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SUMMARY 

 
Submarine landslides, commonly triggered by earthquakes, can generate tsunamis. Subaerial 

landslides can also be catastrophic in nature, causing human casualties and property damage. 

This work focuses on landslides associated with shear band that develops beneath the slipping 

mass. We consider a landslide as a dynamic process when a shear band emerges along the 

potential rupture surface. Within this band, the shear strength decreases due to the softening 

behaviour of the particulate material. Material above the band moves downwards, causing the 

band to propagate dynamically. As a result, the landslide body acquires finite velocity before it 

begins separating from the substrata, reaches the post-failure stage, displaces material 

downhill, and generates tsunami. Existing models of tsunamigenic landslides, however, assume 

zero initial slide velocity. 

Previous analyses of the catastrophic shear band propagation in slopes of normally-

consolidated and overconsolidated sediments have shown that a relatively short initial failure 

zone is sufficient to cause a full-scale landslide. For the shear band to propagate, the energy 

produced in the body by an incremental propagation of the shear band must exceed the energy 

required for the propagation. This consideration separates the shear band growth into 

progressive (stable) and catastrophic (dynamic) stages and treats the band growth as a true 

physical process rather than an instantaneously appearing discontinuity. 

For a dynamic shear band propagating parallel to the slope, we obtain the exact, closed-

form solution for the band and landslide velocities as well as for the spatial and temporal 

distributions of strain and material velocity. This solution assesses when the slide fails due to a 

limiting condition (e.g., passive failure) near the propagating tip of the shear band. We also 

obtain a simple asymptotic solution, which is compared to the exact solution. The obtained 

solutions are used in landslide and tsunami height analyses. Our results suggest that the 

conventional static approach to the slope stability analysis leads to a significant 

underestimation of the slide size (volume). It appears that the volumes of catastrophic slides 

can exceed the volumes of progressive slides by nearly factor of two. 

 



1 

CHAPTER 1. INTRODUCTION 

1.1. Landslides and their consequences 

The term ‘landslide’ refers to a broad range of processes that result in gravity-assisted, 

downslope movement of slope-forming materials (Appendix A). The largest landslides known 

on Earth occurred in the submarine environment and involved ~103 – 104 km3 of sediment 

[e.g., Dingle, 1977; Nisbet and Piper, 1998; Legros, 2002; Haflidason et al., 2004; Haflidason et 

al., 2005; Gee et al., 2007]. This is one to two orders greater than volumes displaced by the 

largest known subaerial landslides [Legros, 2002; Locat and Lee, 2002; Masson et al., 2006; 

Clare et al., 2014]. Submarine landslides have been observed in most, if not all, oceanic settings 

[e.g., Martinsen, 1994; Hampton et al., 1996; Blackman et al., 2002], but they are particularly 

abundant on continental slopes and represent a major mechanism of sediment transfer across 

continental margins to deep ocean [e.g., Masson et al., 2006; Lee et al., 2007]. Their 

occurrence, morphology, distribution, scale, and consequences have been discussed in detail by 

Moore [1961; 1977], Dott [1963], Prior and Coleman [1979], Prior [1984], Coleman and Prior 

[1988], O'Leary [1991], Hampton et al. [1996], Locat and Lee [2002; 2009], Canals et al. [2004], 

Hühnerbach and Masson [2004], Masson et al. [2006], Lee et al. [2007], De Blasio [2011], Lu and 

Godt [2013], Talling et al. [2014], and Vanneste et al. [2014] among others. Consequences of 

submarine landslides include [e.g., Hampton et al., 1996; Bryn et al., 2005; Masson et al., 2006; 

ten Brink et al., 2007; Locat and Lee, 2009; Vanneste et al., 2014] damaging and disappearance 

of valuable land near the shoreline in populated areas (e.g., by headwords cutting onto land), 

destabilizing and damaging marine engineering structures (such as offshore platforms and 

pipelines), breaking telecommunication cables, altering environments (e.g., benthic ecosystems 

and fishing habitats), and generating tsunamis. Subaerial landslides can also generate tsunamis 

if the land flows into a body of water [e.g., Miller, 1960; Walder et al., 2003] and can be 

catastrophic, causing human casualties and property damage [e.g., Cornforth, 2005; Cecinato, 

2009; Chowdhury et al., 2010; De Blasio, 2011; Lu and Godt, 2013]. Landslides that generate 

tsunamis are called tsunamigenic.  

Tsunami waves represent a serious hazard for the coastlines of the world [e.g., Bryant, 

2008; Joseph, 2011; Watts, 2012; Dominey-Howes and Goff, 2013]. Although tsunamis often 
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occur directly due to coseismic uplift of the seafloor caused by a fault slip [e.g., Kanamori, 1972; 

Ruff, 2003; Stein and Okal, 2005; Synolakis and Bernard, 2006; Segur, 2007; Levin and Nosov, 

2009; Crozier, 2010], submarine landslides, triggered by earthquakes, can significantly affect the 

tsunami wave magnitude [Plafker et al., 1969; Bardet et al., 2003; Baba et al., 2012; Miyazawa 

et al., 2012; Satake, 2012]. On July 17, 1998, for example, the coast of Papua New Guinea was 

demolished by a 15-m tsunami, generated by a submarine earthquake accompanied by an 

underwater landslide [Geist, 2000; Heinrich et al., 2000; Tappin et al., 2001; Imamura and 

Hashi, 2002; Synolakis et al., 2002; Levin and Nosov, 2009]. On December 12, 1992, an 

earthquake in the Flores Island (Indonesia) triggered a submarine landslide and a subsequent 

26-m tsunami [Hidayat et al., 1995; Imamura et al., 1995; Levin and Nosov, 2009]. The tsunami 

caused by the Atacama Earthquake (Chile) on November 11, 1922 was generated by the 

submarine landslide with earthquake waves as a trigger and earthquake rupture (fault 

movement) occurred inland, more than 100 km away from the coast [Gutenberg, 1939]. This 

tsunami would not have happened had the landslide had not taken place. 

 

1.2. Slides induced by shear bands 

In this work we focus on slides caused by a shear band (discontinuity) that develops below the 

sliding mass (Appendix A) in submerged [e.g., Prior and Coleman, 1979; Bugge et al., 1988; 

Gardner et al., 1999; Huvenne et al., 2002; Lee et al., 2007; Locat et al., 2009] or subaerial [e.g., 

Chowdhury, 1978; Skempton, 1985; Bertini et al., 1986; Trenter and Warren, 1996; D'Elia et al., 

1998; Troncone, 2005; Urciuoli et al., 2007; Locat et al., 2008; Quinn et al., 2011a] slopes. 

Below, the terms ‘landslide’ and ‘slide’ are used interchangeably and are synonymous. ‘Failure 

surface’, ‘rupture surface’, and ‘slip surface’ are all equivalent to the basal detachment 

boundary created by shear band propagation sub-parallel to the slope surface during the failure 

stage (Appendix A and Figure A.2a).  Also, ‘shear band’ is synonymous to ‘mode II crack’ or ‘in-

plane shear fracture’ with contacting sides.  In landslide literature, terms ‘progressive’ and 

‘retrogressive’ usually indicate the direction of the slide development, that is, downslope and 

upslope, respectively.  The term ‘progressive’, however, can also be used as the opposite to 

‘catastrophic’ meaning that progressive shear band propagation is quasi-stable (slow) [e.g., 

Bernander, 2011] in contrast to the catastrophic (fast) growth when dynamic effects (inertia 
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terms) are important.  How fast the shear band propagates is of main interest in this work.  

Hence, we use the temporal meaning of term ‘progressive’ without regards to the direction of 

band growth. 

 

(a) 

 

(b) 
Figure 1.  (a) Sidescan sonar image from Martel [2004] of the Gaviota slide, offshore Santa Barbara, CA [Lee 
and Edwards, 1986; Edwards et al., 1995; Hampton et al., 1996; Greene et al., 2006; Schwehr et al., 2007; 
Blum et al., 2010]. The slope is interpreted as  undeformed to the left (west) of the slide, while the fracture 

(8 km long [Schwehr et al., 2006]) to the right  (east) of the slide (marked by arrows spaced by 4 km) is 
produced by the developing rupture surface and represents the future location of a head scarp [Martel, 
2004]. (b) A CHIRP [Schock et al., 1989] seismic profile image of the Gaviota Slide in the Santa Barbara basin, 
southern California [Schwehr et al., 2007]. 
 



4 
 

A landslide example is shown in Figure 1, which depicts the Gaviota slide on the northern 

slope of the Santa Barbara basin [Edwards et al., 1995; Schwehr et al., 2006; Schwehr et al., 

2007; Blum et al., 2010]. The subhorizontal crack (Figure 1a) extends for 8km east-west along 

the slope [Schwehr et al., 2006]. This is interpreted as the site of slide initiation due to the shear 

surface that starts at the crack and develops downslope subparallel to the slope surface 

[Martel, 2004]. Both the crack and the Gaviota slide are considered to be seismically triggered 

[Edwards et al., 1995; Blum et al., 2010]. 

Wright and Rathje [2003] provided an overview of earthquake-related triggering 

mechanisms of submarine and shoreline slope instabilities. They distinguished between direct 

(e.g., acceleration- or liquefaction-induced sliding) and indirect (e.g., delayed failure due to the 

excess pore water pressure) triggering mechanisms. The general tendency, however, is to 

assume that the landslide fails simultaneously along the entire rupture surface [Denlinger and 

Iverson, 1990; Harbitz, 1992; Hampton et al., 1996; Leynaud et al., 2004; Strasser et al., 2007], 

which can be tens of kilometres long [e.g., Jansen et al., 1987; Bugge et al., 1988; Dawson et al., 

1988; Bondevik et al., 2005; Gee et al., 2007]. While justified in modelling faulting-induced 

tsunamis [e.g., Hammack, 1973; Ruff, 2003; Okal and Synolakis, 2004; Segur, 2007], this 

assumption may have led to an underestimation of the tsunami wave height in numerical 

simulations of landslide-induced tsunamis [Harbitz, 1992; Bondevik et al., 2005], which can be 

seen from the following argument. 

Consider the landslide as a slope failure process (Appendix A) when a shear band 

(discontinuity) emerges along the potential rupture surface [e.g., Palmer and Rice, 1973; 

Chowdhury, 1978; Puzrin and Germanovich, 2005a; Bernander, 2011]. Within the band, the 

shear strength drops due to the softening behaviour of the particulate material. The sediment 

above this weakened zone moves downwards, causing the shear band to propagate and 

creating the rupture surface (Figure A.2a in Appendix A). When the shear band reaches a 

sufficiently large size, the propagation becomes dynamic (fast) and is supported by the energy 

stored in the body and released during the propagation [Palmer and Rice, 1973]. This dynamic 

propagation produces a finite slide velocity already before the slide separates from the 

substrata (Figure 1a) and moves downslope (Figure 1b), displacing water and generating a 
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tsunami (Figure A.2b). The resulting tsunami magnitude may, therefore, be higher than in the 

case of zero initial slide velocity assumed by the existing models of tsunamigenic landslides 

[e.g., Pelinovsky and Poplavsky, 1996; Watts, 1998; Ward, 2001; Levin and Nosov, 2009]. 

When the shear band begins growing dynamically, the induced dynamic wave propagates in 

the overlaying sediment layer away from the band tip and unloads the layer near the tip. Hence, 

the failure in the static band (passive or active; Figure A.2a) is expected to take place for a 

shorter band length than in the dynamic case. Therefore, the static approach can result in an 

underestimation of the displaced volume, and the magnitude of this underestimation is 

unknown a priori.  Underestimating the displaced volume, in turn, could result in 

underestimating the tsunami magnitude [e.g., Murty, 2003; Haugen et al., 2005; Lovholt et al., 

2005] or the slide damage potential. 

Therefore, it is tempting to evaluate the dimensions and velocities of a dynamic landslide 

and the corresponding shear band.  An attempt to assess the landslide velocity at failure was 

made by Puzrin et al. [2010] who used a simplified approach to the solution of the dynamic 

problem for the layer of sediment moving above the shear band. They modeled the layer as a 

solid block that slides downhill and increases in length as the shear band grows. They assumed 

that all points in the sliding block have the same velocity, which is a function of time. In other 

words, Puzrin et al. [2010] considered the layer as being a rigid (with respect to motion) yet 

deformable (with respect to loading) body with displacements and particle velocities depending 

on time, but not on the space coordinate. By adding the inertia terms and water resistance to 

the steady-state formulation of Palmer and Rice [1973] and Puzrin and Germanovich [2005a], 

they computed the stress, strain, and particle velocity in the moving layer. Puzrin et al. [2010] 

did not include, however, the elastic waves generated by a dynamically growing shear band. As 

a result, the block length (mass) increased faster than the resistance to the block growth, so the 

sliding material continued to accelerate. This is why they obtained shear band and slide 

velocities that were unbound in time.  

In this work, we have not invoked the simplifying assumptions utilized by Puzrin et al. [2010]. 

Our analysis is based on the energy balance approach of Palmer and Rice [1973], which has 

been the basis for understanding the progressive shear band growth in natural slopes [e.g., 
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Chowdhury, 1978; McClung, 1979; Farrell, 1984; Martel, 2004; Puzrin et al., 2004; Puzrin and 

Germanovich, 2005b; a; McClung, 2009; Chowdhury et al., 2010; Quinn et al., 2011a; Dey et al., 

2012; Quinn et al., 2012]. For a shear band to propagate, the energy surplus produced in the 

body during an incremental propagation should exceed the energy required for this 

propagation [Rice, 1968; Cherepanov, 1979; Broberg, 1999]. The main advantage of this 

approach is that it distinguishes explicitly between the progressive (quasi-static) and 

catastrophic (dynamic) stages of the band propagation (Figure A.2b) and treats the band 

growth as a true physical process rather than an instantaneously appearing rupture surface.  

Analysis of the band propagation in a submerged slope, built of normally-consolidated clays, 

has shown that a relatively short initial weakness zone [L'Heureux et al., 2014; Locat et al., 2014] 

or progressively-propagating shear band is sufficient to cause a full-scale landslide [Puzrin et al., 

2004; Puzrin and Germanovich, 2005a]. 

Therefore, the dynamic problem for a propagating shear band is formulated below within 

the framework of the Palmer and Rice’s [1973] approach. We obtain the exact solution for the 

landslide size and velocity as well as for the distributions of strain and material (slip) velocity in 

space and time. The dynamic version of the Palmer and Rice’s [1973] model appears to be a 

particular case of our formulation. We also obtain a simple asymptotic solution and check its 

accuracy by comparing it to the exact solution. We then use the obtained solutions in the 

analysis of several landslide examples and discuss the effects of the landslide size and velocity 

on tsunami wave height (in the case of submerged slopes). 

 

1.3. Goals and objectives 

The main goal of this work is to understand the shear band mechanism of submarine and 

subaerial landslides. Specifically, we consider the scenario when the shear band growth in a 

slope separates the sliding material, triggering a tsunami if the slope is submerged. The 

principal objectives of this work are to 

 identify the criterion for the shear band propagation in a slope; 

 develop a model describing the catastrophic (unstable) propagation of a shear band; 

 identify post-failure parameters such as slide length and velocity at failure; and 
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 compare generated tsunami heights from static and dynamic submarine landslides.  

The structure of this thesis is as follows. 

Chapter 1 briefly describes the background and motivation for this study. 

Chapter 2 introduces a dynamic model with the governing equations of the shear band 

propagation in a slope and the onset of band growth. 

Chapter 3 formulates the initial-boundary value problem for dynamic shear band 

propagation near the boundary. 

Chapter 4 presents the exact closed-form solution of this initial-boundary value problem and 

obtains the material velocity and strain at the arbitrary spatial and temporal coordinates. 

Chapter 5 provides a quantitative example in the case of homogeneous loading along the 

band length. 

Chapter 6 calculates the slide length and velocity at failure. 

Chapter 7 obtains an asymptotic solution and estimates the effect of water resistance on the 

band length and slide velocity. 

Chapter 8 employs the obtained solutions in discussion of several landslide examples 

including the Gaviota slide in the Santa Barbara basin, Currituck slide on the western North 

Atlantic continental slope, and Storegga slide on the mid-Norwegian continental margin.  

Chapter 9 assesses the motion of the submerged landslides and generated tsunami heights.  

Chapter 10 discusses the obtained dynamic solution in context of the direction of band 

growth (upslope or downslope), mechanism of the band growth arrest caused by the variable 

slope angle, and applicability of the developed model to landslides of more realistic geometry. 

Chapter 11 summarizes main results obtained in this dissertation. 
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CHAPTER 2. SHEAR BAND IN AN INFINITE SLOPE 

2.1. One-dimensional model 

Landslides may develop by the shear rupture propagating both in the upslope and downslope 

directions [e.g., Gardner et al., 1999; Quinn et al., 2011a], although downslope propagation 

(Figure 1; see also Figure 17 in Section 8.3) is probably more common.  For example, in a 

saturated poroelastic body, interaction with the free surface provides a downslope 

directionality to the surface-parallel rupture, propagating in the undrained, dynamic regime 

[Bradshaw et al., 2010; Viesca, 2011]. Consider, therefore, a shear band of length l at depth h, 

parallel to the surface of the infinite slope, which is inclined at angle  to the horizontal (Figure 

2a). Starting from some initial weak zone (e.g., Figure A.2a in Appendix A), the shear band 

(rupture) propagates down the slope and parallel to the surface. 

Various mechanisms such as earthquake-triggered liquefaction [Newmark, 1965; Seed, 1979; 

Wright and Rathje, 2003; Nadim et al., 2007], methane hydrate decomposition [Sultan et al., 

2004; Masson et al., 2006; Xu and Germanovich, 2006; 2007; Scholz et al., 2011], overpressure 

(i.e., pressure above hydrostatic) induced by rapid sedimentation [Locat and Lee, 2002; 

Flemings et al., 2008a; 2008b; Dugan and Stigall, 2010; Flemings et al., 2012] (see also Viesca 

and Rice [2012] for a quantified account), and local fluid fluxes [Screaton et al., 1990; Dugan 

and Flemings, 2000; Viesca and Rice, 2012] may cause the initial weak zone. The landslide 

evolution, therefore, may be rather complex (Appendix A). In this work, we focus on the stage 

of dynamic (catastrophic) growth of the shear band that underlines the landslide. Hence, we 

simply assume that the dynamic stage is preceded by the stage of stable (progressive) growth 

until the band size becomes equal to some critical length, l0 (yet to be determined). After that, 

the shear band propagates dynamically along the slope surface (Figure 1 and Figure 2a), 

eventually causing the global landslide [Puzrin et al., 2004; Puzrin and Germanovich, 2005a; 

Quinn et al., 2011a; Dey et al., 2012]. 

The value of l0 is defined based on the static analysis using the energy balance criterion 

[Palmer and Rice, 1973; Rice, 1973; Puzrin et al., 2004; Puzrin and Germanovich, 2005a; Quinn 

et al., 2011a; Dey et al., 2012]. The initial weak zone does not need to be of the observed 

landslide length, lf, which can be up to ~102 km [Jansen et al., 1987; Bugge et al., 1988; Dawson 
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et al., 1988; Bondevik et al., 2005]. It is sufficient, instead, that the initial zone is equal to or 

exceeds the critical length, l0, which is smaller than lf. 

We also assume that the length, l, of the shear band is sufficiently larger than its depth, h, 

which, in turn, is much greater than the size, , of the process zone (Figure 2a) at the band tip, 

x = l(t) (i.e., l >> h >> ). Within this small zone, the shear resistance, xy, of the material 

gradually decreases from the peak, p, to the residual, r, value as a function of the relative slip 

displacement [Palmer and Rice, 1973] (Figure 3b). Everywhere else in the band, the shear 

resistance is constant and equal to r. At the tip of the process zone, the shear resistance is 

equal to the peak value, p. The downhill component, g, of the gravitational stress is the driving 

force that causes the material above the band to move downwards, which makes the band 

propagate along the slope (Figure 2a), until the slope fails (Section 6.1). If the band grows in a 

submerged slope, the slope slides down and mobilizes the water resistance, w, on the seafloor, 

which is a function of the sliding velocity (Appendix K). Conditions l >> w and h >> w represent 

the asymptotic approximation of the small scale yielding. As l >> h, the slab above the shear 

band is considered thin when compared to its length. This condition is essential for the 1-D 

model developed below.  Both conditions, l >> h and h >> , are relaxed by Viesca [2011] and 

Viesca and Rice [2012], who studied slide (including submarine slide) initiation due to slip 

surface nucleation and growth driven by locally elevated pore pressure.  In this work, we keep 

these assumptions as focus on the dynamic aspects of the shear band growth. 

Although the total normal stress in the x-direction is a function of depth, we follow Palmer 

and Rice [1973] and consider the average values 

 
0 0 0

1 1 1
( , ) ( , , ) ,    ( , ) ( , , ) ,    ( , ) ( , , )

h h h

xx xx t x y t dy u x t u x y t dy p x t P x y t dy
h h h

       (2.1) 

of the total stress, xx, displacement, ux, and pore pressure, P, across the sliding layer. Here t is 

time, x, y is the chosen coordinate set with x being the longitudinal coordinate (Figure 2a), and 

h is the thickness of the sliding layer.  We assume that P does not change during the shear band 

growth and consider the dynamic deformation being undrained at the scale of the thickness of 

the sliding layer. Specifically, we assume that √𝐷ℎ𝑡𝑓 << h, where Dh is the hydraulic diffusivity 

(diffusion coefficient) of the host sediment and tf is the time to global failure when the shear 
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band reaches the size of lf. Then, we consider both local, P, and averaged, p, pore pressure as 

not changing with time and equal their values at t = 0. Note that, in general, diffusion at the 

scale of the shear band thickness and at the scale of the process zone of the shear band (Figure 

2a) may or may not be neglected, which affects the sediment strength at these scales.  

Before the shear band appears, the average normal effective stress in the intact slope is 

 + p = –p0 (p0 > 0). Although stress state is not uniform in natural slopes [e.g., Picarelli et al., 

2000], p0 does not change sharply along a long, mild slope, which, therefore, is approximated 

by an infinite slope with constant p0 [e.g., Prior and Suhayda, 1979; Denlinger and Iverson, 1990; 

Davis and Selvadurai, 1996]. Hereafter, compressive stresses and strains are defined to be 

negative, and displacements and strains are measured with respect to the undeformed state in 

the infinite slope with homogeneous, undisturbed, longitudinal effective stress of magnitude p0 

(Figure 2b). 

Following Puzrin et al. [2010], we assume that at the top end, x = 0, of the sliding slab, the 

sediment undergoes active failure (i.e., due to the sediment unloading compared to the infinite 

slope). In a sediment with sufficient cohesion, a tensile crack may develop connecting the shear 

band with the slide surface. As the seawater fills the crack, the slide becomes loaded at the 

upper end by the hydrostatic pressure, which corresponds to zero effective stress. In either 

case, we denote the average longitudinal effective stress at x = 0 by pa (Figure 2a). 

 (a) 

 (b) 
Figure 2.  (a) Shear band propagation in an infinite slope. The slab above the failed zone already has 
deformation accumulated during the stable (progressive) stage of the shear band growth, while the sliding 
velocity appears in the dynamic stage that begins at t = 0.  (b) One-dimensional model of a landslide 
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developing by the mechanism of dynamic propagation of the underlying shear band.   

 

The soil behavior in the sliding layer is described by a one-dimensional model (Appendix B) 

 0 0     ( const 0)
u

p E p p
x




    


 (2.2) 

where E = E0 /(1 – ν2) is the tangent (plane-strain) elastic modulus of the particulate material, E0 

and ν are the Young’s modulus and Poisson’s ratio, respectively.  In general, soil moduli in 

loading, El, and unloading, Eu, are different. For the sake of simplicity, however, we consider the 

case of El = Eu = E. In this formulation, the constitutive behavior of the material is equivalent to 

that in linear elasticity. 

 

2.2. Dynamic motion 

Governing equations are formulated in terms of quantities (2.1) averaged across the landslide. 

Substituting the constitutive relation (2.2) into the momentum balance condition [Hellan, 1984; 

Freund, 1998] 
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 (2.3) 

results in an inhomogeneous wave equation (Appendix B) 
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x c t h

 
     

 
 (2.4) 

where c = (E / ρ0)1/2 is the speed of the longitudinal elastic waves, ρ0 is the total material density 

(which accounts for both solid matrix and pore water), l(t) is the length of the propagating 

shear band, T = τ* / E > 0 is the normalized longitudinal load, 0 = g – r – w, 

 * 1 1    ( )w g b r            (2.5) 

is the combined distributed gravitational, g = 0ghsin, buoyancy, b = wghsin, frictional, 

r = μ(0 – w)ghcos, and viscous (water resistance in the case of submerged slopes), w, loads 

in the slope direction (Figure 2b). Until indicated otherwise, we consider the general case of this 

load dependent on both x and t. 

The initial conditions are 
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 (2.6) 

where l0 is the initial length of the shear band and us(x) is the static displacement just before 

the band begins propagating dynamically. 

The slide (slope) is initially at rest, but has already moved during the quasi-static stage of 

the deformation process. The boundary condition, u(l(t), t) = 0 (t > 0), at the tip, x = l(t), of the 

propagating shear band can be written as [Hellan, 1984; Freund, 1998] 

     ( ( )   0)
u u

v x l t , t
t x

 
   

 
 (2.7) 

where v = dl/dt is the velocity of the band tip. Because the model developed here is based on 

the assumption of small strains (|u/x| << 1), (2.7) implies that u(l, t)/t < v, so the material 

at the band tip moves slower than the crack tip, which is a necessary condition for our model to 

be physically acceptable.  In Section 6.1, it will be shown that this condition is satisfied. 

The boundary condition at the upper end, x = 0, of the slide (Figure 2b) represents the 

effective stress  (0, t) + p = –pa (pa = const > 0, t ≥ 0), which per Hooke’s law (2.2), is expressed 

as 

 (0, )     ( 0)a

u
t t

x



 


 (2.8) 

where a = (p0 – pa)/E is the strain at x = 0.  Note that at x = 0, the effective stress  + p = –pa is 

compressive (negative) while strain u / x = a is tensile (positive) due to the chosen 

undeformed state, which is reflected by the difference in signs.  As mentioned above, if a 

tensile fracture develops at the upper end of the slide in a sediment with sufficient cohesion, pa 

can also be interpreted as zero effective stress (pa = 0) due to the hydrostatic water pressure in 

the fracture and in the sediment (Appendix B) [Puzrin et al., 2010].  Hence, pa < p0, which also 

holds when pa is the active pressure.  Therefore, in both cases, a > 0.  This does not result in a 

loss of generality, as the solution of the dynamic problem obtained below is also 

mathematically applicable to the case of negative a. The absolute value, |a| = –a, of this 

compressive strain, however, should be smaller than the tip strain, 0 (defined in the next 

section), at the onset of dynamic growth. 
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 (a)  
 

                                                                                 (b) 

Figure 3. (a) Shear traction (resistance), xy, along the shear band and (b) relationship between xy and 
relative shear displacement, δ [Palmer and Rice, 1973].  The shear strength of the material decreases from 

peak, p, to residual, r, values with shear deformation based on a strain-softening constitutive behavior. The 
integral shows the energy surplus available per unit area of the shear band advance, and δr is the relative 

displacement required for r to develop. The surplus is the excess of the work input of the applied forces 
over the sum of (i) the net energy absorbed in the deforming material outside the band and (ii) the frictional 

dissipation against the residual part, r, of the slip resistance within the shear band [Palmer and Rice, 1973]. 

 

2.3. Energy balance 

Following Palmer and Rice [1973], we treat the propagating shear band as an ideal, mode II 

fracture. We assume that the fracture process zone is small compared to the layer thickness 

and the band size. The propagation of such a fracture is controlled by the energy balance at the 

fracture tip. For a dynamically propagating fracture, the energy release rate J is balanced by 

rate of the energy dissipation at the tip [Rice, 1968; Cherepanov, 1979]. Hence, J = Jc, where Jc is 

the effective surface energy for a growing fracture.  It is assumed constant, although in the 

landslide context, this is not necessarily the case even for small scale yielding because different 

weakening mechanisms may take place during the shear band growth.  As noted by Viesca and 

Rice [2012], for example, rapid slip may result in shear heating, which, in turn, may cause 

thermal pressurization or material decomposition to occur in a sediment [Voight and Faust, 

1982; Vardoulakis, 2002; Cecinato, 2009; Goren et al., 2010; Pinyol and Alonso, 2010]. 

For a sliding 1-D layer, the condition of J = Jc results (Appendix C) in the squared strain 

 
2 2
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 (2.9) 

at the propagating band tip x = l(t).  Hereafter, c = [2Jc / (hE)]1/2 is the minimal strain level at the 

tip of the propagating fracture (when v  0). As follows from (2.9), for a physically meaningful 

solution, v < c.  Condition (2.9) is identical to that obtained by Freund [1998] in the case of 

p0 = 0, but it is also applicable when p0 ≠ 0 (Appendix C). 
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When t = 0, the initial shear band is in a state of mobile equilibrium [Barenblatt, 1962] and 

has a length l0 such that at the given level T of the applied loads, it is just about to start 

propagating. This length, therefore, is defined by (2.9) with v = 0 and c replaced by 

0 = [2J0 / (hE)]1/2, which is the strain level required at the tip for the static band to begin 

propagating. Here J0 is the surface energy for the static shear band [Palmer and Rice, 1973; 

Chowdhury, 1978; Saurer and Puzrin, 2011; Dey et al., 2012]. In this case, (2.9) reads 

 2 2
0 0( )s l   (2.10) 

where s(l0) =  (l0, 0)  is the static deformation of the initial 1-D layer above the shear band at 

its tip x = l0 (Figure 2b). It is determined from 
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     (2.11) 

which is the deformation of a static layer of size l ≥ l0 at point x  l.  This deformation is 

obtained by integrating (2.4) with ∂2u / ∂t2 = 0 and boundary condition (2.8).  In reality, the 

layer is in a state of dynamic motion as the shear band grows, but introducing the auxiliary 

function (2.11) is handy to characterize its virtual steady state (if the layer were not moving).  

Deformation s(x) implicitly depends on the layer size in the sense that x  l, but we do not 

indicate this to simplify notations. 

Because J0  Jc, and, hence, 0  c, comparing (2.10) and (2.9) shows that at t = +0, either 

the band tip instantaneously acquires (if  
2

 (l0, +0) = 𝛾𝑠
2(𝑙0)) some finite propagation velocity, v0, 

or the strain,  (l, t), at the tip instantaneously changes (if v0 = 0) from  (l0, 0) = s(l0) to some 

 (l0, +0)  s(l0), or both. Hereafter, symbol +0 indicates the limit of t  0 (t > 0). In general, J0 is 

greater than Jc [e.g., Shukla, 1983; Marur et al., 2004; Jajam and Tippur, 2012], and we adopt 

the notation of 

 2 2

0 0/ /c cn J J     (2.12) 

where n > 1 is called the bluntness parameter [Freund, 1998] as applied to open (mode I) cracks, 

but n is also used for shear fractures [Hellan, 1984; Freund, 1998].  Transition from J0 to Jc could 

be addressed, in principle, by considering more accurate friction laws that depend upon 

displacement discontinuity and/or the relative slip velocity [Ida, 1972; Dieterich, 1979; Rice, 

1980; Ruina, 1983]. Then, the material motion and/or strain at the band tip would initiate from 
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the state of rest [Garagash and Germanovich, 2012; Viesca and Rice, 2012]. Within the 

framework of the simplified 1-D model, considered here, this transition time from rest to 

dynamic motion is considered to be relatively short, and is approximated by the abrupt increase 

in propagation velocity from zero to some v0 or/and by the instantaneous strain change at the 

tip from s(l0) to  (l0, +0).  In this case, (2.9) becomes  
2(l0, +0) = 𝛾𝑐

2 (1 − 𝑣0
2 𝑐2⁄ )⁄ ), where the 

values of v0 to be found. 
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CHAPTER 3. INITIAL-BOUNDARY VALUE PROBLEM  

3.1. Governing equations 

Equations (2.4) - (2.8) are written with respect to the unknown functions u(x, t) and l(t). 

Following Freund [1998], they can be rewritten in terms of the longitudinal strain, 

 (x, t) = u/x, material velocity (slip rate),  (x, t) = u/t, and fracture length, l(t), as 

 
2

1
 ,      0    (0 ( )   0)

T
x l t , t

t x x t hc

      
      

   
 (3.1) 

 0( ,0) ( ),     ( ,0) 0    (0 )sx x x x l       (3.2) 

 (0, ) ,     ( ( ), ) ( ) ( ( ), )     ( 0)at l t t v t l t t t        (3.3) 

To close this set, we also use an additional condition at the tip of the propagating shear band 

that combines (2.10) and (2.9) into 

 
2

0

2 1 2 2 1
0

1                          ( ,   0)

(1 / )    ( ( ),  0)

x l t

n v c x l t t



  

 
 

  
 (3.4) 

where we took into account (2.12). The initial value l0 of l(t) is defined by (2.10), (2.11) and 

further assumed known. In Chapter 5, l0 is defined explicitly for a particular type of dependence 

T(x, t). 

Note that the term ‘material velocity’ is synonymous to the term ‘particle velocity’. ‘Particle 

velocity’ refers to both the (random) velocity of individual particles in the sediment displaced by 

the slide and to the mean velocity of particles in the representative elementary volume. To 

avoid confusion and to emphasize that our model is developed within the framework of 

continuum mechanics, we prefer the term ‘material velocity’. 

 

3.2. Conditions on discontinuities 

Set (3.1) of first-order linear differential equations is hyperbolic [e.g., Whitham, 1999]. It has 

two sets of characteristics represented by the straight lines dt/dx = ±1/c in plane (x, t). At t = +0, 

the tip boundary condition changes instantaneously, i.e., the band velocity jumps from zero to 

v0  0 or/and the tip strain changes instantaneously from its static, s(l0), to dynamic,  (l0, +0), 

value. Such an instantaneous change causes a discontinuity (generally, in both  and ) that 

begins propagating from the shear band tip x = l0 towards the other boundary at x = 0.  Because 
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of the hyperbolicity of set (3.1), discontinuities can only propagate along its characteristics 

[Courant and Friedrichs, 1948; Whitham, 1999; Lax, 2006]. Therefore, the discontinuity 

propagates with velocity c (line AC of x = l0 – ct in Figure 4), and at time t = l0 / c, it reflects on 

the slide end, x = 0, and propagates back towards the band tip, x = l(t) (line CE of x = ct – l0 in 

Figure 4).  As will be shown below, the band tip propagates with velocity v < c, and the 

discontinuity may (Figure 4a) or may not (Figure 4b) reach the propagating tip.  If it does, then it 

reflects at the tip and propagates again towards x = 0 (line EF of x = lE + c(tE – t) in Figure 4, 

where lE and tE are found in (4.17)). Within the framework of elastic theory, this process can 

continue indefinitely, although it is also possible that, after a number of reflections from x = 0, 

the discontinuity will cease to reach the band tip.  Until Section 4.3, the consideration is 

common for both cases of the discontinuity lagging behind and reaching the band tip, that is, 

for both CE intersecting (Figure 4a) and not intersecting (Figure 4b) the band tip line of x = l(t). 

 (a) 

(b) 

Figure 4.  Location x = l(t) of the shear band tip at time t (solid, curved line AE) and characteristics AC 
(x = l0 – ct) and CE (x = ct – l0) of the propagating discontinuity (dashed lines). “Regular” characteristics (a) 

BD and PQ (thin lines) and (b) RS, SK, and KP (thin lines) are in domains of continuous values of  and  (and 

their derivatives of the first order). Plus and minus correspond to the limits of  and  while approaching to 
the discontinuity lines AC in (a) and CE in (b). (a) When the discontinuity reaches the propagating tip, it 
reflects and starts propagating back along line EF (x = lE + c(tE – t), dashed lines). (b) After the discontinuity, 
propagating from the band tip, x = l0, at A is reflected back from the slide end, x = 0, at C, it is not able to 
reach the moving band tip, x = l(t), again. In this case, E is the infinite point (compare to (a)). Characteristics 
RS and PK intersect line CE of the reflected discontinuity.  Solution in domain CEF in (a) is similar to that 
above the characteristic line CE in (b). 

 

 Mathematically, we look for functions  (x, t) and  (x, t) that are continuous and have 

continuous derivatives of the first order in the domains between the discontinuity 

characteristics (for example, between AC and CE, or CE and EF in Figure 4a). The values of  and 

 on these characteristics are discontinuous with the jump condition [Courant and Friedrichs, 
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1948; Whitham, 1999; Davison, 2008] 

 ( )     ( / 1/ )c dt dx c            (3.5) 

where  ± and  ± are the limits of  (x, t) and  (x, t), respectively, obtained by approaching the 

discontinuity characteristics from different sides. For example, we further use notations  +(x, t), 

 +(x, t) and  –(x, t),  –(x, t) for values of  (x, t),  (x, t), obtained by approaching line AC in 

Figure 4a from above and below, respectively. 

In summary, the initial-boundary value problem for  (x, t),  (x, t), and l(t) is given by the 

closed, hyperbolic set of equations (3.1) with boundary conditions (3.3), (3.4) and initial 

conditions (3.2) and 

 0( )    ( 0)l t l t   (3.6) 

Solution of this problem is considered in the next chapter. 
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CHAPTER 4. SOLUTION OF THE INITIAL-BOUNDAY VALUE PROBLEM 

4.1. Shear band velocity 

The set of linear equations on characteristics, which is equivalent to (3.1), can be written as 

[Courant and Friedrichs, 1948; Whitham, 1999], 

 
1

    
d T dt

dx c h dx c



   

      
   

 (4.1) 

where d/dx = /x + (t/x)/t is the total derivative. Following Burridge and Keller [1978], we 

first integrate (4.1) along the characteristic line, t = tB + (x – xB)/c, between point, B(xB, tB), 

which is on the characteristic line AC, t = (l0 – x)/c, and point D(lD, tD) at the band tip xD = lD = l(t) 

(Figure 4).  We obtain 

 
( ) ( ) 1

( ) ( ) ( , ( ) / )
D

B

l

B B

x

D B
D B T x t x x c dx

c c h

 
 


        (4.2) 

where  
+(B) and  

+(B) are the limits of  (x, t) and  (x, t), respectively, when x  xB, t  tB, and 

t – (l0 – x)/c  +0. Functions  (x, t) and  (x, t) are continuous and have continuous derivatives 

in domain ACE in Figure 4a. Because the initial discontinuity propagates along line AC,  
–(B) and 

 
–(B) on this line are simply the initial static strain and material velocity, respectively. They are 

undisturbed until the initial discontinuity arrives at xB at time tB = (l0 – xB)/c.  Therefore, in (2.11), 

 ( ) ( ),      ( ) 0s BB x B      (4.3) 

so the jump condition (3.5) becomes 

 ( ) / ( ) ( )s BB c B x       (4.4) 

Since point D(lD, tD) corresponds to the propagating tip, the second (dynamic) fracture 

condition in (3.4) applies. Substituting this, (4.4), and the second equation in (3.3) into (4.2), 

results in equation  

 1

1 ( , )

1 / 1 1
( ( , )) ( , ( ) / )

1 /
B

l

s B

c x l t

v c
x l t T x t x l c dx

v c h




 
     

   
  (4.5) 

for the crack tip velocity v1, where xB(l, t) = (l + l0 – ct)/2 and we used notations lD = l, tD = t 

because D(lD, tD) = D(l, t) is the arbitrary point on the line, x = l(t), of band tip locations. The 

right hand side in (4.5) is positive because s(xB(l, t)) < 0 and T(x, t) > 0 for any t ≥ 0. Hereafter, 
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v1(l) is the velocity of the band tip before it is reached by the discontinuity (at point E in Figure 

4a and never in Figure 4b, where E is at infinity). 

Equation (4.5) for l(t) is to be solved with the initial condition (3.6). To simplify the solution, 

we further assume that function T(x, t) = T(x) is independent of t. In this case, solution of (4.5) 

with (3.6) can be written in the closed form 

 
0 0
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0 2 2
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1
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l l
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v l c l


 

 
    

  
   (4.6) 

where 
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 (4.7) 

Taking into account condition (2.10) for l0, expression (2.11) can be rewritten for x = l as 

 
0

0

0

1 1
( ) ( ) ( ),      ( ) ( ) ,     ( ) ( )

l l

s a

l

l
l T l I l T l T x dx I l T x dx

h l h
           (4.8) 

with ( )T l  being the average value of T(x) for the band of length l. 

Since T(x) > 0, I(l) in (4.8) increases monotonically with l and so does 𝛾𝑠
2(𝑙) (since  0 > 0). 

Initially, 𝛾𝑠
2(𝑙0) = 𝛾0

2 > 𝛾𝑐
2. Hence, 𝛾𝑠

2(𝑙) − 𝛾0
2 > 0, and v(l) > 0 for any l ≥ l0. Furthermore, 

according to (4.7), the shear band propagation velocity is always smaller than the speed of 

elastic waves, v1 < c. Because of the monotonic increase of 𝛾𝑠
2(𝑙) with l, function l(t) defined by 

(4.6) also monotonically increases with t. 

In the simplest case, the reflected discontinuity does not ever reach the crack tip, which 

corresponds to the characteristic line CE not crossing line x = l(t) of the tip location (Figure 4b).  

In this case, the mathematical limit of l   is possible in (4.6) and (4.7), resulting in v1  c as 

l   and l   as t  . Therefore, (4.6) and (4.7) give a physically meaningful solution for 

the shear band size, l(t), and the propagation velocity, v1(t) (Figure 5). It is straightforward to 

show that assumption T(x, t) = T(x) does not result in a loss of generality and the same 

conclusions remain valid in the general case of T(x, t) > 0. 

It should be noted that from the physical standpoint, the material may fail or start 

exhibiting significant inelastic strain before the shear band size becomes infinitely large. This 

will be discussed in Section 6.2.  Until then, we consider the mathematical aspects of the 
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obtained solution and formally allow l to be unbounded. 

Finally, solution (4.6)-(4.8) was obtained based on the concept of propagating 

discontinuities arising from the hyperbolicity of the initial-boundary value problem (3.1) - (3.4). 

It can be shown (Appendix D) that this problem does not have physically acceptable continuous 

solutions. 

 

Figure 5.  Dependence of the band propagation velocity, v1, on its length, l, for arbitrary T(x, t) > 0 in the 
case of the discontinuity not reaching the band tip (Figure 4b). 

 

4.2. Strain and material velocity 

To obtain the strain, 1, and material velocity, 1, at the shear band tip, we insert (4.7) into the 

second relation of (3.4) and use the second (compatibility) condition at the band tip in (3.3). 

This gives 
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    (4.9) 

where, as shown above, 𝛾𝑠
2(𝑙) monotonically increases with l  l0. Therefore, both |1(l)| and 

1(l) increase as the shear band grows. 

 To find strain, , and slip velocity, , at the arbitrary point Q(x, t), located between lines AC 

and CE in Figure 4a, we next consider point P(lP, tP), which is at the band tip and is connected to 

Q(x, t) by the characteristic line, x – lP = –c(t –tP).  Here lP and tP are related by (4.6), and lP can 

be found from 
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Pl

P

l

x l dl
t

c v l


    (4.10) 

once x and t are specified.  Integrating then (4.1) from P to Q and taking into account (4.9) 

(because P is at the band tip), we arrive at 
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     (4.11) 

while integration of (4.1) from B to Q is similar to (4.2). Using (4.4) with the result of this 

integration, we have 
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Q x

c


    (4.12) 

Finally, we obtain from (4.12) and (4.11) that 

 1 1( , ) ( ) ( ) / ,    ( , ) ( )s P Px t x l c x t l        (4.13) 

where (l0 – x)/c < t < (l0 + x)/c, x < l(t), l0 is defined by (2.10), and lP(x, t) is the solution of (4.10). 

Note that the second equation in (4.13) means that inside ACE (Figure 4a), the slip velocity 

 (x, t) is constant on characteristics dt/dx = 1/c. The value of  (x, t) is not constant, however, 

along characteristics dt/dx = – 1/c because 1(lP) is the material velocity at the band tip and, 

therefore, depends upon the position of P on line x = l(t). 

 Equations (4.13) give  and  at the arbitrary point (x, t) in domain ACE in Figure 4a. Values 

 (l, t) and  (l, t) of these quantities at the band tip are given by (4.9). Equations (4.7) and (4.6) 

define the dependence of the shear band velocity upon l and t, respectively. In particular, at the 

initial moment, t = +0, at the band tip, x = l0, 

 0 0 1 0 0 0 1 0 0

1 1 1
( 0) ,    ( , 0) ( ) ,    ( , 0) ( )

1 2 2

n n n
v v c l l c l l

n n n
     

  
         


 (4.14) 

Material strain and velocity for the arbitrary point K(x, t) inside domain CEF in Figure 4a or 

outside domain ACE in Figure 4b are given by (Appendix E) 
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          (4.15) 

where for the specified x and t, lP (x, t) is obtained from (4.10) and lR (x, t) from 
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    (4.16) 

for the same x and t. 

 

4.3. Solution after the discontinuity reaches the band tip 

Once the discontinuity propagating along CE in Figure 4a reaches the shear band tip, it reflects 
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and propagates again towards x = 0. Whether this indeed happens is discussed in Appendix F. 

At point F (Figure 4 and Figure 6), the incident discontinuity reflects for the second time from 

the upper slide end, x = 0. The solution for the region above line EF (but below line FL) in Figure 

6 (and for all other regions between the incident and reflected discontinuities) is obtained in 

Appendix E.  The band tip arrives at point x = l ≥ lE at time 
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 (4.18) 

is the tip velocity after the tip is reached by the discontinuity. After the discontinuity reflects 

from the band tip at E, the tip x = l(t) arrives at point U(lU, tU) together with the wave that 

originates at R(lR, tR) and then reflects from x = 0 (Figure 6). This means that l = lU > lE, t = tU > tE, 

tR = tRU > tE, l0 < lR = lRU < lE, and we further use notation lRU = lR when we want to emphasize 

that R and U are connected by the characteristics lines (Figure 6).  Hence, substituting 

t = tR + (lR + l)/c into (4.17) and differentiating the result with respect to t, we see that lRU (l) is 

the solution of the initial value problem 

 

1

0 0

2 1

1 1 ,   ( )    ( ,  ( ) )
( , ) ( )

RU
RU E E RU E

RU RU

dl c c
l l l l l l l l l

dl v l l v l



   
         
   

 (4.19) 

with the crack length, lE, at point E (Figure 6) determined from 
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Since 0 < v2 < c and v1 > 0, dlRU/dl > 0 in (4.19), which implies that lRU(l) monotonically grows 

with l. 

The material strain and velocity at the arbitrary point Z(x, t) above the discontinuity line EF 

(in region EFL in Figure 6) are given by (Appendix G) 
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while these quantities at the fracture tip (after it is reached by the discontinuity) can be written 

as (Appendix G) 
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 (4.22) 

Here lR, lH, and lW, are the lengths of the shear band at points R(lR, tR), H(lH, tH), and W(lW, tW), 

respectively, and these points are related to point Z(x, t) through the corresponding 

characteristics (Figure 6).  This means that a wave, originating at the crack tip at R, reflects from 

x = 0 and arrives at Z at the same time as another wave, originating at W, arrives at Z after it 

reflects from x = 0 and H (both W and H are also at the band tip).  Hence, we have 
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and 
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where for any given x and t (such that Z(x, t) is above EF), lR (x, t) and lH (x, t) are first found from 

(4.23) and then lW (x, t) from (4.24). Function lRH (l) is obtained (Appendix G) by replacing lRU 

with lRH in (4.19) and solving the resulting equation. 

The material strain and velocity at the arbitrary point G(x, t) above the discontinuity line FL 

(Figure G.1a, where point G is not shown to simplify the drawing) are given by (Appendix G) 
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 (4.25) 

where lH, lW, lS, and lP are the band lengths at points H(lH, tH), W(lW, tW), S(lS, tS), and P(lP, tP), 

respectively, and these points are related to point G(x, t) through the corresponding 

characteristics (Figure G.1a in Appendix G).  Specifically, functions lH(x, t) and lW(x, t) are given 

by (4.23) (second equation) and (4.24), respectively, while points lS(x, t) and lP(x, t) are defined 

by 
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Function lRS(l) is obtained (Appendix G) by replacing lRU with lRS in (4.19).  

Note that the material velocity (4.9) at the crack tip is always positive, η1(l) > 0, while the 

static strain corresponding to the band length is always negative (compressive), γs(l) < 0. 

Therefore, the material velocity, , at the arbitrary point in (4.21) is always positive (because 

lR > lW). 

As common in the method of characteristics for hyperbolic equations [Courant and 

Friedrichs, 1948; Whitham, 1999; Lax, 2006], finding the solution of partial differential 

equations (3.1) is reduced to solving ordinary differential equation (4.19), which represents no 

difficulty (when solved numerically) since it has a unique solution and function v2 is known from 

(4.18).  Some conclusions can be derived, however, even without explicitly solving (4.19). 

Consider, for example, the shear band velocities right before and right after the 

discontinuity reaches the band tip at point E (Figure 6) and reflects back towards x = 0. In this 

case, l  lE and lR  l0, and these velocities are obtained from (4.18) and (4.7), respectively, as 
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Because function (z2 – a2)/(z2 + a2) = 1 – 2a2/(z2 + a2) monotonically increases with increasing 

z2 = [–s(lE) / 0 + 1 – 1/n]2 (and a2 = 1/n), this implies that v2(lE, l0) > v1(lE) (because n > 1). In 

other words, the band tip velocity increases when the tip is overtaken by the discontinuity. This 

velocity increase is shown schematically in Figure 6 by breaking the slope of x = l(t) at point E. 

Further, because both lRU in (4.18) and 1(l) in (4.9) increase with l, a similar argument (with 

z2 = [– s (l) + 21(lE) /c]2 and a2 = 𝛾𝑐
2) suggests that v2(l, l0) in (4.18) monotonically grows as the 

band propagates. Yet, as can be observed from (4.18), v2(l, l0) < c, although v2(l, l0)  c, if l   

(since s(l) is a monotonic and unbounded function). 

Mathematically, the limit transition l   corresponds to the discontinuity that does not 

catch up with the band tip again, i.e., after it reflects from the x = 0 end for the second time.  If, 

however, the discontinuity reaches the band tip, a nearly identical consideration leads to the 

same result; that is, the velocity of the shear band approaches c as it propagates. In a similar 
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manner, it is straight-forward to show (Appendix H) that the discontinuity magnitude reduces 

after each reflection from the band tip. 

Below we are mostly interested either in the discontinuity lagging behind the band tip 

(Figure 4b) or in the discontinuity reflected once from the tip (i.e., twice from x = 0; Figure 4a 

and Figure 6).  These cases are of primary interest for this work (Chapters 5 and 6) as they 

illustrate all important features of the general solution (Appendix E) for the arbitrary number of 

reflections. 

 

Figure 6. Discontinuity (dashed lines) originated at t = 0, x = l0 (point A) and reflected consequently from 
points C, E, and F. Z(x, t) is the arbitrary point above the discontinuity line EF (but below FL). N and H are 
points related to Z and located on lines x = l(t) and EF, respectively (above E). Points N and H correspond to 
waves reflected once from x = 0 and initiated at points R and W (both below E) on x = l(t), respectively. 
U(l, t) is another point on x = l(t) (above E) that also corresponds to point Z. On a few occasions, point R is 
referred to as RU and RH to stress its relation to points U and H, respectively. 

 

4.4. Range of dimensionless parameters 

The solutions presented above can be written in terms of dimensionless quantities 
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         (4.28) 

and used with appropriate indices that correspond to the non-normalized parameters. Below, 

we use both normalized and non-normalized quantities. Note the change of sign in the first 

equation in (4.28), which corresponds to the normalized compressive strain being positive. 

It turns out that the obtained solution, written in terms of quantities (4.28), depends upon 

only two dimensionless parameters, that is, the “bluntness” number, n, and the characteristic, 

dimensionless number 
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where function �̅�(𝑙) is defined by (4.8). Both parameters are relatively well constrained.  

Because a > 0 (Section 2.2) and 0 > 0, the range of parameter 𝜆∗ is 0  𝜆∗  1.  It is difficult to 

further narrow down this range without addressing the specifics of progressive growth of the 

shear band, until the band reaches the critical length of l0. Per (4.29), the value of 𝜆∗ depends 

upon the relative values of a and 0.  If a << 0, 𝜆∗  1, for a  0, 𝜆∗ = 0.5, and for a >> 0, 

𝜆∗  0. 

In principal, parameter n is only constrained by condition n > 1.  It is difficult to constrain it 

further without explicitly considering the slip and specific weakening mechanisms (e.g., in the 

band process zone (Figure 2).  We note, however, that per (4.14), the crack tip velocity jumps 

from zero to v0 = c/2 already at the initial moment when n = 3 and to v0 = c/3 when n = 2.  In the 

absence of better data for n for shear bands in particulate materials, we further consider 

1 < n < 2 and, in most cases, 1 < n < 1.5. The obtained mathematical results, however, are valid 

for arbitrary n > 1.  Furthermore, as shown in Section 8.1, the asymptote of a large n (n >> 1) 

becomes applicable already at n ~ 1.01 in many practically important cases. 

The value of T in (4.8) and (4.29) is a function of x only, which implies that in (2.5), not only 

is 1 = g – b – r, but also w is independent of time t. The water resistance to the slide motion, 

however, does depend on the relative velocity of water and, therefore, is not constant over 

time. The effect of w will be explicitly included in Chapter 8.  Until then, w is considered to be 

negligible. 
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CHAPTER 5. SLIDE IN HOMOGENEOUS LOADING 

5.1. Discontinuity approaching the band tip 

Homogeneous load distribution 

 0 0( ) ( ) constT x T T l    (5.1) 

in a slope with a propagating shear band represents an important particular case that has been 

employed in many works on shear bands in soils and sediments [Palmer and Rice, 1973; 

Chowdhury, 1978; Chowdhury et al., 2010; Quinn et al., 2011a; Dey et al., 2012; Quinn et al., 

2012; Viesca and Rice, 2012]. The approximation of constant quantities g, b, and r is also 

commonly used in the conventional slope stability analysis [Lambe and Whitman, 1986; Das, 

1994; Craig, 1997; Duncan and Wright, 2005; Budhu, 2007; Chowdhury et al., 2010]. In this case, 

(4.8) simplifies to 

 0 0 0( ) ( ) /s l T l l h      (5.2) 

and the initial value of the band length 

 0 0 0/ ( ) /al h T    (5.3) 

is obtained by using (5.1) with (2.11) and (2.10).  

Since in our model l0/h >> 1, (5.3) implies that 

 a + 0 >> T0 (5.4) 

where T0 = /E << 1.  Because 0  𝜆∗  1, this is consistent with 0 >> 𝜆∗T0, which follows from 

(4.29) for l0/h >> 1. These inequalities provide an additional constraint on the choice of 

parameters, which was satisfied in all numerical examples below. 

In the normalized formulation (4.28), equation (4.7) rewrites as  
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 (5.5) 

where V1 = v1 / c.  Substituting (5.5) into (4.6) and integrating yields 

 * *
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1 1 (1 1/ )
1 ln ln
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d n n

V n n n


   

 
  

    
     

    
  (5.6) 

which defines the dimensionless band length () as a function of time. 

With (5.1) and (4.28), the static strain (5.2) rewrites as  
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while expressions (4.9) for the material strain and velocity at the crack tip (before the tip is 

overtaken by the discontinuity) become 

 1 1
1 1

0 * * 0 * *

1 1 1/ 1 1 1/
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n n
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 (5.8) 

Normalized strain and material velocity 

 1 1

*

1
( , ) 1 ( ),      ( , ) ( )P P


     




       (5.9) 

below CE (but above AC) in Figure 4a and Figure 4b are obtained from (4.13) while (4.15) results 

in strain and velocity 

 1 1 1 1( , ) ( ) ( ) ( ),     ( , ) ( ) ( )R P s P R                (5.10) 

at the arbitrary point (, ) above CE in Figure 4a and Figure 4b (but below EF in Figure 4 and 

Figure 6). Here functions P(, ) and R(, ) are the solutions of equations 
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        (5.11) 

where elementary expression for the integrals are given by (5.6). Equations (5.11) are the 

dimensionless versions of (4.10), (4.16). 

Hence, expressions (5.5) – (5.11) provide the closed-form solution for the material strain 

and velocity and for the shear band size and tip velocity in the case of homogeneous loading 

(5.1). They are valid before the band tip is reached by the discontinuity. 

We observe from (5.8) that both strain and material velocity at the band tip monotonically 

grow with the band length starting from their initial values 1(1) = (n + 1)/(2n) and 1(1) = (n –

 1)/(2n), respectively, which are defined by (5.8), or, equivalently, by (4.14) and (4.28). For 

  , both 1() and 1() formally approach the same asymptote [1 + ( – 1) / 𝜆∗] / 2, always 

remaining greater and less than, respectively, this asymptote.  This can also be seen in Figure 7a, 

where 1() and 1() are plotted for n = 1.1 and 𝜆∗ = 0.25 and 0.75. 

 Dimensionless length of the shear band and the corresponding discontinuity characteristics 

are plotted in Figure 7b in ,  coordinates for 𝜆∗ = 0.75 and n = 1.1, 1.2, and 1.4.  As can be 
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seen, the reflected discontinuity will catch up with the band tip for n = 1.1, but not for n = 1.4.  

For n = 1.2, the curves intersect at  = 8.430, which is beyond the drawing domain in Figure 7b.  

To put these values of n in perspective, we note that according to (5.5), n = 1.1, 1.2, and 1.4 

correspond to an initial velocity v0 of the band tip equal to 4.8%, 9.1%, and 16.7% of c, 

respectively. 

 The velocity v of the band tip quickly approaches c (within approximately two or three initial 

band sizes), which can be observed in Figure 7c.  This observation holds for the entire range of 

0 ≤ 𝜆∗ ≤ 1 and n > 1, and v approaches c faster for smaller 𝜆∗ and greater n.  By the time v 

becomes comparable to c (when   3), the material velocity 1 at the tip becomes roughly ~ 1, 

at which stage the normalized strain 1 at the tip is still ~ 1 (Figure 7a). For 0 ~ 0.01, these 

values of 1 and 1 correspond to the values of 1 ~ 0.01c and |1| ~ 1%, respectively. At the 

moment of reflection of the discontinuity from the band tip, the band velocity jumps (Figure 7c), 

which is discussed in more details below.  

 Note that the shear band velocity approaches c but remains slower than c, which is in 

contrast with the result of Puzrin et al. [2010]. They obtained the shear band velocity 

unbounded in time because they did not account for the elastic waves in their formulation. 

Comparison of our result to Puzrin et al. [2010] is given in Appendix I. 

 Distributions of  and  along the slope (i.e., in the physical space) are shown in Figure 8a 

and Figure 8b, respectively, for dimensionless times  = 0.2, 0.5, and 0.8 (i.e., before the 

discontinuity hits the slide end, x = 0). They are also in Figure 8c and Figure 8d for  = 1.3, 1.7, 

and 2 (i.e., after it reflects from the end at  = 1 but before it reaches the band tip, x = l), and in 

Figure 8e and Figure 8f for  = 3.2, 3.8, and 4.4 (i.e., after the discontinuity reflects from the tip, 

which is further discussed in Section 5.2).  All lines in Figure 8 are plotted for 𝜆∗ = 0.75 and 

n = 1.1.  At time  = 2, the discontinuity passes the initial position  = 1 (or x = l0) of the band tip 

(Figure 8c and d).  By that time, however, the tip has already advanced to the new position of 

 = 1.3865.  The band tip propagation can be seen in Figure 8a through Figure 8f by observing 

where the curves end to the right of the vertical line  = 1. 
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 (a)  (b) 
Figure 7.  (a) Normalized strain (bold lines), and material 
velocity (thin lines), at the shear band tip as functions of 

 = l/l0 for 𝜆∗ = 0.25 (black lines) and 𝜆∗ = 0.75 (red and blue 

lines) and n = 1.1. Asymptotes of 1 and 1 at    are 
shown by the dashed lines.  (b) Dependence of the 

normalized band size,  = l/l0, on  = ct / l0 for 𝜆∗ = 0.75 (i.e., 

a / 0 = 1/3) and n = 1.4 (thin, blue line), n = 1.2 (red line of 
medium thickness), and n = 1.1 (bold, orange line). In the 
latter case, the discontinuity (thin dashed line) reaches the 

propagating tip at  = 1.881, where it reflects at 

 =  +1 = 2.881.  Both solid and dotted parts of the orange 
line are plotted using (5.6). (c) Dimensionless velocity, 

V = v/c, of the shear band as a function of  = l/l0 for n = 1.1 
and 𝜆∗ = 0.75 (equation (4.18) or (G.13), bold blue and red 
lines before and after the discontinuity reflects from the tip 

at E = 1.881,  E = 2.881, respectively). For the sake of 
comparison, dotted lines are plotted using (4.18), but after 
the reflection. Inset shows a magnified view near the 
discontinuity. 

(c) 
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 (a)  (b) 

 (c)  (d) 

 (e)  (f) 
Figure 8.  Distributions of (a, c, e) normalized material velocity,  =  /(cγ0), and (c, d, f) strain,  = – / 0, 

along the slope as functions of dimensionless coordinate,  = x/l0, at different dimensionless times, 

 = ct / l0, when (a, b) the discontinuity has not reflected yet from x = 0 ( = 0.2, 0.5, 0.8), (c, d) after it 

reflected from x = 0 ( = 1.3, 1.7, 2), but before it reached the band tip  = 1.881 at  = 2.881, and (e, f) after 

the reflection from the tip ( = 3.2, 3.8, and 4.4) for 𝝀∗ = 0.75 and n = 1.1.  The discontinuity magnitude, 
Δ1 = 8.382×10

–3
, after it reflects from the band tip (the same for all curves in (e) and (f)) is an order smaller 

than magnitude Δ0 = 4.545×10
–2

 (the same for all curve in (a) through (d)) after the reflection.  Note that in 
(a),(b), (e), (f) and (c), (d), the discontinuity moves towards the slide end, x = 0, and the band tip, x = l(t), 
respectively. The discontinuity is not visible in (e) and (d), so its location is indicated by dots. 
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5.2. Discontinuity reflected from the band tip 

In a similar manner, equations (4.17) – (4.24) can be rewritten in the normalized form (4.28) in 

the case of homogeneous loading (5.1) and discontinuity reflection from the band tip (Appendix 

G).  As can be seen from (G.14), both 2() and 2() monotonically grow with the band length 

approaching the same asymptote [s() +21(RU()] / 2 for   , remaining always greater 

and less than the asymptote, respectively.  This can also be observed in Figure 7a and Figure 9a 

where 2() and 2() are plotted for n = 1.1 and 1.2, respectively (in both cases, 𝜆∗ = 0.75).  As 

expected, both 2() and 2() experience a jump when the crack tip is overtaken by the 

discontinuity. 

 Figure 7b and Figure 9b show in ,  coordinates the dimensionless length of the shear band 

and discontinuity characteristics for the same parameters (n = 1.1 or 1.2 and 𝜆∗ = 0.75).  While 

the velocity changes at point E (Figure 4 and Figure 6), the change is hardly noticeable in Figure 

7c, where the lines, computed with (solid curves) and without (dotted lines) taking into account 

that the discontinuity reaches the band tip, practically coincide.  A small (compared to the 

magnitude) velocity jump, when the discontinuity reflects from the band tip is present though, 

as evident in the inset in Figure 7c, which gives a magnified view of the discontinuity for 

𝜆∗ = 0.75 and n = 1.1. The velocity behavior for 𝜆∗ = 0.75 and n = 1.2 is similar.  In general, the 

tip velocity jump decreases as the band becomes larger (i.e., with more reflections of the 

discontinuity from the band tip). This can be directly observed from expressions (4.27), the 

difference of which decreases with increasing lE (and not only for the homogeneous load (5.1)). 

It is important to note that although in Figure 9b, the discontinuity reflects from x = 0 for 

the second time, it will never reach the band tip again; at least, from the practical standpoint.  

This is in fact the case for most of the parameter combinations under consideration. For 

example, the discontinuity lags behind the band tip until at least when   103 for * = 1 and 

n ≥ 1.04, for 𝜆∗ = 0.75 and n ≥ 1.02 and for 𝜆∗ = 0.5 and n ≥ 1.01 (Appendix F).  With increasing n, 

the value of  where the discontinuity arrives to the band tip becomes larger. This simplifies 

further analysis as it is unlikely that the size of real landslides would exceed l0 by more than 

three orders of magnitude (although one could envision two orders; Chapter 8). 
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 Distributions of  and  along the slope are shown in (Figure 8e and f) for the same 

parameters (𝜆∗ = 0.75, n = 1.1) as in Figure 8a through Figure 8d, but for larger dimensionless 

times  = 3.2, 3.8, and 4.4, i.e., after the discontinuity reflects from the shear band tip  = 1.881 

at  = 2.881. The end of each curve in Figure 8e for  and in Figure 8d for  corresponds to the 

propagating band tip. The discontinuity (marked by dots) is not visible at the scales of Figure 8e 

and Figure 8f because after the reflection from the tip, it became an order of magnitude smaller 

(4.545×10–2 before reflection and 8.382×10–3 after).  Therefore, similar to the band tip velocity, 

the magnitudes of the propagating discontinuities of  and  also quickly reduce with each 

reflection from the band tip. This is a general trend, which is independent of the choice of 

parameters 𝜆∗ and n. 

 Figure 9 and Figure 10, plotted for 𝜆∗ = 0.75, n = 1.2, show similar patterns as those 

presented in Figure 7 and Figure 8 for 𝜆∗ = 0.75, n = 1.1.  For example, both 2() and 2() in 

Figure 9a monotonically grow approaching the same asymptote 1(RU() + s()/2 for   . 

The band velocity trends in Figure 7c are also similar and so are the distributions of  and  

along the slope displayed in Figure 10 and Figure 8 for  = 0.2, 0.5, and 0.8 (i.e., before the 

discontinuity reflects from x = 0 at  = 1) and for  = 1.3, 1.7, and 2 (i.e., after it reflects from 

x = 0). 

 There are differences, however, with respect to the location of point E where the 

discontinuity reflects from the band tip. For 𝜆∗ = 0.75 and n = 1.1, the reflection happens at 

E = E = 1.881 while for 𝜆∗ = 0.75, the discontinuity does not reach the crack tip at all when 

n = 1.24 tip (Figure F.1 in Appendix F).  Hence, for 𝜆∗ = 0.75 when n changes from 1.1 to 1.24, E 

changes from 1.881 to .  In particular, because in Figure 9b is plotted for n = 1.2 instead of 

n = 1.1, the point where the crack tip is overtaken by the discontinuity is extended to 

E = E = 8.43. As a result, both strain and velocity distributions in Figure 9 and Figure 10 can 

now be observed at a larger scale, which presents some new features. 

 For n = 1.1, for example, the dimensionless time  = 2 (last in Figure 8) is relatively close to 

time  E = 2.881, when the discontinuity reaches the band tip, while for n = 1.2, the 

discontinuity is still relatively far from the tip (Figure 10c and Figure 10d) since  E = 9.43.  For 

dimensionless times  = 3, 5, and 8 in Figure 10e and Figure 10f, which are closer to  E = 9.43, 
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the actual magnitudes of the discontinuity are the same in both figures, but the discontinuity is 

less visible because the magnitudes of strain and material velocity become considerably larger 

at  = 3, 5, 8 than before.  Also, the physical location of the discontinuity is closer to the 

propagating band tip for these times. 

 

 
(a)  

 (b) 

Figure 9.  (a) Normalized strain, 1 = –1 / 0 (bold lines), and normalized material velocity, 1 = 1/ (cγ0) 

(thin lines), at the shear band tip as functions of the normalized band length,  = l/l0, for 𝝀∗ = 0.75 and 

n = 1.2 before (blue lines) and after (red lines) the discontinuity arrives at the band tip E = 8.43 at E = 9.43. 

Asymptotes of 1 and 1 at    are shown by the dashed lines (blue and red, respectively).  (b) 

Dependence of the normalized band size,  = l/l0, on dimensionless time,  = ct / l0, for 𝝀∗ = 0.75 (i.e., 

a / 0 = 1/3) and n = 1.2 before (blue, solid and dotted lines) and after (red line) the discontinuity arrives at 

the band tip at E = 8.43 and reflects back at E = 9.43.  

 

 (a)   (b) 
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 (c)   (d) 

 (e)    (f) 

 (g)   (h) 

Figure 10.  Distributions of (a, c, e, g) dimensionless material velocity,  =  /(cγ0), and (b, d, f, h) 

normalized strain,  = – / 0, along the slope as functions of dimensionless coordinate,  = x/l0, at 

dimensionless times,  = ct / l0, of (a, b) 0.2, 0.5, 0.8 (when the discontinuity has not reflected yet from 
x = 0), (c, d) 1.3, 1.7, 2 (soon after it reflected from x = 0), (e, f) 3, 5, 8 (shortly before the discontinuity 
arrives at the band tip), and (g, h) 11, 13, 15 (after the discontinuity is reflected from the tip) for 𝝀∗ = 0.75 
and n = 1.2. The magnitude Δ1 = 5.741×10

–4
 of the discontinuity after it reflects from the tip (the same in (g) 

and (h)) is two orders smaller than magnitude Δ0 = 8.333×10
–2

 before the reflection (the same in (a) through 
(f)).  Note that in (a), (b), (g), (h) the discontinuity moves towards the slide end, x = 0, while in (c), (d), (e), (f) 
it moves towards the band tip, x = l(t). 
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 Figure 10g and Figure 10h display the distributions of  and  along the slope for even 

larger times  = 11, 13, 15 and the same parameters 𝜆∗ = 0.75, n = 1.2.  These are times before 

the discontinuity reflects again from x = 0, but after its reflection from the band tip at E.  

Because of this reflection, the magnitude of the discontinuity decreases by two orders (from 

Δ0 = 8.333×10–2 before the reflection to Δ1 = 5.741×10–4 after) while the magnitudes of both 

material strain and velocity further increase with time.  This again is a common trend, 

independent of parameters, which justifies allowing discontinuities in our model as further 

discussed below (Section 10.1). 

 When n is relatively close to 1, its value is important with respect to the magnitudes of the 

shear band and material velocities.  We can see from (4.14) that when n changes, for example, 

from 1.1 to 1.2, the factor of n – 1 in (4.14) doubles and so do the initial magnitudes of the band 

and material velocities.  In turn, this translates in the magnitude of material velocity in Figure 

10 being roughly doubled compared to Figure 8. 
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CHAPTER 6. SLIDE PROPERTIES  

6.1. Slope failure and slide length 

As above, in this chapter, we consider the case of negligible water resistance, w, so the 

homogeneous load (5.1) in the infinite slope is T0 = (g – r)/E.  The effect of w will be addressed 

in Appendix K. 

As the shear band propagates, the strain magnitude at the tip x = l(t) increases until it 

reaches the critical magnitude of the passive failure strain γp = (pp – p0)/E > 0 [Puzrin and 

Germanovich, 2005a], which corresponds to the passive failure stress σ(lf, tf) = – pp (pp > 0).  At 

this point, the shear band can be visualized as turning abruptly towards the surface, which 

effectively ends its propagation at x = lf, t = tf.  We refer to this event as ‘global failure’ or ‘slope 

failure’, and first obtain  1(lf) from (4.9) or (5.5) with x = lf.  In the case of the discontinuity that 

has not reflected yet from the band tip, condition of the global failure can be expressed from 

(4.9) as  

 
2 2( )

2 ( )

s f c

p

s f

l

l

 





   (6.1) 

In turn, (6.1) yields 

 
2 2( )s f p p cl        (6.2) 

where the static strain s(lf) = – 0 – T0(lf – l0)/h is defined by (5.2) with l = lf.  Using then (2.12), 

substituting (5.2) in (6.2), and solving the resulting equation for lf, we obtain the dimensionless 

failure length 

 
2

* 2

0 0 0

1
1 1

f p p

f

l

l n

 
 

 

 
      
  

 (6.3) 

where * is given by (4.29) and we assumed that the global failure does not occur for l < l0, 

which implies that |p| ≥ 0 (otherwise, the global failure would occur before the shear band 

even starts propagating dynamically). Hence, because n > 1, the solution (6.3) exists, and 

because f > 1, we chose the minus sign in (6.2), which corresponds to the plus sign before the 

square root in in (6.3). 

 If the discontinuity reaches the band tip, the left hand side in (6.1) needs to be replaced by 
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the tip strain in (4.22) (with l = lf), so expression (6.2) becomes 

 
2 2 2( ) ( ) / ( )s f s R c s R p p cl l l             (6.4) 

where lR is found from 
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     (6.5) 

Function lRH (l) is the same as in (4.23).  In this case, the dimensionless failure length 
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 (6.6) 

is obtained by solving (6.4) with R = lR /l0 and Γs defined by (5.7).  Because 𝜆∗ > 0, R > 1, and 

n > 1, Δf < 0, so for f to be greater than 1, we chose again the plus sign before the square root 

in (6.6). 

The value of γp /γ0 depends upon the sediment properties, which will be considered in 

Chapter 8.  Here we only note that assuming τw = 0 overestimates T0, and, hence, overestimates 

* in (4.29). Therefore, f computed based on (6.3) or (6.6) is also overestimated. In other 

words, (6.3) and (6.6) provide an upper estimate of the slide size, which, in turn, provides an 

additional safety factor. 

As discussed in Section 2.2, our model is applicable for 1(l) < c.  Substituting l = lf into (4.9) 

and using (6.1), we see that 1(lf)/c = p + 𝛾𝑐
2 /s(lf).  Here 1(l) is a positive function 

monotonically increasing with l while terms in the right hand side have different signs and the 

absolute values smaller than one.  We conclude, therefore, that for l  lf, condition 1(l) < c is 

satisfied when the discontinuity does not reach the band tip.  When it does, a similar argument 

applies after using  2(l) from (4.29) in the failure condition  2(lf) = –p and rewriting the tip 

velocity at failure in (4.29) as 1(lf)/c = p + 𝛾𝑐
2 /[s(lf) – 21(lR)/c]. Therefore, up to the time f of 

global failure, the model is physically consistent in the sense that the material at the band end 

moves slower than the band tip grows. 

 

6.2. Slide velocity 

To understand the slide potential to generate a tsunami of a considerable magnitude, we 
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evaluate below the average material velocity 
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which is further called “slide velocity.” 

 

Figure 11. Integration intervals (horizontal lines) for calculating the average material velocity in (6.7) at 
given moments of time. Points B, M, N, and Y are the positions of the discontinuity at these times. The 
discontinuity, initiated from point A, consequently reflects from points C, E, F, L, and so on. Integration in 
(6.11), (6.12), and (6.14) is done over two adjacent intervals separated by the discontinuity position. 

 

We first integrate the second equation in (3.1) with respect to x for constant time t < l0 / c 

(along the horizontal line that passes through point B in Figure 11) and obtain  
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     (6.8) 

where xB = l0 – ct (Figure 11). Changing the order of integration and differentiation in the left 

hand side and taking into account that both l and xB are functions of time yields 
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where we used (2.11), (4.8), and that  (l, t) = 1(l), η (l, t) = η1(l) given by (4.9). Using then the 

jump condition (4.4) and integrating (6.9) with respect to time results in  
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where we took into account that dl = v1dt and η(x, t) = 0 for 0 < x < l0 – ct (which allowed us to 

replace xB with 0 in the lower limit of the integration in the left hand side of (6.10)).  Finally, 
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substituting (6.10) into (6.7) and using (4.9) gives 
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For time l0 /c < t < (l0 + lE)/c, where lE is defined by (4.20), the integration interval is the 

horizontal line that passes through point M in Figure 11. Otherwise, consideration is similar and 

results (Appendix J) in the same expression (6.11) for �̅�(𝑙). Therefore, (6.11) is valid when 

0 < t < (l0 + lE)/c, when the discontinuity starts at point A and continues propagating until it 

reaches point E (with M replacing B as needed; Figure 11). 

For (l0 + lE)/c < t < (l0 + 2lE + lL)/c, when the discontinuity moves from point E through point F 

to point L (horizontal integration intervals that include points N and Y in Figure 11), the slide 

velocity is given by (Appendix J) 
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where tE = (l0 + lE)/c, tL and lL are defined by  
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and function lRL(l) is obtained (Appendix G) by replacing lRU with lRL in (4.19) and solving the 

resulting equation. Comparing (6.12) to (6.11), we observe that �̅�(𝑙) remains continuous at 

l = lE, although the band velocity jumps at point E due to the reflection of the discontinuity from 

the band tip (Figure 7c).  Points Y and N in Figure 11 correspond to points M and B, respectively. 

Equations (6.11) and (6.12) represent the cases when the discontinuity does not reach the 

crack tip after the first or the second reflection from x = 0 (Appendix F), respectively. These 

equations exhibit all features of the general solution (Appendix J) for the arbitrary number of 

reflections.  

For homogeneous distribution (5.1) of T(x), expressions (6.11), (6.12) become 
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  (6.14) 

where 2() and 2() are given by (G.14) and E is defined by (G.16) (Appendix G). 

Dependence Ω̅() is shown in Figure 12 for n = 1.1 and the values of 𝜆∗ = 0.1, 0.5, and 1. For 

these parameters, the discontinuity lags behind the tip after the first (for * = 0.1 and 0.5) or 

second (for 𝜆∗ = 1) reflection from x = 0 (i.e., point L can be considered being at infinity in Figure 

4b, Figure 6a, and Figure 11).  Before the discontinuity arrives at E, Ω̅() is independent of n, 

but the position of point E itself (or the value of E) does depend upon n and so does Ω̅() in 

(6.14) after the reflection at E.  In Figure 12, for  = 1 – 102 and 𝜆∗ = 0.2, 0.5, Ω̅() ~ 10–2 – 102.  

This implies that by the time the shear band increases its initial length by two orders of 

magnitude, the average slide velocity becomes ~ 0.1c for 0 = 0.001.  For 0 = 0.01, �̅�(𝑙) may 

reach a value ~ c, although it remains smaller than c.  Indeed, as shown in Section 6.1,1(l) < c 

for l < lf.  Hence, because (l(t), t) < 1(l(t)) (e.g., Figure 7a, Figure 8, Figure 9a, Figure 10), we 

see that �̅�(𝑙) < c for l < lf as well. 

It should be noted that neglecting τw overestimates the value τ in (2.5), which increases T0 

and, therefore, the slide velocity. This can be seen in Figure 12, where a larger slide velocity 

corresponds to a smaller value of 𝜆∗, which per (4.29), corresponds to a larger T0. 
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Figure 12. Dimensionless slide velocity, Ω̅ = �̅� (𝑐𝛾0)⁄ , as a function of the dimensionless length,  = l/l0. 
Solid lines correspond to the exact solution, v = v(l) (in (6.14)), with n = 1.1, while dotted lines represent the 
asymptotic solution, v = c (in (K.10) with β = 0).  Red, green, and blue lines correspond to 𝜆∗ = 0.1, 0.5 and 1, 
respectively. For 𝜆∗ = 0.1 and 0.5 with n = 1.1, the discontinuity does not reach the band tip in the exact 
solution (red and green, solid lines) (Figure F.1). For 𝜆∗ = 1 and n = 1.1, however, blue, solid line is plotted for 

solutions in (6.14) before and after the discontinuity visits the tip, respectively, at  = E = 1.413 (τE = 2.413). 
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CHAPTER 7. ASYMPTOTIC SOLUTION  

7.1. Asymptote of long bands 

As discussed above, the shear band typically acquires the velocity of propagation comparable to 

the speed c of elastic waves after it propagates the distance of approximately two or three 

times its original lengths. If we are interested in much greater lengths (~ 101
l0 – 102

l0), it is 

natural to simplify the solution by assuming the band velocity, v, reaching c already at t = 0 and 

remaining constant after that. 

 

Figure 13.  Shear band propagation with the speed, c, of elastic waves. Tip location line x = l(t) = l0 + ct and 
characteristic line CE of the propagating discontinuity have the same slopes dl/dx = 1/c and do not intersect. 
Q and K are arbitrary points below and above CE, respectively. They are similar to point Q in domain ACE in 
Figure 4a and point K in domain CEF in Figure 4b, respectively. 

 

For v = c, the band length at time t 

 0( )l t l ct   (7.1) 

and the boundary condition (2.7) yields 

 ( ) / ( ) 0l c l    (7.2) 

In this approximation, the discontinuity, once reflected at x = 0, never reaches the band tip 

(Figure 13) since the band propagates with the same speed as the discontinuity.  This 

approximation is asymptotic for large band sizes because in the exact solution, v(l)/c  1 as 

l   (even if the discontinuity arrives at the band tip one or several times). 

 It should be noted that v(l)/c  1 also when c  0 or, which is the same for any given n, 

when 0  0.  This implies that asymptotics of a large l and small 0 (or small c) are the same, 

which indicates that in the absence of the resistance to the fracture growth (since c  0 or 

0  0), the band velocity jumps to c (but not higher than c) immediately at the onset of growth.  

Similarly, c  0 if n   for any given 0, so the asymptotes of l   and n   are 
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equivalent as well.  Comparison of these asymptotes to the exact solution is presented in 

Section 8.1.   

 Similar to (4.13), for the arbitrary point Q(x, t) below the discontinuity line CE in Figure 13, 
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and similar to (4.15), for the arbitrary point K(x, t) above line CE in Figure 13, 
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where lP and lR are related to (x, t) (below and above CE in Figure 13, respectively) by 

 0 0( ) / 2,      ( ) / 2P Rl ct l x l ct l x       (7.5) 

At the band tip, x = lf, the boundary condition (2.7) (for v = c) combined with the slope 

failure condition,  (lf, tf) = –p (Section 6.1), results in the material velocity,  (lf, tf)/c = γp, at 

the band tip at failure.  Hence, similar to the exact solution (Section 6.1),  (lf, tf)/c < 1. 

In the case of homogeneous load (5.1), the static strain is given by (5.2). Therefore, using 

(4.28), (5.2), and (7.5), the material strain and velocity below CE (Figure 13) are obtained from 

(7.3) as 
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Similarly, strain and material velocity above CE (Figure 13) are found from (7.4) as 
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 (7.7) 

where η is independent of x, although it is changing with time. Note that a part of the slide 

(along the slope) where η(x, t) is spatially constant becomes larger with time (as the shear 

bands grows). 

 Expressions (7.6) and (7.7) can also be obtained directly from (5.9) and (5.10), respectively, 
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by considering the limit of n   or l  . Because the discontinuity does not ever reach the 

band tip for n ≥ 1.4392 (Appendix F and Figure F.1a), the limit of n   (or l  ) can also be 

applied directly to (4.13) and (4.15), which results again in (7.6) and (7.7), respectively, if 

T(x) = T0 = const.  At the moment of slope failure, lf = l0 +ctf, and the failure condition  (lf, tf) = –

p, used with the first equation in (7.6), yields the shear band length at failure 

 lf /l0 = 1 +*(2p/0 – 1) (7.8) 

Given that the expected value of p is at least several times greater than 0 (Chapter 8) and that 

n > 1, lf in (7.8) is only slightly larger than in the exact solution (6.3). 

The normalized strain, Γ, and material velocity, Ω, are given by (4.28) with (7.3) and (7.4). 

Distributions of Ω along the slope (i.e., in the physical space) are shown in Figure 14a (solid lines) 

for dimensionless times τ = 10, 20 and 𝜆∗ = 0.5. For comparison, the exact solution (5.9), (5.10) 

is also plotted (dashed lines) in Figure 14a for the same times and 𝜆∗. The exact solution, 

however, also depends upon n, so we used n = 1.1 when the discontinuity does not reach the 

band tip (Figure F.1 in Appendix F). As can be seen, the patterns of Ω are similar for the exact 

and asymptotic solutions, although the magnitudes of the discontinuity jump differ by an order 

(0.5 and 0.045, respectively). These magnitudes do not change with time, but their relative 

values decrease (Figure 14a). The difference between the asymptotic and exact solutions is 

insignificant for large enough values of τ (Figure 14a). 

Effect of n on the distributions of Ω along the slope is shown in Figure 14b for n = 1.1 (blue, 

thin line), 1.2 (green, dashed line) and τ = 9. The physical locations of the discontinuity are the 

same, but the magnitude, Δ0, of the discontinuity of Ω increases with n. For example, 

Δ0 = 4.545×102 and 8.333×102 for n = 1.1 and 1.2, respectively.  Note that at any given time, 

the band length (solid lines in Figure 14) in the asymptotic solution is slightly longer than in the 

exact one (dashed lines in Figure 14) because the band tip velocity is larger in the asymptotic 

solution. 

The slide velocity, Ω̅, can be obtained either by averaging the material velocity in (7.3) and 

(7.4) at a given time or directly from (6.10) by replacing v1(l) with c. This results in (6.11) (with 

v1(l) = c), which is valid for any time, since the discontinuity does not reach the band tip if v = c. 

Dependence Ω̅() is shown in Figure 12 for 𝜆∗ = 0.1, 0.5, 1 and n = 1.1. For 𝜆∗ = 0.1, 0.5 and 
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n = 1.1, the discontinuity does not reach the tip (Figure F.1 in Appendix F), and in this case, the 

exact and asymptotic solutions are nearly identical.  But even for 𝜆∗ = 1 and n = 1.1 (blue solid 

and dotted lines), when the discontinuity arrives at the tip at τE = 2.413 and E = 1.413 (in the 

exact solution), the asymptotic solution still provides a close match to the exact solution. 

 (a)  (b) 

Figure 14.  (a) Distribution of dimensionless material velocity, Ω =  /(cγ0), along the slope as a function of 

dimensionless longitudinal coordinate,  = x/l0, at dimensionless times,  = ct / l0, of 10 and 20. Solid lines 
show the asymptotic solution (7.3), (7.4) (when v = c), while dashed lines correspond to the exact solution 
(when v = v(l)) in (4.7) and (4.18) with 𝜆∗ = 0.5 and n = 1.1 (when the discontinuity never reaches the band 
tip). The magnitude of the discontinuity is Δ0 = 0.5 in asymptotic (solid line) and 4.545×10

–2
 exact (dashed 

line) solutions. Dots indicate locations of the discontinuities, which are not visible at the figure scale. (b) 
Effect of the values of n on Ω in the exact solution (4.7), (4.18) for n = 1.1 (blue, thin line) and n = 1.2 (green, 

dashed line) at  = 9. The corresponding magnitudes of discontinuity are Δ0 = 4.545×10
–2

 and 8.333×10
–2

, 
respectively. The asymptotic solution given by (7.3) and (7.4) (bold line) is independent of n because this 

solution corresponds to n  . 

 

7.2. Static versus dynamic failure lengths 

Expressions (6.3) and (6.4) for the dimensionless failure lengths, f = lf /l0 , before and after the 

discontinuity reaches the band tip at t = tE were obtained from conditions 1(lf) = –p and 

1(lf) = –p, respectively, where the dynamic tip strains are given by (4.9) and (4.22). Parameter 

lf is important because it defines the amount of material available for the actual slide. It would 

typically be evaluated based on the static considerations such as limiting equilibrium condition 

[Hampton et al., 1996; Leynaud et al., 2004; Sansoucy et al., 2007; Bradshaw et al., 2010]. This 

is equivalent to neglecting the dynamic effect and assuming the static strain at the tip of the 

growing band. The corresponding length, Lf, of the static (or progressively propagating) band at 



48 
 

failure is obtained from the tip condition s(Lf) = –p. Using then (5.7), results in the 

dimensionless static failure length  
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which can also be obtained directly from expression Lf /h = (pp – pa)/τ* = (p + a)/T0 used, for 

example, by Puzrin and Germanovich [2005a].  Hence, taking into account the dynamic failure 

length from the asymptotic solution (7.8), we have 
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Equations (7.9) and (7.10) imply that ratio of the dynamic to static failure lengths is given by 
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Because 0 /p < 1, κ is always greater than 1, which suggest that the dynamic effect increases 

the slide volume (mass) compared to the static (progressive) band growth and/or static 

analysis. Furthermore, in the case of retrogressive slide (Section 10.1), * > 1, and (7.11) 

suggests that κ > 2 and close to 2 (> 1.5) for the most of the cases of 0 < * < 1 when p >> 0 

(Figure 15). For shear bands propagating downhill (Figure 2), 0 < * < 1 (Chapters 2 through 7) 

and as follows from (7.11), 1 + * ≤ κ ≤ 2.  Hence, * is an important parameter, defining the 

lower bound of κ.  Isoclines of κ are shown in Figure 15.  It can be seen that for small values of 

0 /p, κ becomes relatively close to 2. For example, κ > 1.8 if 0 /p < 0.2 and * > 0.444 or 

0 /p < 0.1 and * > 0.286. 

The reason of lf being greater than Lf is that the elastic wave, which starts propagating away 

from the tip at t = 0, unloads the material, which is initially at static strain s(x). As a result, 

1(l) < s(l) and a larger lf is required to satisfy the dynamic failure condition 1(lf) = –p than Lf 

satisfying the static failure condition s(Lf) = –p.  

Finally, (7.11) defines the value of κ in the asymptote of large length of the shear band.  In 

the exact solution, we would use (6.3) instead of (7.10), which results in  
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Although expression (7.12) now includes the bluntness parameter, n, it still shows that for small 

values of 0 /p, κ becomes relatively close to 2. For example, now κ > 1.8 if 0 /p < 0.2 and 

𝜆∗ > 0.468 or 0 /p < 0.1 and 𝜆∗ > 0.290. 

Expressions (7.11) - (7.12) have been obtained without accounting for the water resistance 

to the slide motion during the failure stage (Appendix A). In general, water resistance reduces 

the magnitude of slip and tip strain. Thus, for the same band length, the tip strain computed 

with accounting for the water resistance is smaller than the one without. More details on the 

effect of water resistance on slide parameters is given in Appendix K. For typical submarine 

landslides this effect is not significant (Chapter 8). 

 

 
Figure 15. Ratio κ = f / Λf as a function of 𝜆∗ and the normalized failure tip strain 0 /p.  The curves are 

plotted for the magnitude of f / Λf as 1.9 (red bold line), 1.8 (blue thin line), 1.7 (green dashed line), and 1.5 
(orange dotted line). 
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CHAPTER 8. APPLICATION TO REAL LANDSLIDES  

8.1. Properties of displaced material 

Literature on submarine slides [e.g., Chowdhury, 1978; Bugge et al., 1988; Hampton et al., 1996; 

Fine et al., 2003; Sweet and Silver, 2003; Hühnerbach and Masson, 2004; Fine et al., 2005; 

Saurer, 2009; Chowdhury et al., 2010; Quinn et al., 2011a; Viesca, 2011; Dey et al., 2012; Quinn 

et al., 2012; Steiner et al., 2012; Viesca and Rice, 2012; Wiemer et al., 2012] indicates a 

relatively wide range of the characteristic sediment, slide, and shear band parameters.  The 

observed or inferred failure length, lf, ranges from ≲ 1 km to ≳ 102 km slope angle, , from 

0.01° to  20°, and the aspect ratio, h/lf, of the displaced material from ≲ 0.01 to ≈ 0.1 

(Appendix A). The density of the deposit, ρ0, is typically within 1500 to 2000 kg/m3; for example, 

ρ0 = 1790 kg/m3 in Grand Banks [Fine et al., 2005] and 1850 kg/m3 in the Izmit Bay, Turkey 

[Yalciner et al., 2002].  The peak shear strength, τp, generally varies from 0.2σ𝑣
′  [Dey et al., 2012] 

to 0.58σ𝑣
′  [Locat et al., 2009], the elastic soil modulus, E, from 250τp [Quinn et al., 2011a] to 

360τp [Viesca, 2011], and the residual shear strength, τr, from 0.013τp [Quinn et al., 2011a] to 

0.45τp [Viesca, 2011]. Here, σ𝑣
′  = –σ𝑦

′  = (ρ0 – ρw)ghcos, is the y-component (normal to the 

slope and the shear band) of the effective stress. 

The critical value of the energy release rate, J, at the onset of the dynamic band growth 

scales as J0 = (τp – τr)𝛿̅ [Palmer and Rice, 1973]. The characteristic displacement, 𝛿̅, in the 

process zone (Figure 3b) is probably the most ambiguous parameter in the landslide literature, 

ranging from 2 mm to 50 cm.  For example, Palmer and Rice [1973] varied 𝛿̅ from 2 mm to 1 cm, 

Puzrin et al. [2004] and Puzrin and Germanovich [2005a] assumed 𝛿̅ = 2 mm, Chowdhury [1978], 

Chowdhury et al. [2010], Viesca [2011], and Viesca and Rice [2012] employed 1 cm, Saurer 

[2009] and Puzrin et al. [2010] adopted 𝛿̅ = 5 cm, and Dey et al. [2012] and Quinn et al. [2011a; 

2012] used 10 cm and 50 cm, respectively. 

Many, if not most, submarine slopes are composed of normally-consolidated and lightly-

overconsolidated sediments [e.g., Bjerrum, 1967; Levin and Nosov, 2009; De Blasio, 2011]. 

Hence, we consider a typical landslide with α = 6°, h = 50 m, and sediment properties 

τp =0.25σ𝑣
′ , τr = 0.4τp, E = 350τp, ρ0 = 1800 kg/m3. Density of seawater ρw = 1000 kg/m3. Since σ𝑣

′  

depends upon depth, so do τp, τr, and E.  At the depth of h = 50 m, σ𝑣
′ (ℎ)= (ρ0 – ρw)ghcos = 
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390 kPa, τp = 97.5 kPa, and τr = 39.0 kPa.  Mean properties  of the sliding layer (0 < y < h) are 

estimated by their values at y = h/2 = 25 m and denoted by bars above the corresponding 

symbol.  We have 𝜎𝑣
′  ≈ (1/2) (ρ0 – ρw)ghcos = 195 kPa, 𝜏�̅� ≈ 0.25𝜎𝑣

′  = 48.8 kPa, and �̅� ≈ 

350𝜏�̅�= 17.1 MPa.  For these parameters and 𝛿̅ = 10 cm, c = (�̅�/ ρ0)1/2 = 97.4 m/s, τg = (ρ0 – ρw) 

ghsinα = 41.0 kPa, J0 = (τp – τr)𝛿̅= 5.85 kPa·m, γ0 = [2J0 / (h�̅�)]1/2 = 0.370%, and T0 = (τg – τr)/�̅� = 

1.17×10–4. 

Failure of fully saturated, normally-consolidated sediments under fast (dynamic) loading can 

be described by the Von Mises criterion [e.g., Desai and Siriwardane, 1984; Chen and Baladi, 

1985], which results in 𝑝𝑎 = 𝜎𝑣
′ − 2𝜏�̅� = 97.5 kPa and 𝑝𝑝 = 𝜎𝑣

′ + 2𝜏�̅� = 292.6 kPa. The 

corresponding average active and passive strains are εa = –a = (pa – p0) /�̅�  = –0.114% and 

εp = p = (pp – p0) /�̅�= 1.029%, where p0 = 𝐾0𝜎𝑣
′ ≈ 0.6𝜎𝑣

′= 117 kPa is the characteristic initial 

longitudinal stress in the sliding layer.   

The above parameters are further used as a baseline, and we deviate from the baseline to 

test the dependence on one or another parameter. 

The critical length, l0 = h(0 – εa)/T0 = 2.08 km, is computed from (5.3). The asymptotic 

solution (7.8) for the failure length gives lf = 9.31 km, and the strain ratio of * = 0.764 is found 

from (4.29). This failure length, however, reduces to Lf = 4.90 km in the static analysis (equation 

(7.9)) conducted for the same parameters. Hence, in this case, the dynamic-to-static length 

ratio (7.11) is κ = lf /Lf = 1.9. The value of f = lf /l0 = 4.48 indicates that the results of the 

asymptotic and exact solutions are close. The ratio of l0 /h = 41.5 suggests that the condition of 

l0 /h >> 1 for the developed model to be applicable to this case is reasonably satisfied. This 

condition has been checked in all calculations described in this work. 

Our dynamic analysis, therefore, results in a failure length magnitude typical for many 

landslides [e.g., Hühnerbach and Masson, 2004; Lee et al., 2007] (Appendix A). It also shows 

that the corresponding static analysis may underestimate this length by nearly a factor of two. 

As the slide develops, the shear band separates a layer (slab) of sediments, which eventually 

fails near the band tip. The layer velocity �̅� at this point is the final slide velocity at the slide 

initiation stage (i.e., before the slide body separates from the slope) (Appendix A). This velocity, 

however, is also the initial velocity, v0, of the slide (i.e., of the slab of sediments separated from 
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the substrata) just before it begins moving downslope. Using the value CS = 0.002 [e.g., 

Pelinovsky and Poplavsky, 1996; Levin and Nosov, 2009; De Blasio, 2011] of the surface friction 

coefficient (equation (K.8) in Appendix K) results in the dimensionless drag coefficient 

β = 8.55×10–5. Such a small value of β indicates that the effect of water resistance on the initial 

slide velocity, v0 = �̅�, is relatively small.  Indeed, accounting for the water resistance to the slide 

motion during the shear band growth (equation (K.10) in Appendix K), results in �̅� = 0.61 m/s. 

Without accounting for the water resistance, �̅� = 0.92 m/s is obtained from (6.11). Water 

resistance, therefore, does not have a significant effect in this case. 

It is important to stress that although for sediment materials, the value of the bluntness 

parameter n = J0 /Jc = γ0
2 γ𝑐

2⁄  is not currently constrained, it does not appear in the developed 

asymptotic solution (Section 6.1). Technically, this asymptotic solution corresponds to the limit 

of n   since according to (4.14), the shear band propagation velocity v = c already at t = +0. 

Therefore, using the asymptotic solution corresponds to using a sufficiently large value of n. To 

test how large this value may be, we also performed computations based on the exact solution 

(5.5) - (5.11), but for different values of n. The results (Table 1) show a good agreement of the 

asymptotic and exact solutions for * = 0.764 (baseline case) and n as small as 1.001. Per (4.14), 

for n = 1.001, the initial shear band velocity is v0 = 0.0005c = 0.049 m/sec. Once the band 

propagates a distance of three times its initial lengths (i.e., l = 3l0), the band tip velocity reaches 

 92% of c for n = 1.001 and 𝛿̅ = 1 cm, and  87% of c for n = 1.01 and 𝛿̅ = 10 cm. The 

corresponding results for l = 2l0 are 80% and 71% of c. Hence, from a practical standpoint, even 

n = 1.001 can be considered sufficiently large for using the asymptote of n  . 

The agreement between the exact and asymptotic solutions becomes even better for 

smaller values of elastic modulus, E.  Table 2 shows the same results as Table 1, but for 

E = 250τp, which is a typical lower limit for normally-consolidated sediments. Band length of the 

asymptotic solution in (7.8) is same in both Table 1 and Table 2. Exact solutions of the band 

length (6.3) and (6.6) in Table 2, however, are in better agreement with the asymptotic values 

than in the case of E = 350τp in Table 1. This is also the case for the dynamic-to-static length 

ratio κ = lf /Lf and shear band velocity at l = 2l0 and l = 3l0. Slide velocity, �̅�, is also better in Table 

2, as the difference between exact and asymptotic solution is 10% and 8% in Table 1 and Table 
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2, respectively, for the case of n = 1.01 and 𝛿̅ = 10 cm.  

 

Table 1.  Results of the dynamic shear band model for baseline parameters, E = 350τp, and different values 
of n. Values computed after the second arrival (equations (4.7), (4.14), (G.23), (J.4), (7.8), and (7.11)), 
between the first and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)), and before the 
first arrival of the discontinuity to the band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)) are denoted 
by two asterisks, one asterisk, and no asterisk, respectively. Bold font is used for the baseline case. 

n 1.001 1.01 1.05 1.1 1.5 2 
Asymptotic 

solution 

Characteristic slip, 𝛿̅ = 10 cm 

lf (km) 8.802
**

 8.810
*
 8.794

*
 8.799

*
 9.111 9.161 9.306 

�̅� (m/s) 0.826
**

 0.825
*
 0.829

*
 0.841

*
 0.895 0.901 0.918 

 1.797
**

 1.799
*
 1.796

*
 1.796

*
 1.860 1.870 1.9 

v0 (m/s) 0.049 0.484 2.375 4.637 19.48 32.46 97.40 

v0 /c 0.0005 0.005 0.024 0.048 0.200 0.333 1 

v /c at l = 2l0 0.703
**

 0.705
*
 0.717

*
 0.729

*
 0.778 0.828 1 

v /c at l = 3l0 0.866
**

 0.867
*
 0.873

*
 0.878

*
 0.903 0.926 1 

Characteristic slip, 𝛿̅ = 1 cm 

lf (km) 9.249
**

 9.247
*
 9.249

*
 9.280 9.287 9.292 9.306 

�̅� (m/s) 0.939
**

 0.936
*
 0.939

*
 0.943 0.944 0.944 0.946 

 1.888
**

 1.888
*
 1.888

*
 1.895 1.896 1.897 1.9 

v0 (m/s) 0.049 0.484 2.375 4.637 19.48 32.46 97.40 

v0 /c 0.0005 0.005 0.024 0.048 0.200 0.333 1 

v /c at l = 2l0 0.802
**

 0.803
*
 0.806

*
 0.814 0.860 0.893 1 

v /c at l = 3l0 0.923
**

 0.924
*
 0.922

*
 0.929 0.947 0.960 1 

 

Table 2.  Results of the dynamic shear band model for baseline parameters, E = 250τp, and different values 
of n. Values computed after the second arrival (equations (4.7), (4.14), (G.23), (J.4), (7.8), and (7.11)), 
between the first and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)), and before the 
first arrival of the discontinuity to the band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)) are denoted 
by two asterisks, one asterisk, and no asterisk, respectively. 

n 1.001 1.01 1.05 1.1 1.5 2 
Asymptotic 

solution 

Characteristic slip, 𝛿̅ = 10 cm 

lf (km) 8.925
**

 8.929
*
 8.918

*
 8.922

*
 9.168 9.203 9.306 

�̅� (m/s) 1.014
**

 1.012
*
 1.017

*
 1.044

*
 1.078 1.083 1.097 

 1.822
**

 1.823
*
 1.821

*
 1.822

*
 1.872 1.879 1.9 

v0 (m/s) 0.041 0.409 2.007 3.919 16.46 27.43 82.30 

v0 /c 0.0005 0.005 0.024 0.048 0.200 0.333 1 

v /c at l = 2l0 0.713
**

 0.715
*
 0.727

*
 0.738

*
 0.787 0.836 1 

v /c at l = 3l0 0.873
**

 0.874
*
 0.879

*
 0.885

*
 0.909 0.931 1 
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Characteristic slip, 𝛿̅ = 1 cm 

lf (km) 9.267
*
 9.267

*
 9.287 9.287 9.292 9.296 9.306 

�̅� (m/s) 1.112
*
 1.113

*
 1.117 1.118 1.118 1.119 1.120 

 1.892
*
 1.892

*
 1.896 1.896 1.897 1.898 1.900 

v0 (m/s) 0.041 0.409 2.007 3.919 16.46 27.43 82.30 

v0 /c 0.0005 0.005 0.024 0.048 0.200 0.333 1 

v /c at l = 2l0 0.820
*
 0.822

*
 0.825 0.833 0.874 0.904 1 

v /c at l = 3l0 0.932
*
 0.933

*
 0.935 0.938 0.954 0.965 1 

 

Changing the characteristic slip 𝛿̅ at the tip zone of the shear band by even two orders of 

magnitude does not significantly affect the slide length, lf (Table 3). Because the energy 

dissipated at the band tip is characterized by J0 = (τp – τr) 𝛿̅ and Jc = J0 /n, this indicates that from 

the energy balance standpoint, the propagation of a sufficiently long band is mainly controlled 

by the frictional resistance at the band sides. For a shorter band, corresponding to a thinner 

layer, i.e., h = 10 m, the band length in the exact solution (6.6) is lf = 1.804 km and lf = 1.466 km 

for 𝛿̅ = 1 cm and 𝛿̅ = 10 cm, respectively. Although the difference is not too large ( 19%), it is 

much greater than for h = 50 m when lf = 9.280 km and lf = 8.799 km, respectively (Table 3). 

This difference, however, becomes large ( 17%), for h = 50 m and 𝛿̅ = 50 cm (Table 3). The 

difference between the exact and asymptotic values of lf (or κ = lf /Lf) also increases with 𝛿̅ 

(Table 3). For 𝛿̅ = 10 cm and 50 cm, it is  5% and  21%, respectively. Note that the asymptotic 

solution (7.8) can be rewritten as lf /h = (2p + a)/T0 = (2εp – εa)/T0 and is independent of 𝛿̅ and 

n (per (L.4) in Appendix L). Hence, the asymptotic value of lf = 9.306 km does not change with 𝛿̅ 

for h = 50 m in Table 3, and for h = 10 m, lf = 1.861 km for both 𝛿̅ = 1 cm and 𝛿̅ = 10 cm. 

Likewise, the asymptotic expression (7.11) for the dynamic-to-static length ratio κ = lf /Lf can be 

rewritten using (4.29) as κ = (2p + a)/(p + a) = (2εp – εa)/(εp – εa), which is also independent of 

𝛿̅ and n. Furthermore, κ is independent of h and . This is why the asymptotic value of 

κ = lf /Lf = 1.9 does not change with , h, and 𝛿̅ in Table 3. Similarly, the crack grows velocity, v, 

in (4.7), (4.18), and (E.6) (Appendix E) is independent of 𝛿̅ (but not of n), so the values of v in 

Table 1 are the same for 𝛿̅ = 1 cm and 𝛿̅ = 10 cm. 
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Table 3.  Results of the dynamic shear band model for baseline parameters, E = 350τp, and different values 

of characteristic displacement, 𝛿̅, slide thickness, h, and slope angle, α. Values computed between the first 
and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)) of the discontinuity to the tip are 
denoted by the asterisk. All other values are computed before the first arrival of the discontinuity to the 
band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)). Bold font is used for the baseline case. 

 
l0 /h 

*
 

lf (km)  �̅� (m/s)  κ = lf /Lf 

 Asymp. Exact  Asymp. Exact  Asymp. Exact 

Slip, 𝛿̅ (cm)   

1
*
 19.8 0.506 9.306 9.280  0.946 0.943  1.9 1.895 

5 32.2 0.696 9.306 9.022  0.933 0.892  1.9 1.842 

10 41.5 0.764 9.306 8.799  0.918 0.841  1.9 1.796 

50 80.8 0.879 9.306 7.328  0.795 0.514  1.9 1.496 

Thickness, h (m)           

10 80.8 0.879 1.861 1.466  0.356 0.230  1.9 1.496 

50 41.5 0.764 9.306 8.799  0.918 0.841  1.9 1.796 

100 32.2 0.696 18.61 18.05  1.320 1.262  1.9 1.842 

200 25.7 0.618 37.22 36.63  1.882 1.845  1.9 1.870 

Slope angle, α           

1° (ΔP/σ𝑣
′ = 0.875)

*1,2
 21.6 0.534 9.560 9.527  0.948 0.944  1.9 1.893 

1° (ΔP/σ𝑣
′ = 0.6)

1,2
 35.0 0.712 9.581 9.247  0.933 0.886  1.9 1.834 

3° (ΔP/σ𝑣
′ = 0.525)

1
 32.4 0.691 9.538 9.261  0.936 0.897  1.9 1.845 

6° 41.5 0.764 9.306 8.799  0.918 0.841  1.9 1.796 
1
Excess pore pressure ΔP is applied on the rupture surface (shear band, including the tip zone) to reduce friction 

and allow slides to move. 
2
Since 0.875 > k0 = 0.6, hydraulic fracturing may take place before the slide occurs. This is why, ΔP/σ𝑣

′  is reduced to 
0.6, which, however, is insufficient for the slide body to move on the 1° slope. Hence, the residual friction was also 
reduced to τr = 0.125τp in this case.   

 

Table 4.  Results of the dynamic shear band model for baseline parameters, E = 250τp, and different values 

of characteristic displacement, 𝛿̅, slide thickness, h, and slope angle, α. Values computed between the first 
and second arrivals (equations (4.7), (4.14), (4.18), (6.12), (7.8), and (7.11)) of the discontinuity to the tip are 
denoted by the asterisk. All other values are computed before the first arrival of the discontinuity to the 
band tip (equations (4.7), (4.14), (6.11), (7.8), and (7.11)). 

 
l0 /h 

*
 

lf (km)  �̅� (m/s)  κ = lf /Lf 

 Asymp. Exact  Asymp. Exact  Asymp. Exact 

Slip, 𝛿̅ (cm)   

1
*
 18.3 0.464 9.306 9.287  1.120 1.118  1.9 1.896 

5 28.8 0.659 9.306 9.096  1.110 1.076  1.9 1.857 

10 36.6 0.733 9.306 8.922  1.097 1.029  1.9 1.822 

50 69.8 0.860 9.306 7.857  0.993 0.744  1.9 1.604 

Thickness, h (m)           

10 69.8 0.860 1.861 1.571  0.444 0.333  1.9 1.604 



56 
 

50 36.6 0.733 9.306 8.922  1.097 1.029  1.9 1.822 

100 28.8 0.659 18.612 18.19  1.569 1.521  1.9 1.857 

200
*
 23.2 0.578 37.224 37.04  2.232 2.220  1.9 1.890 

Slope angle, α           

1° (ΔP/σ𝑣
′ = 0.893)

 *1,2
 14.0 0.472 7.018 7.003  1.123 1.120  1.9 1.896 

1° (ΔP/σ𝑣
′ = 0.6)

1,2
 33.2 0.776 7.084 6.655  1.084 0.982  1.9 1.785 

3° (ΔP/σ𝑣
′ = 0.543)

1
 21.0 0.649 7.004 6.859  1.113 1.082  1.9 1.861 

6° 36.6 0.733 9.306 8.922  1.097 1.029  1.9 1.822 
1
Excess pore pressure ΔP is applied on the rupture surface (shear band, including the tip zone) to reduce friction 

and allow slides to move. 
2
Since 0.893 > k0 = 0.6, hydraulic fracturing may take place before the slide occurs. This is why, ΔP/σ𝑣

′  is reduced to 
0.6, which, however, is insufficient for the slide body to move on the 1° slope. Hence, the residual friction was also 
reduced to τr = 0.043τp in this case.   

 

Slide velocity, �̅�, is more greatly affected by the value of 𝛿̅ than the failure length, lf, both in 

the exact (6.14) and asymptotic (first equation in (6.14)) solutions. With increasing 𝛿̅, the 

energy lost to failure at the band tip also increases, and the slide is expected to have lower 

velocity. This can be observed in Table 3, where �̅� = 0.841 m/s for 𝛿̅ = 10 cm and �̅� = 0.514 m/s 

for 𝛿̅ = 50 cm in the exact solution. We also observe 35% difference in �̅� between the exact and 

asymptotic solutions for 𝛿̅  = 50 cm; that is, �̅�  = 0.795 m/s and �̅�  = 0.514 m/s, respectively. 

Similarly, the asymptotic dynamic-to-static length ratio, κ = lf /Lf = 1.9, overestimates the exact 

value of κ = 1.496 by nearly 21% for h = 50 m and 𝛿̅ = 50 cm (Table 3). This is because the 

dimensionless failure length f = lf /l0 = 1.912 is relatively low at failure, and the asymptotic 

solution is less accurate than for larger lengths (typically, for lf ≥ 3l0). The same effect can be 

observed for the thinner slide of h = 10 m, when in the exact solution (6.14), �̅� = 0.399 m/s, 

κ = 1.842 and �̅�  = 0.230 m/s, κ = 1.496 for 𝛿̅  = 1 cm and 𝛿̅  = 10 cm, respectively. In the 

asymptotic solution, the corresponding values are �̅� = 0.417 m/s, κ = 1.9 and �̅� = 0.356 m/s, 

κ = 1.9. For h = 10 m, f = 5.691 for 𝛿̅ = 1 cm and f = 1.912 for 𝛿̅ = 10 cm, so the asymptotic 

solution is less applicable to the latter case than to the former. Therefore, for short and thin 

bands (typically, h < 10 m) and large tip displacements (typically, 𝛿̅ > 50 cm), the asymptotic 

solution needs to be applied with care. The simplest check is computing f to confirm that f > 3. 

These conclusions are confirmed by results given in Table 4 for a softer material with E = 250τp 

but otherwise having the same baseline properties as in Table 3. 
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The baseline slope angle of 6° cannot be considerably reduced with the chosen baseline 

parameters. Submarine landslides, however, can occur on slopes as small as 0.5° [e.g., 

Hühnerbach and Masson, 2004; Haflidason et al., 2005] and even smaller (Appendix A). This is 

commonly explained by the excess pore pressure, which developed in the sediment by or at the 

time of the event [Screaton et al., 1990; Dugan and Flemings, 2000; Locat et al., 2009; Pinyol 

and Alonso, 2010; Viesca and Rice, 2012]. Excess pore pressure is attributed to such factors as 

seismic load [Newmark, 1965; Seed, 1979; Puzrin et al., 1995; 1997; Wright and Rathje, 2003; 

Nadim et al., 2007; Locat et al., 2009], methane hydrate dissociation [Sultan et al., 2004; 

Masson et al., 2006; Xu and Germanovich, 2006; 2007; Scholz et al., 2011], fast sedimentation 

rates [Locat and Lee, 2002; Flemings et al., 2008a; 2008b; Dugan and Stigall, 2010; Flemings et 

al., 2012], and high artesian pressure [Prior and Suhayda, 1979; Bonzanigo, 1997; Neuffer and 

Schultz, 2006; L’Heureux et al., 2010]. In this case, σ𝑣
′  (which includes only hydrostatic pressure) 

should be replaced by σ𝑣
′  + ΔP with ΔP being the excess pressure on the rupture surface 

(Appendix B). For example, in the case of baseline parameters, an excess pressure ΔP of 87.5% 

and 52.5% of σ𝑣
′  along the shear band in slopes of α = 1° and α = 3°, respectively, would result in 

slope slip (shear band growth) and the same dynamic failure length, lf ≈ 9.5 km for both slopes 

(Table 3). 

The overpressure of ΔP = 0.875σ𝑣
′  (i.e., greater than k0σ𝑣

′ ) may be possible if generated by 

fast earthquake loading. Otherwise, such a high ΔP is unlikely to realize because the sediment 

will be fractured hydraulically before ΔP reaches this level, that is, at ΔP≈k0σ𝑣
′  [e.g., Xu and 

Germanovich, 2007; Viesca and Rice, 2012]. Hence, we also present in Table 3 the slide 

parameters that correspond to ΔP = k0σ𝑣
′  (k0 = 0.6) when α = 1°. Since this level of overpressure 

is insufficient for the slide body to move, we reduced the residual friction to τr = 0.125τp.  

The requirement of a high level of excess pressure for low-angle faults is not unusual. Viesca 

and Rice [2012], for example, suggest that at a depth of 20 m below a 2° sloping seafloor under 

an initially hydrostatic condition, the failure corresponds to a pore pressure increase by  93% 

of the effective initial pore pressure. Excess pore pressure may develop not only along the slip 

surface, but also within the sediment (slide) body. Recently, Viesca [2011] and Viesca and Rice 

[2012] reviewed possible mechanisms for locally elevated pressure for submarine landslides 
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conditions. Evidence of these mechanisms included fluid pathways such as faults and coarse-

grained, buried turbidity deposits. Resulting high-permeability conduits may elevate the 

subsurface pore pressure to the lithostatic level and even create horizons of liquefied 

sediments. Without analyzing detailed data for specific landslides (which is beyond the scope of 

this work), we only consider the excess pore pressure, localized along the potential slip surface 

(shear band). In the models of Viesca and Rice [2012] and Garagash and Germanovich [2012], 

the pressure only needs to be elevated in the source region, which can be sufficient for the slip 

to be driven by pressure diffusion along the slip surface. There are the initial conditions, 

however, when the residual friction is sufficiently great, so that the pressurized zone spreads 

from the local region with highly-elevated pressure before the nucleation of dynamic slip 

[Garagash and Germanovich, 2012; Viesca and Rice, 2012]. This extreme case can be visualized 

as an initial state for the scenario considered in this work. 

It should be noted that in sensitive clays, slides can take place even in the absence of 

overpressure. Sensitive clays are characterized by fast strength decrease during deformation 

[e.g., Thakur et al., 2013], which translates in low residual friction coefficient. Quinn et al. 

[2011a] for example, suggest kr = τr /τp = 0.013 for sensitive clays in Quebec area (Canada). 

Sensitivity of the sediment material appears to be a major factor in the deformation softening 

process [Bernander, 2011], and promotes strain localization and propagation of shear bands 

[e.g., Vanneste et al., 2014]. As a result, many landslides occurred in slopes composed of 

sensitive clays [e.g., Mitchell and Markell, 1974; Bernander and Olofsson, 1981; Locat and 

Demers, 1988; Kvalstad et al., 2005; Quinn et al., 2011a; Kovacevic et al., 2012; Thakur et al., 

2013]. Hence, we also considered a scenario when a landslide is caused by reducing the 

frictional resistance not by rising pressure, but by mobilizing soil sensitivity in a thin zone where 

the rupture surface (shear band) develops. For the baseline parameters, for example, reducing 

kr to 0.005 [Quinn et al., 2011a] (i.e., below the range of (L.3) in Appendix L) allows the slide to 

develop in the slope of α = 0.5°. This results in lf = 12.75 km, �̅� = 0.90 m/s, and κ = 1.9.  

In an analysis of real submarine landslides, the slope failure length, lf, is typically better 

constrained (e.g., from bathymetry data) then the sediment properties. Hence, we also 

conducted a similar analysis, but using a static slide model (Section 7.2). That is, we ignored the 
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dynamic effects and assumed that even after the shear bands reaches the critical value of l0, 

the static equilibrium conditions are applicable. This results in equations (7.10) - (7.12), and 

given the same properties, the static and dynamic failure lengths can differ nearly by a factor of 

2 (Section 7.2). Alternatively, one can use the observed failure length to constrain the sediment 

properties, which can be done both within the static and dynamic frameworks. It appears, that 

the same failure lengths, lf = Lf, can be achieved for the 3° slope (Table 5) by only slightly 

chaging the residual friction (from τr = 0.4τp in dynamics to τr = 0.42τp in statics) or excess pore 

pressure in the band (from ΔP = 0.525σ𝑣
′  to ΔP = 0.502σ𝑣

′ , respectively). The peak friction, 

however, needs to be raised nearly twice (from τp = 0.25σ𝑣
′  to τp = 0.47σ𝑣

′ ) as can be seen from 

Table 5. Hence, the static analysis may work reasonably well for the back calculations of τr and 

τp, but it should be used with care for recovering τp from field observations. This observation is 

also valid for 6° slope (Table 6) and confirmed below using examples of different slides.  

Below, we consider examples of four submarine slides and one subaerial slide (Table 6 

through Table 10). Since the failure length, lf, is probably the most constrained parameter, we 

test if it would be possible to obtain values of lf consistent with field data.  For the case of 

submerged slides, we also estimate the magnitude of the tsunami that could have been 

generated by these slides (Section 9.2). 
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Table 5.  Results of the shear band model for baseline parameters, α = 6°, and α = 3°. Excess pore pressure ΔP ≠ 0 

on the rupture surface (shear band) was used to allow the slide body to move in the case of 3° slope.  

Parameters 
6° slope 

(dynamic 
analysis) 

6° slope (static 
analysis) 3° slope 

(dynamic 
analysis) 

3° slope (static analysis) 

varying 
τr 

varying 
τp 

varying 
ΔP 

varying 
τr 

varying 
τp 

Slope angle, α 6° 6° 6° 3° 3° 3° 3° 

Thickness, h (m) 50 50 50 50 50 50 50 

Density, ρ0 (kg/m
3
) 1800 1800 1800 1800 1800 1800 1800 

Characteristic slip, 𝛿̅ (cm) 10 10 10 10 10 10 10 

kp = τp /σ𝑣
′  0.25 0.25 0.48 0.25 0.25 0.25 0.47 

kr = τr /τp 0.4 0.41 0.208 0.4 0.4 0.42 0.213 

kE = E /τp 350 350 350 350 350 350 350 

k0 = p0 /σ𝑣
′  0.6 0.6 0.6 0.6 0.6 0.6 0.6 

µ = τr /σ𝑣
′  0.1 0.103 0.1 0.1 0.1 0.105 0.1 

Elastic modulus, E (MPa) 17.1 17.1 32.8 17.1 17.1 17.1 32.2 

Excess pore pressure ratio, 
ΔP /σ𝑣

′  
0 0 0 0.525 0.502 0.525 0.525 

Active failure strain, εa (%) –0.11 –0.11 –0.33 –0.11 –0.11 –0.11 –0.33 

Passive failure strain, εp (%) 1.03 1.03 0.81 1.03 1.03 1.03 0.82 

Fracture energy, J0 (kPa·m) 5.9 5.8 14.8 2.8 5.9 2.7 6.9 

Surface friction coefficient, 
CS 

0.002 0.002 0.002 0.002 0.002 0.002 0.002 

Fracture strain, γ0 (%) 0.370 0.367 0.425 0.255 0.261 0.251 0.292 

T0 = (τg – τr)/E  1.2×10
–4

 6.0×10
–5

 6.1×10
–5

 1.1×10
–4

 6.1×10
–5

 6.0×10
–5

 6.1×10
–5

 

Strain ratio, 
*
 0.764 0.763 0.561 0.691 0.696 0.687 0.471 

Critical length, l0 (km) 2.08  4.05  6.24  1.62 3.07  3.06  5.1  

l0 /h 41.5 90.9 124.9 32.4 61.4 61.2 102.5 

Dynamic failure length, lf 
(km) 

9.3 18.2 16.1 9.5 17.7 18.2 16.2 

f = lf /l0  4.5 4.5 2.6 5.9 5.8 5.9 3.2 

Static failure length, 
Lf = lf /κ (km) 

4.9 9.6 9.4 5.0 9.3 9.6 9.4 

Failure length ratio, κ 1.90 1.90 1.71 1.90 1.90 1.88 1.71 

Water resistance 
coefficient, β 

8.5×10
–5

 1.7×10
–4

 3.0×10
–4

 8.5×10
–5

 8.9×10
–5

 8.5×10
–5

 1.7×10
–4

 

Slide velocity, �̅� = v0 (m/s) 0.61  0.59  0.43 0.72  0.71  0.72  0.58  

Slide velocity when β = 0, 
�̅� = v0 (m/s) 

0.92 0.92 0.84 0.94 0.94 0.94 0.8 
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8.2. Currituck Slides 

The Currituck slide complex is located northwest of Cape Hatteras (36°20’N, 74°40’W), offshore 

North Carolina. Prior et al. [1986] reported a detailed stratigraphic description and the 

geomorphological analysis of the slide area. Using deep-tow sidescan sonar and high resolution 

seismic data, they concluded that the slide complex is the result of two slides, Slide 1 and Slide 

2 (Figure 16a). Their analysis of the slide geometry and dimensions (Figure 16b) agrees well 

with more recent multibeam bathymetry imaging [Locat et al., 2009]. 

Bunn and McGregor [1980] collected 11 cores from the slide area, but 10 of these cores 

only penetrated up to 5.5 m of the sediment drape, which blankets the entire region and was 

deposited post-slide. One core (core 4 in Bunn and McGregor [1980]), however, sampled 2.3 m 

of dry friable clay beneath the drape. The core location along the slope is shown in Figure 16c. 

Since it is nearly at the base of Slide 2, McGregor [1981] suggested that the slip surface may 

have occurred within the sedimentary sequence at a discontinuity in physical properties 

sampled by this core.  

Based on the thickness (4 to 9 m) of the sediment drape, identified acoustically and by 

coring, Prior et al. [1986] used the available deposition rates and estimated that the slides took 

place from 48 to 16 ka. Lee [2009] recently reanalyzed this range to 25 - 50 ka. Core analysis at 

the Currituck slide complex and surrounding areas suggests that the surface drape is composed 

of silty clays with occasional thin lenses of sand [Prior et al., 1986]. Little else is known about 

the Currituck slide sediments, but presumably they are clays or silty clays that were normally- 

or lightly over-consolidated at the time of the slides [Geist et al., 2009; Locat et al., 2009]. 

Prior et al. [1986] argue that Slide 1 was the first mobilized slope segment, which involved 

 78 km3 of sediments and evolved on a surface slope of  4° and a basal shear plane inclined at 

2° (Figure 16b). They also argue that Slide 2 was developing upslope and represents a shallower, 

retrogressive extention of Slide 1. They suggest that  50 km3 of the displaced sediment from 

Slide 2 moved into the trough created by Slide 1, but did not sufficiently fill it. Accordingly, they 

concluded that some of the material from Slide 1 remained in its trough and was subsequently 

covered by the Slide 2 sediments. 
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Locat et al. [2009] noted that Slide 2 developed sufficiently fast to completely clear the slip 

surface above and at the side of Slide 1 (Figure 16a). Retrogressive slides typically exhibit a 

distinct pattern of a highly perturbed slope surface with alternating grabens and horsts [Bryn et 

al., 2004, Fig. 16; Gauer et al., 2005, Fig. 2 and 3; Kvalstad et al., 2005, Fig. 4; Quinn et al., 2011a, 

Fig. 2]. This pattern contrasts with the smooth, clean failure surface (Figure 16b) left by Slide 2 

[Bunn and McGregor, 1980; Prior et al., 1986; Locat et al., 2009]. The interpretation of Prior et 

al. [1986], however, did not consider the actual retrogressive slide development. In fact, the 

concept of retrogressive slides does not really contribute to their reasoning. In essence, they 

suggest that because the Slide 2 area is located above Slide 1 (Figure 16a), it is likely that Slide 2 

initiated at the headscarp of Slide 1, 150 to 175 m below the original slope surface. Incidently, 

this would be consistent with the slip surface (Figure 16c) interpreted from core 4 [Bunn and 

McGregor, 1980; McGregor, 1981]. 

Therefore, an alternative to the retrogressive slide mechanism could be an upslope 

propagation of the shear band beneath the sliding slab. This was suggested by Chowdhury 

[1978], Chowdhury et al. [2010], and by Quinn et al. [2011a; 2011b] as a mechanism of 

translational slides. This mechanism could leave the failure/slip surface relatively intact, as 

observed in the Slide 2 area. Quinn et al. [2011a; 2011b], Chowdhury [1978] and Chowdhury et 

al. [2010] used the original Palmer and Rice [1973] model for an open cut slope in 

overconsolidated clays. The dynamic version of their model is a particular case of the model 

developed in this work (Figure 24 in Section 10.1), and we use it here to test if Slide 2 could hve 

developed upslope from the headscarp of Slide 1.  

For the Currituck slide sediments, Locat et al. [2009] suggested a Mohr-Coulomb failure 

criterion with a peak friction angle p = 30° and cohesion C = 10 kPa to 100 kPa. Then, the 

frictional traction in the intact material on the future rupture (shear band) surface, 

τp = C + kp (σ𝑣
′  + ΔP), where kp = tanp, σ𝑣

′  = –σ𝑦
′  is the effective stress at the depth of the shear 

band in the intact sediment (in the infinite slope), and ΔP is the excess pore pressure at the 

same depth at the time of slide. On the sliding sides of the rupture surface (after the shear 

band propagates through a given place), cohesion C drops to zero and residual friction becomes 

τr = kr (σ𝑣
′  + ΔP). In the case of upslope shear band development, the slab is unloaded at the 



63 
 

upper end where the failure would happen. Furthermore, the sediment at the upper end 

experiences tensile longitudinal stress (to counteract the weight of the “hanging” slab) and 

should have at least some cohesion (perhaps, being in the overconsolidated state). In such 

conditions, using the active critical load pa = kσ̅𝑣
′  +∆𝑃̅̅̅̅  – C0 (where k = (1 – sinp)/(1 + sinp), 

C0 = 2C cosp/(1 + sinp), Δp = ∆𝑃̅̅̅̅  and σ̅𝑣
′  are the excess pressure and effective stress, normal to 

the slope, respectively, averaged across the sliding layer) may not be advisable since Mohr-

Coulomb criterion may not be suitable in the tensile stress conditions. Hence, we use the 

simplest tensile failure criterion 𝜎′ = 𝜎𝑡, where 𝜎𝑡 is the tensile strength, which, for simplicity, 

we estimate as 𝜎𝑡  C. As will be seen below, this estimate is not critical for the derived 

conclusions. 

At the lower slab end, the longitudinal effective stress σ’ = σ + p = 0. For the Currituck slide 

sediments, ρ0  1800 kg/m3 [Locat et al., 2009], and for Slide 2, h  180 m. As noted by Locat et 

al. [2009], such a slide with  = 30° would not move on the 4° slope, even in the case of zero 

cohesion, so some level of excess pore pressure is required. Locat et al. [2009] considered 

sediment accumulation and earthquake load as two potential mechanisms. Viesca and Rice 

[2012] argue that the possibility of the sedimentation-induced excess pressure generating 

landslides at the depths of < 100 m could be excluded. The depth of the Currituck slides is 

> 100 m, however. In the absence of data, we simply assume ΔP  0.75σ𝑣
′ . This level of excess 

pressure is required for the slide to move, but deviating from this value also does not affect the 

conclusion below.  

The main result of our analysis is that an unrealistically high magnitude of cohesion (tensile 

strength) of at least 1 MPa (Table 6) is required for the shear band to propagate  11 km (Figure 

16b) before the failure. The final failure length, lf, is  11 km [Prior et al., 1986; Locat et al., 

2009]. To maintain such a large lf, the tensile stress magnitude has to be sufficiently large, 

however. Unless some special conditions are realized, the value of 𝜎𝑡 = C > 1 MPa appears to be 

too excessive for the Currituck slide sediments that are more likely to be normally-consolidated 

than highly overconsolidated. Therefore, we rule out the possibility for the shear band to 

develop upslope as a single event. 
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Note that in the propagating band, the residual shear stress τr is mobilized, and cohesion 

C = 0. The value of cohesion at the tip zone of the shear band affects τp and can be reduced to 

100 kPa or 10 kPa [Locat et al., 2009] or even to zero. This only affects the value of l0, the shear 

(a) 

 

 
(c) 

 (b) 
Figure 16.  (a) Schematic view of the Currituck slide complex [Prior et al., 1986]. (b) Seismic reflection (at 
3.5 kHz) profile [Bunn and McGregor, 1980]. Dashed lines show the Currituck Slide A hypothesized in this 
work. (c) Mulder and Cochonat’s [1996] scenario similar to that in figure (b). Slide A displaces material 
above Slide B, which follows Slide A. 
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band length when the band begins propagating dynamically. It should be also noted, that we 

only considered the excess pressure developing in the band. If the excess pressure also 

develops inside the sliding layer, this would reduce the sediment strength 𝜎𝑡 to 𝜎𝑡 – Δp and 

make lf smaller. Hence, even higher 𝜎𝑡 would be required for the shear band to propagate the 

distance of lf  11 km if the excess pressure developed not only in the shear band, but also in 

the sliding layer. In general, this analysis indicates that the upslope growth of the shear band in 

the open cut conditions is probabaly rare and, if at all possible, it probably occurs for relatively 

short slides a few hundred meters long (< 1 km).  

An alternative scenario to that of Prior et al. [1986] (i.e., Slide 1 developed prior to Slide 2 

and, perhaps, triggered the latter) could be the opposite sequence of events. That is, Slide 2 

developed first by the translational mechanism of the shear band growth downslope from the 

initial weakness zone located below the Slide 2 headscarp (Figure 16a and Figure 16b). In the 

area under this headscarp, the slope is slightly steeper ( 4.5° [Prior et al., 1986]) than the 

average slope of 4° of Slide 2 (Figure 16b). Hence, it seems plausible that the band started 

growing downslope from this area, bypassed the future Slide 1 headscarp, and continued 

downhill. Prior et al. [1986] and Locat et al. [2009] suggest that the slope of the upper boundary 

of Slide 1 is also  4°. So it seems feasible that the shear band continued parallel to the slope 

along the length of Slide 1 as shown in Figure 16b. We name this event Slide A (Figure 16b) to 

distinguish from the conventional terms Slides 1 and 2. A similar sequence of events was also 

considered by Mulder and Cochonat [1996] (Figure 16c). 

Since in the scenario of Slide A, all stresses are compressive and because the Currituck slide 

clays are most likely normally-consolidated [Locat et al., 2009], we adopted the baseline 

parameters (Table 6), but with a slope α = 4° and slide thickness h = 180 m. As expected, we 

found that the shear band would not propagate because the slope angle is too low. We then 

assumed an excess pressure in the band and found that ΔP = 0.181 σ𝑣
′ = 0.26 MPa 

(σ𝑣
′  = 1.41 MPa) is required for the band to propagate a distance of lf = 28.6 km, which is close 

to the 28.5 km of combined length of Slides 1 and 2 [Prior et al., 1986; Locat et al., 2009]. In this 

case, * = 0.577, the slide velocity at failure is 1.78 m/s, and the length of the corresponding 

static slide is Lf = 15.1 km (κ = lf /Lf = 1.9). The initial velocity (K.10) of Slide A is v0 = �̅� = 1.53 m/s. 
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An excess pressure of 18% of σ𝑣
′  is much lower than the 50% required for the scenario of Slide 2 

with a shear band developing upslope. 

After Slide A transports the upper 180 m of sediments downhill (Figure 16b), a part or the 

entire remaining material could also be removed by another translational slide, which we term 

Slide B (Figure 16b). For the geometry of the Currituck slide complex [Prior et al., 1986; Locat et 

al., 2009], this remaining material constitutes a wedge of  470 m thickness at the headscarp 

(Figure 16b) that gradually reduces downslope to essentially zero. The slope of the top surface 

of the wedge remains α  4° (Figure 16b) while the bottom surface (potential slip plane), along 

which the shear band would propagate, slopes at 2°.  

Strickly speaking, our model is not applicable to this case and needs to be adjusted for 

variable thickness. Yet, because the wedge thickness changes gradually, as a first order 

estimate, we approximate it by an average value of h = 235 m and consider a layer of constant 

thickness, h, on the slope of α = 2°.   

We assume that the Slide B sediments were also normally-consolidated at the time of 

failure. Then, the baseline sediment properties (Table 6) are applicable to Slide B as well. As can 

be seen in Table 6, the excess pore pressure ΔP = 0.778σ𝑣
′ = 1.43 MPa (σ𝑣

′ = 1.84 MPa) on the 

rupture surface of Slide B is added to let this slide happen for the basal surface angle of 2°. 

Using (7.8), we compute lf = 17.5 km for Slide B. This is in good agreement with the value of 

17.5 km inferred from the field observations [Prior et al., 1986].  The static analysis (7.11) 

provides an estimate of the failure length as 9.2 km (κ = 1.90 in (7.11)) for Slide B. The initial 

velocity of this slide is v0 = �̅� = 2.06 m/s.  

The excess pressure for Slide B is greater than for Slide A since the slide surface angle is 

more acute (2° instead of 4°). Depending upon how the excess pressure ΔP = 0.778σ𝑣
′ = 

1.43 MPa was accumulated, Slide B could have happened a significant time after Slide A. 

Alternatively, Slide B could have been triggered by Slide A, if, for example, the weight of the 

180 m of sediments, overlying Slide B, had been removed as a result of Slide A (Figure 16b). This 

is seen by assuming that the excess pressure at the bottom of Slide 1 (which coincides with the 

bottom of Slide B), before Slide A took place, is ΔP = 0.524σ𝑣
′ = 1.43 MPa (σ𝑣

′ = 2.75 MPa) where 

σ𝑣
′  is evaluated based on the new effective overburden, i.e., based on the seafloor surface of 
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the Slide 1 (which coincides with the seafloor surface of Slide A). Such excess pore pressure is 

not sufficient to cause Slide 1 to occur before Slide A. Assuming that the excess pressure, ΔP, at 

the base of Slide B does not change during the relatively short time of Slide A, it can be 

expressed as ΔP = 0.778σ𝑣
′ = 1.43 MPa, where σ𝑣

′  reduces to σ𝑣
′ = 1.84 MPa (because of the 

removed overburden) and, therefore, is taken with respect to the position of the new slope (i.e., 

the base of Slide A). This level of excess pressure is sufficient for failure and the shear band 

would propagate if there was an initial zone of weakness at that depth (l0 in Table 6). The 

excess pressure may be even lower if we take into account that the friction force from Slide A 

may have acted as a drag force that increased the longitudinal load τ* (Figure 2), which drove 

the shear band growth. A model with two propagating shear bands (upper and lower) can be 

devised in a manner similar to the case of one band, but a more detailed analysis of the nature 

of excess pressure still would be required. This is beyond the scope of this work, however. 

Finally, it is worth noting that the scenario of Slide A following Slide B agrees with the fact 

that Slide 2 ‘envelopes’ Slide 1, at least, on the southern side (Figure 16a). The southern part of 

the Slide 2, next to the southern side of Slide 1 (Figure 16a), can also be interpreted as the slip 

surface of Slide A. 
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Table 6.  The dynamic shear band model parameters for Currituck slides. 
The first column shows the baseline parameters. 

 

*In this case, kp = (τp – C ) /(σ𝑣
′  + ΔP ) = tanp and kr = tanr /tanp = tanr /kp, where 

p = 30° and r = 13° are the peak and residual friction angle, respectively. 
**Strain corresponding to zero effective stress at x = 0 (Figure 24 in Section 10.1).  

Parameters 
Currituck 

Slide 2 
(upslope) 

Currituck 
Slide A 

Currituck 
Slide B 

Slope angle, α 4° 4° 2° 

Thickness, h (m) 180 180 235  

Density, ρ0 (kg/m
3
) 1800  1800  1800  

Characteristic slip, 𝛿̅ (cm) 10 10 10 

kp = τp /σ𝑣
′  0.57

*
 0.25 0.25 

kr = τr /τp 0.4
*
 0.4 0.4 

kE = E /τp 133 350 350 

k0 = p0 /σ𝑣
′  0.5 0.6 0.6 

µ = τr /σ𝑣
′  0.231 0.1 0.1 

Cohesion, C = 𝜎𝑡 (MPa) 1.1 0 0 

Elastic modulus, E (MPa) 200  62 81 

Excess pore pressure ratio, 
ΔP /σ𝑣

′  
0.5 0.181 0.778 

Active failure strain, εa (%) –0.73 –0.11  –0.11  

Passive failure strain, εp (%) –0.18
**

 1.03  1.03  

Fracture energy, J0 (kPa·m) 119.1 13.5 6.1 

Surface friction coefficient, CS 0.002 0.002 0.002 

Fracture strain, γ0 (%) 0.257 0.156 0.080  

T0 = (τg – τr)/E  1.9×10
–4

 1.4×10
–4

 2.9×10
–4

 

Strain ratio, 
*
 3.172 0.577 0.413 

Critical length, l0 (km) 0.77 3.57 1.57  

l0 /h 4.3 19.8 6.7 

Dynamic failure length, lf 
(km) 

12.0 28.6 17.5 

f = lf /l0  15.7 8.0 11.2 

Static failure length, Lf = lf /κ 
(km) 

5.2 15.1 9.2 

Failure length ratio, κ 2.32 1.90 1.90 

Water resistance coefficient, 
β 

6.1×10
–6

 1.7×10
–5

 3.0×10
–6

 

Slide velocity, �̅� = v0 (m/s) 0.67 1.53 1.90 

Slide velocity when β = 0, 
�̅� = v0 (m/s) 

1.40 1.78 2.06 
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Table 7.  Static analysis (based on equation (7.9)) applied for the Currituck Slides A and B. Varying 
parameters are denoted by the bold font. Quantities that changed as a result of parameter variation are 
given in blue font. 

Parameters 
Currituck Slide A  Currituck Slide B 

varying ΔP varying τr varying τp  varying ΔP varying τr varying τp 

Slope angle, α 4° 4° 4°  2° 2° 2° 

Thickness, h (m) 180 180 180  235  235  235  

Density, ρ0 (kg/m
3
) 1800  1800  1800   1800  1800  1800  

Characteristic slip, 𝛿̅  (cm) 10 10 10  10 10 10 

kp = τp /σ𝑣
′  0.25 0.25 0.47  0.25 0.25 0.48 

kr = τr /τp 0.4 0.417 0.213  0.4 0.51 0.208 

kE = E /τp 350 350 350  350 350 350 

k0 = p0 /σ𝑣
′  0.6 0.6 0.6  0.6 0.6 0.6 

µ = τr /σ𝑣
′  0.1 0.104 0.1  0.1 0.128 0.1 

Elastic modulus, E (MPa) 62 62 116  81 81 155 

Excess pore pressure ratio, 
ΔP /σ𝑣

′  
0.167 0.181 0.181  0.717 0.778 0.778 

Active failure strain, εa (%) –0.11  –0.11  –0.33   –0.11  –0.16 –0.33 

Passive failure strain, εp (%) 1.03  1.03  0.82   1.03  1.44 0.81 

Fracture energy, J0 (kPa·m) 14.1 13.1 33.3  7.8 5.0 15.5 

Surface friction coefficient, 
CS 

0.002 0.002 0.002  0.002 0.002 0.002 

Fracture strain, γ0 (%) 0.159 0.154 0.179  0.091 0.073 0.092 

T0 = (τg – τr)/E  7.2×10
–5

 7.4×10
–5

 7.2×10
–5

  1.5×10
–4

 1.5×10
–4

 1.5×10
–4

 

Strain ratio, 
*
 0.583 0.574 0.353  0.443 0.389 0.217 

Critical length, l0 (km) 6.81 6.49 12.72  3.16  2.88 6.56  

l0 /h 37.8 36.1 70.7  13.5 12.3 27.9 

Dynamic failure length, lf 
(km) 

54.0 52.6 49.1  33.5 33.4 30.1 

f = lf /l0  7.9 8.1 3.9  10.6 11.6 4.6 

Static failure length, Lf = lf /κ 
(km) 

28.4 27.7 28.7  17.6 17.6 17.6 

Failure length ratio, κ 1.90 1.90 1.71  1.90 1.90 1.71 

Water resistance 
coefficient, β 

3.4×10
–5

 3.1×10
–5

 7.0×10
–5

  6.8×10
–6

 4.9×10
–6

 1.4×10
–5

 

Slide velocity, �̅� = v0 (m/s) 1.52 1.53 1.34  1.88 1.92 1.74 

Slide velocity when β = 0, 
�̅� = v0 (m/s) 

1.78 1.78 1.68  2.05 2.06 1.96 
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 8.3. Gaviota slide  

The Gaviota slide (Figure 1 and Figure 17) is located on the northern slope of the Santa Barbara 

basin (34°22’N, 120°06’W). The slide is relatively well studied [Lee and Edwards, 1986; Edwards 

et al., 1993; Edwards et al., 1995; Hampton et al., 1996; Greene et al., 2006; Schwehr et al., 

2006; Dingler, 2007; Schwehr et al., 2007; Blum, 2010; Blum et al., 2010] and composed of silty 

clay sediments [Lee and Edwards, 1986].  Analysis of the gravity cores collected in the slide area 

suggests that the Gaviota slide occurred between AD 1715 and AD 1840 [Schwehr et al., 2006]. 

The M7.1 earthquake of 21 December 1812 in Santa Barbara, California is often attributed as 

the slide trigger [e.g., Lee et al., 2004; Greene et al., 2006; Blum et al., 2010].  Slope failure 

occurred on a 4° slope, and the main body of the material displaced by the slide is 12 m thick, 

1.65 km wide, and 1 km long [Lee et al., 2004] (Table A.1).  

The depth of the Gaviota slide headwall is approximately 400 m. Adjacent to the Gaviota 

slide, a large fracture traverses the intact slope at the same depth (Figure 1 and Figure 17).  The 

fracture is approximately 8 km long eastward [Lee and Edwards, 1986; Edwards et al., 1995; 

Hampton et al., 1996; Greene et al., 2006; Schwehr et al., 2007; Blum et al., 2010] and 

resembles a headwall of the Gaviota slide [Blum, 2010].  According to Dingler [2007], this 

fracture formed concurrently with the Gaviota slide.  

Properties of the sediment from the Gaviota slide area were studied by Lee and Edwards 

[1986] and Edwards et al. [1995] based on the gravity cores taken in 6 locations in the slide area. 

Their results do not show considerable difference between the locations with the average 

overconsolidation ratio [e.g., Lambe and Whitman, 1986, page 297] of 1.5 [Lee and Edwards, 

1986]. Such a value is relatively low and indicates that the sediment is lightly overconsolidated 

[Bjerrum, 1972]. The mean value of the peak shear strength for this sediment is τp  0.48σ𝑣
′  [Lee 

and Edwards, 1986, eq. (1)] where the average sensitivity τp / τr  2.7 [Edwards et al., 1995]. 

Hence, the characteristic residual strngth is given by τr  2.7τp = 0.18σ𝑣
′ . Since the data on the 

elastic modulus, E, and cohesion, C, of the Gaviota slide sediment are not available, we simply 

used the value of E = 500τp and C = 0, which are the typical values that are characteristic for 

lightly-overconsolidated sediments [e.g., Bjerrum, 1972; Mayne et al., 2001].  
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(a) 

(b) 

Figure 17.  (a) Gaviota slide on the northern slope of the Santa Barbara basin [modified after Schwehr et al., 
2006]. (b) A CHIRP [Schock et al., 1989] seismic profile image along line b-b (figure (a)) west to the slide in 
the area with the sub-horizontal fracture [modified after Blum et al., 2010]. The profile along line a-a (figure 
(a)) is shown in Figure 1b. 

 

The gravity cores sampled only  1.5 m of the upper sediment layer, which is deeper than 

the  0.5 m thick drape, accumulated after the slide [e.g., Greene et al., 2006], but much 

shallower than the thickness of 12 m of the Gaviota slide body. As noted by Lee and Edwards 

[1986], in the absence of geological information, it is difficult to conclude that all 12 meters of 

the displaced materials were over-consolidated (albeit lightly). We, therefore, also consider the 

case of the Gaviota slide sediment being normally-consolidated (similar to many other 
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submarine deposits). This is consistent with the nearly constant regional sedimentation rate 

during the last 136 ky [NIicholson et al., 2006] including the most recent 500 to 1000 years 

when the Gaviota slide have occurred [Lee et al., 2004]. 

Although the Gaviota slide is sometimes interpreted as being retrogressive [Lee and 

Edwards, 1986; Edwards et al., 1995], recent multibeam bathymetric and backscatter data 

[Eichhubl et al., 2002; Greene et al., 2006; Schwehr et al., 2006; Schwehr et al., 2007] as well as 

seismic profiles [Schwehr et al., 2006; Schwehr et al., 2007; Blum et al., 2010] do not show 

surface morphology characteristic for retrogressive sliding [e.g., Kvalstad et al., 2005; Quinn et 

al., 2011b]. The slide rupture surface appears to be fairly smooth (Figure 1a and Figure 17a) and 

can be interpreted as a result of the downslope rupture (shear band) propagation, which 

started from the upper headwall (Figure 2a). 

Considering the Gaviota slide clays as being normally-consolidated and adopting the 

baseline sediment properties (Table 6 and Table 8), we find that because the slope angle is low 

(α = 4°), some excess pressure in the shear band is required to trigger its propagation. 

Specifically, ΔP = 0.413σ𝑣
′  for the band to propagate the observed distance of lf = 1 km (Table 

A.1).  In this case, * = 0.835, the slide velocity at failure is relatively small v0 = �̅� = 0.21 m/s (as 

expected for a small slide), and the length of the corresponding static slide is Lf = 0.5 km (so 

κ = lf /Lf = 1.9). 

Similar to Table 7, static analysis of the Gaviota slide with normally-consolidated sediments 

could also explain the observed failure length of lf = 1 km.  In static interpretation, the excess 

pressure ΔP = 0.360σ𝑣
′  = 34 kPa (σ𝑣

′  = 94 kPa) in the band or kr = τr /τp = 0.436 would also result 

in the failure length of Lf = 1 km. The increased value of kp = τp /σ𝑣
′  = 0.470 leads to Lf = 1.0 km 

as well, but in this case, the residual friction needs to be decreased to τr = 0.213τp to maintain 

the same value of τr /σ𝑣
′  = 0.1 as in the dynamic case (Table 8).  Compared to the dynamic 

analysis (Table 8), the excess pore pressure, ΔP, and coefficient, kr = τr /τp, do not significantly 

change, while coefficient kp = τp /σ𝑣
′  nearly doubles.  The corresponding critical lengths, l0, are 

630 m, 590 m, and 870 m, respectively, which are 2 to 3 times larger than the value in the 

dynamic slide (l0 = 320 m; Table 8).  These conditions are consistent with the results for the 

Gaviota slide complex of lightly-overconsolidated sediments (Table 6) and for the Currituck 
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Slides A (Table 7) and B (Table 8).  The parameter kp differs the most between the dynamic and 

static analyses. 

The fracture on the slope to the right (east) of the Gaviota slide can be interpreted [Martel, 

2004] as produced by the developing rupture surface when the fracture represents the future 

location of the headscarp of the potential slide. A similar interpretation was offered by 

Bernander [2011] who described the formation of long cracks on the ground surface with no 

generation of global slope failure. Bernander [2011] termed such cases ‘unfinished landslides’, 

which are also referred to as ‘confined failures’ [Hutchinson, 1988]. This interpretation is 

consistent with the image in Figure 17b, which shows the vertical seismic cross-section along 

the profile line b-b in Figure 17a.  We hypothesize that this landslide did not take place at the 

time of the Gaviota slide because of the difference in the slope and/or subsurface geometry 

below the headscarp fracture.  Indeed, assuming the same sediment properties in the two 

areas (since they are adjacent each other), we slightly change the slope angle from α = 4° to 

3.7°.  This results in the increase of the critical lengths from l0 = 320 m to 600 m in the case of 

normally-consolidated sediments (Table 8).  Hence, it could have been that when the initial 

rupture surface (shear band) reached the critical length of l0 under the sediment displaced by 

the Gaviota slide, it was shorter than the value of l0 corresponding to the adjacent east slope. 

As a result, the unstable shear band growth did not occur to the east of the Gaviota slide. 

Therefore, the slight difference in slope angle (although visible in Figure 17b), may have caused 

a drastically different behavior of the shear band (i.e., unstable, dynamic growth versus stable, 

static development). If the shear band keeps propagating progressively below the headscarp 

fracture, it may start propagating dynamically and will cause the corresponding landslides. 

Parameters of this potential landslide are given in Table 8.  

We interpret the curved lines in the inset on Figure 17a as shear bands that appeared as a 

result of active failure. Resolution of this image is insufficient to conclude whether the basal 

rupture surface initiated or did not initiate. Possible locations of this surface are indicated 

based on the locations of the lower ends of the curved shear band and the sub-horizontal slope 

crack (Figure 1a and Figure 17a).  The latter appears to end at the depth of 20 m, where the 

sub-horizontal shear band may emerge. In this scenario, we keep the same slope angle of  4°, 
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but increase the depth of the shear band from 12 m to 20 m.  The critical shear band length, l0, 

increases again, from l0 = 320 m to l0 = 400 m for normally-consolidated slope sediments (Table 

8).  Similar to the case of different slope angle, that the slide did not take place may be 

indicative of the current shear band length being smaller than the critical length, l0.  If the band 

reaches this value, it will cause the slide, which is characterized by parameters given in Table 8. 

Results for lightly-oversonsolidated slope sediments are given in Table 6. Except the excess 

pore pressure magnitude, they are similar to the case of normally-consolidated sediments 

(Table 8). This difference is important, however, since the required overpressure exceeds the 

value of ΔP = k0σ𝑣
′  (k0  0.6) and, therefore, hydraulic fracturing will occur prior to the slide 

taking place. Since the Gaviota slide did happen, we concluded that the sediment at the time of 

slide may have been normally-consolidated. In this scenario, the magnitude of the excess pore 

pressure does not exceed the hydro-fracturing threshold of  k0σ𝑣
′  (Table 8).   
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Table 8.  The shear band model parameters for the Gaviota slide and adjacent slope fracture on the slope 
composed of a normally-consolidated sediment. Quantities that changed as a result of parameter changes 
are given in blue font. The slide associated with the fracture on the slope (adjacent to the Gaviota slide) has 
not taken place yet, but the expected parameters are computed and presented in parenthesis. 

Parameters 

Gaviota 
slide 

(dynamic 
analysis) 

Gaviota slide (static analysis)  
Adjacent slope fracture 

(dynamic analysis) 

varying ΔP varying τr varying τp  
milder 
slope 

thicker 
slide 

Slope angle, α 4° 4° 4° 4°  3.7° 4° 

Thickness, h (m) 12 12 12 12  12 20 

Density, ρ0 (kg/m
3
) 1800  1800  1800  1800   1800  1800  

Characteristic slip, 𝛿̅  (cm) 10 10 10 10  10 10 

kp = τp /σ𝑣
′  0.25 0.25 0.25 0.470  0.25 0.25 

kr = τr /τp 0.4 0.4 0.436 0.213  0.4 0.4 

kE = E /τp 350 350 350 350  350 350 

k0 = p0 /σ𝑣
′  0.6 0.6 0.6 0.6  0.6 0.6 

µ = τr /σ𝑣
′  0.1 0.1 0.109 0.1  0.1 0.1 

Elastic modulus, E (MPa) 4.1 4.1 4.1 7.7  4.1 7 

Excess pore pressure ratio, 
ΔP /σ𝑣

′  
0.413 0.360 0.413 0.413  0.413 0.413 

Active failure strain, εa (%) –0.11  –0.11  –0.11  –0.33   –0.11  –0.11  

Passive failure strain, εp (%) 1.03 1.03 1.03 0.82   1.03 1.03 

Fracture energy, J0 (kPa·m) 0.825 0.900 0.776 2.036  0.825 1.376 

Surface friction coefficient, 
CS 

0.002 0.002 0.002 0.002  0.002 0.002 

Fracture strain, γ0 (%) 0.579 0.604 0.561 0.663  0. 579 0.448 

T0 = (τg – τr)/E  2.6×10
–4

 1.4×10
–4

 1.4×10
–4

 1.4×10
–4

  1.4×10
–4

 2.6×10
–4

 

Strain ratio, 
*
 0.835 0.841 0.831 0.669  0.835 0.797 

Critical length, l0 (km) 0.32 0.63 0.59 0.87  (0.60) (0.40) 

l0 /h 26.8 52.3 48.8 72.4  (49.8) (21.7) 

Dynamic failure length, lf 
(km) 

1.0 1.9 1.89 1.7  (1.9) (1.7) 

f = lf /l0  3.1 3.0 3.2 2.0  (3.1) (3.9) 

Static failure length, Lf = lf /κ 
(km) 

0.5 1.0 1.0 1.0  (1.0) (0.9) 

Failure length ratio, κ 1.90 1.90 1.90 1.71  (1.90) (1.90) 

Water resistance 
coefficient, β 

8.9×10
–5

 1.8×10
–4

 1.5×10
–4

 2.7×10
–4

  (1.6×10
–4

) (5.4×10
–5

) 

Slide velocity, �̅� = v0 (m/s) 0.21 0.19 0.21 0.10  (0.21) (0.34) 

Slide velocity when β = 0, 
�̅� = v0 (m/s) 

0.39 0.38 0.39 0.26  (0.39) (0.54) 
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Table 9.  The shear band model parameters for the Gaviota slide and the adjacent fracture on the slope 
composed of a lightly-overconsolidated sediment. The slide associated with the fracture on the slope 
(adjacent to the Gaviota slide) has not taken place yet, but the expected parameters are computed and 
presented in the parenthesis. 

Parameters 

Gaviota 
slide 

(dynamic 
analysis) 

Gaviota slide (static analysis)  
Adjacent slope fracture 

(dynamic analysis) 

varying ΔP varying τr varying τp  
midler 
slope 

thicker 
slide 

Slope angle, α 4° 4° 4° 4°  3.7° 4° 

Thickness, h (m) 12 12 12 12  12 20 

Density, ρ0 (kg/m
3
) 1800  1800  1800  1800   1800  1800  

Characteristic slip, 𝛿̅  (cm) 10 10 10 10  10 10 

kp = τp /σ𝑣
′  0.475 0.475 0.475 0.81  0.475 0.475 

kr = τr /τp 0.37 0.37 0.43 0.217  0.37 0.37 

kE = E /τp 500 500 500 500  500 500 

k0 = p0 /σ𝑣
′  0.6 0.6 0.6 0.6  0.6 0.6 

µ = τr /σ𝑣
′  0.176 0.176 0.204 0.176  0.176 0.176 

Elastic modulus, E (MPa) 11.4 11.4 11.4 19.4  11.4 19.0 

Excess pore pressure ratio, 
ΔP /σ𝑣

′  
0.714 0.668 0.714 0.714  0.714 0.714 

Active failure strain, εa (%) –0.23 –0.23 –0.23 –0.30   –0.30 –0.23 

Passive failure strain, εp (%) 0.57 0.57 0.57 0.50   0.57 0.57 

Fracture energy, J0 (kPa·m) 0.821 0.953 0.744 1.741  0.821 1.368 

Surface friction coefficient, 
CS 

0.002 0.002 0.002 0.002  0.002 0.002 

Fracture strain, γ0 (%) 0.35 0.37 0.33 0.39  0.35 0.27 

T0 = (τg – τr)/E  1.6×10
–4

 9.5×10
–5

 9.6×10
–5

 9.6×10
–5

  1.2×10
–4

 1.6×10
–4

 

Strain ratio, 
*
 0.599 0.617 0.588 0.562  0.599 0.537 

Critical length, l0 (km) 0.42 0.76 0.70 0.75  (0.58) (0.61) 

l0 /h 35.3 63.4 58.4 71.7  (48.3) (30.6) 

Dynamic failure length, lf 
(km) 

1.0 1.7 1.7 1.6  (1.4) (1.7) 

f = lf /l0  2.4 2.3 2.4 1.9  (2.4) (2.7) 

Static failure length, Lf = lf /κ 
(km) 

0.59 1.0 1.0 1.0  (0.80) (1.0) 

Failure length ratio, κ 1.71 1.71 1.71 1.62  (1.71) (1.71) 

Water resistance 
coefficient, β 

6.8×10
–5

 1.3×10
–4

 1.1×10
–4

 1.5×10
–4

  (9.3×10
–5

) (4.6×10
–5

) 

Slide velocity, �̅� = v0 (m/s) 0.14 0.13 0.16 0.11  (0.14) (0.25) 

Slide velocity when β = 0, 
�̅� = v0 (m/s) 

0.29 0.28 0.30 0.25  (0.29) (0.42) 
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8.4. Humboldt slide 

Humboldt slide is located in the Eel River basin on the Northern California continental margin, 

about 50 km of Cape Mondecino [Field et al., 1980; Field and Barber, 1993]. Sediments in the 

slide area are primarily Late Pleistocene and Holocene clayey silts with abundant evidence of 

gas in the sediments [Field and Barber, 1993; Yun et al., 1999]. Gardner et al. [1999] interpret 

the Humboldt slide as a large slope failure with a length of 10 km, and thickness of 65 m. The 

origin of the Humboldt slide has created a controversy [Lee et al., 2007; Schwehr et al., 2007]. 

Gardner et al. [1999] interpreted the Humboldt slide as a submarine slope failure deposit. Lee 

et al. [2007], however, concluded that the Humboldt slide is a field of migrating current-

controlled sediment waves. The controversy steams out of the same data set used for both 

interpretations [Lee et al., 2007; Schwehr et al., 2007].  

These two alternative hypothesis (slope failure and sediment waves) predict different 

sediment fabric that can be evaluated using measurements of anisotropy of magnetic 

susceptibility [e.g., Rees, 1961; Marino and Ellwood, 1978; Schwehr and Tauxe, 2003]. Using this 

technique, Schwehr et al. [2007] concluded that the top 8 m of the sediment have not 

experienced post-depositional deformation, but rather formed by primary deposition 

associated with downslope currents [Schwehr et al., 2007]. Measurements of the sediment 

strata deeper than 8 m are not available. Nevertheless, the general morphology of the 

Humboldt slide suggests minimal downslope thickening or upslope thinning [Schwehr et al., 

2007]. In addition, there is no evidence in the seismic data of a basal surface coming out to the 

slope surface in the tow of the slide [Lee et al., 2007]. These arguments are important in 

support of the sediment wave hypothesis of the Humboldt slide origin. For example, the seismic 

cross-section along the Gaviota slide (Figure 1) does exhibit both upslope thinning (in the 

excavation region) and downslope thickening (in the deposition region), and the slide is, 

therefore, interpreted as a part of the slope failure process. 

The hypotheses of slope failure and sediment waves can be reconciled by recognizing that 

the sediment waves in the Humboldt slide area could be a shallow phenomenon (up to  10 m 

depth), while the basal rupture surface has been developing much deeper, at the depth of 

 65 m (Figure 18). In this scenario, the rupture surface (shear band) has been propagating 
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progressively and the catastrophic propagation is yet to take place. In other words, so far, the 

Humboldt slide has been in the pre-failure slope, which is to be followed by the failure stage in 

the future (Appendix A). This would explain minimal downslope displacements in the Humboldt 

slide area and why the basal rupture surface has not daylight yet at the slide tow area. Because 

previous slope failure (and possibly slides) have been interpreted beneath the Humboldt slide 

[Field et al., 1980; Gardner et al., 1999], it is worthwhile evaluating the slide potential in mass 

movement and generating tsunamis. 

 
Figure 18.  Seismic profile of the Humboldt slide on the Northern California continental margin (50 km 
north of Cape Mendocino) [Gardner et al., 1999; Lee et al., 2007]. Orange line shows the structural 
interpretation of Gardner et al. [1999]. 

 

Based on the basal shear surface interpretation of Gardner et al. [1999] (Figure 18), we first 

assume that the current length of the basal rupture of l  4.5 km (Figure 18) is close to the 

critical value, l0, of the sub-surface shear band. The Humboldt slide sediments are probabaly 

overconsolidated [Lee et al., 1999; Lee et al., 2002; Lee et al., 2007], so far this first-order 

analysis we use the same sediment properties as for Currituck Slide 1 (Table 6). For these 

properties, l0 = 4.5 km, α = 2°, and h = 65 m, the shear band will propagate catastrphicaly if the 

overpressure ΔP = 0.670σ𝑣
′  = 342 kPa. While some overpressure may be a result of the 

sediment pressurization by the existing gas, for example, by the gas dissociating from the 

methane hydrates, abundant in the Humboldt slide area [Brooks et al., 1991; Gardner et al., 

1999], the overpressure is unlinkely to reach such a high level as before that, the sediment will 

be hydro-fractured at ΔP = k0σ𝑣
′  (k0  0.6).  Therefore, currently, l < l0.  Nevertheless, ΔP > k0σ𝑣

′  

may be generated, at least in principle, by an earthquake. Given earthquake activity in the 
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Northern California area, we also computed the landslide parameters for ΔP = 0.670σ𝑣
′ . The 

slope failure then would occur at lf = 32.5 km, which roughly doubles the value of Lf = 17.1 km, 

obtained in the static approximation. The results of our analysis are summarized in Table 10.  

 

8.5. Storegga slide 

The Storegga Slides (offshore Norway, North Sea, 5 to 30 ka) were originally interpreted as 

three separate slides [Bugge et al., 1988; Dawson et al., 1988], but more recent work 

[Haflidason et al., 2004; Masson et al., 2006; De Blasio, 2011] suggests that there may have 

been a larger number of smaller events. Yet it is believed [Haflidason et al., 2004; Bondevik et 

al., 2005; Haflidason et al., 2005; Lovholt et al., 2005] that a large tsunami was generated by 

one of the Storegga Slides with the size of 100 km. This hypothesis is supported by the 

tsunami deposits found in onshore lakes in Norway [Bondevik et al., 2005] and in inland 

mudflats in Scotland [Dawson et al., 1988]. In Table 10, we presented the results of modeling of 

such a slide. Given the uncertainty in dating and geometry, we refer to this event simply as 

Storegga Slide. Bondevik et al. [2005] and Kvalstad et al. [2005] used a retrogressive (uphill) 

slope failure model to analyze the Storegga Slide and the magnitude of the resulting tsunami. 

Here we use an alternative model of the slide (Figure 2a) associated with the downhill shear 

band propagation [Saurer, 2009].  

Following Bugge et al. [1988], Harbitz [1992], Bondevik et al. [2005], and Kvalstad et al. 

[2005], we consider h = 144 m and α = 0.5° as the average thickness and slope angle for the 

Storegga Slide. Bugge et al. [1988] argue that in the area of Storegga Slide, most of the clayey 

sediments were normally-consolidated at the slide time. Therefore, we use again the baseline 

parameters (Table 6), but add the excess pore pressure of ΔP = 0.925σ𝑣
′ . Such a high pore 

pressure is required because of the small slope angle of α = 0.5°. The limiting equilibrium 

approach also results in highly elevated pressure [Kvalstad et al., 2005]. However, since 

ΔP > k0σ𝑣
′  (k0 = 0.6), hydraulic fracturing is likely to take place before the excess pressure 

reaches the level of ΔP = 0.925σ𝑣
′ . Nevertheless, since such a high overpressure may be 

generated by an earthquake [Kvalstad et al., 2005], we computed the slide parameters for this 

overpressure (Table 10). Expression (7.8) and (7.11) give lf = 111.5 km and Lf = 58.7 km (κ = 1.90) 
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for dynamic and static analyses, respectively. The initial slide velocity is estimated as 

v0 = 1.61 m/s (per (K.10) in Appendix K).  

Alternatively, the same values of failure lengths lf = 111.5 km and Lf = 58.7 km can also be 

achieved when the residual friction coefficient drops from kr = τr /τp = 0.4 to 0.03. The lowered 

value of kr = τr /τp can be justified by high sensitivity of the sediments in Storegga area [e.g., 

Kvalstad et al., 2005]. In this case, excess pore pressure does not need to be added on the 

rupture surface (ΔP = 0).  

 

8.6. Subaerial slides 

Quinn et al. [2011a; 2012] suggested using the original model by Palmer and Rice [1973] (Figure 

24, Section 10.1) to study low-angle subaerial landslides such as those at river banks in Quebec, 

Canada. Specifically, they suggested that shear bands propagating upslope in conditions similar 

to an open-cut in an infinite slope (Figure 24, Section 10.1) may be an important mechanism of 

progressive failure in sensitive clay. For their quantitative analysis, Quinn et al. [2011a; 2012] 

used the properties of the Saint-Alban slide (Quebec, Canada) clay. These properties are given 

in Table 10. In their model, the slope angle and slide thickness were α = 0.5° and h = 30 m, 

respectively. 

As mentioned above, for an open-cut with a shear band propagating upslope (Figure 24, 

Section 10.1), the sediment must have at least some cohesion (tensile strength) to 

counterbalance the weight of the slab separated from the substrata by the shear band. Quinn 

et al. [2011a; 2012] suggested that the slab grows to such a length that the tensile strength 

along the slab is exceeded, resulting in the sediment failure at the higher end of the slab. They 

used, however, the value of the active load characteristic to compressive stress regime. 

Numerically, their “active load” corresponds to cohesion or tensile strength of the sediment 

material. For the sake of comparison, we, therefore, used the value of their “active” load as 

cohesion to failure length in static analysis. Instead we used the length given by Lf in (7.9) with 

γp replaced by γt = (σt + p0)/E and * given by equation (10.2) in Section 10.1. This value of Lf is a 

result of the static analysis. Since the residual friction for the Saint-Alban clay is 80 times 

smaller than its peak value [Quinn et al., 2011a; 2012], no excess pressure is required for the 
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slip to develop, even in such a low angle as α = 0.5°. 

To compare the results of static and dynamic analyses, we use parameters defined by Quinn 

et al. [2011a; 2012] (we do not introduce any additional parameters). As can be seen in Table 

10, the critical band size is l0 = 220 m, which is the same as in Quinn et al. [2011a; 2012]. The 

failure lengths for static and dynamic analyses are 730 m and 2.05 km, respectively. Therefore, 

the dynamic analysis suggests that after reaching the length of l0 = 220 m, the shear band 

would grow not until it reaches a length of 730 m, but until a significantly greater length of 

2,050 m is reached. In other words, the dynamic analysis indicates that the slide three times as 

large as in the static analysis. 
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Table 10.  The shear band model parameters for two submarine (Humboldt [Field et 
al., 1980; Gardner et al., 1999] and Storegga [Bugge et al., 1988; Dawson et al., 1988]) 
slides and one subaerial [Quinn et al., 2011a] slide.  

Parameters 
Humboldt 

slide 

Storegga 
Slide 

Storegga 
Slide Saint-

Alban  
varying ΔP varying τr 

Slope angle, α 2° 0.5° 0.5° 0.5° 

Thickness, h (m) 65 144 144 30 

Density, ρ0 (kg/m
3
) 1800  1800  1800  1800 

Characteristic slip, 𝛿̅  (cm) 10 10 10 50 

kp = τp /σ𝑣
′  0.25 0.25 0.25 0.15 

kr = τr /τp 0.4 0.4 0.03 0.013 

kE = E /τp 350 350 350 250 

k0 = p0 /σ𝑣
′  0.6 0.6 0.6 0.5 

µ = τr /σ𝑣
′  0.1 0.1 0.0075 0.002 

Cohesion, C = 𝜎𝑡 (MPa) 0 0 0 0.090 

Elastic modulus, E (MPa) 22 49 49 10  

Excess pore pressure ratio, 
ΔP /σ𝑣

′  
0.670  0.925 0 0 

Active failure strain, εa (%) –0.11 –0.11 –0.11 –2.25 

Passive failure strain, εp (%) 1.03 1.03 1.03 –1.35
*
 

Fracture energy, J0 (kPa·m) 2.524 1.3 27.4 40.0 

Surface friction coefficient, 
CS 

0.002 0.002 0.002 subaerial 

Fracture strain, γ0 (%) 0.187 0.060 0.277 –1.633 

T0 = (τg – τr)/E  4.3×10
–5

 2.8×10
–5

 2.8×10
–5

 3.7×10
–4

 

Strain ratio, 
*
 0.620 0.343 0.708 5.773 

Critical length, l0 (km) 4.50 8.95 20.1 0.22 

l0 /h 69.3 62.1 139.7 7.6 

Dynamic failure length, lf 
(km) 

32.5 111.5 111.5 2.0  

f = lf /l0  7.2 12.5 5.5 8.9 

Static failure length, Lf = lf /κ 
(km) 

17.1 58.7 58.7 0.73 

Failure length ratio, κ 1.9 1.90 1.90 2.81 

Water resistance 
coefficient, β 

7.2×10
–5

 2.1×10
–5

 2.2×10
–4

 subaerial 

Slide velocity, �̅� = v0 (m/s) 0.89 1.52 1.18 1.81 

Slide velocity when β = 0, 
�̅� = v0 (m/s) 

1.07 1.61 1.56 1.81 

*Strain corresponding to zero effective stress at x = 0 (Figure 24 in Section 10.1)  
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CHAPTER 9. TSUNAMI WAVE MAGNITUDE 

9.1. Submarine slide on a mild slope 

A common approach to modeling tsunamis generated by submarine landslides is to represent 

the slide by a solid body moving along the slope with a constant angle [Harbitz, 1992; 

Pelinovsky and Poplavsky, 1996; Watts, 1998; 2000; Liu et al., 2003; Grilli and Watts, 2005].  In 

this scenario, however, the slide would never stop and eventually disintegrate. In many real 

cases, the finite run-out distance of a submarine slide is identified by seafloor observations 

[McAdoo et al., 2000; Haflidason et al., 2005].  A slide can stop for different reasons such as 

increasing friction coefficient on the sliding surface or decreasing slope magnitude as the slide 

moves [De Blasio et al., 2004; Bozzano et al., 2009; De Blasio, 2011]. Since accurate modeling of 

landslide-generated tsunamis is beyond the scope of this work, to compare the tsunamigenic 

potentials of different slides, we utilize the latter possibility. We assume that the friction 

coefficient μ is constant, but not necessarily equal to that on the propagating shear band. We 

also assume that the slide thickness and volume do not change, as its shape adjusts to the 

shape of the slope surface, along which the slide moves. 

 Let the ocean depth be H(x), with H(0) = H0 being the depth of the left (upper) slide end, 

x = 0, before it starts moving (Figure 19a).  Note that, above we used notation x for the 

coordinate along the slope to describe the shear band propagation.  In this chapter, x > 0 is the 

horizontal distance the left side end moves as the result of the slide motion along the slope 

(Figure 19a).  The difference in notation, however, does not create any confusion since we do 

not describe both processes at the same time. As common in the literature on tsunamis and 

tsunamigenic landslides, the same notation, x, is used for both the horizontal coordinate and 

sliding distance. 

 As in Figure 2a, frictional load τr acts at the slide bottom while the water resistance τw is 

applied at its surface. The gravitational load τg is the driving force, and we consider two cases of 

a slide with (i) zero and (ii) non-zero initial velocity v0 = �̅�(lf) (equations (6.14) and (K.10), 

respectively). Once the layer above the shear band separates from the substrata and begins 

sliding downslope, the coefficient of friction, μ, changes and typically reduces compared to that 

in the shear band because of such effects as hydroplaning and lubrication in the boundary layer 
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between the slide and the slope [De Blasio et al., 2004; Talling, 2013]. In reality, it may take 

time for the seawater to percolate underneath the moving slide. For simplicity, however, we 

ignore this time scale and assume that μ changes as soon as the slide begins moving away from 

the trough (Figure 19b).  

(a) 

 

(b) 

(c) (d) 

Figure 19.  Schematics of a submarine slide. (a) Slide at the initial position (when its upper end is at x = 0) 
and final position (when its upper end is at x = xs where it arrived at t = ts). Initially, the upper end of the 
slide is at depth H0. (b) Development of the topographic depression (trench) and seafloor uplift as the slide 
moves. (c) A model of scenario (b) before the final depression is formed. (d) Slide movement after the final 
depression (trench) is formed. 

 

Most works on tsunamigenic landslides adopt μ = 0.0025 - 0.005 [Harbitz, 1992; Pelinovsky 

and Poplavsky, 1996; Grilli and Watts, 2005; Geist et al., 2009]. For the sake of comparison of 

the tsunamigenic potential of different landslides, we, therefore, adopt a typical value of 

μ = 0.0025 for slides moving downslope [Geist et al., 2009].  

Although not all, most of submarine slides have occurred on slopes with small angles 

[McAdoo et al., 2000; Hühnerbach and Masson, 2004; Masson et al., 2006; Lee et al., 2007; 

Clarke et al., 2011; De Blasio, 2011], and this is the case for all slides in Table 6 through Table 10. 

Therefore, we consider only small slope angles such that  

 tan ( ) 1     ( const,  0)H x         (9.1) 
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and keep only the leading terms with respect to ε > 0 in the momentum balance condition. 

Specifically, we first solve the momentum balance equation written for the arbitrary α(x) > 0 

and then consider the limit of α → 0 in all but friction terms in the obtained solution (Appendix 

M). This order is essential since making first the limit transition of α → 0 leads to the slope of 

constant α, on which the slide with constant μ would not stop. 

As a result, the slide velocity can be expressed as (Appendix M) 
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which includes (in contrast to (K.8)) the drag coefficient, CD, because of the “front” (Stokes-like) 

resistance to the slide motion [Harbitz, 1992; Pelinovsky and Poplavsky, 1996; Watts, 1998; De 

Blasio et al., 2004; De Blasio, 2011].The dependence of x(t) is then given in the implicit form of  

 
0

( )

x
dx

t
v x

   (9.4) 

where time t is counted from the slide failure.  At time ts, the slide stops at x = xs defined from 

(9.2) with v(x) = 0. 

Typically, submarine slides stop at a distance of 2 to 4 times the slide length [McAdoo et al., 

2000; Haflidason et al., 2004; Haflidason et al., 2005; Geist et al., 2009], although this distance 

can be both smaller (Figure 1b) and greater [e.g., Locat et al., 2009]. The stopping distances, xs, 

shorter than run-out distance by slide length, for the Currituck slides and the Storegga slides 

were inferred as roughly 50 km ( 2lf) [Geist et al., 2009] and 400 km ( 3.7lf) [Haflidason et al., 

2004], respectively (Table 11). Harbitz [1992] and Geist et al. [2009] reported the depth profiles 

consisted of two approximately linear segments of the seafloor (i.e., with two different slope 

angles) for Storegga slide and Currituck Slide B.  Currituck Slide A includes one more segment, 

also approximately linear [Geist et al., 2009].  In line with these observations, we adopt the 

simplest depth profile 
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Table 11.  Parameters for the seafloor profile and tsunami wave magnitudes. 

Parameters 
Currituck  

Slide A 

Currituck  

Slide B 
Storegga slide Baseline 

Dynamic failure length, lf (km) 28.7 17.3 111.5 10.5 

Static failure length, Lf (km) 15.1 9.1 58.7 5.5 

Slide thickness, h (m) 180 235 150 50 

Initial velocity of dynamic slide, v0 = �̅� 

(m/s) 
1.86 2.28 1.81 0.78 

Initial depth, H0 (km) 0.5 0.5 0.4 0.5 

Shallow water wave velocity, cw (m/s) 137.4 65.3 162.1 176.0 

Characteristic time, τ = lf /cw (s) 211 268 688 60 

Slope (shear band) angle for x < x0, α0 4° 2° 0.5° 6° 

Slope angle for x > x0, α1 2° 0.6° 0.1° 0° 

Slope angle for x > x1, α2 0.6°    

Stopping distance, xs (km) 47.11 1.96 420 30 

Distance where slope angle changes 
from α0 to α1, x0 (km) 

28.7 32.5 250 30 

Distance where slope angle changes 
from α1 to α2, x1 (km) 

50    

Bottom friction coefficient for a 
mobile slide, μ 

0.03524 0.03524 0.0025 0.075 

Outgoing wave height, hw (dynamic 
slide, crest/trough, m) 

29.70/–24.30 3.38/–0.64 12.53/–12.49 1.42/–3.72 

Outgoing wave height, hw (static slide, 
crest/trough, m) 

22.64/–15.40  7.05/–9.73 0.81/–2.76 

Dynamic-to-static ratio of outgoing 
wave height, hw (crest/trough) 

1.31/1.57  1.78/1.28 1.75/1.34 

Backgoing wave height, hw (dynamic 
slide, crest/trough, m) 

8.79/–11.86 0.59/–3.20 1.92/–6.04 1.89/–0.88 

Backgoing wave height, hw (static 
slide, crest/trough, m) 

5.09/–7.20  1.48/–3.98 1.46/–0.57 

Dynamic-to-static ratio of backgoing 
wave height, hw (crest/trough) 

1.73/1.65  1.30/1.52 1.29/1.54 
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 (9.5) 

which accommodates both cases. Here 0 ≤ α2 ≤ α1 < α0 and α0 represent the initial slope where 

the shear band developed (denoted by α in the preceding text). For the Currituck Slides A and B 

(Figure 16c), for example, the slope angles are α0 = 4°, α1 = 2°, α2 = 0.6° and α0 = 2°, 

α1 = α2 = 0.6°, respectively, while the corresponding values of x0 and x1 in (9.5) are x0 = 28.7 km, 
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x1 = 50 km and x0 = x1 = 32.5 km, respectively. For Storegga slide, α0 = 0.5°, α1 = α2 = 0.1°, and 

x0 = x1 = 250 km (Table 11). The moving slides stop because of the reducing gravitational load 

along the slide paths. 

 (a)   (b) 

Figure 20.  Sediment motion as a result of the Currituck Slide A. (a) Dimensionless slide velocity, 
V(x) = v(x) /cw, and (b) dimensionless sliding distance S = x /lf, as functions of the dimensionless time, t/τ, for 
initial velocity V0 = 0.014 (red, solid lines) in the dynamic case (Table 11) and V0 = 0 (blue, dashed lines) in 
the static case (Table 11). Quantity, v(x) and t(x) were computed with (9.2) and (9.4), respectively, using 
distance x as parameter. 

 

For the calculations described below, we used the geometry (e.g., failure length, lf, slope 

angle, α = α0, and dynamic to static failure length ratio, κ) and the initial slide velocity, v0 = �̅�, 

given in Table 6. Dimensionless slide motion distance, x /lf, and velocity, v(x) /cw, are plotted in 

Figure 20a and Figure 20b, respectively, as functions of dimensionless time t(x)/t0 for the Slide A 

of the Currituck slide complex. Here cw = (g�̅�)1/2 is the shallow water wave velocity, �̅� is the 

averaged water depth while the slide is in motion, and t0 = lf /cw is the characteristic time. As 

can be seen in Figure 20a, the value of v /cw does not exceed 0.5. The results for other slides in 

Table 6 are similar. 

 

9.2. Tsunami height 

Relation between the landslide and generated surface waves (tsunamis) is characterized by the 

landslide and wave velocities.  A landslide motion on the seafloor results in perturbations of the 

water surface. If the slide moves with the velocity v close to the long gravitational (shallow 

water) wave velocity, cw, the waves cannot depart sufficiently fast from the source region, 

where the wave build-up takes place.  As a result, if v approaches cw, the wave resistance to the 

landslide motion sharply increases and so does the wave amplitude [Pelinovsky et al., 2001; 
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Ward, 2001; Didenkulova et al., 2010].  The resonance occurs when the corresponding Froude 

number, Fr = v/cw, becomes equal to one.  The Froude number changes as the slide separates 

from the strata and moves downhill (Figure 20a) since both v and cw are generally not constant.  

Yet, for the Currituck Slide A, the Froude number does not exceed 0.5, which indicates the 

subcritical flow regime (Fr < 1) [Munson et al., 2006].  The flow regime remains subcritical as 

the slide moves. This statement is valid for other slides in Table 11 and, in general, for 

submarine slides with low slope angles. 

Because of the small slope angle under consideration, we follow others [Tinti and Bortolucci, 

2000a; b; Tinti et al., 2001; Pelinovsky, 2003] and consider tsunami height in the ocean of the 

constant, average depth (H = �̅�= const).  Comparison of the results between the cases of 

horizontal seafloor and a small slope showed that the difference is not significant [Didenkulova 

et al., 2010].  In the case of lf >> H, which is of interest here, we use the linearized, shallow-

water asymptotic approximation [Tinti and Bortolucci, 2000b] 
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and assume that in the initially static ocean, 

 1 1( ,0) 0,      ( ,0) 0x u x    (9.7) 

where ξ = hw /h, ηs = hs /h, u = uxH /(hcw), hw(x1, t1) is the water level relative to the undisturbed 

ocean surface, hs(x1, t1) is the bottom uplift due to the slide motion, t1 = t /t0 and x1 = x /lf are 

the dimensionless time and sliding distance, respectively, cw = (gH)1/2 is the shallow water wave 

velocity, t0 = lf /cw is the characteristic time, ux is the velocity of the fluid flow along the x axis, 

and h is the slide height (or, in general, a characteristic slide thickness).  

The solution 
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     (9.8) 

of (9.6) with initial conditions (9.7) is well known [e.g., Tinti and Bortolucci, 2000a; b; Tinti et al., 

2001; Pelinovsky, 2003].  Unless otherwise stated, hereafter, we omit subscript “1” in the 

notations of dimensionless parameters for the sake of briefness.  Changing the order of 

integration, (9.8) can be written as 
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Below we model the slide as shown in Figure 21a.  As the slide moves horizontally, it leaves a 

depression of the depth h behind and creates a surface uplift of approximately the same height. 

The created depression spreads until the slide moves the distance of lf (Figure 19c), and it does 

not change its shape after that. Similarly, the uplift does not change its size after the slide 

moves distance lf and continues to move as a solid body (Figure 19d). Taking into account that 

the slide eventually stops (at t = ts and x = xs), its motion can be described by perturbing the 

seafloor level by 

 ( , ) / ( 1) ( ) ( ( )) ( 1 ( ))s sx t h h x x x S t x S t              (9.10) 

where (x) is the Heaviside function ((x) = 1 if x ≥ 0 and (x) = 0 if x < 0), S(t) = x(t) /lf is the 

dimensionless sliding distance, and x(t) is defined by (9.4), written in the dimensionless form of  
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S t
dt

t
V t

   (9.11) 

Taking into account that ʹ(x) = δ(x) (Dirac’s δ-function), we obtain by differentiating (9.10) with 

respect to time that 

 ( , ) ( )[ ( 1 ( )) ( ( )]s x t V t x S t x S t
t


 


    


 (9.12) 

where V(t) = v /cw is the dimensionless slide velocity. Together with (9.10), equation (9.12) gives 

the sought tsunami wave magnitude 
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The development of the tsunami wave in the source region corresponds to t < ts in (9.13).  

For u > ts, V(u) = 0 and (9.13) reads 

 ( , ) ( ) ( )     ( ,  )sx t x t x t t t x            (9.14) 

where 
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are the waves of constant magnitude propagating with velocity cw (in dimensional coordinates) 

in the direction of x < 0 (backgoing wave, propagating opposite to the landslide direction) and 

x > 0 (outgoing wave, propagating in the landslide direction), respectively. In other words, at 

t = ts, the initial perturbation of the ocean level splits onto two waves, which then propagate 

independently in the opposite directions. 

The generated tsunami waves are plotted for the Currituck Slide A at times t = 0.1ts, 

t = tf = 0.533ts, and t = ts in Figure 21b and at times t = ts, t = 2ts, and t = 3ts in Figure 21c and 

Figure 21d. As expected, while the slide is still in motion (t < ts), the magnitudes and shapes of 

the waves are changing with time (Figure 21b). After the slide fully stops, however, the 

backgoing and outgoing waves show constant amplitude and do not change shape for t ≥ ts 

(Figure 21c and Figure 21d). The outgoing wave (x > 0) has higher amplitude and shorter 

“wavelength” than the backgoing (x < 0) wave. The dimensionless amplitudes, ξ = hw/h, for the 

outgoing wave are 0.165 and –0.136 for crest and trough, respectively. For the backgoing wave, 

the amplitudes are reduced to 0.049 and –0.060, respectively. The corresponding 

dimensionless wavelength is approximately 6lf and 10lf for the outgoing and backgoing waves, 

respectively. The described wave characteristics are similar to the Currituck Slide B, Storegga 

slide, and the baseline slide in Table 11. 

It appears that the landslides analyzed by the static approach have slightly higher maximum 

velocity than in the dynamic approach, because the static slides accelerate faster from zero 

initial velocity (Figure 20a). However, the landslide volume (or the failure length) calculated 

with the static analysis is roughly a half that obtained with dynamic analysis (Table 11). As a 

result, the tsunami wave generated by the initially static slide is smaller than that created by 

the dynamic slide (Table 11). The dynamic effect on the tsunami wave height is shown in Figure 

22 for the Currituck Slides A and B and in Figure 23 for the Storegga and baseline slides. The 



91 
 

calculated “wavelengths” are comparable for the static and dynamic slides (Figure 22 and 

Figure 23), but the amplitudes of tsunamis differ by as much as 78% for the outgoing wave of 

the Storegga slide (Table 11). The dynamic analysis results in the initial velocity of the Currituck 

Slide A of only 2 m/sec. Yet, because the slide volume (or failure length) is 1.9 times larger than 

for the static slide (Table 6), the generated wave height is 31% to 73% larger (Table 11). 

It is worth mentioning that it may not be possible to evaluate the slide motion in the static 

analysis because the slide has zero initial velocity. For example, the Currituck Slide B does not 

move when initial velocity is zero (Table 11). Therefore, the static analysis in this case cannot 

identify the slide motion and the resulting tsunami height, although the dynamic analysis 

results in more than 3 m of the tsunami height (Table 11, Figure 22c, and Figure 22d). 

Finally, although the dynamic effect leads to a non-zero initial slide velocity, its magnitude 

is typically not sufficient to affect the tsunami wave magnitude significantly. The effect of the 

increased slide size is much more important. 
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 (a) 

 (b) 

 (c) 

 (d) 
Figure 21.  (a) Seafloor profile (uplift), hs /h, at times t = 0.1ts (red ,bold line), t = tf = 0.533ts (blue, solid line), 
t = ts (green, thin line), and t = 2ts (pink, dotted line) describing the Currituck Slide A movement. (b) Tsunami 
wave magnitude, hw /h, at times t = 0.1ts (red ,bold line), t = tf = 0.533ts (blue, solid line), and t = ts (green, 
thin line). (c, d) Water wave propagation (c) to the left (backgoing wave, x < 0) and (d) to the right (outgoing 
wave, x > 0) directions at times t = ts (red, bold lines) and t = 2ts (blue, solid lines), and t = 3ts (green, thin 
lines).  
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 (a)  (b) 

 (c)  (d) 

Figure 22.  Tsunami wave amplitude, hw, at times t = ts is plotted for the dynamic and static analyses for (a, 
b) the Slide A and (c, d) Currituck Slide B. Both (a, c) backgoing (x < 0) and (b, d) outgoing (x > 0) waves are 
shown. The failure lengths of the Currituck Slide A are lf = 28.7 km and Lf = 15.1 km for the dynamic and 
static analyses, respectively, and the corresponding initial velocities are v0 = 1.86 m/s and v0 = 0 m/s (Table 
11). For the Currituck Slide B, the failure lengths are lf = 17.3 km and Lf = 9.1 km for the dynamic and static 
analyses, respectively, and the corresponding initial velocities are v0 = 2.28 m/s and v0 = 0 m/s (Table 11). 
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(a) (b) 

(c) (d) 

Figure 23.  Tsunami wave amplitude, hw, at times t = ts is plotted for the dynamic and static analyses for (a, 
b) Storegga and (c, d) baseline slides. Both (a, c) backgoing (x < 0) and (b, d) outgoing (x > 0) waves are 
shown. The failure lengths of the Storegga are lf = 11.5 km and Lf = 58.7 km for the dynamic and static 
analyses, respectively, and the corresponding initial velocities are v0 = 1.81 m/s and v0 = 0 m/s (Table 11). 
For the baseline slide, the failure lengths are lf = 10.5 km and Lf = 5.5 km for the dynamic and static analyses, 
respectively, and the corresponding initial velocities are v0 = 0.78 m/s and v0 = 0 m/s (Table 11). 
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CHAPTER 10. DISCUSSION  

10.1. Dynamic version of the Palmer and Rice [1973] model   

In their celebrated paper, Palmer and Rice [1973] analyzed general conditions for the 

propagation of a shear band and, in particular, a static shear band in an open-cut slope (Figure 

24) in over-consolidated sediments.  Here we consider a dynamically growing shear band.  

Similar to our model (Figure 2), we consider a slope in the submerged or subaerial condition. 

Therefore, the hydrostatic pressure, ph, of water acts at the bottom of the slope (Figure 24) 

which corresponds to zero effective stress (i.e., σ = – ph) at x = 0.  Then, per (2.2), h = p0 /E > 0 is 

the strain that corresponds to ph.  This is consistent with Palmer and Rice [1973], who studied 

the subaerial case of ph = 0.  Since the strain increases uphill (from x = 0 to x = l), condition 

0 < h < 0 < a should be satisfied as it would be in the original static model [Palmer and Rice, 

1973].  

Mathematically, Palmer and Rice’s [1973] (Figure 24) and our (Figure 2) models differ by the 

relative direction of τ* and the x-axis, which is now pointing uphill (Figure 24), and by ph acting 

at x = 0 instead of pa.  Hence, the dynamic version of Palmer and Rice’s [1973] model follows 

directly from the results obtained in this work.  Specifically, keeping both τ* and T positive, we 

simply need to replace the signs of these quantities in (2.3), (2.4), (3.1), (4.1) and adjust other 

equations accordingly. 

 
Figure 24. Palmer and Rice’s [1973] model 

 

In particular, the sign before T in (4.2) needs to be changed, and the static strain, defined in 

(3.4) and (4.8), now becomes 
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Expressions (4.7) and (4.18) for the band propagation velocity, (4.9) and (4.22) for the strain 
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and material velocity at the tip, and (6.11) and (6.12) for the average slide velocity remain the 

same, but they should be used with the adjusted static strain (10.1). 

The position of the crack tip is still defined by (4.6) and (4.17) (both with using (10.1) for 

γs(l)), and the location of point E of the discontinuity arrival at the band tip (Figure 6), is defined 

by (4.20).  Whether the discontinuity reaches the tip after the first or second reflection from 

the slide end, x = 0, can still be determined from (F.2) and (F.4) (Appendix F), respectively, both 

used with (10.1) for the static strain.  

Similarly, for the homogeneous distribution (5.1), T = T0 = �̅�(𝑙0) = const > 0, equations (5.5) - 

(5.11), (6.14), (F.4) (Appendix F), (G.13) - (G.22) (Appendix G) all remain valid, but with 𝜆∗ 

defined by 

 0 0
*

0 0 0 h

h

T l

 


 
 


 (10.2) 

instead of (4.29) and with the static strain (5.2) replaced by 

 0 0 0( ) ( ) /s l T l l h     (10.3) 

The initial band length (5.3) is now given by 

 l0 / h = (0 – h)/T0 (10.4) 

which agrees with Palmer and Rice [1973] for h = 0. Because l0 >> h in Palmer and Rice’s [1973] 

model, equation (10.4) implies that 

 γ0 – γh >> T0 (10.5) 

The recurrence relations presented in Appendix E (equations (E.1) – (E.21)) are also all valid 

for the dynamic Palmer and Rice’s [1973] model, which employs definition (10.1) of the static 

strain.  This means that in Palmer and Rice’s [1973] case, the general dynamic solution, when 

the discontinuity reflects at the band tip arbitrary number of times, is given directly by 

Appendix E. 

The definition of 𝜆∗ is, in fact, the main difference between Palmer and Rice’s [1973] and 

our formulations. It affects the range of 𝜆∗, which depends upon the value of h (or ph) in (10.2).  

For h > 0 (tensile strain), h < 0, and the range is 𝜆∗ > 1. For this range, the chance of the 

discontinuity reaching the band tip after the first reflection from x = 0 is higher (Figure F.1b in 

Appendix F) than for the range of 0 < 𝜆∗ < 1 (Figure F.1a). Indeed, for any n from 1 < n <2, the 
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discontinuity does reach the tip if 𝜆∗ > 1.605. For 1 < n < 1.43, the discontinuity reaches the tip 

for any 𝜆∗ > 1. This means that in most practical cases, it is expected that the discontinuity will 

reflect at least once from the band tip. This can be explained by a shorter initial band length l0 

in (10.2) than in (5.3) (when h > 0). For a shorter initial band length, the discontinuity will travel 

more frequently between x = 0 and the band tip, so in general, more reflections will happen. 

The dynamic version of the Palmer and Rice’s [1973] model can be used for analyzing the 

uphill growth of the shear bands in submerged slopes, which has been inferred from some 

observations [Kvalstad et al., 2005]. We first note that 0 < a, since the shear band propagates 

until the strain at the tip reaches the active failure strain, a.  Further analysis is similar to that 

in Section 6.1, so equations (6.1) – (6.3), and (6.4) – (6.5) remain valid when p is replaced with 

a = (p0 – pa) /E and the static strain is replaced by (10.3) where l = lf. 

 

10.2. Direction of band growth 

Above, we have considered downhill (Chapters 2–7) and uphill (Section 10.1) propagation of 

the shear band. In the developed models, the shear band has one tip (x = l), which can only 

propagate in one direction. The initial discontinuity, however, may have two tips [Puzrin and 

Germanovich, 2005a; Viesca, 2011; Viesca and Rice, 2012] as shown in Figure 25. To understand 

which tip begins propagating first, we consider here a quasi-static shear band at the onset of 

dynamic (catastrophic) propagation, i.e., at the end of the stable (progressive) stage of the 

band growth. 

 
Figure 25. Static band propagation with two tips at x = –l2 and x = l1 (after [Puzrin and Germanovich, 2005a]). 

 

In general, for a static band of length l = l1 + l2 with tips located at x = –l2 and x = l1, equation 

(2.4) is reduced to the equilibrium condition  
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 2 2/ ( ) /       (0 )d u dx T x h x l     (10.6) 

Boundary conditions (2.7) are now specified at both tips as u(–l2) = u(l1) = 0, so integrating (10.6) 

results in the static strain 
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which can also be written as 
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Expressions (10.7) and (10.8) are valid for the arbitrary (static) shear band –l2 < x < l1. Let 

l1 = l2 = l0 at the onset of dynamic propagation of one of the band tips (or both). Without the 

loss of generality, the y-axis can always be placed in the middle of the band (Figure 25) at that 

moment. Substituting x = l0 in (10.7) and x = –l0 in (10.8) leads to 
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        (10.9) 

and condition (2.12) of band growth now holds at either band tip. The shear band begins 

propagating at the upper end, x = –l0, if s(–l0) > –s(l0). If s(–l0) < –s(l0), the propagation begins 

at the lower end, x = l0. Hence, according to (10.9) and (2.12), at the onset of band growth, 
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 (10.10) 

Theoretically, for a load distribution T(s) such that Δs = 0, propagation begins 

simultaneously at both ends x = l0 and x = –l0. This would occur, for example, when T(s) is an 

even function (T(s) = T(–s)); in particular, for the homogeneous distribution (5.1) when 

T(s) = T0 = const. In this case, (10.10) results in the critical length    
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   (10.11) 

which agrees with Puzrin and Germanovich [2005a] if E = El = Eu, i.e., the material moduli in 

loading and unloading (Section 2.1) are the same. 

If El ≠ Eu, 
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When x = x0, strain s(x) changes sign. Adding (10.7) and (10.8) with l1 = l2 = l0 and solving 

equation 2 (x0) = 0 in the case of (10.12), we obtain the root 
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 (10.13) 

of function s(x). Substituting (10.12) (with (10.13)) in (10.9), we find that 
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   (10.14) 

In soil and sediment materials, typically Eu > El [Desai and Siriwardane, 1984; Wood, 1990; 

Puzrin and Germanovich, 2005a; Budhu, 2007]. Hence, x0 > 0 in (10.13), and, accordingly, Δs > 0 

in (10.14). Comparing to (10.10), we conclude that the band growth would occur first downhill 

at the lower end of x = l0. 

Note that although (10.14) is equivalent to the corresponding result of Puzrin et al. [2004] 

and Puzrin and Germanovich [2005], they used the energy balance condition for the entire 

sliding layer (rather than for individual band tips) and, therefore, could not determine which tip 

of the shear band would propagate first at the onset of dynamic growth. 

 

10.3. Slides with varying slope and finite width 

So far, we have been considering slopes with constant angles (Figure 2). If the slope angle, α, 

varies along the slope, but the angle is small (0 ≤ α(x) << 1) (Figure N.1 in Appendix N; note that 

x-axis is now horizontal), the momentum balance condition can be written in the form of (2.4) 

or the second equation in (3.1) with T = (τ0 – h ∂p/∂x)/E = 𝜏∗/E = [(0 – w) (tan – μ)gh – w] / E 

(Appendix N). The boundary and initial conditions (3.2) - (3.5) remain valid (Appendix N). 

Since the solution obtained in Chapter 4 is valid for the general case of T(x), it is also valid 

for the above interpretation of T(x). In particular, when p0(x) is independent of x, T(x) remains 

the same as in the preceding chapters. 

It should be noted that using (2.4) in the case of a varying angle represents an asymptotic 

case (for 0 ≤ α << 1), and changing the angle affects mainly the term of T(x) in (2.4) or (3.1). This 

is significant, however, since for α reducing with x, components τg – b and τr of load 𝜏∗ reduce 

and increase, respectively, so the shear band may eventually stop before the slope failure takes 
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place. This can be seen, for example, from (4.7), which suggests that the shear band stops 

growing when it reaches the length of ls such that s(ls) = –c.  Using (4.8), this condition can be 

written as  

 
0

0

1
( ) ( )

sl

s c

l

I l T x dx
h

     (10.15) 

where T(x) decreases (and even becomes negative) with decreasing α. According to (4.9), both 

η1(ls) = 0 and ∂η1(ls)/∂t = 0 if (10.15) is satisfied. Hence, both the material velocity and 

acceleration equal zero at the shear band tip when it reaches the length of ls. This indeed 

means the full stop of the band growth and the slide motion ceases at that moment. 

Using (4.8), equation (10.15) can be written as 

 
0 0 0( ) ( ) ( )s s cl T l l T l h     (10.16) 

and a lower bound of ls is obtained by setting 0 =  in (10.15) or (10.16).  This bound is 

independent of n and is close to ls if n is close to 1 (i.e., if c is close to ). Note that I(l) = 0 has 

another (trivial) solution, l = l0, which is not of interest here. 

Finally, many slides have an elongated shape (Figure 26), which typically depends upon the 

topographic features in the slide region. Yet the characteristic slide width, b, is usually much 

greater than the thickness, h, of the sliding layer. In most cases (e.g., Table A.1), the overall 

resistance to the slide movement (per unit area) at its margins (e.g., side scars) is comparable to 

the bottom (shear band) friction (also per unit area), although it may be much more complex in 

detail [e.g., Farrell, 1984; Martel, 2004]. Therefore, if b >> h, the edge resistance at the side 

scars can be ignored to the first order, and the obtained solution can also be used for such 

slides of finite width (if b does not change too much along the slide). 
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Figure 26. Map view of the Goleta slide [after Greene et al., 2006]. The Goleta slide is centered at 34.34°N, 

119.97°W (offshore Santa Barbara, California), with the headscarp at  150 m water depth. The slide age and 

the sediment characteristics are currently unknown. The Goleta slide has a width b  4 km, a thickness 

h  50 m, and an averaged slope angle α  2° (Table A.1) [e.g., Greene et al., 2006]. 
 

  



102 
 

CHAPTER 11. CONCLUSIONS  

In this work, landslide failure is considered as a dynamic process when a shear band emerges 

along a length of the potential rupture surface. Within this band, the shear strength drops due 

to the softening behaviour of the particulate material. The material above the band moves 

downwards, causing the band to propagate. This propagation may first be stable (progressive), 

but eventually becomes dynamic (catastrophic), which produces an initial landslide velocity 

before the slide reaches the post-failure stage and separates from the substrata. For 

tsunamigenic landslides, therefore, the resulting tsunami is expected to be larger than in the 

case of zero initial velocity. 

In this work, we considered the dynamic elastic problem for the shear band propagating 

parallel to the slope surface. The problem is formulated within the framework of the Palmer 

and Rice’s [1973] approach, which is generalized to the dynamic case. Using the method of 

characteristics, we found the exact, closed-form solution for the shear band and landslide 

velocities as well as for the distributions of strain and slip rate in space and time. The solution 

allows assessing when the slide separates from the substrata once the failure condition is 

satisfied at the propagating tip of the shear band. The obtained solution is valid for the general 

case of an arbitrary distribution of shear and gravitational forces along the slide; for example, in 

the case of a varying slope angle. The case of the uniform distribution of these forces is 

considered in detail. 

To understand the shear band evolution, we employed different surface energies for static 

and dynamically-propagating shear bands. This simplified approach captures, to the first order, 

the friction dependence on the velocity of the relative motion. It results, however, in a 

discontinuity that appears initially at the band tip and propagates back and forth along the 

band between reflections from the slide end and the band tip. We analyzed the behavior of this 

discontinuity and showed that its magnitude decreases after each reflection from the band tip. 

In addition, this magnitude of the discontinuity is always small in the relative sense. The 

developed simplified model, therefore, appears to be physically acceptable. 

Using the developed model we showed that the shear band accelerates, and the band tip 

velocity, v, reaches the order of the speed c of elastic waves (yet being smaller than c) after it 
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propagates only approximately three lengths of the initial band. The slide body velocity also 

grows with the band length. By the time the slide separates from the substrata, when the band 

increases its initial length roughly by one to two orders of magnitude, slide velocity can become 

~ 0.1c, or even ~ c (still remaining smaller than v), depending upon the value of 0. 

The band tip velocity, v, strain, , and slip rate, η, are controlled by the “bluntness” 

parameter, n, initial deformation, 0, and strain ratio, 𝜆∗ = 0/(a + 0). It turns out that  and η 

are simply proportional to 0, while the effect of n and 𝜆∗ is more complex. The value of 𝜆∗ 

belongs to the relatively narrow range of 0 < 𝜆∗ < 1 and is is relatively well constrained by field 

measurements. The value of n, however, is currently uncertain, except that n > 1. Yet, we 

showed that for n only slightly larger than unity, dependency of the solution on n becomes very 

weak. In fact,  and η are close to their asymptotic values for n   already at n ~ 1.001. 

For a sufficiently long band length, the distribution of slip rate along the slope becomes 

asymptotically uniform. This occurs in both the exact solution, when v = v(l), and in the 

asymptotic solution with n  , when v = c starting from t = 0. Treating the slip rate as a 

constant (along the slope, but not in time) enables the introduction of water resistance to the 

motion of the submerged slope, which is a function (typically, quadratic) of the relative velocity. 

Our results show that the water resistance reduces the slide velocity only by up to ~ 10% 

compared to the case of no water resistance.  

The simple asymptotic solution was compared to the exact solution and used in landslide 

analyses. The slide body velocity was also obtained in a closed form, which was further 

simplified in the case of uniform loads (gravitational and frictional) acting along the slide. Our 

model indicates that while the shear band propagation velocity is slower than thought 

previously [Puzrin et al., 2010], the landslide accelerates much faster. Even more importantly, 

our results suggest that the conventional static approach to the slope stability analysis leads to 

a significant underestimation of the slide size. In most cases, the volumes of catastrophic slides 

are roughly twice the volumes of progressive slides. The obtained results may be useful for 

assessing the potential of the landslide to generate a tsunami. 
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APPENDIX A.  LANDSLIDE TYPES AND MECHANISMS 

Although we mainly discuss below submarine landslides, we focus on such features and 

processes that are also common for subaerial landslides.  

Many, if not most, submarine landslides take place on mild slopes [e.g., Lewis, 1971; Bugge 

et al., 1988; McAdoo et al., 2000; Masson et al., 2006; Micallef et al., 2007; Twichell et al., 2009; 

L’Heureux et al., 2013], which can be as small as 0.5° (continental shelf off the Malaspina 

glacier, Alaska [Carson, 1978]), 0.25° (Klamath river delta, California [Field et al., 1982]), or even 

0.01° (Mississippi river delta, Gulf of Mexico [Prior and Coleman, 1978]). As a result of analysis 

of more than 260 landslides on both margins of the North Atlantic Ocean and adjacent seas, 

Hühnerbach and Masson [2004] concluded that landslides on the ocean slopes occur on 

virtually every angle, although the majority takes place on slopes between 2° and 20° with 

mean values of 5° and 3° on the open continental margins in the western and eastern North 

Atlantic, respectively. Most landslides and seafloor failures on the Southeastern Australian 

Margin took place on slopes between 1° and 7° [Clarke et al., 2011]. Nearly 90 % of the 

landslides documented on the North America Atlantic Margin [Masson et al., 2006; Lee et al., 

2007] and on the continental slope in the Gulf of Mexico [McAdoo et al., 2000] occurred on 

slopes smaller than 10°. The available seafloor data [e.g., McAdoo et al., 2000; Hühnerbach and 

Masson, 2004; Masson et al., 2006] indicate that the largest landslides take place on the lowest 

slopes. Dimensions of the region excavated by a landslide range from less than 1 km [e.g., 

Woodcock, 1979; Canals et al., 2004; Blum et al., 2010; L’Heureux et al., 2013] to more than 

102 km [e.g., Nisbet and Piper, 1998; Twichell et al., 2009] both along the slope (landslide 

length) and in horizontal direction (landslide width). Submarine landslides occur on both 

passive and active margins [e.g., McAdoo et al., 2000; Locat et al., 2009], and active margins 

show the presence of low-angle landslides as large as those found on passive margins (e.g., 

120-km Brunei slide, Northwest Borneo Margin, South China Sea [Gee et al., 2007]). 

Typical types of the submarine mass movements [Dott, 1963; Varnes, 1978; Prior and 

Coleman, 1979; Coleman and Prior, 1988; Martinsen, 1994; Mulder and Cochonat, 1996; Locat 

and Lee, 2002; Masson et al., 2006; Micallef et al., 2007; Locat and Lee, 2009] include falls, 

slides, spreads, debris flows, avalanches, mudflows, and turbidity currents. Slides are further 
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categorized as rotational or translational [e.g., Varnes, 1978; Prior and Coleman, 1979; Locat 

and Lee, 2002]. They take place by rotational or translational downslope movements, 

respectively, of a sediment mass on a thin zone of large shear strain gradients, which is often 

recognized as a rupture surface [e.g., Hampton et al., 1996; Locat and Lee, 2002; Masson et al., 

2006], a slide (slip) surface [Coleman and Prior, 1988; Hampton et al., 1996; D'Elia et al., 1998], 

or a shear band [e.g., Chowdhury et al., 2010; Dey et al., 2012; Quinn et al., 2012]. Rotational 

slides develop along a concave upward, scoop-shaped rupture surface and exhibit noticeable 

deformation in the slide material. Translational slides (also called planar slides [Prior and 

Coleman, 1979]) show much less internal deformation and move on a relatively planar surface 

of rupture that usually parallels the slope surface (Figure A.1a) [Varnes, 1978; Bernander and 

Olofsson, 1981; Hampton et al., 1996; Lu and Godt, 2013]. It is commonly accepted that 

translational slides take place in sediments where the rupture process is controlled by such 

morphological features as bedding planes or thin, weak layers susceptible to failure and sub-

parallel to the seafloor [Bjerrum, 1967; Varnes, 1978; Bunn and McGregor, 1980; Cartier and 

Pouget, 1988; O'Leary, 1991; Picarelli et al., 1995; Hampton et al., 1996; D'Elia et al., 1998; 

Haflidason et al., 2003; Wang et al., 2003; Haflidason et al., 2004; Lastras et al., 2004; Wilson et 

al., 2004; Chang et al., 2005; Troncone, 2005; Fӕseth and Sӕtersmoen, 2008; Cecinato, 2009; 

Garziglia et al., 2010; Grozic, 2010; Locat et al., 2014]. Generally, the observed depth-to-length 

ratio of rotational and translational slides is greater and less than 15%, respectively [Skempton 

and Hutchinson, 1969; Prior and Coleman, 1979; Masson et al., 2006]. 

Rotational and translational slides are also called slumps and slides (i.e., omitting modifier 

‘translational’), respectively [e.g., Masson et al., 2006; Fӕseth and Sӕtersmoen, 2008]. As 

noted by Prior and Coleman [1979], many slumps should be reclassified as varieties of 

translational slides because rotational shear surfaces tend to coalesce at a relatively shallow 

depth to form a planar basal rupture (or detachment) boundary, inclined at low angles and 

paralleling the regional slope over long distances (Figure A.1a). For example, Fӕseth and 

Sӕtersmoen [2008] report that a giant, intact slump (155 by 35 km), contemporary to the latest 

Storegga Slide (released approximately 8100 ya) [Bugge et al., 1988; Haflidason et al., 2005; 

Solheim et al., 2005] and located along the southern margin of the Storegga Slide scar, consists 
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of rotational movement closer to the break-away fault while the detachment boundary is 

bedding-parallel below a major part of the slump. Prior and Coleman [1979; 1984] further note 

that translational slides, in which the rupture surface is planar and inclined approximately 

parallel to the slope surface, appear to be the most common form of seafloor instability. In 

particular, 57% of slides on the U.S. Atlantic continental slope are translational, which includes 

17% of coherent slab slides [Booth et al., 1993].  Incidentally, the majority of the identified 

submarine slides have the thickness-to-length ratio of less than 0.1 and often less than 0.01 

[e.g., Woodcock, 1979; Hühnerbach and Masson, 2004; Masson et al., 2006; Lee et al., 2007; ten 

Brink et al., 2007; L'Heureux et al., 2013].  

(a) 

(b) 
 
(c) 

Figure A.1.  (a) Seismic profile from the continental slope in the Gulf of Mexico [Prior, 1984]. (b) Volume 
removed as a result of landslide in the Saguenay Fjord, Quebec, Canada [Locat et al., 2014]. (c) Longitudinal 
seismic section of the Talismán Slide [Sayago-Gil et al., 2010]. 

 

In actuality, translation and rotational slides represent two end-members of the slide 

variety [e.g., Martinsen, 1994].  For example, both translational and rotational elements are 

present in slides shown in Figure A.1a and Figure 18.  An important translational feature of 

these slides is the basal shear surface (called basal slide plane in Figure A.1a), which we 

represent below by a shear band (discontinuity). This rupture surface separates the slide 

material from the relatively undeformed substrata.  Because slip on this surface was limited (for 
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both slides in Figure A.1a and Figure 18), the slide material is relatively coherent, and it is 

possible to see the details of the rupture surface development.  When the slip distances are 

sufficiently large, the slide material is completely removed from its original position (Figure 1b, 

Figure A.1b, and Figure A.1c). 

Conceptually, a slide develops from the (quasi-) equilibrium state of the intact (or creeping) 

slope material and involves failure (Figure A.2a) and post-failure (Figure A.2b) stages [e.g., D'Elia 

et al., 1998; Locat and Lee, 2002]. During the failure stage, also called the slide initiation stage, 

a continuous shear band, which constitutes the rupture surface, develops in the slope material 

and separates the sliding mass from the underlying sediment (Figure A.2a). The moment when 

this separation is completed is called global failure or slope failure [e.g., D'Elia et al., 1998]. 

Active (extensional) and passive (compressional) failures [e.g., Budhu, 2007; Locat et al., 2008], 

taking place at the upper and lower slide ends, respectively (Figure A.2a), can be viewed as 

global failure mechanisms, although in 3-D, details can be more complex [e.g., Farrell, 1984; 

Martel, 2004].  The direction of the slide development during the failure stage (Figure A.2a) is 

not clear a priory.  In the case of the Humboldt slide (Figure A.2b), for example, the shallow 

rotational failure began in the middle of the ‘slide’ and progressed simultaneously upslope and 

downslope [Gardner et al., 1999], but the basal shear surface probably propagated downslope. 

Note that the pre-failure stage, distinguished in some works [e.g., D'Elia et al., 1998; Locat and 

Lee, 2002], is a part of the failure stage introduced here. A relatively small but distinct basal 

shear band emerges as a result of pre-failure processes such as viscous creep, elasto-plastic 

yielding, and, possibly, small-scale rotational shearing or faulting (Figure A.1a and Figure 18). 

During the failure stage, this initial discontinuity (Figure A.2a) develops into the basal shear 

(rupture) surface.   

The sliding mass, separated from the substrata by the basal rupture surface (developed 

during the failure stage), moves outward and downhill during the post-failure stage (Figure 

A.2b). In slide development, therefore, the moment of global failure separates the failure and 

post-failure stages, which end and begin, respectively, with the global failure.  Without special 

instrumentation, the slide becomes visible to an observer (if one were present) only during the 

post-failure stage, when some slides mobilize into flows, while others take place as movements 
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of relatively intact, coherent bodies (Figure A.2b) [e.g., Erismann, 1977; Locat and Lee, 2002; 

Masson et al., 2006], for example, as shallow slab slides [Prior and Coleman, 1979; Coleman and 

Prior, 1988].  In particular, 36% of submarine landslides on the US Atlantic continental slope 

remained coherent bodies during sliding and 64% disintegrated [Booth et al., 1993].  As the 

excavated slide material moves downhill (Figure 1 and Figure 17a), it displaces a large water 

volume and may generate a tsunami (Figure A.2b) [Yalciner et al., 2002; Bardet et al., 2003; 

Haugen et al., 2005; Harbitz et al., 2006; Levin and Nosov, 2009; Chai et al., 2014]. 

(a) 

(b) 

Figure A.2.  A submarine slide scenario. (a) Failure (initiation) stage. This stage ends by the global slope 
failure (Section 6.1), when the basal shear band (rectilinear part of the dashed line), developing sub-parallel 
to the slope boundary, is linked with the boundary by the processes of active and passive failures), creating 
a continuous rupture (slip) surface. (b) Post-failure stage. This stage begins with the global slope failure 
(Section 6.1), when a relatively intact and coherent excavated mass starts moving outward and downhill. It 
first moves along the freshly created slip surface and then along the slope boundary until it stops (Section 
9.1) or mobilizes into a sediment flow (not shown). Except for the effect of the seawater on the sediment 
flow (if it occurs), failure and post-failure stages are similar for submarine and subaerial landslides [e.g., 
Locat and Lee, 2002]. 

 

Examples of historic submarine, tsunamigenic landslides are given in Table A.1. One of these 

landslides, the Gaviota slide [Lee and Edwards, 1986; Edwards et al., 1995; Hampton et al., 

1996; Greene et al., 2006; Schwehr et al., 2007; Blum et al., 2010] is shown in Figure 1 and 

Figure 17a. This is a translational slide with a sub-horizontal crack on the slope west to the slide. 

In Figure 1a and Figure 17a, the slope is interpreted as to be undeformed to the left (west) of 
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the slide, while the fracture (8 km long [Schwehr et al., 2006]) to the right (east) of the slide 

(marked by arrows spaced by 4 km) is produced by the developing rupture surface and 

represents the future location of a head scarp [Martel, 2004]. This interpretation is consistent 

with the image in Figure 17b, which shows the vertical seismic cross-section along profile line b-

b in Figure 17a. We interpret the curved lines in the inset on Figure 17a as shear bands that 

appeared as a result of active failure. Resolution of this image is insufficient to conclude 

whether the basal rupture surface initiated or did not initiate. Possible locations of this surface 

are indicated based on the locations of the lower ends of the curved shear band and the sub-

horizontal slope crack (Figure 1a and Figure 17b). 

 
Table A.1.  Historical submarine tsunamigenic landslides. In this table, h, lf, and b are the thickness, length 
(along the slope), and width (in horizontal direction), respectively (Figure A.2b and Figure 26), of the 
displaced sediment body of volume V, α is the slope angle (Figure A.2b), and H0 is the depth of the slide 
headwall scarp, i.e., the upper slide point (Figure A.2b and Figure 19). 

Source 
Location 

Date 
Tsunami 

runup 
(m) 

Deposit 

Geometry 

h 
(m) 

lf 
(km) 

b  
(km) 

V  
(km

3
) 

α 
(deg) 

H0  
(m) 

Currituck, North 
Carolina

1
 

40,000-
24,000 BP 

3
*
 

normally-
consolidated clay 

350 30 20 128 4 500 

Storegga, 
Norway

2
 

30,000-
5,000 BP 

19 clay 160 340 100 5580 0.6 500 

Goleta slide, 
California

3
 

200 BP 10
**

 stiff clay 48 14.6 10.5 1.51 2 150 

Gaviota slide, 
California

4
 

1812 1.5
***

 stiff clay 12 2.6 1.65 0.02 4 400 

Grand Banks, 
New Foundland

5
 

1929 
Nov.18 

13 
unconsolidated 
muddy sediment 

10 250 150 200 3 730 

Ugamak Slide, 
Alaska

6
 

1946 
Apr.1 

40 glacial sediment 250 40 25 250 4.3 1600 

Port Valdez, 
Alaska

7
 

1964 
Mar.27 

65 
under-consolidated 
fine-grain sediment 

32 1.3 0.18 0.05 2 141 

Loma Prieta, 
California

8
 

1989, 
Oct.17 

0.2 mud and silt 0.35 3.4 10 0.01 0.8 25 

Papua New 
Guinea

9
 

1998 
Jul.17 

15 marine clay 30 4.6 2.5 4.2 10 760 

Izmit Bay, 
Turkey

10
 

1999 
Aug.17 

20 stiff clay 50 5 5 12.5 5 220 

1
Prior et al. [1986], Geist et al. [2009], Locat et al. [2009] 

2
Bugge et al. [1988] 

3
Borrero et al. [2001], Fisher et al. [2005], Greene et al. [2006] 

4
Edwards et al. [1995], Lee et al. [2004], Greene et al. [2006] 
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5
Hasegawa and Kanamori [1987], Nisbet and Piper [1998], Fine et al. [2005], Mosher and Piper [2007] 

6
Okal et al. [2003], Fryer et al. [2004], Watts et al. [2005]   

7
Beget [2007], Ryan et al. [2010], Haeussler et al. [2014]  

8
Schwing and Norton [1990], Ma et al. [1991] 

9
Synolakis et al. [2002], Sweet and Silver [2003], Watts et al. [2005]  

10
Yalciner et al. [2002], Watts et al. [2005] 

* Geist et al. [2009] 
** 

Borrero et al. [2001] 
*** Blum and Zumberge [2006] 

 

APPENDIX B.  MOMENTUM BALANCE CONDITION  

Consider an infinite slope y < h with x-axis located along the potential shear band (y = 0, 

0 < x < l), which is parallel to the slope surface y = h (similar to Figure 2a). The surface has the 

angle of α with the horizontal, and we assume that the pressure P(x, y) in the slope body can be 

represented as hydrostatic plus the overpressure, ΔP(y), which depends only on depth. This 

assumption is reasonable for mild slopes, and we have   

 0( , ) ( sin cos ) ( )wP x y P g x y P y       (B.1) 

where P0 = P(0, 0) is the pore pressure at x = 0, y = 0, and ΔP(h) = 0, so that the pressure is 

hydrostatic on the slope surface. The equilibrium conditions in terms of the total stresses sx, sy, 

and sxy read [Timoshenko and Goodier, 1970] 

 0 0sin ,     cos
xy xy yx

s s ss
g g

x y x y
   

  
    

   
 (B.2) 

Even through the stress field in the slope body can be non-uniform [e.g., Picarelli et al., 

2000], the conventional assumption made for infinite slopes is that the effective stress, 

𝑠𝑥
′  = sx + P and 𝑠𝑦

′  = sy + P, are independent of x and are functions of depth only [e.g., Davis and 

Selvadurai, 1996]. With this assumption, equations (B.2) become 

 0 0

( )
( ) sin ,     ( ) cos

xy xy y

w w

s s s P
g g

y x y y
     

    
      

   
 (B.3) 

and should be integrated with the boundary conditions sxy = 0, sy = –P(x, h) (or 𝑠𝑦
′  = 0) at the 

slope surface, y = h. We then have  

 0 0( ) ( ) sin ,     ( ) ( ) ( )cos ( )xy w y ws y gy s y g y h P y             (B.4) 

Stress 𝑠𝑥
′  cannot be defined in the infinite slope model. 
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When the shear band appears, the motion of the sliding layer, overlying the shear band, is 

described in terms of the averaged values in (2.1). For the arbitrary layer segment between 

x = a and x = b (0 < a < b < l), the momentum balance (Second Law) condition Fx = d(mvx)/dt in 

the x direction (along the slope) can be written as 

 0 0

0 0 0

[ ( , , ) ( , , )] ( ) sin

h b b h b h

x x r w x

a a a

d
b y t a y t dy dx g dx dy dx v dy

dt
                 (B.5) 

where vx = ∂ux /∂t, m is the layer mass in segment (a, b), and Fx is the x-component of the 

resultant force acting on segment (a, b). Pressure at the bottom of the sliding layer is either 

zero (if the ambient water does not infiltrate the shear band) or it does not contribute to Fx 

(since it acts in the y-direction perpendicular to the layer).  Taking into account that ρ0 is 

constant (homogeneous sediment) and using (2.1), equation (B.5) rewrites as     

 
2

0 0 2

1
b b b

a a a

u
dx dx dx

x h t


 

 
 

     (B.6) 

where τ0 = τg – τr – τw with g = 0ghsin. Given that a and b are arbitrary, equation (B.6), is 

equivalent to (2.3). 

Until this point, we used assumptions of constant α, h, and ρ0, but did not use any 

constitutive relations. We now specify that the layer material is poroelastic, so that the 

constitutive relation along the layer can be written as [Detournay and Cheng, 1993; Wang, 2000]  

 2 / (1 )( ) ( ) ( 1)(1 2 )x x x y yG u x s s P                    (B.7) 

where G = (E0/2)/(1 + ν) is the shear modulus, α is the Biot coefficient, δP is the pressure change 

with respect to the initial pressure, P, in (B.1), and, as discussed in the main text, strains are 

considered zero at the initial state of the infinite slope (when 𝜎𝑥
′  = 𝑠𝑥

′ , 𝜎𝑦
′  = 𝑠𝑦

′ , and δP = 0). 

Typically, soils and soft sediment materials, Biot coefficient α = 1 [e.g., Detournay and Cheng, 

1993; Wang, 2000].  Hence, the last term in (B.7) is negligible. 

For a long, thin sliding layer (Figure 2), we further assume, as common in landslide models 

based on the shear band concept [Palmer and Rice, 1973; Chowdhury, 1978; Puzrin and 

Germanovich, 2005a; Puzrin et al., 2010; Quinn et al., 2011a; Dey et al., 2012], that 

 𝜎𝑦
′  = 𝑠𝑦

′  (B.8) 

in the layer above the shear band. Averaging (B.7) across the layer and using (2.1) gives  
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0

0 02

0

1
,      ( ) const

1

h

x

E u
p p p s y dy

x h





    

    (B.9) 

which aggress with (2.2). 

Substituting (B.9) in (2.3) results in  

 
2 2

0
0 2 2

u u p
E

t h x x




  
  

  
 (B.10) 

so taking into account that due to (B.1), 

 0

0

1
( ) ( , ) sin cos

2

h

w

h
p x P x y dy P g x p

h
  

 
     

 
  (B.11) 

where 

 
0

1
( )

h

p P y dy
h

    (B.12) 

is the thickness-averaged excess pore pressure, we finally arrive at (2.4).  

On the shear band (except a small tip zone), r = –µ𝜎𝑦
′ (0), where µ is the coefficient of 

residual friction between the shear band sides. Hence, due to (B.8) and (B.4), 

 r = –µ𝑠𝑦
′ (0) = –µ(0 – w) g (y – h)cos – µΔP(0) (B.13) 

so that  

 𝜏∗ = (0 – w)(gsin – μcos )h – w + µΔP(0) (B.14) 

in (2.4), (2.5). Therefore, the hydrostatic part of the initial pore pressure, P(x, y) in (B.1), is the 

source of the buoyancy term b = wghsin in (2.5). Equation (2.5) follows from (B.10) in the 

absence of the overpressure (ΔP(0) = 0) on the shear band. 

 

APPENDIX C.  PROPAGATION CONDITION AT THE BAND TIP  

In plane strain, the energy flux to the shear band tip [Cherepanov, 1979; Freund, 1998] 

 ( ) ( )i
ij j x

Γ

u
F Γ n U K vn ds

t


 
    
  (C.1) 

where v us the propagation velocity of the band tip, Γ is the arbitrary, simple, closed contour 

surrounding the tip (solid line in Figure C.1), ui and σij are the displacement and stress 
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components, respectively, in the x, y coordinate set aligned with the propagation direction 

(Figure 2b), i, j = x, y, ni is the external normal to contour, U and K are the elastic and kinetic 

energy densities (per unit volume), respectively, the integration direction in (C.1) is counter-

clockwise, and repeating indices indicate summation of x and y components. Quantity F is the 

total energy flux through contour Γ per unit width in the direction perpendicular to the plain of 

drawing in Figure C.1. In dynamics, integral F in (C.1) is path dependent, but when Γ is shrunk to 

the fracture tip, it gives the total energy flux to the tip [Kostrov and Das, 1975].  In the 1-D case 

under consideration, instead of shrinking Γ, we pass to the limit of x  l – 0, which results in 

the outer asymptote for F considered as a function of the small parameter h/l. The inner 

asymptote is given by the corresponding semi-infinite crack is the half-plane. The inner and 

outer asymptotes differ by higher order terms with respect to h/l << 1 [Dyskin et al., 2000], so 

below we consider the 1-D sliding layer (above the shear band) and the limit of x  l – 0 in 

evaluating F. The energy release rate is then defined by J = F/ v. 

 As in Palmer and Rice [1973], we choose contour Γ with the upper boundary at y = h, while 

the other three boundaries are located far (compared to h), but not too far (compared to l) 

from the band tip (dashed line in Figure C.1).  The left vertical line below the band and the right 

vertical line do not contribute to the integral in (C.1) because on these lines, ui/t = 0 and 

U = K = 0.  The lower horizontal line (below the band) does not contribute to (C.1) because 

ui/t = 0 and nx = 0 on this line.  The top horizontal part of  (located on the slide surface) also 

does not contribute to (C.1) as σijnj = 0 and nx = 0 there.  Hence, the leading term in integral 

(C.1) is due to the left vertical, dashed line above the shear band (Figure C.1).  Because on this 

line, nx = 1, (C.1) simplifies to 

 
0

( ) ( )x
xx

h

u
F Γ U K v dy

t


 
    
  (C.2) 
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Figure C.1.  Integration contours for deter-mining the energy flux (C.1) to the tip of a propagating shear band. 

 

For the sliding 1-D layer (Figure 2 and Figure C.1), σxx = σ, ux = u, and (C.2) reads as  

 ( )F h hv U K     (C.3) 

where 

 
22

0
0 0

0 0

( , ) ( ) ,     ( , )
2 2

E
U x t d E p d p K x t

 
 

            (C.4) 

strain  (x, t) = u/x, material velocity  (x, t) = u/t, and we took into account that ρ0c2 = E.  

Finally, applying in (C.2) Hooke’s law (2.2), boundary condition (2.7), and (C.3) yields 

 
2 2

2 20 0
0 0( ) 1

2 2 2

E hE
F h E p hv p v v

E

   
   

   
          

  

 (C.5) 

where p0 cancelled out due to (2.7). 

 That integral in (C.1) is path dependent can be seen directly from (C.5) where F is a function 

of x.  Yet, as mentioned above, F is the total energy flux through contour , so that, the energy 

release rate J is obtained using (C.5) (in the limit of x  l) and the definition of J = F/v.  Given 

J = Jc, this results in condition (2.9) at the tip of a propagating band.  In obtaining (C.5) and J = Jc, 

we only accounted for the displacement of the upper side of the shear band because for 

l /h >> 1, displacement of the lower side only contributes to the higher terms in J.  Dyskin et al. 

[2000] showed this for a static fracture parallel to the half-space surface, but their result also 

holds in the dynamic case.  Hence, we followed others [Palmer and Rice, 1973; Chowdhury, 

1978; Hellan, 1984; Freund, 1998; Dyskin et al., 2000; Chowdhury et al., 2010; Quinn et al., 

2011a; Dey et al., 2012; Quinn et al., 2012] and ignored displacement of the lower band side.  
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Accordingly, in this work, we also employ the earthquake (fault rupture) mechanics terminology 

and refer to u as relative displacement or slip and to  = u/t as slip velocity or slip rate. 

 The local energy balance condition (2.9) can also be obtained by employing the global 

energy balance criterion [Palmer and Rice, 1973; Rice, 1973; Puzrin and Germanovich, 2005a] 

for the moving (or “growing”) 1-D layer (slide). Let u(x, t) be the longitudinal displacement 

when the shear band has length l = l(t) (Figure 2a).  When time changes from t to t + ∆t, the 

band length changes from l to l + ∆l, and for small ∆t, the displacement change is 

     2( , )
Δ , , Δ (Δ )     (0 )

u x t
u u x t t u x t t O t x l

t


      


 (C.6) 

The increments of work done on the layer above the band over ∆u by τ = τg – τr – τw and by pa 

(at x = 0) are 

 
0

Δ ( , )Δ

l l

W x t u dx 


  ,    Δ (0, )Δa aW hp t t  (C.7) 

where l = vt. Taking into account that at time t, there is no displacement outside the interval 

of (0, l) and using (C.6) yields 

 
0 0

2

0

( , ) ( , ) ( , ) ( , )

( , )
                       ( , ) ( , ) ( , ) ( )

l l l l l

l

l

x t u dx x t u dx x t u x t t dx

u x t
t x t dx l t u l t l O t

t

  

 

 

     


     



  



 (C.8) 

Considering then (C.7) and (C.8) results in work 

 2

0

Δ ( , ) ( , ) (0, )Δ ( )

l

a aW W W t x t x t dx hp t t O t            (C.9) 

done by  over ∆u. 

Because at time t, u /t = 0 for x(l, l + ∆l), the corresponding change of the kinetic energy 

of the sliding layer can be expressed as 

 

2 2Δ

0 0

0 0

2 2 2Δ

0 0

0

( , Δ ) ( , )
Δ

2 2

( , Δ ) ( , ) ( , Δ )
     

2 2

l l l

l l l

l

h hu x t t u x t
K dx dx

t t

h hu x t t u x t u x t t
dx dx

t t t

 

 





     
    

    

          
        

         

 

 

 (C.10) 

Here 
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2 2 2

2

2

( , Δ ) ( , ) ( , ) ( , )
+2Δ (Δ )

u x t t u x t u x t u x t
t O t

t t t t

       
    

      
 (C.11) 

and  

 
2 2

2( , ) ( , )
( )

l l

l

u x t t u l t
dx l O t

t t


      

      
    

  (C.12) 

so substituting (C.11) and (C.12) into (C.10) gives 

 
22

20
0 2

0

( , ) ( , ) ( , )
( )

2

l
u x t u x t h u l t

K h t dx l O t
t t t




   
       

   
  (C.13) 

Inserting then (C.9) and the equation of motion (2.3) in (C.13) leads to 
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 (C.14) 

The change of the elastic (internal) energy can be represented as 

 

( , ) ( , )Δ

0 0 0 0

( , ) ( , )Δ
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Δ ( ) ( )
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 (C.15) 

where 

 
( , ) ( , )
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dx d l d O t

 

     


       (C.16) 

and 
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( , )
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x t t

x t

x t
d x t t O t
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  (C.17) 

Substituting further (C.16) and (C.17) in (C.15) results in 

 
( , )

2

0 0

( , )
Δ ( ( , )) ( ) ( )

l tl

i

x t
W h t x t dx hv t d O t

t




    


     
   (C.18) 

Integrating the first and the second integrals in (C.18) by parts, we obtain 
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 (C.19) 

and 

 
0

( , ) ( , )

0

( ) ( , ) ( , ) ( )

l t l t

p

d l t l t d

 

           (C.20) 

respectively, where we applied in (C.19) the boundary conditions (2.7) and  (0, t) = –pa at the 

layer ends.  Substituting next (C.19) and (C.20) into (C.18) yields 

 
0

( , )

2

0

( , )
Δ (0, ) ( ) ( , ) ( )

l t l

i a

p

x t
W h t t p v d x t dx O t

x




    


 
      

  
   (C.21) 

Finally, the energy dissipated at the tip of the shear band (Figure 3b) when it propagates 

distance l is given by 

 
0

Δ [ ( ) ] Δ
r

S r cU l d J l



        (C.22) 

The energy conservation suggests that the work done on the body by external forces equals 

to the energy change. In the absence of heat transfer and pressure dissipation processes, the 

energy balance condition  

 i S aW K U W W       (C.23) 

can be rewritten combining energy terms (C.9), (C.14), and (C.21) as 
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Collecting terms in (C.24) and taking into account that l = vt reveals the condition  

 
0

( , )

20( ) ( , )
2

l t

c

p

h
h d l t J




   


   (C.25) 

at the tip of dynamically propagating shear band. This condition is valid both for linear (2.2) and 

nonlinear constitutive laws  ().  In the linear case, using Hooke’s law (2.2) and the boundary 

condition (2.7) in (C.25) results in 

 2 2 20( , ) ( , )
2 2

c

hE h
l t v l t J


    (C.26) 

which, given that E/ρ0 = c2, is equivalent to (2.9). 

 

APPENDIX D.  POSSIBILITY OF CONTINUOUS SOLUTION 

It may appear that it is possible to illuminate the discontinuity by simply allowing n = 1 in (2.12), 

which corresponds to c = 0. We then have  
–(B) =  (B) and  

–(B) =  (B), so that (4.2) with 

(4.3) result in  

 ( ) 1
( ) ( ) ( , ( ) / )

B

l

s B B

x

D
D x T x t x l c dx

c h


        (D.1) 

where D(l, t) corresponds to the propagating tip (Figure 4). Substituting the dynamic fracture 

condition in (3.4) together with (4.4) in (4.2), results in equation  

 1

1 0

( )1 /

1 /

s lv c

v c






 


 (D.2) 

for the band tip velocity v1. From here, 
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v l c
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 (D.3) 

which can also be formally obtained by replacing c with 0 in (4.7). 

 It is impossible, however, to make the next step and integrate (D.3) in order to obtain t(l) 

using (4.6).  Indeed, the integral in (4.6) diverges for any l > l0 when c = 0, which indicates the 

infinite time required for the shear band to reach velocity v1(l). The reason for this effect is that 

both dl/dt = 0 and d2
l/dt2 = 0 at t = 0 for dl/dt defined by (D.3). Because both the velocity and 

acceleration are zeroes at the initial moment, the shear band effectively does not grow and the 

infinite time is required to propagate the band to any length l > l0. 

 Therefore, while the continuous solution can be formally written as a function of l, it does 

not exist on the (x, t) plane when c = 0 (or n = 1).  The obtained solution with propagating 

discontinuities, however, is stable and models reasonably well the dynamic propagation of a 

shear band. 

 

APPENDIX E.  RECURRENCE SOLUTION  

Consider the general case of the shear band propagation starting at time of tA when it has the 

length of lA, that is, at point A in Figure E.1, where the discontinuity reflects or initiates from the 

band tip.  Let the limits of  (x, t) and  (x, t) when (x, t) approaches line AC (Figure E.1a) from 

below be  –(x, t) and  –(x, t), respectively. Our goal is to express all unknown quantities in 

domain ACFE through values of  – and  – on AC. Then, quantities in domain EFXL, which is 

above ACFE (Figure E.1a), will be found by using the solution for line EF (when approaching this 

line from CEF) and considering E instead of A as a starting point.  Domain above line XL can be 

treated similarly. 
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 (a) 
 (b) 

Figure E.1. (a) Discontinuity (dashed line) reflected from or initiated at point A(lA ,tA) at the band tip and 
reflected consequently from points C, E, F, L, and X.  (b) Magnified view of domains ACE and CEF in (a). Q 
and K are the arbitrary points in ACE and CEF, respectively. Points P, R, D on the tip line AE and points B, I, J 
on the discontinuity line AC are connected to Q and K by the corresponding characteristics. 

 

The discontinuity jump condition (3.5) at the arbitrary point B(xB, tB) (Figure E.1b) on the 

characteristic line AC reads 

 
( ) ( )

( ) ( )
B B

B B
c c

 
 

 
     (E.1) 

Similar to (4.2), integrating (4.1) along the characteristic line BD and using (E.1) results in 
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       (E.2) 

Using then (3.3) (second equation), (3.4) (dynamic condition) in (E.2) gives an equation for the 

band tip velocity, v1, between points A and E (Figure E.1b). Similar to (4.5), (4.8), we have 

 1

1

1 ( ) / ( , )

1 ( ) / c

v l c l B

v l c






 


 (E.3) 

where 

 ( , ) ( ) ( ) ( ) ( ) /s s Bl B l x B B c          (E.4) 

and xB is related to tB by 

 ( )     (0 ,   / )A B B A B A A B A Al x c t t x l t t t l c         (E.5) 



144 
 

Solving (E.3) for the band tip velocity, we arrive at 
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 (E.6) 

and the band length, l(t), is defined by the implicit relation  
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    (E.7) 

obtained by integrating (E.6). 

Strain and material velocity at the tip can be found from (E.2), using (E.6) and (3.3), as 
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   (E.8) 

In particular, for point A(lA, tA) in Figure E.1, inserting l = lA in (E.8) yields 
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 (E.9) 

If point A is the initial point where the band starts propagating and discontinuity initiates, 

then tA = 0, lA = l0, and  –(B),  –(B) are given by (4.3). In this case, (E.4) becomes  

 ( , ) ( )sl B l   (E.10) 

so that expression (E.6), (E.8), and (E.9) reduce to equation (4.7), (4.9), and (4.14), respectively, 

while (E.7) reduces to (4.6). 

Now consider the arbitrary point Q(x, t) in domain ACE in Figure E.1b.  Integrating (4.1) 

along PQ and BQ delivers 
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 (E.11) 

where (P) = 1(lp), (P) = 1(lp), and point P(lP, tP) is located at the crack tip line x = l(t) (Figure 

E1.b). Using (E.1) and (E.8) with (E.11), we have for point Q(x, t) 
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where δ(x, B) and δ(lP, I) are defined by (E.4) with l  x, l  lP, and B  I. In (E.11), points B 

and P are related to point Q(x, t) by 

 ( ) ,       ( )B B B A A Bc t t x x c t t l x       (E.13) 

and  
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       (E.14) 

respectively.  Point I(lI, tI) is obtained from  

 c(tP – tI) = lP – xI ,     c(tI – tA) = lA – xI (E.15) 

Next, consider the arbitrary point K(x, t) in domain CEF and the corresponding point P(lP, tP) 

at the crack tip x = l(t) (Figure E.1b). The characteristic line PK crosses line CE of the reflected 

discontinuity at point M(xM, tM). Since the strain and material velocity and their derivatives have 

continuous values in the regions above and below CE, it is permissible to integrate (4.1) from P 

to M and from M to K separately and then sum up the resulting equations. This yields  
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          (E.16) 

Using then condition (3.5) on discontinuity CE (i.e., dt/dx = 1/c) results in 
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        (E.17) 

which shows that the discontinuity does not contribute to the result of the integration. In other 

words, crossing the discontinuity line does not affect the characteristic equation.  

Therefore, for point S (x = 0), where the wave, started from R (x = l(t)), reflects back to 

arrive at K, it is possible to simply integrate (4.1) along RS. We then find the material velocity at 

S 
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   (E.18) 

where point J is defined from (E.14) and (E.15) with (tP, lP) and (tI, lI) replaced by (tR, lR) and 

(tJ, lJ), respectively, while δ(lR, J) is given by (E.4) with l  lR, B  J.  Then, for the arbitrary point 

K(x, t) in CEF, integrating (4.1) along characteristics PK and SK yields  
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 (E.19) 

When point A coincides with the initial position of the crack tip (i.e., tA = 0, lA = l0), per (E.10), 

δ(lR, J) =  
S(lR), δ(lP, I) =  

S(lP), and equations (E.12) and (E.19) reduce to (4.13) and (4.15), 

respectively. 

Equation (E.1) through (E.19) are valid until the discontinuity, propagating along CE, reaches 

the band tip at point E(lE, tE). The position of E is given by 
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Solution (E.19) enables finding  and  at the arbitrary point K(x, t) in CEF. Hence, 

considering the limits of lP  lE and lI  lC for the arbitrary point N on the discontinuity line EF 

(Figure E.1b), we find  
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 (E.21) 

where δ(lE, C) is given by (E.4) with l and B replaced by lE and C, respectively.  

Equations (E.21) can now be utilized as the “initial” conditions to find the solution in domain 

EFXL (Figure E.1a) directly from (E.6), (E.8), (E.9), (E.12), and (E.19) simply by renaming the 

unknowns.  The initial values of  – and  – (when lA = l0, tA = 0) are given by (4.3). This 

establishes the recurrence relations for finding the solution everywhere (Figure E.1a).  

 

APPENDIX F.  ARRIVAL OF THE DISCONTINUITY AT THE SHEAR BAND TIP  

If the discontinuity propagating along CE in Figure 4 reaches the shear band tip, it reflects and 

propagates again towards x = 0. Whether this indeed happens can be characterized by 

considering the difference  
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between the arrival times of the discontinuity (t = (l0 + x)/c) and the band tip (t(x) in (4.6) with 

l = x) to a given location x (Figure 4a and Figure 4b). Because 𝛾𝑠
2(𝑙) − 𝛾𝑐

2  monotonically 

increases with l, t(x) in (F.1) monotonically decreases. Hence, the necessary and sufficient 

condition for AE and CE to intersect (Figure 4) is given by 
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  (F.2) 

If condition (F.2) is not satisfied (e.g., for t  0 as x  ), the discontinuity will never 

reach the band tip (Figure 6a). In this case, while the tip remains slower (v < c), its velocity, v, 

approaches the discontinuity velocity, c, and it has the head start, x = l0, large enough to always 

remain ahead the discontinuity (Figure 4b). For this to happen, the integral in (F.2) must 

converge, which depends, essentially, on the distribution of T(x, t).  For example, for the 

integral to converge, it is sufficient if |1(l)| increases with l faster than √𝑙 as l  . This is 

probably typical for many practical cases, but not sufficient for (F.2) to be satisfied. Then the 

discontinuity always lags behind the band tip. 

In the case of the homogeneous distribution (5.1), the dimensionless form  = (c /l0)t of 

(F.2) is given by using (5.6) (with  = ) and s () from (5.7). In this case, 

 * 2
lim ( ) 2 ln 1

1n n


  



 
     

 
 (F.3) 

where  ≥ 0 corresponds to the case of the discontinuity reflected from x = 0 that would never 

catch up with the band tip. This depends upon two parameters, 𝜆∗ and n.  As discussed in 

Section 4.4, 0  𝜆∗  1, and 1< n < 2 is the range of primary interest in applications. 

 Contours of  (n, 𝜆∗) for the domain of 0  𝜆∗  1 and 1 < n < 2 are shown in Figure F.1a. We 

observe that the region of  ≥ 0 (above the line of  = 0) occupies most of this domain. In 

particular,  ≥ 0 for n ≥ 1.4392, and the entire range of 0  𝜆∗   1, for n ≥ 1.231 and 

0  𝜆∗   0.75, and for n ≥ 1.067 and 0  𝜆∗   0.5. For 𝜆∗  = 0.75 and n = 1.23, the lines of 

discontinuity and band tip intersect, but only at  = 259.  In most practical cases, such lines can 
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be considered not intersecting since the band propagation will probably end before it reaches 

the length of 259l0 for other reasons such as the passive failure near the band tip. 

 (a)  (b) 

Figure F.1 Contours of  (n, 𝜆∗) for the domain of 1< n < 2, and (a) 0  𝜆∗  1 and (b) 1  𝜆∗  2 (Section 

10.1). Region  ≥ 0 corresponds to the case of reflected discontinuity that would be “chasing” the shear 
band tip, but would never catch up with it (Figure 4b). The discontinuity would not ever reach the band tip 

also for the points on line  = 0. For a smaller region  < 0 below the line of  = 0 in (a), the shear band 
does reach the band tip (Figure 4), but this may happen too far in the propagation process (e.g., at 

 = l / l0 = 259 for 𝜆∗  = 0.75 and n = 1.230) to be physically unrealistic. In (b), this region of  < 0 is 
considerably larger, however. 

 

 If the reflected discontinuity catches up with the band tip E (Figure 4), it reflects and 

propagates back to the slope end x = 0 where it reflects again and starts once more “chasing” 

after the band tip (Figure 6). To characterize the possibility for the discontinuity to actually 

reach the tip for the second time, we follow the above approach and consider the difference 

between the second arrival time of the discontinuity (t = tE + (lE + x)/c) and the band tip (t(x) in 

(4.6) with l = x) to a given location x (where lE is found from (4.20) and lR from (4.16) or (4.23)). 

In dimensionless form, this difference writes as 
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  (F.4) 

with s() = – 1 – ( – 1) / 𝜆∗  from (5.7) in the case of the homogeneous loading (5.1). 

Parameters R(, ) = lR /l0  and E = lE /l0  are defined from (G.18) and (G.16) (Appendix G), 

respectfully, and  and  are related by  = E + E +  with E from (G.16) (Appendix G). 

 Numerical integration in (F.4) represents no difficulty. The ranges of 𝜆∗ and n, satisfying 

condition  () > 0 in (F.4), which implies that the discontinuity does not arrive at the band tip, 

cover a broader domain than  > 0 in (F.2) for the first reflection at the band tip. In particular, 
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if n ≥ 1.04, Δ ≥ 0 for the entire range of 0  𝜆∗  1 and 0    103 as long as ξ  103. We chose 

this upper limit because for all intents and purposes, it can be considered that the shear band 

propagation will end (with global failure) before its length reaches  = 103.  Similarly, Δ ≥ 0 for 

0  𝜆∗  0.75 when 1  ξ  103, if n ≥ 1.02, for 0  𝜆∗  2 if n ≥ 1.195, and for 0  𝜆∗  1.5 if 

n ≥ 1.10. 

 For the dynamic version of Palmer and Rice’s [1973] model (Section 10.1), the range of 𝜆∗ is 

broader as in this case, it can be both 0  𝜆∗  1 and 𝜆∗ ≥ 1. The possibility of the discontinuity 

to arrive at the band tip for the first time is still described by (F.4), however. In particular, Figure 

F.1a still covers the case of 0  𝜆∗  1. The case of 𝜆∗ ≥ 1 is shown in Figure F.1b. As can be 

observed, the domain of discontinuity reaching the band tip ( < 0) is considerably larger than 

that of not reaching ( ≥ 0). For example, if the discontinuity does not arrive to the tip (  0) 

prior to ξ = 103 for 𝜆∗ > 1.605, and the entire range of 1 < n < 2 used in Figure F.1b, or for 

1 < n < 1.43, and any 𝜆∗ > 1. 

 

APPENDIX G.  FIRST TWO TERMS IN THE RECURRENCE SOLUTION 

Appendix E offers the recurrence solution to the dynamic problem under consideration (Figure 

2).  Using the solution for domain ACFE, we obtain below explicit expressions for  (x, t) and 

 (x, t) in domain EFXL (Figure E.1a) with the initial conditions (4.3). These expressions are given 

in Section 4.3 and used in examples presented in Section 5.3. 

Domain EFXL can also be seen in Figure G.1b (point X is not shown in Figure G.1a). Domain 

ACFE in Figure E.1a corresponds to domain ACFE in Figure G.1a, where A(l0, 0) is the point 

where the dynamic growth initiates. Line AE represents the band tip locations before the 

discontinuity, initiated at A, first arrives at the band tip at E. The solution in ACFE is simply the 

“zero term” in the recurrence solution (Appendix E), which corresponds to the initial conditions 

(4.3) and described in Section 4.3.  Tip line EL in Figure G.1a is between the first and second 

arrivals of the discontinuity to the band tip. Band velocities, strains, and material velocities on 

the tip lines AE and EL (Figure G.1a) are denoted by v1,  1,  1 and v2,  2,  2, respectively. 
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(a) (b) 
Figure G.1.  (a) First two reflections of the discontinuity from the band tip. AE is the band tip line, x = l(t), 
before the discontinuity arrives to the tip for the first time at E, and EL is the tip line after the first arrival of 
the discontinuity at E, but before the second arrival at L. U is the arbitrary point on the tip line EL, while N, R, 
and I are the corresponding points on the discontinuity line EF, on the tip line AE and on the characteristic 
line AC, respectively. G and Z are the arbitrary points (with Z located in domain EFL) above and below the 
discontinuity line FL, respectively. They are related to points H, S on EL, points N, B, D on EF, points R, W, P 
on AC, and points J, T, I on AC by the corresponding characteristic lines. Points N, B, D on EF correspond to 
points I, T, I on AE, respectively. (b) Location of the shear band tip, x = l3(t), after the second reflections of 
the discontinuity from the band tip. After the discontinuity, propagating from the band tip at L is reflected 
back from the slide end, x = 0, at X, it is approaching to the moving band tip, x = l3(t), again. In this case, X1 
can be an infinite point or point that the discontinuity arrives the third times at the band tip. Point D1 is on 
x = l3(t) above L, and corresponds to wave reflected from x = l2(t) at point U and x = l1(t) at point R. 

 

The crack velocity at EH is obtained from (E.6) by changing v1  v2 and B  N. Then, 
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where point N(xN, tN) is the arbitrary point on the discontinuity line EF, function 𝛿(𝑙, 𝑁) is 

defined by (E.4), and xN and tN are related through 

 ( )     (0 ,   / )E N N E N E E N E El x c t t x l t t t l c         (G.2) 

Using (E.21) with the initial condition (4.3), we obtain 

 2( , ) ( ) ( ) / ( )s s R c s Rl N l l l        (G.3) 

where function δ(l, N) is defined in (E.4). Equation (G.24) with (G.1) gives the tip velocity 
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at EL, that is, after the tip is reached by the discontinuity. Here lR(l) is defined from the solution 

of the initial value problem in (4.19) (with lRU replace by lR) and related to point N by  
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The strain and material velocity at the band tip on EL (Figure G.1a) are obtained from (E.8) 

as 
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Using (G.24), (G.6) can be written as 
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 (G.7) 

which results in (4.22). Taking into account (4.9), equations (G.4) and (G.7) result in (4.18) and 

(4.22), respectively. 

Solution (E.12) can now be used for the arbitrary point Z(x, t) in domain EFL (Figure G.1a), 

which yields 
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where the relation between point B on line EF and point H on the band tip line EL is obtained by 

considering lR  lW and xN  xB in (G.5). Using (E.21) with the initial condition (4.3) and 

substituting (G.24) into (G.8) gives 

 

2 2

2

2 2

2

2 ( , ) ( ) ( ) 2 ( )
( ) ( ) / ( ) ( )

( , )
2 ( ) ( )

( ) ( ) / ( ) ( )

c c
s H s R s

s H s W c s W s R

c c
s H s R

s H s W c s W s R

x t l l x
l l l l

x t
l l

c l l l l

 
   

    

 
 

    


    

 

    
  

 (G.9) 

which is reduced to (4.21) by employing (4.9) and (G.7). Here points R, H, and W are on the 

band tip line AC (Figure G.1a), they are defined in (4.23) and (4.24). 

For the arbitrary point G(x, t) above line FL (Figure G.1a), (E.19) results in 
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where points D on the discontinuity line EF and S on the band tip line EL (Figure G.1a) are 

related through (G.5) with lR  lS and xN  xD. Then, (G.10) reduces to (4.25) by using (4.9) and 

(G.7). Points H is given by (4.23) (second equation), while points S and P are defined by 
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respectively. Function lRS(l) in (G.11) is obtained by replacing lRU with lRS in (4.19) and solving 

the obtained equation. 

Solutions (G.4), (G.7), (G.9), and (G.10) are valid until the discontinuity reaches the band tip 

for the second time at point L(lL, tL) given by 
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In the normalized form (4.28), equation (4.18) for the band tip velocity simplifies to 
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while equations (4.22) for strain and material velocity at the fracture tip become 
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 (G.14) 

In (G.13), (G.14), RU() is found by solving (4.19) written in the dimensionless form as 

 

1

2 1

1 1
1 1 ,    ( ) 1   ( ,  1 ( ) )

( , ) ( )

RU
RU E E RU E

RU RU

d

d V V


      

   



   
         
   

 (G.15) 

Parameter E is obtained from (4.20), which becomes 
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Normalized strain and material velocity at the arbitrary point (, ) above the discontinuity 



153 
 

line EF (Figure 6) are obtained from (4.21) as 
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Functions H (, ), W (, ), R (, ) are given by (4.23) and (4.24), expressed in the 

dimensionless form as 
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and 
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respectively. Here RH () is defined by solving (G.15) with RU replaced by RH. Function R (, ) 

is computed from the first equation in (G.18), while H (, ) is found from the second equation. 

Once H (, ) is determined, W (, ) is obtained from (G.19), and the propagation length as a 

function of time (or vice versa) is found from (4.17) written in dimensionless form as 
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Finally, for point (, ) above line FL in Figure 6, the distributions of  and  above line FE in 

Figure 6 are given by (4.25), which in the normalized form reads as  
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Here H (, ) and W (, ) are defined above (equations (G.18), (G.19)), while U (, ), is 

computed from 
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with RS () being the solution of (G.15) when R is replaced by RS. In the case of homogeneous 

load (5.1), the elementary expressions (5.5) – (5.8) are to be used in (G.19) – (G.22). 

The crack velocity v3 = dl3/dt after point L (i.e., in domain LXX1, in Figure G.1b) is obtained 

from (G.1) by replacing v2 with v3 and R with U. Then, 
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where similar to (G.24), using (E.4) and (E.21) 
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and lU(l) is defined from the solution of the initial value problem  
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The strain and material velocity at the band tip after point L (Figure G.1b) are obtained by 

rewriting (E.8) as 
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APPENDIX H.  DISONTINUITY MAGNITUDE  

The attractive features of the landslide model presented in this work are its simplicity and the 

possibility of obtaining closed-form solutions for the dynamic formulation. The appearance of 

the discontinuity in this model is a result of the simplified description (2.12) of the static-to-

dynamic transition of the shear band.  Such discontinuities are typical for one-dimensional 

models of this type [Burridge and Keller, 1978; Hellan, 1984; Freund, 1998; Whitham, 1999], 

and the obtained solutions can be reasonably acceptable if the discontinuities are not too large 

and do not grow as the shear band propagates.   

To assess the evolution of the discontinuity, consider the limit of Q(x, t)  B in Figure 4a 

and use (4.13) (with lP  l0), which results in 

 1 0 1 0( ) ( ) ( ) / ,      ( ) ( )BsB x l c B l         (H.1) 

Therefore, taking (4.4) and (4.14) into account, we find that the value of 
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       (H.2) 

of the discontinuity remains constant as the discontinuity moves along line AC in Figure 4. 
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When the discontinuity reflects from x = 0, it simply changes its sign, which can formally be 

seen by considering the arbitrary point (x, t) and the limit of (x, t)  M on line CE in Figure 4a.  

Depending on which side of CE this limit is taken, we use either (4.13) or (4.15) (with lR  l0) to 

obtain  
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respectively.  Hence 
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        (H.5) 

which is independent of M and has the same magnitude as (H.2), but the opposite sign. Note 

that we used here  
– –  

+ and  
– –  

+ (compare to (H.2)) because this corresponds to our 

choice of signs in Figure 4b, where the discontinuity does not reach the band tip and its 

magnitude remains constant. 

In the case of Figure 4a, the discontinuity is also described by (H.5) and maintains the same 

constant magnitude (H.2) until it reflects from the band tip at point E.  Indeed, considering the 

limit of (x, t)  N on line EF in Figure 6 and using either (4.15) (with lP  lE) or (4.21) (with 

lH  lE and lW  l0) results in 
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and 
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respectively.  We then obtain the discontinuity value  

 
2

0 0
1 2

0

( )( ) ( )
( ) ( )

( ) ( ) 2

s E

s E s E

lN N
N N

c n l l

  
 

 

 
  

    
 

 (H.8) 

after the first reflection from the band tip. This value is independent of point N and, hence, 

does not change when the discontinuity propagates from the band tip E back to the slide end F, 
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where x = 0.  The value (H.8) of the discontinuity is positive because the static strain, s(lE), at 

point E is negative.  Furthermore, because per (H.2), 0 < 20 < γ0 (since n > 1) and because γ0 < –

γs(lE), we obtain from (H.8) that  

 
1 0 02 2

0

1/

( ) /s E

n

l 
      (H.9) 

which means that the magnitude of the discontinuity decreases after it reflects from the band 

tip E. 

 
Figure H.1. Relative discontinuity magnitude 1/0 as a function of 𝜆∗ for n = 1.05 (red solid line), 1.15 
(green dashed line), and 1.3 (blue dotted line). 

 

It turns out that each reflection from the band tip reduces the discontinuity magnitude (e.g., 

by an order in Figure 7 and by two orders in Figure 9).  Furthermore, because n is relatively 

close to 1 (Section 5.2), this magnitude is only a small fraction of 0 (the strain required for the 

shear band to start growing dynamically), even prior to the first reflection from the tip 

(equations (H.2) and (H.5)), after the discontinuity just appears.  As the discontinuity 

propagates, it may retain constant magnitude, if it does not reach the band tip, or keep 

reducing the magnitude so long as it continues to reflect from the tip.  This somewhat justifies 

the discontinuities in our model. This can also be seen in Figure H.1, where the dependence of 

the relative discontinuity change 1/0 (after the first reflection from the band tip) is shown as 

a function of 𝜆∗.  The discontinuity change is more significant for smaller 𝜆∗ and for greater n, 

but in all cases 1/0 < 1. 

 

APPENDIX I.  COMPARISON TO PUZRIN ET AL. [2010]  

To compare this work with Puzrin et al. [2010], we rewrite their eq. (29) for the shear band 
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propagation velocity, v = [2 (l – l0)/(30h)]1/2, and eq. (30) for the corresponding landslide 

velocity, �̅� = v0 =[20 (l – l0)/(3h)]1/2, using the dimensionless formulation (4.28) as a single 

relation  

  
0 *

2( 1)

3

v

c c

 

 


   (I.1) 

where we took into account that in both works, the initial shear band length (i.e., under static 

conditions), l0, is the same and given by (5.3). The comparison is shown in Figure I.1.  The shear 

band velocity (5.5) is plotted in Figure I.1a as a function of  for n = 1.1 and 𝜆∗ = 1 (blue, bold, 

solid line), 0.5 (blue, thin, solid line), and 0.1 (blue, dashed line). Velocity (I.1) is plotted for the 

same 𝜆∗ of 1 (red, bold, solid line), 0.5 (red, thin, solid line), and 0.1 (red, dashed line). 

According to (I.1) and Figure I.1a (blue lines), the shear band accelerates from zero velocity, and 

the velocity grows faster than in our work (eq. (5.5)).  In both works, it already reaches the level 

of c at   2, but then the velocity (I.1)  grows unboundedly becoming as high as  2.5c at  = 10 

(Figure I.1a).  Puzrin et al. [2010] indicated that in reality, the slope would fail much before the 

band velocity reaches c as, indeed, happened in the analysis of the several real slides they 

analyzed.  

 The band velocity (5.5), obtained in this work, remains bounded (v < c), but in the beginning 

of its growth, the band accelerates at the rate comparable to Puzrin et al. [2010] (Figure I.1a). It 

should be noted that this acceleration occurs not from zero velocity, but from the initial velocity, 

v0, given by (4.5).  Although this is a consequence of our model being one-dimensional (and so 

is the model of Puzrin et al. [2010]), such a velocity jump could be interpreted as fast 

acceleration during the short initial stage when the dynamic mechanism of the band growth is 

being engaged. 

 The average landslide velocity (6.14) is plotted with (I.1) in Figure I.1b (see also Figure 12) 

for the same parameters (n = 1.1 and 𝜆∗ = 0.1, 0.5, 1) as in Figure I.1a.  As can be observed, the 

slide velocity (6.14) increases much faster than that given by (I.1). For example, when  = 100, 

�̅� (𝛾0𝑐)⁄  in (6.14) grows from 50.6 to 99.0 as 𝜆∗ decreases from 1 to 0.5, and for 𝜆∗ = 0.1, 

�̅� (𝛾0𝑐)⁄  reaches 100 when  = 21.8.  In contrast, v / c in (I.1), ranges only from 8.1 to 25.7 with 

𝜆∗ decreasing from 1 to 0.1.  Hence, using (I.1) may result in a considerable underestimation of 
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the slide velocity and, consequently, the tsunami magnitude. 

  (a)  (b) 

Figure I.1. (a) Dimensionless shear band velocities (5.5) (blue lines, this work) and (I.1) (red lines, Puzrin et 
al. [2010]) and (b) dimensionless slide velocities (6.14) (blue lines, this work) and (I.1) (red lines, Puzrin et al. 
[2010]) for n = 1.1 and 𝜆∗ = 0.1 (dashed lines), 𝜆∗ = 0.5 (thin, solid lines), and 𝜆∗ = 1 (bold, solid lines). (c) 
Legend to Figures (a) and (b). 

 

APPENDIX J.  RECURRENCE RELATIONS FOR SLIDE VELOCITY  

The recurrence solution obtained in Appendix E is now used to find the recurrence relations for 

the slide velocity, �̅�. As in Appendix E, consider point A(lA, tA) where the discontinuity imitates, 

when the band begins growing at t = 0, or reflects from the tip at time tA, when it has the length 

of lA (Figure E.1).  The objective is to express the slide velocity in domain ACFE (Figure E.1) 

through the solution valid below the discontinuity line AC.  Then, the slide velocity in domain 

EFXL will also be found by using the solution in ACFE, which is just below EFXL (Figure E.1). 

Slide velocity is defined as the average material velocity (6.7). To evaluate this velocity, we 

first integrate the second equation in (3.1) with respect to x for constant t from tA < t < tA + lA / c 

(Figure E.1). We obtain  
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         (J.1) 

where xB(t) = lA – c(t – tA). Changing the order of integration and differentiation in the left hand 

side integrals and taking into account that both l and xB are functions of time, we rewrite (J.1) 

as  
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where we used (2.11), (4.8), v1(l) is defined by (E.6), and  (l, t) = 1(l), η (l, t) = η1(l) given by 

(E.8). Using next the jump condition (4.4) and integrating (J.2) with respect to time, we arrive at  
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    (J.3) 

where dl = v dt.  

Finally, substituting (J.3) into (6.7), we obtain 
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  (J.4) 

which is valid for tA / c > t > tA + lA / c. 

Determining �̅�(l) for tA + lA / c > t > tA + (lA + lE)/ c is similar (Figure E.1), but with point M 

(xM(t) = lA + c(t – tA); Figure E.1) instead of B and lE defined by (E.20). Since the discontinuity 

travels towards x = 0 with the speed of c, we have  
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instead of (J.2). Using the jump condition (4.4) and integrating (J.5) with respect to time, yields 
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    (J.6) 

which is similar to (J.3). Here, lC = l(tC) is the shear band length when the discontinuity is at 

point C(0, tC) being reflected at x = 0 for the first time. Although equation (J.6) is nearly identical 

to (J.3), the integration intervals now have lC. The first integral in (J.6) can be expressed from 

(J.3) as 
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    (J.7) 

With (J.7) in (J.6), the average, slide, velocity for tA + lA / c < t < tA + (lA + lE)/ c becomes the same 

as (J.4).  

Solution (J.4) is valid from point A (t = tA) through the moment tE when the discontinuity 

reaches the band tip at point E. This establishes the recurrence sequence for finding the slide 

velocity everywhere at t > tA in Figure E.1 since at each “step” the next term, �̅�(lA), is found 

during the previous “step”. Initially, lA = l0, tA = 0, and �̅�(l0) = 0. 
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Substituting strain and material velocity (4.9) at the tip together with �̅�(l0) = 0 into (J.4) 

results in (6.11), which, therefore, is valid not only for t < l0/ c, but also for l0/ c < t < (l0 + lE)/ c 

(since (J.4) is applicable for tA < t < tA + (lA + lE)/ c). 

For the integration interval of EFXL above point E but below point L (Figure E.1), that is, for 

(l0 + lE)/ c < t < (l0 + 2lE + lL)/ c, the slide velocity is obtained directly from (J.4) by changing 

lA  lE, v1  v2, 1  2, and η1  η2, which yields 
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where v2(l) is defined in (G.4). In the case of lA = l0, tA = 0, and �̅�(lE) is also given by (6.12). In the 

case of l = lE, (6.11) and (6.12) give the same result, which implies that the slide velocity is 

continuous function of t (or l). 

 

APPENDIX K.  EFFECT OF WATER RESISTANCE  

For both the exact and asymptotic solutions, the distribution of material velocity becomes flat 

for large enough τ or  (Figure 14b).  Hence, in this case, the material velocity can be reasonably 

assumed uniform along the slope. Accordingly, we evaluate the effect of water resistance to 

the landslide by letting the resistance also be uniform.  

The resistance is usually a function τw(�̅�) of the sliding velocity, �̅�, so T(x, t) can be expressed 

as  

 
1( , ) ( ) ( ),       ( )wT x T x T t       (K.1) 

where T1(x) = τ1(x) /E, Tw(�̅�) = τw(�̅�) /E, and τ1 = τg – τr is defined in (2.5). 

Substituting (K.1) into the second equation in (3.1) and integrating with respect to x yields  
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which has an additional (last) term compared to (6.8).  Expression (6.9) is still valid in this case 

and (6.10) is also valid with the same additional term in (K.2) with c–2, and it is convenient to 

express static strain (4.8) as 
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which contains T1(x) instead of T(x). Assuming v(l) = c (for long bands), then, similar to (6.11), 

the average material velocity  
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Note the additional term (related to τw) in (K.4) compared to (6.11). 

Differentiating (K.4) with respect to l, and using (K.3) results in 
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where �̅�(l0) = 0 as the slope is initially at rest. This is clearly an approximation since, strictly 

speaking, (K.5) is obtained for l >> l0, while the boundary condition, �̅�(l0) = 0  is used for l = l0.  

Nonetheless, (K.5) is asymptotically accurate for large l and small Tw(�̅�) because it coincides (up 

to the higher order terms) with (6.11) and (6.12) or with (J.4) and (J.8) when l  . 

Equation (K.5) can be solved for the slide velocity, �̅�(l), when function Tw(�̅�), is specified. In 

dimensionless form, (K.5) reads 
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      (K.6) 

where Ω̅ = �̅� (𝛾0𝑐)⁄ , 𝑆(𝜆) = 𝑇1̅(𝜆𝑙0) 𝑇0⁄ , 𝐹(Ω̅) = 𝑇𝑤(�̅�) 𝑇0⁄ = 𝑇𝑤(𝛾0𝑐Ω̅) 𝑇0⁄ , 𝑇0 = 𝑇1̅(𝑙0), 
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and * = hγ0 /(T0l0) which is consistent with (4.29) because Tw (or τw) in (4.29) was assumed 

negligible and, hence, �̅�(𝑙0) = 𝑇1̅(𝑙0) = 𝑇0. 

For physically acceptable functions Tw(�̅�) (or 𝐹(Ω̅)) and condition Ω̅(1) = 0, the first order 

ordinary differential equation (K.6) has a unique solution, finding which represents no 

numerical difficulty. Note that equation (K.6) is not singular if 𝜆∗  0. Indeed, for 𝜆∗  0, it 

reduces to the algebraic equation (generally, transcendental) 𝐹(Ω̅) = S(𝜆) – 1/𝜆 for Ω̅(𝜆). Hence, 

for   1, 𝐹(Ω̅)  F(0) = S(1) – 1 = 0 (since �̅�(1) = 0), which is equivalent to Tw(0) = 0. This 

condition is satisfied because the water resistance is zero for zero velocity. 

Water resistance is often assumed to be proportional to �̅�2 [Harbitz, 1992; Pelinovsky and 

Poplavsky, 1996; Watts, 1998; De Blasio, 2011].  The coefficient of proportionality, however, 
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depends upon several factors such as the slide geometry, character of flow (turbulent or 

laminar), and slide surface material (e.g., sand or clay).  Typically, for a slide moving downhill 

after it is separated from the substrata, the main resistance component is due to the Stokes 

drag [Pelinovsky and Poplavsky, 1996; Watts, 1998; De Blasio, 2011], which is proportional to 

the cross-sectional area of the sliding body (in the direction perpendicular to sliding).  In our 

notations, the Stokes drag can be written in the form of the effective dimensionless longitudinal 

load, 𝑇𝐷(�̅�) = 𝐶𝐷𝜌𝑤ℎ�̅�2 (2𝐸𝑙)⁄ , in the slide, where CD is the drag coefficient and ρw is the water 

density.  The shear load acting on the top surface of the slide is also proportional �̅�2 [Harbitz, 

1992; Ding et al., 2004; Burguete et al., 2007; De Blasio, 2011], and can be written in the same 

form as 𝑇𝑆(�̅�) = 𝐶𝑆𝜌𝑤�̅�2 (2𝐸)⁄ , where the surface friction coefficient CS may be two to three 

orders of magnitude smaller than CD [De Blasio, 2011]. Then the combined water resistance 

load 𝑇𝑤(�̅�) = 𝑇𝐷(�̅�) + 𝑇𝑆(�̅�), and if h/l is not too small (say, h/l > 10–3), 𝑇𝑆(�̅�) is considered to 

be much smaller than 𝑇𝐷(�̅�)  and is usually omitted in the submarine landslide models 

[Pelinovsky and Poplavsky, 1996; Watts, 1998; Grilli and Watts, 2005].  In our case, however, 

before the global failure occurs and the slide separates (or at least begins separating) from the 

substrata, the seafloor surface is flat and the Stokes drag is not significant.  In this case, 𝑇𝑆(�̅�) 

becomes the leading term, and we have 
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where ρ0c2 = E. 

 For the submarine landslide conditions, De Blasio et al. [2004] estimated that CS  0.03 –

 0.05, so here we consider the range of CS  10–3–10–2 in (K.8).  We further note that for most 

soils and submarine sediments, ρ0 /(2ρw)  1.  Since in many observed landslides, lf /h  101–102 

[Bugge et al., 1988; Ma et al., 1991; Kulikov et al., 1996; Yalciner et al., 2002; Sweet and Silver, 

2003], and because l0 /lf < 1, we further assume that 101 < l0 /h < 102, where the lower bound is 

due to the condition l0 /h >> 1, which needs to be satisfied for the 1-D shear band (landslide) 

model to be valid.  Finally for most sediments we expect γ0 range from 10–4 to 10–2 (Chapter 8).  

Hence, coefficient β in (K.8) ranges as 

 7 310 10    (K.9) 
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In the case of homogeneous loading (5.1), 𝑇1̅(𝑙) = 𝑇1̅(𝑙0) = 𝑇0, so that S() = 1, 𝐹(Ω̅) =

𝛽𝜆∗Ω̅2, and (K.6) is reduced to the Riccati equation [Reid, 1972] 
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    (K.10) 

where 𝑦 = Ω̅𝜆, and y(1) = 0.  The dimensionless slide velocity is recovered from 𝑦 = Ω̅(𝜆) =

𝑦 𝜆⁄ . 

Function Ω̅(𝜆) is plotted in Figure K.1 for 𝜆∗ = 0.25 (solid line) and 𝜆∗ = 0.75 (dashed line).  

The selected values of β are 104 (red line), 105 (blue line), and 0 (green line).  Without water 

resistance (β = 0), Ω̅(𝜆) was calculated based on the exact solution (6.11), (6.12) for n = 1.1.  For 

𝜆∗ = 0.25 and n = 1.1, the discontinuity does not reach the band tip, so (6.11) was used to 

compute Ω̅(𝜆).  For 𝜆∗ = 0.75 and n = 1.1, (6.11) was used before the discontinuity arrives at the 

tip, and (6.12) was used after that.  This procedure resulted in Ω̅(50) = 97.02 and 32.99 for 

𝜆∗ = 0.25 and 0.75, respectively (Figure K.1a).  Accounting for the water resistance reduces Ω̅(𝜆). 

For example, Ω̅(50) is reduced by 11.0% (β = 104) and 2.1% (β = 105) for 𝜆∗ = 0.25 and by 6.6% 

(β = 104) and 3.3% (β = 105) for 𝜆∗ = 0.75. Therefore, the effect of water resistance is relatively 

small for these values of β, , and 𝜆∗.  For smaller values of , however, the difference between 

accounting and not accounting for the water resistance can be more significant (Figure K.1b). 

For example, Ω̅(5) is reduced by 11.12% (β = 104) and 11.17% (β = 105) for 𝜆∗ = 0.25 and by 

26.01% (β = 104) and 26.02% (β = 105) for 𝜆∗ = 0.75. Hence, for relatively small values of , the 

effect of water resistance is stronger as 𝜆∗ increases, but it is almost insensitive to the value of 

β in this example.  This can also be seen in Figure K.1b where the difference between β = 105 

(blue lines) and β = 104 (red lines) is hardly noticeable for  < 10.  The difference, becomes 

visible in Figure K.1a roughly at  = 40 when the band accelerates to higher velocities and the 

effect of water resistance becomes more significant.  The exact solution (6.14) (green lines) 

differs noticeably from the asymptotic solutions (blue and red lines) for small values of , which 

characterizes not the effect of water resistance (negligible at this stage of propagation), but the 

accuracy of the asymptotic solution obtained for  >> 1.  Had we plotted Ω̅(𝜆) in Figure K.1b 

based on the asymptotic solution of (K.10) for β = 0, it would have been hardly distinguishable 

from the plotted asymptotic solutions for β = 105 and β = 104. 
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At the moment of slope failure, the band size, lf, is given by (7.8) (in the asymptotic solution) 

and is independent of β (and n) while the time, tf, of the slope failure is a function of β.  Similar 

to the exact solution, at any given time, the largest material velocity in the asymptotic solution 

is at the band tip (e.g., Figure 14).  In turn, this velocity is smaller than c for l < lf (Chapter 8).  

Hence, the asymptotic slide velocity �̅� is also smaller than c for l < lf. 

To evaluate the effect of water resistance on the failure length, we integrate (4.1) along the 

characteristic line BQ in Figure 13 (in the asymptotic case of v = c). We then arrive at equation 

(4.2) with point D(ld, td) replaced by the arbitrary point Q(x, t) below line CE in Figure 13.  

Similar to (4.13) and (7.3), the strain at point Q(x, t) can be obtained by using another 

integration from point P(lp, tp) to Q(x, t).  If Q approaches point P(lp, tp) at the propagating band 

tip, x = l(t) (Figure 13), the tip strain at P(lp, tp) can be obtained (such as 1(lp) = s(lp) /2 for the 

case of no water resistance per (7.3)), which becomes equal to the passive strain at failure.  

Therefore, similar to (6.1) or (7.8), we obtain the equation  
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         (K.11)  

for the strain at the tip l = 𝑙𝑓
𝑤, which has an additional, second term (water resistance) in the 

right side in (K.11).  This term is positive and reduces the magnitude of the tip strain (because 

the first term is negative). Thus, at the same length, the tip strain computed with accounting for 

the water resistance is smaller than the one without.  As a result, the longer failure length is 

required to reach p when the water resistance is accounted for.  Therefore, the dynamic failure 

length is larger if water resistance is included. Therefore, (7.10) and (7.11) give the lower bound 

of f and κ, respectively. 
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(a) 

 

(b) 

Figure K.1. Effect of water resistance on slide velocity, Ω̅ = �̅� (𝛾0𝑐)⁄ . The same plots are given in (a) and (b) 
at different scales. Slide velocity, obtained by solving (K.10) (with boundary condition y(1) = 0), is plotted as 

a function of the dimensionless band length,  = l/l0 for 𝜆∗ = 0.25 (solid lines), 
*
 = 0.75 (dashed lines) and 

β = 104
 (red lines), β = 105

 (blue lines). Slide velocity (6.14), which does not account for the water 
resistance (β = 0; green lines), is also plotted for same 𝜆∗. Discontinuity reflects from the band tip at 

E = 1.881 and τE = 2.881 for 𝜆∗ = 0.75 and n = 1.1, while it does not reach the band for 𝜆∗ = 0.25 and n = 1.1. 

 

APPENDIX L.  NORMALLY-CONSOLIDATED SEDIMENTS  

Sediment parameters usually depend upon depth, therefore, we use the average values with 

respect to the sliding layer thickness. For example, averaging (based on (2.1)) of the constitutive 

law σx = E(y)(∂ux/∂x) – P(x, y) (Appendix B) would result not in (2.2), but in 
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h x
 


     

  (L.1) 

where ε(x, t) = –(x, t), p0 is the thickness-averaged longitudinal effective stress ((B.9) in 

Appendix B), and �̅� is the average modulus of the sliding layer (0 < y < h), or, more accurately, 

the overall elastic modulus in 1-D model. The estimate in (L.1) may be justified by noting that 

sufficiently away from the band tip, the character of the layer deformation is approximately 

one-dimensional [Palmer and Rice, 1973] and the distribution of strain, ∂ux/∂x, across the layer 

is relatively uniform. As an estimate, we assume a linear dependence of the relevant 

parameters on depth and employ the properties in the middle of the sliding layer (i.e., at the 

depth of h /2). We can then use the results obtained for homogeneous material by writing �̅� 
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rather than E everywhere. Alternatively, E can be understood as the average modulus. With this 

notation, (L.1) agrees with (2.2), and all obtained results are applicable. 

Generally, properties of normally-consolidated sediments depend on the applied load and 

are not independent. Typical correlations [Mayne, 2014; Puzrin, 2014] suggest that in the 

undrained infinite slope condition, 

 
0 0,      ,      p p v E p vk E k p k        (L.2) 

for the average quantities (marked by the bar) in the sliding layer, and  

 ,      p p v r r pk k      (L.3) 

at the shear band, which underlines this layer (Figure 2). Here, the coefficient ranges are 

kp = 0.2 – 0.3, kE = 250 – 500, kr = 0.3 – 0.5, and k0 = 0.5 – 0.7. 

Failure of fully saturated, normally-consolidated sediments under fast (dynamic) loading can 

be described by the Von Mises criterion [e.g., Desai and Siriwardane, 1984; Chen and Baladi, 

1985], which results in 𝑝𝑎 = 𝜎𝑣
′ − 2𝜏�̅�, and 𝑝𝑝 = 𝜎𝑣

′ + 2𝜏�̅�. Per (L.1), the corresponding average 

active and passive strains are εa = (pa – p0) /�̅� and εp = (pp – p0) /�̅�, where εa = –a and εp = p in 

the notations of the preceding chapters. Using (L.2) then gives  
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   (L.4) 

 Based on (L.2) and (L.3), representative properties of normally-consolidated sediments 

could be, for example, τp = 0.25𝜎𝑣
′  (kp = 0.25), τr = 0.4τp (kr = 0.4), and E = 350τp = 17.1 MPa 

(kE = 350). Per (L.4), the corresponding active and passive strains are εa = –0.114% and 

εp = 1.029%.  Their properties are adopted in the main text to describe a representative (generic) 

landslides.    

 

APPENDIX M.  LANDSLIDE VELOCITY  

The slide motion (Figure 19a) can be described by the momentum balance condition in the 

horizontal direction 

 0( )cos cos cos

f fs l s l

g b r w d f

s s

d
ds h hs ds

dt
        

 

       (M.1) 

where g – b = (0 – w )ghsin (Section 2.2 and Appendix B), r = μ[(0 – w )ghcos + N], 
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w = Csw�̇�2/2 (Appendix K),d = CDw�̇�2/2 is the “front” drag resistance (neglected in Appendix 

K), α(x) = arctan H’(x) is the slope angle, x is the horizontal coordinate (Figure 19a), s is the 

curvilinear coordinate along the slope, �̇� is the slide velocity tangential to the slope surface 

(�̇� = const along the slide body but varies with time), H(x) is the depth profile (Figure 19a), 

αf = α(x + xf) is the slope angle at the current position, x + xf, of its right end, N = 0g�̇�2/r is the 

density of centripetal forces along the slope, r(x) = 1/[α’(x) cosα(x)] (–π/2 < α < π/2) is the 

radius of the local slope curvature, and α’(x) = dα(x)/dx. Friction coefficient, μ, differs from that 

in Section 2.2. When the slide starts moving, it is likely that μ decreases as the slide material 

enters the ambient water (Figure 19b). Here we simply assume that μ = μ0 over the surface of 

the propagated shear band and μ = μ1 (typically μ1 << μ0) outside the original slide position 

(Figure 19b). Hence,  
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Taking into account that cos ds = dx, the right side of (M.1) can be written as    
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where function xf(x) is defined from  
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Replacing the right side in (M.1) by (M.3) and rearranging the terms leads to the ordinary 

differential equation 
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and 
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In (M.7), α’ = dα/dx. 
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The solution (M.5) with initial conditions x(0) = 0 and �̇�(0) = v0 cos(0) can be obtained, for 

example, by using the new unknown function X(x) = �̇�2. As a result, we obtain the slide velocity   
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   (M.8) 

When the angle α(x) ≥ 0 is small (condition (9.1)) and does not change too fast (say 

|α’(x)| < 1 or |H”(x)| < 1), we further substitute cos α  1 and sin α  0. We also take into 

account that in this (asymptotic) approximation, xf  lf and that tan α  0 in expression (M.8) for 

a1(x) (but not in (M.7) where tan α cannot be neglected). Integrating then in (M.7) (with 

tan α = H’(x)), we arrive at (9.2) in Section 9.1.  

The same asymptotic result can be obtained by considering the slide as moving along the 

constant slope α = const, but accounting for the frictional resistance (M.2) at the slide bottom 

for varying slope angle α(x). This is essentially a version of the Boussinesq approximation 

[Dingemans, 1997], when the dependence of α on x is neglected everywhere except in the 

frictional load terms.    

 

APPENDIX N.  MOMENTUM BALANCE FOR SLIDES WITH VARYING SLOPE ANGLE  

In the case of gradually varying slope angle, α, a consideration of the momentum balance in the 

1-D sliding layer could follow Appendix B by introducing an infinite slope in the orthogonal 

curvilinear coordinates r, s such that the slope surface would be a line of r = const. If the angle 

of the slope varies, but remains small (0 ≤ α << 1), it seems reasonable to assume that the 

effective stresses, 𝑠𝑟𝑟
′  and 𝑠𝑠𝑠

′ , are independent of coordinate s. The analysis, which is more 

cumbersome, but in essence identical to that in Appendix B, then leads to (2.4) with the same T. 

This analysis is applicable at least when the Jacobian of the coordinate transformation r = r(x, y), 

s = s(x, y) (x and y are the horizontal and vertical coordinates, respectively) is not equal to zero 

for any x and y, and when the Lame’s coefficients of this transformation are not equal to zero 

identically [e.g., Lurie, 2010]. 

For the sake of simplicity, below we illustrate this statement by assuming that in the sliding 

layer (Figure N.1), all relevant quantities across the layer are uniform and equal to their average 
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values. Then, the momentum balance condition (in the horizontal direction) for a slide segment 

between x = a and x = b (Figure N.1) can be written as  
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   (N.1) 

where x is the horizontal coordinate, s(x) is the curvilinear coordinate along the shear band, 

which parallels the slope at the constant depth, h, and α(x) ≥ 0 is the varying slope angle. In 

(N.1), the left side is the horizontal component of the resultant force acting on the slide 

segment (a, b), and the right side is the rate of change of the horizontal component of the 

momentum of this segment. Taking into account that ds cos α = dx, (N.1) can be written as 
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which, given that a and b are arbitrary, results in 
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where  
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Using Hooke’s law (B.9) in (N.3) then gives 
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Although angle α varies along the slope, for many subaerial and most submarine slides, this 

angle is relatively small (e.g., see Table A.1 in Appendix A). Hence, we further assume that 

0 < α << 1.  In this case, cos α  1, which leads to the equations identical to (2.3), (2.4), or the 

second equation in (3.1), but with 
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In particular, using 0 < α << 1 and (B.10) in (N.5) leads to  
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where 

 
* 0( )(tan )w wgh          (N.8) 
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Finally, for small slope angles, the initial and boundary conditions for equation (N.7) remain 

the same as in Chapter 2 and Chapter 3. 

 

Figure N.1. Cross-sectional view of a curvilinear slope with changing angle α(x). 

 

 


