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SUMMARY

This thesis includes three self-contained projects:

In the first project ”Bidding strategies and their impact on the auctioneer’s revenue

in combinatorial auctions,” focusing on combinatorial auctions, we propose a simple and

efficient model for evaluating the value of any bundle given limited information, design

bidding strategies that efficiently select desirable bundles, and evaluate the performance of

different bundling strategies under various market settings.

In the second project ”Retailer shelf-space management with promotion effects,” promo-

tional investment effects are integrated with retail store assortment decisions and shelf space

allocation. An optimization model for the category shelf-space allocation incorporating pro-

motion effects is presented. Based on the proposed model, a category shelf space allocation

framework with trade allowances is presented where a multi-player Retailer Stackelberg

game is introduced to model the interactions between retailer and manufacturers.

In the third project ”Supply-chain oriented robust parameter design,” we introduce

the game theoretical method, commonly used in supply-chain analysis to solve potential

conflicts between manufacturers at various stages. These manufacturing chain partners

collaboratively decide parameter design settings of the controllable factors to make the

product less sensitive to process variations.

ix



CHAPTER I

INTRODUCTION

This thesis includes three self-contained projects, which covers interdisciplinary areas rang-

ing from optimization, statistical analysis, quality engineering, game theory to mechanical

engineering.

The first project “Bidding Strategies and their Impact on the Auctioneer’s Revenue in

Combinatorial Auctions” is finished with Professor Pinar Keskinocak and Professor Wedad

Elmaghraby. Focusing on combinatorial auctions, we made the following contributions:

• Propose a model for evaluating the value of any bundle given pair-wise synergies

(limited information).

• Design bidding strategies that efficiently identify desirable bundles.

• Evaluate the performance of different bundling strategies under various market set-

tings.

• Provide answers to pertinent questions, such as, how does the auctioneer’s revenue

change as more bidders submit bundle bids, how are revenues distributed among

bidders in combinatorial auctions versus non-combinatorial auctions, and what issues

should bidders consider when generating and pricing bundles under various market

environments.

This is a simulation-based project and heuristics are proposed to design the bundling strate-

gies. A journal paper has been published in Journal of Revenue and Pricing Management

based on the results of this project.

The second project “Retailer Shelf-space Management with Promotion Effects” is a

joint work with Professor Jye-Chyi Lu and Professor Faiz Al-Khayyal. In this research,

promotional investment decisions from both the retailer and manufacturers are integrated
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with retail store assortment decisions and shelf space allocation. We made the following

contributions:

• Present an optimization model for the category shelf-space allocation incorporating

retailer’s promotional investment decisions. An optimization method is provided to

solve the problem.

• Introduce the impact of trade allowances from manufacturers into the retailer’s shelf

space allocation decision model, where a multi-player Retailer Stackelberg game is

introduced to model the interactions between the retailer and manufacturers. This is

the first time that trade allowances are analyzed in the context of shelf space allocation

problems.

• Demonstrate potentials of the proposed method with the real data collected from

a retailer. We also investigate properties of the solutions through the quantitative

analysis of numerical examples.

This research includes interdisciplinary areas. Optimization methods are applied to model

and solve the shelf space allocation problem. Statistical analysis methods are introduced to

build the manufacturers’ trade allowances response functions. Game theory is utilized to

model the interactions between the retailer and manufacturers.

Both of the first two projects solve the resource allocation problems, problems of assign-

ing available resources among competing identities. The first project focuses on analyzing

the problem from the bidders’ perspectives, where bidders compete for resources in the con-

text of auctions, while the second project analyzes the problem from the resource owners’

perspectives through optimization methods.

The third project “Supply-chain Oriented Robust Parameter Design” is a joint work

with Professor Jye-Chyi Lu. We introduce the game theoretical method, commonly used in

supply-chain analysis to solve potential conflicts between manufacturers at various process

stages. These manufacturing chain partners collaboratively decide parameter design settings

of the controllable factors to make the product less sensitive to process variations. This

research contributes to the literature in the following aspects:

2



• Propose methods of solving robust parameter design problem in a single stage.

• Analyze multi-stage robust parameter design problems, where variance interactions

between various stages are studied. This is the first time that the robust parameter

design is analyzed cross multiple stages.

• Model the interaction between the robust parameter design in various stages with

Stackelberg game.

• Provide real-life examples to demonstrate the potential of the proposed method.

This research is also a combination of knowledge from multiple areas, where the two ma-

jor areas are quality engineering and mechanical engineering. Optimization models are

presented to solve the robust parameter design problem. Regression analysis is applied

to build the response model. Game theory is used to model the interactions between the

multiple stages.

3



CHAPTER II

BIDDING STRATEGIES AND THEIR IMPACT ON THE

AUCTIONEER’S REVENUE IN COMBINATORIAL

AUCTIONS

2.1 Introduction

In markets where capacity and services are being auctioned, natural complementarities may

exist across items. Two items are complements (exhibit synergies) when their combined

value is larger than the sum of their independent values. Slots of capacity may be comple-

ments since there are economies of scale in the transaction costs (e.g., material handling,

documentation, and tracking). Lanes in a transportation network may be complements if

a group of lanes (e.g., if they are geographically close or form continuous routes) can lead

to higher efficiency for a carrier. In combinatorial auctions (CA), a bidder can express

his synergies among items by submitting bids on groups (or bundles) of goods, and wins

either all or none of the items in a bundle. For these reasons, the use of CA in industrial

settings has increased of late. For example, Sears Logistics Services (SLS) ([7]) and The

Home Depot, Inc. ([4]) used CA for procuring logistics services. Sears Logistics saved over

$84 million running six CA.

While the ability to submit bundle bids would appear to be a great advantage to bid-

ders, surprisingly, in many applications of CA, most bidders do not submit bundle bids. For

example, analyzing the data we received from a company which has run combinatorial auc-

tions for transportation services, we found that in a single-round auction for 140 lanes, only

5 out of 46 bidders submitted bundles, and only 18 bundle bids were submitted compared

to 2398 single-item bids. Industry observers explain this situation by the bidders’ lack of

understanding on how to bid in CA ([10]), which is mainly due the novelty of large CA and

the complexity of identifying profitable bidding strategies. The distinguishing feature of CA
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is that the number of possible bundles is exponential in the number of items. In addition

to the complexity of knowing their valuations over all possible bundles, the bidders face

the problem of deciding which bundles to submit. Evaluating and submitting all possible

bundles would be prohibitively time consuming both for the bidders and the auctioneer,

who needs to solve the winner determination problem, which is NP-hard1. Therefore, it is

of practical importance to develop bidding strategies that are efficient and effective, i.e.,

can be computed in reasonable time and result in profitable allocations for the bidders by

identifying a set of bundles which best represent their preferences.

Some companies such as Logistics.com provide carriers with software tools to allow

them visualize the shipper’s network and the groups of lanes a carrier might consider for

bidding. However, to the best of our knowledge, there are no tools available which “suggest”

to bidders on which bundles to bid. In addition, research on bidding strategies has been

very limited; much of the previous research focuses on multi-round CA, while single round

CA are commonly used in practice. For multi-round CA, a few papers (e.g., [6], [9], [14])

consider a myopic best response bidding strategy where in each round bidders select new

bundles to submit to maximize their utility given the current ask prices for bundles or items;

these papers assume that the bidders know their values for all possible bundles. For single-

round CA, Berhault et al. ([1]) propose combinatorial bidding strategies to coordinate

a team of mobile robots to visit a number of given targets in partially unknown terrain.

Their experimental setting emphasizes the uncertainty in information on valuations and

its effect on simple bidding strategies. Song and Regan ([13]) present a bidding strategy

for the procurement of freight transportation contracts. Without any information from

competitors, the carriers (bidders) enumerate all feasible bundles. The cost of each bundle

is determined by the empty moves of the truck. Each carrier then solves a set covering

problem to select a subset of bundles with the objective of minimizing the total cost subject

to the constraints that each lane is covered at least once, and then submits the selected

bundles to the auctioneer.

In this chapter, we (i) propose a simple model for evaluating the value of any bundle

1With some special bundle structures, the winner determination problem is polynomially solvable ([11]).
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given pair-wise synergies (limited information); (ii) design bidding strategies that efficiently

identify desirable bundles; (iii) evaluate the performance of different bundling strategies

under various market settings, and (iv) provide answers to pertinent questions, such as, how

does the auctioneer’s revenue change as more bidders submit bundle bids, how are revenues

distributed among bidders in CA versus non-CA, and what issues should bidders consider

when generating and pricing bundles under various market environments. Motivated from

the transportation industry and their current practices, our focus is on single-round, first

price, sealed-bid forward CA ([3]). Since there is a one to one correspondence between

forward auctions and reverse auctions, our methodology and results are also applicable to

reverse auctions.

Table 1: Notation

N ; n : Set of individual items auctioned; size of N (|N |).
B : Bundles of items.
m : Number of bidders.
vi
j : The value of item j for bidder i.

v−i
j : The average value of item j for all bidders other than i.

Syni(j, k) : The pairwise synergy value between items j and k for bidder i.
V i

B : The value of bundle B for bidder i.
ACi

B : Average individual value of items in B + Average pairwise synergy
of items in B, for bidder i.

V Ri
B : Value ratio of bidder i for bundle B.

2.2 Synergy Model

The key input to any bidding decision support tool (or algorithm) for a CA is the bundle

values (how much a bidder values a bundle). Since it would be prohibitively time consuming

for a bidder to compute all possible bundle values, it is desirable to have an efficient method

for estimating them with limited input. In this chapter, we present a synergy model which

takes item values and pairwise synergy values as the input and returns the bundle values

for any combinations.

We know of two other papers that attempt to generate bundle bids from limited in-

formation. Using five real-world situations, including a transportation auction, as their

6



motivation, Leyton-Brown et al. ([8]) assume that the bid price for a path from A to B is

equal to the Euclidean distance from A to B multiplied by a random number, drawn from

a uniform distribution. Addressing the bidding behavior in the FCC spectrum auctions,

Gunluk et al. ([5]) collected data from the FCC’s non-CA auctions. Using a simple synergy

model (for 12 items) on this data, they approximate bundle bid prices for spectrum licenses.

Their main goal is to generate hard instances of the winner determination problem.

To the best of our knowledge, this is the first time that a generic synergy model is

presented to generate bundle values, as opposed to bids, for a general market environment.

A bundle value is comprised of two parts: the values of the individual items in the bundle

and the “synergy” values among the items in the bundle. Given potential complementarities

(or substitutability) across any two items, the minimal information one would need to

compute a bundle’s synergy value would be the pairwise synergies. We propose a simple

model which uses as input only the individual item values and the pairwise synergies.

According to this synergy model, for a singleton bid, the bundle value is the item value.

For a doubleton bid, the bundle value is the sum of the two item values plus the pairwise

synergy value between them. The value of a bundle with bundle size > 2 is computed as

follows:

V i
B =

|B|∑
j=1

vi
j + Synergy Value of Bundle B

=
|B|∑
j=1

vi
j +

2
(|B| − 1)

|B|∑
j=1

∑
k>j

Syni(j, k)

= |B| ∗ (Average Item Value in B + Average Pairwise Synergy Value in B)

= |B| ∗ACi
B

where ACi
B is the average unit contribution of B. We assume that Syni(j, k) ≥ 0. Comput-

ing V i
B is very efficient (O(n2)); furthermore, V i

B possesses the desirable trait that it does

not have a bias for large bundles over small bundles or vice versa (it increases, on average,

linearly in the bundle size). Hence, this model would be appropriate in environments, such

as transportation auctions, where both small and large bundles could be valuable for the

7



bidders ([10])2.

2.3 Bidding Strategies

In industrial CA, bidders face the challenge of deciding on which bundles to bid and how

much to bid. This task becomes especially daunting when there are hundreds or thousands

of items in the auction, as in the case of transportation auctions run by major shippers.

Given the limited availability and infancy of decision-support tools for bidding in CA, we

found that bidders in transportation auctions commonly use some ad hoc strategies in

formulating their bids: (1) Submit only singleton bids. (2) Bid on high value packages.

(3) Take competition into account when generating bundles. (4) Combine a very attractive

lane with less desirable lanes. (5) Put together lanes that increase the “density” in an area.

Motivated by these common practices, we propose three bundling strategies, namely,

Naive Strategy, Internal-Based Strategy (INT), and Competition-Based Strategy (COMP),

which correspond to strategies (1), (2) and (3), respectively. We refer to INT and COMP as

wise strategies, and to the bidders using these strategies as wise bidders. Note that bidders

who use the naive strategy do not submit any package bids, and are referred to as naive

bidders.

In the proposed bidding strategies, we initially limit our focus to generating bundles,

not on pricing, and therefore we assume that all bidders price their bundles using a fixed

profit margin. That is, if the bundle value is V , then the bid price is (1−PM)V , 0 ≤

PM< 1, where PM is referred to as the profit margin. Although this pricing method is

quite simplistic, it is commonly used in practice3 and allows us to focus and test the impact

of bundling strategies as a first step. Next, we discuss the proposed bundling strategies in

detail.

2Unfortunately, we were unable to test and validate our model since real data from combinatorial auctions
is generally not publicly available. We were able to obtain some bidding data from large transportation
auctions; however, the data sets have been relatively sparse, that is, (i) while there are many bidders, only
a few of them submit package bids, and (ii) for those bidders who do submit package bids, they submit very
few package bids and include an item in at most one package bid.

3In the logistics industry, 33% of third-party logistics companies (3PL) in North America used cost-plus
pricing in 2000 ([12]).
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2.3.1 Internal-Based Strategy (INT)

In practice, many bidders generate bids only considering their own valuations for the items,

without taking competitors’ valuations into account. For example, in trucking auctions,

carriers usually submit package bids based on only the relative value of the shipper’s lanes

to their own network rather than the competitors’ networks ([10]). Internal-Based Strategy

(INT) mimics this practice, focusing on identifying bundles with comparably high average

value per item. INT generates bundles for bidder i as follows.

For each item j ∈ N :

(1) Create a single-item bundle Bj
1 = {j}. Set nj = 1.

(2) Set B = Bj
nj . Define k = argmaxl∈N−B ACi

B∪{l}.

(3) If ACi
B∪{k} > ACi

B, then Bj
nj+1 = B ∪ {k}, nj = nj + 1, and return to step (2).

This bundle creation algorithm starts from each individual item and searches for items

to add to the current bundle B to increase the average unit contribution (AC) of the bundle.

If such an item can be found, then we add the item which increases the AC the most, i.e.,

set B = B∪{k}. We repeat this process until the bundle’s AC cannot be increased further.

All bundles generated (i.e., bundles Bj
1, . . . , B

j
nj , for j ∈ N) until the algorithm stops are

considered as ‘desirable’ bundles. Thus, this strategy generates at least n bundles (nj ≥ 1

bundles for each j ∈ N) with O(n3) running time. Once these ‘desirable’ bundles have

been identified, the bidder may submit some or all of the generated bundles, depending on

whether or not the auctioneer put a limit on the maximum number of bundle bids allowed

per bidder.

2.3.2 Competition-Based Strategy (COMP)

Competition-Based Strategy (COMP) focuses on identifying bundles for which a bidder has

a relatively high valuation compared to his competitors. COMP is very similar to INT,

except that the criteria for adding an item to a bundle is the value ratio of bidder i for

bundle B (V Ri
B) instead of the ACi

B, where
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V Ri
B =

V i
B∑

j∈B v−i
j

and v−i
j =

1
m− 1

∑
q 6=i

vq
i .

Although it would be desirable to compare a bidder’s own bundle value with all of its

competitors, note that in the denominator of V Ri
B we have the competitors’ item values

only, and not the synergy values. This is because in practice it is significantly more difficult

to gain information about competitors’ synergies than item values. For example, in the

trucking industry, values for individual lanes (item values) are very much dependent on the

cost of operating a truck, which is fairly uniform across different companies (as it depends

primarily on fuel cost and driver salaries). However, the cost of operating a truck on a group

of lanes put out for bid depends not only on those lanes, but also on a carrier’s current

network, which is usually private information to that carrier and is difficult to acquire by

competitors. Therefore, it is more practical to only incorporate the competitors’ item values

in this model.

2.4 Simulations

We designed a series of experiments to test the performance of our proposed bundling

strategies, gain insights into the value of bundle bids both for the bidders and the auctioneer,

and answer the following questions: (1) How does auctioneer’s revenue change as the number

of bundle bids submitted increases?; (2) How different is the revenue distribution among

bidders in CA compared with non-combinatorial auctions?; (3) What is the relationship

between a bidder’s size and the efficacy of a particular bundling strategy?; (4) Which are

the critical (and non-critical) factors in determining the performance of a bundling strategy?

(5) Is there a relationship between a bidders size and the optimal profit margin? (6) How

good are the proposed bundling strategies compared to the ideal case where bidders are

allowed to submit bundles for all possible combinations of items?

Our experiments are motivated primarily by trucking and spectrum auctions, where

items auctioned off (e.g., lanes or spectrum licenses) are associated with certain geographic

locations4 and there are different types of bidders in terms of their size and valuations. To

4In many studies of the trucking industry, the nation was divided into seven zones: Northeast, Southeast,

10



capture this characteristic of real-world auctions, we designed a simulation with 4 regions

and 20 items, where 5 items are associated with each region. Model 1 (Section 2.4.1) and

Model 2 (Section 2.4.2) are two market environments characterized by different bidder sizes

and valuations.

Given the difficulty of solving the winner determination problem, in most real-world

CA, the auctioneer may set a limit on the number of bundles a bidder is allowed to submit.

For example, in FCC’s proposed first combinatorial auction5, 12 package bids were allowed

per bidder. To model this restriction and to test its impact on the auctioneer’s and the

bidders’ revenues, we ran experiments by limiting the maximum number of bundle (package)

bids allowed per bidder (NB) to the following values: NB={2,5,10,15,25}. If the number

of generated bundles using INT or COMP exceeds NB, we assume that the bidders sort

their bundles in decreasing order of AC and the VR, respectively, and submit the top NB

bundles. We do not impose any restriction on the number of singleton bids and assume that

all (wise) bidders submit singleton bids for all items (in addition to their bundles bids).

Unless noted otherwise, we assume that all bidders of the same type use the same

bundling strategy and the same profit margin (PM). When bidders use the same PM,

without loss of generality we assume that PM=0, i.e., the bidders bid their value for each

submitted bid. Hence, the auctioneer’s revenue is equal to the sum of the values of the

winning bids and a bidder’s revenue is represented by the total value of his winning bids6.

To understand the impact of bundle bids on the auctioneer’s revenue, we ran experiments

by varying the number of wise bidders (submitting bundle bids) from none to all. In

addition, to compare the performance of INT and COMP, we ran experiments where some

bidder types use INT while others use COMP. For each experimental setting, we generated

25 random seeds7; the data presented below represents an average of the 25 replications.

Midwest, Southwest, Central and Northwest ([3]).
5FCC: http://wireless.fcc.gov/auctions/31/releases.html
6When PM=0, a bidder’s profit will always be zero. We use the term “revenue” to reflect the total value

of the bundles won by a bidder.
7The coefficient of variation (ratio of standard deviation over mean) of the auctioneer’s revenue in a

scenario is around 0.01 over 25 replications.
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2.4.1 Model 1 - Different-size Bidders with Comparable Valuations

In trucking and spectrum auctions, bidders tend to be characterized by the regions in which

they operate. Furthermore, the transportation industry is characterized by many small and

relatively few large players, where 75% of the firms own less than six power units ([3]). To

capture these properties in Model 1, we introduce 3 types of bidders: local, regional, and

global. We assume that there are 12 local bidders (3 in each region), 6 regional bidders

(3 in regions (RA, RB) and 3 in regions (RC , RD)) and 3 global bidders who operate in all

regions (Figure 1).

RA RB

RCRD

Item
Local bidder
Regional bidder
Global bidder

Figure 1: Model 1: Local, regional, and global bidders.

In general, given the size of their business we might expect global bidders to have a

higher chance of having a positive synergy between any two items, but their synergies might

be lower compared to the local bidders, who tend to maintain routes within concentrated

geographical settings, and therefore have considerable opportunities for combining routes

and exhausting possible synergies across customer schedules. Therefore, we use different

distributions to model bidders’ synergy values, but we keep the expected synergy values

the same to avoid a bias against any one type of bidder. The data on trucking auctions

presented in [10] (Table 4.10, pg. 45) indicates that 94% of the bundle bids are priced at

15% less than the sum of the individual values of the lanes in the bundle. Based on this

12



observation, in our experiments we set

average pairwise synergy value
average item value

= 0.18

8. The details of the experimental design are shown in Table 2.

Table 2: Experimental design for Model 1. With probability 1 − p, the pairwise syn-
ergy value between any two items is zero; with probability p, they are drawn from the
corresponding uniform distribution.

Bidder Number of Interested Item Local Synergy Regional Synergy
Type Bidders Regions Values Values Values
Local 3; 3; 3; 3 RA; RB; RC ; RD U(10, 15) U(3,6) p=0.5 U(0,0)

Regional 3; 3 RA RB; RC RD U(10, 15) U(2,5) p=0.643 U(2,5) p=0.643
Global 3 RA RB RC RD U(10, 15) U(1,4) p=0.9 U(1,4) p=0.9

2.4.1.1 Auction Results

The bidders’ total revenues (summed over each type) are summarized in Tables 3 and

5. The coefficients of variation of the bidders’ revenues are listed in Tables 4 and 6. In

scenario XYZ, the bidding strategies for local, regional and global bidders are X, Y and

Z, respectively. For example, ICN means that local, regional and global bidders use INT,

COMP, and the Naive strategy, respectively.

Figure 2 shows the auctioneer’s average revenue over 25 replications as a function of the

number of types of bidders using INT; for example, “1 type is wise bidders” corresponds to

scenarios NNI (only global bidders are wise), NIN (only regional bidders are wise) and INN

(only local bidders are wise). The vertical black lines represent the range for the auctioneer’s

average revenue across associated scenarios. We obtained similar results for COMP.

8Since we are assuming that PM=0, the bid for a bundle B is equal to its value, V i
B . In order to calibrate

our experimental setting with Plummer’s observation, we set V i
B = 1.18× |B| × (average item value).
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Table 3: Bidders’ total revenue in Model 1

Wise Bidders Use INT
NB NNN NNI NIN INN NII INI IIN
2 L 102.4 73.3 44.5 261.6 36.6 213.7 197.6

R 97.3 69.7 250.1 36.4 202.3 25.4 134.8
G 89.8 168.1 33.8 33.8 95.4 99.2 13.8

5 L 102.4 57.7 18.1 302.0 17.3 226.1 179.2
R 97.3 55.2 299.3 19.4 212.6 12.8 157.6
G 89.8 207.1 19.3 14.4 112.2 104.5 11.3

10 L 102.4 39.0 13.9 307.9 10.2 212.2 181.0
R 97.3 36.5 311.6 17.6 212.4 9.1 157.9
G 89.8 250.2 13.3 10.9 121.1 123.4 9.5

15 L 102.4 30.0 13.3 307.9 7.8 207.8 181.0
R 97.3 32.5 312.3 17.6 216.1 7.3 157.9
G 89.8 265.8 13.3 10.9 120.0 129.8 9.5

25 L 102.4 22.2 13.3 307.9 4.7 210.4 181.0
R 97.3 27.1 312.3 17.6 201.8 5.5 157.9
G 89.8 280.7 13.3 10.9 137.7 129.2 9.5

Wise Bidders Use COMP
NB NNC NCN CNN NCC CNC CCN
2 L 72.8 41.1 262.9 35.7 219.6 187.1

R 74.8 249.8 36.4 207.1 24.3 143.0
G 165.1 38.1 32.6 92.7 94.5 14.4

5 L 56.1 19.9 298.5 16.3 210.3 179.1
R 55.9 297.2 21.9 224.9 12.7 155.4
G 207.4 18.7 15.1 101.1 119.6 13.2

10 L 39.8 14.5 306.0 9.8 210.6 170.8
R 39.8 311.9 18.2 226.1 10.3 167.8
G 246.2 12.1 12.1 108.2 123.0 9.5

15 L 30.9 14.0 306.0 7.9 209.0 169.5
R 30.7 313.6 18.2 219.5 7.9 169.2
G 267.0 11.5 12.1 117.1 127.6 9.5

25 L 23.8 13.9 306.0 8.5 202.7 169.5
R 24.7 313.6 18.2 212.7 6.1 169.2
G 281.9 11.5 12.1 123.4 136.2 9.5
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Table 4: The coefficient of variation (ratio of standard deviation over mean) of the bidders’
revenues.

Wise Bidders Use INT
NB NNN NNI NIN INN NII INI IIN
2 L 0.3 0.4 0.5 0.1 0.6 0.2 0.2

R 0.4 0.5 0.1 0.5 0.2 0.8 0.3
G 0.4 0.2 0.5 0.6 0.4 0.4 0.9

5 L 0.3 0.4 0.8 0.1 0.7 0.2 0.3
R 0.4 0.4 0.1 1.0 0.3 0.9 0.3
G 0.4 0.2 0.9 1.1 0.5 0.4 0.9

10 L 0.3 0.6 0.8 0.1 1.3 0.3 0.3
R 0.4 0.6 0.0 1.1 0.3 1.3 0.3
G 0.4 0.1 1.2 1.3 0.5 0.5 0.8

15 L 0.3 0.7 0.8 0.1 1.6 0.3 0.3
R 0.4 0.5 0.0 1.1 0.3 1.4 0.3
G 0.4 0.1 1.2 1.3 0.5 0.4 0.8

25 L 0.3 0.9 0.8 0.1 2.0 0.2 0.3
R 0.4 0.7 0.0 1.1 0.3 1.8 0.3
G 0.4 0.1 1.2 1.3 0.4 0.4 0.8

Wise Bidders Use COMP
2 L 0.4 0.6 0.1 0.4 0.2 0.3

R 0.5 0.1 0.5 0.3 0.7 0.3
G 0.2 0.6 0.6 0.5 0.3 0.9

5 L 0.5 1.0 0.1 0.7 0.2 0.3
R 0.5 0.1 0.9 0.3 0.9 0.3
G 0.2 0.8 0.9 0.6 0.4 0.8

10 L 0.6 0.9 0.1 1.3 0.3 0.3
R 0.6 0.0 1.1 0.3 1.2 0.3
G 0.1 0.9 1.2 0.5 0.4 0.9

15 L 0.8 0.9 0.1 1.6 0.2 0.3
R 0.8 0.0 1.1 0.3 1.5 0.3
G 0.1 0.9 1.2 0.5 0.4 0.9

25 L 0.8 0.9 0.1 1.5 0.2 0.3
R 0.9 0.0 1.1 0.3 1.8 0.3
G 0.1 0.9 1.2 0.5 0.3 0.9

Observation 1 The auctioneer’s revenue increases, at a decreasing rate, in the number of

types of wise bidders and NB (Figure 2).

The increase in the auctioneer’s revenue is mainly due to the inclusion of synergies in the

bundle bids. Recall that the auctioneer’s revenue is directly proportional to the sum of

the values of winning bids, since all bidders use the same profit margin. Due to positive
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Table 5: Bidders’ total revenue in Model 1 when all bidders are wise.

NB III CCC CCI IIC CIC ICI ICC CII
2 L 178.1 170.2 154.5 174.1 165.8 170.7 175.7 170.1

R 131.2 133.7 138.6 130.1 137.1 130.4 127.2 138.5
G 38.3 42.7 53.8 43.3 44.2 46.2 44.1 38.7

5 L 166.8 169.0 163.7 163.0 163.0 167.6 168.9 162.3
R 117.6 114.5 124.6 114.6 114.5 120.8 114.6 122.0
G 66.3 66.2 61.8 72.8 72.8 61.8 66.2 66.3

10 L 161.9 141.9 159.2 152.3 152.8 159.5 141.8 160.8
R 121.0 138.7 128.1 127.6 129.2 126.4 138.8 125.7
G 68.5 70.1 63.9 71.1 68.9 65.4 70.1 64.7

15 L 158.1 144.4 156.6 152.0 151.9 158.5 143.9 155.6
R 116.3 134.5 127.3 117.2 121.1 121.9 131.3 122.4
G 77.1 72.0 67.4 82.0 78.2 71.1 75.8 73.3

25 L 157.0 145.2 149.9 153.4 151.6 151.8 146.3 154.5
R 119.2 129.5 131.4 113.5 119.5 126.0 124.0 125.3
G 75.4 76.4 70.2 84.5 80.1 73.9 80.9 71.7

Table 6: The coefficient of variation (ratio of standard deviation over mean) of the bidders’
revenues.

NB III CCC CCI IIC CIC ICI ICC CII
2 L 0.3 0.4 0.4 0.3 0.4 0.3 0.3 0.3

R 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3
G 0.8 0.9 0.6 0.9 0.9 0.6 0.9 0.9

5 L 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3
R 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.6
G 0.6 0.7 0.6 0.6 0.6 0.6 0.7 0.6

10 L 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4
R 0.5 0.5 0.5 0.4 0.4 0.5 0.5 0.5
G 0.5 0.6 0.6 0.5 0.5 0.6 0.7 0.6

15 L 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4
R 0.5 0.4 0.5 0.3 0.3 0.5 0.5 0.5
G 0.5 0.5 0.7 0.4 0.5 0.6 0.5 0.7

25 L 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
R 0.4 0.4 0.5 0.4 0.4 0.5 0.5 0.5
G 0.4 0.5 0.7 0.4 0.5 0.6 0.5 0.7

synergies, bundle bids lead to a higher average value per item, and in general, have a

higher chance of winning than singleton bids. Hence, an increase in the bundle value due

to synergies is directly passed onto the auctioneer.
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From Observation 1, the auctioneer benefits from an increase in both the number of types

of bidders who are “wise,” i.e., submit bundle bids, and the number of bundles allowed per

bidder. We also observe that the auctioneer has diminishing returns as the number of types

of wise bidders or NB increases. An interesting question is which of these two parameters

has a bigger impact on the revenue of the auctioneer.

Observation 2 In general, for the auctioneer the benefit of adding a type of wise bidder is

greater than the benefit of increasing NB.

From Figure 2, we can see that having a small NB (e.g., 2) and two types of wise bidders

is in general more profitable for the auctioneer than having a large NB (e.g., 25) but only

one type of wise bidders. That is, as the number of types of wise bidders increases, the

auctioneer can capture high revenues even with a small NB. Hence, the auctioneer might

prefer to channel its resources into educating more bidders to bid wisely, rather than solving

larger and possibly more complex winner determination problems (due to higher NB).

On average, naive bidders’ contribution to the auctioneer’s revenue decreases while

wise bidders constitute a larger portion of the winning bids as NB increases (Figure 3).

Furthermore, Table 4 shows that in general the coefficient of variation of revenues (i) is

higher for naive bidders compared to wise bidders, and (ii) increases as NB increases for

naive bidders while it remains the same for wise bidders. When bidders bid naively, the

chance of winning no items is high, which results in a large coefficient of variation as well

as a decrease in revenues.

When all bidders are wise, because global bidders have a larger pool of bundles from

which to select, local bidders’ contribution to the auctioneer’s revenue decreases while global

bidders constitute a larger portion of the winning bids as NB increases (Table 5). Similarly,

the coefficient of variation of global bidders’ revenues decreases (in general) as NB increases.

2.4.1.2 Benefits of Diversification in Submitting Bundle Bids

In the experiments, we found that due to their greedy nature, INT and COMP generate

bundles with a substantial overlap for global bidders, i.e., the generated bundles contain

many of the same items (Figure 4). If two bundles have one or more common items, at

most one of those bundles can win, reducing the chances of winning for overlapping bundles.
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Figure 2: Auctioneer’s average revenue as NB and the number of types of wise bidders
(using INT) increase.
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Figure 3: Wise (under INT) vs. naive bidders’ contribution to the auctioneer’s revenue.
For each NB, the two bars correspond to “1 type is wise bidders” and “2 types are wise
bidders”, respectively.
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This leads to the following question: Are bidders better off by increasing the diversification

among the submitted bundles? In the discussion below, we focus on the effect of overlapping

bundles on global bidders, for whom the overlap is most significant.
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Figure 4: The average, maximum and mininum number of times an item appears in a
submitted bundle for global bidders. For each NB, the two lines correspond to INT and
COMP, respectively.

To measure the overlap and its effect on the efficacy of bundle bids, we introduce the

parameter Restricted Overlapping Frequency (ROF) which restricts the degree of overlap

across submitted bundles. That is, if ROF is set to x, then any one item cannot appear in

more than x submitted bundles. Previously, under INT and COMP, bundles were selected

for submission in decreasing order of AC and VR, respectively. We now slightly alter our

bundle selection (as opposed to creation) procedure: For a particular ROF value:

1) Sort bundles in decreasing order of AC (for INT) or VR (for COMP). Set the submitted

bundle set equal to the null set.

2) Select the next bundle from the top of the list. If adding this new bundle to the submitted

bundle set does not violate the ROF for any item (i.e., if with the addition of this new bundle

the global bidder does not include any item in more than ROF number of bundles), then

add it.

3) Repeat step 2) until the size of the submitted bundle set reaches NB or the end of the

bundle list is reached.
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In our experiments, the number of bundles created with INT or COMP is not very

large, and possess a high degree of overlap for global bidders (Figure 4), thereby limiting

our ability to separate the effect of ROF from NB (the ROF bundle selection algorithm

generally stops before NB bundles are selected). Therefore, we propose a Revised INT (or

Revised COMP) strategy to expand the set of created bundles, by applying the bundling

strategy INT (or COMP) on each of the following regions for global bidders: (RA), (RB),

(RC), (RD), (RA, RB), (RC , RD) and (RA, RB, RC , RD). That is, a global bidder uses

INT (COMP) to generate bundles using items in region RA, then RB, and so on. The

set of generated bundles is then sorted according to AC (VR) and the ROF procedure is

applied. The scenarios tested in the new experiment are presented in Table 7. Since the

number of bundles satisfying ROF is not large, there is no need to test scenarios associated

with the large NB; on the other hand, small NB restricts the options of ROF. Therefore,

we run simulations for NB=15 and ROF={2,3,4,5,6,7,8,9,11,15}. The ROF criterion is only

applied to global bidders; local and regional bidders’ bundling and sorting strategies are

the same as before. Figures 5 and 6 plot the auctioneer’s and the bidders’ total revenues

by bidder type, respectively.

Table 7: Scenarios tested

Scenario Local, Regional Global
R1 Naive Revised INT
R2 Revised COMP
R3 INT Revised INT
R4 COMP Revised COMP

Observation 3 When only the global bidders are wise, it is best for them to submit bundles

with a moderate degree of overlap.

This is observed from scenarios R1 and R2 (Figures 5 and 6). If ROF is very small,

the submitted bundles have, on average, a smaller AC (or VR). On the other hand, a large

ROF leads to a high overlap among the bundles selected for submission which reduces each

bundle’s chances of entering into the winning set. Since a moderate degree of overlap allows
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more variety in the submitted bundles, it leads to higher revenues for global bidders when

they are the only group of wise bidders.

Observation 4 When all bidders are wise, ROF should not be a constraining factor in the

bundle selection process for global bidders.

This is observed from scenarios R3 and R4 (Figures 5 and 6). Note that when global

bidders are the only group of wise bidders and all competitors are naive bidders, the com-

petition is low, hence, bundles with relatively small AC (or VR) have a strong chance to

win. Therefore, global bidders can win more items by spreading out their bundles over more

items. However, when all bidders are wise the competition is high. Bundles with larger AC

(or VR) are more competitive and therefore, have a higher chance to win. As a result, as

ROF increases, AC (or VR) increases, and global bidders are better off.

In general, when bidders with a large number of positive-valued items, in comparison

to their competitors, bid in CA, they should spread out their bundles over more items with

a moderate degree of overlap if the competition is low; they should bid on their highest

valued bundles if the competition is high.

2.4.1.3 Benefits of Taking Competition into Account

Observation 4 tells us that bidders should not be concerned with the degree of overlap when

all bidders are wise. The next logical question is then, does one bundling strategy perform

better for global, regional or local bidders, respectively? We compared the performance of

INT versus COMP and summarized our results in Tables 8 and 9.

Table 8: The average number of items won by bundle bids when NB is 25.

X (Local) X (Regional) X (Global)
Scenario INT COMP Scenario INT COMP Scenario INT COMP

XII 8.7 8.5 IXI 6.7 7.1 IIX 4.3 5.0
XCC 8.0 7.9 CXC 6.8 7.3 CCX 4.0 4.3
XCI 8.4 8.3 CXI 7.0 7.4 CIX 4.1 4.6
XIC 8.5 8.3 IXC 6.4 7.0 ICX 4.2 4.7

Observation 5 Global and regional bidders, in general, win more items via bundle bids

with COMP; local bidders win more items via bundle bids with INT.
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Table 9: The total revenues of each type of bidders when NB is 25.

X (Local) X (Regional) X (Global)
Scenario INT COMP Scenario INT COMP Scenario INT COMP

XII 157.0 154.5 IXI 119.2 126.0 IIX 75.4 84.5
XCC 146.3 145.2 CXC 119.5 129.5 CCX 70.2 76.4
XCI 151.8 149.9 CXI 125.3 131.4 CIX 71.7 80.1
XIC 153.4 151.6 IXC 113.5 124.0 ICX 73.9 80.9

Observation 6 Global and regional bidders, in general, earn higher revenues with COMP,

while local bidders earn higher revenues with INT.

From Observations 5 and 6, we find that INT and COMP are the preferred bundling

strategies for local and global bidders, respectively. In all instances, local bidders won at

least as many (up to three more) items via bundle bids using their preferred strategy (INT)

than COMP. In 89% of the instances, global and regional bidders won at least as many items

via bundle bids using their preferred strategy (COMP) than INT. (For global bidders, the

difference in the number of items won via bundle bids from using COMP versus INT is in

the range of [-3,7].) A similar comparison of a bidder type’s total revenues under INT and

COMP also supports Observation 6. In 93% of the instances, local bidders received equal or

higher revenues using INT than COMP. (For local bidders, the difference of revenues from

using INT versus COMP is in the range of [-15, 53].) In 80% of the instances, global and

regional bidders received equal or higher revenues using COMP than INT. (For global and

regional bidders, the difference of revenues from using COMP versus INT is in the range of

[-107, 118].)

The explanation for these observations is as follows: Because global and regional bidders

have more positive valued items, switching their interests from their own high valued items

(INT) to the items for which their valuations are high relative to competitors (COMP),

increases their winning chances of bundle bids. However, due to having a smaller number of

positive valued items and higher synergies among their positive valued items, local bidders

benefit more by focusing on their own high valued items.
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2.4.1.4 How to Price Bundles
Up until now, we assumed that all bidders use the same profit margin in their bidding

strategies. In practice, however, different profit margins are often used among various

bidders. Caplice ([2]) observed that some small, privately held carriers seek only to earn a

profit threshold, and such a carrier will lower its prices beyond those of a profit maximizing

firm so long as it can earn its desired threshold. Plummer ([10]) also concluded that “smaller,

profit-threshold-seeking carriers lower their discrete (singleton) bids beyond the discrete or

package bids of larger more sophisticated carriers in many cases” in CA. These observations

lead us to the following questions: Should small bidders always bid more aggressively than

large bidders? As a bidder bids more aggressively (uses a higher PM), how does his revenue

change in CA and non-CA?

To answer these questions, we designed an experiment with the scenarios listed in Table

10. This design differs from all the previous experiments in that we test the actions of an

individual bidder instead of a bidder type. In each scenario, one bidder is selected as the

test bidder, for whom the profit margins are set to the following values: PM = {0.01, 0.02,

0.03, 0.04, 0.05, 0.06, 0.07 0.08, 0.09, 0.10}. As the test bidder increases PM the remaining

bidders’ profit margins are fixed to 0.05. There is no restriction on NB. All bidders use

INT in scenarios P1 to P3, and use the naive strategy in scenarios P4 to P6. We ran these

experiments using the same instances generated in the previous experiments, i.e., the item

values and the synergy values of the bidders are the same as before. Since bidders use

different profit margins, a bidder’s revenue is represented by the real revenue (PM)×Vwon,

where Vwon is the total value of the bidder’s winning bids.

Table 10: Scenarios tested for pricing analysis

Scenario P1 P2 P3
Test Bidder (INT) 1 Local Bidder 1 Regional Bidder 1 Global Bidder

Scenario P4 P5 P6
Test Bidder (Naive) 1 Local Bidder 1 Regional Bidder 1 Global Bidder

A bidder will win his maximum number of items when PM is at its smallest value; hence,

in our experiment, a test bidder wins his maximum number of items when PM is 0.01. As
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the test bidder increases PM, his revenue increases as long as his winning bids remain

unchanged. Eventually, the increase in PM typically results in the loss of some existing

winning bids. When the increase in revenue from winning bids can not compensate the

loss of revenue from the lost items, the bidder’s revenue decreases. We define optimal profit

margin (OPM) to be the profit margin at which the test bidder’s revenue is maximized,

and the threshold profit margin (TPM) to be the largest profit margin that yields a positive

revenue. We call the ratio of OPM/TPM (always ≤ 1) the risk measure (RM). A larger

RM implies a higher risk of using a large profit margin.
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Figure 7: A global test bidder’s revenue in scenarios P3 and P6 in one replication

Observation 7 RM is larger in CA than in non-CA for all bidder types.

Observation 8 Local and regional bidders have a larger RM than global bidders in CA.

Observation 9 Local bidders do not need to bid more aggressively than regional and global

bidders.
These observations are illustrated in Table 11. As PM increases, the test bidder’s win-

ning items leave the winning set independently in non-combinatorial auctions. Therefore,

even when the test bidder uses a PM which is larger than OPM, his revenue does not drop

to zero immediately (Figure 7). However, when a bundle loses in CA, all the items included

in that bundle are lost together.
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Since a global bidder has a larger set of bundles from which to select, as he loses some

existing winning bundles due to the increase in PM, he has a higher chance to win other

bundles than a local bidder. For example, in the instance shown in Figure 7, at PM =

0.01 and 0.02, the test global bidder wins 2 bundles, each containing 3 items. When PM =

0.03, he loses both bundles, but wins a third bundle, of size 3, in their place. The global

bidder’s profit continues to increase in PM until PM = 0.07, at which point he loses all his

submitted bids. In our experiments, global, regional and local bidders win alternative bids

as PM increases 40%, 18%, and 0% of the time , respectively.

Table 11: Average OPM, TPM and RM in each scenario

Test bidder Scenario OPM TPM RM Scenario OPM TPM RM
(INT) (%) (%) (Naive) (%) (%)

Local P1 5.50 5.50 1 P4 4.67 5.39 0.87
Regional P2 5.73 5.73 1 P5 6 7.04 0.85
Global P3 5.07 5.60 0.90 P6 5.16 7.96 0.65

We observed that the local bidders’ OPM (in scenario P1) equals to 5.5% on average,

which is larger than the 5% profit margin used by all non-test bidders. Therefore, it is not

necessarily optimal for a local bidder to bid more aggressively in CA auctions.

2.4.2 Model 2 - Same-size Bidders with Asymmetric Valuations

In model 1, observations are based on settings where bidders have different sizes, but possess

similar valuations over singleton items and comparable pairwise synergies (in expectation).

To understand how the results change if we reverse this relationship, we introduce Model

2, where bidders are same-sized with different valuations.

In this experiment, there are 10 global bidders in the auction. All of the bidders draw

their synergy values from the same distribution; however, there are asymmetries in their

item valuations: Symmetric bidders draw valuations for all four regions from the same

distribution; Asymmetric bidders draw valuations for regions RB and RD from distributions

with lower and higher means, respectively, than regions RA and RC (Table 12).
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Table 12: Bidder types in Model 2

Bidder Number of Synergy Item Values
Type Bidders Values RA RB RC RD

Symmetric 5 U(1,5) U(5,10)
Asymmetric 5 U(1,5) U(5,10) U(3,7) U(5,10) U(8,12)

Table 13 reports the bidders’ total revenue. Scenario XY denotes that symmetric bid-

ders use bundling strategy X and asymmetric bidders use bundling strategy Y. Note that

observations 1 and 2 still hold under Model 2.

Table 13: Bidders’ total revenue in Model 2

NB Scenario NN IN NI CN NC CC II IC CI
2 Symmetric 90.0 177.8 79.6 130.2 55.3 96.3 140.9 124.4 118.0

Asymmetric 107.3 57.6 145.0 94.4 180.0 153.7 106.4 130.4 130.9
5 Symmetric 90.0 208.7 71.6 153.4 45.1 106.4 151.6 128.4 130.4

Asymmetric 107.3 38.0 161.6 80.3 200.3 156.0 106.6 134.8 131.3
10 Symmetric 90.0 234.6 58.0 174.0 26.4 114.6 146.6 125.7 125.7

Asymmetric 107.3 20.0 182.8 66.5 227.1 151.4 118.3 140.2 139.6
15 Symmetric 90.0 238.5 50.1 187.7 19.5 109.6 145.5 123.5 122.5

Asymmetric 107.3 17.6 194.1 55.7 236.0 157.2 120.6 143.0 143.6
25 Symmetric 90.0 241.6 42.9 198.8 18.5 108.0 148.8 122.5 128.5

Asymmetric 107.3 15.3 204.4 47.1 237.6 159.7 118.0 145.3 138.7

Observation 10 Symmetric bidders prefer INT and asymmetric bidders prefer COMP.

Observation 10 follows from Table 13. For symmetric bidders, when we compare the profits

between scenarios IN and CN, II and CI, and IC and CC, we find that no matter which

bidding strategy the asymmetric bidders use, the best response of the symmetric bidders

is INT. Similarly, by comparing the profits of the asymmetric bidders between scenarios

NI and NC, II and IC, and NI and NC, we see that asymmetric bidders’ profits are higher

when they use COMP.9

These results are counter-intuitive because one would think that symmetric bidders

9In 82% of the instances, Symmetric bidders prefer INT. The difference of revenues from using INT
versus COMP is in the range of [-10.5, 17.2]). In 80% of the instances Asymmetric bidders prefer COMP.
The difference of revenues from from using COMP versus INT is in the range of [-11.5, 18.6]
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would benefit from COMP by generating more bundles covering competitors’ low valued

regions, and asymmetric bidders would benefit from their own high-valued items using INT.

To explain the results, we examined the generated bundles; in particular, we looked at the

overlap among bundles generated under each strategy (Figure 8). For symmetric bidders,

their bundles containing items from region RB have a larger VR due to the low values of

asymmetric bidders in this region. As a result, when they use COMP, symmetric bidders

generate a large number of bundles covering items from region RB, which leads to a high

overlap among their submitted bundles. Similarly, when asymmetric bidders use INT, they

generate a large number of bundles covering their high value items in region RD, which

leads to a high overlap among submitted bundles and decreases their chances of winning. It

is also interesting to note that if both bidder types use their preferred bundling strategies

(Scenario IC), the auctioneer’s revenue is a little higher than in the other scenarios.
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Figure 8: The average, maximum and minimum number of times an item appears in a
submitted bundle for the bidder type. For each NB, the two lines corresponds to INT and
COMP, respectively.

2.4.3 Comparison with Full Enumeration

The proposed bundling strategies INT and COMP create and select a subset of bundles

among all possible combinations. To test their performance, we compare these bundling

strategies with the “ideal case” where a bidder submits bids for all possible bundles (com-

binations of items). In this section, we address the following question: If bidders select
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bundles using INT or COMP, what is the expected revenue loss for the bidders and the

auctioneer compared to the case where bidders submit bids for all possible combinations of

items (full enumeration strategy)? Note that if the bidders use a fixed profit margin, the

“ideal case” always leads to higher revenues for the auctioneer, but not necessarily for the

bidders.

Due to the computational intractability of full enumeration of bundles in our original

test instances10, we design a smaller size experiment in this section with 10 items evenly

distributed in two regions. There are 6 local bidders (3 in each region) who are only

interested in items from one region and 3 global bidders who are interested in items from

both regions. Similar to Model 1, both types of bidders’ item values are drawn from

U(10, 15). Local synergy values for local bidders are drawn from U(3, 6) with probability

p = 0.5. Both local and regional synergy values for global bidders are drawn from U(2, 5)

with probability p = 0.643.

In our experiments, all bidders use the same bundling strategy (namely, INT or COMP

in scenarios 1-8, and full enumeration in scenario 9) except one test bidder, who uses either

the same strategy as the other bidders, or the full enumeration strategy. Bidders submit

all the generated bundles in the auction, i.e., there is no bound on NB. Table 14 shows the

scenarios tested in the simulation. Tables 15 and 16 present the revenues for the test bidder

and the auctioneer, respectively.

In each of the 25 instances, we find that the local test bidder’s revenue is the same

whether he uses our proposed bundling strategies or full enumeration (Scenarios 1 versus

2 and 3 versus 4) when the remaining bidders use our proposed bundling strategies. In

92% of the instances, the global test bidder’s revenue using full enumeration (Scenario 6)

is within 1% of his revenue using INT (Scenario 5). Similarly, the global test bidder’s

revenue using full enumeration (Scenario 8) is within 0.9% of his revenue using COMP

(Scenario 7). Note that the number of bundles generated with our bundling strategies is

less than 20, a very small number when compared to the 1023 bundles generated under full

10For example, to test the scenario where each bidder submits all possible combinations in Model 1, we
need to generate 220 bids for each of the 21 bidders. Furthermore, for each scenario, we need to run 25
replications. The total number of bids one needs to generate for one scenario is 220× 21× 25 = 550, 502, 400
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Table 14: Scenarios tested

Scenario Test bidder Remaining Bidders’
Bidder Type Bundling Strategy Bundling Strategy

1 Local INT INT
2 Full Enumeration
3 Local COMP COMP
4 Full Enumeration
5 Global INT INT
6 Full Enumeration
7 Global COMP COMP
8 Full Enumeration
9 All Bidders Bid using Full Enumeration.

Table 15: Tested bidder’s revenue

Tested Bidder Scenario
Local 1 2 3 4 9

13.5 13.5 11.3 11.3 15.6
Global 5 6 7 8 9

25.8 27.1 25.4 27.7 24.1

enumeration. Hence, for a relatively small percentage of profit loss in most instances, our

proposed bundling strategies offer significant computational advantages to the bidders.

When we compare the auctioneer’s revenue between Scenarios 1, 3 and 9, in all instances

the auctioneer’s revenue loss under INT (Scenario 1) and COMP (Scenario 3) is less than

0.25% and 0.24%, respectively, compared to full enumeration (Scenario 9). Hence, an

auctioneer facing bidders who strategically submit bundles, rather than submit bids on all

possible bundles, gains significant computational advantages in return for a small loss in

profits.

Table 16: Auctioneer’s revenue

Scenario 1 2 3 4 9
mean 173.1 173.1 173.2 173.2 173.6

Scenario 5 6 7 8
mean 173.1 173.2 173.2 173.3

30



2.5 Conclusions

In this chapter, we proposed a simple efficient model for evaluating bundle values given

pairwise synergies and developed bundling strategies to help bidders select promising and

profitable bundle bids. We tested the efficiency and performance of our bundling strategies

under different market environments using simulations and gained some interesting insights.

Our experimental results show large benefits both for the bidders and the auctioneer from

bundle bids. From the auctioneer’s point of view, educating more bidders to submit a few

bundle bids each is more profitable than allowing the existing few wise bidders to submit a

large number of bundle bids. In addition, from the bidders’ viewpoint, we provided some

suggestions on the issues that should be taken into consideration when selecting and pric-

ing bundles with respect to different market environments. We found that bidders must

carefully consider the overlap in their submitted bundles as well as their competitors’ com-

parative valuations when submitting bundles. In addition, we found that, while bidders

may lose a fraction of their potential profit when they limit the number of bids submitted,

a ‘smart’ bundling strategy such as INT or COMP, helps to minimize this loss while signif-

icantly reducing the computational complexity of the bid submission process. Our future

work will focus on developing alternative bundling and pricing strategies and extending our

research in to multiple round combinatorial auctions.
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CHAPTER III

RETAILER SHELF-SPACE MANAGEMENT WITH

PROMOTION EFFECTS

3.1 Introduction

Shelf space is one of the most important resources in a retail store. Marketing research

shows that two-thirds of all consumer purchase decisions are made in the retail store, rather

than prior to store visits ([58]). Thus, the decisions of which products to stock among

the large number of competing products and how much shelf space to allocate to those

products is a question central to retailing. With a well-designed shelf space management

system, retailers can attract customers, prevent stockouts and, more importantly, increase

the financial performance of the store while reducing operation costs ([78]).

It is now a well established empirical proposition that retail promotions have a noticeable

impact on sales of a product and the operations in the retail store. Blattberg and Neslin

([9]) pointed out that in many frequently purchased product categories, more than 50% of

sales volume is sold on a retail promotion. Moreover, the performance of the promotion on a

brand has a large impact on the demand of nonpromoted products ([36], [74]). The influence

of promotions on the product demand results in a large impact on the store’s operations, i.e.,

affecting replenishment and restock operations, which in turn changes the efficiency of shelf

space allocations. Due to the strong interdependencies between the shelf space allocation,

promotional activities and operating costs, a growing number of retailers are now practicing

“category-level shelf management”1 (also known as “category management”), a strategy

that views whole categories as individual business units and seeks to coordinate product

selection, shelf space allocations, promotion, merchandising, and logistics to enhance overall

1In a retail store, the shelf management includes several levels, the store level includes many departments,
e.g. food department, which then includes several product categories each, e.g. noodle category. In practice,
a category manager can be in charge of several product categories ([71]).
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category performance ([56]). Therefore, the integrated study of promotional activities with

product selection, shelf space allocation and operation costs at the category level has become

more critical than ever.

Although promotions have significant influence on the store operation cost and the

efficiency of shelf space allocation, to the best of our knowledge, they are not formally

introduced in the existing shelf space allocation models ([12], [39], [43]). This research

presents a category-level shelf space allocation model for including brand promotion and

cross-brand promotion effects. Our model considers promotion selection (assortment), shelf

space allocation and the promotion level as the decision variables for optimizing category-

level shelf space management decisions.

Furthermore, the retail promotions are often supported by trade promotions, which

can take many different forms, such as off-invoice allowances, bill-back allowances, flat

allowances, free goods, display allowances, and inventory financing. Manufacturers believe

that a large part of the trade allowances are pocketed by retailers instead of passed through

to customers ([47], [48]). For example, the Cannondale and Nielsen surveys indicate that

manufacturers believe that only 51% of their trade promotion dollars are being passed

through to consumers, with more than 20% of the trade promotion dollars going directly

to the retailer’s bottom line. Therefore, trade allowances are an important factor which

significantly affects both the retailer’s profits and retail promotion activities, and hence in

turn affects the operation cost and shelf space management.

Most of the analytical research on trade allowances is built on simple models where the

demand function is linear or implicitly defined, and retail operation costs are not included.

The objectives of these research efforts are to examine the major factors which influence the

“pass through”2 ([70]) or to present possible strategies to alleviate the retail pass through

problem ([48]). Simple Stackelberg games (See Appendix A for the introduction of “Stack-

elberg game”) are usually introduced between few i.e., one or two, manufacturers and

retailers, and manufacturers are the leaders in these games.

2Pass through is generally defined as the percentage of trade promotions given to the consumers by
retailers.
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In this research, we introduce the trade promotion factor into the category shelf manage-

ment framework, where nonlinear demand is represented as a signomial function 3, which

provides a more realistic representation of the product demand in the retail store compared

to the linear demand function. In the proposed framework, the decisions of category shelf

space allocation and retail category promotion activities are affected by the trade allowances

paid by manufacturers. The decisions of retail promotional efforts are determined by incor-

porating the cross promotional elasticity among products in the same category and also the

operation costs associated with these promotional activities. Our objective is to develop a

framework that optimally assigns the shelf space and promotion budgets among products

in a category. Since trade allowances are usually negotiated between the retailer and the

manufacturers, we introduce a one-period profit maximizing Stackelberg game to model the

negotiation, where a retailer is the leader and the manufacturers are the followers. A re-

tailer optimizes the decision of assortment, shelf space and promotion level for each product

in the category by considering manufacturers’ responses to a retailer’s supply package – a

combination of shelf space and promotion level.

This chapter is organized as follows. Section 3.2 reviews related research. Section 3.3

summarizes the expected contribution of this research. Section 3.4 presents the category-

level shelf space management model. In section 3.5, we present the framework of the

category-level shelf space management with trade promotions. Numerical analysis to demon-

strate the potential of the proposed frame is presented in section 3.6 and section 3.7 conclude

this research.

3.2 Literature Review

In this section, we review the relevant previous work in three areas: commercial and opti-

mization models of shelf space allocation, experimental studies in retail promotion and the

trade allowances models.

Commercial and Optimization Models

3A continuous polynomial allows real, as opposed to positive integer, powers of the variables. When all
coefficients of a continuous polynomial are positive, it is called a posynomial. When at least one coefficient
is negative, it is called a signomial.
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Commercial software and hardware systems that apply modeling principles have gained

many customers within the retailing industry due to their general simplicity and their eas-

ily implementable decisions ([79]). Today there are various PC-based systems available to

retailers including Apollo (IRI) and Spaceman (Nielsen). These software products can pro-

vide the retailer with a realistic view of the shelves and are capable of allocating shelf space

according to simple heuristics such as turnover, gross profit or margin, using handling and

inventory costs as constraints ([28]). The drawback of all these systems results from their

failure to incorporate demand effects; all ignore the existing effects of shelf space on product

sales. Thus, none of the available systems can be considered seriously as an optimization

tool ([28]) and the promotion effect is not included in the systems. Consequently, most

retailers “use them mainly for planogram accounting purposes so as to reduce the amount

of time spent on manually manipulating the shelves” ([31]).

One of the first optimization models was developed by Hansen and Heinsbroek ([39]).

They use a nonlinear demand function, which incorporates individual space-elasticities but

disregards cross-elasticities from similar products. Binary variables for handling assortment

decisions are also included.

The model of Corstjens and Doyle ([22]) incorporates both space- and cross-elasticities.

It incorporates a more detailed cost structure including procurement costs, carrying costs

and out-of-stock costs, which are jointly modeled as a signomial form with respect to allo-

cated shelf space. However, the assortment decisions are not considered.

Borin et al. ([12]) extend the demand function of Corstjens and Doyle ([22]) to allow

simultaneous decisions about assortment selections and shelf space allocations. In addition,

they explicitly consider substitution effects due to temporary or permanent unavailability

of products. Yang and Chen ([78]) simplify the model of Corstjens and Doyle ([22]). The

authors disregard cross-elasticities and assume that a product’s profit is linear within a

small number of facings, which are constrained by the product’s lower and upper bound

of the number of facings. However, the models of both Borin et al. ([12]) and Yang and

Chen ([78]) have the following drawbacks. They focus on the revenue side and do not

incorporate the cost side of the operation explicitly. Clearly, some of the relevant costs
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are not independent of the shelf space allocation. For example, the smaller the shelf space

allocated to a product the greater the frequency of restocking and the higher the resulting

restocking costs of this product.

In all these optimization models, promotional effects are not considered. Yang and

Chen ([78]) and Irion et al. ([43]) suggest to introduce the marketing variables to the

demand function through a general production term as an extension of the demand function

of Corstjens and Doyle ([22]). However, no detailed information is provided about these

marketing variables. In this research, we extend the demand function of Irion et al. ([43])

to incorporate both space and promotional elasticity. A more realistic shelf space allocation

model is presented, which simultaneously determines the assortment selections, shelf space

and promotion level. The operational costs are also clearly represented.

Retail Promotion Models

Past research on retail promotions has primarily focused on the effect of promotions on

the sales of the promoted brand. However, when category sales are the objective, retailers

not only evaluate sales increases for the promoted brand but also evaluate the promotion’s

effect on sales of competing brands. When retailer’s objective is category profits, it is also

necessary to take into account the switching from less profitable brands to more profitable

brands and vice-versa.

Experimental methods are the most commonly used tools to analyze the effects of retail

promotions. Significant amount of research is done on analyzing the promotional elasticity

(e.g., [13]) and cross promotional elasticity (e.g., [61]). Furthermore, some researchers relate

variability in product category sales to promotional activity in the product category. Raju

([60]) analyzes the influence of an increase in the magnitude and frequency of discounts on

the category sales. Karande and Kumar ([45]) provide guidelines to retailers for planning

promotions in terms of what brands to promote, and how and when to promote them.

Walters ([75]) analyzes the factors which affect the product category price elasticity. Even

though the close relationship between promotion effects and shelf space has been identified

in these papers, no analytical model is developed to relate these two factors with category

profits. In our proposed model, we build the connections through the category-level shelf
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space management model.

Models on Trade Promotions

There is some research concerning the empirical analysis of retail response to trade

promotions. Frequently cited work in this area are Chevalier and Curhan ([17]), Curhan

and Kopp ([25]) and Armstrong ([4]). Using survey data, they estimate the ratio of trade

allowances pocketed by retailers or examine the factors that determine the strength of retail

support for trade deals.

Another research stream analytically investigates various strategic issues relating to

trade promotions. Kim and Staelin ([47]) offer a framework that helps explain why man-

ufacturers offer trade promotions despite poor pass throughs. A Stackelberg game is pre-

sented between two manufacturers and two retailers where manufacturers are leaders. Tyagi

([70]) investigates the factors affecting the extent of retail pass through. Specifically, with

a simple Stackelberg game between one manufacturer and one retailer where the manufac-

turer is the leader, the paper analyzes relations between retail pass through decision and

the curvature, i.e., linear, concave or convex, of consumer demand functions. No explicitly

represented demand function is presented in the analysis. Kumar et al. ([48]) analyzes the

factors that affect the retail pass through as well as the strategy of alleviating the problem.

A two-period game among a manufacturer, a retailer and customers are presented. The

effects of depth and frequency of trade promotions, customers’ knowledge of the trade pro-

motions on retailers’ pass through decision are analyzed. Furthermore, they show that by

complementing trade promotions with advertising that informs customers about ongoing

promotions, the manufacturer can enhance retail pass through.

All of these papers study the problem using analytical models, which are highly sim-

plified, i.e., they use linear price functions and ignore the operation costs. The objectives

are to find out managerial suggestions based on the analytical results. However, due to the

strong interdependencies between trade promotions, retail promotions, retail operational

costs and retailer’s profits, our objective is to suggest a realistic category management

framework incorporating the impact of trade promotions on retail promotions.
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3.3 Contributions in this Chapter

In this chapter, we present the following work:

1. Model the promotional effects on product demand in a product category.

2. Formulate category-level shelf space allocation problem, which simultaneously deter-

mines the assortment decision, space allocation and promotion level for each product.

3. Provide optimization methods to solve the category-level shelf space allocation prob-

lem.

4. Propose a framework to model the impact of trade promotions on the category-level

shelf space allocation based on a Stackelberg game between a retailer and manufac-

turers.

5. Provide numerical examples to demonstrate the potential of the proposed models and

methods.

3.4 Shelf Space Allocation Model

Space allocated to a brand and the promotion activities in the product category are both

important factors that affect a customer’s brand selection. In this section, following Irion,

et al. ([43]), we reexamine the shelf-space model developed therein and imbed it in a more

general category-level shelf space management model that simultaneously determines the

assortment decision, shelf space allocation and promotion level for each product.

3.4.1 Assumptions

(i) The objective of the retailer is to maximize product category profit.

(ii) Consistent with prior research, the direct space-elasticity for product i satisfies 0 ≤

βi ≤ 1, the cross-elasticity between product i and product j satisfies −1 ≤ δij ≤ 0,

and the scale factor αi for product i is generally taken to be positive.4

(iii) All shelved products are owned by the retailer.
4Note that our model assigns shelf space to products within a product category. Since such products are

usually very similar in nature, we would expect them to have substitution properties amongst each other
(δij ≤ 0). Nevertheless, it is straightforward to extend our model and the linearization technique to the
more general case where −1 ≤ δij ≤ 1.
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(iv) Products are restocked individually. As soon as the number of units on the shelves is

zero, the product is fully restocked. This assumption allows inventory holding costs

to be calculated easily and also makes possible a disregard of substitution effects due

to temporary stockouts.

(v) There is no backroom space to store additional inventory. This assumption allows that

only inventory holding costs of product-units stored on the shelves are considered.

Table 17: Notation

ni : number of facings allocated to product i.
zi : indicator variable is 1 if product i is selected for shelving, and 0 otherwise.
xi : level of promotional expense for product i.
N : number of products in category.
Fi : shelf space of one facing for product i (inches).
S : total amount of available shelf space within the product category (inches).
Ui : upper bound on the number of facings allocated to product i (inches).
Li : lower bound on the number of facings allocated to product i (inches).
Gi : number of units of product i that can be stored in one facing.
Pi : selling price of product i ($).
Wi : wholesale price of product i ($).
Ci : unit production cost of product i ($).
CRi : cost each time product i is restocked ($).
CFi : fixed cost to include product i in the assortment ($).
CPi : unit replenishment cost for product i ($)5.
βi : space elasticity of product i.
αi : scale factor for product i.
δij : cross space elasticity between products i and j.
I : current investment/interest rate (%).
Ω : product category profit ($).
µi : promotion elasticity of product i.
νij : cross promotion elasticity between products i and j.
Ai : scale factor for the promotional expense for product i.
B : budget constraint on the promotion cost.
XLi : lower bound on the promotion level for product i.
XUi : upper bound on the promotion level for product i.

3.4.2 Demand Formulation

The major approach that is currently used for specifying demand functions in shelf space

management models follows the nonlinear structure proposed by Corstjens and Doyle ([22]).
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The demand structure incorporates both the individual space elasticity and the cross elas-

ticities between products within the same store, which is:

di = αi(si)βi

N∏
j=1

j 6=i

(sj)δij (1)

where, si denotes the shelf space allocated to product i. The parameter αi is a scale factor

for product i demand, βi is the product i space elasticity, and δij is the cross space elasticity

between products i and j. For details about this model, see ([22]).

Yang and Chen ([78]) and Irion et al. ([43]) extended 1 to include marketing variables.

In their models, marketing variables, “possibly include price, advertisement, promotion,

store characteristics, and other marketing mix variables” are suggested to be introduced by

a general production term. However, no discussion is provided concerning issues, such as

promotion elasticity and cross promotion elasticity. Since both theoretical and empirical

results lead to nonlinear models for capturing market responses for promotional activities

([19], [77]), following the models of Yang and Chen ([78]) and Irion et al. ([43]), we explicitly

introduce the promotional factors as:

di = αi(Fini)βi

N∏
j=1

j 6=i

(Fjnj)δij (xµi
i

N∏
j=1

j 6=i

x
νij

j ) (2)

where Fini denotes the shelf space allocated to product i6. The parameter xi (xi ≥ 1) is

introduced to denote the promotion level, which has been called the promotion intensity7.

When product i is promoted, xi > 1. On the other hand, xi = 1 when there is no promotion

of product i. The demand in ([43]) is obtained from 2 by setting xi = 1 for all i.

We introduce µi and νij to represent promotion elasticity and cross promotion elasticity,

respectively. In practice, the parameters αi, βi, δij , µi and νij can be determined via

6A facing is a segment of shelf space with dimensions width, height and depth when viewed by a customer.
The sizes (or widths) of facings can vary with products, so that each facing dedicated to product i would
have width Fi. Moreover, for the purposes of our model, different products cannot share the same facing.
If there is enough height and depth space available, products can be stacked and lined up many rows deep.
The total number of products that fit on a facing is Gi, which allows for stacking multi-rows deep.

7For example, various level of the price reduction can be used in promotions. When “display” is used
as a promotion measure, major display, secondary display and no display are used to classify the intensity.
When promoting through advertisement, investments associated with advertisement varies ([17]). In this
research, promotion level represents the intensity of the comprehensive promotion efforts from various of
promotion measures.
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regression analysis using cross-sectional data ([22]). For given cross-sectional data, the

magnitude of the scale factor αi depends on the size of the time interval considered, while

the elasticities βi, δij , µi and νij can be assumed to be independent of the time interval.

The demand di defined by (2) is for an arbitrary interval, and all products must have the

same sized interval.

The demand models have the following properties concerning the promotional effects:

1) Diminishing returns: In practice, sales increase substantially when an item is pro-

moted even though the depth of the promotion is very small ([37]), and a subsequent

increase in the depth of promotion leads to additional incremental sales but at a

much slower rate ([29]). The proposed demand function reflects these two facts by

restricting µi ∈ [0, 1].

2) Substitution effects: Gupta ([38]) estimates that 85% of a brand’s promotion elasticity

is due to brand switching while the rest is due to the changes in the quantity normally

purchased or in the frequency of purchase, i.e., purchase incidence. The parameter

cross promotion elasticity is introduced to capture the brand switching effect. When

product i’s substitute product j is promoted, with νij ∈ [−1, 0], the increase in the

promotion level, xj , reduces the demand of product i with a diminishing rate. Further-

more, Walters ([73]) found only a weak relationship between retail promotion and sales

of complementary products. Therefore, we assume that the promotion of a product

has no effect on its complementary products, which is νij = 0 for the complementary

products i and j.

3) Asymmetry: the cross promotional effects are asymmetric, i.e., promoting higher

quality brands impacts weaker brands disproportionately ([6], [7], [44], [54]). Thus,

νij does not necessarily equal to νji.

Finally, we need to point out that in the proposed demand function, the promotion

level xi represents the aggregate promotional effects on the demand, i.e., price discounts,

coupons, display and feature advertisements. This is because of the following reasons:

1) Category managers usually draft a yearly/quarterly category promotions and manage-

ment plan ([71]); the aggregate promotion effects on each product and cross products
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in the same category are their major concerns. Therefore, analyzing the aggregate

promotion effects has realistic applications.

2) Furthermore, researchers observed that the temporary nature of promotional price

reduction results in a higher sales spike due to consumers’ forward purchases, promo-

tional elasticities are greater than price elasticities ([8], [49], [54]). Therefore, it is

more reasonable to introduce these price discount promotional effects together with

the other types of promotional effects through the promotional term xi. For details

about promotional expenses, see section 3.4.3.

3.4.3 Category Shelf-Space Management Model

With Pi as the product i selling price and Wi as the product’s wholesale price, the unit

profit is Pi −Wi and the total gross margin for product i is

ai = (Pi −Wi)di (3)

where Wi denotes the wholesale price.

Turning to in-store costs for shelf space allocation, in addition to the fixed cost CFi, we

adopt the structure of Irion et al. ([43]) for the variable costs

bi = CPidi +
(

WiIGi

2

)
ni +

(
CRi

Gi

)
di

ni
. (4)

With a unit replenishment cost of CPi, the first term gives the total replenishment cost for

product i, which includes costs, such as insurance of products, deterioration, and processing

costs of sending items back to the supplier (in case they are broken or not needed any more).

With Gi as the number of units of product i that can be stored in a single facing, the second

term gives the discounted inventory holding cost for product i. As demand is deterministic

and product i is restocked (instantaneously) to its maximum level of Gini only when the

shelves are depleted (by Assumption(iv)), the average shelf-inventory level is Gini/2, and

this is multiplied by the unit cost Wi and the discount rate I to get the discounted inventory

holding cost for product i. Since the shelves for product i are replenished di/(Gini) times

and each restock operation costs CRi, the last term is the restocking cost component, which

includes order processing expense, transportation expense, and loading and unloading cost.
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Finally, costs associated with the promotion activities are considered. The total expense

of promotions on product i is

ei = Ai(xi − 1). (5)

where Ai is a scale factor, xi = ei/Ai+1 is a scaled promotion level, which is introduced as a

decision variable in the category-level shelf space allocation problem. Because the demand

function (2) yields zero demand for a given product if the promotional expense of any other

product in the category is zero, we set xi = 1 for a non-promoted product. Therefore, xi

is larger or equal to 1. The total promotion expenditure would be
∑N

i=1 ei and it cannot

exceed a given promotion budget B.

The objective of the retailer is to maximize the category profit, which equals to the

total gross margin minus the total operation costs and promotional expenses. Though

retail promotion is sometimes supported by manufacturers through trade allowances, we

deduct the promotion cost from the retailer’s profit in the model for two reasons. First,

there is often no direct link between the magnitude of the allowance and the actions taken

by a retailer ([47]). In category management, the retailer usually has an annual budget plan

for the promotion activities ([71]). The major concerns for a retailer are to maximize the

profit in a category by using the promotional budget efficiently. Second, a retail store stocks

a large number of private store brands, and promotions on these private brands constitute

a large expenditure for the retailer which should be deducted from the retailer’s profit8.

There are a number of constraints in a retailing environment that have to be included

in the model formulation. Similar to Corstjens and Doyle ([22]), our model includes space

capacity and control constraints for the allocation. The space capacity constraint ensures

that any shelf space allocation must not exceed total available shelf space (Constraint (7)).

Space control constraints impose lower and upper bounds for the number of facings allocated

to each product (Constraints (9)). Furthermore, we also introduce a promotion budget

constraint (Constraint (10)) and promotion control constraints (Constraint (12)), where

8For example, it is reported that store brands accounted for 40% of retail sales in Europe and 20% US in
2002 ([40]). Messinger and Narasimhan ([53]) also reported that store brands, which typically offer higher
retail margins, accounted for 13% of super market sales in the year ending June 30, 1991.
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the budget constraint ensures that the total expense on the promotions of all products in

the store must not exceed the preset values, and the promotion control constraint imposes

lower and upper bounds for the promotion level. The bounds for the promotion level are

closely related to the trade allowances received from the manufacturers. In our model, the

magnitude of allowances from a manufacturer changes the lower/upper bound of promotion

level for the corresponding product. Also, the retailer’s promotional budget is affected by

the magnitude of manufacturer allowances.

Since there exists high competition among manufacturers for the scarce shelf space in

the retail store, it is impossible to stock the products from all manufacturers. Thus, as in

Irion et al. [43], we introduce assortment decision variables

zi =

 1 if product i is included in the assortment

0 otherwise.

In contrast to the unit profit ai−bi−CFi in [43], here we have the unit profit for product

i as ai − bi − CFi − ei, which yields the store profit function

Ω0 =
N∑

i=1

[ai − bi − CFi − ei]zi

=
N∑

i=1

[(
Pi −Wi − CPi −

(
CRi

Gi

)
1
ni

)
di −

(
WiIGi

2

)
ni − CFi −Ai(xi − 1)

]
zi

Using (2) to rewrite the objective, we obtain the following category shelf space allocation

model, which we call Problem P0:

Find (ni, zi,xi), for i = 1, 2, . . . , N , that maximize

Ω0 =
N∑

i=1

αiF
βi
i

N∏
j=1

j 6=i

F
δij

j

(Pi −Wi − CPi)zin
βi
i xµi

i

N∏
j=1

j 6=i

(nδij

j x
νij

j )

−
(

CRi

Gi

)
zin

βi−1
i xµi

i

N∏
j=1

j 6=i

(nδij

j x
νij

j )

−
(

WiIGi

2

)
zini − CFizi −Ai(xi − 1)zi

 (6)
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subject to

N∑
i=1

Finizi ≤ S (7)

(ni − 1)(zi − 1) ≥ 0 i = 1, . . . , N (8)

Li ≤ ni ≤ Ui i = 1, . . . , N (9)
N∑

i=1

Ai(xi − 1) ≤ B (10)

(xi − 1)(zi − 1) ≥ 0 i = 1, . . . , N (11)

XLi ≤ xi − 1 ≤ XUi i = 1, . . . , N (12)

ni ∈ ℵ+ i = 1, . . . , N (13)

xi ≥ 1 i = 1, . . . , N (14)

zi ∈ {0, 1} i = 1, . . . , N (15)

where ℵ+ is the set of positive integers and the objective is a signomial function, which

makes our model NP -Hard.

Similar to the reason of setting xi ≥ 1, we restrict ni to be a positive integer (instead

of a nonnegative integer). As pointed out in Irion et al. [43], the following rule must be

enforced to ensure positive ni: if zi = 0 (product i is not in the assortment), then ni = 1.

This is achieved by nonlinear Constraints (8). Similarly, for our model, the implication if

zi = 0 then xi = 1 is ensured by nonlinear Constraints (11).

The above model falls into the class of Mixed Integer Nonlinear Programming (MINLP)

problems, which has recently experienced much research activity ([14]). MINLP problems

are very hard to solve since they encompass both the combinatorial nature of Mixed Integer

Programs (MIP) and the difficulties of solving Nonlinear Programs (NLP). Indeed, our

model is further complicated by being a nonconvex NLP, which could have several local

optima in the continuous case. Using a similar method proposed by Iron et al. ([43]),

this category shelf space allocation model is reformulated using a piecewise linearization

technique (see Appendix B). A linear MIP is derived, whose feasible region, when projected

onto the decision space of the shelf space model, is identical to that of the nonconvex shelf

space allocation model, and whose optimal objective value is an upper bound on the optimal
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objective value of the nonconvex model. The reformulated linear MIP model can be solved

with CPLEX.

3.5 Shelf Space Allocation with Manufacturer Trade Al-
lowances

Due to the limited shelf space in retail stores and growing competition among manufactur-

ers, manufacturers have pursued growth in mature markets by using trade promotions to

increase their market share ([52]). Retailers have become gatekeepers controlling the extent

of a manufacturer’s influence on consumers, which has allowed retailers to demand increased

levels of trade promotion for limited shelf access and display feature. It is a well-accepted

fact that over the last 20 years, there has been a rise in the magnitude and frequency of

trade allowances. An annual survey indicates that grocery manufacturers have increased

their allocations to trade promotions from 39% in 1976 to 47% in 1993 ([53]).

When retailers get trade allowances from manufacturers, there is no obligation/contract

to guarantee that retailers use those allowances on the promotion of their products. In-

dustry sources estimate that up to 35% of a supermarket chain’s profit and up to 75% of

a wholesaler’s income are derived from retaining trade promotions ([52]). Therefore, trade

allowances not only affect shelf space allocation and promotion level, but also significantly

influence retailers’ profits.

To capture this realistic practice, we introduce the trade allowance into the shelf-space

allocation model proposed in Section 3.4.3. A game theoretical method is applied to rep-

resent the interaction between retailer and manufacturers. Following the notation in Choi

([18]), the interaction between firms can create one of the following three scenarios due to

the variation in bargaining power:

1) Manufacturer Stackelberg: The manufacturers have more bargaining power than the

retailer and thus are the Stackelberg leader.

2) Retailer Stackelberg: The retailer has more bargaining power than the manufacturers

and thus is the Stackelberg leader.

3) Vertical Nash: Every firm in the system has equal bargaining power.
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In modeling the problem, the level of bargaining power possessed by each firm (as compared

to the other firms) can be translated into whether the firm is a leader or a follower. In the

game-theoretical approach, the firm with more bargaining power can have the first-mover

advantage (Stackelberg leader). The firm with less power would then have to respond to

the leader’s decisions.

As mentioned before, retailers demand trade allowances from manufacturers due to the

scarce space and high competition. Therefore, a one-period profit maximizing Retailer

Stackelberg game is proposed in this chapter. The retailer is the leader who suggests

to manufacturer9 i a “supply package,” (ni,xi), which is defined as several combinations

(nik, xik), k = 1, . . . ,K, of shelf space nik and promotion level xik in a period of time,

e.g., a quarter. Here, i is the index for manufacturers and k denotes the kth element in

(ni,xi)10. Manufactures are followers who decide trade allowances, ti, as a response to

(ni,xi), where ti is a vector with components tik for each (nik, xik). The retailer then finds

optimal solutions for the assortment decision, shelf space allocation and promotion level for

each product by taking manufacturers’ responses into account.

3.5.1 Objective Functions for Retailer and Manufacturers

Before presenting the game, we first model the retailer’s shelf space allocation problem with

the introduction of trade allowances. Since trade allowances are paid by manufacturers

and may contribute to a retailer’s profit, they are added into the retailer’s profit function

(6). Furthermore, the manufacturer will pay a trade allowance with respect to a specific

(nik, xik); with the regression analysis, we can build functions of trade allowances which

depend on (ni, xi) as shown in Section 3.5.2. Therefore, the retailer’s objective function is:

max Ω1 =
N∑

i=1

[ai − bi − CFi − ei + t̆i(ni, xi)]zi, (16)

where t̆i(ni, xi) denotes trade allowance paid on product i which will soon become clear (see

formula (19)). The retailer maximizes the profit Ω1 subject to all constraints (7) through

9To keep the description simple, we assume that each manufacturer supplies only one product to the
retailer.

10For example, a supply package for manufacturer 1 includes two elements (K = 2): (n1,x1) =
{(5, 3), (2, 4)}, where n11 = 5, n12 = 2, x11 = 3 and x12 = 4.
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(15) of “Problem P0.” We call the new problem Problem P1.

For each given (nik, xik), manufacturer i’s objective is to maximize the profit by selecting

an optimal trade allowance, which equals to the total gross margin minus the trade allowance

paid to the retailer:

max Πik = (Wi − Ci)dik − t̃ik, k = 1, 2, ...,K, (17)

where Wi and Ci are the wholesale price and unit production cost, respectively, which are

constants in the problem. dik is the demand for product i when entertaining a combination

of (nik, xik); t̃ik is the corresponding trade allowance and is also the decision variable of

manufacturer i’s problem. Based on the manufacturer’s historical data, for a given nik and

xik, a manufacturer’s demand dik can be represented as a function of t̃ik, i.e., dik = hi(t̃ik).

Using this relation in the objective (17), manufacturer’s optimal solution tik is found with

respect to (nik, xik). Then, ti is the vector consisting of trade allowances with respect to

all combinations of (nik, xik) for k = 1, . . . ,K, provided in the retailer’s supply package11.

Here, the relations between tik and dik are built with the following suggested steps:

1) Relations between product demand and (nik, xik): Although for a given (nik, xik), the

demand for product i (see Equation (2)) will not only depend on (nik, xik) but also

(nj,xj) from other manufacturers (j 6= i), manufacturer i usually has a “believed

demand” d̃ik when a combination (nik, xik) is entertained. Intuitively, a manufacturer

can use the “first principle idea” to guess the demand (called the “believed demand”),

where the first principle idea gives a “rough approximation of the demand function.”

Therefore, without knowing the values of a competitor’s nj and xj , this manufacturer

will take a few educated guesses of nj and xj and apply the “well-known” demand

function (2) with the parameters estimated in an educated manner. Here, one can

assume that the demand function is given to a manufacturer if it is a part of a

more expensive contract. With these few guesses and the resulting demands, the

manufacturer i will take the “average” and use it as the “believed demand” d̃ik.

2) Relations between zi and t̃ik: When a very low trade allowance is paid to the retailer,

11We will not consider the case where manufacturers provide untruthful information in this research.
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manufacturer i may lose the chance to get shelf space, which is zi = 0 in “Problem

P1.” Therefore, a different trade allowance t̃ik leads to a different probability of having

nonzero zi. We denoted this probability by pi,zi=1. Based on historical data, pi,zi=1

can be found as an explicit function of t̃ik with logistic regression analysis ([55]), i.e.,

pi,zi=1 = fi(t̃ik) for some fi. Thus, dik is obtained as:

dik = pi,zi=1d̃ik = fi(t̃ik)d̃ik, (18)

which shows the explicit representation of dik as a function of t̃ik.

3.5.2 One-period Retailer Stackelberg Game

The one-period Retailer Stackelberg game between a retailer and manufacturers is as follows:

1) The retailer will design a supply package (ni,xi) for each product i.

2) A manufacturer submits to the retailer a vector ti in response to (ni, xi).

3) Based on the information of ti and (ni, xi), the retailer finds out manufacturers’ trade

allowance response functions by using regression analysis ([55]). We denote the response

function by t̆i(ni, xi) = gi(ni,xi, ti). Note that for a specific combination of n∗
i and x∗i , the

response function gi(ni,xi, ti) gives the “prediction” t̆i(n∗
i , x

∗
i ). The combination (n∗

i , x
∗
i )

does not have to be in the retailer’s supply package (ni,xi) which only has a limited number

of “discrete” combinations. By bringing these response functions into the objective function

of “Problem P1,” the retailer’s problem becomes:

Max Ω1 =
N∑

i=1

[ai − bi − CFi − ei + gi(ni,xi, ti)]zi, (19)

subject to all constraints (7) through (15), which is:

Find (ni, zi,xi), for i = 1, 2, . . . , N , that maximize

Ω1 =
N∑

i=1

αiF
βi
i

N∏
j=1

j 6=i

F
δij

j

(Pi −Wi − CPi)zin
βi
i xµi

i

N∏
j=1

j 6=i

(nδij

j x
νij

j )

−
(

CRi

Gi

)
zin

βi−1
i xµi

i

N∏
j=1

j 6=i

(nδij

j x
νij

j )

−
(

WiIGi

2

)
zini − CFizi

−Ai(xi − 1)zi + gi(ni,xi, ti)] (20)
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subject to constraints (7) to (15). When using linear regression, the regression function

gi is linear. Solving this problem, the retailer gets the optimal solutions (n∗
i , z

∗
i ,x∗i ), for

i = 1, 2, . . . , N , which incorporate manufacturers’ responses of trade allowances.

This shelf-space allocation model with Stackelberg game has the following properties.

For a manufacturer,

1) larger trade allowance responses lead to a higher chance to be assigned a positive shelf

space in the retail store;

2) larger trade allowance response does not necessarily lead to a larger shelf space or

promotion level.

Both of these two properties reflect industry practice. The first property is consistent with

the purpose of trade allowances, i.e., for competition of scarce shelf space and supporting

the retail merchandising activities. The second property is consistent with the present

market situations, which are the “number-one” concern among manufacturers, as indicated

by the 1998 Trade Promotion Best Practices survey by Cannondale Associates ([42]).

Remark: This model can be modified to model the situations where the retailer

promises a shelf space or a promotion level with respect to a trade allowance as well. To

guarantee the levels of shelf space or promotional efforts with respect to a trade allowance,

the lower bound of shelf space Li and promotion level XLi in constraints (9) and (12) can

be represented as a function of gi(ni,xi, ti), i.e., XLi = kigi(ni,xi, ti)/Ai. However, to keep

the problem simple and easy to understand, this modification will not be included in this

chapter of thesis work.

3.6 Numerical Examples and Quantitative Analysis

As mentioned before, the proposed framework has two major improvements over the existing

shelf space management model. First, it considers manufacturers’ trade allowance as a

response to the resource assignment. Second, it models the interactions between the space

allocation, promotion activities and trade allowance charged from manufacturers. In this

section, the proposed framework is analyzed from both the retailer’s and manufacturers’

perspectives in order to demonstrate the potentials and properties associated with these
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two improvements.

For retailers, one of the major indices for evaluating a space allocation method is the

profit improvement. Therefore, experiment 1 is designed to show the benefits of the proposed

methods. Specifically, it aims to answer the following questions:

• Question 1: Will taking the manufacturers’ trade allowance response into account

make the retailer better off?

• Question 2: How much profit can a retailer gain if the proposed methods are utilized

to replace his existing space assignment?

Simulations are designed to answer these two questions in section 3.6.2. Section 3.6.2.1

illustrates the problem solving procedure of the proposed framework. In section 3.6.2.2,

solutions are compared with the case where the response function is not included and also

compared with a retailer’s existing shelf-space allocation solutions.

Since a manufacturer’s trade allowances have an impact on his resource competition in

the proposed framework, it is interesting to see what the impact is regarding to his chance

for winning the shelf space and promotion efforts from a retailer. Thus, in section 3.6.3,

experiment 2 is designed to answer the question:

• Question 3: As the magnitude of the trade allowance increases, how do the assigned

shelf space, retailer’s promotion efforts and manufacturer’s product demand change?

Simulations are run with real data collected from a retail store, which is also presented in

the related paper ([43]). We will first introduce the data set in section 3.6.1.

3.6.1 Data Set and Parameters

“Bulbs category” is selected in this study due to the inclusion of a large variety in product

demands. The dimension of shelf space for the bulbs category is (Height, Depth, Length)

= (40, 37, 166). Product information collected during a non-promoted period are listed in

Table 18. The current space allocation in the category is: Λ = (n1, n2, n3, n4, n5, n6) =

(6, 6, 4, 6, 6, 6).
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Table 18: Product information in bulbs category

Product Product Dimension Retail Wholesale Units
ID Height Depth Length Price [$] Price [$] Sold
1 7 3 5 1.37 0.92 651
2 7 3 5 1.37 0.92 627
3 7 3 4 2.17 1.45 130
4 7 3 5 1.37 0.92 451
5 7 3 5 0.96 0.64 1268
6 7 3 5 1.37 0.92 845

With the information from the store management, parameters related to operation costs

and space restrictions are estimated and assumed to be equal for all products in a category:

Restocking cost CRi is $5;

Replenishment cost CPi = 0.01 ∗Wi;

Fixed cost to include product i in the assortment CFi is $25;

Investment/interested rate I = 1% per month.

In addition, to increase product variety, the retailer restricts the maximum space assigned

to a product to be no larger than 1
4 of the total space. There is no restriction on the lower

bound of space assigned to a product.

We estimate space elasticity, promotion elasticity and cross-elasticities based on past

research since cross-sectional data needed to estimate them via regression is not available,

In the past research (e.g., [24], [22]), space elasticity typically ranges between 0.06 and

0.25, whereas cross space elasticities are assumed to take on values between −0.01 and

−0.05. Thus, space and cross-elasticities are assigned randomly to the investigated prod-

ucts within these ranges. Note that the product sales data shown in Table 18 does not

include promotional effects. With the sales data as demand and the estimated space and

cross space elasticities, the scaling factor αi can be calculated using equation (2), where

xi and xj are 1 for all i and j. Promotions have a larger impact on demand than space

allocation, i.e., promotion elasticity on advertisement can be around 0.3 ([64]) and the im-

pacts of promotional price cuts are much higher ([19]). Furthermore, the promotion and

cross promotion elasticity in this research represent the comprehensive promotional effects

from multiple promotion activities, such as price cut, advertisement and so on, therefore,
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promotion elasticities are assigned values between 0.4 and 0.43. Compared to promotion

elasticities, cross promotion elasticities are very small ([64]), however they are higher than

cross space elasticities. They are assigned randomly within the range of -0.06 to -0.1 to the

investigated products.

Parameters related to promotional budget are estimated. Retailers are assumed to

invest no more than 30% of the total gross margins obtained from the previous planning

cycle for the category’s promotion activities, which is B = $500, and no more than 85% of

the gross margin obtained from a product for its related promotions. In empirical analysis,

promotion intensity is usually classified as three levels: “Strong,” “Moderate,” or “None”

([17]). Here, the maximum promotion level is set as 5 for all products. The scale factor

for the promotional expense, Ai, is then represented by the division of product promotion

budget by 5, which are 49.8, 48, 15.9, 34.5, 69, 64.6 with respect to products 1 to 6.

3.6.2 Experiment 1: Profit Improvements for the Retailer

Focusing on answering the first two questions, we identify the following four cases.

• Case 1: We implement the proposed framework to solve the retail shelf space allocation

problem, Problem P1.

• Case 2: We solve Problem P0, the optimization problem where the response functions

of manufacturers’ trade allowances are not introduced into the model.

To see the potential profit improvements over the retailer’s existing space allocation, the

other two cases are identified as:

• Case 3: We solve Problem P1 by setting ni for i = 1, . . . , 6 with the current assignment

Λ in the retail store.

• Case 4: We solve Problem P0 by setting ni for i = 1, . . . , 6 with the current assignment

Λ in the retail store.

In the remainder of this section, the problem solving procedure is introduced followed by

the solution comparisons.
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3.6.2.1 The Proposed Framework - Case 1

Stage 1: Retailer Defines Supply Package

The retailer suggests to manufacturer i a supply package (ni,xi), i = 1, . . . , 6 in order

to acquire the manufacturers’ response functions. Since the maximum number of facings

assigned to a product is 10 for product 3 and 8 for the remaining products12, n3 includes

all integers in the range of [1, 10] and ni includes all integers from [1, 8] for all i 6= 3.

We assign xi values (1, 3, 5), which corresponds to “None”, “Moderate” and “Strong”

promotion intensity. Therefore, the supply package (ni,xi) includes the full enumeration

between values from ni and xi.

Stage 2: Manufacturers Make the Best Response

For each given (nik, xik), retailer i solves the optimization problem (17). As suggested

in section 3.5.1, to build the relations between product demand and (nik xik), manufacturer

i needs to find out the “believed demand” d̃ik. When historical data is available, this is

easily obtained with a regression analysis. However, historical data might not be available.

In such a situation, the retailer needs to provide demand function (2) to the manufacturers.

With the demand function (2), d̃ik is computed in the following way.

• Treat all the other products j 6= i as a single product J , and identify the possible ac-

cumulated space and promotion level for these products. For example, when (nik, xik)

is (5, 1), the total available space for the remaining products is 141. Then there are

3 possible combinations of (sJk, xJk) for the remaining products: (141, 1), (141, 3)

and (141, 5). The reason for treating all remaining products as a single product here

is because when estimating the demand for a manufacturer, it is more interesting to

see the aggregated effects from the rest of the products, instead of the detailed infor-

mation from each individual product. Furthermore, it is computationally intractable

to enumerate all of the possible combinations among all of the remaining individual

products.

12The maximum number of facings assigned to a product equals to the maximum length allowed for a
product divided by the product length, which is ( 1

4
∗ 166)/ product length.
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• For each combination, compute manufacturer i’s demand with demand function (2),

where (nik, xik) and (sJk, xJk) are used as the input, and the average value of cross-

elasticities between i and j ∈ J is applied to represent the cross-elasticity between i

and J . The expectation of these demands then represents d̃ik. For example, when

(nik, xik) = (5, 1), demands for manufacturer i are 799, 732 and 703 with respect to

the combinations of (sJk, xJk) of (141, 1), (141, 3) and (141, 5). We obtain d̃ik as

1
3(799 + 732 + 703) = 745.

Note that demand d̃ik is obtained only when manufacturer i wins the assignment

(nik, xik) by paying a high enough trade allowance, tik. Zero demand is incurred other-

wise. Therefore, a logistic regression is applied to build the relations between the binary

response of losing versus winning: Yik = {0, 1} and the trade allowance tik paid by i with

historical data. The mean response E[Yik] denotes the probability that Yik = 1, which is

pi,zi=1 in step 2) presented in section 3.5.1.

Due to the lack of historical data, the following mean response function is used where

the major relations between Yik and tik representing the real practice are expressed:

E[Yik] = pi,zi=1 =


bik 0 ≤ tik < tika,

aikln(λiktik) + bik tika ≤ tik < tikb,

1 tik ≥ tikb.

Here aik (aik > 0) and λik (λik > 0) are scale factors, and bik (bik ≥ 0) is a constant. Since

the probability pi,zi=1 is in the range of [0, 1], by solving equation

aikln(λiktik) + bik = 0 and aikln(λiktik) + bik = 1,

it is found that tika = 1
λik

e
−bik
aik and tikb = 1

λik
e

1−bik
aik , respectively. Intuitively, when tik is

small, a small increase in tik has no impact on the retailer’s resource allocation. Hence,

pi,zi=1 is a constant, bik, for 0 ≤ tik < tika. As tik increases, the probability, pi,zi=1,

increases, but at a diminishing rate until it reaches 1. Thus, pi,zi=1 is represented by a

non-linear function with diminishing return in the interval of [tika, tikb). As pi,zi=1 reaches

the upper bound, 1, an increase in tik has no effect on pi,zi=1.
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Given the believed demand d̃ik of realizing (nik, xik) and the probability function E[Yik]

of winning this demand by paying a trade allowance tik, the relation between the expected

demand dik and tik is obtained via formula (18) as follows:

dik = pi,zi=1d̃ik. (21)

Substituting dik into the manufacturer’s profit maximizing problem (17), the optimal solu-

tions are represented as:

t∗ik =


aik
λik

(Wi − Ci)d̃ik 0 ≤ t∗ik < tikb,

tikb t∗ik ≥ tikb,

Due to the high level of competition over the scarce space, tikb can be assumed to be very

large. Thus, for each given (nik, xik), an optimal t∗ik is easily found as aik
λik

(Wi − Ci)d̃ik and

ti represents the set of t∗ik with k = 1, . . ., K.

Let ρik denote aik
λik

(Wi − Ci), where ρik can be counted as the trade allowance that

manufacturer i would like to pay for a unit of the demand. To simplify the computation,

ρik is assumed to be the same for all k. In practice, it is found that the promotional

allowances for products vary. The size of the promotional allowance is usually greater

than 20% of the product cost. Furthermore, there is a tendency for manufacturers to

offer smaller promotional allowances for products with large market shares within their

merchandise categories ([17]). Therefore, ρ1k through ρ6k are assigned the values 0.248,

0.258, 0.58, 0.332, 0.128 and 0.212, which equates to 25%, 26%, 58%, 32%, 13% and 21%

of the product unit cost.

Stage 3: Retailer Determines the Resource Allocations

After collecting the information ti from all of the manufacturers, the retailer determines

the response functions through a regression analysis on (ni,xi) and ti. We employ the

method of least squares, where the estimators are unbiased and have minimum variance

among all unbiased linear estimators ([55]). The resulting response functions turned out to
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be the linear forms:

ť1(n1, x1) = 53.41 + 7.95n1 + 57.88x1, (22)

ť2(n2, x2) = 60.54 + 9.43n2 + 65.17x2, (23)

ť3(n3, x3) = 39.85 + 5.02n3 + 40.19x3 (24)

ť4(n4, x4) = 52.81 + 7.86n4 + 57.32x4 (25)

ť5(n5, x5) = 60.54 + 9.86n5 + 64.51x5 (26)

ť6(n6, x6) = 86.97 + 9.69n6 + 74.27x6 (27)

With these functions, the retailer can solve Problem 1.

3.6.2.2 Solutions Analysis

The optimal solutions for problem Case 1 through Case 4 are solved with GAMS. The

optimal solutions are listed in Table 19.

Table 19: Solutions comparison

Product ID
Case 1 2 3 4 5 6 Profit

1 zi 1 1 1 1 1 1 2940.916
ni 8 7 1 1 8 8
xi 1 1 1 1 4.501 5
ti 174.89 191.72 85.06 117.99 429.808 535.84

promotion cost 0 0 0 0 241.6 258.4
2 zi 1 1 1 1 1 1 2653.765

ni 8 7 1 1 8 8
xi 1 1 1 1 1 2.59
ti 174.89 191.72 85.06 117.99 203.93 356.878

promotion cost 0 0 0 0 0 102.739
3 zi 1 1 1 1 1 1 2764.867

ni 6 6 4 6 6 6
xi 5 1 1 1 1 5
ti 390.51 182.29 100.12 157.29 184.21 516.46

promotion cost 199.2 0 0 0 0 258.4
4 zi 1 1 1 1 1 1 2440.988

ni 6 6 4 6 6 6
xi 1 1 1 1 1 1
ti 158.99 182.29 100.12 157.29 184.21 219.38

promotion cost 0 0 0 0 0 0

The proposed method, Case 1, shows a significant advantage over the remaining cases.

When comparing the proposed method with Case 2, where the manufacturers’ response
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functions are not included, 12% profit improvement is observed. Similarly, 13% profit

improvement is obtained in Case 3 over Case 4 due to the consideration of the manufacturers’

response in Case 3 but not in Case 4. These facts demonstrate the importance of the

introduction of the manufacturers’ response function in the model, which clearly answers

Question 1. Furthermore, our method has a 20.5% profit improvement over Case 3, where

the existing assignment Λ is utilized and trade allowance responses from the manufacturers

are not considered, which indicates the significant benefits from implementing the Retailer

Stackelberg game framework.

To further understand the practical feasibility of the proposed solutions from Case 1,

we compare the space and promotion levels among these 6 products. Products 3 and

4 are low-demand products, and therefore, are assigned few facings without promotions.

High-demand products, products 5 and 6, receive the largest space with strong promotion

activities. The remaining two products with moderate demand structures are given large

space without promotions.

It is also found that the retailer requests different magnitudes of trade allowances from

different manufacturers for various purposes. The results show that no promotion effort is

allocated to products 1 through 4. Trade allowances therefore are charged as “rental” of the

shelf space, which is commonly charged in industry ([11]). As we can see, the “rental” per

unit space is different across various products. In addition, trade allowances charged from

products 4 and 5 are both for the “rental” of the shelf space and for supporting promotions.

However, a larger portion of trade allowances from product 6 is pocketed by the retailer

than from product 5. These results indicate the unfairness from the competition perspective.

However, they are feasible and represent real industrial practice. As mentioned before, since

the trade allowances are usually negotiated between retailers and manufacturers, no public

information concerning the magnitudes and specifications is available, therefore, retailers

usually charge different “rental” even for the same space from different manufacturers, and

various pass through is often applied to various products in practice ([11], [17]).

In summary, the proposed framework results in a significant profit increase for the

retailer. Furthermore, it suggests practically feasible solutions which systematically assign
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space and promote efforts with the consideration of both the manufacturers’ response and

interactions among products.

3.6.3 Experiment 2: Impact of Trade Allowance for Manufacturers

In practice, manufacturers tend to pay higher trade allowances to increase the shelf space

and promotion intensity in retail stores in the hopes of increasing the market share ([34]).

Therefore, if the retailer implements the proposed method for resource allocations, it is

critical to understand the impact of trade allowances on resource allocations from the man-

ufacturers’ perspective. Experiment 2 is designed to test the model for this purpose.

Factor ηi (ηi > 0) is introduced to denote the magnitude of trade allowances from

manufacturer i. Instead of submitting ti, manufacturer i submits ηiti, and the remaining

manufacturers (all j 6= i) submit tj, which amounts to taking ηj = 1. We solve the shelf

space allocation problem with the proposed method for each value of ηi in the set {0, 0.2,

0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}. The changes of product demand, trade allowances

charged by the retailer and the retailer’s profit are then observed as a function of ηi. This

is run on each of the 6 products. Solutions are shown in Figures 9 through 11.
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Figure 9: Solutions for product 1 and 2

61



Product 3
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Figure 10: Solutions for product 3 and 4
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Figure 11: Solutions for product 5 and 6
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The solutions show the following trends:

• First, with an increase in ηi, product demand di is non-decreasing. When ηi increases,

the product demand does not increase continuously, but rises up until it reaches a

threshold point. This pattern repeats until a product is assigned with the maximum

allowed space and highest possible promotion intensity. Therefore, with the proposed

framework, manufacturers can expect the trend of increasing demand as a result of

an increase in the magnitude of trade allowances. However, it is hard to forecast

the change in ni and xi associated with an increase of ηi. For example, the demand

increase for product 1 at η1 = 0.4 is due to the increase of n1, while the demand

increase at η1 = 1.2 is from the increase of t1
13.

• On the other hand, the increase in ηi can also lead to a larger retailer’s pocket rate,

i.e. the percentage of trade allowance pocketed by the retailer. For example, product

1’s demands are fixed values when ηi is in the intervals [0.4, 1] and [1.2, ∞). The

increased trade allowances from manufacturer 1 do not help to obtain a larger shelf

space or to pass through to customers via promotions, instead, it contributes to a

retailer’s profits in this case.

Although it is a monotonic nondecreasing function between trade allowances and demands,

the increase in trade allowances generally increases demands via enlarging the shelf space

and promotion activities. Therefore, this is a rational resource allocation framework from

the manufacturers’ perspectives.

When more than one manufacturer tends to pay larger trade allowances, solutions are

affected by the relative magnitudes among these trade allowances, which is not helpful for

evaluating the proposed model due to the complexity, hence, this case will not be discussed

in this section.

Finally, to further investigate properties of the proposed framework, it is also interesting

to examine model sensitivity to input data errors. For example, elasticities estimations

and manufacturers’ response functions are obtained through regression analysis, and the

13The jump points in the demand figure are either from the increase of ni, xi or both.
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manufacturers’ estimation of product demands with respect to a trade allowance is also

obtained via regression analysis. All these regressions can lead to errors. Due to time

constraints, we will examine the robustness of the proposed model to these errors in the

future.

3.7 Conclusion

In this project, promotion effect is introduced to the decision of product selection and

shelf space allocation in the management of category-level shelf space, and is modeled as

an MINLP. A piecewise linearization method is proposed to solve the MINLP problem.

Furthermore, based on the proposed category shelf space allocation model, a category shelf

space allocation framework with trade allowances is presented, where a multi-player Retailer

Stackelberg game is introduced to model the interactions between retailer and manufactur-

ers. With this framework, a retailer maximizes the profit by taking the manufacturers’

trade allowances response into account, which provides a realistic approach of simultane-

ously determining both the promotion level and pass through of trade allowances. Numerical

examples demonstrate significant potentials of the proposed framework.
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Appendix A: Stackelberg Game

Stackelberg ([65]) proposed a dynamic model with 2 players in which a dominant (or

leader) player moves first and a subordinate (or follower) player moves second. It is assume

that players’ payoff functions are common knowledge. The timing of the game is as follows:

1) player-one (leader) chooses a decision q1; 2) player-two (follower) observes q1 and then

chooses a decision q2; 3) the payoff of player i is then given by the profit function πi(qi, qj).

This game sometimes has multiple Nash equilibriums and backwards-induction ([19])

is the most commonly used method solving for one of the Nash equilibriums-Stackelberg

equilibrium. To solve for the backwards-induction outcome, let Q1 and Q2 denote the

feasible action set for q1 and q2, respectively. When player-two knows the player-one’s move

at the second stage of the game, he or she will face the following problem, given the action

q1 previously chosen by player-one:

maxq2∈Q2 π2(q1, q2), (28)

Assume that for each q1 in Q1, player-two’s optimization problem has a unique solu-

tion, denoted by R2(q1). This is player-two’s reaction (or best response) to player-one’s

action. Since player-one can solve player-two’s problem as well as player-two can (due to

the assumption of “players’ payoff functions are common knowledge”), player-one should

anticipate player-two’s reaction to each action q1 that player-one might take, so player-one’s

problem at the first stage becomes:

maxq1∈Q1 π1(q1, R2(q1)). (29)

Assume that this optimization problem for player-one also has a unique solution, denoted

by q∗1. We will call (q∗1, R2(q∗1)) the backward-induction outcome of this game, which is the

Stackelberg equilibrium where no player wants to deviate from this solution.

It is straightforward to extend what follows to allow for more than one following players.

Appendix B: Model Reformulation and Piecewise Linearization

Following the treatment in [43], this appendix details the technique for solving the

MINLP. Focusing first on the constraints of the product category model, observe that the
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bilinear term zini in constraints (7) and (8) and the bilinear term xizi in constraints (11)

are nonlinear. In order to linearize these constraints we use the technique of Al-Khayyal

and Falk ([3]) and Al-Khayyal ([2]), who propose a reformulation technique for finding

global solutions of bilinear programming problems (see also Sherali and Adams ([63]) who

extended this technique). The technique involves the use of the convex and concave envelope

of a bilinear function over a rectangular region. Each bilinear term (in our case zini and

zixi) is replaced by a new variable and four additional linear constraints are imposed on

each of these variables. It is crucial to note that the nonlinear constraints (7), (8) and (11)

are replaced, using the technique in Al-Khayyal and Falk ([3]) and Al-Khayyal ([2]), by an

equivalent system of linear inequalities.

Turning our attention to the objective function (54), we define the following two inter-

mediate variables that facilitate the description of our linearization scheme

ui = nβi
i xµi

i

N∏
j=1

j 6=i

(nδij

j x
νij

j ) (30)

vi = nβi−1
i xµi

i

N∏
j=1

j 6=i

(nδij

j x
νij

j ). (31)

Our objective function can now be written more concisely as

Ω0 =
N∑

i=1

αiF
βi
i

N∏
j=1

j 6=i

F
δij

j

(
(Pi − Ci − CPi)ziui −

(
CRi

Gi

)
zivi

)

−
(

CiIGi

2

)
zini −Aixizi − (CFi −Ai)zi

]
(32)

which exhibits a linear component zi and bilinear components ziui, zivi, zini and xizi. The

bilinear components can be reformulated into equivalent linear forms subject to additional

side constraints using the reformulation technique cited above; however, that would still

leave nonlinear monomial constraints (30) and (31). To circumvent this difficulty, we replace

ui with emi and vi with em′
i in (32) to obtain the equivalent objective function.
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Ω0 =
N∑

i=1

αiF
βi
i

N∏
j=1

j 6=i

F
δij

j

(
(Pi − Ci − CPi)zie

mi −
(

CRi

Gi

)
zie

m′
i

)

−
(

WiIGi

2

)
zini −Aixizi − (CFi −Ai)zi

]
(33)

with side constraints for all i = 1, . . . , N

mi = βiln(ni) + µiln(xi) +
N∑

j=1

j 6=i

[δijln(nj) + νijln(xj)] (34)

m′
i = (βi − 1)ln(ni) + µiln(xi) +

N∑
j=1

j 6=i

[δijln(nj) + νijln(xj)] . (35)

These constraints are still nonlinear, but each individual function ln(ni) and ln(xi) can

be approximated by a piecewise linear function over their interval [Li, Ui] and [XL, XU ].

Since the functions ln(ni) and ln(xi) are concave, their piecewise linear representations are

greatly simplified by using separable programming theory (see [66]).

For reasons that will soon become clear, we need to derive lower and upper bounds,

denoted as Ai and Bi, on mi given by (34). Similarly, we compute lower bounds A′
i and

upper bounds B′
i on m′

i given by (35). For this discussion, recall that 0 ≤ βi ≤ 1 and

0 ≤ µi ≤ 1, whereas δij ≤ 0 and νij ≤ 0. Therefore, mi is at its upper bound Bi if ni is at

its maximum value Ui and nj is at its minimum value Lj . A similar but opposite argument

can be made for finding the lower bound Ai of mi. Thus, we have

Ai = βiln(Li) + µiln(XLi) +
N∑

j=1

j 6=i

[δijln(Uj) + νijln(XUj)] (36)

Bi = βiln(Ui) + µiln(XUi) +
N∑

j=1

j 6=i

[δijln(Lj) + νijln(XLj)] (37)

and

Ai ≤ mi ≤ Bi. (38)
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Since βi ≤ 1, the bounds A′
i and B′

i for m′
i are

A′
i = βiln(Ui) + µiln(XUi) +

N∑
j=1

j 6=i

[δijln(Uj) + νijln(XUj)] (39)

B′
i = (βi − 1)ln(Li) + µiln(XLi) +

N∑
j=1

j 6=i

[δijln(Lj) + νijln(XLi)] (40)

and

A′
i ≤ m′

i ≤ B′
i. (41)

Although the two new sets of constraints (34) and (35) can be linearized using the

foregoing separable programming arguments, the objective function (33) is still nonlinear.

We deal with the exponential terms by judiciously approximating them over the bounds

on their arguments. In particular, we want our approximating objective to overestimate

(33) so that the optimal objective value of the estimating problem provides an upper bound

on the true optimal object value. Specifically, we approximate emi by a convex piecewise

linear overestimating function, and em′
i is approximated by a convex piecewise linear un-

derestimating function. Notice that we want both lower and upper approximations of a

convex function to be convex. Our choice of which approximation (lower or upper) to

choose is based on the objective coefficient of the exponential term in (33). Since we must

have Pi−Ci−CPi ≥ 0 (otherwise, zi = 0 would always be optimal), the coefficient of emi is

nonnegative, so we overestimate it. On the other hand, the coefficient of em′
i is nonpositive,

so we need an underestimate of em′
i in order to have an overestimate of its negation.

A convex piecewise linear overestimating function of emi created by choosing one grid

points Ei ∈ (Ai, Bi). The two linear functions are given by

∆i = eAi +
(

eEi − eAi

Ei −Ai

)
(mi −Ai)

Φi = eEi +
(

eBi − eEi

Bi − Ei

)
(mi − Ei).

In general, Ei can be taken anywhere in the open interval (Ai, Bi), but we use

Ei = ln

(
eBi − eAi

Bi −Ai

)
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which maximizes the absolute difference between emi and the line segment connecting eAi

and eBi . The piecewise linear function max{∆i,Φi} overestimates emi over the interval

[Ai, Bi] with ∆i defined on the subinterval [Ai,mi] and Φi defined on the subinterval [mi, Bi].

Hence, we have, for all i = 1, . . . , N ,

emi ≤ max{∆i,Φi}

≡ yi∆i + (1− yi)Φi

= si

for all yi satisfying

yi(Ei −mi) ≥ 0 (42)

(1− yi)(Ei −mi) ≤ 0 (43)

mi ∈ [Ai, Bi] (44)

yi ∈ {0, 1}. (45)

Therefore, replacing emi by si in our objective (33) and incorporating the constraints (42)–

(45) yields a linear mixed integer reformulation of the piecewise linear overestimating func-

tion of the exponential term. The remainder of the paper is restricted to the case K = 1,

since the nominal improvement in the approximate solutions of several test problems did

not justify the significant increase in the additional computation times for K ≥ 2.

With bounds on si easily computed from (36) and (37), and after replacing all emi

by si in the objective function (33), we linearize all occurrences of the bilinear terms zisi

in (33) and yimi in the constraints (42) and (43) using convex and concave envelopes (as

detailed in Appendix C). This linearization produces equivalent linearly constrained linear

reformulations of all bilinear terms.

Turning to the other exponential term in (33), recall that we need to construct an

underestimating function of em′
i over [A′

i, B
′
i] since its coefficient in (33) is nonpositive. We

will take these underestimating linear segments to be defined by tangent lines of em′
i . In

the spirit of the foregoing, we initially restrict our attention to the case of two segments
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defined by tangent lines at the interval end points; namely, lines tangent to the graph at

(A′
i, e

A′
i) and (B′

i, e
B′

i). These are given by

Θi = eA′
i + eA′

i(m′
i −A′

i)

Ψi = eB′
i + eB′

i(m′
i −B′

i).

Hence, we have

−em′
i ≤ −max{Θi,Ψi}

= min{−Θi,−Ψi}

= gi.

If we replace em′
i in (33) by gi, we must add the constraint gi = min{−Θi,−Ψi}. Since

our objective is to maximize Ω0 and the coefficient of gi is nonnegative (i.e., (CRi/Gi) zi ≥

0), then, by separability, the constraint gi = min{−Θi,−Ψi} is satisfied by maximizing

(CRi/Gi) zigi subject to the constraints

gi ≤ −Θi

gi ≤ −Ψi.

To complete the overestimating linearization of (33), the bilinear terms zigi are linearized

via an equivalent linearly constrained reformulation using the convex and concave envelope

technique of Appendix C, as the bounds for gi are easily computed from (39) and (40).

If more than two underestimating linear segments of em′
i are desired, we would need to

introduce not only additional linear constraints for each subinterval but also new binary

variables to ensure that the proper linear function holds in its subinterval domain.

Thus, we have derived a linear MIP whose feasible region, when projected onto the

decision space of the shelf space model, is identical to that of the nonconvex shelf space

allocation model, and whose optimal objective value is an upper bound on the optimal

objective value of the nonconvex model.
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Appendix C: Convex and Concave Envelope of a Bilinear Function ([43])

This appendix is taken directly from [43] with permission, and is included to support the

development in Appendix B. For a bilinear function xy, where (x, y) ∈ <2, Al-Khayyal and

Falk ([3]) prove that the convex envelope14 over the rectangular domain [xL, xU ]× [yL, yU ],

where L (U) denotes to a known lower (upper) bound on the variable, is given by:

max{xLy + yLx− xLyL, xUy + yUx− xUyU}

The term xy can be replaced everywhere in a model by introducing a new variable g

wherever xy appears and imposing the two linear constraints:

g ≥ xLy + yLx− xLyL (46)

g ≥ xUy + yUx− xUyU (47)

Analogously, the em concave envelope15 of xy, where (x, y) ∈ <2, over the rectangular

domain [xL, xU ]× [yL, yU ] is given by (see [2]):

min{xUy + yLx− xUyL, xLy + yUx− xLyU}.

When replacing xy by g everywhere in the model, g will better approximate xy if the

following additional constraints implied by the concave envelope are added:

g ≤ xUy + yLx− xUyL (48)

g ≤ xLy + yUx− xLyU (49)

It is easy to show that if either x or y is at one of its bounds, then constraints (46) through

(49) guarantee that g = xy.

Appendix D: Logistic Regression ([55])

In a variety of regression applications, the response variable of interest has only two pos-

sible qualitative outcomes, and therefore can be represented by a binary indicator variable

takeing on values of 0 and 1. In such case, the response of the regression model is binary.

14The convex envelope of a function over a convex domain is the highest convex underestimating function
over the domain.

15The concave envelope of a function over a convex domain is the lowest concave overestimating function
over the domain.
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Consider the simple regression model:

Yi = θ(Xi) + εi Yi = 0, 1 (50)

Where the outcome Yi is binary on the value of either 0 or 1. The expected response E{Yi}

has a special meaning in this case. Since E{Yi} = 0 we have:

E{Yi} = θ(Xi) (51)

Consider Yi to be a Bernoulli random variable for which we can state the probability dis-

tribution as follows:

1) Probability (Yi = 1) = πi;

2) Probability (Yi = 0) = 1− πi.

Thus, πi is the probability that Yi = 1, and 1-πi is the probability that Yi = 0. By the

definition of expected value of a random variable, we obtain:

E{Yi} = 1 ∗ πi + 0 ∗ (1− πi) = πi. (52)

We thus find:

E{Yi} = θ(Xi) = πi. (53)

The mean response E{Yi} as given by the response function is therefore simply the proba-

bility that Yi = 1 when the level of the predictor variable is Xi. This interpretation of the

mean response applies whether the response function is a simple linear one or a complex

multiple regression one. The mean response, when the outcome variable is a 0, 1 indicator

variable, always represents the probability that Yi = 1 for the given levels of the predictor

variable.
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CHAPTER IV

SUPPLY-CHAIN ORIENTED ROBUST PARAMETER

DESIGN

4.1 Introduction

Robust parameter design is a methodology of choosing controllable factors to make a man-

ufacturing system less sensitive to noise variations, which is normally defined for the single

stage operation. When a system receives operations at several stages, the noises inherent

from the upstream operations could have a great impact on the quality of products in the

downstream operations ([13], [8]). For example, as shown in Section 4.4, when a part is

machined with a rough milling process followed by a finish milling process, the variance

of the surface roughness on the part generated in the rough milling process will affect the

finish milling process ([23]).

Different efficiency or costs are usually incurred if various values of controllable factors

in robust parameter design are selected. When operations are owned by different parties,

the objectives of each operation in the supply chain are not aligned, which can lead to a

high cost over the entire supply chain and large variances in the end output. Therefore, it is

challenging to coordinate supply-chain partners with different objectives for manufacturing

products meeting robust parameter design goals. Due to the growing trend of manufacturing

outsourcing all over the world, such as the use of third-party manufacturers in the computer

and automobile manufacturing industries, the study of robust design problems across several

partners in the supply chain has become more critical than ever.

The literature in the supply-chain oriented robust design field is limited. Shang et

al. ([17]) introduce the Taguchi’s method for supply chain design. They select values for

control factors in a supply chain design which includes manufacturers’ capacity, delayed

differentiation, information sharing between retailers and manufacturers, retailer’s (S, s)
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policy, replenishment lead time and supplier reliability to dampen the noise factors, such as

the variance in demand and inventory holding cost. Different from their work, the robust

design in this chapter is applied in each individual stage where machining control factors are

selected to dampen noises factors which are the sources of variances in the manufacturing

system. Cooperation and information sharing are introduced between the robust parameter

design across various stages in the supply chain.

When analyzing the supply chain across different parties/channels, the channel con-

flict, the potential objection of one channel to the actions taken by another is the critical

problems to be addressed. Game theory is the most commonly used tool to analyze the

interactions among various parties in the supply chain analysis. For example, games are for-

mulated between manufacturers and retailers to model conflict and coordination in various

distribution systems (e.g. [18], [14], [9]). The major purposes of these studies are analyz-

ing the channel structure, such as, which channel to use for a manufacturer to distribute

products and how to participate in a given distribution system for a retailer. Different from

these research, we introduce a game to model the interaction among various parties in a

multi-stage manufacturing process. The objective is to analyze the conflicts between these

parties from the quality engineering perspective, which is the first time that game theo-

retical method is introduced in this area. Since the leader and follower relation where one

player dominates the others is common in practice ([2]), Stackelberg game ([19]) is applied

to model the interaction among various parties in the multi-stage process in this chapter.

In multi-disciplinary product design, game theory has been introduced to solve the

conflicts between different disciplines ([10], [6], [7], [16], [20]). Most publications have con-

sidered optimal product design issues in a deterministic environment. Thus, the variations

induced by noise factors were not considered in these works. Chen [2] integrates the “robust

optimization” concept relevant to robust parameter design into game theory for providing

flexibility in solving conflicts between product designers. Specifically, instead of sending

an optimum design value to the downstream designer, an upstream designer delivers a

range of design values which are near to the optimum but have less sharp changes to the
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product performance, i.e., select the “design window” for producing more consistent per-

formance. However, in Chen’s research the above robust optimization concept is only used

by the upstream designer and the system is deterministic. Thus, there exists no variance

accumulation study in the robust parameter design for multi-stage processes (see [8] for

an example of modeling accumulated errors for the assembly process). In this research,

variance accumulation across the various stages of the manufacturing process is studied.

This research focuses on variations presented in manufacturing processes. “Negotia-

tions” between the supply-chain partners is modeled as a Stackelberg game, where there

are leaders and followers in deciding a set of equilibrium conditions for establishing excel-

lent robust processes. To the best of our knowledge, this is the first time that supply chain

analysis has been introduced in multi-stage robust parameter design. In Section 4.3.1, we

introduce the experimentation and modeling for a two-stage process. In Section 4.3.2, the

Stackelberg game model is presented. Section 4.4 uses an example to illustrate the proposed

methodology. The concluding remarks are given in Section 4.5.

4.2 Contributions in this Chapter

In this chapter, we make the following contributions:

1. Propose methods of solving robust parameter design problem in a single stage.

2. Analyze multi-stage robust parameter design problems, where variance interactions

between various stages are studied. This is the first time that the robust parameter

design is analyzed across multiple stages.

3. Model the interaction between the robust parameter design in various stages as a

Stackelberg game.

4. Provide real-life examples to demonstrate the potential of the proposed method.

4.3 Models

We start with a two-stage process (Figure 12). In stage i, inputs are the control factors Xi

and noise factors Ni. Response Yi is the output from stage i. The output Y1 is also input

of stage 2 and thus, serves as a “connection” between the two stages. The target value

of response Yi is denoted by Ti for stage i. Here, Ti has a different definition for different
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problems: in the nominal-the-best problem1, it defines the mean value of the response

function; in the smaller-the-better and larger-the-better problems, it is zero and infinite,

respectively.

T2

Stage 1 Stage 2

Y1
Y2

T1

X1 X2

N1 N2

Figure 12: The two-stage process

4.3.1 Experimentation and Modeling

Before introducing the model of the two-stage game between the partners, we first model

the relationships between the input and output in each stage based on data collected from

experimental design methods, e.g., cross-array experiments for both noise and control factors

are usually used to collect data in robust parameter design. Since modeling, coordination

and optimization tasks for robust parameter design have to be explored before looking

into optimal experimental design, we will not discuss the experimental design issues in this

chapter and leave it as a future work. Assuming that data are available, two commonly used

data modeling approaches are: Location and Dispersion Modeling and Response Modeling

([22]).

In the Location and Dispersion Modeling approach, both mean (location) and variance

(dispersion) of the response are modeled as functions of control factors independently. In

the Response Modeling approach, the response is modeled as a function of both the control

and noise factors. Based on the fitted response model, the variance of the response is

computed with respect to the variation among the noise factors and control factors with

1In the nominal-the-best problem, the measured response always has specific target value. In the smaller-
the-better problem, the measured responses never have a negative value, and their targeted response is ideally
zero. In the larger-the-better problem, the measured response, while never having negative values, are better
as their value gets larger.
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selected settings representing process variations, which is called transmitted variance model.

Based on the models from experiments, the robust parameter design for a single stage

i can be established in the following two methods. Here, we denote the expectation and

variance of Yi by E(Yi) and V ar(Yi), respectively.

Method 1:

We formulate the robust design problem as an optimization problem to select the settings

of the control factors Xi, which are the decision variables in the problem. Usually, the

objective of a robust design is to minimize the quality loss. However, costs associated

with the different levels of a control variable can be very distinct, i.e., smaller cutting speed

reduces the thermal error in a machining process, but may result in a longer machining time.

Therefore, the cost associated with parameter design should also be considered. Thus, in

our model, the objective function is to minimize the expected quality loss, E(L(Yi, Ti)), and

the cost, C(Xi), associated with the parameter design. The problem is formulated as:

Find Xi,

min f(E(L(Yi, Ti)), C(Xi)), (54)

s.t. Timin ≤ E(Yi) ≤ Timax, (55)

XiL ≤ Xi ≤ XiU . (56)

This model can be solved using optimization methods. Constraint (55) and (56) define the

feasible region of the response and control variables, respectively, where Timin and Timax

denote the lower bound and upper bound of the response value. XiL and XiU are the lower

bound and upper bound of the feasible value of Xi. In practice, the control variables are

assumed to be completely controlled, therefore, we assume there is no variance associated

with control variable Xi.

Note that in terms of problem types, constraint (55) has various expressions. Let ∆Ti

denote the tolerance of the response value, we have Timin = Ti−∆Ti and Timax = Ti +∆Ti

in the nominal-the-best problem. In the smaller-the-better problem, Ti = 0. Therefore, the

84



lower bound Timin is zero. Constraint (55) becomes:

0 ≤ E(Yi) ≤ Timax, (57)

where Timax = ∆Ti. Similarly, in the larger-the-better problem, Ti = ∞, Constraint (55)

becomes:

Timin ≤ E(Yi), (58)

where Timin = ∆Ti.

Method 2:

When some control factors and noise interact in their joint effect on the response func-

tion, the variation in the response can be reduced by changing the settings of these control

factors. The remaining control factors with no interaction with noise can be used to adjust

the mean value. Thus, two-step procedure ([22]) which adjusts the mean and the variance

in two sequential steps is popular in robust parameter design.

Following the two-step procedure, we develop the following two-step procedure for the

nominal-the-best case:

i) Select the levels of the control factors Xi to minimize V ar(Yi). The control factors

which have interaction with noise factors in the formulation of V ar(Yi) are selected to

dampen the variance of noise factors.

ii) Select the level of a control factor that does not have interaction with noise factors

to minimize the difference between the mean value of the response function, i.e., E(Yi) and

the target value Ti. If adjusting one control factor is not sufficient to bring the objective to

the target value, it may require two or more control factors for the adjustment in this step.

When implementing the two-step procedure, we need to take the costs into consideration

as well, such as the cost associated with the robust design.

For the case of smaller-the-better (larger-the-better), decreasing (increasing) the mean

value is considered to be a more difficult task, it should be done in the first step. Therefore,

it is recommended that the order of the two-step procedure is reversed. The two-step

procedure is then modified as follows: 1) Select the levels of control variable to minimize

(maximize) the response value, i.e., E(Yi) in the first step. 2) Select the levels of control
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factors to minimize the variance, V ar(Yi). Recall that ∆Ti serves as the upper bound (lower

bound) in these two cases. Thus, E(Yi) should be moved into the feasible region defined by

the bound ∆Ti in the first step.

Finally, we need to point out that solutions found with Method 1 are no worse than

Method 2 because Method 1 optimizes both mean and variance simultaneously.

4.3.2 Leader/follower Game Model

In Section 4.3.1, two methods are proposed to solve the robust design problem in one stage.

Game theory can be applied to both methods. To keep the presentation brief, we focus on

Method 1 here. Note that when multiple stages are correlated as shown in Figure 12, the

process design in one stage can have significant impact on the performance of the other

stage.

There are various ways to model the cooperations among product/process designers.

Although full cooperation between all partners is an ideal way of addressing the needs of

different partners, it is rare in practice due to the issues of organizational challenges ([2]). Se-

quential approach is another popular method in multi-disciplinary product-design processes

when one designer dominates the other or in a design process that involves a sequential exe-

cution of interrelated processes. However, with this approach the initial decisions are made

without any formal consideration of the later decisions of the follower.

In this section, we model the two-stage process as a two-player Stackelberg game, where

one player is the leader (usually with higher negotiation power) makes decisions first. The

other player, the follower will then take his/her ”best response” ([19]) to the given action of

the leader. In this game, it is assumed that players’ payoff functions are common knowledge

(can be expected from common sense). The timing of the game is as follows: 1) player 1

(leader) chooses a decision q1; 2) player 2 (follower) observes q1 and then chooses a decision

q2; 3) the payoff of player i is then given by the profit function πi(qi, qj).

This game sometimes has multiple Nash equilibriums and backwards-induction [19] is

the most commonly used method solving for one of the Nash equilibriums-Stackelberg equi-

librium. To solve for the backwards-induction outcome, let Q1 and Q2 denote the feasible
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action set for q1 and q2, respectively. When player 2 knows the player 1’s move at the second

stage of the game, he or she will face the following problem, given the action q1 previously

chosen by player 1:

maxq2∈Q2 π2(q1, q2). (59)

Assume that for each q1 in Q1, player 2’s optimization problem has a unique solution,

denoted by R2(q1). This is player 2’s reaction (or best response) to player 1’s action. Since

player 1 can solve player 2’s problem as well as player 2 can (due to the assumption of

“players’ payoff functions are common knowledge”), player 1 should anticipate player 2’s

reaction to each action q1 that player 1 might take, so player 1’s problem at the first stage

becomes:

maxq1∈Q1 π1(q1, R2(q1)). (60)

Assume that this optimization problem for player 1 also has a unique solution, denoted

by q∗1. We will call (q∗1, R2(q∗1)) the backward-induction outcome of this game, which is

the Stackelberg equilibrium where no player wants to deviate from this solution. It is

straightforward to extend what follows to allow for more than one following players.

Stage 1 and 2 in this chapter are referred as player 1 and 2, respectively in the following

discussion. In terms of the leadership, two cases are identified.

Case 1- Player 1 is the leader:

This game fits for the situations where the upstream stage takes the overall process quality

into consideration when making decisions. Therefore, the objective function of player 1 is

a function of both Y1 and Y2, which is denoted by ϕ1(Y1, Y2). Without loss of generality,

we assume that player 1’s objective is to minimize the total quality loss resulting from the

end output, Y2, and also the total costs associated with the parameter design in both of

these stages. The objective of player 2 is to minimize the quality loss of the final product

plus the cost associated with parameter design in stage 2. We denote the objective function

of player 2 by ϕ2(Y2). The timing of the game is as follows: player 1 selects X1 and the

corresponding Y1 is sent to player 2 as an input information. Player 2 then makes the best

response Y2 respect to Y1 by selecting X2.

The backward induction solutions for the game are solved in the following steps:
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1. Player 1 solves player 2’s problem to obtain the response function R(Y1): for a given

Y1, player 2’s optimization problem is to optimize the objective ϕ2(Y2) by selecting

X2 with the methods presented in section 4.3.1. Since it is assumed that player 2’s

optimization problem, the payoff function, is common knowledge. Thus, by selecting

a set of values for Y1, denoted by Y1 and solving player 2’s optimization problem

with respect to each component of Y1 in Y1, player 1 gets a set of solutions Y2

corresponding to Y1. Player 2’s response surface model between Y1 and Y2 is then

obtained with regression analysis as follows:

Ỹ2 = f̃(Y1). (61)

2. Given player 2’s best response function Ỹ2 = f̃(Y1), player 1 selects X∗
1 to optimize

the objective: ϕ1(Y1, Y2)=ϕ1(Y1, Ỹ2) = ϕ1(Y1, f̃(Y1)). X∗
1 and Y ∗

1 are obtained.

3. Substituting Y ∗
1 into the player 2’s optimization problem where Y2 is a function of Y1

(see Figure 4.4.1), X∗
2 and Y ∗

2 are obtained.

Case 2- Player 2 is the leader:

This case is applicable to the situations where player 2 has more power, i.e, player 2 sets the

target value for player 1. In the nominal-the-best problem, this target value is T1. However,

in the smaller-the-better and the larger-the-better problem, the target values are T1max and

T1min, respectively. For the ease of description, we denote the target values for all these

three problems by T1.

The objective of player i is to minimize his own quality loss and the cost associated with

the parameter design in stage i. We denote the objective function for player i by ϕi(Yi).

The timing of the game is as follows: player 2 sets a target T1 for Y1, player 1 then make

a best response to the target value. Therefore, Y1 is a function of the target value in this

case. The decision variable for player 1 is X1. And both X2 and T1 are decision variables

for player 2 in this case.

The backward induction solutions for the game are solved in the following steps:

1. Player 2 solves player 1’s problem to obtain the response function R(T1): for a given

T1, player 1 selects X1 to optimize his objective. Since it is assumed that player 1’s
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optimization problem, the payoff function, is common knowledge. Player 2 can select

a set of values for T1, denote as T1 and solve player 1’s optimization problem for each

T1 in T1. A set of solutions of Y1 are obtained with respect to T1. Player 1’s best

response function is then obtained with the regression analysis:

Ỹ1 = r̃(T1). (62)

2. Given player 1’s best response function Ỹ1 = r̃(T1), player 2 optimizes the objective

ϕ2(Y2). Note that Y2 is a function of Y1, we denote the relation between Y1 and Y2

by Y2 = g(X2, N2, Y1). Thus, the objective function of player 2 can be represented as:

ϕ2(Y2) = ϕ2(g(X2, N2, Y1)) = ϕ2(g(X2, N2, Ỹ1)) = ϕ2(g(X2, N2, r̃(T1))). X∗
2 and T ∗

1

are obtained.

3. Substituting T ∗
1 into the player 1’s optimization problem, we find X∗

1 .

Two-stage games can involve multiple players. The leadership of the game depends on

the power of the players. For example, when parts machined on one stage, stage A, are sent

to different downstream processes, i.e., B1 through Bn for the further machining, stage A

can function as a leader who selects the design parameter to minimize the total losses in final

outputs by taking the best responses from followers. On the other hand, when B1 through

Bn are the customers who provide specifications for products, the manufacturer A becomes

a follower who selects design parameters to be robust to the variety in the specifications.

In addition, this model can be extended to more than two stages, and multiple responses

can also be introduced with small modifications on the model proposed above.

4.4 An Example

Milling is a fundamental machining operation for generating machined surfaces by removing

a predetermined amount of material progressively from the workpiece ([12]). It is widely

used in a variety of manufacturing industries including the aerospace and automotive sec-

tors, where quality is an important factor in the production of slots, pockets, precision molds

and dies. A good-quality milled surface significantly improves fatigue strength, corrosion

resistance, or creep life. Therefore, robust designs are usually implemented to improve the
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surface quality ([5]). A suitable level of control variables, such as spindle speed, feed rate,

depth of cut and geometries of the cutting tool2 (see Figure 13 and 14) are selected to

dampen the noise factors caused by the tool wear, occurrence of chatter or vibrations of the

machine tool.

Feed RateDepth of Cut

Spindle Speed

Figure 13: Cutting geometry

Flank Width

Tool Nose Radius

Figure 14: The geometries of the cutting tool tips

In the United States, non-precision components with rough cutting are seldom manu-

factured, but are often outsourced to low-cost, offshore suppliers ([15]). Finish cutting is

then performed on these parts to meet the high precision requirement. In this section, we

illustrate the proposed approach by using an example of the surface roughness control for a

2Spindle speed is the peripheral linear speed resulting from the rotation of the cutter. Feed rate is the
speed or rate at which the workpiece moves past the cutter. Depth of cut is the depth of the material to be
removed in one operation.
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two-stage end-milling process. A manufacturer purchases aluminum parts from a supplier

who finishes the rough surface milling process. A finish surface milling process is then im-

plemented on the this part by the manufacturer. The surface roughness requirement for the

final part is 1.65µm.

The manufacturer is the leader of the game, who gives the target value, the maxi-

mum mean of roughness T1max, to the follower, the supplier. The supplier responds with

Ỹ1(T1max) and the price of the part P̃1(T1max). The manufacturer then takes the best

response functions of the supplier into his own design problem to optimize his objective.

4.4.1 Performance Measure

The average surface roughness Ra, which is the most widely used surface finish parameter

in industry, was selected for this study. This parameter, also known as the arithmetic mean

roughness value, is the arithmetic average of the absolute value of the heights of roughness

irregularities from the mean value measured within a sampling length (see Figure 15), which

is:

Ra =
1
D

∫ D

0
|y(x)|dx, (63)

where D denotes the sampling length and y(x) denotes the ordinate of the profile curve at

point x. In general, a smaller Ra is desired and the response never have a negative value.

Therefore, controlling the roughness can be regarded as a smaller-the-better problem.

x

y

D

Figure 15: Profile of surface roughness
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4.4.2 Method Implementation

In literatures of mechanical engineering, location effects are usually modeled as a function

of control factors through robust parameter design. However, dispersion effects are rarely

formulated. Furthermore, to the best of our knowledge, multistage robust parameter design

has not been studied, therefore, it is difficulty to find an example which includes two-

consecutive-stage robust parameter design from both literature and practice. To overcome

these difficulties, an example is designed by the modification of two single-stage robust

parameter design models([4][11]).

1) Supplier’s Response Function

The major control parameters for the milling machining are listed in Table 20.

Table 20: Control factors

Level
Control Factor x−1i x+

1i

x11: Spindle Speed (m/min) 31.42 235.6
x12: Feed Rate (mm/edge) 0.03 0.2
x13: Depth of Cut (mm) 0.4 6
x14: Flank Width (mm) 0.01 0.3

x15: Tool Nose Radius (mm) 0.1 1.2

Noise factors, such as occurrence of chatter or vibrations of the machine tool and thermo-

errors are hard to control in the machining process, we build models for measures of location

and dispersion separately in terms of the control factor main effects and interactions ([22]).

The location effects of the surface roughness is proposed with the experiment implemented

by Fuh ([4]). With the data shown in Table 21, variance function is estimated with Harvey’s

Method ([1]), where residuals from the location effects model are used to estimate dispersion

effects.
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Table 21: Experimental design matrix and surface roughness

x11 x12 x13 x14 x15 y1 ŷ1 r1 = y1 − ŷ1 r2
1 = (y1 − ŷ1)

2

1 62.8 0.05 1 0.05 0.2 15.12 19.42 -4.30 18.47
2 62.8 0.15 4 0.05 0.2 35.98 38.58 -2.60 6.77
3 157.8 0.05 4 0.05 0.2 8.1 17.23 -9.13 83.44
4 157.8 0.15 1 0.05 0.2 43.67 45.51 -1.84 3.37
5 62.8 0.05 4 0.05 0.8 4.75 1.70 3.05 9.30
6 62.8 0.15 1 0.05 0.8 9.45 3.92 5.53 30.56
7 157.08 0.05 1 0.05 0.8 3.2 -3.17 6.37 40.55
8 157.08 0.15 4 0.05 0.8 12.15 4.18 7.97 63.58
9 62.8 0.05 4 0.2 0.2 8.13 11.21 -3.08 9.50
10 62.8 0.15 1 0.2 0.2 29.42 30.02 -0.60 0.36
11 157.08 0.05 1 0.2 0.2 4.17 10.11 -5.94 35.24
12 157.08 0.15 4 0.2 0.2 44.5 48.83 -4.33 18.76
13 62.8 0.05 1 0.2 0.8 3.4 2.15 1.25 1.57
14 62.8 0.15 4 0.2 0.8 8.23 7.05 1.18 1.40
15 157.08 0.05 4 0.2 0.8 5.83 4.27 1.56 2.44
16 157.08 0.15 1 0.2 0.8 8.45 4.36 4.09 16.77
17 125.66 0.1 2.5 0.01 0.4 8.73 15.23 -6.50 42.27
18 125.66 0.1 2.5 0.3 0.4 12.06 13.04 -0.98 0.96
19 125.66 0.1 2.5 0.1 0.1 72.33 39.99 32.34 1046.15
20 125.66 0.1 2.5 0.1 1.2 5.76 19.52 -13.76 189.23
21 31.24 0.1 2.5 0.1 0.4 9.26 9.47 -0.21 0.04
22 235.6 0.1 2.5 0.1 0.4 8.16 13.17 -5.01 25.11
23 125.66 0.03 2.5 0.1 0.4 2.95 -1.34 4.29 18.39
24 125.66 0.2 2.5 0.1 0.4 24.2 31.30 -7.10 50.40
25 125.66 0.1 0.4 0.1 0.4 5.06 12.63 -7.57 57.36
26 125.66 0.1 6 0.1 0.4 16.56 17.91 -1.35 1.83
27 125.66 0.1 2.5 0.1 0.4 9.73 13.25 -3.52 12.42
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The location and dispersion effects are modeled as follows:

ŷ1 = 33.576− 0.02x11 + 255.004x12 − 4.164x13 − 152.068x14 − 88.675x15 − 0.0002x2
11

−164.787x2
12 + 0.185x2

13 + 72.10x2
14 + 88.121x2

15 + 0.777x11x12 + 0.013x11x13

+0.301x11x14 − 0.122x11x15 + 7.458x12x13 + 92.518x12x14 − 376.620x12x15

+15.935x13x14 − 0.125x13x15 + 88.139x14x15,

ln(r2
1) = 5.13 + 0.0579x11 − 82.7x12 + 0.35x13 − 11.8x14 − 10.3x15 − 0.000152x2

11

+211x2
12 − 0.052x2

13 + 1.4x2
14 + 10.4x2

15 + 0.061x11x12 − 0.00118x11x13

+0.046x11x14 − 0.0208x11x15 + 3.12x12x13 − 2x12x14 + 45.6x12x15

+0.35x13x14 − 0.849x13x15 − 11x14x15.

Where ŷ1 denote the sample mean (µm) and r2
1 is an estimate of the variance of roughness.

For a given restriction of roughness from the manufacturer, T1max, the supplier’s problem

is modeled with Method 1 presented in section 4.3.1 as follows, we call it ”Problem M1”:

Find x11, x12, x13, x14, x15,

min c1(E(Y1)2 + V ar(Y1)) +
c2

x12x13
,

s.t. 0 ≤ E(Y1) ≤ T1max,

x1i ∈ [x−1i, x
+
1i], i = 1, . . . , 5.

Where c1(E(Y1)2 + V ar(Y1)), denoted as E(L(Y1)) represents the cost associated with

the quality loss3, e.g., rework and customer dissatisfaction. Here c1 = 0.005 is estimated.

In addition, since the feed rate and cut depth directly affect the process efficiency, larger

feed rate and cut depth lead to shorter machining time ([21]) which results in lower labor

and equipment costs in general, thus, EC1 = c2/(x12x13) denotes the efficiency cost, where

c2 = 50 is estimated by the machining cost. When solving the problem, the sample mean

ŷ1 and sample variance r2
1 are used to represent E(Y1) and V ar(Y1), respectively.

Note that the quality loss and the efficient cost are both highly dependent on E(Y1),

3For the smaller-the-better problem, the expected quality loss E(L(Y )) = cE(Y 2) = cV ar(Y ) + cE(Y )2

([22]).
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which is then affected by T1max. When E(Y1) decreases, the expected quality loss de-

creases. However, a higher machining cost is incurred. Therefore, a tradeoff point of E(Y1)

exists which balances the quality loss cost and machining cost in condition of satisfying the

restricted target value T1max from the manufacturer.

Remember that the supplier’s problem is assumed to be common knowledge, thus, the

manufacturer can solve Problem M1 for any target value T1max. To find out the supplier’s

response function, the manufacturer selects a set, Timax, and solves Problem M1 for each

Timax ∈ Timax. Solutions (E(Y1), Var(Y1), EC1) with respect to Timax are obtained.

The resulting relationships between variables E(Y1), V ar(Y1), EC1 and T1max are then

fitted via a regression analysis as follows:
˜E(Y1) = 1.87 + 0.87T1max,

˜V ar(Y1) = 1.5 + 0.696T1max,

ẼC1 = 57− 0.458T1max.

2) Decision of Manufacturer

The parameters of a milling machine used for the finish cut are listed in Table 22.

Table 22: Control factors
Level

Control Factor x−2i x+
2i

x21: Spindle Speed (ipm) 750 1500
x22: Feed Rate (rpm) 6 24
x23: Depth of Cut (in) 0.01 0.05

The location and dispersion effects of surface roughness are built based on the ex-

periments proposed in [11]. Similar to the supplier’s problem, the dispersion effects are

estimated with the data (Table 23) with Harvey’s method. Since the surface roughness of

the raw material affects the surface quality of the end products ([23]), which has not been

captured in the existing model, we assume that the mean value of Y2 linearly increases

on the increase of Y1. As a result, the transmitted variance of Y1 is introduced into the

dispersion model of Y2.
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Table 23: Experimental Design Matrix and Surface Roughness

x21 x22 x23 y2 r2= r2
2= x21 x22 x23 y2 r2= r2

2=
y2 − ŷ2 (y2 − ŷ2)

2 y2 − ŷ2 (y2 − ŷ2)
2

1 1000 18 0.01 3.51 0.02 0.001 31 1000 6 0.05 1.57 -0.35 0.122
2 1500 9 0.03 1.85 -0.06 0.003 32 1500 21 0.05 2.87 0.45 0.201
3 1250 6 0.01 1.27 -0.27 0.075 33 1250 12 0.01 2.57 0.28 0.076
4 750 24 0.03 4.32 -0.09 0.008 34 1000 12 0.01 3.30 0.73 0.533
5 1250 21 0.05 2.67 -0.11 0.012 35 1250 18 0.05 2.41 -0.20 0.041
6 750 21 0.05 3.81 0.32 0.104 36 750 9 0.03 2.51 0.26 0.066
7 1250 21 0.01 3.18 -0.23 0.054 37 1500 24 0.03 2.62 -0.22 0.049
8 1000 21 0.03 3.68 0.15 0.022 38 750 6 0.03 1.60 -0.23 0.052
9 1250 9 0.01 2.01 0.09 0.008 39 750 21 0.03 4.14 0.16 0.027
10 1500 15 0.01 2.69 0.39 0.155 40 1500 24 0.01 3.02 -0.15 0.023
11 1000 6 0.03 1.98 0.19 0.035 41 1500 24 0.05 2.77 0.27 0.072
12 750 18 0.05 3.07 -0.09 0.008 42 1250 9 0.03 2.06 0.03 0.001
13 1000 6 0.01 1.47 -0.19 0.036 43 750 6 0.01 1.65 -0.13 0.017
14 1000 12 0.05 2.34 -0.07 0.005 44 1000 21 0.01 3.78 -0.15 0.023
15 1000 9 0.05 2.59 0.43 0.181 45 1250 18 0.01 2.92 -0.11 0.013
16 1250 24 0.01 3.94 0.16 0.024 46 750 12 0.03 2.59 -0.10 0.009
17 750 9 0.05 2.41 0.22 0.047 47 1250 6 0.05 1.80 -0.17 0.029
18 1250 18 0.03 2.34 -0.49 0.239 48 1250 15 0.03 2.44 -0.12 0.015
19 1500 12 0.01 2.24 0.23 0.052 49 1250 9 0.05 2.34 0.20 0.041
20 1000 15 0.05 2.67 0.02 0.000 50 1250 6 0.03 1.60 -0.16 0.025
21 1250 24 0.03 2.77 -0.59 0.349 51 1500 18 0.01 3.02 0.43 0.187
22 750 18 0.01 4.70 0.77 0.596 52 750 15 0.05 2.64 -0.20 0.040
23 1500 21 0.01 3.00 0.12 0.013 53 750 12 0.05 2.39 -0.13 0.017
24 750 15 0.03 3.10 -0.02 0.000 54 1500 6 0.01 0.94 -0.48 0.234
25 1000 24 0.03 3.89 0.00 0.000 55 1250 21 0.03 2.54 -0.55 0.305
26 1000 15 0.03 2.74 -0.09 0.009 56 1000 24 0.01 4.14 -0.25 0.062
27 750 6 0.05 1.83 -0.04 0.002 57 1000 15 0.01 2.57 -0.46 0.213
28 1500 9 0.01 0.86 -0.85 0.725 58 1250 12 0.05 2.16 -0.14 0.019
29 750 9 0.01 2.77 0.45 0.202 59 1500 15 0.05 2.51 0.25 0.063
30 1000 12 0.03 2.13 -0.36 0.127 60 1500 18 0.05 2.64 0.30 0.090
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The resulting models are represented as follows:

ŷ2 = 0.5828 + 0.2778x22 − 0.000109x21x22 + 0.01725x21x23

−1.772x22x23 + 0.001E(Y1), (64)

ln(r2
2) = −1.648− 191.95x23 + 2160x2

23 + 0.041x21x23 + 0.000001V ar(Y1). (65)

The quality loss for the manufacturer, E(L2), is from the rework cost and the possible loss

generated for end users. It is estimated that the quality loss resulting from the variance is

at the rate of c3 =5. For the same reasons as mentioned before, the feed rate and cut depth

determine the machining efficiency which is represented by the cost EC2 = c4/(x22x23),

where c4 = 3.5 is estimated with the machining cost. In addition, the manufacturer makes a

payment of P (T1max) to the supplier for the procurement of parts, where the price P (T1max)

is proportional to the cost ẼC1. Without loss of generality, we assume that P (T1max) =

c5ẼC1, where c5 = 1.1. Thus, the optimization problem for the manufacturer, called

“Problem M2” is formulated as:

Find x21, x22, x23, T1max

min c3(E(Y2)2 + V ar(Y2)) +
c4

x22x23
+ c5

˜EC1

s.t. 0 ≤ E(Y2) ≤ T2max

x2i ∈ [x−2i, x
+
2i]; i = 1, 2, 3.

Sample mean ŷ2 (µm) and sample variance r2
2 are used to represent E(Y2) and V ar(Y2)

when solving Problem M2. Substituting E(Y1) and V ar(Y1) in (64) and (65) with the

best response functions of ˜E(Y1) and ˜V ar(Y1), the solutions for the manufacturer can be

obtained. We solve the optimization problem with GAMS, which returns solutions for

the manufacturer as: (objective, x11, x12, x13, x14, x15) = (48.32, 235.6, 0.18, 6, 0.12,

0.77). Solutions for the supplier can be then found by substituting T1max into the supplier’s

optimization problem, problem M1. The solutions for the supplier are obtained: (objective,

x21, x22, x23, T1max) = (96.51, 1500, 6, 0.02, 21.66).
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4.4.3 Comparisons with Other Scenarios

Scenario 1: full cooperation

When full cooperation is possible, values of the control factors for the two stage process

can be determined in a single optimization problem. If the objective is to minimize the man-

ufacturer’s costs associated with the parameter design and the quality loss, the optimization

model is formulated as follows:

Find x11, x12, x13, x14, x15, x21, x22, x23

min c3(E(Y2)2 + V ar(Y2)) +
c4

x22x23
+

c5c2

x12x13
,

E(Y2) ≤ T2,

E(Y1) = 33.576− 0.02x11 + 255.004x12 − 4.164x13 − 152.068x14 − 88.675x15

−0.0002x2
11 − 164.787x2

12 + 0.185x2
13 + 72.10x2

14 + 88.121x2
15 + 0.777x11x12

+0.013x11x13 + 0.301x11x14 − 0.122x11x15 + 7.458x12x13 + 92.518x12x14

−376.620x12x15 + 15.935x13x14 − 0.125x13x15 + 88.139x14x15,

ln(V ar(Y1)) = 5.13 + 0.0579x11 − 82.7x12 + 0.35x13 − 11.8x14 − 10.3x15

−0.000152x2
11 + 211x2

12 − 0.052x2
13 + 1.4x2

14 + 10.4x2
15 + 0.061x11x12

−0.00118x11x13 + 0.046x11x14 − 0.0208x11x15 + 3.12x12x13 − 2x12x14

+45.6x12x15 + 0.35x13x14 − 0.849x13x15 − 11x14x15,

E(Y2) = 0.5828 + 0.2778x22 − 0.000109x21x22 + 0.01725x21x23 − 1.772x22x23

+0.001E(Y1),

ln(V ar(Y2)) = −1.648− 191.95x23 + 2160x2
23 + 0.041x21x23 + 0.000001V ar(Y1),

xij ∈ [x−ij , x
+
ij ], ∀i, j.

Solving this problem with GAMS, the solutions are obtained as follows: the supplier’s

solutions are (objective, x∗11, x∗12, x∗13, x∗14, x∗15, E(Y1)∗, V ar(Y1)∗) = (49.16, 235.6, 0.18, 6,

0.1, 0.77, 17.96,14.4399) and the manufacturer’s solutions are (objective, x∗21, x∗22, x∗23, Y ∗
2 ,

V ar(Y2)∗) = (96.51, 1500, 6, 0.02, 1.65, 0.0351).

Scenario 2: manufacturers set different Timax to suppliers
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In practice, with the sequential approach the initial decisions are made without any for-

mal consideration of the later disciplines. Therefore, in our example, without implementing

the Stackelberg game, the manufacturer may select a target value for the roughness which

is different from our suggested value. To see the possible loss from these decisions, we tested

another two cases where T1max = (7, 27). These cases represent scenarios where tighter and

looser specifications are provided by the manufacturer. Furthermore, we also tested the

case where no restriction of T1max is set on the output Y1, which equates to set T1max = ∞.

Solutions for these cases together with solutions from Scenario 1 and Stackelberg game are

compared in Table 24 and 25.

Table 24: Comparison with other solutions - rough milling
T1max objective x11 x12 x13 x14 x15 E(Y1) V ar(Y1) E(L1) EC1

7 56.27 235.6 0.15 6 0.03 0.79 7 5.6 0.27 55.99
17.96 49.16 235.6 0.18 6 0.1 0.77 17.96 14.44 1.68 47.48
21.66∗ 48.32 235.6 0.18 6 0.12 0.77 21.66 17.33 2.43 45.88

27 48.63 200 0.19 6 0.18 0.76 27 21.6 3.75 44.88
∞ 47.78 235.6 0.19 6 0.16 0.76 28.44 22.75 4.16 43.62

Table 25: Comparison with other solutions - finish milling
T1max objective x21 x22 x23 E(Y2) V ar(Y2) E(L2) EC2 P (T1max)

7 101.02 1500 6 0.02 1.65 0.0302 13.76 25.67 61.59
17.96 96.51 1500 6 0.02 1.65 0.0351 13.79 30.49 52.23
21.66∗ 96.83 1500 6 0.02 1.65 0.0373 13.8 32.56 50.47

27 99.27 1500 6 0.02 1.65 0.0412 13.82 36.09 49.37
∞ 98.98 1500 6 0.02 1.65 0.0424 13.82 37.17 47.98

* Solutions from Stackelberg game

As we can see, the manufacturer has the lowest cost (objective value) when the full

cooperation is applied. The manufacturer’s cost with Stackelberg game is very close to

the value from full cooperation, but is much lower than the remaining cases. Thus, the

manufacturer benefits from the proposed Stackelberg game. Furthermore, we can also

observed that as T1max increases, the supplier’s quality loss increases, which results in a

higher quality loss for the manufacturer. On the other hand, an increase in T1max results in

a lower efficient cost for the supplier, hence, a lower price is charged from the manufacturer.

This clearly demonstrates the importance of selecting the right T1max in the system.

Scenario 3: Weighted Sum of the Objective
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In scenario 1, the objective of the manufacturer is to minimize costs associated his own

operation. However, in practice, the manufacturer and the supplier can belong to the same

company, therefore, the supplier’s cost function is also a concern for the manufacturer. In

both the Stackelberg game and the full cooperation scenario, an combined objective for the

manufacturer can be proposed to solve the problem.

In Stackelberg game, the optimization problem for the supplier stays the same, and the

manufacturer’s optimization problem is modified as:

Find x21, x22, x23, T1max

min w1{c1(E(Y1)2 + V ar(Y1)) + ˜EC1}+ w2{c3(E(Y2)2 + V ar(Y2)) +
c4

x22x23
+ 9 ˜EC1}

s.t. 0 ≤ ȳ2 ≤ T2max

x2i ∈ [x−2i, x
+
2i]; i = 1, 2, 3.

Where: w1 and w2 are weights set by the manufacturer which reflect the relative importance

of the objective of the supplier and the manufacturer. Note that the best response functions

of the variance and the efficient costs are used to represent the supplier’s objective function

in this case. Table 26 and 27 show solutions when different weights are selected in Problem

M2.

Table 26: Other solutions for different weights - rough milling
w1 w2 T1max objective x11 x12 x13 x14 x15 E(Y1) V ar(Y1) E(L1) EC1

0.1 0.9 23.42 48.06 235.6 0.18 6 0.13 0.76 23.42 18.74 2.84 45.23
0.5 0.5 27.58 48.57 200 0.19 6 0.18 0.76 27.58 22.06 3.91 44.66
0.7 0.3 27.58 48.57 200 0.19 6 0.18 0.76 27.58 22.06 3.91 44.66

Table 27: Other solutions for different weights - finish milling
w1 w2 T1max objective x21 x22 x23 E(Y2) V ar(Y2) E(L2) EC2 P (T1max)

0.1 0.9 23.42 97.2 1500 6 0.02 1.65 0.0384 13.8 33.64 49.75
0.5 0.5 27.58 99.46 1500 6 0.02 1.65 0.0416 13.82 36.52 49.13
0.7 0.3 27.58 99.46 1500 6 0.02 1.65 0.0416 13.82 36.52 49.13

Similarly, the weighted sum of the objective can also applied to the full cooperation

scenario. In this case, given the constraints are the same as the ones in scenario 1, the
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objective function is modified as follows:

min w1{c1(E(Y1)2 + V ar(Y1)) +
c2

x12x13
}+ w2{c3(E(Y2)2 + V ar(Y2)) +

c4

x22x23
+

c5c2

x12x13
}

Solutions with respect to different weights are listed in Table 28 and 29.

Table 28: Other solutions for full optimization with different weights - rough milling
w1 w2 objective x11 x12 x13 x14 x15 E(Y1) V ar(Y1) E(L1) EC1

0.1 0.9 48.99 235.6 0.18 6 0.1 0.77 18.57 14.88 1.8 47.19
0.5 0.5 48.32 235.6 0.18 6 0.12 0.77 21.63 17.29 2.43 45.9
0.9 0.1 47.82 235.6 0.19 6 0.15 0.76 26.53 21.33 3.63 44.19

Table 29: Other solutions for full optimization with different weights - finish milling
w1 w2 objective x21 x22 x23 E(Y2) V ar(Y2) E(L2) EC2 P (T1max)

0.1 0.9 96.52 1500 6 0.02 1.65 0.0354 13.79 30.82 51.91
0.5 0.5 96.82 1500 6 0.02 1.65 0.0373 13.8 32.54 50.49
0.9 0.1 98.17 1500 6 0.02 1.65 0.0408 13.82 35.75 48.61

Results from both Stackelberg game and full cooperation show that by changing the

relative weights between w1 and w2, solutions are changed. Larger wi helps to decrease

the corresponding player’s objective values. Therefore, in terms of the relative importance

between the supplier’s and manufacturer’s objective functions, various values of w1 and w2

are applied.

4.5 Conclusion

Considering the changes in American company’s manufacturing environment, supply-chain

oriented robust parameter design is critical for companies to produce quality products and

improve their competitiveness. This project formulates problems involved in this new re-

search area and presents our solution strategies. Several examples successfully demonstrate

the potential of the proposed methods.
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CHAPTER V

FUTURE WORK BEYOND THESIS

There are several interesting topics that I would like to continue in the future. Due to the

combinatorial property, combinatorial auctions provide a large opportunity for collusion

among bidders. However, to the best of my knowledge, few research is done on this topic.

Therefore, collusion in combinatorial auction is an interesting topic for my future work.

For the shelf space allocation project, to further investigate properties of the proposed

framework, it is interesting to examine model sensitivity to input data errors.

For the supply chain oriented robust design project, in the current work, we only consider

single response in each stage. When multiple responses are considered, which is a very

common situation in practice, the problem becomes more complicated. It is a challenging

topic for the further study. In addition, in the current work, the experimental design in the

supply-chain environments is not discussed, which is also an interesting topic for the future

work.
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