINCJ+4:M) %
END ¥
END %
END MATRIXPRINT } %
PROCEDURE EAGLE(N.AY 3 %
2 CONTROL PROCEDURE FNR EIGENVALUE AND EIGENVECTOR CALCULATION
VALUE N 3 INTEGER N 3 ARRAY ALDs0} 3 %
REGIN %
ARRAY REFI0:84,0:881:XsG00FL0184]) 3 %
INTEGER ARRAY TDrOt44,0:18471 } %
FORMAT OUT GOOFF¢"VECTOR CHECK RY SUM OF PRODUCTS FOR ROW™,12,F12.8»
T4y 5 %
LIST GOOFO (I.GDNFrIlskK) 3 %
LABEL TOM ¢ %
% CALL CAST A TAPE PROCEDURE AO016 FOR CALCULATING FIGENVALUES AND

00018700
00018800
00018900
00019000
00019100
00019200
00019300
00019400
00019500
00019600
00019700
00019800
00019900
00020000
00020100
00020200
00020300
00020400
00020500
00020600
00020700
00020800
00020900
00021000
00021100
000621200
00021300
00021400
00021500
00021600
00021700
00021800
00021900
00022000
00022100
00022200
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% EIGENVECTORS

5% A A01lE
FOR J ¢ 2 STEP 1 UNTIL N DO %
FOR J « 1 STEP 1 UNTIL I=t DO A[I,J} ¢ A[Js1] 3} %
FOR I € 1 STEP 1 UNTIL N DD FOR J ¢ 1 STEP 1 UNTIL N DD
REGIN ¥
REFLTs1]1 ¢ AT1,J1 3 %
IF I = 0 THEN IDIILJY ¢« 1 ¢t %
TF 1 # J THEN IDIIsJY € O %
ENR 5 %
TRA ¢« 0,0 3 %
FOR I ¢ 1 STEP 1 UNTTL N DO %
TRA &« TRA + ACI»IY 1 ¢

CALCILATE EIGENVALUFS AND EIGENVECTORS
JACOBIC1sN,A»DG)Y 3 %
TRN « 0,0 3 %
FOR I « 1 STEP 1 UNTIL N DD %
TRN ¢ TRD + ALI»I1 3 %
CHECK INVARIANCE NnF TRACE UNDER DIAGONALIZING TRANSFORMATION
IF ARSCTRA =~ TRD) » 18=6 THEN %
WRITE (LINE,CHECK»SNAFU) 3 %
CHECK HOMDGENEITY CANDITIAN ON EIGENVECTORS
FOR K « § STEP 1 UNTIL N DO BEGIN %
FOR I ¢ 1 STEP 1 UNTIL N DO %
REGIN GONFII] ¢ 0.0 3 %

FAR J ¢ 1 STEP 1 UNTIL N DD ¥
GONFII]eGONFITI+(REFIISJI=ALK»KIXINLT,JIIXDGLJsK)Y 3 %
IF GROFIT1>18=6 THFN %

#RITE(L INE»GOOFF2GOOFD) %

ENDY 3 %
ENPR 3 %
END EAGLE 1 %
WRYTECLINEENDIY 3 %
T2 ¢ TIME(2) 3 2
T3 « TIME(3) 3 %
READ (CRRs LETTERS, A1, A2, A3, Ald» A5, A6)}

00022300
00000000
99999999
00022400
00022500
00022600
00022700
00022800
00022900
00023000
00023100
00023200
00023300
00023400
00023500
00023600
00023700
00023800
00023900
00024000
00024100
00024200
00024300
00028400
00024500
00024600
00024700
00024800
00024900
00025000
00025100
00025200
00025300
00025400
00025500
00025600
00025700
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3

%

READ (CRR» /» ALPHAIL,

READ (CRR, /, WHAT)3
CLOSECCRR,
REGIN REAL DUMMYT 3 %
BUILD FACTORTAL TARLE
FOR T¢=10 STEP 1 UNTIL 20 D0 FACT{IleFACA(I) } ¢
BUILD TARLE OF RENUECTION CDEFFICIENTS C{+) AND €(=)
ALP?TA,4]e SART(A42)/7 3 ALP2(3,4)¢12xSQRT(71/35 3 %

ALP?203,31¢SQRT(21)/35 }

RELEASE)S

EQRA, MU»

EFIELD,

LWP)}

ALP2[2541¢4xSARTC3)/5 ¢ %
ALP202-37¢=6/5 3 ALP2[252)¢7/5 } ALP2{1,31¢=SQRT(42)/10 } %

ALP201,21¢=2xSQRT(3)/5 3 BETA2{4,4)¢=2xSQART(42)/7 } %
RETA2[3,81¢=2xALP2(3241 3 RETA2[3,3)1¢=2xALP2(353] § %

RETA2[2,81¢2%xSART(3)/5 3}

BETA202-31¢=3/5 AETA2[2:,21¢=4/5

BETA2[1,31¢2x5QRT(42)/10 3 BETA201,21¢=SQRT(3)/S } %
FOR Ie¢l STEP 1 UNTTL 4 DO FOR Le¢i STEP % UNTIL I DO %
BEGIN ALP2[T1sL1¢ALRP2IL,T7 5 BETA2[{I»LI¢BETA2[LsT) END J %
ALP ¢ COSCALPHAL)YS
BUILD TABLE OF WIGNFR 6=, SYMBOLS
FOR IQ1el STEP § UNTIL 4 DN FOR FQie¢l STEP 1 UNTIL 6 DO %
UNTIL 7 DO IF ABS(FQ1=FQ2) <€ 1 THEN %

FOR FQ2¢1 STEP 1
SUSYILIQIsFQ1FQ2)€SIXJ(2,(2%FQ1=1)/25(2x1Q1=1)/2,(2xFQ2=1)/2+351%)

BUILD TABLE OF WIGNFR 3=) SYMBOLS
FOR MFQel STEP 1 UNTIL 6 DO FOR FQl¢MFQ STEP 1 UNTIL 6 DO ¥
FOR FQ2¢MFQ STEP 1 UNTII
THUSIMFQFAL,FQ21¢THREEJC(2XxFQ1=1)/2:1,(2xFQ2=4)/2, %

m(2xMFQ=1)/2:0>{2xMFQR~13/2) } %

WRITECLINEsNAMES, AT»A2,A3,A8,A5,A6)3 %

7 N IF ABS(FQ1=FQ2) < 1 THEN %

WRITE(LINE,QUADIEQQsALPHAIX5T ,2958) 5 %

PAR ¢ 0}

SUMINT ¢ 03 %

CALCULATE MATRICES FOR STARK PLUS QUADRUPOLE INTERACTION

FOR KAQel,2 N0
BEGIN FOR MF2e¢11
FOR K1€1 STEP 1
FOR wi1e{ STEP 1{

FOR 11€1-2:3,4 DO

STEP

IUUNTTIL 34

STEP =2 UNTIL t DD BEGIN

UNTIL 34 DD EGY1[K11e0

LI 4

UNTIL 44 DO EGY2([K1leD 3 %

FOR F1le152:,3»485556 DO FOR vi¢0s1 DO FOR Kle¢l %

A0 21{YL,T1,F1,K114¢0 3 %

FOR I1¢1,2,3,4 DD FOR F1e1,7253,425,6 DO FOR vieO,1 DO FOR Kle¢t ¢

00025800
00025900
00026000
00026100
00026200
00026300
00026400
00026500
00026600
00026700
00026800
00026900

300027000

00027100
00027200
coa27300
00027400
00027500
00027600
00027700

300027800

00027900
000280060
00028100
00028200
00028300
00028400
00028500
00028600
00028700
00028800
00028900
00029000
00023100
00029200
00029300
00029400
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STEP 1 UNTTIL 44 ~0) B2{V1i,T1sF1sK1]%¢0 3 %
REGIN FNOR JQ«2,3 DN «
AEGIN R1eCieNeDd ¢ X
FOR F1¢2x4Q+7 STEP =2 UNTIL ARS(MF2)Y DO %
REGIN MINAEMINGT,F142%xJ0)5 FNR I1¢MING STEP =2 WHILE ¢
T12ABS(F1=2xJQ) N0 FOR V1¢0s1 DD BEGIN C1¢R1 3 R1eR1+{ 5 %
FOR F2¢F1 STEP =2 UNTIL ABSCMF2) DO BEGIN MIN3eMIN(7»F2+2xJQ)
FOR I?2«¢ IF F2=r1 THEN 11 ELSE MIN3 STEP =2 WHILE %
12>ABS(F2=2xJQ) N0 FOR V2¢ IF F2=F1 AND I23]1 THEN vt FLSE O STEP
1 UNTIL 1 0 ¢
REGIN CleC1+1t ¢ MeCl § %
IF Fl=F2¢2 AND I1=12 AND V1#Vy2 THEN ¢
ALR1,CITeSTARKC(UD» A T1/2,F1/2,F2/2,MF2/2,KQ) FLSE %
IF F1=F2 AND Vi=V2 THEN ALR1,C11¢Q0P(JAsF1/2,11/2512/25V1,KQ}
ELSE ALRIsc1Yen 3 END END END END 3 %
FAGLELIN,A)Y 3 %
ASSIGN QUANTUM NUMRFRS TD ENERGY EIGENVALUES AND
EIGENVECTOR CNOMPONENTS
FOR w1¢{ STEP 1 uNTIL N DO %
REGIN I¢0 } FOR rie¢2xJQ+7 STEP =2 UNTIL ARS(MF?) DO %
REGIN MINBeMIN(T7,F1+2xJQ)3 FNR I1¢MING STEP =2 WHILE %
I12ABS(F1=2%J8) DN FOR V1€0s1 D0 BEGIN JeI+! § «
TF JQ@=2 THEN BFGYIN BIIVIs(TI141)/2,CF1+1)/2,K11¢DGLT»X1) 3 %
EGYIIK1J«ALKY1 k1] 3 NYeN END 3 %
IF JQ=3 THEN BFGTN B2IVI,CI1413/2,CF1+1)/2sK11¢DGLT,K1] 3 %
EGY2LK13¢ATIK1sK1] 3 N2eN END 5 %
EMPN END 1 %
ENN END ! %
BEGINNING OF INTEMSITY CALCULATION
WRITECLINES> ILsMF2sK0) 3 WRITECLINEs IH» 2,3) 3 %
MFLeABSCCMFR2+1)/7) 3 %
MF22eMF2/2 3§ %

00029500
00029600
00029700
00029800
00029900
00030000

300030100

00030200
00030300
00030400
00030500
00030600
00030700
00030800
00030900
00031000
00031100
00031200
00031300
00031400
00031500
00031600
00031700
00031800
00031900
00032000
00032100
00032200
00032300
00032400
00032500
00032600

JAe13 JB+2 1 FOR Klel STEP § UNTIL N1 NnO FOR K2«1 STEP 1 UNTIL N2 NO00032700

REGIN SUMI«0 3 FNR F2¢7 STEP =1 UNTIL MFL DD ¥%
REGIN ITSeMINCa,P2+1) 3 %
FiLe«(IF F2=MFL THEN F2 ELSE F2=1) 3 %
FOR F1+ITS STEp -1 UNTIL FIL DO %

00032800
00032900
00033000
00033100
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REGTN MING#MINDCAsF1+1,F2+2,20) 5 % 00033200

F12¢ (2XF1=13/7 3 F22¢(?xF2~13)/2 3 % 00033300
IF KQ=1 THEN MEFe4xSQRTCC2%F1XF2)/3¥xTHJISI(MF2+1)/2:F1sF2]) ELSE 00033400
MEF¢=2%XSQRT(ISXFIXF2)/3)XTHJISIAMF24+1)/2,F1,F2] 3 00033500

FOR I1¢MINS STEP =1 00033600

WHILE T121 AwD I12F1=1 AND I12F2=2 DO ¥ 00033700
REGIN I12(2XxJ1=11/2 3 % 00033800
FOR v1¢0,1 B0 RERIN VEeIF v1=20 THEN 1 ELSE O 3 TB1€BIIVi»I11,F1,K1) 300033900
TR2¢B2[V2,T15F22K2) 3} IF TB1#0 AND TR2#0 THEMN % 00034000
BEGIN IF KA=l THEN EXPE¢F14F2+4112=MF22 ELSF 00034100
EXPOEF14F2+4112=MF2241 3 00034200
SUMTeSUMTI+TBIxTB2x(TF BONLEANCEXPS) THEN =1 ELSE 1) ¢ 00034300

xS ISY[T1.F1,F21xMEF 3 % 00034400

ENN END END END FND 3 % 00034500

INT€SUMI*2 3 SPLTT¢ FGY2LK21=EGY1ILK1] 3 PAR€PAR+1 ; % 000344500
SUMINT«SUMINT+INTY ¢ IF PAR $€ 900 THEN % 00034700
REGIN PEAK[1,PAR*¢TNT $ NUL1»PARI¢SPLIT END ELSE IF PAR<1800 THEN 00034800
REGIN PEAK[2»PAR=900 J«INT 3 NYlL2sPAR=900 1¢SPLIT END ELSE 00034900
IF PAR < 2700 THEN % 00035000
BEGIN PEAX[3»PAR~1R001«INT 3} NUL3,PAR=18001¢SPLIT END FLSE % 00035100
IF PAR < 2700 THFN % 00035200
BEGIN PFAK[3s,PAR=1R800)«INT 3 NUI3,PAR=18001¢SPLIT END ELSE % 00035300
IF PAR < 3600 THEN ¥ 00035400
BEGIN PEAK[4,PAR=270031¢INT $ NU[4>PAR=27T001¢SPLIT END ELSE % 00035500
IF PAR < 4500 THEN % 00035600
BEGIN PEAK[5s,PAR=36001¢INT 3 NULS,PAR=3600)¢SPLIT END ELSE % 00035700
If PAR < 5400 THFN % 00035800
BEGIN PEAK[6sPAR-~4500J¢INT 3 NUL6sPAR=8500]¢SPLIT END FLSE % 00035900
IF PAR < 6300 THFN % 00036000
BEGIN PFAKI7s>PAR=54001€INT 3 NU[7»PAR=54003¢SPLIT END ELSE % 00036100
BEGIN PEAK{BsPAR=63001¢INT 3 NYI[B8-,PAR=4300)¢SPI IT END § % 00036200

IF INT > 0.01 THEN % 00036300

MRYTECLINE» INTENSITYEGYIIKI1,EGY2IK215SPLIT,INTsPAR)Y J % 00036400
ENn 3 % 00036500
END END END 3 % 200036600
WNRITEFCLINETDBLY) 5 « 00036700

WRITE¢LINE,SUMINTF,SUMINTY 3 ¥ 00036800
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WRITECLINESEMIT, ¢ TIME(2)=T2)/3600,(TIME(3)=T3)/3600);

REGIN REAL DUMMY?2 3 %
LAREL WORK 3 %
N3¢«if } FOR JQe2,3 N0 %

REGIN N3¢ IF N3=2 THEN 1 ELSE 2 } FOR KQe¢4,2,3 DO FOR Fie¢y %

STEP 1 UNTIL 9 DO FOR
no %

vi€0s»1 DO FOR K1¢1»253,4 DD FOR J1€152,+354

BEGIN E{N3,KA,VI,K1,F11¢0 3 BINI»KQ»VI,K1,11»F13¢0 %
EMD 3 FOR PAR1¢t STEP 1 UNTIL 1000 DO PEAKIIPAR1I¢NULILPAR11¢0

PAR1«D 1 &

FOR Knel STEP 1 UNTIL J& DO FOR Fle2xJQ+7 STEP =2 UNTIL 1 DO %

FOR ¥14¢0,1 DO =

REGIN R1«C1e¢0 t CLEARACA) 3 MINIEMIN(7»F142x)JQ) } %
BEGINNING OF CALCULATION FDR QUADRUPOLE INTERACTION ALONE
CALCULATE MATRIX CNRRESPONDING T0 CURRENT VALUES OF JsKsF AND V
FOR T1eMINT STEP =2 WHILE 1121 AND I12Fi=2%xJQ DO %
REGTN C1e¢R! ' RieR1+1 } %
FOR 12¢1I1 STEP =2 WHILE 1221 AND 122F1=2%JQ DO %
BEGIN CleC1+1 3 AIRI»CLIeQDPCJASF1/2,F1/2,12/25V15KQ) 3 %

END 3 %
END ¢ ¥

IF J0=2 AND F1=1 THEN C1¢2 3 %
IF JQ=23 AND F1=3 THEN Cteld 3 %
IF JQ=3 AND Fil=1 THEN Cle¢2 } %
CALL PROCEDURE TN DIAGONALIZE MATRIX AND CALCULATE EIRENVECTORS
EAGLEC(C1,A) 3 FOR Kiet STEP 1 UNTIL €1 DO %

ASSIGN QUANTUM NUMRERS T0 ALL EIGENVALUES AND EIGENVECTOR COMPONENTS

BEGIN FIN3IsKnN»VIsK1,(F1+1)/21¢AlKI»K1] } I1e& MINI 42 3 %
FOR Tel STEP 1 UNTIL C1 DD %
BEGIN T1€11=2 3 BIN3,KQsV1sK1s(I141)/2,¢F1+1)/21¢DGITsK1]

Enn ¢t %
ENn t %
END ¥ %
SUMTINT1«0,0 3 %

IF JQ#2 THEN FOR KQe¢1 STEP 1 UNTIL JQ=~1 DO 3%

BEGIN YRITECLINEIPAGED)

[3
¥

WRITECLINESNAME,A1,A2,83,24,A5506)3 %

00036900
00037000
00037100
00037200
00037300
00037400
00037500
00037600
00037700
00037800
00037900
00038000
00038100
00038200
00038300
00038400
00038500
00038600
00038700
00038800
00038900
00039000
00039100
00039200
00039300
00039400
00039500
00039600
00039700

300039800

00039900
00040000
00040100
000480200
00040300
00040400

WRITECLINE,QUANI,EQRs ALPHAIX57,.2958) BWRITE(LINE-JH,JO=1,JQ,KQY300040500
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IF K@ =1 THEN WRITECLIVEsIH»JQ=1,JQ) ELSE WRITECLINE,HEAD3)YS
% CALCULATE INTENSITIES FOR ALL TRANSITIONS FROM J TO J+1
EXcelF JO=3 AND KQ=2 TWEN 1 ELSE ©
FOR Fle2x(JQ@=13+7 STEP =2 UNTIL { DO IF EXC#1 THEN %
AEGIN F2¢F1 3 X
WORK: FOR Vie0,1 DN %
BEGIN V2e¢IF v1=0 THEN | ELSE 0 3%
ARITECLINE,HEADINZ,JQ=12F1,V1,J0,F25,V2) ; %
FOR kK1€1,2,3,4 DO FOR K2¢1,253»8 DD %
REGIN SUMI«0 3 FDR Je¢& STEP =1 UNTIL 1 DO %

AEGIN EXP7e1+4T+(F2+1)/2 3 N4eIF N3=y THEN 2 FLSE ¢ 3 &%
SUMI&SUMI+BING,KQs ViK1 T (F1413/21 §
XBIN3sKQsV2,K2,15(F2+1)/21x(IF BOOLEANCEXP7) THEN =1 %
ELSE 1)XSJUSYLI,{F141)/2sCF2+1)/2) 3 %

END ¢ %

TNTeC(F1+41)%X(F2+1)xSUMTI#2Xx(JAxJA=KAXKRI/(3IxJQ) § X

00040500
00040700
$00040800
00040900
00041000
000481100
00041200
00041300
00041400
00041500
00041600
00041700
00041800
00041900
00042000
00042100

TE3€EL[N3,KQs V2, K2, (F2+41)/2) 3 TEACEING,KQsVI»K12CF1+413/21300042200

SPLIT¢TE3I=TEL 3 %
IF INT#0 THEN BEGIN %
PAR1«PAR1+1 3 NUII[PAR1I«SPLIT 3} PEAK1[PAR1I«INT END 1 ¢
SUMINTYISUMINTI+INT $ %
If INT>0.001 THEN 2
WRYTECLINESINTENSITY»TEG>TE3SSPLITSINT,PARL) § %

END t %
END 1 %
IF F1=F2 THEXN BEGIN F2¢Ft+2 } GD TD WORK END ! %
IF Fi#1 AND F2#F1=2 THEN BEGIN F2¢Ft=2 3 GO TO WORK £ND
END ELSE REGIN

HRITECLINFLHEAD2,F1) 3 FOR K1e¢1,2,354 DD

BEGIN INT«0 : FOR F2¢F1+2,F1-F1~2 DO TF F1#1 OR F2#F1=2 THEN

BEGIN SUMI«D 5 FDOR Ie¢8 STEP =1 UNTIL {1 DN

AEGIN EXPTe2+I+(F2+1)/2
INT«INT+ 2% (F1+13xCF2+1 )X ({(BINA,KQsCsK1-Ts(F14+13/2]

XC=1I*EXPTXSTIXNGCIO= s F1/2:C(2%x1=1)/2,F2/2-01))Y%2

X¢JAXJO-KAXKQAY /¢ 3IXJIG) 3
SPLITe=EfNA»KNa0sKYs(F1+1)/2]

ENN

00042300
00042400
00042500
00042600
00042700
00042800
00042900
06043000
00043100
300043200
00043300
00043400
00043500
00043600
300043700
00043800
00043900
00044000
300044100
300048200
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END
YRITECLINE, INT2,=SPLIT>INT»SPLIT)S
PAR1ePaAR1I+1 3 NUILPAR11eSPLIT 3 PEAKIIPAR13«INT
SUINTI&SUMINTE+INT 3 %
END
END 3

WRITECLINESEMITH» (TIME(2)=T2)/3600s(TIME(3)=T3)/3600)}

END END t ¥

LOAD TAPE,

IF WHAT = 4 THEN BFGIN

FOR P1é¢! STEP 1 UNTIL A& Dn

REGIN

WRITE(PBRTAPE, *»FOR PAR1e¢1 STEP t UNTIL 900 DO NUIP1,PAR11]1);

WRITE(PRARTAPF,*,FOR PAR1¢1 STEP 1 UNTIL 900 DO PEAK[P1>PAR1]1)}

END3

WRITE(PRRTAPE,+sr(0R PAR1¢1 STEP { UNTIL 1000 DD NULICPAR11)}

WRITE(PRRTAPE,*,FOR PAR1¢) STEP 1 UNTIL 1000 DO PEAKI[PAR11)3

END3

PRESSURE BROADEN ALL LINES ACCORDING YO THE VAN VLECK=WFEISSKQOPF

RELATION AND ADD TO GET THE RESULTANT SPECTRUM

WRITECLINE,SIIMINTF,SUMINT1Y 3 %

REGIN } %

WRITYECLINESNAMES, A1 2A25A3,A8,A55A6)3 %

WRITECLINE,QUADLILENQ,»ALPHAIXS7,2958) 3} %

WRITECLINE,MUE s Mo EFTIELDSEFIELDXD.9554)37 =RITECLINE,PBS23)Y 3 X%

HRITECLINEPBSH, | wP}3

WRITECLINE,PBSH2:. 1 %

FOR FREN1e¢ =12,5 STEP 0,25 UNTIL 12,5 DO REGIN %

INT«0 3FOR PARe1 STEP 1 UNTIL 7000 DO %

AEGIN IF PAR £00n THEN REGIN P1el 3 PAR{«PAR END %
ELSE TF PAR <1a00 THEN BREGIN P1¢2 j§ PARI1¢PAR=900 END
ELSE IF PAR <2700 THEN REGIN Pf{¢3 } PAR1¢PAR~180D END
ELSE IF PAR <3500 THEN BEGIN Pi¢4 ; PAR1¢PAR=2700 END
ELSE IF PAR <4500 THEN BEGIN Pi+5 ; PAR1+#PAR=3600 END
ELSE IF PAR <5500 THEN BEGIN P1¢6 5 PAR1¢PAR~4500 END

i
n

LI U

ELSE IF PAR <6200 THEN BEGIN Pie¢7 PAR1 «PAR=5400 END
ELSE PEGIN Pl¢a 1 PAR1«PAR=6300 END ; %

3000844300

00084400
00044500
00044600
D0044700Q
00044800
00044900
00045000
00045100
00045200
00045300
00045400
00045500
00045600
00045700
00045800
00045%00
000486000
00046100
00046200
00046300
00046400
00046500
00086600
0ONA6T00
00046800
00046900
00047000
00047100
00047200
00047300
00047400
60047500
00047600
00047700
00047800
00047900
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TFOPFAYTPRIGPERY j50,005 AND ABSI{FREGL~LIPt:PARL ]I <10 THFN %
INTINT 47 3xPF A In i o PART THLWPYS {(FREQI=NUIPIPARL I 3224 HPR24}
I LR ]

TNT1e€0D ¢ FOR PARtet STEP | UNTTL 1000 N0 ¥
IF ARS(FREQ1I=M{TIpAQ113<t0 THEN %
THNTIEINTLI+(3%PEAYIIPARY 1] WP/ CLFREQ I =NUTIPARI I 42 ¥ LWP*2)}
SRITEZLTINESPLOT?2 . FREQL o INTE» INTAINTI=NTY ; %

TF WHAT = 1 THFN HBEGTHN

ARTTEC(PUNCHPLAT,,SNXFREQT ,H0xINT1F EnDS

IF WHAT =2 2 THEN BFGIN

HRTITEC(PUNCHSPLAT,SNXFRENOL»SOXINT YIS ENDG

1F WHAT = 3 THFN REGIN

HRITECPUNCHsPLOT.SNOXFREQLsS50x{TNTL = INTIYI3 FNN}
FNDIENDTEND

ARTTECLINESEMITs TIMEL(2)~T2)/3600(TIME(3)=T3)/3800)}
FNNDSEND,

SO048000
00484100
0Q0aR200
30048300
CON4RAQOD
00N485060
00048600
00048700
Go04RB800
ga048500
00049000
00049100
00049200
00049300
00049400
00049500
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PBRTAPE

THEORY OF OPERATION

PBRTAPE can be considered divided into three parts. Part one consists
of declarations. This section is the longest because of the many procedures with-
in it. The most important procedures are MIN2(P1, P2, P3, P4); MIN(P1, P2);
QDP{J, F1,11,12,V1,K); STARK(J,J P, 1,12, F1, MF,K); and EAGLE(N, A). MIN2
and MIN each have the value of their smallest argument. QDP and STARK each
become the value of the matrix element corresponding to their arguments. EAGLE
replaces the N-th order, real, symmetric matrix, A, with a diagonal matrix such
that the elements A(I,I}, I=1, 2,...,N contain the eigenvalues of A arranged in
decreasing order of magnitude. The eigenvector associated with the Ifh eigen-
value is stored in the I-th column of the matrix DG(I,K). The other procedures
are used in the calculation of the procedures discussed above.

Part two begins with the card saying, "WRITE(LINE [NO)), " and con-
tinues up to the card saying, '""PRESSURE BROADEN ALL LINES ACCORDING TO
THE VAN VLECK-WEISSKOPF." In this section all relevant data is read into the
program, matrix elements are computed, matrices diagonalized, and transition
frequencies and intensities are computed for both the quadrupole interaction and
the combined Stark and quadrupole interaction. An output tape containing this
computed information is made if the appropriate option is exercised,

Part three takes the information computed in part two and computes

three pressure broadened spectra: a quadrupole spectrum, a Stark and quadrupole
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spectrum, and a difference spectrum,

The Program Segment shown in Figure 24 follows the same logic as part
two in PBRTAPE, but is written so that its logic is more transparent. Note the
pattern of calculation which this Program Segment follows: 1. A Hamiltonian
submatrix is computed, 2. It is diagonalized, 3, The eigenvalues and corres-
ponding eigenfunctions of this submatrix are determined and stored in appropriate
arrays, 4. BSteps 1-3 are repeated for another Hamiltonian submatrix, and 5.
The frequencies and intensities of all transitions between energy levels of the two
submatrices are computed, This five step pattern of calculation oceurs in other
physical problems, and therefore the programming techniques are of general
interest.

Referring to Figure 24 the relationship between computer variables in
the program segment and physical quantities is depicted in Figure 25, In Figure 24,
the second card sets the counting index, PAR, to zero, Card #3 indicates which
two Hamiltonian submatrices are going to be calculated - viz, the I =2, KX =1,
MF = 9/2 submatrix and the J=3, K=1, MF = 9/2 submatrix. Card #4 sets the
row index, R1, the column index, C1, and the matrix size index, N, to zero.

Cards #5-8 specify the values of the quantum numbers, F,I, and v that
are allowed in a given submatrix. Specifically, F must be in the range
[J+17/2, ]MF | 1; T must be in the range [minimum of (7/2, F+J), |F-J | ]; and v
can take on values 0 and 1. Figure 26 shows the submatrix corresponding to J = 2,
K =1, and M_ = 9/2, Card #9 causes the row index to be increased by 1 each time

F

a different combination of the quantum numbers ¥, I, and v is chosen in a matrix
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element calculation,

Cards #10 - 15 specify the allowed values that F, I/, and v/ may have
in a given submatrix, However, since the submatrices are symmetric, cards #10-
15 only specify matrix elements which are on the diagonal or to the right of it.

(See Figure 26.) Card #16 increases the column index by 1 each time a different
matrix element is computed in a row. Card #16 also assigns the value C1 to N.
Thus, when the last matrix element, A{N, N) is computed the computer variable
N specifies the size of the matrix, A.

Cards #17, 18 call a procedure, MATRIXELEMENT, to compute the
matrix element corresponding to the current values of the quantum numbers MF’
K, dJ, F, F/ , 1, I/, v, and v/ . The value of this matrix element is assigned to
the appropriafe element in the matrix, A(R1, C1).

Card #23 calls on the EAGLE procedure. The function of this procedure
has already been discussed. Cards #24-43 store the eigenvalues and associated
eigenvectors in arrays. For a J = 2 submatrix, the eigenvalues are stored in the
1 dimensional array, EGY1 (K1) and the corresponding eigenvectors are stored in
the four dimensional array B1(V1l, (I1 + 1)/2, (F1 + 1)/2, K1). For a J = 3 sub-
matrix, the eigenvector and eigenvector information are stored in EGY2 and B2
arrays. Figure 27 shows the form of the K1-th eigenvector.

Cards #44-62 compute the frequencies and intensities of all transitions
between the two submatrices., The energy splittings are given by card #61

(SPLIT “EGYZ2[K] - EGY [K1]) and the intensities are given by card #60 -~ which

is the computed values of equation I1I-23 for intensity.
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The information computed in cards #60 and 61 is stored in arrays by
cards #62-64. Card #62 enumerates the transition whose frequency and intensity
has been computed. Card #83 puts the calculated intensity into an intensity array,
PEAK. Card #64 puts the calculated splitting into a frequency array, NU. PEAK
and NU are two dimensional arrays because the largest size a one dimensional
array can have is 1023 elements. Storage of more than this number of frequen-
cies and intensities requires arrays of larger dimensionality.

The DIV, MOD construction used in the Program Segment is not used in
PBRTAPE, but it could have been and the result would have been fewer cards.
PAR DIV 1000 has the value PAR/1000 rounded down to the nearest lower integer.
PAR MOD 1000 has the value [PAR PAR DIV 1000) x 1000]., Thus, for example

[2543 DIV 1000, 2543 MOD 1000] = |2, 543].



BEGIN

PAﬁ'-O;
MF2-9; KQ-1; FOR JQ-2,3 DY BEGIN
R1+Cl+~ N+«OQ;
FOR F1 <2xJQ + 7 STEP -2 UNTIL ABS (MF2) DO BEGIN
MIN 4 «MIN (7, F1+ 2 x JQ);
FOR 11 ~ MIN 4 STEP -2 WHILE 11 =ABS (F1-2xJQ) D@
FOR V1~ 0,1 DY BEGIN
C1 ~R1; R1~R1+ 1;
FOR F2 ~F1 STEP -2 UNTIL ABS (MF2) DP BEGIN
MIN3 «MIN (7, F2 + 2 x JQ);
FOR 12 ~IF F2 = F1 THEN I1 ELSE MIN 3 STEP
-2 WHILE 12 > ABS (F2 - 2XJ Q) DD
FOR V2 ~IF F2 = F2 AND I1 = 12 THEN V1 ELSE O
STEP 1 UNTIL 1 D BEGIN
C1-Cl+ 1; N«~CI;
A [R1, Cl ~-MATRIXELEMENT(MF2/2, KQ, J,
F1/2, F2/2, 11/2, 12/2, V1, V2);
END;
END;
END;
END;
EAGLE (N, A);
FOR K1+~ 1 STEP 1 UNTIL N D¢ BEGIN
1-0;
FOR F1 '« 2 x JQ+7 STEP -2 UNTIL ABS(MF2) D) BEGIN
MIN 4 - MIN (7, F1+ 2 x JQ);
FORI1 - MIN4 STEP -2 WHILE I 12> ABS (F1 - 2xJQ) D@

Figure 24, Program Segment (Continued),
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FAR V1+~0, 1 DP BEGIN
I-I+1
IF JQ = 2 THEN BEGIN
Bi[vi, ( 1+1)/2, (F1+1)/2,K1] ~DG[I, K 1] ;
EGY1[ K11-A [K1, K1] ;
N1«~N;
END;
IF JQ = 3 THEN BEGIN
B2 [V1,(I 1+1)/2, (I1+1)/2,Kll -~ DG[I,K1];
EGY2[ K1} ~A[K1, K1] ;
N2~ N
END;
END;
END;
END;
FOR K1+~1 STEP 1 UNTIL N1 D9
FOR K2 ~ 1 STEP 1 UNTIL N2 D BEGIN
SUM 1 «O;
FOR F2 ~ (2x 3 + 7) STEP -~ 2 UNTIL ABS (MF2) D9
FOR F1 «(2 x 2+7) STEP -2 UNTIL ABS (MF2) D® BEGIN
MIN 4 -MIN 2 (7,F1+2x 2, F2+ 2x 3, 20);
FOR 11 -MIN 4 STEP - 2 WHILE 11 2ABS (F1~ 2x 2)
ANDI1 =ABS (F2 - 2 x 3) D@
FOR V1~ 0, 1 DY BEGIN
V2~ IF V1= 0 THEN 1 ELSE O;
TB1+~B1[ V1, (I1+1)/2, (F1+1)/2, K1];
TB2 ~B2 [ V2, (I1 + 1)/2, (F2+ 1)/2, K2l;
SUMI ~SUMI+ TBlx TB2xD([V], V2, KQ,
MF2/2, F1/2, F2/2, 11l ;

Figure 24, Program Segment (Continued).
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END;
END;

INT -~ SUM I* 2;

SPLIT ~EGY 2[K2] - EGY 1[K1];

PAR ~PAR + 1;
PEAK [ PAR DIV 1000, PAR MOD 1000] ~INT;

NU [ PAR DIV 1000, PAR MOD 1000] ~ SPLIT;

IF I NT = 0.01 THEN WRITE (LINE, SOMETHING, SPLIT, INT, PAR);

END;
END;

END,

Figure 24. Program Segment (Concluded).
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10,

11.

12,

13.

14,

15,

16.

17.

PAR
MF2

KQ

JQ

R1,C1

Fl
Il
Vi
F2
12

V2

K1
K2
N1

N2

= an index used to enumerate each transition.

=2x M_, where MF is the azimuthal gquantum number,

F’

= K, where K is the quantum number specifying the projection of

angular momentum along the molecular z axis.

= J, the rotational quantum number.

= the row and column indice of the array A [R1,C1].

= the size of the NxN matrix A [R1, Cl].

= twice the quantum number F,

= twice the quantum number I,

= the quantum number V.

= twice the quantum number F,

= twice the gquantum number I,

= the quantum number V,

= an integer used to locate the eigenvector column in DG [I, K1]
corresponding to the eigenvalue A[ I,1].

= counting index for J = 2 eigenvalue.

= counting index for J = 3 eigenvalue.

= total number of J = 2 eigenvalues,

= total number of J = 3 eigenvalues.

Figure 25. Computer Variables and Associated

Physical Quantities
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TB1, TB2 = temporary storage for B1 ... and B2 ... , resultsin
faster evaluation of arithmetic expression in cards #56, 57.

SUM I = temporary storage for a real variable,

INT = Iintensity of a transition being considered.

SPLIT = frequency of a transition being considered.

Figure 256. Computer Variables and Associated

Physical Quantities (Concluded)



11/2
11/2
9/2
9/2
9/2

9/2

7/2
7/2
7/2
7/2
5/2

5/2

F =

11/2 11/2
7/2 7/2
0 1

A[1,1]  A[l,2]

A[2, 2]

Figure 26.

The J = 2, MF

/2 9/2
7/2 7/2
0 1

A[1,3]  A[1,4]
A[2,3]  A[2,4]
Al3,3]  A[3,4]

Al4,4]

101

9/2 9/2
5/2 5/2
0 1

A[1,5] A[1,6]
A[2,5] A[2,6]
A[3,5] A[3,6]
Al4,5] Al4,6]

A[5,5] AJ5,6]

Al6, 6]

= 9/2, K = 1 Submatrix,
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EIGENVECTOR (corresponding to K1-th eigenvalue) =

B1[0,4,6,K1)u(11/2, 7/2, 0) + B1l1,4,6,K1]u(11/2, 7/2,1)

+B1[0,4,5,K1lu(9/2, 7/2, 0) + B1[1,4,5,Kllu9/2, 7/2, 1)

+B1[0,4,5,K1ju(9/2, 5/2, 0) + BI1[1,3,5,K1]u®/2, 5/2, 1)

where u = u {F, 1, v),

Figure 27, Form of Eigenvector Corresponding to Ki-th Eigenvalue

ofthe J=2, K=1, MF = 9/2 Submatrix,
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