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SUMMARY 
 

Intrusion detection systems (IDS) have a vital role in protecting computer networks and 

information systems. In this thesis we applied an SPC monitoring concept to a certain 

type of traffic data in order to detect a network intrusion.  

We developed a general SPC intrusion detection approach and described it and the 

source and the preparation of data used in this thesis. We extracted sample data sets that 

represent various situations (e.g., idle/busy, attack/no attack), calculated event intensities 

for each situation, and stored these sample data sets in the data repository for use in 

future research. 

A regular batch mean chart was used to remove the sample data’s inherent 60-second 

cycles. However, this proved too slow in detecting a signal because the regular batch 

mean chart only monitored the statistic at the end of the batch. To gain faster results, a 

modified batch mean (MBM) chart was developed that met this goal. Subsequently, we 

developed the Modified Batch Mean Shewhart chart, the Modified Batch Mean Cusum 

chart, and the Modified Batch Mean EWMA chart and analyzed the performances of each 

one on simulated data. The simulation studies showed that the MBM charts perform 

especially well with large signals — the type of signal typically associated with a DOS 

intrusion.  

The MBM Charts can be applied two ways: by using actual control limits or by using 

robust control limits. The actual control limits must be determined by simulation, but the 

robust control limits require nothing more than the use of the recommended limits. The 

robust MBM Shewhart chart was developed based on choosing appropriate values based 
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on batch size. The robust MBM Cusum chart and robust MBM EWMA chart were 

developed on choosing appropriate values of charting parameters. 

In conclusion, (1) sample data sets were developed for future research related to IDS; 

(2) general guidelines were proposed for applying SPC methods to the type of data 

typically encountered in IDS, such as how to preprocess the raw data to make it satisfy 

certain assumptions and how to determine actual and recommended control limits for 

SPC charts; and (3) the modified batch mean (MBM) concept was developed, creating a 

technique that can be embedded in various SPC charts to aid them in the detection of a 

large signal (DOS attack) earlier than is possible with regular SPC charts that rely on 

batch means. 
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CHAPTER 1 

INTRODUCTION 
 

We now live in the information age. It is nearly impossible to imagine our lives without 

the Internet and information systems. Nowadays the Internet is used routinely for stock 

trading, access to weather forecasts and even daily newspapers. The networking 

revolution has fully come of age in the last decade. More than ever before, we see how 

the Internet is changing the way humans live. While the possibilities and opportunities 

afforded by computer information systems are steadily expanding, so too is the risk of 

malicious intrusions, such as computer viruses or the theft of data. 

In this chapter, we discuss the motivation for the need to secure computer network 

information systems and the role of intrusion detection within this security requirement. 

In the first section, we define computer system security and common threats to the 

system.  In the second and the third sections, respectively, we define intrusion detection 

and outline a few popular approaches. Section 4 defines important terminology used 

throughout the thesis, and Section 5 outlines the structure of the thesis.  

In this chapter, we also give a broad overview of the field of intrusion detection as it 

is presented in the literature. In the next chapter we will survey approaches that have been 

taken for detecting intrusions. 
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1.1 COMPUTER SYSTEM SECURITY  

Garfinkel and Spafford (1991) define a secure computer system as one that can be 

depended upon to behave as expected. The integrity that is displayed between the 

expected behavior and the exhibited behavior is referred to as trust in the security of the 

computer system. They define the level of trust as an indication of the confidence in the 

expected behavior of the computer system. The expected behavior is incorporated into 

the security policy of the computer system and governs the goals that the system must 

meet. 

Russel and Gangemi (1991) introduce a narrower definition of computer security 

based on the realization of confidentiality, integrity, and availability in a computer 

system. They define confidentiality to mean that information is accessible only to those 

authorized to access it; integrity assures that information remains unaltered by accident or 

malicious tampering; and availability ensures that the computer system remains working 

when needed without degradation of access to authorized users. 

Kumar (1995) defines a secure computer system as a system that protects its data and 

resources from unauthorized access, tampering, and denial of service. In his framework, 

data confidentiality is important to commercial success and national security, data 

integrity allows a hospital to maintain patients’ medical histories in order to make critical 

life decisions, and data availability permits on- line trading in real time. 

Threats to Security 

We live in a society in which we are increasingly dependent on rapid access to and 

processing of information. As this demand increases, more information is being stored on 

computer systems that make possible the rapid tabulation of data from different sources. 
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The correlation of information from different sources has allowed additional information 

to be inferred that may be difficult to obtain directly. However, the proliferation of 

inexpensive computers and networks has exacerbated the problem of unauthorized access 

to data and tampering with it. (Kumar, 1995)  

Increased connectivity not only facilitates access to larger amounts and more varied 

data than ever before, but also it provides an access path to the data from virtually 

anywhere on the network (Power, 1995). In many cases, such as in the Internet worm 

attack of 1988 (Spafford, 1989), network intruders easily overcome the password 

authentication mechanisms designed to protect these systems. 

With an increased understanding of how systems work, intruders have become skilled 

at determining weaknesses in systems and exploiting them to obtain privileges that allow 

them to wreak havoc (Kumar 1995). Intruders also use patterns of intrusion that are 

difficult to trace and are adept at preventing discovery of their identities. They skillfully 

cover their tracks so that their activity on the penetrated system is not easily discovered. 

So the threats to computer system security are increasingly intelligent, elusive and 

destructive. 

Detecting these Threats 

Lampton (1974) states that most computer systems provide an access control mechanism 

as their first line of defense. However, this usually only limits access to an object in the 

system rather than restricting what a subject may do once access has been obtained 

(Dennis, 1982). Therefore, access control does not necessarily prevent unauthorized 

information flow into or out of the system once the intruder has gained access to the 

system’s objects (Kumar, 1995).  
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Information flow can be controlled to enhance security by applying models such as 

the Bell and LaPadula model (Bell, 1973) to provide secrecy, or the Biba model (Biba, 

1977) to provide integrity. However, this enhanced security comes at the price of greatly 

curtailed convenience. Both models restrict read and write operations to ensure that 

confident iality and integrity of data in the system cannot be compromised. If both models 

are jointly used, the resulting model only permits access to objects at the same security 

classification level as the subject. This may result in a completely secure system but one 

of limited utility. 

Kumar (1995) notices that access control and protection models are useless against 

insider threats or compromise of the authentication module. If a password is 

compromised, access control measures cannot prevent the loss or corruption of 

information that the user of the compromised password was authorized to access. In 

general, static methods of computer and network security such as access control and 

protection models may simply be insufficient to achieve their goal or they may be overly 

restrictive to users. For example, static techniques may not prevent a violation of security 

policy such as the browsing of data files, and mandatory access controls that require an 

appropriate clearance make the system cumbersome to use. Therefore, a dynamic 

method, such as behavior tracking, is needed to detect and prevent breaches in security. 

Intrusion detection systems that perform this role usually form the last line of defense 

in the overall protection scheme of a computer system. They are useful not only in 

detecting breaches of security, but also in monitoring attempts so as to provide timely 

information for countermoves.  

 



 5 

1.2 WHAT IS INTRUSION DETECTION? 

Anderson (1980) introduced the concept of intrusion detection in 1980 and defined the 

term “threat” or “intrusion attack” as the potential possibility of a deliberate unauthorized 

attempt to 

• Access information, 

• Manipulate information, or 

• Render a system unreliable or unusable. 

Heady, Luger, and Maccabe (1990) define an intrusion as any set of actions that 

attempts to compromise the integrity, confidentiality, or availability of a resource. And 

Kumar (1995) defines an intrusion as a violation of the security policy of the system.  

Anderson (1980) also classifies intruders into two types, external intruders who are 

unauthorized users of the machines they attack, and internal intruders who have 

permission to access select portions of the system. He further categorizes internal 

intruders into those who masquerade as another user, those with legitimate access to 

sensitive data, and the most dangerous type, the clandestine intruders who have the 

power to turn off audit control for themselves. 

Detection of intrusions is generally divided into two categories: anomaly intrusion 

detection and misuse intrusion detection (Deming, 1987). The first refers to intrusions 

that can be detected based on anomalous behavior and use of computer resources. For 

example, if user X only uses the database computer from his office, a remote login 

session activity on this account late at night is anomalous and hence might be an 

intrusion. As illustrated by this example, anomaly detection attempts to quantify the usual 

or acceptable behavior and flags irregular behavior as potentially intrusive. 



 6 

One of the earliest reports that outlines how intrusion may be detected by identifying 

“abnormal” behavior is the work done by Anderson (1980). In his report, Anderson 

(1980) presents a threat model that classifies a threat as one of three types. These are 

external penetrations, internal penetrations, and misfeasance. He uses these classifications 

to develop a surveillance system based on detection anomalies in user behavior. External 

penetrations are defined as intrusions that are carried out by unauthorized computer 

system users; internal penetrations are those that are carried out by authorized users of 

computer systems who are not authorized for the data that is compromised; and 

misfeasance is defined as misuse of authorized data and other resources by otherwise 

authorized users. 

Misuse detection refers to intrusions that follow well-defined patterns of attack that 

exploit weaknesses in system and application software (Kumar, 1995). Such patterns can 

be precisely written in advance. For example, exploitation of the finger and sendmail 

used in the Internet Worm attack (Spafford, 1989) would come under this category. This 

technique represents knowledge about bad or unacceptable behavior and seeks to detect it 

directly, as opposed to anomaly intrusion detection, which seeks to detect the  

complement of normal behavior (Smaha, 1992). 

The aforementioned schemes of classifying intrusions as anomaly detection or as 

misuse detection differ in their methods of detection. Smaha (1988) presents another 

classification scheme based on intrusion types. He classified intrusions into the following 

six types: 

1. Attempted break-in: often detected by profiles of atypical behavior or violations of 

security constraints. 



 7 

2. Masquerade attack: often detected by profiles of atypical behavior or violations of 

security constraints. 

3. Penetration of the security control system: usually detected by monitoring for 

specific patterns of activity. 

4. Leakage: often detected by atypical usage of Input/Output (I/O) resources. 

5. Denial of service: often detected by atyp ical usage of system resources. 

6. Malicious use: often detected by atypical behavior profiles, violations of security 

constraints, or use of special privileges. 

Although there are many ways to classify an intrusion, the main techniques used for 

detecting intrusions are the same: the statistical approach of anomaly detection, and the 

precise monitoring of known attack methods in the misuse detection approach. It is 

necessary to understand that both approaches have implicit and crucial assumptions about 

the nature of intrusions they can detect. 

 

1.3 THE NEED FOR INTRUSION DETECTION SYSTEMS 

A computer system should provide confidentiality, integrity and availability against 

denial of service. However, because of increased connectivity (especially on the Internet), 

and the vast spectrum of financial possibilities that are opening up, more and more 

systems are subject to attack by intruders. These attempts at subversion try to exploit 

flaws in the operating system as well as in application programs and have resulted in 

spectacular incidents like the Internet Worm incident of 1988 (Spaffod, 1989).  

There are two ways to handle subversion attempts. One way is to prevent subversion 

itself by building a completely secure system. We could, for example, require all users to 
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identify and authenticate themselves; we could protect data by various cryptographic 

methods and very tight access control mechanisms. However this is not really feasible.  

Thus, we are stuck with systems that have vulnerabilities. If there are attacks on a 

system, we would like to detect them as soon as possible (preferably in real-time) and 

take appropriate action. This is essentially what an intrusion detection system (IDS) does.  

An IDS is defined as a system that detects intrusion. An IDS does not usually take 

preventive measures when an attack is detected; it is a reactive rather than pro-active 

agent. It plays the role of an informant rather than a police officer.  

The most popular way to detect intrusions has been by using the audit data generated 

by the operating system. An audit trail is a record of activities on a system that is logged 

to a file in chronologically sorted order. Since almost all activities are logged on a 

system, it is possible that a manual inspection of these logs would allow intrusions to be 

detected. However, the incredibly large size of the audit data generated makes manual 

analysis impossible. IDSs automate the drudgery of wading through the jungle of audit 

data. Audit trails are particularly useful because they can be used to establish the guilt of 

attackers, and they are often the only way to detect unauthorized but subversive user 

activity.  

Many times, even after an attack has occurred, it is important to analyze the audit data 

for several reasons. These include determining the extent of damage, tracking down the 

attackers, and taking steps to prevent future attacks. An IDS can also be used to analyze 

audit data for such insights. This makes an IDS valuable in real- time as well as a post-

mortem analysis tool.  
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1.4 TERMINOLOGIES 

This section explains several terms used throughout the thesis. The terms have well-

accepted definitions among security professionals (Kumar, 1995).  

 

Audit record/event. An audit record is an individual entry in an audit trail. It is also 

referred to in this proposal as an “event.” The number of distinct event types is finite and 

known a priori. Events are tagged with data. There is a “type” field with every event that 

distinguishes IT? among the different events in the stream of activity. Events can have 

any number (usually small) of tag fields. The exact number and nature of the fields is 

dependent on the types of event. The layout of each event is fixed, although each event 

type can have a different layout.  

 

Audit trail/event stream. An audit trail is defined in Longley (1987) as a chronological 

record of system activity sufficient for enabling the reconstruction, review and 

examination of the sequence of environments and activity surrounding or leading to each 

event in the path of a transaction from inception to output of final results. 

The term “event stream,” against which signatures are matched, is used in this thesis  

in the same sense as an audit trail. In practice, audit trails record service requests that 

applications make of the operating system, and events are recorded when applications 

make system calls. Recording system service requests from applications provide a 

trustworthy application independent monitoring technique that works for all applications, 

without requiring intrusive instrumentation of the applications. Some important 
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applications such as login have, however, been retrofitted to generate their own specific 

events that overlap with other events in the audit trail. 

 

BSM (Basic Security Module). The Solaris operating system from Sun Microsystems 

Inc. has a security extension called the basic security module (BSM). BSM supports the 

monitoring of activities on a host machine by recording security-relevant events. BSM- 

auditable events fall into two categories: kernel events and user-level events. Kernel 

events are generated by system calls to the kernel of the Solaris operation system. User-

level events are generated by application software. A BSM audit record for each event 

contains a variety of information, including the event type, user ID, group ID, process ID, 

session ID, and the system object accessed, among others. 

 

C2 security rating of computer systems . A Department of Defense security evaluation 

criteria class requiring audition and protection of encrypted passwords, among others, as 

described in the Orange Book (DoDS, 1985). The primary motivation behind the Orange 

Book was the need to quantify security and trust because different organizations and 

different types of information require different types of security (Russell, 1991). C2 is a 

category of a specific set of criteria to be met by computer systems defined by the Orange 

Book (DoDs, 1985).  

  

DOS (Denial of Service). When a denial of service (DOS) attack occurs, a computer or a 

network user is unable to access resources like e-mail and the Internet. An attack can be 

directed at an operating system or at the network. Denial of service attacks can happen by 
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flooding the network with excessive traffic. The network is unable to distinguish between 

legitimate traffic and malicious traffic during the attack.  

Other kinds of DOS attacks include using up all the victim’s bandwidth instead of 

targeting a particular service or by using all of a system’s resources, like memory, on a 

server. For example, attackers could also try to shut down a system by flooding the 

network with e-mail. 

 

Exploitation. An exploitation is a set of actions that result in a violation of the security 

policy of a computer system. Intruders exploit system vulnerabilities or flaws to gain 

unauthorized access to the system. These exploitations can often be encoded as signatures 

that can be matched against the audit trail for detection. 

 

Flaw. A flaw is defined in Longley (1987) as an error of commission, omission or 

oversight in a system that allows protective mechanisms to be bypassed. In this thesis, we 

use the terms vulnerabilities and flaws synonymously. 

 

Signature . In detection of misuse intrusion, a signature is the specification of features, 

conditions, arrangements and interrelationships among events that signify a break- in or 

other misuse, or their attempt. The term “pattern” and “intrusion pattern” are used 

throughout the thesis in the same sense as a signature. 

 

Spoofing. A spoofing is the creation of TCP/IP packets using somebody else's IP address. 

Routers use the "destination IP" address in order to forward packets through the Internet, 
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but ignore the "source IP" address that is only used by the destination machine when it 

responds back to the source. IP spoofing is an integral part of many network attacks that 

do not need to see responses (blind spoofing). 

 

TCP/IP (Transmission Control Protocol/Internet Protocol). TCP/IP is developed by a 

Department of Defense (DOD) research project to connect a number different networks 

designed by different vendors into a network of networks. TCP/IP uses several protocols, 

the two main ones being TCP and IP. TCP/IP is built into the UNIX operating system and 

is used by the Internet, making it the de facto standard for transmitting data over 

networks. Even network operating systems that have their own protocols, such as 

Netware, also support TCP/IP. 

 

Vulnerability. A vulnerability is defined in Longley (1987) as a weakness in automated 

system security procedures, administrative controls or internal controls that could be 

exploited to gain unauthorized access or to disrupt critical processing. Anderson (1980) 

defines vulnerability in a less abstract way as a known or suspected flaw in the hardware 

or software design or operation of a system that exposes it to penetration of its 

information. 
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1.5 ORGANIZATION OF THE THESIS 

In this thesis, we are concerned with the SPC charting methods in the computer network 

intrusion detection areas. We stress that we are interested in DOS intrusion attacks that 

can be detected with activity monitoring schemes. Recognizing the effectiveness of the 

control charts for the DOS intrusion attack, we build a SPC intrusion detection approach, 

and propose new SPC charts that allow us to detect DOS intrusion signals faster and 

more effectively than other SPC charts now in use. This new family of charts is named 

Modified Batch Mean (MBM) charts. The new charts are analyzed and compared with 

existing charting methods using the simulated data.  

 Below is an outline of the thesis. 

Chapter 1 introduces the problem of computer security and the need for intrusion 

detection systems and the associated terminologies that will be used in the thesis. 

Chapter 2 reviews literatures dealing with intrusion detection systems and research.   

Chapter 3 reviews SPC methods widely used in manufacturing and process control 

and describes the performance measures of the charts. 

Chapter 4 studies the SPC approach for the intrusion detection. The procedures and 

the results of the case study with the procedure are presented. 

Chapter 5 presents the characteristic s of the input sample data and the simulation 

modeling for the SPC intrusion detection approach. 

Chapter 6 illustrates new SPC methods presented in the thesis  and the results of the 

simulation using the new SPC methods are also presented. 

Chapter 7 presents the results of applying the new SPC methods to the data used in 

the case study. 
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Chapter 8 provides a summary of this thesis and a discussion of future directions for 

research. 
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CHAPTER 2 

INTRUSION DETECTION SYSTEMS 
 

This chapter describes several existing intrusion detection systems. We also describe the 

data-mining model of intrusion detection proposed by Lee (1999) and the statistical 

methods proposed by Ye (2002).  

 

2.1 INTRODUCTION 

IDSs have three characteristics, namely the audit source, the methods employed, and the 

response initiated by detection. For intrusion detection systems, the input is the audit 

source and the process is the mechanism of detection and the output is the system 

response. Based on its source, an IDS is categorized as either a host-based system or a 

network-based system. A host-based system generally uses host-based input data and 

prevents an intrusion into the host. A network-based system gathers information from the 

network traffic. Based on its response to the information it gathers, an IDS is categorized 

as either a passive system or active system. 

Based on the detection method it employs, an IDS is categorized as a knowledge-

based system or a behavior-based system. A knowledge-based system is in other words a 

misuse detection system and a behavior-based system is an anomaly detection system. 

This chapter uses these two categories — misuse detection systems and anomaly 

detection systems — to describe existing IDSs because together they encompass the 
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techniques of intrusion detection. In the following sections, we will describe anomaly 

detection systems, misuse detection systems and other methods. 

 

2.2 ANOMALY DETECTION SYSTEMS 

Anomaly detection techniques assume that all intrusive activities are necessarily 

anomalous. This means that if we could establish a "normal activity profile" for a system, 

we could, in theory, flag all system states varying from the established profile by 

statistically significant amounts as an intrusion is in progress. If we assume that the set of 

intrusive activities only intersects the set of anomalous activities instead of being exactly 

the same, we find several interesting possibilities: (1) Anomalous activities that are not 

intrusive are flagged as intrusive, i.e., false positives. (2) Intrusive activities that are not 

flagged as intrusive when they actually are, i.e., false negatives. False negatives are far 

more serious than false positives.  

The main issues in anomaly detection systems thus become the selection of threshold 

levels so that neither false positives nor false negatives are unreasonably probable and the 

selection of features that will be monitored. Anomaly detection systems are also 

computationally expensive because of the overhead involved in keeping track of and 

updating several metrics of system profile. There have been a few major approaches to 

anomaly intrusion detection systems, some of which are described below.  

 

Statistical Approaches 

In statistical approaches, behavior profiles for subjects are initially generated as the 

system continues running, and the anomaly detector constantly compares the variance of 
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the present profile against that of baseline. We note that in this case there may be several 

measures that affect the behavior profile such as activity measures, CPU time used, 

number of network connections in a time period, etc. In some systems, the current profile 

and the previous profile are merged at regular time intervals, but in some other systems 

profile generation is a one-time activity.  

The main advantage of statistical systems is that they adaptively study use behaviors 

and are thus potentially more sensitive than human experts. However, there are a few 

problems with statistical approaches. One problem is that intruders can systematically 

train them so that eventually intrusive events are considered normal. A second is that 

either false positives or false negatives can be generated, depending on whether the 

threshold is set too low or too high. And a third is that relationships between events can 

be missed because of the insensitivity of statistical measures to the order of events.  

An open issue with statistical approaches in particular, and with anomaly detection 

systems in general, is the selection of measures to monitor. The subset of all possible 

measures that accurately predicts intrusive activities is unknown. Static methods of 

determining these measures are sometimes misleading because of the unique features of a 

particular system. Thus, it seems that a combination of static and dynamic determination 

of the set of measures should be done. Some problems associated with this technique 

have been remedied by other methods, including the method involving Predictive Pattern 

Generation, which takes past events into account when analyzing the data.  
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Predictive Pattern Generation  

This method of intrusion detection tries to predict future events based on events that have 

already occurred (Teng, 1990). Therefore, we could have a rule 

      E1 - E2 --> (E3 = 75%, E4 = 15%, E5 = 5%) 

This would mean that given that events E1 and E2 have occurred, with E2 occurring after 

E1, there is an 75% probability that event E3 will follow, a 15% chance that event E4 

will follow and a 5% probability that event E5 will follow. The problem with this is that 

some intrusion scenarios that are not described by the rules will not be flagged as 

intrusive. Thus, if an event sequence A - B - C exists that is intrusive, but is not listed in 

the rule-base, it will be classified as unrecognized and thus be undetected. This problem 

can be partially solved by flagging as intrusions any unknown events (increasing the 

probability of false positives), or by flagging them as nonintrusive (thus increasing the 

probability of false negatives). Typically, however, an event is flagged as intrusive if the 

left side of a rule is matched, but the right side is very deviant statistically from the 

prediction.  

This approach has several advantages. First, rule- based sequential patterns can detect 

anomalous activities that were difficult to detect with traditional methods. Second, 

systems built using this model are highly adaptive to changes. This is because low quality 

patterns are continuously eliminated, finally leaving only higher quality patterns. Third, it 

is easier to detect users who try to train the system during its learning period. And fourth, 

anomalous activities can be detected and reported within seconds of receiving audit 

events.  
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Neural Networks 

The idea of a neural network is to train it to predict a user's next action or command, 

given the window of previous actions or commands. The network is trained on a set of 

representative user commands. After the training period, the network tries to match actual 

commands with the actual user profile already present in the network. Any incorrectly 

predicted commands actually measure the deviation of the user from the established 

profile. Some advantages of using neural networks are that they cope well with noisy 

data, their success does not depend on any statistical assumption about the nature of the 

underlying data, and they are easier to modify for new user communities (Lunt, 1993). 

However, they have some weaknesses. First, a small window will result in false positives 

while a large window will result in irrelevant data as well as increase the chance of false 

negatives. Second, the network topology is only determined after considerable trial and 

error. And third, an intruder can train the network during its learning phase.  

 

2.3 MISUSE DETECTION SYSTEMS 

The concept behind misuse detection schemes is that there are ways to represent attacks 

in the form of a pattern or a signature so that even variations of the same attack can be 

detected. This means that these systems are not unlike virus detection systems — they 

can detect many or all known attack patterns, but they are of little use for as yet unknown 

attack methods. An interesting point to note is that anomaly detection systems try to 

detect the complement of "bad" behavior but misuse detection systems try to recognize 

known "bad" behavior.  
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The main issues in misuse detection systems are how to write a signature that 

encompasses all possible variations of the pertinent attack, and how to write signatures 

that also do not match nonintrusive activity.  

Significant research on misuse detection systems has been undertaken recently, 

including projects at SRI (Stanford Research Institute), Purdue University and the 

University of California-Davis. Some of these systems are explained in depth in this 

section.  

 

Expert Systems   

Expert systems are modeled in such a way as to separate the rule-matching phase from 

the action phase. The matching is done according to audit trail events. The Next 

Generation Intrusion Detection Expert System (NIDES) developed by SRI is an 

interesting case study fo r the expert system approach. NIDES follows a hybrid intrusion 

detection technique consisting of a misuse detection component as well as an anomaly 

detection component. The anomaly detector is based on a statistical approach, and it flags 

events as intrusive if they are largely deviant from the expected behavior. To do this, it 

builds user profiles based on more than 30 criteria, including CPU and I/O usage, 

commands used, local network activity, system errors, etc. (Lunt, 1993). These profiles 

are updated at periodic intervals. The expert system’s misuse detection component 

encodes known intrusion scenarios and attack patterns (bugs in old versions of sendmail 

could be one vulnerability). The rule database can be changed for different systems. One 

advantage of the NIDES approach is that it has a statistical component as well as an 

expert system component. This increases the possibility that one system will catch 
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intrusions missed by the other. Another advantage is the problem's control reasoning is 

cleanly separated from the formulation of the solution.  

There are some drawbacks to the expert system approach, too. For example, the 

expert system has to be formulated by a security professional, and thus the system is only 

as strong as the security personnel who programs it (Lunt, 1993). This means that there is 

a real chance that expert systems can fail to flag intrusions. It is for this reason that 

NIDES has an anomaly as well as a misuse detection component. These two components 

are loosely coupled in the sense that for the most part they perform their operations 

independently. The NIDES system runs on a machine different from the machine(s) to be 

monitored, which could be unreasonable overhead. Furthermore, additions and deletions 

of rules from the rule-base must take into account the inter-dependencies between 

different rules in the rule-base. And there is no recognition of the sequential ordering of 

data because the various conditions that make up a rule are not recognized as ordered.  

 

Keystroke Monitoring 

 Keystroke monitoring is a very simple technique that monitors keystrokes for attack 

patterns. Unfortunately the system has several defects — features of shells like bash, ksh, 

and tcsh in which user definable aliases are present defeat the technique unless alias 

expansion and semantic analysis of the commands is taken up (Kumar, 1995). The 

method also does not analyze the running of a program, only the keystrokes. This means 

that a malicious program cannot be flagged for intrusive activities. Operating systems do 

not offer much support for keystroke capturing, so the keystroke monitor should have a 

hook that analyses keystrokes before sending them on to their intended receiver. An 
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improvement to this would be to monitor system calls by application programs as well so 

that an analysis of the program's execution is possible.  

 

Model-Based Intrusion Detection  

Model-based intrusion detection states that certain scenarios are inferred by certain other 

observable activities. If these activities are monitored, it is possible to find intrusion 

attempts by looking at activities that infer a certain intrusion scenario. A model-based 

scheme consists of three important modules of anticipator, planner, and interpreter 

(Garvey, 1991). The anticipator uses active models and the scenario models to try to 

predict the next step that is expected to occur in the scenario. A scenario model is a 

knowledge base with specifications of intrusion scenarios. The planner then translates 

this hypothesis into a format that shows the behavior as it would occur in the audit trail. It 

uses the predicted information to plan what to search for next. The interpreter then 

searches for this data in the audit trail. The system proceeds this way, accumulating more 

and more evidence of an intrusion attempt until a threshold is crossed; at this point, it 

signals an intrusion attempt.  

This is a very clean approach. Because the planner and the interpreter know what they 

are searching for at each step, the large amounts of noise present in audit data can be 

filtered, leading to excellent performance improvements. In addition, the system can 

predict the attacker's next move based on the intrusion model. These predictions can be 

used to verify an intrusion hypothesis, to take preventive measures, or to determine what 

data to look for next.  
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However, there are some critical issues related to this system. First, patterns for 

intrusion scenarios must be easily recognized. Second, patterns must always occur in the 

behavior being looked for. And finally, patterns must be distinguishing; they must not be 

associated with any other normal behavior.  

 

State Transition Analysis 

In the state transition analysis technique, the monitored system is represented as a state 

transition diagram. As data is analyzed, the system makes transitions from one state to 

another. A transition takes place on some Boolean condition being true (for example, the 

user opening a file). The approach followed in USTAT (State Transition Analysis Tool 

for UNIX) (Ilgun, 1992) is to have state transitions from safe to unsafe states based on 

known attack patterns.  

There are also a few problems with state transition systems. First, attack patterns can 

specify only a sequence of events, rather than more complex forms. Second, there are no 

general-purpose methods to prune the search except through the assertion primitives 

described above. And finally, they cannot detect denial of service attacks, failed logins, 

variations from normal usage, and passive listening — this is because these items are 

either not recorded by the audit trail mechanism, or they cannot be represented by state 

transition diagrams.  

A small point to be noted is that USTAT is never meant to be a stand-alone intrusion 

detection system; indeed, USTAT is meant to be used with an anomaly detector so that 

more intrusion attempts may be detected by their combination.  
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Pattern Matching 

Kumar (1995) proposed a new misuse detection system based on pattern matching. This 

model encodes known intrusion signatures as patterns that are then matched against the 

audit data. Like the state transition analysis model, this model attempts to match 

incoming events to the patterns representing intrusion scenarios. The implementation 

makes transitions on certain events, called labels, and Boolean variables called guards 

can be placed at each transition. The difference between this and the state transition 

model is that the state transition model associates these guards with states, rather than 

transitions. Kumar (1995) states that the important advantages of this model are:  

1. Declarative specification: It only needs to be specified what patterns need to be 

matched, not how to match them.  

2. Multiple event streams can be used together to match against patterns for each 

stream without the need to combine streams. This means that streams can be 

processed independently, and their results can be analyzed together to give 

evidence of intrusive activity.  

3. Portability: Since intrusion signatures are written in a system independent script, 

they need not be rewritten for different audit trails. The patterns' declarative 

specifications enable them to be exchanged across different operating systems and 

different audit trails.  

4. It has excellent real-time capabilities. Kumar reports a CPU overhead of 5-6% 

when scanning for 100 different patterns, which is excellent.  

5. It can detect some attack signatures, such as the failed logins signature, that the 

state transition model cannot do.  
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One problem with this model is it can only detect attacks based on known 

vulnerabilities (a problem with misuse detection systems in general). In addition, pattern 

matching is not very useful for representing ill-defined patterns, and it is not an easy task 

to translate known attack scenarios into patterns that can be used by the model. Also, it 

cannot detect passive wire-tapping intrusions, nor can in detect spoofing attacks in which 

a machine pretends to be another machine by using its IP address.  

 

Generic Intrusion Detection Model 

Dorothy Denning (1987) introduced a generic intrusion detection model that was 

independent of any particular system, application environment, system vulnerability, or 

type of intrusion. The basic idea of the model is to maintain a set of profiles for subjects 

(usually, but not necessarily users of a system). When an audit record is generated, the 

model matches it with the appropriate profile and then makes decisions on updating the 

profile, checking for abnormal behavior and reporting anomalies detected. To do this, it 

monitors system services such as file accesses, executable programs, and logins. It has no 

specific knowledge of the target system's vulnerabilities, although this knowledge would 

be extremely useful in making the model more valuable. In fact, the Intrusion Detection 

Expert System (IDES) developed at SRI was based on this model. The basic ideas in this 

model appear with little modification in many systems built. However, there are some 

systems that do not fit easily into this model. 
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NSM (Network Security Monitor)  

NSM is an intrusion detection system developed at the University of California-Davis. 

NSM is a network-based IDS that differs from all of the IDSs discussed earlier because it 

does not use or analyze the host machine(s) audit trails. Rather, it monitors network 

traffic in order to detect intrusions (Mukherjee, 1994).  

NSM has several perceived advantages. First, the IDS gets instantaneous access to 

network data. Second, the IDS is hidden from the intruder because it is passively listening 

to network traffic. Therefore, it cannot be shut off or its data compromised. Finally, the 

IDS can be used with any system because it is monitoring network traffic, protocols for 

which (TCP, UDP etc.) are standardized. For example, there is no problem with different 

audit files. 

 

Autonomous Agents 

Crosbie and Spafford (Crosbie, 1995) proposed to build an IDS using autonomous agents. 

Instead of a single large IDS defending the system, they propose an approach where 

several independent, small processes operate while cooperating in maintaining the 

system. The advantages claimed for this approach are efficiency, fault tolerance, 

resilience to degradation, extensibility and scalability. The foreseen drawbacks include 

the overhead of so many processes, long training times, and the fact that if the system is 

subverted, it becomes a security liability. An interesting possibility they open up is that of 

an active defense, that can respond to intrusions instead of passively reporting them (it 

could kill suspicious connections, for example). 
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2.4 OTHER MODELS AND DIRECTIONS IN RESEARCH 

Lee and Stolfo (Lee, 1999) propose a framework of applying Data Mining  techniques to 

build intrusion detection models. The key ideas are to mine system audit data for 

consistent and useful patterns of program and user behavior, and use the set of relevant 

system features presented in the patterns to compute (inductively learned) classifiers that 

can recognize anomalies and known intrusions. They show that classification models can 

detect intrusions, provided that sufficient audit data is available for training and the right 

set of system features are selected by experiments. 

This framework consists of classification, association rules and frequent episode 

programs, as well as a support environment that enables system builders to drive the 

process of constructing and evaluating detection models interactively and iteratively. The 

end products are concise and intuitive classification rules (that can be easily inspected 

and edited by security experts when needed) that can detect intrusions. They also propose 

that association rules and frequent episodes from the audit data can be used to guide audit 

data gathering and feature selection, the critical steps in building effective classification 

models. 

 

Ye, Emran, Chen, and Vilbert (Ye, 2002) investigate a multivariate Quality Control 

Technique  to detect intrusions by building a long-term profile of normal activities in 

information systems (norm profile) and using the norm profile to detect anomalies. They 

present their work on multivariate statistical analysis of audit trails for host-based 

intrusion detection. Specifically, Hotelling's T2 test — a multivariate statistical process 

control (SPC) technique  — is used to analyze audit trails of activities in an information 
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system and detect host-based intrusions into the information system that leave trails in the 

audit data. Hotelling's T2 test is also compared with a more scalable multivariate 

statistical analysis technique — the chi-squared test.  

 

Ye, Li, Chen, Emran, and Xu (2001) apply a Markov model that takes into account the 

ordering property of multiple events for intrusion detection. They claim that the 

application of a Markov model helps answer the question about whether the ordering 

property of activity data provides additional advantage to intrusion detection, or whether 

one can detect intrusions from only the frequency property of activity data without the 

ordering property.  

 

Ye, Vilbert, and Chen (2003) also apply the EWMA (Exponentially Weighted Moving 

Average) Control Chart method for intrusion detection. They use EWMA statistical 

control chart methods for detecting intrusive DOS attacks by using the BSM host audit 

file. They calculate the event intensity by calculating the intensity of the BSM header 

files and applied the EWMA statistical control charting methods.  
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CHAPTER 3  

STATISTICAL PROCESS CONTROL 
METHODS 
 

This chapter describes the methods of several common statistical process control charts. 

The definition of a statistical control chart is that it is a graphical device for monitoring a 

measurable characteristic of a process for the purpose of showing whether the process is 

operating within its limits of expected variation. A major objective of a statistical process 

control chart is “to detect quickly the occurrence of assignable causes of process shifts so 

that the process can be investigated and corrective action undertaken before many 

nonconforming units are manufactured” (Montgomery, 2001). The control chart is an on-

line process-monitoring technique widely used for this purpose. 

 

3.1 SHEWHART CHART 

The most commonly used form of control chart is named after Walter A. Shewhart 

(1891-1967), who invented it in 1924 and used it as the basis for laying the foundation of 

modern quality control in his seminal 1931 book, Economic Control of Quality of 

Manufactured Product (Shewhart, 1931). 

The basic idea advocated by Shewhart is that there are switches in time that transfer 

the generating process into a distribution not typical of the dominant distribution. These 

switches manifest themselves into different average product measurements and variances 

(Montgomery, 2001). 
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Figure 3.1 shows the in-control and out-of-control states for a process.  If a product is 

to meet customer requirements, it should be produced by a process that is stable or 

repeatable. More precisely, the process must be capable of operating with little variability 

from the target or nominal dimensions of the product’s quality characteristics. Such a 

process is considered to be in control. A process with a shift in mean and/or variance shift 

is considered out of control; such a process is a quality problem and eventually produces 

defective products that are useless. In the case of a process with normal distribution, if we 

set the control limit to the 3-σ  level, the probability of an in-control limit is 99.7 %. 

Shewhart defined chance and assignable causes as the two sources of quality variation. 

Chance is an inherent, inevitable, and unavoidable cause of variation. A process that is 

operating with only chance present a cause of variation is said to be in statistical control. 

The output of a process occasionally has other kinds of variability.  This variability in key 

quality characteristics usually arises from any one or all of three sources: improperly 

 

Figure 3.1 In-Control vs. Out of Control 
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adjusted or controlled machines, operator errors, or defective raw material. Such 

variability is generally large when compared to the background noise, and it usually 

represents an unacceptable level of process performance. Shewhart (1931) refers to these 

sources of variation that are not the result of chance as “assignable causes.” A process 

that is operating with assignable causes is said to be out of control. 

This brief discussion shows that the underlying concept of a Shewhart chart is to 

construct its limitations based upon variations allowable as its in-control state and 

monitor the quality of the product produced. If variations attributable to assignable causes 

occur, product quality quickly exceeds the control limits and assignable causes can be 

investigated and corrective action undertaken. 

A typical control chart is shown in Figure 3.2, which is a graphical display of a 

quality characteristic that has been measured or computed from a sample versus the 

sample number or time. The chart contains a center line that represents the average value 

of the quality characteristic corresponding to the in-control state. Two other horizontal 

lines, called the upper control limit (UCL) and the lower control limit (LCL), are also 

shown on the chart. These control limits are chosen so that if the process is in control, 

nearly all of the sample points will fall between them. As long as the points plot within 

the control limits, the process is assumed to be in control. 
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Figure 3.2 A typical Shewhart chart. 

 

The distance of the control limits from the center line is expressed in standard 

deviation units of monitoring quality statistics. In general, we use 3- σ  for the distance, 

and that control limit gives an average run length (ARL) of 370 if the process 

observations are uncorrelated and have normal distribution.  Since the ARL can be 

calculated by 
α
1

=ARL , where α is the probability that any point exceeds the control 

limits of in-control status. To illustrate, for the Shewhart chart with three-sigma limits, 

0027.0)3Pr( =>−= σµXp  is the probability that a single point falls outside the limits 

when the process is in control, where X follows normal distribution with mean µ and 

standard deviation s . Therefore, the average run length of the Shewhart chart when the 

process is in control is 

370
0027.0
11

===
p

ARL . 
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3.2 CUSUM CHART 

Cumulative sum control charts were first proposed by Page  (1961) and have been studied 

by many authors and are preferred when a small, sustained shift in a process is considered. 

The basic idea of the Cusum chart is that such small shifts can be easier to see if one 

“accumulates” deviations from some standard value for Q. The Cusum chart directly 

incorporates all the information as the sequence of sample values by plotting the 

cumulative sums of the deviations of the sample value and target value as the following 

formulation. 

10 )( −+−= iii CUSUMQCUSUM µ , 

where Qi is the quality characteristic objective, 0µ is target value, and CUSUMi is the ith 

cumulative sum of quality characteristic . 

 

 

 
Figure 3.3 Cusum Chart. 

 
 

Figure 3.3 shows the effectiveness of the Cusum chart in detecting a small mean shift. 

The left one is a Shewhart chart and the right one is a Cusum chart with an example of a 

mean shift of 0.5 and a standard deviation of 1 sample case. In the Shewhart chart with a 
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center line = 0, it is difficult to determine if the mean is greater than 0, but in the Cusum 

chart in which the mean = 0, the change of mean is apparent. The chart on the right, 

however, is not a control chart because it lacks statistical control limits. 

Cusum charts may be represented in two ways, either as the tabular Cusum or the V-

mask form.  Montgomery (2001) recommends the use of the tabular form of a Cusum 

chart because of its convenience. The tabular form has been used in this thesis. 

The V-Mask is a visual procedure proposed by Barnard in 1959 and sometimes is 

used to determine whether a process is out of control. A V-Mask is an overlay shaped in 

the form of a V lying on its side. The overlay is superimposed on the graph of the 

cumulative sums. The origin point of the V-Mask (see Figure 3.4) is placed on top of the 

latest cumulative sum point, and past points are examined to see if any fall above or 

below the sides of the V. As long as all the previous points lie between the sides of the V, 

the process is in control. Otherwise (even if only one point lies outside) the process is 

suspected of being out of control. 

 

 

 
Figure 3.4 V-mask of Cusum chart 
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The tabular Cusum works by accumulating derivations from 0µ  that are above the 

target with one statistic +C  and accumulating derivations from 0µ  that are below the 

target with another statistic −C . The statistics +C and −C are called one-sided upper and 

lower Cusums, respectively. They are sequentially computed as follows. 

])(,0max[ 10
+
−

+ ++−= iii CKxC µ , (3.1) 

])(,0max[ 10
−
−

− +−+= iii CxKC µ , (3.2) 

where ix  is the i th observation on the process and both the starting values are +
0C = −

0C =0. 

When the process is in control, ix  has a normal distribution with mean 0µ  and standard 

deviation σ .  

In equation 3.1 and 3.2, K is usually called the reference value and is often chosen 

about halfway between the target 0µ  and the out-of-control values of the mean 1µ  that 

are the target for quick detection.  If either +C or −C  exceed the decision interval H, the 

process is considered to be out of control. 
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Figure 3.5 Cusum status chart for tabular Cusum 

 

The tabular Cusum is designed by choosing values for the reference value K and the 

Cusum decision interval H. Montgomery (2001) recommended that these parameters be 

selected to provide good average run length performance. Many analytical studies of 

Cusum ARL performance have been undertaken. For example, Hawkins (1993) gives a 

table of k (=K/σ ) values and the corresponding h (=H/σ ) values that will achieve ARL0 

= 370. In his table, if we set k=1/2 then h=4.77 gives us ARL0 = 370. 

 

3.3 EWMA CHART 

The exponential weighted moving average (or EWMA) control chart was introduced by 

Roberts (1959) and also is a good alternative to the Shewhart control chart for detecting 

small shifts. The exponentially weighted moving average is defined as 

1)1( −−+= iii zxz λλ , K ,2 ,1=i . (3.3) 
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Where 10 ≤< λ  is a constant and the starting value (required with the first sample at  

i =1) is the process target, so that 

00 µ=z . 

Sometimes the average of preliminary data is used as the starting value of the EWMA, so 

that xz =0 . 

To demonstrate that the EWMA statistic iz  is a weighted average of all previous samples, 

we may substitute for 1−iz  on the right side of equation 3.3 to obtain 
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Continuing to substitute recursively for jiz − ,  j = 2, 3, …, t, we obtain 
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The weight of a sample decreases geometrically with the age of the sample. Furthermore, 

the weights sum to unity, since 
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If λ =0.2, then the weight assigned to the current sample mean is 0.2, and the weights 

given to the preceding means are 0.16, 0.128, 0.1024, and so forth. A comparison of these 

weights with those of a ten-period moving average is shown in Figure 3.6. The blue line 

represents a case in which λ =0.2, and the red line represents a case in which λ =0.6. 

Because these weights decline geometrically when connected by a smooth curve, the 
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EWMA is sometimes called a geometric moving average (GMA), and if the λ  value is 

small, the weights decline faster.  

If the observations ix  are independent random variables with variance 2σ , then the 

variance of iz  is 
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Figure 3.6 Weights of Past Sample Means of EWMA chart 

 

Therefore, the EWMA control chart would be constructed by plotting iz versus the 

sample number i (or time). The control limits for the EWMA control chart are as follows. 

UCL = ])1(1[
)2(
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(3.6) 
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LCL = ])1(1[
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(3.7) 

In equation 3.6 and 3.7, the factor L is the width of the control limits. The choice of the 

parameters L and λ  will be discussed shortly. 

 Note that the term ])1(1[ 2iλ−− in equations 3.6 and 3.7 approaches unity as i 

increases. This means that after the EWMA control chart has been running for several 

time periods, the control limits will approach the steady-state values given by 

UCL = 
)2(0 λ

λ
σµ

−
+ L , 

(3.8) 

LCL = 
)2(0 λ

λ
σµ

−
− L . 

(3.9) 

However, Montgomery (2001) recommends using the exact control limits in equations 

3.6 and 3.7 for small values of i . This will greatly improve the performance of the 

control chart in detecting an off- target process immediately after the EWMA is started 

up. But in this study we used steady state control limits as set forth in equations 3.8 and 

3.9. 

The EWMA control chart is very effective on detecting small process shifts. The 

design parameters of the chart are the multiple of the sigma used in the control limits (L) 

and the value of λ . Montgomery (2001) states that it is possible to choose these 

parameters so that the EWMA control chart yields ARL performance in detecting small 

shifts that closely approximates CUSUM ARL performance for detecting small shifts. 

 In general, the values of λ  in the interval 25.005.0 ≤≤ λ  work well in practice, with 

λ =0.05, λ =0.10, and λ =0.20 being popular choices. A good rule of thumb is to use 

smaller values of λ  to detect smaller shifts.  
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It is well-known that the Shewhart control chart for individual samples is very 

sensitive to nonnormality in the sense that the actual in-control ARL (ARL0) would be 

considerably less than the expected value based on the assumption of a normal or 

Gaussian distribution (Montgomery, 2001). But an EWMA chart with small λ value is 

known for its robustness to nonnormality. Borror et al (1999) compare the ARL 

performance of the Shewhart individual chart and the EWMA control chart in situations 

of nonnormal distributions. Specifically, they use the gamma distribution to represent the 

case of skewed distributions and the t distribution to represent symmetric distributions 

with heavier tails than normal. In their study they draw upon two aspects of the 

information. First, even moderately nonnormal distributions have the effect of greatly 

reducing the in-control ARL of the Shewhart chart for individuals. This will, of course, 

dramatically increase the rate of false alarms. Second, an EWMA with λ =0.05 or 

λ =0.10 and an appropriately chosen control limit will perform very well against both 

normal and nonnormal distributions. Furthermore, the shift detection properties of the 

EWMA are uniformly superior to the Shewhart chart for individuals. 

 

3.4 BATCH MEAN CHART 

Runger and Willemain (1996) proposed a control chart based on unweighted batch means 

(UBM) for monitoring autocorrelated process data. The batch means approach has been 

used extensively in the analysis of the output from computer simulation models, which is 

another area in which highly autocorrelated data often occurs. The UBM chart breaks 

successive groups of sequential observations into batches, with equal weight assigned to 

every point in the batch. Let the hth unweighted batch mean be 
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The important implication of equation (3.10) is that although one has to determine an 

appropriate batch size b, it is not necessary to construct an autocorrelated model of the 

data.  

Runger and Willemain (1996) show that the batch means can be plotted and analyzed 

on a standard individuals control chart. Distinct from residuals plots, UBM charts are 

distinct from residuals plots in retaining the basic simplicity of averaging observations to 

form a point in a control chart. 

Procedures for determining an appropriate batch size have been developed by 

researchers in the simulation area. These procedures are empirical and do not depend on 

identifying and estimating a time series model.   

Runger and Willemain (1996) provided a detailed analysis of batch sizes for AR(1) 

models. They recommend that the batch size be selected so as to reduce the lag 1 

autocorrelation of the batch means to approximately 0.10. They suggest starting with b=1 

and doubling b until the lag 1 autocorrelation of the batch means is sufficiently small. 

This parallels the logic of the Shewhart chart in that larger batches are more effective for 

detecting smaller shifts; smaller batches respond more quickly to larger shifts. 

 

3.5 AVERAGE RUN LENGTH AND FALSE ALARM 

One of the most important properties associated with any SPC chart is the average run 

length (ARL). The ARL is the average number of points that must be plotted before a 

point indicated an out of control condition (Montgomery, 2001). The count of the run 
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length is initiated at the beginning of a production run or at the first observation after an 

out-of-control signal has occurred.  

When the process is in-control, the average run length should be long but is not 

infinite because there is a probability (a) of a point being outside the limits even when the  

process is in control. This is referred to as a false alarm and this in-control ARL is called 

ARL0. 

When the process is out of control, the average run length should be short since this is 

a correct alarm. This out of control ARL is called ARL1. ARL1 is also average run length, 

but the difference is that there is a signal. In other words, ARL1 could be called the 

average detection time  because the run length in this situation is the time to detect a 

signal.  

Figure 3.7 shows the relation of detection time and run length. 

 

 
 

 
Figure 3.7 Run Length and Detection Time  
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CHAPTER 4  

AN SPC INTRUSION DETECTION 
APPROACH AND A PRELIMENARY CASE 
STUDY 
 

This chapter describes the preliminary results of applying SPC charting methods for 

intrusion detection. In particular, it uses the BSM host audit data from MIT’s Lincoln Lab 

and applies the Shewhart chart, the Cusum chart, and the EWMA chart to detect a DOS 

intrusion attack. These SPC techniques were applied based on a general SPC intrusion 

detection approach that is proposed in this thesis. Section 4.1 describes the flow chart of 

this SPC intrusion detection approach, which consists of three main steps. To illustrate in 

detail the steps involved in this approach, a case study in the monitoring of a computer 

information system is introduced. Section 4.2 describes the first step, which is to 

determine the objective, and illustrates this with an example. Section 4.3 describes the 

second step, data preparation, and illustrates its execution. Section 4.4 describes the third 

step, which entails the construction of SPC charts and illustrates this step with an 

example. Section 4.5, summarizes  the results of the case study. 

 

4.1 INTRODUCTION 

SPC techniques are very powerful tools for detecting changes in manufacturing processes. 

This chapter applies these SPC techniques for intrusion detection. The general approach 

proposed for using SPC techniques in intrusion detection is described in Figure 4.1. 
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Figure 4.1 A General SPC Intrusion Detection Process 

 
 
 

The first step is to Determine the Objective. A common objective of an intrusion 

detection process is to detect the intrusion as fast as possible with the fewest possible 

false alarms.  

The second step is Data Preparation. In many data mining methods, including 

statistical and computational methods, the data preparation step is often difficult and time 

consuming. The Data Preparation step is divided into two steps, Data Sourcing and Data 

Acquisition. Data Sourcing refers to identifying the sources of data and selecting the 

target data. Data Acquisition refers to transforming the target data into the input data to 

be used in the SPC methods. This step includes downloading, parsing, and data 

processing work.  

The third step, Construction of SPC Charts, is divided into two steps, Data Pre-

processing and Charting. As described in Chapter 3, each SPC procedure includes a 
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monitoring statistic and a set of control limits for the monitoring statistic. These two 

elements of the SPC procedure are prepared in the Data Preprocessing step. In the 

Charting step, the charting methods with the control limits previously constructed are 

applied to the monitoring process. Finally, the Identify Causes and Corrective Actions 

step is applied. 

In the following discussion, this SPC intrusion detection approach is applied to a 

typical UNIX computer information system and details each step in the process. 

 

4.2 DETERMINE OBJECTIVE 

The objective of the intrusion detection is to detect the intrusion as quickly as possible. 

This is common to most intrusion detection systems. It is generally true that the faster an 

intrusion is detected, the better. An intrusion that escapes quick detection can cause many 

problems. 

In the case of a DOS attack, the complete information system can be corrupted by an 

attack that is not detected quickly. Denial of service is very serious for financial systems, 

for military command and control systems and for commercial systems. If a DOS attack 

is detected quickly, the administrator of the information system can take corrective action 

to prevent or minimize damage from the attack. 

Although the goal is to detect intrusions as quickly as possible, the disruptions caused 

by false alarms cannot be ignored. A false alarm happens when the detection system sets 

off an alarm for a nonexistent intrusion by the probabilistic nature of these systems; 

however, false alarms require actions that are time consuming and costly. Consequently, 
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an effective intrusion detection system will also be a system that minimizes the 

occurrence of false alarms. 

Thus the objective of an SPC intrusion detection approach is to detect the intrusion as 

fast as possible with minimal occurrence of false alarms. As described in Chapter 3, 

minimizing false alarms is an alias for maximizing ARL0 in the SPC area.  

 

4.3 DATA PREPARATION 

4.3.1 Data Sources 

A typical information system consists of host machines (e.g. machines running a 

UNIX operation system or machines running the Windows NT operating system) and 

communication links connecting these host machines to form a computer network. 

Currently, two sources of data are widely used to capture activities in an information 

system to permit intrusion detection: network traffic data and audit trail data (audit data). 

Network traffic data contains data packets traveling over communication links between 

host machines, and thus capture activities over communication networks. TCPDUMP and 

Sendmail are examples of network traffic data.  

Audit trail data captures activities occurring on a host machine. In this study, we use 

audit data from a UNIX-based host machine (specifically a Sun SPARC 10 workstation 

with the  Solaris operating system), and focus on intrusions into a host machine that leave 

trails in the audit data. The Solaris operating system from Sun Microsystems Inc. has a 

security extension called the Basic Security Module (BSM). BSM satisfies the C2 

Auditing capabilities of TCSEC (Trusted Computer System Evaluation Criteria) 

published by NSCC (National Computer Security Center) 
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The BSM extension supports the monitoring of activities on a host by recording 

security-relevant events in system call level. There are more than 250 different types of 

BSM auditable events, depending on the version of the Solaris operating system. A BSM 

audit record for each event contains a variety of information, including the event type, 

user ID, group ID, process ID, session ID, the system object assessed, the time when each 

event occurred, etc. In this research, because event intensity is of interest, only the time of 

event, one of the most critical characteristics of an audit event, is extracted and used. 

Therefore, activities on a host machine are captured through a continuous stream of audit 

events, each characterized by the time of the event. 

Figure 4.2 shows an example of a typical BSM file. From Figure 4.2, we know that 

BSM audit data consists of a header field, subject field and return field, and the header 

field contains information on the event name, event data and event starting time. This 

header field is used to calculate event intensity. 

file,Thu 01 Jun 2000 09:59:38 PM EDT, + 391003 msec, 

header,111,2,execve(2),,Thu 01 Jun 2000 09:59:41 PM EDT, + 220000000 msec 

path,/usr/bin/finger 

attribute,100555,root,bin,26738688,74333,0 

subject,root,root,other,root,other,648,281,0 0 localhost 

return,success,0 

header,61,2,exit(2),,Thu 01 Jun 2000 09:59:41 PM EDT, + 240000000 msec 

subject,root,root,other,root,other,648,281,0 0 localhost 

return,success,0 

header,79,2,fork(2),,Thu 01 Jun 2000 09:59:57 PM EDT, + 860000000 msec 

argument,0,0x289,child PID 

subject,root,root,other,root,other,580,281,0 0 localhost 

return,success,0 

 
Figure 4.2 An Example of BSM File  
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4.3.2 Data Acquisition 

The large datasets used in this thesis are the Pascal BSM audit datasets, which are 

obtained from MIT’s Lincoln Laboratory. Pascal is the name of the host machine of the 

network constructed by the MIT Lincoln Laboratory in order to simulate the environment 

of the network in the real world, and thus provide a test bed of comprehensive 

evaluations for various intrusion detection systems. The entire datasets consist of seven 

five-day weeks  (Monday through Friday). Two weeks of these datasets were 

downloaded from MIT Lincoln Laboratory. 

After downloading the datasets, MS ACCESS database software and MATLAB 

programs were used to calculate the event intensity. The event intensity means how many 

events occurred in a unit of time. A second was used as the time unit in this thesis 

because the BSM audit data was recorded with this unit of time scale. 

The 10 days of data were downloaded and the event intensity raw data files developed 

for each day. These operations took two months, including downloading time, coding and 

debugging, and selecting files as the training data samples and testing data samples. The 

event intensity raw data files were saved in the data repository for future research. The 

operational procedure was as follows:  

§ Download BSM file from MIT-LL 

§ Query the header files with MS ACCESS 

§ Calculate event intensity  

§ Save the event intensity raw data in the data repository 
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The data repository (Appendix 4.A) consists of 10 days of event intensity data files 

and also of two training samples and two testing samples. After the graphical analysis of 

the event intensity data file for the 10 days, we concluded there were two periods of Busy 

and Idle. The Busy period began at 8 a.m. and ended at 4 p.m., which is the start of the 

idle period that continues until 2 a.m.  During the Busy period, the average of event 

intensity is twice as large as that of the Idle period. 

By using the attack table furnished by MIT’s Lincoln Laboratory and 10 days of 

event intensity files, we selected the pure samples and the attack samples to be used for 

SPC intrusion detection methods. These were recorded in the data repository (Appendix 

4.A). Table 4.1 summarizes the four sample files with two categories. Pure means there 

is no attack within the sample, and Attack means there is an attack. Idle and Busy denotes 

from which period the sample was drawn. From these samples, we picked idle period 

samples and used them in the next Charting step. Figure 4.3 shows Pure_sample_data and 

Attack_sample_data 

 

Table 4.1 Raw Data Samples in Data Repository 

Sort Idle Busy 

Pure Idle_pure_sample Busy_pure_sample 

Attack Idle_attack_sample Busy_attack_sample 
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Figure 4.3 Pure_sample_data and Attack_sample_data 

 

 

4.4 CONSTRUCTION OF SPC CHARTS 

To apply SPC methods we need first to set up control limits. Control limits can be 

constructed by estimating the mean and variance of the monitoring statistic. If the raw 

data are independent and nicely behaved, we may use the raw data as monitoring 

statistics with conventional methods. But if the raw data is not independent, then we need 

to do preprocessing before applying the SPC methods.  

Figure 4.4 shows the flow of construction of SPC Chart.  
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In this section, the SPC charting methods are applied to the sample data that are in 

Section 4.3. The sample data are the idle samples with attack (Attack_sample_data) or 

without attack (Pure_sample_data) (see Table 4.1). To construct the control limits, 

variance is first estimated from Pure_sample_data. With the control limits established, we 

can calculate the number of false alarms and the detection time, which we then use as 

performance measures to evaluate the charting methods. 

As illustrated below, we will apply three typical charting methods to the data. They 

are the Shewhart chart, the Cusum chart, and the EWMA Chart. Before applying the 

methods, we will first discuss the data preprocessing step and the reasoning behind it. 

 

 

 

 

 
Figure 4.4 Construction of SPC Chart for Intrusion Detection 

 

 

Data pre-processing 
- Raw data 
- Batch Mean 

Variance 
Estimation 
- NOBM 

Charting Methods 
- Shewhart 
- Cusum 
- EWMA 

Monitoring Statistic 

Control Limit 

Monitoring System 



 52 

 

4.4.1 Data Pre-processing 

The purpose of data preprocessing is to smooth the data and to reduce correlation. Some 

SPC methods, such as the Shewhart chart, require data to be independently and 

identically distributed. The preprocessing step is needed to convert the data to be 

independent before the Shewhart chart is applied.  

Figure 4.5 shows some raw data plots. Figure 4.5(a) shows the peaky nature of the 

raw data with a maximum height of about 300. Figure 4.5(b) plots the autocorrelation 

function of the raw data. It shows that the raw data are autocorrelated with a time lag of 

60 and 61 seconds. Because the raw data has autocorrelation and a peaky nature, data 

preprocessing is needed.  

The cause of the peaky nature with a lag of 60 seconds autocorrelation is that the 

system makes log files every one minutes. This creates about 300 events in the BSM 

audit file, and this creates peak. The work is done mostly in a second, but sometimes the 

work done requires two seconds. If this split happens, the two adjacent peaks of event 

intensity also happen. 

 Because of the cyclic peaky nature of the raw data, it is difficult to apply traditional 

control charts directly to the raw data. For example, when the Shewhart or EWMA charts 

are applied to the raw data, the charts often generate false alarms at every peak. As shown 

in Figure 4.5 (a), the horizontal line is the cont rol limit of a Shewhart chart and was  
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(a)  

 
 

 
 (b)  

 
Figure 4.5 Raw Data: (a) Raw Data without Intrusion, (b) Autocorrelation Function. 

 
 
 

obtained based on conventional variance estimation. It was found that every peak was 

above the control limit. These peaks were considered false alarms because the data were 

collected without intrusion. 

An investigation was undertaken to learn why the peaky data always causes false 

alarms when we a conventional control chart is used. To explain this symptom, we 

created a potential data named constant peak cycled data (CPCD). CPCD has a constant 

peak height C and a cycle length L. Then CPCD are autocorrelated with cycle length L, 
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and the standard deviation of the CPCD is 2

1
L

L
C

−
. This means that when we use a 3-σ  

control limit, if the cycle length L is 60, the standard deviation is very small, i.e., 

CC ⋅=
−

= 128.0
60

160
ˆ

2σ , 

thus, the 3- σ  control limit is 

CC
C

⋅=⋅+≈+ 40.0)128.0(3
60

ˆ3ˆ σµ . 

Therefore, the control limit is smaller than the peak value ( C⋅40.0 < C). The details 

about CPCD are described in Appendix 4.B 

 

 

Figure 4.6 Sample Autocorrelation Function for Batch Size 60 Preprocessed Data of the 
Pure_sample 
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For this reason, the use of conventional SPC methods requires preprocessing the raw 

data. To preprocess the raw data, we considered nonoverlapping batch mean (NBM) to 

smooth the raw data and remove the autocorrelation. Because the raw data have a peaky 

nature with a 60 cyc le, we picked non-overlapping batch sizes as multiples of 60 seconds 

like 60, 120, 180, 240, and 300 seconds. After experimenting with different batch sizes 

with the real data, it was concluded that 60 and 120 seconds were the best lengths 

because they could eliminate autocorrelation effectively and are not so large as to be 

costly. Figure 4.6 shows the autocorrelation function values for NBM (60) of Pure 

sample. This shows that the batch size with 60 seconds gives uncorrelated data.  

As mentioned earlier, we needed first to estimate the variance before we computed 

the control limits. We applied the nonoverlapping batch mean (NOBM) variance 

estimation method to the raw data to find the asymptotic variance and found that the 

smallest batch size that provides independency is 60 and the asymptotic variance, 2
,ˆ ∞xσ = 

238.02.  

Variance estimation using the NBM (60) preprocessed data gave us the asymptotic 

value of 02.238ˆ 2
, =∞yσ  and the smallest batch size = 1 that provides independency. This 

result showed us that the 60-second batch is enough to resolve the peaky nature and gives 

independence. Thus we can use the preprocessed NBM (60) as a monitoring statistic. The 

variance estimate of NBM (60) 29917.1= , and the sample mean is 5.0552. 
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4.4.2 Charting  

After data preprocessing, traditional SPC methods can be applied to monitor the data. 

Three typical SPC methods were considered in our example, the Shewhart chart, EWMA 

chart, and Cusum Chart.  

4.4.2.1 Shewhart Chart 

We applied the Shewhart chart to the preprocessed data with 3-sigma control limits. It is 

interesting to note that the Shewhart chart on the NBM preprocessed data is equivalent to 

the batch mean chart proposed by Runger & Willemain (1995). 

 The sample data used here were chosen from the typical samples of the prepared data 

described in Section 4.2.2 and summarized in Table 4.1. The chosen samples were the 

idle data without attack (Pure_sample_data) and idle data with attack 

(Attack_sample_data). Several samples had been investigated, and the results were 

similar. Only the results of one sample from the pure sample and one attack sample will 

be reported below  

Shewhart Chart on Batch Mean (60) 

Figure 4.7 shows the result of the Shewhart chart applied to the preprocessed data. The 

monitoring statistic is the nonoverlapping batch mean (NBM) with a batch size of 60 

seconds. The sample standard deviation of the statistic is 1.9917. The control limit was 

calculated based on Pure_sample_data. 

For the pure sample, there were 3 false alarms, and for the attack sample, the attack 

was detected at the 14th batch. The batch size was one minute (= 60 seconds). So the 

detection time was 14 minutes. 
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Figure 4.7 Shewhart chart for NBM (60): (a) Pure_sample, (b) Attack_sample 
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Shewhart Chart on Batch Mean (120) 

Figure 4.8 shows the result of the Shewhart chart applied to preprocessed data with a 

batch size of 120 seconds. The monitoring statistic was the batch mean of size 120 

seconds (2 minutes). The standard deviation of the monitoring statistic was calculated to 

be 1.4323.  

 

 

 

 
(a) 

 
 

 
(b) 

 
 
Figure 4.8 Shewhart chart for NBM (120): (a) Pure_sample, (b) Attack_sample 
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For the pure sample, there was one false alarm, and for the attack sample, the attack 

was detected at the 7th batch. The batch size was two minutes (= 120 seconds), so the 

detection time was 14 minutes. 

The results of the Shewhart chart are summarized in Table 4.2. For both charts, the 

detection times were the same, but the number of false alarms differs.  The number of 

false alarms with NBM (120) is lower than with NBM (60). It may be because the NBM 

(120) was smoother than NBM (60) as a resulting of having a bigger batch size. 

It was interesting that the detection time was 14 minutes. This is because the attack 

was detected at the end of the batch and the ends occurred at 14 minutes. In other words, 

if the batch scale is 1 minute, then we can detect the attack with this scale. This is one 

topic we will study in this thesis.  

 

Table 4.2 Result of Shewhart Charts on NBM (60, 120)  

Monitoring 
Statistic 

Charting 
Method 

Pure sample Attack sample 

NBM (60) Shewhart 3 false alarms Detects at the14th batch = 14 min. 

NBM (120) Shewhart 1 false alarm Detects at the7th batch= 14 min. 

 
 

4.4.2.2 Cusum Chart 

In this subsection, we apply the tabular Cusum chart for IID sample with the formula and 

notation described in Montgomery (2001). The formulation of Cusum is as follows: 

])(,0max[ 10 −+−−= iii CusumKXCusum µ , 
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where K (=kσ) and H (=hσ) are charting parameters. The choice of K and H values can 

be found in Montgomery (2001). In our example, we chose two values of k (0.5 and 0.0) 

and the companion of h value.  

The Figure 4.9 shows the result of applying the Cusum chart to the preprocessed data 

with a batch size of 60 seconds. The monitoring statistic was the batch mean of size 60 

seconds (NBM (60)).  

For the pure sample, there was one false alarm (starts at 115 and end s at 123) and for 

the attack sample, the attack was detected at the14th batch. The batch size was one minute 

(= 60 seconds), so the detection time was 14 minutes. 

 

 

Figure 4.9 Cusum Chart (k=0.5) for NBM (60)  
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Figure 4.10 shows the result of applying the Cusum chart to the preprocessed data 

with a batch size of 120 seconds. The monitoring statistic was the batch mean of size 120 

seconds (NBM (120)).  

For the pure sample, there was one false alarm (starts at 58 and ends at 58) and for the 

attack sample, the attack was detected at the 7th batch. The batch size was two minutes (= 

120 seconds), so the detection time was 14 minutes. 

 

 

Figure 4.10 Cusum Chart (k=0.5) for NBM(120) 

 

In Figure 4.11 and Figure 4.12, the Cusum method was applied to the two batch 

means with K=0.0. Since the control limit (H value) was not given in Montgomery 
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(2001) for K=0, the method developed in Johnson and Bagshaw (1974) was used to 

determine the control limit. 

 

 

Figure 4.11 Cusum Chart (k=0) for NBM (60) 

 

Figure 4.11 shows the result of applying the Cusum chart (with k=0) to the 

preprocessed data with a batch size of 60 seconds. The monitoring statistic was the batch 

mean of size 60 seconds (1 minute).  

For the pure sample, there was no false alarm and for the attack sample, the attack 

was detected at the 14th batch. The batch size was one minute (= 60 seconds), so the 

detection time was 14 minutes. 
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Figure 4.12 Cusum Chart (k=0) for NBM(120) 

 

Figure 4.12 shows the result of applying the Cusum chart (with k=0.0) to the 

preprocessed data with a batch size of 120 seconds. The monitoring statistic was the 

batch mean of size 120 seconds (2 minutes).  

For the pure sample, there was no false alarm, and for the attack sample, the attack 

was detected at the 8th batch. The batch size was two minutes (= 60 seconds), so the 

detection time was 16 minutes. 
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4.4.2.3 EWMA Chart  

In this subsection, the EWMA Chart for IID data was applied to the two preprocessed 

batch means (NBM (60), NBM (120)). 

We applied the EWMA chart to the data based on the formula given in Chapter 3. 

Here we used the initial value (z0) as the sample mean of the pure sample and the 

standard deviation (σ) as the sample standard deviation of the preprocessed data. We 

chose λ  = 0.2 and L = 2.86, which gave ARL0 = 370 as recommended in Montgomery 

(2001). The formulation of the EWMA monitoring statistics was given as follows 

,)2.01(2.0 1−⋅−+⋅= iii EWMAXEWMA   

where iX  is the preprocessed batch mean.  

 

 

Figure 4.13 EWMA Chart for NBM (60) 
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Figure 4.13 shows the result of applying the EWMA chart to the preprocessed data 

with a batch size of 60 seconds. The monitoring statistic was the batch mean of size 60 

seconds (1 minute).  

For the pure sample, there was one false alarm, and for the attack sample, the attack 

was detected at time 14th batch. The batch size was one minute (= 60 seconds), so the 

detection time was 14 minutes. 

 

 
 

Figure 4.14 EWMA Chart for NBM (120) 
 
 

Figure 4.14 shows the result of applying the EWMA chart to the preprocessed data 

with a batch size of 120 seconds. The monitoring statistic was the batch mean of size 120 

seconds (2 minutes).  
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For the pure sample, there was no false alarm, and for the attack sample, the attack 

was detected at time 7th batch. The batch size was two minutes (= 120 seconds), so the 

detection time was 14 minutes. 

 
4.5. SUMMARY OF CASE STUDY 

We applied three charting methods in the case study. The sample data used in this 

case study was from the data repository and had been preprocessed so that the monitoring 

statistics were smooth and approximately uncorrelated. 

Table 4.2 shows the summarized results of the case study. The monitoring statistics 

were batch mean with size = 60 (NBM (60)) and size = 120 (NBM (120)). The charting 

methods were the Batch Mean Shewhart Chart, the Batch Mean Cusum Chart and the 

Batch Mean EWMA chart.  

 

 
Table 4.2 Summary of charting methods 

 

Charting 
Method  

Monitoring  
Statistic 

Number of 
False Alarm in 
Pure sample 

Detection Time in 
Attack sample 

NBM (60) 3 14 min. 
Shewhart 

NBM (120) 1  14 min. 
NBM (60) 1 14 min. Cusum: 

k=0.5 NBM (120) 1 14 min. 
NBM (60) 0 14 min. Cusum: 

k=0.0 NBM (120) 0 16 min. 
NBM (60) 1 14 min. 

EWMA 
NBM (120) 0 14 min. 
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In general, the number of false alarms decreased as batch size increased. This is 

because of the smoothing effect of batch size. This indicates that the larger the batch size 

is, the fewer false alarms occur. Overall, the Cusum and EWMA charts had fewer false 

alarms than the Shewhart chart. 

In terms of detection time, all the charts resulted into the same time of 14 minutes, 

except the Cusum Chart (k=0.0) of NBM (120) data. This happened because the batch 

mean charting methods only detected the shift at the end of the batch. Because the attack 

occurred between the 13th and 14th minutes (at the 784th second = 13.06 minutes), and the 

attack signal was very large, most of the charts detected the signal at the end of the first 

batch. But the Cusum Chart (k=0.0) of NBM (120) detected the attack at 16 minutes. 

This may be because the control limit H is too large to detect the attack at the first batch. 

So the attack was detected at the 16th batch or 960th second.  

For the monitoring statistic of NBM (60), while the attack occurred at the beginning 

of the batch, i.e. the 4th second of the  60-second batch, it was not detected until at the end 

of the batch, i.e. the 60th second of the batch. For the monitoring statistic of NBM (120), 

the attack occurred in the middle of the batch, i.e., the 64th second of the 120 seconds 

batch, but it was not detected until at the end of the batch, i.e., the 120th second of the 

batch. 

As expected, as batch size increases, the opportunity that the attack will be detected 

early decreases. For example, the Cusum Chart (k=0.0) of NBM (120) detected the attack 

at the end of the second batch. This implies that the smaller the batch size is, the better 

the detection time performance is. 
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As these two performance measures (the number of false alarms and detection time) 

conflict with each other, it is often difficult to determine the proper batch size in practice. 

In the next chapter, we propose a modified batch mean method that rectifies this problem 

and allows the use of a large batch size without any loss in speed of detection. 
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APPENDIX 4A. GRAPHS OF EVENT INTENSITY DATA 

 
Graphs for 10 days 
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Graphs for 10 days (continued) 
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Idle Pure Sample Data  

 

 

Idle Attack Sample Data 
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Busy Pure Sample Data 

 
 
 
 
Busy Attack Sample Data 
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APPENDIX 4B. CPCD (CONSTANT PEAK CYCLED DATA) 

 

 

   

 

 

 

CPCD is the potential form of the raw data. CPCD has constant peak value of C and 

Cycle length of L.  

Then the CPCD had the mean = LC / , and the standard deviation 2
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(ii) Autocorrelation of CPCD 
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CHAPTER 5 

SIMULATION MODELING FOR SPC 
INTRUSION DETECTION METHODS 
 

In this chapter, simulation models for SPC intrusion detection methods will be built to 

compare the performance of various SPC methods. We will develop simulation models 

based on real data from the BSM file that were recorded by Solaris OS of MIT Lincoln 

Lab  

In Section 5.1, we will describe simulation input modeling for rendering simulation 

traffic data, and in Section 5.2 we will discuss how to generate traffic data for simulation 

studies in Section 5.2. Section 5.3 summarizes scenarios that will be tested in Chapter 6.  

 

5.1 SIMULATION INPUT MODELING   

For the purpose of rendering realistic simulation traffic data, we first analyze the 

Pure_sample_data obtained in Chapter 4. The Pure_sample_data are traffic data that 

contain cycle and noise data but no attack data.  

In Chapter 4, we found that the sample data have 60-second cyclic peaks and they are 

sometimes split in two with an interval of one second. We define cycle data as the cyclic 

peaks of the traffic data and  define noise data as traffic data that are not related with 

cyclic peaks when there is no attack. From this information, we can discriminate noise 

data from cycle data for any data without an attack.  
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For the purpose of constructing input models for cycle and noise distribution, we plot 

a number of sample data without attack. Figure 5.1 shows the plot of Pure_sample_data 

from Chapter 4. Other sample data without attacks showed similar pattern.  

After investigating the Pure_sample_data second by second, we found that there are 

179 cycle peaks and 57 non-zero noise distribution points. For more details, we separated 

cycle data from noise distribution (Noise_data) in the Pure_sample_data. The graphs of 

each data type are shown in Figure 5.2. 

Although the exact sources of noise are not known, it seems that the noise distribution 

are from the computer networks because workstations are connected online with other 

computers through the networks. 

In the next two subsections, we will discuss the properties of each data type and fit 

probability models to the data.  

 

 
 

Figure 5.1 Pure_sample_data 
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Figure 5.2 Cycle and Noise Data Separated from the Pure_sample_data  

5.1.1 Cycle Data 

The data we obtained from the BSM file that was recorded by the Solaris OS of MIT 

Lincoln Lab have cycle peaks, in our case, a 60-second constant cycle time. The Solaris 

OS performed a specific routine for creating a log file every 60 seconds regardless of the 

status of the system. We conjecture that this is why there is a 60-second cycle.  

Sometimes these cycle data were split into two with an interval of one second. We 

observed this by analyzing the height of cycle data. Routines performed by Solaris OS 

usually create around 300 events, although the exact values are 288 or 297 and vary a 

little bit. However, there were some cases in which the heights were much shorter than 

300 at the time when a cycle was expected. For those cases, when we added up the 

number of events at the cycle period and the next second, the sum of events at those two 



 78 

consecutive seconds came close to 300 (288 or 297). This strongly implies that a split is 

possible. Figure 5.3 illustrates this graphically. 

In Figure 5.3, the first cycle occurs at 4 seconds and the second cycle occurs at 64 

seconds as expected. The heights of both cycles are 288. The third cycle is expected at 

124 seconds, but the height of the cycle at 124 seconds is 217, which is much smaller 

than 288. However, the sum of events at 124 and 125 seconds is 288. In the simulation 

study, we assumed that the height (events) of each cycle is simply a constant 300. 

The split probability (ps) can be found by counting how many splits occur out of the 

total number of cycles. For the Pure_sample_data in Figure 5.2, we found that there are 

179 cycle peaks and 34 splits, which gives the split probability of 34/179 = 0.20 

approximately. In our simulation study, we tested various split probabilities, including 

this value.  

 

 

 
 

 

Figure 5.3 Split of Cycle Peak 
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5.1.2 Noise  

As shown in Figure 5.2, noise data points are rare and have a very large variance. To find 

a good approximated probability model for real noise distribution, we used software 

packages available for data fitting in simulation area.  

In general, a Poisson distribution is a popular choice for network traffic data. 

However, the variance of our noise distribution is too big to be represented by a Poisson 

distribution. For example, Noise_data in Figure 5.2 have a mean of 81 and a standard 

deviation of 154, which is almost twice as large as the mean. A Poisson distribution with 

a mean of 81 only gives a standard deviation of 9, which is too small compared to 154. 

Therefore, a simulation model with Poisson distributed noise distribution will easily be 

misleading, and we should find an appropriate distribution model that is a good 

representation of our noise distribution. 

S-plus and BestFit were applied to the noise distribution in Figure 5.2 to find a good 

fit, but none of the simple standard probability models fitted will with our data. Therefore, 

we used more complicated input models whose shapes are extremely flexible, such as the 

Johnson translation system and the Bezier distribution. 

The Johnson translation system (Johnson, 1949) is defined as 

]}/)[({)( λξδγ −+Φ= sgxF , ∞<<∞− x , 

where Φ is the standard normal cumulative distribution function, γ  and δ  are shape 

parameters, ξ  is the location parameter, λ  is the scale parameter, and g is one of the 

following transformations: 
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Nelson and Yamnitsky (1998) state that the appropriate transformation is chosen by 

estimating the skewness and kurtosis from a random sample nXXX ,,, 21 K and by 

finding the unique Johnson cdf that matches the pair. One method for fitting target 

distributions from Johnson’s translation system is via least-squares estimation, which is 

implemented in a software program called FITTR1 developed by Swain, Venkatraman 

and Wilson (1988). We applied the FITTR1 program to fit to Johnson distribution. Yet a 

Johnson distribution is not flexible enough to fit our noise distribution. 

Univariate Bezier distributions provide an even more flexible alternative to standard 

distributions (Wagner and Wilson, 1996). Wagner and Wilson (1996) state that the 

univariate Bezier distribution is a special case of a spline curve and is constructed by 

fitting a curve to a specified number of points called control points. The control points are 

not data points; instead, they act as anchors for the Bezier cumulative distribution 

function and can be moved so as to alter the shape of the distribution.  

A Bezier distribution with n + 1 control points is defined as 
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for [0,1] t ∈ , ),( iii zx=p  is ith control point for i =0, 1, …, n.  
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At any value of t in the interval [0,1], the value of the Bezier distribution is simply a 

weighted average of the control points. To observe this, notice that the Bezier distribution 

can be written as 
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for [0,1] t ∈ . For any fixed value of t the sum of the weights is 1. 

We use PRIME software to fit the noise distribution (Wagner and Wilson, 1996). 

PRIME is a software tool used to construct univariate Bezier distributions with or 

without data. It is an interactive, graphical software program that runs on a PC under 

Windows. 

 

 

 
Figure 5.4 The Empirical CDF of the Noise_data vs. Fitted Bezier Distribution 
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A Bezier distribution with four control points shows a pretty good fit, as shown in 

Figure 5.4. The step function is the empirical cumulative distribution function from the 

Noise_data in Figure 5.2, and the smooth line is the fitted cumulative distribution 

function with control points (0,0), (0,0.87), (0.0.96), and (1034,1). 

For the purpose of verifying the noise distribution pattern, we picked another data set 

from Wednesday of Week 5 of MIT Lincoln Lab PASCAL BSM files. The new sample  

data consist of traffic data information 10,000 seconds and have 66 non-zero noise data 

points. The average was 61.8 and the standard deviation was 122.8. Mean value and 

standard deviation of the new noise distribution are smaller than the previous Noise 

distribution. However, the standard deviation is still around twice as large as the mean, 

and the distribution shape was almost identical. Truly, the nonparametric Log-Rank test 

and Wilcoxon test for comparisons of the two noise distribution functions were 

performed and the tests of the similarity were not rejected at significance leve l of 5% (p-

value = 0.40). The result s are in Appendix 5.  

 

5.2 RENDERING METHOD OF SIMULATION DATA 

The simulated traffic data with an attack are the sum of three components: cycle, noise, 

and signal data. In other words, at time index t,  

Traffic(t) = Cycle(t)+Noise(t)+Signal(t). 

The cycle and noise represent the distribution of the system without attack, and the signal 

represents the attack component.  
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In this simulation study, the cycle, noise and signal are generated mutually 

independently with the same time span of 100 minutes or 6,000 seconds. Thus the 

simulated traffic data are also created for 6,000 seconds or 100 minutes.  

 

5.2.1 CYCLE Background 

Cycle data are the main background traffic data of the simulation study. In Section 5.1.1, 

we found that cycle data have 60-second cycle times with a total of 300 events, and they 

can be split into two with an interval of one second. The split probability is estimated 

from the Pure_sample_data as roughly 0.2.  

There are two components in simulation of cycle data. 

1. A random distribution of cycle peak or height with 60 seconds cycle time. 

2. A random Bernoulli distribution to describe the possibility of split with parameter 

( sp ) 

For simplicity, we assume that the cycle data have a constant height peak of 300. 

Actually, in the real cycle data, the heights were always very close to 300 with very little 

deviation. In the simulation studies, we tested three levels of split probability: 10% 

(Cycle 1), 20% (Cycle 2), and 40% (Cycle 3).  

Cycle 2 is similar to the Pure_sample_data because the Pure_sample_data also have 

an approximately 20% split probability. Splits are least frequent in Cycle 1 and most 

frequent in Cycle 3.  

If a split occurs, then the next cycle will be placed exactly 60 seconds later from the  

time when the previous cycle is completed. For example, if a cycle occurs without a split 

at 121 seconds, the next cycle will be placed at 181 (121+60) seconds. On the other hand, 
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if a cycle occurs with a split at 121 seconds, then the cycle is completed at 122 seconds, 

which is one second later from 121 seconds and the next cycle is placed at 182 (122+60) 

seconds. This actually happened in real data.   

The split amount is determined as follows: 
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where, U is a random variable from uniform (0,1) distribution. Thus, the split amount is 

uniformly distributed.  

We set the first cycle to occur at 31 seconds in our simulation. 31 seconds is an 

arbitrary value, and it is the mid-point of the first batch. 

 

5.2.2 Noise 

Noise is the main component of traffic data. In Section 5.1.2, we found that a Bezier 

distribution is a good fit to noise distribution. To generate noise data, we divide into two 

components: 

1. Frequency: how frequently noise distribution occurs. 

2. Distribution of noise data. 

In the simulation studies, we used two levels of noise frequency. Noise 1 has a 0.5% 

probability of occurrence ( op ) and Noise 2 has a 5% probability of occurrence ( op ), 

which is 10 times more frequent than Noise 1. Noise 1 is similar to the Pure_sample in 

Figure 5.2.  

For the distribution of noise data, we simply used the model found in Section 5.1.2: 

Bezier distribution with control points (0,0), (0,0.87), (0.0.96), and (1034, 1). 
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We generated noise data with the following steps: 

1. Generate )1,0( ~1 UniformU  

2. If opU <1 , generate )1,0(~2 UniformU  

3. Find *t , the solution to the equation 2))(( UtxFX = where ))(( txFX is defined in 

Equation (5.1) 

4. Compute )( *tx  from Equation (5.1) 

Step 3 can be done as a simple search method such as the bisection method due to the 

nondecreasing and monotonic properties of the cumulative distribution function (Cdf). 

 

5.2.3 SIGNAL 

We tested 3 types of signals: 

1. Big bump (Signal 1) 

2. Small bump (Signal 2) 

3. Trend (Signal 3) 

We assumed that signal data are normally distributed (Ye, 2003). For Signal 1, the mean 

is 900 and the standard deviation is 90 (an arbitrarily chosen 10% of mean value). For 

Signal 2, the mean is 300 and the standard deviation is 30. Signal 3 starts from the value 

of 1 and increases by one every second and ends at a value of 600. Figure 5.5 shows an 

example of each signal. 
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Figure 5.5 Example plots of Signal 1, Signal 2, and Signal 3 
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5.3. SIMULATION SCENARIOS  

With three cycles, two noises, and three signal types, we have six scenarios without a 

signal that represent in-control data and 18 scenarios with a signal that generates out-of-

control data. Table 5.1 summarizes the details of each data type, and Table 5.2 shows all 

possible scenarios with signal. These 18 scenarios along with six scenarios will be tested 

with three new and traditional SPC methods in Chapter 6. 

 
Table 5.1 Simulation Data Definition 

 
Cycle 1 Peak=300, Split Probability = 0.1. 

Cycle 2 Peak=300, Split Probability = 0.2. Cycle 

Cycle 3 Peak=300, Split Probability = 0.4. 

Noise 1 Mean Magnitude=80, Occurrence Probability = 0. 5%. 
Noise 

Noise 2 Mean Magnitude=80, Occurrence Probability = 5%. 

Signal 1 N (900,902). 

Signal 2 N (300,302). Signal 

Signal 3 Linear with a slope of 1 and an intercept of 1. 

 
 
 

Table 5.2 Simulation Combinations 
 

           Cycle 
Noise          

Cycle1 Cycle2 Cycle3 

Noise1 
q Signal 1 
q Signal 2 
q Signal 3 

q Signal 1 
q Signal 2 
q Signal 3 

q Signal 1 
q Signal 2 
q Signal 3 

Noise2 
q Signal 1 
q Signal 2 
q Signal 3 

q Signal 1 
q Signal 2 
q Signal 3 

q Signal 1 
q Signal 2 
q Signal 3 
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APPENDIX 5. TEST OF SIMILARITY BETWEEN NOISE 
DISTRIBUTIONS 

Distribution Analysis: Noise1  
 
Variable: Noise1 
 
Censoring Information  Count 
Uncensored value          66 
 
 
Nonparametric Estimates 
 
 
Characteristics of Variable 
 
            Standard   95.0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
   61.8333   15.1130  32.2123  91.4543 
 
Median = 2 
IQR = 76  Q1 = 1  Q3 = 77 
 
 
Kaplan-Meier Estimates 
 
      Number 
          at  Number     Survival   Standard    95.0% Normal CI 
Time    Risk  Failed  Probability      Error     Lower     Upper 
   1      66      23     0.651515  0.0586519  0.536559  0.766471 
   2      43      12     0.469697  0.0614326  0.349291  0.590103 
   4      31       3     0.424242  0.0608352  0.305008  0.543477 
   6      28       3     0.378788  0.0597099  0.261759  0.495817 
  21      25       1     0.363636  0.0592126  0.247582  0.479691 
  24      24       1     0.348485  0.0586519  0.233529  0.463441 
  25      23       2     0.318182  0.0573324  0.205812  0.430551 
  26      21       1     0.303030  0.0565689  0.192157  0.413903 
  29      20       2     0.272727  0.0548202  0.165282  0.380173 
  31      18       1     0.257576  0.0538278  0.152075  0.363076 
  77      17       1     0.242424  0.0527508  0.139035  0.345814 
  92      16       2     0.212121  0.0503211  0.113494  0.310749 
  94      14       1     0.196970  0.0489546  0.101020  0.292919 
  98      13       1     0.181818  0.0474757  0.088767  0.274869 
 100      12       1     0.166667  0.0458735  0.076756  0.256577 
 113      11       1     0.151515  0.0441345  0.065013  0.238017 
 171      10       1     0.136364  0.0422418  0.053571  0.219156 
 193       9       1     0.121212  0.0401738  0.042473  0.199951 
 244       8       1     0.106061  0.0379017  0.031775  0.180347 
 258       7       2     0.075758  0.0325712  0.011919  0.139596 
 274       5       1     0.060606  0.0293704  0.003041  0.118171 
 300       4       1     0.045455  0.0256398  0.000000  0.095708 
 349       3       1     0.030303  0.0211003  0.000000  0.071659 
 414       2       1     0.015152  0.0150363  0.000000  0.044622 
 667       1       1     0.000000  0.0000000  0.000000  0.000000 
 
  
Distribution Analysis: Noise2  
 
Variable: Noise2 
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Censoring Information  Count 
Uncensored value          57 
 
 
Nonparametric Estimates 
 
 
Characteristics of Variable 
 
            Standard   95.0% Normal CI 
Mean(MTTF)     Error    Lower    Upper 
   81.4035   20.0059  42.1928  120.614 
 
Median = 4 
IQR = 91  Q1 = 1  Q3 = 92 
 
 
Kaplan-Meier Estimates 
 
      Number 
          at  Number     Survival   Standard    95.0% Normal CI 
Time    Risk  Failed  Probability      Error     Lower     Upper 
   1      57      16     0.719298  0.0595168  0.602647  0.835949 
   2      41      12     0.508772  0.0662164  0.378990  0.638554 
   4      29       2     0.473684  0.0661348  0.344062  0.603306 
   6      27       2     0.438596  0.0657253  0.309777  0.567416 
  25      25       3     0.385965  0.0644812  0.259584  0.512346 
  26      22       1     0.368421  0.0638923  0.243194  0.493648 
  30      21       1     0.350877  0.0632126  0.226983  0.474772 
  31      20       2     0.315789  0.0615682  0.195118  0.436461 
  41      18       1     0.298246  0.0605958  0.179480  0.417011 
  86      17       1     0.280702  0.0595168  0.164051  0.397353 
  87      16       1     0.263158  0.0583254  0.148842  0.377474 
  92      15       1     0.245614  0.0570146  0.133868  0.357361 
  98      14       1     0.228070  0.0555758  0.119144  0.336997 
 113      13       2     0.192982  0.0522713  0.090533  0.295432 
 172      11       1     0.175439  0.0503775  0.076701  0.274177 
 230      10       1     0.157895  0.0482980  0.063232  0.252557 
 233       9       1     0.140351  0.0460077  0.050177  0.230524 
 244       8       2     0.105263  0.0406489  0.025593  0.184933 
 258       6       2     0.070175  0.0338342  0.003862  0.136489 
 324       4       1     0.052632  0.0295764  0.000000  0.110600 
 534       3       1     0.035088  0.0243716  0.000000  0.082855 
 539       2       1     0.017544  0.0173893  0.000000  0.051626 
 721       1       1     0.000000  0.0000000  0.000000  0.000000 
 
  
Distribution Analysis: Noise2, Noise1  
 
Comparison of Survival Curves 
 
 
Test Statistics 
 
Method    Chi-Square  DF  P-Value 
Log-Rank    0.699655   1    0.403 
Wilcoxon    0.674280   1    0.412 
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CHAPTER 6 

NEW SPC METHOD AND SIMULATION 
STUDIES  
 

In this chapter, we describe the simulation results from various SPC intrusion detection 

approaches and compare the performance of each method. In addition to the methods 

described in Chapter 4, we also consider a new SPC method which will be described in 

Section 6.1. The simulation studies were done based on the simulation model described 

in Chapter 5. 

In Section 6.1, we describe a modified batch mean method that was developed based 

on the regular batch mean method. We also introduced the concept of the modified batch 

mean and its properties. In Section 6.2 through 6.4 we provide simulation results for three 

different studies: a simulation study using standard control limits, a simulation study for 

performance comparisons of different charts, and a simulation study of robust control 

charts. 

  

6.1 A MODIFIED BATCH MEAN CHART 

6.1.1 The Definition of Modified Batch Mean 

In the regular batch mean chart (RBM chart) we calculated the batch mean only at the 

end of each batch, then plot the batch mean statistic. We triggered an out-of-control 

signal when the statistic goes outside the control limits. A signal is triggered only at the 

end of each batch. When a large batch size is involved, the procedure becomes inefficient 
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when the signal occurs at the beginning or early stage of the batch. To rectify this 

problem we propose a modified batch mean (MBM) method. In the modified batch mean 

method we calculate a monitoring statistic at every elemental time unit, then plot it under 

the same control limits. In other words, we will plot one charting statistic for each batch 

in the regular batch mean methods, but will plo t b charting statistics for each batch in the 

modified batch mean method, where b is the batch size.   

 We denote the tth regular batch mean with batch size b as tY  and the modified batch 

mean at the ith time unit of the tth batch as )(itY , i.e.,  

b
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when X (j) is the jth  observation in the batch. 

 Figure 6.1 illustrates how )( jtY  relates to tY  and how it related to the raw data X (j). In 

Figure 6.1, the elemental raw data (X (j)) were generated from IID normal distribution 

with mean 4 and variance 1 and the batch size is 60. The raw data plot shows the center 

line is around 4 and the modified batch mean graph shows the statistics increase as the 

time unit increases from 1 to 60. The increasing pattern happens as the raw data are 

positive. More discussion on this will be given in Chapter 8. At time unit 60, the MBM 

(60) is equal to the regular batch mean value (RBM) of the 60 elemental raw data. 
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Figure 6.1 The Concept of Modified Batch Mean 
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6.1.2 The Properties of Modified Batch Mean 

For the modified batch mean methods to work, we need the following assumptions: 

1. Original (or elemental) data can be gathered by in a sequential manner. 

2. Detection of one-sided shifts is the objective. 

Note that the modified batch mean equals the regular batch mean at the end of the batch. 

If there is a signal that will be detected by the regular batch mean chart at the end of the 

batch, i.e. RBM > control limit, as a consequence, the same signal will be detected by 

the MBM chart earlier than or at the same time as the RBM Chart. 

If the size of the signal is large and it happens at an early stage of the batch, the signal 

may be detected early as the MBM statistic quickly becomes bigger than the control limit. 

If the size of the signal is moderate, the signal may not be detected until the end of the 

batch. 

In any case when there is a signal, the MBM chart will detect the signal either earlier 

than or at the same time as the regular batch means chart. Note that the possibility that the 

MBM chart will detect the signal earlier can increase as the size of the signal increases. 

Also, the impact to the ARL1 or detection time can be quite significant as ARL1 is 

relatively small for large signals. 

Figure 6.2 shows the detection time of a MBM chart. For illustration purposes, we 

generated an in-control data (no attack) from IID normal distribution with mean 10 and  

variation 1. For these data, we added signals of mean shifts with various shift magnitudes 

(m= 1, 10, 50, and 200).    

We chose the batch size as 60 and the control limit is 3-s level of batches.  
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The detection time is faster if the signal is larger. The red asterisk marks the detection 

point in Figure 6.2. If we used a regular batch mean chart, then we would detect the 

signal at the end of the batch, i.e., at the 60th second. 

On the other hand, if there is no signal, it is still possible that the regular batch mean 

chart will trigger the alarm (i.e., a false alarm) when RBM > control limit. Similarly, the 

MBM chart will trigger the false alarm earlier than or at the same time as the RBM chart. 

However, the chance that the MBM chart will trigger the alarm earlier is small because 

there is no signal. Also, even if the MBM chart does trigger the alarm earlier, the impact 

to the ARL0 is small because ARL0 is relatively large. 

 
 

Figure 6.2 Illustration of MBM ARL1 
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6.1.3 The Variants of Modified Batch Mean Chart 

The modified batch mean concept can be applied to any control chart that involves batch 

mean. Below we explain the detailed implementation of applying the MBM concept to 

the Shewhart chart, the Cusum chart, and the EWMA chart described in Chapter 3. 

 

Modified Batch Mean Shewhart Chart 

The modified batch mean (MBM) Shewhart chart is defined as the regular batch mean 

chart with the regular batch mean replaced by the modified batch mean.  

Define tY  to be the regular batch mean of the tth batch and )( jtY  to be the modified 

batch mean of the jth time unit of the tth batch. The formulas are in Table 6.1. 

 

Table 6.1 MBM Shewhart Chart 

Chart Monitoring Statistic Control Limit (CL) 

Regular biXY
bt

tbi
t /)(

1)1(
∑

+−⋅=

= , for batch t If CLYt > , raise alarm at 
the end of batch t. 

Modified biXY
jtb

tbi
jt /)(

)1(

1)1(
)( ∑

+−

+−⋅=

= , for batch t, j=1, …, b 
If CLY jt >)( , raise alarm 

at the jth time unit of 
batch t. 

 

 

Modified Batch Mean Cusum Chart 

The modified batch mean Cusum chart is the Cusum chart applying the modified batch 

mean. The formulas are given in Table 6.2.  
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Table 6.2 Monitoring Statistics of MBM Cusum Chart 

Chart Monitoring Statistic Control Limit 

Regular ])(,0max[ 10 −++−= ttt CKYC µ  
If ,HCt >  raise alarm at 

the end of batch t. 

Modified ])(,0max[ 10)()( −++−= tjtjt CKYC µ  If ,)( HC jt >  raise alarm at 
the jth time unit of batch t. 

 

 

Modified Batch Mean EWMA Chart. 

The modified batch mean EWMA chart is the EWMA chart applying the modified batch 

mean. The formulas are given in Table 6.3.  

 

Table 6.3 Monitoring Statistics of MBM EWMA Chart 

Chart Monitoring Statistic Control Limit(CL) 

Regular 1)1( −−+= ttt zYz λλ  
If ,CLzt >  raise alarm  
at the end of batch t. 

Modified 1)()( )1( −−+= tjtjt zYz λλ  
If ,)( CLz jt >  raise alarm  

at the jth time unit of batch t. 
 

 

Although the MBM concept is expected to improve the regular batch mean chart, it is 

not clear how big the impact is and under what situations this will happen. To understand 

and compare the performance of the MBM chart as well as the RBM charts described in 

Chapter 4, we conducted three parts of simulation studies based on the simulated model 

developed in Chapter 5. 



 97 

6.2 SIMULATION STUDY USING STANDARD CONTROL 
LIMITS  

The objective of this simulation study is to investigate the performance of the MBM 

charts under the control limits recommended by the standard textbooks in SPC. 

Standard control limits are defined to be the control limits based on the parameters 

recommended by IID normal data. These limits can be found in standard statistical 

textbooks, such as Montgomery (2001). The typical parameters for the three common 

SPC charts are as follows. 

q Parameters of standard control limit for ARL0 = 370. 

o Shewhart; c = 3.0, where c is the control limit parameter. 

o Cusum; k = 0.5, h = 4.77, where k is the chart parameter and h is the 

control limit parameter. 

o EWMA; λ=0.2, L=2.806, where λ is the chart parameter and L is the 

control limit parameter. 

 

6.2.1 Simulation Settings 

The simulation settings for using standard control limits are as follows. The simulation 

factors are cycle, noise, batch size, and signal. As described in Chapter 5, we considered 

three levels (Cycle 1, Cycle 2, and Cycle 3) are used for the cycle factor, two levels 

(Noise 1 and Noise 2) are used for the noise factor, and three levels (Signal 1, Signal 2, 

and Signal 3) are used for the signal factor.  
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6.2.2 Simulation Results 

The simulation results using standard control limits are summarized in Appendix 6.A. 

The performance measures were the average number of false alarms and average 

detection times in 10,000 runs. As defined in Chapter 3, a false alarm is an alarm when 

there is no signal (attack). So the number of false alarms was recorded during the no 

signal period (from 1 to 5,400 seconds) in each run. Then we computed the average value 

of the number of fa lse alarm based on 10,000 simulations. In the same way, the detection 

times were recorded during the attack period (from 5,401 to 6,000 seconds) in 10,000 

runs and their average values were computed. 

Figure 6.3 shows the scatter plots of performance measures versus factors. “M” refers 

to the charting methods (M = 1: MBM Shewhart chart, M = 2: MBM Cusum chart, and 

M = 3: MBM EWMA chart). “pre” refers to the batch sizes (pre = 1: 60 seconds batch 

size and pre = 2: 120 seconds batch size).  

According to Figure 6.3, we observed the following: 

1. Noise 2 affected detection time and the occurrence of false alarms. Noise 1 had 

quicker detection time but more false alarms than Noise 2.  

2. Charting methods had an effect on false alarm occurrence and on detection time. 

For example, the MBM Shewhart chart had the most false alarms among the three 

charts. And on average, the MBM Cusum chart had the fewest false alarms but 

also had the longest detection time. 
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Figure 6.3 The Relationships between the False Alarm and Input Factors. 
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3. Signal 1 had the shortest detection time i.e., the signal was detected earliest, 

which was expected because Signal 1 had the largest magnitude of signal height. 

4. Preprocessing affected the number of false alarms and detection time. The batch 

size of 120 seconds had fewer false alarms but a longer detection time. 

5. Cycle had no effect on either the number of false alarms or on detection time. 

6. Number of false alarms and detection time were negatively correlated, i.e., if the 

control limit was narrow, then we had high false alarm rate and fast detection; if 

the control limit was wide, then the false alarm rate was low and detection was 

slow. 

 

  To understand how the simulation factors affect the performance of the charts, 

analysis of variance (ANOVA) with 4 factors (cycle (cyc), noise (noi), signal (sig), and 

preprocessing batch size (pre)) were applied to each of the performance measures. The 

results of ANOVA were summarized in Appendix 6.B. 

It was found that the cycle factor had no effect on either the average number of false 

alarms or average detection time, but there were significant interaction effects among 

various factors.  

With two performance measures involved, it is difficult to conclude that one chart is 

better than the other when the two performance measures are in conflict. A fair 

comparison would be to first fix one performance measure (the false alarm) then compare 

the other performance measure (the detection time). This will be done in the next section. 
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6.2.3 Lessons Learned 

The simulations above were done using standard control limits with the parameters 

obtained from standard textbooks. Note that under standard control limits and IID normal 

data, the expected ARL0 should be 370 runs when we use the parameters as two-sided 

control limits or should be 740 runs when we use the parameters as a one-sided control 

limit. In our studies we focused on detecting one-sided shifts, thus the ARL0 should be 

740 runs. 

For a total number of 5,400 simulated seconds, the expected numbers of false alarm 

equals 5,400/(60*740) = 0.1216 for a batch size of 60 seconds, and 5,400/(120*740) = 

0.0608 for a batch size of 120 seconds.  

However, as shown in Appendix 6.A, the observed average numbers of false alarms 

are much higher than expected. For example, the MBM Shewhart chart had an average 

number of false alarm = 1.96 for Cycle 1 and Noise 1 case. This value is 16 times larger 

than the expected value of 0.1216. In other words, this implies that the corresponding 

ARL0 equals 740/16 = 46.25, much less than 740. This could be caused by violation of 

the assumptions that the data are identically and independently normally distributed.  

To find out what assumptions may have been violated, Normal probability plot and 

correlation tests were applied. It was found that the main cause was because of the 

violation of the normality assumption. As shown in the simulation results (Appendix 

6.A), all the MBM charts were sensitive to violation of the normality assumption and the 

MBM Shewhart chart was the mostly sensitive of the three charts. 
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6.3 SIMULATION STUDY ON PERFORMANCE 
COMPARISON OF DIFFERENT CHARTS 

As pointed out in the last section, it is difficult to compare the performance of different 

charts when two performance measures are not pointing in the same direction. A common 

way to compare the performance of SPC charts is to fix the average number of false 

alarms, or the in-control average run length (ARL0), then compare the average detection 

time or the out-of-control average run length (ARL1). As shown in Section 6.2, the 

standard control limits will result in different ARL0, thus one needs to adjust the control 

limits so that the ARL0 is fixed. We denote these adjusted control limits to be the actual 

control limits. 

Below, we investigate the performance of different charts with an actual ARL0 = 370. 

For a fair comparison of performance, we set the actual control limits that give ARL0 = 

370 minutes for each chart and each scenario combination.  

 

6.3.1 Simulation Settings and Actual Control Limits 

In this simulation study we restricted the simulation parameters as noise and signal. The 

noise factor had two levels (Noise 1 and Noise 2), and the signal factor had three levels 

(Signal 1, Signal 2, and Signal 3). The cycle factor was removed because, as shown in 

Section 6.2, it had no effect on detection time or on false alarms. The batch size factor 

was also removed to restrict the batch size to 60 seconds.  

To determine the actual control limits, simulations with 36 million runs were used in 

each scenario. In the simulation study we considered the one-sided control limit because 
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we are interested only in detecting the increase of event intensity due to an intrusion 

attack. Table 6.4 shows the actual control limit for each scenario.  

Table 6.5 shows the simulated in-control ARL (ARL0) obtained based on simulations 

with the control limits given in Table 6.4. The standard error (s.e.) values were calculated 

and displayed in parenthesis, i.e., 
n
ds

es
..

.. = , where s.d. is the sample standard 

deviation of run length and n is the observed number of run lengths. 

  

Table 6.4 Actual Control Limits for Simulation Data (One-sided ARL0=370, Batch 
Size=60) 
 

Control Limits Shewhart 
c 

Cusum(k=0.5) 
h 

EWMA( λ =0.2) 
L 

Standard Limits 2.782 4.10 2.601 
Noise

1 8.349 8.820 5.08 Actual 
Limits Noise

2 
4.615 6.027 3.404 

 

Table 6.5 One-sided ARL0 with Actual Control Limits (Batch Size=60) 

ARL0 
(standard error) Shewhart Cusum 

(k=0.5) 
EWMA 
(λ =0.2) 

Noise1 371.35 
(9.32) 

370.29 
(9.12) 

370.06 
(9.68) Actual 

Limits 
Noise2 370.27 

(8.74) 
370.01 
(9.14) 

370.31 
(9.47) 

 
 

6.3.2 Simulation Results  

The simulation results using the actual one-sided control limits of the 18 scenarios are 

given in Table 6.6. The average detection times (in seconds) are summarized in Table 6.7 

for easier comparison.  
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In Table 6.6, the in-control average run times (ART0) are displayed and were 

calculated by multiplying the batch size to ARL0. ART0 were used instead of ARL0 

because the batch size may vary for different charts. For the MBM charts, the batch size 

equals 60 seconds. The time unit of ART0 is seconds. 

 

Table 6.6 Detection Time Using Actual Control Limits 

noi sig M NAME ART0 Modified DT Regular DT
1 1 1 a_mbm60_111_mean 22160 2.00 60
1 2 1 a_mbm60_112_mean 22160 4.19 60
1 3 1 a_mbm60_113_mean 22160 46.74 60
2 1 1 a_mbm60_121_mean 22182 2.99 60
2 2 1 a_mbm60_122_mean 22182 6.94 60
2 3 1 a_mbm60_123_mean 22182 54.19 60
1 1 2 a_cusum60_111_mean 22323 1.98 60
1 2 2 a_cusum60_112_mean 22323 3.81 60
1 3 2 a_cusum60_113_mean 22323 35.14 60
2 1 2 a_cusum60_121_mean 22201 2.80 60
2 2 2 a_cusum60_122_mean 22201 5.84 60
2 3 2 a_cusum60_123_mean 22201 58.35 60
1 1 3 a_ewma60_111_mean 22187 1.99 60
1 2 3 a_ewma60_112_mean 22187 4.48 60
1 3 3 a_ewma60_113_mean 22187 47.05 60
2 1 3 a_ewma60_121_mean 22189 2.94 60
2 2 3 a_ewma60_122_mean 22189 7.92 60
2 3 3 a_ewma60_123_mean 22189 67.83 106.45

  

 

Table 6.7 Detection Time Comparisons 
 

  Detection Time 
Shewhart_a Cusum_a EWMA_a 

Signal Noise  Modified Regular Modified Regular Modified Regular 
sig1 2.00 60 1.98 60 1.99 60
sig2 4.19 60 3.81 60 4.48 60
sig3 

noi1 
46.74 60 35.14 60 47.05 63.7

sig1 2.99 60 2.80 60 2.94 60
sig2 6.94 60 5.84 60 7.92 60
sig3 

noi2 
54.19 60 58.35 60 67.83 106.45
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According to Table 6.6, we observed the followings. 

1. As expected, in all scenarios, each chart detected Signal 1 faster than either Signal 

2 or Signal 3, because the magnitude of the signal affects detection time, and 

Signal 1 had the largest magnitude. Signal 1 was detected about twice as fast as 

Signal 2. 

2. The noise factor also affected detection time. For Cusum and EWMA charts, if 

the noise was dense (Noise 2), then the detection time increased. In other words, 

the detection time for Noise 2 was longer than for Noise 1.  

3. The MBM Cusum chart worked best for all cases except for the case with Noise 2 

and Signal 3. In the case with Noise 2 and Signal 3, the MBM Shewhart chart had 

the quickest detection time of all the control charts.  

4. It was apparent that the MBM chart was superior to the RBM charts for most 

cases. The RBM charts detected the signals at 60, but the MBM charts detected 

Signal 1 in about 2 seconds and detected Signal 2 in about 5 seconds, which is 

about 30 seconds, or 10 times, faster than the RBM charts. In the cases of Signal 

3, the differences in detection time with the MBM chart and the RBM chart were 

smaller because the signal magnitude is smaller.  

5. In summary, the MBM methods can significantly improve the performance of the 

RBM Charts when (i) the batch size is large, and (ii) the signal is large.  

 

6.4 SIMULATION STUDY FOR ROBUST MBM CHARTS  

As shown in Section 6.2, the performances (false alarm and detection time) of the RBM 

and MBM methods under standard control limits are quite different from the expected 
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performances. This difference is mainly caused by violation of the normality assumption 

of the charting statistic. To rectify this problem, some robust BM charts were developed 

as follows.  

According to the Central Limit Theorem, one can increase the batch size so that the 

charting statistic can be better approximated to normal distribution. Alternatively, one 

can change the charting parameter (k value in Cusum charts or λ value in EWMA charts) 

so that the actual chart performance is close to the expected performance. 

Below we will consider three robust BM charts: 

q Batch Mean with large batch size, 

q Cusum with small k value, 

q EWMA with small λ value. 

 

6.4.1 Robust Batch Mean Shewhart Chart 

To compare how batch size affects the robustness property of the BM Shewhart chart, we 

first determined the one-sided control limits of the BM Chart with different batch sizes 

that will result in the same in-control average run time (ART0) equal to 370 minutes. 

Table 6.8 displays these limits and the corresponding values of ARL0 and ART0. 

Under the standard limits in Table 6.8, the in-control average run time (ART0) is 

expected to be approximately equal to 370 minutes if the charting statistics can be well 

approximated by normal distribution. Table 6.9 shows the actual ART0s based on 

simulations under the two noise conditions. Clearly, the ART0 approached the expected 

ART0 value of 370 minute as the batch size increased. The approximation was 

satisfactory when the batch size is increased to 40 minutes (cycles). 
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Table 6.8 Normal Recommended Control Limit for One-sided Shewhart Chart (ART0 = 
370 minute). 
 

ARL0 (in minute) 370 185 37 18.5 9.25 
Batch size 1 2 10 20 40 

ART0 (in minute) 370 370 370 370 370 
C 2.782 2.549 1.927 1.607 1.237 

 

 
Table 6.9 ART0 of Normal recommended Control limit 

 

Batch size C ART0 
Noise1 

ART0 
Noise2 

B = 1 cycle 2.782 39.42 43.92 
10 cycle 1.927 161.79 244.45 
20 cycle 1.607 259.67 312.44 
40 cycle 1.237 344.55 354.14 

 

 

6.4.2 Robust Batch Mean Cusum Chart 

Similar to the Robust BM Shewhart chart, one can develop a robust BM Cusum chart by 

choosing an appropriate value for the charting parameter k.  

Table 6.10 shows different values of charting parameter k and the corresponding 

control limit h so that the expected ART0 equal 370 minutes. The last two columns 

display the actual ART0 obtained from simulations. It shows that the ART0 approached 

the expected value of 370 minutes as k decreased and the approximation was satisfactory 

at k = 0.05. 
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Table 6.10 Normal Recommended Control Limit for One-sided Cusum Chart 
 

k h ART0 
Noise1 

ART0 
Noise2 

0.5 4.10 70.21 104.33 
0.25 6.72 127.09 197.23 
0.1 10.72 278.57 301.73 
0.05 13.47 352.77 340.47 

 

6.4.3 Robust EWMA Chart  

Montgomery (1999) proposed the idea of developing a robust EWMA chart by choosing 

the chart parameter λ =0.01. Table 6.11 shows how the ART0 changed as the value of the 

chart parameter λ decreased.  

 
Table 6.11 Normal Recommended Control Limit for One-sided EWMA Chart 

 

Lambda( λ ) L ART0 
Noise1 

ART0 
Noise2 

0.2 2.601 75.36 118.49 
0.1 2.402 115.11 180.93 
0.05 2.142 185.03 251.14 
0.01 1.282 355.62 364.50 

 

6.4.4 Performance Comparison of Robust MBM Charts 

As shown in the previous sections, different robust control charts could be developed by 

choosing the appropriate number of batch sizes in the Shewhart chart or by choosing the 

appropriate charting parameters in the Cusum chart or in the EWMA chart. These robust 

charts will produce an actual ART0 approximately equal to the expected ART0 when 

standard control limits in textbooks are used. Below we compare the detection time 

performance of these robust control charts as well as that of the control charts based on 

actual control limits described in Section 6.3. 
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 To further understand how these charts perform under different signals, in addition to 

the three signal patterns described in Chapter 5, we further considered the following six 

signal patterns. We skipped Signal 3 as it is not a step jump signal. The signals are 

normally distributed and the standard deviation of each signal being 10% of the mean.  

q Signal 4: Normal (100,102) 

q Signal 5: Normal (50, 52) 

q Signal 6: Normal (20, 22) 

q Signal 7: Normal (10, 12) 

q Signal 8: Normal (5, 0.52) 

q Signal 9: Normal (1, 0.12) 

The results of the actual MBM charts and the robust MBM charts for various signals 

were summarized in Table 6.12. 

According to Table 6.12, we observed the following: 

1. Overall, the MBM Shewhart charts performed worse than the MBM Cusum and 

EWMA charts. 

2. The robust MBM Shewhart chart performed worse than the MBM Shewhart chart 

with an actual control limit for large signals, but the robust MBM Shewhart 

charter performed better for small signals. 

3. The robust MBM Cusum chart had similar performance as the MBM Cusum chart 

with an actual limit for small signals, but the robust MBM Cusum chart 

performed worse for large signals (except for Signal 9). 
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Table 6.12 Summary of Detection time in Simulation 
 

Control Charts with 
Actual Control Limits 

Robust Control Charts with 
Standard Control Limits 

Chart Shewhart 
B=1 

Cusum 
k=0.5 

EWMA 
λ =0.2 

Shewhart 
B=40 

Cusum 
k=0.05 

EWMA 
λ =0.01 

ARL0 
(Min.) 

369.65 372.41 370.11 344.55 355.14 355.62 

ART0 
(Sec.) 

22160 22323 22187 20591 21287 21315 

DT_sig1 2.00 1.98 1.99 15.94 1.92 2.08 
DT_sig2 4.19 3.81 4.48 45.97 3.82 5.26 
DT_sig4 11.97 12.88 12.06 131.36 17.08 12.72 
DT_sig5 23.39 25.20 23.60 249.56 31.05 24.86 
DT_sig6 42.40 46.83 42.85 542.46 83.66 46.01 
DT_sig7 1,901.3 100.27 98.37 891.92 149.08 94.17 
DT_sig8 5,870.5 220.91 252.62 1,319.3 280.36 201.62 

M
od

ifi
ed

 

DT_sig9 15,596.4 2,667.9 2,675.1 2,145.4 1,493.1 1,029.7 
DT_sig1 60 60 60 2400 60 60 
DT_sig2 60 60 60 2400 60 60 
DT_sig4 60 60 60 2400 60 60 
DT_sig5 60 60 60 2400 60 60 
DT_sig6 60 60 60 2400 119.29 60 
DT_sig7 1,917.8 120 120 2400 177.00 120 
DT_sig8 5,888.6 235.30 277.31 2400 293.41 232.46 

R
eg

ul
ar

 

DT_sig9 15,616.4 2,686.5 2,733.4 2400 1,511.1 1,066.1 
 

 

4. The robust MBM EWMA chart had similar or better performance than that of the 

MBM EWMA chart with an actual limit. 

5. Overall, the robust EWMA chart had the best performance in most cases. It was 

also easy to implement because the control limits could be determined as the 

standard limits from the textbook.  
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6.5 SUMMARY 

In this chapter, we illustrated the modified batch mean (MBM) concept and the modified 

batch mean charts of Shewhart, Cusum and EWMA. The MBM charts outperform the 

RBM charts because they monitor at each time unit within the batch. The MBM charts 

can be significantly better under situations characterized by large batch size and large 

signals. 

 One difficulty of applying the regular or modified BM charts is that the control limits 

need to be determined by simulation. To rectify this problem, three robust MBM charts 

were developed. The robust MBM Shewhart chart was developed based on choosing 

appropriate values of batch size. The robust MBM Cusum chart and robust MBM 

EWMA chart were developed on choosing appropriate values of charting parameters. 

According to our simulation studies, the robust EWMA chart has the best detection time 

performance and its control limits can be easily determined. Thus it is the control chart of 

choice the SPC intrusion detection problem. 
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APPENDIX 6A. SIMULATION RESULTS USING 
STANDARD CONTROL LIMITS 

 
Cyc Noi Sig pre m Name False Alarm Modified DT Regular DT 

1 1 1 1 1mbm60_111_mean 1.96 1 60
1 2 1 1 1mbm60_121_mean 1.4682 1.99 60
1 1 2 1 1mbm60_112_mean 1.96 2.61 60
1 2 2 1 1mbm60_122_mean 1.4682 4.9704 60
1 1 3 1 1mbm60_113_mean 1.96 34.6807 60
1 2 3 1 1mbm60_123_mean 1.4682 45.2377 60
2 1 1 1 1mbm60_211_mean 1.96 1 60
2 2 1 1 1mbm60_221_mean 1.48 1.99 60
2 1 2 1 1mbm60_212_mean 1.96 2.61 60
2 2 2 1 1mbm60_222_mean 1.48 5.1865 60
2 1 3 1 1mbm60_213_mean 1.96 34.6807 60
2 2 3 1 1mbm60_223_mean 1.48 45.0646 60
3 1 1 1 1mbm60_311_mean 1.9192 1 60
3 2 1 1 1mbm60_321_mean 1.48 1.99 60
3 1 2 1 1mbm60_312_mean 1.9192 2.54 60
3 2 2 1 1mbm60_322_mean 1.48 5.1865 60
3 1 3 1 1mbm60_313_mean 1.9192 26.4502 60
3 2 3 1 1mbm60_323_mean 1.48 45.0646 60
1 1 1 2 1mbm120_111_mean 1.31 2 120
1 2 1 2 1mbm120_121_mean 0.7109 2.99 120
1 1 2 2 1mbm120_112_mean 1.31 4 120
1 2 2 2 1mbm120_122_mean 0.7109 7.5025 120
1 1 3 2 1mbm120_113_mean 1.31 44.5177 120
1 2 3 2 1mbm120_123_mean 0.7109 59.1446 120
2 1 1 2 1mbm120_211_mean 1.31 2 120
2 2 1 2 1mbm120_221_mean 0.72 2.99 120
2 1 2 2 1mbm120_212_mean 1.31 4 120
2 2 2 2 1mbm120_222_mean 0.72 8.0163 120
2 1 3 2 1mbm120_213_mean 1.31 44.5177 120
2 2 3 2 1mbm120_223_mean 0.72 59.0037 120
3 1 1 2 1mbm120_311_mean 1.2844 1.92 120
3 2 1 2 1mbm120_321_mean 0.72 2.99 120
3 1 2 2 1mbm120_312_mean 1.2844 3.84 120
3 2 2 2 1mbm120_322_mean 0.72 8.0163 120
3 1 3 2 1mbm120_313_mean 1.2844 38.9062 120
3 2 3 2 1mbm120_323_mean 0.72 59.0037 120
1 1 1 1 2cusum60_111_mean 1.01 1.0168 60
1 2 1 1 2cusum60_121_mean 0.4746 2.5952 60
1 1 2 1 2cusum60_112_mean 1.01 2.9909 60
1 2 2 1 2cusum60_122_mean 0.4746 5.0452 60
1 1 3 1 2cusum60_113_mean 1.01 31.7108 60
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1 2 3 1 2cusum60_123_mean 0.4746 46.8634 60
2 1 1 1 2cusum60_211_mean 1.01 1.0168 60
2 2 1 1 2cusum60_221_mean 0.46 2.6677 60
2 1 2 1 2cusum60_212_mean 1.01 2.9909 60
2 2 2 1 2cusum60_222_mean 0.46 5.2366 60
2 1 3 1 2cusum60_213_mean 1.01 31.7108 60
2 2 3 1 2cusum60_223_mean 0.46 54.6183 60
3 1 1 1 2cusum60_311_mean 0.9807 1.0336 60
3 2 1 1 2cusum60_321_mean 0.46 2.6677 60
3 1 2 1 2cusum60_312_mean 0.9807 2.9006 60
3 2 2 1 2cusum60_322_mean 0.46 5.2366 60
3 1 3 1 2cusum60_313_mean 0.9807 21.8488 60
3 2 3 1 2cusum60_323_mean 0.46 54.6183 60
1 1 1 2 2cusum120_111_mean 0.9799 1.9544 120
1 2 1 2 2cusum120_121_mean 0.2638 3.1035 120
1 1 2 2 2cusum120_112_mean 0.9799 4.1292 120
1 2 2 2 2cusum120_122_mean 0.2638 7.3876 120
1 1 3 2 2cusum120_113_mean 0.9799 42.556 120
1 2 3 2 2cusum120_123_mean 0.2638 52.3348 120
2 1 1 2 2cusum120_211_mean 0.9799 1.9544 120
2 2 1 2 2cusum120_221_mean 0.29 3.1348 120
2 1 2 2 2cusum120_212_mean 0.9799 4.1292 120
2 2 2 2 2cusum120_222_mean 0.29 7.8355 120
2 1 3 2 2cusum120_213_mean 0.9799 42.556 120
2 2 3 2 2cusum120_223_mean 0.29 55.2693 120
3 1 1 2 2cusum120_311_mean 0.9571 1.96 120
3 2 1 2 2cusum120_321_mean 0.29 3.1348 120
3 1 2 2 2cusum120_312_mean 0.9571 4.0171 120
3 2 2 2 2cusum120_322_mean 0.29 7.8355 120
3 1 3 2 2cusum120_313_mean 0.9571 35.2438 120
3 2 3 2 2cusum120_323_mean 0.29 55.2693 120
1 1 1 1 3ewma60_111_mean 0.9999 1.0842 60
1 2 1 1 3ewma60_121_mean 0.4628 2.6981 60
1 1 2 1 3ewma60_112_mean 0.9999 3.1425 60
1 2 2 1 3ewma60_122_mean 0.4628 6.6642 60
1 1 3 1 3ewma60_113_mean 0.9999 40.2991 60
1 2 3 1 3ewma60_123_mean 0.4628 60.0162 90.156
2 1 1 1 3ewma60_211_mean 0.9999 1.0842 60
2 2 1 1 3ewma60_221_mean 0.48 2.7071 60
2 1 2 1 3ewma60_212_mean 0.9999 3.1425 60
2 2 2 1 3ewma60_222_mean 0.48 7.0111 60
2 1 3 1 3ewma60_213_mean 0.9999 40.2991 60
2 2 3 1 3ewma60_223_mean 0.48 60.749 89.298
3 1 1 1 3ewma60_311_mean 0.9748 1.1569 60
3 2 1 1 3ewma60_321_mean 0.48 2.7071 60
3 1 2 1 3ewma60_312_mean 0.9748 3.14 60
3 2 2 1 3ewma60_322_mean 0.48 7.0111 60
3 1 3 1 3ewma60_313_mean 0.9748 34.3157 60
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3 2 3 1 3ewma60_323_mean 0.48 60.749 89.400
1 1 1 2 3ewma120_111_mean 0.6097 1.9861 120
1 2 1 2 3ewma120_121_mean 0.2513 3.7216 120
1 1 2 2 3ewma120_112_mean 0.6097 4.8247 120
1 2 2 2 3ewma120_122_mean 0.2513 9.6782 120
1 1 3 2 3ewma120_113_mean 0.6097 48.1767 120
1 2 3 2 3ewma120_123_mean 0.2513 67.023 120
2 1 1 2 3ewma120_211_mean 0.6097 1.9861 120
2 2 1 2 3ewma120_221_mean 0.26 3.722 120
2 1 2 2 3ewma120_212_mean 0.6097 4.8247 120
2 2 2 2 3ewma120_222_mean 0.26 10.1432 120
2 1 3 2 3ewma120_213_mean 0.6097 48.1767 120
2 2 3 2 3ewma120_223_mean 0.26 68.0577 120
3 1 1 2 3ewma120_311_mean 0.5817 1.9903 120
3 2 1 2 3ewma120_321_mean 0.26 3.722 120
3 1 2 2 3ewma120_312_mean 0.5817 4.771 120
3 2 2 2 3ewma120_322_mean 0.26 10.1432 120
3 1 3 2 3ewma120_313_mean 0.5817 46.6159 120
3 2 3 2 3ewma120_323_mean 0.26 68.0577 120
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APPENDIX 6B. THE STATISTICAL ANALYSIS OF THE 
SIMULATION RESULT WITH STANDARD CONTROL 
LIMITS 

 
ANOVA: False Alarm versus Cyc, Noi, Sig, pre(batch size), M(chart)  
 
Factor      Type   Levels  Values 
Cyc         fixed       3  1, 2, 3 
Noi         fixed       2  1, 2 
Sig         fixed       3  1, 2, 3 
pre(batch)  fixed       2  1, 2 
M(chart)    fixed       3  1, 2, 3 
 
Analysis of Variance for False Alarm 
 
Source           DF       SS      MS       F      P 
Cyc               2   0.0038  0.0019    0.09  0.915 
Noi               1   7.4030  7.4030  347.02  0.000 
Sig               2   0.0000  0.0000    0.00  1.000 
pre(batch)        1   3.7093  3.7093  173.88  0.000 
M(chart)          2  12.9649  6.4824  303.87  0.000 
Cyc*Noi           2   0.0071  0.0036    0.17  0.846 
Cyc*Sig           4   0.0000  0.0000    0.00  1.000 
Cyc*pre(batch)    2   0.0003  0.0001    0.01  0.993 
Cyc*M(chart)      4   0.0001  0.0000    0.00  1.000 
Noi*M(chart)      2   0.1508  0.0754    3.53  0.034 
Error            85   1.8133  0.0213 
Total           107  26.0527 
 
S = 0.146058   R-Sq = 93.04%   R-Sq(adj) = 91.24% 
  
ANOVA: Detection Time versus Cyc, Noi, Sig, pre (batch), M (chart)  
 
Factor      Type   Levels  Values 
Cyc         fixed       3  1, 2, 3 
Noi         fixed       2  1, 2 
Sig         fixed       3  1, 2, 3 
pre(batch)  fixed       2  1, 2 
M(chart)    fixed       3  1, 2, 3 
 
Analysis of Variance for Detection Time 
 
Source           DF       SS       MS       F      P 
Cyc               2     21.6     10.8    0.36  0.701 
Noi               1   1608.3   1608.3   53.07  0.000 
Sig               2  45694.4  22847.2  753.88  0.000 
pre(batch)        1    443.2    443.2   14.62  0.000 
M(chart)          2    318.7    159.4    5.26  0.007 
Cyc*Noi           2     42.5     21.3    0.70  0.499 
Cyc*Sig           4     43.4     10.8    0.36  0.838 
Cyc*pre(batch)    2      1.2      0.6    0.02  0.980 
Cyc*M(chart)      4      4.6      1.1    0.04  0.997 
Noi*M(chart)      2     34.0     17.0    0.56  0.572 
Error            85   2576.0     30.3 
Total           107  50788.0 
 
S = 5.50511   R-Sq = 94.93%   R-Sq(adj) = 93.62% 
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CHAPTER 7  

CASE STUDY REVISITED 
  

In Chapter 4, we applied regular SPC methods with standard control limits that were 

expected to produce 370 as ARL0 for IID normal data. However, in Chapter 6 we found 

that those control limits do not work on our data as expected, and we searched via 

simulation for actual control limits and via a robustness study for robust control limits 

that would yield an ARL0 approximately equal to 370. In this chapter, we applied the new 

SPC methods (the modified BM charts and the robust BM charts) incorporating those 

new control limits to the real datasets from Chapter 4 and compared the performances of 

various SPC charts on the real datasets.  

 In Section 7.1, we will compare the performance of regular and modified BM charts 

with the actual control limits on the real data, and in Section 7.2, we will test the 

performances of the robust control charts. In Section 7.3, we discuss how to choose 

between actual and robust control limits for practical applications.  

 

7.1 PERFORMANCES WITH ACTUAL CONTROL LIMITS 

Actual control limits for various scenarios have been searched by simulation in 

Chapter 6. Among those control limits we used the actual control limits found for the 

simulation model with Cycle 1 and Noise 1 because this simulation model is the closest 

to the real data set (Pure_sample_data).  
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For all SPC methods, we preprocessed the raw data to batch means of size 60 to 

eliminate any cyclic effect. We tested three regular SPC charts on batch means : 

Shewhart, Tabular Cusum, and EWMA charts. Then we applied each regular SPC chart 

with modified batch means, the modified BM charts.  

Table 7.1 shows the results of the regular batch mean (RBM) charts and the modified 

batch mean (MBM) charts with actual control limits. There are no false alarms with 

either the regular BM charts or the modified BM charts. In all cases, the MBM Charts 

detect the attack earlier than the regular BM charts. All the three regular BM charts 

detected the attack at the 840th second (= 14 * 60), which is the end of the 14th batch. 

However, the MBM Shewhart chart was able to detect the attack at the 787th second.  

In Figure 7.1 the left graph shows the batch scale and the right graphs show in 

seconds the scale of the attack batch 14, i.e., the 840th second is the 14th minute. The 

horizontal lines represent the control limits. The graphs show that the modified charts 

detect the attack at the beginning of the 14th batch.  

 

Table 7.1 The Number of False Alarms and Detection Time of the SPC charts with 
Actual Control Limits 
 

  Shewhart  
(C = 8.349) 

Cusum 
(k=0.5, h =8.82) 

EWMA  
(λ =0.2, h = 5.08) 

  MBM RBM MBM RBM MBM RBM 

False Alarm 0 0 0 0 0 0 
Detection Time 

(second) 787th 840th 789th 840th 790th 840th 
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Figure 7.1. Graphical Illustrations of Regular (Left) and Modified (Right) BM Charts 
with Actual Control Limits 
 

 

7.2 USING ROBUST CONTROL LIMITS 

In this section we repeated the simulation study performed in the previous section, but 

this time with robust control charts with standard control limits (i.e., robust control 

limits). Note that actual control limits have to be searched by simulation until they give 

an actual ARL0 approximately equal to a target ARL0, robust control limits do not require 

simulation and can be calculated analytically or found from standard textbooks. 

The performances of the RBM charts and the MBM charts with robust control limits 

are given in Table 7.2 and Figure 7.2 gives the graphical illustrations of those methods. 
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From Table 7.2, one can note that the MBM charts still detect the attack earlier than 

the RBM versions of the Cusum and the EWMA charts.  Interestingly, neither the MBM 

nor the RBM Shewhart chart could detect the attack within 1,200 seconds, which is the 

size of the time span of the Attack_sample_data. It is well known that a large batch size 

does help to achieve approximate normality and independence, but it can delay the 

detection of an out-of-control signal. Our results amply demonstrate the problem of 

having a large batch size. 

 

 

Figure 7.2. Graphical Illustrations of Regular (Left) and Modified (Right) BM Charts 
with Robust Control Limits 

Table 7.2. The Number of False Alarms and Detect Time of SPC charts with Robust 
Control Limits 
 

  Shewhart  
(B=40, C = 1.237) 

Cusum  
(k=0.05, h =13.47) 

EWMA  
(λ =0.01, h = 1.282) 

  MBM RBM MBM RBM MBM RBM 
False Alarm 0 0 0 0 0 0 

Detection Time 
(second) N.A. N.A. 794th 840th 793rd  840th 
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7.3 ACTUAL CONTROL LIMITS VS. ROBUST CONTROL 
LIMITS  

We have seen the advantages of modified SPC charts (MBM charts) over regular SPC 

charts (RBM charts) in the previous two sections. In this section, we compare the 

performances of modified SPC charts with the actual and robust control limits.  

Table 7.3 summarizes the performance of the MBM charts with actual and robust 

control limits. One can see that the detection times with robust control limits slower than 

those with actual control limits. For the MBM Cusum and EWMA charts, the detection 

times increased from the 789th second to the 794th and from the 790th second to the 793rd, 

respectively. In the worst case, the MBM Shewhart Chart with robust control limits could 

not detect the attack at the end of the sample (1,200th second).  

In the case study, the MBM Shewhart Chart with actual control limits showed the 

best performance in terms of detection time. However, the difference in detection times is 

not significant compared with MBM Cusum and EWMA charts that incorporate actual or 

robust control limits. Moreover, since robust control limits can be determined 

analytically, it is convenient to use robust control limits. This is unlike actual control 

limits that require simulation when little information about data properties is available. 

We do not recommend the modified BM Shewhart chart with robust control limits if an 

extremely large batch size is involved. If it is possible to determine the actual control 

limits by simulation or if the required batch size for robust control limits is not that large, 

we recommend the modified BM Shewhart chart. Otherwise, modified BM Cusum or 

EWMA charts with robust control limits are the best choice for practical use. 
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TABLE 7.3.Comparisons of the Performances of the MBM charts with the Actual and the 
Robust Control Limits 

  
Modified 

Batch Mean  Control limit Number of 
False Alarm  

Detection Time in 
Testing (attack at 784) 

Actual c=8.349 
B=1 min. 0 787th sec. 

Shewhart 
Robust c=1.237 

B=40 min. 
0  No detection.  

Actual k=0.5 
h=8.82 0 789th sec. 

Cusum 
Robust k=0.05 

h=13.47 0 794th sec. 

Actual λ =0.2 
L=5.08 

0 790th sec. 
EWMA 

Robust λ =0.01 
L=1.282 

0 793rd sec. 
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CHAPTER 8  

CONCLUSIONS 

 

8.1 SUMMARY 

In this thesis we applied an SPC monitoring concept to a certain type of traffic data in 

order to detect a network intrusion. The main assumptions of this study were that an 

intrusion is a deviation from standard profiles constructed without any intrusion and that 

the object being monitored is statistically distributed. 

We developed a general SPC intrusion detection approach and described it along with 

the source and the preparation of data used in this thesis. The approach included the 

source of the data and the preparation of data. From the data, we were able to extract 

sample data sets for various situations (e.g., idle/busy, attack/no attack), calculate event 

intensities for each situation and store these sample data sets in the data repository to be 

used in future research. 

Because the sample data had 60-second cycles, the sample data could not be used in a 

raw state. A regular batch mean (RBM) chart was used to remove the cyclic nature of the 

sample data. However, the RBM chart monitored the statistic only at the end of the batch, 

which was unsatisfactory; thus we developed the modified batch mean (MBM) charts that 

detect the signal or attack faster than regular batch mean chart. Based on the MBM 

concept, we developed the MBM Shewhart chart, the MBM Cusum chart, and the MBM 

EWMA chart and studied the performances of these new methods on simulated data.  
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The MBM Charts can be applied two ways, either by using actual control limits or by 

using robust control limits. The actual control limits must be determined by simulation, 

but the robust control limits require only the use of the recommended values. Three 

robust MBM charts were developed. The robust MBM Shewhart chart was developed on 

the basis of choosing appropriate values for batch size. The robust MBM Cusum chart 

and robust MBM EWMA chart were developed on the basis of choosing appropriate 

values for charting parameters. According to our simulation studies, the robust EWMA 

chart has the best detection time performance and its control limits can be easily 

determined. So the robust MBM EWMA chart is the one recommended for use.  

 

 8.2 FUTURE RESEARCH  

Intrusion detection holds many possibilities for the use of statistical methods, especially 

for SPC techniques that have been applied successfully to the service and manufacturing 

areas. We have focused mainly on how to apply the SPC concept to the IDS area by using 

a certain type of traffic data from BSM data. We can further investigate various data 

sources (e.g., TCPDUMP or sendmail) to see if there exists a better source that contains 

more information about traffic that can be read by a monitored system. This will require 

close collaboration between experts in statistics and in computer science. 

Currently, the maximum saving in detection time we can get from SPC charts with 

the MBM concept is only one batch size. This happens because the observed data are 

non-negative. When a cycle period is long and, therefore, a batch size is large, the 

savings in detection time can be significant for a large attack signal. However, when the 

batch size is small because of a short period, the effect will be probably negligible even 
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for a large signal. We will further investigate the MBM concept to see if it is possible to 

gain a savings of more than one batch size. It may be possible when the observed data 

cam be negative. However, the actual control limits need to be refined, which will affect 

the detection time. More research is needed to investigate the impact of such adjustments.  

Finally, it will be interesting to study guidelines for data preprocessing and the 

determination of control limits for the application of SPC methods to more general cyclic 

data. In this thesis, we assume that the cycle period and cycle peak are constants. 

However, these assumptions may not be true for data from other sources. It is possible 

that the data may have more than one cycle period or that cycle periods or cycle peaks 

may be random. 
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