
c12) United States Patent
Ramachandran et al.

(54) SYSTEMS AND METHODS OF SHARING
INFORMATION BETWEEN PROTOCOL
LAYERS

(75) Inventors: Umakishore Ramachandran, Lilburn,
GA (US); Rajnish Kumar, Atlanta, GA
(US); Charles Albert Reiss, Rehoboth,
MA(US)

(73) Assignee: Georgia Tech Research Corporation,
Atlanta, GA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 314 days.

(21) Appl. No.: 111771,221

(22)

(65)

(60)

Filed: Jun. 29, 2007

Prior Publication Data

US 2008/0002740Al Jan.3,2008

Related U.S. Application Data

Provisional application No. 60/817,489, filed on Jun.
29, 2006.

(51) Int. Cl.
H04J 3116 (2006.01)

(52) U.S. Cl. .. 370/469
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0123048 Al* 612006 Larson 707/103 R

HIGHER LAYER 120

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US007693181B2

(10) Patent No.:
(45) Date of Patent:

US 7,693,181 B2
Apr. 6, 2010

2006/0239216 Al* 10/2006 Chen et al. 370/310

2007/0147249 Al* 6/2007 Kumar 370/235

2007/0266134 Al* 11/2007 Shyy et al. 709/223

* cited by examiner

Primary Examiner-Chirag G Shah
Assistant Examiner-Dtis L Thompson, Jr.
(7 4) Attorney, Agent, or Firm-Thomas,
Horstemeyer & Risley, LLP; Todd Deveau

(57) ABSTRACT

Kay den,

An exemplary device comprises a first and second protocol
layer, and an information exchange service (IES) in commu­
nication with the first and the second protocol layers. The IES
is configured to share control information between the pro­
tocol layers. A protocol layer is capable of adapting behavior
based on the control information shared by the IES. An exem­
plary method is presented for communicating between pub­
lishing and subscribing layers in a protocol stack. The method
comprises, in the publishing layer, specifying a selected
attribute and an associated value to be shared with the sub­
scribing layer. The method further comprises storing the
specified attribute and associated value, and receiving a sub­
scribe request from the requesting layer. The request specifies
the published attribute. The method further comprises, in
response to the request, providing the associated value to a
subscribing layer, and in the subscribing layer, adapting
behavior based on the shared control information.

19 Claims, 5 Drawing Sheets

rSTACK110

INTERFACE 170 .

INFO,
DATA INTER FACE 150 DATA INTERFACE 140 EXCHANGE

SERVICE 160

INTERFACE 160
~ -

LOWER LAYER 130

U.S. Patent Apr. 6, 2010

,.

0
........
T'""

w
(.)

~
0:: w z -

,,

0
N ...-
0:::
w

~
0:::
w
::r:
C.9
:c

Sheet 1of5

wg
C> T'""

-z w
0 <t: (.)
u. :r: -z (.) > - 0:::

~ ...

>< w w U)

0
..;t
T'""

w
(.)
<{
u.
0::
LU
1--z

~
<(
Cl

0
LO ...-
w
(.)
<(
u.
0:::
w
1-­z

~
Cl

~

~

..4 ..

0
<D
T'""

w
()

it
0::
w
z -

1'

0
(")
"<'"""

0:::: w

~
0:::: w s
0
_J

US 7,693,181 B2

(9
LL

ATTRIBUTE
PUBLISHER

260

PUBLISHER
LIST
275

PUT ATTRIBUTE 240

EVENT MANAGER 220

~IES 160

ATTRIBUTE MANAGER 210

IES STORAGE 265

ATTRIBUTE 230

RULE
EXECUTION

LOGIC
297

RULES
290

SUBSCRIBERI
LIST
280

GET ATTRIBUTE 250 ATTRIBUTE
SUBSCRIBER

270

285

N6TIFY (RULE

1

EVENT

CALLBACK 295 I ~·, SUBSCRIBER

FIG. 2

~
00
•
~
~
~
~ = ~

~
:-:
"'~
N
0
0

1J1

=­('D
('D
N
0
Ul

d
rJl
-....l

°" \C
w
"'
"'"" 00

"'"" = N

U.S. Patent

0
<D

Apr. 6, 2010 Sheet 3 of 5 US 7,693,181 B2

.
(!) -LL

T"""~~~~~--.-~-L-~~~~~~-'---.-~~~~
(/)
w

SUBSCRIBER 280 IES 160

GETATTRt~)
410

DA1A A\JA\LA.BLE.
440

DAT A A \J A\LA.BLE.
470

DATA
~y

pUT A \TR\ BUTE.
430

DATA ~DY
450

pU\ p..1\R\BU1E.
460

FIG. 4

PUBLISHER 260

~
00
•
~
~
~
~ = ~

~
:-:
"'~
N
0
0

1J1

=­('D
('D
.i;...

0
Ul

d
rJl
-....l

°" \C
w
"'
"'"" 00

"'"" = N

U.S. Patent

0
M
LO

fl
0
:::2:
w
:::2:

0::
0
Cf)
Cf) 0
LU T"""

() LO

~
a..

Apr. 6, 2010

0
CD
T"""

(fJ
w

0
T"""

T"""

~
u
~
(/)

Sheet 5 of 5

U)
:::i
Ill

LU
(!)

~~
0 LO
I-
Cf)

~w
a::: (.)
~ Lt 0
> 0::: N
I- w lJ1
w 1-z z

US 7,693,181 B2

Lf)
•

(!) -LL

US 7,693,181 B2
1

SYSTEMS AND METHODS OF SHARING
INFORMATION BETWEEN PROTOCOL

LAYERS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
60/817 ,489, filed Jun. 29, 2006, which is entirely incorpo­
rated by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

2
the drawings are not necessarily to scale, emphasis instead
being placed upon clearly illustrating the principles of the
present disclosure.

FIG. 1 is a block diagram of one embodiment of a system
5 and method for sharing information between protocol layers.

FIG. 2 is a block diagram of one embodiment of the infor­
mation exchange service (IES) of FIG. 1.

FIG. 3 is a message flow diagram illustrating one embodi­
ment of an asynchronous Get/Put interface implemented by

10 the IES of FIG. 1.
FIG. 4 is a message flow diagram illustrating another

embodiment of an asynchronous Get/Put interface imple­
mented by the IES of FIG. 1.

This invention was made with Govermnent support under 15

Agreement No. CCR-0121638, awarded by the National Sci­
ence Foundation of the United States. The Government has

FIG. 5 is a hardware block diagram of a device in accor­
dance with a system and method for sharing information
between protocol layers.

certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to computer networks, and
more specifically, to sharing information between protocol
layers.

BACKGROUND

The explosive growth of the Internet has been spurred to a
great extent by the modularity of the Internet protocol stack.
The protocol stack used by the Internet follows the OSI
model, which stresses stackability by requiring that layers
interface with each other in very strict and limited ways. That
is, sharing of information between layers is discouraged. This
focus on stackability has enabled the independent develop­
ment and validation of robust protocols. However, the lack of
information in one layer about how another layer is operating
can lead to non-optimal performance. This is particularly true
in dynamic settings when network conditions can change
quite dramatically. Thus, a need arises for these and other
problems to be addressed.

SUMMARY

Systems and methods of sharing information between pro­
tocol layers are disclosed. An exemplary device comprises a
first and second protocol layer, and an information exchange
service (IES) in communication with the first and the second
protocol layers. The IES is configured to share control infor­
mation between the protocol layers. A protocol layer is
capable of adapting behavior based on the control informa­
tion shared by the IES.

An exemplary method is presented for communicating
between publishing and subscribing layers in a protocol
stack. The method comprises, in the publishing layer, speci­
fying a selected attribute and an associated value to be shared
with the subscribing layer. The method further comprises
storing the specified attribute and associated value, and
receiving a subscribe request from the requesting layer. The
request specifies the published attribute. The method further
comprises, in response to the request, providing the associ­
ated value to a subscribing layer, and in the subscribing layer,
adapting behavior based on the shared control information.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood
with reference to the following drawings. The components in

DETAILED DESCRIPTION

20 FIG. 1 is a block diagram of one embodiment of a system
and method for sharing information between protocol layers.
A protocol stack 110 in a device includes an upper layer 120
and a lower layer 130, which pass packets through a data
interface: packets received from another device are passed up

25 the stack through data interface 140, while packets to be
transmitted to another device are passed down the stack
through data interface 150.

An information exchange service (IES) 160 communicates
with upper layer 120 through interface 170, and with lower

30 layer 130 through interface 180. IES 160 uses interfaces 170
and 180 to share control information between layers 120 and
130. Upper layer 120 uses control information originating
from lower layer 130 and passed through interface 170 to
adapt its behavior. Lower layer 130 uses control information

35 originating from upper layer 120 and passed through inter­
face 180 to adapt its behavior.

The control interfaces 170 and 180 are distinct from the
data or packet interfaces 140 and 150. The term "control
information" is used to distinguish information passed

40 through interfaces 170 and 180 from data or packets passed
through interfaces 140 and 150. Examples of control infor­
mation include information describing resources on the local
device, application-layer information, and information about
neighboring devices. However, many other types of control

45 information are contemplated and intended to be within the
scope of this disclosure. In some embodiments, these items of
control information are attributes of particular layers.

The example protocol stack 110 of FIG. 1 includes only
two layers, adjacent to each other. However, the embodiments

50 described herein apply to inter-layer, or cross-layer, commu­
nication in stacks with more than two layers. The embodi­
ments also apply to communication between non-adjacent
layers, for example between a media access control (MAC)
layer (also known as layer-2) and a transport layer (also

55 known as layer-4).
In the example of FIG. 1, the communication between

lower layer 130 and upper layer 120 through IES 160 is
symmetric. That is, lower layer 130 receives information
originating from upper layer 120, and vice-versa. Further-

60 more, the embodiments described herein may also be used
asymmetrically. That is, there is no requirement that lower
layer 130 receives information originating from upper layer
120, even if upper layer 120 receives information originating
from lower layer 130.

65 FIG. 2 is a block diagram of one embodiment of the infor-
mation exchange service (IES) 160 from FIG. 1. In this
embodiment, the functionality ofIES 160 is decomposed into

US 7,693,181 B2
3

an attribute manager 210 and an event manager 220. Attribute
manager 210 implements sharing of attributes 230 between
protocols layer through a PutAttribute interface 240 and a
GetAttribute interface 250. One protocol layer, acting as an
attribute publisher 260, uses PutAttribute interface 240 to
store a particular attribute-value pair in IES 160, for sharing
with other layers. On registration, IES 160 writes the
attribute-value pair 230 to IES storage 265. Another protocol
layer, acting as an attribute subscriber 270, uses GetAttribute
interface 250 to retrieve a particular attribute-value pair 230
from IES storage 265. Information identifying publishers and
subscribers may optionally be stored by IES 160 in a pub­
lisher list 275 and a subscriber list 280.

Event manager 220 notifies protocol layers about changes
to attributes 230. A subscriber 270 registers for attribute
change notification through notification interface 285. In
some embodiments, the notification interface 285 allows sub­
scriber 270 to specify a rule 290, expressed as a condition of
an attribute 230 (e.g., "EnergyLevel<5"). Rules 290 are
stored by IES 160, and when the condition is met, event
manager 220 invokes the registered callback (295) to notify
subscriber 270. In some embodiments, rules 290 are pro­
cessed by rule execution logic 297.

These features in IES 160 provide both stackability and
adaptability. Access to attributes 230 is transparent to pub­
lishers and subscribers (i.e., publishers are unaware of sub­
scribers and vice-versa). Attributes are extensible: new
attributes 230 can be added without a change to the interfaces
or to the underlying structure. For example, a new routing
protocol can be substituted into protocol stack 110, and that
new routing protocol can publish a new attribute 230 that is
not presently stored in IES 160.

4
Some embodiments of attribute manager 210 use a fully­

associative cache to store attributes 230. Although the cache
may use various replacement policies, a least-recently used
cache policy is particularly advantageous in protocol stacks
where different layers cooperate to achieve some common
goal (e.g., energy optimization) and therefore may query a
common attribute from IES (e.g., remaining battery level).

In embodiments in which IES storage 265 is limited or
finite, IES 160 may decide to evict, or retire, attributes 230

10 from storage to make room for more. Examples of an eviction
policy include least recently used (LRU) and using a priority
associated with each 230. Since in some cases this eviction
may occur before any subscriber 270 requests it, some
embodiments of IES 160 allow the publisher 260 to tag the

15 data with a sticky bit to override the eviction policy. Alterna­
tively, attribute manager 210 may asynchronously "pull" the
data from a publisher upon a request from a subscriber.

A cache implemented by one example attribute manager
210 uses fixed length attribute-value pairs, stored in an array.

20 Each attribute is directly mapped to an entry in a hash table
(not shown), where the hash table maps the attribute to an
index in the array. Thus, if the attribute is present in the hash
table, then its value can be directly accessed from the array. If
the attribute is not present in the hash table, then the array is

25 searched. By keeping the set associative, the search space is
reduced to the associativity factor. As an example, for a hash
table of 8 entries, and a 16-way set-associative data bank of
256 entries, each hash table entry will be 24 bits (16-bit
attribute address and 8-bit array index). For a hit in the hash

30 table (a "cache hit"), an attribute is accessible in 2 compari­
sons (one to hash table, and another to the array). For a miss
in the hash table (a "cache miss"), an attribute is accessible in
at most 17 comparisons (one to hash table, and at most 16 to Having introduced both attribute manager 210 and event

manager 220, each will now be described in further detail. In
some embodiments, each attribute 230 managed by attribute 35

manager 210 has a unique identifier known to all the layers,
and the attribute identifier maps to a unique declarative
description of the attribute (e.g., an XML declaration of the
attribute). In such embodiments, a protocol layer can obtain

the array).
FIG. 3 is a message flow diagram illustrating one embodi-

ment of an asynchronous Get/Put interface implemented by
IES 160. The initial GetAttribute request 310 (issued by sub­
scriber 270) initially returns with failure 320 because the
requested attribute 230 (in FIG. 2) is not available in IES

an attribute' s identifier from the attribute' s declaration by
contacting an attribute name server (analogous to a DNS
lookup for a TCP address).

In some embodiments, the GetAttribute interface 250 pro­
vided by attribute manager 210 is synchronous, i.e., the "get"
semantic copies the value associated with the attribute (if
available), and returns the number of bytes corresponding to
the data value (zero indicating that the data is currently
unavailable). In some embodiments, GetAttribute interface
250 is asynchronous, i.e., the "get" semantic with a callback.
In some asynchronous embodiments, the "get" semantic
includes periodicity, so that the "get" callback is called peri­
odically with updates of the attribute's value. In such embodi­
ments, the PutAttribute interface 240 uses a "put" semantic
with an expiration parameter, which specifies a time at which
the attribute's value is no longer valid. Further details of
asynchronous embodiments will be described later in connec­
tion with FIG. 3.

As described above, some embodiments of event manager
220 provide rule-based notification. One such embodiment of
event manager 220 is implemented by registering itself as a
subscriber 270 ofattribute manager 210 for the attribute in the
specified rule 290. When notified by attribute manager 210 of
a change to the attribute value 230 (e.g., through GetAttribute
interface 250), event manager 220 checks the condition speci­
fied by rule 290, and if the condition is met, notifies the
subscribing protocol layer by invoking the registered callback
295.

40 storage 265 (in FIG. 2). Such a failure320may occur when no
publisher 260 has put/written the attribute 230, or when the
attribute 230 was evicted (possibly as a result of expiration)
from IES storage 265.

On failure 320, IES 160 determines if any publisher 260
45 has registered for the requested attribute 230, and it sends a

data request message 330 to the registered publisher 260. At
a later time, publisher 260 puts (340) the attribute 230. In
response to put 340, IES 160 notifies the registered subscriber
270 using a data available message 350, which includes a

50 pointer to the attribute data. Using the pointer in data avail­
able message 350, subscriber 270 accesses the attribute 230 in
IES storage 265.

Timing may be such that before the subscriber 270 handles
data available message 350, attribute 230 been evicted from

55 IES 160, which renders the data available message 350 void.
To prevent attribute 230 from getting evicted before data
available message 350 is processed by subscriber 270, IES
160 keeps an eviction time window: a minimum time before
which the attribute is guaranteed to be available from IES

60 160. A subscriber 270 is expected to handle data available
message 350 within the time window, or else the subscriber
270 must issue a new GetAttribute request.

FIG. 4 is a message flow diagram illustrating another
embodiment of an asynchronous Get/Put interface imple-

65 mented by IES 160. Subscriber 270 issues a GetAttribute
request 410 using a periodic parameter. In some embodi­
ments, GetAttribute request 410 is non-blocking. In response,

US 7,693,181 B2
5

IES 160 periodically determines whether if the requested
attribute 230 has expired, or is unavailable in IES storage 265.
If either condition is true, IES 160 signals publisher 260 with
a data ready message 420. Publisher 260 responds by updat­
ing the value ofattribute 230 with a PutAttribute 430. IES 160
responds by sending a data available message 440 to sub­
scriber 270.

6
attributes fx; y; zg from all nodes within the scope S satisfying
the conditions fp; q; rg, and deliver the results with a period­
icity ofT."

Queries overlap if and only ifthe scope of the participating
nodes as well as the collected results overlap. Detecting such
an overlap helps control flooding of a query, as well as sharing
of the results. Overlaps can be full or partial, either in their
scope, attributes of the query, and/or the results.

Once a query overlap is detected, the results can be shared
In this example scenario, the requested attribute 230

expires twice, resulting in two data ready messages (420 and
450), which in tum results in two PutAttributes (430 and 460)
and two data available messages (440 and470). IES 160 may
use multiple timers to maintain periodicity; because of the
asynchronous nature, the periodicity cannot be guaranteed to
be accurate, but may instead depend on how fast publishers
260 are able to handle the data ready messages 420.

10 to save on the network communication for the results. IDS
shares results among queries, where one query subsumes
another, both in scope and attributes. IDS also determines if
there is a partial overlap among queries, and then executes the
partially overlapping queries in the non-overlapping scopes,

15 while reducing or avoiding duplication ofresults.

An Information Dissemination Service
IDS supports both region-based and global queries. When

a protocol module initiates a region-based query, first a region
is created by informing all the neighboring nodes that may lie
within the scope. To limit flooding of beacon packets, a region

The protocol stack architecture described, in which infor­
mation is shared across layers in a device, has wide applica­
bility to many different types of protocol stacks. Additional
enhancements are now described to share information across
nodes. These enhancements have general applicability, but
are particularly useful in a wireless sensor network. In addi­
tion to the vagaries of the wireless network itself, nodes are
often resource-constrained, which can pose additional chal­
lenges for the protocol stack. Nodes may join or leave the
network to save their individual battery power, or environ­
ment conditions may vary which result in dynamic changes to
network topology.

20 is scoped either in terms of number of hops or physical dis­
tance from the initiator node. A beacon packet consists of a
region identifier, scope, and a set of predicates. A node receiv­
ing a beacon checks if it lies within the scope of the region,
and if it does not, it ignores the packet. Otherwise, the node

25 becomes a member of the region and it broadcasts the beacon
packet. Thus the beacon packet is propagated as a wave origi­
nating from the initiator node and the wave dies beyond the
query scope.

Applications running on sensor networks are often to be 30
network-centric, which leads to cooperation among nodes in
order to meet application requirements. Thus the modules
which implement the different layers of the protocol stack at
a given sensor node may need to adapt to changes in node
conditions at remote nodes. The Information Dissemination 35
Service described herein supports this by allowing one node
to subscribe to remote IESes, and/or to aggregate and share
useful information from multiple nodes.

If a node satisfies the beacon's predicates, it also acts as a
producer node, i.e. it will need to send the query response to
the consumer node. In the first embodiment described, the
response is sent back periodically. Embodiments described
later optimize the response to decrease communication over­
head.

An obvious option to disseminate data from the producer
nodes to their consumers is to create data diffusion trees, with
the consumer nodes at the tree roots. Since there will be as
many trees as the queries, supporting data sharing across
different trees becomes important as the number of trees
grows. However, efficient sharing across different diffusion
trees can be difficult, typical solutions incur the overhead of
tree maintenance and also disseminating tree attributes con­
tinuously, to allow sharing of the tree by other nodes. Because
of such overheads, using diffusion trees for control data dis-

As one example, a sensor fusion application can monitor
the health of its neighbor nodes periodically for role assign- 40
ment decisions. As another example, an energy conscious
routing module uses the same information in making routing
decisions. Thus, queries for such information may emanate
not only from the application level but also from different
layers of the sensor protocol stack to remote nodes. 45 semination becomes inefficient as the number of trees grows.

There may be considerable overlap in different queries.
Consider two nodes issuing the same query, "which of my
2-hop neighbors have 80% battery level?". If the two nodes
are topologically close to each other, then considerable over­
lap in the results are likely as well. The results may be exactly 50
the same if the two nodes share the same neighborhood.
However, if the queries are processed independently in the
network it would lead to significant overhead due to the
duplication. The Information Dissemination Service (IDS)
described herein provides a unified framework for informa- 55
tion sharing across nodes.

IDS supports a stream of queries over remote IES data with
reduced communication overhead. Two sources of redundant
communication in supporting IES across nodes are overlap in
the scope of queries executed at different nodes, and rate of 60

queries as compared to rate of change in remote data. IDS
uses various techniques to reduce such communication
redundancy and to provide IDS support in a scalable and
adaptable manner.

The high-level query interface provided by IDS is expres- 65

sive and allows detection of possible overlap among different
queries. A typical query may appear as follows: "select

Another option is to flood the produced data to the whole
region. As the number of consumer nodes increase within a
region, the overhead of flooding per consumer node
decreases, especially when the consumer nodes are sub­
scribed to same control data. Since control data packets are
smaller, and they can be piggybacked with each other to be
sent as a single packet, even consumers with differing
attribute requests help to amortize the flooding cost.

IDS uses both of the above techniques depending on the
network conditions. To optimize the communication over­
head, flooding is scoped within a query region only. Also, to
avoid the broadcast storm problem, IDS controls the rebroad­
cast probability.

Having discussed regional-based queries, global queries
will now be described. In handling global queries, IDS uti­
lizes a support service for location awareness, and uses geo­
graphically-scoped queries. In a location-aware sensor net­
work, nearness can be easily captured using physical
distance. However, since sensor network links have been
found to be asymmetric in nature, physical distance may not
be able to capture reliability and hop-count between nodes.
Still, location-based querying provides an easy way to

US 7,693,181 B2
7

express scope, where finding spatial overlap among queries
becomes straightforward. Relative coordinates are used for
location identification, avoiding the need for extra hardware
such as GPS at a node.

Using location-based scoping for queries, the spatial over­
lap can be easily detected by finding the common areas from
the scope. To share the results among overlapping scopes,
IDS divides the topology into smaller clusters with a cluster
head that knows the membership of the nodes within a cluster.
Query-aware hierarchical clustering allows information shar­
ing at the cluster level, thus avoiding the overhead of flooding
inside clusters (if the cluster head already has the query
results). Some embodiments of use IDS dynamically con­
struction of hierarchical clusters to further optimize queries,
perform result aggregation, and result sharing. Some embodi­
ments add result filters that are cognizant of"partial overlap"
at cluster heads and/or at strategic nodes in the network.

8
often only a part of the deployed network may be involved in
maintenance activities warranted by IDS (or even application
level queries). Creating and maintaining clusters over the
entire network may lead to unnecessary control overhead.
On-demand clustering reduces such control overhead.

A person of ordinary skill in the art should recognize that
the software components illustrated in FIGS. 1-2 are abstrac­
tions chosen to illustrate how some embodiments of a system
and method for sharing information between protocol layers

10 partition functionality among components. Such a person
should also recognize that other divisions of functionality are
also possible, and these other possibilities are intended to be
within the scope of this disclosure. Furthermore, to the extent
that software components in FI GS. 1-2 are described in terms

15 of specific data structures such as arrays, lists, flags, pointers,
collections, etc., a person of ordinary skill in the art should
appreciate that other data structures providing similar func­
tionality can be used instead. As just one example, a particular Some embodiments of IDS support dynamic role migra­

tion, where the role played by a cluster head can migrate to
other nodes. Cluster heads are the nodes that act as the root of 20

implementation might use a linked list instead of an array.
A person of ordinary skill in the art should understand that

a local aggregation tree. These nodes are responsible for
deciding if a query needs to be flooded within a cluster.

Some embodiments of IDS perform cluster formation and
cluster head selection using simple location-aware clustering
algorithms such as LEACH. The LEACH algorithm gives a
two-level cluster hierarchy, with data sources at first level,
and cluster-heads at the second level.

Some embodiments of IDS represent a location-based
scope of a query as a tuple <x; y>, such that any node in a
square region of length x and width y, with respect to the
node's current location, becomes the area ofinterest. In these
embodiments, cluster heads, having a cluster-level view of all
existing query trees and membership information, participate
actively in query optimizations. For example, consider an
aggregation tree rooted at a sink node, spanning the entire
network. Now, if another sink wishes to build a query aggre­
gation tree, and if the new tree physically overlaps with the
earlier one, then within the overlap region, only cluster-heads
need to report the results back to the new sink. The non­
overlapping regions will be handled using techniques known
to a person of ordinary skill in the art.

Some embodiments ofIDS build on the DFuse role assign­
ment algorithm to load balance the cluster head role. (This
algorithm is described in "Dfuse: a framework for distributed
data fusion", by R. Kumar, M. Wolenetz, B. Aganvalla, J.
Shin, P. Hutto, A. Paul, and U. Ramachandran, InSenSys '03:

software components referred to herein include executable
code that is packaged, for example, as a standalone execut­
able file, a library, a shared library, a loadable module, a
driver, or an assembly, as well as interpreted code that is

25 packaged, for example, as a class. In general, the components
used by the systems and methods of sharing information
between protocol layers are described herein in terms of code
and data, rather than with reference to a particular hardware
device executing that code. Furthermore, one of ordinary skill

30 in the art will understand that the systems and methods can be
implemented in any programming language, and executed on
any hardware platform.

Any process descriptions or blocks in flowcharts should be
understood as representing modules, segments, or portions of

35 code which include one or more executable instructions for
implementing specific logical functions or steps in the pro­
cess. As would be understood by those of ordinary skill in the
art of the software development, alternate implementations
are also included within the scope of the disclosure. In these

40 alternate implementations, functions may be executed out of
order from that shown or discussed, including substantially
concurrently or in reverse order, depending on the function­
ality involved.

FIG. 5 is a hardware block diagram of a device 500 in
45 accordance with a system and method for sharing information

between protocol layers. Device 500 contains a number of
components that are familiar to a person of ordinary skill in
the art, including a processor 510, at least one network inter­
face 520, memory 530, and non-volatile storage 540. A per-

Proceedings of the 1st International Conference on Embed­
ded Networked Sensor Systems, which is incorporated by
reference.). During the maintenance phase of the DFuse algo­
rithm, every node hosting a particular role is responsible for
either continuing to play that role or transferring the role to
one of its neighbors. The decision for role transfer is taken
solely by the current role player based upon local informa­
tion. A role player, i.e., a cluster head in IDS, periodically
informs its neighbors about its role and its health (an indicator 55

of how good the node is in hosting that role. Upon receiving
such a message, a neighboring node computes its own health
for hosting that role. If the receiving node determines that it
can play the role better than the sender, then it informs the
sender its intent for hosting that role. If the sender receives
one or more intention requests from its neighbors, the role is
transferred to the neighbor with the best health.

50 son of ordinary skill in the art should understand that the
networks interfaces may be of different types, support differ­
ent medias and speeds, etc. Examples of non-volatile storage
include, for example, a hard disk, flash RAM, flash ROM,
EEPROM, etc. These components are coupled via bus 550.

Memory 530 contains instructions which, when executed
by the processor 1110, implement the methods and systems
disclosed herein. Memory 530 contains protocol stack 110
and information exchange service (IES) 160 from FIG. 1.
Omitted from FIG. 5 are a number of conventional compo-

60 nents that are not necessary to explain the operation of device
500.

The systems and methods disclosed herein can be imple­
mented in software, hardware, or a combination thereof. In
some embodiments, the system and/or method is imple­
mented in software that is stored in a memory and that is
executed by a suitable microprocessor, network processor, or
microcontroller situated in a computing device. In other

Some embodiments ofIDS support on-demand clustering
by partitioning the network into a static grid, where inter­
node distance corresponds to one-hop transmission range. 65

However, because of the inherent dynamic nature of sensor
networks, static clustering may not be suitable. Also, quite

US 7,693,181 B2
9

embodiments, the system and/or method is implemented in
hardware, including, but not limited to, a programmable logic
device (PLD), programmable gate array (PGA), field pro­
grammable gate array (FPGA) or an application-specific inte­
grated circuit (ASIC).

The systems and methods disclosed herein can be embod­
ied in any computer-readable medium for use by or in con­
nection with an instruction execution system, apparatus, or
device. Such instruction execution systems include any com­
puter-based system, processor-containing system, or other 10

system that can fetch and execute the instructions from the
instruction execution system. In the context of this disclosure,
a "computer-readable medium" can be any means that can
contain, store, communicate, propagate, or transport the pro­
gram for use by, or in connection with, the instruction execu- 15

tion system. The computer readable medium can be, for
example but not limited to, a system or propagation medium
that is based on electronic, magnetic, optical, electromag­
netic, infrared, or semiconductor technology.

Specific examples of a computer-readable medium using 20

electronic technology would include (but are not limited to)
the following: an electrical connection (electronic) having
one or more wires; a random access memory (RAM); a read­
only memory (ROM); an erasable programmable read-only
memory (EPROM or Flash memory). A specific example 25

using magnetic technology includes (but is not limited to) a
portable computer diskette. Specific examples using optical
technology include (but are not limited to) an optical fiber and
a portable compact disk read-only memory (CD-ROM).

The foregoing description has been presented for purposes 30

of illustration and description. It is not intended to be exhaus­
tive or to limit the disclosure to the precise forms disclosed.
Obvious modifications or variations are possible in light of
the above teachings. The implementations discussed, how­
ever, were chosen and described to illustrate the principles of 35

the disclosure and its practical application to thereby enable
one of ordinary skill in the art to utilize the disclosure in
various implementations and with various modifications as
are suited to the particular use contemplated. All such modi­
fications and variation are within the scope of the disclosure 40

as determined by the appended claims when interpreted in
accordance with the breadth to which they are fairly and
legally entitled.

What we claim is:
1. A device comprising:
memory; and
a processor configured by instructions retrieved from the

memory to:

45

implement a publishing protocol layer, which specifies a
control attribute and an associated value to be shared, the 50

control attribute being one of a plurality of attributes;
implement a subscribing protocol layer; and

10
3. The device of claim 1, wherein the information exchange

service is further configured to periodically provide the asso­
ciated value to the subscribing protocol layer.

4. The device of claim 1, wherein the information exchange
service is further configured to periodically provide the asso­
ciated value to the subscribing protocol layer and to receive an
indication from the publishing protocol layer of an expiration
time for the associated value.

5. The device of claim 1, wherein the information exchange
service is further configured to receive a rule registration that
includes a condition of one of the control attributes, and to
notify the subscribing protocol layer when the condition is
satisfied.

6. The device of claim 1, wherein the information exchange
service is further configured to evict the control attribute from
the storage when the storage is full.

7. The device of claim 6, wherein the information exchange
service is further configured to apply a least-recently-used
policy for eviction.

8. The device of claim 2, wherein the information exchange
service is further configured to select one of the control
attributes for eviction based on a sticky bit associated with the
corresponding attribute.

9. The device of claim 2, wherein the information exchange
service is further configured to communicate with a peer
information exchange service in another device, and to
handle multiple queries from the peer for one of the control
attributes.

10. The device of claim 9, wherein the information
exchange service is further configured to determine if overlap
exists among the multiple queries and if overlap does exist, to
share a result of the overlapping queries.

11. A method for using an exchange intermediary to com­
municate between a publishing layer and a subscribing layer
in a protocol stack residing in a computing device, the method
comprising the steps of:

the publishing layer in the computing device specifying, to
the exchange intermediary, an attribute and an associ­
ated value to be shared with a layer in the protocol stack,
the attribute being one of a plurality of attributes;

the subscribing layer in the computing device adapting
behavior based on the attribute;

the exchange intermediary implemented by a processor in
the computing device storing the specified attribute and
the associated value;

the exchange intermediary implemented by the processor
in the computing device receiving a subscribe request,
from the subscribing layer, specifying the published
attribute; and

the exchange intermediary implemented by the processor
in the computing device providing the associated value
of the published attribute to the subscribing layer in
response to the subscribe request. implement an information exchange service, the informa­

tion exchange service configured to receive the control
attribute and the associated value from the publishing
protocol layer and to store the control attribute and the
associated value in a storage of the device, and further
configured to supply the stored associated value to the
subscribing protocol layer responsive to a request from
the subscribing protocol layer,

12. The method of claim 11, further comprising the step of:
55 storing multiple attributes and associated values, described

by an XML-based description.

wherein the subscribing protocol layer is configured to
adapt behavior based on the stored associated value of
the control attribute supplied by the information
exchange service.

2. The device of claim 1, wherein the information exchange
service is further configured to maintain multiple control
attributes and associated values.

60

13. The method of claim 11, further comprising the step of
periodically providing the associated value of the published
attribute to the subscribing protocol layer.

14. The method of claim 11, further comprising the step of:
receiving an indication from the publishing layer of an

expiration time for the associated value of the attribute to
be shared.

15. The method of claim 11, further comprising the steps
65 of:

receiving a rule registration that includes a condition of the
attribute; and

US 7,693,181 B2
11

notifying the subscribing protocol layer when the condi­
tion is satisfied.

16. The method of claim 11, further comprising the steps
of:

storing multiple attributes and associated values in a stor­
age within the computing device, responsive to respec­
tive publication requests from the publishing layer; and

evicting a selected one of the attributes from the storage

of:

when the storage is full. 10

17. The method of claim 11, further comprising the steps

communicating with a peer information exchange service
in another computing device; and

12
rece1vmg multiple queries from the peer information

exchange service for one of the attributes.
18. The method of claim 11, further comprising the steps

determining if overlap exists among the multiple queries; and
if overlap does exist, sharing a result of the overlapping

queries.
19. The method of claim 11, further comprising the steps

of:
storing multiple attributes and associated values, respon­

sive to respective publication requests from the publish­
ing layer; and

selecting one of the attributes for eviction based on a sticky
bit associated with the corresponding attribute.

* * * * *

