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The research proposed in Reference [1] consisted of the development 

of a viscous-inviscid interactive calculation procedure for flow in cascades 

of two dimensional airfoils. This research effort can be divided into four 

components for the purpose of discussion: 

1. The development of a grid generation scheme suitable for the numer-

ical solution of flow in airfoil cascades of arbitrary shape. 

2. The application of a marching finite difference calculation proce-

dure to the analysis of the compressible turbulent flow in blade boundary 

layer and wake regions. 

3. The application of a time marching finite difference calculation of 

the Beam and Warming type [2] to the inviscid, rotational analysis of flow in 

a cascade. 

4. The development of an interactive procedure for coupling the numer-

ical calculations described in (2) and (3). 

A description follows of the progress which has been achieved to date 

on each of these four components. 

Grid Generation  

It was originally envisioned [1] that the grid generation method of 

Thompson et al.[3], perhaps modified to some degree, would be used in this 

work. However, a highly satisfactory grid generation scheme for airfoil 

cascades developed by Dr. Peter Sockol at NASA Lewis Research Center, has 

been made available to this investigator, and this scheme is not of the type 

described by Thompson et al. The interactive calculation is currently pro-

grammed to accept the output from Dr. Sockol's code. 
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Viscous Marching Calculation  

A compressible, viscous marching calculation has been programmed which 

employs the Keller Box method [4] and which is capable of dealing with the 

blade boundary layer on either the pressure surface or the suction surface, 

and of proceeding from there directly into the blade wake. This calculation 

procedure for the viscous shear layers has been verified in its present lami- 

nar form for the test case of a shear layer (boundary layer and wake) generated 

by a flat plate aligned with an oncoming stream of air. The calculation was 

tested successfully over a wide range of air velocities, and this coding has 

now been incorporated into the total interactive program, with provisions for 

the subsequent addition of turbulence modeling. 

A significant portion of the effort expended to date on this research 

has been devoted to the incorporation of turbulence modeling into the viscous 

marching calculation. It was originally proposed that the turbulence modeling 

of Cebeci and Smith [5] would be used in viscous shear layers; however, the 

attempts made towards that end have proved unsuccessful to this point. The 

author has been unable to obtain a tubulent calculation procedure of sufficient 

reliability for both boundary layer and wake regions, in spite of several modi-

fications and precautions taken, including: 

1. The introduction of transition modeling (as described in Reference [5] ) 

into the calculation. 

2. The use of special turbulence modeling (see Reference [6])for the near 

wake region. 

3. Careful attention to the stepsize requirements of the Keller Box scheme 

in regions where rapid changes in the flow occur (e.g. in the vicinity of the 

trailing edge). 
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Since a reliable laminar marching calculation has been developed which 

enables the author to proceed with the investigation of other components of 

the interactive calculation package, further investigation of the turbulence 

modeling has been deferred until a later date. 

Inviscid Calculation  

A numerical solution of the Euler equations for a non-orthogonal curvi-

linear grid mesh has been programmed. Steger's approach [7] is followed in 

this solution, as was originally proposed, with the exception that calculation 

procedure receives geometry related information from Dr. Sockol's code. This 

component of the interactive calculation package is the current focus of the 

research effort, and is in the debugging stage at present. 

Interactive Procedure  

An interactive calculation scheme, in which the inviscid solution and the 

viscous shear layer solution provide mutual adjustments, has been programmed. 

This scheme has been altered from the form originally proposed in that the 

viscous and inviscid solutions do not proceed simultaneously, but instead 

follow one another in an iterative cycle. It is anticipated that this compo-

nent will enter the debugging and investigation stage upon completion of the 

inviscid calculation phase; hence, attention will be given the viscous-inviscid 

interaction prior to further consideration of the turbulence modeling. 
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The research proposed in Reference [1] consisted of the development 

of a viscous-inviscid interactive calculation procedure for flow in cascades 

of two dimensional airfoils. This research effort can be divided into four 

components for the purpose of discussion: 

1. The development of a grid generation scheme suitable for the numer-

ical solution of flow in airfoil cascades of arbitrary shape. 

2. The application of a marching finite difference calculation proce-

dure to the analysis of the compressible, turbulent flow in blade boundary 

layer and wake regions. 

3. The application of a time marching finite difference calculation of 

the Beam and Warming type [2] to the inviscid, rotational analysis of flaw in 

a cascade. 

4. The development of an interactive procedure for coupling the numer-

ical calculations described in (2) and (3). 

A description follows of the progress which has been achieved to date 

on each of these four components. 

Grid Generation  

It was originally envisioned [1] that the grid generation method of 

Thompson et al. [3], perhaps modified to some degree, would be used in this 

work. However, a highly satisfactory grid generation scheme for airfoil 

cascades developed by Dr. Peter Sockol at NASA Lewis Research Center, has 

been made available to this investigator, and this scheme is not of the type 

described by Thompson et al. The interactive caluclation is currently pro-

grammed to accept the output from Dr. Sockol's code. 
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Viscous Marching Calculation  

A compressible, viscous marching calculation has been programmed which 

employs the Keller Box method [4] and which is capable of dealing with the 

blade boundary layer on either the pressure surface or the suction surface, 

and of proceeding from there directly into the blade wake. This calculation 

procedure for the viscous shear layers has been verified in its present lami-

nar form for the test case of a shear layer (boundary layer and wake) gener-

ated by a flat plate aligned with an oncoming stream of air. The calculation 

was tested successfully over a wide range of air velocities, and this coding 

has now been incorporated into the total interactive program, with provisions 

for the subsequent addition of turbulence modeling. 

A significant protion of the effort expended to date on this research 

has been devoted to the incorporation of turbulence modeling into the viscous 

marching calculation. It was originally proposed that the turbulence modeling 

of Cebeci and Smith [5] would be used in viscous shear layers; however, the 

attempts made towards that end have proved unsuccessful to this point. The 

author has been unable to obtain a turbulent calculation procedure of suffi-

cient reliability for both boundary layer and wake regions, in spite of 

several modifications and precautions taken, including: 

1. The introduction of transition modeling (as described in Reference 

[5]) into the calculation. 

2. The use of special turbulence modeling (see Reference [6]) for the 

near wake region. 

3. Careful attention to the stepsize requirements of the Keller Box 

scheme in regions where rapid changes in the flow occur (e.g. in the vicinity 

of the trailing edge). 
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Since a reliable laminar marching calculation has been developed which 

enables the author to proceed with the investigation of other components 

of the interactive calculation package, further investigation of the turbu-

lence modeling has been deferred until a later date. 

Inviscid Calculation 

The numerical solution of the Euler equations on anon-orthogonal 

curvilinear grid mesh is the component of this research effort on which 

attention is currently focused. A calculation for inviscid flow in cas-

cades has been coded, which is an adaption of the method used by Steger 

[7] in treating flow about isolated airfoils. A noteworthy difference 

between the calculation described by Steger and the present calculation 

for flow in cascades is in the grid generation methods used; a coordinate 

system and grid mesh for the cascade is obtained from Dr. Sockol's code. 

At present, the Fortran program which performs the inviscid calculation 

is undergoing debugging and modification. Originally this time marching 

finite difference calculation was programmed to use the Beam and Warming 

algorithm of Reference [2]. (In this version of the Beam and Warming time 

marching algorithm, the flowfield is updated by directly solving for the 

independent variables in the equations of motion.) However, the program 

has been modified and currently uses a time marching algorithm of the "delta 

form" type [8]. (In this version of the Beam and Warming time marching 

algorithm, the flowfield is updated by solving for incremental changes of 

the independent variables.) Euler implicit time differencing (see [8]) is 

presently used in the program. The boundary conditions used in this calcu-

lation are largely the same as those described in the original proposal with 

certain exceptions. As this portion of the coding has not yet reached a 
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final form, it would be pointless to delineate the changes which have been 

made in this area since further modifications are expected. It is also 

possible that the mesh generation technique will undergo some alterations, 

which could result in additional changes in the treatment of boundary condi-

tions. One feature of the present treatment of the blade surface boundary 

which does not appear in the original proposal will be mentioned, as it is 

likely to retain its present form. A blade surface pressure distribution 

is obtained by a method suggested in [7]; in this approach the pressure 

along the surface is obtained by solving a tridiagonal system of equations 

which results from differencing a normal momentum equation. 

Interactive Procedure  

An interactive calculation shceme, in which the inviscid solution and 

the viscous shear layer solution provide mutual adjustments, has been pro-

grammed. This scheme has been altered from the form originally proposed 

in that the viscous and inviscid solutions do not proceed simultaneously, 

but instead follow one another in an iterative cycle. It is anticipated 

that this component will enter the debugging and investigation stage upon 

completion of the inviscid calculation phase; hence, attention will be 

given the viscous-inviscid interation prior to further consideration of 

the turbulence modeling. 
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The research proposed in References [1] and [2] consisted of the 

development of a viscous-inviscid interactive calculation procedure for 

subsonic flow in cascades of two dimensional airfoils. This research 

effort can be divided into three components for the purpose of discussion; 

first, a time marching finite difference calculation for rotational 

inviscid flow which would be capable of dealing with an arbitrarily 

specified cascade geometry; second, a viscous marching finite difference 

calculation for boundary layer and wake regions; finally, an interactive 

scheme through which the separate viscous and inviscid calculations could 

communicate and provide mutual corrections. An interactive approach to 

the simulation of viscous flow in cascades was suggested, as it was felt 

that this was the most efficient method of including viscous effects 

within the calculation. A description follows of the progress which has 

been achieved to date on each of these three components. 

Inviscid Solution  

The inviscid solution consists of an implicit time marching solution 

of the Euler equations, using an algorithm of the Beam and Warming type 

[3], on a non-orthogonal curvilinear grid mesh. A grid generation scheme 

suitable for cascade geometries has been developed by Dr. Peter Sockol at 

NASA Lewis Research Center, and the inviscid calculation is currently 

programmed to accept the output from Dr. Sockol's code. This inviscid 

calculation uses the Beam and Warming algorithm in the "delta form" with 

Euler implicit time differencing (see [4]), and is similar to the method 

used by Steger [5] to treat flow about isolated airfoils. Artificial 

dissipation terms have been added to the basic algorithm in both an 
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implicit and explicit manner, as suggested in [5]. 

Grid systems for two test cases have been supplied to this 

investigator by Dr. Sockol; an unstaggered cascade of symmetric 

airfoils, and a staggered cascade of cambered airfoils. Work on 

the inviscid portion of the calculation has been focused in recent 

months on the unstaggered cascade case. Inviscid solutions have 

been obtained which exhibit the characteristics expected in this 

relatively simple test case; however, these solutions also appear 

to suffer from small but noticeable numerical inaccuracies in the 

trailing edge region, and from disappointing rates of convergence. 

These difficulties have persisted in spite of the implementation of 

non-reflecting boundary conditions at the inflow and exit boundries 

(see for example [6]). Further modifications to the inviscid solution 

are anticipated. 

Viscous Solution  

A compressible, viscous marching calculation has been programmed 

which employs the Keller Box method [7] and which is capable of dealing 

with the blade boundary layer on either the pressure surface or the 

suction surface, and of proceeding from there directly into the blade 

wake. This calculation procedure for the viscous shear layers has been 

verified in its present laminar form for the test case of a shear layer 

(boundary layer and wake) generated by a flat plate aligned with an on-

coming stream of air. The calculation was tested successfully over a 

wide range of air velocities, and this coding is currently incorporated 

within the total interactive program, with provisions for the subsequent 

2 



addition of turbulence modeling. 

A significant amount of effort has been devoted to the incorpora-

tion of turbulence modeling into the viscous marching calculation. It 

was originally proposed that the turbulence modeling of Cebeci and 

Smith [8] would be used in viscous shear layers; however, the attempts 

made towards that end have proved unsuccessful to this point. The author 

has been unable to obtain a turbulent calculation procedure of sufficient 

reliability for both boundary layer and wake regions, in spite of several 

modifications and precautions taken, including: 

1. The introduction of transition modeling (as described in Reference 

[8]) into the calculation. 

2. The use of special turbulence modeling (see Reference [9]) for 

the near wake region. 

3. Careful attention to the stepsize requirements of the Keller 

Box scheme in regions where rapid changes in the flow occur (e.g., in the 

vicinity of the trailing edge). 

Since a reliable turbulent calculation is crucial to the success 

of the interactive procedure, and since it was deemed desirable to retain 

the turbulence modeling of Cebeci and Smith within the marching calculation, 

an investigation of a possible replacement for the Keller Box algorithm 

has been initiated. This investigation is currently focused on a viscous 

marching algorithm similar to one described in Reference [10]. Previous 

experience which this researcher has had with the algorithm of Reference 

[10] (see [11]), indicates that a viscous marching calculation which is 

less "sensitive" but more reliable, might be obtained through this approach. 
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Interactive Procedure  

An interactive calculation scheme, in which the inviscid solution 

and the viscous shear layer solution provide mutual adjustments, has 

been programmed. This scheme has been altered from the form originally 

proposed in that the viscous and inviscid solutions do not proceed 

simultaneously, but instead follow one another in an iterative cycle. 

It is anticipated that this component of the calculation will enter the 

investigation stage upon completion of the current efforts to obtain a 

more reliable viscous marching calculation. 
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The research proposed in References [1] and [2] consisted of the develop-

ment of a viscous-inviscid interactive procedure for subsonic flow in cascades 

of two dimensional airfoils. This research effort can be divided into three 

components for the purpose of discussion: first, a time marching calculation 

for rotational inviscid flow which would be capable of dealing with an arbi-

trarily specified cascade geometry; second, a viscous marching calculation for 

boundary layer and wake regions which would be a finite difference procedure; 

finally, an interactive scheme through which the separate viscous and inviscid 

calculations could communicate and provide mutual corrections. An interactive 

approach to the simulation of viscous flow in cascades was suggested, as it was 

felt that this was the most efficient method of including viscous effects within 

the calculation. In the following sections, the progress which has been achieved 

to date on this research is reviewed. 

Inviscid Solution 

The inviscid solution consists of an implicit time marching solution of the 

Euler equations, using an algorithm of the Beam and Warming type [3], on a non-

orthogonal curvilinear grid mesh. A grid generation scheme suitable for cascade 

geometries has been developed by Dr. Peter Sockol at NASA-Lewis Research Center, 

and the inviscid calculation is currently programmed to accept the output from 

Dr. Sockol's code. This inviscid calculation uses the Beam and Warming algorithm 

in the "delta form" with Euler implicit time differencing (see [4]), and is 

similar to the method used by Steger 	to treat flow about isolated airfoils. 

Artificial dissipation terms have been added to the basic algorithm in both an 

implicit and explicit manner, as suggested in [6]. 

Grid systems for two test cases have been supplied to this investigator by 

Dr. Sockol, an unstaggered cascade of symmetric airfoils and a staggered cascade 

of cambered airfoils. Converged inviscid solutions have been obtained on both 
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of these test grids; some results of these calculations, for flow at an inlet 

Mach Number of about .5 and well aligned with the blades, are found in Reference 

[2]. While the quality of solutions obtained in the unstaggered cascade is very 

good, the solutions obtained in the staggered cascade appear to suffer from 

small but noticeable numerical inaccuracies in the region downstream of the 

blades. Work in recent months has focused on this problem. As a result of 

this work, solution quality has improved sufficiently so that viscous-inviscid 

interactive calculations have been successfully carried out in the staggered 

cascade. However, the problem persists, even though its effect appears to be 

limited, and it is expected to receive further attention. 

Viscous Solution 

A compressible, viscous marching calculation has been programmed which 

employs the marching algorithm described in Reference [7] and which is capable 

of dealing with the blade boundary layers on either the pressure surface or the 

suction surface, and of proceeding from there directly into the blade wake. 

Some additional features of the viscous solution include turbulence modeling 

using the method of Cebeci and Smith [8], and transition modeling as described 

in Reference [8]. The turbulence in the near wake region is modeled in a 

specialized way (see Reference [9]). 

The viscous marching solution described here has performed successfully 

in several interactive calculations. In these calculations, viscous solutions 

were carried out using information supplied by a preceding inviscid calculation. 

The viscous marching solution is initiated near the stagnation point and proceeds 

along the blade surface and wake centerline to the downstream boundary of the 

computation domain. 
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Interactive Procedure  

An interactive calculation scheme, in which the inviscid solution and the 

viscous shear layer solution provide mutual adjustments, has been programmed. 

In this scheme the viscous and inviscid solutions follow one another in an 

iterative cycle. Interactive solutions for flow in the symmetric, unstaggered 

cascade have been obtained, and a description of some of these results is found 

in Reference [2]. Although interactive solutions for flow in the lifting cascade 

have been carried out, the quality of the results is not entirely satisfactory 

due to an apparent difficulty with the first inviscid solution, that was described 

earlier in this report. This problem with the inviscid solution in the lifting 

cascade is the current focus of the research effort. 
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The research proposed in References [1], [2], and [3] consisted of the de-

velopment of a viscous-inviscid interactive procedure for subsonic flow in cas-

cades of two dimensional airfoils. This research effort can he divided into 

three components for the purpose of discussion: first, a time marching calcula-

tion for rotational inviscid flow which would be capable of dealing with an 

arbitrarily specified cascade geometry; second, a viscous marching calculation 

for boundary layer and wake region; which would be a finite difference procedure; 

finally, an interactive scheme through which the separate viscous and inviscid 

calculations could communicate and provide mutual corrections. An interactive 

approach to the simulation of viscous flow in cascades was suggested, as it was 

felt that this was the most efficient method of including viscous effects within 

the calculation. In the following sections, the progress which has been achieved 

to date on this research is reviewed. 

Inviscid Solution 

The inviscid solution consists of an implicit time marching solution of the 

Euler equations, using an algorithm of the Beam and Warming type [4], on a non-

orthogonal curvilinear grid mesh. A. grid generation scheme suitable for cascade 

geometries has been developed by Dr. Peter Sockol at NASA-Lewis Research Center, 

and the inviscid calculation is currently programmed to accept the output from 

Dr. Sockol's code. The inviscid calculation uses the Beam and Warming algorithm 

in the "delta form" with Euler implicit time differencing (see [5]), and is 

similar to the method used by Steger [6] to treat flow about isolated airfoils. 

Artificial dissipation terms have been added to the basic algorithm in both an 

implicit and explicit manner, as suggested in [7]. 

Grid systems for two test cases have been supplied to this investigator by 

Dr. Sockol: an unstaggered cascade of symmetric airfoils and a staggered cascade 

of cambered arifoils. Converged inviscid solutions have been obtained on both 



of these test grids; some results of these calculations, for flow at an inlet 

Mach Number of about .5 and well aligned with the blades, are found in Reference 

[3]. The quality of these solutions is good, and viscous-inviscid interactive 

calculations have been successfully carried out for both cases. 

In addition to these calculations, several other calculations have been 

performed on the test grids at different flow angles and Mach Numbers, including 

some Transonic cases. The shock resolution in these Transonic cases is not en-

tirely satisfactory however, and it is expected to receive further attention. 

Also, a. third grid system has been generated by the author using Dr. Sockol's 

grid generation scheme, which will provide an opportunity for comparing the 

numerical output with experimental results [8]. 

Viscous Solution  

A compressible, viscous marching calculation has been programmed which 

employs the marching alogrithm described in Reference [9] and which is capable 

of dealing with the blade boundary layers on either the pressure surface or the 

suction surface, and of proceeding from there directly into the blade wake. 

Some additional features of the viscous solution include turbulence modeling 

using the method of Cebeci and Smith [10], and transition modeling as described 

in Reference [10]. The turbulence in the near wake region is modeled in a 

specialized way (see Reference [11]). 

The viscous marching solution described here has performed successfully 

in several interactive calculations. In these calculations, viscous solutions 

were carried out using information supplied by a preceding inviscid calculation. 

The viscous marching solution is initiated near the stagnation point and proceeds 

along the blade surface and wake centerline to the downstream boundary of the 

computation domain. 



Interactive Procedure 

An interactive calculation scheme, in which the inviscid solution and the 

viscous shear layer solution provide mutual adjustments, has been programmed. 

In this scheme the viscous and inviscid solutions follow one another in an 

iterative cycle. Interactive solutions for flow in the symmetric, unstaggcred 

cascade have been obtained, and a description of some of these results is found 

in Reference [3]. Interactive solutions for flow in the lifting cascade have 

also been carried out. Currently, attention is focused on the problem of boun-

dary layer separation in the trailing edge region which has prevented interac-

tive solutions in certain calculations. 
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SUMMARY 

A viscous-inviscid interactive calculation procedure is developed for 

application to flow in cascades of two-dimensional airfoils. This 

procedure has essentially three components. First, a numerical solution of 

the Euler equations which can accommodate an arbitarily specified cascade 

geometry is carried out on a nonorthogonal curvilinear grid mesh that is 

fitted to the geometry of the cascade. A method of grid generation has 

been used which relies in part on a succession of conformal mappings. 

Second, a viscous solution for use in boundary layer and wake regions has 

been programmed. Finally, an interactive scheme which takes the form of a 

source-sink distribution along the blade surface and wake centerline is 

employed. Results have been obtained with this procedure for several 

cascade flow situations, and some comparisons with experiment are 

presented. 



1. INTRODUCTION 

In recent years, a great deal of progress has been made in the 

development of faster, more efficient numerical procedures for the 

calculation of flow past aerodynamic shapes. Algorithms for the solution 

of the Euler equations and Navier-Stokes equations have been available for 

some time; for example, MacCormack's Method [1], an explicit time marching 

procedure, has been widely used since its introduction in 1969. More 

recently, time marching algorithms which have an implicit [2-4] or hybrid 

[5] character have been introduced. These implicit methods are not subject 

to the severe stability restrictions which explicit methods experience, and 

are therefore less time consuming. 

In addition to the need for an efficient flow calculation algorithm, 

another requirement in aerodynamic calculations is some technique for 

dealing with the complex geometries that often occur. Several different 

grid generation schemes have been developed in recent years to meet this 

requirement. Certainly among the most popular of these is a versatile 

method for dealing with aerodynamic geometries developed by Thompson, 

Thames, and Mastin [6, 7]. In this method, which has been used in 

calculating the flow about isolated airfoils as well as other aerodynamic 

shapes, a non-orthogonal curvilinear grid mesh having a grid line 

coincident with the airfoil surface is generated by the solution of a 

system of elliptic partial differential equations. The coordinate 

transformation used in this method coresponds to the mapping of a region 

which encloses the airfoil in the physical plane, onto a region which is 

the interior of a rectangle in the computational plane. Steger [8] has 

combined the Beam and Warming implicit finite difference algorithm [4] with 
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the grid generation procedure of Thompson et al, to simulate compressible 

flow about isolated airfoils. 

While similar in many respects to flow calculations for isolated 

airfoils, flow calculations for cascades encounter some additional 

difficulties in terms of the geometry and the boundary conditions which 

must be applied. The necessity for dealing effectively with complicated 

geometries in cascade flow problems has led to the development of several 

diverse geometry procedures (see for example [9-12]). Recently, Steger et 

al [13] have applied the approach used by Steger in the isolated airfoil 

problem to flow through cascades. 

In the present research effort, a body fitted nearly orthogonal 

curvilinear grid is generated by a method which relies in part on a 

succession of conform mappings. This is described in Section II. An 

implicit time marching finite difference solution of the Euler equations is 

then carried out on this grid in the manner described in References [8,13], 

except for certain differences in the treatment of boundary conditions. 

The inviscid flow solution is discussed in Section III. In the present 

research effort, we have accounted for the effect of viscosity on the flow 

by coupling the inviscid calculation with a separate viscous shear layer 

calculation. This viscous calculation, which consists of a marching finite 

difference calculation for turbulent flow, is initiated at the stagnation 

point and proceeds through the blade boundary layers and into the blade 

wake. We have attempted to assess the economy of including viscous effects 

within the calculation in this manner, relative to the Navier-Stokes 

approach of Reference [13]. 
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II. GRID GENERATION  

The inviscid computations of the present work are performed on a 

C-type body-fitted grid in which one family of lines forms open loops (C's) 

around the blade and wake. The grid is periodic and nearly orthogonal. 

This choice permits accurate resolution of the leading edge region and 

provides an appropriate location for the interactive wake boundary 

conditions to be described later. 

The grid generation employs two analytical mappings which take the 

multiply-connected exterior of a cascade of airfoils to the interior of a 

simply connected domain. A numerically constructed mapping is then used to 

take this into a rectangular computational space. The first mapping 

transforms the exterior of a staggered cascade of semi-infinite flat plates 

in the z-plane into the interior of the unit circle in the w-plane. 

r 	 ,, 

›t  LA_ "( 	\AI - 	 - ZcosY 	( t-w)1 	(2-1) 

where 	is the stagger angle, s is the pitch, and X-:-...0/2.71)exp(or). 

This form is obtained from the standard mapping for a cascade of finite 

flat plates [14] by moving the singularities to 0 and +1 in the w-plane. 

At the leading edge zl of the central plate dz/dw = O. Solving for wi and 

substituting into Eq. (2-1) gives 

zo 	+ 2,),TLysiv,$).'+ cosY103(cos 
	

(2-2) 

When this mapping is applied to a real geometry, such as the turbine 

cascade in Figure 1, the flat plate is taken to run from a point just 

inside the leading edge through the downstream end of the wake. 

The second mapping transforms the interior of the unit crcle in the 

w-plane, with a branch cut from 0 to +1 along the real axis, to the 

interior of the infinite strip between the real axis and -i1Cj2 in the 

1 -plane. 
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Figure 1. Turbine Cascade 

with Mapping Nomenclature 

in z-Plane. 



riv 	iNv-A, 2-(1/2) 
	

(2-3) 

Note that reflection of -5 through the origin leaves w unchanged. This 

will be used later as a convenient means for analytical continuation. The 

image of the turbine cascade and straight wakes in the 1 -plane (Figure 2) 

is a pair of parallel straight lines connected by a roughly s-shaped curve. 

Note the locations of corresponding points I to 5 along the contour in 

Figures 1 and 2 and the angle -/3 between the flat plate and the wake. 

Reflection of -5, 	 produces the opposite boundary of the 

analytically continued domain in the1-plane. 

In actual practice w is eliminated between Eqs. (2-1) and (2-3) and 

the transformation of the blade and wake from z to 	is obtained by complex 

Newton iteration proceeding from point to point around the contour. To 

ensure that the branch cuts of the two logarithms are never crossed, the 

arguments of these logs are monitored and if either one changes by more 

than +7 between adjacent points, the value of the associated log at the 

new point is incremented by ;:27Ci, i.e., in the opposite direction. 

The final mapping transforms the infinite strip in thel-plane, 

bounded by the blade-wake contour and its reflection, into a rectangular 

domain with coordinates F = li+ 	If F is the complex potential for 

flow through the strip and we require F(s) = -F( 25) and Vt.= -1 along the 

contour, then F can be represented as a contour integral. 
4f-nQ 

F(-5 ) 	.21C(. 	 at + 
	(2-4) 

with C = (2/h)exp (-ik0. Here C,(3, and h are, respectively, the complex 

velocity, flow angle, and channel width in the far field. Now set 
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Figure 2. Image of Turbine Cascade 

and Wakes in -.-Plane. 



(2-5) 

where s is arc length and q t , q n  are the vortex and source densities, 

respectively. We choose q n  to cancel the normal component of C. 

1, 	\ 
= 	VY) 	ci, 

(2-6) 

This should minimize the magnitude of q t . For -Son the contour A= -1 and 

the imaginary part of eq. (2-4) gives an integral equation for qt. 

/‘ 	
k 1:11 	OkS ..(1t R e  	)+ (tvdten(lo3 (2-7) 

 

Equation (2-7) is solved by a simple panel method with flat panels and 

locally constant q t  and q n . Once q t  is known, the real part of Eq. (2 -4) 

gives 1 along the contour. 

(C -S`)-- 	l e_(\cl 
	 (2-8) 

—ett lyn( 	 a-s 

Generation of the grid in the rectangular (Ilk) space proceeds in two 

stages. First, points are located on the boundaries such that the physical 

z-plane coordinates willb e  periodic and continuous across the wake. As we 

shall see the IA.= 0 line transforms into the periodic boundary in the 

z-plane. Grid periodicity is enforced by distributing pairs of points 

symmetrically about the origin along the 1-axis. Continuity across the far 

wake is achieved by selecting a constant mesh spacing in this region such 

that the z-plane spacing is an integer fraction of (s)sini3w 	
where 19 is 
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the wake angle. Together these requirements imply that grid point location 

in (1,10 is an odd function of 	which becomes linear for large M 	A 

fifth order polynomial is used for small 	in order to provide for 

clustering around the leading edge. The values of -S along the contour are 

found by inverse interpolation in the 1 vs -S solution. In general the 

z-plane coordinates will still be discontinuous across the wake near the 

trailing edge as a result of contour curvature. A local straining is 

introduced to place a pair of points at the trailing edge and then pairs of 

neighboring points across the wake are adjusted until their z-plane images 

coincide. The distribution of points with Plat the two ends of the domain 

is arbitrary and a linear variation is used here. 

The interior values of 5 are obtained from a finite difference 
solution of the complex Laplace equation 

(2-9) 

--e 	I VY 1, pot., 
	 - I < 	< 

Values of 5 are specified along V\ -1 and 1=±§ and the anti-symmetry 
Moot 

property is used along 1/1. -- 0. An ADI relaxation procedure is used to 

solve the finite difference equations with the 1/1-inversion for fixed 

performed simultaneously with that for—S. Estimates of the maximum and 

minimum eigenvalues of the liand 11,matrices [15] are used to obtain a near 

optimum sequence of acceleration parameters. Figure 3 shows the grid 

distribution in the '";,-plane for the turbine cascade of Figure 1. The 

upper plot boundary corresponds to Yk= 0 and maps into the upper and lower 

periodic lines in the cascade plane. 
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Figure 3. Turbine Cascade Grid 

in -Plane. 



Figure 4. Turbine Cascade Grid 

in z-Plane. 



The final grid in the z-plane (Figure 4) is obtained by conformal 

mapping from the -4S-plane using the two analytical functions (2-3) and (2-1). 

In this case continuity across the wake was obtained at the expense of a small 

amount of nonorthogonality. The rounded cap at the upstream boundary was 

obtained by extrapolation from the next two inner loops. Generation of this 

grid (99 x 7 points) required 1.4 seconds of CPU time on an IBM 3033 computer. 
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III. THE INVISCID SOLUTION 

The Euler equations are written in a conservative form appropriate for 

a general curvilinear coordinate system. 

where 

)Q 4  )E 	 0  
)1(t 

(3-1 ) 

   

 

/0V 	— 
Jo uLV -1-vkx -p- 
f vV + Ayr- 

E 

    

    

and where, 	
x 

U 	v 
v 	VL x 4  A..y 

In this equation, u and v are the x and y components of velocity, while U 

and V represent the contravariant velocity components in the 	and Y1,_ 

directions. These directions and velocity components are shown in Figure 5 

along with u s  and u n , the physical velocity components that are 

respectively tangent and normal to an rt_= const. grid line. Also, !3 is the 

density, p is the pressure, e is the total energy per unit volume, and the 

fluid is assumed to obey the Perfect Gas Law. This equation was used by 

Steger in the study described in Reference [8], and since much of the 

theory of the inviscid solution used here is taken from that work, we will 

be content to present only a brief outline of this theory. 

The solution of equation (3-1) is accomplished by an implicit time 

marching algorithm, which is expressed in the "delta form" (see [4]) as, 
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Figure 5. The cascade coordinate system. 
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(3-2) 

()E 	aF 
Here, A and B represent the Jacobian matrices 	---g5 	and Tok , and the 

superscripts (n) and (n 	1) indicate the time level at which a quantity is 

evaluated. 	and E-e  are the coefficients for the artificial dissipation 
terms, which have been added to the algorithm in both an implicit and 

explicit manner as suggested in [16]. 

Boundary Conditions 

For the description of the boundary conditions on the invisicid 

solution which follows, the reader may refer to Figure 5 where a typical 

computational grid mesh is displayed. Blade surface boundary conditions 

are obtained by first extrapolating 	and U to the blade surface from the 

interior of the solution region. At the trailing edge, which is taken to 

be a cusp, extrapolated values oft, p, and 	, are then averaged. The 

impermeability of the blade surface gives V = 0. Then the surface pressure 

is obtained by solving the tridiagonal system of equations that results 

frmndifferencingthe normal momentum equation 

0101i i\ y\'10 —p 	\ 71"- ‘ky 'VlY\. ) 

(\f\-)k- X4-  •)01`'>/) 1Q-1 	( Y\- )( 4- K Y)Pjk 	(3-3) 

Boundary conditions along the wake centerline and periodic boundaries 

are obtained by averaging extrapolated values of lo, leouvov, and e, at 

15 



coincident or periodic pairs of points. Along the unmatched portion of the 

wake centerline boundary, the averaging of extrapolated values is carried 

out between the unmatched boundary points and the point on the bottom of 

the centerline which is farthest downstream. This portion of the boundary 

of the computational domain is associated with the step-like form of the 

downstream boundary, which is introduced in an attempt to relieve the 

skewing in the coordinate system that would otherwise occur in highly 

staggered cascades. It may be seen in Figure 5, and in the other 

computational grids displayed in this paper, that the coordinate skewing 

that results in these step-like grids is acceptably slight. The reduction 

in skewing is achieved at the expense of introducing this anomalous portion 

of the boundary; however, the treatment of this boundary segment did not 

prove to be a difficult problem since the calculation appeared to be 

relatively insensitve to the boundary conditions applied at this location. 

The treatment of the downstream boundary used here, follows the 

approach of Rudy and Strikwerda [17]. Their suggestion, for a rectangular 

computational domain with the downstream boundary oriented so that the 

outward normal is in the x-direction, was as follows. First, values of u, 

v, and T (temperature), are extrapolated to the boundary, and then the 

pressure is obtained by solving the equation, 

DC "' +cc(r---/z600)= 	(3-4) 

where: 

c - local speed of sound 

p - exit pressure of the converged solution 
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0‹:- a parameter whose value is chosen to optimize convergence 

By analogy, for the more complicated domain of Figure 5, we extrapolate 

values of u, v, and T, and obtain the pressure by solving, 

	  O UL 
'j+ 	 3-5) )t ' -3 YU/ 	 (3-5) 

where, 

g ' - (141,.= const, or equivalently 1-:- C1-125)] 

It may be seen in Figure 5 that the downstream boundary consists of two 

distinct and separate pieces; the approach to obtaining boundary values is 

the same at both the upper and lower portions of the downstream boundary. 

The solution of equation (3-4) is relatively easy to implement, since the 

only storage of values from the preceding time step required is at boundary 

points. 

/1' At the upstream boundary, our approach is to specify v,(71. j and 

0 +  2c) / where s?.j is the ratio of specific heats. A value for (u -  2c 
15 - I 	 5 -- 1 

at each upstream boundary point is then obtained from 

zc:\ 
Yx, / 	TRri 0 

To solve equation (3-8), it is first rewritten as, 

(k--t 	c.-)()( 	q.x ,t—..))(tx— 44-r) = 0 

( 3-8 ) 

( 3-9 ) 

and then explicitly differeaced in time. This simplified characteristics 

treatment of the upstream boundary is open to several objections, most 

notably perhaps in that the compatibility equation used here (equation 

(3-8)) is suitable for signal propagation in the negative x-direction. 
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However, signal propagation in a direction that is essentially normal to 

the boundary is what one usually tries to accomodate with the method of 

characteristics treatment of boundaries (see for example [18]), and it is 

easily seen in Figure 5 that the x-direction is at best only somewhat 

normal to the upstream boundary. While a more sophisticated treatment of 

the upstream boundary would be more esthetically pleasing, we have chosen 

the present approach because it does not appear to degrade the numerical 

solution in any way and it is comparatively easy to implement. 

It is important to note that the boundary procedures described in this 

section were employed only after simpler approaches had failed. For 

example, the Rudy and Stridwerda approach to the downstream boundary was 

adopted after the method of extrapolating u, v, and T, and specifying p was 

found to cause the solution to become unstable. While such procedures are 

often employed in isolated airfoil calculations to assist with the 

convergence rate of the solution, it was our experience that in the absence 

of such precautions the cascade solution either converged to a result with 

noticeable errors or did not converge at all. It would appear that 

sophisticated boundary procedures, which can be an assistance for isolated 

airfoil calculations, are a necessity for cascades. In this regard we 

would mention specifically the nonreflecting downstream boundary condition, 

the characteristics treatment of the inflow boundary, and the use of the 

normal momentum equation to obtain the blade surface pressure. 
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IV. THE VISCOUS SOLUTION AND INTERACTIVE PROCEDURE 

The viscous solution consists of a finite difference marching 

calculation which is capable of dealing with blade boundary layers on both 

the pressure and suction surfaces, and of proceeding from there directly into 

the blade wake. The calculation can accomodate a flow which is compressible 

and turbulent; the turbulence modeling used is the two layer algebraic eddy 

viscosity of Cebeci and Smith [19]. Additional features of the viscous 

solution include transition modeling [20], and a specialized turbulence 

modeling in the wake region [21]. The viscous calculation is initiated at 

the stagnation point in the following manner. First, the sign change of the 

velocity component u s  is used to determine the two adjacent blade surface 

points in the cascade grid which bracket the stagnation poin k . Second, 

the values of us  at these points are used to locate the stagnation point 

within the interval by interpolation, and the boundary layer is advanced to 

the bracket points by the similarity solution for stagnation point flow (see 

for example [22]). The suction surface and pressure surface calculations are 

then started from these locations and values. For the numerical marching 

calculation, we have employed a marching algorithm described in Reference 

[23]. 

- Since the contravariant velocity component U might seem to be the 
most obvious quantity to monitor for a sign change to locate the stagnation 
point, it is noted in passing that u s  and U do not necessarily share the 
same sign at blade surface points if there is a non-zero velocity component 
normal to the surface. A surface injection distribution is specified for 
subsequent inviscid solutions within the viscous-inviscid iterative 
process, so a non-zero normal velocity component can be expected in this 
calcuation. In this case, u s  and not U is the appropriate choice. 
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Governing Equations 

For the viscous inarching calculation we take as the governing equations; 

4_ 	(fe V) = 0
ay 
	 (4- 1) 

   

b y 
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.)1(\ 	 - u-(1)0.0 2°-) P u 	P \ 	- 	)x 

1?— =f3 RT 

it-"( 	 -( T/ 	) Us)  .RZY— 	 RE F 

= C.,  ID T 

(4-3) 

(4-4) 

( 4-5 ) 

(4-6) 

where Pr, c pl andtu, are taken as constants, and the subscript 	denotes 

evaluation at the free stream. (In contrast to the notation used with the 

inviscid solution, x and y are now used to denote the streamwise and 

streamnormal directions.) Furthermore if we write, 

(4-7) 
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and, 

--,/o ( v/V) 	 (4-8) 

and let 
4+ Em 
\ v„- 	J 	t, = 	 ' 

and Pr t  = 7E7. , where Pr t  is a 

specified constant, then Equations (4-2) and (4-3) may be rewritten as; 

Q‘k(I*E) 11-) 

4.y (f,,(1+Eyn4  ;;,,)t) 

4-9) 

(4-10) 

Equations (4- 1) and (4-4) - (4-10) form the basic system of equations which 

the marching calculation solves, exclusive of the turbulence modeling. To 

model the turbulence, the two-layer algebraic eddy viscosity of Cebeci and 

Smith [19] has been used. 

For y(y1,.fm ftni.  

"A..1 )11. 
vyq -- L. 1 )›. 

( 4 — I1) 

y(i- txp(--- x/A)) 
	

(4-12) 

26 (tVtLN7) /N 
	

(4-13) 
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(4-14) 

(4-15) 

     

     

(4-16) 

(4-17) 

where the subscript w indicates that a quantity is evaluated at the wall 

(y = 0). 

For y 	yL ,  

  

Cum LL)a x l 

 

=0.016)8 
0 

0 
(4-18) 

  

The boundary between the inner and outer layers (y = yi) is taken as the 

location where 
	

(.1.1r‘ 
0 

Equations (4-11) - (4-18) are used to treat the blade boundary layers. 

In the wake the modeling used is somewhat different, and follows the 

three-layer approach described in Reference [21]. 

For y4;y2, T,  

= 0.9 ( Urt) >/C 
T.E. 

(4-19) 
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where y = ye  when u = 1.10 ( u ) T.E., and the subscript T.E. denotes evaluation 

at the trailing edge. 

For Y2<Y<Y1,Em =6.taL  

Equation (4-11) is applied in this region with, 

(4-20) 

For y>yi,E m  

Equation (4-18) is applied in this region without alteration. 

The boundaries between the layers, y = yi and y = y2, are taken as the 

	

locations where 6 1,1  ( 	and 	E 	. , respectively. Furthermore, if yn 	04 
 E ms , 

(.7m 5 	
o , then 6 is taken to equal 6 for all y. Cyrt 	 vn 	 o 	hr,.0 

An additional feature of the turbulence modeling used in this study is the 

transition intermittency factor (W tr ). This Y tr , which multiplies the eddy 
viscosity determined from the preceding formulas, is calculated according to 

Equations (4-21) and (4-22) which follow from the work of Chen and Thyson 

[20]. 

7- I 
"- x -tY)  CUl x) 

 

XN-ty 

G 0 0 
- 1.3 11 
ty- 

(4-21) 

(4-22) 

A value for the transition Reynolds number (Re x  ) is specified for the 
e. 

calculation. 
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(4-24) 

Grid Mesh for the Marching Calculation  

The viscous marching calculation is carried out on a grid that is 

considerably more dense than the one used for the inviscid solution. In the 

streamwise direction along the blade surface and wake centerline, 30 boundary 

layer grid divisions correspond to each single inviscid solution grid space. 

In the direction normal to the blade and wake, a variable grid spacing 

technique described in Reference [19] has been employed in an attempt to 

better resolve the large gradients which characterize a turbulent shear layer. 

For this approach, in which the ratio (K) of consecutive grid spacings is 

( 14):)+1 fixed (i.e., 	 K), values for the first grid interval (by) 1  and the 

ratio (K) are specified. 

The Numerical Scheme 

As mentioned previously, a marching algorithm described in [23] has been 

used in the viscous solution. For the grid system described in the preceding 

section, Equations (4-1), (4-9), and (4-10) result in the following finite 

difference equations. 
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(4-25) 

The system of difference equations consisting of (4-23), (4-24), and 

(4- 25), together with the various property relations and turbulence 

equations, are solved subject to appropriate boundary conditions These 

boundary conditions are applied at free stream, blade surface, and wake 

centerline locations; it is in this regard that we mention the one-sided 

difference representation of v. 

1i,j4A.+ Li ki,.3 -. 1- 3(1 .1.),1 
	

(4-26) 

The procedure for advancing the solution from the (i) station (presumed known 

to the (i+1) station (presumed unknown) is as follows: 

(i) Solve Equation (4-24) to obtain ui + 1 , i for all j. A tridiagonal 

inversion is required. 

(ii) Solve Equation (4-25) to obtain hi + 1 , j for all j. A tridiagonal 

inversion is required. (Due to the adiabatic wall and wake center- 

line symmetry boundary conditions,0 at y = 0, the matrix is 
9/ 

not tridiagonal, but it will take this form after one Gaussian 
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elimination step. A similar preconditioning of the matrix is 

required when solving Equation (4-24) in the wake). 

(iii) Equation (4-4) and (4-5) and (4-6) are solved for Ti + 1 , j,/pi+ 1 , 3, 

and 

(iv) Equation (4-23) is marched from y = 0 to the outer edge of the 

shear layer to obtain (10v4 4.1 3 j• 

(v) The turbulence modeling equations ((4-11)— (4-22)) are solved to 

obtain ((-m+ )i 4.1 , j. 

The solution has now been advanced to station (i+1). Although this numerical 

scheme is a low order method, we have found it to be simple, inexpensive, and 

very stable. We have perceived these virtues of the method in a previous 

study [24], as well as in the present work. The reliability of the method 

was an important feature in a calculation that was expected to encounter 

laminar—turbulent transition, boundary layer separation, and the sudden 

change in boundary conditions that occurs when marching off the trailing edge 

and into the wake. It was for this reason that our first choice of a 

marching algorithm, the Keller Box Method (see for example [19]), which is 

significantly more accurate than the present scheme, was replaced with a 

method which appeared to be less sensitive. We have attempted to compensate 

for the lower accuracy of the method by an increase in grid density. 

Additional Computational Features  

Two additional computational features of the viscous solution remain to 

be discussed. As the first of these, it is noted that the calculation 

procedure includes provisions for extending the grid in the y—direction, 

should the shear layer approach the outer edge of the grid too closely. This 

feature enables the calculation region to grow with the boundary layer and to 
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contain it as economically as possible. Second, to equip this direct 

boundary layer solver with at least some ability to cope with regions of 

separated flow, we have altered the streamwise convection terms in Equations 

(4-24) and (4-25) for reverse flow in the manner of Rehyner and Flugge-Lotz 

[25]. 

The Interactive Procedure  

The interactive procedure in this calculation consists of an iteration 

between the inviscid and viscous solutions previously described. The effect 

of the presence of the viscous shear layer on the inviscid solution, is 

modeled as a source-sink distribution along the blade surface and wake 

centerline. This source-sink distribution is obtained from the viscous 

solution according to the following expression; 

!--‘) 

i/ /3 	ct  y 	ut 	Lt.  
ctx 	/ 

(4-27) 

where the notation used in the viscous solution (Section IV) appears on the 

right side of this equation, and the left side conforms to the notation of 

the inviscid solution (Section III). Once values of (pu n ) have been 

calculated and supplied to the succeeding inviscid solution, there are some 

alterations in the treatment of the blade surface and wake centerline 

boundary conditions which we described Section III. 

Blade surface boundary conditions retain the form described earlier, 

except that the specification of V = 0 is replaced with the specification of 

("tin ). The surface pressure is still obtained by a tridiagonal numerical 

solution of Equation (3-3). Along the wake centerline, values of ( /Oun ) 

calculated from the preceding viscous solution are summed at coincident 
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points, and these sums are taken to represent a discontinuity in the values 

of ',pun ' at those locations. The equality of io,u s , and p, at coincident 

points is enforced by averaging extrapolates. 
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V. NUMERICAL RESULTS AND DISCUSSION 

The results that have been obtained with the numerical procedure 

described in the preceding sections are presented here. The procedure has 

been applied to three cascades: an unstaggered cascade of NACA 0012 blades 

with a gap-chord ratio of (1.0), a 45° staggered cascade of NACA 65-410 

blades with a gap-chord ratio of (0.777860), and a 28.5° staggered cascade 

of NACA 65-(12)10 blades with a gap-chord ratio of (1.0). Results are 

presented for several different flow situations in each of the three 

cascades including different Mach numbers and angles of attack. In certain 

cases where the viscous marching solution was incapable of dealing with the 

separated regions that occurred, and it was therefore impossible to perform 

an interactive calculation, we have presented results from the sole 

inviscid solution. The cascade of NACA 0012 blades and the cascade of NACA 

65-410 blades were chosen as simple test cases to evaluate the performance 

of the numerical procedure. The cascade of NACA 65-(12)10 blades has been 

the subject of an experimental study of Briggs [26], and was chosen as it 

afforded the oportunity for comparison with experimental results. It is 

hereafter referred to as the Briggs cascade. The results obtained in each 

of the three cascades are discussed separately. However, the blade chord 

length is .25 ft and the flow is air in all of the test cases considered. 

Unstaggered Cascade  (NACA 0012 blades)  

An unstaggered cascade of NACA 0012 blades with a gap-chord ratio of 

(1.0) was chosen for use in the initial tests of the numerical procedure, 

with the idea that an unstaggered cascade of symmetric airfoils would 

minimize the geometry related difficulties and would permit attention to be 

focused on other computational aspects of the method. The grid system used 

for this cascade is shown in Figure 6. 
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A subsonic flow at zero angle of attack was chosen as a first test 

case for the interactive calculation procedure. More precisely, for the 

upstream and downstream boundary conditions on the invscid solution we have 

specified the following: 

Upstream Tangential Velocity (v i 	- 0.ft/sec 
. X=--cc) 

Upstream Riemann Invariant ((it + C:  1 	co  — 

5980. ft/sec 

Upstream Isentropic Constant ((1/ /0 1C 	co) '— 

948210. (p - lbf/ft 2 ,/0 - slugs/ft 3 ) 

Exit Pressure of the Converged Solution -No - 2125. lbf/ft 2  

The specifications result in a velocity of 496 ft/sec and a Mach number of 

(.45) at the upstream boundary. 

The interactive calculation procedure was run for four global 

viscous-inviscid iterations in this test case with no apparent difficulty; 

a sampling of the results may be found in Figures 7-9. In Figure 7, values 

of the pressure coefficient on the blade surface ( 	= 1  p Ic'P - 'Pm  
PLO"kr--- CZ 

from the first and last (fourth) inviscid solutions are displayed. Surface 

pressure coefficient values have been plotted for all grid points on the 

top and bottom surfaces of the blade; however, due to the symmetry in this 

flow situation, these values for corresponding points on the top and bottom 

are largely indistinguishable. This figure demonstrates the expected 

result that for the case under consideration, the fluid viscosity has only 

a slight influence on the surface pressure. In Figure 8, the convergence 

history of each of the four inviscid solutions is shown. The maximum 

residual, the decay of which is monitored in these plots, is calculated 

Lp-I according to the expression 	i 	where &p is the change in 
licx) I  IA AX 
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pressure that occurs between two consecutive time steps, p, is the exit 

presssure, and where points along the blade surface and wake centerline 

have been examined. The trend towards convergence, in both the time 

marching inviscid solutions and the global viscous-inviscid iteration, is 

apparent. Further evidence of the convergence of the method is shown in 

Figure 9, where plots showing the behavior of the mass injection rate (flu n ) 

for each of the four global iterations are found. This behavior is 

examined in a region centered about the trailing edge (t.e.), as this 

region is one of special importance and sensitivity. Again, a trend 

towards convergence is indicated. 

For this calculation, a time step was used which was estimated to be 

about 20 times larger than the Courant- Friederichs - Lewy (C.F.L.) Limit 

based on the smallest grid spacing in the field. This value was chosen as 

it was about the largest time step that could be used without destabilizing 

the calculation. The time step was held fixed throughout the calculation; 

no attempt was made to improve the convergence rate by cycling or varying 

the time step in any way, nor was it necessary to use a smaller initial 

time step to accomodate '.he calculation's impulsive start. 	(The only 

concession made to this impulsive start was to enforce the impermeability 

of the blade surface gradually, over 50 time steps.) The time step size 

did not differ greatly from this value in any of the test cases described 

in this section. For the artificial dissipation terms that appear in the 

inviscid solution algorithm, values of 	.05 and (i/(: e ) = 2 

were used in this test case, and similar values were used in all subsequent 

calculations. The value of 2 followed from suggestions made in Reference 

[16], while e  = .05 was chosen as it was about the largest value which did 
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not destabilize the calculation. The numerical evidence of this and 

subsecient calculations was that a stability limit of approximately (.06) 

existed for e . This observation conflicts with Reference [16], where the 

introduction of implicit damping (E i) is advocated as a means of relieving 

a stability limit on the basic algorithm (i.e. Ei = 0) of E e .cl 	(= 0.625). 

This point will receive additional comment later in this section. 

As a second test case for the the interactive calculation procedure, a 

flow into the unstaggered cascade at a 2° angle of attack was considered, 

with a Mach number of (.45) at the upstream boundary. This flow situation 

was chosen as a simple test of the ability of the method to treat a lifting 

cascade. An interactive solution of three viscous-inviscid iterations was 

performed, the convergence history of which differed very little from the 

preceding test case. Values of the surface pressure coefficient from the 

first and last inviscid solutions are shown in Figure 10. Again, the fluid 

viscosity has an effect on the surface pressure distribution which though 

noticeable is small. 

In the third and fourth test cases, situations have been considered 

where the effect of viscosity on the flow was more pronounced and the need 

for a viscous-inviscid interactive capability more clearly demonstrated. 

Both of these test cases involve flows in the unstaggered cascade at zero 

angle of attack, but higher Mach numbers. The third test case involved a 

subsonic flow with an upstream Mach number of (.63). The surface pressure 

coefficient for this case, which is shown in Figure 11, displays a larger 

difference between the first and last solutions in the iteration, than 

appeared in the previous test cases. The effect of the viscosity on the 

surface pressure is still more apparent if we consider a transonic flow 
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situation such as the fourth test case, with an upstream Mach number of 

(.65). The surface pressure coefficient for this test case, shown in 

Figure 12, indicates that a shock is now present in the cascade. While the 

shock resolution in this case appears to be only fair, this shock smearing 

enables our direct boundary layer solver to negotiate the region of shock 

impingment on the boundary layer, and makes a viscous-inviscid iterative 

solution possible in this test case. We will return to the discussion of 

shock resolution and its implications for the viscous solution later in 

this section. For the present it will suffice to mention than the 

iterative solution converged successfully although not as quickly as in the 

subsonic test cases, and that the convergence history of this solution is 

found in Figure 13. 

45° Staggered Cascade (NACA  65-410 blades)  

A cascade of NACA 65-410 blades staggered at a 45° angle with a 

gap-chord ratio of (0.777860) was chosen to test the numerical procedure on 

a more geometrically difficult cascade. The grid system used for this 

cascade is shown in Figure 14. A subsonic flow that was well aligned with 

the blades was chosen for the first test case, with a Mach number of (.47), 

and a flow angle of 48.4° (i.e., an angle attack of 3.4°) at the upstream 

boundary. An interactive solution of three iterations was performed, the 

results of which are displayed in Figure 15. Also, the convergence history 

of this solution is shown in Figure 16. 

Aa interesting feature of the surface pressure distribution in Figure 

15 is the very low pressure that occurs on the pressure surface near the 

leading edge. In the second test case for this cascade, we sought to 

eliminate this feature by increasing the flow angle at the entrance. The 
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Figure 14. Grid system, 45 ° staggered cascade 
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speed of the flow was also increased so that the flow at the entrance 

exhibited a Mach number of (.79), and a flow angle of 52.5° (7.5° angle of 

attack). It may be seen in Figure 17 that the increase in angle of attack 

has effectively removed the low pressure region on the pressure surface. 

Also, the figure indicates the presence of an incipient shock on the 

suction surface at about 25% of chord, due to the increased speed of the 

flow. This shock is more apparent if the speed of the flow is increased 

slightly. This has been done in the third test case, where the entering 

flow had a Mach number of (.83), and a flow angle of 52.3°. As the surface 

pressure coefficient distribution shown in Figure 18 indicates, a shock has 

now formed, the location of which is clearly dependent on viscous effects. 

While convergence tended to be somewhat slower for test cases with the 

staggered, cambered blade cascade than those with the unstaggered cascade 

of symmetric blades, nevertheless the interactive calculation procedure was 

judged to have performed well in all cases considered. 

28.5° Staggered Cascade (NACA 65-(12)10 blades)  

The success that was experienced in a variety of preliminary test 

cases prompted the application of the numerical procedure to a cascade 

situation where a comparison with experiment could be made. The cascade 

chosen for this purpose consisted of NACA 65-(12)10 blades at a stagger 

angle of 28.5° and spaced with a gap-chord ratio of (1.0). The grid system 

used for calculations in this cascade was displayed previously, in a 

different context, in Figure 5. Comparisons have been made with data 

collected by Briggs i26] over a range of Mach numbers. In these 

comparisons we have restricted our attention to the data in [261 which 

satisfies that author's stated two-dimensionality criterion. The stated 
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flow angle in all Briggs' data is 45°, which corresponds to an angle of 

attack of 16.5°. 

A somewhat disappointing result of the numerical calculations carried 

out on the Briggs cascade, was that a significant boundary layer separation 

occurred on the suction surface near the trailing edge, which caused the 

viscous marching solution to fail. This boundary layer separation 

prevented the execution of viscous-inviscid iterative solutions; 

consequently, the numerical results presented for the Briggs cascade are 

strictly inviscid resuts. The inviscid procedure did however perform quite 

well in these calculations. 

We first consider two subsonic test cases with upstream Mach numbers 

of (.42) and (.61). 

Values of the surface pressure coefficient 	4)  
( (  

from the numerical solution and experiment are compared for the Ml x,or .42 

case, in Figure 19; the agreement apears to be good. Also, the pressure 

PO10  rise predicted by the numerical solution, 	 - 1.055, agrees well 
13  Ix ".7. -60 

with the experimental value of 1.055. For the M I x= 	= .61 case, a 

comparison of surface pressure values in Figure 20 shows fairly good 

agreement between the numerical solution and experiment. Also, the 

calculated value for the pressure rise in the cascade of 1.148 agrees 

fairly well with the experimental value of 1.135. 

While the agreement between these two pressure rise values is 

acceptable, it is not as good as in the MI x=_ 00 = .42 case, and the 

comparison deteriorates somewhat further in the transonic case that follows. 

In that transonic test case, for which additional results will be presented 

shortly, the apparent overprediction of the pressure rise is still more 

'P-Tix=-00  
•■••• 

±Pa2ix=-00 
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severe. It is reasonable to ascribe some of the disparity between the 

numerical and experimental results to the absence within these numerical 

solution of any provision for viscous effects. This reasoning is supported 

both by the fact that the numerical procedure overpredicts the pressure 

rise, and by the observation that this overprediction tends to worsen with 

the increase in Mach number. However, our experience with interactive 

solutions carried out in preliminary test cases indicated that it was 

unreasonable to attribute all of the overprediction to viscous effects. 

For this reason, it was resolved to investigate the possibility that the 

effective angle of attack in the experiment in Reference [26] was slightly 

less than the stated value. It was also judged a possibliity that 

the pressure rises recorded in [26] were more reliable data than the flow 

angle. Our approach then to the investigation of this possiblity was to 

recalculate the second test case with the 45° flow angle requirement 

removed and a smaller value of the pressure rise enforced. This 

recalculation resulted in a Mach number of (.61), but a pressure rise of 

1.138 which was closer to the experimental value. The numerical solution 

gave a value for the upstream flow angle of 42.8° (i.e. a 14.3° angle 

of attack). The surface pressure coefficient plotted in Figure 21 appears 

to be in slightly better agreement with the experimental data than the 

previous numerical solution in Figure 20. 

As the final test case wth the Briggs cascade, we have considered a 

transonic flow situation at an upstream Mach number of (.76), and a flow 

angle of 45°. 

The numerically generated surface pressure coefficient is compared 

with the experimental data in Figure 22. A value for the cascade pressure 
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rise of 1.265 was calculated, the measured value being 1.218. Aside from 

the shock oscillations in Figure 22, it is clear that the agreement between 

the numerical and experimental results is not particularly good. The 

discussion of he shock oscillations is postponed until later. The general 

lack of agreement in Figure 22 together with the disparity in pressure rise 

values however, suggested that recalculation of this test case based on a 

matched pressure increase rather than a matched flow angle, was in order. 

Since it was unclear as to what portion of the disparity in the pressure 

increase should be attributed to viscous effects, we have performed two 

such recalculations at different pressure rise values In the first of 

these cases a flow with Mi x  = _ 00 = .76, and a pressure rise of 1.248, 

resulted in a flow angle of 42.5° (i.e. a 14° angle of attack). In the 

second a flow with MI, = _ 00= .76, and a pressure rise of 1.217, resulted in 

a flow angle of 39.2° (i.e. an angle of attack of 10.7°). The numerical 

results are compared with the experimental data in Figures 23 and 24. 

Of the comparisons in Figures 22-24, perhaps the best agreement is in 

Figure 23, although the agreement in none of these solutions is especially 

good and the appearance of disagreement is further increased by the 

spurious shock related wiggles that are present in these plots. In closing 

the discussion of the present test case, it is noted that the numerically 

generated pressure coefficient distributions in. Figures 22-24 demonstrate 

that a relatively small change in the angle of attack can cause a large 

change in results. Since differences in the effective angle of attack of 

this magnitude might well fall within the bounds of experimental error, the 

comparisons using matched pressure rises are to be preferred. 
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Discussion  

The numerical results presented here demonstrate the applicability of 

this numerical calculation procedure to the analysis of flow in cascades. 

The calculations for which results have been presented required from one to 

three hours (C.P.U. time) on a CDC Cyber 170/760, where most of the expense 

was associated with the inviscid solution. Although these run times are 

large, they were not viewed as prohibitive, particularly since faster 

computing machines are available. While the method in its present form has 

been successfully applied to a number of cascade flows, our experience with 

the method indicates that its range of application could be greatly 

extended with some modifications. It is our perception that the two most 

important limitations on the method at present are the shock resolution 

problems in the inviscid solution, and the failure of the viscous marching 

solution (and consequently the viscous-inviscid iteration) in situations 

with significant separation. 

The presence of shock induced oscillations in the transonic test cases 

constitutes the most serious shock related difficulty encountered with the 

method. These oscillations are prominently displayed in Figure 22, for 

example. Some standard remedies, which have been applied to this problem 

in isolated airfoil calculations, proved incapable of relieving the problem 

for the cascade flows considered here. For example, the attempt to 

suppress these oscillations by increasing the damping coefficients was 

frustrated by an apparent stability bound for this calculation of E e 	• 

Also, an attempt to remove the oscillations by the introduction of 

"conservative spatial switching", described in Reference [4], and by 

transitioning the switching operator as described in [4], failed when the 
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calculation became unstable in the presence of supersonic flow. The 

failure was somewhat surprising in view of the success experienced with 

this approach in previous studies [4,8]. In our attempt to resolve the 

problem in this manner, we have dropped the damping terms in supersonic 

regions and have in general tried to conform as closely as possible to the 

prescriptions of [4,8], with the sole exception that we employed a lower 

order upwind differencing. 

Both the failure of the attempt to incorporate "conservative spatial 

switching" within the method, and the apparent stability bound of E le. 4\ 	) 

seemed to indicated that flow in cascades was in some way a more severe 

test of the inviscid solution algorithm than flow past an isolated airfoil. 

It is possible that these failures occured because of some incompatibility 

of the larger damping and the switched differencing with boundary 

procedures used in the inviscid solution. Also, stability analyses of this 

algorithm (for example [16]) suggest that more restrictive stability bounds 

result from the application of periodic boundary conditions, but these 

analyses do not predict bounds as restrictive as our numerical experience 

with the present method would indicate. Finally, the possiblity always 

exists that an error in the coding remained undetected, although it is 

unlikely that this was the source of the problem. Regardless of the 

reasons for the failure of these attempts at smoothing the shock 

oscillations, it is clear that this difficulty must be overcome for the 

method to be applied with confidence to shocked flows. 

The second important limitation on the method was the failure of the 

viscous calculation in situations with significant separation. Unlike the 

difficulty in removing the shock oscillations, this problem was not 
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unanticipated. The present finite-difference viscous marching solution was 

chosen for its simplicity, accuracy, and reliability in the treatment of 

attached boundary layers and wakes. However, it was not expected that this 

marching solution would accomodate flows that were severely separated. 

While the viscous marching solution currently employed performed well in a 

variety of cascade flow situations, the disappointing failure in the Briggs 

cascade indicated the desirablity of some improvement with regard to 

separation. As this would likely require the use of an inverse boundary 

layer procedure, which would then be coupled with the present direct 

inviscid solution, a viscous-inviscid iterative scheme of the type referred 

to as "semi-inverse" (see for example [27]) would seem to be required. 

In conclusion, it is our opinion that the interactive calculation 

procedure developed in this study constitutes a useful tool for the 

analysis of cascade flows which are unshocked and only mildly separated; 

and with some modification, the generality of the procedure could be 

increased with regard to these features. The procedure is quite general in 

terms of cascade geometry and can accomodate a wide range of blade shapes, 

blade stagger angles, and blade spacings. While a Navier-Stokes approach 

to the inclusion of viscous effects within the numerical calculation would 

undoubtedly be required in certain severe flow situations (e.g. massive 

boundary layer separation with vortex shedding), the viscous-inviscid 

interactive approach provides an alternative in the analysis of less severe 

flow situations, such as a cascade operating at or near design conditions. 

In a time marching solution of the Navier-Stokes equations, it is unlikely 

that the computational effort expended per grid point would greatly exceed 

the value for a time marching solution of the Euler equations. However, it 
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is an advantage of the interactive approach, that this inviscid time 

marching solution is carried out on a grid that is sparse in comparison 

with the grid requirements of a Navier-Stokes solution. 
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