In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

$7 / 25 / 68$

DETERMINATION OF THE ELECTRIC DIPOLE MOMENTS OF CFCl 3 AND CHCl 3
 A THESIS
 Presented to
 The Faculty of the Graduate Division
 by
 Philip Benton Reinhart
 In Partial Fulfillment
 of the Requirements for the Degree
 Doctor of Philosophy in the School of Physics

Georgia Institute of Technology
August, 1968

DETERMINATION OF THE ELECTRIC
 DIPOLE MOMENT OF
 CFCl_{3} AND CHCl 3

Approved:

ACKNOWLEDGEMENTS

The author is grateful to Drs. J. Q. Williams and T. L. Weatherly for their patient supervision and for the privilege of working in the microwave group.

The author is also grateful to Agnes Scott College for its support -- financial and otherwise -- of this Ph. D. program. This research was supported in part by a Science Faculty Fellowship from the National Science Foundation and in part by a National Aeronautics and Space Administration Institutional Grant.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
LIST OF TABLES v
LIST OF ILLUSTRATIONS vi
Chapter
I. INTRODUCTION 1
II. DATA COLLECTION PROCEDURES 4
Tuning Techniques and Frequency Measurements (Method 1) Tuning Techniques and Frequency Measurements (Method 2) Processing the Detector Output Data Gathering Techniques
III. THEORY 24
Quadrupole Interaction TheoryThe Combined Stark and Quadrupole InteractionStark Effect in the Absence of Quadrupole SplittingPressure Broadening
IV. ANALYSIS OF DATA 46
Electric Dipole Moment DeterminationsComparison of Observed with Calculated Spectra
V. CONCLUSIONS AND RECOMMENDA TIONS 64
APPENDIX A 66
APPENDIX B 69
APPENDIX C 72
APPENDIX D 76

TABLE OF CONTENTS (Continued)

Chapter Page
APPENDIX E 91
LITERATURE CITED 103
VITA. 105

LIST OF TABLES

Table Page

1. Electric Dipole Moments of CHCl_{3} and CFCl_{3} in the Gaseous State 54
2. Frequencies of the High Intensity Lines in the $J=2-3$ Transitions. 63
3. The Permutation Group on Three Objects 73
4. The Genealogical Coefficients 74
5. The Reduction Coefficients 75

LIST OF ILLUSTRATIONS

FigurePage1. Synchronizer Circuits 7
2. Vector Diagrams for the Phase Comparator 9
3. The Creation of a 30 MHz Beat Note by Mixing Three Signals: A, B, C 11
4. Equipment Set-up for the Beat Note Technique 15
5. Beat Note Markers on a Recording Chart 17
6. Processing of the 30 KHz Signal from the Crystal Detector 19
7. $\quad 30 \mathrm{KHz}$ Signals Involved in Processing Detector Output 20
8. Vector Diagrams Illustrating Phase Comparator Voltages
Under Stark Modulation 21
9. Form of Hamiltonian Matrix in the Representation of Equation III-5 32
10. The Form of a Typical Submatrix when Spin Functions, $\mathrm{u}\left(\mathrm{w}_{\mathrm{k}} \mathrm{I}\right)$, are used 34
11. Form of Hamiltonian Matrix for Combined Stark and Quadrupole Interaction. 41
12. Form of Hamiltonian Matrix for Combined Stark and Quadrupole Interaction when Basis Functions are Symmetrized. 42
13. Stark Components of CHCl_{3} Measured by Double Phase Lock Stabilization Method 49
14. Stark Components of CFCl_{3} Measured by Double Phase Lock Stabilization Method 50
15. Second Stark Components of CHCl_{3} Measured by Beat Note Method. 52
16. Second Stark Components of CFCl_{3} Measured by Beat Note Method. 53

LIST OF ILLUSTRATIONS (Continued)

Figure Page
17. Calculated Pressure Broadened Spectrum for the $\mathrm{J}=2-3$ Transition of CHCl_{3} 56
18. Calculated Pressure Broadened Spectrum for the $\mathrm{J}=2-3$ Transition of CHCl_{3} 57
19. Calculated Pressure Broadened Spectrum for the $\mathrm{J}=2-3$ Transition of CHCl_{3} 58
20. Calculated Pressure Broadened Spectrum for the $\mathrm{J}=2-3$ Transition of CHCl_{3} 59
21. Measured Spectrum of CHCl_{3} 60
22. Calculated Pressure Broadened Spectrum for the $\mathrm{J}=2-3$ Transition of CFCl_{3} 61
23. Measured Spectrum of $\mathrm{CFC1}_{3}$ 62
24. Program Segment 96
25. Computer Variables and As sociated Physical Quantities 99
26. The $J=2, M_{F}=9 / 2, K=1$ Submatrix 101
27. Form of Eigenvector Corresponding to the K1-th
Eigenvalue of the $J=2, K=1, M_{F}=9 / 2$ Submatrix 102

CHAPTER I

INTRODUCTION

In recent years one of the interests of the microwave group at Georgia Institute of Technology has been the study of the microwave spectra of symmetric top molecules having three identical quadrupolar nuclei. A. A. Wolf (1) studied the quadrupole hyperfine structure in the $J=1$ to 2 and the $J=2$ to 3 rotational transitions of CHCl_{3} and CFCl_{3}. From his work he obtained values for the quadrupole coupling constants, eqQ, and the rotational constants, B, for both molecules. C. R. Nave (2) studied the spectrum resulting from the combined Stark and quadrupole interactions in the $\mathrm{J}=1$ to 2 rotational transitions in PCl_{3} and POCl_{3} and obtained values for the dipole moments of both these molecules. The quadrupole interaction theory used by the above researchers was originally developed by Svidzinski (3). Wolf made some corrections to Svidzinski's work and applied the corrected theory to his own data. Nave extended the theory as used by Wolf to include the Stark interaction for the $\mathrm{J}=1$ to 2 transition and applied this theory to PCl_{3} and POCl_{3}.

The original objective of the research reported here was to determine values for the quadrupole coupling constant and the dipole moment of the symmetric top molecule, bromoform $\left(\mathrm{CHBr}_{3}\right)$. The $\mathrm{J}=2$ to 3 rotational transition of CHBr_{3} is the lowest that can be studied with present equipment in the microwave group. Therefore, the Stark plus quadrupole interaction theory used by Nave was
extended to cover this transition.

Unfortunately, efforts to measure the $\mathrm{J}=2$ to 3 transition in CHBr_{3} were unsuccessful. The intensity of the spectrum was too weak to be observed with present equipment. For this reason, the attempt to study CHBr_{3} was abandoned, and a new objective determined. The new objective was threefold: to develop the theory used by Nave to apply to the $\mathrm{J}=2$ to 3 transition in CHCl_{3} and CFCl_{3}, to check its validity for this transition, and to determine the dipole moments of these molecules.

As far as this researcher can ascertain, no microwave measurements of the dipole moments of these molecules have been made to date. A. L. McClellan (4) lists values that several researchers have found for the dipole moments of CHCl_{3} and CFCl_{3}. These values range from 0.9 debye to 1.86 debye for CHCl_{3} and were obtained from measurements of the dielectric constant of that molecule in its gaseous state. Two values for the dipole moment of CFCl_{3} have been reported, 0.45 debye and 0.53 debye using the same method. Microwave determinations of dipole moments are much more accurate than dielectric determinations (5).

Checking the validity of the $J=2$ to 3 theory for the combined Stark and quadrupole interactions requires accurate knowledge of the bond angle, the quadrupole coupling constant, the Stark field, and the dipole moment of the molecule in question. The bond angles used in the calculation are those found by Loubser (6) and by Jen and Lide (7). The quadrupole coupling constants are those found by A. A. Wolf. Although P. N. Wolf (8) and Long (9) made microwave determinations of eqQ, these values were not used because A. A. Wolf has shown that the
theory used by these researchers in their determinations was incomplete (10). The dipole moments and the Stark fields used in checking the theory are those measured by the author.

Data were taken with a Stark modulated spectrograph. Data gathering techniques and operating principles of the Stark modulated spectrograph are discussed in Chapter II. In Chapter III, relevant theory and its application to dipole moment determinations are discussed. In Chapter IV, computer programs and analysis of data are discussed, and in Chapter V results are summarized.

CHAPTER II

DATA COLLECTION PROCEDURES

The equipment used in this research was a conventional Stark modulated spectrograph, which has been described by Clayton (11), Long (12), and Nave (2). This type of spectrograph is very sensitive and accurate, and it is well suited to the measurement of weak lines. In this chapter, attention is given to electronic design features which result in such sensitivity and accuracy and to the data collection procedures used in this research.

A gas whose microwave spectrum is to be studied is contained at low pressure in the Stark cell of the spectrograph. This cell is a 17 foot length of rectangular waveguide in which a conducting plate or septum has been inserted. The septum extends the entire length of the waveguide and is electrically insulated from the waveguide walls. The plane of the septum is parallel to the broad dimension of the waveguide. The spacing between the septum and either parallel wall is 0.481 cm (13). A 30 kHz square-wave voltage is applied between the septum and the walls of the cell. The effect of the square-wave voltage is to subject the gas alternatingly to a Stark electric field of 0 volts $/ \mathrm{cm}$ and $\mathrm{V} / 0.481$ volts $/ \mathrm{cm}$, where V is the amplitude of the square-wave voltage. The gas in the cell is kept at low temperature by placing dry ice on top of the waveguide.

Microwave energy is emitted into the Stark cell at one end. This energy comes from a klystron oscillator which is tuned slowly over the frequency range
of interest. At the other end of the Stark cell is a crystal detector. The microwave power at the detector will fluctuate at the rate of 30 kHz if the amount of incoming microwave energy absorbed by the gas is different for the Stark-fieldon case and the Stark-field-off case. The magnitude and phase (with respect to the square-wave voltage on the Stark electrode) of the 30 kHz signal at the detector is electronically determined, and this information is displayed graphically by an Esterline Angus graphic ammeter.

A detailed accounting is given below to the two different techniques used to tune the klystron and to measure its frequency and to the manner in which the 30 kHz signal is processed.

Tuning Techniques and Frequency Measurements (Method \#1)

Part of the measurements were made using a double phase-lock stabilization technique to tune the klystron over the frequency ranges of interest. This technique involves the use of two klystrons, a source klystron and reference klystron, and has been described by Narath and Gwinn (14), and by Nave (15). Here the technique is illustrated by an example.

While studying the spectrum of CHCl_{3} it was necessary to tune the source klystron from 19.810 gHz to 19.870 gHz . This tuning was achieved by first stabilizing the reference klystron at 9.830 gHz , then phase-locking the source klystron at 19.810 gHz , and finally tuning the source klystron over the frequency range, 19.810 to 19.870 gHz . The techniques involved are discussed below. Stabilizing the Reference Klystron at 9.830 gHz

With a model DY-2650A Dymec Oscillator Synchronizer, a klystron can
be stabilized at any frequency at which it can oscillate and which satisfies the relation

$$
\begin{equation*}
\text { FREQUENCY }=\mathrm{Nx} 100 \mathrm{MHz} \pm 30 \mathrm{MHz} \tag{II-1}
\end{equation*}
$$

where N is any positive integer less 124.
Figure 1a shows how a klystron whose frequency is to be stabilized is connected to the Dymec Synchronizer. A fraction of the microwave energy leaving the klystron is fed to the input terminals of the Dymec. If the klystron is oscillating at a frequency satisfying equation II-1, then no correction voltage is developed. (See discussion about phase below.) If the klystron has begun to drift, then a correction voltage is developed by the Dymec, and this voltage is applied to the reflector of the klystron to correct the drift.

Figure 1b is a block diagram illustrating what happens inside the Dymec. The incoming 9.830 gHz microwave signal is mixed with all the harmonics of an internally generated 100 MHz signal. One of these harmonics (in this case the 98 th harmonic) beats with the microwave frequency to produce a 30 MHz beat note. This beat mote is amplified in the IF amplifier section of the synchronizer. The amplified 30 MHz beat note and an independent internally generated 30 MHz reference signal are fed to the phase comparator section.

If the two 30 MHz signals are exactly 90° out of phase, then no error voltage is generated by the comparator. If on the other hand, the klystron has begun to drift, thereby causing the phase relationship between the two 30 MHz signals to change from 90°, then a correction voltage is developed by the phase comparator,

(a) CONNECTION OF THE KLYSTRON TO THE SYNCHRONIZER

(c) PHASE COMPARATOR CIRCUIT IN THE DYMEC SYNCHRONIZER

Figure 1. Synchronizer Circuits.
and this voltage is applied to the reflector of the klystron to correct the drift.
Phase Comparator. Figure 1c illustrates the phase comparator circuit.
The 30 MHz beat note is fed into the tuned circuit of the phase comparator at 1 . The voltages at a and b are equal in magnitude, ($\mathrm{E}_{\mathrm{if}} / 2$), and 180° out of phase.

Because of the diode in the upper half of the circuit, the capacitor between c and d can only be charged by the two voltages: $E_{r e f}$ and $\left(E_{i f} / 2\right)$. Because of the high resistance between c and d, this capacitor cannot significantly discharge during the time interval of the period of the 30 MHz reference signal. The voltage across this capacitor, therefore, reaches a value which is the magnitude of the vector sum of $E_{r e f}(\max)$ and $\left(E_{i f} / 2\right)_{a}(\max)$,

$$
\begin{equation*}
\left|\mathrm{E}_{\mathrm{S} 1}\right|=\text { voltage across } \mathrm{c}-\mathrm{d}=\left|\overrightarrow{\mathrm{E}}_{\mathrm{ref}}+\left(\overrightarrow{\mathrm{E}}_{\mathrm{if} / 2}\right)_{\mathrm{a}}\right| \tag{II-2}
\end{equation*}
$$

Similarly, the diode, resistor, and capacitor in the bottom half of the circuit result in the voltage across e-c being equal to the magnitude of the vector sum of $E_{\text {ref }}(\max)$ and $\left(E_{i f} / 2\right)_{b}(\max)$,

$$
\begin{equation*}
\left|E_{S 2}\right|=\text { voltage across e-c }=\left|\vec{E}_{r e f}+\left(\vec{E}_{i f / 2}\right)_{b}\right| \tag{II-3}
\end{equation*}
$$

From the vector diagrams in Figure 2 it can be seen that if $\mathrm{E}_{\text {ref }}$ is 90° out of phase with E_{if}, then $\left|\mathrm{E}_{\mathrm{S} 1}\right|=\left|\mathrm{E}_{\mathrm{S} 2}\right|$ and the correction voltage is

$$
E_{o}=\text { correction voltage }=\left|E_{S 1}\right|-\left|E_{S 2}\right|=0
$$

But, if the phase difference is other than 90°, then a correction voltage is generated. This correction voltage properly applied to the klystron reflector corrects

$$
E_{0}=\left|E_{S 1}\right|-\left|E_{S 2}\right|=0
$$

(a) ZERO VOLTAGE OUT

$$
E_{o}=\left|E_{s 1}\right|-\left|E_{s 2}\right|<0
$$

(b) NEGATIVE VOLTAGE OUT

$$
E_{0}=\left|E_{S 1}\right|-\left|E_{S 2}\right|>0
$$

(c) POSITIVE VOLTAGE OUT

Figure 2. Vector Diagrams for the Phase Comparator.
the klystron drift, which was the cause of the phase shift.
Thus, once the reference klystron is locked-in at 9.830 gHz , it is stabilized at that frequency.

Phase-locking the Source Klystron at 19.810 gHz

Phase-lock stabilization of the source klystron at 19.810 gHz involves principles similar to those involved in phase lock stabilization described for the reference klystron. As in the case of the reference klystron, the correction voltage applied to the reflector of the source klystron is developed by the phase comparator section of a Dymec Synchronizer. The phase comparator compares two MHz signals - an internally generated reference signal and a 30 MHz beat note amplified in the IF section.

However, in phase-lock stabilization of the source klystron, the 30 MHz beat note is produced outside of the Dymec and fed directly into the IF section bypassing the Dymec Mixer section. The 30 MHz beat note is the result of mixing three signals in a crystal mixer: a sample of the 19.810 gHz output of the source klystron, the 9.830 gHz output of the reference klystron, and a 120 MHz signal from a variable frequency oscillator (a Hewlett-Packard Transfer Oscillator tunable from 100 to 200 MHz). Figure 3 shows how a 30 MHz beat note results from mixing the three signals.

If the source klystron drifts, then the beat note will drift and the phase comparator will generate a correction voltage which will correct the klystron's drift. Thus, the source klystron is phase-locked at 19.810 gHz .

$+$

$A+$
B
=
$(A+B)$

Figure 3. The Creation of a 30 MHz Beat Note by Mixing
Three Signals: A, B, C.

Tuning the Source Klystron

If the transfer oscillator frequency is slowly changed, then the 30 MHz beat note will tend to change, and the correction voltage generated by the Dymec will cause the frequency of the source klystron to change in such a way that the 30 MHz beat note maintains it's frequency and 90° phase relationship with the Dymec 30 MHz reference signal.

For example, if the transfer oscillator is tuned from 120 MHz to 121 MHz , then in order to maintain the 30 MHz beat note the source klystron frequency must be corrected from 19.810 to 19.811 gHz .

The source klystron was tuned from 19.810 gHz to 19.870 gHz by slowly tuning the transfer oscillator from 120 to 180 MHz . Because the error voltage generated by the phase comparator was not sufficient in magnitude to electrically tune the klystron over the entire range of interest, it was necessary to connect the correction voltage not only to the reflector of the source klystron but also to a switching device that controlled a motor which mechanically tuned the klystron when error voltages were generated.

Frequency Measurements

To determine precisely the source klystron frequency it is necessary to know the exact frequencies of the reference klystron and the transfer oscillator and to know the lock-in scheme (i.e. the relationship among the source klystron, reference klystron, and transfer oscillator frequencies).

The reference klystron frequency is determined approximately by a wavemeter measurement and inferred exactly from the knowledge that this frequency
must satisfy equation II-1. The accuracy of the wave meter is sufficient to enable a determination of N .

The transfer oscillator frequency is measured exactly by a HewlettPackard 5245 L Electronic Counter. The counter works as follows: an extremely stable internal crystal oscillator generates a 1 MHz signal. The transfer oscillator signal is mixed with a harmonic of that 1 MHz signal. One can select which harmonic is mixed from any of the following frequencies: $50,60,70, \ldots$ 500 MHz . The lowest frequency harmonic is chosen such that the beat note formed has frequency between 0 and 13 MHz . The counter counts the number of cycles in the beat note for one tenth of a second (measured against the internally generated 1 MHz signal) and periodically displays the result. From a knowledge of this count and knowledge of the frequency of the harmonic, the transfer oscillator frequency can be inferred.

The lock-in scheme for the source oscillator can be determined from a rough measurement of its frequency with a wave meter and from knowledge of the frequencies of the transfer oscillator and the reference klystron. Once the above is known the exact source frequency can be inferred. An example illustrating the technique is discussed in Appendix A.

Accuracy of Frequency Measurements (Method \#1)
The precision to which the source frequency can be determined is related to the precision to which the frequencies of the transfer oscillator and the reference klystron can be determined. One source of error in the determination of the transfer oscillator's frequency results from drift in the 1 MHz crystal in the HP

Electronic Counter. This signal was compared with the signal from WWVB (at 60 kHz) and found to be accurate to one part in 10^{8}.

Another possible source of error is drift in the 100 MHz crystal oscillator in the Dymee which controls the reference klystron frequency. This oscillator has been found to be accurate to one part in 10^{7}.

Tuning Techniques and Frequency Measurements (Method \#2)

An alternative method for tuning the source klystron and for measuring its frequency is to use a beat note technique. In this technique the equipment is set-up as shown in Figure 4.

The klystron is tuned mechanically by a slow motor. Unlike tuning in the double phase-lock stabilization technique, there is no electric tuning or stabilization of the source klystron by application of correction voltages to the reflector.

Frequencies are measured by mixing the outputs of the source klystron and a Micro-Now Frequency Multiplier Chain. The fundamental frequency of the Multiplier Chain can be set to any frequency in the interval 4.979 MHz to 5.006 MHz . During an experiment this frequency is measured with the Hewlett Packard 5245L Electronic Counter. Among the strongest harmonics found in the output of the Frequency Multiplier Chain are those satisfying the relation

Output Harmonic $=10 \times \mathrm{Nx}$ (fundamental frequency)
where N is a positive integer. In other words, strong output signals occur at approximately every harmonic of 50 MHz .

Figure 4. Equipment Set-up for the Beat Note Technique.

Suppose that it is known that the approximate frequency of a Stark component to be measured is 14825 MHz . Suppose further that the fundamental frequency of the Frequency Multiplier Chain has been set at 5.00000 MHz , that the HRO 60 National radio receiver has been set at 24 MHz , and that the klystron is being tuned from approximately 14820 to 14830 MHz . When the klystron frequency reaches 14824 MHz , a 24 MHz beat note is heard in the receiver. This beat note results from the 14824 MHz klystron signal mixing with the 2960th harmonic of the 5.00000 MHz fundamental of the Frequency Multiplier Chain at 14800 MHz .

As the klystron is tuned still further upward in frequency another beat note is heard when the klystron frequency reaches 14826 MHz . This 24 MHz beat note results from the mixing of the klystron signal with the 2970 th harmonic of the 5.00000 MHz fundamental of the Frequency Multiplier Chain at 14850 MHz .

If an indication is made on the recording chart whenever a beat note is heard, the chart would have the appearance shown in Figure 5. By ascertaining the position of the center of the Stark component and interpolating, the frequency of the Stark component can be determined.

The precision to which the klystron frequency can be determined is related to the precision to which the fundamental frequency of the Frequency Multiplier Chain can be determined. This measurement in turn depends on the stability of the 1 MHz crystal oscillator in the HP Electronic Counter. As mentioned earlier, the stability of this oscillator is accurate to one part in 10^{8}.

Processing the Detector Output

The 30 kHz signal from the crystal detector is connected to several

Figure 5. Beat Note Markers or a Recording Chart.
electronic devices as is schematically indicated in Figure 6. The 30 kHz reference signal generated within the PAR Lock-in Amplifier is used to control the frequency and phase of the Stark Field. The situation is indicated in Figure 7 a and b .

If the frequency of the source klystron is such that absorption occurs when the Stark field is on, but not when it is off, then the microwave power fluctuation at the crystal detector is as shown in Figure 7c. After the detector output is fed through the tuned preamplifier, the 30 kHz signal appears as shown in Figure 7d. It should be noted that the signals at a and d are 180° out of phase.

The 30 kHz signal from the preamplifier is fed to the lock-in amplifier, which contains a phase comparator similar to that shown in Figure 1c. Signals a and d of Figure 7 are compared where a is the reference signal.

Referring to Figure 1c, if the preamp signal, $\mathrm{E}_{\text {preamp, }}$ (labeled $\mathrm{E}_{\text {if }}$ in the diagram) at b and the reference signal are in phase, then

$$
\left|\vec{E}_{\mathrm{S} 2}\right|=\left|\vec{E}_{\text {ref }}+\overrightarrow{\mathrm{E}}_{\text {preamp b }}\right|=\left|E_{\text {ref }}\right|+\left|\mathrm{E}_{\text {preamp }}\right|
$$

and

$$
\left|\overrightarrow{\mathrm{E}}_{\mathrm{S} 1}\right|=\left|\overrightarrow{\mathrm{E}}_{\text {ref }}+\overrightarrow{\mathrm{E}}_{\text {preamp a }}\right|=\left|\mathrm{E}_{\text {ref }}\right|-\left|\mathrm{E}_{\text {preamp }}\right|
$$

Thus,

$$
E_{0}=\left|E_{S 1}\right|-\left|E_{S 2}\right|=-2\left|E_{\text {preamp }}\right| .
$$

This situation is illustrated by the vector diagram of Figure 8a.
By similar reasoning it can be shown that if absorption occurs only when the Stark field is off and not when the field is on, then E_{o} is a positive voltage as

Figure 6. Processing of the 30 KHz Signal from the Crystal Detector.
(a) 30 kHz SIGNAL FROM REFERENCE OSCILLATOR WITHIN LOCK-IN AMPLIFIER

(b) STARK VOLTAGE FROM STARK GENERATOR CONTROLLED BY 30 kHz REFERENCE SIGNAL

Figure 7. 30 KHz Signals Involved in Processing Detector Output.

$$
\begin{aligned}
& E_{\text {ref }} \\
& \mathrm{E}_{\text {preamp }}(\mathrm{a}) \longleftrightarrow \mathrm{E}_{\text {preamp }}(\mathrm{b}) \\
& \underset{\rightarrow}{\rightarrow} \underset{\rightarrow}{E_{s 1}}\left|=\left|\underset{\rightarrow}{\rightarrow} \underset{\rightarrow}{\rightarrow}+\underset{E_{a}}{\rightarrow}\right|=\right. \\
& \left|E_{s 2}\right|=\left|E_{\text {ref }}+E_{b}\right|= \\
& E_{0}=\left|E_{s 1}\right|-\left|E_{s 2}\right| \longleftrightarrow \text { (NEGATIVE) } \\
& \text { (a) ABSORPTION WHEN STARK FIELD IS ON } \\
& \left|E_{s 1}\right|=\left|\overrightarrow{E_{r e f}}+\overrightarrow{E_{a}}\right|= \\
& \left|E_{s 2}\right|=\left|E_{r e f}^{\rightarrow}+E_{b}\right|= \\
& E_{0}=\left|E_{s 1}\right|-\left|E_{s 2}\right| \\
& \text { (b) ABSORPTION WHEN STARK FIELD IS OFF }
\end{aligned}
$$

Figure 8. Vector Diagrams Illustrating Phase Comparator Voltages Under Stark Modulation.
shown in Figure 8b. In general, if absorption occurs both when the Stark field is on and when it is off, then E_{o} is proportional to the difference between microwave absorption in absence of Stark field and microwave absorption in presence of Stark field.

In any case, as the source klystron is tuned over the frequency range of interest, E_{o} varies between plus and minus values. A plot of E_{o} versus source klystron frequency is made by an Esterline Angus Graphic Ammeter. Frequency is measured periodically by making a mark on the recording chart.

Clearly a possible source of error in this process of data taking is the delay in human response between the time the HP Electronic Counter has displayed a count (or a beat note is heard in the HRO 60 receiver) and the time an indication is made on the recording chart. This error is reduced by making runs over the frequency range of interest in pairs: one run going up in frequency, the other going down, and averaging.

Data Gathering Techniques

On either side of the $\mathrm{J}=2$ to 3 rotational lines of CFCl_{3} and CHCl_{3} are three groups of Stark lines. The frequency separations of these lines from the center of the $J=2$ to 3 rotational line were measured for several different values of Stark voltage. The technique for measuring the separation was to take the average of 10 runs, 5 up in frequency and 5 down, over the Stark line of interest. As is discussed in Chapter IV, graphs of frequency separation versus Stark field were made for each Stark component measured. These graphs were used to determine dipole moments.

To check theoretically calculated spectra with experimentally measured spectra several runs were made over frequency ranges of interest; a range of frequencies about the rotational line center and extended ranges on either side of the rotational line. These runs and the theoretical calculations are discussed in Chapter IV.

CHAPTER III

THEORY

Quadrupole Interaction Theory

$\mathrm{CF}^{35} \mathrm{Cl}_{3}$ and $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ are symmetric top molecules having three identical quadrupolar nuclei each with spin $3 / 2$. If the quadrupole interaction is ignored, the Hamiltonian operator for the total molecular energy has the form

$$
\mathrm{H}=\mathrm{H}_{\mathrm{el}}+\mathrm{H}_{\mathrm{vib}}+\mathrm{H}_{\mathrm{rot}}
$$

where $\mathrm{H}_{\mathrm{el}}, \mathrm{H}_{\mathrm{vib}}$, and $\mathrm{H}_{\text {rot }}$ refer to the electronic, vibrational, and rotational energies respectively. The matrix of this Hamiltonian is diagonal in a representation of the form

$$
u=\psi_{\mathrm{el}}(\Gamma) \Psi_{\text {vib }}(\mathrm{v}) \Psi_{\text {rot }}(J, K, M),
$$

where Γ, v, and J, K, M are appropriate quantum numbers for electronic, vibrational, and rotational states.

If the quadrupole interaction term, H_{Q}, is added to the Hamiltonian operator above, then a new representation must be found in which to compute the Hamiltonian matrix. It is desirable that this new representation have two important properties: matrix elements are calculable within it, and the basis functions can be classified according to symmetry type under interchange of the identical nuclei. This last property makes it easier to find eigenfunctions which satisfy the Pauli

Exclusion Principle.
After the energy levels and corresponding eigenfunctions have been computed, frequencies and intensities of transitions between energy levels must be determined. In the sections which follow more detailed discussion is given to the form of the quadrupole interaction operator, to the basis functions used in the computation of the Hamiltonian matrix, and to the determination of frequencies and intensities.

The Quadrupole Interaction Operator

The electrostatic interaction between a nucleus and the remainder of electrons and nuclei in an atom or molecule is given by (16)

$$
\mathrm{H}_{\mathrm{el}}=\sum_{\mathrm{ip}} \mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{p}} /\left|\overrightarrow{\mathrm{r}}_{\mathrm{i}}-\overrightarrow{\mathrm{r}}_{\mathrm{p}}\right|=+\sum_{\mathrm{ipl}} \mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{p}} \mathrm{r}_{\mathrm{p}}^{\ell} / \mathrm{r}_{\mathrm{i}}^{\ell+1} \mathrm{P}_{\ell}\left(\cos \theta_{\mathrm{ip}}\right)
$$

where e_{p} is the charge of the pth proton with position vector \vec{r}_{p} in the nucleus in question and e_{i} is the charge of the ith electron or proton with position vector \vec{r}_{i} in the remainder of the atom or molecule. $\theta_{i p}$ is the angle between the vectors \vec{r}_{i} and \vec{r}_{p} and P_{ℓ} is the Legendre function corresponding to the value of ℓ.

The quadrupole interaction term corresponds to $\ell=2$ in the above series, therefore the quadrupole interaction Hamiltonian is

$$
H_{Q}=\sum_{i p} e_{i p} e_{p} \frac{r_{p}^{2}}{r_{i}^{3}} \quad P_{2}\left(\cos \theta_{i p}\right)
$$

Using the spherical harmonic addition theorem this interaction operator can be expressed as

$$
\begin{equation*}
H_{Q}=\sum_{i p q}(-1)^{q} e_{i} e_{p} \frac{r_{p}^{2}}{r_{i}^{3}} \underset{q}{C^{(2)}}\left(\theta_{i}, \Phi_{i}\right) C_{-q}^{(2)}\left(\theta_{p}, \Phi_{p}\right)=(V \cdot Q) \tag{III-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{m}}^{(2)}=\sum_{\mathrm{i}} \frac{e_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}}^{3}} \mathrm{C}_{\mathrm{m}}^{(2)}\left(\theta_{\mathrm{i}}, \Phi_{\mathrm{i}}\right), \\
& \mathrm{Q}_{\mathrm{m}}^{(2)}=\sum_{\mathrm{p}} \mathrm{e}_{\mathrm{p}} \mathrm{r}_{\mathrm{p}}^{2} \mathrm{C}_{\mathrm{m}}^{(2)}\left(\theta_{\mathrm{p}}, \Phi_{\mathrm{r}}\right),
\end{aligned}
$$

and the $\mathrm{C}_{\mathrm{q}}^{(2)}$ are spherical harmonics of order 2.

This notation and form of expressing the quadrupole interaction operator has been chosen to agree with the notation in the paper by A. A. Wolf (17) and to make apparent the fact that this operator can be expressed as the product of two spherical tensor operators of rank 2. Svidzinski (18) has shown that the total quadrupole interaction operator of three identical quadrupolar nuclei in a symmetric top molecule can be written as three times the interaction energy of one of them. Thus the total quadrupole interaction operator is given by

$$
\begin{equation*}
H_{Q}=3(\mathrm{~V} \cdot \mathrm{Q}) . \tag{Ш-2}
\end{equation*}
$$

The Hamiltonian Matrix

The set of all functions of the form

$$
U=\psi_{e l}(\Gamma) \Psi_{v i b}(v) \Psi_{\operatorname{rot}}(J K M) \prod_{i=1}^{u} u_{i}\left(3 / 2, m_{i}\right)
$$

where $u_{i}\left(3 / 2, m_{i}\right)$ is the nuclear angular momentum eigenfunction of the ith quadrupolar nucleus which has $\operatorname{spin} 3 / 2$ and azimuthal quantum number m_{i}, theoretically
could be used to compute the Hamiltonian matrix. If this set were used matrix elements would be difficult to compute; the matrix would be infinite and probably impossible to diagonalize; and if eigenfunctions could be found, it would be difficult to separate all those that satisfy the Pauli-Exclusion Principle from the rest. Simplification results if certain off-diagonal elements can be ignored and only a finite set of basis functions need be considered; if the basis functions chosen are eigenfunctions of the total angular momentum with quantum number F, and if the basis functions are characterized by definite symmetry type. These concepts are discussed in succeeding paragraphs.

At room temperature and below most CHCl_{3} and CFCl_{3} molecules are in their lowest electronic and vibrational states. The ground vibrational state is doubly degenerate, and the members of this pair will be identified by the index v which takes on the values 0 and 1. The higher electronic and vibrational levels, and the rotational levels of different J are widely spaced compared to the splitting produced by the quadrupole interaction. Therefore, in the calculation of the interaction energy it is a good approximation to assume that only ground state electronic and vibration eigenfunctions need be considered and that the interaction operator does not link states of different J quantum number.

With this approximation each J level is considered separately and finite matrices result. For the $J=2$ splittings a complete set of basis functions is the set of 3200 functions of the form

$$
U(J=2)=\Psi_{e l}(\text { ground state }) \Psi_{v_{i b}}\left(\mathrm{v}=0 \text { or 1) } \Psi_{\text {rot }}(2 \mathrm{KM}) \prod_{\mathrm{i}=1}^{3} u_{i}\left(3 / 2, \mathrm{~m}_{\mathrm{i}}\right) .\right.
$$

For the $\mathrm{J}=3$ splittings there are 4648 basis functions of the same form but with the J quantum number equal to 3 . These functions are more explicitly enumerated in Appendix B.

A More Convenient Representation. In order to take advantage of the Wigner-Eckart Theorem and Racah's algebra of irreducible tensor operators in the calculation of matrix elements, a coupling scheme is chosen in which F, the total angular momentum quantum number $(\vec{F}=\overrightarrow{\mathrm{I}}+\overrightarrow{\mathrm{J}})$ is a good quantum number. I is the total spin quantum number ($\overrightarrow{\mathrm{I}}=\overrightarrow{\mathrm{I}}_{1}+\overrightarrow{\mathrm{I}}_{2}+\overrightarrow{\mathrm{I}}_{3}$) of the three quadrupolar nuclei, and γ represents all other appropriate quantum numbers. In this representation the basis functions have the form

$$
U(J)=\Psi_{e l}(\text { ground state }) \Psi_{v i b}(v=0,1) \Psi_{\text {total ang. mom. }}(F, I, J, \gamma) .
$$

Several such sets of basis functions can be created. One such set is described below.

Nuclear eigenfunctions characterized by a total nuclear spin, I, can be expressed as linear combinations of various products of individual nuclear spin eigenfunctions,

$$
\begin{equation*}
\mathrm{U}_{\text {total spin }}\left(\mathrm{I}, \mathrm{M}_{\mathrm{I}}\right)=\sum_{\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}} \mathrm{a}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{u}_{1}\left(3 / 2, \mathrm{~m}_{1}\right) \mathrm{u}_{2}\left(3 / 2, \mathrm{~m}_{2}\right) \mathrm{u}_{3}\left(3 / 2, \mathrm{~m}_{3}\right) \tag{III-3}
\end{equation*}
$$

where $\mathrm{a}_{\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3} \text { are appropriate coefficients. In fact one possible way to develop }}$ such functions is to couple the spins of nuclei 2 and 3 to get an intermediate spin, L, and then couple this spin with the spin of nucleus 1. If this procedure is
followed, the explicit expressions for the resulting eigenfunctions are

$$
\begin{gather*}
U_{\text {total } \operatorname{spin}}\left(\mathrm{L}, \mathrm{I}, \mathrm{M}_{\mathrm{I}}\right)=\sum_{\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{~m}_{\mathrm{L}}} \mathrm{u}_{1}\left(3 / 2, \mathrm{~m}_{1}\right) \mathrm{u}_{2}\left(3 / 2, \mathrm{~m}_{2}\right) \mathrm{u}_{3}\left(3 / 2, \mathrm{~m}_{3}\right) \tag{III-4}\\
.\left(3 / 2 \mathrm{~m}_{2}{ }^{\left.3 / 2 \mathrm{~m}_{3} \mid 3 / 23 / 2 \operatorname{Lm}_{\mathrm{L}}\right)\left(3 / 2 \mathrm{~m}_{1} \mathrm{Lm}_{\mathrm{L}} \mid 3 / 2 \mathrm{LIM}_{\mathrm{I}}\right)}\right.
\end{gather*}
$$

where the terms ($j_{1} m_{1} j_{2} m_{2} j_{1} j_{2} j m$) are vector coupling coefficients.
Basis functions characterized by a given total angular momentum, F, can be constructed by taking appropriate linear combinations of the product of rotational and total nuclear spin eigenfunctions

$$
\begin{align*}
& { }^{\Psi} \text { total angular momentum }{ }^{\left(\mathrm{vJK}, \mathrm{LI}, \mathrm{FM}_{\mathrm{F}}\right)}= \\
& { }_{\mathrm{el}}^{\mathrm{el}}{ }^{(\mathrm{ground}} \text { state. }{ }_{\mathrm{vib}}(\mathrm{v}=0 \text { or } 1) . \tag{III-5}\\
& \sum_{M_{I} M_{J}}\left(\mathrm{IM}_{\mathrm{I}} \mathrm{JM}_{\mathrm{J}} \mid \mathrm{IJFM}_{\mathrm{F}}\right) \mathrm{U}_{\text {total spin }}\left(\mathrm{LIM}_{\mathrm{I}}\right) . \Psi_{\text {rot }}\left(\mathrm{JKM}_{J}\right)
\end{align*}
$$

where $\left(\mathrm{IM}_{\mathrm{I}} \mathrm{JM}_{\mathrm{J}} \mid \mathrm{IJFM}_{\mathrm{F}}\right.$) are vector coupling coefficients.
A. A. Wolf (19) has shown that in the representation above, the matrix elements of the quadrupole interaction Hamiltonian of nucleus 1 are given by

$$
\begin{align*}
& \left.\mathrm{vJK}^{\prime}, \mathrm{I}^{\prime}, \mathrm{F}\left|\mathrm{H}_{\mathrm{Q}}\right| \mathrm{vJK}, \mathrm{I}, \mathrm{~F}\right)=(-1)^{\mathrm{J}+\mathrm{I}^{\prime}+\mathrm{F}}\left\{\begin{array}{ccc}
\mathrm{F} & \mathrm{I}^{\prime} \mathrm{J} \\
2 & \mathrm{~J} & \mathrm{I}
\end{array}\right\} \tag{III-6}\\
& .(\mathrm{vJK}\|\mathrm{~V}\| \mathrm{vJK})(\mathrm{I}| | \mathrm{Q} \| \mathrm{I}) \\
& \left\{\begin{array}{lll}
\mathrm{F} & \mathrm{I}^{\prime} & \mathrm{J} \\
2 & \mathrm{~J} & \mathrm{I}
\end{array}\right\}
\end{align*}
$$

where
is the Wigner six-J symbol of the inclosed quantities. Values for six-J symbols are tabulated in Rotenberg's The 3-J and 6-J Symbols (20). The only values of the reduced matrix elements, ($\mathrm{vJK}|\mid \mathrm{V} \| \mathrm{VJK}$), which will ultimately be needed are (19)

$$
\begin{equation*}
(\mathrm{vJK}|\| \mathrm{V}| \mid \mathrm{vJK})=\frac{(2 \mathrm{~J}+1)\left[3 \mathrm{~K}^{2}-\mathrm{J}(\mathrm{~J}+1)\right] \mathrm{q} \cos \alpha}{[(2 \mathrm{~J}+3)(2 \mathrm{~J}+2)(2 \mathrm{~J}+1) 2 \mathrm{~J}(2 \mathrm{~J}-1)]} 1 / 2, \tag{III-7}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\mathrm{vJ} 1\|\mathrm{~V}\|_{\mathrm{vJ}-1)}\right. & =\frac{(2 \mathrm{~J}+1) \mathrm{J}(\mathrm{~J}+1) \mathrm{q}(\cos \alpha-1)}{2[(2 \mathrm{~J}+3)(2 \mathrm{~J}+2)(2 \mathrm{~J}+1) 2 \mathrm{~J}(2 \mathrm{~J}-1)]} 1 / 2 \tag{III-8}\\
& =(\mathrm{vJ}-1\|\mathrm{~V}\| \mathrm{vJ} 1)
\end{align*}
$$

where α is the $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angle of the molecule in question and q is the second derivative of the potential with respect to the bond axis, $\frac{d^{2} V}{d^{2}}$. The reduced matrix element, $(3 / 2, \mathrm{~L}, \mathrm{I}\|\mathrm{Q}\| 3 / 2, \mathrm{~L}, \mathrm{I})$, has been evaluated by Wolf (19) and found to be

$$
\begin{align*}
& \left(3 / 2, \mathrm{~L}, \mathrm{I}^{\prime}\|\mathrm{Q}\| 3 / 2, \mathrm{~L}, \mathrm{I}\right)=(-1)^{3 / 2+\mathrm{L}+\mathrm{I}+2} \tag{III-9}\\
& \cdot\left[(2 \mathrm{I}+1)\left(2 \mathrm{I}^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
3 / 2 & \mathrm{I} & \mathrm{~L} \\
\mathrm{I} & 3 / 2 & 2
\end{array}\right\}(3 / 2 \| \mathrm{Q}| | 3 / 2)
\end{align*}
$$

The reduced matrix element, $(3 / 2\|Q\| 3 / 2)$, has the value, $\sqrt{5} \mathrm{e} Q$, where e is the electronic charge, and Q is the quadrupole moment of any one of the identical nuclei.

At this point it is helpful to be aware of two facts. First, if the basis functions of equation III-5 are suitably arranged, the Hamiltonian matrix factors
into a series of non-zero submatrices along its diagonal. Each of these submatrices has elements linking states with the same $F, M_{F},|K|$, and J quantum numbers, but not necessarily the same L, K, and I quantum numbers. The situation is depicted in Figure 9.

The second fact is that the sets of basis functions spanning the space of each submatrix are not unique. In the next section, basis functions of each submatrix will be constructed such that their behavior under the interchange of two identical nuclei is known.

Satisfying the Pauli Exclusion Principle. According to the Pauli Exclusion Principle, if any two of the identical fermions (the spin $3 / 2$ quadrupolar nuclei) are interchanged, the state functions of the Hamiltonian must change sign. That is, acceptable eigenfunctions of the Hamiltonian must change sign under the single interchange of any two identical nuclei. Eigenfunctions exhibiting this kind of behavior are said to have A2 symmetry type.

If the Hamiltonian of Figure 9 were diagonalized, the resulting eigenfunctions would not necessarily have the appropriate overall symmetry. The problem, then, is to develop for each submatrix a set of basis functions with overall symmetry A2.

The first step in the construction of the new set of basis functions is to modify the total nuclear spin functions appearing in equation $\mathrm{II}-5$. The Hamiltonian is unchanged by permutations of the identical nuclei. Therefore, if spin functions are chosen which will serve as basis functions for one of the irreducible representations of the group of permutations of three objects, then there will be

Figure 9. Form of Hamiltonian Matrix in the Representation of Equation III-5.
no matrix elements of the Hamiltonian linking spin functions of different symmetry type (21). Such spin functions have the form

$$
\begin{equation*}
U_{\text {total } \operatorname{spin}}\left(w_{k} I\right)=\sum_{L} G\left(w_{k}, L, I\right) u(L, I) \tag{III-10}
\end{equation*}
$$

where the coefficients, $G\left(w_{k}, L, I\right)$ are called genealogical coefficients. The index, w_{k}, indicates that the basis functions belong to the wth irreducible representation and behave like the kth row of that representation. In Appendix C, the behavior of basis functions under the action of the group operations is shown for the two one dimensional and the one two dimensional irreducible representations. Values for the genealogical coefficients are also given in Appendix \mathbf{C}.

When nuclear spin functions of the form of equation III-10 are used and appropriately arranged in each of the submatrices of the Hamiltonian, then these submatrices divide into smaller submatrices along the diagonal. Each of these smaller submatrices has elements linking only states with nuclear spin functions of the same symmetry. The situation is shown in Figure 10.

At this point a typical basis function has the form

$$
\begin{align*}
& \Psi^{\Psi}\left(\mathrm{vJK}, \mathrm{w}_{\mathrm{k}} \mathrm{I}, \mathrm{FM}_{\mathrm{F}}\right)=\Psi_{\mathrm{el}}(\mathrm{ground} \text { state }) \Psi_{\text {vib }}(\mathrm{V}=0 \text { or } 1) \tag{III-11}\\
& \cdot \sum_{M_{1} M_{J}}\left(\mathrm{IM}_{I} J M_{J} \mid \mathrm{IJFM}_{\mathrm{F}}\right) u_{\text {total } \operatorname{spin}}\left(\mathrm{I}, \mathrm{M}_{\mathrm{I}}, \mathrm{w}_{\mathrm{k}}\right){ }_{\mathrm{rot}}\left(\mathrm{~J}, \mathrm{~K}, \mathrm{M}_{J}\right)
\end{align*}
$$

and the general expression for a matrix element is (22)

$$
\begin{equation*}
\left(\mathrm{vJK}^{\prime}, \mathrm{w}_{\mathrm{k}} \mathrm{I}^{\prime}, \mathrm{F}\left|3 \mathrm{H}_{\mathrm{Q}}\right| \mathrm{VJK}, \mathrm{w}_{\mathrm{k}} \mathrm{I}, \mathrm{~F}\right)=(-1)^{\mathrm{J}+\mathrm{I}^{\prime}+\mathrm{F}} \tag{III-12}
\end{equation*}
$$

Figure 20. The Form of a Typical Submatrix when Spin Functions, $u\left(w_{k} I\right)$, are used.

$$
\begin{aligned}
& \text { - }\left\{\begin{array}{ccc}
F & \mathrm{I}^{\prime} & \mathrm{J} \\
2 & \mathrm{~J} & \mathrm{I}
\end{array}\right\}\left(\mathrm{vJK}{ }^{\prime}\|V\| \mathrm{vJK}\right)\left(3 / 2\|Q\| 3 / 2\lceil(2 \mathrm{I}+1)(2 \mathrm{I}+1)]^{1 / 2}\right. \\
& \sum_{\mathrm{L}}\left[(-1)^{3 / 2+\mathrm{L}+\mathrm{I}_{\mathrm{G}\left(\mathrm{w}_{k}, \mathrm{~L}, \mathrm{I}\right)}^{\prime}}{\left.\left\{\begin{array}{ccc}
3 / 2 & \mathrm{I}^{\prime} & \mathrm{L} \\
\mathrm{I} & 3 / 2 & 2
\end{array}\right\} \mathrm{G}_{\left(w_{k}, L, I\right)}\right] . . . ~}_{\text {. }}\right.
\end{aligned}
$$

Since further modifications to the sets of basis functions are still needed, and the notation is already cumbersome, it is convenient to collect those terms involving only spin quantum numbers and define a nuclear reduction coefficient by

$$
\begin{align*}
& \mathrm{C}\left(\mathrm{w}_{\mathrm{k}}, \mathrm{I}^{\prime}, \mathrm{I}\right)=3(-1)^{\mathrm{I}^{\prime}+\mathrm{I}}\left[(2 \mathrm{I}+1)\left(2 \mathrm{I}^{\prime}+1\right)\right]^{1 / 2} \tag{III-13}\\
& \quad \sum_{\mathrm{L}}\left[(-1)^{L^{\prime}} \mathrm{G}\left(\mathrm{w}_{\mathrm{k}}, \mathrm{~L}^{\prime}, \mathrm{I}^{\prime}\right)\left\{\begin{array}{ccc}
3 / 2 & \mathrm{I}^{\prime} & \mathrm{L}^{\prime} \\
\mathrm{I} & 3 / 2 & 2
\end{array}\right\} \mathrm{G}\left(\mathrm{w}_{\mathrm{k}}, L^{\prime}, \mathrm{I}\right)\right] .
\end{align*}
$$

In Appendix C are listed the reduction coefficients needed for the $J=1$ to $2, K=1$ and the $J=2$ to $3, K=1,2$ calculations. Substituting equation III-13 into III-12 one gets

$$
\begin{aligned}
& \left(\mathrm{vJK}, \mathrm{w}_{\mathrm{k}} \mathrm{I}^{\prime}, \mathrm{F}\left|3 \mathrm{H}_{\mathrm{Q}}\right| \mathrm{vJK}, \mathrm{w}_{\mathrm{k}} \mathrm{I}, \mathrm{~F}\right)=(-1)^{3 / 2+\mathrm{J}+\mathrm{F}}\left\{\begin{array}{lll}
\mathrm{F} & \mathrm{I}^{\prime} & \mathrm{J} \\
2 & \mathrm{~J} & \mathrm{I}
\end{array}\right\} \\
& (\mathrm{vJK}\|\mathrm{v}\| \mathrm{vJK})(3 / 2\|Q\| 3 / 2) \mathrm{C}\left(\mathrm{w}_{\mathrm{k}}, \mathrm{I}, \mathrm{I}\right) .
\end{aligned}
$$

If any of the submatrices indicated in Figure 10 is diagonalized, the resultant eigenfunctions, which are linear combinations of basis functions, would be characterized by the symmetry of only the nuclear spin part of the wavefunctions. However, what is needed is a method by which eigenfunctions of overall A2 symmetry can be found.

Consider any one of the submatrices of nuclear spin symmetry, A1, A2, or E shown in Figure 10. Each of these submatrices is spanned by a set of basis functions of the form indicated in equation III-11. However, it is more convenient to span the spaces of these submatrices with functions which are certain linear combinations of the functions in equation III-11. Some of these linear combinations will result in basis functions with A2 overall symmetry (23) - viz. 1. In an A 1 or A 2 submatrix if the quantum number, K, is equal to zero or an integral multiple of three, then basis functions of the form

$$
\begin{equation*}
\Psi\left(\mathrm{V}, \mathrm{E}_{\mathrm{JK}}, \mathrm{~A}_{1,2}, \mathrm{I}, \mathrm{~F}\right)=1 / \sqrt{ } \quad\left[\Psi\left(\mathrm{VJK}, \mathrm{~A}_{1,2}, \mathrm{I}, \mathrm{~F}\right) \mp(-1)^{J+V}\right. \tag{III-15}
\end{equation*}
$$

$$
\left.\Psi\left(\mathrm{vJ}-\mathrm{K}, \mathrm{~A}_{1,2}, \mathrm{I}, \mathrm{~F}\right)\right]
$$

have A2 overall symmetry, where the - sign is used for an A1 submatrix and the $+\operatorname{sign}$ is used for an A2 submatrix.
2. In any E submatrix if K is not zero and not an integral multiple of three, then basis functions of the form

$$
\begin{aligned}
& \Psi\left(\mathrm{V}, \mathrm{E}_{J K}, \mathrm{E}, \mathrm{I}, \mathrm{~F}\right)=1 / 2\left[\Psi\left(\mathrm{vJK}, \mathrm{E}_{2}, \mathrm{I}, \mathrm{~F}\right)-(-1)^{\mathrm{J}+\mathrm{v}}\right. \\
& \left.\cdot \Psi\left(\mathrm{vJ}-\mathrm{K}, \mathrm{E}_{2}, \mathrm{I}, \mathrm{~F}\right)\right]+\mathrm{i} / 2\left\lceil\Psi\left(\mathrm{VJK}, \mathrm{E}_{1} \mathrm{I}, F\right)+(-1)^{\mathrm{J}+\mathrm{v}}\right. \\
& \left.\cdot \Psi\left(\mathrm{vJ}-\mathrm{K}, \mathrm{E}_{1}, \mathrm{I}, \mathrm{~F}\right)\right]
\end{aligned}
$$

have A2 overall symmetry.
3. No other linear combinations of the functions of the form of II-11 yield basis functions having overall A2 symmetry.

There are no non-zero matrix elements linking states of A2 overall symmetry with states of non-A2 overall symmetry (21). Therefore, one can group the matrix elements linking basis functions of A2 overall symmetry into still smaller submatrices and diagonalize these submatrices. The eigenfunctions of these submatrices will then have A2 overall symmetry.

Thus, the Pauli Exclusion Principle is satisfied by only accepting those eigenfunctions resulting from the diagonalization of an A2 (overall) submatrix. Transition Frequencies and Intensities

The relative intensity of a rotational transition in a molecule is proportional to the square of the matrix element of the electric dipole moment operator between initial and final states. When the matrices of the quadrupole interaction are diagonalized the state function corresponding to a hyperfine level is given by Wolf (24) in the following form

$$
u\left(E_{J K} T\right)=\sum_{I} B_{T I} u\left(E_{J K} w I F M_{F}\right)
$$

where the quantities, B_{TI}, are the matrix elements of the diagonalizing transformation. The index T is used to distinguish states corresponding to different eigenvalues.

Choosing the space fixed axis to be in the direction of the electric field, noting that the dipole moments of CFCl_{3} and CHCl_{3} lie along their molecular axes, and using the Wigner-Eckart theorem and Racah's algebra of irreducible tensor
operators, A. A. Wolf gets the expression

$$
\begin{align*}
N= & {\left[\frac{(J+1)^{2}-K^{2}}{3(J+1)}\right] d^{2}\left(2 F^{i}+1\right)\left(2 F^{f}+1\right) } \\
& {\left[\begin{array}{llll}
\sum_{I} & B_{T I} B_{T} & I^{(-1)} J^{i}+I+F^{f}+1 & \left.\left\{\begin{array}{ccc}
J^{i} & F_{f}^{i} & I \\
F^{f} & J^{\prime} & 1
\end{array}\right\}\right]^{2}
\end{array},=\right.\text {, }} \tag{III-17}
\end{align*}
$$

for the relative intensity of the transition between a $J=2$ hyperfine level and a $J=3$ hyperfine level. In this expression d is the dipole moment. The frequency of any such line is given by

Frequency $=$ [Freq. of rotational transition] $[\mathrm{J}=3 \mathrm{HFS}]$ -[J=2 HFS],
where $\lceil J=3 \mathrm{HFS}]$ is the hyperfine splitting of the $J=3$ level.
A. A. Wolf further notes that for the case $J=3, K=2$ the reduced matrix element ($\mathrm{VJK}\|\mathrm{V}\| \mathrm{vJK}$) vanishes so that all of the quadrupole hyperfine levels are degenerate. "The intensities of the lines involving these levels were computed using $B_{T I}=1$ for each value of I, calculating the intensities corresponding to different values of I separately, and adding all of the intensities corresponding to the same frequency." (25)

The Combined Stark and Quadrupole Interaction

The Hamiltonian operator for the combined Stark and quadrupole interactions has the form,

$$
H_{Q+S}=H_{Q}+H_{S}
$$

where H_{Q} is the quadrupole interaction operator discussed in the preceding
section, and H_{S} is the Stark interaction operator. The Stark interaction operator can be written in the spherical tensor notation of Edmonds (16) as

$$
H_{S}=\sum_{\mu}(-1)^{\mu} d_{\mu}^{(1)} E_{-\mu},
$$

where μ can take on the values $-1,0,1$. E refers to the applied electric field and d to the electric dipole moment of the molecule. In terms of cartesian components, the spherical components of these quantities are given by

$$
\begin{array}{ll}
d_{1}^{(1)}=\frac{-1}{\sqrt{2}}\left(d_{x}^{(1)}+i d y\right. \\
(1) & E_{-1}=+\frac{1}{\sqrt{2}}\left(E_{x}-i E_{y}\right) \\
d_{0}^{(1)}=d_{z}^{(1)} & E_{0}=E_{z} \\
d_{-1}^{(1)}=\frac{+1}{\sqrt{2}} & \left(d_{x}^{(1)}-i d y y^{(1)}\right) \\
E_{1}=\frac{-1}{\sqrt{2}}\left(E_{x}+i E_{y}\right) .
\end{array}
$$

The representation used to compute the quadruple interaction Hamiltonian matrix is also used to compute the combined Stark and quadrupole Hamiltonian matrix, therefore a typical matrix element has the form

$$
\left(v^{\prime} J^{\prime} K^{\prime} w_{k} I^{\prime} M_{F}\left|H_{Q+S}\right| v J K w_{k} I M_{F}\right)=\left(\ldots\left|\mathrm{H}_{\mathrm{e}}\right| \ldots\right)+\left(\ldots\left|\mathrm{H}_{\mathrm{S}}\right| \ldots\right)(\mathrm{II}-19)
$$

Before discussing the evaluation of the terms on the right, it is helpful to look at the overall form of the Hamiltonian matrix. Since neither the quadrupole interaction operator nor the Stark interaction operator links states having different M_{F} quantum numbers, a suitable arrangement of matrix elements results in a matrix
of the form shown in Figure $11--$ that is, a series of submatrices strung along the diagonal. Each of the submatrices has elements which link states of the same M_{F} quantum number. Further arrangement of matrix elements within each submatrix can result in a Hamiltonian matrix having the form shown in Figure 12 -that is, each submatrix is further subdivided into two matrices, one of which is characterized by the fact that it links only states of A2 overall symmetry.

As in the quadrupole case, eigenfunctions having the required A2 symmetry result from diagonalizing only the A2 submatrices.

Equations III-14 and III-16 enable one to evaluate the quadrupole terms. It should be noted that these terms only link states for which $F=F$ and $v=v$.

Using the Wigner-Eckart theorem and appropriate equations from Edmonds, C. R. Nave (26) has derived an expression for the Stark term

$$
\left.\begin{array}{l}
\left(v J K, w I, F M_{F}\left|H_{S}\right| v^{\prime} J K, w I, F^{\prime} M_{F}\right)=(2 J+1)(-1)^{F+F-M_{F}+I-K+1} \\
{\left[(2 F+1)\left(1 F^{\prime}+1\right)\right]^{1 / 2}\left(\begin{array}{ccc}
F & 1 & F^{\prime} \\
-M_{F} & 0 & M_{F}
\end{array}\right)\left(\begin{array}{ccc}
J & 1 & J \\
K & 0 & -K
\end{array}\right)\left\{\begin{array}{l}
J, \\
F^{\prime} \\
\mathrm{F}^{\prime} \\
J
\end{array}\right.} \tag{III-20}\\
1
\end{array}\right\} E d .
$$

The expressions,

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\mathrm{F} & 1 & \mathrm{~F}^{\prime} \\
-\mathrm{M}_{\mathrm{F}} & 0 & \mathrm{M}_{\mathrm{F}}
\end{array}\right) \\
& \left(\begin{array}{ccc}
\mathrm{J} & 1 & \mathrm{~J} \\
\mathrm{~K} & 0 & -\mathrm{K}
\end{array}\right)
\end{aligned}
$$

and
are $3-\mathrm{J}$ symbols of the inclosed quantities. Values for $3-\mathrm{J}$ symbols have been tabulated by Rotenberg (20). Only terms for which $v^{\prime}=v \pm 1$ are non-zero. Note

Figure ll. Form of Hamiltonian Matrix for Combined Stark and Quadrupole Interaction.

Figure 12. Form of Hamiltonian Matrix for Combined Stark and Quadrupole Interaction when Basis Functions are Symmetrized.
however that due to properties of the 3-J symbol, non-zero elements result for $F^{\prime}-F=0, \pm 1$ only. Non-zero matrix elements linking states of different J are ignored. This approximation is reasonable since the Stark splittings for the electric field strengths of interest are small compared to the rotational energy level separations.

The transition frequencies are given by

Frequency $=$ [unperturbed rotational transition frequency]
$+[J=3$ splitting $]-[J=2$ splitting $]$.

The intensity of a transition between two eigenstates is proportional to the square of the matrix element of the dipole moment operator linking the two states.
C. R. Nave (27) has derived the following expression for the intensity of a transition between eigenstates characterized by the symbols f1 and f2:

$$
\begin{aligned}
& I=\left[\sum_{\substack{\mathrm{I}, \mathrm{~F}, \mathrm{~F}, \mathrm{v}}}\left(\mathrm{vJKIFM}_{\mathrm{F}} \mid \mathrm{f}_{1}\right)\left(\mathrm{v}^{\prime /} \mathrm{KIF}^{\prime} M_{F} \mid \mathrm{f}_{2}\right)\right. \\
&\left.\cdot\left(\mathrm{vJKIFM}_{\mathrm{F}}\left|\mathrm{~d}^{(1)}\right| \mathrm{v}^{\prime} \mathrm{J}^{\prime} K I F^{\prime} M_{F}\right)\right]^{2}
\end{aligned}
$$

where (vJKIFM ${ }_{F}\left|d^{(1)}\right|^{\prime} \mathrm{J}^{\prime} \mathrm{KIF}^{\prime} \mathrm{M}_{\mathrm{F}}$) is given by equation III-20 if the E is dropped from that equation. Equation III-22 holds for the case where the microwave field is parallel to the Stark field.

Stark Effect in the Absence of Quadrupole Splitting
If the Stark field is sufficiently strong, then the Stark interaction term in equation III-19 is much larger than the quadrupole interaction term, and to
a good approximation one can ignore the quadrupole term entirely. C. R. Nave (13) has shown that the expression for the magnitude of the Stark splittings on either side of a rotational transition for the case where the quadrupole interaction is ignored,

$$
\begin{equation*}
\Delta v=\frac{2 \mathrm{M}_{\mathrm{J}} \mathrm{~K} \mu \mathrm{~V}}{\mathrm{~J}(\mathrm{~J}+1)(\mathrm{J}+2) \mathrm{d}} \quad\left(\frac{0.50348 \mathrm{MHz}}{\text { debye volt/cm }}\right) \tag{III-23}
\end{equation*}
$$

can be applied in the case where the Stark interaction is much stronger than the quadrupole interaction. In this expression, V is the stark voltage, d is the separation between the Stark electrode and the waveguide walls, J is the rotational quantum number of the lower level, and μ is the dipole moment.

For the $J=2$ to 3 transition the values that $M_{J} K$ can have in equation III-23 are one, two, and four. The intensity of any of these splitting is proportional to the square of the matrix element of dipole moment operator linking the initial and final states. Using expressions for dipole moment matrix elements from Townes and Schawlow (28), one obtains the following expression for the square of the dipole moment matrix element,

$$
\begin{equation*}
\left(J+1, K, M_{J}\left|\mu_{\text {operator }}\right| J, K, M_{J}\right)^{2}=\frac{\mu^{2}\left[(J+1)^{2}-K^{2}\right]\left[(J+1)^{2}-M_{J}^{2}\right]}{(J+1)^{2}(2 J+1)(2 J+3)} \tag{III-24}
\end{equation*}
$$

Thus, $64: 80: 25$ is the ratio of intensities for the Stark components corresponding to $M_{J} K$ equaling one, two, and four respectively.

As is discuss ed in Chapter IV, equation III-23 is used in the determination of the dipole moments of CHCl_{3} and CFCl_{3}.

Pressure Broadening

Of all the factors contributing to the broadening of spectral lines, the largest by far is pressure broadening (29). At low pressures and over a 5 to 10 MHz region about a rotational line, the Van Vleck and Weisskopf pressure broadening equation can be approximated by

$$
\begin{equation*}
\gamma=\frac{C b p}{\left(\nu-\nu_{0}\right)^{2}+(b p)^{2}}, \tag{III-25}
\end{equation*}
$$

where
C is a constant
b is the line width parameter
p is the gas pressure
ν_{0} is the natural molecular frequency
γ is the absorption coefficient.

The line width parameter, b, can be determined from the equation

$$
\Delta v=2 \mathrm{bp}
$$

where $\Delta \nu$ is the width of the line at half-maximum (30).

When making theoretical calculations which are to be compared with actual recordings of data, one must take pressure broadening effects into account, since an overlap of lines can affect the spectrum appearance.

CHAPTER IV

ANALYSTS OF DATA

In order to facilitate the analysis and interpretation of data, several computer programs were written in the course of this research:

1. BESTFIT a program to determine the slope and y-intercept of the best (Least Squares) straight line fit to a series of points, $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$. This program was used in the determination of dipole moments for CHCl_{3} and CFCl_{3}.
2. KISZERO
a program which computes the frequencies and intensities of all $J=2$ to $3, K=0$ quadrupole transitions. This program also computes a pressure broadened spectrum over any specified frequency range of interest.
3. KONETWO a program which computes the frequencies and intensities of all $\mathrm{J}=2$ to $3, \mathrm{~K}=1,2$ quadrupole transitions. This program also computes a pressure broadened spectrum over any specified frequency range of interest.
4. PBRTAPE a program which computes a. the frequencies and intensities of all $J=2$ to $3, K=1,2$ quadrupole transitions and b. the frequencies and intensities of all $\mathrm{J}=2$ to $3, \mathrm{~K}=1,2$ combined Stark and quadrupole transitions. This program also computes 3 pressure broadened spectra over any specified frequency range of interest:
a. a quadrupole spectrum, b. a combined Stark and quadrupole spectrum, and c. a difference spectrum resulting from spectrum " a " being subtracted from spectrum " b ". One of the options of this program causes a tape to be made of all computed frequencies and intensities.
5. PBRTEST a program which computes several pressure broadened spectra corresponding to different values of pressure and line width parameter in equation III-25. Input data to this program consists of the tape information computed by PBRTAPE and data cards containing the values of pressure and line width parameter for which pressure broadened spectra are to be computed.

Of these programs, PBRTAPE was by far the most useful and indispensible to the research. A printout of this program is included in Appendix D. The logic and operation of this program are discussed in Appendix E.

PBRTAPE takes between one and one and a half hours of computer time (Processor and IO) to run and thus from this fact alone one can see how handicapped the research would have been without this program or its equivalent.

In the sections which follow, theoretical calculations are compared with experimental measurements.

Electric Dipole Moment Determinations

Equation III-23 for the frequency separation of Stark components from a main rotational line becomes

$$
\begin{equation*}
\Delta \nu=0.04196\left(\mathrm{M}_{\mathrm{J}} \mathrm{~K}\right) \mu \mathrm{E} \tag{IV-1}
\end{equation*}
$$

for the $J=2$ to 3 rotational transition. $\Delta \nu$ is the frequency separation in MHz ; μ is the electric dipole moment of the molecule in debyes; and E is the strength of the Stark electric field in volts/cm. Since the quantity $M_{J} K$ can take on the values one, two, and four for this transition, a graph of frequency separation plotted against Stark field consists of three straight lines passing through the origin.

The dipole moment of a given molecule is related to the slope of any of these lines by the following relation:

$$
\begin{equation*}
\dot{\mu}(\text { in debyes })=\frac{\text { slope }(\text { in } \mathrm{MHz} / \text { volt } / \mathrm{cm})}{0.04196\left(\mathrm{M}_{\mathrm{J}} \mathrm{~K}\right)} \tag{IV-2}
\end{equation*}
$$

As mentioned in Chapter II, frequency separations of the Stark components from the $J=2$ to 3 rotational line in CHCl_{3} and CFCl_{3} were measured for several different values of the Stark electric field. These frequency separations are plotted against the field strength in Figures 13 and 14 for CHCl_{3} and CFCl_{3} respectively. These measurements were made using the double phase-lock stabilization technique.

For both molecules, the measurements made on the Stark component corresponding to $\mathrm{M}_{J} \mathrm{~K}$ equal to two were the most reliable. That Stark component is the most intense of the three. Therefore, dipole moment determinations were based on measurements made on that component.

A Least Squares fitting technique was used to find the best straight line fit to the $M_{J} K$ equal to two component for each molecule. From the slopes of these lines, the molecular dipole moments of the molecules were determined. In order to have some measure of the reliability of results, the 90 per-cent confidence

Figure 13. Stark Components of CHCl_{3} Measured by Double Phase Lock Stabilizatopn Method.

Figure 14. Stark Components of CFCl_{3} Measured by Double Phase Lock Stabilization Method.
intervals for each of these slopes was computed. These intervals were calculated as follows:

1. In a student's T-table (found in any standard book of statistical tables) the appropriate t-value was determined for the line in question (The appropriate t value is the one corresponding to ($\mathrm{N}-2$) degrees of freedom, where N is the number of measured points on the line.),
2. The standard deviation of the slope, S_{b}, was computed using the equation

$$
S_{b}=\sqrt{\left.\sum_{i}\left(y_{i}-\bar{y}\right) /\left((N-2) \sum_{i}^{\Sigma}\left(x_{i}-\bar{x}\right),\right)^{(}\right)}
$$

and 3. The 90 per-cent confidence interval in the slope was calculated as the product, $\mathrm{S}_{\mathrm{b}} \mathrm{t}$.

Since the measurements made on CHCl_{3} using the double phase-lock stabilization technique yielded points widely scattered from the straight line of best fit, it was decided to repeat the dipole moment determinations for both CHCl_{3} and CFCl_{3} using the beat note technique. Figures 15 and 16 are plots of the frequency separation of the second Stark component versus electric field for CHCl_{3} and CFCl_{3} respectively, using this technique.

In Table 1, the author's measured values for the dipole moments of CHCl_{3} and CFCl_{3} are compared with values obtained by other researchers. The author's results are stated at the 90 per-cent confidence level.

Comparison of Observed with Calculated Spectra

Using the pressure broadening formula, III-25, several pressure broadened

Figure 15. Second Stark Components of CHCl_{3} Measured by Beat Note Method.

Figure 16. Second Stark Components of CFCl_{3} Measured by Beat

Table 1. Electric Dipole Moment Measurements of $\mathrm{CHC1}_{3}$ and CFCl_{3} in the Gaseous State

Molecule	μ in debye	Method	Researcher and Reference
CHCl_{3}	0.9 $1.00+0.01$ 1.03 1.06 1.07 1.86	Dielectric constant Dielectric virial coefficient Dielectric constant Dielectric constant Dielectric constant Dielectric constant	Sanger, R., Physik, z. 27, 556-63 (1926). Buckingham, A.D., and Raab, R. E., J. Chem. Soc., 5511-23 (1961). Ramaswamy, K. L., Proc. Indian Sci. 2A, 364-77 (1935). Sircar, S. C., Indian J. Phys. 3, 197-208 (1928). LeFevre, R.J., Wand, Russell P. , J. Chem. Soc. , 491-5 (1936). Maryott, A.A., Hobbs, M.E., and Gross, P. M., J. Am. Chem. Soc. 62, 2320-4 (1940).
	$\begin{aligned} & 1.025 \pm 0.04 \\ & 1.04 \pm 0.01 \end{aligned}$	Stark Effect	Present work, Method 1 Present work, Method 2
CFCl_{3}	$\begin{aligned} & 0.45+0.01 \\ & 0.53 \end{aligned}$	Dielectric constant Dielectric constant	Roberti, D. M., Kalman, O. F. \& Symth, C. P., J. Amer. Chem. Soc. 82, 3523-6 (1960). Fuoss, R.M., J. Amer. Chem. Soc. 60, 1633-7 (1938).
	$\begin{aligned} & 0.46+0.02 \\ & 0.46 \pm 0.02 \end{aligned}$	Stark Effect Stark Effect	Present work, Method 1 Present work, Method 2

spectra for CHCl_{3} were computed for different values of the product, bp. Four of these spectra are reproduced in Figures 17 through 20 corresponding to the product, bp, having values $0.25,0.50,0.75$, and 1.0 MHz respectively. Figure 21 is a reproduction of the spectrum of CHCl_{3} made under conditions similar to those for which the computed spectra were calculated.

Three observations are made in comparing the calculated and measured spectra. First, the calculated spectrum corresponding to $\mathrm{bp}=0.5 \mathrm{MHz}$ resembles the measured spectrum most closely. Second, the calculated spectra indicate the great effect pressure broadening can have on the appearance of spectral lines. For example, in Figure 17, line A is more intense than lines B and C. In Figures 18-20 these relative intensities are reversed. Further, as the pressure broadening effect is increased the spectral lines lose their distinctiveness.

The third observation is that the computed spectra more closely resemble measured spectra below the rotational line center than above. Although the exact reason for this discrepancy is not known, several possible contributing factors can be listed: 1. The calculated spectrum is made for the molecule in its ground vibrational state, but included in the measured spectrum are weaker spectra due to excited states that can exist. 2. The strength of the measured spectrum is very close to the sensitivity limits of the microwave spectrograph, and background noise may not be of a random nature. 3. The $K=0$ lines whose contribution is not taken into account in the calculated spectrum may have more than the expected neglibile effect on the spectrum.

The calculated spectrum of CFCl_{3} for $\mathrm{bp}=0.25 \mathrm{MHz}$ is shown in Figure 22 and the measured spectrum is shown in Figure 23.

Figure 17. Calculated Pressure Broadened Spectrum for the $J=2-3$ Iransition of CHCl_{3}.

Figure 18. Calculated Pressure Broadened Spectrum for the $J=2-3$ Transition of CHCl_{3}.

Figure 19. Calculated Pressure Broadened Spectrum for the $J=2-3$ Transition of CHCl_{3}.

Figure 20. Calculated Pressure Broadened Spectrum for the $J=2-3$ Transition of CHCl_{3}.

Figure 21. Measured Spectrum of CHCl_{3}.

Figure 22. Calculated Pressure Broadened Spectrum for the $J=2-3$ Transition of CFCl_{3}.

Figure 23. Measured Spectrum of CFCl_{3}.

For this molecule it was possible to make measurements at a low enough pressure that lines B and C were resolved and Line A was more intense than B or C.

Using the beat note technique, the frequencies of A, B, and C were measured for both CHCl_{3} and CFCl_{3}. The results of these measurements are compared with A. A. Wolf's measurements and with predicted values in Table 2.

Table 2. Frequencies of the High Intensity Lines in the $\mathrm{J}=2-3$ Transitions of CHCl_{3} and CFCl_{3}.

Molecule	Source	Operating Conditions	A	B	C
CHCl_{3}	A.A. Wolf ${ }^{(31)}$ Present work Computed	$178^{\circ} \mathrm{C}, 5 \mathrm{Hg}, 300 \mathrm{v} / \mathrm{cm}$ $-78^{\circ} \mathrm{C}, 15 \mathrm{Hg}, 341 \mathrm{v} / \mathrm{cm}$ See Figure 18	$\begin{aligned} & 19810.21 \\ & \pm 0.04 \mathrm{MHz} \\ & 19810.25 \\ & \pm 0.07 \\ & 19810.25 \\ & \pm 0.20 \end{aligned}$	$\begin{aligned} & 19812.24 \\ & \pm 0.08 \mathrm{MHz} \\ & 19812.45 \\ & \pm 0.07 \\ & 19812.50 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & 19812.66 \\ & \pm 0.08 \mathrm{MHz} \\ & 19812.45 \\ & \pm 0.07 \\ & 19812.50 \\ & \pm 0.2 \end{aligned}$
CFCl_{3}	A. A. Wolf ${ }^{(32)}$ Present work Computed	$-78^{\circ} \mathrm{C}, 15 \mathrm{Hg}, 200 \mathrm{v} / \mathrm{cm}$ $-78^{\circ} \mathrm{C}, 15 \mathrm{Hg}, 457 \mathrm{v} / \mathrm{cm}$ See Figure 22	$\begin{aligned} & 14792.82 \\ & \pm 0.03 \\ & 14792.75 \\ & \pm 0.07 \\ & 14792.75 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & 14794.72 \\ & \pm 0.05 \\ & 14794.78 \\ & \pm 0.07 \\ & 14794.75 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & 14795.44 \\ & \pm 0.05 \\ & 14795.41 \\ & \pm 0.07 \\ & 14795.25 \\ & \pm 0.2 \end{aligned}$

Since the purpose of this table is to compare calculated and observed quadrupole splitting the rotational constant has been adjusted to make the calculated frequency of line A agree with the measured frequency. The calculated frequencies of lines B and C then fall within the experimental errors of the measured B and C.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Dipole moment measurements for CHCl_{3} and CFCl_{3} were made using both the Double Phase-Lock Stabilization technique and the Beat note technique. Using weighted averages of the results of these measurements, the dipole moment of CHCl_{3} was found to be 1.04 ± 0.02 debye and the dipole moment of CFCl_{3} was found to be 0.46 ± 0.02 debye. The weighting factors were inversely proportional to the square of the size of the 90 per-cent confidence interval.

Inherently, the double phase-lock stabilization technique (method 1) should be more accurate than the beat note technique (method 2), and it is therefore recommended that attempts to make measurements using this technique not be abandoned. There are several possible factors contributing to the erratic measurements that this researcher obtained when using method 1. The Stark square-wave generator used with method 1 did not produce as good a squarewave pattern as the new solid state square-wave generator used with method 2 . Also, different klystrons had to be used in the two measurements, and there is reason to believe that a more stable klystron was used with method 2 than with method 1.

Calculated press ure broadened spectra according to equation III-25 compare well with measured spectra when proper values for the product, bp, are used. Although the comparison is not perfect; nevertheless, the similarity of
the calculated and measured spectra lead one to have confidence in equations III-17, 22, and 25. From Table 2 values for the line width parameter, b, can be estimated for CHCl_{3} and CFCl_{3} as $0.028 \pm 0.014 \mathrm{MHz} / \mathrm{mmHg}$ and $0.014 \pm$ $0.007 \mathrm{MHz} / \mathrm{mmHg}$, respectively.

The fact that the line width parameter for CHCl_{3} is larger than the line width parameter for CFCl_{3} is consistent with the result stated by Townes and Schawlow (33) that the line width parameter is proportional to the square of the matrix element of the dipole moment operator between initial and final states.

The agreement between the calculated and measured spectra illustrated by the figures and the closeness of the measured and calculated frequencies for lines A, B, and C in Table 2 confirm the theory to the degree of accuracy of the measurements.

APPENDIX A

DETERMINING THE EXACT FREQUENCY OF THE SOURCE KLYSTRON
-AN EXAMPLE-

DETERMINING THE EXACT FREQUENCY OF THE SOURCE KLYSTRON -AN EXAMPLE-

Suppose the following conditions hold:

1. The reference klystron is locked-in at 9.830 gHz .
2. The transfer oscillator's output is at 0.133 gHz .
3. A wavemeter reading of the source klystron's frequency is 19.82 gHz .

One can infer the exact frequency of the source klystron by following the reasoning discussed below.

The second harmonic of the reference klystron's frequency is given by

$$
\begin{equation*}
\text { 2nd Harmonic (ref. klystron) }=2 \times 9.830 \mathrm{gHz}=19.660 \mathrm{gHz} . \tag{A-1}
\end{equation*}
$$

The beat notes resulting from mixing this second harmonic with all the harmonics of the transfer oscillator's output are

$$
\begin{align*}
& \text { Beatnotes }=19.660 \pm \mathrm{n}(0.133)=\left\{\begin{array}{c}
19.394 \\
19.527 \\
19.660 \\
19.793 \\
19.926 \\
\vdots
\end{array}\right. \text { ghz } \\
& \text { where } \mathrm{n} \text { is any positive integer. } \tag{A-2}
\end{align*}
$$

Since the source klystron is stabilized by a double phase-lock stabilization technique, the possible frequencies at which the source klystron can be locked are plus or minus 30 MHz from the frequencies given by equation $\mathrm{A}-2$:

Possible frequencies For Source Klystron

$$
=19.660 \pm \mathrm{n}(0.133) \pm .030= \begin{cases}19.364 & \\ 19.424 & \\ 19.497 \\ 19.567 & \\ 19.630 & \\ 19.690 & \mathrm{gHz} . \\ 19.763 & \\ 19.823 & \\ 19.896 & \\ 19.956 & \end{cases}
$$

The wavemeter reading of 19.82 gHz enables one to conclude that the source frequency is in fact 19.823 gHz .

APPENDIX B

ENUMERATION OF BASIS FUNCTIONS

ENUMERATION OF BASIS FUNCTIONS

The first set of basis functions considered in this thesis had the form:

$$
\left.\begin{array}{l}
\mathrm{U}(\mathrm{vJKM} \\
J
\end{array}, \mathrm{~m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right)=\Psi_{\mathrm{el}} \text { (ground state) }{ }^{\cdot \Psi_{\text {vib }}\left(\mathrm{v}=0 \text { or } 1 \psi_{\operatorname{rot}}\left(\mathrm{J}, \mathrm{~K}, \mathrm{M}_{J}\right){\underset{i=1}{3}}_{\prod_{i}}^{u_{i}\left(3 / 2 \mathrm{~m}_{\mathbf{i}}\right) .}\right.}
$$

For $\mathrm{J}=2$ there are 3200 distinct functions of this form. This fact becomes more apparent when one realizes that v can take on two values (0 or 1), that M_{J} and K each can take on 5 values $(-2,-1,0,1,2)$, and that each of the three m_{i} can take on four values $(-3 / 2,-1 / 2,1 / 2,3 / 2)$. Thus there are $2 \times 5^{2} \times 4^{3}=3200$ distinct basis functions for the $\mathrm{J}=2$ level.

For the $J=3$ level the only difference is that M_{J} and K each can take on 7 values ($-3,-2,-1,0,1,2,3$). However, basis functions for which K is ± 3 are not used since the selection rule on K for a transition from J to $J+1$ is $\Delta K=0$ and the $J=2$ level has no basis functions corresponding to $K=3$. Thus, it is only necessary to consider $2 \times 7 \times 5 \times 4^{3}=4480$ distinct basis functions for the $J=3$ levels.

The space spanned by the basis functions of the form given in equation B-1 is the same space that is spanned by the basis functions which are ultimately used in the calculation of the Hamiltonian matrix. Yet, one can note that the computer program PBRTAPE does not compute any $K=0$ levels or transitions.

There are two reasons why those levels and transitions are not computed:

1. The Stark splittings for the $K=0$ levels are small at the low values of electric field strength used and thus the $\mathrm{K}=0$ spectra in the Stark-field-on case and in the Stark-field-off case are essentially the same and the difference spectrum which is recorded is zero, and 2. PBRTAPE already takes one and one half hours to run with the transitions it does compute. The effect of ignoring the $\mathrm{K}=0$ spectrum is that only 2560 functions are needed to span the $J=2$ level and only 3584 functions to span the $J=3$ level.

APPENDIX C

TABLES

NEEDED FOR MATRIX ELEMENT CALCULATIONS

Table 3. The Permutation Group on Three Objects

Table 4. The Genealogical Coefficients

	${ }^{\text {A }} 1$			A_{2}	E_{1}				E_{2}			
L^{I}	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{9}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$
0				$\sqrt{\frac{1}{6}}$		$\pm \sqrt{\frac{5}{6}}$						
1	$-\sqrt{\frac{7}{10}}$	$\sqrt{\frac{8}{15}}$							± 1	$7 \sqrt{\frac{3}{10}}$	$7 \sqrt{\frac{7}{15}}$	
2				$\sqrt{\frac{5}{6}}$	± 1	$\pm \sqrt{\frac{1}{6}}$	± 1	± 1				
3	$\sqrt{\frac{3}{10}}$	$\sqrt{\frac{7}{15}}$	1							$7 \sqrt{\frac{7}{10}}$	$\pm \sqrt{\frac{8}{15}}$	∓ 1

Table 5. The Reduction Coefficients

$$
\begin{array}{ll}
\mathrm{C}\left(\mathrm{~A}^{(1)}, \frac{3}{2}, \frac{3}{2}\right)=\frac{3}{5} & \mathrm{C}\left(\mathrm{E}_{1}, \frac{5}{2}, \frac{5}{2}\right)=\frac{3 \sqrt{21}}{35} \\
\mathrm{C}\left(\mathrm{~A}^{(1)}, \frac{3}{2}, \frac{5}{2}\right)=\frac{4 \sqrt{6}}{5} & \mathrm{C}\left(\mathrm{E}_{1}, \frac{5}{2}, \frac{7}{2}\right)=\frac{36 \sqrt{7}}{35} \\
\mathrm{C}\left(\mathrm{~A}^{(1)}, \frac{5}{2}, \frac{5}{2}\right)=\frac{-\sqrt{21}}{10} & \mathrm{C}\left(\mathrm{E}_{1}, \frac{7}{2}, \frac{7}{2}\right)=\frac{3 \sqrt{42}}{7} \\
\mathrm{C}\left(\mathrm{~A}^{(1)}, \frac{5}{2}, \frac{9}{2}\right)=\frac{-3}{2} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{1}{2}, \frac{3}{2}\right)=\frac{-3 \sqrt{3}}{5} \\
\mathrm{C}(\mathrm{~A} \\
\left.\mathrm{C}), \frac{9}{2}, \frac{9}{2}\right)=\frac{-\sqrt{33}}{2} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{3}{2}, \frac{3}{2}\right)=\frac{3}{5} \\
\mathrm{C}(\mathrm{~A} \\
\left.(2), \frac{3}{2}, \frac{3}{2}\right)=-1 \\
\mathrm{C}\left(\mathrm{E}_{1}, \frac{1}{2}, \frac{3}{2}\right)=\frac{-\sqrt{3}}{5} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{1}{2}, \frac{5}{2}\right)=\frac{\sqrt{42}}{10} \\
\mathrm{C}\left(\mathrm{E}_{1}, \frac{3}{2}, \frac{3}{2}\right)=\frac{11}{5} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{3}{2}, \frac{5}{2}\right)=\frac{-9}{5} \\
\mathrm{C}\left(\mathrm{E}_{1}, \frac{1}{2}, \frac{5}{2}\right)=\frac{-3 \sqrt{42}}{10} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{3}{2}, \frac{7}{2}\right)=\frac{6 \sqrt{3}}{5} \\
\mathrm{C}\left(\mathrm{E}_{1}, \frac{3}{2}, \frac{5}{2}\right)=\frac{-3}{5} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{5}{2}, \frac{5}{2}\right)=\frac{-\sqrt{21}}{35} \\
\mathrm{C}\left(\mathrm{E}_{1}, \frac{3}{2}, \frac{7}{2}\right)=\frac{2 \sqrt{3}}{5} & \mathrm{C}\left(\mathrm{E}_{2}, \frac{5}{2}, \frac{7}{2}\right)=\frac{-12 \sqrt{7}}{35}
\end{array}
$$

APPENDIX D

PBRTAPE

COMPUTER PROGRAM

```
    aEgiN
QUADRUPOLE HYPFRFINE STRUCTURE AND STARK EFFECT FOR SYMMETRIC-TOP
mOLECulES NITH THREE IDENTICAL QUADRUDOLAR NUCLFI
CALCIILATES J=? TO J=3 SPFCTRUM WITH AND WITHOUT STARK FIELD,
PrESSURE GROADENS AND TAKES DIFFERENCE OF RESULTANT SPECTRA
INPIIT DATA CONSISTS OF CL-X-CL BOND ANGLE IN RADIANS, THE
QUADRUPDLE COUPLING CONSTANT EQQ IN MC/SEC, THE DIPOLE MOMENT IN
DFBYE, THE STARK FIFLD IN MC/SEC-DEBYE (I.E., (V/D]X.50348), ANN
THE LINE SIDTH PARAMETER IN MHZ. THE LINE WIDTH PARAMETER IS
THE HALF-HIDTH OF A SINGLE LINE AT HALF-MAXMIUM IN MHZ.
THIS PROGRAM REQUIRFS THREE DATA CARDS IN THE FOLLOWING ORDER:
CARD 1: PUT THE vAME AND CHEMICAI. FORMULA TF THE MOLECULE IN
    THE FIRST 36 SPACES.
CARD 2: USING FREE FIELD PUT IN ORDER THE FOLLOWING PARAMETERS:
        ALPHA1 (THE ROND ANGLE IN RADIANS), EQQ, MU, EFIELD,
        AND LWP (LINE WIDTH PARAMETER).
CARD 3: THIS CONSISTS OF ONE NUMBER AND A COMMA AND TELLS THE
        COMPUTER WHTCH OPTION IS REING USED. THE OPTIONS ARE AS
        FOLLOWS:
        WHAT = O MEANS NO CARD OUTPUT.
        WHAT =1 MEANS CARD DIITPUT FDR QUADRUPOLE SPECTRUM.
        WHAT = ? MEANS CARD DUTPUT FOR STARK SPECTRUM,
        WHAT = 3 MEANS CARD DUTPUT FOR COMRINED SPECTRUM.
        WHAT = A MEANS AN DUTPIJT DATA TAPE IS MADE.
A gRAPH OF the varinus spectra can be made by uSing the output
CARDS ON THE GRAOHING MACHINE.
THE DUTPUT DATA TADE CONTAINS:
NU[P1,PAR1], PEAKPP1,PAR11, NU1[PAR1], PEAK1[PAR1] -
I.E. ALL THE OUADQUOOLE PLUS STARK FRFQUENCIES AND INTENSTTIES
AND ALL THE QUADRIIPNLE FRFQUENCIES AND INTENSITIES.
    INTEGER PAR,N4,MINT,EXC,EXP7,P1,PAR1,F1L,MFL ; %
    INTEGER MF2,I1,IO,Q1,C1,MIN4,MPN3,EXP1,D,S,F3,EXPG,F1,F2,V1,V2,
        N,I,J,K,M,MIN1,N1,N2,N3,MF3,KQ,JQ,K1,JA,JB,KR,L, WHAT;
REAL SUMINTI,INTY,LNP,SUMINT,IQ1,FQ1,FQ2,MFQ; &
REAL MEF,TR1,TR2,MF22,F12,F22,112,SPLIT3,EQQ3,FREQ; %
```

00000100 00000200 00000300 00000400 00000500 00000600 00000700 00000800 00000900 00001000 00001100 00001200 00001300 00001400 00001500 00001600 00001700 00001800 00001900 00002000 00002100 00002200 00002300 00002400 00002500 00002600 00002700 00002800 00002900 00003000 00003100 00003200 00003300 00003400 00003500 00003600 00003700

```
OEAL SM1,J1,J2,J3,L1,L2,L3,M1,M2,M3,MU,EFIELD,TE3,TE4; % 00003800
REAL ALDHA1,ALP,SIMMI,DIPOLE,INT,SPLIT,T2,T3,TRA,TRD, 00003900
    SUMY2,SUMY2,SPROD,ITS,FREQ1,FREQ2,SPLIT2,EQQ % % 00004000
ALDHA A1, A2, A3, A4, A5, A63
00004100
ARRAY ALP2,BETA2T0:4,0:41,FACT[-10:21] %%
ARRAY B1[0:1,1:4.1:6,1:34],B2[0:1,1:4,1:7,1:44]PEGY1[0:34], 00004300
R[1:2,1:3,0:1,1:n.1:4,1:91,EGY2[0:44]; %
ARRAY NII,PEAK1[0:10001,E[1:2,1:3,0:1,1:4,1:9]; %
ARRAY A,Y,DG[0:45,0:45],PEAK,NIJ[1:8,1:900],SJSY[0:4,0:6,0:7]; %
ARRAY THJS[1:6,1:6,1:71%%
FILE IN CRR(2,10:;
FILE PBRTAPE 2(2.1023, SAVE 180);
FILE OUT LINE 16(2,15); %
FILE OUT PUNCH O(2,10);
LIST SNAFU (TRA,TRD,TRA-TRD),
        INP (N,FDR I & 1 STEP & UNTIL N DO
            FOR { : 1 STEP 1 UNTIL N DO A[I,JJ) ;
FORMAT IN LETTERS(GAG);
FORMAT OUT HEADINTC/"TRANSITIONS J=1,F=",I2,"/?,V=",I2,
" T0 J=2,F=",I2,"/?,V=",I2), %
    SUMINTF("SUM TF INTENSITIES = m, F10.4),%
MH("MATRIX FOR J=",I2," MF=",I2,N/2") , %
IL(/"TRANSITIONS J=3 + J=2 FOR MF=",I2,"/2 FOR K =", I1) , %
HEAD2("TRANSITIONS FROM J=2,K=2,F=",12,"/2 TO , J=3,K=2"),
    INT2(X4,F10.4,X7,F12.8,X9,F10.4),
PLOT(X10.2F20.4), %
MUE(/" DIPOLE MOMENT =",F5.2," DEBYE,ELECTRIC FIELD = ",F8.3,
" MC./(SEC-DEBYE), STARK VDLTAGE = =,F7.3%), &
QUADIC/" QUADRIJPNLE COUPLING CONSTANT EQQ m"F8.3,", BOND ANGLE"
" HAL-X-HAL =n,Fタ.?), &
NAME(/"DUADRUPILE SPECTRA FOR ", 6AG),
NAMES(/MQUADRUPDLE PLUS STARK INTERACTION SPECTRUM FOR ", GAG),
PBSHC" LWP =*,FG.3," MHZ."/),
00004200
00004300
00004300
00004700
00004800
00004900
00005000
00005100
00005200
00005300
    00005400
00004500
00004600
00005100
00005600
00005700
00005800
00005900
00006000
0000100
00006200
00006300
FIELD = ",F8.3, }\quad0000640
00006600
00006700
6800
00006800
00006900
PBSHC" LWP=",F6.3,"MMHZ"/), (1)
    "INTENSITY",
00007100
.00007200
    HEAD3(/X5,"J_? LEVEL",X10,"JNTENSITYn,X10,"SPLITTING IN MC"/),00007300
INTENSITY(X4,F10.4,X9,F10.4,X7,F12.6,X7,F12.8,16),$ 00007400
```

```
PLOT2(/X10,F7.3,3F20.4) , % 00007500
HEADIN2(/"TRANSITINNS 1=N,I2,",F=",I2,*/2,V=",12, 00007600
    " TO I=",I2,",F=",}2,"/2,V=n,i2), &
JH("TRANSITIONS J=",I3," Tח J=",I3,",K=",I3), %
PGSH2(/X9,"FREQUENCY",X9,"QUADRUPOLE",X13,"STARK",X11,
"QUADRUPOLE "/X11,"IN MC",X12,"SPECTRUM",X14,"SPECTRUM",X8,
"MINUS STARK") , %
EMITC/XO,"PROCESSTR TIME IS ",F1O.6," MIN, IO TIME IS ",
F10.6," MIN")3
FORMAT BUT CHECK ("YRA=",F13.4,X9,"TRD=",F13.4,X9,"DIFF=",F7.4),
00007700
00007800
00007900
000
00008400
EIG ("DEGENERATE EIGENVALUE--ORTHONORMALIZED VECTOR IS="),000008500
\etaATA ("INPUT MATRIX IS"), %
00008600
    PRS12(/"PRESSURE AROADENED SPECTRUM FOR J=1 T0 J=2 TRANSITIONS"),000008700
    PBS23(/MPRESSURF BROADENED SPECTRUM FOR J=2 TO J=3 TRANSITIONS"),00008800
                DGN ("DIAGONALIZED MATRIX IS") ; x
                                    00008900
FORMAT DIVTROC"IERS DENOMINATOR REACHED IN VECTOR CALCULATION" 00009000
"FOR J=",I3,"K=",I3,". VECTOR FOLLOWING IS INVALID") , & 00009100
EXDEGC"EXACT DEGENERACY FOR EIGENVALUE",I3,". SCHMIDT PROCESS"
00009200
" RREAKS DOWN") ; %
INTEGER PROCEDURE MIN2(P1,P2,P3,P4) ; %
00009300
00009400
    VALUE P1,P2,P3,P4 ; %
    INTEGFR P1,P2,P3,P4;%
00009500
00009600
    REGIN IF P1<P2 AND P1<P3 AND P1SP4 THEN MIN2&P1 ; % 00009700
            IF P2SP1 AND P2SP3 AND P2SP4 THEN MIN2&P2; % 00009800
            IF P3SP1 AND P3<P2 AND P3SP4 THEN MIN2&P3; * 00009900
            IF P4SP1 AND P4SP2 AND P4SP3 THEN MIN2&PA ; END :00010000
    REAL PROCEDURE FACACS); % CALCULATES FACTORIAL OF S
        00010100
    VALUE S ; INTEGER S ; %
        FACA&IF S<O THEN O ELSE IF S< 2 THEN 1 ELSE FACA(S-1)XS (00010300
    00010200
RESL PROCEDURE DEL(D1,D2,D3) ; %
    00010400
    VALJE D1,D2,D3 ; REAL D1,D2,D3 ; %
    00010500
    DEL + SQRTCFACT[D1+D?=D3]\timesFACT[DI-D2+D3]\timesFACT[-01+D2+D3]/
    00010600
    FACT(D1+02+D3+1]) ; %
    00010700
REAL PROCEDURE SIMMK(J1,J2,J3,Lq,L2,L3) ;
00010800
    VALIIE J1,J2,J3,L1,L?,L3 ; %
00010900
    REAL J1,J2,J3,L1,L2,L3; %
00011000
REGIN %
0011000
```

```
    SM1+0;MIN3+MIN2(J1+J2-J3,J1+L2-L3,L1+J2-L3,L1+L2-J3); % 00011200
    FOR K&O STEP 1 UNTIL MIN3 DO BEGIN %
    F3& FACT[K]\timesFACT[J1+J2=J3-K] % 00011400
    00011300
    xFACT[J1+L?-L3-K]\timesFACT[L1+J2-L3-K]\timesFACT[-J1-L1+J3+L3+K] % 00011500
    \timesFACT[=, 2-L2+J3+L 3+K]\timesFACT[L1+L2=J3-K]; % 00011600
    IF F3>0 THEN SMI&SM1 + (IF BOOLEAN(K) THEN - 1 ELSE 1) & 00011700
    SUMK & SM1 ; *
    ENO:
    REAL PROCEDURE SIXJ(J1,J2,J3,L1,L2,L3) ; x
q
CALCULATES WIGNER 6-.1 COEFFICIENTS
    VALIE J1,J2,J3,L1,L2,L3 ; %
    REAL J1,J2,J3,L.1,12,L3;%
    REGIN %
        FXP1 + J1+JP+L1+L? ; %
        IF ABS(JI+J?)\geqJ3 AND ABS(J1-J2)\leqJ3 THEN %
        SIXJ +(IF BחOLEAN(EXP1) THEN =1 ELSE 1) %
                            \timesDEL(J1,J2,J3)\timesDEL(L1,L2,J3)\timesDEL(J1,L2,L3)
        x SUMK(J1,J7,J3,L1,L2,L3)x DEL(L1,J2,L3) %
        ELSE SIXJ&0:%
    ENO: %
    REAL PROCEDURE S!IMK2(J1,J2,J3,M1,M2,M3);%
    VALJE J1,J2,J3,M1,M2,M3;%
    REAL J1,J2,J3,M1,M2,M3 ; %
    AEfIN %
        SM1+0;MIN3+MIN2(J1+J2-J3,J1-M1,J2+M2,100); %
        FOR K&0 STEP I UNTIL MIN3 DO BEGIN %
                F3+(FACT[K]\timesFACT[JI+J?-J3-K]xFACT[JI=M1-K1x
        FACT[,j2+M>-k]\timesFACT[J3=\2+M1+K]\timesFACT[J3-.J1-M2+K])
        $00014000
        IF F3>0 THEN SM1+SM1 + (IF BONLEAN(K) THEN wi ELSE 1)/F3; ENN;00014100
        SUMK2 & S\1 ; %
    FNn: %
    REAL PROCEOURE THRFEJ(J1,J2,J3,M1,M2,M3) ; %
* CALCULATES WIGNER 3*/ COEFFICIENTS
    VALIJE J1,J7,J3,M1,Mつ,M3;%
    REAL J1,J2,J3,M1,M2,M3; %
AEGIN%
```

```
            FXP1 & J1-J?-M.3:% 00014900
    IF M1+M2+M 3\not=0 THEN THREFJ&0 ELSE *
    THREEJ* (TF BODLEAN(EXP1) THEN - 1 ELSE 1) %
                    \timesSQRT(FACT[J1+J2-J3]\timesFACT[J1-J2+J3]%
    xFACT[-J1+J2+J3]\timesFACTTJ1+M1]\timesFACT[J1-M1] xFACT[J2+M2]
    \timesFACT[J2-M2] \FACT[J3+M3]\timesFACT[J3-M3]/FACT[J1+J2+J3+11)
    xSUMK2(J1,J2,J3,M1,M2,M3);%
    ENO: %
    REAL PROCEOURE QNP(J.F1,I1,I2.VI%K);
%
CALCULATES QUADRU->OLE INTERACTION MATRIX ELEMENT
    VALUE J,F1,II,T2,V1,K % %
    REAL J.FI.II,T2,V1,K ; %
        REGIN INTEGEQ EXP4,EXP5 ; %
        EXPA& 2 + 3/7 +J+F1 ; EXP5& J+V1+3 ; &
    IF K =1 THEN
```



```
            x(ALP2[(2\timesT1+1)/2,(2\timesI2+1)/2]\timesSQRT(2\timesJ+1)\times(3\timesK*2=J\times(J+1))
            XALP/SQRT((2)
            +(-1)*FXP5\timesBETA2[(2x11+1)/2g(2xI2+1)/2]\timesSQRT( 2xJ+1)
            xJx(J+1)x(ALP-1)/(2xSQRT((2xJ+3) x(2xJ+2) x 2xJx(2xJ-1)))) xFQQ
ELSF
        QDP4 (-1)*EXD4\timesSIXJ(2,J,J&F1,12,I1)\timesSQRT(5)
            xALP2[(2\timesT1+1)/2,(2\timesI2+1)/2]\timesSQRT(2\timesJ+1)\times(3\timesK*2-J\times(J+1))
            XALP/SQRT((2)
        END
REAL PROCEDURE STARK(J,JP,II:F1,F2,MF,K) ; &
% CALCULATES STARK EFFECT MATRIX ELEMENT
    VALUE J,II,F1,F2,MF,K.JP ; %
    REAL I,II,FI&FO,MF,K,JP ; %
    REGIN EXPG&F{+F2+II-MF-K;%
STARK+(IF BOOLEAN(EXP6) THEN - { ELSE 1)XTHREEJ(FI&I,F2.-MF%O&MF)
        XSQRY((2\timesFq+\) X(2\timesF2+1))\timesSIXJ(J&F1口II;F2,JP,1) %
    *SQRT((2xJ+1)\times(2\timesJP+1)) XTHREEJ(JPsJOIOK, =K,0)XMUXEFIELD ; %
    END : %
PRICEDURE CLEARA(A) ; %
ARRAY ATO,O1 ; %
BEGIN %
00014900 00015000 00015100 00015200 00015300 00015400 00015500 00015600 00015700 00015800 00015900 00016000 00016100 00016200 00016300 00016400 00016500 00016600 00016700 00016800 00016900 00017000 00017100
```

 FOR I&1 STED 1 UNTIL. 4 DN FOR J+1 STEP 1 UNTIL 4 NO ATI,JI+0;00018600
 END CLEARA:%% 00018700
 INTEGER PROCEDURE MIN(P1,P2); %
 VALUE P1,P2 ; %
 INTEGER P1,P2;*
 IF P1 < P2 THEN MIN + P1 ELSE %
 MIN + P% ; x
 PROCEDURE MATRIXORINT (N,M,A) ; %
 VALUE N,M ; %
 INTEGER NOM: %
 ARRAY A[0,0];%
 BEGIN %
 FBRMAT NUT FMT ("ROW",13.x2."CDL",I3.5F20.8); %
 INTEGER I.J.K : %
 LIST ROW (I,J,FOR K* I STEP I UNTIL MINI DO AEI,KY) ; %
FOR I \& 1 STEP I UNTIL N DO ; %
REGIN %
MIN1 + 5 ; %
J \& 1 WHILE J S M DO %
REGIN %
RITE (LINE,FMT,ROW);%
1 \& K ; %
MIN1 \& MIN(J+4,M) %
END *
ENO%
END MATRIXPRINT ; %
PROCEDURE EAGLE(N,A); %

* CONTROL PROCEDURE FGR EIGENVALUE AND EIGENVECTOR CALCULATION
VALUE N ; INTEGER N ; ARRAY A[0.0]; %
REGIN%
ARRAY REF[0:44:0:44]:X,GODF[0:44]; %
INTEGER ARRAY IORO:44,0:44]; *
FORMAT OUT GODFFC"VECTOR CHECK GY SUM OF PRODUCTS FOR ROW",I2,F12.8,
(4) ; %
LIST GOOFO (I,GOMFPII,K) ; %
LABEL TOM : }
\& CALL CAST A TAPE PROCEDURE AO16 FOR CALCULATING FIGENVALUES AND TOM: * 00022100

```
```

* EIGENVECTORS

\$\$ A A016
FDR I \& 2 STEP 1 UNTIL N DO %
FOR J \& 1 STEP 1 UNTIL I=1 DO A[I,J] \& A[J,I] \& \&
FOR I \& I STEP 1 INNTIL N DO FOR J \& 1 STEP 1 UNTIL N DO
BEGIN %
REF[I:I] \& A[I,J] ; %
IF I= J THEN [D[I,J] \& 1 % %
IF I \# d THEN ID[IgJ] \& 0 %
ENR;%
TRA \& 0.0 % %
FOR I \& STEP 1 UNTTL N DO %
TRA \& TRA + A[I,I] : %
* CALCIILATE EIGENVALUES AND EIGENVECTORS
JACOBI(I,N,A,DG); %
TRN+0.0;%
FOR I \& 1 STFP \& UNTIL N DO %
TRn \& TRD + A[I,I];%
\& CHECK INVARIANCE OF TRACE UNDER DIAGONAIITING TRANSFORMATION
IF ABS(TRA - TRD) > 10-6 THEN %
WRITE (LINE,CHECK,SNAF(U);%
* CHECK HOMDGENEITY CONDITION ON EIGENVECTORS
FOR K \& I STEP 1 UNTIL N DO BEGIN %
FOR I * STEP 1 UNTIL N DO %
AEGIN GOOF[I] * 0.0 ; \&
FOR J \& STEP 1 UNTILN DO \&
GODF[I]+GOOF[I]+(REF[I,J]=A[K,K]\timesID[I,J])\timesDG[J,K];\&
IF GחOF[T]>10-6 THFN %
WRITE(LINE,GOOFF,GOOFO)
EN\#:%
ENח ; %
END EAGLF:
WRTTE(LINE[NO]); \&
T2 -TIME(2); %
T3 \& TIME(3) ; %
READ (CRR, LETTERS, A1, A2, A3, A4, A5, A6);
```

00022300 00000000 99999999 00022400 00022500 00022600 00022700 00022800 00022900 00023000 00023100 00023200 00023300 00023400 00023500 00023600 00023700 00023800 00023900 00024000 00024100 00024200 00024300 00024400 00024500 00024600 00024700 00024800 00024900 00025000 00025100 00025200 00025300 00025400 00025500 00025600 00025700

```
 READ (CRR, /, ALPHA1, EQQ, MU, EFIELD, LWP); 00025800
 READ (CRR, /, WHAT); 00025900
 CLISE(CRR, RELEASE)3 00026000
 bEGIN REAL DUMMY1 ; %
* build factorial table
 FOR I&-10 STEP { UNTIL 20 DO FACT[IJ+FACACI); *
% BUILD TARLE OF REDUCTION COEFFICIENTS C(+) AND C(-)
 ALPP[4,4]+ SORT(42)/7; ALP2[3,4]+12xSART(7)/35; %
 ALP\[3,3]+SQRT(21)/35; ALP2[2,4]+4\timesSQRT(3)/5; %
 ALP2[2,3]+=6/5; ALP2[2,2]+7/5; ALP2[1,3]+-SQRT(42)/10;%
 ALP2[1,2]4-2\timesSQRT(3)/5; BETA2[4,4]+-2\timesSQRT(42)/7; %
 RETAL[7,4]&-2\timesALP2[3,4]; RETA2[3,3]4-2\timesALP2[3,3]; %
 RETA2[2,4]+2\timesSORT(3)/5; BETA2[2,3]+-3/5; RETA2[2,2]+=4/5
 BETAR[1,3]+2\timesSQRT(42)/10; BETAL[1,2]+-SQRT(3)/5; %
 FOR I+1 STEP 1 UNTIL 4 DO FOR L+1 STEP I UNTIL I OO %
 BEGIN ALPZ[IPLJHALPZ[L,II ; BETAZ[IPLJ&BETAZ[L,I] END ; s
 ALP + COS(ALPHA1);
 BIJILD TABLE OF WIGNER 6-J SYMBOLS
 FOR IQ1+1 STEP & UNTIL 4 DO FDR FQI+1 STEP I UNTIL 6 DO %
 FOR FQ2+1 STEP 1 UNTIL 7 DO IF ABS(FQ1-FQ2) \leq 1 THEN %
 SJSY[IQ1,FQ1,FQ2]&SIXJ(2, (2 FFQ1-1)/2,(2\timesIQ1-1)/2,(2XFQ2-1)/2,3,1)
* BIIILD TABLE OF WIGNFR 3-J SYMBOLS
 FOR MFQ+1 STEP 1 UNTIL 6 DO FDR FQ1+MFQ STEP 1 UNTIL 6 DO %
 FOR FQ2+MFQ STEP 1 UNTIL. 7 DD IF ABS(FQ1mFQ2) < 1 THEN %
 TH.IS[MFA,FQ1,FQ21+THREEJ((2\timesFQ1-1)/2,1,(2\timesFQ2-4)/2, %
 -(2\timesMFQ-1)/2,0,(}\times\mathrm{ MFQ-1)/2) ; %
 WRITE(LINE,NAMES,AY,A2,A3,A4,A5,A6); %
 WRITE(LINE,QUADI,EQQ,ALPHA1*57.2958) ; %
 PAR & O: SUMINT & O: %
* Calculate matrices for stark plus quadrupole interaction
 FOR KO+1,2 DO
 BEGIN FOR MF2+11 STEP =2 UNTIL 1 DO BEGIN
 FOR KI+1 STEP 1 UNTIL 34 DO EGY1[K1]+0 : %
 FOR K1+1 STEP 1 UNTIL 44 DO EGY2[K1]+0; *
FOR 11+1,2,3,4 DO FOR F1+1,2,3,4,5,6 DO FOR V1+0,1 DO FOR K1+1 %
 STEP 1 UNTIL 34 no q1[Y1,I1,F1,K1]+0 ; %
FOR I 1 +1,2,3,4 DO FOR F I +1,?,3,4,5,6 DO FOR v1+0,1 DO FOR K 1+1 %
```

```
 STEP 1 UNTIL 44 T0 B2[V1,II,F1,K11+0; % 00029500
 BEGIN FOR JQ+2,3 DT % 00029600
 QEGIN R1+C1+N+0:%
 FOR F1&2XJQ+7 STEP -2 UNTIL ABS(MF2) DO }
 BEGIN MIN4+MIN(T,F1+2XJQ); FOR II&MIN4 STEP -2 WHILE %
I 1\geqABS(F1-2xJQ) nO FOR VI+0,1 DO BEGIN C1&R1 ; R1+RI+1; %
 FOR F2&F1 STEP - O UNTIL ABS(MF2) DO BEGIN MIN3+MIN(7,F2+2\timesJQ)
 FOR I?& IF F?=F1 THEN II ELSE MIN3 STEP -2 WHILE %
I2>ABS(F2-2xJQ) OO FOR V2& IF F2=F1 AND I?#II THEN VI ELSE O STEP
 1 UNTIL 1 nत %
 AEGIN CI&C1+1; NH&C1; %
 IF F1-F2\leq2 AND II=12 AND V1\not=V2 THEN %
A[R1,C1]+STARK(JO,JQ,I 1/2,F1/2,F2/2,MF2/2,KQ) ELSE &
 IF F1=F2 AND V1=V2 THEN A[R1,C1]&QOP(JQ,F1/2,11/2,I2/2,V1,KQ)
 ELSE A[R1:C,1]&0; END END END END ; %
 EAGLE(N,A);%
% ASSIGN QUANTUM NIUMRFRS TO ENERGY EIGENVALUES ANO
% EIGENVECTOR COMPONENTS
 FOR K1+1 STEP 1 INTIL N DO %
 AEGIN I +0;FOR FI+2XJQ+7 STEP =2 UNTIL ARS(MF?) DO %
 BEGIN MIN4&MIN(T,F1+2XJQ); FIRRII&MIN4 STEP - 2 WHILE %
 II\geqABS(F1-2xJQ) DO FOR VI+0,1 DO BEGIN I+I+1; q
 TF JQ=2 THEN BEGYN BI[VI,(II+1)/2,(F1+1)/2,KI]+DG[I,KI]; %
 EGY1[KI]&A[K1,K1]:N1&N END; %
 IF JQ=3 THEN BEGTA B2[VI,(II+1)/2;(F1+1)/2,K1]+0G[I,K1]; %
 EGY2{K1J+A[K!,K1];N2+N END; %
 ENO END:%
 ENT END:%
* BEGINNING OF INTENSITY CALCULATION
 WRITE(LINE,IL,MF?,KO) & WRITE(LINE, IH, 2,3); x
 MFL+ABS((MF2+1)/つ) ; %
 MF22+MF2/2; %
JA&1; JR+2, FOR KI+1 STEP I UNTIL N1 DO FOR K2+1 STEP 1 UNTIL N2 NOOOO32700
REGIN SUMI&O; FOR F2&7 STEP - I UNTIL MFL DO %
 REGIN ITS*MIN(R,F2+1);
 F1L&(IF F2=MFL THEN F2 ELSE F2-1); &
 FOR F14ITS STEP -I UNTIL FIL DO %
```

```
 BEGIN MIN4+MTNO(4,F1+1,F2+?,20); %
 00033200
 F124(2\timesF1-1)/7;F22+(2\timesF2-1)/2; % 00033300
IF KR=1 THEN MEF+4\timesSQRT((2\timesF1\timesF2)/3)\timesTHJS[(MF2+1)/2,F1,F2] ELSE
MEF&m2\timesSQRT((5\timesF1\timesF2)/3)\timesTHJS[(MF2+1)/2,F1,F2];
 FOR II+MIN4 STEP - }
 WHILE II\geq1 A*D II\geqFI-I AND II\geqF2-2 DO }
REGIN I12&(2XI1-1)/2; &
```



```
 TR2&BLT, TBI+BI[VI,II,F1,K1];00033900
```



```
 BEGIN IF KQ=1 THEN EXP6+F1+F2+I12-MF22 ELSF
 EXP6+F1+F2+F12-MF22+1 ;
 SUMI + SUMI + TB1XTB2X(IF BOOLEAN(EXP6) THEN - ELSE 1) %
 XS ISY[I1,F1,F2]XMEF; %
END END END END END : %
 INT&SUMI*2; SPLIT* EGY2[K2]-EGYI[KI];PAR&PAR+1; %
SUMINT&SUMINT+INT : IF PAR S 900 THEN %
BEGIN PEAK[1,PAR,+TNT : NU[I,PAR]&SPLIT END ELSE IF PAR\leq1800 THEN
REGIN PEAK[2,PAR-900]&INT; NU[2,PAR-900]&SPLIT END ELSE
IF PAR < 2700 THFN *
BEGIN PEAK[3,PAR={900]+INT; NU[3,PAR-1800]+SPLIT ENO FLSE %
IF PAR < 2700 THFN &
BEGIN PFAK[3,PAR-1800]+INT; NUP3,PAR-1800]+SPLIT END ELSE %
IF PAR < 3600 THEN %
BEGIN PEAK[4,PAR=2700]&INT; NU[4,PAR=2700]+SPLIT END ELSE %
IF PAR < 4500 THFN %
BEGIN PEAK[5,PAR-3600]&INT; NU[5,PAR=3600]+SPLIT END ELSE *
IF PAR < 5400 THFN &
BEGIN PEAK[6;PAR-4500]4INT; NU[6&PAR-4500]&SPLIT END ELSE %
IF PAR < 6300 THFN %
BEGIN PFAK[7,PAR-5AO0]&INT; NU[7,PAR-5400]&SPLIT END ELSE &
BEGIN PEAK[8,PAR=6300}&INT ; NU[8,PAR-6300]+SPIIT END; %
 IF INT > 0.01 THEN %
 #RITE(LINE,INTENSITY,EGY1[K1T,EGY2[K2],SPLIT,INT,PAR); क
ENN:%
END END END ; }
WRITE(LINE[DBL!); ;
 WRTTE(LINE,SUMINTF,SUMINT);*
```

```
 MRITE(LINE,EMIT,(TTME(2)-T2)/3600,(TI4E(3)=T3)/3600): 00036900
 BEGIN REAL DUMMY? : q
 LAREL WORK ; %
 N3+1;FOR JQ&2,3 n0 %
 REGIN N3+ IF N3土2 THEN 1 ELSE 2 ; FOR KQ41,2,3 DO FOR F1+1 x 00037300
 STEP 1 UNTIL 9 DO FOR v1&0,1 DO FOR K1&1,2,3,4 DO FOR I141,2,3,4 00037400
 O0 %
 BEGIN E[N3,KQ,VI,K1,F1]+0; B[N3,KQ,VI,K1,I1,F11+0 % 00037600
 END ; FOR PAR1+1 STEP I UNTIL 1000 DO PEAKI[PARIIHNUI[PARI]&0 ; 00037700
 PAR1+0,%
 FOR KO&1 STEP 1 IJNTIL JQ DO FOR F1&2xJQ+7 STEP - 2 UNTIL 1 DO %
 FOR V1+0,1 DO v
 REGIN RI+C1+0 : CLEARA(A); MINI&MIN(7,F1+2xJQ) ; %
% BEGINNING OF CALCULATION FOR QUADRUPOLE INTERACTION ALONE
% CALCILATE MATRIX CORRESPONDING TO CURRENT VALUES OF J,K,F ANO V
 FOR II+MINI STEP =? WHILE II>1 AND II>FI-2xJO DO %
 BEGTN CI&RI; RI&RI+1; %
 FOR I2&II STEP -2 WHILE I2\geq1 AND I2\geqFI-2xJQ DO }
 BEGIN C1+C1+1 ; A[R1,C1]&QDP(JQ,F1/2,I1/7,I2/2,VI,KQ); %
 ENI : %
 END : *
 IF JQ#2 AND F1=1 THEN C1+2; %
 IF JO=3 AND F1=3 THEN C 1&3; %
 IF JQ=3 AND FI=1 THEN C1&2;%
```



```
 EAGLE(C1,A); FQR KI&1 STEP 1 UNTIL CI DO q
* ASSIGN QUANTUM NIMMAERS TD ALL EIGENVALUES AND EIGENVECTOR COMPONENTS
 BEGIN E[N3,K@,V1,K1,(F1+1)/2]&A[K1,K1] ; II& MINI +2 ; %
 FOR I+1 STEP 1 UNTIL CI DO %
 GFGINII+I1m?; BPN3,KQ,V1,K1,(I1+1)/2,(F1+1)/2]&DG[IOK1]
 ENN:%
 END :%
 ENO : %
SUMTNTI+0.0; %
IF JQ*2 THEN FOR KQ+1 STEP 1 UNTIL JQW1 DO % 00040300
BEGIN WRITE(LINETPAGEI) ; WRITE(LINE,NAME,A1,A2,A3,A4,A5,A6); % 00040400
WRITE(LINE,QUAD1,EQQ,ALPHA1\times57.2958);WRITF(LINE,JH,JQ=1,JQ,KQ);00040500
```

```
IF KQ =1 THEN WRITE(LIVE,IH,JQ-1,JQ) ELSE WRITE(LINE,HEAD3); 00040600
* CALCULATE INTENSITIES FOR ALL TRANSITIONS FROM J TO J+1 00040700
 EXC+IF JO=3 AND KQ=2 THEN 1 ELSE 0 ;00040800
 FOR F1+2\times(JQ-1)+7 STEP - 2 UNTIL I DO IF EXC\not=1 THEN % 00040000
 QEGIN F2+FI; x 00041000
 FOR V1+0,1 חn }
 BEGIN V2&IF VI=0 THEN I ELSE 0 ; %
 WRITE(LINE,HEADIN2,JQ-1,F1,V1,JQ,F2,V2); %
 FOR K 1 +1,2,3,4 DO FOR K 2+1,2,3,4 n0 %
 REGIN SUMI+0;FOR I*4 STEP - { UNTIL 1 DD *
 AEGIN EXP7+1+I+(F2+1)/2; N4+IF N3=1 THEN 2 ELSE; ; %
 SUMI+S|MI+B[N4,KQ,VI,K1,I,(F1+1)/2]%
 XB[N3,KQ,V2,K2,I,(F2+1)/2]\times(IF BOQLEAN(EXP7) THEN =1 %
 ELSE 1)\timesSJSY[I,(F1+1)/2,(F2+1)/2]; %
 ENN:%
 JNT&(F1+1)\times(F2+1)\timesSUMI*2\times(JQ\timesJQ-KQ KKQ)/(3\timesJQ); x
 TE3&E[N3,KQ,V2,K2, (F2+1)/2],TE4HE[N4,KQ,V1,K1,NF1+1)/2],00042100
 M, TE4+E(N4,KQ,V1,K1,(F1+1)/21;00042200
 SPLIT+TE3-TE4 ; %
 00042300
 IF INT\not=0 THEN BEGIN %
 PARI+PARI+1 ; NU1[PARI]+SPLIT ; PEAKI[PARI]+INT END; q
 SUMINTI+SUMINTI+INT;%
 IF INT>0.001 THEN %
 WRITE(LINE,INTENSITY,TE4,TE3,SPLIT,INT,PAR1);%
 ENT:%
 ENO:%
 IF F1=F2 THEN REGIN F?+FI+2; GD TO WORK END ;
 IF F1\not=1 AND F2\not=F1-2 THEN BEGIN F2+F1-2; GO TO WORK FND
 END ELSE BEGIN
 WRITE(LINF,HEAD2,F1); FOR K1+1,2,3,4 DO
 BEGIN INT+0:FOR F2+F1+2,F1,F1-2 DO IF F1#1 OR F2#F1-2 THFN
 BEGIN SUMI*O;FOR I*A STEP-1 UNTIL 1 DN
 GEGIN EXP7+2+I+(F2+1)/2
 INT+INT+ 2x(F1+1)\times(F2+1)\times(B[N4,KQ,0,K1,YD(F1+1)/2]
 x(-1)*EXP7\timesSIXj(JQ-1,F1/2,(2XI-1)/2,F2/2,jQg1))*2
 \times(JQ\timesJQ-K0\timesKQ)/(3\timesJQ);
 SPLIT&-E[N4,KO,0,K1,(F1+1)/2]
 ENn
```

```
 ENT
 WRITE(LINE,INT2,-SPLIT,INT,SPLIT);
```



```
 AR1+PAR1+1 ; NU1[PARI]&SPLIT ; PEAKI[PARI]+INT % %
 SUMINTI&SUMINTI+INT;*
 END
 ENO:
 WRTTE(LINE,EMIT,(TYME(2)-T2)/3600,(TTME(3)-T3)/3600);
 END END: &
* LOAD TAPE.
 IF WHAT = THEN BFGIN
 FOR PI&1 STEP 1 |NTIL & DO
 BEGIN
 WRITE(PBRTAPE,*,FOR PARI&I STEP 1 UNTIL 900 DO NU[P1,PARII);
 WRYTE(PARTAPF,*,FDR PAR1+1 STEP 1 UNTIL 900 DO PEAK[PI,PARIJ);
 END;
 WRITE(PRRTAPE,*,FOR PARI+1 STEP 1 UNTIL 1000 DN NUI[PAR1]);
 WRITE(PRRTAPE,*,FOR PARI&I STED I UNTIL 1000 DO PEAKI(PARII);
 END;
PRESSURE BROADEN ALL LINES ACCORDING TO THE VAN VLECK=WEISSKOPF 00046100
RELATION AND ADD TO GET THE RESULTANT SDECTRUM
 WRITE(LIINE,SUMINTF,SUMINTI);%
BEGIN ; %
WRITE(LINE,NAMES,A1,A2,A3,A4,A5,A6); %
WRITE(LINE,QUADI,EQQ,ALPHA1\times57.2958) ; %
WRITE(LINE,MUE,MH,EFIELD,EFIELON0.9554); NRITE(LINE,PBS23); %
WRITE(LINE,PBSH,LWD);
WRITE(LINE,PBSH2; ; %
FOR FREQ14-12.5 STEP 0.25 UNTIL 12.5 DO REGIN q
INT+0 FOR PAR&1 STEP 1 UNTIL 7000 DO %
AEGIN IF PAR SQON THEN REGIN P1&1; PARI&PAR END %
 ELSE IF PAR <1ת00 THEN AEGIN P1+2; PARI+PAR=900 END &
 ELSE IF PAR <2700 THEN BEGIN PI&3; PARI&PAR-1800 END %
 ELSE IF PAR <3K00 THEN BEGIN PI&4; PARI&PAR=ST00 END }
 ELSE IF PAR <4500 THEN REGIN P1+5 ; PARI+PAR-3600 END }
 ELSE IF PAR S5A00 THEN BEGIN P1+6; PAR1&PAR-4500 END %
 ELSE IF PAR <6,200 THEN REGIN PI&7 ; PARI&PAR45400 END &
 ELSE PEGIN PI&q : PARI&PAR-6300 ENN; %
300044300
 00044500
 00044600
 00044700
 00044800
 00044900
 00045000
 00045200
 00045300
 00045400
 00045500
 00045600
 00045700
 00045800
 00046
00046100
```





```
ENn : %
INT1&0;FOR PARI&I STED 1 UNTIL 1000 NO %
IF ARS(FREQ1NNUGTPAQII;<!0 THEN %
```



```
|RITE(LTNE,PI_BT2.FRES1,INTI口INT&INT&*TNT) ; %
IF WHAT = { THFN EEGIIV
WFITE(PHNCH, PLOT.50XFREO1,50\timesINTQ:O ENO;
IF WHAT = ? THEN BFGIN
MRTTE(PINCH,PLOT,5n\timesFRFO1,50\timesINT)& ENI):
IF WHAT = THFN RFGIN
WRTTE(PIINCH,PLOT.50\timesFREQ1&50\times(TNT1 * INT)); ENN;
FND:END:ENT;
&RTTE(LYNE,EMIT,(TY4F(?)-T?)/3600=(TY*F(3)-T3):3600);
FNT;END.
```

00048000
00048900 00048200 00048300 00048400 00048500 00048600 00048700 00048800 00048900 00049000 00049100
00049200
00049300
00049400 00049500

## APPENDIX E

PBRTAPE

THEORY OF OPERATION

## PBRTAPE

## THEORY OF OPERATION

PBRTAPE can be considered divided into three parts. Part one consists of declarations. This section is the longest because of the many procedures within it. The most important procedures are MIN2(P1, P2, P3, P4); MIN(P1, P2); QDP(J, F1, I1, I2, V1, K); STARK(J, JP, I1, I2, F1, MF, K); and EAGLE(N, A). MIN2 and MIN each have the value of their smallest argument. QDP and STARK each become the value of the matrix element corresponding to their arguments. EAGLE replaces the N -th order, real, symmetric matrix, A , with a diagonal matrix such that the elements $A(I, I), I=1,2, \ldots, N$ contain the eigenvalues of $A$ arranged in decreasing order of magnitude. The eigenvector associated with the Ith eigenvalue is stored in the I-th column of the matrix $\mathrm{DG}(\mathrm{I}, \mathrm{K})$. The other procedures are used in the calculation of the procedures discussed above.

Part two begins with the card saying, "WRITE(LINE [NO])," and continues up to the card saying, "PRESSURE BROADEN ALL LINES ACCORDING TO THE VAN VLECK-WEISSKOPF." In this section all relevant data is read into the program, matrix elements are computed, matrices diagonalized, and transition frequencies and intensities are computed for both the quadrupole interaction and the combined Stark and quadrupole interaction. An output tape containing this computed information is made if the appropriate option is exercised.

Part three takes the information computed in part two and computes three pressure broadened spectra: a quadrupole spectrum, a Stark and quadrupole
spectrum, and a difference spectrum.
The Program Segment shown in Figure 24 follows the same logic as part two in PBRTAPE, but is written so that its logic is more transparent. Note the pattern of calculation which this Program Segment follows: 1. A Hamiltonian submatrix is computed, 2. It is diagonalized, 3. The eigenvalues and corresponding eigenfunctions of this submatrix are determined and stored in appropriate arrays, 4. Steps $1-3$ are repeated for another Hamiltonian submatrix, and 5. The frequencies and intensities of all transitions between energy levels of the two submatrices are computed. This five step pattern of calculation occurs in other physical problems, and therefore the programming techniques are of general interest.

Referring to Figure 24 the relationship between computer variables in the program segment and physical quantities is depicted in Figure 25. In Figure 24, the second card sets the counting index, PAR, to zero. Card \#3 indicates which two Hamiltonian submatrices are going to be calculated - viz. the $\mathrm{J}=2, \mathrm{~K}=1$, $M_{F}=9 / 2$ submatrix and the $J=3, K=1, M_{F}=9 / 2$ submatrix. Card \#4 sets the row index, R 1 , the column index, C 1 , and the matrix size index, N , to zero.

Cards \#5-8 specify the values of the quantum numbers, $F, I$, and $v$ that are allowed in a given submatrix. Specifically, F must be in the range $\left[\mathrm{J}+7 / 2,\left|\mathrm{M}_{\mathrm{F}}\right|\right]$; I must be in the range [minimum of $\left.(7 / 2, \mathrm{~F}+\mathrm{J}),|\mathrm{F}-\mathrm{J}|\right]$; and v can take on values 0 and 1. Figure 26 shows the submatrix corresponding to $\mathrm{J}=2$, $K=1$, and $M_{F}=9 / 2$. Card \#9 causes the row index to be increased by 1 each time a different combination of the quantum numbers $F, I$, and $v$ is chosen in a matrix
element calculation.
Cards \#10-15 specify the allowed values that $\mathrm{F}^{\prime}, \mathrm{I}^{\prime}$, and $\mathrm{v}^{\prime}$ may have in a given submatrix. However, since the submatrices are symmetric, cards \#1015 only specify matrix elements which are on the diagonal or to the right of it. (See Figure 26.) Card \#16 increases the column index by 1 each time a different matrix element is computed in a row. Card \#16 also assigns the value C 1 to N . Thus, when the last matrix element, $A(N, N)$ is computed the computer variable N specifies the size of the matrix, $A$.

Cards \#17, 18 call a procedure, MATRIXELEMENT, to compute the matrix element corresponding to the current values of the quantum numbers $M_{F}$, $K, J, F, F^{\prime}, I, I^{\prime}, v$, and $v^{\prime}$. The value of this matrix element is assigned to the appropriate element in the matrix, $A(R 1, C 1)$.

Card \#23 calls on the EAGLE procedure. The function of this procedure has already been discussed. Cards \#24-43 store the eigenvalues and associated eigenvectors in arrays. For a $J=2$ submatrix, the eigenvalues are stored in the 1 dimensional array, EGY1 (K1) and the corresponding eigenvectors are stored in the four dimensional array $\mathrm{B} 1(\mathrm{~V} 1,(\mathrm{I} 1+1) / 2,(\mathrm{~F} 1+1) / 2, \mathrm{~K} 1)$. For a $\mathrm{J}=3$ submatrix, the eigenvector and eigenvector information are stored in EGY2 and B2 arrays. Figure 27 shows the form of the K1-th eigenvector.

Cards \#44-62 compute the frequencies and intensities of all transitions between the two submatrices. The energy splittings are given by card \#61 (SPLIT $\curvearrowleft$ EGY2[K] - EGY [K1]) and the intensities are given by card \#60 -- which is the computed values of equation III-23 for intensity.

The information computed in cards \#60 and 61 is stored in arrays by cards \#62-64. Card \#62 enumerates the transition whose frequency and intensity has been computed. Card \#63 puts the calculated intensity into an intensity array, PEAK. Card \#64 puts the calculated splitting into a frequency array, NU. PEAK and NU are two dimensional arrays because the largest size a one dimensional array can have is 1023 elements. Storage of more than this number of frequencies and intensities requires arrays of larger dimensionality.

The DIV, MOD construction used in the Program Segment is not used in PBRTAPE, but it could have been and the result would have been fewer cards. PAR DIV 1000 has the value PAR/ 1000 rounded down to the nearest lower integer. PAR MOD 1000 has the value [PAR PAR DIV 1000) x 1000]. Thus, for example [2543 DIV 1000, 2543 MOD 1000] $=[2,543]$.
BEGIN ..... 1.

    :
    PAR－0； ..... 2.
MF2－9；KQ－1；FØR JQ－2， 3 DØ BEGIN ..... 3.
$\mathrm{R} 1 \leftarrow \mathrm{C} 1 \leftarrow \mathrm{~N} \leftarrow \mathrm{O} ;$ ..... 4.
FØR F1 $\leftarrow 2 \mathrm{xJ} \mathrm{Q}+7$ STEP－ 2 UNTIL ABS（MF2）DO BEGIN ..... 5.
MIN 4 －MIN（7，F1＋ 2 x JQ ）； ..... 6.
FØR I 1 －MIN 4 STEP－ 2 WHILE I 1 2ABS（F1－2xJQ）Dめ ..... 7.
FOR V1－0，1 Dめ BEGIN ..... 8.
$\mathrm{C} 1-\mathrm{R} 1 ; \mathrm{R} 1-\mathrm{R} 1+1 ;$ ..... 9.
FØR F2 - F1 STEP－2 UNTIL ABS（MF2）DØ BEGIN ..... 10.
MIN3 $\leftarrow$ MIN（7，F2＋ $2 \times \mathrm{JQ}$ ）； ..... 11.
FøR I2 - IF F2＝F1 THEN I1 ELSE MIN 3 STEP ..... 12.
－2 WHILE I $2 \geq$ ABS（F2－2XJQ）D $\varnothing$ ..... 13.
FØR V2－IF F2＝F2 AND I1＝I2 THEN V1 ELSE O ..... 14.
STEP 1 UNTIL 1 DØ BEGIN ..... 15.
$\mathbf{C} 1 \leftarrow \mathbf{C} 1+1 ; \mathrm{N}-\mathrm{C} 1 ;$ ..... 16.
A［ R1，C1］－MATRIXELEMENT（MF2／2，KQ，J， ..... 17.
F1／2，F2／2，I1／2，I2／2，V1，V2）； ..... 18.
END； ..... 19.
END； ..... 20.
END； ..... 21.
END； ..... 22.
EAGLE（N，A）； ..... 23.
FØR K1 $\leftarrow 1$ STEP 1 UNTIL N DØ BEGIN ..... 24.
$\mathrm{I} \leftarrow \mathrm{O}$ ； ..... 25.
FめR F1 $1 \leftarrow 2 \times \mathrm{x}$ J +7 STEP－ 2 UNTIL ABS（MF2）D $\emptyset$ BEGIN ..... 26.
MIN 4 －MIN（7，F1＋ $2 \times \mathrm{JQ}$ ）； ..... 27.
FØR I1 $\leftarrow$ MIN4 STEP－2 WHILE I $1 \geq$ ABS（F1－2xJQ）D $\varnothing$ ..... 28.
FØR V1 คO， 1 DØ BEGIN ..... 29.
$\mathrm{I} \leftarrow \mathrm{I}+1$ ..... 30.
IF JQ $=2$ THEN BEGIN ..... 31.
$\mathrm{B} 1[\mathrm{~V} 1,(1+1) / 2,(\mathrm{~F} 1+1) / 2, \mathrm{~K} 1] \leftarrow \mathrm{DG}[\mathrm{I}, \mathrm{K} 1]$ ； ..... 32.
EGY1［ K1］－A［K1，K1］； ..... 33.
$\mathrm{N} 1 \leftarrow \mathrm{~N}$ ； ..... 34.
END； ..... 35.
IF $\mathrm{JQ}=3$ THEN BEGIN ..... 36.
B2［ V1，（I $1+1) / 2,(\mathrm{I} 1+1) / 2, \mathrm{~K} 1] \leftarrow \mathrm{DG}[\mathrm{I}, \mathrm{K} 1]$ ； ..... 37.
EGY2［ K1］\＆A［K1，K1］； ..... 38.
$\mathrm{N} 2 \leftarrow \mathrm{~N}$ ..... 39.
END； ..... 40.
END； ..... 41.
END； ..... 42.
END； ..... 43.
FめR K1ヶ1 STEP 1 UNTIL N1 Dめ ..... 44.
FØR K2－1 STEP 1 UNTIL N2 D $\emptyset$ BEGIN ..... 45.
SUM I－O； ..... 46.
FOR F2－（2x $3+7)$ STEP－ 2 UNTIL ABS（MF2）D $\varnothing$ ..... 47.
FめR F1－（2 x 2＋7）STEP－ 2 UNTIL ABS（MF2）D $\varnothing$ BEGIN ..... 48.
MIN 4 －MIN 2 （ 7, F1 $+2 \times 2$, F2 $+2 \times 3,20$ ）； ..... 49.
FØR I 1 －MIN 4 STEP－ 2 WHILE I $1 \geq$ ABS（F1－2 x 2） ..... 50.
ANDI1 $\geq$ ABS（F2－2×3）D $\varnothing$ ..... 51.
FØR V1－0， 1 DØ BEGIN ..... 52.
V2－IF V1＝O THEN 1 ELSE O； ..... 53.
$\mathrm{TB} 1 \leftarrow \mathrm{~B} 1[\mathrm{~V} 1,(\mathrm{I} 1+1) / 2,(\mathrm{~F} 1+1) / 2, \mathrm{~K} 1] ;$ ..... 54.
$\mathrm{TB} 2 \leftarrow \mathrm{~B} 2[\mathrm{~V} 2,(\mathrm{I} 1+1) / 2, \quad(\mathrm{~F} 2+1) / 2, \quad \mathrm{~K} 2] ;$ ..... 55.
SUM I－SUM I＋TB1 x TB2 x D［V1，V2，KQ， ..... 56.
MF2／2，F1／2，F2／2，I 1］； ..... 57.

Figure 24．Program Segment（Continued）．
END; ..... 58.
END; ..... 59.
INT $\leftarrow$ SUM I* 2; ..... 60.
SPLIT -EGY 2 [ K2] - EGY 1[K1] ; ..... 61.
PAR $\leftarrow \mathrm{PAR}+1$; ..... 62.
PEAK [ PAR DIV 1000, PAR MOD 1000] -INT; ..... 63.
NU [ PAR DIV 1000, PAR MOD 1000] - SPLIT; ..... 64.
IF I NT $\geq 0.01$ THEN WRITE (LINE, SOMETHING, SPLIT, INT, PAR); ..... 65.
END; ..... 66.
END; ..... 67.
:END.68.

1. PAR = an index used to enumerate each transition.
2. MF2 $=2 \times M_{F}$, where $M_{F}$ is the azimuthal quantum number.
3. $K Q=K$, where $K$ is the quantum number specifying the projection of angular momentum along the molecular z axis.
4. $J Q=J$, the rotational quantum number.
5. $R 1, C 1=$ the row and column indice of the array $A[R 1, C 1]$.
6. $\mathrm{N}=$ the size of the NxN matrix $\mathrm{A}[\mathrm{R} 1, \mathrm{C} 1]$.
7. F1 = twice the quantum number $F$.
8. I 1 = twice the quantum number I .
9. V 1 = the quantum number V .
10. F 2 = twice the quantum number F .
11. I 2 = twice the quantum number I .
12. V 2 = the quantum number V .
13. I = an integer used to locate the eigenvector column in DG [I, K1] corresponding to the eigenvalue $\mathrm{A}[\mathrm{I}, \mathrm{I}]$.
14. $\mathrm{K} 1=$ counting index for $\mathrm{J}=2$ eigenvalue.
15. K2 = counting index for $J=3$ eigenvalue.
16. $\mathrm{N} 1=$ total number of $\mathrm{J}=2$ eigenvalues.
17. N2 $=$ total number of $J=3$ eigenvalues.

Figure 25. Computer Variables and Associated
18. TB1, TB2 = temporary storage for B1 $\ldots$ and B2 ... , results in
faster evaluation of arithmetic expression in cards \#56,57.
19. SUM I = temporary storage for a real variable.
20. INT $=$ intensity of a transition being considered.
21. SPLIT $=$ frequency of a transition being considered.

Figure 25. Computer Variables and Associated
Physical Quantities (Concluded)

|  |  | F | $=11 / 2$ | 11/2 | 9/2 | 9/2 | 9/2 | 9/2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | I | $=7 / 2$ | 7/2 | 7/2 | 7/2 | 5/2 | 5/2 |
|  |  | V | $=0$ | 1 | 0 | 1 | 0 | 1 |
| F | I | V |  |  |  |  |  |  |
| 11/2 | 7/2 | 0 | \| $A$ [1, 1] | A [1, 2] | A $[1,3]$ | A $[1,4]$ | A $[1,5]$ | A[1,6] |
| 11/2 | 7/2 | 1 | - | A 2,2$]$ | A $[2,3]$ | A $[2,4]$ | $\mathrm{A}[2,5]$ | $\mathrm{A}[2,6]$ |
| 9/2 | 7/2 | 0 | - | - | $\mathrm{A}[3,3]$ | A $[3,4]$ | A $[3,5]$ | A $[3,6]$ |
| 9/2 | 7/2 | 1 | - | - | - | A $[4,4]$ | A 4,5$]$ | A $[4,6]$ |
| 9/2 | 5/2 | 0 | - | - | - | - | A $[5,5]$ | A $[5,6]$ |
| 9/2 | 5/2 | 1 | - | - | - | - | - | A $[6,6]$ |

Figure 26. The $J=2, M_{F}=9 / 2, K=1$ Submatrix.

EIGENVECTOR (corresponding to K1-th eigenvalue) =

$$
\begin{aligned}
& \mathrm{B} 1[0,4,6, \mathrm{~K} 1] \mathrm{u}(11 / 2,7 / 2,0)+\mathrm{B} 1[1,4,6, \mathrm{~K} 1] \mathrm{u}(11 / 2,7 / 2,1) \\
& +\mathrm{B} 1[0,4,5, \mathrm{~K} 1] \mathrm{u}(9 / 2,7 / 2,0)+\mathrm{B} 1[1,4,5, \mathrm{~K} 1] \mathrm{u}(9 / 2,7 / 2,1) \\
& +\mathrm{B} 1[0,4,5, \mathrm{~K} 1] \mathrm{u}(9 / 2,5 / 2,0)+\mathrm{B} 1[1,3,5, \mathrm{~K} 1] \mathrm{u}(9 / 2,5 / 2,1) \\
& \text { where } \mathrm{u}=\mathrm{u}(\mathrm{~F}, \mathrm{I}, \mathrm{v}) .
\end{aligned}
$$

Figure 27. Form of Eigenvector Corresponding to K1-th Eigenvalue of the $J=2, K=1, M_{F}=9 / 2$ Submatrix.

## LITERATURE CITED

1. A. A. Wolf, Ph.D. Thesis, Georgia Institute of Technology (1966).
2. C. R. Nave, Ph.D. Thesis, Georgia Institute of Technology (1966).
3. K. K. Svidzinski, "Theory of the Hyperfine Structure in the Rotational Spectra of Molecules," Soviet Maser Research, ed. D. V. Skobel'tsyn (Consultants Bureau, New York, 1964).
4. A. L. McClellan, Tables of Experimental Dipole Moments (W. H. Freeman and Company, San Francisco and London, 1963), p. 37.
5. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill Book Co., Inc., New York, 1955), p. 268.
6. J. H. N. Loubser, J. Chem. Phys. 36, 2808 (1962).
7. M. Jen and D. R. Lide, Jr., J. Chem. Phys. 36, 2525 (1962).
8. P. N. Wolfe, J. Chem. Phys. 25, 976 (1956).
9. M. W. Long, J. Chem. Phys. $\underline{33}$, 508 (1960).
10. A. A. Wolf, J. Chem. Phys. 47, 5101 (1967).
11. L. Clayton, Ph.D. Thesis, Georgia Institute of Technology (1961).
12. M. W. Long, Ph.D. Thesis, Georgia Institute of Technology (1959).
13. C. R. Nave, op cit. , p. 49.
14. A. Narath and W. D. Gwinn, The Review of Scientific Instruments 33, 79 (1962).
15. C. R. Nave, op. cit., p 13 ff .
16. A. R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton University Press, Princeton 1960), p. 72 and 115.
17. A. A. Wolf, J. Chem. Phys. 47, 5102 (1967).
18. Svidzinski, op. cit., p. 112.
19. A. A. Wolf, op. cit., p. 5103.
20. Manuel Rotenberg, R. Bivens, N. Metropolis, John K. Wooten Jr., The $3-\mathrm{j}$ and $6-\mathrm{j}$ symbols (The Technology Press. Massachusetts Institute of Technology, Cambridge, Mass. 1959).
21. M. Hammermesh, Group Theory and Its Applications to Physical Problems (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962), p. 161.
22. A. A. Wolf, op. cit., p. 5104.
23. A. A. Wolf, op. cit., p. 5104.
24. A. A. Wolf, Ph.D. Thesis, Georgia Institute of Technology (1966), p. 54.
25. A. A. Wolf, op. cit., p. 58.
26. C. R. Nave, op. cit., p. 44.
27. C. R. Nave, op. cit., p. 48.
28. C. H. Townes and A. L. Schawlow, op. cit., p. 96.
29. C. R. Nave, op. cit., p. 55.
30. C. R. Nave, op. cit., p. 54.
31. A. A. Wolf, Ph.D. Thesis, Georgia Institute of Technology (1966), p. 81.
32. A. A. Wolf, op. cit., p. 75.
33. C. H. Townes and A. L. Schawlow, op. cit., pp. 338-348.

## VITA

Philip Benton Reinhart was born on March 17, 1939 in Philadelphia, Pennsylvania. He graduated from the Taft School in Watertown, Connecticut in 1957. He received the Bachelor of Science degree in 1961 and the Master of Science degree in 1963 from Yale University in physics.

He has been a physics instructor at Agnes Scott College since the fall of 1963. At Georgia Institute of Technology as a full or part time student since 1964, he received a National Science Foundation Science Faculty Fellowship for graduate study from June 1967 to June 1968 and has been on leave from Agnes Scott College for that period.

In September, 1968 Mr. Reinhart returns to Agnes Scott College as an Assistant Professor in Physics.

