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B arbitrary point on the discontinuity line AC (Figure 4a)
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b slide width (Figure 26, Table A.1)
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(Figure 4a)
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Figure 4a
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D, point on line x = I3(t) in Figure G.1b
Dy, hydraulic diffusivity (diffusion coefficient) (Section 2.1)
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E /t,, ratio of elastic modulus to peak shear resistance

T, /0y, ratio of peak shear resistance to vertical effective stress
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second time(Figure E.1a)
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x = |(t) again (Figure 6)
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coordinate of the lower end of the shear band (Figure 25)
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4a)
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(Appendix G)
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(Section 2.2)

hydrostatic pressure at the upper end, x = 0, of the shear band (Section
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(Section 6.1)
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Figure G.1b

auxiliary function defined in (M.8)

point on line x = I(t), which corresponds to K (Figure 4b), Z, U, H (all in
Figure 6), and G (Figure F.1)

notation for point R in connection with point H (Figure 6)
notation for point R in connection with point L (Figure 11)
notation for point R in connection with point S (Figure G.1a)
notation for point R in connection with point U (Figure 6)
curvilinear coordinate along the slope (Figure N.1)

point on line x = 0, which corresponds to point K in Figure 4b
total stresses in the infinite slope

effective stresses in the infinite slope (Appendix B)
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(Figure N.1)
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u,do/(hc,), dimensionless fluid particle velocity along the x-axis
displacement components in (x, y) coordinate set (Figure C.1)
static displacement at point x

displacement along the slope

fluid particle velocity along the x-axis (Section 9.2)

dl/dt, velocity of the shear band tip (Figure 2)

velocity of slide motion (Section 9.1)

v/ ¢, dimensionless band tip velocity

point on x = 0 corresponding to point G in Figure G.1a

landslide velocity as a function of the position t (Section 9.1)
landslide velocity as a function of the position x
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volume of the material displaced by the slide (Table A.1)
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coordinate along the slope (Figure 2a)

horizontal coordinate (Figure 19b)

point of the third arrival of the discontinuity at x = 0 (Figure E.1a)
point where 5(x) changes sign

x /l;, dimensionless horizontal coordinate

an infinite point or point that the discontinuity arrives the third times at
the band tip in Figure G.1b

physical location of point B along the shear band

horizontal coordinate of the slide center of mass

horizontal distance when the slide stops (Section 9.1)

coordinate perpendicular to the slope (Figure 2a)

arbitrary point on the characteristic discontinuity line FL (Figure 11)

arbitrary point (x, t) above the discontinuity line EF (but below FL) in
Figure 6

vertical coordinate (Figure 19b)

Greek symbols
slope angle with respect to the horizontal (Figure 2a)
slope angle as a function of position x
dimensionless drag coefficient
ou/ox, material strain (Section 2.2)

limits of yobtained by approaching a characteristic line from different
sides

[2J0/(hE)]1/2, strain level required at the tip of a static band to start
propagating

strain at the band tip, x = |, before it is reached by the discontinuity at
point E (Figure 7a)

strain at the shear band tip, x = |, after it is reached by the discontinuity
at point E (Figure 7a)

(Po— pa)/E, strain of active loading at the slide end, x =0

[2J./ (hE)]*?, minimal strain level at the tip of the growing, dynamic
shear band (i.e., immediately after it begins growing)

(pp = Po)/E, strain of passive loading at the band tip, x =
static strain at point x < |

simple, closed contour surrounding the band tip (Figure C.1)
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(Figure 7a)
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relative shear displacement (slip) along the shear band (Figure 3)
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auxiliary strain function

relative shear displacement required for 7, to develop (Figure 3b)
Dirac’s 6-function

characteristic displacement (slip) in the shear band tip zone (Section
8.1)

magnitude of the discontinuity before it arrives at point E at the band
tip
magnitude of the discontinuity after it arrives at point E at the band tip

change of kinetic energy density (per unit volume) of the sliding layer,
which corresponds to the displacement change Au

change of the shear band length when time changes by At

excess pore pressure on the rupture surface (shear band) (Section 8.1)
excess pressure averaged across the sliding layer (Section 8.2)

time change, which corresponds to the band propagation by Al

difference between the arrival times of the discontinuity and the band
tip at the same point (Figure 4b)

displacement change, which corresponds to the band length change; Al
energy dissipated at the tip of the band when it propagates distance Al
increment of work done on the layer above the band over Au
increment of work done on the layer above the band by load p,

change of elastic (internal) energy density over Au
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ou/ot, material velocity (Section 2.2)
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/(% + %), dimensionless strain parameter
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Q n/(cyo), normalized material (slip) velocity
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SUMMARY

Submarine landslides, commonly triggered by earthquakes, can generate tsunamis. Subaerial
landslides can also be catastrophic in nature, causing human casualties and property damage.
This work focuses on landslides associated with shear band that develops beneath the slipping
mass. We consider a landslide as a dynamic process when a shear band emerges along the
potential rupture surface. Within this band, the shear strength decreases due to the softening
behaviour of the particulate material. Material above the band moves downwards, causing the
band to propagate dynamically. As a result, the landslide body acquires finite velocity before it
begins separating from the substrata, reaches the post-failure stage, displaces material
downhill, and generates tsunami. Existing models of tsunamigenic landslides, however, assume
zero initial slide velocity.

Previous analyses of the catastrophic shear band propagation in slopes of normally-
consolidated and overconsolidated sediments have shown that a relatively short initial failure
zone is sufficient to cause a full-scale landslide. For the shear band to propagate, the energy
produced in the body by an incremental propagation of the shear band must exceed the energy
required for the propagation. This consideration separates the shear band growth into
progressive (stable) and catastrophic (dynamic) stages and treats the band growth as a true
physical process rather than an instantaneously appearing discontinuity.

For a dynamic shear band propagating parallel to the slope, we obtain the exact, closed-
form solution for the band and landslide velocities as well as for the spatial and temporal
distributions of strain and material velocity. This solution assesses when the slide fails due to a
limiting condition (e.g., passive failure) near the propagating tip of the shear band. We also
obtain a simple asymptotic solution, which is compared to the exact solution. The obtained
solutions are used in landslide and tsunami height analyses. Our results suggest that the
conventional static approach to the slope stability analysis leads to a significant
underestimation of the slide size (volume). It appears that the volumes of catastrophic slides

can exceed the volumes of progressive slides by nearly factor of two.
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CHAPTER 1. INTRODUCTION

1.1. Landslides and their consequences

The term ‘landslide’ refers to a broad range of processes that result in gravity-assisted,
downslope movement of slope-forming materials (Appendix A). The largest landslides known
on Earth occurred in the submarine environment and involved ~10°—10* km® of sediment
[e.g., Dingle, 1977; Nisbet and Piper, 1998; Legros, 2002; Haflidason et al., 2004; Haflidason et
al., 2005; Gee et al., 2007]. This is one to two orders greater than volumes displaced by the
largest known subaerial landslides [Legros, 2002; Locat and Lee, 2002; Masson et al., 2006;
Clare et al., 2014]. Submarine landslides have been observed in most, if not all, oceanic settings
[e.g., Martinsen, 1994; Hampton et al., 1996; Blackman et al., 2002], but they are particularly
abundant on continental slopes and represent a major mechanism of sediment transfer across
continental margins to deep ocean [e.g., Masson et al., 2006; Lee et al., 2007]. Their
occurrence, morphology, distribution, scale, and consequences have been discussed in detail by
Moore [1961; 1977], Dott [1963], Prior and Coleman [1979], Prior [1984], Coleman and Prior
[1988], O'Leary [1991], Hampton et al. [1996], Locat and Lee [2002; 2009], Canals et al. [2004],
Hiihnerbach and Masson [2004], Masson et al. [2006], Lee et al. [2007], De Blasio [2011], Lu and
Godt [2013], Talling et al. [2014], and Vanneste et al. [2014] among others. Consequences of
submarine landslides include [e.g., Hampton et al., 1996; Bryn et al., 2005; Masson et al., 2006;
ten Brink et al., 2007; Locat and Lee, 2009; Vanneste et al., 2014] damaging and disappearance
of valuable land near the shoreline in populated areas (e.g., by headwords cutting onto land),
destabilizing and damaging marine engineering structures (such as offshore platforms and
pipelines), breaking telecommunication cables, altering environments (e.g., benthic ecosystems
and fishing habitats), and generating tsunamis. Subaerial landslides can also generate tsunamis
if the land flows into a body of water [e.g., Miller, 1960; Walder et al., 2003] and can be
catastrophic, causing human casualties and property damage [e.g., Cornforth, 2005; Cecinato,
2009; Chowdhury et al., 2010; De Blasio, 2011; Lu and Godt, 2013]. Landslides that generate
tsunamis are called tsunamigenic.

Tsunami waves represent a serious hazard for the coastlines of the world [e.g., Bryant,

2008; Joseph, 2011; Watts, 2012; Dominey-Howes and Goff, 2013]. Although tsunamis often



occur directly due to coseismic uplift of the seafloor caused by a fault slip [e.g., Kanamori, 1972;
Ruff, 2003; Stein and Okal, 2005; Synolakis and Bernard, 2006; Segur, 2007; Levin and Nosov,
2009; Crozier, 2010], submarine landslides, triggered by earthquakes, can significantly affect the
tsunami wave magnitude [Plafker et al., 1969; Bardet et al., 2003; Baba et al., 2012; Miyazawa
et al., 2012; Satake, 2012]. On July 17, 1998, for example, the coast of Papua New Guinea was
demolished by a 15-m tsunami, generated by a submarine earthquake accompanied by an
underwater landslide [Geist, 2000; Heinrich et al., 2000; Tappin et al., 2001; Imamura and
Hashi, 2002; Synolakis et al., 2002; Levin and Nosov, 2009]. On December 12, 1992, an
earthquake in the Flores Island (Indonesia) triggered a submarine landslide and a subsequent
26-m tsunami [Hidayat et al., 1995; Imamura et al., 1995; Levin and Nosov, 2009]. The tsunami
caused by the Atacama Earthquake (Chile) on November 11, 1922 was generated by the
submarine landslide with earthquake waves as a trigger and earthquake rupture (fault
movement) occurred inland, more than 100 km away from the coast [Gutenberg, 1939]. This

tsunami would not have happened had the landslide had not taken place.

1.2. Slides induced by shear bands
In this work we focus on slides caused by a shear band (discontinuity) that develops below the
sliding mass (Appendix A) in submerged [e.g., Prior and Coleman, 1979; Bugge et al., 1988;
Gardner et al., 1999; Huvenne et al., 2002; Lee et al., 2007; Locat et al., 2009] or subaerial [e.g.,
Chowdhury, 1978; Skempton, 1985; Bertini et al., 1986; Trenter and Warren, 1996; D'Elia et al.,
1998; Troncone, 2005; Urciuoli et al., 2007; Locat et al., 2008; Quinn et al., 2011a] slopes.
Below, the terms ‘landslide’ and ‘slide’ are used interchangeably and are synonymous. ‘Failure
surface’, ‘rupture surface’, and ‘slip surface’ are all equivalent to the basal detachment
boundary created by shear band propagation sub-parallel to the slope surface during the failure
stage (Appendix A and Figure A.2a). Also, ‘shear band’ is synonymous to ‘mode Il crack’ or ‘in-
plane shear fracture’ with contacting sides. In landslide literature, terms ‘progressive’ and
‘retrogressive’ usually indicate the direction of the slide development, that is, downslope and
upslope, respectively. The term ‘progressive’, however, can also be used as the opposite to
‘catastrophic’ meaning that progressive shear band propagation is quasi-stable (slow) [e.g.,

Bernander, 2011] in contrast to the catastrophic (fast) growth when dynamic effects (inertia
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terms) are important. How fast the shear band propagates is of main interest in this work.

Hence, we use the temporal meaning of term ‘progressive’ without regards to the direction of

band growth.
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Figure 1. (a) Sidescan sonar image from Martel [2004] of the Gaviota slide, offshore Santa Barbara, CA [Lee
and Edwards, 1986; Edwards et al., 1995; Hampton et al., 1996; Greene et al., 2006; Schwehr et al., 2007;
Blum et al., 2010]. The slope is interpreted as undeformed to the left (west) of the slide, while the fracture
(~8 km long [Schwehr et al., 2006]) to the right (east) of the slide (marked by arrows spaced by =4 km) is
produced by the developing rupture surface and represents the future location of a head scarp [Martel,
2004]. (b) A CHIRP [Schock et al., 1989] seismic profile image of the Gaviota Slide in the Santa Barbara basin,

southern California [Schwehr et al., 2007].



A landslide example is shown in Figure 1, which depicts the Gaviota slide on the northern
slope of the Santa Barbara basin [Edwards et al., 1995; Schwehr et al., 2006; Schwehr et al.,
2007; Blum et al., 2010]. The subhorizontal crack (Figure 1a) extends for ~8km east-west along
the slope [Schwehr et al., 2006]. This is interpreted as the site of slide initiation due to the shear
surface that starts at the crack and develops downslope subparallel to the slope surface
[Martel, 2004]. Both the crack and the Gaviota slide are considered to be seismically triggered
[Edwards et al., 1995; Blum et al., 2010].

Wright and Rathje [2003] provided an overview of earthquake-related triggering
mechanisms of submarine and shoreline slope instabilities. They distinguished between direct
(e.g., acceleration- or liquefaction-induced sliding) and indirect (e.g., delayed failure due to the
excess pore water pressure) triggering mechanisms. The general tendency, however, is to
assume that the landslide fails simultaneously along the entire rupture surface [Denlinger and
Iverson, 1990; Harbitz, 1992; Hampton et al., 1996; Leynaud et al., 2004; Strasser et al., 2007],
which can be tens of kilometres long [e.g., Jansen et al., 1987; Bugge et al., 1988; Dawson et al.,
1988; Bondevik et al., 2005; Gee et al., 2007]. While justified in modelling faulting-induced
tsunamis [e.g., Hammack, 1973; Ruff, 2003; Okal and Synolakis, 2004; Segur, 2007], this
assumption may have led to an underestimation of the tsunami wave height in numerical
simulations of landslide-induced tsunamis [Harbitz, 1992; Bondevik et al., 2005], which can be
seen from the following argument.

Consider the landslide as a slope failure process (Appendix A) when a shear band
(discontinuity) emerges along the potential rupture surface [e.g., Palmer and Rice, 1973;
Chowdhury, 1978; Puzrin and Germanovich, 2005a; Bernander, 2011]. Within the band, the
shear strength drops due to the softening behaviour of the particulate material. The sediment
above this weakened zone moves downwards, causing the shear band to propagate and
creating the rupture surface (Figure A.2a in Appendix A). When the shear band reaches a
sufficiently large size, the propagation becomes dynamic (fast) and is supported by the energy
stored in the body and released during the propagation [Palmer and Rice, 1973]. This dynamic
propagation produces a finite slide velocity already before the slide separates from the

substrata (Figure 1a) and moves downslope (Figure 1b), displacing water and generating a



tsunami (Figure A.2b). The resulting tsunami magnitude may, therefore, be higher than in the
case of zero initial slide velocity assumed by the existing models of tsunamigenic landslides
[e.g., Pelinovsky and Poplavsky, 1996; Watts, 1998; Ward, 2001; Levin and Nosov, 2009].

When the shear band begins growing dynamically, the induced dynamic wave propagates in
the overlaying sediment layer away from the band tip and unloads the layer near the tip. Hence,
the failure in the static band (passive or active; Figure A.2a) is expected to take place for a
shorter band length than in the dynamic case. Therefore, the static approach can result in an
underestimation of the displaced volume, and the magnitude of this underestimation is
unknown a priori. Underestimating the displaced volume, in turn, could result in
underestimating the tsunami magnitude [e.g., Murty, 2003; Haugen et al., 2005; Lovholt et al.,
2005] or the slide damage potential.

Therefore, it is tempting to evaluate the dimensions and velocities of a dynamic landslide
and the corresponding shear band. An attempt to assess the landslide velocity at failure was
made by Puzrin et al. [2010] who used a simplified approach to the solution of the dynamic
problem for the layer of sediment moving above the shear band. They modeled the layer as a
solid block that slides downhill and increases in length as the shear band grows. They assumed
that all points in the sliding block have the same velocity, which is a function of time. In other
words, Puzrin et al. [2010] considered the layer as being a rigid (with respect to motion) yet
deformable (with respect to loading) body with displacements and particle velocities depending
on time, but not on the space coordinate. By adding the inertia terms and water resistance to
the steady-state formulation of Palmer and Rice [1973] and Puzrin and Germanovich [2005a],
they computed the stress, strain, and particle velocity in the moving layer. Puzrin et al. [2010]
did not include, however, the elastic waves generated by a dynamically growing shear band. As
a result, the block length (mass) increased faster than the resistance to the block growth, so the
sliding material continued to accelerate. This is why they obtained shear band and slide
velocities that were unbound in time.

In this work, we have not invoked the simplifying assumptions utilized by Puzrin et al. [2010].
Our analysis is based on the energy balance approach of Palmer and Rice [1973], which has

been the basis for understanding the progressive shear band growth in natural slopes [e.g.,



Chowdhury, 1978; McClung, 1979; Farrell, 1984; Martel, 2004; Puzrin et al., 2004; Puzrin and
Germanovich, 2005b; a; McClung, 2009; Chowdhury et al., 2010; Quinn et al., 2011a; Dey et al.,
2012; Quinn et al., 2012]. For a shear band to propagate, the energy surplus produced in the
body during an incremental propagation should exceed the energy required for this
propagation [Rice, 1968; Cherepanov, 1979; Broberg, 1999]. The main advantage of this
approach is that it distinguishes explicitly between the progressive (quasi-static) and
catastrophic (dynamic) stages of the band propagation (Figure A.2b) and treats the band
growth as a true physical process rather than an instantaneously appearing rupture surface.
Analysis of the band propagation in a submerged slope, built of normally-consolidated clays,
has shown that a relatively short initial weakness zone [L'Heureux et al., 2014; Locat et al., 2014]
or progressively-propagating shear band is sufficient to cause a full-scale landslide [Puzrin et al.,
2004; Puzrin and Germanovich, 2005a].

Therefore, the dynamic problem for a propagating shear band is formulated below within
the framework of the Palmer and Rice’s [1973] approach. We obtain the exact solution for the
landslide size and velocity as well as for the distributions of strain and material (slip) velocity in
space and time. The dynamic version of the Palmer and Rice’s [1973] model appears to be a
particular case of our formulation. We also obtain a simple asymptotic solution and check its
accuracy by comparing it to the exact solution. We then use the obtained solutions in the
analysis of several landslide examples and discuss the effects of the landslide size and velocity

on tsunami wave height (in the case of submerged slopes).

1.3. Goals and objectives
The main goal of this work is to understand the shear band mechanism of submarine and
subaerial landslides. Specifically, we consider the scenario when the shear band growth in a
slope separates the sliding material, triggering a tsunami if the slope is submerged. The
principal objectives of this work are to
e identify the criterion for the shear band propagation in a slope;
e develop a model describing the catastrophic (unstable) propagation of a shear band;

e identify post-failure parameters such as slide length and velocity at failure; and



e compare generated tsunami heights from static and dynamic submarine landslides.
The structure of this thesis is as follows.

Chapter 1 briefly describes the background and motivation for this study.

Chapter 2 introduces a dynamic model with the governing equations of the shear band
propagation in a slope and the onset of band growth.

Chapter 3 formulates the initial-boundary value problem for dynamic shear band
propagation near the boundary.

Chapter 4 presents the exact closed-form solution of this initial-boundary value problem and
obtains the material velocity and strain at the arbitrary spatial and temporal coordinates.

Chapter 5 provides a quantitative example in the case of homogeneous loading along the
band length.

Chapter 6 calculates the slide length and velocity at failure.

Chapter 7 obtains an asymptotic solution and estimates the effect of water resistance on the
band length and slide velocity.

Chapter 8 employs the obtained solutions in discussion of several landslide examples
including the Gaviota slide in the Santa Barbara basin, Currituck slide on the western North
Atlantic continental slope, and Storegga slide on the mid-Norwegian continental margin.

Chapter 9 assesses the motion of the submerged landslides and generated tsunami heights.

Chapter 10 discusses the obtained dynamic solution in context of the direction of band
growth (upslope or downslope), mechanism of the band growth arrest caused by the variable
slope angle, and applicability of the developed model to landslides of more realistic geometry.

Chapter 11 summarizes main results obtained in this dissertation.



CHAPTER 2. SHEAR BAND IN AN INFINITE SLOPE

2.1. One-dimensional model

Landslides may develop by the shear rupture propagating both in the upslope and downslope
directions [e.g., Gardner et al., 1999; Quinn et al., 2011a], although downslope propagation
(Figure 1; see also Figure 17 in Section 8.3) is probably more common. For example, in a
saturated poroelastic body, interaction with the free surface provides a downslope
directionality to the surface-parallel rupture, propagating in the undrained, dynamic regime
[Bradshaw et al., 2010; Viesca, 2011]. Consider, therefore, a shear band of length | at depth h,
parallel to the surface of the infinite slope, which is inclined at angle « to the horizontal (Figure
2a). Starting from some initial weak zone (e.g., Figure A.2a in Appendix A), the shear band
(rupture) propagates down the slope and parallel to the surface.

Various mechanisms such as earthquake-triggered liquefaction [Newmark, 1965; Seed, 1979;
Wright and Rathje, 2003; Nadim et al., 2007], methane hydrate decomposition [Sultan et al.,
2004; Masson et al., 2006; Xu and Germanovich, 2006; 2007; Scholz et al., 2011], overpressure
(i.e., pressure above hydrostatic) induced by rapid sedimentation [Locat and Lee, 2002;
Flemings et al., 2008a; 2008b; Dugan and Stigall, 2010; Flemings et al., 2012] (see also Viesca
and Rice [2012] for a quantified account), and local fluid fluxes [Screaton et al., 1990; Dugan
and Flemings, 2000; Viesca and Rice, 2012] may cause the initial weak zone. The landslide
evolution, therefore, may be rather complex (Appendix A). In this work, we focus on the stage
of dynamic (catastrophic) growth of the shear band that underlines the landslide. Hence, we
simply assume that the dynamic stage is preceded by the stage of stable (progressive) growth
until the band size becomes equal to some critical length, |y (yet to be determined). After that,
the shear band propagates dynamically along the slope surface (Figure 1 and Figure 2a),
eventually causing the global landslide [Puzrin et al., 2004; Puzrin and Germanovich, 20053;
Quinn et al., 2011a; Dey et al., 2012].

The value of |y is defined based on the static analysis using the energy balance criterion
[Palmer and Rice, 1973; Rice, 1973; Puzrin et al., 2004; Puzrin and Germanovich, 2005a; Quinn
et al., 2011a; Dey et al., 2012]. The initial weak zone does not need to be of the observed

landslide length, I, which can be up to ~10% km [Jansen et al., 1987; Bugge et al., 1988; Dawson



et al., 1988; Bondevik et al., 2005]. It is sufficient, instead, that the initial zone is equal to or
exceeds the critical length, I, which is smaller than .

We also assume that the length, |, of the shear band is sufficiently larger than its depth, h,
which, in turn, is much greater than the size, o, of the process zone (Figure 2a) at the band tip,
x=1(t) (i.e., | >>h>> @). Within this small zone, the shear resistance, 7, of the material
gradually decreases from the peak, 7, to the residual, 7, value as a function of the relative slip
displacement [Palmer and Rice, 1973] (Figure 3b). Everywhere else in the band, the shear
resistance is constant and equal to 7. At the tip of the process zone, the shear resistance is
equal to the peak value, 7,. The downhill component, 7, of the gravitational stress is the driving
force that causes the material above the band to move downwards, which makes the band
propagate along the slope (Figure 2a), until the slope fails (Section 6.1). If the band grows in a
submerged slope, the slope slides down and mobilizes the water resistance, 7,, on the seafloor,
which is a function of the sliding velocity (Appendix K). Conditions | >> w and h >> w represent
the asymptotic approximation of the small scale yielding. As | >> h, the slab above the shear
band is considered thin when compared to its length. This condition is essential for the 1-D
model developed below. Both conditions, | >> h and h >> @, are relaxed by Viesca [2011] and
Viesca and Rice [2012], who studied slide (including submarine slide) initiation due to slip
surface nucleation and growth driven by locally elevated pore pressure. In this work, we keep
these assumptions as focus on the dynamic aspects of the shear band growth.

Although the total normal stress in the x-direction is a function of depth, we follow Palmer

and Rice [1973] and consider the average values
1" 1" 1"
() == [ o0y, 0dy, UGt == fu,(xy.0dy, peu)==[Pxy.0dy  (21)
0 0 0

of the total stress, o, displacement, u,, and pore pressure, P, across the sliding layer. Here t is
time, x, y is the chosen coordinate set with x being the longitudinal coordinate (Figure 2a), and
h is the thickness of the sliding layer. We assume that P does not change during the shear band
growth and consider the dynamic deformation being undrained at the scale of the thickness of

the sliding layer. Specifically, we assume that ,/Dyt; << h, where Dy, is the hydraulic diffusivity

(diffusion coefficient) of the host sediment and t; is the time to global failure when the shear
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band reaches the size of Ix. Then, we consider both local, P, and averaged, p, pore pressure as
not changing with time and equal their values at t = 0. Note that, in general, diffusion at the
scale of the shear band thickness and at the scale of the process zone of the shear band (Figure
2a) may or may not be neglected, which affects the sediment strength at these scales.

Before the shear band appears, the average normal effective stress in the intact slope is
o+ p=—po (po>0). Although stress state is not uniform in natural slopes [e.g., Picarelli et al.,
2000], po does not change sharply along a long, mild slope, which, therefore, is approximated
by an infinite slope with constant pg [e.g., Prior and Suhayda, 1979; Denlinger and Iverson, 1990;
Davis and Selvadurai, 1996]. Hereafter, compressive stresses and strains are defined to be
negative, and displacements and strains are measured with respect to the undeformed state in
the infinite slope with homogeneous, undisturbed, longitudinal effective stress of magnitude pg
(Figure 2b).

Following Puzrin et al. [2010], we assume that at the top end, x =0, of the sliding slab, the
sediment undergoes active failure (i.e., due to the sediment unloading compared to the infinite
slope). In a sediment with sufficient cohesion, a tensile crack may develop connecting the shear
band with the slide surface. As the seawater fills the crack, the slide becomes loaded at the
upper end by the hydrostatic pressure, which corresponds to zero effective stress. In either

case, we denote the average longitudinal effective stress at x = 0 by p, (Figure 2a).

(b)

Figure 2. (a) Shear band propagation in an infinite slope. The slab above the failed zone already has
deformation accumulated during the stable (progressive) stage of the shear band growth, while the sliding
velocity appears in the dynamic stage that begins at t=0. (b) One-dimensional model of a landslide

10



developing by the mechanism of dynamic propagation of the underlying shear band.

The soil behavior in the sliding layer is described by a one-dimensional model (Appendix B)
ou

o+ p:Ea——pO (p, =const >0) (2.2)
X

where E = Ey /(1 - V?) is the tangent (plane-strain) elastic modulus of the particulate material, E
and v are the Young’s modulus and Poisson’s ratio, respectively. In general, soil moduli in
loading, E), and unloading, E,, are different. For the sake of simplicity, however, we consider the
case of E| = E, = E. In this formulation, the constitutive behavior of the material is equivalent to

that in linear elasticity.

2.2. Dynamic motion
Governing equations are formulated in terms of quantities (2.1) averaged across the landslide.
Substituting the constitutive relation (2.2) into the momentum balance condition [Hellan, 1984;

Freund, 1998]

ou t, 0o
_5H 00 2.3
P " h ox 2:3)

results in an inhomogeneous wave equation (Appendix B)
u 10 T
- =~ =——  (0<x<I, t>0 (2.4)
ox>  ¢? ot h ( )

where ¢ = (E/po)l/2 is the speed of the longitudinal elastic waves, pg is the total material density

(which accounts for both solid matrix and pore water), l(t) is the length of the propagating

shear band, T =1./E > 0is the normalized longitudinal load, 7% = 7, — 7. — 7,

T.=T7,—T,

(,=1,—1,-7,) (2.5)

is the combined distributed gravitational, z; = pyghsine, buoyancy, 7, = pyghsing, frictional,
7 = U(po — pw)ghcosa, and viscous (water resistance in the case of submerged slopes), 7, loads
in the slope direction (Figure 2b). Until indicated otherwise, we consider the general case of this

load dependent on both x and t.

The initial conditions are

11



u(x,t) =ug(x), Zt—u(x,t)zo O<x<l,, t—0) (2.6)

where |y is the initial length of the shear band and us(x) is the static displacement just before
the band begins propagating dynamically.

The slide (slope) is initially at rest, but has already moved during the quasi-static stage of
the deformation process. The boundary condition, u(l(t), t) =0 (t > 0), at the tip, x = I(t), of the
propagating shear band can be written as [Hellan, 1984; Freund, 1998]

ou ou
Pl (x=1(t), t>0) (2.7)

where v = dl/dt is the velocity of the band tip. Because the model developed here is based on
the assumption of small strains (|ou/ox| << 1), (2.7) implies that ou(l, t)/ot < v, so the material
at the band tip moves slower than the crack tip, which is a necessary condition for our model to
be physically acceptable. In Section 6.1, it will be shown that this condition is satisfied.

The boundary condition at the upper end, x=0, of the slide (Figure 2b) represents the
effective stress o (0, t) + p = —p, (ps = const > 0, t 2 0), which per Hooke’s law (2.2), is expressed

as

Mon=r, (=0 2.8)
OX

where y; = (po — p,)/E is the strain at x = 0. Note that at x = 0, the effective stress o+ p =—p, is
compressive (negative) while strain Ou/0x =), is tensile (positive) due to the chosen
undeformed state, which is reflected by the difference in signs. As mentioned above, if a
tensile fracture develops at the upper end of the slide in a sediment with sufficient cohesion, p,
can also be interpreted as zero effective stress (p, = 0) due to the hydrostatic water pressure in
the fracture and in the sediment (Appendix B) [Puzrin et al., 2010]. Hence, p, < po, Which also
holds when p, is the active pressure. Therefore, in both cases, j; >0. This does not result in a
loss of generality, as the solution of the dynamic problem obtained below is also
mathematically applicable to the case of negative y,. The absolute value, || =—7, of this
compressive strain, however, should be smaller than the tip strain, ) (defined in the next

section), at the onset of dynamic growth.
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(b)

Figure 3. (a) Shear traction (resistance), z,, along the shear band and (b) relationship between 7z, and
relative shear displacement, 6 [Palmer and Rice, 1973]. The shear strength of the material decreases from
peak, 7, to residual, 7, values with shear deformation based on a strain-softening constitutive behavior. The
integral shows the energy surplus available per unit area of the shear band advance, and 6, is the relative
displacement required for 7, to develop. The surplus is the excess of the work input of the applied forces
over the sum of (i) the net energy absorbed in the deforming material outside the band and (ii) the frictional
dissipation against the residual part, 7, of the slip resistance within the shear band [Palmer and Rice, 1973].

2.3. Energy balance

Following Palmer and Rice [1973], we treat the propagating shear band as an ideal, mode Il
fracture. We assume that the fracture process zone is small compared to the layer thickness
and the band size. The propagation of such a fracture is controlled by the energy balance at the
fracture tip. For a dynamically propagating fracture, the energy release rate J is balanced by
rate of the energy dissipation at the tip [Rice, 1968; Cherepanov, 1979]. Hence, J = J., where J. is
the effective surface energy for a growing fracture. It is assumed constant, although in the
landslide context, this is not necessarily the case even for small scale yielding because different
weakening mechanisms may take place during the shear band growth. As noted by Viesca and
Rice [2012], for example, rapid slip may result in shear heating, which, in turn, may cause
thermal pressurization or material decomposition to occur in a sediment [Voight and Faust,
1982; Vardoulakis, 2002; Cecinato, 2009; Goren et al., 2010; Pinyol and Alonso, 2010].

For a sliding 1-D layer, the condition of J = J. results (Appendix C) in the squared strain

{a—”(lt)}z—7—°2 (@) >1,, t>0) (2.9)
ox ] 1-vRic? 0 '

at the propagating band tip x = |(t). Hereafter, 5. =[2J./ (hE)]l/2 is the minimal strain level at the
tip of the propagating fracture (when v — 0). As follows from (2.9), for a physically meaningful
solution, v<c. Condition (2.9) is identical to that obtained by Freund [1998] in the case of
po =0, but it is also applicable when pg # 0 (Appendix C).
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When t =0, the initial shear band is in a state of mobile equilibrium [Barenblatt, 1962] and
has a length |y such that at the given level T of the applied loads, it is just about to start
propagating. This length, therefore, is defined by (2.9) with v=0 and j replaced by
% = [2J0/(hE)]1/2, which is the strain level required at the tip for the static band to begin
propagating. Here Jy is the surface energy for the static shear band [Palmer and Rice, 1973;

Chowdhury, 1978; Saurer and Puzrin, 2011; Dey et al., 2012]. In this case, (2.9) reads
relo) =75 (2.10)
where 5%(lo) = 7(lo, 0) is the static deformation of the initial 1-D layer above the shear band at

its tip x = lo (Figure 2b). It is determined from
7s(X) =7, —%IT(X,O)dx (2.11)
0

which is the deformation of a static layer of size | >1y at point x<I. This deformation is
obtained by integrating (2.4) with d%u/dt* =0 and boundary condition (2.8). In reality, the
layer is in a state of dynamic motion as the shear band grows, but introducing the auxiliary
function (2.11) is handy to characterize its virtual steady state (if the layer were not moving).
Deformation y(x) implicitly depends on the layer size in the sense that x <|I, but we do not
indicate this to simplify notations.

Because Jo # J., and, hence, % # 5, comparing (2.10) and (2.9) shows that at t = +0, either
the band tip instantaneously acquires (if ;/2 (lo, +0) = y2(1,)) some finite propagation velocity, vo,
or the strain, ¥(l, t), at the tip instantaneously changes (if vo =0) from y(lo, 0) = %(lo) to some
7(lo, +0) # %(lo), or both. Hereafter, symbol +0 indicates the limit of t — 0 (t > 0). In general, Jy is
greater than J; [e.g., Shukla, 1983; Marur et al., 2004; Jajam and Tippur, 2012], and we adopt
the notation of

n=J3,/3,=y:1y? (2.12)
where n > 1 is called the bluntness parameter [Freund, 1998] as applied to open (mode I) cracks,
but n is also used for shear fractures [Hellan, 1984; Freund, 1998]. Transition from Jy to J. could
be addressed, in principle, by considering more accurate friction laws that depend upon
displacement discontinuity and/or the relative slip velocity [/da, 1972; Dieterich, 1979; Rice,

1980; Ruina, 1983]. Then, the material motion and/or strain at the band tip would initiate from
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the state of rest [Garagash and Germanovich, 2012; Viesca and Rice, 2012]. Within the
framework of the simplified 1-D model, considered here, this transition time from rest to
dynamic motion is considered to be relatively short, and is approximated by the abrupt increase
in propagation velocity from zero to some vy or/and by the instantaneous strain change at the
tip from 7(lo) to y(lo, +0). In this case, (2.9) becomes »*(lo, +0) = y2 /(1 — vZ/c?)), where the

values of vy to be found.
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CHAPTER 3. INITIAL-BOUNDARY VALUE PROBLEM

3.1. Governing equations
Equations (2.4) - (2.8) are written with respect to the unknown functions u(x, t) and I(t).
Following Freund [1998], they can be rewritten in terms of the longitudinal strain,
y(x, t) = Ou/Ox, material velocity (slip rate), 77(x, t) = du/ot, and fracture length, I(t), as
o _on oy _1om,T

T o C_ZE_'_H:O (O<x<I(t), t>0) (3.1)
7(X!O):7S(X)’ n(x,0)=0 (O<X<IO) (3.2)
O =7,  nd{).)=-vO)y({)1) (>0 (3.3)

To close this set, we also use an additional condition at the tip of the propagating shear band

that combines (2.10) and (2.9) into

! (x=Il,, t=0)
7 :{n‘l(l—vz 1) (x=1(t), t>0) 34
where we took into account (2.12). The initial value |y of I(t) is defined by (2.10), (2.11) and
further assumed known. In Chapter 5, |y is defined explicitly for a particular type of dependence
T(x, t).

Note that the term ‘material velocity’ is synonymous to the term ‘particle velocity’. ‘Particle
velocity’ refers to both the (random) velocity of individual particles in the sediment displaced by
the slide and to the mean velocity of particles in the representative elementary volume. To

avoid confusion and to emphasize that our model is developed within the framework of

continuum mechanics, we prefer the term ‘material velocity’'.

3.2. Conditions on discontinuities
Set (3.1) of first-order linear differential equations is hyperbolic [e.g., Whitham, 1999]. It has
two sets of characteristics represented by the straight lines dt/dx = £1/c in plane (x, t). At t = +0,
the tip boundary condition changes instantaneously, i.e., the band velocity jumps from zero to
vo # 0 or/and the tip strain changes instantaneously from its static, y(lo), to dynamic, y(lo, +0),
value. Such an instantaneous change causes a discontinuity (generally, in both y and 77) that

begins propagating from the shear band tip x = |, towards the other boundary at x = 0. Because
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of the hyperbolicity of set (3.1), discontinuities can only propagate along its characteristics
[Courant and Friedrichs, 1948; Whitham, 1999; Lax, 2006]. Therefore, the discontinuity
propagates with velocity ¢ (line AC of x=1y—ct in Figure 4), and at time t =ly/c, it reflects on
the slide end, x = 0, and propagates back towards the band tip, x = I(t) (line CE of x=ct—1y in
Figure 4). As will be shown below, the band tip propagates with velocity v<c, and the
discontinuity may (Figure 4a) or may not (Figure 4b) reach the propagating tip. If it does, then it
reflects at the tip and propagates again towards x =0 (line EF of x =l + c(te—1t) in Figure 4,
where I; and t; are found in (4.17)). Within the framework of elastic theory, this process can
continue indefinitely, although it is also possible that, after a number of reflections from x =0,
the discontinuity will cease to reach the band tip. Until Section 4.3, the consideration is
common for both cases of the discontinuity lagging behind and reaching the band tip, that is,
for both CE intersecting (Figure 4a) and not intersecting (Figure 4b) the band tip line of x = I(t).
ta

F fa

0 Iy X (a)

Figure 4. Location x = (t) of the shear band tip at time t (solid, curved line AE) and characteristics AC
(x =lg—ct) and CE (x = ct—1l,) of the propagating discontinuity (dashed lines). “Regular” characteristics (a)
BD and PQ (thin lines) and (b) RS, SK, and KP (thin lines) are in domains of continuous values of yand 7 (and
their derivatives of the first order). Plus and minus correspond to the limits of yand 7 while approaching to
the discontinuity lines AC in (a) and CE in (b). (a) When the discontinuity reaches the propagating tip, it
reflects and starts propagating back along line EF (x = |z + c(t; — t), dashed lines). (b) After the discontinuity,
propagating from the band tip, x = lo, at A is reflected back from the slide end, x =0, at C, it is not able to
reach the moving band tip, x = I(t), again. In this case, E is the infinite point (compare to (a)). Characteristics
RS and PK intersect line CE of the reflected discontinuity. Solution in domain CEF in (a) is similar to that
above the characteristic line CE in (b).

Mathematically, we look for functions y(x, t) and 77(x, t) that are continuous and have
continuous derivatives of the first order in the domains between the discontinuity
characteristics (for example, between AC and CE, or CE and EF in Figure 4a). The values of 77 and

y on these characteristics are discontinuous with the jump condition [Courant and Friedrichs,
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1948; Whitham, 1999; Davison, 2008]

n —-n =xc(y"—y") (dt/dx=F1/c) (3.5)
where 1% and 7* are the limits of 77(x, t) and y(x, t), respectively, obtained by approaching the
discontinuity characteristics from different sides. For example, we further use notations 777(x, t),
7'(x, t) and 17(x, t), ¥ (x, t) for values of 7(x,t), y(x, t), obtained by approaching line AC in
Figure 4a from above and below, respectively.

In summary, the initial-boundary value problem for y(x, t), 1(x, t), and I(t) is given by the
closed, hyperbolic set of equations (3.1) with boundary conditions (3.3), (3.4) and initial
conditions (3.2) and

I(t)=1, (t=0) (3.6)

Solution of this problem is considered in the next chapter.
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CHAPTER 4. SOLUTION OF THE INITIAL-BOUNDAY VALUE PROBLEM

4.1. Shear band velocity
The set of linear equations on characteristics, which is equivalent to (3.1), can be written as

[Courant and Friedrichs, 1948; Whitham, 1999],

i(ﬁﬂj:_l (ﬂ:ﬁj (4.1)
dx c h dx c

where d/dx = 0/0x + (0t/0x)0/ ot is the total derivative. Following Burridge and Keller [1978], we
first integrate (4.1) along the characteristic line, t=tg+ (x—xg)/c, between point, B(xg, tz),
which is on the characteristic line AC, t = (lo — x)/c, and point D(Ip, tp) at the band tip xp = Ip = [(t)
(Figure 4). We obtain

7(D) —@—W(B) + ’7+§B) - —% fT(x,tB +(x—Xg)/ c)dx (4.2)

where y*(B) and 177(B) are the limits of y(x, t) and 77(x, t), respectively, when x — xg, t — t5, and
t — (lo—x)/c — +0. Functions y(x, t) and 77(x, t) are continuous and have continuous derivatives
in domain ACE in Figure 4a. Because the initial discontinuity propagates along line AC, y (B) and
17" (B) on this line are simply the initial static strain and material velocity, respectively. They are

undisturbed until the initial discontinuity arrives at xz at time tz = (lo — x)/c. Therefore, in (2.11),

7y (B)=rx), 7 (B)=0 (4.3)
so the jump condition (3.5) becomes
" (B)/ c—y"(B)=-7,(%) (4.4)

Since point D(lp, tp) corresponds to the propagating tip, the second (dynamic) fracture
condition in (3.4) applies. Substituting this, (4.4), and the second equation in (3.3) into (4.2),

results in equation

|
Lvi/fe 11 (-1 [ T+ (x=1)/c)dx (4.5)
1-v,/c Ve h x5 (1.1)

for the crack tip velocity vi, where xa(l, t) = (I + lo—ct)/2 and we used notations Ip=1, tp=t

because D(lp, tp) = D(l, t) is the arbitrary point on the line, x = |(t), of band tip locations. The

right hand side in (4.5) is positive because y(xs(l, t)) <0 and T(x, t) >0 for any t > 0. Hereafter,
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vi(l) is the velocity of the band tip before it is reached by the discontinuity (at point E in Figure
4a and never in Figure 4b, where E is at infinity).

Equation (4.5) for I(t) is to be solved with the initial condition (3.6). To simplify the solution,
we further assume that function T(x, t) = T(x) is independent of t. In this case, solution of (4.5)

with (3.6) can be written in the closed form

cdlo1 2' dl
.IT:E{ I 72()- yj o)
where

v(h 72—y
AOBNAU) /e (4.7)

¢ Z()+y

Taking into account condition (2.10) for |y, expression (2.11) can be rewritten for x = | as

r0=7 = TO=%-10, TO=F[T0d 10=1[T0x (s

with T () being the average value of T(x) for the band of length I.

Since T(x) >0, I(l) in (4.8) increases monotonically with | and so does yZ2(l) (since yo > 0).
Initially, y2(ly) = y& > v2. Hence, y2(l1) —y& >0, and v(l)>0 for any |>lo. Furthermore,
according to (4.7), the shear band propagation velocity is always smaller than the speed of
elastic waves, v; < c. Because of the monotonic increase of y2 (1) with |, function I(t) defined by
(4.6) also monotonically increases with t.

In the simplest case, the reflected discontinuity does not ever reach the crack tip, which
corresponds to the characteristic line CE not crossing line x = I(t) of the tip location (Figure 4b).
In this case, the mathematical limit of | — oo is possible in (4.6) and (4.7), resulting in vi — c as
| - o and | - w0 as t — . Therefore, (4.6) and (4.7) give a physically meaningful solution for
the shear band size, I(t), and the propagation velocity, vi(t) (Figure 5). It is straightforward to
show that assumption T(x, t) = T(x) does not result in a loss of generality and the same
conclusions remain valid in the general case of T(x, t) > 0.

It should be noted that from the physical standpoint, the material may fail or start
exhibiting significant inelastic strain before the shear band size becomes infinitely large. This
will be discussed in Section 6.2. Until then, we consider the mathematical aspects of the
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obtained solution and formally allow | to be unbounded.

Finally, solution (4.6)-(4.8) was obtained based on the concept of propagating
discontinuities arising from the hyperbolicity of the initial-boundary value problem (3.1) - (3.4).
It can be shown (Appendix D) that this problem does not have physically acceptable continuous

solutions.

vy A

Vo

0y !

Figure 5. Dependence of the band propagation velocity, vy, on its length, |, for arbitrary T(x, t) >0 in the
case of the discontinuity not reaching the band tip (Figure 4b).

4.2. Strain and material velocity
To obtain the strain, 7, and material velocity, 7;, at the shear band tip, we insert (4.7) into the
second relation of (3.4) and use the second (compatibility) condition at the band tip in (3.3).

This gives

Oy mD__rO-r

2y,(1) c 2y,(1)

where, as shown above, yZ(1) monotonically increases with | > l,. Therefore, both |(l)| and

()=

(4.9)

m(l) increase as the shear band grows.

To find strain, 7, and slip velocity, 7, at the arbitrary point Q(x, t), located between lines AC
and CE in Figure 4a, we next consider point P(lp, tp), which is at the band tip and is connected to
Q(x, t) by the characteristic line, x — lp = —c(t —tp). Here lp and tp are related by (4.6), and |, can

be found from

x—1 "% dl
t+ P — 4.10
-l (410

once x and t are specified. Integrating then (4.1) from P to Q and taking into account (4.9)

(because P is at the band tip), we arrive at
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y(Q)+@ 7“) hjT(x)olx (4.11)

while integration of (4.1) from B to Q is similar to (4.2). Using (4.4) with the result of this

integration, we have

Q-T2 -5 (4.12)

Finally, we obtain from (4.12) and (4.11) that
)=y, +m:)/c, n(x,t)=mn(l,) (4.13)
where (lo—x)/c <t < (lo + x)/c, x < (t), lp is defined by (2.10), and lp(x t) is the solution of (4.10).

Note that the second equation in (4.13) means that inside ACE (Figure 4a), the slip velocity
717(x, t) is constant on characteristics dt/dx = 1/c. The value of 7(x, t) is not constant, however,
along characteristics dt/dx =—1/c because 7(lp) is the material velocity at the band tip and,
therefore, depends upon the position of P on line x = I(t).

Equations (4.13) give yand 7 at the arbitrary point (x, t) in domain ACE in Figure 4a. Values
y(l,t) and 7(l, t) of these quantities at the band tip are given by (4.9). Equations (4.7) and (4.6)
define the dependence of the shear band velocity upon | and t, respectively. In particular, at the
initial moment, t = +0, at the band tip, x = |,

n-1 n-1 n+1
V(+O):V0=Cm, 77('01"'0):771('0):(370W’ 7(|o'+0):71(|0):_70ﬁ (4.14)

Material strain and velocity for the arbitrary point K(x, t) inside domain CEF in Figure 4a or

outside domain ACE in Figure 4b are given by (Appendix E)
| |
rox) =288 0 ik = 1) + 1) (4.15)

where for the specified x and t, | (x, t) is obtained from (4.10) and Iz (x, t) from

Ir

v(I)

_ X+l (4.16)

for the same x and t.

4.3. Solution after the discontinuity reaches the band tip

Once the discontinuity propagating along CE in Figure 4a reaches the shear band tip, it reflects
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and propagates again towards x = 0. Whether this indeed happens is discussed in Appendix F.
At point F (Figure 4 and Figure 6), the incident discontinuity reflects for the second time from
the upper slide end, x = 0. The solution for the region above line EF (but below line FL) in Figure
6 (and for all other regions between the incident and reflected discontinuities) is obtained in

Appendix E. The band tip arrives at point x = | > ¢ at time

S (4.17)
v, (1 1z, (D)

le

where

VZ(I'IRU) — [_ys(|)+2771(IRU)/C]2 _7/c2 (| > IE' |0 < IRU (|) < IE) (4.18)

c [=7.()+2m (1) <+

is the tip velocity after the tip is reached by the discontinuity. After the discontinuity reflects

from the band tip at E, the tip x = I(t) arrives at point U(ly, ty) together with the wave that
originates at R(lg, tg) and then reflects from x = 0 (Figure 6). This means that | =l > lg, t =ty > tg,
tr=tru>tg, lo<lg=lru <l and we further use notation Iz, =l when we want to emphasize
that R and U are connected by the characteristics lines (Figure 6). Hence, substituting
t=tg+ (I +1)/c into (4.17) and differentiating the result with respect to t, we see that lzy(l) is

the solution of the initial value problem

ay, [ ¢ I ¢ T )
dl _|:V2(I7IRu) 1j||:Vl(|RU)+1j| ) IRU(IE)—IO (IZIE, IOSIRU(I)<IE) (4.19)

with the crack length, I, at point E (Figure 6) determined from

|

¢ dl

t=[—, I +1 =ct (4.20)
E IJ;V]_(I) E 0 E

Since 0<v,<c and vy >0, dlgy/dl >0 in (4.19), which implies that Izy(l) monotonically grows
with |.
The material strain and velocity at the arbitrary point Z(x, t) above the discontinuity line EF

(in region EFL in Figure 6) are given by (Appendix G)

_ 772(|H ) _771(IW)_771(|R)
y(x,t)= o +7:(X) (4.21)

U(X't) =1, (IH ) _771(|W)+771(|R)
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while these quantities at the fracture tip (after it is reached by the discontinuity) can be written
as (Appendix G)
7 (I) _ 1 [}/S(I) _2771(|R)/C]2 +7/c2
() =

2 vs(N—=2n(lz)/c

(1) _ 1y —[r () —2m (1) / I’
Y 2 rs()=2n(lg)/c

Here lg, Iy, and ly, are the lengths of the shear band at points R(lz, tz), H(ly, ty), and W(ly, tw),

A=1, 1, <1,(1)<l,) (4.22)

respectively, and these points are related to point Z(x, t) through the corresponding
characteristics (Figure 6). This means that a wave, originating at the crack tip at R, reflects from
x =0 and arrives at Z at the same time as another wave, originating at W, arrives at Z after it
reflects from x = 0 and H (both W and H are also at the band tip). Hence, we have

_xlg dl o xehy o

t + | — E+I—
c () c 2 V(L1 (1)

(4.23)

and

y
c v (1)

lo

where for any given x and t (such that Z(x, t) is above EF), Iz (x, t) and | (x, t) are first found from

(4.23) and then Iy (x, t) from (4.24). Function lzy(l) is obtained (Appendix G) by replacing lzy
with lzy in (4.19) and solving the resulting equation.

The material strain and velocity at the arbitrary point G(x, t) above the discontinuity line FL

(Figure G.1a, where point G is not shown to simplify the drawing) are given by (Appendix G)

_ 772(|H ) _772(Is)_771(lw)+771(lp)
)= c 7 () (4.25)

77(X,t) =1, (IH ) +17, (Is) _771(IW)_771(|P)

r(xt

where |y, 1y, Is, and |, are the band lengths at points H(ly, tn), W(lw, tw), S(ls, ts), and P(ls, tp),
respectively, and these points are related to point G(x,t) through the corresponding
characteristics (Figure G.1a in Appendix G). Specifically, functions ly(x, t) and ly/(x, t) are given
by (4.23) (second equation) and (4.24), respectively, while points Is(x, t) and lp(x, t) are defined
by
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s I
t+x+ls :tE+J- dl , t:2IS+IP+X+J- dl (4.26)
c v, (1, 1z (1)) c AU)

le lo
Function Izs(l) is obtained (Appendix G) by replacing lzy with lzsin (4.19).

Note that the material velocity (4.9) at the crack tip is always positive, n4(l) >0, while the
static strain corresponding to the band length is always negative (compressive), y(l) <O0.
Therefore, the material velocity, 7, at the arbitrary point in (4.21) is always positive (because
Iz > lw).

As common in the method of characteristics for hyperbolic equations [Courant and
Friedrichs, 1948; Whitham, 1999; Lax, 2006], finding the solution of partial differential
equations (3.1) is reduced to solving ordinary differential equation (4.19), which represents no
difficulty (when solved numerically) since it has a unique solution and function v, is known from
(4.18). Some conclusions can be derived, however, even without explicitly solving (4.19).

Consider, for example, the shear band velocities right before and right after the
discontinuity reaches the band tip at point E (Figure 6) and reflects back towards x = 0. In this
case, | > lzand Iz — lo, and these velocities are obtained from (4.18) and (4.7), respectively, as

VZ(IE) _ [_75(|E)/7/0 +1-1/ n]2 -1/n Vl(IE) _ 752(|E)/7/§ -1/n
C [~7.(1) ]y, +1-1/n)* +1/n”’ Cc y2() yE+1/n

(4.27)

Because function (z°—a?)/(z* + a®) = 1-20d%/(z* + a*) monotonically increases with increasing
22 =[-%(lg) / %+ 1—=1/n]* (and a*=1/n), this implies that vy(l¢, lo) > vi(l¢) (because n>1). In
other words, the band tip velocity increases when the tip is overtaken by the discontinuity. This
velocity increase is shown schematically in Figure 6 by breaking the slope of x = I(t) at point E.

Further, because both Iz, in (4.18) and 7(l) in (4.9) increase with |, a similar argument (with
Z=[-p(l)+ 2m(lg) /c)” and a” = ¥2) suggests that v,(l, o) in (4.18) monotonically grows as the
band propagates. Yet, as can be observed from (4.18), v(l, lp) < ¢, although v,(l, lg) > ¢, if | > o
(since %(l) is a monotonic and unbounded function).

Mathematically, the limit transition | — oo corresponds to the discontinuity that does not
catch up with the band tip again, i.e., after it reflects from the x = 0 end for the second time. If,
however, the discontinuity reaches the band tip, a nearly identical consideration leads to the

same result; that is, the velocity of the shear band approaches c as it propagates. In a similar
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manner, it is straight-forward to show (Appendix H) that the discontinuity magnitude reduces
after each reflection from the band tip.

Below we are mostly interested either in the discontinuity lagging behind the band tip
(Figure 4b) or in the discontinuity reflected once from the tip (i.e., twice from x = 0; Figure 4a
and Figure 6). These cases are of primary interest for this work (Chapters 5 and 6) as they
illustrate all important features of the general solution (Appendix E) for the arbitrary number of

reflections.

x

Figure 6. Discontinuity (dashed lines) originated at t =0, x = |, (point A) and reflected consequently from
points C, E, and F. Z(x, t) is the arbitrary point above the discontinuity line EF (but below FL). N and H are
points related to Z and located on lines x = I(t) and EF, respectively (above E). Points N and H correspond to
waves reflected once from x =0 and initiated at points R and W (both below E) on x =I(t), respectively.
U(l, t) is another point on x = I(t) (above E) that also corresponds to point Z. On a few occasions, point R is
referred to as RU and RH to stress its relation to points U and H, respectively.

4.4, Range of dimensionless parameters
The solutions presented above can be written in terms of dimensionless quantities
r--2, o-1 v=I ¢ X =2 (4.28)
Yo C%o c l, l,
and used with appropriate indices that correspond to the non-normalized parameters. Below,
we use both normalized and non-normalized quantities. Note the change of sign in the first
equation in (4.28), which corresponds to the normalized compressive strain being positive.
It turns out that the obtained solution, written in terms of quantities (4.28), depends upon
only two dimensionless parameters, that is, the “bluntness” number, n, and the characteristic,

dimensionless number
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PRI (T, =T(,)) (4.29)
oo VatVo

where function T(0) is defined by (4.8). Both parameters are relatively well constrained.
Because y, >0 (Section 2.2) and » > 0, the range of parameter A, is 0< A, <1. It is difficult to
further narrow down this range without addressing the specifics of progressive growth of the
shear band, until the band reaches the critical length of l,. Per (4.29), the value of A, depends
upon the relative values of j,; and . If 3, <<%, A, =1, for ¥, — w, A, =0.5, and for y, >> %,
A, =0.

In principal, parameter n is only constrained by condition n > 1. It is difficult to constrain it
further without explicitly considering the slip and specific weakening mechanisms (e.g., in the
band process zone (Figure 2). We note, however, that per (4.14), the crack tip velocity jumps
from zero to vg = ¢/2 already at the initial moment when n = 3 and to vo = ¢/3 when n = 2. In the
absence of better data for n for shear bands in particulate materials, we further consider
1<n<2and, in most cases, 1 <n< 1.5. The obtained mathematical results, however, are valid
for arbitrary n>1. Furthermore, as shown in Section 8.1, the asymptote of a large n (n >> 1)
becomes applicable already at n ~ 1.01 in many practically important cases.

The value of Tin (4.8) and (4.29) is a function of x only, which implies that in (2.5), not only
is n=1— % — 7, but also 7, is independent of time t. The water resistance to the slide motion,
however, does depend on the relative velocity of water and, therefore, is not constant over
time. The effect of 7, will be explicitly included in Chapter 8. Until then, 7, is considered to be

negligible.
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CHAPTER 5. SLIDE IN HOMOGENEOUS LOADING

5.1. Discontinuity approaching the band tip
Homogeneous load distribution
T(x)=T,=T(l,) = const (5.1)

in a slope with a propagating shear band represents an important particular case that has been
employed in many works on shear bands in soils and sediments [Palmer and Rice, 1973;
Chowdhury, 1978; Chowdhury et al., 2010; Quinn et al., 2011a; Dey et al., 2012; Quinn et al.,
2012; Viesca and Rice, 2012]. The approximation of constant quantities 7, 7, and 7 is also
commonly used in the conventional slope stability analysis [Lambe and Whitman, 1986; Das,
1994; Craig, 1997; Duncan and Wright, 2005; Budhu, 2007; Chowdhury et al., 2010]. In this case,

(4.8) simplifies to

v () ==y, -T,(I=1,)/h (5.2)
and the initial value of the band length
lo/h=(r,+7) /T, (5.3)

is obtained by using (5.1) with (2.11) and (2.10).
Since in our model lo/h >> 1, (5.3) implies that
Yat %0>>To (5.4)
where Tp = 7/E << 1. Because 0< A, <1, this is consistent with j, >> 4, Ty, which follows from
(4.29) for lo/h>>1. These inequalities provide an additional constraint on the choice of
parameters, which was satisfied in all numerical examples below.

In the normalized formulation (4.28), equation (4.7) rewrites as

di _ V.(2) = [1+(2-1)/A] -1/n 55)
dr 7 [+ (A1) /AT +1/n '
where V; = v, /c. Substituting (5.5) into (4.6) and integrating yields
T ~ J’+1 |n1—1+A(1—1/JH) (5.6)
) J’ \/' 1 A+1+A(1+1/n)

which defines the dimensionless band length A(7) as a function of time.

With (5.1) and (4.28), the static strain (5.2) rewrites as
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rs(/ﬂt)=—75—(')=1+E (5.7)
70 A,

while expressions (4.9) for the material strain and velocity at the crack tip (before the tip is

overtaken by the discontinuity) become

Fl:—ﬁzi l_l_l—l_l_ 1/n , Ql—i—i 1+ﬂ—1_ 1/n (5.8)
Vo 2 A 1+ (A-D /A Cy, 2 A 1+(A-D ] A
Normalized strain and material velocity
-1
MEn=1+52-0,k).  AED)-2(%) (5.9)

below CE (but above AC) in Figure 4a and Figure 4b are obtained from (4.13) while (4.15) results

in strain and velocity

L& 1) = (&) - (4)-T,(8), Q& 7)=Q(4)+<%(4) (5.10)
at the arbitrary point (& 7) above CE in Figure 4a and Figure 4b (but below EF in Figure 4 and

Figure 6). Here functions Ax(&, 7) and Ag(<, 7) are the solutions of equations

AR

dL
V,(2)

dA

)

I
THE—p= | (5.11)
1

where elementary expression for the integrals are given by (5.6). Equations (5.11) are the
dimensionless versions of (4.10), (4.16).

Hence, expressions (5.5) —(5.11) provide the closed-form solution for the material strain
and velocity and for the shear band size and tip velocity in the case of homogeneous loading
(5.1). They are valid before the band tip is reached by the discontinuity.

We observe from (5.8) that both strain and material velocity at the band tip monotonically
grow with the band length starting from their initial values I'1(1) = (n + 1)/(2n) and Q4(1) = (n —
1)/(2n), respectively, which are defined by (5.8), or, equivalently, by (4.14) and (4.28). For
A — o, both I'1(4) and Q4(A) formally approach the same asymptote [1 +(4A—1)/A,]/2, always
remaining greater and less than, respectively, this asymptote. This can also be seen in Figure 7a,
where I'1(A4) and Q4(A) are plotted for n=1.1 and A, = 0.25 and 0.75.

Dimensionless length of the shear band and the corresponding discontinuity characteristics

are plotted in Figure 7b in & 7 coordinates for A, =0.75 and n=1.1, 1.2, and 1.4. As can be
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seen, the reflected discontinuity will catch up with the band tip for n=1.1, but not for n=1.4.
For n = 1.2, the curves intersect at &= 8.430, which is beyond the drawing domain in Figure 7b.
To put these values of n in perspective, we note that according to (5.5), n=1.1, 1.2, and 1.4
correspond to an initial velocity vy of the band tip equal to 4.8%, 9.1%, and 16.7% of c,
respectively.

The velocity v of the band tip quickly approaches c (within approximately two or three initial
band sizes), which can be observed in Figure 7c. This observation holds for the entire range of
0<A,<1 and n>1, and v approaches c faster for smaller A, and greater n. By the time v
becomes comparable to ¢ (when 4 = 3), the material velocity QQ; at the tip becomes roughly ~ 1,
at which stage the normalized strain I'; at the tip is still ~1 (Figure 7a). For j» ~ 0.01, these
values of I'; and Q; correspond to the values of 7; ~0.01c and | 1| ~ 1%, respectively. At the
moment of reflection of the discontinuity from the band tip, the band velocity jumps (Figure 7c),
which is discussed in more details below.

Note that the shear band velocity approaches ¢ but remains slower than ¢, which is in
contrast with the result of Puzrin et al. [2010]. They obtained the shear band velocity
unbounded in time because they did not account for the elastic waves in their formulation.
Comparison of our result to Puzrin et al. [2010] is given in Appendix I.

Distributions of I" and Q along the slope (i.e., in the physical space) are shown in Figure 8a
and Figure 8b, respectively, for dimensionless times 7=0.2, 0.5, and 0.8 (i.e., before the
discontinuity hits the slide end, x = 0). They are also in Figure 8c and Figure 8d for r=1.3, 1.7,
and 2 (i.e., after it reflects from the end at 7= 1 but before it reaches the band tip, x=1), and in
Figure 8e and Figure 8f for 7= 3.2, 3.8, and 4.4 (i.e., after the discontinuity reflects from the tip,
which is further discussed in Section 5.2). All lines in Figure 8 are plotted for A, =0.75 and
n=1.1. Attime 7= 2, the discontinuity passes the initial position £= 1 (or x = lp) of the band tip
(Figure 8c and d). By that time, however, the tip has already advanced to the new position of
£=1.3865. The band tip propagation can be seen in Figure 8a through Figure 8f by observing

where the curves end to the right of the vertical line = 1.
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Figure 7. (a) Normalized strain (bold lines), and material
velocity (thin lines), at the shear band tip as functions of
A =1/l for A, =0.25 (black lines) and A, =0.75 (red and blue
lines) and n =1.1. Asymptotes of I'; and QQ; at 1 — « are
shown by the dashed lines. (b) Dependence of the
normalized band size, A =1/l,, on z=ct/l, for A, =0.75 (i.e.,
%o/ 70 =1/3) and n = 1.4 (thin, blue line), n = 1.2 (red line of
medium thickness), and n=1.1 (bold, orange line). In the
latter case, the discontinuity (thin dashed line) reaches the
propagating tip at <&=1.881, where it reflects at
7= £+1=2.881. Both solid and dotted parts of the orange
line are plotted using (5.6). (c) Dimensionless velocity,
V = v/c, of the shear band as a function of A =1/l,forn=1.1
and A, =0.75 (equation (4.18) or (G.13), bold blue and red
lines before and after the discontinuity reflects from the tip
at £ =1.881, 7,.=2.881, respectively). For the sake of
comparison, dotted lines are plotted using (4.18), but after
the reflection. Inset shows a magnified view near the
discontinuity.
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Figure 8. Distributions of (a, c, €) normalized material velocity, Q = 17/(cyy), and (c, d, f) strain, ' =—y/ 5,
along the slope as functions of dimensionless coordinate, £=x/l, at different dimensionless times,
r=ct/l,, when (a, b) the discontinuity has not reflected yet from x=0 (z=0.2, 0.5, 0.8), (c, d) after it
reflected from x =0 (7= 1.3, 1.7, 2), but before it reached the band tip £=1.881 at 7= 2.881, and (e, f) after
the reflection from the tip (7=3.2, 3.8, and 4.4) for 4, =0.75 and n=1.1. The discontinuity magnitude,
A= 8.382><10_3, after it reflects from the band tip (the same for all curves in (e) and (f)) is an order smaller
than magnitude A, = 4.545x10"° (the same for all curve in (a) through (d)) after the reflection. Note that in
(a),(b), (e), (f) and (c), (d), the discontinuity moves towards the slide end, x =0, and the band tip, x = I(t),
respectively. The discontinuity is not visible in (e) and (d), so its location is indicated by dots.
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5.2. Discontinuity reflected from the band tip

In a similar manner, equations (4.17) — (4.24) can be rewritten in the normalized form (4.28) in
the case of homogeneous loading (5.1) and discontinuity reflection from the band tip (Appendix
G). As can be seen from (G.14), both I';(4) and ,(A) monotonically grow with the band length
approaching the same asymptote [['s(A) +2Q(Azu(A)]/2 for A — o, remaining always greater
and less than the asymptote, respectively. This can also be observed in Figure 7a and Figure 9a
where I';(4) and 2,(A4) are plotted for n = 1.1 and 1.2, respectively (in both cases, 4, = 0.75). As
expected, both I'5(4) and ,(1) experience a jump when the crack tip is overtaken by the
discontinuity.

Figure 7b and Figure 9b show in &, 7coordinates the dimensionless length of the shear band
and discontinuity characteristics for the same parameters (n=1.1 or 1.2 and A, = 0.75). While
the velocity changes at point E (Figure 4 and Figure 6), the change is hardly noticeable in Figure
7¢, where the lines, computed with (solid curves) and without (dotted lines) taking into account
that the discontinuity reaches the band tip, practically coincide. A small (compared to the
magnitude) velocity jump, when the discontinuity reflects from the band tip is present though,
as evident in the inset in Figure 7c, which gives a magnified view of the discontinuity for
A, =0.75 and n = 1.1. The velocity behavior for A, =0.75 and n=1.2 is similar. In general, the
tip velocity jump decreases as the band becomes larger (i.e., with more reflections of the
discontinuity from the band tip). This can be directly observed from expressions (4.27), the
difference of which decreases with increasing |z (and not only for the homogeneous load (5.1)).

It is important to note that although in Figure 9b, the discontinuity reflects from x =0 for
the second time, it will never reach the band tip again; at least, from the practical standpoint.
This is in fact the case for most of the parameter combinations under consideration. For
example, the discontinuity lags behind the band tip until at least when £< 10° for A, =1 and
n>1.04,for A, =0.75and n>1.02 and for A, = 0.5 and n > 1.01 (Appendix F). With increasing n,
the value of & where the discontinuity arrives to the band tip becomes larger. This simplifies
further analysis as it is unlikely that the size of real landslides would exceed |y by more than

three orders of magnitude (although one could envision two orders; Chapter 8).
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Distributions of Q and I" along the slope are shown in (Figure 8e and f) for the same
parameters (4, =0.75, n=1.1) as in Figure 8a through Figure 8d, but for larger dimensionless
times 7=3.2, 3.8, and 4.4, i.e., after the discontinuity reflects from the shear band tip £=1.881
at 7=2.881. The end of each curve in Figure 8e for (2 and in Figure 8d for I" corresponds to the
propagating band tip. The discontinuity (marked by dots) is not visible at the scales of Figure 8e
and Figure 8f because after the reflection from the tip, it became an order of magnitude smaller
(4.545x107% before reflection and 8.382x10™° after). Therefore, similar to the band tip velocity,
the magnitudes of the propagating discontinuities of QQ and I" also quickly reduce with each
reflection from the band tip. This is a general trend, which is independent of the choice of
parameters A, and n.

Figure 9 and Figure 10, plotted for A, =0.75, n=1.2, show similar patterns as those
presented in Figure 7 and Figure 8 for A, =0.75, n=1.1. For example, both I',(4) and Q,(A) in
Figure 9a monotonically grow approaching the same asymptote Q;(Agzy(A) + I's(4)/2 for A — oo.
The band velocity trends in Figure 7c are also similar and so are the distributions of I" and Q
along the slope displayed in Figure 10 and Figure 8 for 7=0.2, 0.5, and 0.8 (i.e., before the
discontinuity reflects from x=0 at 7=1) and for 7=1.3, 1.7, and 2 (i.e., after it reflects from
x=0).

There are differences, however, with respect to the location of point E where the
discontinuity reflects from the band tip. For A, =0.75 and n=1.1, the reflection happens at
& = A =1.881 while for A, = 0.75, the discontinuity does not reach the crack tip at all when
n =1.24 tip (Figure F.1 in Appendix F). Hence, for A, = 0.75 when n changes from 1.1 to 1.24, A¢
changes from 1.881 to . In particular, because in Figure 9b is plotted for n=1.2 instead of
n=1.1, the point where the crack tip is overtaken by the discontinuity is extended to
&= Ag = 8.43. As a result, both strain and velocity distributions in Figure 9 and Figure 10 can
now be observed at a larger scale, which presents some new features.

For n=1.1, for example, the dimensionless time 7= 2 (last in Figure 8) is relatively close to
time 7.=2.881, when the discontinuity reaches the band tip, while for n=1.2, the
discontinuity is still relatively far from the tip (Figure 10c and Figure 10d) since 7=9.43. For

dimensionless times 7=3, 5, and 8 in Figure 10e and Figure 10f, which are closer to 7, =9.43,
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the actual magnitudes of the discontinuity are the same in both figures, but the discontinuity is
less visible because the magnitudes of strain and material velocity become considerably larger
at r=3, 5, 8 than before. Also, the physical location of the discontinuity is closer to the

propagating band tip for these times.
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Figure 9. (a) Normalized strain, I'; =—51/ » (bold lines), and normalized material velocity, Q; = 771/ (cyo)
(thin lines), at the shear band tip as functions of the normalized band length, A=1/l,, for 4, =0.75 and

n = 1.2 before (blue lines) and after (red lines) the discontinuity arrives at the band tip & =8.43 at 7: = 9.43.
Asymptotes of I'; and Q; at A — o are shown by the dashed lines (blue and red, respectively). (b)
Dependence of the normalized band size, A=1/l,, on dimensionless time, z=ct/l, for4,=0.75 (i.e.,
7./ 70 =1/3) and n = 1.2 before (blue, solid and dotted lines) and after (red line) the discontinuity arrives at
the band tip at & = 8.43 and reflects back at 7z =9.43.
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Figure 10. Distributions of (a, c, e, g) dimensionless material velocity, Q= 7/(cyo), and (b, d, f, h)
normalized strain, T'=-y/ 5, along the slope as functions of dimensionless coordinate, &=x/lo, at
dimensionless times, 7=ct/l,, of (a, b) 0.2, 0.5, 0.8 (when the discontinuity has not reflected yet from
x=0), (¢, d) 1.3, 1.7, 2 (soon after it reflected from x=0), (e, f) 3, 5, 8 (shortly before the discontinuity
arrives at the band tip), and (g, h) 11, 13, 15 (after the discontinuity is reflected from the tip) for A, = 0.75
and n =1.2. The magnitude A; = 5.741x10 " of the discontinuity after it reflects from the tip (the same in (g)
and (h)) is two orders smaller than magnitude Ag = 8.333x10° before the reflection (the same in (a) through
(f)). Note thatin (a), (b), (g), (h) the discontinuity moves towards the slide end, x = 0, while in (c), (d), (e), (f)
it moves towards the band tip, x = I(t).
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Figure 10g and Figure 10h display the distributions of " and Q along the slope for even
larger times 7= 11, 13, 15 and the same parameters A, =0.75, n = 1.2. These are times before
the discontinuity reflects again from x =0, but after its reflection from the band tip at E.
Because of this reflection, the magnitude of the discontinuity decreases by two orders (from
Ao = 8.333x107° before the reflection to A; = 5.741x10™ after) while the magnitudes of both
material strain and velocity further increase with time. This again is a common trend,
independent of parameters, which justifies allowing discontinuities in our model as further
discussed below (Section 10.1).

When n is relatively close to 1, its value is important with respect to the magnitudes of the
shear band and material velocities. We can see from (4.14) that when n changes, for example,
from 1.1 to 1.2, the factor of n—1in (4.14) doubles and so do the initial magnitudes of the band
and material velocities. In turn, this translates in the magnitude of material velocity in Figure

10 being roughly doubled compared to Figure 8.
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CHAPTER 6. SLIDE PROPERTIES

6.1. Slope failure and slide length
As above, in this chapter, we consider the case of negligible water resistance, 7,, so the
homogeneous load (5.1) in the infinite slope is To = (7, — 7;)/E. The effect of 7, will be addressed
in Appendix K.

As the shear band propagates, the strain magnitude at the tip x =1(t) increases until it
reaches the critical magnitude of the passive failure strain y,=(p,—po)/E >0 [Puzrin and
Germanovich, 2005a], which corresponds to the passive failure stress o(ly, t)) = —p, (p, > 0). At
this point, the shear band can be visualized as turning abruptly towards the surface, which
effectively ends its propagation at x = l;, t = tz. We refer to this event as ‘global failure’ or ‘slope
failure’, and first obtain y1(lf) from (4.9) or (5.5) with x = Iz In the case of the discontinuity that
has not reflected yet from the band tip, condition of the global failure can be expressed from

(4.9) as

7/52(|f)+7c2_ (6.1)

'
27/s(|f) P

1) ==y, £72 -7 (6.2)

where the static strain %(lf) == % — To(lf=lo)/h is defined by (5.2) with | = Iz. Using then (2.12),

In turn, (6.1) yields

substituting (5.2) in (6.2), and solving the resulting equation for I;, we obtain the dimensionless

failure length

| 2
A =L =1+A Yo 14 y—’;—i (6.3)
Iy 7o Yo N

where A, is given by (4.29) and we assumed that the global failure does not occur for | <,
which implies that || 2 5% (otherwise, the global failure would occur before the shear band
even starts propagating dynamically). Hence, because n>1, the solution (6.3) exists, and
because A¢> 1, we chose the minus sign in (6.2), which corresponds to the plus sign before the

square root in in (6.3).

If the discontinuity reaches the band tip, the left hand side in (6.1) needs to be replaced by
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the tip strain in (4.22) (with | = 1), so expression (6.2) becomes

100+ 7,00) =72 1 7.00) =7, =¥~ ¥ (6.4)

where Iz is found from

I+, % dl Ll
st [ (6.5)
c wu AAEN0)
Function lzy (1) is the same as in (4.23). In this case, the dimensionless failure length
y 7s 1 1
A =1+ A 221+ |2 - = [+ AL, A :z*[——rs(ﬂp)} (6.6)
7o Yo N nC, (4Ag)

is obtained by solving (6.4) with A, =1z /lo and T defined by (5.7). Because A, >0, 4,>1, and
n>1,AA<0,so for Asto be greater than 1, we chose again the plus sign before the square root
in (6.6).

The value of y,/yo depends upon the sediment properties, which will be considered in
Chapter 8. Here we only note that assuming t,, = 0 overestimates Ty, and, hence, overestimates
A« in (4.29). Therefore, A computed based on (6.3) or (6.6) is also overestimated. In other
words, (6.3) and (6.6) provide an upper estimate of the slide size, which, in turn, provides an
additional safety factor.

As discussed in Section 2.2, our model is applicable for 7:(l) < c. Substituting | = lsinto (4.9)
and using (6.1), we see that m(l)/c=y+vZ/x%(l). Here m(l) is a positive function
monotonically increasing with | while terms in the right hand side have different signs and the
absolute values smaller than one. We conclude, therefore, that for | <5, condition 7:(l) < c is
satisfied when the discontinuity does not reach the band tip. When it does, a similar argument
applies after using y»(l) from (4.29) in the failure condition y,(lf) = =3, and rewriting the tip
velocity at failure in (4.29) as m(1)/c = % + ¥Z /114(lp) — 2m(lr)/c]. Therefore, up to the time 7 of
global failure, the model is physically consistent in the sense that the material at the band end

moves slower than the band tip grows.

6.2. Slide velocity

To understand the slide potential to generate a tsunami of a considerable magnitude, we
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evaluate below the average material velocity
1 |
() = [n(x.dx (6.7)
0

which is further called “slide velocity.”

t*

Figure 11. Integration intervals (horizontal lines) for calculating the average material velocity in (6.7) at
given moments of time. Points B, M, N, and Y are the positions of the discontinuity at these times. The
discontinuity, initiated from point A, consequently reflects from points C, E, F, L, and so on. Integration in
(6.11), (6.12), and (6.14) is done over two adjacent intervals separated by the discontinuity position.

We first integrate the second equation in (3.1) with respect to x for constant time t<ly/c

(along the horizontal line that passes through point B in Figure 11) and obtain

1 ponxt) o ror(at) o 1
Czj = dx_J; ~ dx+h£T(x)dx (6.8)

Xg
where xg = lo— ct (Figure 11). Changing the order of integration and differentiation in the left

hand side and taking into account that both | and xz are functions of time yields
a |
E j ndx = vy, (1) +cn” (X, 1) +CZ[71(I) =7 +7.(Xs) =77 (X, 1)] (6.9)

where we used (2.11), (4.8), and that ¥ (l, t) = (1), n (I, t) = n1(l) given by (4.9). Using then the

jump condition (4.4) and integrating (6.9) with respect to time results in

jfﬂdx=j‘ﬂ1(l)dl+c2j.%dl (6.10)

where we took into account that dl = vidt and n(x, t) = 0 for 0 < x < Iy — ct (which allowed us to

replace xg with 0 in the lower limit of the integration in the left hand side of (6.10)). Finally,

40



substituting (6.10) into (6.7) and using (4.9) gives

@=—1jys(|)d| (0<t<l,/c) (6.11)
c Iy

For time ly /c<t<(lop+1f)/c, where I¢ is defined by (4.20), the integration interval is the
horizontal line that passes through point M in Figure 11. Otherwise, consideration is similar and
results (Appendix J) in the same expression (6.11) for 77(l). Therefore, (6.11) is valid when
0<t<(lo+Ig)/c, when the discontinuity starts at point A and continues propagating until it
reaches point E (with M replacing B as needed; Figure 11).

For (lo + lg)/c < t < (lo + 2l¢ + 1,)/c, when the discontinuity moves from point E through point F
to point L (horizontal integration intervals that include points N and Y in Figure 11), the slide

velocity is given by (Appendix J)

w:_}j%a)dn}j ’72(|)+C72(|)—75(|)+7S(I) dl - (to <t<t) (6.12)
c 1) | c 0

where te = (lo + Ig)/c, t; and |, are defined by

|
f o]
t,=te+|———, I +2l_+1,=ct 6.13
L E I'[VZ(LIRL(I)) L E 0 L ( )

and function lg(l) is obtained (Appendix G) by replacing lgy with Iz, in (4.19) and solving the
resulting equation. Comparing (6.12) to (6.11), we observe that 77(l) remains continuous at
| = I, although the band velocity jumps at point E due to the reflection of the discontinuity from
the band tip (Figure 7c). Points Yand N in Figure 11 correspond to points M and B, respectively.

Equations (6.11) and (6.12) represent the cases when the discontinuity does not reach the
crack tip after the first or the second reflection from x =0 (Appendix F), respectively. These
equations exhibit all features of the general solution (Appendix J) for the arbitrary number of
reflections.

For homogeneous distribution (5.1) of T(x), expressions (6.11), (6.12) become
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o2 1) _ _LA-I(4D)
Q(4) = P { v.() Fs(/i)}dfﬂ (6.14)
+(1—lj[l+ﬂ—_lj L+ <7<1+24.+4)
A 24,

where I'5(A) and (A1) are given by (G.14) and Af is defined by (G.16) (Appendix G).
Dependence Q(4) is shown in Figure 12 for n=1.1 and the values of A, =0.1, 0.5, and 1. For

these parameters, the discontinuity lags behind the tip after the first (for 4. =0.1 and 0.5) or

second (for A, = 1) reflection from x = 0 (i.e., point L can be considered being at infinity in Figure
4b, Figure 6a, and Figure 11). Before the discontinuity arrives at £, Q(A) is independent of n,
but the position of point E itself (or the value of 1¢) does depend upon n and so does (1) in
(6.14) after the reflection at E. In Figure 12, for A=1- 10*> and 1, =0.2, 0.5, Q(A) ~ 1072 - 10
This implies that by the time the shear band increases its initial length by two orders of
magnitude, the average slide velocity becomes ~ 0.1c for 5% =0.001. For 5% =0.01, 77(l) may
reach a value ~ ¢, although it remains smaller than c. Indeed, as shown in Section 6.1, 7(l) < ¢
for I <. Hence, because 7(l(t), t) < m(l(t)) (e.g., Figure 7a, Figure 8, Figure 9a, Figure 10), we
see that 77(1) < c for | < lras well.

It should be noted that neglecting 1, overestimates the value t in (2.5), which increases T,
and, therefore, the slide velocity. This can be seen in Figure 12, where a larger slide velocity

corresponds to a smaller value of A,, which per (4.29), corresponds to a larger To.
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Figure 12. Dimensionless slide velocity, @ = 77/(cy,), as a function of the dimensionless length, A =1/l,.
Solid lines correspond to the exact solution, v = v(l) (in (6.14)), with n = 1.1, while dotted lines represent the
asymptotic solution, v = ¢ (in (K.10) with 8 = 0). Red, green, and blue lines correspond to 4, =0.1, 0.5 and 1,
respectively. For A, =0.1 and 0.5 with n=1.1, the discontinuity does not reach the band tip in the exact
solution (red and green, solid lines) (Figure F.1). For A, =1 and n = 1.1, however, blue, solid line is plotted for
solutions in (6.14) before and after the discontinuity visits the tip, respectively, at £= A= 1.413 (t; = 2.413).
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CHAPTER 7. ASYMPTOTIC SOLUTION

7.1. Asymptote of long bands
As discussed above, the shear band typically acquires the velocity of propagation comparable to
the speed c of elastic waves after it propagates the distance of approximately two or three
times its original lengths. If we are interested in much greater lengths (~ 101I0—102I0), it is
natural to simplify the solution by assuming the band velocity, v, reaching c already at t = 0 and

remaining constant after that.

t4

Figure 13. Shear band propagation with the speed, c, of elastic waves. Tip location line x = I(t) = |5 + ct and
characteristic line CE of the propagating discontinuity have the same slopes dl/dx = 1/c and do not intersect.
Q and K are arbitrary points below and above CE, respectively. They are similar to point Q in domain ACE in
Figure 4a and point K in domain CEF in Figure 4b, respectively.

For v =c, the band length at time t
I(t) =1, +ct (7.1)

and the boundary condition (2.7) yields

n)/c+y(1)=0 (7.2)
In this approximation, the discontinuity, once reflected at x =0, never reaches the band tip
(Figure 13) since the band propagates with the same speed as the discontinuity. This
approximation is asymptotic for large band sizes because in the exact solution, v(l)/c — 1 as
| — oo (even if the discontinuity arrives at the band tip one or several times).

It should be noted that v(l)/c — 1 also when y.— 0 or, which is the same for any given n,
when % — 0. This implies that asymptotics of a large | and small % (or small y.) are the same,
which indicates that in the absence of the resistance to the fracture growth (since . — 0 or
7 — 0), the band velocity jumps to ¢ (but not higher than c) immediately at the onset of growth.

Similarly, .— 0 if n— oo for any given j, so the asymptotes of | > and n— o are
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equivalent as well. Comparison of these asymptotes to the exact solution is presented in

Section 8.1.

Similar to (4.13), for the arbitrary point Q(x, t) below the discontinuity line CE in Figure 13,

y(X,t) =y, (x)+n(x,t)/c
nx,t)/c=-y,(I5)/2

and similar to (4.15), for the arbitrary point K(x, t) above line CE in Figure 13,

{}/(X1t):}/s(x)—l_[}/s(IR)_}/s(IP)]/z
n(x0)/c=~y () +7.(1s)l/2

where |, and I are related to (x, t) (below and above CE in Figure 13, respectively) by

(1/1,>>1orn>>1) (7.3)

(1/1,>>1orn>>1) (7.4)

L =(t+l,+x)/2, 1,=(ct+l,—x)/2 (7.5)
At the band tip, x =I5, the boundary condition (2.7) (for v =c) combined with the slope
failure condition, y(ly, t)) =—, (Section 6.1), results in the material velocity, 7(l;, t)/c=y,, at
the band tip at failure. Hence, similar to the exact solution (Section 6.1), 7(ly, tg)/c < 1.
In the case of homogeneous load (5.1), the static strain is given by (5.2). Therefore, using
(4.28), (5.2), and (7.5), the material strain and velocity below CE (Figure 13) are obtained from
(7.3) as

y(X,1) :£+ 1 £3x—ct _3]

%6 2 44, I
(1/1,>>1orn>>1) (7.6)
77(x,t)_£Jr 1 [ct+x
cy, 2 44\ |,

Similarly, strain and material velocity above CE (Figure 13) are found from (7.4) as

wzl_Fi(i_zJ

% 24\ 1,
(1/1,>>1orn>>1) (7.7)
n(x1) g Lfct
7o 22y

where n is independent of x, although it is changing with time. Note that a part of the slide
(along the slope) where n(x, t) is spatially constant becomes larger with time (as the shear
bands grows).

Expressions (7.6) and (7.7) can also be obtained directly from (5.9) and (5.10), respectively,

45



by considering the limit of n — o or | — . Because the discontinuity does not ever reach the
band tip for n > 1.4392 (Appendix F and Figure F.1a), the limit of n — oo (or | - ) can also be
applied directly to (4.13) and (4.15), which results again in (7.6) and (7.7), respectively, if
T(x) = To = const. At the moment of slope failure, | = |y +ctf, and the failure condition y(lg, tf) = —
70, used with the first equation in (7.6), yields the shear band length at failure
l¢/lo=1+A.(2/%—1) (7.8)

Given that the expected value of j, is at least several times greater than j (Chapter 8) and that
n>1,lsin (7.8) is only slightly larger than in the exact solution (6.3).

The normalized strain, I, and material velocity, Q, are given by (4.28) with (7.3) and (7.4).
Distributions of Q along the slope (i.e., in the physical space) are shown in Figure 14a (solid lines)
for dimensionless times T =10, 20 and 4, = 0.5. For comparison, the exact solution (5.9), (5.10)
is also plotted (dashed lines) in Figure 14a for the same times and A,. The exact solution,
however, also depends upon n, so we used n = 1.1 when the discontinuity does not reach the
band tip (Figure F.1 in Appendix F). As can be seen, the patterns of Q are similar for the exact
and asymptotic solutions, although the magnitudes of the discontinuity jump differ by an order
(0.5 and 0.045, respectively). These magnitudes do not change with time, but their relative
values decrease (Figure 14a). The difference between the asymptotic and exact solutions is
insignificant for large enough values of t (Figure 14a).

Effect of n on the distributions of Q along the slope is shown in Figure 14b for n = 1.1 (blue,
thin line), 1.2 (green, dashed line) and t=9. The physical locations of the discontinuity are the
same, but the magnitude, Ay, of the discontinuity of Q increases with n. For example,
Ao = 4.545%x107% and 8.333x107% for n= 1.1 and 1.2, respectively. Note that at any given time,
the band length (solid lines in Figure 14) in the asymptotic solution is slightly longer than in the
exact one (dashed lines in Figure 14) because the band tip velocity is larger in the asymptotic
solution.

The slide velocity, ), can be obtained either by averaging the material velocity in (7.3) and
(7.4) at a given time or directly from (6.10) by replacing v4(l) with c. This results in (6.11) (with
vi(l) = ¢), which is valid for any time, since the discontinuity does not reach the band tip if v=rc.

Dependence Q(4) is shown in Figure 12 for 1, =0.1, 0.5, 1 and n=1.1. For A, =0.1, 0.5 and
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n=1.1, the discontinuity does not reach the tip (Figure F.1 in Appendix F), and in this case, the
exact and asymptotic solutions are nearly identical. But even for A, =1 and n = 1.1 (blue solid
and dotted lines), when the discontinuity arrives at the tip at - =2.413 and A =1.413 (in the

exact solution), the asymptotic solution still provides a close match to the exact solution.

A*=0.5 *=0.5, 7=9
j T T T T T T
25 9 Ig 10 8'/
ey S o
10; —_—— ’1, — T=1b, v=C i ar i
| |=—— 1220, v=c v=c
5t — — 7=10, v=v(l)| | 2r n=1.1, v=v(l) 7]
— — =20, v=v(l) — — n=1.2,v=v(l) ;
0 1 1 L 1 0 1 1 L L
0 5 10 15 20 25 0 2 4 6 8 10

€ (b)

a1l
—_
Q
~

Figure 14. (a) Distribution of dimensionless material velocity, Q = 17/(cy,), along the slope as a function of
dimensionless longitudinal coordinate, &= x/lo, at dimensionless times, 7=ct/ly, of 10 and 20. Solid lines
show the asymptotic solution (7.3), (7.4) (when v = ¢), while dashed lines correspond to the exact solution
(when v=y(l)) in (4.7) and (4.18) with A, = 0.5 and n = 1.1 (when the discontinuity never reaches the band
tip). The magnitude of the discontinuity is Ay = 0.5 in asymptotic (solid line) and 4.545x107 exact (dashed
line) solutions. Dots indicate locations of the discontinuities, which are not visible at the figure scale. (b)
Effect of the values of n on Q in the exact solution (4.7), (4.18) for n = 1.1 (blue, thin line) and n = 1.2 (green,
dashed line) at 7=9. The corresponding magnitudes of discontinuity are A0=4.545><10_2 and 8.333><10_2,
respectively. The asymptotic solution given by (7.3) and (7.4) (bold line) is independent of n because this
solution corresponds to n — .

7.2. Static versus dynamic failure lengths
Expressions (6.3) and (6.4) for the dimensionless failure lengths, A¢=I¢/ly, before and after the
discontinuity reaches the band tip at t=t; were obtained from conditions (l) =-y and
7(l) = =y, respectively, where the dynamic tip strains are given by (4.9) and (4.22). Parameter
I is important because it defines the amount of material available for the actual slide. It would
typically be evaluated based on the static considerations such as limiting equilibrium condition
[Hampton et al., 1996; Leynaud et al., 2004; Sansoucy et al., 2007; Bradshaw et al., 2010]. This
is equivalent to neglecting the dynamic effect and assuming the static strain at the tip of the

growing band. The corresponding length, Ly, of the static (or progressively propagating) band at
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failure is obtained from the tip condition x%(Lf) =—),. Using then (5.7), results in the

dimensionless static failure length

L
A =—t—1a| Lo (7.9)
Iy 7o

which can also be obtained directly from expression L¢/h = (p, — pa)/T = (7 + 7a)/To used, for

example, by Puzrin and Germanovich [2005a]. Hence, taking into account the dynamic failure
length from the asymptotic solution (7.8), we have

A=A+ Ay, 1y, (7.10)

Equations (7.9) and (7.10) imply that ratio of the dynamic to static failure lengths is given by

-1
. A

k== 14 1—ﬁ[1—ij (7.11)
L, A 7 A

Because 5/, < 1, k is always greater than 1, which suggest that the dynamic effect increases
the slide volume (mass) compared to the static (progressive) band growth and/or static
analysis. Furthermore, in the case of retrogressive slide (Section 10.1), A.>1, and (7.11)
suggests that k > 2 and close to 2 (> 1.5) for the most of the cases of 0 < A, <1 when ), >> x
(Figure 15). For shear bands propagating downhill (Figure 2), 0 < A, <1 (Chapters 2 through 7)
and as follows from (7.11), 1+ 4. <k <2. Hence, A. is an important parameter, defining the
lower bound of k. Isoclines of k are shown in Figure 15. It can be seen that for small values of
70/ 7, kK becomes relatively close to 2. For example, k>1.8 if %/ <0.2 and A, >0.444 or
/7% <0.1and A, > 0.286.

The reason of I¢being greater than Ly is that the elastic wave, which starts propagating away
from the tip at t =0, unloads the material, which is initially at static strain y(x). As a result,
7(l) < %(l) and a larger I is required to satisfy the dynamic failure condition 7(lf) = -y, than Ls
satisfying the static failure condition y(Ly) = —7.

Finally, (7.11) defines the value of k in the asymptote of large length of the shear band. In

the exact solution, we would use (6.3) instead of (7.10), which results in

2 -1
y)
oo ho ) 1_ﬁ(1_i] (7.12)
Ay N\ 7 Vo Ao
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Although expression (7.12) now includes the bluntness parameter, n, it still shows that for small
values of /7, k becomes relatively close to 2. For example, now k> 1.8 if 5%/ <0.2 and
A.>0.468 or %/ <0.1and 2, > 0.290.

Expressions (7.11) - (7.12) have been obtained without accounting for the water resistance
to the slide motion during the failure stage (Appendix A). In general, water resistance reduces
the magnitude of slip and tip strain. Thus, for the same band length, the tip strain computed
with accounting for the water resistance is smaller than the one without. More details on the
effect of water resistance on slide parameters is given in Appendix K. For typical submarine

landslides this effect is not significant (Chapter 8).

N0 /p

>\!

Figure 15. Ratio k = ¢/ /s as a function of A, and the normalized failure tip strain 7 /y,. The curves are
plotted for the magnitude of A;/ Asas 1.9 (red bold line), 1.8 (blue thin line), 1.7 (green dashed line), and 1.5
(orange dotted line).
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CHAPTER 8. APPLICATION TO REAL LANDSLIDES

8.1. Properties of displaced material

Literature on submarine slides [e.g., Chowdhury, 1978; Bugge et al., 1988; Hampton et al., 1996;
Fine et al., 2003; Sweet and Silver, 2003; Hiihnerbach and Masson, 2004; Fine et al., 2005;
Saurer, 2009; Chowdhury et al., 2010; Quinn et al., 2011a; Viesca, 2011; Dey et al., 2012; Quinn
et al., 2012; Steiner et al., 2012; Viesca and Rice, 2012; Wiemer et al., 2012] indicates a
relatively wide range of the characteristic sediment, slide, and shear band parameters. The
observed or inferred failure length, |5, ranges from < 1km to = 10% km slope angle, «, from
0.01° to =20°, and the aspect ratio, h/l;, of the displaced material from < 0.01 to = 0.1
(Appendix A). The density of the deposit, po, is typically within 1500 to 2000 kg/m?; for example,
Po=1790 kg/m3 in Grand Banks [Fine et al., 2005] and 1850 kg/m3 in the l1zmit Bay, Turkey
[Yalciner et al., 2002]. The peak shear strength, 1,, generally varies from 0.20;, [Dey et al., 2012]
to 0.580;, [Locat et al., 2009], the elastic soil modulus, E, from 2501, [Quinn et al., 2011a] to
3601, [Viesca, 2011], and the residual shear strength, t,, from 0.0137, [Quinn et al., 2011a] to
0.45t7, [Viesca, 2011]. Here, 0}, = -0}, = (0o — pw)ghcosa, is the y-component (normal to the
slope and the shear band) of the effective stress.

The critical value of the energy release rate, J, at the onset of the dynamic band growth
scales as JO=(tp—t,)6_ [Palmer and Rice, 1973]. The characteristic displacement, §, in the
process zone (Figure 3b) is probably the most ambiguous parameter in the landslide literature,
ranging from 2 mm to 50 cm. For example, Palmer and Rice [1973] varied § from 2 mm to 1 cm,
Puzrin et al. [2004] and Puzrin and Germanovich [2005a] assumed & = 2 mm, Chowdhury [1978],
Chowdhury et al. [2010], Viesca [2011], and Viesca and Rice [2012] employed 1 cm, Saurer
[2009] and Puzrin et al. [2010] adopted § = 5 cm, and Dey et al. [2012] and Quinn et al. [2011a;
2012] used 10 cm and 50 cm, respectively.

Many, if not most, submarine slopes are composed of normally-consolidated and lightly-
overconsolidated sediments [e.g., Bjerrum, 1967; Levin and Nosov, 2009; De Blasio, 2011].
Hence, we consider a typical landslide with a=6°, h=50m, and sediment properties
1,=0.250,, 1, = 0.47, E = 3501, po = 1800 kg/m’. Density of seawater p,, = 1000 kg/m”. Since o/,
depends upon depth, so do 1, 7, and E. At the depth of h=50m, o,,(h)= (po — pw)ghcosa =
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390 kPa, 1, =97.5 kPa, and t,=39.0 kPa. Mean properties of the sliding layer (O<y<h) are
estimated by their values at y=h/2=25m and denoted by bars above the corresponding
symbol. We have g, ~ (1/2)(po—pw)ghcosa=195kPa, T, ~ 0.25G, =48.8kPa, and E ~
3507,=17.1 MPa. For these parameters and §=10cm, c= (E/po)l/2 =97.4m/s, T4 = (pPo—pPw)
ghsina = 41.0 kPa, Jo = (T, — 7,)5= 5.85 kPa-m, yo = [2Jo/ (hE)]Y*=0.370%, and T, = (t,—1,)/E =
1.17x107,

Failure of fully saturated, normally-consolidated sediments under fast (dynamic) loading can
be described by the Von Mises criterion [e.g., Desai and Siriwardane, 1984; Chen and Baladi,
1985], which results in p, = 0, — 2T, =97.5kPa and p, = 0, + 27, =292.6 kPa. The
corresponding average active and passive strains are &;=—7% = (pa—po)/E =-0.114% and
€= % = (pp— Po) /E= 1.029%, where p, = K,G,, ~ 0.65,=117 kPa is the characteristic initial
longitudinal stress in the sliding layer.

The above parameters are further used as a baseline, and we deviate from the baseline to
test the dependence on one or another parameter.

The critical length, lo=h(%—€&,)/To=2.08 km, is computed from (5.3). The asymptotic
solution (7.8) for the failure length gives |s=9.31 km, and the strain ratio of A, =0.764 is found
from (4.29). This failure length, however, reduces to Ls=4.90 km in the static analysis (equation
(7.9)) conducted for the same parameters. Hence, in this case, the dynamic-to-static length
ratio (7.11) is k=1¢/Lf=1.9. The value of As=Is/lo=4.48 indicates that the results of the
asymptotic and exact solutions are close. The ratio of ly/h = 41.5 suggests that the condition of
lo/h >>1 for the developed model to be applicable to this case is reasonably satisfied. This
condition has been checked in all calculations described in this work.

Our dynamic analysis, therefore, results in a failure length magnitude typical for many
landslides [e.g., Hiihnerbach and Masson, 2004; Lee et al., 2007] (Appendix A). It also shows
that the corresponding static analysis may underestimate this length by nearly a factor of two.

As the slide develops, the shear band separates a layer (slab) of sediments, which eventually
fails near the band tip. The layer velocity 77 at this point is the final slide velocity at the slide
initiation stage (i.e., before the slide body separates from the slope) (Appendix A). This velocity,

however, is also the initial velocity, vo, of the slide (i.e., of the slab of sediments separated from
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the substrata) just before it begins moving downslope. Using the value Cs=0.002 [e.g.,
Pelinovsky and Poplavsky, 1996; Levin and Nosov, 2009; De Blasio, 2011] of the surface friction
coefficient (equation (K.8) in Appendix K) results in the dimensionless drag coefficient
8 = 8.55x10™". Such a small value of 8 indicates that the effect of water resistance on the initial
slide velocity, vo =17, is relatively small. Indeed, accounting for the water resistance to the slide
motion during the shear band growth (equation (K.10) in Appendix K), results in7 = 0.61 m/s.
Without accounting for the water resistance, 77 =0.92 m/s is obtained from (6.11). Water
resistance, therefore, does not have a significant effect in this case.

It is important to stress that although for sediment materials, the value of the bluntness
parameter n = Jy /J. =Yy3/Yy? is not currently constrained, it does not appear in the developed
asymptotic solution (Section 6.1). Technically, this asymptotic solution corresponds to the limit
of n — oo since according to (4.14), the shear band propagation velocity v = ¢ already at t = +0.
Therefore, using the asymptotic solution corresponds to using a sufficiently large value of n. To
test how large this value may be, we also performed computations based on the exact solution
(5.5) - (5.11), but for different values of n. The results (Table 1) show a good agreement of the

asymptotic and exact solutions for A, = 0.764 (baseline case) and n as small as 1.001. Per (4.14),

for n=1.001, the initial shear band velocity is vo=0.0005c = 0.049 m/sec. Once the band
propagates a distance of three times its initial lengths (i.e., | = 3lp), the band tip velocity reaches
~92% of ¢ for n=1.001 and § =1cm, and ~87% of ¢ for n=1.01 and § =10 cm. The
corresponding results for | = 21 are 80% and 71% of c. Hence, from a practical standpoint, even
n =1.001 can be considered sufficiently large for using the asymptote of n — oo.

The agreement between the exact and asymptotic solutions becomes even better for
smaller values of elastic modulus, E. Table 2 shows the same results as Table 1, but for
E = 2501, which is a typical lower limit for normally-consolidated sediments. Band length of the
asymptotic solution in (7.8) is same in both Table 1 and Table 2. Exact solutions of the band
length (6.3) and (6.6) in Table 2, however, are in better agreement with the asymptotic values
than in the case of £ =350t, in Table 1. This is also the case for the dynamic-to-static length
ratio k = l¢/Lfand shear band velocity at | = 2l and | = 3l,. Slide velocity, 7, is also better in Table

2, as the difference between exact and asymptotic solution is 10% and 8% in Table 1 and Table
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2, respectively, for the case of n = 1.01 and § = 10 cm.

Table 1. Results of the dynamic shear band model for baseline parameters, E = 3507, and different values
of n. Values computed after the second arrival (equations (4.7), (4.14), (G.23), (J.4), (7.8), and (7.11)),
between the first and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)), and before the
first arrival of the discontinuity to the band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)) are denoted

by two asterisks, one asterisk, and no asterisk, respectively. Bold font is used for the baseline case.

n 1.001 1.01 1.05 1.1 15 2 Asymptotic
solution

Characteristic slip, § = 10 cm

I (km) 8.802" 8.810° 8.794" 8.799 9.111 9.161 9.306

7 (m/s) 0.826 0.825" 0.829" 0.841° 0.895 0.901 0.918

K 1.797" 1.799" 1.796° 1.796 1.860 1.870 1.9

Vo (M/s) 0.049 0.484 2.375 4.637 19.48 32.46 97.40

Vo /c 0.0005 0.005 0.024 0.048 0.200 0.333 1

v/catl=2l,  0.703" 0.705 0.717" 0.729° 0.778 0.828 1

v/catl=3l,  0.866 0.867 0.873" 0.878" 0.903 0.926 1
Characteristic slip, § =1 cm

I (km) 9.249" 9.247" 9.249° 9.280 9.287 9.292 9.306

7 (m/s) 0.939" 0.936° 0.939" 0.943 0.944 0.944 0.946

K 1.888" 1.888" 1.888" 1.895 1.896 1.897 1.9

Vo (M/s) 0.049 0.484 2.375 4.637 19.48 32.46 97.40

Vo /c 0.0005 0.005 0.024 0.048 0.200 0.333 1

v/catl=2l,  0.802" 0.803" 0.806 0.814 0.860 0.893 1

v/catl=3l, 09237 0.924° 0.922" 0.929 0.947 0.960 1

Table 2. Results of the dynamic shear band model for baseline parameters, E = 250t,, and different values
of n. Values computed after the second arrival (equations (4.7), (4.14), (G.23), (J.4), (7.8), and (7.11)),
between the first and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)), and before the
first arrival of the discontinuity to the band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)) are denoted
by two asterisks, one asterisk, and no asterisk, respectively.

n 1.001 1.01 1.05 11 15 2 Asymptotic
solution

Characteristic slip, § = 10 cm

I (km) 8.925 8.929" 8.918" 8.922" 9.168 9.203 9.306

7 (m/s) 1.014" 1.012° 1.017 1.044° 1.078 1.083 1.097

K 1.822" 1.823" 1.821° 1.822 1.872 1.879 1.9

Vo (M/s) 0.041 0.409 2.007 3.919 16.46 27.43 82.30

Vo /c 0.0005 0.005 0.024 0.048 0.200 0.333 1

v/catl=2l, 0713 0.715" 0.727" 0.738" 0.787 0.836 1

v/catl=3l,  0.873" 0.874° 0.879" 0.885 0.909 0.931 1
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Characteristic slip, § = 1 cm

I (km) 9.267 9.267 9.287 9.287 9.292 9.296 9.306
7 (m/s) 1.112° 1.113° 1.117 1.118 1.118 1.119 1.120
K 1.892° 1.892° 1.896 1.896 1.897 1.898 1.900
Vo (m/s) 0.041 0.409 2.007 3.919 16.46 27.43 82.30
Vo /c 0.0005 0.005 0.024 0.048 0.200 0.333 1
v/catl=2l,  0.820° 0.822" 0.825 0.833 0.874 0.904 1
v/catl=3l,  0.932° 0.933" 0.935 0.938 0.954 0.965 1

Changing the characteristic slip & at the tip zone of the shear band by even two orders of
magnitude does not significantly affect the slide length, I (Table 3). Because the energy
dissipated at the band tip is characterized by J; = (1, — 7) § and J. = Jy /n, this indicates that from
the energy balance standpoint, the propagation of a sufficiently long band is mainly controlled
by the frictional resistance at the band sides. For a shorter band, corresponding to a thinner
layer, i.e., h = 10 m, the band length in the exact solution (6.6) is |;=1.804 km and = 1.466 km
for § =1 cm and § = 10 cm, respectively. Although the difference is not too large (~ 19%), it is
much greater than for h=50 m when |;=9.280 km and ls=8.799 km, respectively (Table 3).
This difference, however, becomes large (= 17%), for h=50 m and § = 50 cm (Table 3). The
difference between the exact and asymptotic values of I; (or k = l¢/Ly) also increases with §
(Table 3). For § = 10 cm and 50 cm, it is ~ 5% and ~ 21%, respectively. Note that the asymptotic
solution (7.8) can be rewritten as lf/h = (23, + 14)/To = (26, — €4)/To and is independent of § and
n (per (L.4) in Appendix L). Hence, the asymptotic value of |f=9.306 km does not change with 5
for h=50m in Table 3, and for h=10m, I;=1.861km for both § =1cm and § =10 cm.
Likewise, the asymptotic expression (7.11) for the dynamic-to-static length ratio k = I¢/Ls can be
rewritten using (4.29) as k = (2, + 7a)/()p + a) = (26, — €4)/(€p — €4), Which is also independent of
5 and n. Furthermore, « is independent of h and a. This is why the asymptotic value of
k =l¢/Ls=1.9 does not change with ¢, h, and § in Table 3. Similarly, the crack grows velocity, v,
in (4.7), (4.18), and (E.6) (Appendix E) is independent of § (but not of n), so the values of v in

Table 1 are the same for § =1 cmand = 10 cm.
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Table 3. Results of the dynamic shear band model for baseline parameters, E = 3507, and different values
of characteristic displacement, &, slide thickness, h, and slope angle, a. Values computed between the first
and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)) of the discontinuity to the tip are
denoted by the asterisk. All other values are computed before the first arrival of the discontinuity to the
band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)). Bold font is used for the baseline case.

lo/h A I (km) 77 (m/s) k=lg/Ls

Asymp. Exact Asymp. Exact Asymp. Exact
Slip, & (cm)
1 19.8 0.506 9.306 9.280 0.946 0.943 1.9 1.895
5 32.2 0.696 9.306 9.022 0.933 0.892 1.9 1.842
10 41.5 0.764 9.306 8.799 0.918 0.841 1.9 1.796
50 80.8 0.879 9.306 7.328 0.795 0.514 1.9 1.496
Thickness, h (m)
10 80.8 0.879 1.861 1.466 0.356 0.230 1.9 1.496
50 41.5 0.764 9.306 8.799 0.918 0.841 1.9 1.796
100 32.2 0.696 18.61 18.05 1.320 1.262 1.9 1.842
200 25.7 0.618 37.22 36.63 1.882 1.845 1.9 1.870
Slope angle, a
1° (AP/oy,= 0.875)*1'2 21.6 0.534 9.560 9.527 0.948 0.944 1.9 1.893
1° (AP/o,=0.6)"* 35.0 0.712  9.581  9.247 0.933  0.886 1.9 1.834
3° (AP/o;,= 0.525)1 324 0.691 9.538 9.261 0.936 0.897 1.9 1.845
6° 41.5 0.764 9.306 8.799 0.918 0.841 1.9 1.796

Excess pore pressure AP is applied on the rupture surface (shear band, including the tip zone) to reduce friction
and allow slides to move.

*Since 0.875 > ko = 0.6, hydraulic fracturing may take place before the slide occurs. This is why, AP/a}, is reduced to
0.6, which, however, is insufficient for the slide body to move on the 1° slope. Hence, the residual friction was also
reduced to 7, = 0.1257, in this case.

Table 4. Results of the dynamic shear band model for baseline parameters, E = 250t,, and different values
of characteristic displacement, §, slide thickness, h, and slope angle, a. Values computed between the first
and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)) of the discontinuity to the tip are
denoted by the asterisk. All other values are computed before the first arrival of the discontinuity to the
band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)).

lu/h A I (km) 77 (m/s) k=lg/Ls

Asymp. Exact Asymp. Exact Asymp. Exact
Slip, § (cm)
1 18.3 0.464 9.306 9.287 1.120 1.118 1.9 1.896
5 28.8 0.659 9.306 9.096 1.110 1.076 1.9 1.857
10 36.6 0.733 9.306 8.922 1.097 1.029 1.9 1.822
50 69.8 0.860 9.306 7.857 0.993 0.744 1.9 1.604
Thickness, h (m)
10 69.8 0.860 1.861 1.571 0.444 0.333 1.9 1.604
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50 36.6 0.733 9.306 8.922 1.097 1.029 1.9 1.822

100 28.8 0.659 18.612  18.19 1.569 1.521 1.9 1.857
200° 23.2 0.578 37.224  37.04 2.232 2.220 1.9 1.890
Slope angle, a

1° (AP/c,=0.893) " 14.0 0.472 7.018 7.003 1.123 1.120 1.9 1.896
1° (AP/0,=0.6)" 33.2 0.776 7.084 6.655 1.084 0.982 1.9 1.785
3°(AP/0,=0.543)"  21.0 0.649 7.004 6.859 1.113 1.082 1.9 1.861
6° 36.6 0.733 9.306 8.922 1.097 1.029 1.9 1.822

‘Excess pore pressure AP is applied on the rupture surface (shear band, including the tip zone) to reduce friction
and allow slides to move.

*Since 0.893 > k, = 0.6, hydraulic fracturing may take place before the slide occurs. This is why, AP/a}, is reduced to
0.6, which, however, is insufficient for the slide body to move on the 1° slope. Hence, the residual friction was also
reduced to 7, = 0.0431, in this case.

Slide velocity, 7, is more greatly affected by the value of § than the failure length, 5, both in
the exact (6.14) and asymptotic (first equation in (6.14)) solutions. With increasing §, the
energy lost to failure at the band tip also increases, and the slide is expected to have lower
velocity. This can be observed in Table 3, where 77 = 0.841 m/s for §=10cm and 171=0.514m/s
for § = 50 cm in the exact solution. We also observe 35% difference in 7 between the exact and
asymptotic solutions for § =50 cm; that is, 77 =0.795m/s and 17 =0.514 m/s, respectively.
Similarly, the asymptotic dynamic-to-static length ratio, k = I¢/Ls= 1.9, overestimates the exact
value of k=1.496 by nearly 21% for h=50m and § =50 cm (Table 3). This is because the
dimensionless failure length As=1¢/lp=1.912 is relatively low at failure, and the asymptotic
solution is less accurate than for larger lengths (typically, for I¢> 3lo). The same effect can be
observed for the thinner slide of h=10 m, when in the exact solution (6.14), 77 =0.399 m/s,
k=1.842 and 7 =0.230m/s, k=1.496 for § =1cm and § =10cm, respectively. In the
asymptotic solution, the corresponding values are 77 =0.417 m/s, k=1.9 and 77 =0.356 m/s,
k=1.9. For h=10m, A;=5.691 for § =1 cm and A;=1.912 for § =10 cm, so the asymptotic
solution is less applicable to the latter case than to the former. Therefore, for short and thin
bands (typically, h <10 m) and large tip displacements (typically, § > 50 cm), the asymptotic
solution needs to be applied with care. The simplest check is computing A to confirm that A > 3.
These conclusions are confirmed by results given in Table 4 for a softer material with E = 2507,

but otherwise having the same baseline properties as in Table 3.
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The baseline slope angle of 6° cannot be considerably reduced with the chosen baseline
parameters. Submarine landslides, however, can occur on slopes as small as 0.5° [e.g.,
Hiihnerbach and Masson, 2004; Haflidason et al., 2005] and even smaller (Appendix A). This is
commonly explained by the excess pore pressure, which developed in the sediment by or at the
time of the event [Screaton et al., 1990; Dugan and Flemings, 2000; Locat et al., 2009; Pinyol
and Alonso, 2010; Viesca and Rice, 2012]. Excess pore pressure is attributed to such factors as
seismic load [Newmark, 1965; Seed, 1979; Puzrin et al., 1995; 1997; Wright and Rathje, 2003;
Nadim et al., 2007; Locat et al., 2009], methane hydrate dissociation [Sultan et al., 2004;
Masson et al., 2006; Xu and Germanovich, 2006; 2007; Scholz et al., 2011], fast sedimentation
rates [Locat and Lee, 2002; Flemings et al., 2008a; 2008b; Dugan and Stigall, 2010; Flemings et
al., 2012], and high artesian pressure [Prior and Suhayda, 1979; Bonzanigo, 1997; Neuffer and
Schultz, 2006; L’Heureux et al., 2010]. In this case, o;, (which includes only hydrostatic pressure)
should be replaced by o}, + AP with AP being the excess pressure on the rupture surface
(Appendix B). For example, in the case of baseline parameters, an excess pressure AP of 87.5%
and 52.5% of o), along the shear band in slopes of @ = 1° and a = 3°, respectively, would result in
slope slip (shear band growth) and the same dynamic failure length, |f~ 9.5 km for both slopes
(Table 3).

The overpressure of AP =0.8750;, (i.e., greater than kqo;,) may be possible if generated by
fast earthquake loading. Otherwise, such a high AP is unlikely to realize because the sediment
will be fractured hydraulically before AP reaches this level, that is, at AP~kq0;, [e.g., Xu and
Germanovich, 2007; Viesca and Rice, 2012]. Hence, we also present in Table 3 the slide
parameters that correspond to AP = kq0;, (ko = 0.6) when a = 1°. Since this level of overpressure
is insufficient for the slide body to move, we reduced the residual friction to 7, = 0.1257,.

The requirement of a high level of excess pressure for low-angle faults is not unusual. Viesca
and Rice [2012], for example, suggest that at a depth of 20 m below a 2° sloping seafloor under
an initially hydrostatic condition, the failure corresponds to a pore pressure increase by ~ 93%
of the effective initial pore pressure. Excess pore pressure may develop not only along the slip
surface, but also within the sediment (slide) body. Recently, Viesca [2011] and Viesca and Rice

[2012] reviewed possible mechanisms for locally elevated pressure for submarine landslides
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conditions. Evidence of these mechanisms included fluid pathways such as faults and coarse-
grained, buried turbidity deposits. Resulting high-permeability conduits may elevate the
subsurface pore pressure to the lithostatic level and even create horizons of liquefied
sediments. Without analyzing detailed data for specific landslides (which is beyond the scope of
this work), we only consider the excess pore pressure, localized along the potential slip surface
(shear band). In the models of Viesca and Rice [2012] and Garagash and Germanovich [2012],
the pressure only needs to be elevated in the source region, which can be sufficient for the slip
to be driven by pressure diffusion along the slip surface. There are the initial conditions,
however, when the residual friction is sufficiently great, so that the pressurized zone spreads
from the local region with highly-elevated pressure before the nucleation of dynamic slip
[Garagash and Germanovich, 2012; Viesca and Rice, 2012]. This extreme case can be visualized
as an initial state for the scenario considered in this work.

It should be noted that in sensitive clays, slides can take place even in the absence of
overpressure. Sensitive clays are characterized by fast strength decrease during deformation
[e.g., Thakur et al., 2013], which translates in low residual friction coefficient. Quinn et al.
[2011a] for example, suggest k. =T, /T, =0.013 for sensitive clays in Quebec area (Canada).
Sensitivity of the sediment material appears to be a major factor in the deformation softening
process [Bernander, 2011], and promotes strain localization and propagation of shear bands
[e.g., Vanneste et al., 2014]. As a result, many landslides occurred in slopes composed of
sensitive clays [e.g., Mitchell and Markell, 1974; Bernander and Olofsson, 1981; Locat and
Demers, 1988; Kvalstad et al., 2005; Quinn et al., 2011a; Kovacevic et al., 2012; Thakur et al.,
2013]. Hence, we also considered a scenario when a landslide is caused by reducing the
frictional resistance not by rising pressure, but by mobilizing soil sensitivity in a thin zone where
the rupture surface (shear band) develops. For the baseline parameters, for example, reducing
k. to 0.005 [Quinn et al., 20113] (i.e., below the range of (L.3) in Appendix L) allows the slide to
develop in the slope of a = 0.5°. This results in I;=12.75 km, 7 = 0.90 m/s, and k = 1.9.

In an analysis of real submarine landslides, the slope failure length, I, is typically better
constrained (e.g., from bathymetry data) then the sediment properties. Hence, we also

conducted a similar analysis, but using a static slide model (Section 7.2). That is, we ignored the
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dynamic effects and assumed that even after the shear bands reaches the critical value of I,
the static equilibrium conditions are applicable. This results in equations (7.10) - (7.12), and
given the same properties, the static and dynamic failure lengths can differ nearly by a factor of
2 (Section 7.2). Alternatively, one can use the observed failure length to constrain the sediment
properties, which can be done both within the static and dynamic frameworks. It appears, that
the same failure lengths, ls=L; can be achieved for the 3° slope (Table 5) by only slightly
chaging the residual friction (from t, = 0.41, in dynamics to 7, = 0.427, in statics) or excess pore
pressure in the band (from AP =0.5250, to AP =0.5020,, respectively). The peak friction,
however, needs to be raised nearly twice (from 1, = 0.250;, to 1, = 0.470,,) as can be seen from
Table 5. Hence, the static analysis may work reasonably well for the back calculations of t, and
T,, but it should be used with care for recovering 1, from field observations. This observation is
also valid for 6° slope (Table 6) and confirmed below using examples of different slides.

Below, we consider examples of four submarine slides and one subaerial slide (Table 6
through Table 10). Since the failure length, |y, is probably the most constrained parameter, we
test if it would be possible to obtain values of I consistent with field data. For the case of
submerged slides, we also estimate the magnitude of the tsunami that could have been

generated by these slides (Section 9.2).
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Table 5. Results of the shear band model for baseline parameters, a = 6°, and a = 3°. Excess pore pressure AP #0
on the rupture surface (shear band) was used to allow the slide body to move in the case of 3° slope.

6° slope (static

N (3‘;?::; 'analysis) ' (z;zl::‘?c 3 slope (stati'c analysis) |
analysis) varying varying analysis) varying varying varying
T T, AP T T,

Slope angle, a 6° 6° 6° 3° 3° 3° 3°
Thickness, h (m) 50 50 50 50 50 50 50
Density, po (kg/m”) 1800 1800 1800 1800 1800 1800 1800
Characteristic slip, § (cm) 10 10 10 10 10 10 10
k, =1, /0l 0.25 0.25 0.48 0.25 0.25 0.25 0.47
k=1, /1, 0.4 0.41 0.208 0.4 0.4 0.42 0.213
ke=E /1, 350 350 350 350 350 350 350
ko = po /o), 0.6 0.6 0.6 0.6 0.6 0.6 0.6
p=t,/c, 0.1 0.103 0.1 0.1 0.1 0.105 0.1
Elastic modulus, £ (MPa) 17.1 17.1 32.8 17.1 17.1 17.1 32.2
Z’;C/eéz pore pressureratio, 0 0 0.525 0.502 0.525 0.525
Active failure strain, g, (%) -0.11 -0.11 -0.33 -0.11 -0.11 -0.11 -0.33
Passive failure strain, €, (%)  1.03 1.03 0.81 1.03 1.03 1.03 0.82
Fracture energy, J, (kPa-m) 5.9 5.8 14.8 2.8 5.9 2.7 6.9
Z‘rface friction coefficient, 5, 0.002 0.002 0.002 0.002 0.002 0.002
Fracture strain, o (%) 0.370 0.367 0.425 0.255 0.261 0.251 0.292
To=(t,—T)/E 12x10"  6.0x10°  6.1x10° 1.1x10" 6.1x10°  6.0x10°  6.1x10°°
Strain ratio, A, 0.764 0.763 0.561 0.691 0.696 0.687 0.471
Critical length, I, (km) 2.08 4.05 6.24 1.62 3.07 3.06 5.1
lo/h 415 90.9 124.9 324 61.4 61.2 102.5
aﬁ';mic failure length, I 5 18.2 16.1 9.5 17.7 18.2 16.2
A= /o 4.5 4.5 2.6 5.9 5.8 5.9 3.2
f:it;;/f;'('l‘(‘;f) length, 4.9 9.6 9.4 5.0 9.3 9.6 9.4
Failure length ratio, k 1.90 1.90 1.71 1.90 1.90 1.88 1.71
Water resistance 85x10°  1.7x10" 3.0x10" 85x10° 89x10°  85x10°  1.7x10™
coefficient, 8
Slide velocity, 77 = vo (m/s) 0.61 0.59 0.43 0.72 0.71 0.72 0.58
Slide velocity when 6=0, o) 0.92 0.84 0.94 0.94 0.94 0.8

7 = vo (M/s)
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8.2. Currituck Slides
The Currituck slide complex is located northwest of Cape Hatteras (36°20’N, 74°40’W), offshore
North Carolina. Prior et al. [1986] reported a detailed stratigraphic description and the
geomorphological analysis of the slide area. Using deep-tow sidescan sonar and high resolution
seismic data, they concluded that the slide complex is the result of two slides, Slide 1 and Slide
2 (Figure 16a). Their analysis of the slide geometry and dimensions (Figure 16b) agrees well
with more recent multibeam bathymetry imaging [Locat et al., 2009].

Bunn and McGregor [1980] collected 11 cores from the slide area, but 10 of these cores
only penetrated up to 5.5 m of the sediment drape, which blankets the entire region and was
deposited post-slide. One core (core 4 in Bunn and McGregor [1980]), however, sampled 2.3 m
of dry friable clay beneath the drape. The core location along the slope is shown in Figure 16c.
Since it is nearly at the base of Slide 2, McGregor [1981] suggested that the slip surface may
have occurred within the sedimentary sequence at a discontinuity in physical properties
sampled by this core.

Based on the thickness (4 to 9 m) of the sediment drape, identified acoustically and by
coring, Prior et al. [1986] used the available deposition rates and estimated that the slides took
place from 48 to 16 ka. Lee [2009] recently reanalyzed this range to 25 - 50 ka. Core analysis at
the Currituck slide complex and surrounding areas suggests that the surface drape is composed
of silty clays with occasional thin lenses of sand [Prior et al., 1986]. Little else is known about
the Currituck slide sediments, but presumably they are clays or silty clays that were normally-
or lightly over-consolidated at the time of the slides [Geist et al., 2009; Locat et al., 2009].

Prior et al. [1986] argue that Slide 1 was the first mobilized slope segment, which involved
~ 78 km® of sediments and evolved on a surface slope of =~ 4° and a basal shear plane inclined at
2° (Figure 16b). They also argue that Slide 2 was developing upslope and represents a shallower,
retrogressive extention of Slide 1. They suggest that ~ 50 km? of the displaced sediment from
Slide 2 moved into the trough created by Slide 1, but did not sufficiently fill it. Accordingly, they
concluded that some of the material from Slide 1 remained in its trough and was subsequently

covered by the Slide 2 sediments.
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Locat et al. [2009] noted that Slide 2 developed sufficiently fast to completely clear the slip
surface above and at the side of Slide 1 (Figure 16a). Retrogressive slides typically exhibit a
distinct pattern of a highly perturbed slope surface with alternating grabens and horsts [Bryn et
al., 2004, Fig. 16; Gauer et al., 2005, Fig. 2 and 3; Kvalstad et al., 2005, Fig. 4; Quinn et al., 201143,
Fig. 2]. This pattern contrasts with the smooth, clean failure surface (Figure 16b) left by Slide 2
[Bunn and McGregor, 1980; Prior et al., 1986; Locat et al., 2009]. The interpretation of Prior et
al. [1986], however, did not consider the actual retrogressive slide development. In fact, the
concept of retrogressive slides does not really contribute to their reasoning. In essence, they
suggest that because the Slide 2 area is located above Slide 1 (Figure 16a), it is likely that Slide 2
initiated at the headscarp of Slide 1, 150 to 175 m below the original slope surface. Incidently,
this would be consistent with the slip surface (Figure 16c) interpreted from core 4 [Bunn and
McGregor, 1980; McGregor, 1981].

Therefore, an alternative to the retrogressive slide mechanism could be an upslope
propagation of the shear band beneath the sliding slab. This was suggested by Chowdhury
[1978], Chowdhury et al. [2010], and by Quinn et al. [2011a; 2011b] as a mechanism of
translational slides. This mechanism could leave the failure/slip surface relatively intact, as
observed in the Slide 2 area. Quinn et al. [2011a; 2011b], Chowdhury [1978] and Chowdhury et
al. [2010] used the original Palmer and Rice [1973] model for an open cut slope in
overconsolidated clays. The dynamic version of their model is a particular case of the model
developed in this work (Figure 24 in Section 10.1), and we use it here to test if Slide 2 could hve
developed upslope from the headscarp of Slide 1.

For the Currituck slide sediments, Locat et al. [2009] suggested a Mohr-Coulomb failure
criterion with a peak friction angle ¢, =30° and cohesion C=10kPa to 100 kPa. Then, the
frictional traction in the intact material on the future rupture (shear band) surface,
T, = C +kp (03, + AP), where k, = tang, o;, = -0y, is the effective stress at the depth of the shear
band in the intact sediment (in the infinite slope), and AP is the excess pore pressure at the
same depth at the time of slide. On the sliding sides of the rupture surface (after the shear
band propagates through a given place), cohesion C drops to zero and residual friction becomes

T, = k. (03, + AP). In the case of upslope shear band development, the slab is unloaded at the
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upper end where the failure would happen. Furthermore, the sediment at the upper end
experiences tensile longitudinal stress (to counteract the weight of the “hanging” slab) and
should have at least some cohesion (perhaps, being in the overconsolidated state). In such
conditions, using the active critical load p, = ko, +AP — Cy (where k= (1- singy)/(1 + singy),
Co=2Ccos@y/(1 +singy), Ap = AP and @, are the excess pressure and effective stress, normal to
the slope, respectively, averaged across the sliding layer) may not be advisable since Mohr-
Coulomb criterion may not be suitable in the tensile stress conditions. Hence, we use the
simplest tensile failure criterion ¢’ = g;, where g, is the tensile strength, which, for simplicity,
we estimate as o; * C. As will be seen below, this estimate is not critical for the derived
conclusions.

At the lower slab end, the longitudinal effective stress 0’ = o+ p = 0. For the Currituck slide
sediments, pp =~ 1800 kg/m3 [Locat et al., 2009], and for Slide 2, h ~ 180 m. As noted by Locat et
al. [2009], such a slide with ¢=30° would not move on the 4° slope, even in the case of zero
cohesion, so some level of excess pore pressure is required. Locat et al. [2009] considered
sediment accumulation and earthquake load as two potential mechanisms. Viesca and Rice
[2012] argue that the possibility of the sedimentation-induced excess pressure generating
landslides at the depths of <100 m could be excluded. The depth of the Currituck slides is
> 100 m, however. In the absence of data, we simply assume AP ~ 0.750;,. This level of excess
pressure is required for the slide to move, but deviating from this value also does not affect the
conclusion below.

The main result of our analysis is that an unrealistically high magnitude of cohesion (tensile
strength) of at least 1 MPa (Table 6) is required for the shear band to propagate ~ 11 km (Figure
16b) before the failure. The final failure length, |5, is = 11 km [Prior et al., 1986; Locat et al.,
2009]. To maintain such a large |, the tensile stress magnitude has to be sufficiently large,
however. Unless some special conditions are realized, the value of g, = C > 1 MPa appears to be
too excessive for the Currituck slide sediments that are more likely to be normally-consolidated
than highly overconsolidated. Therefore, we rule out the possibility for the shear band to

develop upslope as a single event.
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Figure 16. (a) Schematic view of the Currituck slide complex [Prior et al., 1986]. (b) Seismic reflection (at
3.5 kHz) profile [Bunn and McGregor, 1980]. Dashed lines show the Currituck Slide A hypothesized in this
work. (c) Mulder and Cochonat’s [1996] scenario similar to that in figure (b). Slide A displaces material
above Slide B, which follows Slide A.

Note that in the propagating band, the residual shear stress t, is mobilized, and cohesion
C=0. The value of cohesion at the tip zone of the shear band affects 1, and can be reduced to

100 kPa or 10 kPa [Locat et al., 2009] or even to zero. This only affects the value of |y, the shear
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band length when the band begins propagating dynamically. It should be also noted, that we
only considered the excess pressure developing in the band. If the excess pressure also
develops inside the sliding layer, this would reduce the sediment strength g, to o, — Ap and
make |s smaller. Hence, even higher o, would be required for the shear band to propagate the
distance of s~ 11 km if the excess pressure developed not only in the shear band, but also in
the sliding layer. In general, this analysis indicates that the upslope growth of the shear band in
the open cut conditions is probabaly rare and, if at all possible, it probably occurs for relatively
short slides a few hundred meters long (< 1 km).

An alternative scenario to that of Prior et al. [1986] (i.e., Slide 1 developed prior to Slide 2
and, perhaps, triggered the latter) could be the opposite sequence of events. That is, Slide 2
developed first by the translational mechanism of the shear band growth downslope from the
initial weakness zone located below the Slide 2 headscarp (Figure 16a and Figure 16b). In the
area under this headscarp, the slope is slightly steeper (~4.5° [Prior et al., 1986]) than the
average slope of 4° of Slide 2 (Figure 16b). Hence, it seems plausible that the band started
growing downslope from this area, bypassed the future Slide 1 headscarp, and continued
downhill. Prior et al. [1986] and Locat et al. [2009] suggest that the slope of the upper boundary
of Slide 1 is also =~ 4°. So it seems feasible that the shear band continued parallel to the slope
along the length of Slide 1 as shown in Figure 16b. We name this event Slide A (Figure 16b) to
distinguish from the conventional terms Slides 1 and 2. A similar sequence of events was also
considered by Mulder and Cochonat [1996] (Figure 16c).

Since in the scenario of Slide A, all stresses are compressive and because the Currituck slide
clays are most likely normally-consolidated [Locat et al., 2009], we adopted the baseline
parameters (Table 6), but with a slope a =4° and slide thickness h = 180 m. As expected, we
found that the shear band would not propagate because the slope angle is too low. We then
assumed an excess pressure in the band and found that AP=0.181 o, =0.26 MPa
(03, = 1.41 MPa) is required for the band to propagate a distance of |;=28.6 km, which is close
to the 28.5 km of combined length of Slides 1 and 2 [Prior et al., 1986; Locat et al., 2009]. In this

case, A, =0.577, the slide velocity at failure is 1.78 m/s, and the length of the corresponding

static slide is Ly= 15.1 km (k = l¢/Ls = 1.9). The initial velocity (K.10) of Slide A is vo =7 = 1.53 m/s.
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An excess pressure of 18% of a3, is much lower than the 50% required for the scenario of Slide 2
with a shear band developing upslope.

After Slide A transports the upper 180 m of sediments downbhill (Figure 16b), a part or the
entire remaining material could also be removed by another translational slide, which we term
Slide B (Figure 16b). For the geometry of the Currituck slide complex [Prior et al., 1986; Locat et
al., 2009], this remaining material constitutes a wedge of =470 m thickness at the headscarp
(Figure 16b) that gradually reduces downslope to essentially zero. The slope of the top surface
of the wedge remains a ~ 4° (Figure 16b) while the bottom surface (potential slip plane), along
which the shear band would propagate, slopes at 2°.

Strickly speaking, our model is not applicable to this case and needs to be adjusted for
variable thickness. Yet, because the wedge thickness changes gradually, as a first order
estimate, we approximate it by an average value of h =235 m and consider a layer of constant
thickness, h, on the slope of a = 2°.

We assume that the Slide B sediments were also normally-consolidated at the time of
failure. Then, the baseline sediment properties (Table 6) are applicable to Slide B as well. As can
be seen in Table 6, the excess pore pressure AP =0.7780;,= 1.43 MPa (o,= 1.84 MPa) on the
rupture surface of Slide B is added to let this slide happen for the basal surface angle of 2°.
Using (7.8), we compute lf=17.5 km for Slide B. This is in good agreement with the value of
17.5 km inferred from the field observations [Prior et al., 1986]. The static analysis (7.11)
provides an estimate of the failure length as 9.2 km (k=1.90 in (7.11)) for Slide B. The initial
velocity of this slide is vo = 7 = 2.06 m/s.

The excess pressure for Slide B is greater than for Slide A since the slide surface angle is
more acute (2° instead of 4°). Depending upon how the excess pressure AP =0.7780;,=
1.43 MPa was accumulated, Slide B could have happened a significant time after Slide A.
Alternatively, Slide B could have been triggered by Slide A, if, for example, the weight of the
180 m of sediments, overlying Slide B, had been removed as a result of Slide A (Figure 16b). This
is seen by assuming that the excess pressure at the bottom of Slide 1 (which coincides with the
bottom of Slide B), before Slide A took place, is AP = 0.5240;,= 1.43 MPa (o0,= 2.75 MPa) where

o0;, is evaluated based on the new effective overburden, i.e., based on the seafloor surface of
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the Slide 1 (which coincides with the seafloor surface of Slide A). Such excess pore pressure is
not sufficient to cause Slide 1 to occur before Slide A. Assuming that the excess pressure, AP, at
the base of Slide B does not change during the relatively short time of Slide A, it can be
expressed as AP =0.7780;,=1.43 MPa, where o, reduces to o,,=1.84 MPa (because of the
removed overburden) and, therefore, is taken with respect to the position of the new slope (i.e.,
the base of Slide A). This level of excess pressure is sufficient for failure and the shear band
would propagate if there was an initial zone of weakness at that depth (ly in Table 6). The
excess pressure may be even lower if we take into account that the friction force from Slide A
may have acted as a drag force that increased the longitudinal load t. (Figure 2), which drove
the shear band growth. A model with two propagating shear bands (upper and lower) can be
devised in a manner similar to the case of one band, but a more detailed analysis of the nature
of excess pressure still would be required. This is beyond the scope of this work, however.
Finally, it is worth noting that the scenario of Slide A following Slide B agrees with the fact
that Slide 2 ‘envelopes’ Slide 1, at least, on the southern side (Figure 16a). The southern part of
the Slide 2, next to the southern side of Slide 1 (Figure 16a), can also be interpreted as the slip

surface of Slide A.
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Table 6. The dynamic shear band model parameters for Currituck slides.
The first column shows the baseline parameters.

Parameters C:Iri:ji:u;k Currituck Currituck
(upslope) Slide A Slide B
Slope angle, a 4° 4° 2°
Thickness, h (m) 180 180 235
Density, pg (kg/ma) 1800 1800 1800
Characteristic slip, § (cm) 10 10 10
k, =1, /0, 0.57" 0.25 0.25
k=1, /1, 0.4° 0.4 0.4
ke=E /1, 133 350 350
ko =po /0, 0.5 0.6 0.6
u=rt /o, 0.231 0.1 0.1
Cohesion, C = 0, (MPa) 1.1 0 0
Elastic modulus, E (MPa) 200 62 81
Z);C;;Z pore pressure ratio, 05 0.181 0.778
Active failure strain, &, (%) -0.73 -0.11 -0.11
Passive failure strain, €, (%) -0.18" 1.03 1.03
Fracture energy, J, (kPa-m) 119.1 13.5 6.1
Surface friction coefficient, Cs  0.002 0.002 0.002
Fracture strain, y, (%) 0.257 0.156 0.080
To=(t,—T)/E 1.9x10™ 1.4x10™* 2.9x10™*
Strain ratio, A, 3.172 0.577 0.413
Critical length, Iy (km) 0.77 3.57 1.57
lo/h 4.3 19.8 6.7
([T(\::;\mic failure length, I, 12.0 28.6 175
A=/l 15.7 8.0 11.2
(S;f:;c failure length, Ly = ¢ /k 59 151 9.2
Failure length ratio, 2.32 1.90 1.90
\é\/ater resistance coefficient, 6.1x10° 1.7x10™ 3.0x10°
Slide velocity, 7 = v (m/s) 0.67 1.53 1.90

Slide velocity when 8 =0,

_ 1.40 1.78 2.06
7 = Vo (m/s)

*In this case, k, = (t,— C) /(o3 + AP ) = tang, and k, = tang, /tang, = tan¢, /k,, where
@, =30°and ¢, = 13° are the peak and residual friction angle, respectively.
**Strain corresponding to zero effective stress at x = 0 (Figure 24 in Section 10.1).
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Table 7. Static analysis (based on equation (7.9)) applied for the Currituck Slides A and B. Varying
parameters are denoted by the bold font. Quantities that changed as a result of parameter variation are
given in blue font.

Currituck Slide A Currituck Slide B
Parameters
varying AP varyingt,  varying 1, varying AP varyingt,  varying T,
Slope angle, a 4° 4° 4° 2° 2° 2°
Thickness, h (m) 180 180 180 235 235 235
Density, po (kg/m’) 1800 1800 1800 1800 1800 1800
Characteristic slip, § (cm) 10 10 10 10 10 10
k, =1, /0, 0.25 0.25 0.47 0.25 0.25 0.48
k.=t /1, 0.4 0.417 0.213 0.4 0.51 0.208
ke=E /1, 350 350 350 350 350 350
ko = po /05, 0.6 0.6 0.6 0.6 0.6 0.6
u=rt/o, 0.1 0.104 0.1 0.1 0.128 0.1
Elastic modulus, E (MPa) 62 62 116 81 81 155
Z);’C;;Z pore pressureratio, g5 0.181 0.181 0.717 0.778 0.778
Active failure strain, g, (%) -0.11 -0.11 -0.33 -0.11 -0.16 -0.33
Passive failure strain, &, (%) 1.03 1.03 0.82 1.03 1.44 0.81
Fracture energy, J, (kPa-m) 14.1 13.1 333 7.8 5.0 15.5
i?rface friction coefficient, 5 55, 0.002 0.002 0.002 0.002 0.002
Fracture strain, y, (%) 0.159 0.154 0.179 0.091 0.073 0.092
To=(t,—T)/E 7.2x107 7.4x10°  7.2x107 1.5x107 1.5x10%  1.5x10™
Strain ratio, A, 0.583 0.574 0.353 0.443 0.389 0.217
Critical length, Iy (km) 6.81 6.49 12.72 3.16 2.88 6.56
lo/h 37.8 36.1 70.7 135 12.3 27.9
am;mic failure length, I; 54.0 52.6 49.1 335 33.4 30.1
A=l /lg 7.9 8.1 3.9 10.6 11.6 4.6
(SIE:;C failure length, Ly=lr/k = 5q 4 27.7 28.7 17.6 17.6 17.6
Failure length ratio, k 1.90 1.90 1.71 1.90 1.90 1.71
gz;;;;:;:tgnce 3.4x10°  3.1x10°  7.0x10° 6.8x10°  49x10°  1.4x107
Slide velocity, 7 = v (m/s) 1.52 1.53 1.34 1.88 1.92 1.74
Slide velocity when 6 = 0, 1.78 1.78 1.68 2.05 2.06 1.96

7 = Vo (m/s)
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8.3. Gaviota slide
The Gaviota slide (Figure 1 and Figure 17) is located on the northern slope of the Santa Barbara
basin (34°22’N, 120°06’W). The slide is relatively well studied [Lee and Edwards, 1986; Edwards
et al., 1993; Edwards et al., 1995; Hampton et al., 1996; Greene et al., 2006; Schwehr et al.,
2006; Dingler, 2007; Schwehr et al., 2007; Blum, 2010; Blum et al., 2010] and composed of silty
clay sediments [Lee and Edwards, 1986]. Analysis of the gravity cores collected in the slide area
suggests that the Gaviota slide occurred between AD 1715 and AD 1840 [Schwehr et al., 2006].
The M7.1 earthquake of 21 December 1812 in Santa Barbara, California is often attributed as
the slide trigger [e.g., Lee et al., 2004; Greene et al., 2006; Blum et al., 2010]. Slope failure
occurred on a 4° slope, and the main body of the material displaced by the slide is 12 m thick,
1.65 km wide, and 1 km long [Lee et al., 2004] (Table A.1).

The depth of the Gaviota slide headwall is approximately 400 m. Adjacent to the Gaviota
slide, a large fracture traverses the intact slope at the same depth (Figure 1 and Figure 17). The
fracture is approximately 8 km long eastward [Lee and Edwards, 1986; Edwards et al., 1995;
Hampton et al., 1996; Greene et al., 2006; Schwehr et al., 2007; Blum et al., 2010] and
resembles a headwall of the Gaviota slide [Blum, 2010]. According to Dingler [2007], this
fracture formed concurrently with the Gaviota slide.

Properties of the sediment from the Gaviota slide area were studied by Lee and Edwards
[1986] and Edwards et al. [1995] based on the gravity cores taken in 6 locations in the slide area.
Their results do not show considerable difference between the locations with the average
overconsolidation ratio [e.g., Lambe and Whitman, 1986, page 297] of 1.5 [Lee and Edwards,
1986]. Such a value is relatively low and indicates that the sediment is lightly overconsolidated
[Bjerrum, 1972]. The mean value of the peak shear strength for this sediment is 7, ~ 0.480,, [Lee
and Edwards, 1986, eq. (1)] where the average sensitivity 7,/ 7.~ 2.7 [Edwards et al., 1995].
Hence, the characteristic residual strngth is given by 1.~ 2.77, = 0.180;,. Since the data on the
elastic modulus, E, and cohesion, C, of the Gaviota slide sediment are not available, we simply
used the value of E=500t, and C=0, which are the typical values that are characteristic for

lightly-overconsolidated sediments [e.g., Bjerrum, 1972; Mayne et al., 2001].
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Figure 17. (a) Gaviota slide on the northern slope of the Santa Barbara basin [modified after Schwehr et al.,
2006]. (b) A CHIRP [Schock et al., 1989] seismic profile image along line b-b (figure (a)) west to the slide in
the area with the sub-horizontal fracture [modified after Blum et al., 2010]. The profile along line a-a (figure
(a)) is shown in Figure 1b.

The gravity cores sampled only = 1.5 m of the upper sediment layer, which is deeper than
the =~ 0.5 m thick drape, accumulated after the slide [e.g., Greene et al., 2006], but much
shallower than the thickness of 12 m of the Gaviota slide body. As noted by Lee and Edwards
[1986], in the absence of geological information, it is difficult to conclude that all 12 meters of
the displaced materials were over-consolidated (albeit lightly). We, therefore, also consider the

case of the Gaviota slide sediment being normally-consolidated (similar to many other
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submarine deposits). This is consistent with the nearly constant regional sedimentation rate
during the last 136 ky [Nlicholson et al., 2006] including the most recent 500 to 1000 years
when the Gaviota slide have occurred [Lee et al., 2004].

Although the Gaviota slide is sometimes interpreted as being retrogressive [Lee and
Edwards, 1986; Edwards et al., 1995], recent multibeam bathymetric and backscatter data
[Eichhubl et al., 2002; Greene et al., 2006; Schwehr et al., 2006; Schwehr et al., 2007] as well as
seismic profiles [Schwehr et al., 2006; Schwehr et al., 2007; Blum et al., 2010] do not show
surface morphology characteristic for retrogressive sliding [e.g., Kvalstad et al., 2005; Quinn et
al., 2011b]. The slide rupture surface appears to be fairly smooth (Figure 1a and Figure 17a) and
can be interpreted as a result of the downslope rupture (shear band) propagation, which
started from the upper headwall (Figure 2a).

Considering the Gaviota slide clays as being normally-consolidated and adopting the
baseline sediment properties (Table 6 and Table 8), we find that because the slope angle is low
(¢ =4°), some excess pressure in the shear band is required to trigger its propagation.
Specifically, AP = 0.4130;, for the band to propagate the observed distance of I;=1 km (Table

A.1). In this case, 4. = 0.835, the slide velocity at failure is relatively small vo =7 =0.21 m/s (as

expected for a small slide), and the length of the corresponding static slide is Ls= 0.5 km (so
k=lg/Lf=1.9).

Similar to Table 7, static analysis of the Gaviota slide with normally-consolidated sediments
could also explain the observed failure length of I;=1 km. In static interpretation, the excess
pressure AP = 0.3600;, = 34 kPa (o3, = 94 kPa) in the band or k, =1, /T, = 0.436 would also result
in the failure length of Ls= 1 km. The increased value of k, = 7, /0;, = 0.470 leads to Ly= 1.0 km
as well, but in this case, the residual friction needs to be decreased to t,= 0.2137, to maintain
the same value of t,/0;, =0.1 as in the dynamic case (Table 8). Compared to the dynamic
analysis (Table 8), the excess pore pressure, AP, and coefficient, k, = . /t,, do not significantly
change, while coefficient k, = 7, /o;, nearly doubles. The corresponding critical lengths, lo, are
630 m, 590 m, and 870 m, respectively, which are 2 to 3 times larger than the value in the
dynamic slide (lo =320 m; Table 8). These conditions are consistent with the results for the

Gaviota slide complex of lightly-overconsolidated sediments (Table 6) and for the Currituck
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Slides A (Table 7) and B (Table 8). The parameter k, differs the most between the dynamic and
static analyses.

The fracture on the slope to the right (east) of the Gaviota slide can be interpreted [Martel,
2004] as produced by the developing rupture surface when the fracture represents the future
location of the headscarp of the potential slide. A similar interpretation was offered by
Bernander [2011] who described the formation of long cracks on the ground surface with no
generation of global slope failure. Bernander [2011] termed such cases ‘unfinished landslides’,
which are also referred to as ‘confined failures’ [Hutchinson, 1988]. This interpretation is
consistent with the image in Figure 17b, which shows the vertical seismic cross-section along
the profile line b-b in Figure 17a. We hypothesize that this landslide did not take place at the
time of the Gaviota slide because of the difference in the slope and/or subsurface geometry
below the headscarp fracture. Indeed, assuming the same sediment properties in the two
areas (since they are adjacent each other), we slightly change the slope angle from a =4° to
3.7°. This results in the increase of the critical lengths from lo = 320 m to 600 m in the case of
normally-consolidated sediments (Table 8). Hence, it could have been that when the initial
rupture surface (shear band) reached the critical length of |y under the sediment displaced by
the Gaviota slide, it was shorter than the value of |y corresponding to the adjacent east slope.
As a result, the unstable shear band growth did not occur to the east of the Gaviota slide.
Therefore, the slight difference in slope angle (although visible in Figure 17b), may have caused
a drastically different behavior of the shear band (i.e., unstable, dynamic growth versus stable,
static development). If the shear band keeps propagating progressively below the headscarp
fracture, it may start propagating dynamically and will cause the corresponding landslides.
Parameters of this potential landslide are given in Table 8.

We interpret the curved lines in the inset on Figure 17a as shear bands that appeared as a
result of active failure. Resolution of this image is insufficient to conclude whether the basal
rupture surface initiated or did not initiate. Possible locations of this surface are indicated
based on the locations of the lower ends of the curved shear band and the sub-horizontal slope
crack (Figure 1a and Figure 17a). The latter appears to end at the depth of 20 m, where the

sub-horizontal shear band may emerge. In this scenario, we keep the same slope angle of = 4°,
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but increase the depth of the shear band from 12 m to 20 m. The critical shear band length, |,
increases again, from lp =320 m to lp = 400 m for normally-consolidated slope sediments (Table
8). Similar to the case of different slope angle, that the slide did not take place may be
indicative of the current shear band length being smaller than the critical length, lo. If the band
reaches this value, it will cause the slide, which is characterized by parameters given in Table 8.
Results for lightly-oversonsolidated slope sediments are given in Table 6. Except the excess
pore pressure magnitude, they are similar to the case of normally-consolidated sediments
(Table 8). This difference is important, however, since the required overpressure exceeds the
value of AP = kqo;, (ko = 0.6) and, therefore, hydraulic fracturing will occur prior to the slide
taking place. Since the Gaviota slide did happen, we concluded that the sediment at the time of
slide may have been normally-consolidated. In this scenario, the magnitude of the excess pore

pressure does not exceed the hydro-fracturing threshold of ~ kyo;, (Table 8).
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Table 8. The shear band model parameters for the Gaviota slide and adjacent slope fracture on the slope
composed of a normally-consolidated sediment. Quantities that changed as a result of parameter changes
are given in blue font. The slide associated with the fracture on the slope (adjacent to the Gaviota slide) has
not taken place yet, but the expected parameters are computed and presented in parenthesis.

Ga‘_"Ota Gaviota slide (static analysis) Adjacent S_IOPe frac.ture
slide (dynamic analysis)
Parameters . . .
(dynamic varying AP varying, varying t, milder thicker
analysis) ying ying tr Ying 7, slope slide
Slope angle, a 4° 4° 4° 4° 3.7° 4°
Thickness, h (m) 12 12 12 12 12 20
Density, po (kg/m®) 1800 1800 1800 1800 1800 1800
Characteristic slip, § (cm) 10 10 10 10 10 10
k, =T, /0, 0.25 0.25 0.25 0.470 0.25 0.25
k =1 /1, 0.4 0.4 0.436 0.213 0.4 0.4
ke=E /1, 350 350 350 350 350 350
ko =po /0, 0.6 0.6 0.6 0.6 0.6 0.6
u=rt /o, 0.1 0.1 0.109 0.1 0.1 0.1
Elastic modulus, E (MPa) 4.1 4.1 4.1 7.7 4.1 7
Excess pore pressureratio, ) 14 0.360 0.413 0.413 0.413 0.413
AP /oy,
Active failure strain, g, (%) -0.11 -0.11 -0.11 -0.33 -0.11 -0.11
Passive failure strain, &, (%) 1.03 1.03 1.03 0.82 1.03 1.03
Fracture energy, J, (kPa-m) 0.825 0.900 0.776 2.036 0.825 1.376
z”rface friction coefficient, 5, 0.002 0.002 0.002 0.002 0.002
S
Fracture strain, y, (%) 0.579 0.604 0.561 0.663 0.579 0.448
To=(t,—T)/E 2.6x10™*  1.4x10™* 1.4x10*  1.4x107" 1.4x107 2.6x10™
Strain ratio, A, 0.835 0.841 0.831 0.669 0.835 0.797
Critical length, I (km) 0.32 0.63 0.59 0.87 (0.60) (0.40)
lo/h 26.8 52.3 48.8 72.4 (49.8) (21.7)
Dynamic failure length, I 1.0 1.9 1.89 17 (1.9) (1.7)
(km)
A= e/l 3.1 3.0 3.2 2.0 (3.1) (3.9)
Static failure length, Ly = ¢ /k 05 1.0 1.0 1.0 (1.0) (0.9)
(km)
Failure length ratio, 1.90 1.90 1.90 1.71 (1.90) (1.90)
Water resistance 8.9x10°  1.8x10°*  1.5x10°  2.7x10° (1.6x107%)  (5.4x10™)
coefficient, 8
Slide velocity, 7 = v (m/s) 0.21 0.19 0.21 0.10 (0.21) (0.34)
Slide velocity when 6 =0, 0.39 0.38 0.39 0.26 (0.39) (0.54)

7 = Vo (m/s)
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Table 9. The shear band model parameters for the Gaviota slide and the adjacent fracture on the slope
composed of a lightly-overconsolidated sediment. The slide associated with the fracture on the slope
(adjacent to the Gaviota slide) has not taken place yet, but the expected parameters are computed and
presented in the parenthesis.

Ga‘_"Ota Gaviota slide (static analysis) Adjacent S_|°pe fracfture
slide (dynamic analysis)
Parameters . . .
(dynamic varying AP varying, varying t, midler thicker
analysis) ying YIng - ying 7, slope slide
Slope angle, a 4° 4° 4° 4° 3.7° 4°
Thickness, h (m) 12 12 12 12 12 20
Density, po (kg/m®) 1800 1800 1800 1800 1800 1800
Characteristic slip, § (cm) 10 10 10 10 10 10
k, =1, /oy, 0.475 0.475 0.475 0.81 0.475 0.475
k =1 /1, 0.37 0.37 0.43 0.217 0.37 0.37
ke=E /1, 500 500 500 500 500 500
ko =po /0, 0.6 0.6 0.6 0.6 0.6 0.6
u=rt /o, 0.176 0.176 0.204 0.176 0.176 0.176
Elastic modulus, E (MPa) 11.4 11.4 11.4 19.4 11.4 19.0
Excess pore pressureratio, 4, 0.668 0.714 0.714 0.714 0.714
AP /oy,
Active failure strain, g, (%) -0.23 -0.23 -0.23 -0.30 -0.30 -0.23
Passive failure strain, &, (%) 0.57 0.57 0.57 0.50 0.57 0.57
Fracture energy, J, (kPa-m) 0.821 0.953 0.744 1.741 0.821 1.368
z”rface friction coefficient, 4 5, 0.002 0.002 0.002 0.002 0.002
S
Fracture strain, y, (%) 0.35 0.37 0.33 0.39 0.35 0.27
To=(t,—T)/E 1.6x10"  9.5x107 9.6x10°  9.6x10” 1.2x10™ 1.6x10™
Strain ratio, A, 0.599 0.617 0.588 0.562 0.599 0.537
Critical length, I, (km) 0.42 0.76 0.70 0.75 (0.58) (0.61)
lo/h 35.3 63.4 58.4 71.7 (48.3) (30.6)
Dynamic failure length, I 1.0 1.7 1.7 16 (1.4) (1.7)
(km)
A= e/l 2.4 2.3 2.4 1.9 (2.4) (2.7)
Static failure length, Ly = ¢ /k 0.59 1.0 1.0 1.0 (0.80) (1.0)
(km)
Failure length ratio, 1.71 1.71 1.71 1.62 (1.72) (1.71)
Water resistance 6.8x10°  1.3x10™" 1.1x10™"  1.5x10™* (9.3x107°)  (4.6x107)
coefficient, 8
Slide velocity, 7 = v (m/s) 0.14 0.13 0.16 0.11 (0.14) (0.25)
Slide velocity when 6 =0, 0.29 0.28 0.30 0.25 (0.29) (0.42)

7 = Vo (m/s)
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8.4. Humboldt slide

Humboldt slide is located in the Eel River basin on the Northern California continental margin,
about 50 km of Cape Mondecino [Field et al., 1980; Field and Barber, 1993]. Sediments in the
slide area are primarily Late Pleistocene and Holocene clayey silts with abundant evidence of
gas in the sediments [Field and Barber, 1993; Yun et al., 1999]. Gardner et al. [1999] interpret
the Humboldt slide as a large slope failure with a length of 10 km, and thickness of 65 m. The
origin of the Humboldt slide has created a controversy [Lee et al., 2007; Schwehr et al., 2007].
Gardner et al. [1999] interpreted the Humboldt slide as a submarine slope failure deposit. Lee
et al. [2007], however, concluded that the Humboldt slide is a field of migrating current-
controlled sediment waves. The controversy steams out of the same data set used for both
interpretations [Lee et al., 2007; Schwehr et al., 2007].

These two alternative hypothesis (slope failure and sediment waves) predict different
sediment fabric that can be evaluated using measurements of anisotropy of magnetic
susceptibility [e.g., Rees, 1961; Marino and Ellwood, 1978; Schwehr and Tauxe, 2003]. Using this
technique, Schwehr et al. [2007] concluded that the top 8 m of the sediment have not
experienced post-depositional deformation, but rather formed by primary deposition
associated with downslope currents [Schwehr et al., 2007]. Measurements of the sediment
strata deeper than 8 m are not available. Nevertheless, the general morphology of the
Humboldt slide suggests minimal downslope thickening or upslope thinning [Schwehr et al.,
2007]. In addition, there is no evidence in the seismic data of a basal surface coming out to the
slope surface in the tow of the slide [Lee et al., 2007]. These arguments are important in
support of the sediment wave hypothesis of the Humboldt slide origin. For example, the seismic
cross-section along the Gaviota slide (Figure 1) does exhibit both upslope thinning (in the
excavation region) and downslope thickening (in the deposition region), and the slide is,
therefore, interpreted as a part of the slope failure process.

The hypotheses of slope failure and sediment waves can be reconciled by recognizing that
the sediment waves in the Humboldt slide area could be a shallow phenomenon (up to ~ 10 m
depth), while the basal rupture surface has been developing much deeper, at the depth of

~ 65 m (Figure 18). In this scenario, the rupture surface (shear band) has been propagating
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progressively and the catastrophic propagation is yet to take place. In other words, so far, the
Humboldt slide has been in the pre-failure slope, which is to be followed by the failure stage in
the future (Appendix A). This would explain minimal downslope displacements in the Humboldt
slide area and why the basal rupture surface has not daylight yet at the slide tow area. Because
previous slope failure (and possibly slides) have been interpreted beneath the Humboldt slide
[Field et al., 1980; Gardner et al., 1999], it is worthwhile evaluating the slide potential in mass

movement and generating tsunamis.

500 m

O o

Figure 18. Seismic profile of the Humboldt slide on the Northern California continental margin (=50 km
north of Cape Mendocino) [Gardner et al., 1999; Lee et al., 2007]. Orange line shows the structural
interpretation of Gardner et al. [1999].

Based on the basal shear surface interpretation of Gardner et al. [1999] (Figure 18), we first
assume that the current length of the basal rupture of | 4.5 km (Figure 18) is close to the
critical value, ly, of the sub-surface shear band. The Humboldt slide sediments are probabaly
overconsolidated [Lee et al., 1999; Lee et al., 2002; Lee et al., 2007], so far this first-order
analysis we use the same sediment properties as for Currituck Slide 1 (Table 6). For these
properties, lp = 4.5 km, a = 2°, and h = 65 m, the shear band will propagate catastrphicaly if the
overpressure AP =0.6700;, =342 kPa. While some overpressure may be a result of the
sediment pressurization by the existing gas, for example, by the gas dissociating from the
methane hydrates, abundant in the Humboldt slide area [Brooks et al., 1991; Gardner et al.,
1999], the overpressure is unlinkely to reach such a high level as before that, the sediment will
be hydro-fractured at AP = koo;, (ko = 0.6). Therefore, currently, | <lo. Nevertheless, AP > koo,

may be generated, at least in principle, by an earthquake. Given earthquake activity in the
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Northern California area, we also computed the landslide parameters for AP =0.6700,,. The
slope failure then would occur at I=32.5 km, which roughly doubles the value of L= 17.1 km,

obtained in the static approximation. The results of our analysis are summarized in Table 10.

8.5. Storegga slide

The Storegga Slides (offshore Norway, North Sea, 5 to 30 ka) were originally interpreted as
three separate slides [Bugge et al., 1988; Dawson et al., 1988], but more recent work
[Haflidason et al., 2004; Masson et al., 2006; De Blasio, 2011] suggests that there may have
been a larger number of smaller events. Yet it is believed [Haflidason et al., 2004; Bondevik et
al., 2005; Haflidason et al., 2005; Lovholt et al., 2005] that a large tsunami was generated by
one of the Storegga Slides with the size of ~100 km. This hypothesis is supported by the
tsunami deposits found in onshore lakes in Norway [Bondevik et al., 2005] and in inland
mudflats in Scotland [Dawson et al., 1988]. In Table 10, we presented the results of modeling of
such a slide. Given the uncertainty in dating and geometry, we refer to this event simply as
Storegga Slide. Bondevik et al. [2005] and Kvalstad et al. [2005] used a retrogressive (uphill)
slope failure model to analyze the Storegga Slide and the magnitude of the resulting tsunami.
Here we use an alternative model of the slide (Figure 2a) associated with the downhill shear
band propagation [Saurer, 2009].

Following Bugge et al. [1988], Harbitz [1992], Bondevik et al. [2005], and Kvalstad et al.
[2005], we consider h =144 m and a =0.5° as the average thickness and slope angle for the
Storegga Slide. Bugge et al. [1988] argue that in the area of Storegga Slide, most of the clayey
sediments were normally-consolidated at the slide time. Therefore, we use again the baseline
parameters (Table 6), but add the excess pore pressure of AP =0.9250;. Such a high pore
pressure is required because of the small slope angle of a=0.5°. The limiting equilibrium
approach also results in highly elevated pressure [Kvalstad et al., 2005]. However, since
AP > kooy, (ko = 0.6), hydraulic fracturing is likely to take place before the excess pressure
reaches the level of AP =0.9250;. Nevertheless, since such a high overpressure may be
generated by an earthquake [Kvalstad et al., 2005], we computed the slide parameters for this

overpressure (Table 10). Expression (7.8) and (7.11) give lf=111.5 km and Ly = 58.7 km (k = 1.90)
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for dynamic and static analyses, respectively. The initial slide velocity is estimated as
Vo = 1.61 m/s (per (K.10) in Appendix K).

Alternatively, the same values of failure lengths lf=111.5 km and L= 58.7 km can also be
achieved when the residual friction coefficient drops from k. =1, /1, = 0.4 to 0.03. The lowered
value of k, =1, /T, can be justified by high sensitivity of the sediments in Storegga area [e.g.,
Kvalstad et al., 2005]. In this case, excess pore pressure does not need to be added on the

rupture surface (AP = 0).

8.6. Subaerial slides

Quinn et al. [2011a; 2012] suggested using the original model by Palmer and Rice [1973] (Figure
24, Section 10.1) to study low-angle subaerial landslides such as those at river banks in Quebec,
Canada. Specifically, they suggested that shear bands propagating upslope in conditions similar
to an open-cut in an infinite slope (Figure 24, Section 10.1) may be an important mechanism of
progressive failure in sensitive clay. For their quantitative analysis, Quinn et al. [2011a; 2012]
used the properties of the Saint-Alban slide (Quebec, Canada) clay. These properties are given
in Table 10. In their model, the slope angle and slide thickness were a =0.5° and h=30m,
respectively.

As mentioned above, for an open-cut with a shear band propagating upslope (Figure 24,
Section 10.1), the sediment must have at least some cohesion (tensile strength) to
counterbalance the weight of the slab separated from the substrata by the shear band. Quinn
et al. [2011a; 2012] suggested that the slab grows to such a length that the tensile strength
along the slab is exceeded, resulting in the sediment failure at the higher end of the slab. They
used, however, the value of the active load characteristic to compressive stress regime.
Numerically, their “active load” corresponds to cohesion or tensile strength of the sediment
material. For the sake of comparison, we, therefore, used the value of their “active” load as
cohesion to failure length in static analysis. Instead we used the length given by L¢in (7.9) with

Vp replaced by y: = (o¢ + po)/E and A. given by equation (10.2) in Section 10.1. This value of Lsis a

result of the static analysis. Since the residual friction for the Saint-Alban clay is 80 times

smaller than its peak value [Quinn et al., 2011a; 2012], no excess pressure is required for the
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slip to develop, even in such a low angle as a = 0.5°.

To compare the results of static and dynamic analyses, we use parameters defined by Quinn
et al. [2011a; 2012] (we do not introduce any additional parameters). As can be seen in Table
10, the critical band size is lp = 220 m, which is the same as in Quinn et al. [2011a; 2012]. The
failure lengths for static and dynamic analyses are 730 m and 2.05 km, respectively. Therefore,
the dynamic analysis suggests that after reaching the length of lo =220 m, the shear band
would grow not until it reaches a length of 730 m, but until a significantly greater length of
2,050 m is reached. In other words, the dynamic analysis indicates that the slide three times as

large as in the static analysis.
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Table 10. The shear band model parameters for two submarine (Humboldt [Field et
al., 1980; Gardner et al., 1999] and Storegga [Bugge et al., 1988; Dawson et al., 1988])
slides and one subaerial [Quinn et al., 2011a] slide.

Storegga Storegga

Parameters Hu;:l;zldt Slide Slide Z?:;tr;
varying AP varying t,

Slope angle, a 2° 0.5° 0.5° 0.5°
Thickness, h (m) 65 144 144 30
Density, po (kg/m3) 1800 1800 1800 1800
Characteristic slip, § (cm) 10 10 10 50
k, =1, /0l 0.25 0.25 0.25 0.15
k.=t /1, 0.4 0.4 0.03 0.013
ke=E /1, 350 350 350 250
ko = po /03, 0.6 0.6 0.6 0.5
u=rt /o, 0.1 0.1 0.0075 0.002
Cohesion, C = g, (MPa) 0 0 0 0.090
Elastic modulus, E (MPa) 22 49 49 10
Z);c/eéz pore pressure ratio, 0.670 0.925 0 0
Active failure strain, g, (%) -0.11 -0.11 -0.11 -2.25
Passive failure strain, &, (%) 1.03 1.03 1.03 -1.35
Fracture energy, J, (kPa-m) 2.524 13 27.4 40.0
z?rface friction coefficient, 4 55, 0.002 0.002 subaerial
Fracture strain, y, (%) 0.187 0.060 0.277 -1.633
To=(t,—T)/E 4.3x107 2.8x10” 2.8x107 3.7x10™
Strain ratio, A, 0.620 0.343 0.708 5.773
Critical length, Iy (km) 4.50 8.95 20.1 0.22
lo/h 69.3 62.1 139.7 7.6
aﬁ';mic failure length, |y 32,5 111.5 1115 2.0
Ae= e/ 7.2 12.5 5.5 8.9
Z::;C failure length, Li=l;/k 5 58.7 58.7 0.73
Failure length ratio, k 1.9 1.90 1.90 2.81

Water resistance
coefficient, 8

Slide velocity, 7 = v (m/s) 0.89 1.52 1.18 1.81

7.2x10°° 2.1x10™ 2.2x10™ subaerial

Slide velocity when 8 =0,

_ 1.07 1.61 1.56 1.81
7 = Vo (m/s)

*Strain corresponding to zero effective stress at x = 0 (Figure 24 in Section 10.1)
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CHAPTER 9. TSUNAMI WAVE MAGNITUDE

9.1. Submarine slide on a mild slope

A common approach to modeling tsunamis generated by submarine landslides is to represent
the slide by a solid body moving along the slope with a constant angle [Harbitz, 1992;
Pelinovsky and Poplavsky, 1996; Watts, 1998; 2000; Liu et al., 2003; Grilli and Watts, 2005]. In
this scenario, however, the slide would never stop and eventually disintegrate. In many real
cases, the finite run-out distance of a submarine slide is identified by seafloor observations
[McAdoo et al., 2000; Haflidason et al., 2005]. A slide can stop for different reasons such as
increasing friction coefficient on the sliding surface or decreasing slope magnitude as the slide
moves [De Blasio et al., 2004; Bozzano et al., 2009; De Blasio, 2011]. Since accurate modeling of
landslide-generated tsunamis is beyond the scope of this work, to compare the tsunamigenic
potentials of different slides, we utilize the latter possibility. We assume that the friction
coefficient u is constant, but not necessarily equal to that on the propagating shear band. We
also assume that the slide thickness and volume do not change, as its shape adjusts to the
shape of the slope surface, along which the slide moves.

Let the ocean depth be H(x), with H(0) = Hy being the depth of the left (upper) slide end,
x =0, before it starts moving (Figure 19a). Note that, above we used notation x for the
coordinate along the slope to describe the shear band propagation. In this chapter, x >0 is the
horizontal distance the left side end moves as the result of the slide motion along the slope
(Figure 19a). The difference in notation, however, does not create any confusion since we do
not describe both processes at the same time. As common in the literature on tsunamis and
tsunamigenic landslides, the same notation, x, is used for both the horizontal coordinate and
sliding distance.

As in Figure 2a, frictional load t, acts at the slide bottom while the water resistance t, is
applied at its surface. The gravitational load t, is the driving force, and we consider two cases of
a slide with (i) zero and (ii) non-zero initial velocity vo=1(l) (equations (6.14) and (K.10),
respectively). Once the layer above the shear band separates from the substrata and begins
sliding downslope, the coefficient of friction, u, changes and typically reduces compared to that

in the shear band because of such effects as hydroplaning and lubrication in the boundary layer
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between the slide and the slope [De Blasio et al., 2004; Talling, 2013]. In reality, it may take
time for the seawater to percolate underneath the moving slide. For simplicity, however, we
ignore this time scale and assume that u changes as soon as the slide begins moving away from

the trough (Figure 19b).

H(x)
H, $

s=0
%\ i—|

Z
v (b)
(a)
: 1 ! : 1 1
- = o) I ——
Zy Zy

(c) (d)

Figure 19. Schematics of a submarine slide. (a) Slide at the initial position (when its upper end is at x = 0)
and final position (when its upper end is at x = x, where it arrived at t = t,). Initially, the upper end of the
slide is at depth H,. (b) Development of the topographic depression (trench) and seafloor uplift as the slide
moves. (c) A model of scenario (b) before the final depression is formed. (d) Slide movement after the final
depression (trench) is formed.

Most works on tsunamigenic landslides adopt u = 0.0025 - 0.005 [Harbitz, 1992; Pelinovsky
and Poplavsky, 1996; Grilli and Watts, 2005; Geist et al., 2009]. For the sake of comparison of
the tsunamigenic potential of different landslides, we, therefore, adopt a typical value of
u =0.0025 for slides moving downslope [Geist et al., 2009].

Although not all, most of submarine slides have occurred on slopes with small angles
[McAdoo et al., 2000; Hiihnerbach and Masson, 2004; Masson et al., 2006; Lee et al., 2007;
Clarke et al., 2011; De Blasio, 2011], and this is the case for all slides in Table 6 through Table 10.
Therefore, we consider only small slope angles such that

tana=H'(x)<e<<1l (e=const, a>0) (9.1)
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and keep only the leading terms with respect to € >0 in the momentum balance condition.
Specifically, we first solve the momentum balance equation written for the arbitrary a(x) >0
and then consider the limit of & = 0 in all but friction terms in the obtained solution (Appendix
M). This order is essential since making first the limit transition of a = 0 leads to the slope of
constant a, on which the slide with constant 4 would not stop.

As a result, the slide velocity can be expressed as (Appendix M)

1/2

V() =| e ™" +2(g /1)1~ p, /poﬁ[H (s+1)—H(s)—pd Je ™ ds | (9.2)
0
Constant A, is given by
AN:%&[CS%-I_CD\] (9.3)
Ao
which includes (in contrast to (K.8)) the drag coefficient, Cp, because of the “front” (Stokes-like)
resistance to the slide motion [Harbitz, 1992; Pelinovsky and Poplavsky, 1996; Watts, 1998; De
Blasio et al., 2004; De Blasio, 2011].The dependence of x(t) is then given in the implicit form of
t= 'X[ﬁ (9.4)
o V(X)
where time t is counted from the slide failure. At time t;, the slide stops at x = x; defined from
(9.2) with v(x) = 0.

Typically, submarine slides stop at a distance of 2 to 4 times the slide length [McAdoo et al.,
2000; Haflidason et al., 2004; Haflidason et al., 2005; Geist et al., 2009], although this distance
can be both smaller (Figure 1b) and greater [e.g., Locat et al., 2009]. The stopping distances, xs,
shorter than run-out distance by slide length, for the Currituck slides and the Storegga slides
were inferred as roughly 50 km (= 2y [Geist et al., 2009] and 400 km (= 3.7l¢) [Haflidason et al.,
2004], respectively (Table 11). Harbitz [1992] and Geist et al. [2009] reported the depth profiles
consisted of two approximately linear segments of the seafloor (i.e., with two different slope
angles) for Storegga slide and Currituck Slide B. Currituck Slide A includes one more segment,
also approximately linear [Geist et al., 2009]. In line with these observations, we adopt the

simplest depth profile
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Table 11. Parameters for the seafloor profile and tsunami wave magnitudes.

Parameters Currituck Currituck Storegga slide  Baseline
Slide A Slide B &8
Dynamic failure length, I¢ (km) 28.7 17.3 111.5 10.5
Static failure length, L (km) 15.1 9.1 58.7 5.5
Slide thickness, h (m) 180 235 150 50
Initial velocity of dynamic slide, vo =7 1.86 298 181 0.78
(m/s)
Initial depth, Hy (km) 0.5 0.5 0.4 0.5
Shallow water wave velocity, ¢, (m/s) 137.4 65.3 162.1 176.0
Characteristic time, T = I;/c,, (s) 211 268 688 60
Slope (shear band) angle for x < xq, o 4° 2° 0.5° 6°
Slope angle for x > x, a3 2° 0.6° 0.1° 0°
Slope angle for x > x4, a, 0.6°
Stopping distance, x, (km) 47.11 1.96 420 30
Distance where slope angle changes 98,7 325 250 30
from o to ay, xo (km)
Distance where slope angle changes
50
from a; to a,, x4 (km)
Bottom friction coefficient for a
. . 0.03524 0.03524 0.0025 0.075
mobile slide, u
Outgoing wave height, hy, (dynamic 4 5o, ) 55 3.38/-0.64 12.53/-12.49 1.42/-3.72
slide, crest/trough, m)
Outgoing wave height, h,, (static slide, 22.64/-15.40 7.05/-9.73 0.81/-2.76
crest/trough, m)
Dynamic-to-static ratio of outgoing
wave height, h,, (crest/trough) 1.31/1.57 1.78/1.28 1.75/1.34
Backgoing wave height, h, (dynamic g 4q, 1) g 0.59/-3.20 1.92/-6.04 1.89/-0.88
slide, crest/trough, m)
Backgoing wave height, h,, (static 5.09/~7.20 1.48/-3.98 1.46/-0.57
slide, crest/trough, m)
Dynamic-to-static ratio of backgoing
wave height, h,, (crest/trough) 1.73/1.65 1.30/1.52 1.29/1.54
Xtana, + H, if 0<x<x,
H(X) =9 (x=X,)tan e, + X, tan o, + H, if X, <x<Xx (9.5)
(X—=x)tanea, + (x, — X)) tan + X, tana, + H, if x>x

which accommodates both cases. Here 0 < a, < a1 < g and ag represent the initial slope where
the shear band developed (denoted by a in the preceding text). For the Currituck Slides A and B
(Figure 16c), for example, the slope angles are ap=4°, a1=2°, a,=0.6° and oag=2°,

a1 = a, = 0.6°, respectively, while the corresponding values of xp and x; in (9.5) are xo = 28.7 km,
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x1 =50 km and xo = x1 =32.5 km, respectively. For Storegga slide, ap =0.5°, a1 = a, =0.1°, and
Xo = X1 =250 km (Table 11). The moving slides stop because of the reducing gravitational load

along the slide paths.

05 T T T 4 T T T
— vle, =0.014 [
0.4f / \\ — - vle, =0 . 3t /// -
& 03 \ . . /
— \ ::\_‘ 2_ }r -
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i - ) 1 / Je,,=0.014
| B / vyle,, = 0. n
0-1 \\ // — - 1’3/6\»:0
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Figure 20. Sediment motion as a result of the Currituck Slide A. (a) Dimensionless slide velocity,
V(x) = v(x) /c,, and (b) dimensionless sliding distance S = x/I;, as functions of the dimensionless time, t/t, for
initial velocity V, = 0.014 (red, solid lines) in the dynamic case (Table 11) and V, = 0 (blue, dashed lines) in
the static case (Table 11). Quantity, v(x) and t(x) were computed with (9.2) and (9.4), respectively, using
distance x as parameter.

For the calculations described below, we used the geometry (e.g., failure length, |y, slope
angle, a = ap, and dynamic to static failure length ratio, k) and the initial slide velocity, v,=7,
given in Table 6. Dimensionless slide motion distance, x/l;, and velocity, v(x) /cy, are plotted in
Figure 20a and Figure 20b, respectively, as functions of dimensionless time t(x)/t, for the Slide A
of the Currituck slide complex. Here ¢, = (gﬁ)l/2 is the shallow water wave velocity, H is the
averaged water depth while the slide is in motion, and t, = I¢/c,, is the characteristic time. As
can be seen in Figure 20a, the value of v/c,, does not exceed 0.5. The results for other slides in

Table 6 are similar.

9.2. Tsunami height
Relation between the landslide and generated surface waves (tsunamis) is characterized by the
landslide and wave velocities. A landslide motion on the seafloor results in perturbations of the
water surface. If the slide moves with the velocity v close to the long gravitational (shallow
water) wave velocity, c,, the waves cannot depart sufficiently fast from the source region,
where the wave build-up takes place. As a result, if v approaches c,, the wave resistance to the

landslide motion sharply increases and so does the wave amplitude [Pelinovsky et al., 2001;
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Ward, 2001; Didenkulova et al., 2010]. The resonance occurs when the corresponding Froude
number, Fr = v/c,, becomes equal to one. The Froude number changes as the slide separates
from the strata and moves downhill (Figure 20a) since both v and c,, are generally not constant.
Yet, for the Currituck Slide A, the Froude number does not exceed 0.5, which indicates the
subcritical flow regime (Fr < 1) [Munson et al., 2006]. The flow regime remains subcritical as
the slide moves. This statement is valid for other slides in Table 11 and, in general, for
submarine slides with low slope angles.

Because of the small slope angle under consideration, we follow others [Tinti and Bortolucci,
2000a; b; Tinti et al., 2001; Pelinovsky, 2003] and consider tsunami height in the ocean of the
constant, average depth (H = H=const). Comparison of the results between the cases of
horizontal seafloor and a small slope showed that the difference is not significant [Didenkulova
et al., 2010]. In the case of Is>> H, which is of interest here, we use the linearized, shallow-

water asymptotic approximation [Tinti and Bortolucci, 2000b]

a_é:_i_@:%' 8_u+8_§:0
o ox oy o 0X

and assume that in the initially static ocean,
$(x,00=0, u(x,0)=0 (9.7)

where £ =hy, /h, ns = hs/h, u =uH/(hcy,), hu(xy, t1) is the water level relative to the undisturbed

(9.6)

ocean surface, hy(xy, t1) is the bottom uplift due to the slide motion, t; =t /to and x; = x /If are
the dimensionless time and sliding distance, respectively, c,, = (gH)l/2 is the shallow water wave
velocity, to = l¢/c, is the characteristic time, uy is the velocity of the fluid flow along the x axis,
and h is the slide height (or, in general, a characteristic slide thickness).

The solution

X+t

§y= |

x—t

n 11 x+t—q8277
: (y,0)dy+= [ d : (y,q)d 9.8
=0 )y+2!qj —(v,0)dy (9.8)

X—t+q

of (9.6) with initial conditions (9.7) is well known [e.g., Tinti and Bortolucci, 2000a; b; Tinti et al.,
2001; Pelinovsky, 2003]. Unless otherwise stated, hereafter, we omit subscript “1” in the
notations of dimensionless parameters for the sake of briefness. Changing the order of

integration, (9.8) can be written as
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1X+ta77 1X677
)== | = (y,-y+x+t)dy+= | —==(y,y—x+t)d 9.9
S =2 [ -y +)y+2iat(yy +t)dy (9.9)

Below we model the slide as shown in Figure 21a. As the slide moves horizontally, it leaves a
depression of the depth h behind and creates a surface uplift of approximately the same height.
The created depression spreads until the slide moves the distance of |¢ (Figure 19¢c), and it does
not change its shape after that. Similarly, the uplift does not change its size after the slide
moves distance |f and continues to move as a solid body (Figure 19d). Taking into account that
the slide eventually stops (at t =t; and x = x;), its motion can be described by perturbing the
seafloor level by

n,(x,t)=h,/h=60(x-1)-60(x)+0(x-S(t)) —0(x-1-S(t)) (9.10)
where éx) is the Heaviside function (éx) =1 if x>0 and éx) =0 if x<0), S(t) = x(t) /¢ is the

dimensionless sliding distance, and x(t) is defined by (9.4), written in the dimensionless form of
t= I — (9.11)
Taking into account that &(x) = 6(x) (Dirac’s 6-function), we obtain by differentiating (9.10) with
respect to time that
%(x,t)=V(t)[5(x—1—S(t))—5(x—S(t)] (9.12)

where V(t) = v/c, is the dimensionless slide velocity. Together with (9.10), equation (9.12) gives

the sought tsunami wave magnitude

E(x,t) = %jv W[o(x+t-u-1-S(u))-o(x+t—u—S(u))]du+
T (9.13)
+%IV(U)[5(x—t+u 21— S(U)) = S(X—t+u—S(u))]du

The development of the tsunami wave in the source region corresponds to t < ts in (9.13).
For u>ts, V(u) =0 and (9.13) reads
EX ) =& (X+)+<& (x—t)  (t>t, —o<X<0) (9.14)

where
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E(x+t)= %]‘V W[o(x+t—-u-1-S(u))-5(x+t—u—S(u))]du (9.15)
and
E(x-t)= %}V (W[o(x-t+u—-1-S(u))-o(x—t+u—S(u))]du (9.16)

are the waves of constant magnitude propagating with velocity c¢,, (in dimensional coordinates)
in the direction of x <0 (backgoing wave, propagating opposite to the landslide direction) and
x>0 (outgoing wave, propagating in the landslide direction), respectively. In other words, at
t = t,, the initial perturbation of the ocean level splits onto two waves, which then propagate
independently in the opposite directions.

The generated tsunami waves are plotted for the Currituck Slide A at times t=0.1t,,
t=t;=0.533t;, and t = t; in Figure 21b and at times t =t;, t = 2t;, and t = 3t, in Figure 21c and
Figure 21d. As expected, while the slide is still in motion (t < t;), the magnitudes and shapes of
the waves are changing with time (Figure 21b). After the slide fully stops, however, the
backgoing and outgoing waves show constant amplitude and do not change shape for t >t
(Figure 21c and Figure 21d). The outgoing wave (x >0) has higher amplitude and shorter
“wavelength” than the backgoing (x < 0) wave. The dimensionless amplitudes, & = h,,/h, for the
outgoing wave are 0.165 and —0.136 for crest and trough, respectively. For the backgoing wave,
the amplitudes are reduced to 0.049 and -0.060, respectively. The corresponding
dimensionless wavelength is approximately 6ls and 10l; for the outgoing and backgoing waves,
respectively. The described wave characteristics are similar to the Currituck Slide B, Storegga
slide, and the baseline slide in Table 11.

It appears that the landslides analyzed by the static approach have slightly higher maximum
velocity than in the dynamic approach, because the static slides accelerate faster from zero
initial velocity (Figure 20a). However, the landslide volume (or the failure length) calculated
with the static analysis is roughly a half that obtained with dynamic analysis (Table 11). As a
result, the tsunami wave generated by the initially static slide is smaller than that created by
the dynamic slide (Table 11). The dynamic effect on the tsunami wave height is shown in Figure

22 for the Currituck Slides A and B and in Figure 23 for the Storegga and baseline slides. The
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calculated “wavelengths” are comparable for the static and dynamic slides (Figure 22 and
Figure 23), but the amplitudes of tsunamis differ by as much as 78% for the outgoing wave of
the Storegga slide (Table 11). The dynamic analysis results in the initial velocity of the Currituck
Slide A of only 2 m/sec. Yet, because the slide volume (or failure length) is 1.9 times larger than
for the static slide (Table 6), the generated wave height is 31% to 73% larger (Table 11).

It is worth mentioning that it may not be possible to evaluate the slide motion in the static
analysis because the slide has zero initial velocity. For example, the Currituck Slide B does not
move when initial velocity is zero (Table 11). Therefore, the static analysis in this case cannot
identify the slide motion and the resulting tsunami height, although the dynamic analysis
results in more than 3 m of the tsunami height (Table 11, Figure 22c, and Figure 22d).

Finally, although the dynamic effect leads to a non-zero initial slide velocity, its magnitude
is typically not sufficient to affect the tsunami wave magnitude significantly. The effect of the

increased slide size is much more important.
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Figure 21. (a) Seafloor profile (uplift), h,/h, at times t = 0.1t; (red ,bold line), t = t;= 0.533t; (blue, solid line),
t = t, (green, thin line), and t = 2t, (pink, dotted line) describing the Currituck Slide A movement. (b) Tsunami
wave magnitude, h,/h, at times t = 0.1t; (red ,bold line), t = t;= 0.533t, (blue, solid line), and t = t; (green,
thin line). (c, d) Water wave propagation (c) to the left (backgoing wave, x < 0) and (d) to the right (outgoing
wave, x > 0) directions at times t = t; (red, bold lines) and t = 2t; (blue, solid lines), and t = 3¢, (green, thin
lines).
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Figure 22. Tsunami wave amplitude, h,, at times t =t is plotted for the dynamic and static analyses for (a,
b) the Slide A and (c, d) Currituck Slide B. Both (a, c) backgoing (x < 0) and (b, d) outgoing (x > 0) waves are
shown. The failure lengths of the Currituck Slide A are |;=28.7 km and L;=15.1 km for the dynamic and
static analyses, respectively, and the corresponding initial velocities are v, = 1.86 m/s and v, =0 m/s (Table
11). For the Currituck Slide B, the failure lengths are l;=17.3 km and L;= 9.1 km for the dynamic and static
analyses, respectively, and the corresponding initial velocities are v, = 2.28 m/s and vy = 0 m/s (Table 11).
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Figure 23. Tsunami wave amplitude, h,,, at times t = t; is plotted for the dynamic and static analyses for (a,
b) Storegga and (c, d) baseline slides. Both (a, c) backgoing (x < 0) and (b, d) outgoing (x >0) waves are
shown. The failure lengths of the Storegga are I;=11.5km and L;=58.7 km for the dynamic and static
analyses, respectively, and the corresponding initial velocities are vy = 1.81 m/s and v, =0 m/s (Table 11).
For the baseline slide, the failure lengths are I;= 10.5 km and Ly = 5.5 km for the dynamic and static analyses,
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respectively, and the corresponding initial velocities are v, = 0.78 m/s and v, = 0 m/s (Table 11).
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CHAPTER 10. DISCUSSION

10.1. Dynamic version of the Palmer and Rice [1973] model

In their celebrated paper, Palmer and Rice [1973] analyzed general conditions for the
propagation of a shear band and, in particular, a static shear band in an open-cut slope (Figure
24) in over-consolidated sediments. Here we consider a dynamically growing shear band.
Similar to our model (Figure 2), we consider a slope in the submerged or subaerial condition.
Therefore, the hydrostatic pressure, p,, of water acts at the bottom of the slope (Figure 24)
which corresponds to zero effective stress (i.e., 0 =—py) at x=0. Then, per (2.2), 1, =po/E >0 is
the strain that corresponds to p,. This is consistent with Palmer and Rice [1973], who studied
the subaerial case of p,=0. Since the strain increases uphill (from x=0 to x=1), condition
0 < < % < 7 should be satisfied as it would be in the original static model [Palmer and Rice,
1973].

Mathematically, Palmer and Rice’s [1973] (Figure 24) and our (Figure 2) models differ by the
relative direction of 7. and the x-axis, which is now pointing uphill (Figure 24), and by pj acting
at x =0 instead of p,. Hence, the dynamic version of Palmer and Rice’s [1973] model follows

directly from the results obtained in this work. Specifically, keeping both 7, and T positive, we

simply need to replace the signs of these quantities in (2.3), (2.4), (3.1), (4.1) and adjust other

equations accordingly.

Figure 24. Palmer and Rice’s [1973] model

In particular, the sign before T in (4.2) needs to be changed, and the static strain, defined in

(3.4) and (4.8), now becomes
| |
| = — 1 1
rW =+ TO=r+10), TO) :I—IT(x)dx, 1) =EIT(x)dx (10.1)
0 I
Expressions (4.7) and (4.18) for the band propagation velocity, (4.9) and (4.22) for the strain
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and material velocity at the tip, and (6.11) and (6.12) for the average slide velocity remain the
same, but they should be used with the adjusted static strain (10.1).

The position of the crack tip is still defined by (4.6) and (4.17) (both with using (10.1) for
vs(1)), and the location of point E of the discontinuity arrival at the band tip (Figure 6), is defined
by (4.20). Whether the discontinuity reaches the tip after the first or second reflection from
the slide end, x = 0, can still be determined from (F.2) and (F.4) (Appendix F), respectively, both
used with (10.1) for the static strain.

Similarly, for the homogeneous distribution (5.1), T= To = T(l,) = const > 0, equations (5.5) -
(5.11), (6.14), (F.4) (Appendix F), (G.13) - (G.22) (Appendix G) all remain valid, but with 4,
defined by

PI L /. (10.2)
Tle 70—

instead of (4.29) and with the static strain (5.2) replaced by

7s D=y, +T,(1-k) /h (10.3)
The initial band length (5.3) is now given by
lo/h = (30— m)/To (10.4)

which agrees with Palmer and Rice [1973] for y, = 0. Because lo >> h in Palmer and Rice’s [1973]
model, equation (10.4) implies that
Vo—¥h>> To (10.5)

The recurrence relations presented in Appendix E (equations (E.1) — (E.21)) are also all valid
for the dynamic Palmer and Rice’s [1973] model, which employs definition (10.1) of the static
strain. This means that in Palmer and Rice’s [1973] case, the general dynamic solution, when
the discontinuity reflects at the band tip arbitrary number of times, is given directly by
Appendix E.

The definition of A, is, in fact, the main difference between Palmer and Rice’s [1973] and
our formulations. It affects the range of A,, which depends upon the value of y, (or pp) in (10.2).
For 5 >0 (tensile strain), s < %, and the range is A, > 1. For this range, the chance of the
discontinuity reaching the band tip after the first reflection from x =0 is higher (Figure F.1b in

Appendix F) than for the range of 0 < A, <1 (Figure F.1a). Indeed, for any n from 1< n <2, the
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discontinuity does reach the tip if A, > 1.605. For 1 < n < 1.43, the discontinuity reaches the tip
for any A, > 1. This means that in most practical cases, it is expected that the discontinuity will
reflect at least once from the band tip. This can be explained by a shorter initial band length |y
in (10.2) thanin (5.3) (when », > 0). For a shorter initial band length, the discontinuity will travel
more frequently between x = 0 and the band tip, so in general, more reflections will happen.
The dynamic version of the Palmer and Rice’s [1973] model can be used for analyzing the
uphill growth of the shear bands in submerged slopes, which has been inferred from some
observations [Kvalstad et al., 2005]. We first note that j < 5, since the shear band propagates
until the strain at the tip reaches the active failure strain, 7,. Further analysis is similar to that
in Section 6.1, so equations (6.1) — (6.3), and (6.4) — (6.5) remain valid when j, is replaced with

Ya = (Po— pa) /E and the static strain is replaced by (10.3) where | = I5.

10.2. Direction of band growth
Above, we have considered downhill (Chapters 2—7) and uphill (Section 10.1) propagation of
the shear band. In the developed models, the shear band has one tip (x =1), which can only
propagate in one direction. The initial discontinuity, however, may have two tips [Puzrin and
Germanovich, 2005a; Viesca, 2011; Viesca and Rice, 2012] as shown in Figure 25. To understand
which tip begins propagating first, we consider here a quasi-static shear band at the onset of
dynamic (catastrophic) propagation, i.e., at the end of the stable (progressive) stage of the

band growth.

Figure 25. Static band propagation with two tips at x = —I, and x = |, (after [Puzrin and Germanovich, 2005a)).

In general, for a static band of length | = |; + |, with tips located at x =—I, and x = |1, equation

(2.4) is reduced to the equilibrium condition
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du/dx*=-T(x)/h  (0<x<l) (10.6)
Boundary conditions (2.7) are now specified at both tips as u(-l,) = u(l;) =0, so integrating (10.6)
results in the static strain

7o (X)=—= fT(s)ds+ j(l —9)T(s)ds (10.7)

,|2
which can also be written as

n(x)——jT (s)ds—— j (I, + )T (s)ds (10.8)

,|2
Expressions (10.7) and (10.8) are valid for the arbitrary (static) shear band —l, < x < |;. Let
I =1, =1y at the onset of dynamic propagation of one of the band tips (or both). Without the
loss of generality, the y-axis can always be placed in the middle of the band (Figure 25) at that

moment. Substituting x = lg in (10.7) and x = =l in (10.8) leads to

AORACHE j sT(s)ds (10.9)
hl, —ly

and condition (2.12) of band growth now holds at either band tip. The shear band begins
propagating at the upper end, x = —lo, if %(—lo) > —%(lo). If %(=lo) < —7s(lo), the propagation begins

at the lower end, x = lo. Hence, according to (10.9) and (2.12), at the onset of band growth,

.= _7s(|0) If A]/S >0 (1010)
75(_|0) if A}/S <0

Theoretically, for a load distribution T(s) such that Ay =0, propagation begins
simultaneously at both ends x =l and x =—l,. This would occur, for example, when T(s) is an
even function (T(s)=T(-s)); in particular, for the homogeneous distribution (5.1) when

T(s) = To = const. In this case, (10.10) results in the critical length

2IO=M=@ 2J, (10.11)
T T, \hE

which agrees with Puzrin and Germanovich [2005a] if E=E = E,, i.e., the material moduli in

loading and unloading (Section 2.1) are the same.

If E,#E,,

T(s)= r,[E if  x,<x<l, (10.12)
g /E, if -l <x<X, '
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When x = xq, strain %(x) changes sign. Adding (10.7) and (10.8) with |; =1, =1y and solving
equation 2y (xo) = 0 in the case of (10.12), we obtain the root

_(E/E)"-1

R S A— 10.13
° (E,/E)"?+1° (1013)
of function (x). Substituting (10.12) (with (10.13)) in (10.9), we find that
21
Ay, = X 10.14
e hJEE 0 ( )

In soil and sediment materials, typically E, > E| [Desai and Siriwardane, 1984; Wood, 1990;
Puzrin and Germanovich, 2005a; Budhu, 2007]. Hence, xo > 0 in (10.13), and, accordingly, Ay >0
in (10.14). Comparing to (10.10), we conclude that the band growth would occur first downhill
at the lower end of x = |,.

Note that although (10.14) is equivalent to the corresponding result of Puzrin et al. [2004]
and Puzrin and Germanovich [2005], they used the energy balance condition for the entire
sliding layer (rather than for individual band tips) and, therefore, could not determine which tip

of the shear band would propagate first at the onset of dynamic growth.

10.3. Slides with varying slope and finite width
So far, we have been considering slopes with constant angles (Figure 2). If the slope angle, a,
varies along the slope, but the angle is small (0 < a(x) << 1) (Figure N.1 in Appendix N; note that
x-axis is now horizontal), the momentum balance condition can be written in the form of (2.4)
or the second equation in (3.1) with T= (1o —hdp/dx)/E = 7./E = [(00 — pw) (tana—u)gh - 7,] / E
(Appendix N). The boundary and initial conditions (3.2) - (3.5) remain valid (Appendix N).

Since the solution obtained in Chapter 4 is valid for the general case of T(x), it is also valid
for the above interpretation of T(x). In particular, when py(x) is independent of x, T(x) remains
the same as in the preceding chapters.

It should be noted that using (2.4) in the case of a varying angle represents an asymptotic
case (for 0 < a << 1), and changing the angle affects mainly the term of T(x) in (2.4) or (3.1). This
is significant, however, since for a reducing with x, components t, — 7, and 1, of load 7, reduce

and increase, respectively, so the shear band may eventually stop before the slope failure takes
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place. This can be seen, for example, from (4.7), which suggests that the shear band stops
growing when it reaches the length of I such that %(l;) =—. Using (4.8), this condition can be

written as
IS
1
11, = EjT(x)olx =7~ 7 (10.15)
lo

where T(x) decreases (and even becomes negative) with decreasing a. According to (4.9), both
ni(ls) =0 and dn4(ls)/ot =0 if (10.15) is satisfied. Hence, both the material velocity and
acceleration equal zero at the shear band tip when it reaches the length of I;. This indeed
means the full stop of the band growth and the slide motion ceases at that moment.

Using (4.8), equation (10.15) can be written as

1LT()=1,T(,) =, —r)h (10.16)
and a lower bound of I; is obtained by setting 7% =7 in (10.15) or (10.16). This bound is
independent of n and is close to | if n is close to 1 (i.e., if ¥ is close to 7). Note that /(l) = 0 has
another (trivial) solution, | = |y, which is not of interest here.

Finally, many slides have an elongated shape (Figure 26), which typically depends upon the
topographic features in the slide region. Yet the characteristic slide width, b, is usually much
greater than the thickness, h, of the sliding layer. In most cases (e.g., Table A.1), the overall
resistance to the slide movement (per unit area) at its margins (e.g., side scars) is comparable to
the bottom (shear band) friction (also per unit area), although it may be much more complex in
detail [e.g., Farrell, 1984; Martel, 2004]. Therefore, if b >> h, the edge resistance at the side
scars can be ignored to the first order, and the obtained solution can also be used for such

slides of finite width (if b does not change too much along the slide).
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Figure 26. Map view of the Goleta slide [after Greene et al., 2006]. The Goleta slide is centered at 34.34°N,
119.97°W (offshore Santa Barbara, California), with the headscarp at ~ 150 m water depth. The slide age and
the sediment characteristics are currently unknown. The Goleta slide has a width b~4km, a thickness
h ~50 m, and an averaged slope angle a =~ 2° (Table A.1) [e.g., Greene et al., 2006].
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CHAPTER 11. CONCLUSIONS

In this work, landslide failure is considered as a dynamic process when a shear band emerges
along a length of the potential rupture surface. Within this band, the shear strength drops due
to the softening behaviour of the particulate material. The material above the band moves
downwards, causing the band to propagate. This propagation may first be stable (progressive),
but eventually becomes dynamic (catastrophic), which produces an initial landslide velocity
before the slide reaches the post-failure stage and separates from the substrata. For
tsunamigenic landslides, therefore, the resulting tsunami is expected to be larger than in the
case of zero initial velocity.

In this work, we considered the dynamic elastic problem for the shear band propagating
parallel to the slope surface. The problem is formulated within the framework of the Palmer
and Rice’s [1973] approach, which is generalized to the dynamic case. Using the method of
characteristics, we found the exact, closed-form solution for the shear band and landslide
velocities as well as for the distributions of strain and slip rate in space and time. The solution
allows assessing when the slide separates from the substrata once the failure condition is
satisfied at the propagating tip of the shear band. The obtained solution is valid for the general
case of an arbitrary distribution of shear and gravitational forces along the slide; for example, in
the case of a varying slope angle. The case of the uniform distribution of these forces is
considered in detail.

To understand the shear band evolution, we employed different surface energies for static
and dynamically-propagating shear bands. This simplified approach captures, to the first order,
the friction dependence on the velocity of the relative motion. It results, however, in a
discontinuity that appears initially at the band tip and propagates back and forth along the
band between reflections from the slide end and the band tip. We analyzed the behavior of this
discontinuity and showed that its magnitude decreases after each reflection from the band tip.
In addition, this magnitude of the discontinuity is always small in the relative sense. The
developed simplified model, therefore, appears to be physically acceptable.

Using the developed model we showed that the shear band accelerates, and the band tip

velocity, v, reaches the order of the speed c of elastic waves (yet being smaller than ¢) after it
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propagates only approximately three lengths of the initial band. The slide body velocity also
grows with the band length. By the time the slide separates from the substrata, when the band
increases its initial length roughly by one to two orders of magnitude, slide velocity can become
~0.1c, or even ~ c (still remaining smaller than v), depending upon the value of .

The band tip velocity, v, strain, » and slip rate, n, are controlled by the “bluntness”
parameter, n, initial deformation, %, and strain ratio, A, = %/(7 + ). It turns out that yand n
are simply proportional to 7, while the effect of n and A, is more complex. The value of 4,
belongs to the relatively narrow range of 0 < A, <1 and is is relatively well constrained by field
measurements. The value of n, however, is currently uncertain, except that n>1. Yet, we
showed that for n only slightly larger than unity, dependency of the solution on n becomes very
weak. In fact, yand n are close to their asymptotic values for n — o already at n ~ 1.001.

For a sufficiently long band length, the distribution of slip rate along the slope becomes
asymptotically uniform. This occurs in both the exact solution, when v=y(l), and in the
asymptotic solution with n — o, when v =c starting from t =0. Treating the slip rate as a
constant (along the slope, but not in time) enables the introduction of water resistance to the
motion of the submerged slope, which is a function (typically, quadratic) of the relative velocity.
Our results show that the water resistance reduces the slide velocity only by up to ~ 10%
compared to the case of no water resistance.

The simple asymptotic solution was compared to the exact solution and used in landslide
analyses. The slide body velocity was also obtained in a closed form, which was further
simplified in the case of uniform loads (gravitational and frictional) acting along the slide. Our
model indicates that while the shear band propagation velocity is slower than thought
previously [Puzrin et al., 2010], the landslide accelerates much faster. Even more importantly,
our results suggest that the conventional static approach to the slope stability analysis leads to
a significant underestimation of the slide size. In most cases, the volumes of catastrophic slides
are roughly twice the volumes of progressive slides. The obtained results may be useful for

assessing the potential of the landslide to generate a tsunami.
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APPENDIX A. LANDSLIDE TYPES AND MECHANISMS

Although we mainly discuss below submarine landslides, we focus on such features and
processes that are also common for subaerial landslides.

Many, if not most, submarine landslides take place on mild slopes [e.g., Lewis, 1971; Bugge
et al., 1988; McAdoo et al., 2000; Masson et al., 2006; Micallef et al., 2007; Twichell et al., 2009;
L’Heureux et al., 2013], which can be as small as 0.5° (continental shelf off the Malaspina
glacier, Alaska [Carson, 1978]), 0.25° (Klamath river delta, California [Field et al., 1982]), or even
0.01° (Mississippi river delta, Gulf of Mexico [Prior and Coleman, 1978]). As a result of analysis
of more than 260 landslides on both margins of the North Atlantic Ocean and adjacent seas,
Hiihnerbach and Masson [2004] concluded that landslides on the ocean slopes occur on
virtually every angle, although the majority takes place on slopes between 2° and 20° with
mean values of 5° and 3° on the open continental margins in the western and eastern North
Atlantic, respectively. Most landslides and seafloor failures on the Southeastern Australian
Margin took place on slopes between 1° and 7° [Clarke et al., 2011]. Nearly 90 % of the
landslides documented on the North America Atlantic Margin [Masson et al., 2006; Lee et al.,
2007] and on the continental slope in the Gulf of Mexico [McAdoo et al., 2000] occurred on
slopes smaller than 10°. The available seafloor data [e.g., McAdoo et al., 2000; Hiihnerbach and
Masson, 2004; Masson et al., 2006] indicate that the largest landslides take place on the lowest
slopes. Dimensions of the region excavated by a landslide range from less than 1km [e.g.,
Woodcock, 1979; Canals et al., 2004; Blum et al., 2010; L’Heureux et al., 2013] to more than
10° km [e.g., Nisbet and Piper, 1998; Twichell et al., 2009] both along the slope (landslide
length) and in horizontal direction (landslide width). Submarine landslides occur on both
passive and active margins [e.g., McAdoo et al., 2000; Locat et al., 2009], and active margins
show the presence of low-angle landslides as large as those found on passive margins (e.g.,
120-km Brunei slide, Northwest Borneo Margin, South China Sea [Gee et al., 2007]).

Typical types of the submarine mass movements [Dott, 1963; Varnes, 1978; Prior and
Coleman, 1979; Coleman and Prior, 1988; Martinsen, 1994; Mulder and Cochonat, 1996; Locat
and Lee, 2002; Masson et al., 2006; Micallef et al., 2007; Locat and Lee, 2009] include falls,

slides, spreads, debris flows, avalanches, mudflows, and turbidity currents. Slides are further
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categorized as rotational or translational [e.g., Varnes, 1978; Prior and Coleman, 1979; Locat
and Lee, 2002]. They take place by rotational or translational downslope movements,
respectively, of a sediment mass on a thin zone of large shear strain gradients, which is often
recognized as a rupture surface [e.g., Hampton et al., 1996; Locat and Lee, 2002; Masson et al.,
2006], a slide (slip) surface [Coleman and Prior, 1988; Hampton et al., 1996; D'Elia et al., 1998],
or a shear band [e.g., Chowdhury et al., 2010; Dey et al., 2012; Quinn et al., 2012]. Rotational
slides develop along a concave upward, scoop-shaped rupture surface and exhibit noticeable
deformation in the slide material. Translational slides (also called planar slides [Prior and
Coleman, 1979]) show much less internal deformation and move on a relatively planar surface
of rupture that usually parallels the slope surface (Figure A.1a) [Varnes, 1978; Bernander and
Olofsson, 1981; Hampton et al., 1996; Lu and Godt, 2013]. It is commonly accepted that
translational slides take place in sediments where the rupture process is controlled by such
morphological features as bedding planes or thin, weak layers susceptible to failure and sub-
parallel to the seafloor [Bjerrum, 1967; Varnes, 1978; Bunn and McGregor, 1980; Cartier and
Pouget, 1988; O'Leary, 1991; Picarelli et al., 1995; Hampton et al., 1996; D'Elia et al., 1998;
Haflidason et al., 2003; Wang et al., 2003; Haflidason et al., 2004; Lastras et al., 2004; Wilson et
al., 2004; Chang et al., 2005; Troncone, 2005; Faeseth and Szetersmoen, 2008; Cecinato, 2009;
Garziglia et al., 2010; Grozic, 2010; Locat et al., 2014]. Generally, the observed depth-to-length
ratio of rotational and translational slides is greater and less than 15%, respectively [Skempton
and Hutchinson, 1969; Prior and Coleman, 1979; Masson et al., 2006].

Rotational and translational slides are also called slumps and slides (i.e., omitting modifier
‘translational’), respectively [e.g., Masson et al., 2006; Faeseth and Saetersmoen, 2008]. As
noted by Prior and Coleman [1979], many slumps should be reclassified as varieties of
translational slides because rotational shear surfaces tend to coalesce at a relatively shallow
depth to form a planar basal rupture (or detachment) boundary, inclined at low angles and
paralleling the regional slope over long distances (Figure A.la). For example, Faeseth and
Seetersmoen [2008] report that a giant, intact slump (155 by 35 km), contemporary to the latest
Storegga Slide (released approximately 8100 ya) [Bugge et al., 1988; Haflidason et al., 2005;

Solheim et al., 2005] and located along the southern margin of the Storegga Slide scar, consists
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of rotational movement closer to the break-away fault while the detachment boundary is
bedding-parallel below a major part of the slump. Prior and Coleman [1979; 1984] further note
that translational slides, in which the rupture surface is planar and inclined approximately
parallel to the slope surface, appear to be the most common form of seafloor instability. In
particular, ®57% of slides on the U.S. Atlantic continental slope are translational, which includes
17% of coherent slab slides [Booth et al., 1993]. Incidentally, the majority of the identified
submarine slides have the thickness-to-length ratio of less than 0.1 and often less than 0.01
[e.g., Woodcock, 1979; Hiihnerbach and Masson, 2004; Masson et al., 2006; Lee et al., 2007; ten
Brink et al., 2007; L'Heureux et al., 2013].
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ROTATIONAL SLIDES
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Failure plane -~

P (b) (c)
Figure A.1. (a) Seismic profile from the continental slope in the Gulf of Mexico [Prior, 1984]. (b) Volume
removed as a result of landslide in the Saguenay Fjord, Quebec, Canada [Locat et al., 2014]. (c) Longitudinal

seismic section of the Talisman Slide [Sayago-Gil et al., 2010].

In actuality, translation and rotational slides represent two end-members of the slide
variety [e.g., Martinsen, 1994]. For example, both translational and rotational elements are
present in slides shown in Figure A.1la and Figure 18. An important translational feature of
these slides is the basal shear surface (called basal slide plane in Figure A.la), which we
represent below by a shear band (discontinuity). This rupture surface separates the slide

material from the relatively undeformed substrata. Because slip on this surface was limited (for
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both slides in Figure A.1a and Figure 18), the slide material is relatively coherent, and it is
possible to see the details of the rupture surface development. When the slip distances are
sufficiently large, the slide material is completely removed from its original position (Figure 1b,
Figure A.1b, and Figure A.1c).

Conceptually, a slide develops from the (quasi-) equilibrium state of the intact (or creeping)
slope material and involves failure (Figure A.2a) and post-failure (Figure A.2b) stages [e.g., D'Elia
et al., 1998; Locat and Lee, 2002]. During the failure stage, also called the slide initiation stage,
a continuous shear band, which constitutes the rupture surface, develops in the slope material
and separates the sliding mass from the underlying sediment (Figure A.2a). The moment when
this separation is completed is called global failure or slope failure [e.g., D'Elia et al., 1998].
Active (extensional) and passive (compressional) failures [e.g., Budhu, 2007; Locat et al., 2008],
taking place at the upper and lower slide ends, respectively (Figure A.2a), can be viewed as
global failure mechanisms, although in 3-D, details can be more complex [e.g., Farrell, 1984;
Martel, 2004]. The direction of the slide development during the failure stage (Figure A.2a) is
not clear a priory. In the case of the Humboldt slide (Figure A.2b), for example, the shallow
rotational failure began in the middle of the ‘slide’ and progressed simultaneously upslope and
downslope [Gardner et al., 1999], but the basal shear surface probably propagated downslope.
Note that the pre-failure stage, distinguished in some works [e.g., D'Elia et al., 1998; Locat and
Lee, 2002], is a part of the failure stage introduced here. A relatively small but distinct basal
shear band emerges as a result of pre-failure processes such as viscous creep, elasto-plastic
yielding, and, possibly, small-scale rotational shearing or faulting (Figure A.1a and Figure 18).
During the failure stage, this initial discontinuity (Figure A.2a) develops into the basal shear
(rupture) surface.

The sliding mass, separated from the substrata by the basal rupture surface (developed
during the failure stage), moves outward and downhill during the post-failure stage (Figure
A.2b). In slide development, therefore, the moment of global failure separates the failure and
post-failure stages, which end and begin, respectively, with the global failure. Without special
instrumentation, the slide becomes visible to an observer (if one were present) only during the

post-failure stage, when some slides mobilize into flows, while others take place as movements
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of relatively intact, coherent bodies (Figure A.2b) [e.g., Erismann, 1977; Locat and Lee, 2002;
Masson et al., 2006], for example, as shallow slab slides [Prior and Coleman, 1979; Coleman and
Prior, 1988]. In particular, *36% of submarine landslides on the US Atlantic continental slope
remained coherent bodies during sliding and ~64% disintegrated [Booth et al., 1993]. As the
excavated slide material moves downhill (Figure 1 and Figure 17a), it displaces a large water
volume and may generate a tsunami (Figure A.2b) [Yalciner et al., 2002; Bardet et al., 2003;

Haugen et al., 2005; Harbitz et al., 2006; Levin and Nosov, 2009; Chai et al., 2014].

sea level

active <
failure ;‘* -~

®ar bapy =~~~

d passive
o] failure
discontinuity
(a)
-— Tsunami wave generation -

A
\ Landslide movement

(b)

Figure A.2. A submarine slide scenario. (a) Failure (initiation) stage. This stage ends by the global slope
failure (Section 6.1), when the basal shear band (rectilinear part of the dashed line), developing sub-parallel
to the slope boundary, is linked with the boundary by the processes of active and passive failures), creating
a continuous rupture (slip) surface. (b) Post-failure stage. This stage begins with the global slope failure
(Section 6.1), when a relatively intact and coherent excavated mass starts moving outward and downbhill. It
first moves along the freshly created slip surface and then along the slope boundary until it stops (Section
9.1) or mobilizes into a sediment flow (not shown). Except for the effect of the seawater on the sediment
flow (if it occurs), failure and post-failure stages are similar for submarine and subaerial landslides [e.g.,
Locat and Lee, 2002].

Examples of historic submarine, tsunamigenic landslides are given in Table A.1. One of these
landslides, the Gaviota slide [Lee and Edwards, 1986; Edwards et al., 1995; Hampton et al.,
1996; Greene et al., 2006; Schwehr et al., 2007; Blum et al., 2010] is shown in Figure 1 and
Figure 17a. This is a translational slide with a sub-horizontal crack on the slope west to the slide.

In Figure 1a and Figure 17a, the slope is interpreted as to be undeformed to the left (west) of
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the slide, while the fracture (8 km long [Schwehr et al., 2006]) to the right (east) of the slide
(marked by arrows spaced by ~4 km) is produced by the developing rupture surface and
represents the future location of a head scarp [Martel, 2004]. This interpretation is consistent
with the image in Figure 17b, which shows the vertical seismic cross-section along profile line b-
b in Figure 17a. We interpret the curved lines in the inset on Figure 17a as shear bands that
appeared as a result of active failure. Resolution of this image is insufficient to conclude
whether the basal rupture surface initiated or did not initiate. Possible locations of this surface
are indicated based on the locations of the lower ends of the curved shear band and the sub-

horizontal slope crack (Figure 1a and Figure 17b).

Table A.1. Historical submarine tsunamigenic landslides. In this table, h, |, and b are the thickness, length
(along the slope), and width (in horizontal direction), respectively (Figure A.2b and Figure 26), of the
displaced sediment body of volume V, « is the slope angle (Figure A.2b), and H, is the depth of the slide
headwall scarp, i.e., the upper slide point (Figure A.2b and Figure 19).

Tsunami Geometry
Source Date runu Deposit
Location ( )p P h Iy b V3 a Ho
m (m)  (km) (km) (km”) (deg) (m)
Currituck, North  40,000- * normally-
. . 2 12 4
Carolina® 24,000 BP 3 consolidated clay 350 30 0 8 >00
Storegga, 30,000-
Norwayz 5,000 BP 19 clay 160 340 100 5580 0.6 500
Goleta slide, 200 BP 107 stiffclay 48 146 105 151 2 150
California
Gaviota slide, 1812 15" stiff clay 12 26 165 002 4 400
California
Grand Banks 1929 unconsolidated
’ 13 . 10 250 150 200 3 730
New Foundland® Nov.18 muddy sediment
k Sli 194 . .
Ugamak Slide, 946 40 glacial sediment 250 40 25 250 43 1600
Alaska Apr.1
Port Valdez, 1964 under-consolidated
Alaska’ Mar.27 6> fine-grain sediment 32 13 018 005 2 141
Loma Prieta 1989
! ! 0.2 d and silt 0.35 3.4 10 0.01 0.8 25
California® Oct.17 mudand sl
Papua New 1998 .
Guinea® ul17 15 marine clay 30 4.6 2.5 4.2 10 760
Izmit Bay, 1999 .
20 tiff cl 50 5 5 12.5 5 220
Turkey10 Aug.17 sttt clay

YPrior et al. [1986], Geist et al. [2009], Locat et al. [2009]
2Bugge et al. [1988]

*Borrero et al. [2001], Fisher et al. [2005], Greene et al. [2006]
*Edwards et al. [1995], Lee et al. [2004], Greene et al. [2006]
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5Hasegawa and Kanamori [1987], Nisbet and Piper [1998], Fine et al. [2005], Mosher and Piper [2007]
®0kal et al. [2003], Fryer et al. [2004], Watts et al. [2005]

7Beget [2007], Ryan et al. [2010], Haeussler et al. [2014]

8Schwing and Norton [1990], Ma et al. [1991]

9.Synolakis et al. [2002], Sweet and Silver [2003], Watts et al. [2005]

yaiciner et al. [2002], Watts et al. [2005]

" Geist et al. [2009]

" Borrero et al. [2001]

™ Blum and Zumberge [2006]

APPENDIX B. MOMENTUM BALANCE CONDITION

Consider an infinite slope y <h with x-axis located along the potential shear band (y =0,
0 < x <), which is parallel to the slope surface y = h (similar to Figure 2a). The surface has the
angle of a with the horizontal, and we assume that the pressure P(x, y) in the slope body can be
represented as hydrostatic plus the overpressure, AP(y), which depends only on depth. This
assumption is reasonable for mild slopes, and we have
P(x,y) =P, + p,9(xsina—ycosa) + AP(y) (B.1)

where Py = P(0, 0) is the pore pressure at x=0, y=0, and AP(h) =0, so that the pressure is
hydrostatic on the slope surface. The equilibrium conditions in terms of the total stresses s,, s,

and s,, read [Timoshenko and Goodier, 1970]

%, , By sin By | B CoS 2
L= a, —+—L= a B.
x oy P9 x oy P9 (B.2)

Even through the stress field in the slope body can be non-uniform [e.g., Picarelli et al.,

2000], the conventional assumption made for infinite slopes is that the effective stress,
Sy =Sx+ P and sj’, =s, + P, are independent of x and are functions of depth only [e.g., Davis and

Selvadurai, 1996]. With this assumption, equations (B.2) become

s o o
Xy :—(po—pw)gsina, —Xy+_y:(p0_pw)gCOSa+a(Ap)

oy ox oy

and should be integrated with the boundary conditions s,, =0, s,=-P(x, h) (or 53’, =0) at the

(B.3)

slope surface, y = h. We then have
Sy(V)=—(py—p,)9ysina, s\ (y)=(p,—p,)9(y—h)cosa +AP(y) (B.4)

Stress s, cannot be defined in the infinite slope model.
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When the shear band appears, the motion of the sliding layer, overlying the shear band, is
described in terms of the averaged values in (2.1). For the arbitrary layer segment between
x=aand x=b (0<a<b<l), the momentum balance (Second Law) condition F, = d(mv,)/dt in

the x direction (along the slope) can be written as
h b b h b h
[lo,(0,y.)=0,(a,y.0ldy— [ (7, +7,)dx+ gsina [ dx] p,dy :ijdxjpov dy (B.5)
0 ' " a ! a 0 dt a 0 '

where v, = 0du, /dt, m is the layer mass in segment (a, b), and F, is the x-component of the
resultant force acting on segment (a, b). Pressure at the bottom of the sliding layer is either
zero (if the ambient water does not infiltrate the shear band) or it does not contribute to F,
(since it acts in the y-direction perpendicular to the layer). Taking into account that pg is
constant (homogeneous sediment) and using (2.1), equation (B.5) rewrites as

J-ao'

ou
P~ dx+— ITodX pOIat dx (B.6)

where 1, =173 — 1, — 1, With 7, = ppghsina. Given that a and b are arbitrary, equation (B.6), is
equivalent to (2.3).

Until this point, we used assumptions of constant a, h, and py, but did not use any
constitutive relations. We now specify that the layer material is poroelastic, so that the
constitutive relation along the layer can be written as [Detournay and Cheng, 1993; Wang, 2000]

2Gau, | ox = (L-v)(c, - ,)—v(0, ~S,) + (@ —)(1—2v) 5P (8.7)

where G = (Eo/2)/(1 + v) is the shear modulus, a is the Biot coefficient, 8P is the pressure change
with respect to the initial pressure, P, in (B.1), and, as discussed in the main text, strains are
considered zero at the initial state of the infinite slope (when oy = sy, 0y, =55, and 6P =0).
Typically, soils and soft sediment materials, Biot coefficient a =1 [e.g., Detournay and Cheng,
1993; Wang, 2000]. Hence, the last term in (B.7) is negligible.

For a long, thin sliding layer (Figure 2), we further assume, as common in landslide models
based on the shear band concept [Palmer and Rice, 1973; Chowdhury, 1978; Puzrin and
Germanovich, 2005a; Puzrin et al., 2010; Quinn et al., 2011a; Dey et al., 2012], that

gy =S, (B.8)
in the layer above the shear band. Averaging (B.7) across the layer and using (2.1) gives
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E, ou i
o — =Py Py :—jsx(y)dy = const (B.9)
v hs

which aggress with (2.2).
Substituting (B.9) in (2.3) results in

Fu_z, g0 @

5 T B.10
P " h o ox (B.10)
so taking into account that due to (B.1),
11 h
p(Xx) =EIP(X, y)dy=PF,+p,9 (Xsina—ECOSaj+Ap (B.11)
0
where
1h
Ap=—|P(y)d )
p== ! (y)dy (B.12)

is the thickness-averaged excess pore pressure, we finally arrive at (2.4).
On the shear band (except a small tip zone), r,=—uo3’,(0), where u is the coefficient of
residual friction between the shear band sides. Hence, due to (B.8) and (B.4),
7 = —usy (0) = —u(po — pw) g (y — h)cosa— uAP(0) (B.13)
so that
T, = (o0 — pw)(gsina— ucosa )h — 7, + uAP(0) (B.14)
in (2.4), (2.5). Therefore, the hydrostatic part of the initial pore pressure, P(x, y) in (B.1), is the
source of the buoyancy term 7, = p,ghsina in (2.5). Equation (2.5) follows from (B.10) in the

absence of the overpressure (AP(0) = 0) on the shear band.

APPENDIX C. PROPAGATION CONDITION AT THE BAND TIP

In plane strain, the energy flux to the shear band tip [Cherepanov, 1979; Freund, 1998]

F(F):J.{O'ijnj%+(U+K)vnx}ds (C.1)
r

where v us the propagation velocity of the band tip, I is the arbitrary, simple, closed contour

surrounding the tip (solid line in Figure C.1), u; and o; are the displacement and stress
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components, respectively, in the x, y coordinate set aligned with the propagation direction
(Figure 2b), i,j=x,y, n; is the external normal to contour, U and K are the elastic and kinetic
energy densities (per unit volume), respectively, the integration direction in (C.1) is counter-
clockwise, and repeating indices indicate summation of x and y components. Quantity F is the
total energy flux through contour I per unit width in the direction perpendicular to the plain of
drawing in Figure C.1. In dynamics, integral F in (C.1) is path dependent, but when I is shrunk to
the fracture tip, it gives the total energy flux to the tip [Kostrov and Das, 1975]. In the 1-D case
under consideration, instead of shrinking I, we pass to the limit of x — | =0, which results in
the outer asymptote for F considered as a function of the small parameter h/l. The inner
asymptote is given by the corresponding semi-infinite crack is the half-plane. The inner and
outer asymptotes differ by higher order terms with respect to h/l << 1 [Dyskin et al., 2000], so
below we consider the 1-D sliding layer (above the shear band) and the limit of x > -0 in
evaluating F. The energy release rate is then defined by J = F/ v.

As in Palmer and Rice [1973], we choose contour I with the upper boundary at y = h, while
the other three boundaries are located far (compared to h), but not too far (compared to [)
from the band tip (dashed line in Figure C.1). The left vertical line below the band and the right
vertical line do not contribute to the integral in (C.1) because on these lines, du;/0t=0 and
U=K=0. The lower horizontal line (below the band) does not contribute to (C.1) because
ou;/ot = 0 and n, = 0 on this line. The top horizontal part of I" (located on the slide surface) also
does not contribute to (C.1) as ojn;=0 and n, =0 there. Hence, the leading term in integral
(C.1) is due to the left vertical, dashed line above the shear band (Figure C.1). Because on this
line, ny =1, (C.1) simplifies to

8(;* +(U+K)v}dy (C.2)

F(r)= I[a
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Figure C.1. Integration contours for deter-mining the energy flux (C.1) to the tip of a propagating shear band.

For the sliding 1-D layer (Figure 2 and Figure C.1), o = g, Uy = u, and (C.2) reads as

F =—hon—hv(U +K) (C.3)
where
U = [ody = [(Er—po)dy ==L = pr K(xt) =22 (c.4)

strain y(x, t) = Ou/0x, material velocity 7(x, t) = du/ot, and we took into account that poc® = E.
Finally, applying in (C.2) Hooke’s law (2.2), boundary condition (2.7), and (C.3) yields

=% Lo’ hE , P2 2)
F=—h(Ey— —hv| =L —py+ L my =2 1-Foy (C.5)
(Ey —po)n ( 5 " Py + 5 > 7 =

where po cancelled out due to (2.7).

That integral in (C.1) is path dependent can be seen directly from (C.5) where F is a function
of x. Yet, as mentioned above, F is the total energy flux through contour I, so that, the energy
release rate J is obtained using (C.5) (in the limit of x — |) and the definition of J = F/v. Given
J =, this results in condition (2.9) at the tip of a propagating band. In obtaining (C.5) and J =/,
we only accounted for the displacement of the upper side of the shear band because for
I /h >> 1, displacement of the lower side only contributes to the higher terms in J. Dyskin et al.
[2000] showed this for a static fracture parallel to the half-space surface, but their result also
holds in the dynamic case. Hence, we followed others [Palmer and Rice, 1973; Chowdhury,
1978; Hellan, 1984; Freund, 1998; Dyskin et al., 2000; Chowdhury et al., 2010; Quinn et al.,

2011a; Dey et al., 2012; Quinn et al., 2012] and ignored displacement of the lower band side.
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Accordingly, in this work, we also employ the earthquake (fault rupture) mechanics terminology
and refer to u as relative displacement or slip and to 7 = du/dt as slip velocity or slip rate.

The local energy balance condition (2.9) can also be obtained by employing the global
energy balance criterion [Palmer and Rice, 1973; Rice, 1973; Puzrin and Germanovich, 2005a]
for the moving (or “growing”) 1-D layer (slide). Let u(x, t) be the longitudinal displacement
when the shear band has length | =1(t) (Figure 2a). When time changes from t to t + At, the
band length changes from | to | + Al, and for small At, the displacement change is

¢ ou(x,t)

Au=u(x,t+At)-u(x,t)=A +0O(At?)  (0<x<l) (C.6)

The increments of work done on the layer above the band over Au by t =151, -1, and by p,

(atx=0) are

1+Al
AW, = [ r(xtAudx, AW, =hp,7(0,H)At (C.7)
0

where Al = vAt. Taking into account that at time t, there is no displacement outside the interval

of (0, 1) and using (C.6) yields

Hfl 7(X,t)Audx = jr(x,t)Au dx + Hfl (X, )u(x,t + At) dx

0

o

(C.8)
|
= Atj 7(x,t) augt(,t) dx + z(1, t)u(l, t) Al + O(At)?
0
Considering then (C.7) and (C.8) results in work
|
AW = AW. + AW, = At j 7(X,D)n(x,t) dx + hp,7(0,t)At + O(At)? (C.9)
0

done by rover Au.
Because at time t, ou /ot = 0 for x€ (I, | + Al), the corresponding change of the kinetic energy
of the sliding layer can be expressed as

1+Al 2 | 2
AK = ooh J- (6u(x,t+At)j dx—&hj(au(x’t)j dx
2 1 ot 2 1 at

0
_ poh‘W(éu(x,HAt)jz_[au(x,t)jz}dx+poh ”f'(au(x,wm)jz "
2 ot ot 2 ot

0 |

(C.10)

Here
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ot

(MTZ@U(X’—UT +2at OO UKD o 2
a’[ 2

and

'T' (au(x,t +At) )2 dx — (au(l,t)jz Al +O(At)?
, ot ot

so substituting (C.11) and (C.12) into (C.10) gives

atZ

AK hAtj U8 UG g, ;h[a“gt’t)j Al +O(At)?

Inserting then (C.9) and the equation of motion (2.3) in (C.13) leads to

7(X,1) aa(x t)
OX

AK = hAtjn(x t){ }dx+p7°hryz(l,t)vAt+O(At)2

= At j (X, )n(x, )dx + hAt j n(x,t) ‘3"(;:'0 dx + p;h 172 (1, VAL + O(At)?

The change of the elastic (internal) energy can be represented as

1+Al 7 (X, t+At) | 7(x,t)
AV\/i=hIdx j a(y)dy—hjdx j o(y)dy
0 0 0 0
| 7(X,t+At) 1+Al 7 (X, t+At)
=hfdx [ a(y)dy+hj d [ o()dy
0 y(x,t) 0
where
1+Al 7 (X,t+At) y(,t)
jdx j o(y)dy = Al j o(y)dy +O(At)?
| 0 0
and

7 (X,t+At)

o)y = ot (xt) L g") At+O(A?

7(x.1)

Substituting further (C.16) and (C.17) in (C.15) results in

' oy(x,t) 7LD
AW, =hAtja(y(x,t))%dx+tht [ o()dy+o(aty
0

0

Integrating the first and the second integrals in (C.18) by parts, we obtain
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j a(;/(x,t))%dx = j %a(x,t) dx

0

— n(1,t)o(1,t) = 7(0,) (0, 1) - j (x,t) 2251 a"(x D gx (C.19)
= (LYo (1,) ~n(0.(~p,) - jn( t)a“(X Y gy
and
r(L,t) a(lt)
[ cdy=c(.y0,0)- | 7(o)do (C.20)
0 Po

respectively, where we applied in (C.19) the boundary conditions (2.7) and &(0, t) = —p, at the
layer ends. Substituting next (C.19) and (C.20) into (C.18) yields

a(lt)
AW, =hAt 7(0,)p, -V [ #(o)do - j n(0t)

—Po

aa(x D x|+ O(Aty (C.21)

Finally, the energy dissipated at the tip of the shear band (Figure 3b) when it propagates

distance Al is given by
S
AU = Al j [2(5)—7,1d5 = J Al (C.22)
0

The energy conservation suggests that the work done on the body by external forces equals
to the energy change. In the absence of heat transfer and pressure dissipation processes, the
energy balance condition

AW, + AK + AU = AW_ + AW, (C.23)

can be rewritten combining energy terms (C.9), (C.14), and (C.21) as
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|
At[ 7(x,t)n(x ) dx+ hAtp, (0, 1)

0

AW, +AW,
o (1Y)
—hAt{U(O,t) pa—V '[ ]/(O')dO'— } (C24)
—Po
AW,
|
_At{fr (x,D)n(x,t)dx + +v'07h¢72(x,t)}+0(At)2 =AlJ,
0 AU

AK

Collecting terms in (C.24) and taking into account that Al = vAt reveals the condition

o(lt)
hj y(o)do -2 (1Lt =, (C.25)

—Po
at the tip of dynamically propagating shear band. This condition is valid both for linear (2.2) and
nonlinear constitutive laws y(o). In the linear case, using Hooke’s law (2.2) and the boundary
condition (2.7) in (C.25) results in

hE

ooh 2 _
=7 72(1,t) - 2v 72t =J, (C.26)

which, given that E/pg = ¢ is equivalent to (2.9).

APPENDIX D. POSSIBILITY OF CONTINUOUS SOLUTION

It may appear that it is possible to illuminate the discontinuity by simply allowing n =1in (2.12),
which corresponds to j. = %. We then have y (B) = y(B) and 77 (B) = 1(B), so that (4.2) with

(4.3) result in

V(D)—@—VS(XB)=—%_i‘T(X,tB+(x—|)/c)dx (D.1)

where D(l, t) corresponds to the propagating tip (Figure 4). Substituting the dynamic fracture

condition in (3.4) together with (4.4) in (4.2), results in equation

l1-v,/c Yo

for the band tip velocity v;. From here,

141



=3 _czO-r (D.3)
dt ye()+7
which can also be formally obtained by replacing 7. with 5 in (4.7).

It is impossible, however, to make the next step and integrate (D.3) in order to obtain t(l)
using (4.6). Indeed, the integral in (4.6) diverges for any | > I, when . = 5, which indicates the
infinite time required for the shear band to reach velocity v4(l). The reason for this effect is that
both dl/dt = 0 and d’l/dt* = 0 at t = O for dl/dt defined by (D.3). Because both the velocity and
acceleration are zeroes at the initial moment, the shear band effectively does not grow and the
infinite time is required to propagate the band to any length | > |,.

Therefore, while the continuous solution can be formally written as a function of I, it does
not exist on the (x, t) plane when . =% (or n=1). The obtained solution with propagating

discontinuities, however, is stable and models reasonably well the dynamic propagation of a

shear band.

APPENDIX E. RECURRENCE SOLUTION
Consider the general case of the shear band propagation starting at time of t4 when it has the
length of |, that is, at point A in Figure E.1, where the discontinuity reflects or initiates from the
band tip. Let the limits of y(x, t) and 7 (x, t) when (x, t) approaches line AC (Figure E.1a) from
below be y(x, t) and 777 (x, t), respectively. Our goal is to express all unknown quantities in
domain ACFE through values of » and 7~ on AC. Then, quantities in domain EFXL, which is
above ACFE (Figure E.1a), will be found by using the solution for line EF (when approaching this
line from CEF) and considering E instead of A as a starting point. Domain above line XL can be

treated similarly.
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0 la J'C (a) 0 La x (b)

Figure E.1. (a) Discontinuity (dashed line) reflected from or initiated at point A(l,,t,) at the band tip and
reflected consequently from points C, E, F, L, and X. (b) Magnified view of domains ACE and CEF in (a). Q
and K are the arbitrary points in ACE and CEF, respectively. Points P, R, D on the tip line AE and points B, I, J
on the discontinuity line AC are connected to Q and K by the corresponding characteristics.

The discontinuity jump condition (3.5) at the arbitrary point B(xg, tg) (Figure E.1b) on the

characteristic line AC reads

7(8) (B (E.1)

7(®)_ By
c c

Similar to (4.2), integrating (4.1) along the characteristic line BD and using (E.1) results in
D) “(B) 1%
7(@—%—7 (B)+¥=—ﬁfT(X)dx (E.2)

Using then (3.3) (second equation), (3.4) (dynamic condition) in (E.2) gives an equation for the

band tip velocity, v;, between points A and E (Figure E.1b). Similar to (4.5), (4.8), we have
1+vi()/c _ &(,B) (E.3)
1-v,()/c 7

5(1,B)=r.() -7 (%) +7 (B)—-n"(B)/c (E.4)

where

and xg is related to tz by

I, —Xz =c(t; —t,) (O=<x;<I,, t,<t;<t,+l,/c) (E.5)
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Solving (E.3) for the band tip velocity, we arrive at

w() _&°(.B)-7

= E.6
¢ 5,B)+y} (&)
and the band length, I(t), is defined by the implicit relation
t=t,+ (E.7)
J v, (1)

obtained by integrating (E.6).

Strain and material velocity at the tip can be found from (E.2), using (E.6) and (3.3), as

)2 c+5°(.B) () _y-5°(l.B) (E.8)

nO="s0e ¢ 200.B)

In particular, for point A(l4, ts) in Figure E.1, inserting | = I in (E.8) yields

v+l (B - (NIl m() _re-lr (A-n (Al (E.9)
Ay (N-7 (Alc] ~ ¢ Ay (A)-n (A)/c]

If point A is the initial point where the band starts propagating and discontinuity initiates,

7)) =

thenty =0, |4 =lo, and y(B), 7 (B) are given by (4.3). In this case, (E.4) becomes
5(1,B) = 7,(1) (E.10)
so that expression (E.6), (E.8), and (E.9) reduce to equation (4.7), (4.9), and (4.14), respectively,
while (E.7) reduces to (4.6).
Now consider the arbitrary point Q(x, t) in domain ACE in Figure E.1b. Integrating (4.1)
along PQ and BQ delivers

" (E.11)

y(Q)—@—f(Bn—’féB) =—%IT(x)dx

where AP) = 5(l,), n(P) = m(ly), and point P(lp, tp) is located at the crack tip line x = I(t) (Figure
E1l.b). Using (E.1) and (E.8) with (E.11), we have for point Q(x, t)
y(x,t) =n(x,t)/ c+6(x,B)

277(X’t): 7/(:2 _5(| B) (E.12)
c 5., 1) P
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where 6(x, B) and &(lp, I) are defined by (E.4) with | - x, | - 1p, and B— I. In (E.11), points B

and P are related to point Q(x, t) by

clt—tg)=x—X%z, c(tz—t)=1,—Xg (E.13)
and
|
¢ dl
c(t, —t)=x-1_, =t — E.14
(P ) P P A+I'"Vl(|) ( )

respectively. Point I(l;, t)) is obtained from
Ccte—t)=lp—Xi, c(ti—ta)=la—X (E.15)
Next, consider the arbitrary point K(x, t) in domain CEF and the corresponding point P(lp, tp)
at the crack tip x = I(t) (Figure E.1b). The characteristic line PK crosses line CE of the reflected
discontinuity at point M(xy,, ty). Since the strain and material velocity and their derivatives have
continuous values in the regions above and 