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SUMMARY

In this dissertation, deterministic time-invariant finite-state
linear sequential machines of the Moore type are treated as discrete-
time control systems over the finite field GF(q). Adopting a modern
multivariable control theory appreoach and a finite-geometric point of
view, various structural aspects of linear machines are investigated.
In addition to presenting a mathematically formal account of the cen-
tral concepts of state reachability and state controllability, and
numerous equivalent formulations of these concepts, the relationships
among state reachability, structural invariants, canonical forms, and
state variable feedback are discussed. The concept of generalized
eigenvectors is utilized in the framework of the Jordanm canonical
form to formulate additional reachability criteria, and introduce and
develop in detail the notion of selective state reachability for linear
sequential machines., State reachability is further studied in the con-
text of the finite projective geometry and certain classes of flats
related to the structural properties of linear machines are identified,
some of their applications are demonstrated, and algorithms for their
computation are discussed. Finally, the concept of state observability
is investigated and its relationship to state reachability is established
through a dvality theorem. The role of the observability property in
the state reconstruction process is illustrated by developing some
design procedures for full- and reduced-order Luenberger type state

observers for both single- and multi-input linear sequential machines.



CHAPTER I

INTRODUCTION

The past decade has witnessed a phenomenal proliferation of
mathematical disciplines concerning models for digital cybernetical
systems, that is, systems which receive, store, process, and discharge
information under the control of a clock pulse. The unifying infra-
structure for the majority of these models is a composite mathematical
concept called a finite-state sequential machine ot automaton. A
general finite-state sequential machine is an idealized model for a
large number of physical devices and phenomena encountered in many
fields of science and technology. This Important branch of dynamical
systems theory has found numerous applications in practically every
area of scientific and engineering investigation - from psychology to
business administration, and from communication to linguistics. Ideas
and techniques originally developed for sequential machines have been
found useful in such diverse and seemingly unrelated problems as the
investigation of human nervous activity, the analysis of English syntax,
and the design of digital computers. Moreover, due to its unifying
nature, this class of dynamical systems is undoubtedly one of the most
valuable contributors to the growing trend in interdisciplinary coopera-
tion which is becoming exceedingly indispensable for the progress and
efficient utilization of today's scientific and technological endeavors

and innovationms.



1.1. General Finite-State Sequential Machines

A finite-state sequential machine M is a quintuple M =

(X, U, ¥, ¢, n), where

X = {xl, x2, e ey x>} is a finite nonempty set of states,
_ 1 2 b, . . .

UH=z{u,u, ... ,u } is a finite nonempty set of inputs,
_ 1 2 cy ., .

Y={y,v, ..., v I is a finite nonempty set of outputs,

¢ is a map from X x U into X, called the next state mop, and

n is a map from X x U into Y, called the output map.

Physically M can be interpreted as a device whose input, output,
and internal state at "time" (clock period) k are denoted by u(k), v(k),
and x(k}), respectively. These variables are defined for discrete--and
for convenience, integral--values of k only, and assume values from
the finite nonempty sets U, V, and X, respectively. Given the state
x(k} and input u(k) at time k, the map ¢ specifies the state at time

k + 1, and the map n the output at time k as follows:

x{k + 1) $(x(k), u(k)) (1.1.1)

n

1

y{(k) nix(k), u(k)) {(1.1.2)

The application of a sequence of £ input symbols (or an input sequence
of length £) to M results in a sequence of states (or state sequence)
and a sequence of output symbols (or an output sequence) of the same
length. Given an input sequence i, the state of M when 3 is applied
(the initial state of M) and the maps ¢ and n, the corresponding state
sequence ¥, and the output sequence ¥ can be computed recursively from

equations (1.1.1) and (1.1.2).



A general representation of a sequential machine is shown in Fig. 1.1.1.

i L nX xU) =Y
Input Combinational '; Output
> Logic >
Present state Next state
X $(X x )
e Memory <

Fig. 1.1.1. General Mealy Representation of a Sequential Machine

A sequential machine of the above description is called a Mealy
machine, named after G. H. Mealy who studied machines of this general
type in [78]. A modification of Mealy model, which is frequently
encountered, defines the output map n as restricted to a map of X into
Y, that is, the output of the machine is dependent only on the state
of the machine. This model is called a Moore machive, named after
E. F. Moore [82] who gave a more abstract formulation and started the
formal study of sequential machines which were initially introduced by
Huffman [55]. These two sequential machine models provide a means for
representing the formal properties of any deterministic machine. It
can be shown that these representations can be converted from one to
the other with certain trade-offs {12]. Fig. 1.1.1 and Fig. 1.1.2

illustrate the main features of these machine models.



X Combinational
Memory
Logic
Next State Present State
p(X x W) X
U Combinational
Input Logic

Fig. 1.1.2. Moore Model of a Sequential Machine

The characterizing maps ¢ and n of a machine can be explicitly
specified in a number of ways. In certain cases it may be possible to

give them as compact mathematical expressions such as

Ax(k) +

]

p(x(k), uk)) Niui(k)x(k)

™8

i=1

It

n(x(k), u(kK)) = Cx(k)

where, for example, the states, inputs, and outputs are n-, m~, and
r-vectors, respectively, and A, Ni’ i ¢ m, and C are matrices of
appropriate dimensions with elements over a certain finite field, say
GF{q) {(Galeois field), such that the machine operations are compatible
with the properties of the ground field.

Two other conventional methods of describing the characterizing
maps ¢ and n of M are by means of state transition graphs and transition

tables. A transition graph is a labeled oriented graph which has one



vertex for each state of M, and one edge for each state input pair of
M. For example, consider the sequential machine represented by the

following state transition graph:

Fig. 1.1.3. A Simple State Transition Graph

i j b
In this graph, an edge directed from X" to x3 having the label ua/y

P s . s e i . a .

indicated that when the machine is in state x7, an input u will pro-
b . . 3

duce the current output y and will result in the next state x°.

For the sequential machine represented by the state transition

graph of Fig. 1.1.3, we have the following characterizing sets and maps:

X = {xl, x2, x3, xd}

U= {u, v’}

y = {yl, v, y3}
¢(xl, ul) _ X4 n(xl, ul) _ y3
¢(xl, u2) g~ n(xl, uz) = Yl
¢(x2, ul) - X n(xz, ul) = yl
¢(X2, u2) - %7 n(xz, u?) = y2
¢(x3, ul) -~ n(x3, ul) = y2



03, 62 = % nx3, W) = y?
1

¢(x4, ul) = %3 n(xa, u) = y2
Z

¢(x4, u2) = x4 ”(X4a u) = Y3

The format of a general transition table is shown in Fig. 1.1.4.

x{k+1) y(k)
1
x(k) u(k)! u u2 . e u’ ul u2 e ut
1
x (k) Entries Entries
xz(k) from X from ¥

x (k)

Fig. 1.1.4., General Transition Table

As an example, we will show the transition table of the sequential machine

represented by state transition graph of Fig. 1.1.3, as follows:

x(k + 1) y (k)
x{k) u(k) ul u2 u1 u2
1 4 2 3 1
x e X v v
2 2 3 1 2
X X X y v
3 2 4 2 3
X X X y v
4 3 4 2 3
x X x y y

Fig. 1.1.5. Transition Table for Machine of Fig. 1.1.3



Gill [38] describes a large variety of situations that lend

themselves to representation by the basic finite-state sequential model.

1.2. Linear Finite-S5tate Sequential Machines

A small but extremely important subclass of sequential machines
results when the next state and output maps, ¢ and n, are assumed to be
linear, that is, if we assume that there exist, for each k, four CF(q)-

homomorphisms

Alk) : X+ X
B{k) : U~ X
(1.2.1)
Ck) +: X >V
D{k) : U=+ Y

such that state transitions and outputs are given by the following

vector difference equations:

1l

x(k + 1) AG)x(k) + B(k)u(k)

y(k)

(1.2.2)

C(k)x(k) + D(k)ulk)

In (1.2.1), X is the state space, U is the input space, and Y is the
output space of the linear sequential machine (1.2.2). If we restrict
ourselves to finite-dimensional vector spaces over a finite field GF{q),
then the homomorphisms (1.2.1) are simply matrices of appropriate dimen-
sions over GF(q), and (1.2.2) is called a finite-sgtate linear time-
varying sequential machine. Furthermore, if the characterizing matrices
of (1.2.2) do not depend on the "time" k, then the linear sequential

machine is said to be time-invariant and is described as follows:



x(k + 1) Ax(k) + Bu(k)
(1.2.3)

Cx(k) + Du(k)

y(k)

or, for the sake of notational simplicity, as (A, B, C, D). If GF(q)j
denotes the vector space of j-component vectors and GF(q)ixj'the vector
space of 1 x j matrices over the field GF{q), then at time (clock period)
k, x(k) € GF(q)n is the state, u(k) ¢ GF(q)m is the input, and y(k) ¢
GF(q)r is the output of the machine (1.2.3). Moreover, A ¢ GF(q)nxm,
B e GF()™™, ¢ ¢ 6F(q)™™™, and D & GF(q) ™.

In analogy with the classification of general sequential machines,
the linear sequential machine (1.2.3) whose output depends on both the
state and input, is called a Mealy linear sequential machine. However,

if the output of a linear sequential machine depends only on the state,

then it is called a Moore linear sequential machine, and has the form

x(k + 1) Ax(k) + Bu(k)

(1.2.4)
Cx(k)

K

y (k)

Example 1.2.1. Consider the following single-~input, single-

output Moore linear sequential machine over GF(2):

r hY s ht b
Xl(k + 1) 1 1 1 1 xl(k) 1
XZ(k + 1) 0 1 0 0 xg(k) 0
= + ulk)
x3(k + 1) 0 0 0 1] [x.(k) 0
3
%, (k + 1) 0 0 1 0 x, (k) 1
L 4 J FE 4 J J

y(k) = %, () + %, (K)



The state set, the input set, the output set, the state graph, and the

transition table for this linear machine are shown below.

(o] {1} (1) (0] f1) (o] (o) (1 (0“ (@) (1] (o fl} (0 ’1} 1
ol lo} jo| [o| {o| jo! lo} to; |1] f1] [2]| |1 (1] (1] (1] |1

O (0 1| (1] (0] ;0 1{ (1| |0 1, (0 0 1f 1} 10 1

of 11} (1) loJ lo) 1) ) (o) |1} loJ (o) lo) \1) (1) |1) lo

1/0

Fig. 1.2.1. State Transition Graph for the LSM of Example 1.2.1
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x(k + 1) y (k)

x(k) u(k) 0 1 0 1
x (k) = [0, 0, 0, 0]" [0, 0, 0,01 11,00, 11" [l o | o
x2() = [1, 0, 0, 11" 0,0, 1,0° |,o0,1,1" ol o
(k) = [1, 0, 1, 117 1,0,1, 117 | 10,0, 1,01" [l o | o
x*(k) = [0, 0, 1, 0" 1, 0,0, 11 | f0,0,0,01F | o] o
x°(k) = [1, 0, 0, 0]" 1, 0, 0, 017 | [0,0,0, 117 || 1 | 1
L&) = [0, 0, 0, 117 1,0, 1,01 | [0,0,1,11% | 1] 1
x' (k) = [0, 0, 1, 11" 0,0, 1, 11" | [2,0,1,0F Il 1] 1
20 = 1, 0, 1, 01" ,0,0, 117 {[,0,0,07% ! 111
k) = [0, 1, 0, 11" [0, 1, 1, 01 |, 1,1, 117 |lo{ o
%= 10, 1, 1, 017 0, 1,0, 117 | [1,1,0,017 || 1] 1
= 11, 1, 0, 017 0, 1,0,01" 1, 1,0, 117 [0 o
«2(k)= [0, 1, 0, 01" 1, 1,0,01T |10, 1,0 ¥ |1 1
x3a)=[1, 1, 1, 117 0, 1,1, 117 |, 1, 1,0T |l 1| 12
o= [0, 1, 1, 117 [, 1,1, 1% | 00,1,1,07% o | o
<20y = [1, 1, 0, 117 [, 1, 1,0 lv,1,1,11° i|1] 1
«Cay= 11, 1, 1, 017 [1, 1, 0, 11° | [0, 1, 0, 01" uo 0

1

Fig. 1.2.2. Transition Table for LSM of Example 1.2.1

A linear sequential machine can always be realized by using
three primitive components over GF(p), namely, modulo-p adders, modulo-p
scalers, and unit delayers. The number of delayers in an LSM is called
the dimension of the LSM. Scalers with O and 1 signify an open con-

nection and a closed connection, respectively. Thus, an LSM over GF(2),
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a binary machine such as the LSM of Example 1.2.1, consists of adders
module 2 which are commonly known as EXCLUSIVE-OR gates. In general,
for any given LSM M = (A, B, C, D) an electronic circuit can always be
constructed which simulates the operation of the machine. Conversely,
for any meaningful interconnection of a finite number of primitive
components over GF(p) representing the cperation of an LSM, we can
always write down the describing state and output equations of the LSM,
A realization circuit for the LSM of Example 1.2.1 is shown in

Fig. 1.2.3.

o7 ¢ 7 ¢ !
7 . 1 < K
T T A

Fig. 1.2.3. Realization Diagram for the LSM of Example 1.2.1

Summary and Conclusions

For the sake of an overall comparison, in this introductory
chapter the general finite-state sequential machine model and the

special class of linear sequential machines were briefly described.
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CHAPTER II

LITERATURE SURVEY AND STATEMENT OF THE RESEARCH PROBLEM

The primary objective of our research is to examine the role
of modern linear multivariable control systems theory in the study of
linear sequential machines. In keeping with this objective, we will
be primarily interested in the survey and assessment of published and
otherwise available results concerning the nonautonomous LSM models.
Although the class of autonomous LSMs as the prototype model of general
LSMs is of paramount importance in its own right, it will not be given
any appreciable consideration in our literature survey since the study
of this class does not involve any control concepts and essentially
belongs to the realm of recurrence sequence theory over GF(q). More-
over, certain aspects of it can be treated as special cases of the

general nonautonomous model.

2.1. Literature Survey

The first treatment of linear sequential machines was presented
by Huffman [57] in 1955. He considered the analysis and synthesis of
LSMs comprising unit delays and modulo-2 adders, and briefly considered
also modulo-3 elements. Shortly following this initial work, Elspas [32],
Friedland [33], and Hartmanis [50] extended Huffman's ideas in several

directions and to more general cases.
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Elspas [32] considered autonomous LSMs, that is, LSMs with no
inputs, and investigated the relation between internal machine logical
structure and sequential behavior (cycle structure) for all possible
cycle lengths in general, not merely for maximal cycle lengths. Further-
more, the class of internal machines treated by Elspas was not limited
to shift registers with feedback, but included arbitrary interconnections
of delay elements and the linear logic element. Finally, he generalized
the binary situation to that of a multivalued p-mnary logic, where p is
any prime interger, as suggested by Huffman [57]. The results obtained
by Elspas included an analysis procedure for autonomous LSMs which
could be used to derive the sequential behavior analytically from a
knowledge of the logical structure, realizability criteria, a class of
canonical realizations, and effective synthesis procedures for finding
economical realizations of LSMs.

Simultaneously and independently, Friedland [33] and Hartmanis
[50] also generalized Huffman's results to autonomous LSMs comprising
it delays and modulo-p elements. They also investigated some prop-
erties of delay polynomials and their application in developing reali-
zation procedures for simple LSMs.

Many different aspects of autonomous LSMs have later been
studied by other authors [14], [16], [34], [39], [40], [43], [46], [541,
(671, [731, [74], [89], [93], [102], [103], [120].

Due to their wide range of applicability, autonomous LSMs have
been extensively studied. These LSMs can be regarded as special devices

which independently generate sequences of symbols, rather than transform
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externally applied sequences. The study of autonomous LSMs, therefore,
is also the study of the important class of LSMs employed as "sequence
generators' which are extensively utilized in coding and other digital
tasks. Furthermore, the study of autonomous LSMs is an essential step
in the evaluation of the total response of nonautonomous LSMs.

In an attempt to capitalize on the many theoretical and prac-
tical niceties associated with the property of linearity of sequential
machines, some efforts have been made to develop some systematic test
procedures for determining whether a sequential machine, given in the
form of a transition table, can be represented as an LSM. This problem
was initially considered by Srinivisan [100] and then expanded upon by
several other authors [16]}, [29], [51], [115}1.

The first treatment of certain aspects of LSMs from a modern
control theory point of view was given by Cohn [23] who investigated
the state controllability properties of LSMs and showed that Kalman's
controllability theorem for conventional infinite-state systems holds
also for the case of LSMs. 1In fact, this possibility was already
recognized by Kalman [60] as he noted the similarity between his
theorem and a theorem due to Moore [82]. Kalman's theorem dealt with
controllability and observability of linear differential systems, while
Moore's theorem was concerned with strongly connected automata and

" wrote Kalman, '"the two theorems

indistinguishable states. ''Evidently,'
are concerned with the same abstract facts, each being stated in a dif-

ferent mathematical framework." At any rate, Cohn was the first to

formalize the concept of state controllability for LSMs, More
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specifically, he showed that the LSM M = (A, B, C, D) is f-state con-
trollable, that is, there exists an admissible input sequence u(0) u{l)
.+ . u{f~1) that will drive the LSM from an initial state x1 to a

final state x2, if and only if the rank of the nxfm matrix [B, AB, AZB,

o ey Ae_lB] is equal to n. He also proved that for LSMs state con-
trollability coincides with strong connectivity. Furthermore, he pre-
sented a procedure for generating input sequences for controlling LSMs
in minimum time. Later in [25], the same author studied, in the spirit
of control theory, some additional properties of LSMs, namely, definite-
ness, finite memory, information losslessness, and observability which
he called diagnosability. Concerning the concept of observability, he
proved that the LSM M = (A, B, C, D) is f-observable, that is, every
initial state x(0) of the LSM can be uniquely determined from the know-
ledge of the outputs y(0), v{(1), . . . , v(£), if and only if the rank
of the nxfr matrix [CT, ATCT, (AT)ZCT, . e ey (ATf'_lcT] is equal to n.
Although the importance of the concepts of controllability and
observability for LSMs were emphasized and some areas of application
were indicated by Cohn [23], [25] and Cohn and Even [26], more concrete
examples of application as well as theoretical significance of these
concepts were actually presented by Massey and Sain [75], [76], and
Méssey [77]. These authors realizing the fact that the theories of
codes, automata, and continuous systems are intimately intertwined,
investigated the explicit interconnections and parallelisms existing

among these theories. Their results established and clearly charac-

terized some important relationships hetween the zero-state response,
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the zero-input response, controllability and observability of LSMs and
the classes of convolutional codes and cyclie codes which are the most
important classes of codes that have been found to date, and the problems
of burst correction, error detection, and error propagation for these
classes of codes. Their exposition provided explicit examples of the
resulting benefits accruing to each of these areas from the others,
indicating the advantages of an increased exchange of ideas among these
disciplines.

We would like to point out the fact that the central theme of
the work of these authors is obviously an exemplary reiteration of the
urgent need for developing a unified framework encompassing many of the
seemingly different disciplines of dynamical systems theory. Piloneering
efforts in this direction have already been made by Kalman [61], Arbib
f1]1, [2], and others.

More recently, Tzafestas [105], [1061}, [107] has investigated
some aspects of LSMs from a modern control theory point of view. In
[1065] he has developed output controllability criteria which are essen-
tially similar to those available for conventional linear systems, and
in [106] he has indicated a design procedure for a state observer for
LSMs. In an effort to indicate the possibility and desirability of
developing a unified and integrated sequential machine control theory,
Tzafestas [107] has briefly surveyed some techniques of modern control
theory applicable to some aspects of LSMs. More specifically, he has
considered the following aspects of LSMs which, due to their matrix-

theoretic nature, lend themselves to analysis and synthesis techniques
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similar to those originally developed for conventional linear systems:
state controllability, output controllability, observability, canonical
decomposition, minimization, identification, canonical state space
models, interconnections, minimal-time control, state reconstruction,
decoupling, and inversion.

Fourier and Laplace transform techniques, among others, provide
powerful analytic tools for the study of conventional linear systems.
It is conceivable that one might attempt to see if similar operational
techniques can be developed for LSMs., Such attempts have been made,
resulting into a number of transform methods for LSMs.

Hohn {531 has reported that in 1952, J. G. Tryon had invented
a delay operator for the study of synchronous digital wmachines. The
Tryon delay operator differs from that later introduced by Huffman [57],
in one essential respect. Tryon's method assumes a characteristic
inherent delay not less than zero in each type of logical element,
that is, these physical devices do not perform their logical operations
instantaneously. For example, if pulses are applied to the input leads
of an AND-element at time &, the output is not necessarily obtained at
time 6 but rather at time 6 + i, where 1 2 0 is what is called the
inherent delay of the AND-element. Tryon's delay operator specifically
recognizes this inherent delay and dictates algebraically the location
of such pure delay elements as are required to assure proper operation
of the machine. Huffman's approach is to assume that all logical ele-
ments act instantaneocusly, all delays being concentrated in suitably

located pure delay elements. Huffman's operator is in effect a special
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case of Tryon's in which the inherent delays of all logical elements
are assumed to be zeroc. Hohn [53] presented the mathematical develop-
ment of Tryon's operational method and illustrated its applicability
in the analysis and synthesis of synchronous linear and nonlinear
machines. Despite its generality and precedence, Tryon's method has
net been much used in the area of sequential machines. On the contrary,
Huffman's delay transform which is essentially an application of the
concept of generating functions to the analysis of sequences of sym~
bols, has been extensively used in the study of the special class of
quiescent LSMs, that is, LSMs whose initial state (at k = Q) is zero.
Quiescent LSM's are widely used as special devices which transform
input sequences into output sequences in accordance with some fixed
rule, which implies a fixed initial state-0 for convenience. There-
fore, the study of quiescent LSMs is also the study of the important
class of LSMs employed as 'sequence transformers.'

Huffman's delay transform (d-transform) 1s applicable to sequences
that are zero for k < 0. The d-transform G(d) of a sequence {g(k)} is
defined by the following expression

g(k)dk
0

G(d) =
k

It 8

Using this operational procedure, one can express the input-output
relation of an LSM in terms of polynomials in the indeterminate d,
called delay polynomials, and hence represent the LSM in terms of trans-

fer functions similar to those of the classical linear control systems.
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Therefore, some analysis and synthesis techniques from classical linear
control theory which are based on transfer function methods can be
easily modified and adapted to LSMs.

Although the d-transform seems to be very similar to the z-
transform of sampled-data systems, there are basic differences between
these two transforms. For example, the transform variable z in the
z-transform is a complex variable which can be given many meaningful
interpretations in the context of sampled-data theory, while the in-
determinate d in the d-transform is practically devoid of any useful
interpretations. Other dissimilarities obviously exist in relation to
the questions of convergence properties, transform pair properties, etc.

Another operational technique which has been developed for LSMs
is the Laplace-Galois transform introduced by Tsypkin and Faradzev [104].
With the aid of this transform method, one can introduce and utilize
some important classical control concepts such as transfer functions
and frequency domain characteristics for sequential machines.

Richalet [95], making use of the theory of Galois fields and
formal series, has introduced the fundamentals of an operational cal-
culus for the finite sequence space of finite fields and rings, and
has demonstrated its applicability to LSMs.

Richalet introduces his transform technique by associating a
formal series V(o) with an Infinite sequence {v(k)} ® of elements of

k=0
the field G¥F(q) by the following rule

8

{v(k)} - I
k=0 k=0 ¢
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o

and calls the formal series V(o) = I V(k), the discrete Laplace
k=0 Uk+l
transform modulo p of the sequence {v{(k)} ® . Then he investigates
k=0

gsome properties of the transform pairs analogous to the transform
properties of the ordinary Laplace transform, such as initial and final
value theorems, multiplication by the transform variable o, translation,
scaling, differentiation, conveolution, and inversion. Finally, he
briefly demonstrates the relevance of this operational technique to
some simple analysis and synthesis problems of LSMs.

Except for Huffman's delay transform, the other operational
procedures introduced for the study of LSMs, do not seem to have found

application in any appreciable extent.

2.2. Statement and Relevance of the Research Problem

In the past, certain important classes of problems such as
analysis and design of encoders and decoders, error detection, and
error correction in the area of ceding theory, computation in finite
fields, information and data transmission and storage, have been treated
largely by thecniques from the domain of automata theory which were
totally unrelated to the discipline of modern control systems theory.
However, fairly recent preliminary research has revealed the fact that
there exist many interconnections and parallelisms between these
theories which could be effectively exploited for the purpose of develop-
ing a unified framework for these and other related fields. This uni-
fication will, on the one hand, make some of the above-mentioned and

other classes of problems amenable to treatment by the methods of
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control theory and, on the other hand, provide valuable opportunity for
deriving additional results and insights from the cross~fertilization
of these two systems disciplines.

One of the areas of automata theory which has enioyed great
generality in modeling many physical phenomena in different areas of
science and engineering is the class of finite-state sequential machines.
A small but extremely important subclass of general sequential machines
is the special subclass of finite-state time-invariant linear sequential
machines whose mathematical representation is given by equations (1.2.3).
Linear sequential machines are of great interest for two important rea-
sons. First, these linear machines constitute a subclass of the class
of finite-state machines where powerful theories of finite groups,
rings, fields and other algebraic structures, and of linear vector
spaces can be exploited to advantage. As such, LSMs constitute a
link between the general sequential machine and the general linear
machine and offer insight into the operation of both. Furthermore,

L.SMs provide insight into the methods that may be used to decompose
complex machines into an interconnection of smaller machines. Secondly,
LSMs have found many applications in computer control circuitry, design
of digital control and communication systems, generation of linear
codes, synthesis of encoders and decoders, implementation of error
detection and correction codes, computation in the ring of polynomials,
computation in finite fields, counting and timing, generation of mini-
mum time test sequences, generation of pseudo-random sequences (for use

in the implementation of Monte Carlo programs, range measurements in
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radar, probabilistic experiments, etc.), and in other aspects of auto-
mata theory.

Certain aspects of LSMs have been studied in the context of
automata theory and rather superficially in the framework of modern
control theory. Im this research, treating LSMs as discrete-time
finite-state control systems and adopting a modern multivariable control
theory approach, we will investigate the possibility of developing a
fairly comprehensive structure theory for them. We will select the
dual concepts of reachability and observability as the pivotal com-
ponents of this theory. This is, of course, a natural choice since,
as 1t will be demcnstrated in the sequel, these concepts and their
extensions prove to be of enormous importance in various analysis and
synthesis aspects such as event synchronization and memory address
control in digital systems, minimal-time optimal control, decomposition,
noninteraction, disturbance decoupling, canonical representation, feed-
back shift register realizability, state minimization, identification,
feedback compensation, state reconstruction, inversion, and so forth.

As it was pointed out in the preceding section, the concepts of
concollability and observability for LSMs have been treated in [23],
{751, [77], [105], and [107] in a surprisingly superficial manner. In
fact, these treatments are so cursory in scope that not even in a single
one of them the crucial distinction is made between the properties of
reachability and controllability or between observability and recon-
structibility. In addition to performing an in-depth investigation of

these dual concepts and some of their ramifications in a state space
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setting, we will introduce the fundamentals of a projective-geometric
approach for the study and characterization of certain structural
aspects of LSMs. This new point of view is motivated by a number of
factors: first of all, the area of finite projective geometry has been
extensively developed, appears to be endowed with rich combinatorial
structures, and has found applications in coding theory. On the other
hand, 1SMs have been widely used in various phases of the coding pro-
cesg. Therefore, it is natural to expect that establishing some con-
nections between certain areas of LSMs and finite projective geometry,
and thus closing the underlying triangle of ideas, will contribute to
a more constructive conceptual and practical interplay among LSMs,
coding theory and finite peometries. Secondly, a geometric treatment
can provide a more general and elegant representational framework for
developing a structure theory for LSMs. Finally, the increasing pre-
valence of geometric ideas iIn the literature of conventional dynamical
systems suggests the desirability of similar geometric concepts in the
area of automata theory and, in particular, in the area of LSMs.

In more specific terms, the bulk of our research effort will
be devoted to the following aspects of LSMs: state reachability, state
contrellability, canonical forms, state feedback, output reachability,
selective state reachability, geometric state reachability, state
observability, and state observer design.

As advocated above, our approach will consist of modern control
theory in the framework of finite geometries. The motivation for this
deviation from the conventional algebraic and combinatorial approaches

of automata theory is twofold:
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1. Research in the area of sequential machines has been
restricted primarily to state assignment and coding,
state reduction, decomposition, and design of physi-
cally realizable models. We hope that a new lock at
LSMs through modern control theory will open up new
vistas of theoretical and applied research in the
field of sequential machines.

2. The results obtained by adopting a control-thecretic
approach to investigate LSMs will further contribute
to the development of a more unified framework for

automata theory and control theory.

Summary and Conclusions

In this chapter, a fairly comprehensive literature survey was
reported. Due to our primary interest in examining the status of
linear machine control theory, the survey was mostly restricted to the
area of nonautcnomous LSMs.

In the course of the literature survey it was readily revealed
that although certain aspects of LSMs were investigated in a fragmen—
tary and superficial manner from a modern control theory point of view,
no attempt towards developing a coherent linear machine control theory
had ever been made. This fact coupled with the enormous importance
of LSMs and the anticipation of initiating a constructive interplay

between automata theory and control theory seemed to provide ample



25

justification for embarking upon a systematic investigation of LSMs
from the standpoint of modern multivariable control theory. Conse-
quently, a research plan was formulated and a precise statement of the

research problem was presented.



26

CHAPTER III

INTRODUCTION TC LINEAR SEQUENTIAL MACHINES

For the purpose of establishing consistent notation and ter-
minology, most of this chapter will be devoted to a brief review of
the basic concepts and definiticons pertaining to nonautonomous LSMs.
For slightly more comprehensive treatments, the references [14], [46],
and [49] may be consulted. The discussion of formal polynomials over
GF(q) and formal polynomial representation of LSMs is intended to point
out the real possibility for the development of an extensive linear
machine theory which will incorporate state space and formal poly-
nomial concepts simultaneously in a unified framework without resorting

to any operational transform technique.

3.1. Mathematical Description of Finite State Sequential Machines

befinition 3.1.1. (cf. [60]) A deterministic sequential machine

M is a composite mathematical concept specified by an octuple M = (K, X,
u, v, u* vY*, ¢, n), where
{1) K is the time (clock period) set which is the ordered
Abelian group of intepers.
{2) X is the state set.

(3) U is the set of input symbols.



(4)

(5)
(6)

(7
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Ux = {u : K — U} is the set of all admissible input maps,
that is, sequences . . . u(=1) u(0) u(l) . . .; u(k) € U,
and satisfies the following conditions:
(a) (Wontriviality). U¥* is nonempty.
(b) (Concatenaﬁion of ioputs). An input string u(kl)
u(kz). . . u(ki) is a uy e U* restricted to {kl, k2,
. ki} n K. 1If u, G e U*, then there exists a
u'" e U* such that u"(kl)u"(kz). .. u"(kr) =
u(kl)u(kz). . . u(kr) and u”(kr+l)u"(kr+2).
) I u'(ks), where

r+2

k. <k <k, k, ¢ K ¥i.
1 T s i

u"(ks) = u'(kr+l)u'(k

Y is the set of output symbols.
Vx = {y : K — YV} is the set of output maps, that is,

sequences . . . y(-1) y(0) y(1). . . ; v(k) e VY.

¢ is the state transition map ¢ : K x K x X x U*¥ — X

whose value is x(k) = ¢(k, k,, x(ko), u) € X resulting at

0

clock period k € K from the initial state x(ko) e X at

initial clock peried kO £ K under the action of the input

sequence u £ U*. ¢ has the following properties:

(a) (Direction of time). ¢ is defined for all k;zko,

0; k, ko e K.
(b) (Consistency). ¢{(k, k, x, u) = x ¥ ke K, ¥ x ¢ X,

but not necessarily for all k < k

and ¥ u g Uk,
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{c) (Group property)}. For any kl, k2’ k3 ¢ K such that

kl < k2 < k3, we have ¢(k3, kl, X, u) =
¢(k3, kZ’ ¢(k2, kl’ X, u), u) ¥ x ¢ X and ¥ u ¢ U%,
(d) (Causality). wu, u' ¢ U*, u(kl) u(kz). .. u(kr) =
u'(kl) u'(kz). . . u'(kr) _— ¢(k1, ko, X, u) =
¢(kl, ko, x, u').
(8) n is the output (readout) map n : K x X x U* ~—— V¥ which
defines the output value y(k) = n(k, x(k), u) in state
x(k) & X at clock period k ¢ K. The map {ko, kl, .
kr} —+ ¥ given by ¥ F-+ n(E, ¢(E, kO, X u), u), is an
output string, that is, the restriction y(ko) y(kl).
y(kr) of some y ¢ ¥Y* to {kO, kl, e ey kr}.

Definition 3.1.2. A sequential machine M = (K, X, U, Y, u*, v*,

¢y, n) is time~irvariant if and only if
T

(a) U* is closed under the shift operator ¥ tu — u'

defined by u'(k) =z u(k + k') ¥ k, k' ¢ K and ¥ u, u' ¢ U*,
() 6k, k', x, u) = o(k + 2, k' + &, x, V" u) ¥ 2 ¢ K.

(¢) The map n(k, -, =) : X x U*x —s V is independent of k.

3

From the above definition it follows that for time-invariant
machines the state transition and output maps assume the following

simpler forms:

YooK x Kx UF — X, (kl,;c,u) — 4G5 0, %, w)

VoK x U — ¥V, (x, u) b n(0, x, w)

since we know that for all choices of ko e K, ¢(kl, ko, ;, u) =
k

y -

¢(kl - ko’ X, V 0 w) and nk , %, u) = H(Q, u).
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Definition 3.1.3. A sequential machine M = (K, X, U, ¥, U*,

v*, ¢, n) is finite-dimensional if and only if X is a finite-dimensional
linear space; M is finite-state if and only if X is a finite set.

Definition 3.1.4. A sequential machine M = (K, X, U, ¥, U¥,

Y* 4, n) is linear if and only if
(a) X, U, U*, ¥V, and Y* are vector spaces (over a given
arbitrary field F).
(b) The map o¢(k, ko, +, *) : X x U* — X is an F-homomorphism

for all %, kO e K.

(c) The map n(k, =, =) : X x U¥ — V¥ is an F-homomorphism
for all k ¢ K.

A special class of sequential machines will constitute the
central subject of our ipvestigation. The members of this class are
assumed to be deterministic, finite-dimensional, finite-state, time-
invariant, and linear. To give a precise description of this class of
sequential machines, we will formally transliterate the preceding quali-
fications into the language of Definitions 3.1.1 - 3.1.4 as follows:

K = time (clock period) set = set of integers;

= state space = GF(q)n = finite vector space of n-tuples
over the Galois field GF(q):

i = set of input values = GF(q)m;

U*= input space = set of arbitrary maps u : K —> U, that is,

arbitrary sequences . . . u(-1) u(0) u(l) . . ., u(k) e U;
Y = set of output values = GF(q)r;

y*= output space = set of arbitrary maps y : K — V;
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$ = state transition map K x X x U¥ — X given by (k + 1, k,
x, u) fm—+ ¢k + 1, k, x, u) = Ax(k) + Bu(k), where A and
B are GF(g)-homomorphisms : A : X —> X, B : U ~— X;
n = readout map X x U* — V given by (x, u) Fv—+ n(x, u) =
Cx(k) + Du(k), where C and D are GF(q)-homomorphisms : C
X— Y, D:U-—Y.
We will usually not make a distinction between (A, B, C, D) as
a quadruple of GF{(q)-homomorphisms or as a quadruple of matrices over
GF(gq) representing these homomorphisms with respect to a given basis of
the underlying finite vector space over GF(q).
For the purpose of future reference, we will summarize the
above conventions in the following definition.

Definition 3.1.5. A deterministic, linear, time-invariant,

finite-state, n-state, m—-input, r-output sequential machine is a dyna-
mical object whose behavior evolves according to the vector difference

equations

1l

x(k + 1) Ax(k) + Bu(k) (3.1.1a)

y(k) Cx(k) + Du(k) (3.1.1b)

where at clock period k, x({k) = GF(q)n is the state, u(k) ¢ GF(q)m is
the input, and y(k) e GF(q)r is the output of the machine. Moreover,

nxn’ B e GF(q)nxm, C e GF(q)rxn, and D ¢ GF(q)rxm'

A & GF(q)
The defining equations (3.1.1) can be equivalently represented

in component form as
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n m
(k+1) =z a,, x,(k) + Z b,, u.(k), 1 3.1.2
%, ( ) = iy xJ( ) 2 i uJ( ) en ( a)
i= j=
el m
k) = I + i 3.1.2b
¥ p (k) 3 CEij(k) jil dgj“(J)’ £Ler ( )

where aij’ bis’ ng’ de e GF(q), i, j € n, s e m, & e r, are elements
of the matrices A, B, C, and D, respectively.

Since in the sequel we will be concerned exclusively with a
machine of the type (3.1.1), for the sake of linguistic and notational
simplicity it will be referred to as a linear sequential machine (LSM) -

other qualifications being understood and generally not explicitly

mentioned - and denoted by (A, B, C, D).

3.2. Interconvertibility of Mealy and Moore LSMs

In LSM (3.1.1) we observe that the current ocutput depends on
both the current state and the current input of the machine. This type
of LSM is called a Mealy machine. On the other hand, if in (3.1.1)

the matrix D = 0, that is, if the LSM is described by the equations

x(k + 1)

Ax(k) + Bu(k) (3.2.1a)

vy (k) Cx(k) (3.2.1b)

then it is called a Moore machine which is a state-output device whose
current output depends only on its current state. Having lost the

ability to consult the input in determining the output, it might seem
that a Moore LSM is more limited than a Mealy LSM. However, it can be

shown [12] that any Mealy machine can be simulated by a state-output
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machine of the Moore type and vice versa. This interconvertibility
property is true for any general Mealy and Moore machines. To see the
conversion prcedure for the case of LSMs, consider a Mealy LSM M =

(A, B, C, D), and let

- y (k~1) - ~
x(k) = » ¥(k) = y(k-1), and u(k) = u(k)
x(k)

Then the LSM M = (A, B, C), where

is of the Moore type. Comparing the LSMs M and ﬁ, we notice that ﬁ
has more states than M, and will always be one clock period behind M,
In other words, to each state x of M there corresponds a state ; of ﬁ
such that the string of outputs that results by feeding a given string
of inputs into M started in state x and into ﬁ started in state ; will
be just the same, except for a unit delay in the output of ﬂ.

In a similar manner, a Moore machine M = (K, E,-E) can be con-
verted to a Mealy machine ﬁ = (ﬁ, ﬁ, 6, 6) by defining Q(k) = ;fk),
) =+, 0 = ak), Az4a, =3, ¢ = Ca, and D = CB.

From the above observations it is clear that there will be no
loss of generality if we consider only Moore LSMs. Therefore, in the

sequel we will study exclusively LSMs of the Moore type since our re-

sults, if desired, can be readily restated for LSMs of the Mealy type.
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In the sequel, we will have occasion to look specifically at a
single-input single-out Moore LSM which results from (3.2.1) when
b ¢ GF(q)n, u{k) € GF(q), c = GF(q)n, and y(k) £ GF(q), and has the

form

{l

x(k + 1) Ax(k) + bu{k)
(3.2.2)

ch(k)

1l

y{k)

3.3. Input-State and Input-Dutput Transfer Characteristics of LSMs

Given an initial state and an input sequence, the corresponding
state and output sequences of an LSM can be computed recursively from
equations (3.2.1a) and (3.2.1b), respectively. To see this, let x{0)
denote the initial state of the LSM at k = 0. Then applying equation

{3.2.1a) recursively, we obtain

x(1) = Ax{Q) + Bu(0)
x(2) = Azx(O) + ABu{(0) + Bu(l)
. k-1 )
x() = A% + & AL gug) (3.3.1)
j=0

In view of equation (3.2.1b), the output is given by

K k~1
y(k) = CAx(0) + I CA
j=0

k=3-1 5ui) (3.3.2)

Equation (3.3.2) is a general expression for the response of the LSM

M = (A, B, C), and is composed of two distinet parts: the term CAkx(O)
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is the autonomous (zero-imput) response and the convolution sum
k-1
k-9-
r ca®i7l
j=0
From the form of the signal response it is clear that the convolution

Bu(j) is the signal (zerc-state) response of the LSM.

k- , ,
factor CA lB is the weighting sequence (Kronecker delta response) of
the LSM.

In conjunction with the state transition and output maps,

equations (3.3.1) and (3.3.2) can be equivalently written as follows:

(x(0)
u({0)
$(x(0), w(®) u(@). . . ux-1) = [A¥ A* 8. . . 4B B] |uD) [(3.3.3)
u(£-1)
(¢ 0 0 . 0] (x(0)
CA CB ] . 01 lu(a)
n(x(0), u(0) u(l). . . u(e-1)) = | : : : S
cat 2 At catTis 0l lu(e-2)
a1 At % ot 3 ... eBllue-D)
" (3.3.4)

Some additional relationships among input, state, and output of
an LSM are given in the following theorem. The verification of these
relationships is straightforward and hence omitted.

Theorem 3.3.1. For each x, x' ¢ X, u & U*, d ¢ GF(q)

(8) o(x + dx', u) = &(x, w) + de(x"', 0*5W,

() n(x + dx', u) = n(x, u) + dn(x', 0°8W)

(c) n(x, u) = n(x,OEghn) + @, u)

(d) Let u, u' e U* such that fg(u) = 2g(u'). Then

$(x, u) = ¢(x, u') <= ¢(0, u) = ¢, u")
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Olg(u))

(&) #(x, uw) = ¢(x', uw) <—ox, 078y = 4(xr

3

Rg(u)) = n(x' qu'g(u)).

(f) n(x, uw =n(x', v) <= nx, 0 R

3.4. Indistinguishability, Isomorphism, Minimality, and
Similarity in LSMs

Definition 3.4.1. Let M and M be LSMs. The states x of M and

iy .o . . L
x of M are said to be f&-indistinguishable, and written x ~ x, if and

and only if n(x, w) = n(x, w) for all input sequences of length at most

%, where n and n are the output maps of M and M, respectively. The

states x and x are said to be indistinguishable, and writtem x n x, if

and only if n(x, w) = %(;, w) for all input sequences w; otherwise x

and x are said to be distinguishable. M and M may refer to the same LSM.
. From the above definition it is clear that for all £ < 21,

X ﬂ} x implies that x % %x. The relation n~ is clearly an equivalence

relation on X ¢ X, where X and X are the state sets of the LSMs M and

M, respectively.
1 2 .
Let x° and x be two arbitrary states of the LSM M. Then from

part {c¢) of Theorem 3.3.1 it follows that
1 1 i)
n{x™, u(0) u(l). . . u(t-1)) = n(x", 07) + n(0, u(0) u(l). . . u(-1))

and

nGxZ, w0 u(l). . . u(g-1) = 1(x%, 0% + 10, w(0) u(l). . . u(-1))

L2
which clearly show that xl v x  if and only if

nixt, of = nx?, o (3.4.1)

Therefore, we have the following result.
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Theorem 3.4.1. Two states of a given LSM are {-indistinguishable

if and only if they yield the same response to all zero input sequences
of length at most R%.

Using the expression (3.3.4), (3.4.1) becomes

Lx~ = Lx (3.4.2)
where
fc N
CA
_ 2
L = |CA (3.4.3)
CAE-l
From (3.4.2) it follows that
cal Litox?y = 0y = CAJ_lOX, jed

which implies that two states xl and x2 of an LSM M are distinguishable
if and only if their difference (xl - xz) is distinguishable from OX'
Clearly (3.4.2) is equivalent to L(x1 - xz) = (0 which implies

that

X'~ %% & N(L) (3.4.4)

Therefore, we have proved the following indistinguishability criterion.

Theorem 3.4.2, Two states of a given LSM M = (A, B, C) are

f-indistinguishable if and only if their difference is in the null

space of the linear map L given by (3.4.3).
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From (3.4.4) it follows that the set Eo of all states which
are indistinguishable from the zero state is the null space of L, that
is, EO = {xeX:x~n0}=NL) c X. The set EO is clearly a subgroup
of the additive Abelian group X and induces a coset partition on X
which can be given the following characterization:

Theorem 3.4.3. The cosets of the additive Abelian group X

induced by the subgroup Eo = {x e X : xn~n 0} are the equivalence
classes of X,
Proof. Two states xl, xz e X belong to the same coset 1f and

only if xl - x2 £ EO, hence 1if and only if xl - x2 g N(L), hence if and

only if L(xl - x2) = 0, hence if and only if Lxl = sz, hence by (3.4.4),

if and only if xl X

Theorem 3.4.4. Let M and M be LSMs. If states x of M and

x of M are indistinguishable, then ¢(x, u) = ¢(x, u) for all u e U¥*.

n{x, u'u)

Proof. Let u ¢ U*. Then n{$(x, u'), u) = n{x, u'u)

n(¢(x, u'), u). Hence ¢(x, u) = ${x, u).

[

(A, B, C) and M = (A, B, C) be LSMs

Definition 3.4.2. Let M

with state spaces X and k, respectively. A map a : X ——ﬂrg is said teo
be a homomorphism from M into ﬁ if a(e(x, u)) = é(a(x), u} and a(n(x, u))
= a(a(x), u) for all (x, u) ¢ X x U*. If such a map exists, then ﬁ is
said to be a homomorphic image of M. Furthermore, M is said to be
tsomorphic to ﬁ if there exists an isomorphism of M onto ﬁ, that 1is,

if a one-to-one relationship can be established between X and 2 in the
following manner: If a state x of M corresponds to a state ; of ﬁ,

then for every input u, Cx = 6; and the state Q = Ax + Bu in M corres-

A ~ ~ ~
ponds to the state X = Ax + Bu in M.
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Thus, if M and ﬂ are isomorphic, their state-output graphs are
identical except, possibly, for vertex labeling. Clearly isomorphic
LSMs are indistinguishable but not conversely.

Definition 3.4.3. An LSM M is said to be mimimal if and only

2
if xl " x2 > xl = x2 ¥ xl, x e X.

From the definitions of indistinguishability, isomorphism, and
minimality, the following results are immediate.

Theorem 3.4.5. Let the LSM M be indistinguishable from a mini-

v
mal LSM M of dimension r. Then no LSM indistinguishable from M has

dimension smaller than r.

Theorem 3.4.6. If M and M are indistinguishable and minimal

LSMs, then they are isomorphic.

Definition 3.4.4. The LSM M = (A, B, C) is said toc be gimilar

to the LSM M = (A, B, C) if there exists a nonsingular matrix P such

that A = PAP'l, B = PB, and C = cr L,

Theorem 3.4.7. 1f the LSM M = (A, B, C) is similar to the

LSM ﬁ = (A, é, 6), then
(a) x v Px ¥ xeX
(b) M is isomorphic to ﬁ
(c) M~ ﬁ
Proof. To show part (a), let u(0) u(l). . . u(g-1) ¢ U* andg

x £ X. Then

i} oy e S
n(Px, u(®u(l). . . u(i-1)) = CAPx + £ €A ?77 Bu())
i=0
_ _ £ 2-1 _ _ 2=-j-1
=cp teear™) Px 4+ @ cp i(parThy PBu(H)

3=0
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Since (PAP-l)n = PAnP_l for each positive integer n, we have
~ R PE | .
n(Px, u(Oyu(l). . . u(e-1)) = CA"x + I CA Bu(j)
j=0
= n(x, u(@)udl). . . u(f-1))

Thus x v Px.

Px. Then a : X —» X is one-to-one

I

To show (b}, let a(x)

and onto since P is invertible. By {(a)

n(x, u) = a(a(X), u) ¥ u g U*

ald(x, u')) a(Ax + Bu') P(Ax + Bu')

(PAP_I)PX + PBu'

It

Aa(x) + Bu'

%(G(X), u')

Thus M is isomorphic to M and hence M ~ M.
The relationships among isomorphism, indistinguishability, and
similarity, as applied to minimal and nonminimal LSMs, are summarized

in the following implication diagram:



40

Isomorphism

Minimality

Indistinguishability Similarity

Fig. 3.4.1. Isomorphism, indistinguishability, and similarity
relations for minimal and non-minimal LSMs.

3.5. Input-Output Representation of LSMs

The description of an LSM given by equations (3.1.1) is essen-
tially an internal description in the sense that the operational struc-
ture of the LSM in terms of the evolution of the state set is completely
specified, and the output of the LSM is generated indirectly via a
transformation of the state. However, there are many situations in
which the intermal structure of the LSM is not available and hence the
only access to the machine is by means of the input terminals and out-
put terminals. In such cases, the input—-output behavior of the machine

can be abstracted from a collection of input-output pairs obtained by
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feeding strings of inputs to the "black box" and observing the corres-
ponding strings of outputs. It is clear that even then the description
of the machine is not entirely free of the state since the response of
the machine to a string of inputs depends on the state of the machine
at the beginning of the period of observation and, in the case of time-
varyving machines, on the time at which the observations begin.

In order to give a precise input-output description of a
machine, we need to introduce a response map to serve as the link
between the inputs and the corresponding outputs of the machine. Ini-
tially, we will consider the general case. Let

b o KxUr =Y, (W bk, bk, ks k0, w)

ko,x

(3.5.1)

be the response map of the machine M = (K, X, U, ¥, u*, ¥*, ¢, n).
According to this input-output correspondence, the machine is started

0
in state x at clock period k an admissible input sequence is applied

O’

to obtain state ¢(k, k., xo, u) at clock period k, and then the map n

0
is applied to determine the corresponding output at clock perioed k.

Since for time-invariant machines (Definition 3.1.2.)

$ : Kx Xx Ux — X, (k, xo, u) fw"+ ¢(k, O, xo, u)

Nt Xk b — Y, (0, W = n(o0, )
and

o 0(k+i7_, VHEU) = p O(k, u) (3.5.2)

+
ko £.x kO,x
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t
where the shift operator Vk :u —> u' is defined by u'(k) = u(k + k")

¥k, k' ¢ K and ¥ u, u' € U*, (3.5.1) can be simply written as

oot Kx P — Y, (k w) = G0, =0, W) (3.5.3)
X

without explicitly indicating kO. That is, the initial clock pericd

can always be taken to be zero. Of course, p 0 is recoverable
0 kO, X
from p 0 for any ® & X by the equation
X
kO
P (k, u) = p 4 (k~k.,, V" u)
§] 0 4]
ko, X X

obtained from (3.5.2) by setting % = —kO.

Let 0, ¢ U denote the zero input and OV e ¥ the zero output,

U

and define the zero input map OU* e u* by the equation OU*(k) =
0u ¥ k ¢ K. Then a state xO £ X is called a zerc state of the machine

= > . i

M whenever p 0(k, OU*) OV ¥k 2 kO, k, kO e K. Since for a
k.y %

machine M it is pessible to have many distinguishable zero states dif-

ferent from the additive zero OX of the state space, we will assume

that M has at least one zero state and denote it by xe. If X has an

additive zeroc (, then the maps ¢ and n can be set up so as to allow

0.

the choice x8

If we fix upon OU’ OU*’ Oy, and xe, the map

D : K x U — ¥ (3.5.4)

is called the zerc-state responge of M started at kO’ and the map
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P g Kx X —V, (k, xo) f~’+ ) 0 (k, OU*) (3.5.5)
k ko, X

is called the zero-input response of M started at ko.

In fact the above particular response maps can be regarded as

special cases of an overall response map of M defined by
* 0 0
ot Kx Kx Xx U ——V, (k kg, x, u) = nlk, ¢k, ks x, u))

since {(3.5.1), (3.5.4), and (3.5.5) may be written as

0

P 0=D('skogx,'):KXU*—-—+V
k., X

0

0 *

P =p(+y, k., x, ¢) : Kx U" — VY
X XB 0

O!

and
pk0=p('s kos "y OU*):KXX'—"’V

respectively. Moreover, if we specify two clock periods kO and kl in K,

then we see that

k v, ) = ﬂ(kls ¢) o ¢(kls koa s *)

Now if we consider an LSM (A, B, C), then from the preceding
discussion and Section 3.3 it follows that
0 -1

y(2) = p 4u(0u(l). . . u(i-1) = ot 4+ p eatiTd Bu(i)
X 3=0
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where p 0(01) = CAQ'x0 is the zero-input response and eh (u(0)u(1).

x -1 g-i-1 X
u{f-1)) = r CA 3 Bu(j) is the zero-state response of the LSM. That
i=0
is,
'S
p O(U(O)u(l)- 4 . U(R_l)) = p O(O ) + po (U(O)U(l). . . u(l—l))
% X X
Consider the special unit-pulse sequence defined by
(k) =1, k=0
= 0, elsewhere
It is easily seen that any arbitrary sequence u(0)u(l). . . u{f-1) can

be expressed as a weighted sum of &8(k), that is,

u(k) =
h|

§(k-3) u(j), k=10, 1,. . ., -1 (3.5.6)
0

1=

In view of the properties of linearity and time-invariance of an LSM,
the zero-state response to the input sequence given by (3.5.6)} may be

written as

-1
(u(@u(l). . . vw(@-1)= 2 g(2=i) u(P) (3.5.7)

p
Ox =0

where g(%) is the unit-pulse response of the LSM, that is,

g(L) = g (io0. . . 0) = (3.5.8)

(CAQ_lB, 2 >0
X 0 2 =0

This result implies that the unit-pulse response completely specifies

the input-output behavior of an LSM started at state OX since knowing
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g, the response of the LSM to any arbitrary input sequence is just the
convolution sum given by (3.5.7). Therefore, the essential input-
output properties of an LSM with zero initial state are captured in
the special response sequence g which can be regarded as the input-
output operational model of the LSM.

In the next section we will see that the simple notion of the
unit-pulse response sequence makes it possible to describe the input-
cutput behavior of an LSM in terms of polynomials over GF(q). This
possibility seems to open up new potential avenues of research in

various aspects of LSMs.

3.6. Polynomial Representation of LSMs

If a polynomial £(£) in the indeterminate § is regarded as a
special algebraic object, then, in conjunction with formal power
series and realizable rational functions over GF(q), it is possible to
desceribe the input-output behavior of an LSM in terms of polynomial
matrices, that is, matrices with polynomial elements. We will show
that using this particular external description of L8Ms, a link can bhe
established between the state variable and the input-output represen-
tations without the use of any transform techniques. First, we will
review the polynomial representation of sequences over GF{q).

Consider the set § of all infinite sequences over GF(q)

S = {{s,, B se « v5 8 4. « J} ¢ s, € GF(q)} (3.6.1)

where only a finite number of the entries is nonzero, and let f, g & S.

Then f and g can be expressed as
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ISR . T, a, GF{q)
g =1{b,, b,,. + +y b ,. . .}, bi e GF{q)

f = g if and only if a; = b., i=0,1, 2,. . .. If we define addition

of two sequences f and g as

= + . e . b,
f+g {aO bo’ a, + bl’ } {3.6.2)

multiplication of a sequence f by a scalar c as

cf = {ca , ca ey CA 5. o o (3.6.3)
(o] m

1’
and multiplication of two sequences f and g as

- (3.6.4)

i
where ¢, = £ a,b, ., 1i=0, 1, 2,. . ., then it follows that the set
1 J=0 ] i-.]

S becomes a commutative ring.

let £ = {0, 1, 0,. . .}, that is, the second term is 1, and

all others are zero. Then from (3.6.4) it follows that (5)2

{0, 0, 1, 0,. . .}, and by an induction argument we get (E)2
{0, 0,. . ., 0, 1, 0,. . .}, where the first % terms of (g)2 are 0,
the (&+1)th is 1, and all later ones are 0.

Now consider any element { = {ao, aps. .- -

, . . s £
the ring S. Then in view of the definition of (£}, we can express f

as
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f=a{l, 0,. ..} +a40,1,0,. .. +...a1{0,0,...,0,1,0,.
o 1 m
f=a +at+ale)+ +a ()" (3.6.5)
a0 lg a2 £ . e . am £ .0,

This algebraic expression is called a formal poclynomial in the indeter-
minate £ and the set S = GF(q)}[f] of all such formal polynomials, the
ring of formal polynomials over GF(q). It is clear that the units of
this ring are polynomials of zero degree, where the degree of a poly-
nomial f is defined to be the index of the leading nonzero coefficient,
its only divisor of zero is 0, and its primes are polynomials irreducible
in GF(q)[£], where a nonconstant polynomial f is said to be irreducible
if there do not exist polynomials fl’ f2 in GF(g)[&] such that f = fle'
Another algebraic object related to the above description of a

polynomial is a formal power series over GF(q) in the indeterminate £,

which is an infinite sequence

g = {ao, 815 8, - .1, a; € GF(q) (3.6.6)

In view of the definition of (E)E, it follows that (3.6.6) can be

equivalently expressed as

2
g = a t a¢ + az(g) + ..

If we define addition and multiplication for infinite sequences of the
form (3.6.6) as in (3.6.2), (3.6.3) and (3.6.4), then it is easily seen
that the set of all formal power series forms a ring, denoted by
GF{q)[[E}], which contains the ring of polynomials GF{(q)[£] over GF{(q)

as a subring.
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The set of realizable rational functions with elements of the

form f =&

s deg g < deg h; g, he S, or

f=c + cl(g)_l + c2(€)_2 + ... c¢, e GF(Q)

also forms a ring and is denoted by GF(q)[(E)_l]. The units of this

ring are elements of order =zero, its only divisor of zero is 0, and
its only prime element is (E)#l. Clearly GF(q)[g—l} contains GF{q) &)
as a subring.

For our purposes it is extremely important to realize that a
formal polynomial is just an algebraic object completely equivalent to
a finite sequence of elements of GF(q), and it is not a function of a
complex variable. The uninterpreted symbol £ plays the role of a
"position marker." In fact, & can be interpreted as a linear mapping
describing the dynamics in the context of LSMs. Now we are in a posi-
ion to discuss the polynomial representation of LSMs. In Section 3.5
it was shown that the unit-pulse response given by

2
CA lB, £ =1, 2,.

gy = Py (100. . . 0) = 0 2 =0

X

completely specifies the input-output behavior of the LSM (A, B, C)

started at (0,,. Recalling the definition of formal polynomials, we can

X
express g(f) as an element of GF(q)[£] as

]

g(&) CBg + CAB(E)2 + CAZB(E)3 + .

It

cler_ + A + A%y + . . . )B

-1
CE(In - LA) B
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and as an element of GF(q)[(g)_l] as

g(L) = cB(e) " + CAB(@)-2 + CAZB(E)"3 + ...
scl (T +a@ T+ AN 4. L. 1B
-1
= C(eI - A) "B (3.6.7)

The expression (3.6.7) very clearly indicates the intimate relationship
between the state variable and polynomial representations of LSMs and
points out the possibility of merging these two approaches whose con-
structive interplay can result into a general and unified theory for
LSMs. The expression (3.6.7) unmistakably resembles the transfer
function matrix that represents the dynamical behavior of conventional
linear systems in the frequency domain. However, it should be emphasized
that in deriving (3.6.7) no operational transform technique was emploved
and it deoes not involve any complex variables, in direct contrast to

the transfer function matrix of conventional linear systems which is
obtained by using the Laplace transform in the continuous case, and the
Z-transform in the discrete case and hence involves functions of a com-
plex variable.

Considering (3.6.7) as a mapping

G(el_ - A B : eF@ (D) " X s er) ()T X !

the input-state and input-output pairs of the LSM (A, B, C) can be

related as follows:
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x(6) = (61_ - &) Bu(e)
and
y(&) = c(el - A" Bu(e)
- S e e @ 4 L e e
+ )™ a . ", Lt a,]CABu(&)
.. .+ (£ + an__l)CAn-z Bu(g)
+ ca™ 1 Bu(e)
where

n-1

a(E) = det(E1_-a) = (" +a O+ .. L ag+a

n-1

is the characteristic polynomial of A.

From the above brief discussion it is evident that an extensive
linear machine theory based on the theory of formal polynomial matrices
over GF(gq){&] can be developed, without employing any operational trans-
form techniques, which will parallel, in many respects, the works of
Rosenbrock [97], Wolovich {110}, and others in conventional linear

time-invariant dynamical systems.

Summary and Conclusions

We summarized in this chapter some essential definitions and
properties of nonautonomous LSMs which will be needed in the sequel.

Slightly more detailed discussions can be found in [14], [46], and [49].
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In Section 3.6 a connection was established between the state
variable and the input-output representations of LSMs by the use of
formal polynomials over GF(q)}. It was pointed out that this
approach can be utilized to develop an extensive linear machine theory
which will parallel, in many respects, the works of Rosenbrock {971,
Wolovich [110], and others in conventional linear time-invariant dyna-
mical systems. The idea underlying the formal polynomial representation
was originally used by Kalman [61] in his module-theoretic investigation

of linear systems.
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CHRAPTER IV

STATE REACHABILITY AND STATE CONTROLLABILITY OF LSMs

Qur primary purpose in this chapter is to present a mathemati-
cally formal account of the pivotal concepts of state reachability and
state controllability for LSMs. In order tc avoid excessive clutter
at the outset, we will keep the degree of detail to a minimum by rele-
gating to the subsequent chapters the discussion of implications,
extensions, consequences, and alternative formulations of the criteria

developed in the present chapter.

4.1. State Reachability of LSMs

Definition 4.1.1. A state x # 0, of the LSM M = (A, B, C) is
said to be reachable from the state KO e X if there exists an input
sequence u ¢ U* such that ¢(x0, u) = ;; if Lg(u) = ¢, ; is said to be
t-reachable from xo; M is said to be f-state reachable if every state
of M is f2-reachable from xO for at least one particular L. The
smallest such integer £ is called the state reachability index of the
LSM.

The above definition of state reachability may be simply re-

phrased as follows:

Definition 4.1.2. The LSM M = (A, B, C) is state reachable

L. 0 . .
from the initial state x ¢ X if and only if the state transition map

¢(x0, *) : U¥ — X is an epimorphism.
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To illustrate the concept of state reachability,

consider the state equation of a single-input LSM over GF(2) given by

xl(k+l)

xz(k+l)

o 0o
1 0
0 1

Lx3(k+l)J

1!

M

’xl(k)‘

xz(k)

x3(k)

(1

u(k)

From the state transition graph shown in Fig. 4.1.1, it is clear that

this LSM is 3-state reachable since starting in any one of the eight

states, any other state of the LSM can be reached in at most three

. ] - T
transition steps. For example, starting in state 5 = {1, 0, 1], state

1

i

2

|

3

and

so forth.

(0, 0, O]T can be reached by applying the input sequence 101, state

can be reached by applying the input sequence 100, state

[0, 1, O]T can be reached by applying the single input symbol 1,



Fig. 4.

1

1

.1,

[l

1

0 1
0y, 2 = x2 = |0, 3 = x3
0 0
1 1
0{, 6 = x6 = |1|, 7 = x7
1 0

State Transition graph for

the LSM of

0]
x4 = |0/,
1)
1)
x8 = |1
(1)

Example 4.1.1

54
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In Definition 4.1.1 the concept of state reachability is
defined for any arbitrary final state x ¢ X. However, if x = OX’ then
it is called state controllability which is made more precise in the

following definition.

A
Definition 4.1.3. A state x ¢ X of the I.S8M M = (A, B, C) is

said to be f-controllable if it can be driven from any initial state

xO ¢ X to the zero state 0, in exactly % time steps (clock periods),
X

that is, if there exists an input sequence u ¢ u*, 2g(u) = &, such

that ¢(x0, u) = 0,; M is said to be R-gtate controllable if every

X;
state of M is f-controllable for at least one particular £. The

smallest such integer £ is called the state eontrollability index

of M.

It is clear that the LSM of Example 4.1.1 is 3-state controllable
since from its state transition graph, shown in Fig. 4.1.1. it is easily
seen that any one of the seven states 2, 3,. . ., 8, can be driven to
the zero state OX = [0, O, 0]T in at most three steps.

In the following example we consider an LSM which is state

controllable but not state reachable.

Example 4.1.2. Consider the following state equation of a

single-input LSM over GF(2):

N

rxl(k+1)\ (0 1 0 fxl(k)‘ (1

xz(k+1) =10 0 1 X2(k) + |0 u(k)

LX3 k+1)) 0 0 OJ fB(k) 0]
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The state transition graph of this LSM is shown in Fig. 4.1.2. Clearly

this LSM is 2-state contrecllable but not state reachable.

(0 0 (1] (1

1 = xl = |1, 2 = x2 = |1, 3 = x3 = |1, 4 = x4 = 10|,
0 1) 1] |1
(0 (1] (0 1

5 = x5 = [0], 6 = x6 = {1y, 7 = x7 = [0}, 8 = x8 =
1 0 0] 0

Fig. 4.1.2. State Transition Graph for the LSM of Example 4.1.2



Example 4.1.3. Obviously there exist LSMs which are neither

state reachable nor state controllable. The state equation of such

an LSM is given below and its state transition graph is shown in

Fig. 4.1.3.

r hY r ht r b At
xl(k+1) 0 0 O xl(k) (1
xz(k+l) 0 1 0 xsz) + |0 ulk)
%4 (let1) 1 0 1)|%3(k) 0

(1) (0]
» 3 = x3 = ol, = x4 = |0},
1)
(0 (1) 1] (0]
5 x 1/, 6 = = 11|, 7 = x7 = |1], = x8 =
1 0 1) 0
Fig. 4.1.3. State Transition Graph for the ILSM of Example 4.1.3
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As Iindicated above, we are explicitly distinguishing between
the related concepts of state reachability and controllability since
these concepts in contradistinction to the case of conventional
continuous-time systems, are not identical for LSMs. Later we will
see that it is "easier" for an LSM to be state controllable than it is
to be state reachable, by showing that state reachability implies state
controllability but not conversely. This fact is illustrated by the
state transition graphs of Fig. 4.1.1 and Fig. 4.1.2 of the LSMs of
Example 4.1.1 and Example 4.1.2, respectively.

There is also another "connectedness" concept, originally
belonging to graph theory, that is sometimes used to characterize
certain structural properties of machines. This is the concept of
strongly state connectedness which, for the case of LSMs, turns out
to be equivalent to state reachability, and is defined below.

Definition 4.1.4. A machine M is said to strongly state con-

. . A " . .
nected if for each pair of states x and x of M, there exists an input

sequence u ¢ U* such that ¢(§, u)
The LSM of Example 4.1.1 is obviously strongly state connected
while that of Example 4.1.3 is not.
For the purpose of investigating the reachability and con-
trollability aspects of LSMs, we will need some additional notation

and a few auxiliary results which will be presented next.
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Let
(xo) - 0 °
X = {x : there exists a u ¢ U*, such that ¢$(x , u) = x}
0 0
= ¢(x , U*), the range of the map ¢(x , +) (4.1.1)
e( 0) .
ij = {x : there exists u(0)u(l). . u(j-1), u(+) e U, such that
s, w@u) . . . u(i-1) = %) (4.1.2)
( 0) ~
X£X = {x : there exists u(0)u(l). . u(j-1), 0 < j € £, such that
0 . )
d(x , w(D)u(l). .u(j-1)) = x}
£ e, 0 £ .
=0 )2y el (4.1.3)
j=0 j=0
0 w e, 0 oo Q
Lemma 4.1.1. X(x ) - u ng ) . U ng )
P 5=0 3
), e
Proof. Immediate from the definitions of XX 7° ij , and
0
x§x ). 1
0 0 Q
Lemma 4.1.2. Xéx ) E.XEX ) [ < xx)
0
Proof. Immediate from the definition of x;x ). 1

In order to illustrate the above notation, consider the LSM of

Example 4.1.1. Taking xo = x5
[ 0
5
) Z<lol, o,
{ 0 0

it

o

o

[L, O, l]T, we have



e, 5

(x7) _

XO -—<{
0

e, 5

) _

Xl = [l

e, 5
(x7) _
XZ

5
(x7)
XO

0\
e, 5
(x™) _ .
X3 = [0

5
Xix)=< 0

(1)
5
ng ) =< |0
(&
1)
(x°) [
X3 =< |0

60
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0
Lemma 4.1.3., 1If there exists an integer r such that Xif ) =
0
XEX ) for all r'> t, then
0 oo 0 0 r e, 0
x5 U XFX ) ok U XFX )
3=0 t i=0
o) )
Proof. Let x & v ij . Then x ¢ XSX for some integer s.
§=0
(XO) b e(xo) r e(XO)
If s < r, then X u o X so x £ u X, ; and if s » r, then
s — . ] - ]
j=0 i=0
0 0 r e, 0 r e, 0
X(X ) X(X ) c v XFX ) which shows that x ¢ u X?X_). Hence
s T T y=0 A §=0

0 &0
X Xr . The reverse inclusion is obvious. ]

Lemma 4.1.4. Let M = (A, B, C) be an LSM with a state xO g X

0 0
for which there exists an integer j such that X;X . X§il). Then
0 0
RN
! 0 _ a0
Proof. By Lemma 4.1.3 we need only prove that Xr = Xr'

for all r' > r. We will accomplish this by induction on j for r' =

% |69
X = X by hypothesis. Next suppose
r+1 r
0 0
x(x7) _ (x7)
r £+1

r+ j. Forr'=r+1, X

o) _ 6
that Xr = Xr' for r' = £. Now we want to show that

It is clear that

0
xéil) - ¢(x0, u£+l) _ ¢(x0, ur+l uﬁ—r)

Thus

X(xo)

0
(x) L~r
P41 X u

r+l °’

= ¢( )
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Also, ¢(x0, uluz) = ¢(¢(x0, ul), u2) for all u' ¢ Ur+l and u2 £ Uﬂﬂr

so that

0 0
Xéil) = ¢(X£X ), Uﬂ—r) by hypothesis

fl

0
(x7)
XE

0
= Xix ) by induction hypothesis [J
The results contained in Lemma 4.1.1 - Lemma 4.l1.4 are appli-
cable to general sequential machines and are not limited to LSMs.
However, we will make use of these general results for the study of
state reachability properties of LSMs.

Theorem 4.1.1. TFor the LSM M = (A, B, C) the set of states

reachable from the zero state OX in at most £ clock periods is the

range R(K) of the linear map

K(A, B, £) = [AE_IB, AE_ZB,. . ., AB, B] : uﬂ — X

That is,

(0.) _ a
£, X' s reat s, A%, . L, as, B])

Proof. First, we observe that a zero input leaves the zero
state OX unchanged since OX = AOX + BOX' This means that if a state
A
X can be reached from the zero state by applying an input sequence

u{0)u(l}. . . u(j-1) of length j < £, then Q can also be reached from

OX by first applying the input sequence OK_J, that is, a string of £-j
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successive inputs, each with value 0O, and then applying u(0)u(l). .
u(i-1). Thus, for all u(0)u(1). . . u(j-1) ¢ 1 and all £ > j, the

1.SM (A, B, C) satisfies

$(0ys w(@u(D). . - u(G-D) = 60y 07 w@u). L . u(5-1)
(Ox) e(0,)
That is, for the LSM (A, B, C}, X = X .
(0 £ £
Therefore, x ¢ )(’E if and only if there exists an input
sequence u(0)u(l). . . u(£-1) of length exactly £ such that
£-1 .
f = afo,+ s AT
j=0
u{0}
= a5, A%, . ., s, B u(l)
u(£-1)
(0, _ _
Clearly % e X, X raat s, at %, . .. 4B, B]) = R@®). D

The state reachability subspace R(K) ¢ X may be expressed in

the equivalent form

R(K) = R(B) + AR(B) + AZR(B) + . . . at 'Ry (4.1.4)

where AR(B) = {Ax : x € R(B)}. From this expression it follows that
R(K) is the smallest subspace of the state space X that contains the
range R(B) of the input matrix B. Another property that contributes
to the significance of R{K} in many structural aspects of the L3M

(A, B, C) is its dinvariance under A. To see that R(K) is A-invariant,

let z € R(K). Then z = Ax for some x ¢ R(K). But x ¢ R(K) means that
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X can be expressed as a linear combination of the columns of B, AB,

-1 . . .
Az B, so that AX can be expressed as a linear combination of

of the columns of AB, AZB,. b AEB. Since by the Cayley-Hamilton

.y

£ . . . .
Theorem, A~ can be expressed as a linear combination of the matrices

In’ A, Az,. . ey Az_l, then AEB can be expressed as a linear combina-
tion of B, AB,. . ., Az_lB. Therefore, Ax can be expressed as a linear
combination of the columns of B, AB,. . ., AE_lB. That is, z = Ax & R(K).

Thus AR(K) < R(K). We have thus proved the following theorem.

Theorem 4.1.2, The state reachability subspace R(K) < X of an

LSM (A, B, C) is the smallest A-invariant subspace that contains the
range R(B) of the input matrix B.
Theorem 4.1.3. Every state of the n~dimensional LSM (A, B, C)

reachable from the zero state OX can be reached in at most n clock

(0,) (0,)
periods, that is, Xn X = X X .
(Ox) (OX)
Proof. It is clear that for each integer r, X < Xr+l < X.
0 (0 ®,) (0y)
Thus, if for any r, Xr+1 # Xr ., we must have dim Xr+l > 1+ dim Xr
Now consider the chain of subsets
(o) (0, (0,) (0,)
X X c X X <. . .cX X o X X
o -1 = ="n =
00 (0 ©0 0
If X = X , then X = X by Lemma 4.1.1, and certainly
n n-1 n-1
(0} (0,) (0,) (0,) (0,) (0,
X X X X . If X X z X X , then we must have X X # X X #
n n n-1 0 1
(OX) (OX) (OX) (OX)
X2 2. . .7 Xn-l z Xn . But the dimension of Xj increases by

0

at least one at each step of this chain. Thus dim Xn = n. But
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(0,)
Xn X is a subspace of X, which itself is of dimension n. Hence
(0} (0,) (0,) (0,) (0y)
an =szdshmeXnX c X X EX,wehmean = X X .0

Theorem 4.1.4. The n-dimensional LSM (A, B, C) is state

reachable from the zero state 0X if and only if

rank [A° 1B, A" %B,. . ., AB, B] = n

Proof. The LSM (A, B, C) is state reachable if and only if

(0 0 (0
X=X or, since X = Xn by Theorem 4.1.3, if and only if
0,)
dim X = dim X
n
n = dim R([A" '8, A" %B,. . ., AB, B])
n = rank (A" 1B, A% 2%B,. . ., AB, B] 00

Corollary 4.1.1. A single-input LSM (A, b, cT) is state

n—lb n—2b

reachable if and only if the matrix [A , A s+ « +5 Ab, b] €

nxExn

GF(q) is nonsingular.

Corollary 4.1.2. 1If the characteristic matrix A of the LSM

(A, B, C) is diagonal with distinct elements, then the LSM is state
reachable if and only if the input matrix B has no zero rows.

Corollary 4.1.3. The LSM (A, B, C) is state reachable if and

T n-1
only if the matrix KK° = I A
j=0

n-j-1 n-j-1

BBT(AT) £ GF(q)n xn is non-
singular.

Proof. It follows from the fact that for any n x £ matrix Q,

rank Q = n <—= rank QQT = n, and Theorem 4.1.4. [J
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Corollary 4.1.4. The LSM (A, B, C) is £-state reachable,

£ < n, if and omly if rank [Aﬂ_lB, A£-2B,.

., AB, B] = n.
Proof. By definition, the LSM (A, B, C) is £-state reachable
~ A
if and only if for every pair of states x and x there exists an input

A A
sequence u e U£ such that ¢(x, u) = x, or

£-1

b=l AP su)
j=0
u{Q0)
b afo- s, A%, . L, a8, 8] u(l)
u(Z-1)
Q - AK; = Ku

Since Q - Azx can be an arbitrary vector v ¢ GF(q)n, £-state reachability
reduces to the condition that the vector equation Ku = v be solvable

for all v. Therefore, this condition implies that the LSM is £-state
reachable if and only if rank K = n. [

Corollary 4.1.5. Let the minimal polynomial of A be of degree

t £ n. Then the LSM (A, B, C) is f-state reachable for some £, if and

only if it is r-state reachable.

I 1R

al(}\)lx

Proof. 1If the minimal polynomial of A is fm(l) =
0

i
then by the Cayley-Hamilton Theorem
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and hence the columns of A°B are linearly dependent on the columns of
r-1 r-2 .
[A~ "B, A s+ + -5 AB, B] for all s = r. Thus, if K(A, B, s) has

rank n for any s, then K(A, B, r) must also have rank mn. []

Corollary 4.1.6. The LSM (A, B, C) is {~state reachable for

some £ < n, if and only if it is n-state reachable.

Proof. It follows from the fact that the degree of the minimal
polynomial of A does not exceed mn. [J

Using Theorem 4,.1.4, we can characterize the reachability

index Er {(Definition 4.1.1) of an LSM (A, B, C) as follows:

ﬂr = min{j : 1 £ j < n, rank[B, AB, AzB,. . ey AJ_lB] = n}

In view of (4.1.4), this integer can be equivalently described as
£ = min{j : 1< <n, R(3) + AR(B) + ARGy + . . L+ AR = x)

Theorem 4.1.4 provides a straightforward computational proce-
dure for checking the state reachability property of an LSM. However,
this criterion requires the calculation of the entire reachability
matrix K(A, B, n) which may not actually be needed. In many instances,
we need not calculate X(A, B, n) but only a matrix with a smaller num-
ber of columns. This claim follows directly from Lemma 4.1.4 and
Theorem 4.1.1. Therefore, restating Lemma 4.1.4 in terms of state

reachability matrices, we obtain the following result.



68

Theorem 4.1.5. If j is the least integer such that rank

K(A, B, j) = rank K(A, B, j+1), then rank K(A, B, £) = rank K(A, B, j)
for all integers £ > j, and j < min{n-r, n-1}, where r is the rank of
B and n is the degree of the minimal polynomial of A.

Corollary 4.1.7. (Simplified Reachability Criterion} If rank

B = r, then the n-dimensional LSM (A, B, C) is state reachable if and
only if rank XK(A, B, n-r+l) = n.

Corollary 4.1.8. 1TIf rank B = r, then the LSM (A, B, C) is

state reachable if and only if the matrix K(A, B, n-r+l) KT(A, B, n-r+l)
13 GF(q)n 0 is nonsingular.
Proof. It follows from Corollary 4.1.3 and Theorem 4.1.5. [J

Corollary 4.1.9. 1If rank B = 1 and the LSM (A, B, C) is state

reachable, then fC = fm, where fC and fm are the characteristic and
minimal polynomials of A.

Example 4.1.4. 1In order to illustrate the application of the
simplified reachability criterion of Corollary 4.1.7, consider the fol-

lowing state equation of a three-dimensional LSM over GF(3):

\ » X N
(xl(k+1) (1 0 1 x, (k) (1 2| fu, (0
x,(kt1) | = 10 1 1j{x, (k)| + |0 1

x3(k+1)J 0 2 0 \x3(k)J L ol uz(k)J

Since rank B = 2, we need to check XK(A, B, 2) = [AB, B]
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2 2.1 2
rank [AB, B] = rank [1 1 [ 0 1] =3
0 2,1 0

Hence the given LSM is state reachable.

4.2. State Unreachability of LSMs

In Theorem 4.1.2 it was shown that the state reachability sub-
space R(K) = R([B, AB,. . ., An—lB]) of the LSM (A, B) is the smallest
A-invariant subspace of the state space X, that contains the range
R(B) of the contrel matrix B. Thus if the LSM is state reachable,
then R(K) = X, that is, R(K)l = {0}. However, if the LSM is not state
reachable, then R{(K) is a proper subspace of X, that is, rank K < n,
and hence R(K)l # {0}. 1In this case, then, one would be tempted to
expect that, in analogy with the similar situation in conventional
iinear dynamical systems, the state space X can be expressed as a
direct sum of R(R) and R(K)L, resulting into the so-called unreachable
canonical form which essentially separates the reachable and unreach-
able portions of the LSM. However, due to the peculiarities of the
ground field GF(q), this direct sum decomposition is, in general, no
longer possible for LSMs., At this point we will momentarily digress
to briefly elaborate on this particular property of LSMs. We begin
with the definition of a bilineér form.

A bilinear form f on a vector space V over an arbitrary field

F is a function £ : VV x VU — F such that
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f(rv + sv', v"'} = rf(v, v") + sf(v', v'")
f(v, rv' + sv") = rf{v, v') + sf(v, v'")

for all v, v', v" ¢ V and for all r, s, € F. 1f, in addition, £(v, v')
= f(v', v) for all v, v' = V, then f is said to be symmetric.

From the above definitien it is clear that the usual inner pro-
duct is a symmetric bilinear form.

The matrix of a bilinear form f relative to a fixed basis

1 2 n . ] . .
{v, v.,. . ., v} of Vis the n x n matrix F over F with entries
i j . . .

fij = (v, vJ); i, j € n. This matrix completely determines the form

f. To see this, we express the vectors v, v' ¢ V in terms of the

given basis elements of V as

where a;s bj e F; 1, J € n. Then the bilinearity of f shows that f
is determined by F as

n n

£(v, v') = I I a, f(v', vi) b,
i=1 j=1 J
T It
= I a, f..b,
i=1 j=1 * 1
P I NI
= laps Ay s a liEy) Ty, © Tan P2
fnl fn2 t fnn bn
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where a, b e Fland F e FO' ° 1,

Since two n X n matrices represent the same bilinear form if
and only if they are equivalent, and equivalent matrices have the same
rank, the rank of a bilinear form is defined to be the rank of any one
(and hence of every one) of the matrices of a bilinear form. In view
of this fact, the bilinear form [ on V is said to be nondegenerate if
the rank of the matrix of f is equal to the dimension of V, otherwise
f is called degenerate.

It is well known that for the case of a vector space ¥ over
the field of real numbers, ! can always be expressed as a direct sum
of the subspaces wl and wi with respect to the usual inner product
bilinear form. On the contrary, this decomposition is not, in general,

possible for a vector space X over GF(q). For example, let

X = GF(2)°
and
SR
1 0
X o Xl z < , 11>
0 1
0) 10
Then
1] o] (o]
0
xi = <lol, (1!, |of>
1
o) 0) 1)



Although dim X = dim Xl + dim Xi, we sece that X = Xl o Xi. However,

if we choose

(1] (o]
1
X > X2 = < . >
0) 19
then
™ (o]l fo
0 0
X; = <1, (0]>» >
0 1
0j 10} (1

_ 1
and X = X2 3] XZ'

duct bilinear form is degenerate on the subspace Xl in the first case

It can be easily checked that the usual inner pro-

and nondegenerate on X and X2 in the second case. In general, non-
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degeneracy of a symmetric bilinear form on both V and Ul c V turns out

to be a sufficient condition for the existence of the direct sum de-
composition V = Ul ) Ui. We will prove this result for the special
case of an inner product bilinear form.

Lemma 4.2.1. Let V be a finite-dimensional inner product
space over an arbitrary field F, and let the inmer product bilinear

form £ on V be nondegenerate on the subspace Ul of . Then V can be

expressed as Y = Ul ® Vi.
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Proof. Let {vl, v2,. . v"} be a basis of Vl. If xeV

and y ¢ Vi, we want to show that there exist a; e F, i e m, such that

n i
x = L aiv + vy
i=1
i 3y - . i i
Let f{v, v') = Cij; i, J ¢ m. Since f(y, v') = 0, we have

- i

I c,.a, =f(x,v),jemnm

=1

This system of m equations for the m unknowns a,, i € m, has a (unique)
solution since by hypothesis the matrix of coefficients is nonsingular. []
Now we return to the discussion of state unreachability of LSMs.

Theorem 4.2.1. Suppose that the LSM (A, B) is state unreach-

able, and let the inner product bilinear form on X be nondegenerate on
the subspace R(K). Then there exists an isomorphism P : X — X,

. . -1 -
x f——+ Px, P ¢ GL(n, q), such that the isomorphic LSM (PAP ~, PB) =

{A, B) has the form

11 12 Bl
( » ) (4.2.1)
0 A2l 0
or equivalently,
~1 D! ~ Il ~
x {(kt1) = All x (k) + A12 X7(k) + Blu(k)
(4.2.2)
~1 ~ -
L) = AL x (k)

22
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“1 11 - N
where x ¢ GF(q)r, x € GF(q)n r, All
, and B, GF(q)

rx(n-r)

e GF(q)" ™", A, e GF(q) ,

r xm

12

A, e GF(

’s q)(n-r)x(n—r)

Proof. Since, by hypothesis, the inner product bilinear form
is nondegenerate on R(X) and dim R(K) < n = dim X, in view of Lemma
4.2.1, the state space can be expressed as X = R(K) & R(K)l. Let

{vl, vz,. v e vr], {vr+l, vr+2,. v ey vn}, and {vl, v2,. . ey vr,

+
vE 1,. . e v} be bases for R(K), R(K)l, and X, respectively. Then
any x € R(K) can be uniquely represented as a linear combination of
{vl, ier}. Since R(K) is A-invariant, xt e R(K) implies that AxT ¢ R(K),

i € r, and hence

ier (4.2.3)

for appropriate a ¢ GF(gq). From (4.2.3) it follows that the matrix

hi
representation of A with respect to the basis {vi, ice EJ is precisely
of the form given in (4.2.1). Since R(B) < R(K), that is, for j e m,
the jth column of B is in R(K), its representation with respect to the
basis {vi, i € n} must have the last n-r entries equal to zero. Thus

B has the form indicated in (4.2.1). Clearly p_l is the matrix formed

by the vectors {v’, i e n}. O
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Theorem 4.2.1 can be used to spearate the reachable part of an
unreachable LSM. That is, given any unreachable LSM, this result can
be applied to determine a submachine of smaller dimension which is
state reachable. This is readily seen, by directly computing the

reachability matrix K of the LSM represented by (4.2.1), as follows:

K = [B, AB, AB,. .., A" 18]

SO M “n-17

B, A, B AT B . .. A" "B

It Min i Bn D B | 11 1 (6.2.4)
0 0 0 ... 0

Since K = PK, it is clear that rank K = rank PK = rank K = r. Thus
the first r rows of (4.2.4), which constitute the state reachability

matrix for the submachine (A Bl), are linearly independent, and

11°

hence (A Bl) is state reachable.

11? -
- I 0
From the representation (4.2.2) where x = (g J + ~11]
! X
0
[g ] £ R(K), and ~17! E R(K)l, it is clear that the state subvector
. x

X T is not affected directly by the input or Indirectly through x ,

and hence is disregarded in the reduced submachine (All, Bl). Further-

more, from the second equatiom of (4.2,2) we observe that if xII(O) = Q,
“II

then x (k) = 0 for all subsequent clock periods. Therefore, the sub-

machine (A Bl) is zero-state equivalent to the LSM (4.2.2) and,

11°

consequently, to the original LSM (A, B).

The following example will illustrate the above ideas.
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Example 4.2.1. Consider the following LSM over GF(2):

xl(k+1) 1 1 0 xl(k) 1
x, (D | = {10 1w, 00| + [1] uk)
X3(k+1) 0 0 1 x3(k) 0

The state reachability matrix of this LSM is

—~

=]

which has rank 2. The matrix P_l can be chosen as

)

It
QO =
[T -
= o o

where the first two columns are the linearly independent columns of
K and the third column is chosen arbitrarily but with the provision
that P-‘1 is nonsingular. The isomorphic LSM (A, B) = (PAP-I, PB) has

the required form

r‘h b - N
f - (1)
x, (k+1) 0 110 xl(k) 1
i
~ 1 ~
xz(k+1) =11 1} 1 xz(k) + 0] u(k)
___________ . |
= ! ~
kx3(k+1) 0 0| l‘£x3(k) 0

The remainder of this section will be devoted to a rederivation

of the isomorphic LSM (4.2.1) by using a different approach (cf.[43]).
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A careful examination of the general expression for solution

of the state equations of the LSM (A, B) given by

n-1 —i-1
x(m) = A< + 1 A" Bu(p)
3=0
u{Q)
= A" () + (A" 1B, A"%8,. . ., a8, B]|u(D) (4.2.5)
uzn—l)

in conjunction with the rank deficiency of the state reachability

n-1 n—ZB

matrix K = [A B, A e « ., AB, B], will reveal the existence of

certain fundamental relaticonships between the reachable and unreach-
able subvectors of the state x(k). 1In order to investigate some of
these relationships, we need to rewrite the state equation of the LSM

(A, B) in the following partitioned form:

1 I
x (k+1) By ALl B

= + u(k) (4.2.6)
x T (k1) A A =TT B

£ GF(q)rxr, Al2 £

11
. GF(q)(n—r)x(n—r)’ B

where x°(k) & GF()T, %0 (k) e GF(q) ™), A

GF(Q)r x (n“r)’ AZl [ GF(Q) (n—r) * r: A22 1 E
)(n—r) X m

GF(q)r x m, and B, £ GF(g . Now if rank K = r < n, then

2

n - r rows of K can be expressed as linear combinations of the remain-
ing r linearly independent rows, and therefore, in view of (4.2.5),
the following relaticonship exists between the zero-state solution sub-

T 11
vectors x and x :
0s os
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I

IT ~
x oK) = Tx__(k) (4.2.7)

where T ¢ GF(q)(n-r) xr

Similarly, if we assume that rank K = r < n, and consider the

expression for the general solution of the state equation

I I I

S O B S ¢ I E S ()

= + (4.2.8)

II 11 IT

x (k) x (K x_; (k)

then the following relationship holds:

II T

x (k) = Tx (k) + z(x(0}, k) (4.2.9)

where T is defined by (4.2.7) and z ¢ GF(q)" * such that z(0, k) = O.
Relation (4.2.9) follows immediately from the decomposed expression

for xII(k) given by (4.2.8), and (4.2.7) as follows:

II

IT
xoi(k)

s (k)

I

xII(k) +
0s

I I I 1T
Txos(k) + Txoi(k) - Txoi(k) + xoi(k)

Tx (k) + 2z (x(0), k)
where

Z(x(0), k) = xii(k) - Txii(k). (4.2.10)



79

Using the above results, we will introduce a special isomor-
phism that will transform a state unreachable LSM (A, B} to an
isomorphic LSM (A, B) having the unreachable canconical form given by

(4.2.1).

Theorem 4.2.2. The isomorphism

1 1. 0 -1
p = | T X —> X, (4.2.11)
T 1
n-—r
-1
xI (k) Ir 0 XI (k)
II I1
x (k) T In—r x (k)

transforms the state unreachable LSM (A, B) to the unreachable canonical

form given by (4.2.,1).

Proof. 1In view of the relation (4.2.9), the general solution

of the state equation of the LSM (A, B) can be written as

x1 (%) <L k) 10 xT (k)
= = (4.2.12)

1 I

x (k) Tx (k) + z(x(0), k) T In—r z{x(0), k)

which must satisfy the equation (4.2.6), that is,
1 0 L A ALl o oo
- X 11 M2 x
- (46.2.13)

T In_ z(x(0), k+1) A A22 T In—r z (x(0), k)
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Since

1 0 I 0
r r
T I -T 1
n-r n-r
equation (4.2.13) reduces to
L) A+ AT A <L (k)
x 11 12 12
z(x(0), k+1) “TApp - TALT + AL + AT Ay, - TA,, z2(x(0), k)
By
+ u(k) (4.2.14)
B, - TB,

Assuming that rank K = r < n, it follows that in (4.2.14), B2 - TBl =0

since according to (4.2.7) the matrix T expresses the linear dependence
of the n — r rows of K on the remaining r linearly independent rows.

Therefore, if we show that in (4.2.14),

A21 = —TAll - TAlz + A21 + A22T =0 (4.2.15)

~1I

then the proof is complete by taking xI(k) xI(k), x (k) = z(x(0), k),

i

= A + A LT, A12 = A12’ A22

All = A 12 To show

= A22 - TA12, and Bl = Bl.

(4.2.15), we will consider the augmented reachability matrix K =
(K AnB] which has the same rank as K since, by the Cayley-Hamilton
n-1 .
Theorem, At = ) aiAl. Using (4.2.6), K can be written as
i=1
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2 n
! | { |
- By ] (All * A12T)Bl l (A11 * A12T) By ! ! (All * A12T) 8y
K = | | [ T
1 | 2., | n
TBl | T(All + AlZT)Bl | T(All + A12T) Bl ! ! T(All + AlZT) Bl
(4.2.16)

In forming (4.2.16), we have used the linear dependence relations

B, = TB, and A.,.B, + A ,B, = T(A,.,B, + A

9 1 2181 228, 1181 12B2). From (4.2.16) it is

seen that the general expression for the n - r rows of the ith column

block has the form

i, .
T(A,, + AlZT) Bl 0, i¢ (4.2.17)

(=

11

However, in view of the generation scheme used in (4.2.16), the last
n - r rows of the ith column block can be obtained from the (i - 1)th

column block as follows:

i-1
(Ay; + 4,1 7By

(A1 Ayl

T(A

= i-1 .
= (A + A22T)(All + A12T) B,, 1 en

. 21 1
i-1
+ A_.T) B
1
! 12 1 (4.2.18)

Equating (4.2.17) and (4.2.18), we obtain the following relation:

i-1
+ - - +
(8,0 + A),T - TA TA;,T) (A + AL B

22 11 =0, ien (4.2.19)

1

Since the matrix

o 2 n-1
K = [Bl(A11 + AlZT)Bl (A 1 -+ AlZT) Bl P (All + AlZT) B. ]

1 1

has rank r, its columns span an r-dimensional subspace of X which con-

tai i z - -
ains the rows of the matrix A21 A21 + A22T TA11 TAIZT' But the
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rows of A21 are contained in R{K) and, according to (4.2.19), are also

orthogonal to R(K) which is possible if and only if A2l =0, []

In the above analysis, we observe that the state subvector

xI(k) € GF(q)r and the submatrix Bl remain invariant under the action

of the special isomorphism (4.2.11), that is, xl(k) = xl(k) and

B1 = Bl. Similarly, we see that the transformed state subvector

11
x (k) is directly related to the zero-input solution of the state

~ I I
equation of the original LSM (A, B) since xII(k) = xoi(k) - Txoi(k).

4.3. State Contyollability of LSMs

Earlier we defined a state controllable LSM (A, B) as one
which can be driven from any initial state % to the zero state OX in a
finite number of clock pericds. In other words, an LSM (A, B) is state
controllable if and only if there exists an input sequence u{0)u(l).

u{f-1) ¢ U* such that

£-1 .
0, = W A (4.3.1)
3=
Rewriting (4.3.1) as
£-1 .
2% =T AE swn)
j=0

and letting -u(j) G(j), j ¢ £-1, we see that £-controllability of

A
the initial state x reduces to the f-reachability of the state Ak with
the input sequence-E(O)G(l). . G(E—l), which implies that Q is

{-controllable if and only if
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2% e reat s, A% %,. . L, aB, BD) (4.3.2)

Since R(Az) = Aﬂx = {AEQ sk g X}, in view of (4.3.2), we can say that

the LSM (A, B) is f-state controllable if and only if there exists an

integer £ such that

raY < r(a® s, 4% %8, L ., a8, B

Lemma 4.3.1. Let A : X — X be a linear map. Then R(An) <

R([AH_IB, An-ZB,. .« ., AB, B]) if and only if there exists an integer

£ such that R(AK) E_R([Az-lB, AgnzB

s« - 5 AB, B]).
Proof. It follows immediately from Corollary 4.1.6. [

Lemma 4.3.2. Let A : X — X be a linear map. Then R(An) =

R(Al) for all integers i < n, and R(An) = R(Al) when 1 = n.
Proof. Since dim X = n and A is linear, we have the following

chain of subspaces in X:

0,0 ¢ ... cRAT) e RN €L L L < RGD) < RM) € X

AlX, the range of the linear map Al. Therefore, 1 +
1

where R(Ai)

i+1

dim R(A™ ™) dim R(Al) whenever R(Al+ ) < R(Al), that is, whenever

1A

the inclusion is proper. This conclusion implies that there must be
an integer £, 0 < £ < n, such that dim R(Ai) = dim R(Aﬂ) for all

i 2 £. 1In view of the fact that for any subspaces V, ¥ < X, dim U =
dim (! implies that V = (¥, and since R(Ai) EVR(AE) for all i = £, then

R(Al) = R(AK) for all i = £ and the range R(Al) of Al stops decreasing

at some step i = £, i < n. Now the result follows from Lemma 4.3.1. []
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Theorem 4.3.1. The LSM (A, B) is state controllable if and

only if

R(A™ < R([A™ B, A™%B,. . ., A8, BD)

Proof. It follows from Lemma 4.3.2. [J

Corollary 4.3.1. 1If the LSM (A, B) is state reachable, then

it is state controllable.

Proof. If the LSM (A, B) is state reachable, then by Theorem

4.1.4, R([AU“IB, An-zB,. . ., AB, B]) = X and hence R(An) <

R([An_lB, An_ZB,. . ., AB, B]) which, in view of Theorem 4.3.1, implies
that (A, B) is state controllable. {]

Corollary 4.3.2. 1If the LSM (A, B) is state controllable and

A : X — X is an isomorphism, then (A, B) is state reachabie.

Proof. If A is an isomorphism, then R(An) = R(A) = X. There-
fore, if (A, B) is state controllable, then by Theorem 4.3.1, R(An) =
X cR(fA "B, A “B,. . ., AB, B]). By Theorem 4.1.4,

dim R({A "B, A" “B,. . ., AB, B]) = n which implies that (A, B) is
state reachable. [J

Corcllary 4.3.3. Let Sr denote the subspace of reachable

states and SC the subspace of controllable states of the LSM (A, B).
Then § o S .
c—"r

Corollary 4.3.4. 1If the characteristic matrix A of the LSM

(A, B) is p-nilpotent, that is, if At = 0, then the LSM is state con-

trollable,
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Proof. If A" = 0, then obviously R(A") = {0} <
n-1 n-2 ;
R([A~” "B, A “B,. . ., AB, B]) and hence by Theorem 4.3.1, {A, B) is
state controllable, J
1t should be pointed out that an LSM can be state reachable

and hence state controllable with the characteristic matrix A being

neither invertible mor nilpotent. For example, the LSM

over GF(2), is state reachable and hence state controllable, while A
is neither invertible nor 2-nilpotent.

It is interesting to note that Corellary 4.3.1 and Corollary
4.3.2 point out a special feature of an LSM in that state reachability
and state controllability are not necessarily the same. In marked
distinction to LSMs, the concepts of state reachability and controllability
are equivalent for conventional continuous-time systems regardless of
the invertibility of the characteristic matrix A, because for continuous-
time systems the state transition map is always invertible and the state

trajectory may be solved both forward and backward in time.

Summary and Conclusions

In this chapter a concise and formal exposition of the concepts
of state reachability and state controllability for LSMs, in a state
space setting, was presented and the relationship between these two
distinct concepts was clearly demonstrated. In addition, the unreach-

ability property of L5Ms and some of its consequences were investigated.
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In this connection, a peculiarity of the ground field which, in con-
trast to the case of conventional linear systems, precludes arbitrary
decomposition of the state space of LSMs was pointed out. Consequently,
it was shown that in order to be able to obtain a direct sum decomposi-
tion of the state space in terms of suitable constituent subspaces for
the purpose of deriving the so-called unreachability canmonical form

for LSMs, in general, an additional assumption concerning the non-
degeneracy of the usual inner product bilinear form must be made. A
different derivation of the unreachability canonical form based on the
linear dependence property of the rows of the state reachability

matrix of unreachable LSMs was also discussed in detail {ef. [1], [2],
(201, 21], [23], [37], [46]1, [48], [49]1, [58]), [61], [66], [88], [105],
[107]), (1097, [114], [118]y.

As reported earlier, state controllability of LSMs was inves-
tigated in [23], [75], [105], and [107] in a rather superficial manner.
The crucial distinction between the concepts of state reachability and
state controllability of LS5Ms has not been made in any of these inves-
tigations. Consequently, this confusion has given rise to certain

minor and major flaws in some of the conclusions of these studies.
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CHAPTER V

SOME CONSEQUENCES OF STATE REACHABILITY

In this chapter we will discuss some implications of the pro-
perty of state reachability in relation to cancnical forms and state
feedback in LSMs. In the area of LSMs the only canonical form that
has been extensively used is the classical companion form associated
with an autonomous LSM which is called a linear feedback shift register,
and is widely used for sequence generation and coding. Canonical forms
for general nonautonomous LS5Ms should find applications in various
areas such as feedback design, observer design, data filtering, reali-
zation, and identification. In this and subsequent chapters, we will
introduce a number of canonical and quasi-canonical representations
for L8Ms and point out some of their applications. We will conclude
this chapter with a discussion of the interplay among state reach-

ability, state feedback, and canonical forms.

5.1. Canonical LSMs

For the purpose of studying those properties of the LSM M =
(A, B, C) which remain invariant under the action of an isomorphism
P X — i, x (k) }mﬂ+ Px(k) = ;(k), P £ GF(n, q)}, effective use can
be made of the concept of isomorphic LSMs. We recall that two LSMs
M= (A, B, C) and ﬁ = (i, é, 6) are said to be isomorphic if and only
if there exists an isomorphism P : X — i such that the following

diagram of homomorphisms is commutative:
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X 7T X

/ C
u P
Ny

H

> €
!
<
Q

1 1

That is, ﬁ = (A, é, 6) = (PAP , PB, CP 7). The fact that the isomor-
phism P is arbitrary poses the obvious problem of choosing this P so

as to simplify, as much as possible, the study of the LSM of interest.
This problem is at least partially solved by introducing some "canonical"
forms. The basic idea of this approach, therefore, is to replace M by

ﬁ such that the characterizing matrices of ﬁ have certain desirable

structures and properties. 1In order to explain this process of simpli-

fication more precisely, consider the following diagram of homomorphisms:

GF(q)nx(n+m)

n x {n+m)

where GF{q) is the set of all LSMs (A, B), C is a set of

canonical forms, and R is a suitable set. The roles of the homo-

n x {(o+m)

3

morphisms B, vy, and § are clear: for every LSM (A, B) &« GF(q)
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B determines a corresponding canonical form in C, any property of the
LSM (A, B) can be described by 8§, and v is the "simpler" homomorphism
that replaces §.

In fact, this scheme by which canecnical forms are introduced
is a special case of a problem of universality of universal algebra
[72] which for our problem can be precisely formulated as follows:
Let W(R) denote the set of maps § : GF(q)n *(ntm) — R, (4, B) }—~+

§((A, B)), such that for every isomorphism represented by P ¢ GF(q)n % n’

1, PB)) = 6{(A, B)Y). Then our problem of universality

we have d((PAP—
can be stated as follows: Find a set G and a homomorphism g e W(G)
such that the following property is true: For every set R and every
homomorphism & ¢ W(R) there exists exactly one homomorphism vy : ¢ — R
such that 8§ = v o B.

In order to be able to discuss in more concrete terms the
important concepts of structural invariants and canonical forms for
LSMs, below we will provide precise definitions of these concepts,
and then specialize them in terms of certain classes of LSMs. We will
clearly state the set of conditions which will serve as unambiguous
qualifications for an LSM representation to be termed 'canonical"
which has frequently been a source of confusion in the literature.

Let [ be an equivalence relation on a set §. If T is another
set, amap £ + § —» T is called an invariant of E if aEb implies that
f(a) = £(b); it is called a complete invariant for E when afb if and
only if f(a) = f(b). A list {fi, i e £} of maps fi 1§ — T is called

a complete set of imvariants for E if each £, is an invariant for £ and
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the assignment a F——+ {fl(a), fz(a). o ey fﬂ(a)} is a complete invar-
iant § -—— Tl X T2 K v o th. Clearly there always exists a com-
plete invariant for E, namely the projection g: $ —S/E, where S/E
is the quotient space of S by E [72].

A set of canonteal forms for an equivalence relation £ on a
set S is a subset C of S such that there is to each s ¢ S exactly one
¢ £ C with sEc. This amounts to requiring that the projection
g + S — S/L, restricted to C, be an isomorphism.

In order to explain the notion of invariants and canonical
representations for LSMs, suppese that the elements P of the group

GF{n, q) act on the set of LSMs (A, B) according to the rule
(A, B) |— ar’l, pB) = (4, B) (5.1.1)

which is, of course, equivalent to a change of basis in the state space
X. The GF(n, q)-orbit (equivalence class} of (A, B), denoted by

GF(4, B), is the set of all LSMs (PAP“l

, PBY. Now if we can find an
explicit and computable set of integers, polynomials, etc. dependent
on (A, B) which (i) are preserved under the action of GF(n, q), and
(ii) allow us to decide whether the LSMs (A, B) and (A, ﬁ) belong to
GF(A, B), then these integers, polynomials, etc. will constitute a
complete set of invariants for GF{A, B).

An element (;c’ EC) e GF(A, B) will qualify as a canonical
form if it satisfies the following two requirements: (i) every LSM
(A, B) of order n can be carried to (AC, ﬁc) by the rule (5.1.1),

and (ii)(AC, BC) can be completely described by a complete set of

invariants for GF(A, B).
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Next, we will introduce and discuss an important set of com-
plete structural invariants and its role in the invariant description
of state reachable 1LSMs in terms of a very useful canonical form.

In more precise terms, we will identify a map B : {state reachable

LSM (A, B) of order n} — {list of positive integers}, (A, B) f—~+
{nl, n2,. < ey nm}, and show that B is indeed a complete orbital
invariant of GF(n, q) which provides a complete parametric description

of the resulting canonical LSM.

Suppose that the LSM M = (A, B) is state reachable, and let

rank B  rank by, b%,. . ., b = m (5.1.2)

Conditien (5.1.2) is imposed merely for the sake of notational sim-

plicity, and is not an absolute requirement for the ensuing discussion.

Consider the columns of the state reachability matrix K = [B, AB,. . .,
An‘lB] of M = (A, B) in the following order:

pt, b2,. . b™ ant, abl,. L L, an™; aZel, a%?,. . L, AZ™; . . .(5.1.3)
Let

A(r, s) = {Aﬁb1 : fm+ i< ym+s; i, £, r, s are positive integers}(5.1.4)

That is, A{r, s) is the set of all vectors Aﬂbl which occur before

A'b” in (5.1.3). Let s i £ m, denote the smallest positive integer

n,—-1 n
i

such that A bt § < A(ni, i) >and A bl e < A(ni, i)>. Therefore,

ni, i e m, can be characterized by the condition

Aﬂbi e < A(E, i} » <—=> L > n, {(5.1.5)

1
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Kalman [62] has shown that the numbers n, are identical with a certain
type of classical Kronecker invariants, namely the minimal column in-—
dices, associated with the singular pencil of matrices [EIn - A, B].
The numbers n, have alsoc been referred to as controllability indices
in the literature of linear systems. Therefore, we will refer to n,
as the 1th Kromecker irnvariant and also the ith reachability index of

the LSM (A, B). Furthermore, let
R = : g« 0} (5.1.6)

Theorem 5.1.1.

st e A, 1) 0 R L 2 n,ien (5.1.7)

Proof. Consider the first vector from (5.1.3) which is not in
n

: . . t. t
R. This vector is necessarily of the form A "b~, where n.m + t <
n

n o+ t', for all t' & m. But in view of (5.1.5), we have A Bt e
<A(nt, t)>. Since Antbt is the first vector in (5.1.3) which is not
in R, it follows that <A(nt, t)> ¢ R, implying that (5.1.7) holds for
£ = nt and i = t. WNow suppose that (5.1.7) is true for every vector

i
Azb such that fm + 1 < rm + s and £ > n, - Furthermore, assume that

rzm. Then <A(L£, i)>c <A(r, s)> and by the induction hypothesis
P <A(r, s) n R> (5.1.8)

for all Aﬂbl e A(r, s) such that Aﬂbl $ R. Obviously (5.1.7) holds if
Aﬁbl e A(r, s) such that A'ebl e R. Therefore, (5.1.8) is true for all

Azbi £ A(r, s8). Hence
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<A(r, s)> c <A(r, 8) n R> (5.1.9)

Since by assumption r 2 n_, from (5.1.5) we have ATb® e <A(r, s)>.
Thus (5.1.7) is true for £ = r and i = s. Thus the theorem is proved
by induction . [J
Theorem 5.1.2. The elements of the set R, given by (5.1.6),
are linearly independent.
Proof. Suppose that the elements of R are linearly dependent.
Then there exist scalars ejﬂ e GF(q), not all zero, such that
o nj—l Y
L L e, Ab’ =20 (5.1.10)
j=1 4=1 it
Let A'® be the last vector from (5.1.3) such that r < n - 1 and
e . * 0. Then from (5.1.10) it follows that A'bS ¢ <A(r, s)>, imply-

ing that r > n_ which is a contradiction. []

Theorem 5.1.3. The integers n;, i ¢ m, defined by (5.1.5),

satisfy the relation

n, +n,+...+n =n (5.1.11)

Proof. By Theorem 5.1.1 every vector of (5.1.3) is a linear
combination of the lements of the set R given by (5.1.6). On the other
hand, since the LSM M = (A, B) is reachable, there are exactly n lin-
early independent vectors in (5.1.3). Therefore, from Theorem 5.1.2
which shows that the cardinality of R is equal to n, and the defini-

tion of R, given by (5.1.6), we obtain (5.1.11). [
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Coreollary 5.1.1. There exists one set of ordered numbers

aijE £ GF(q), defined for i ¢ m, j ¢ i-1, £ ¢ min {ni, nj*l}

and for i em, j =i, i +1,. . ., m; £ ¢ min {ni, nj -1}, such that

mln{ni,nj-l}

n, . - .
AT = 1 X a, .y oS
j=1 £=0 H
min{n,,n, }-1
m .
+ I 5 a i, 2B i em (5.1.12)
j=1 £=0 H

where n i ¢ m, are defined by (5.1.5).

Theorem 5.1.4. The numbers n; s defined by (5.1.5), and aijﬂ’
defined in Corollary 5.1.1, remain invariant under the action of the
group GF(n, g) on the set of LSMs M = (A, B) according to the rule
(A, B) — (par™t, PB).

Proof. This is obvious since n, and aijﬂ are defined only in
terms of the vectors Aﬂbj of {(5.1.3) and consequently if (A, B) is

1

changed to (PAP , PB), then the vectors AEbJ will be changed to

Ang = (PAP_l)ﬁPbJ = PAgP_leJ = PAﬁbJ. Clearly premultiplication

of the vectors in (5.1.3) by a nonsingular matrix P does not change

the numbetrs n, and a,.,. U
i ijd

Theorem 5.1.5. The set of invariants {ni, aijﬁ} is complete.
In other words, if for two LSMs (A, B) and (A, B) of the same dimen-

sion the invariants n, and aijﬂ coincide, then there exists an iso-

1

morphism P : X — X, P ¢ GF(n, q), such that (A, B) = (PAP ~, PB),
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Proof. Let the invariants {n,, a,.,} and {n a .,} of the
—— i’ TijlL 1jL

-3
1
LsMs (A, B) and (A, B), respectively, coincide, and consider the fol-

lowing matrices Q, Q ¢ GF(q)n o,

n. -1 n.-1 n ~1
habt, .. 08 T bLibZ,abl, . A 2 b2 bMab . A ™ B™(5.1.19)

- ~] ~~1 ~nl—l n.—-1. n -1

q=mhant,..a b pheant, a2 b2, b an LA ™ B (5.1.14)

2
Wt

By Theorem 5,1.2 and Theorem 5.1.3, these matrices are nonsingular.

Therefore, we can define
P = QQ (5.1.15)

Thus we have
Q = PQ (5.1.16)

In view of (5.1.13), (5.1.14), and the assumption that n, = n, and

aijf = aijf’ (5.1.16) is equivalent to

Al o %, 5 em, £en-1 (5.1.17)
= T

From (5.1.12) and from the similar equation written for (A, B) we

obtain the relations

.n

. n, .,
AJpd = pa dbd, 1 em (5.1.18)

From (5.1.17), for £ = 0, we obtain B = PB. From (5.1.17) and (5.1.18)

it follows that

AQ = PAQ (5.1.19)
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Since from (5.1.16) Q = P71Q, (5.1.19) gives A = PAP L, []

Combining the above results, we conclude that for a reachable
LSM M = (A, B) with rank B = m, the numbers {ni, aijﬂ}’ where n, are
defined by (5.1.5), and aijﬂ are specified in Corollary 5.1.1, counsti-

tute a complete set of Invariants with respect to the action of the

1

group GF(n, gq) on (A, B) according to the rule (A, B) fw’+ (PAP , PB).

Next we want to relate the reachability indices n,, iem,
to a particular quasi-canonical form of state reachable LSMs. The
asgumption of reachability implies that there are precisely n linearly

independent vectors in (5.1.3). Let us choose these n vectors, which

will form a basis for X, in the following order: bl, b2,. . s bm;

2 2. m n-1,1 n—1b2

Lo an? ™A%l c ., AL L s AT, A

AbT, AbT,. . ., Ab ; AD A2b s o a3
n-lbm 3, . ,
A . 1f a vector, say Ab~, is skipped because of linear dependence

, . 1 2 m 1 2
on its predecessors, that is, on the vecters b™, b™,. . ., b ; Ab™, Ab",
then all vectors of the form Ajb3, j 2z 2, can also be skipped because
by the Cayley-Hamilton Theorem they are also dependent on the previous
vectors. After the n linearly independent vectors are chosen in this

order, we rearrange them as follows:

phoanl, A T phbtans, .. A 2 b2 ™A™ A ™ B (5.1.20)

n, .
where n, + B, + . . .+ n_=n. The m vectors A lbl, iem, of (5.1.3)

can be expressed in terms of the basis vectors (5.1.20) as follows:

n,—-1
n m 3

AT = I T e, 259, i e (5.1.21)
j:l ,e:o 1J
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By direct computaticon, it can

for appropriate scalars Cijﬂ e GF(q).

be easily shown that (A, B) has the following representation (A, B)

with respect to the basis (5.1.20):

® ® K o res K

X L4 K esae X

L4 * * LR
Fm e ————————
K X * « s K
j} o o ses
o o — sre O
< — o re e O
* £ * s X

SR Jp

* *® K e K

nr

1<t

(5.1.22)
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(1 0. . .0 o0
0 0. 0 0
0 0...0 0
0 1. 0 0
0 0...0 0
B = |t = M- (5.1.23)
0 0...0 0
0 0. 0 1
0 0...0 0
0 0...0 0

The entries of ; marked * are given by the coefficients Cijﬂ of the
linear combination (5.1.21).

The above representation (A, ﬁ) ig called the Luenberger
“canonical® form [71] in the area of linear systems theory. Clearly
the LSM (A, é) is not in canonical form as it obviously does not satisfy
the requirements of 2 canonical form discussed earlier in this section.
A more appropriate adjective to describe (A, ﬁ) would be "quasi-canonical."

"canonical' is rather common

This type of confusion concerning the term

in the literature of linear systems theory.
However, the above quasi-canonical form can be easily trans-

formed to a canonical form via state feedback homomorphisms of the type

(&, B) f——+ (A + BF, BG), where F and G are appropriate matrices, which

will make zero all the #* entries of the matrix A. We will explain this



procedure by first considering a transposed versiom of A through a
new basis, As a result of this method, we will derive Brunovsky's

canonical form [15]) for LSMs.

Let VlJT, iem, je n,, denote the rows of the matrix P

formed by the basis vectors (5.1.20), and write P-1 in terms of its

YOw vectors as

(11T )
v

127

mlT
v

m2T

99



Now 1let wz = nl + n

form the following matrix:

2

+.

.

-+ g, £ & m.

™m
.

100

-1
Using the yzth rows of P we

(5.1.24)

We want to show that the rows of P  are linearly independent and hence
O

constitute a basis for X.

dependent.

all zero, such that

Then there exist scalars cij

Suppose that the rows of PO are linearly

e GF(q), i em, ¢ ni, not
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n, .
m i in. T
z I eV A =0 (5.1.25)
i=1 j=1

Taking the inner product of both sides of (5.1.25) with b’ yields

c =0 (5.1.26)

. i e i . . ;
since by the definition of v each term in the inner product is
rm T n ~1

. . T r . ) .
zero except the one involving v A b” which is unity. In view

of (5.1.26), (5.1.25) can be written equivalently as

m ni-l in, T

r L e.v TATY=0
i=1 j=1

Taking the inner product of both sides of this equation with Ab® pro-—

duces C. 417 0. Continuing in this manner, by induction it is
y
r

seen that each cij =0,iem je 0, which is a contradiction. There-

fore, the rows of PO are linearly independent. Now by direct computa-

1

tion, it is easy to see that the isomorphic T.LSM M = (A, B) = (POAP; . POB)

has the following form:
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re——————————— e
(=) [ TERE TR S N = | ®
(=] — . - e *
— S e o e O X
o L = *

O,

It
i

(5.1.27a)
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0 0 .00
0 0 .0 0
0 0 .0 0
1 0 .0 0
0 0 .00
0 0. 0 0
B =" : (5.1.27b)
0 0 .0 0
0 1 .0 0
0 0. 0 0
0o 0. 0 0
LO 0 « & 4 O lJ

where the * entries of the matrix A are given by the coefficients di'ﬂ
of linear combinations of the type

. I, .

in,T n, m 3 in,T £-1

v Tate 3z T odv 1A e (5.1.28)
i=1 £=1 ™
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It is obvious that the basis (5.1.24) and the constants dijﬂ
are not unique and consequently (A, B), given by (5.1.27), dves not

constitute a completely invariant description of the original LSM

(A, B). However, we can readily see that the constants dijﬂ in A can
be made zero by applying a feedback law of the form u(k) = Fx(k) +
w(k) to the LSM (A, B), transforming it to (A + BF, B). We are keep-

ing B unaltered since it is already in the desired form. In order to

xn

» S £m, t £n, denote

pick a matrix F ¢ GF(q)m to do the job, let fs

t

the entries of F and observe that the product matrix BF has the fol-

lowing form:

o 0o o0 ...0 0 0 0 0
nlth row fll f12 f13 - fln fl,n 41 - fln fl,n 1 " fln
1 1 2 2 m
0 0 0 . 0 0 0 0 0
. 0o 0 0 .0 0 0 0 0
BF =
0 0 o0 . 0 0 0 0 0
+
(n1 n,)th row o0 fop fog oo £ f2’[1 41 ..t c
1 1 2n, 2,n.+1 ... f
2 2 an
0O 0 © 0 0 0 0 0
0 0 0 ...0 0 L. O 0 ... 0
ff ... f
nth row fml m2 m3 mn fm,n +1 fmn fm,n +1 fmn
| 1 1 2 2 m

(5.1.29)
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Therefore, if we choose

{£,,, £.,,. +» «» £, 3 £, - , £ ; , £, 1

il i2 in, 1,nl+1 in2 in_
= -ldgqq0 di3p00 - oo dilnl; dio1 dipors - d12n2" e dpn b
iem (5.1.30)

then the resulting matrix A + éF will have precisely the form of A
with the * entries equal to zero. Since the above procedure can always
be effected under the state reachability assumption, in effect it pro-
vides a new derivation of an important canonical form initially intro-
duced by Brunovsky [15] for continuous-time dynamical systems.

We summarize the above result as a theorem.

Theorem 5.1.6. If the LSM M = (A, B) is reachable, then it

1l
—
=g
-
jws]
e

has the following canonical form M

A T A ®A,® ., . . 0A

C 1 2 n
m
- . (5.1.31)
BC = bl D b2 i) & br1
m
- n.xn, . n,
where A, e GF(2) oL b, & GF(2) TLiem
0 1 0. 0] (0]
00 1...0 0
A,z : : : : 3 by = 1 (5.1.32)
00 0. 1 0
0 0 0 . 0] |1
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Therefore, any state reachable LSM (A, B) over GF(y) is equivalent to
the following m completely decoupled submachines over GF(2), each of

order n,, i & m:
i m
P = P

(i)
X

xgi)(k+l) - x5 ()

. (5.1.33)
i i

xif)(k+1) EACHEEE"

1

The submachines (5.1.33) can be realized by a parallel array of cir-

cuits of the form

w00 =P D 2 o

[:} : [:>___i____;+::>“_ e __9[:> ;{j} S ;ii)(k)

Fig. 5.1.1. Compound Circuits of an LSM in Canonical Form.

The representation (5.1.31) is truly canonical since it can be
described completely only by the reachability indices ns ie m.

The numbers n,, iem, as defined in (5.1.5) do not satisfy any
order relations. However, these numbers can be redefined such that

they can be ordered [15]. To see this, let
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= rvank B

]
1]

rank[B, AB, AZB,. . v AJB]—rank[B, AB, AZB,. . e AJ—lB], j e n-1

=
1t

Since rank B < m, it is clear that for any state reachable LSM (A, B)

we have 0 < rj <m, j &€ n-1l, and rO + rl + ., . .+ r._; - o
Alternatively, if we define
Ly = R(B) + AR(B) + A’R(B) + . . . + AJR(B), j ¢ n-1
and let I, : L, — tt . be the orthogonal projection, then the integers

j-1

rj, j & n=1, can be equivalently characterized as follows:

rO = rank B
R § b , .
r, = diml’ = rank[ll,(A'B)] = dim(L, /L. .), £ n-1
i -1 [ J( )] (J i-1 j g n-l
where Lj/Lj_1 is the quotient space of Lj by Lj—l' Since if the vec-

j, 1 : . . j. 8
tor AJb® can be expressed as a linear combination of the set {AJb )

s g_g}, S0 can AJ+lbl, it follows that rO = rl Z .. .2 rn—l’ and
that we can choose a basis B of X from the celumns of [B, AB, AZB, e e ey

_ s ‘41 1
A" 1B] such that Alp' $ B= At ¢ B. Now if we associate a num-

: L n; .
ber n£ with every vector b" such that Ab® e B, j e ni—l, but A ' ¢ B,

then in view of (5.1.31), the numbers ni, i ¢ m, are precisely the

reachability indices of the LSM (A, B). Performing an input coordin-

-

ate transformation, if necessary, it is possible to have ni 2 n; = . . .

-

1 is the reachability index (Definition 4.1.1) of

= n&. Consequently n
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the LSM (A, B). Furthermore, from the above discussion it follows

that ni, i ¢ m, can be uniquely characterized in terms of the numbers

1

rj, j e n-1, by defining n; = number of integers in the set {ro, rl,

v

.y rn—l} which are i, 1 ¢ m. Thus, in view of the fact that

rO + rl + . . .+ rn—l = n, we have ni + né + . . .+ n& = 1.

The invariants n, along with aijﬁ defined in Corollary 5.1.1,
and their relation teo canonical forms of conventional linear systems
have been studied in detail by Popov [90] through universal algebraic
methods, For linear systems, invariants and canonical forms have
also been investigated in terms of certain polynomial matrices [19],
[521, [96], [97]. Using the polynomial representation of LSMs dis-
cussed in Section 3.6, and giving due consideration to the properties
of polynomials and polynomial matrices over GF(q)[{], many results of
these investigations can be similarly developed for LSMs.

In the above discussion, the canonical representation (5.1.31)
was obtained from the given LSM under two consecutive transformations,
namely state coordinate transformation and state feedback transforma-
tion. These transformations are special members of a relatively more
general transformation group which can be utilized for the study of
isomorphic LSMs. Here we will briefly discuss this particular group
of transformations.

Let

M= {LSMM= (A, B, C) :t A: X—X, B:U-—X, C: X— VY]

(5.1.34)
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and

Gl = {(p, P, G) :P: X— X, P e GF(n, q),

F: X— U, Fe GF(q)mxn, and
G:U— U, Ge GL(m, q)} (5.1.35)

Suppose that the elements of the class Gl act on the elements of the

set M of all LSMs of dimension n according to the rule

1

(A, B, C) — (P(a + BF)PL, PBG, cpTY) (5.1.36)

That is, G, is the set of state coordinate, input coordinate, and

1

state feedback transformations. It can be easily shown that the rule

(5.1.36) assigns to Gl the structure of a transformation group with
identity: (In’ 0, Im)

1 1 -1

inverse: (P, - ¢ TGP , G )

and

. _ -1
composition rule: (P2, F2, Gz)o(Pl, Fl, Gl) = (Pl P2, Fl + GlFZPl’ GlG2)

Thus an equivalence relation on M with respect to G1 may be defined as
follows: Two LSMs (Al, Bl’ Cl), (Az, BZ’ C2) ¢ M are said to be Gl—
equivalent if and only if there exists a triple (P, F, G) £ Gl such

-1 -1 ,
that (A, B, C)) > (P(A, + B,F)P ~, PB,G, C, 7). The following

two transformation groups, which are special cases of Gl’ are also of

interest in the study of isomorphic LSMs:
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0]
1l

{¢p, 0, In) : P X— X, P ¢ GL{(n, q)} (5.1.37)

{(», 0, G) : P : X— X, P e GL(n, q),

@D
Il

G: U-— U, Ge GL{m, q)} {5.1.38)

Clearly the elements of 62 and G3 act on the elements of M according

to the rules

1

1 pg, co™h

(A, B, C) | (paP~
and
(A, B, C) {— (PAP*l, PBG, CP-l)

That is, G, is the group of state coordinate transformations and G3 is

2
the group of state coordinate and input coordinate transformations.

The equivalence relations Gz—equivalence and G3-equivalence can be
defined similar to Gl—equivalence.

Later in the sequel, we will have occasion to examine further
properties of Gl*equivalence. However, in the remainder of this sec-
tion we will restrict our attention to some canonical representations
undetr the transformation group GZ'

One of the important properties of LSMs which remains invariant

under state isomorphism is state reachability as shown in the following

theorem.



111

Theorem 5.1.7. Let P 3 X — X, x f——» Px = x, P ¢ GL(n, q),

be an isomorphism. Then the LSM M = (A, B) is state reachable if and

1

(A, B) = (PAP" , PB) is state reachable.

only if the isomorphic LSM M

Proof. By Theorem 4.1.4, M is state reachable if and only if

rank[ﬁ, Aﬁ,. . ey An_lﬁ] = n. But
(B, AB,. . ., AV 'B] = [PB, AP ipB,. . ., A" Tp lpg]
= P[B, AB,. . ., A" ']
Since P is nonsingular, it follows that
rank[ﬁ, Ag,. . oy An-lﬁ] = rank[B, AB,. . ., An—lB] = n. [

The state reachability property is also invariant under input
coordinate transformation and hence under transformations of the form
-1
(A, B) |— (PAP ~, PBG), where G : U -—> U, G ¢ GL(m, q). This is

obvious from the proof of Theorem 5.1.7 since

rank{B, AB,. . ., A" 'B] = rank P[B, AB,. . ., A" 'Bl¢

rank[B, AB,. . ., A "B] =n

A more geometric proof of the above result is given below.

j-1

l) R{(PBG)

1 n -
| R(PBG)} = = (PAP
j=1

{a | R(B)} = {PAP~

pad " 1p pR(Be)
1

It
oo

]

Ajth(B) =pX =X
1

Il
o
| i
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since M = (A, B) is reachable, that is, since

R((B, AB,. . ., A" B = 3z aAJ7RR(B) = 1A | R(B)Y = X

n s

j=1

This result can be utilized to study other aspects of machine
state reachability and further related properties of LSMs in more con-
venient forms. For example, we may want to employ some special iso-
morphism to transform a given LSM to some simpler canonical form such
as the Jordan canonical form or Luenberger quasi-canonical form where
we might obtain much simpler criteria for checking reachability or,
in conjunction with the capabilities provided by state and/or output
feedback, we may be able to design efficient state estimators or inves-
tigate noninteraction properties. In the sequel we will introduce
several canonical forms for LSMs and study their structures and proper-
ties. However, first we would like to briefly survey the existing
canonical forms and their use in the area of linear sequential machines.

We know that the characteristic matrix A of an LSM (A, B) plays
a key role in determining its operational structure because it describes
the intercomnections among the storage devices (delayers). Therefore,

it is natural to search for a "modified" characteristic matrix A that

' in some

will have certain desirable attributes and yet be "similar,’
sense, to A. This is, of course, the old problem of similarity trans-
formations in linear algebra, since these transformations change the

form of a matrix A but not its characteristic polynomial which embodies

most of the essential properties of A. This idea has been used in the
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area of LSMs for the purpose of designing suitable data storage inter-
connection layouts, traditionally called linear feedback shift registers.
Generally speaking, a shift register is a device by means of which
digital information can be stored temporarily while--during the pro-
cessing operation--~the information is transformed from one memory
element to the next under the control of a clock pulse. In connection
with LSMs, a feedback shift register is a circuit configuration that
realizes the companion form of the characteristic matrix of an

internal LSM (ILSM). That is, a linear feedback shift register (LFSR)

is an ILSM x(k+1l) = Ax(k) having any one of the feollowing forms:

rxl(k+1)‘ (0 1 0 .. .0 ’fxl(k)‘
xz(k+l) 0 0] 1 .« . 0 xz(k)
. = | . . . . {5.1.39a)
0 0 0 . i
xn(k+l)J LaO a, a, . e an—lj xn(k)
r At Y
xl(k+1) (an-l A o8, 3+ - - 3 8, [xl(k)
xz(k+l) 1 0 0 . .. .0 0 x2(k)
. = /. . . . . . (5.1.39h)
x (k+1) 0 0 0 .. .1 0 x (k)
n J \ Juon )



[xl(k+1)‘ (a 1 0. ..0 ’xl(k)l

xz(k+l) a o 1. ..0 xz(k)

x (k+1) a 0 0. . .0]|x (k)
m J I

4

It is easily seen that the LFSRs (5.1.39) have the same char-

acteristic polynomial given by

n-1 n-2

£ = W - a —a W - -ax-a

n-1

That is, the companion matrices of these shift registers are similar
to one another and hence any one of them can be transformed to any
other by some suitable similarity transformation.

Realization circuits for the LFSRs (5.1.39) are shown in

Fig. 5.1.2.

114

xl(k+1) 0 o 0. . .0 ao Xl(k)
xz(k+l) 1 O 0. . .0 a, XZ(k)

. o - . (5.1.39¢)
Kn(k+1) 0 o 0. . .1 a3 xn(k)

. = | . . . (5.1.39d)
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,\ ) N {} SN
) () Uk, (1) x__; () L (0

“n-2 4h-1
+ -
*n-2 k) Fa-1 Xn(k)
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(k) xz(k) Xl(k)

(d)

Fig. 5.1.2. Realization Circuits for LFSRs

The existence of the canonical forms (5.1.39) is gzuaranteed
by a classical result of linear algebra which we will briefly discuss
in terms of TLSMs.

Suppose that the endomorphism A : X — X is cyelic, that is,
the minimal polynomial fm(A) of A is equal to its characteristic poly-
nomial fc(X) (the matrix A is nonderogatory) or equivalently, there
exists a z ¢ X such that the vectors z, Az, Azz,. .« e An—lz form a
basis for X. The vector z is called a (cyclie) generator for X
(relative to A). The set of all generators coincide with the set of

vectors g(A)z, where g()) ¢ GF(q)[A] is coprime with fm(k).

Suppose that A is cyclic with generator z, and let

(A)n_l - a ()\)n—-2 - v .. alA - a

_ _ n
£ =f0)= MW" -a -

n-1 O

(5.1.40)
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Defining the auxiliary polynomials

£y = )

f(l)(l) z ()\)n_l -a; - azk - . .. - an—l(l)nﬁz
(n-1) _
f (A = X - a__
MGy = (5.1.41)

i . . . .
it is easy to see that f( )(A), i € n, satisfy the recursion relation

@0y <UDy va,_ ™oy, 1en (5.1.42)

It is clear that the set of wvectors
st Wy, 1ea (5.1.43)

where eo = 0, forms a basis for X. From (5.1.42) and (5.1.43) we

obtain the following relations:

Ae1 = el-1 + a, en, ien (5.1.44)

From (5.1.44) it follows that with respect to the basis (5.1.43), the
isomorphic ILSM x{k+1) = Ax(k) has the companion form representation
given by (5.1.3%a). That is, if A is cyclic, there exists an isomor-

phism P : X — X such that the isomorphic ILSM x(k+1) = A;(k) =

(PAP 1)x(k) has the form (5.1.39a).
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This result can be extended to the general case of a noncyclic

(derogatory) ILSM in which case the isomorphic ILSM has the form

£ { Y 7. h!
xl(k+1) Al xl(k)
2 (k#2) A, %2 (k)
. = . . (5.1.45)
Lxr(k+l)J A"
r
5 sS4 8 XS,
where x (k) £ GF(q) and Ai g GF(q) , 1 € r, are the companion

e,
. . , . i
matrices associated with the elementary divisors [fi(A)] » i er, of

A, that is,

0 1 0 0
0o 0 1 0
P D . ,ier (5.1.46)
0 0 © 1
i0 2i1 %i2 i,s.-1
i
s s.-1
£L0) = (0 - oy 1 - @, h-a, ,ier
i i,s.-1 i1l” . io? =
(5.1.47)
€1 ) e
£ = (M1 M1 7L L e )] (5.1.48)
The matrix A = A, ® A®...® Ar in (5.1.45) is called the

rational canonical form of A. Systematic procedures exist for computing
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the rational cononical form. Variations of this form in terms of
invariant factors of A and the Smith canonical form also exist, but
will not be considered here.

The preceding result shows that every arbitrary ILSM is
isomorphic to an ILSM that is composed entirely of unc0up1éd LFSRs.
Therefore, the problem of analyzing the state behavior of arbitrary
ILSMs reduces to investigating LFSRs which have much simpler structure
and lead to efficient and economical synthesis and particularly simple
physical realization.

The classical cancnical form has also been used for the pur-
pose of investigating certain aspects of LSMs {[49]. If an ILSM is
cyclic and its minimal polynomial can be expressed as fm(A) = [f(A)]e,
where f(A) is an irreducible polynimial, then the isomorphic ILSM

has the following hypercompanion form:

X)) (@ Rr V(xt) )
2 (k+1) Q R x% (k)
i - " : (5.1.49)
§e"i(k+1) | Q R ie:l(k)
X (ct1) Q) [x (k)

where Q ¢ GF(q)£X£ iz the companion matrix of f(1), and R € GF(Z)sz,

£ = deg f(}), has the following form:
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0 0. 0
0 0...0
R= | ; (5.1.50)
0 0. 0
1 0...0

On the other hand, if A is cyclic and its minimal polynomial

can be expressed as (5.1.48), then the isomorphic ILSM has the form

r~ r"-' ~ ~ Y
D) | (A 7 (k)
-2 - ~2
x (k1)) Ay x (k) (5.1.51)
x5 (k+1) x" (k)
L . rJ L 4
where
v
@ Ry
Qi Ri
Ai = . , 1 er (5.1.52)
Qi Rl
\ QiJ
. s %8,
Qi e GF(q) appears e, times and is the companion matrix of fi(A)

- 5, XS,
having the form (5.1.46), Ri e GF(q) Y ! has the form (5.1.50), and

s, = deg £.(1), i r.
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A realization circuit for the internal submachine ;i(k+l) =
Ai;i(k) would consist of an assemblage of weakly coupled LFSRs.

Clearly (5.1.51) consists of r uncoupled assemblages of this type.

The above discussion just about exhausts the number of canoni-
cal forms that have been used in the area of LSMs. It is evident that
the feedback shift register constitutes the building block in all of
these canonical structures in the sense that in each case the iscmorphic
ILSM is an assemblage of uncoupled or weakly coupled LFSRs. As pointed
out earlier, some of the justifications for choosing LF5Rs as the cen-
tral and elemental components have to do with their structural sim-
plicity, economy and efficiency in synthesis, design, and physical
realization aspects. However, there exist other canonical forms such
as the Jordan canonical form, Luenberger quasi-canonical form,
Brunovsky canonical form, and so forth, which may be used to construct
LFSRs. It is conceivable that some of these LFSRs might prove to be
functionally superior in certain digital tasks to those based on the
companion forms. From the related literature it appears that no com-
parative investigation has ever been performed in this area of TLSMs.
We also observe that in the above discussion of canonical ILSMs, the
input element is conspicuously missing which leads us to the conclusion
that controcl-theoretic concepts have not been utilized in conjunction
with the canonical structures.

In the sequel we will introduce some additional canonical
forms, in the presence of the input element, whose structure and

realization will be based on the concept of state reachability.
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5.2. State Reachability and Canonical LSMs

In this section, we will first look at some of the companion
forms from a different point of view and then discuss the Luenberger
quasi-canonical forms whose structures are based on the reachability
property of LSMs. The Jordan canonical form will be considered later
in the sequel.

First, we consider the single-input LSM Ml = (A, b) and assume
that under the isomorphism P : X —» X, it has been transformed to

(P—lAP, P_lb). If K, and K, denote

the isomorphic LSM Ml = (A, b) = 1 1
the reachability matrices of Ml and Ml, respectively, then
K, =[b, &b,. . ., A"y =i, ab,. L., AT = P_lKl
(5.2.1)

is reachable, then by Corollary 4.1.1, K, and in

If we assume that M 1

1

view of (5.2.1), K. are nonsingular. Hence P can be written as

1

_ =1
P = KlKl (5.2.2)

Now using this particular isomorphism, we can show that Ml = (A, b)

takes the following canconical form:
x) (kH1) o 1 ...0 (;l(k) (0

iz(k+1) 01 ...0 x, (k) 0

= + u(k) (5.2.3)

Ry (k1) 00 ...1 K| (o

n—l(

xn(k+l) a_ a, . . . a xn(k) 1
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where fC(A) = (A)n - a (x) - e . . - all - a, is the character-

n~-1 0

istic polynomial of A.

Assuming that M, has the form given by (5.2.3), we can directly

1
calculate Kl and obtain
\
(0 0 o 1
0 0 0 el
0 0 ¢ e,
- B ~ o ~n-.1~ - - - .
Kl = [b, Ab,. . ., A bl =+ - - . (5.2.4)
0 0 1 . en_3
0 1 el en_2
1 €1 & - ®n-1
where
j-1
ej = E n—i—lej—i—l’ j & n-1; eo =1
=0
and
r A"
—al —a2 _an—l 1
—a, —a3 1
- 1 . . .
Kl = : : . . (5.2.5)
_an~1 1
| 1 )
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which can be verified by direct multiplication, KlKIl = In. Therefore,

the LSMs Ml and Ml are related to each other by the relation x fm*& Px,

o=1

where P = KlKl . If we let the vectors vi, i ¢ n, denote the columns

of P, we get

Vn = b
vn_l = Ab - a -lb
n-2 .2
vi = ADb-a 4Ab-a ob (5.2.6)
v1 = An_ - a An—zb - . . —ab

From (5.2.6) it is seen that the following recursive relation holds:

Av: = v +a, v ,1i=2,3,...,n {(5.2.7)

Using the above analysis, we are now in a position to show that Ml

indeed has the form given by (5.2.3). To this end, let us consider

the matrix P_lAP = KlelAKlK‘l, and denote the rows of P_l by wlT,

i en. Then for i ¢ n and j ¢ n-1, the (i, j) entry (P_lAP)ij

of P_lAP is given by

-1 1T i, _ iT, j-1 n
(P AP)],_j = w (Avj) =w (v + aj_lv )
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Therefore,

1 if 1 = j3-1
@ lapy .. =<a if 1 =n
ij j-1
0 otherwise

This shows that the last n-1 columns of PplAP have precisely the form
claimed in (5.2.3). To determine the first column, we observe from

(5.2.6) that

]
fa
<

1 _
Avi = (A" - a A - . . .- alA)b = aob 0

since according to the Cayley-Hamilton Theorem, fC(A) 0. Thus we

have for 1 € n

-1 _ it 1. iT n
(P AP)il =w (Av) = aow v
(ao if i = n
=<
lO otherwise

Similarly, it can be shown that g = P_lb has the required form.

Another way of showing that the isomorphic LSM ﬁl has the
canonical form given by (5.2.3) is to consider the columns vi, ie mn,
of P = Klill, given by (5.2.6), as a new basis for X, and then deter-
mine the representation of the original LSM Ml = (A, b) with respect
to this new basis. We would like to briefly discuss this approach

since it can be generalized to the case of multi-input LSMs. 1In order

to accomplish this, observe that from (5.2.6) and (5.2.7) we have
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Avi = (A - a _lA - . . - alA - aOIn)b + aob
fO 3
0
n n,|
—aob—aov-[v,v,. .,vj‘
0
a
OJ
(1]
0
Av: = v 4+ alvn = (v, v2, . vn] :
0
\al
’O 3
0
-_ 2 .
Avn=vnl+an_1vn=[v,v, ,vn].
1
"a-1)

and
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This shows that the LSM Ml = (A, b) has the desired representation

with respect to the new basis {vl, vz,. . ey v,
However, if instead of P = Klﬁ_l we choose P = Kl’ then it is
clear that
(1) (1)
0 0
b = [b, ab,. . ., AV ). [= PTb = |,

Similarly, it is easy to see that

Aty = pelt?, 1 ¢ u2

where e’ is a vector with 1 in the j th position and zeros everywhere

else, and

A(AT
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by the Cayley-Hamilton Theorem. Therefore, the LSM Ml = (A, b) has

the following iscmorphic representation with respect to the basis

-1
b, Ab, A%b,. . ., A"}

f;l(k+1)‘ 0 0. . .a, J[x®] f1]

£2(k+1) 1 0...a iz(k) 0

@Dl =10 1...a (k)| + 0] u(k)  (5.2.8)
3 3 3

xn(k+l)/ LO 0. .. an—lj(xn(k)J LOJ

We summarize the above results in the following theorem.

Theorem 5.2.1. Suppose that the single-~input LSM Ml = (A, b)

is state reachable with reachability matrix Kl = [b, Ab,. . ., An_lb]

and characteristic polynomial fc(l) = (A) - aﬂ_l()\)n_l - e . .- alA -

a,- Then under the isomorphism P_-1 = (K K_l)—l : X — X, x f~ﬂ+ P—lx

= ;, where il = b, Aﬂ,. . An—lg], A= P_lAP, and b = P_lb, the
isomorphic LSM Ml = (A, b) has the canonical form given by (5.2.3); and
under the isomorphism P = K_, the isomorphic LSM M_ = (A, b) has the

1 1

canonical form given by (5.2.8). If the original LSM Ml is not state

reachable, then no such isomorphisms exist.
In the remainder of this section we will consider the case of
multi-input L5Ms M = (A, B). In deriving the canonical forms (5.2.3)

and (5.2.8) for the single-input LSM M. = (A, b}, we chose the state

1

. \ -1 .
isomorphism P to be KlK and Kl’ respectively. Similar state isomor-

phsims may be used for the purpose of identifying certain multivariable
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machine canonical forms. However, since the reachability matrix K =

{B, AB,. . ., An_lB] of the multivariable LSM M = (A, B) is not square,
the relation K = P-lK, the equivalent of Kl = PdlK1 for Ml = (A, b)
T -1 T

given by (5.2.1), can no longer be used. But since KK™ =P KK, P =
T,~ T.-1 . . . .

KK (KK} can be used as a valid state isomorphism. However, we will

not pursue this particular approach but instead utilize the rank con-

dition of the matrix K under the assumption of state reachability of

M = (A, B) and choose different bases from the columns of K which will

result into different quasi-canonical forms for M. These will be called

the Luenberger quasi-canonical forms for LSMs. This apprcocach is some-

what similar to the one used for the case of Ml = (A, b) by choosing

P = Kl.
Let bi, i € m, denote the columns of the matrix B and rewrite
K as
1 2 ' - - -
K = [bY, b2,..., b™, abl, Ab2,..., ab%,..., A%l A%IR2, L, AN
(5.2.9)

Furthermore, assume that the LSM M = (A, B) is state reachable. There-
fore, there are n linearly independent columns in K. Since K has a
total of mn columns, n linearly independent columns can be selected in
many different ways, giving rise to different quasi-canonical forms.

Two such quasi-canconical forms were discussed in detail in Section 5.1,
and are given by (5.1.22) - (5.1.23) and (5.1.27). Here, we will employ

a different scheme for choosing the n linearly independent columns of K
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and consequently derive another quasi-canonical form for LSMs. In
constrast to the discussion of canonical forms in Section 5.1, here
no assumption is made about the ranmk of the matrix B.

For the purpose of selecting a basis for X from the columns

1
of K, we start with the vector b™~ {the first column of B) and proceed

n ~1
to Abl, Azbl,. ., until either A b~ is chosen in which case the

machine is reachable by the first input alone, or until a dependency
!
arises, that is, until A "b~ can be expressed as a linear combination
n, ~1

1 1 1
, Ab",. . ., A 1 b>. 1f more independent vectors are required,

we select b2 (the second column of B), Ab2, Azbz,. . «, until a depen-~
n
dency arises, that is, until A 2b2 can be expressed as a linear com—
2 .2 ny=1 o
bination of b, Ab™,. . ., A b-. 1If ny + n, < n, we proceed to
n, -1

b3, Ab3,. .., A 3 b3, and so forth, until n linearly independent

of b

vectors are obtained. Assume that this procedure yields the following

set of vectors:

{bl, Abl,..., ALl bl b2, an?,..., a2 bz;...; b2, AbZ,..., A S b%}

(5.2.10)

. . -1
Now if the state isomorphism P : X — X, x Fﬁﬂ» P "x = %, is chesen to

consist of the vectors (5.2.10), then it can be easily verified that

1

the isomorphic LSM M = (A, B) = (P AP, P_lB) has the form given by

(5.2.11) in which the * entries represent possibly nonzero elements.
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-+ - kS L T ) +®
(] o [ . . —
o o < . o
] o] - (=]
(o] i < . . )

X K K e +*
® K X LI T4
o o O e . —
(e T o N o (e}
o N o N A o
o = O O
~
—
=4
"
—
=
p—s

Xxn
(ns

(1
i <q

(5.2.11a)



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
S
0 0 0
o 0 ¢
0 0 0©
o 0 0
¢ ¢ 0

5.3. State Reachability and Feedback

0 0
0 0O
0 0
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0

132

(5.2.11b)

Linear state variable feedback is of fundamental importance in

many aspects of the synthesis or design of compensation schemes for

LSMs.

The important role of feedback im certain areas of linear

machine design and behavior will be discussed in more detail in the
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sequel. However, in this section we will restrict out attention to a
brief presentation of some interrelationships among state reachability,
state feedback, and "pole shifting."”

Theorem 5.3.1. Consider the LSM M = (A, B). Introducing the

memoryless state feedback law u(k) Fx(k)+ Gw(k), where F : X — U

is a state feedback map, G : U — U is an isomorphism, and w(k) ¢ GF(q)m
is a new external input, the LSM M is transformed to the LSM M = (A + BF,
BG). Then M is state reachable if and only if M is state reachable.
That is, the property of state reachability for LSMs is invariant under
state feedback transformation.

Proof. Let K and K denote the reachability matrices of M and

A" 18] and ¥ = [BG,

ﬁ, respectively. That is, K = [B, AB,. . .,
(A + BF)BG,. . ., (A + BF)n-lBG]. Suppose that M is state reachable

but M is not. Then rank K = n and rank K < n. Therefore, there exists

a4 nonzero vector v g GF(q)n such that VTE7= 0 which implies that

vi(a + BF)TBG = 0, 1 ¢ n-1 (5.3.1)

Since G is nonsingular, (5.3.1) reduces to

vi(a + BF) 1B

il

0, i £ n-1 (5.3.2)
From (5.3.2) it follows that vTAlBG = 0, i € n-1, that is, VT[B, AB,

n~-1
.y A B] = 0, which is a contradiction since the rows of K are

linearly independent. Conversely, assume that M is not state reachable
— . n
but M is. Then there exists a nonzero vector v ¢ GF(q) ~ such that

VTK = {). This implies that VTAlB

0, 1 ¢ n-1, which is equivalent
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to VTAlBG =0, i ¢ n-1. From this last set of relations it follows
T i . T . s
that v (A + BF)'BG = 0, i € n-1, that is, v K = 0, which is a contra-

diction. []

If we use the equivalent expression
A | R(BY) = R(B) + AR(B) + A%R(B) + . . . + A"T1R(B)

for R(K), then an alternative and more elegant proof for the above
A

theorem can be given as follows, Letting A = A + BF and noting that

for any W < X, (A + BF)W = AW + R(B), and R(BG) R(B}, we have

A A A_l
{A+BF | R®B)} = {& | R(B)} = R(B) + AR(B) + . . . + A" "R(B)
A A A A
= R(B) + A(R(B) + A(R(B) + A(. . . (R(B) + AR(B)). . .)

c R(B) + AR(B) + A%R(B) + . . . + A" MRem)
= {A | R(B)}

Since the above inclusion holds for all A, B, and F, if we replace F
by -F and then A by A + BF, we obtain the reverse inclusion {A | R(B)}

< {A+BF | R(B)}. Hence {A+ BF | R(B)} = {A | R(B)}. [J

Theorem 5.3.2, If the single-input LSM M, = (A, b) is state
reachable, then there exists a vector v g GF(q)n such that the charac-
teristic polynomial of the LSM (A + va, b) has an arbitrary preassigned
form.

Proof. Since Ml is state reachable, by Theorem 5.2.1, there

exists an isomorphism P : X — X such that the isomorphic LSM M1 =

{A, b} = (P_lAP, P_lb) has the form
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0 10 ...0 | fo
g 0 1 . 0 0
(- + - . e )
0 0 O 1 0
ag al 32 an-lj \1
where f (}) = (A)n - a (}\)n—1 - a (J\)n"2 - - a_ A - a_. is the
C n-1 n-2 T 1 0

characteristic polynomial of A. If vT z (vl, Vose v vn) is an

arbitrary vector, then

fo 1.0 ...0

A+va = - - - .
0o o0 0 . .1
do 91 92 ¢ 0 ¢ dp)

. . . p n o n—1 -
with characteristic polynomial fC(A) = (A) - dn_l(k) - e e .- dll
- d., where d, = a, +v, ., 1¢e¢ n-1l. Now it is obvicus that we can

0 i i i+l P —

choose a, + v » 1 ¢ n-1, to match the coefficients of the preassigned

i+1 ——

characteristic polynomial. [0

Theorem 5.3.3. If M = (A, B) is a state reachable LSM, then

there exists a feedback homomorphism F : X — U and a vector b ¢ GF(q)n

such that the LSM M = (A + BF, b) is reachable and b ¢ R(B).
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Proof. Since M is reachable, the reachability matrix K =
-1 .
[B, AB,. . ., A" B} has rank n. Consequently, there are n linearly
independent column vectors in K. We choose these linearly independent

column vectors according to the scheme that led to (5.2.10), and let

n, -1 n,. -1 - nt—l

where n,, i ¢ t, are the reachability indices and thus satisfy the

relation n, + n, + . .. + n, = n. Furthermore, we define

Sz [s, 8 4. + «, sn] £ GF(q)mxn

as follows:

2 3 t

s =100, 0,..., 0, e, 0,..., 0, 7, 0,..., 0, e, 0,..., 0, 0]
nlth column (nl+n2)th (nl+n2+...+nt_l)th nth
column column column
or more compactly,
T, . i
+
s 1= eJ 1 if r, = & ni, j e t=1
S O
SJ = 0 otherwise

where e’ is the ith standard basis vector of GF(q)m. Now we will show

that cheoosing the feedback matrix F as

F = 8T (5.3.3)

satisfies the theorem. Rewriting (5.3.3) as FT = §, it is elear that

b")
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FAJ b

il
m
[
i
re
1
[

FAle 0, for all other powers of A

Using these relatiomships, we can determine the columns of the reach-

ability matrix K of the LSM M (A + BF, b) as follows:

bl = bl
(A + BF)bl = Abl
(A + BE)2bT = (A + BR)AbT = a’bl
cn, -1 n —2 n_ -1

t (A + BF) ! bl = A L bl

(A+ BF) * b

n n. -1 n
(a+BF) bt = (a+8E) L bl =a bl 4 Be? = b2 4 wwa

n_ +1 n

& +8F) b bl 2

(A + BF)(b2 + A lbl) = Ab“ + k%%

. n -2 n -1
(A + gry P 1pt

(A+BE)(A T bE 4+ axxy = A © bt 4 swan

where *%* denotes the linear combination of the preceding vectors.
From the above expressions it is clear that the columns of E} that is,

the vectors

2 _
bl (A + BF)bY, (A + BP)bY,. . ., (A + 3R hpt

are linearly independent. Thus rank Er= n and hence M = (A + BF, b)
is state reachable. Clearly bl e R(B). [
With the aid of the above theorem, we can extend Theorem 5.3.2

to the multivariable case as shown in the following theorem.
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Theorem 5.3.4. If the LSM M = (A, B) is state reachable,

then there exists a feedback homomorphism F : X —> [ such that the
characteristic polynomial of A + BF¥ has an arbitrary preassigned form.
Proof. Introducing the feedback law u(k) = v(k}) + F'x(k), M
becomes M = (A + BF', B). Since M is state reachable, by Theorem 5.3.3
there exists an F' such that the LSM (A + BF¥', bl), where b1 is the

first column of B, is state reachable. Introducing another state feed-

]

back law v(k) w(k) + F'"x(k) with F" having the form

T L] . . . fll

ffl f2 n
0 o . . 0
F'"" = |- . .
0 0 0

M becomes

x(k+1) = (A + BF")x(k) + Bw(k)
= (& + b ") x(k) + Bu(k)
where A = A + BF'and £" = [f;, £, o oy f;]. Since the LSM (A, bl)

is state reachable, by Theorem 5.3.2, the characteristic pelynomial of

A+ bt

f'" has an arbitrary preassigned form. Now if we combine the
feedback forms u and v, introduced above, as u = v + (F' + F")x = v + Fx,
then the theorem is proved. [J

The necessary condition of Theorem 5.3.4 also turns out to be

sufficient. Proofs of sufficiency will be given in Theorem 6.3.1 and

Theorem 7.1.1.
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The following lemma plays a central role in our further dis-
cussion of the interrelationships between state reachability and feed-

back.

Lemma 5.3.1. Let A ¢ GF(q)nxn, B e GF(q)nxm, and F ¢ GF(q)mxn.

Then the following matrix identity holds:

(A +BF)3 = ad 4 BFa + 837! 4+ ABF(A + BF)I Y
- .

+ ..+ ARG+ BE) + A0, G o= 0, 2,.
F(A + BF) 1
F(A + BF)J 2

- a4+ B, aB,. . ., a7l .
F(A + BF)
F )

(5.3.4)

Proof. For j 1 and j = 2, {5.3.4) holds since

Al + BF(A + BF)O = A + BF

[}

(A + BF)l

(A + BF)> = A2 + BF(A + BF) + ABF(A + BF)"

A2 + BF(A + BF) + ABF

Now suppose that the identity holds for j-1, that is,

1

(a+ 8r)37t = A3 4 gra + M) T2 4 aBF(A + BRSO

+ ...+ a7+ e + Al % (5.3.5)
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We will show that it also holds for j. Postmultiplying (5.3.5) by

A + BF, we obtain

a + 307 = a7 a + B9 + BRa + R ITL 4 ABF(A + BRI 7Y

. ..+ a73%F% F )% + AT %R + BE)

A+ B + 3L 4 ABF(A + BF)T 7Y

I

+ . . .+ A% F + BF) + al 1

Therefore, the result is proved by induction. []

Theorem 5.3.5. Let M = (A, B) be a nonsingular LSM. Then M

is j-state reachable if and only if the matrix equation

(a+ BF)j =0 (5.3.6)

has a2 unique solution with respect to the feedback matrix F ¢ GF(q)mxn.

Proof. Introducing the feedback law
u(k) = Fx(k) (5.3.7)
M becomes
x(k+1) = (A + BF)x(k) (5.3.8)

Starting from an arbitrary initial state x{0) and applying equation

(5.3.8) j times, we obtain the relationship

x(3) = (A + BF)Ix(0) (5.3.9)
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Now postmultiplying both sides of the matrix identity (5.3.4) by x(0),

we get
(A + BF)jx(O) = ij(O) + BF(A + BF)j"lx(O) + ABF(A + BF)j'zx(O)-
+ .. .+ Aj"ZBF(A + BF)x(0) + Aj"lBFx(O) (5.3.10)

In view of the equations (5.3.6) and (5.3.9), equation {5.3.10) reduces

to the following expression:

Adx(0) + BFx(j-1) + ABFx(j-2) + . . . + AJ'ZBFx(l) + AJ_lBFx(O) =0

(5.3.11)
Premultiplying equation (5.3.11) by FA~J yields
~j , ~j+1 .
Fx(0) + FA “BFx(j-1) + FA BFx(j-2)
-2 -1
+ . . . + FA "BFx(1l) + FA "BFx(0) = 0 (5.3.12)

Substituting u(k) = Fx(k), k ¢ j-1, equation (5.3.12) reduces to the

following equation:

— —5 - -
~u(0) = FA IBuGG-1) + AT BuG-2) + . . .+ FATZBu(1) + FA lBu(0)

(5.3.13)

Since equation (5.3.13) is an identity for any u(k), k e j-1, it

follows that

(5.3.14)
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It is clear that equation (5.3.6) is equivalent to equations (5.3.14).
The set of equations (5.3.14) will have a unique solution with respect
to F if and only if it contains exactly mn linearly independent equa-

tions or equivalently, if and only if the matrix

-1

I . 1
a3, a7 L, ATy = ATIB, B, . ., A

B] = A9k

has exactly n linearly independent columns. But since A is nomnsingular,
the matrix K, which is the state reachability matrix of M, will have

n linearly independent columns if and only if rank K = n, that is, if
and only if M is j-state reachable. []

Corollary 5.3.1. A nonsingular LSM = (A, B) is state reach-
able if and only if the set of equations (5.3.14} has a unique solution
with respect to the matrix F.

The above result also contains a solution of the minimum-time
feedback control problem of linear machines which can be stated as
follows: Given a nonsingular LSM M = (A, B) with state reachability
index £, determine the matrix F g GF(q)mxn in the linear feedback con-
trol law (5.3.7) such that M is driven from any arbitrary initial state
to the zero state OX in a minimum number of clock periods. To see
that a solution to this optimal control problem is provided by Theorem
5.3.5, notice that in order to have x(£) = 0 for any arbitrary initial
state x(0), from equation (5.3.9) it follows that we must have (A + BF)£

= 0 which is equation (5.3.6). In the proof of Theorem 5.3.5, it was

shown that the existence of a unique solution of (A + BF)£‘= 0 with



143

respect to the feedback matrix F is equivalent to the condition of
£-state reachability of M. We summarize this observation in the follow-

ing theorem.

Theorem 5.3.6, The matrix F & GF(q)mxn in the linear feedback

control law u(k) = Fx(k) for which the LSM (A, B), started at any
arbitrary initial state, is driven to the zero state in a minimum
number of clock perieds, is given by the solution of equation (5.3.14).

Corollary 5.3.2. The state controllability index of the LSM

(A, B) is equal to the smallest integer £ for which the equation

(A + BF)E = 0 has a unique solution with respect to F ¢ GF(q)mxn.

Corellary 5.3.3. The state controllability index of the LSM

(A, B) is equal to the smallest integer £ for which the set of equa-

tions (5.3.14) has a unique solution with respect to F ¢ GF(q)mxn.

Summary and Conclusions

The primary focus of this chapter was on the concepts of iso-
morphic LSMs, canonical representations, and state feedback in con-
junetion with the property of state reachability of LSMs.

After formalizing the notions of isomorphic LSMs, canonical
forms, and invariants of equivalence relations, first a special set
of invariants, called reachability indices, associated with an LSM
M = (A, B), was thoroughly characterized and then its use in the
invariant description of state reachable LSMs was illustrated. 1In the

course of this illustration, a new derivation of Brunovsky's canonical
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form [15] for LSMs was presented. The results pertaining to the charac-
terization of the reachability indices are essentially specializations
to the case of LSMs of the results due to Popov [90].

It was observed that the only canonical forms used only in the
area of autonomous LS5Ms are the companion and hypercompanion forms
which are popular in the area of classical linear algebra. This obser-
vation led to the conclusion that canonical forms have never been con-
sidered for nonautonomous LSMs and hence control-theoretic concepts
have not been utilized for their canonical representation. In this
chapter cancnical forms for nonautonomous LSMs were investipated.
Making use of the property of state reachability, various canonical
and quasi-canonical forms, including the companion forms, for both
single~input and multi-input LSMs were presented (cf. [17]}, (217, [58],
[611, [711, [88], [107], [110], [114]).

Finally, the effect of state feedback on reachability, eigen-
value assignability, and time-optimal control of LSMs was closely
examined (cf. [18], [21], [58], [61), [79], [88], [107], [109]. [1lOi,

[1141).
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CHAPTER VI
STATE REACHABILITY REVISITED

In this chapter we will introduce a large number of equivalent
state reachability criteria for both single-input and multi-input LSMs.
Single-input LSMs will be treated separately rather than special cases
of multivariable LSMs because they do constitute an important class of
LSMs in their own right, and also due to the fact that there are some
reachability criteria for single-input LSMs that cannot be extended
to the multivariable case.

In Section 5.1, we saw that the property of state reachability
could lead to numerous canonical and quasi-canonical forms for both
classes of single~input and multi-input LSMs. <Clearly the existence
of these isomorphic forms can alsc be stated as mecessary and suffi-
cient conditions for state reachability. However, the number of these
forms is prohibitively large. Thgrefore, by way of illustration, we
will include in this presentation only two reachability criteria in
terms of the existence of cancnical forms for single-input LSMs and
only one such criterion for multi-input LSMs. Furthermore, we will
re—examine, in this chapter, some groups of transformations in relation
to the class of state reachable LSMs. These groups were originally

introduced in Section 5.1.
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6.1. Twenty Four Equivalent Criteria for the
State Reachability Property of
Single-Input LSMs

Theorem 6.1.1. For the single-input LSM Ml = (A, b), the
following statements are eguivalent:
10. The LSM Ml = (A, b) is state reachable.
2°. There does not exist any isomorphism P : X — X,
P & GF(n, q), such that the isomorphic LSM Ml = (A, b) = (PAP_l, Pb)
will have the form
~ ¥ -1
A Al P
( - s ) (6.1.1)
0 A22 0
where All £ GF(q)rxr, A12 £ GF(q)rx(n_r), A22 £ GF(q)(n—r)x(n-r), and

-~

1
b ¢ GF(q)r, with r < n.
Or

1

There does not exist any LSM M1 = (PAP , Pb), isomorphic ta

M1 = (A, b), which will have the form:

~ ~1 ~ ~YIT ~
X0 + AR T 4+ blu(k) (6.1.2a)

<% (k+1)

Tl

k1) = ALxT

99% (k) (6.1.2b)

I
T

where xI(k) £ GF(q)r, xII(k) £ GF(q)n_r, A

A12 e GF(q)

ll £ GF(q)rxr’

_ 1
rx{(n-r) , and b e GF(q)", with

, ;22 . GF(q)(n—r)x(n—r)

r < n.
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0 . .
37, The vector b does not belong to any A-invariant subspace

of dimension smaller than n.

. . . T
4°. There exists no nonzero eigenvector v of the matrix A

orthogonal to the vector b. That is, there exists no vector v which

will simultaneously satisfy the following conditions:

vT(AIn ~A) =0,vb=0,v=0 (6.1.3)

50. A subspace of X which is orthogonal to the vector b does

. T . .
not contain an A -invariant subspace.

6°. The following matrix K1 € GF(q)nxn has rank n:

K, = [b, Ab, A%,. . ., A" ] (det K, 0) (6.1.4)
Or
. 2 n-1 . .
The linear map [b, Ab, A™b,. . ., A "b] : U* — X is an epi-
morphisn.
Or
GF(q)n is cyclic with respect to A, having generator b.
Or

There exists no pelynomial £(Z) e GF(q) [£] of degree less than

n such that £(A)b = Q.

_ An_J_lbbT(AT)n_J_l,

o T n-1
7 . The rank of the matrix KlKl I
j=0

where Kl is defined by (6.1.4), is equal to n.
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o . .
8§ . The matrix equaticn

A+ b = 0 (6.1.5)

. . . n .
has a unique solution with respect to the vector f ¢ GF(q) , and A is

nonsingular.

o . .
9°. The set of linear equations

(6.1.6)

h
-
o
il
=]
[
Il
N
(V%]
ja ]

has a unique solution with respect ot the elements of the vector f.

10°. The following matrix El € GF(q)n X0 pas rank n2:
[ I 0 0 ...0 00...00 b]
-A In #] . 0 0 0O . O b O
0 -A In . 0 0 0O . 0 O
El E * L] - - L] L] L] - L] (6‘1.?)
0 0 0 In 0 b . .0 0 0O
L 0 0 0 . . .-A 0. . .0 O OJ
o . , nxl
117, Given any polynomial vector z(f) & GF(q)[&] with ele-

ments of degree n-1 or less, there exist a polynomial vector x(£) €
nxl .
GF(q) (£] with elements of degree n-2 or less, and a polynomial

v{£) £ GF(q)[£] of degree n-1 or less, such that

(ET, - 8)x(8) + by(&) = 2(&) (6.1.8)
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12°. There exist a polynomial matrix X(£) = GF(q) [P;]nxn with

elements of degree n—-2 or less, and a polynomial vector y(£} ¢ GF(q)[Ej]nX

with elements of degree n-1 or less, such that
(ET_ - DX(E) + by (8) = T_ (6.1.9)

o nx(n+l)

13°. The matrix [EIn - A, b] € GF(q)IE&] has rank n for
all ¢.
140. The polynomial matrices EIn - A, b are coprime, that is,

[gIn - A, b] has the Smith canonical form [In’ 0}.

o} . .
15> . The matrix equations

fl
o

PA - AP
(6.1.10)
Pb

fl
[aN

admit a unique matrix solution P & GF(q)nxn for every vector d ¢ GF(q)n

160. For any other LSM M. = (A, b) which satisfies the condi-

1
tions
- S T2r “n-1-
det Kl = det[b, Ab, A"b,. . ., A bl =2 0 (6.1.11)
and
det(?\In - Ay = det()\In - A) (6.1.12)

there exists a nonsingular matrix P ¢ GF(q)nxn such that

A= PAP_l; b = Pb (6.1.13)

1
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17°. There exists an isomorphism P : X — X, P ¢ GF(n, q),

It

such that the isomorphic LSM (A, b)

form:

=3
n

(PAP

-1

, Pb) has the following
{0)
0
;b= | (6.1.14)
0
1

where a» i e n, are the coefficients of the characteristic polynomial

i-1

([ =

£ ) = " -
¢ i=1

Or

There exists an LSM Ml = (A, b)

Ml = (A, b), whose state equations have

;l(k+1) - ;z(k)

§2(§+1) £3(k)

xn_l(k+l)

x_ (k)

xn(k+1) = alxl(k) + azxz(k) + .

18°.

There exists an isomorphism
such that the isomorphic LSM Ml = (A, b)

Lur'e-Lefschetz form

the

P

tl

ai(A) of the matrix A.

1

(PAP™ , Pb) isomorphic to

form

. +ax (k) + bu(k)
nn

: X — X, P ¢ GF(n, q),

(PAP_l, Pb) has the Jordan-
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[~ ) ~1)
A1 b
- "2
A2 b
A= . ;b= |, (6.1.15)
A 6"
\Y UJ Py
- n Xn,
where Ai e GF{q) + » 1 € v, are Jordan blocks of the form
fx, 1 )
i
A, 1
i
Ai = . , 1 e v (6.1.16)
A, 1
1
AiJ
- n,
bl e GF(q) 1, i & v, have the form
fO'\
0
i
b = *|l, 1 E l)_ (6-1.17)
0
oy

and the numbers Ai and n, are cbtained from the expression of the

characteristic polynomial
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It,
e _ i =
det(AIn - A) = (A Ai) . (Ar AS whenever r = s)

i

= <

1
(6.1.18)

of the matrix A.

Or

There exists an isomorphism P : X — X, P ¢ GF{(n, q), such

1

I

that the isomorphic LSM Ml = (A, b) = (PAP , Pb) has the form

xil(k+1) = Aixil(k) + xiz(k)
xiz(k+l) = Aixiz(k) + xi3(k)
. (6.1.19)
i m, -1 = A%y o g (k) 4y (KD
1 1 1
x, (k+l) = A.x, (k) +u(k); Le v
i 1 1ni -

190. For every polynomial of the form

n .
£,0) = " - 1 bi(x)l"l (6.1.20)
i=1

\ 0
there exists a vector v e GF(q)n such that

det[MI_ - (A + bv?Ty ] = £,00 (6.1.21)

That is, the characteristic polynomial of the matrix A + vaT is equal

to the given polynomial fl(l).
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200. There exists a nonsingular matrix P ¢ GF(q)nxn such that
-1 P ()
()\In -A) b = det(AIﬁ A (6.1.22)
where
W) 2 (1, A, .., A0, (6.1.23)
21°.  For any polynomial of the form
Ly =d W ea el L L+ (6.1.24)
2 n n-1 1
there exists a vector v e GF(q)n such that
VoI - B = EEE;%;Elj—KY (6.1.25)

220. There exists a vector v ¢ GF(q)n for which the expression

VT(AIn -0 h (6.1.26)
is irreducible, that is,

T ooy h _ f)
vIOT - A) Iy - =6 (6.1.27)

where £(}) and g(X) are coprime polynomials.

23°.  The following matrix R ¢ GF(q)(u+v)x(u+v) has rank (p+v):
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a 0 0 0 0 0 0 b
v u
a_q av . 0O 0 0 ¢ . bu bu~l
5.2 31 -+ 0000 ' u-1 p-=2
R=| . . Lo .
0 0 . aO a1 b1 bo . 0 0
0 . 0 b. 0 . 0 0
L0 a0 0 J

where a, s ie v, and bj’ j e p, are the coefficients of the polynomials
f(x) and g(2), respectively, in (6.1.27).

)

24 There does not exist any nonzero vector v ¢ GF(q)n such

that the expression

vT(AIn - (6.1.28)

is identically equal to zero.
(o] . .
257, For every set of distinct scalars Ai, i € n, different

from the eigenvalues of the matrix A, the vectors

(T - B, i n (6.1.29)

are linearly independent.
Proof. We want to show that the following chain of sequential

implications is closed:
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1°2== 2°:= 3% = 4% 1= 5% = 7 = 77 = 8° == 97 = 107 =

11° = 12° == 13° = 14° > 15° — 16° = 17° = 18° = 19° - =

(o}

20° — 21° = 22° = 23° = 24% = 25° = 1°

1% = 2% Suppose that property 2o is not satisfied. Then

there exists an isomorphism P : X — X such that the isomorphic LSM

iy -1

Ml = (A, b) = (PAP 7, Pb) is described by the equations (6.1.2). From
equation (6.1.2b) it is clear that if xII(k') = 0 for any clock period
~TT .

k', then x (k") = 0 for any other clock period k". Therefore, Ml =

(;, g) and consequently M1 = (a, b) cannot be reachable. Hence 1° == 2°.
2% = 30: Suppose that property 30 is not satisfied. Then

the vector b belongs to an A-invariant subspace S S_X of dimension

r < n. Let

{sl, 52,. . s sr, sr+l,. . s s} (6.1,30)

be a basis for X such that {sl, 32,. N sr} forms a basis for 8.

Then any vector x € § can be uniquely expressed as

1 2 r
X = als + a,s + . . . a s (6.1.31)
for appropriate a, € GF(q). Since § is A-invariant, Ax ¢ S and in
view of (6.1.31),
Ax = b.As' + bAs® + . . . +b As
1 2 r
= blAsl + b2A52 + .. .+ brAsr + 05r+l + .. .4+0s"

(6.3.32)
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for appropriate bi g GF(g). From (6.1.31) it follows that the matrix
representations A and b of A and b with respect to the basis (6.1.30)
have the forms given by (6.1.1), and hence property 2° is not satisfied.

L [sl, sz,. . ey sn].

Therefore, 2° = 3%, Clearly P
o o o . . s
37 —= 4 : SBuppose that property 4 is not satisfied. Then

. n
there exists a nonzero vector v £ GF(q) such that

vIiA = Avt (6.1.33)

vib = 0 (6.1.34)

Assume that a subspace W c X is orthogonal to the vector b so that

va = 0 for all w ¢ W. From equation (6.1.33) it follows that vTAw =
Ava = 0 which implies that W is an A-invariant subspace. Since by
hypothesis v # 0, dim W < n. Furthermore, equation (6.1.34) shows
that b e W. That is, there exists an A-invariant subspace of dimen-
sion smaller than n containing b. This conclusion obviously contra-
dicts property 30 and hence 3% == 49,

4 = 50: Suppose that property 5° is not satisfied. Then
there exists a subspace V ¢ X such that va =0 for all v ¢ V. Further-
more, there exists a subspace W c V which is AT—invariant. Therefore,
for any v ¢ W we have ATV £ W. We need to whow that W contains an
eigenvector of AT. Let dim / = £. Then given any v e W, there exists

T

an integer v, 1 < v £ £, such that the vectors v, A v, (AT)ZV,. . ey

N -
(AT) 1v are linearly independent, but for some a; e GF(q), 1 ¢ v-1,

T T, 2 T,v-1 T, v
+ =
agVv alA v + aZ(A Yv+ .. L+ av—l(A ) v+ (A) v 0

{(6.1.35)
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Let X be a solution of the following equation:

by * byh - - -+ VT )Y =0 (6.1.36)
Then the v+l equations
Aco = bO
~Cq + Acl = bl
. (6.1.37)
~Cy-2 * Acu—l - bv~l
~C_1 = 1

determine a unique solution for the v quantities Co» C9» + = e Cg¢
1t is clear that equation (6.1.36) is the condition that the first of
equations (6.1.37) should be satisfied. Substituting for bi’ ie v-1,

from (6.1.37) into (6.1.35) and rearranging, we obtain

T T T Tov-1 . _
(AIn - A )(cov + clA v + cz(A v+ ..+ Cv—l(A ) v) = 0

{6.1.38)

Letting

N + clATv + cz(AT)Zv + .. .+c (A)D)" v zw (6.1.39)

equation (6.1,38) reduces to
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T
A'w = dw

showing that w is an eigenvector of AT. Clearly w is nonzero and

lies in the subspace [, which contradicts property 4°. Hence 4° == 5°,
59 — 6% 1f0=ve GF(q)n, then obviously vIb = 0 or

va z 0. If VTb = 0 and property 59 is satisfied, then not every one

of the vectors
v, ATv, (AT)ZV, e e (AT)n-lv

is orthogonal to b. Therefore,

Vb oab A% ... A"y =0

and hence
rank(b Ab Ab . . . A h) = n

Therefore, 59 — 60.

6° < 7°: This follows immediately from the fact that the
rank of a matrix does not change after premultiplying or postmultiply-
ing a nonsingular matrix.

7% <= 8% «=>9%: Introducing the feedback law

T
u(k) = £ x(k), £ ¢ GF(q)" (6.1.40)
the LSM (A, b) becomes

x(k+1) = (A + bf )x(k) (6.1.41)
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Starting from an arbitrary initial state x(0) and applying equation

(6.1.41) n times, we obtain the relationship
x(n) = (A + bf1)™x(0) (6.1.42)

For the state x{(n) to be zero, we must have (A + bfT)n = 0, that is,
the matrix (A + bfT) must be n-nilpotent. Now postmultiplying both

sides of the matrix identity (see Lemma 5.3.1)

A+ b = A" 4 bfla + b 4 AbeT(A + bETYPT2
+ o+ AT A+ bED? + A" 2T (A + bED)
+ AN LT (6.1.43)

by x(0), we get

(A + bED)™%(0) = A%x(0) + bET(A + bED) ™V h(0) + AbEL(A + bEL)™2x(0)

n-2, T

oo AT+ bEDY x(0) + AYTTRETR(0)  (6.1.44)

In view of (A + bfT)n = 0 and equation (6.1.42), equation (6.1.44)

reduces to

A"x(0) + bfix(n-1) + abfix(n-2) + . . . + A" ZpfTx(1) + A" TbeTx(0) = 0
(6.1.45)
Premultiplying equation (6.1.45) by fTA_nyields
£%(0) + AT b x(n-1) + £ 8 " peT (no2)
oo+ A Tk + fTA e Tx(0) = 0 (6.1.46)
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Substituting u(k) = fo(k), k=0,1, . . . , n-1, equation (6.1.46)

gives
—a(0) = £7A bu(n-1) + £14 " pu(n-2)
+ .. .+ fTA—zbu(l) + fTA—lbu(O) (6.1.47)

Since equation (6.1.47) is an identity for any u(k), k € n-1, it

follows that

(6.1.48)

That is, the matrix equation (A + bfT)n = § is equivalent to the set

of scalar equations (6.1.48). Equations (6.1.48) will admit a unique
solution with respect to the components of the vector f if and only if
they are linearly independent, that is, if and only if the rank of the

matrix

A, A ™ AT ) = AT, ab, A%, . ., A% = AT

. . . . -n .
is n. But since A is nonsingular, the matrix A Kl will have rank n

if and only if rank K1 = n. Hence 7° <= 8° <= 90

9% = 10°: Ssince 9° — 60, we want to show that 6° —> 10°,

In the matrix E given by (6.1.7), if we add A times the first (block)

1!
row to the second (block) row, then add A times the second (block) row

to the third (bleck} row, and so on, until El is reduced to the form
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1 0 0 0 0 0 0 b )
n
0 1 0 0 0 0 b Ab
0 0 0 0 0 . b Ab A%
B ) ) )
10 b n-b ATy AT
0 b Ab T N )

(6.1.49)

then El has the same rank as El’ and the rank of E1 is n2 if and only

if the rank of (b Ab A% . . . A" %) is n. Thus 6° <— 10°.

lOO — llO: In the equation (£In - Ayx(g) + by(g) = z(&),

writing x(&), y(£), and z(&) as

x(£) = k0 + xE + x50 4 . .+ T
-1

VO = vy * v E Ty 4 ey (D)°

z(E) = 2 4+ e+ 22(5)2 e

multipiying out the products, and equating coefficients of like powers

of £, we obtain the following set of equations:

n—-1 n-1
+b =
x yn—-l z
-1 -2 -
—Axn + x" +byn_2 = 2" 2
-Ax" + xO +byl = z1

£
N

-Ax +-by0 =
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The coefficient matrix of this set of equations is precisely the matrix

E, given by (6.1.7), and hence this set of equations will have a unique

1
. 0 1 n-1 . ;
solution for z°, z°,. . ., Z ,» 1f and only if the matrix E has rank

2
n .

11° = 12°: Let e’ denote the ith column of the identity

i
e, i e n. Furthermore,

[}

matrix In’ and in equation (6.1.8), let z(g)
. (1) (i} i .

if we denote by (x (2), vy (£)) the corresponding solutions, then
the matrix X(£) having x(l)(E) as its columns and the vector y(§f)
having y(i)(g) as its components will satisfy equation (6.1.9). There-

fore, 11° == 12°.

12° —= 13°: Rewriting equation (6.1.9) as

X(E)
[(EI‘D - A): b] T =1
y (&)

it is clear that rank [_(F;In - A), b] = n.

13° = 14°: Suppose that the matrix [(6L_ - &), b] has the
Smith canonical form [Z(E), 0], where Z(g) = zl(g) & zz(g) ® . . .8
zn(g). 1f zn(A) = (0, then XA is a zero of the nth determinantal divisor
of [(EIn - A), b] and hence A is an eigenvalue of gIn -~ A. Furthermore,
the rank of [Z(E), 0] is the same as the rank of [gIn - A, b] for all £.
Since rank [gln - A, b] = n, by hypothesis, it follows that zn(E) =1

and hence Z(f) = In.
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14° = 150: We prove the chain of implications 14° => 130 =
4° — 5% = 15° of which 4° = 5° has already been proved. To show
that 140 = 130, assume that EIn - A and b are coprime. Then the
Smith canonical form of [gIn - A, b] is [In’ 0] which implies that the
nth determinantal divisor of [gln - A, b] is unity. Therefore, the
matrix [‘EII_1 - A, b] has rank n for all £. The implication 130 = 40
follows from the fact that if the matrix [EIn - A, b] has rank n, then
its rows are linearly independent and hence for any vector v,
vT[EIn - A, b] = 0 implies that v = 0, Therefore, there exists no
nonzero vector which simultanecusly satisfies VT(E;In - A) = 0 and
T

v'b = 0. To show the last implication 59 =» 150, we observe that any

expression of the form

n .
P= I adA -, a;, € GF(q) (6.1.50)

satisfies the equation PA - AP = 0. Substituting (6.1.50) dinto Pb = d

yields

4. 2
Pb = & A lbai = [b, Ab, A%,. . ., A" 1B] = d (6.1.51)

1-—-

From equation (6.1.51) it is clear that the solution (6.1.50) is unique

n

. 2 - \ ,
if and only if [b, Ab, A"b,. . ., A lb] is nomsingular. Hence

° <:>15°.

5
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15° = 16%: We prove the chain of implications 150 — 4% =
5¢ = 6% = 16° of which only 15° == 4° and 6° = 16° have not
vet been proved. To show that 157 — 40, suppose that there exists

a nonzero eigenvector z of the matrix A which is orthogonal to the

vector b, that is, ZTA = AzT, sz = 0, and z 2 0. Hence zT(A - AIn) =

0 and, therefore, det{A - AIn) = (0. But this conclusion implies that
there exists a nonzero vector v such that Av = Av., Now if we let

PO = va # (), then it is clear that P0 satisfies the relations POA ~

APD = (J and POb = 0. Therefore, if P is a solution of equations

(6.1.10), then so is P + PO which contradicts the uniqueness condition

o o] o] , o 0
of property 15 . Thus 15 == 4 . Finally, to prove that 6 —> 16,
we recall that by the Cayley-Hamilton Theorem the matrices A and A

satisfy their own characteristic equations which, by (6.1.12), are

identical. Thus we can express A" and A" as

aiAl‘l, a; e GF(q) (6.1.52)

a.Al_l, An =

i ]
1 i

o=
[
J s =1
|| B Wl

i 1

Let us introduce the matrix

o 0. . .0 a;

1 6. ..0 a2

c 1. . .0 33
NEo L (6.1.53)

60 0. . .1 a

1
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which satisfies the equations

K,N = AK (6.1.54)

AK (6.1.55)

I
Z
]

Since K, is nomsingular by hypothesis and Kl is nonsingular by property

1
60, in view of equations (6.1.54) and (6.1.55), we have A = PAP_l,

where P = KlKil. Furthermore, PKl = Kl and, in particular, Pb = b.

16° === 170: It can be easily checked directliy that the pair

(A, b) defined by (6.1.14) satisfies all the conditions of property 160,

that is, det[b, Ab,. . ., A" ] # 0 and the characteristic polynomial

of ; is (}\)n - ; ai(l)i‘l. Therefore, 16O = 170.
i=1
17° == 18°: We will prove that 17° = 6° = 16° — 18°,
The implication 170 = 60 follows immediately since rank[g, Ag,. . s
A" %] = rank P[b, Ab,. . ., A" 1P . The implication 6° -= 16°

was proved as part of the proof of the implication 15° = 16°. There-
fore, it remains te prove only the implication 16° = 18°. This can
be accomplished by showing that the pair (A, b} defined by (6.1.15)

satisfies the conditions of property 16°.  From (6.1.18) it is clear

that the characteristic polynomials of A and A are identical. To check
the second condition, we need to see if the matrix [b, Ab,. . ., An_lb],

where A and b are given by (6.1.153) - (6.1.17), is nonsingular. First,

we will show that the pair (A, b) satisfies property 40, that is, there

exists no nonzero eigenvector of A which is orthogonal to b, From
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(6.1.15) and (6.1.16) it follows that the matrix A has only v eigen-

vectors of the form

i . ,
where w = are nj—vectors given by the relations

if i 2 j
31

a0, for 1 =3

|

Now using (6.1.15) and (6.1.17), we see that all the eigenvectors vl of

the matrix A satisfy the condition vlTb 20, ie v, Since 4° = 60,
it follows that the matrix [b, Ab,. . ., Anulb} is nonsingular.
18° = 19°: We will consider the chain of implications 18°
o] 0 o . 0 0 , ,
== 6 —> 17 == 19 of which 18 == 6 was proved in the preceding

discussion when we showed that the matrix [b, Ab,. . ., An—lb] is



167

nonsingular, and 6% =— 170 has already been proved. Therefore, we
need to show that 170‘:=> 190. Assuming the pair (A, b) has been

transformed to (A, b) given by (6.1.14), consider an arbitrary n-

vector VT = (vl, Vose o s vn). Using (6.1.14), we obtain
[ o 1 0 . 0 |
0 0 1 0
. o . . . .
A+ bv = . . . . (6.1.56)
0 0 0 1
al+vl a2+v2 a3+v3 an+vn

The matrix (6.1.56) has the following characteristic polynomial:

Q) = (D" - (a, + vi)u)i‘l (6.1.57)

i

[/ e =

1

Now if a polynomial fl(h) of the form (6.1.20) is specified, then we

can choose
v, =h, —a,, iemn
i n

so that

det[AI_ - (A + bvl)]

fl(k) (6.1.58)

Using the relations A = PAP--l and

=2l

= Pb, and (6.1.58), we find that
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L. vaT)

f(Al) det(?\In - PAP

1

det POMT_ - A - byvip)p”

det(\T_ - A - bvip)

det (AT - A - byOTy

where VOT = VTP.

19° = 20°: We will show that 19° — 4° — 17° —= 20°.
Since the implication 4° = 17° has already been proved, it remains
; . . o} o} o o) 0
to prove the implications 19 == 4 and 17 == 20 . To prove 19
Bt 40, agsume that property 40 is not satisfied. Then there exists
T T T
a vector z such that z A = AOZ y 2 b =0, and z # 0. Therefore, for
T T T T . .
any vector v we have z (A + bv') = z A= X z . But this conclusion

0

implies that A, is an eigenvalue of the matrix (A + va) for any vec-

0
tor v. Therefore, if we choose a polynomial of the form (6.1.20)

which does not vanish for X = AO, then (6.1.21) is violated for every
vector v. This obviously contradicts property 190. Hence 19° — 40.

The implication 17° = 20° 1is easily proved by using the relations

(6.1.14) and directly evaluating (;\In - A)_lb to obtain

N w(A)
GBI -& b= det(AL - )

where w(}) is defined by (6.1.23). Now in view of the relations

AzpPAP Y andb = Pb, it follows that
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1 e

= EEE?XE;m:_KY (6.1.59)

(AT~ &)
20° == 21°: The polynomial f,(}) defined by (6.1.24) can be

written in terms of w(A) as
T
fz(h) = dw(i) (6.1.60)

where db = (d., d

1> oo - dn). Using (6.1.59) and (6.1.60), we can

express (6.1.25) equivalently as

T

viE oo = afwon (6.1.61)

{§

dT, and consequently the required

l

From (6.1.61) it follows that VTP—l
vector is given by v = PTd.
21° = 22°: This implication is obvious since we can choose
a polynomial fz(k) such that fz(l)/det(AIn - A) is irreducible and
then apply property 21° to determine a vector v which satisfies property

229,

22° = 23°: Let the polynomials £(3) and g(}) in (6.1.27)

have the forms

2 u
£ b, + blA + bz(A) + . . .+ bu(A) (6.1.62)

0

and

g0 = ag + ajk + a, (% + .. L4 a (" (6.1.63)
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Suppose that f£(}) and g{A) are not coprime. Then there exists a common

root a and consequently f(}) and g(A) can be written as follows:

£ WP Y (6.1.64)

(- a)(-Eb -b.x- ..

1 . _bu—l

-2 LV h (6.1.65)
v-1

fl
e
b
|
i)
~
S~
|
o]

i
fis
b

|

g(h)

Eliminating the common factor (A - a) in (6.1.64) and (6.1.65), we get

N bt Eﬁ_l(x)“'l) +£0)(a, + a) +...ta W™ =0

g() (b, + b 1

1

(6.1.66)

Substituting for £(A) and g()) from (6.1.62) and (6.1.63) into (6.1.66),
and equating the coefficients of each power of X to zero, we cbtain

the following set of linear equations:

ab 4 +tba =0
v=-1 u_l A u-z ua\)_z bu_la\)__l =0 (6-1.67)
3pbg + gy =0

It is clear that the set of equations {(6.1.67) will have a nonzero

solution angs Byse s e A g bO’ bl" . oy bu—l’ if and only if the

determinant of the coefficient matrix which is precisely the matrix R

of property 230, is zero. Therefore, 22° <= 23°,
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23° = 24°: Since 22° <= 23°, we will show that 22° = 24°
. , . . . 0 o] o o )

by using the chain of implications 22~ — 2~ == 21 ==> 24~ of which

. . . o o o) o

only the implications 227 == 2 and 21 == 24 are not yet proved.
To prove the impiication 22°% = 20, suppose that property 2° is not

satisfied. Then the pair can be brought into the form (6.1.1). If we
n T 1T 2T

write the arbitrary vector VT £ GF(q)lx in the form v = (v, v ),

where vlT £ GF(q)lxr, and use the relations defined by (6.1.1), we

obtain
- - _1- - 1 (1
e g [OTTRMY OLmAyp) TG mhy) (P
YO -nTh = v
-
0 O1___-Ayp) f|0
T ~ 171
= v T _-A ) L (6.1.68)
. h(d) (6.1.69)
det(AIr—All)

Since in (6.1.69) the deégree of the polynomial det(AIr - All) is
strictly less than n, it follows that any expression of the form
vT(}\In - A)_lg is reducible. But VT(AIn - A)hlg = VT(AIn - PAP_l)_le
= vTP(AIn - A)_lb. Hence any expression of the form QT(AIH - A)_lb,
where GT = vTP, is also reducible. This conclusion obviously contra-

dicts property 22°, 1o prove the implication 21° == 240, we observe

that the identity

GT(AIH - A)b = 0 (6.1.70)
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A A
is satisfied for v = 0., From the uniqueness of the vector v which
satisfies the conditions of property 210, it follows that the vector
G = 0 is the only vector which satisfies (6.1.70).

o 0 o, . e
24 == 257: Suppose that property 25 1is not satisfied.

Then there exists a vector v # O such that

VT - =0, 1en; det(AI -A) 20 (6.1.71)
in - 1 1t

Since VT(AiIn - A)—lb can be written as

2
T -1 _ £
o - a7 s TEOT D (6.1.72)

A
where deg f(A) < n-1, in view of (6.1.71), it follows that

A

A
f(li) =0, ien

A A
Since deg f(A) € n~1 and f vanishes at n distinct scalars Ai’ it must

be identically zero. This conclusion implies that in (6.1.72),
vT(AiIn - A)-lb = 0. However, by hypothesis VT z (0, and therefore it
contradicts property 240.

25° —> 19: We will prove that 25° =39_20 e e
Suppose that property 2° is not satisfied. Then the L.SM (A, b) can be
brought into the form (6.1.1) which clearly shows that the last n-r
components of the vector (AIn - A)~l£ are zero. Therefore, all vectors
of this form belong to a subspace of a dimension smaller than n and
consequently we cannot find n linearly independent vectors of this

form. Furthermore, since (AL - oy = (1 - pap ) lpp = P(AT_ - A M,
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it follows that there do not exist n linearly independent vectors of
-1 o

the form ()\In - A) b, which contradicts property 25 , and proves the

. . . o o . . . o _ o . : .

implication 25 === 2., The implication 6 == 1 is obvious since

rank K, = n implies that the range R(Kl) of the linear map Kl :

1

U* —> X, which is the set of all reachable states of the LSM Ml =

(A, b), is equal to X. []

6.2. Equivalence Classes of State Reachable Single-Input LSMs

In Section 5.1 we discussed the role of a particular transfor-
mation group, namely the group Gl given by (5.1.35), in identifying
certain canonical forms for state reachable LSMs. 1In this section,
we will briefly discuss the equivalence relation Gl—equivalence in
relation to state reachable single~input LSMs.

Consider the following relation P, on the set of all single-
input LSMs (A, b) of the same order n: (Al, bl)pl(AO, bo), that is,
the LSM (Al, bl) is related to the LSM (AO, bo) under the relation Py>

if and only if there exists an isomorphism PO i+ X == X, P ¢ GF(n, q),

and a vector VO £ GF(q)n such that

_ 00T, -1 1 _ _ .0
Ay = Po(Ay + bV )PS5 b = Bb (6.2.1)

We want to show that Py is an equivalence relation and hence allows
the partition of the set of all reachahle LSMs (A, b) into equivalence
classes.

Theorem 6.2.1. is an equivalence relation.

£y
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Proof. We need to show that the relation Py is reflexive,

s . Q
symmetric, and transitive. Taking PO = Irl and v = 0, shows that

bo)pl(AO, bo) and hence Py is reflexive. To show that Py is

0!
, _ 14T, _~1 0 _ 1 _ -1
symmetric, let AO = Pl(Al + b v )Pi and b = Pib , where Pi = PO

i . -1.TO 1 0. __ 0
and v = "(PO ) V o. Then (Als b )Dl(AOsb ) T (Aoi b )pl(Al! b )‘

. 1 0 2 1
Finally, suppose that (Al, b )pl(AO, b”) and (Az, b )pl(Al, b7)., We

(A

-

want to show that (A2, bz)pl(AO’ bo). Let (A2, b2) be related to

(A bl) by the relaticns

l,

_ 11T, -1 .2 _ 1
Ay = Py(A) + bV )P T BT = P b (6.2.2)

Substituting into (6.2.2) for A, and b1 from (6.2.1), we obtain

1

0 0T, -1 0 0T, -1
P IPg(ay + b v )PyT + Pobve IR

g
It

T 1, T 1

(PlPO)[AO + bO(vo + Pyv ) ](PlPO)—

(6.2.3)

Similarly,

2 0
b" = (P,P)b (6.2.4)

From (6.2.3) and (6.2.4) we see that the LSM (A2, b2) is related to

the LSM (AO, bo) by the relations

~ 0 2T, -1 .2 _ 0
= Py(ag + DV PS5 BT = Pob

A 2

2

2 _ 0 T 1
1P0 and v = v + Pov .

Corollary 6.2.1. The relation (Al’ bl)pi(AO, bo), where

where P2 = P

-1
A1 = POAP0 and bl = Pobo, is an equivalence relation.
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Corollary 6.2.2. The relation (Al’ bl)pI(AO’ bo), where

A, = A + bOVOT and bl = bO, is an equivalence relatiom.

1 0

The above result points out the existence of a strong link
among state reachable single-input LSMs as shown in the following

theorem.

Theorem 6.2.2. All state reachable single-input LSMs M =

(A, b) of the same dimension n belong to an equivalence class of LSMs
with respect to the relation defined by (6.2.1). That is, if MO =

(A bO) is a reachable LSM, then all the LSMs Ml = (Al, bl), obtained

0)

by the relations

_ 00T, -1 ,1 __ .0
Ap = Py(Ay + b v )P 3 b = Bgb (6.2.5)

are reachable; conversely, if MO = (AO, bO) and Ml = (Al, bl) are two
reachable L5Ms of the same dimension, then there exists an isomorphism

P, X —> X, P, & GF(n, q), and a vector VO £ GF(q)n such that the

0 0
LSMs are related by (6.2.5).

Proof. From (6.2.5) it is easy to see that the following

identity holds:

0T, -1

which implies that

0T, _ 1,7 _ 0T, _-1
det(hln AO b v det[AIn Al b (v - v )P0 ]

(6.2.6)
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If the LSM MO = (AO, bo) is reachable, then by property 19° of Theorem

6.1.1, det(AIn - AO - bOvT) can be made equal to any monic polynomial

of the form

ai(l)l-l
1

£ = (W -
i

[T

by an appropriate choice of the vector v. 1In other words, by an

T VOT)Pal,

appropriate choice of the vector vlT = (v - the right-hand

side of (6.2.6) can be made equal to any monic polynomial of degree n.

Applying again property 19° of Theorem 6.1.1, it follows that the LSM

0

M., = (A bl) is also reachable. Conversely, if the LSMs MO = (AO, b)

1 1

and Ml = (Al’ bl) are reachable and of the same dimension, then by

virtue of property 17O of Theorem 6.1.1, there exist isomorphisms

PO, P, 1 X—— X such that the isomorphic LSMs ﬁO = (;O’ gO) =

1
- -1 - .0 o ~1. _ .= -1 - .1
(POAOPO s Pob ) and Ml = (Al, b)) = (PlAlPl . Plb ) have the forms
0 1 0 ...01 0
0 0 1 0 0
t . . . “q .
AO = . . : . ; b = : (6.2.7)
0 0 0 1 0
ay 32 33 an LlJ

where ass i e n, are the coefficients of the characteristic polynomial

ai(l)l_l
1

N~ o

n
g0 = " -
1

of the matrix AO; and
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fo 1 0 0 0]
D 0 1 0 0
. L) - L] . ~1 -
= - . ] - - s .2.8
Al - » . - - ’ b - (6 )
0 0 O .1 0
by b, by b 1

where bi’ i € n, are the coefficients of the characteristic polynomial

i-1
b, (W)

|| B

= n -
£,00 = (M)

i=1

of the matrix A,. We observe that the matrices A_ and Al differ only

1 0

in the last row. Let (al, Bose o vy an) denote the last row of A0

and (bl’ b2,. . bn) the last row of Al. Then the following equality
holds:

N ~0~T

Al = AO + bv (6.2.9)
where the components cof the vector vT = (vl, vz,. e ay vn) are given
by the equalities

v, =b, -a,, ien
i i i —

Replacing A AO’ and bO in (6.2.9) by their equivalent expressions in

l’

terms of A AO, and bo, we obtain the equality

l’

PAP T =party PObOVT

from which it follows that
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-1 0-Ty (-1

- + P 6.2.10
Ay = Py Polag + bVIRGIB P (6.2.10)
~1 ~0 . ~1 =0
From (6.2.7) and (6.2.8) we have b = b . By expressing b~ and b
in terms of b1 and bO, we obtain
1 ~-1> ,0
= b 2.
b Py PO (6.2.11)
1
Equations (6.2.10) and (6.2,11) imply that the LSM Ml = (Al’ b7) is
A A A
related to the LSM Mb = (AO, bO) by the relations Al = P(AO + bovT)P_l
A A~ A ~p~
and bl = Pbo, where P = PllP0 and vT z VTPO. Therefore, (Al, bl)pl

(AO, bO), and the proof is complete. []

Corollary 6.2.3. All state reachable single-input LSMs M = (A, b)

of the same dimension belong to an equivalence class of LSMs with respect
to the equivalence relation pi of Corollary 6.2.1.

Corollary 6.2.4. All state reachable single-input LSMs M =

(A, b) of the same dimension belong to an equivalence class of LS8Ms
with respect to the equivalence relation p; of Corollary 6.2.2.

The equivalence relation defined by equations (6.2.1) may be
interpreted as a relation resulting from the sequential application of
state feedback and nonsingular state transformation. In order to
further explain this point of view, consider the state equation of

_ 0
the LSM MO = (AO, b7)

x(kt1) = Ax(k) + p%u) (6.2.12)

Introducing the state feedback law u{k) = VOTx(k) + w(k), where w(k)

. , 0 ,
is a new external input and v ¢ GF(q)n is a vector, (6.2.12) becomes
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x(ktl) = (A, + 259w (k) + b (k) (6.2.13)

Now if we consider a state isomorphism PO : X — X, x(k) }*—> Pox(k)

= x(k), then the LSM (6.2.13) is transformed to the following isomorphic

LSM:

x(ehD) = [P (Ag + b0 0Ty p ) + P

0 bow(k)

0

In view of the invariance property of reachability under state feed-
back homomorphism and state isomorphism, proved in Theorem 5.3.1 and

Theorem 5.1.7, respectively, it follows that the LSM MO = (AO, bo) is

reachable if and only if the LSM M1 = (Al, bl) = (PO(AO + bOVOT)Pal,

PObO) is reachable.

Theorem 6.2.2 can be used to state the criterion of reachability

in alternative forms equivalent to the properties of Theorem 6.1.1. To

accomplish this, it is sufficient to replace the LSM (AO, bo) by the

1, 0 0T, -1
LSM (A, b)) = (P (A  + b v )P,

Theorem 6.1.1. TFor examples, property 2° of Theorem 6.1.1 can be

0
, POb } in any of the properties of

equivalently restated as follows:

For any isomorphism P, : X —> X, P_ ¢ GF{(n, q), and any vector

0 0
vo £ GF(q)n, the LSM (A, b) is reachable if and only if there does not

exist any isomorphism P : X —> X, P & GF(n, q), such that the isomorphic

0T, -1

LSM (A, b) = (P[PO(A + bv )P0 , P(Pob)) will have the form
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- ~ ] ~1
1 Ay P
( ) )
0 A22 0
~ rxr x{n-r) ° {(n-r)x({n-r)
where All e GF{q) , A12 e GF(q) , A22 e GF{(q) ,

and bl £ GF(q)r with r < n.

6.3. FEipghteen Equivalent Criteria for the State
Reachability Property of Multi-Input LSMs

Theorem 6.3.1. For the multivariable LSM M = (A, B) the fol-

lowing statements are equivalent:
1°. The LSM M = (A, B) is state reachable.

8] . . B
27. There does not exist an isomorphism P : X — X, P ¢

GF(n, q), such that the characterizing matrices of the isomorphic

machine M = (A, B) = (PAP-l, PB) will have the forms

4
¢
4

11 712 1
A = ; B = (6.3.1)
0 Ay 0
where A, ¢ GF(q) ¥ (r < n, possibly r = 0), A, e GF(q)rX<n_r),

N q)(n—r)x(n—r)

A.. e GF( , and B, ¢ GF(q) .

22
Or

1

There does not exist any LSM M = (PAP_l, PB), isomorphic to

M = (A, B), whose state equations will have the following form:



181

«L (k41) Rllil(k) + A 00 + ﬁlu(k) (6.3.2a)

12

RzziIl(k) (6.3.2b)

IT(k+1)
x

where ;I(k) € GF(q)r and xII(k) £ GF(q)n_r.

3°.  There exists no A-invariant subspace of X of dimension
smaller than n, containing R(B).

40. There exists no nonzero eigenvector v ¢ GF(q)n of the
matrix AT which satisfies the relation VTB = 0. That is, there exists

no vector v ¢ GF(q)n which will simultaneously satisfy the following

relations:

VT(AIn —A) =0,vB=0,v=0 (6.3.3)

50. A subspace of X orthogonal to R(B) does not contain an

T . .
A -invariant subspace.

60. The following matrix K ¢ GF(q)nxnm has rank n:

[B, AB, a%B,. . ., A% 'a] (6.3.4)

-~
I

Or
The linear map

K = [B, AB, A2B,. « «y A TB] ¢ Uk -— X

is an epimorphism.

70. The rank of the matrix

n-1 .
kit = g A"l

3=0

n-j-1

BB (AL) e GF(q)™¥" (6.3.5)
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where K is defined by (6.3.4}, is equal to n.

8°. The matrix equation

(A + BR)" =0 (6.3.6)

. . . mxn . .
has a unique solution with respect to F g GF(q) * , and A is nonsingular.

o} . .
97, The set of matrix equations

(6.3.7)

has a unique solution with respect to F ¢ GF(q)mxn.

o nzxn(n+m—l)

107, The following matrix E £ GF(q) has rank n2:

1 0o 0 0 0...0 0 B
I
-A I . 0 0 0...0 B 0
n
0 -A O 0 0. ..B 0 0
. ... . 6.3.8)

0 0 ...-A B O0O...0 0 O

]nxl with ele~

11°. Given any polynomial vector z(&) e GF(q)[§
ments of degree n-1 or less, there exist a polynomial vector x(£)} €

GF(q)[E;]mCl with elements of degree n-2 or less, and a polynomial vec-

tor y(&) ¢ GF(q){g]le with elements of degree n-1 or less, such that

(EIn - A)x(E) + By(&) = z(¥&) (6.3.9)
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12°. There exist a polynomial matrix X(£) e GF(q)[g]nxn with
elements of degree n-2 or less, and a polynomial matrix Y(f) ¢ GF(q)[g]mXn

with elements of degree n-1 or less, such that
(81 - AYX(E) + BY(E) = I (6.3.10)

o nx (ntm)

13°. The matrix [EIn - A, B] & GF(q) [&] has rank n for
all E.

140. The polynomial matrices EIn - A, B are coprime, that is,

[gIn - A, B) has the Smith canonical form [In, 0].

15°. There exists an isomorphism P : X — X, P ¢ G¥(n, q),

such that the characterizing matrices of the isomorphic LSM M = (A, B)

= (PAP_l, PB) have the following forms:
(-0 - ~ ] (~01 -
All 10 © A1£ b 0 .. .0 Bl
~0 - ~02 =
0 A22 . A2£ 0 b 0 0 B2
Az - . - |; B = |- . . . .
~0 ~“0f£ =
0 0 Aﬂﬂ 0 0 0. b BE
(6.3.11)
o 2 o ...o0 ) [o
0 0 1 . 0 0
0 _ |- . . . ) “0i |-
Aii =, . . . ; b =, (6.3.12)
0 0 0 . 1 0
\ail ai2 ai3 v e . ain 1
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m; in the matrices Ait’ i < t, only the entries in the

first column may be nonzeroc, all other entries being zero; Aii €

n,xn,
CF(q) * *

s nl + n, + .

n,x(m-t)

and Bi e GF(q) i

16°

e

1,

A

it

€ GF(q) ~

n,xn - n

t’ bOl ¢ GF(q) i

Suppose that P : X —> X is an isomorphism such that the

characterizing matrices of the isomorphic LSM M = (A, B) have the fol-

lowing forms:

e

it

where

b=

in

that is, A is in the Jordan canonical

n, xXmnm

+ n, + .

GF(q)

, and n

1

2

Jgn
v

.

form; A,
1

1

r.“ 3
By
By
. (6.3.13)
V)
ie v (6.3.14)
n_xn, .
e GF(q) © 7, B, ¢

Then all rows of the matrix B

corresponding to the last rows of the Jordan blocks containing the same

eigenvalue are linearly independent.
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170. For any given monic polynomial of degree n of the form

n
£ = WT - & a(n)
i=1 *

i-1 (6.3.15)

there exists a matrix F ¢ GF(q)mxn such that the characteristic poly-

nomial of the matrix A + BF ¢ GF(q)nxn is equal to f()), that is,

det[AIn - (A + BF)] = £(}) (6.3.16)
18°. There does not exist a nonzerc vector v € GF(q)n such that
the expression
VT(AIn - a s (6.3.17)

is identically equal to zero. That is, the rows of the polynomial
. -1 nxm , .
matrix (AIn - A) "B e GF(q)[x] are linearly independent over GF(q).
190. For every set of distinct scalars Ai, i £ n, different
NXmn

from the eigenvalues of the matrix A, the following matrix T e GF(q)

has rank n:

. -1 -1 -
Tl - AT B, (LI - A B, .., I~ A) B

(6.3.18)

Proof. We want to show that the following chain of sequential
implications is closed: 1= 29 = 3° — 4= 5° == % —= 7°
= 8% == 9% =5 107 == 117 = 12° = 13° = 14° == 15° = 16°

= 17° = 18° == 19° — 1°.
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The chain of implications 1° =5 2° - 3O = 40 == 50 s 60
= 79 = g% = 9O = 10O = 110 = 129 — 130 = 140 can be proved,
with due consideration of the slight modifications resulting from the
replacement of the input vector b by the input matrix B, in precisely
the same manner as in the proof of the corresponding chain of implica-
tions in Theorem 6.1.1. To demonstrate this, we will provide the proof

® = 4% = 5% by imitating

of the chain of implications 1° = 2% = 3
the proof of the corresponding chain of implications in Theorem 6.1.1,
and incorporating the appropriate changes. Therefore, to avold exces-
sive repetition, the proof of the chain 5¢ — % — 7O = 80 — 9°
= 10° = 11° = 12° — 13° — 14° win1 not be reproduced. Simi-
lar comments apply to the chain 18° == 19° — 1° which corresponds
to the chain 24° = 25° =— 1% in Theorem 6.1.1, However, properties
15O and 16° are congiderably different in the multi-input case from
the corresponding properties 17° and 18° in Theorem 6.1.1, and, there-
fore, we need to prove the chain of implications 14°% = 15O _— 160
= 17° == 18°.

1° = 2°; Suppose that property 2° is not satisfied. Then
there exists an isomorphism P : X — X such that the isomorphic LSM
M = (A, B) = (PAP L, PB) has the form (6.3.2). From equation (6.3.2b)
it follows that ;Il(k') = 0, for any clock period k', implies the

“1I1
equality x (k") = 0 for any other clock period k". Therefore, M =

(A, B) and consequently M = (A, B) cannot be reachable. Hence l0 = 2°.
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2% son 39, Suppose that property 3° is not satisfied. Then

R(B) is contained in an A-invariant subspace S « X of diemsnion r < n.

Let

{sl, 52 ., st Sr+1 . e e, s"} (6.3.19)

y . b

be a basis for X such that {sl, 52,. . e, Sr} forms a basis for S.

Then any vector x ¢ S can be uniquely expressed as

X = als]L + a 52 + . . .+ arsr (6.3.20)

for appropriate scalars a; € GF(q). Since § < X is A-invariant,

the vector Ax is in S and has the form

Ax = b.Ast +b.As’ + . . . +b AsT
1 2 r

1

= blAsl + b A8 + . . . + brAsr + Osr+ + .. .+ Osn

(6.3.21)

for appropriate bi e GF(q). From (6.3.21) it follows that the matrix
representations A and ﬁ of A and B with respect to the basis (6.3.19)
have the forms given by (6.3.1), and hence property 2% is not satisfied.
Therefore, 2% —= 30. Clearly P“1 = [sl, 52,. e e sn].

37 == 4 : 1If property 40 is not satisfied, then there exists

n
a nonzero vector v £ GF(gq) such that

Av (6.3.22)

<
o=
n

(6.3.23)

<

=
1]

o
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Suppose that W < X is orthogonal to v so that viw = 0 for all w ¢ U/,
Now from equation (6.3.22) it follows that VTAW = Ava = 0 and hence
i is A-invariant. Since v 2z 0, dim W < n. Moreover, equation (6.3.23)
shows that R(B)‘E /. Therefore, there exists an A-invariant subspace
of dimension smaller than n containing R(B). This conclusion contra-
dicts property 30, and hence 3° == 4°,

0 ) o, e

47 == 5": Buppose that property 5 1is not satisfied. Then
there exists a subspace V c X such that VTB = 0 for all v ¢ V. Further-
more, there exists an AT-invariant subspace W ¢ V. Therefore, for any
v ¢ W, we have ATV e W. Now we need to show that (! contains an eigen-
vector of AT. This can be accomplished in precisely the same way as
in the proof of the implication 49 === 50 in Theorem 6.1.1.

14° — 150: We prove this implication indirectly by consider-
, , . . . ) o o o o .
ing the chain of implications 14~ == 4~ = 5~ == & == 15 of which

. . . o o o )

the implications 14 -=> 4 and 6 ==> 15 are not yvet proved. The
implication 14° = 4° follows easily from the fact that if the poly-
nomial matrices Aln — A and B are coprime, then the matrix [)\In - A, B]
has rank n for all A, and hence no vector v & GF(q)n exists such that
the relations (6.3.3) are simultaneously satisfied. To prove the
implication 6° — 150, let bl, i e m, denote the columns of the input
matrix B. 1If property 6% is satisfied, then there exist integers

O=r_ <r <. . .C¢< r£ = n, £ £ m, and a set of linearly independent

i |
vectors v =, i ¢ £, such that
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r, 5
v 1 = b
r;-1 i i
vt = AbT - ¢, b
in,
i
r,—-2 ,
v T =A%l-c; Mﬁ ¢ L
in, i,n,-1
1
(6.3.24)
r.~(n,-1) n, . n,-1 n, -2 .
vt =aTpt oo, AT bt -, Tl P
1ni ly'ﬂ."]- iz
n,=r,-r _,,1c¢ £
n, . n -1 n,-2 i 1 r1-—1 ‘
A - ¢ a’t - c, Topt - . - c,,b7 = I LV
in, i,n,-1 i2 it
i i t=1
(6.2,25)

Assume that (6.3.24) and (6.3.25) are satisfied for any i < v - 1,
v £ ntl. We want to show that they also hold for i = v, and that the

inequality LN < n is alsc satisfied. Furthermore, we define the

rv—l+l r —l+2 T
integer r, > o1 and the vectors v Y d s ¢ & - ¥ v’ so that
(6.3.24) and (6.3.25) be satisfied for i = 1. C(Clearly we must have
v=1 < m. From the original hypothesis, that is, rank [B, AB, AZB,. . ey

An_lB] = n, and the form of the relatioms (6.3.24) and (6.3.25), it
follows that among the m - (v~1) columns of the B matrix there exists
a column which contains at least one nonzero element, that is, this
column cannot be expressed as a linear combination of the vectors

v, t=1, 2,. . ., rv—l' To see this, assume the contrary, that is,
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that all columns of the matrix B are linear combinations of the pre-

viously selected vectors vt, t=1, 2,. . . Then from (6.3.24)

r .
P oy-1

and {(6.3.25) it is clear that all columns of the matrices ASB, where
s is any positive integer, would alsc be expressed as linear combina-

. t :
tions of the vectors v, t =1, 2,. . ., t However, from the

y-1-

2 n—lB]|

assumption r < n, it follows that rank [B, AB, A"B,. . ., A

v-1
< n which obviously contradicts the original assumption. Therefore,
by permuting, if necessary, the order of the last m - (v=1) columns
. v . s . . N
of B, we can obtain a vector b~ which is not a linear combination of
t . R .
the vectors v , t =1, 2,. . ., rv~l' In view of this observation,

we can find an integer n such that the vectors

T N 2y n -1
R ., b, AbY, ABY,. . ., A7 bY (6.3.26)

are linearly independent and the vector A “bY is a linear combination
of the vectors (6.3.26) of the ferm (6.3.25) forv= i. Now if we usé
the coefficients of this linear combination, and relations (6.3.24)

to define the new set of vectors
v , Vv T (6.3.27)

where r,=r g + n s then it can be easily seen that these vectors

are linearly independent. To see this, assume that the vectors (6.3.27)
are linearly dependent. That is, a linear combination of these vectors
is equal to zero and there exists at least one nonzero coefficient.

s R t
Substituting for v, t = r _+1,

+2,. . ., r , in this linear com-
v=-1 v

r\J-—l

bination their equivalent expressions from (6.3.24) for i = v, we will
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obtain a linear combination of the vectors (6.3.26) which is equal
to zero and has at least one nonzero coefficient, thus contradicting
the independence of the vectors (6.3.26). Applying the preceding
scheme iteratively, we can see that the number of the vectors vt in-
creases at each iteration by at least one and thus after a finite
number of iterations we will obtain the greatest possible number of
linearly independent vectors vt after which the procedure can no
longer be applied. Clearly in the final step we will have Tp = M.

From (6.3.24) and (6.3.25) we obtain the following relations:

r, .
v = bt (6.3.28)
rl ri—l T
Av = v + ¢, v 1
in,
i
r.-1 r. -2 r
Av + = vy * + c, v 1
in.
i
. (6.3.29)
r.~(n 1) r. i-1 .
Av =c,,v 4+ I a . v,icd
il =1 it

From (6.3.28) and (6.3.29) it follows that the representations A and B

of the matrices A and B with respect to the basis {vl, v2,. . e vn}

have the form given by (6.3.11) and (6.3.12), and P“l = [vl, v2,. . ey vn}.
o 8] . . . . . o] e}
15" == 16: We will prove the chain of implications 15 —= 4

o o] o
== 16 ., To show that 15 == 4, suppose that property 40 is not

A . n
satisfied. Then there exists a vector v € GF{q) such that
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vA=Xy; vB=0; v=z0 {(6.3.30)

T i
If we rewrite v as (vlT, vZT,. . ., V T), where v° has the same number

of components as bOl, i € £, then in view of the special form of the
vectors b"Y, defined by (6.3.11), it follows that the equality
£
-uo s
vﬂTb 2, 5 GiT
i=1

T = [yIIpoL 21002

3o e e
will hold if and only if the last component of each of the subvectors
vi is equal to zero. Using this conclusion and observing the form of
the matrices Agi given by (6.3.11), it follows that the equality

VTA = AVT is possible only if v = 0, which contradicts the original
hypothesis, and hence 15° = 4°. In order to prove the implication
4° = 160, suppose that s Jordan blocks of ;, given by (6.3.13), are
Furthermore, let the last

0
3 - ~1T 2T
rows of the matrices B B2,. v e, BS be denoted by b2 . b2 se e ey

l!
sz. Now if property 16° is not satisfied, then rank[béT, bET,. .oy

associated with the same eigenvalue X

- sT . ) .
bz ] < s, that is, there exist scalars ¢y € GF(q), i £ s, not all

zero, such that

8
L e,by, =0 (6.3.31)

Recalling that the square matrices Ai have dimensions n, . ies, it

can be easily checked that the vector
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v = [0, O,..., cqs 0, 0,..., Cys eee30, 0,04, cgs 0, 0,..., 0]
ny n, n s
n- * n,
i=1 "
(6.3.32)
satisfies the equalities
via = AV (6.3.33)
and
~ S -~
VB = 1 c,bit (6.3.34)
, i £
i=1
In view of (6.3.31) and (6.3.34), we obtain
T, _
v'B =20 (6.3.35)

However, since v = 0, relations (6.3.33) and (6.3.35) show that property
[0 . s o] 4]
47 is not satisfied. Therefore, 4 =— 16 .

16° => 17°:  We will prove the chain of implications 167 ==

&)

49 == 15° = 17° of which only the implications 16° == 4° and 15°

o o]
==> 17 are not yet proved. In order to prove that 160 => 4, we

. A T
will show that for any nonzero eigenvector v of the matrix A" we have

vTB z (). Assume, as in the proof of the implication 15° == 160,

that only the first s Jordan blocks of the matrix A, given by (6.3.13)

are assoclated with the same eigenvalue AO. Then it follows that any
eigenvector of the matrix A corresponding to the eigenvalue AO has the
~ s .

form (6.3.32), and hence VTB = ¥ 1T

c.b T, where b are the last rows
it £

i=1
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of the matrices Bi, i es. Now if property 16° is satisfied, then

rank [b%T, g%T,. .oy sz] = 5 and consequently VTB # 0. By appro-

priately permuting the order of the blocks, if necessary, it is seen
that this conclusion is wvalid for any set of Jordan blocks associated

with the same eigenvalue. Therefore, it follows that vTB 2z 0 for all
1

eigenvectors vT of the matrix AT. In view of the relations = PAP

=

and B = PB, it follows that VTB z 0 for any eigenvector of . Hence

16° == 4°. It remains to be shown that 15° => 17°. Consider the

matrix
{-v N
w0 0...0 0
o WP o.. .0 o0
N .o (6.3.36)

PO n,
where w' e GF(q) l, ice ﬁ; and the last column of (6.3.36) whose ele-

ments are zero has the same dimensions as the last column of the

matrix B given by (6.3.11). Since the matrix

0 To171T - -
+ PN
Ay tbow Ao Ave
-0 ~02-2T -
+
) eem A22 b w v e . A2£
A+ BU = (6.3.37)
T -0 ~opeer
+
Aﬂﬂ b w
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ig block triangular, it can be easily shown by induction that its char-

acteristic polynemial is equal to the product of the characteristic

~0 -..0--.,-
polynomials of the matrices Aii + b 1w1T. By property 19° of Theorem

6.1.1, the vectors w' can be chosen such that the characteristic poly-
. .. .0 “QitiT , . .
nomial of the matrix Aii + b7 w be equal to any given monic polynomial

of degree ni, i ¢ £. Therefore, all the roots of the characteristic

polynomial of the matrix (6.3.37) can be arbitrarily fixed. Using the

relations A PAP“l and B = PB, we see that the characteristic poly-

nomial of A + BF becomes equal to an arbitrary monic polynomial of

degree n if we choose F = WTP since A + BwT = P(A + BF)P_l. Hence

15° == 17°.

17° == 18°%: wWe will prove the chain of implications 17%—=—

4° == 15% == 18° of which only the implications 17° == 4% and 15°

0 . . . o
==> 18 are not yet proved. To prove the implication 17° = 4 , Sup-—
o, . s .
pose property 4 is not satisfied. Then there exists a nonzero vector

Vv £ GF(q)n such that VT(AIn - A = 0 and VTB = (0, which imply that

T

vT(A + BF) = v A = AVT for any matrix F ¢ GF(q)mxn. Therefore, regard-

less of the properties of the matrix F, the scalar A will be a root of

the characteristic polynomial of the matrix A + BF, and hence property

17° cannot be satisfied. Thus 17° -= 4°. 7o prove the implication

o) o)
15" === 18", suppose that property 180 is not satisfied so that there

. n
exists a vector v £ GF(q) such that

VT(AIn -7 =0 (6.3.38)
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However, using property 150, we can bring the LSM (A, B) to the form

(A, B) =

(PAP—l

it follows that the wvector

satisfies the identity

Since the matrix AIn - A is block triangular, its inverse ()\In - A)_

v = (2

T
AL
v ( n

1.T

-~ A)

)y vz0

lB -

, PB), defined by (6.3.11) and (6.3.12). TFrom (6.3.38)

(6.3.39)

0 (6.3.40)

1

is also block triangular having the matrices (AIrl - Aii)_l as its

diagonal elements. Writing the vector VT

~1Ti ~2T ~IT

as [vi , v ,. . ., v 1],

i 01
where v has the same number of components as the vector b0 given by

(6.3.11), the matrix product in (6.3.40) becomes

(A1

~01

~0 -1
nl_All)
0 0
p02

()\In

12

~0
99

ya

Rig © 7 Rie
-1
) T Ry, Roe
) T 0 -1
(AL ~A, ;)
n, £f j
~ ['7
B, 0
B, 0
el = |- (6.3.41)
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where Rij in (AIn - A)_1 indicate the off-diagonal submatrices whose
explicit forms are not needed for our purposes. Multiplying the

matrices (Aln ~ A)—l and B, (6.3.41) reduces to

~0 ,-1701 )
(Alnl Ay b 512 S 51,641
~1T ~2T “LT (AT a0 y %% s S
(v v ooy ] n, 22 28 2,841
- »\46 _l~0 -
k <”n£ S P Spen
)
(o]
0
= | (6.3.42)
0;

Again the explicit forms of Sij are not needed for our purposes. From

(6.3.42) we obtain the following set of identities:

~1T ~0  -1701
VTar - a?y % oy (6.3.43)
n 11
1
RN ~2T D —1702
v S12 + v (lIn A22) b7 =0
: 2
~1T “ 2T ~3T 0 . -1703
v 513 + v 523 + v (AIn3 - A33) b~ =20 (6.3.44)
~1T ~2T “(L-1)T ~£T 0 -1708
+ + .. .+ - =
v Slﬂ v SZE v Sﬁhl,ﬂ + v (AIn AEE) b Q

£



198

0 bO

Now examining the form of the submachine (All, l) given by (6.3.12),

we see that it is exactly the same as (6.1.14). This implies that the
0 61 R o
17° b ") satisfies property 17 and, therefore, also the

equivalent property 24° of Theorem 6.1.1, which, in turn, implies that

submachine (A
1T . . ,
the subvector v in (6.3.43) is equal to zero. This conclusion re-

duces the first equation of (6.3.44) to

~2T ~0 -1-02
v (Al - A ,) 1b =0 (6.3.45)
n 22
2

. s . 0 02 .
Apain since the submachine (A22’ b ) has the exact form (6.1.14), it
follows that it satisfies property 17° and, therefore, the equivalent
property 24° of Theorem 6.1.1, which implies that vo. = 0 in (6.3.45).
Applying the above argument to the remaining equations of (6.3.44),
we arrive at the conclusion that vlT = v2T = . . .= VET = {), that is,
v = 0 which obviously contradicts (6.3.39). Hence 15° — 18°.

As pointed out earlier, the chain of implications 18° = 19°
— 1° can be proved in precisely the same manner as in the proof of

the corresponding chain of implications 24° == 250 = l0 in Theorem

6.1.1. [0

6.4. Equivalence Classes of State Reachable
Multi-Tnput LSMs

As in the case of single-input LSMs, we will briefly discuss
the equivalence relation Gl-equivalence in relation teo the class of
state reachable multi-input LSMs, where Gl is a transformation group

defined by (5.1.35).
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Consider the following relation p on the set of all LSMs (A, B)

)

of the same dimension n: (A Bl)p(AO, BO), that is, the LSM (Al, B

1 1

is related to the LSM (A BO) under the relation p, if and only if

O,
there exist isomorphisms PO : X — X, G0 U — U, Pog GF{n, q),

GO e GF(m, g), and a constant linear map FO : X —= U such that

= _1- =
AL = PO(A + BFO)PO i B, = P BG, (6.4.1)

In the following theorem we will show that p is an equivalence relation
and, therefore, allows the partition of the set of all state reachable
LSMs (A, B) into equivalence classes.

Theorem 6.4.1. p is an equivalence relation.

Propof. We need to show that the relation ¢ defined by (6.4.1)

is reflexive, symmetric, and transitive. Letting PO = GO = In and

FO = 0, it follows that (AO, Bo)p(AO, BO) and hence p 1is reflexive.

. . _ -1 =

To show that p is symmetric, let AO = Pl(Al + BlFl)Pl and B0 PlBIGI’
-1 -1_ -1 -1

h P =P = z it i i -
where P, 0’ Fl G0 FOP0 , and Gl z G0 . Then it is straight

forward to show that (Al, Bl)p(AO, Bo) <= (A BO)p(Al, B.). Finally,

1
), (4,, B

O’

to show that p is transitive, that is,(Al, Bl)p(AO, B )p

0 2

(A_, Bl) == (AZ’ Bz)p(AO, B.), suppose that (Al, Bl)p(AO’ BO) and

1
(AZ) Bz)D(AO, BO), that is,

0

-1, -
Poldy + ByFg)P "5 B, = P B G (6.4.1)

A 1 000

1

— -1. ——
= P (A) + B,F )P B, = PBG (6.4.2)

2 2 17171
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Substituting for Al and Bl from (6.4.1) into (6.4.2), we obtain

-1 -1 _
= PI[PO(AO + BOFO)PO + POBOGOFl]Pl ; B2 = P1P0B000G1

=
]

1

il

-1.-1 -
PlPO(A0 + BOFO)PO Pl + PlPOBOGOFlPl

1

il

~1,-1 ~1 -
P Po(Ag + ByF )P "P~ + P BB GF PP P

-1
(P,P) [(A, + ByF,) + ByG,F P 1(P P)

i

_.l- -
(PP [Ay + By(Fy + GF POI(P,P) "5 B, = (P P)B (G,G))

(6.4.3)

From (6.4.3) it follows that the LSM (AZ’ BZ) is related to the LSM

(AO, BO) by the relations

- -1 -
Ay = Py(Ay + BF)P."; B P.B.G

where P2 = PlPO, G2 = GOGl’ and F2 = FO + GOFlPO. O

il

Corollary 6.4.1. The relation (A

-1 _ . , .
POAP0 and B1 = POBO’ is an equivalence relation.

. ]
Corollary 6.4.2. The relation (Al, Bl)p (AO, BO), where Ay

1’ Bl)p (AO, BO), where Al

+ = i 3 .
AO BOFO and Bl BO, is an equivalence relation.

Corollary 6.4.3. The relation (Al, Bl)p"'(AO, BO), where

Al = AO and Bl = BGO, is an equivalence relatiom.
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Theorem 6.4.2. All state reachable multi-input LSMs M = (A, B)

of the same dimension n belong to an equivalence class of LSMs with

respect to the relation defined by (6.4.1). That is, if MO = (AO, BO)

is a reachable LSM, then all the LSMs M, = (A

1 1’ Bl) obtained by the

relations

- -1, -
Ay = PO(AO + BOFO)PO H Bl POBOGO (6.4.4)

are reachable; conversely, if MO = (AO, BO) and Ml = (Al’ Bl) are any
two reachable LSMs of the same dimension, then there exist isomorphisms

P.: X— X, G

0 t U— U, P

e GF{n, q), 6. & GF(m, q), and a linear

0 0 0

map F, : X —> [ such that the LSMs are related by the relations (6.4.4).

0

Proof. Relations (6.4.4) can be viewed as relations resulting
from the sequential applicatien of state feedback homomorphism and
state isomorphism since under the action of the feedback law u(k) =
F + 5 , B ) 1 f + B.F_ , B G );

0x(k) Gow(k), the LSM (A0 0) s transformed to (AO B0 0 B 0),

applying a state isomorphism P, : X — X, x(k) |—> Pox(k), to the

0
LSM (AO + BOFO’ BOGO) transforms it to the isomorphiec LSM (PO(A0 +
~1 . ,
BOFO)PO , POBOGO). Now the result follows immediately from Theorem

5.3.1 and Theorem 5.1.7. [

Corollary 6.4.4. All state reachable multivariable LSMs M =

(A, B) of the same dimension n belong to an equivalence class of LSMs

with respect to the relation p~ of Corollary 6.4.1.

Corollary 6.4.5. All state reachable multivariable LSMs M =
(4, B) of the same dimension n belong to an equivalence class of LSMs

with respect to the relation p" of Corollary 6.4.2.
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Corollary 6.4.6. All state reachable multivariable LSMs M =

(A, B) of the same dimension n belong to an equivalence class of LSMs

with respect to the relation p'"' of Corollary 6.4.3.

From Theorem 6.4.2. it follows that we can state the criteriom
of state reachability for multivariable LSMs in alternative forms,
equivalent to the properties of Theorem 6.3.1, by simply replacing
the LSM (A B_ ) by the LSM (A B) = (P (A + BF )P_l P_BG.)} in any

0" 0 17 71 0 0°°0 7 070
of the properties of Theorem 6.3.1. TFor example, property 2% of this
theorem can be equivalently restated as follows:

For any isomorphisms PO 1 X —> X, GO s U — U, PO e GF{(n, q)

GO g GF{m, q), and any linear map F0 : X — U, the LSM (A, B) is

state reachable if and only if there does not exist any isomorphism

P: X—> X, P e GF(n, q), such that the isomorphic LSM (a&, B} =

1

_l — .
(P[PO(A + BFO)PO 1® 7, P(POBGO)) will have the form

A1 Al 1By
( , )
0 A22 0
where All £ GF(q)rxr (r < n, possibly r = 0), A12 c GF(q)rx(n—r),
A22 & GF(q) (n—r)x(n—r)’ and Bl e GF(q)rxm.

Summary and Conclusions

This chapter was devoted to a reexamination of state reach-
ability of LSMs. Particular emphasis was directed towards reformulating
this property in various other forms. Consequently, twenty-four equiva-

lent criteria for the state reachability property of single-input LSMs
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and eighteen equivalent criteria for the state reachability property
of multi-input LS5Ms were stated, and in each case, equivalence of the
stated criteria was proved. Furthermore, equivalence classes of state
reachable single~ and multi-input LSMs under certain transformation
groups were identified (ecf. [1], (2], [31, [151, [17], [181, [21],

[371, [58], [el], [881, [%1], [971, [991, [105], [107], (109}, [l1l0]).
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CHAPTER VII

THE .JORDAN CANONICAL FORM AND SELECTIVE

STATE REACHABILITY OF LSMS

In this chapter attention will be focused on the eigenstructures,
that is, eigenvalues, {generalized) eigenvectors, and (generalized)
eigenspaces associated with the LSM M = (A, B), in the framework of
the Jordan canonical form. Using the eigenproperties of M, some addi-
tional state reachability criteria which explicitly involve the Jordan
canonical representation of M will be given. Furthermore, we will
introduce and develop in detail the concept of selective state reach-

ability for LSMs, making heavy use of the eigenstructures of M.

7.1. The Jordan Canonical Form for LSMs

This is one of the most well known canonical forms that can be
rigorously discussed in terms of the theory of cyclic decomposition of
X. However, since we will make heavy use of the Jordan canonical
form in our development of the concept of selective state reachability
which is primarily based on the eigenvalue-eigenvector structure of
the characteristic matrix A of an LSM (A, B), we will use the netion
of generalized eigenvectors rather than a therough and highly algebraic
viewpoint, to briefly describe this canonical form. In order to moti-
vate the need for generalized eigenvectors, initially we consider the

case where A ¢ GF(q)nxn has n distinct eigenvalues, denoted by
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2 .
Al, Az,. v e An. Let vl, V oy v ey vn denote the corresponding

. i i, , .
eigenvectors, that is, Av = Aiv » 1 e n. Since the set of eigen-
vectors associated with distinct eigenvalues is linearly independent,

i r . cl
the set {v- : i € n} forms a basis for X with respect to which A has

the following simple representation:

( 1
Al
Ay
A= . (7.1.1)
by
L )
Since
B 1 2 n 1 n
AV = Alv™, v ,. ., V'] = [AvT, AvVT, s AV ]
1 2 n, _ .~
= [Alv , sz s s e Anv ] = va
we obtain A = V—lAV. Therefore, if A has n distinct eigenvalues, there

- -1
exists an isomorphism V : X —> X, V ¢ GF(n, q), such that A = V "AV

has the diagonal form (7.1.1). However, if the eigenvalues of A are
not distinct, then the set of eigenvectors associated with the subset
of distinect eigenvalues will not be sufficient in number to constitute
a basis for X. In order to extend this incomplete set of vectors to

a basis with respect to which A will have a new representation, we

have to resort to generalized eigenvectors.
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Definition 7.1.1. A vector v ¢ GF(q)n is said to be a generalized

elgenvector or supereigenvector of imndex I (an integer > 1), associated

with the eigenvalue A of A, if and only if ()\In - A)rv 0 for all

r =z £, and ()\In - A)ﬂ_lv z 0.

Clearly for {£=1, the above definition reduces to the definition

of an ordinary eigenvector.

Let v be a generalized eigenvector of A associated with the

eigenvalue A, and define

£ _
v = Vv
21 _ - L
VT E QI - Av = (AL - A
£_2 _ 2 _ _ £"'1
VTR I - v = AT - Ay (7.1.2)

1 _ £-1 2
v oz ()\In A) v = ()\In A)v
It can be easily checked that for each i ¢ §} vi is a generalized

eigenvector of index i.

Theorem 7.1.1. The generalized eigenvectors defined by (7.1.2)

are linearly independent.

1
Proof. Suppose that v, vz,. . ey vE are linearly dependent.

Then there exist a; € GF(q), i ¢ £, not all zero, such that

av =0 | (7.1.3)
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Premultiplying (7.1.3) by (}.In - A)E—l, and substituting for vl, ied,

from (7.1.2), we obtain

a. (A1 - Y toar - oty - 2-(+l) L g
1 Iyl Tl

a. (Al - A)
. i n
i=1 i

£ ,
5 £ £-1i
i 1

I ™ M~

(7.1.4)

But (J\In - A)ZE-(i+1)V =0 for i £ £-1. Therefore, {(7.1.4) reduces to

£-1
aE(AIn - A) v =20

However, by the definition of a generalized eigenvector of index £,

aE(AIn - A)Ewlv # 0, hence a, = 0. 1If we multiply (7.1.3) by

(?\In - A)ﬂ—J, j=2,3,. . ., £, and repeat the above sequence of

steps, we will arrive at the conclusion that a, = 0 for i ¢ gj which
is obvicusly a contradiction. [J
1f we consider the generalized eigenvectors defined by (7.1.2)
2

. 1 £ i
in the order v, v ,. . ., v , then we can express the vectors Av ,

ie £, as follows:



Avl

Avl = [vl, v2,. e s V
v o+ v = [vl, vz,
vo o+ Av3 [vl, v2,
vzﬁl + woo= (v, v,

208
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Therefore, the Jordan block A, of A, associated with the eigenvalue A,

1
has the following canonical representation with respect to the new

partial basis v, ie £}:

(7.1.5)

]
Il

It is clear that different arrangements of vl, ie gj result into dif-

ferent forms for the block A..

1
Theorem 7.1.2. The generalized eigenvectors of A ¢ GF(q)nxn,

associated with different eigenvalues, are linearly independent.

Proof. Suppose that A, and A A, = Az, are two eigenvalues of

1 2771
A. Let v and w be generalized eigenvectors of indices £ and m associated
with Al and 12, respectively. If we define vE = v, vi = (Alln - A)vi+l
£-1 m j j+1 m-j
= I - i -1 = = - = -
(Al o A) v, i ¢ £-1; w W, W (AZIn Adw (}\21n A) R

j £ m-1, then from Theorem 7.1.1 it follows that the sets {vi, ie £}
and {wj, j & m} are separately linearly independent. We want to show
that {vi, iedlu {wj, j ¢ m} is linearly independent. Suppost that
{vi, i ¢ £} is linearly dependent on {Wj, j € m}. Then there exist

aij e GF(q), 1+ ¢ £, j € m, not all zero, such that

m .
v = I a, wJ, ie b {(7.1.6)
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Premultiplying (7.1.6) by (A1 - A)", we obtain

id
()\lIn - A)v

i

(A1 - A)l(AlIn - v =0

a,.w (7.1.7)

1l
~~
p
-

i
=
-

m m-1 i j
0= 2 a_ O,I -&" (I -4 w

Since functions of the same matrix always commute, we have

m
_ _ i _ m-1 j
0 = ‘E aij(Alln A) (?\ZIn A) W
J=l .
—a. 0L -MYor - e
im' "1 n 2'n
=a. 1 - att (7.1.8)
im* I n
because (Azln - A)m_lwJ = ()\21n - A)Zm—(3+1) =0, j e m-1. Equation

(7.1.8) and (J\ZIn - A)wl = () yield the following relation:

1

1
aim()\2 - Al) w =20

which, in view of the assumption that i = A2, implies that A = o,

1
i ¢ £. Repeating the above procedure, we will find that aij =0,1i¢ 4,
j € m, which clearly contradicts the hypothesis that not all aij = 0,

and hence {v_, i ¢ £} is linearly independent of {WJ, 1 eml. Ina

a similar manner, if we assume that the set {wJ, j € m} is linearly
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dependent on {vl, i € £}. we will arrive at a contradiction. Therefore,
2 1 2 m , \
{vl, vi,. v e,V , W, W ,. . ., W} is a linearly independent set. [

Theorem 7.1.3. Let v and w be generalized eigenvectors of

indices £ and m, respectively, associated with the same eigenvalue X

. £_

of A ¢ GF(q) ™. Define v© = (AL - A) ]

1v, i1 ¢ £, and wl = (AIn - A) .

jemnmn If vl and w1 are linearly independent, then the set {vl, iedtu

{wj, j € m} is linearly independent.

Proof. From Theorem 7.1.1 it follows that the sets {vi, ie £}
and {wj, j € m} are separately linearly independent. Therefore, we
need only show that these sets are linearly independent of each other.
This can be easily accomplished by an argument similar to that used in
the proof of Theorem 7.1.2, and hence will not be repeated here. (]

The preceding results can be incorporated in an algorithm for
generating the Jordan canonical form of any matrix A ¢ GF(q)nxn.
For the purpose of future reference, we will summarize the

above results in the most general and detailed form in terms of LSMs.

Theorem 7.1.4. For any arbitrary LSM M = (A, B) there exists

an isomorphism V : X — X, V ¢ GF(n, q), such that the isomorphic LSM

ﬁ = (;, E) = (V‘lAV, V_lB) has the following form:
(~1 Y (- V(-1 ) (1) ( 1
x (kt+1) Al(Al) [x (k) B ul(k)
22 (kc+1) A, (3y) x2 (k) 8% |u, k)
= +
“v N Y Y,
X (k+l)J AV(AU)JLX (k)‘ \B ’\um(k)J



where

r

Ail(Ai)

i2

Ai(ki)

i, .
1 1

;i(ki) ¢ GF(q)

.

A, 1

i
li
A . (x,) =
ijti

- n,.xXn,,
13 1]

Aij(li) e GF(q)

(1))

xn

1
) Bj

e GF{(q)

,
gl -
A, (x,
1u(1) ¢ 1)J
o n,xXm
e GF(q) i ; e w
[, (D)
1j
b(%)
~4 23
3 B, =
3 .
1
b§1) ;
'y L "137
ld
n, . xXm
] s J € l—l(i)s 1e

212

(7.1.10)

(7.1.11)
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8 A
~ (1) ~ (1) ~ (1)
bljl b1j2 T b1jm
~(1) ~ (1) ~ (1)
b . b
ijl 232 2jm
gl = . . . (7.1.12)
j . . .
1;(1) " ];(1) , _gr(ll) .
nij,J 1 s ] i_],J ]
v v oou(i)
n= I ni = I r ni.
i=1 i=1 j=1 I

Sometimes we will use the direct sum notation and write A as

= A(n

Az A, 2D ® A(nlz, A\pe. ..o A(nlu(l), »
& ;A(nu, Az) & A(nzz, Az) @ . . . & A(nzu(z), )\2)
& .. .o A(nvl, 2 @ A(nvz, »

] . @ ;(nvu(v)’ AU)

Therefore, in terms of the above notation, the original LSM is iso-

morphic to the following n coupled linear submachines:

“ (1) _ () “(1) RN EY
X»?_S (k+l) T Aixzs (k) + x£+l,S(k) + til bf_st U.t(k)
o (7.1.13)
~(1) _ T(i) “(1)
*a, ,s(k+1) - Aixn, ,s(k) + I bn. ,st ut(k)
is is t=1 is

L e niﬂ-l’ sep(d), iev
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In order to see how the state equations (7.1.13) are identified with

respect to the block and sub-block structure of the Jordan canonical

(1)
form (7.1.9), we will write out the I n,  state equations corres-
" t=1
ponding to the Jordan block A(nlt, At) as follows:
A(nll’ AP ~(1)(k+1) - 1~éi)(k) + ;éii (0 + X géii u, (k)
? t=
£ e nll—l
“(1) “(L) ~{1)
x (k+1) = ».x (k) + E b u_ (k)
gt Togpel g=1 Pttt
Any,s Ap) "(1) (k1) = Alg) () + xgh) () + z bgz u (k)
£ e n12—1
“(1) ~(1) ~(1)
X (k+1) = ) (k) + E b u (k)
nyp02 Lny,»2 g=1 Mpp02t t
A . (D “(1) " (1) ~ (1)
A(nlu(l)’ Al) : Xﬂ,u(l)(k+l) A x (l)(k) + xﬂ+l,u(l)(k) + Z bﬂ (l)tut(k)
£ & ny (l)*l
“(1) _ o, oD ~(l)
x (k+1) Ax (k) + ¢ b u (k)
nl]..l(l)’ u(l) I'n lu(l)’l-l(]-) t=1 lu(l), p(liee

(7.1.14)
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Similar scalar state equations can be explicitly written for the re-

maining Jordan blocks A(nij’ Ai), i=2,13,. N s . TR

u(i).
Now we would like to present some further state reachability
criteria that explicitly involve the Jordan cancnical form of LSMs.

Theorem 7.1.5. The LSM M = (A, B) is state reachable if and

-

only if all rows of the matrix B = V—lB corresponding to the last rows

of the Jordan blocks associated with the same eigenvalue are linearly

independent. That is,
EA TR S b im
il’ i1’ il’
S(0) NEY e
I, 921 T, ,22 n. ,21'[1
i2 i2 i2 R ,
rank = u(i), iewv
b w01 P w02 Pl (o
L iu(i) iu(d) iu(i) )
(7.1.15)
Proof. This theorem was proved as part of Theorem 6.3.1. Here

we will present a completely different proof (cf. [27]). In Theorem
6.3.1 it was shown that the LSM (A, B) is state reachable if and only

n for all X ¢ GF(q). If V is the matrix of the

if rank[)\ln - A, B] =
isomorphism yielding the Jordan canonical form, that is, the matrix

of generalized eigenvectors of A, then A = V_lAV or VA = AV, Let
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] ] I R |
R(V) = [\I_ - 4, B] = V[(AL_ - &)V, V "B]

and

A(nij, ll, A) = [AIn - A(niJ, A ]
A-x, -l )
A=A, -1
i
A=), -1
i
A=),
Y 1)
Therefore,
AIn - A = A(nll, Al, A) & A(nlz, Al, A) & .
54 A(nlu(l)’ )\ls A) @ A(nzl’ lzy x) e A(nzzs )\2s A)
& . . . D A(nzu(z), Az, MNe ... e A(nvl’ Av, )
A ... s A,
® A(nvZ’ Av, ) 8 & A(nvu(v) . X)
rank A(nij, Ai, A = nij’ Aoz Ai, iewv, e u(i)
rank A(nij, Ai, Ai)= iy T 1= Eii’ iewv, jeud
Ads=n, ., =4£, ,1=s; 1, s8¢ v, j e p(i)

rank A(n.., A,,
ij i S ij is
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—_—
. v ou(i)
rank[XI - A] = I T rank A(n,., A., A)
n . \ ij i
i=1 j=1
v u(i)
= I z N,,s A # A, iev
i=1 j=1
~ voouli)
rank[A I - A] = = T rank A{n,,, A., X )
s n . .
i=1 j=1 -
voop(i) n(s)
= I T n.. + & (ns.-l)
i=1 j=1 Y j=1 ]
iz#s

=n-u(s), sey

The rank deficiency u(s) of the matrix [AIn - A], ho= AS, S £ Vv,
occurs because the last row of each of the u{s) matrices A(nsj, AS, AS)
is clearly null. Since the matrix R{A) is of dimensions n x{(n + m),
the only possible way in which rank R(A) = n for all £ GF{q), is

that all the rows of the matrix é corresponding to the last rows of

the Jordan blocks associated with the same eigenvalue are linearly
independent. []

Corollary 7.1.1. The single-input LSM M, = (A, b) is state

1

reachable if and only if no two Jordan blocks of A are associated with

the same eigenvalue.
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Corollary 7.1.2. 1f the characteristic matrix A of the LSM

M = (A, B) has n distinct eigenvalues, then M is state reachable if
and only if all the rows of B = V_lB are nonzero.

Corollary 7.1.3. The minimum number of inputs required for

state reachability of the LSM M = (A, B) is equal to the greatest
number of Jordan blocks associated with the same eigenvalue.

We will use the result of Theorem 7.1.5 along with some addi-
tional properties of the Jordan canonical form (7.1.9) - (7.1.12), to
derive a simple unreachability criterion for the LSM (A, B).

The index vy of the eigenvalue Ai is defined as follows:

vy = min{£ : N[(A - AiIn)K] = N[(A - AiIn)£+l]}, iew

It is known {118] that the multiplicity of Ai in the minimal polynomial

of A is equal to Vo for all i, and

1A

n

i3 vio e, e u (i) (7.1.186)

If we let [[d]] denote the greatest integer < d, then by virtue of

(7.1.16) we have the inequality

n,
w() 2 [55], 16 (7.1.17)
i
That is,
ng n,
(i) = — if —= is an integer
v, v,
i i
ny n.
(i) = [[;u]] + 1 if ;i is a fraction

i i



219

It is easy to check that these two inequalities imply the following

equality:

Since rank B = rank PplB = rank B, if there exist integers i £ v such

that

> rank B

then the rows of the matrix (7.1.15) will be linearly dependent and
hence by Theorem 7.1.5, the LSM (A, B) cannot be reachable. Therefore,
we have proved the following sufficient condition for the unreachability
property of the LSM (A, B).

Theorem 7.1.6. (ef. [65]) 1If there exist integers 1 ¢ v

such that
n, + v, -1
- . S > rank B

V.,
1

then the LSM (A, B) is unreachable.

Corollary 7.1.4. 1If there exist integers i e v such that

then the LSM (A, B) is unreachable.
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It is interesting to note that for checking the unreachability
of an LSM by the above criterion, it is sufficient to know only the
numbers {ni, Vi i € v} which can be obtained from the Smith canonical
form of the characteristic matrix A. Obviously, knowledge of the iso-
morphism P and the eigenvalues Ai is not needed for the application of

the criterion.

Theorem 7.1.7. The LSM M = (A, B) is state reachable if and

only if there does not exist an isomorphism P : X — X, P ¢ GF(n, q),

1

such that the isomorphic' LSM M = (A, B) = (P AP, P‘lB) will have

xi(k+1) = Axi(k), » £ GF{q), as one of its state equations.
Proof. The necessity part of the theorem is cbvious; to prove
sufficiency, assume that M is not state reachable. Then by Theorem

4.2.1 there exists an isomorphism P : X — X, P ¢ GF(n, q), such that

the isomorphic LSM M = (A, B) = (P_lAP, P"lB) has the form

Ain A By
( R )
0 A22 0
A A
Now consider a further isomorphism P : X —> X, P ¢ GF{(n, q), of the
form 3 = 3 @ ; and choose 3 such that the submatrix g_l; 3
11 22° 22 22722722

will have the Jordan canonical form, denoted by J[Azz]. That is, the

. . = x & Al~A Ay
new isomorphic LSM M = (A, B) = (P AP, P "B) is given by

11 8
= + ulk)
<L (k41) 0 Ay, & T 0

“T A AA A Aol =~
x  {k+1) P AP P P x (k) P 1 B
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From this representatien and the structure of Jordan blocks, it is clear

that there is at least one component of the state equations which is of

the form iﬁ(k+l) = Aiz(k). Therefore, ﬁ cannot be state reachable.

But this implies that ﬁ and consequently M cannot be state reachable. [
The reachability property of an LSM M = (A, B) can often be

effectively maintained by means of a scalar input sequence, that is,

by means of w(0)w(1). . . w(£-1) e GF(q)*, w(k) ¢ GF(q), instead of a

vector sequence u(0)uf{l). . . u(f=1) ¢ U¥, u(k) ¢ U, where u(k) = wwik)

for a constant vector v ¢ GF(q)m. Defining b = Bv, M reduces to the

single-input LSM M. = (A, b). This possibility of reducing the input

1
sequence space U* to GF(q)* can be characterized in terms of the struc-
ture of the Jordan canonical LSM M = (A, B) as shown in the following

theorem.

Theorem 7.1.8. If the LSM M = (A, B) is state reachable, then

there exists a constant vector v ¢ GF(q)m such that the single-input
LSM Ml = (A, Bv) is state reachable if and only if any two blocks in
the Jordan canonical form of A are associated with unequal eigenvalues
of A,

Proof. Let V: X —> X, V ¢ GF(n, q), be the isomorphism that

1

v lav, vip) having the Jordan

i

yields the isomorphic LSM M = (A, B)

cancnical form

o=
Hi
-]
®©
s -]
<]
&
o>
== I
it
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where

A, 1
i
A, 1
1
- ) . n,xm,
Ay = . e GF(q) © T, iew
A, 1
1
A,
L 1)
r~il
bl
~i
b2
-4 n, xm
Bz |- e GF{(q) ,» g v
i
ni
v
z ni =n
i=1

Since M is assumed to be state reachable, by Theorem 7.1.5 we have

i ]
b 20, 1 e v
n, -
1

Suppose that two blocks, say A, and A,, are associated with the same

1 2
eigenvalue Al = AZ, and let b ¢ GF(q)n and w(k) £ GF(q). Then it is
easy to see that the single-input LSM Ml = (A, b) is not state reach-
- A=A ~n-1"
able, that is, rank K1 = [b, Ab,. . ., A b] < n since the nlth and
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~ A A A

. n-1
(nl + nz)th rows of Kl are just [bln , Klbln s - . (Al) bln 1 and
A n-12

1 1 1
A

. . i i if
[b2n2’ A2b2n2’ . (12) b2n2]’ which are linearly dependent i

Al = Az. Therefore, in this case, the state reachability property of

M cannot be maintained by a scalar input. To prove the converse, sup-

pose that the blocks Ai are associated with the distinct eigenvalues

Ays i € v. Choose a vector v e GF(q)" such that

5 ) b
bl bi].1

A L Y B L

BV = b = . b, = , 1 e w
- 1 - _—
> b

) C

hasgin 2 0, i ¢ v. This can be done, for instance, by choosing the
i -~
entries of v to be algebraically independent of all the entries of B.

We will show that rank [E, AE,. . ey Anulb] = n., It is clear that

- - 9o ~ n ~1_ e g ~n\)—l__
R([b,(A-» I )b,(A-) I )b,...,(a-x 1) "’
v n v n v n

Let

"
-
=
™
[<

z 2 (A-XA1) Vb= | , Z
vo
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S0 that
n -1
P P g
z=A b+ 7T a.Ab, a, e GF(q)
1 1
i=0
Then
- . N n -1
R([z,(A-x .I)z,(A-x _I )22 (A-x 1) v-1 z])
M y=1"n" " v-1"n e v=1"n

- 9 ~n\)~l
= R{[z, Az, A"z,. . ., A z])
Repeating the above procedure, we can show that
n -1

— i J— -~ zf ~ ) —
R([b, (A=A T )b, (A-2 T )7b,... (A=A 1) b,

- n - - 1
(A-2 1) b,(A-2 I)(A-2 1) %b,...,
v n v=-1n v n

- nv~1_l ~ uv_
(A—Av_lIn) (A—AvIn) Byerus
- n2 - n,_o~ - n2 - nv_
(A—AzIn) ...(A—AvIn) b,(A~AlIn)(A—A21n) ...(A—len) b,
- nl—l - DZ - nv4
...,(A—Alln) (A—Azln) ...(A—Avln) bl)
- R([b, Ab, a%b,. . ., Ao

The last n\J rows of the vectors

n -1

~ v - 2= - -
(A-Avln) b,...,(A—AvIn) b,(A—AvIn)b, b

form the triangular matrix
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(b * * . * *
vn
v
b * * *
vn
v
b * *
VIt
v
b %
wn
v
b
vn

where bvn z 0 and #*'s denote the possibly nonzero entries. Note that

v
the vector z has zeros as the last nv entries, and that

n

=( . -2)"

v=-1 v bv-l,n -1 » 0

Now by direct computation it can be shown that the matrix

n -1 n n

T 17 2 v T =
T = [(A-3;1) (A-2,1 ) ...(A—hvln) b,...,(A AUIn)b,b]

has a triangular form with diagonal elements

n2 nv
()\l—Az) “ e . (Al—}\v) bln 2 o, . ., b\)n z 0
1 Vv
Since R(T) = R{[b, Ab,. . ., An_lgj) and det T # 0, it follows that
det[E; Ab,. . . An—lg] # (0 which implies that det[Bv, ABv,. . .,
“n-17 n-1 : {
A Bv] = det[Bv, ABv,. . ., A Bv] # 0. Therefore, the single~-input

LSM (A, Bv) = (A, b} is state reachable. {]
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7.2. BSelective State Reachability of LSMs

So far, we have considered the influencibility of the entire
state vector x(k) as a point in the state space X of the LSM M = (A, B)
by input vector sequences u{0)u(l). . . u(£-1) e U*. However, if we
take a "microscopic" viewpoint by considering the reachability of state
components xi(k), i ¢ n, by input components uj(k), j e m, then many
additional types of reachability become available. Some of these are
formalized in the following definitions.

Definition 7.2.1. The i th component xi(k) of the state

xl(k) e X is said to be selectively £-reachable by the j th component
uj(k) of the input u(k) e [ if there exists a scalar sequence
uj(O)uj(l). . . uj(ﬂ-l) e GF(gq)* which transfers xi(k) to xi(k) for
any x2 e X, where us(k) = for all s = j. 1f every component

xi(k), ig n, of xl(k) e X is selectively {£-reachable, then the LSM is

said to be selectively L-state reachable.

Definition 7.2.2, 1f every component Xi(k)’ i & n, of the
state x(k) £ X is selectively {-reachable at every clock period k ¢
K' < K, where K' is the admissible clock period set, then the LSM is

said to be szelectively completely f-state reachable.

Definition 7.2.3. If the i th component xi(k) of the state
x(k) & X is selectively £-reachable by all input component seguences
uj(O)uj(l). .. uj(ﬁ—l), j & m, separately, then it is said to be
strongly L-reachable. 1f every component xi(k), i € n, of the state
x{k) ¢ X is strongly f-reachable, then the LSM is said to be strongly

L-state reachable.
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Definition 7.2.4. If an LSM is strongly {-state reachable at

every clock period k ¢ K' ¢ K, where K' is the admissible clock period
set, then it is said to be strongly completely L-state reachable.

Definition 7.2.5. If an LSM is f-state reachable by each of

the input sequences uj(O)uj(l). . . uj(E—l), j £ m, separately, then
it is said to be gtate normal.

From Definition 7.2.5, it follows that an LSM M = (A, B) is
state normal if and only if rank Kj = rank[bj, Abj,. .oy An_lbj] = n,
j € m, where bj denotes the jth column of the input matrix B, that is,
if and only if the m single-input LSMs x{k+l) = Ax(k) + bjuj(k), j e Eﬁ
are state reachable. Therefore, in view of Theorem 6.1.1, there exists
a large number of state reachability criteria for characterizing the
normality property of LSMs.

We assume that the above definitions of reachability based on
the state components and input component sequences clearly indicate
the possiblity for defining additional types of reachability and hence
their explicit formalizations will not be pursued any further. 1In
order to avoid excessive detail, we will adopt a similar point of view
with respect to the theoretical development of the concepts introduced
in the above definitions in the sense that we will concentrate only
on the property of selective state reachability and assume that oﬁr
results, if needed, can be easily stated for other types of state
reachability.

In Theorem 6.3.1 we provided a large number of criteria for

ascertaining the state reachability property of the LSM M = (A, B).
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However, it is clear that none of these criteria provides any informa-
tion about the selective reachability of a particular component of the
state vector. In order to investigate the possiblity for developing
necessary and sufficient conditions for selective state reachability,
consider the LSM M in the form

x(k+1) = Ax(k) +
]

Nt H

blu, (k) (7.2.1)
1 ]

where bJ, j € m, denote the columns of B and uj(k), j £ m, are the
components of the input vector u(k) ¢ U. Assuming that uj(k) = 0
for all j # s, the zerc-state solution of the state equation (7.2.1)

can be written as

x(k) = = Ak—l_lbsus(i)

LUS(O) J
[ n n h 1
p° 1 aPps, L g a8 e
1 . 11 i . 1i i s
i=1 i=1
n n
I SN o M A (k-2)
2 -1 2i 1 i=1 21 i s




229

where aif) are the entries in the matrix AE. From (7.2.2) it is clear
that the i th component xi(k) of the state x(k) can be influenced by
the s th component sequence uS(O)uS(l). . . us(k—l) if and only if
there is at least one nonzero element in the i th row of the matrix

2 s Ak—l s

KS = [b™, AbT,. . ., b~ ]. This observation clearly indicates the

key role that will be played by the matrices K, = [bj, Abj,. ey

. : 3
An-le], j € m, in the dinvestigation of the concept of selective
state reachability. For this reason, Kj will be called the selective
state reachability matrix. In the ensuing discussion, we will ex-
plore further properties of this matrix in conjunction with the Jordan
canonical form of the characteristic matrix A to develop selective
state reachability criteria for the LSM M = (A, B). We will break
down our discussion into a number of cases.

Case 1. A has n distinct eigenvalues.

If we denote the n distinct eigenvalues of A by Al, kz,. . oy

An, and let the matrix of the iscmorphism Vl : X —> X consist of the
2 n

corresponding n linearly independent eigenvectors v, v ,. . ., v ,
that is, Vl = [vl, vz,. . Vn], then the isomorphic LSM M = (A, B)
= (V_lAV s V_lB) will have the form
1 1 1
r~ ~ ( 3 r_u £ - - - r W
xl(k+1) Al xl(k) bll blZ' . . blm ul(k)
x2(k+l) Az xz(k) b21 b22. . . b2m uz(k)
. = - - + a a - .
k+1 < b b . . b
an( ) AnJ‘xn(k)J , ' nl n2 nmJLum(k)J
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which is equivalent to the following n uncoupled submachines:
~ - m .
Xi(k+l) = Aixi(k) + 'Z bijuj(k), ign (7.2.4)
j=1
From (7.2.4) it is clear that the jth component of the input vector

can affect the ith component xi(k} of the state vector if and only if

b,, 20, ien, Jemn (7.2.5)
ij = =

We summarize the above observation in the following theorem.

Theorem 7.2.1. If the characteristic matrix A of the LSM

M = (A, B) is cyclic, then the ith component xi(k) of the state x(k)
of M is selectively reachable by the jth component uj(k) of the input

u(k) if and omnly if bij # 0, where bij is defined by (7.2.3).
- 1

Since B = VI B, we can write
{bll 127 ° 1m
by Pz - - By
R L L AT | I .
nl n2° ° " “nm|
80 that
. n - i
bl = 2 b.v, jem (7.2.6)
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Now
. n . .
] o,
Ab” = I b,,Av7, j e m (7.2.7)
. 1] -
i=1
In view of the eigenvalue-eigenvector relationships Avl = Aibl, i¢nmn,

(7.2.7) becomes

n ~ N
abl = % b, Av, jem
=1 7
Similarly,
2 ' oo i 7o 2 i
ADY = Abd) = Z b.a AV = 5 b, 0O, jem
. ij’ 1 i i —
i=1 i=1
. n . .
AP 0 s b o™, e
i=1 7 -

Therefore, the selective state reachability matrix Kj can be expressed

as

2 i ~ n-1 i .
bij(Ai) Vi,e o 0y L b].L (li) vil,jem

(7.2.8)
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Since
1j
23
n
- ~ ] 2 .
pl = & b, v = [vl, v, , vl
i=1
L 0}
. 1T
G 1
ij
23 1
= [v, v, , v
. 1l
L N DR
(7.2.9)
we have
f~ £)
blj(hl)
~ £
sz(Az)
n .
~ 2 n
Aﬂbj = 3 b..(x.)}?’v1 = [vi, v ,. » V) .
. ijti .
=]
b . o)f
L ny o)
~ K"
A
blj ( 1)
~ £
21 (AZ)
=[Vl’ vz,' LI ] Vn] y * "Eeun,—i’
]l em
~ £
I Cx)
nj n

J J(7.2.10)
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In view of (7.2.9) and (7.2.10}, Kj can be written as a product of

three matrices as follows:

. . -1 3
K, = b3, apd,. . ., &7 b7}
~ ~ 3 2 n""l
. [ 1A YN RPN )
Vir Va2 v 0 Vin|iPaj (13 O ()
~ 2 n-1
v s . 1 .
Va1 Yoy Voo b2J AZ (12) (Az)
- 2 n-1
e 1 A . A
Va1 Vn2 vnn nJJL ( n) ()
= i 7.1.11
VlDljwl’ jem ( )
The matrix wl £ GF(q)nxn is known as the Vandermonde matrix. 1t can
be shown that the determinant of W is equal to i\ (A, - %), and
1<i<j<n N
hence W is singular if Ai = Aj fer i # j. However, in our case Ai,
i ¢ n, are distinect and, therefore, Wl is nomnsingular. Since Vl is
the matrix of linearly independent eigenvectors of A, from (7.2.11)
it follows that
= i .2.12
rank Kj rank Dlj’ jem (7.2.12)

The rank of the diagonal matrix Dlj is clearly equal to the number of

nonzaero elements bij’ ien, jem Since by Theorem 7.2.1 the ith
state component xi(k) of the state vector x(k) is selectively reach-
able by the jth component uj(k) of the input vector u{k) if and only

if bij # 0, then (7.2.12) implies that the rank of Kj is equal to the
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number nj of the state vector components that can be selectively
affected by uj(k). We formalize this result in the following theorem.

Theorem 7.2.2. 1If A has n distinct eigenvalues, then the rank

of the selective state reachability matrix Kj = [bJ, AbJ,. . s An-le]

is equal te the number of state vector components that are selectively
reachable by the jth component uj(k) of the input vector u{k).

We can actually identify the state components that are reachable
as a result of the rank condition of the matrix Kj. To see this, we

can use (7.2.8) to write
n

KXE

bi.(Ai)Evl, £en,-1, jem (7.2.13)
i J :l

[ e ST

1

Since rank Kj = nj, j £ m, we can express AEbJ, £ = nj, as a linear

combination of the 1linearly independent columns of Kj. In particular,

n_ -1

=
e
&
W

il t

s ]
aS,A b, aSj e GF(q) (7.2.14)

s=0 J

In view of (7.2.13) and (7.2.14), we have the following equality:

nj n nJ~1 nj

I b () vt = 1 a_ I b O ) Syt

1=1 s=0  %Ili=1

or
" ng Ty ™7
- i ~ s} 1

£ (b,.(A) ¥o= 5 | T a.b..()%v (7.2.15)
j=p 31 i=1 |s=0 S 111

Equating the coefficients of Vl, ien, in (7.2.15), we obtain



since b,, = 0.
1]
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n -1

- n, j - .

b, () = r a ;10

b o—p 5413
n -1
n, j s
A)Y3d =3 a () ,ien,, jem (7.2.16)
* =0 )

Equation (7.2.16) is an njth order monic polynomial

whose rocts are the nj eigenvalues associated with the selectively

reachable state components.
components, it is necessary to determine aSj
and then solve equation (7.2.16).

by an example.

Since rank Kl

Therefore, in order to identify these
in equation (7.2.14),
We will illustrate this procedure

Consider the following LSM over GF(3):

x, (k1) (0 0 0] [x, (K 1 0
‘ul(k)
x, (k1) | = |1 2 O][x, (k)| + [0 O
uz(k)
%. (k+1) 0 0 1l{x. (k) 0 1
3 J \ J 3 L /
1 0 o)
K, = [bl, abT, Azbl] =10 1 2
\0 0 OJ
[0 o 0
K, = w2, ab2, a%%] = {0 0 o
11 1]
= 2, that is n, = 2, and rank K, = 1, that is n,, = 1,

1 2 2

there are two state components which are selectively reachable by
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ul(k), and one state component that is selectively reachable by uz(k).
In order to identify these state components, we need to sclve the fol-

lowing sets of equations:

2.1 1 1
A"b aOlb + allAb

2 2
Ab~ = a02b

which in view of the given data, reduce to

0] (1) 0
21 = aO1 ol + all i
0) 0] 0
(0] 0]
0] = a02 0
1 (1)
Solving these equations, we cobtain ag = 0, a7 = 2, and a9 = 1.

Substituting in (7.2.16), we get (A)2 = 2\ for j = 1, and A = 1 for

=0 for j=1, and A, = 1 for j = 2.

j = 2. Therefore, A, = 0, A 3

1

Thus the state components xl(k) and xz(k) are selectively reachable

2

only by ul(k), and x3(k) is selectively machable only by uz(k).

Case 2. A has n repeated eigenvalues.

If we let the matrix of the isomorphism V2 : X — X consist
of the n linearly independent generalized eigenvectors vl, vz,. . e
n . . y - -1
v of the form (7.1.2), then the isomorphic LSM M = (A, B) = (V2 AV2,

V;lB) will have the following form:
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x, (lc+D) \ r;\1 1 ‘ f;l(k) ‘ rﬁll 512"";1;;1 ’ul(k)w
;2(k+1) a1 ;z(k) 1;21 1;22...1;2“1 u, (1)
SN P ERE  NE

x_, (k1) RN PN CS
Ecn(k+l) L M L;n(k) ~n1 —nZ'HNnmJ ()

(7.2.17)

which is equivalent to the following n coupled linear submachines:

- - - m
xi(k+l) = Alxi(k) + xi+l(k) + jil bijuj(k)’ ien-1 (7.2.18a)
- N m .

= + . .
xn(k+l) Alxn(k) jil bnjuj(k) (7.2.18b)

From (7.2.18) it is evident that the jth input component uj(k) can

selectively affect the £th state component xﬁ(k) if and only if

b,. 20, £en

£j
and (7.2.19)

., =0, s = f+1, £+2,. . ., n
8]

It is also clear that the overall LSM M = (A, B) under consideration

is state reachable by the jth input component uj(k) if and only if

bnj # 0 since by Theorem 7.1.6 if bnj = (0, then M cannot be state

reachable. Furthermore, M is not state reachable by uj(k) if and only

if bSj =0, 5 ¢ n. We summarize the above observations in the follow-

ing theorem.
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Theorem 7.2.3. If the characteristic matrix of the LSM M =

(A, B) has n repeated eigenvalues, then xi(k), i € n, is selectively
reachable by u,(k), j ¢ m, if and only if (7.2.19) holds, where ﬂij
is defined by (7.2.17). Furthermore, M is state reachable by uj(k),

j ¢ m, if and only if bnj 2 0, and M is state unreachable by uj(k) if
and only if b,, = 0, 1 € n.
ij =
In order to further investigate the selective reachability
properties of this special class of LSMs, we need to take a closer
look at the selective state reachability matrix Kj. From the relation

AV, = V_A and the special form of A given by (7.2.17), we obtain the

2 2

fellowing eigenvalue-eigenvector relations:

Av. = x.v (7.2.20a)
Av. = A v » 1 =2, 3,. . ., n (7.2.20b)

These relations will be used to derive general expressions for the

columns Azbj, £ ¢ n-1, of ¥, in terms of )\

e 1

i . .
and v, 1 ¢ n, which will
consequently result into a decomposition of Kj into a product of
matrices.

Since B = VzB, we can express the columns bJ, jem, of B as

vV, Jem (7.2.21)

o
l

| el =
o

Thus

. n ~ .
ab? = 3 bi,Avl, jem
i=1 ™



By virtue of (7.2.20}, Abd can be expressed as follows:
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j - 1 - 2 1 - 3 2 - n n-1
= + +, .+ +
Ab bljhlv + sz(llv + v+ baj(Alv vT) bnj(klv v
noo. i noo. i-1
= I bi.Alv + 5L b.,.v
i=3 i=2
13 23
2j 33
- - Al
2 n
= [vi, vi,. . ., v - . (7.2.22)
~ - 1
n-1,j nj
b . 0
nj J
Similarly,
9 3 \ n . . oL L
A“bYd = AabY) = = bi.AlAvl + % b, Av
i=1 i=2 M

Again using (7.2.20), we obtain

)
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2 2 i no- i-1, %o i-2
Apd = % b, (A) vi+ 21 b AV T+ T bAv
i=1 M i=2 i=3 M
(& : 5
By 21 3
. f 3
2] 3] 43 (r )2
L] - - l
LU B : BRE2N (7.2.23)
n-2,j n-1,]j nj
L1l
n-1,j nj 0
. 0 0
nj

Combining (7.2.21), (7.2.22), and (7.2.23), the first three columns of

Kj can be written in the following form:

1j 273 33
25 "33 43l 2)
- Lo, O
x I3 2 3 - *
[bJ, AbJ, A bJ] = [vl, vz,. . ey vn] . . . 0 1 ZAl
. nj
iy 0 0 0 1
n)
0 0
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The last expression essentially exhibits the pattern that will emerge

E A
if we continue in the preceding manner to express A bJ, £ =3, 4,. . .,

n, in terms of X

1

be written as a product of three matrices as

K, = b3, Abl,.

where
f -
13 b2j
- | ﬂ
23 3]
D2j = :
. nj
- o
nj
1 2 2
o i o
2
1 (IJAI
WZ = 1

i,
and v, i & n.

Therefore,

A

n-1

it is clear that Kj can
follows:
bj] = V2D2jw2 (7.2.24)
wnj*
. 0
; s 3 é m (7.2.25)
. 0
. Q
J
[nal:(ll)n-l‘
[i}(kl)z' o (nllz(kl)n—Z
o [n;lJ(Al)n—B (7.2.26)
o [n;lj(kl)n-A
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where

Hl
=

(i] EETTE%EST" sl = s(s-1)(s-2). . . 1, O!

Since V2 and w2 are nonsingular, from (7.2.24) it follows that

rank K, = rank D,, = m,, J ¢ m
J 2] i =
where
E ., 20, m, en
m.,Jj J -
]
(7.2.27)
.. =0, 1 =m.+1, m,+2,. » 0; j e m
1] J -

From Theorem 7.2.3 it feollows that mj is equal to the number of state
components that are selectively reachable by uj(k), j £ m.

Theorem 7.2.4. 1f the characteristic matrix of the LSM M =

(A, B) has n repeated eigenvalues, then the rank of the selective state

n-1 j
bJ] is equal to the number

reachability matrix K, = b7, abd,. . ., A
of state components xi(k) that are selectively reachable by the jth
component of the input vector u(k).

Equations (7.2.27) together with (7.2.6) yield the following

expression for b s

. jo. .
bl = L b,.v,jiem (7.2.28)
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Using (7.2.28) and (7.2.24), it is seen that columns of Kj have the

form

L3 _ 3o £ - L-s 1
A = & I i+s,j(kl) v,Jiem (7.2.29)

i=1 =0 \®

Since rank K, = m,, we can express the vectors A’EbJ as linear combina-
J ]

tions of the mj linearly independent columns of Kj as follows:

m mj—l
Adpd = : aE_AﬂbJ, jem (7.2.30)
g=0
or
™
5 aE.AzbJ =0,a ,=-1 (7.2.31)
=0 By

Substituting (7.2.29) into (7.2.31) yields

mJ mj mJ—l
-~ £_ -
I oap | L I [EJ b O V] =0
=0 I |i=] s=0 \® &
mJ mj g -1
DN B az,(f] b ,(Al)z"s v =0
i=1 |£=0 s=0 3
with am . = ~1. Now independence of vl, ie Ti’ implies that
j 3
o mj—l
~ j - ~ E
bm j(?\1) b I agj(ll)

3’ "3 2=
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or
m -1
mj N 7
Gp 7=z a, () (7.2.32)
=0
since gm . #0, m, € n. There are also some other relations that re-

sult from the independence of vi, but will not be needed for our analysis.
Therefore, in order to identify the mj selectively reachable state com-
ponents, we need to determine the scalars aﬂj from (7.2.30) and then
find the roots of the polynomial (7.2.32). Obviously, in this special
case all these roots will be equal to kl.

Case 3. Confluent eigenvalues of A are associated with distinct
Jordan blocks of A.

If we let the matrix of the isomorphism V3 : X — X consist

of sets of generalized eigenvectors of the form (7.1.2), one set for

each eigenvalue Ai’ i e v, then the isomorphic LSM M = (4, B)

v_Iav., vO1B) will have the form
3 AVg0 Yy

f"‘ A r"‘l\

Al(Al) B
A, (1) B

( , ) (7.2.33)

- V]
AL BY
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where

(A, 1 )
1
A, 1
1
- nixni
Ai(?\i) z e GF(q) , 1 e v (7.2.34)
AL
AL
1)
Ai # Aj for i # j; i, j & v.
(L) () S(D) ]
by byy” eo- o by
~ (1) ~ (i) -(1)
®s1 bog” v s By
— Il _Xm
BY = | . . . e GF(q) © , 1iev (7.2.35)
“(1) (i) (i)
bn.,l bn.,2 . e - bn,,m
1 1 1 J

Clearly M is equivalent to the following v uncoupled submachines:

() = AL ()X + Bluk), Te v (7.2.36)

The ith submachine is composed of the following set of coupled sub~

machines:
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i T~ (1)

~3 ~3 -
= + . [
Xﬂ(k+1) Aixz(k) + X£+1(k) jil bSJ uj(k) (7.2.37)
£, sen,-1l,1iewv
i v
~4 ~i (1)
x (ktl) = a.x (k) + £ b .u k), iev (7.2.38)
I, 1 n, . n.,J] J -
i i i=1 i

From (7.2.37) and (7.2.38) it is clear that the jth input component

uj(k) can influence the £th state component xE(k) if and only if

~ (1)
bﬂ' 20, £ ¢ ny
(7.2.39)
B(i) =0, 8=48+1, £42,. . ., n,; iev, jem
8] > H > Ty M o

We formalize this observation in the following theorem.

Theorem 7.2.5. If in the Jordan canonical form of the LSM

M = (A, B) confluent eigenvalues are associated with distinct blocks,

then the £th state component xz(k), £ e n., i ¢ v, is selectively reach-
able by the jth input component uj(k) if and only if (7.2.39) holds,

where bé;) is defined by (7.2.35).

Let the generalized eigenvector matrix V3 be partitioned as

follows:
V3 = [V31 V32 . e V3v] (7.2.40)
nxn,
where each V3j e GF(q) 4 has the form
). (3) (1), . .
V3j = [vl P VYT e s v Is i, jew (7.2.41)
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In view of the relation B = V3B, the first column b of the selective

state reachability matrix Kj can be expressed as

n
. v i ., .
vl = 5 = bé?)vil), em (7.2.42)
i=1 t=1 -
By virtue of the relation AV3 = V3A, for the present situation the fol-
lowing eigenvalue-eigenvector equations hold:
(r) _ (r)
Avy o= Ay rewv
>
_ (7.2.43)
Avgr) - vgr) + V'gr) i=2,3,. ..,V
i ri i-1
where vir) is the generalized eigenvector associated with the rth

eigenvalue Ar and the ith subblock Ai(Ar).

Using (7.2.42), we obtain the following expression for the

second columm of Kj:

j .
Ab- = % r bg- Avﬂ

i=1 £=1
AY ~ s . A\ ~
= I bi?)Avil) + I bg%)Avél)

=1 i=1
v ~ s . Y oy .

+op b L p D) LD (7.2.44)
. 33 3 _ n,.] n,
i=1 i=1 i i

Using (7.2.43), (7.2.44) becomes
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apd oy p@, @ +j; (), Q) ) pa@) (1)1
i=1 lJ 1 1 L1=l 2] 2 i=1 23 V1 J
v . v —yx .
+<( ooy gy b(l_)vél)L
i=1 33 1 3 i= 33 J
[ v ORI C I R € S I €5 ]
+ +< Z b + I _1
[1 10y ,J i n, 121 n ] n J
. v ~ . v R v -y .
R N B N (N C B S S
=1 11 i=1 J i=1 7
AV ~
+. ..+ 3 b,y (1)1
i=]. ‘.I.'l.).] 1 nlJ
AY) - hYJ - A\ .
+<( ) bél) il) + 5 bg 1) ;i) C L+ (l) (1311\
i=1 < i= ] i=1 %ped oy J
v ni v ni
= r oz @y W g (11 (7.2.45)
i=1 ¢=0 3 1 F i=1 g=2
In a similar manner, we can show that
v ni Y ni
S R Yt )2 (l) +2 1 1 by, E i
i=1 t=1 o i=1 t=2
v M1
+ oz 5 pd,) (7.2.46)

4=1 t=3 tJ t72
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Now we are ready to indicate the form of the decomposition for the

first three columns of Kj as follows:

n I n
. . . v i ... . v i .., . v i ... .
b, apd3 4% = |z = bi?)vil), I bé?)xivil) + ¥ I bé?)vgfi,
i=1 =1 Y i=1 t=1 i=1 t=2 I
v Y v
»oz P oA @ 4o 1o pWy D
i=1 g=1 1t i=1 t=g 3 1l
Y ni
+ I I ;(i)v(i)
£y V-2

i=1 t=3
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3, apd, a%Iy =
Vil), Vél),..., V(l); V](-Z), VEZ),--., VISIZ);-.‘; V§V), Vg\)),..-, VIE\’) X
nl 2 v
~ ~ ~ ! T §
(1) (L (1 A 5 )2
blj sz ij E 1Ay { l)
]
|
~{1) ~ (1) ~ (1)
by b33 b, i 0 1 2
. ]
|
. |
-
N I
p(L |
ny»
: L] L -
- |
R I : .
. nl,J :
|
I
il)j 0 o ! 00 0
1’ !
——————————————————— e R
|
| .
II -
I £ W S S Sl
! A A
D)3 by by 0 A, G
|
|
| ~ ~ -
(v) (v) (v)
|
:sz by by 0 1 2
i
! )
i
| ~
| p V)
| . n.d
|
| ) ..
. b g ..
| 0, .
|
L.
b g 0 00 o0
n ,J
| v \ P,

(7.2.47)
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Proceeding as above, we can show that, in general, the selective state
reachability matrix Kj can be written as a product of three matrices

j 3 3' 3) .] €m ( . . )

where

_ (D (2) (v) .
=07 ep’ ®. . .eD ", 7.2.49
3] 3 j N e ( )
(g P wrey )
) g o p)
1j 23 n.,j
1
~(i) ~ (1)
by by’ - - 0
DJ@ = ) - ,iev, jem  (7.2.50)
. B g
- ni’J
8 .. .0
n,sl]
i J
r
wl?
Wy
W, = : (7.2.51)
W
A
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( 1 2 2 (3] 3 n-1 n-1 |
v P (eo® (e [os
2 3] 2 n-1 n-2
0 1 [1)A1 [1,(Ai) . . [ e
) 3) n-1 n-3 ngrn
wi =10 O 1 {2 Ai ... { 5 ](Ai) € GF(q) , e v
0 0 0 0 n=1 16, )n_nl
t ) n.-1 i
1
)
(7.2.52)

From the form of D3j it is clear that this matrix is nonsingular.

Since V3 is also nonsingular, from (7.2.48) it follows that

rank Kj = rank D,., j € m

3]
. (i) _
I1f we define rank D; =m,,, then
J 1]
v
rank K. = T mi' (7.2.53)
iy 13

where

(7.2.54)

“ (1) . \
btj =0, t = mij+l, mij+2" . s ni; ievy, Jemn
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From the Theorem 7.2.5 it follows that mij is equal to the number of
state components that are selectively reachable by uj(k), j e m.
Therefore, we can state the following theorem.

Theorem 7.2.6. If in the Jordan canonical form of A confluent
eigenvalues are associated with distinct Jordan blocks, then the rank

X s ) - rnd i n-1 j
of the selective state reachability matrix ;K__.| = [b7, ABY,. . ., A b~ ]
is equal to the number of state components that are selectively reach-
able by the jth input component uj(k), j e m,

Next, we want to show how the selectively reachable state com-
ponents can be identified. 1In view of (7.2.54), (7.2.42) can be
expressed as

U m--
. ij -, .
bl = 3 s bi?)vél), jem (7.2.55)
i=1 t=1 J
From the general form of the matrix Kj given by (7.2.48), it follows

A s ] ;
that an arbitrary column A b can be written as

(A.)s—tvgﬁ)

v iy Myt
s| (L)
{ ] bi+t,j i i (7.2.56)

A% - oz s .
£=1 i=1 t=1

On the other hand, we observe from (7.2.53) that any column AhbJ,

h =2 m,, can be expressed as a linear combination of the m, linearly
J

independent columns ASbJ, s e mj—l, of the matrix Kj’ where m, =
N
v
vank K, = I m,,. In particular, we have
b= M

m, |, j .
3.3 L 8, 1
A b E aSjA b, asj e GF(q)
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or equivalently,

a A% =0, a . =-1 (7.2.57)
S] m,s]
s=0 J

Substituting (7.2.56) into (7.2.57) and interchanging the order of

summations, we cbtain

m m, , -1

m
ij | vy i - _
R B I R . [i bifi .(Ai)S t viﬂ) =0
i=1 |£=1 s=0 t=1 ] »J
Independence of the generalized eigenvectors viz) implies that
m m,—1
pH) () J = bél) . I as.()\i)S
mij,J ijsJ 5=0 ]
or
m, -1
m, 3 s
) Jd= % a ()% iev,jem (7.2.58)
i sj i - -
5=0
since b(l) . = 0.
m,,s]
1]

Therefore, as in previous cases, equation (7.2.57) can be used

to determine the constants a ., s € m,-1, j € m, and the polynomial
5] 3 —

(7.2.58) may be solved to identify the selectively reachable state
components.

Case 4. Confluent eigenvalues of A are associated with a num-
ber of neondistinet Jordan blocks of A.

Finally, we will consider the most general case in which the
isomorphic LSM ﬁ = (&, é) has the form given by (7.1.9) - (7.1.14).
The steps required for the analysis of this case are, in principle,

identical to those taken in the analysis of the previous cases.
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However, the notation is somewhat more involved in the present situa-
tion. For the sake of completeness, we will, for the last time, repeat
our routine analysis.

From the set of scalar state-input equations (7.1.13) it is
(1)
£s
can be selectively affected by the jth input component uj(k), j e m,

easily seen that the state components x L e Ny S € p(i}. i e v,

if and only if

b(l? 20, £ ¢ n,

£s] is
g(i) =0, t =&+, &+2,. . ., n, 3 se (i), i€ v, j em
tSj y ’ ’ , ig? ) My (03

We formalize this observation in the following theorem.

Theorem 7.2.7. If in the Jordan canonical form of A confluent

eigenvalues are associated with a number of nondistinct Jordan blocks,
then the fth state component in the sth subblock of the ith block,

(

xﬂ;)(k)’ L e n, ., S e (i), i ¢ v, is selectively reachable by the

jth input component uj(k), j e m, if and only if (7.2.59) holds, where

g(i?

sj is defined by (7.1.12).

In order to develop a procedure for determining the number of
selectively reachable state components and a method for identifying
these components, we will imitate the corresponding sequence of steps
used in the previous three cases.

Let the matrix V4 of generalized eigenvectors be partitioned

as follows:
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- (D) (D (B (2 (2 v
Vl; = Vl ] V2 L ]J(l)’ V L] V2 LIRS (2)
R V) S €V e
3V Ve e u(v)] (7.2.60)

where

s sl * "s2 ° sn,
is

MEON [ (1 @ (D }, sep(l), iev (7.2.61)

In terms of the above notation and in view of the relation AV4 = V4A,

we have the following set of eigenvalue-eigenvector equations:

(1) (1)
sl Al sl
(1) _ (1) (1)
Avsﬂ = )\ivs2 s -1 (7.2.62)

£ s iy, i
eng >, sepld), iey

Using the relation B = VQB, we can exprdss the columns AhbJ, h £ n-1,
j £ m, of the selective reachability matrix Kj as follows:
n
. v op(i) i
vl = 5 & z bés) (E) (7.2.63)
i=1 s=1 f=1 7%
, v u(1)
atd = 3 3 é )(Av(l))
i=1 s=1 ﬂ"
(1)

Substituting for Avéﬂ from (7.2.62) and simplifying, we obtain
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v op(i) 15 -
Abd = 5 % 5 bé;) AV éz)
i=1 s=1 =1 %

(7.2.64)

v o u(i) Mis ~(1) (1) Cem

+ 7z z b |
=1 s=1 f=2 £s] sﬂl

Similarly, it can be shown rhat

. n
5 1 v o u(i) is “ (1)
A = 5 1 ¥ b£
i=1 s=1 4£=1

(A, )2 (1)

PRV ¢ U
v u(i) Tis - (1)
+ 2 I z I b
i=1 s=1 £=2

(1)
2si*iVs, -1 (7.2.65)

v o) s “(1) (1)

+ % 5 L b
i=1 s=1 {£=3 €s3's,4-2

» J em

Now using (7.2.63) - (7.2.65), the first three coluans bJ, AbJ, and

2.7 . , . )
A b:| of Kj can be written in matrix notation as follows:

. . . A A
b3, abd, a%bd] = v,DW (7.2.66)
where
A v oou( A
D. = ¥ I p¢i) (7.2.67)
] si
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[~ (1) ~ (1) ~ (1)
blsj b?_sj b3sj
~(4) ~ (i) ~ (i)
LD 363 Pusi
3(%) = ) ey , sepd), ieyv, jem
8J n, ,8j
18
: p () o 0
. Big?®
i;(i) o 0 0
\ njg2s) )
(7.2.68)
(A1) )
Wy
A1)
)
A -
Wzl e (7.2.69)
AL
W
u(l)
A(v)
LWU(V)



If we continue to generate the remaining columns Ath, t =

r ~
1A, Gl
i i
0 1 2
i
A
wéi) = |0 0 0 s 8 e u(i), 1
0 0 0

eV
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(7.2.70)

3, 4,. . .,

n~1, j ¢ m, in the above manner, it will be seen that for the matrix

Kj the pattern exhibited by (7.2.66) - (7.2.70) can be generalized and

thus K,
]

where

can be expressed as a product of three matrices as follows:

K,
J

(1)
D43j

] ]
[b~, ab~,. W2

(D o (D NeN

@

13 2] T w(1)j
(2) (2) (2)
® D) ©D, " ® . . . @D 5,

(v) (v)
@ ... @ Dlj ®D," e.

oAy oy D(i

)
4

(7.2.71)

(7.2.72)
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5]

[~ (1)
blsj

S (1)
bZSj

(D)
n

28]

~ (1)
b2sj

N

3sj

e
Il

is

>8]

Cpd)

is

(1)
wu(l)

(v)
sy

»8]
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» 1ewv, s e u(d)

(7.2.73)

(7.2.74)
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1 2 2 (3 3 n-1) n-1 ]
1 [o]li (O](Ai) o](ki) . e { 0 J(Ai)
2 (3 2 n-1) n-2
o [ Bt o
) (3 n-1] n-3
w(1) . 0 0 1 z]xi [ 9 ()
S ~ 7
n-1 n—nls
D 0 0 0 ( . _1]<xi)
L is )
s e p(d), i e v (7.2.75)

From the form of the matrix Wq it is evident that it is nonsingular.

Since the matrix V4 of generalized eigenvectors is also nonsingular,

from (7.2.71) it follows that

. voou(i) .
rank K, = rank Dil? = 7 z rank Dé%)
] 81 ie1 s=1 .
vooudi)
= %2 I m, ,,iem (7.2.76)
i=1 s=1 "
where
5(1) 20, m, . g1
m, s8] 18] is
is] -
p (1) =0, t=m,_4l,m,_ 42,. . ., n, 3 s¢eu(i), icuv
ts] i isj ’ Tisj 7’ ' Uis’ ’ =

The above conclusion together with Theorem 7.2.7 lead to the following

result.
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Theorem 7.2.8. If in the Jordan canonical form A of A,

confluent eigenvalues are associated with a number of nondistinct Jor-
dan blocks, then the rank of the selective state reachability matrix Kj
of the LSM (A, B) is equal to the number of state components that are
selectively reachable by the jth input component uj(k), jem.

The procedure for the identification of selectively reachable
state components characterized in Theorem 7.2.8 can be derived in pre-

cisely the same manner as in the previous cases.

Summary and Conclusions

Throughout this chapter, the Jordan canonical form of the
characteristic matrix of the LSM M = (A, B) played a central role in
the investigation of various aspects of the state reachability property
of M. Exploiting the generalized eigenproperties of M, additiomal
state reachability criteria in terms of the Jordan canonical represen-
tation of M were formulated. Furthermore, the possiblity of controlling
a multi-input LSM by a scalar control sequence was characterized in
terms of its Jordan canonical ferm (cf. [217, [271, [37], [58], [61],
[65), [99], (1071, [118]).

Also in this chapter, the concept of selective state reach-
ability for LSMs was introduced. Consideration of this idea for LSMs
was motivated in part by the somewhat analogous notion of modal analysis
in conventional linear contreol systems [92], [99]. Since due to lack
of order in GF(g) the eigenvalues of an LSM, in contrast to those of
a conventional linear system, cannot be related to any physical qguanti-

ties such as power, state evolution modes, etc., the concept of modal
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control was reinterpreted as selective state reachability for LSMs.
The generalized eigenproperties of LSMs in the framework of their
Jordan canonical forms were utilized in the investigation of selec-

tive state reachability properties of LSMs (cf. [92], [99], [121i]).
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CHAPTER VIII

PROJECTIVE-GEOMETRIC STRUCTURES AND LSMS

In early 1970, Wonham and Morse [111], {112], and independently
Basile and Marro [5], [6], [7] introduced a new approach for the study
of linear continuous~time systems, which makes heavy use of the ab-
stract geometrical structures of finite-dimensional vector spaces over
the fields of real and complex numbers. Generally speaking, the
egsence of the geometric approach is to first characterize solvability
of the problem of interest as a verifiable property of some subspace
of the state or output space of the linear system under comnsideration
and then translate the subspace solution into matrix operations [114].
Wonham and Morse explored their geometric theory extensively and with
considerable success initially in the areas of decoupling and pole
assignment which have been problems of longstanding interest in the
area of linear systems. Their formulation of the decoupling problems
relied heavily on the concept of a generalized controllability subspace,
which is a subspace that satisfies certain restrictive conditions.
Solvability of decoupling problems then became equivalent to finding
suitable sets of controllability subspaces. They obtained powerful
and general criteria for decoupling by state variable feedback that
subsumed most of the earlier results. Later these authors and others
applied the Wonham-Morse-Basile-Marro geometric theory to many other

aspects of linear systems such as disturbance localization, decoupling
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by output feedback, stabilizatiom, tracking and regulation, feedback
invariants and canonical forms, dynamic observer design, decentralized
control, and so forth.

Although the computational efficiency of the geometric method
is debatable at this stage of its development, its elegance and
generality are certainly very appealing.

Some aspects of the Wonham-Morse-Basile-Marro geometric system
theory are essentially coordinate-free and hence certain portioms of
it remain valid on arbitrary fields and, in particular, over the finite
field GF{(q). Therefore, a geometric theory can be developed for the
investigation of certain structural properties of LSMs. 1Imn fact, such
a theory is motivated by many important interrelationships existing
between LSMs and coding theory. A linear code by definition is a sub-
space of GF(q)n. In the area of coding and decoding theory highly
geometric concepts have already been employed for the development of
certain classes of codes which are primarily based on the properties
of finite affine and projective geometries and their associated com-
binatorial structures. On the other hand, close relationships have
been discovered between the burst correction properties of convolutional
codes and the controllability and observability properties of LSMs [77].
In view of these relationships and the central role played by LSMs in
coding, decoding, and other significant computational tasks on finite
fields, there seems to be ample justification and incentive for ex-
plering the possziblity of developing a geometric theory of the Wonham-

Morse-Basile~-Marro type for LSMs. Therefore, we intend to initiate
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the research in this direction by providing the rudiments of a projective-
geometric theory for LSMs in the present chapter. The guiding source
for the material in this chapter is the research monograph by Wonham
[114]). However, it should be borme in mind that we are concerned with
a different mathematical framework.

In this chapter familiarity with the basic concepts, terminology,
and notation concerning finite affine and projective geometries, pro-

vided in the Appendix, is needed.

8.1. Geometric Definition of State Reachability of LSMs

Our purpese in this section is to present a geometric defini-
tion of reachability of an LSM M = (A, B) and then discuss some related
results that are of a geometric nature.

We recall from Section 4.1 that the reachable flat

R([B, AB, A%B,. . ., A" 1B])

R(K)

R(B) + AR(B) + AZR(B) .. .+ A" gy

!

1+

{a | R(B)} (8.1.1)

of an LSM M = (A, B) is the smallest A-invariant flat in P(X) that
contains R(B)}. Now let P : P(X) — A(x + R(K)), < x > Ph—b P < x> =
< x >, be the canonical projection. Since R(K) c N(P), we obtain the
following autonomous representation for the originally nonautonomous

LSM M = (A, B):

>
»

x(k+1) = (k) (8.1.2)
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where A is the map induced in A(x + R(K)) by A. From (8.1.2) it is
clear that the control sequence u(k) ¢ U* has no influence on the coset
of x(k) mod R(K). This shows that a necessary and sufficient condition
for the reachability of all states of an LSM from the zero state is
that A(x + R(K)) = 0, that is, P(X) = P(R(K)). We will use this char-
acterization as the definition of state reachability.

Theorem 8.1.1. The LSM M = (A, B) is state reachable if and

only if for any given irreducible polynomial g ¢ GF(q)[A] of degree n,
there exists a state feedback homomorphism F : P(X) — P(U) such that
the characteristic polynomial of A + BF is precisely g.

In order to be able to prove this theorem, we will need some

auxiliary results.

Lemma 8.1.1. If S ¢ PA(X), then A induces an affinity A
A(x + S) —> A(x + 8) defined by A(x + 8) = Ax + S. Moreover, if A
is the zero of any polynomial, then so is A. Thus the minimal poly-

nomial of A divides the minimal polynomial of A.

Proof. First we need to show that A is well-defined, that
1s, if x' + S = x" + S, then A(x' +8§) = A(x" +8). If x' +S =
*" + &, then x' - ¥" ¢ § and, since S ¢ PA(X), A(x'" - ') ¢ S. Hence
K{x' + 8) = Ax' + S = Ax" + S. We next show that A is linear. Let

%', x'" ¢ X and a £ GF(q). Then we have

A" +8) + (x" +8) = Ax" +x"+8) =A(x" +x) + S

Ax' + Ax" + S

I}

Ax' + S + Ax" + S

Ax' + 8) + Ax" + 8)

il
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and

aAx' + S

Ala(x' + 8)) = A(ax' + )

]
I

a(Kk' + 5 AK(X' + S)

Now for any coset x' + S ¢ A(x + §),

Azx' + S =4a(ax") + 8§

Al(x' + 9)

Aax' + S) = A2(x' + S)

It

Hence A2 = KQ. Similarly, we can show that An = A" for any integer n.
n

Thus for any polynomial f(A) = I ai(A)l,
i=0
— o i
F(AY(x" +8) = f(aA)x' + S = ¢ aiA x'+ S
i=0
n i ] —I
= ¥ a,(Ax'"+38 = ¥ aA(x"+ 5
, i . i
i=0 i=0
n B n .
= L aAx'+8) =(I a A +9)
. i ) i
1=O l:O
= f(AY(x' + 8)

and so f(A) = £(A) . Accordingly, if A is a root of £(A)} then f£{A) =
0 =8 = f(A), that is, A is also a root of f(A). [

Proof of Theorem 8.1.1. The necessity part of the theorem was

proved in Theorem 5.3.4 (in fact, this result was proved as property
17° of Theorem 6.3.1). To prove sufficiency, first of all notice that

we can construct an irreducible polynomial of degree n since irreducible
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polynomials of all deprees 2 2 exist in GF{g)[*]. In view of the in-

variance property of state reachability under the action of a state

feedback homomorphism F : P(X) — P(U) (Theorem 5.3.1), it is clear

that R(K) ¢ PA+BF(X)' Therefore, by Lemma 8.1.1 the map A + BF induces

an affinity A+ BF : A(x + R(K)) — A(x + R(K)) defined by A + BF

(x' + R(K)) = (A + BF)x' + R(K) such that (A + BF)" = (A + B/)". Let

f(x) = 'g ai()t)i be the irreducible characteristic polynomial of

A+ BF.l_ghen by the Cayley-Hamilton Theorem, f(A + BF) = 0. Hence

by Lemma 8.1.1 we also have f(A + BF) = 0, that is, the zero map in

A(x + R(K)). Let ;m(k) be the minimal polynomial of A + BF. Then

;m divides f since f(A + BF) = 0. Since by hypothesis f is irreducible,
A A A A

either fm =1 or fm =+ f. Since B = 0, deg fm < n = deg £, so fm = 1.

But ?m(ﬁ_ikﬁf) = 0 which means that the identity map on A(x + R(K)) is

equal to the zero map and hence A(x + R(K)) = P(R(K)). Therefore,

P(R(K)) = P(X) and M is reachable. [J

The next result shows that machine reachability in the projeec-

tive geometry P(X) implies reachability in a certain affine geometry.

Theorem 8.1.2. Suppose that P(R(K)) = P(X), and let S ¢ PA(X)'

Then
{A ] R®B)} = Alx + 8)

where A is the map induced by A in A(x + 8), and ﬁ(B) = Az + 8),
z ¢ R(BY + S.
Proof. Let the homomorphism P : P(X) —> A(x + S) be the cano-

nical projection. Thus E(B) = PR(B) and AP = PA. Then
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n-1 .
P( % A'RE))
i=0

A(x + 8) = P{A | R(B)}

{a | R®)} D

il

The homomorphism relations used in the above theorem are exhibited in

the following commutative diagram:
A
P(X) ——=> P(X)

P(U) P

AGHS) ——— 5 A(x+S)
A

Fig. 8.1.1. Diagram of Homomorphisms for Theorem 8.1.2.

Theorem 8.1.3. Consider the LSM (A, B) and let P({A | R(B)})
= P(X). Furthermore, assume that S ¢ P(X) decomposes the endomorphism
A P(X) — P(X), that is, S ¢ PA(X) and there exists a flat T ¢ PA(X)

such that P(S) @ P(T) = P(X). Then
P(S) = P{a | QR(B)])

where @ : P(X) —> P(8) is the projection on P(S) along P(T).



271

Proof. Since QA AQ, we have

n-1 1
QP( T AR(B))
i=0

P(S) = QP(X)

n—-1 i
P( I QAR(B))
i=0

n-1
PI & AT(QR(B))]
1=0

P({a | QrR(B)H O

1

8.2. (A, B)~Invariant Flats

In this section we will introduce two important dually iso-
morphic sets of flats of P(X) and PO(X), and discuss their properties.
Later in this chapter these sets will be employed to solve an output
invariance problem and some decoupling problems in LSMs.

Consider the following set
I(A, B; X) = {S e P(X) : AS ¢ S+ R(B)} (8.2.1)

The elements of I(A, B; X}, or simply I(X), will be called (A, B)-
tnvariant flats. It is clear that 1(X) contains PA(X) as a subset.
Furthermore, we notice that if R(B) = 0 or R(B) < S, then I(X) = PA(X);
and 1f R(B) = X or S + R(B) = X, then I(X) = P(X).

The real importance of T(X) lies in the fact that its elements
can be made (A + BF)-invariant for a suitable choice of a state feed-

back homomorphism as shown in the following theorem.
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Theorem 8.2.1. Let S ¢ P(X). Then there exists a state feed-

back homomorphism F : P(X) —> P(l) such that S ¢ PA+BF(X) if and only
if S e I(X).
Proof, Suppose that there exists a state feedback homomorphism

F : P(X) —> P({U) such that S ¢ P (X), and let s € S. Then (A + BF)s

A+BF
= g' for some s' ¢ S, or As = s' - BFs ¢ S + R(B). To prove the con-
verse, suppose that 8 ¢ I(X) having the basis {Sl, sz,. N sz}.
Then there exist zi e S and ui e U, i € £, such that Asi = zi - Bui,
ie g. Now if we define FO : P(S) — P by Fosi = ui, ie &, and

let F be any extension of F. to P{X), then it is clear that (A + BF)S

0
cS. 0

It is easy to see that I{(X) is closed under the operation of
flat addition since Sl, 82 e [(X) — A(Sl + SZ) = ASl + AS2 E_Sl +
32 + R(B) and hence Sl + Sz e I(X). However, it can be readily verified
that Sl, 32 e I(X) =~ A(Sl n 82) 5_(31 n 32) + R(B), that is, I(X) is
not closed under the operation of flat intersection. Therefore, in
spite of the fact that I(X) contains PA(X) as a subset, the totality
of elements of I(X) does not form a projective geometry. Later it
will be shown that under a certain restriction 1(X) becomes closed

under intersection and hence a finite projective gecmetry.

Let

1%(a, B; X) = {T ¢ P°(X) : A(T n 2(B)) < T} (8.2.2)

il
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where 7Z(B) is a flat dependent on B. C(Clearly IO(A, B; X), or simply
IO(X), contains ﬁz(x) as a subsget. Moreover, we observe that I1f
{B) = X or Z(B) < T, then IO(X) = PZ(X). It is also easy to see that

0 . . , . .
17(X) is closed under the operation of flat intersection since

T T, e 1900 == AT, n T)) o Z(B))

(AT, n 2B ] n (AT, 0 Z(BN]

c Tl n T2

However, Tl’ T2 € IO(X) == A[(T1 + T2) n Z(B)} E_Tl + T2, and hence
IO(X) is not a projective geometry.
In order to discuss the relationship between the sets I(X} and

IO(X), we need the following lemma whose simple proof is omitted.

Lemma 8.2.1. For any S, T ¢ P(X), AS ¢ T if and only if

Theorem 8.2.2. Let S ¢ P(X). If AS <« § + R(B), then

ATt nre)h < st

Proof, By Lemma 8.2.1, AS ¢ § + R(B) implies that AT(S + R(B))l
E_Sl. By the duvality of the projective geometries P(X) and PO(X),
(S + R(B))'L = Sl n R(B)l. Therefore, the theorem is proved. []

Theorem 8.2.3. TLet T e P(X). If A(T n Z(B)) c T, then

AT e T 1)t

Proof. By Lemma 8.2.1, A(T n Z(B)) < T implies that AT [
(T n Z(B))l. By the duality of the projective geometries P(X) and
PO(X), (T n Z(B))l =T + Z(B)l, and hence the theorem is proved. []

Theorem 8.2.4, The sets T(X) and IO(X) are dually isomorphic.
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Proof. It follows from the preceding two theorems. []

In many applications it becomes necessary to determine the
supremal or infimal element of a given class of flats of P(X). Since
the set of all flats of P(X) are partially ordered by the inclusion
relation, a supremal element Ssup of a given class of flats, say I(X),
is obvicusly that element of I(X) which contains every other member
of T(X). Thus Ssup g 1(X) and if § ¢ I(X), then S E-Ssup' Clearly
S is unique.

sup

supl (X) is rather obvious since 1({X)

m

The existence of S
sup

is closed under addition and, therefore, due to the fact that T(X)

contains a finite number of elements, a strictly ascending chain of

elements of I(X) of the form Sl S Sl + 52 < Sl + 32 + 33 S w

Si ¢ I(X), will terminate after a certain number, say £, of terms.

Clearly then Ssup = Sl + 32 + .. .+ SE' By duality it is clear that

the set IO(X) always has a unique infimal element Tinf’ namely

L ai ol 1
SSup = Sl n 32 A e o o 0 Sg'
Let I(a, B; V), or simply I(V), denote the subclass of (A, B)-

invariant flats contained in V, that is,
I(Vy = {8 + Se I(X) and S = V} (8.2.3)

The following iterative scheme generates sup I(V).

Theorem 8.2.5. Let V ¢ P(X) and define the sequence {Sj}

according to
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sSsvaa™rE +55h, jen (8.2.4)

1 . .
where A 1 S=1{s : As ¢ S}. Then sd EVSJ 1 and for some £ < n,
s% = supT().

Proof. First we show by induction that {87} 15 a nonincreasing
ji-1

. 1 Q i
sequence, It is clear that §° < 8", Suppose that s c S Then

S oy o A wkey + 8 c v A wey + 81T =
£

Therefore, for some £ = dim V, s) =3 » J 2 L. Yow from the definition

(8.2.3) of I(V), it is clear that an arbitrary S ¢ I(V) if and only if
—1*
Scl, Sca " (RB) + 9 (8.2.5)
0] . j-1
From (8.2.5), S ¢ 87, and if S ¢ § ,
ScvaaRE +8 cvaaFreE + 3 <&

£
Therefore, S ¢ 7 ¢ I(V) and consequently S£ = supl(V). [0
In a similar manner, we can devise an algorithm to generate

the infimal element of the set IO(A, B; W), or simply IO(W), where

1°W)y = {T : TeI%X) and T > 0} (8.2.6)

This is accomplished in the following theorem.

Theorem 8.2.6. Let W ¢ PY(X) and define the sequence {7

according to
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T = W

™ ew+aze oY, jen (8.2.7)

Then i1 < T3 and for some r < n, T° = inf I°(W).
Proof. To show that the sequence {73} given by (8.2.7) is

nondecreasing, we observe that TO < Tl. Suppose that TJ-l E_TJ. Then
P WA 0 T 5w+ AE® o T3 = 7

. . . i r
Therefore, there exists a positive integer r such that TJ =T for

jzr. Let T be an arbitrary element of 1°(W). Thus
WeT, AZB) nT) =T (8.2.8)
From (8.2.8) it is clear that TO cT, and 1f T > Tj_l, then
T>W+AZB) nT) >0+ AZ®E) a7 Y =7

Since T is an arbitrary element, it follows that T E_Tr, and hence
TF = inf I°W). O

It is also easy to see that the algorithm of Theorem 8.2.6 can
be obtained from the algorithm of Theorem 8.2.5 by dualizing the
sequence (8.2.4). To illustrate this alternative procedure we need
some simple preliminary results.

Lemma 8.2.2. Let E : P(X) —= P(l) be a linear map. Then

R(EY' = N@ED)
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Proof, Let z ¢ R(E)l. This implies that zTy = 0 for alil
v ¢ R(E). Since y can be expressed as v = Eu for some u £ U, we have
zTEu = 0 which is the same as (Eu)Tz = 0 or uTETz = (. Hence ETz =0
and consequently z ¢ N(ET). Thus R(E)l E_N(ET). The reverse inclusion
can be easily established by essentially reversing the preceding sequence
of steps. [

1 = (AT)—l*SJ.

Lemma 8.2.3. For all S ¢ P(X), (A_l*S) , where

—1*
A 1 S=1{s: as e §}.
Proof. Let S be a basis matrix of S. Then in view of Lemma

8.2.2, we have

(R(as))* = N(sTAD)

d

(AR(s))?

™ nesh

@H M r)t o

L]

Now using Lemma B.2.3 and dualizing the sequence (8.2.4), we

obtain

Ot _ b

st oyt s ATR@t 0 YUY 5w (8.2.9)

SjJ- 5 S(j-l)l’ ien

Replacing Tas by W, SOL by TO, s by A, R(B)l by Z(B), and gt by TJ,
j e n, yields (8.2.7). Similarly, dualizing (8.2.7) results into

(8.2.4). Consequently the following relationships hold:
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[SUP{S : AS c S+ R(B) and S < U}]-L

1

= inf{S" : AT(S* n R(B)) < S* and ST o v} (8.2.10)
and
[inf{T : AT 0 Z(®)) < T and T > W}]"
sup{T* : AT < 75 + 72(8)" and T* < w"} (8.2.11)

In general, the algorithm of Theorem 8.2.5 does not lead to a
closed form expression for Ssup = supl (V). However, if V is a hyper-
plane of P(X), then it can be shown that Ssup has a particularly simple
closed form.

Let V be a hyperplane and Z a polnt of P(X) such that Z =

<z > 0=z¢ GF(q)n, and N(zT) = V. TFurthermore, let

. . T,1 i e x ‘o N
d =min {1 : 2 A'B = 0} if i is a positive integer

(8.2.12)
= n-1 if zTAKB = 0 for all positive integers £
Theorem 8.2.7. If V = N(zT), z 2 0, then Ssup = supl(V) is
given by
_ T T.d5,. L
Ssup = (Z+A2+ .., .+A)YD

Proof. Applying (8.2.4) to this special case, we get

SO

N(zT)

s b

{l

NGz'y o a3 e R@EY), G en
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Taking orthogonal complements and using Lemma 8.2.2 and Lemma 8.2.3,

we have

SO.L - (N(ZT))'L = 7
(8.2.13)
St 7 AT Ty, en
By definition of d,
i T,j-1 T
t AT 2Ny, 14 (8.2.14)
i=1
and
wnd 70 nE) =0 (8.2.15)
From (8.2.13) and (8.2.14) it follows that
sty
st _ 7 4477
(8.2.16)
I L L .
From (8.2.13) and (8.2.16),
{d+1)L T T d LN |
s =24+ AWNBYR z (A)'D (8.2.17)

j=0
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In view of (8.2.14) and (8.2.15), (8.2.17) reduces to

da-1 .
DL _ 7 LT Ny
§=0
d T4
=74+ 1 (ahHiz
j=0
- SdL
. . . . jl dr .
Continuing in this manner, we will see that S =85 for j = d.
Since dim V = n-1, we must have d € n-1. Therefore, Ssup = Sdl. O

Corollary 8.2.1. If z ¢ GF(q)n, zz0, <z >z 7, then

. o . .
Tinf = inf 1 () is given by

Now we will show that the above result can be used to derive a suffi-
cient condition for the closure of the set I(A, B; X) under the opera-
tion of intersection.

Theorem 8.2.8. Let V e P(X) be of dimension n-£ and let

{zl, 22,. . e zﬂ} be a basis for Ul. Further, let Ui = N(le), with

*k
Si =z sup I(A, B; Ui), 1t ¢ £. For Ui let di be the feedback invariants

defined by (7.2.12)., If

( d 3
le A 1 B
d
22T A 2 B
rank . = £ (8.2.18)
"d
Tt s



281

then
£
o ko
S = n S, =sup I(aA, B; V)
i=1
%k
Proof. From (8.2.4),Si can be computed as follows:
ST =V,
i i
. 1% 4o
slev na s e r@)y, jen (8.2.19)
X%
S =8, icd4
i i -
*% *% %k L s
Therefore, S E_Si , 1 ¢ £, which implies that S ¢ n Si . To
i=1 .
prove the reverse inclusion, it suffices, due to maximality of § ,
£ e £ ax
to show that 0 Si g I{A, B; V). To accomplish this, let T = n Si
i=1 i=1
so that
£
*k
=35 8§ (8.2.20)
. i
i=1
—1%
Clearly T c V, so it remains to prove that T c A (T + R(B)) or
equivalently, AT(TL n R(B)l) < T'. From Theorem 8.2.7 it follows
that
k% T4
S =(zx Izt iet
i i
j=0
_ i .
where Zi =<z >, 1¢ 4, so that
di
* % ;
S; toox a7, 1e2 (8.2.21)
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L £ di T
™= ¢ & (@aHlz, (8.2.22)
. . i
i=1 j=0
£ i T i T d; i
=< y {z7, Az ,. . ., (A) 251>
i=1
Therefore, if x ¢ Tl, then x can be expressed as
4 iy
x= % I a,(A)lz", a.. ¢ GF(q) (8.2.23)
.on i ij
i=1 j=0
. 1 T T .
Suppose that x is also in R(B)” = N(B'). Then B x = 0. Since by the

definition of reachability indices di’

Z, < N8

I, +A'2, < NGB

7+ ATZi +...+@nt

it follows that

ﬂgN@U,isﬁ

(8.2.24)

d

Since by hypothesis (8.2.18), the row m-vectors 27T A B, ie £, are

linearly independent, (8.2.24) implies that

{8.2.25)
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In view of (8.2.25), (8.2.23) reduces to

¢ 4t S
x = I z ai.(A )Jz
i=1 §=0 ]
T T £ di T.3 i
which, when premultiplied by A', yields A'x = I I a (A )3z, that
i=1 j=0

is, ATx E Tl. Since it was assumed that x ¢ R(B)l, we conclude that
ATT A RBYH < TH O

Corollary 8.2.2. Let W g P{(X) be of dimension £ with a basis

G e <t 7, ana T, = ine s, B W),

i ¢ £. Further, let di be the feedback invariants associated with wi

and defined by (8.2.12). If the condition (8.2.18) holds, then

T** % z T**i = inf IO(A, B; W)
i=1

Therefore, the set of elements S:* of the set I(A, B; V) satis-
fying the conditions of Theorem 8.2.8 is closed under intersection.
Since the set T(A, B; V) is always closed under additon, {S:*} forms
a finite projective geometry . Similarly, {T**i} EIIO(A, B; Wy,
specified in Corollary 8.2.2, is closed under the operations of addi-
tion and intersection, and hence forms a finite projective geometry

Pe. Clearly the geometries P and P° are dually isomorphic.

8.3. (A, B)-Invardiant Flats and Output Invariance

(A, B)-invariant flats can be utilized to derive necessary and
sufficient conditions for output invariance of LSMs with respect to

undesirable disturbance inputs. Consider the perturbed LSM
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x(k+1) Ax(k) + bu{k) + Ev{(k)

(8.3.1)

fl

v (k) Cx(k)

The term Ev({k) represents an external disturbance which is assumed

not to be directly measurable by the controller. The output invariance
problem is to find, if possible, a feedback map F : P(X) — P(U) such
that v{(k) has no influence on the controlled ocutput y{(k). Before
attempting a solution to this problem, we need to make the notion of
output invariance more precise.

An output component yi(k) is said to be invariant with respect
to the jth component vj(k) of disturbance input if the zero state out-
put component yoi(k) with respect to vj(k), that is, with u(k) = 0, is
identically zero for all k. If all components yi(k), ie r, of the
output vector y(k) are invariant with respect to all the compeonents
vj(k), i e s, of the disturbance input vector v(k), then the LSM
(A, B, C) is said to be output invariant with respect to v(k). That

is,

v (k) = ¢ I A T Ev(k) =0 (8.3.2)

for all clock periods k. Expression (8.3.2) can be equivalently written

as
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(v(k-1)] (0]
v{k=-2) 0

CIE, AR, A%E,. . ., A“IR]| = (8.3.3)
v(0) ] 9

From (8.3.3) it follows that the LSM (A, B, C) is output invariant

with respect to v(k) if and only if
{A | R(E)} c N(C)

In order to isolate the effect of the disturbance input, we

need to introduce the feedback law u(k) = Fx(k) so that (8.3.1) becomes

x(k+1) (A + BF)x(k) + Ev(k)

(8.3.4)

v (k) Cx (k)

Therefore, the output invariance problem can be formulated as a feed-
back synthesis problem as follows: Given A : P(X) —> P(X),
B : P() — P(X), and R(E), N(C) = P(X), find a state feedback homo-

morphism F : P(X) —> P(U) such that
{A + BF | R(E)} < N(©)

Consequently this problem is solvable if and only if the largest
(A + BF)-invariant flat that containsR(E) is part of N(C). A glance
at the properties of (A, B)-invariant flats suggests the following

solvability condition.
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Theorem 8.3.1. The output invariance problem is solvable

if and only if

S = sup I(A, B; N(C)) > R(E)

Sup
Proof. Suppose that Ssup 5 R(E). Then by Theorem 8.2.1 we

can choose F such that Ssup E PA+BF(X)' Hence

{A+ BF | R(E)} < {A + BF | Ssup} = SSup < N(C)

Conversely, if F solves the output invariance problem, then {A + BF |
R(E)} e 1(A, B; N(C)), and therefore Ssup > {A + BF | R(E)} > R(E). [
This result tegether with Theorem 8.2.5 constitutes a construc-

tive solution to the output invariance problem.

8.4. Reachability Flats

Let A : P(X) ~—> P(X) and B : P() — P(X). A flat R e P(X)
is said to be a reachability flat of the LSM (A, B) if there exist

homomorphisms F : P(X) — P(U) and G : P(U) —> P(U) such that
R = {A+ BF | R(BG®)} (8.4.1)

Thus R is precisely the reachable flat of the LSM (A + BF, BG).

The set of reachability flats of a fixed LSM (A, B) is, in
general, a proper subset of I(A, B; X), and thus is also related to
the set IO(A, B; X). The interrelationships among these sets will be
discussed later in this section. The real importance of reachability
flats lies in the fact that the restriction of A + BF to an (A + BF)-

invariant reachability flat can be assigned an arbitrary polynomial
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by a suitable choice of F (see Theorem 5.3.4 and Theorem 8.1.1).

In this chapter we will first discuss the basic properties of
reachability flats and then demonstrate their application to some de-
coupling problems.

First of all, we will replace (8.4.1) by an equivalent expression
without the explicit appearance of G.

Theorem 8.4.1. If Z < R(B) and {A | Z} = R, then {A | R(B) n R}

= R, Conversely, if {A I R(B) n R} = R, there exists a G : P(U) —

P(U) such that {A | R(BG)} = R.

Proof. 1If {A | 2} = R, then Z c R, that is, Z < R(B) n R,

R ={a l Z} < {A | R{(B) n R}. To prove the reverse inclusion, notice
that AR < R, and hence {A | R(B) n R} < R, and thus {A | R(BY n R} =
R. TFor the converse let {bl, b2,. . e b"} be a basis for R(B) n R.

Then bi = Bul, where ul e U, 1 ¢ r, are linearly independent. Let

1 2
{fu, u,. .., um} be a basis for U, and define
Gu1 = ul, ier
i _ ,
Gu =0, i =1r+1, r+2,. . ., m

Then R(BG) = R(B) n R. {J
As an immediate consequence of this result, we have the follow-
ing characterization of a reachability flat.

Theorem 8.4.2. A flat R ¢ P(X) is a reachability flat of an

LSM (A, B) if and only if

R ={A+ BF | R(B) n R} (8.4.2)
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Let

i

R(A, B; X) = {ReP(X) : R=1{A+BF | R(B) n R}}  (B.4.3)

and

{F:PX) — PUH : ReP ()} (8.4.4)

F(R) A+BF

Theorem 8.4.3. If R ¢ R(A, B; X), then R = {A + BF | R(B) n R}

for every map F e F(R).
Proof. By Theorem 8.4.2, there exists a map FO : P(X) — P

e F(R). Let F. ¢ F(R)

R(B) n R}. Clearly F 1

such that R = {A + BF, [ 0

and define Rl = {A+ BFl | R(B) n R}. Then Rl < R. To show the reverse

inclusion, suppose
(a+BF) ' TIR(B) a R) e R, ic L (8.4.5)

for some £ € n. With (8.4.5) as induction hypothesis, we have

£+1 i1 L
T (A + BFO) (R(B) n R) R(B) n R+ (A + BFO) L (A + BF
i=1 i=1

O)i"l(R(B> )

| N

R(B) n R+ (A + BFO)R1

= R(B) n R+ [A + BF, + B(F0 - Fl)]R1

1

In

R(B) n R+ (A + BFl)Rl + B(F0 - Fl)Rl

Let x ¢ Rl. Then B(FO - Fl)x e R(B) and, since Rl < R, (8.4.6)

B(FO - Fl)x = (A + BFO)x - (A + BFl)x e R
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Therefore,

R(B)Y n R+ (A + BFl)Rl + B(F0 - Fl)Rl c R(B) n R+ (A+ BFl)Rl E_Rl

(8.4.7)
By (8.4.6) and (8.4.7),

(4 + BE) (R 0 B < R,
Therefore, (8.4.5) is true for any £ £ n. Thus R E_Rl. O

The above result can be used to check whether a given flat
R ¢ P(X) is a reachability flat. This can be done by first examining
if R e I(A, B; X). 1If R ¢ I(A, B; X), then obviously R is not a reach-
ability flat since it cannot be made (A + BF)-invariant. On the other
hand, if R ¢ I(A, B; X), then it must pass the additional test of
satisfying the relation {A + BF | R(B) n R} = R to qualify for a reach-
ability flat.

Reachability flats of the LSM (A, B) can also be characterized
in terms of polynomial matrices. 1In Thecrem 6.3.1 a2 reachability
criterion was formulated in terms of the singular pencil of matrices
[A - Aln, B]. In [108], regarding [A - AIn, B] as a mapping, a char-
acterization of the controllability subspace of a linear system in
terms of the elements of the null space of [A - AIn, B] has been given.
This result remains valid over GF(q) and is given in the following
theorem.

Theorem 8.4.4., [108] A flat R ¢ P(X) of dimension r = 1 is a

reachability flat of the LSM (A, B) if and only if there exist poly-

nomial vectors x(A) & GF(q)[A]n and u{d) € GF(q)[A]m such that
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(i) deg u(r) = £-1, for some £ > r;

(ii) (A -~ AIn)x(R) = Bu(d);

i-1 i-1 0 1 £-1
ple

(i41) If x(Ay = & (A) , thepn R = < x, x ,. . ., x >,

i=1

8.5. Eigenvalue Assignability

The set of reachability flats can also be characterized by the
eigenvalue assignability property of reachable LSMs (A, B).

Theorem 8.53.1. Let R ¢ R(A, B; X) with dim R =1r =z 1. Let

0 #be R(B) n R. Then for every set A of r elements of the field

GF(q), ther exists a map F : P(X) — P(U) such that A = {A + BF |

<b >} and E[(A + BF) | R] = A, where E[(A + BF) | R] is the set of
eigenvalues of (A + BF) [ R, the restriction of A + BF to R.

Proof. Suppose

R = {A + BF R(B) n R} (8.5.1)

o |
and choose G : P(l) — P(U) such that

R(BG) = R(B) n R (8.5.2)

I1f we define A, : P(R) —> P(R) and B, : P(U) —> P(R) according to

0 0
A0 = (A + BFO) | R, B0 Z BG; then by (8.5.1) and (8.5.2), we have

{AO | R(BO)} = R. Then application of Theorem 8.1.1 to the pair
(AO, BO) yields the existence of F1 : PRy — P(), such that R =

{a, + ByFy | <b >} and E(a, + ByF ) = h. Let F, : P(X) -— P(W)

be any extension of Fl from P(R) to P(R). Then F = FO + GF2 is a map

with the required preperties. []
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Theorem 8.5.2, Let R & P(X) with dim R = r 2 1. Suppose that

for every set A of r elements of the field GF(q) there exists a map

F : P(X) — P(U) such that

\ Re Py apts E[(A + BF) | R] = A (8.5.3)

Then R ¢ R{aA, B; X},

Proof. Fix F. ¢ F(R) and write A, = (A + BF) | R. We have

0 0

F e F(R) if and only if B(F - FO)R c R(B) n R. Let B, : P(U) — P{R)

0
be an arbitrary map with R(BO) = R(B) n R. Then if F £ F(R), there

exists F1 : P(RYy — P) such that BOFl = B(F - FO) | R. Thus (8.5.3)

implies that for every A there exists an Fl such that E(AO + BFl) = A.
By Theorem 8.1.1, the LSM (A, B) is reachable. Hence R = {4, | R(By}

= {A + BF | R(B) n R} and thus R & R{A, B; X). O

0

8.6. Reachability Flat Algorithm (RFA)

In this section, we will introduce an algorithm that computes
the reachability flat R of a given LSM (A, B) without explicitly con-
structing F ¢ F(R). This algorithm will be used to identify further
properties of reachability flats.,

Let R € P(X) and define
S={8ePX):S=Rn (AS +R(@B))!} {8.6.1)

Later it will be shown that the least (A, B)-invariant element of this
set is the reachability flat of (A, B). First we will compute this

least element and discuss some other preliminary results.
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Theorem 8.6.1. The set 3 defined by (8.6.1) contains an

infimal element S, = inf S.
inf =

Proof. Define a sequence {Sj}, Sj e P(X) according to
o _ J - i-1 ]
S = {0}; 8 =R n (AS + R(B)), jen (8.6.2)

We will first show by induction that (8} is nondecreasing. Clearly

Sl‘g SO. Suppose that s 3_33—1. Then

s*orn@sd v 0 s R asiTl 4Ry = &

Thus there exists an £ ¢ n such that $7 = SE for all j =z £.
To see that S£ is the infimal element of S, let S ¢ S be an arbitrary

flat. Clearly S > SO, and if S E_SJ, we have

S=Ran (AS + R(B)) >R n (483 + R(B)) = §77°

Hence S 3753 for all j, and thus S 3_S£ =38, ¢ U

Therefore, the RFA computes inf §7in at most n steps so that

st (8.6.3)

S, _ = 1im 87
inf ;

Lemma 8.6.1. Let Re I(A, B; X). If Fe F(R) and R ¢ R, then

R(B) n R+ (& + BF)I:? =R n (Aﬁ + R(B))

Proof. Clearly (A + BF)& ¢ R and Aﬁ + R(B) = (A + BF)é + R(B).

By the modular distributive law for P(X),

Rn (AR + R(B)) =R n [(A+BF)R + R(B)] = (A + BF)R + R(B) n R. [
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Lemma 8.6.2. Let R e I(A, B; X), let ¥ ¢ F(R) and define

S) by the RFA. Then

sd - a+ 8D YRE) 0 R, jea (8.6.4)

i

[ e B

1

Proof. Clearly (8.6.4) is true for j = 1. Suppose it holds

for j = £. Then

£+1 i-1 2

I (A <+ BF) (R(B) nR) = R{(B) n R+ (A + BF)S

i=1
= R n (AS£'+ R(B)) (by Lemma 8.6.1)
_ Sii+1

Thus the result is proved by induction. []

Theorem 8.6.2. Let R ¢ P(X) and define S by (8.6.1). Then

R ¢ R(A, B; X) if and only if
R e ICa, B; X) (8.6.5)
and

R = inf § = S, (8.6.6)

Proof. Suppose that (8.6.5) and (8.6.6) are true. Then

F(R) = @, Taking F e F(R), we have from (8.6.6), (8.6.3), and (8.6.4)

R=S5 _=58"={A+BF| R® nR}
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and thus R ¢ R(A, B; X). Conversely, if R ¢ R(A, B; X), then F(R) = @,

so that (8.6.5) is true; and if F £ F(R),

— -—n_
R={A+BF | R(B) n R} =8 =S¢

by (8.6.4) and (8.6.3). [

8.7. Supremal Reachability Flats

Supremal reachability flats will play an important part in the
applications of geometric method. In this section, we will discuss
their existence and present some algorithms for their computation.

Theorem 8.7.1. The set of flats R{A, B; X) is closed under

the operation of additon.
Proof. Let Ri g R(A, B; X). Then A(Rl + RZ) E_Rl + R2 + R(B)

and by the RFA

where

0 . 1 ‘ .
s; = {0} si =R, n (Asi +R(B)), 1e2,jen

Define S7 according to

sz 0y 8 2 R rR) 0 ST R, s en

Sg, i e 2, and if (U Si, then

Thus S° = {0}

s ron st + Ry = ST 1 0
- 1 1 1
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and so SJ+1 E_Si + S%. Therefore,

_ on n n
R +R,=S]+8)cs"cR +R,

Hence Rl + R2 = S, and the result follows by Theorem 8.6.2. []
R(A, B; X) is not closed under intersection and thus it is not

a projective geometry. Let

1

R(a, B; V) = {R : Re R(A, B; X) and R ¢ ¢ P(X)}

Theorem 8.7.2, FEvery flat V ¢ P(X) contains a unique reach-

ability flat, denoted by sup R(A, B; V).

Proof. Since R{(A, B; V) 2 ¢ and is closed under addition, the
result follows from finiteness of R{A, B; V). O

Next, two methods will be presented for the computation of
sup R{A, B; V).

Theorem 8.7.3. Let Usup = sup I(A, B; V) and sup R(A, B; V)

= R . If Fe F(a, By V ), then
sup

Rsup = {A + BF | R(B) n Vsup} (8.7.1)

This theorem will be proved with the aid of the following two
lemmas.

Lemma 8.7.1. Let V e I(A, B; X), R(BO) c R(B) nV, F, ¢ F(I),

0
and define R = {A + BF, | R(BO}. 1f F e F(V) and B(F - F)V < R(By),

then R = {A + BF | R(By)}.

Proof. Let Rl = {A + BF ] R(BO)} and
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Ui =

j~1 :
j (A + BFO) R(BO), ien

1

o~

Then V! - R(BO) E,Rl- Suppose v E,Rl' Then

i+

yitl o R(BO) + (A + BFO)Ui E-R(BO) + (A + BF)Ui + B(F - FO)Vi

Since F & F(Rl), (A + BF)Ui E,Rl and because F ¢ F(V) and R(BO) c V,

we have that Rl < V, and hence
i
B(F - FO)V < B(F - FO)Rl E_R(BO) E_Rl

i+l < R., so that gt < R

Therefore, V 1

By interchanging the roles of F and Fys we can infer that Rl < R, and
the result follows. [J

Lemma 8.7.2. Let Rc V e I(A, B; X) and suppose that the inner

product bilinear form is nondegenerate on R. If FO ¢ F(R), then there

exists an F ¢ F(V) n F(R) such that

Proof. Let R @ S = V for some S ¢ P(X) (see Lemma 4.2.1), and
let {sl, 32,. . ey 52} be a basis for S. Then As™ = v + Bul, ied,

for some v© e V and ul e U, Let F : P(X) —> P(U) be any map such that

Fx = FOx(x ¢ R) and Fs© = -ul, i ¢ £. Then F has the required properties.
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Proof of Theorem B.7.2. Let F ¢ F(Usup) and

R={A+BF | R®B) nV_ 1}
sup

Since R(B) n Vsup = R(BG) for some G : P{{) —> P{ll), and since

 + 3R (RB) o vdeV <V, jen

it is clear that R ¢ R(A, B; V). Let RO e R(A, B; V) be arbitrary.

Then

Ry = {A + BF, [ R(B) n Ry}

for some F. : P(X) — P{l). Since RO g P (X), clearly

0 A+BF

R. < sup I(a, B; V) =V

0 sup

choose, by Lemma 8.7.2, F, ¢ F(RO) n F(Vsup) such that F

1
F0 | RO. If x ¢ Vsup’ then

B(F - Fl)x = (A + BF)x - (A + BFl)x £ Usup

so that

~
|

= {A + BF, | R(B) n Ry} < (A + BF, | R(B) n Voup?

It

{A + BF | R(B) n Usup} (by Lemma 8.7.1)
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Therefore, R ¢ R(A, B; V) is supremal and so R = Rsup.

A generalization of RFA provides a second method for the com-
putation of sup R(A, B; Usup) which does not require prior computation
v
of F e F( sup)
Theorem 8.7.4. Define the sequence {87} according to

0 - -1 .
sV = {0}; 8§ = Voup " (AT ™" + R(B)), jen (8.7.2)

Then $7 = R for j = dim V_ .
sup sup
Proof. It can be easily shown by induction that the sequence

{87} is mononotonically nondecreasing and thus sl = SE for j z £ =

dim V . Since 1 < ¥ g 1(A, B; X), we have
sup — "sup

J J
AS E'(Usup + R(B)) n (AS- + R(B))
- b
= Vsup n (ASY + R(B) + R(B)
= 831 Rrep)
so that ASEAS S£ + R(B). Since Sj E.S£ < Usup’ j en, (8.7.2) implies
that
3 L j-1 .
S = 8§ n (AS +RMB)), jen
By Theorem 8.6.2, S£ e R(A, B; V), and thus SJE < R . On the other

sup

hand, R = Rn, where
sup

R oI+ r@)), jen

sup

RV = {0}, ]
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Since R c V , it follows by induction on j that R ¢ Sj, j & n,
sup — sup = n

and therefore R =57, 0
sup

8.8. Noninteraction in LSMs

Noninteraction or decoupling has been a longstanding problem
of theoretical and practical interest in the area of dynamical systems.
Although this concept has never been applied to LSMs in any practical
context, it is conceivable that in the future the incorporation of
noninteracting controls will be of major importance in certain aspects
of the design process of large scale L.SMs and other models in the area
of automata theory. Here we will present a brief discussion of a geo-
metric formulation of the decoupling problem for LSMs and some related
results for the purpose of indicating an application of supremal reach-
ability flats discussed in the previous sections.

Roughly speaking, a multi-input multi-cutput LSM is decoupled
if each output can be independently controlled by a corresponding input.
To make this notion more precise, let the output vector y(k} and the

matrix C of the LSM M = (A, B, C) be partitioned as

(yl(k)N rc \

yz(k) C
y(k) = , C = (8.8.1)

£
y (k)‘ Cp
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5 5.Xn

where yl(k) e GF{(q) * and Ci e GF(q) 1 , ied, s, +s, + . .. Sp =

1 2

r = dim V. Thus the output relation of M can be expressed as
i .
y (k) = C.;x(k), ie L
Consider the feedback law

u{k) = Fx(k) +
i

U e o

Givl(k)
1

Then a solution to the decoupling prcblem consists of finding matrices
F and Gi’ i € £, such that input vi(k) can control output yi(k) without
affecting any other output yj(k), j o= 1.

In order to give a geometric formulation of this problem, let

RY denote the reachability flat generated by vl(k), that is,
R* = {A + BF | R(BG,)} = {A + BF | R(B) n R(G)}, ie 4L

i
Since the output y (k) is to be controlled completely by the input

i
v {k), we must have

c,R = R(6), ie £

For vl(k) to leave the outputs yJ(k), j = i, unaffected it must be
required that
i . . .
CjR = {0}, j=1i, i e £

Using the above observations, the decoupling problem can be stated in

geometric terms as follows: Given A, B, and N(Ci), i e £, determine
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a feedback homomorphism F : P(X) — P(ll) and reachability flats

Ri e P(X), 1 ¢ £, such that

R' = {a+ BF | R(8) n R(C)}, i e &

PR + N(E)) = PO, 1 e 2

Ri <

m
[t

N(C,), 1
1 b
i

T

]
3

A set of reachability flats Ri e P(X), 1 € £ satisfying these condi-
tions is called a solution to the decoupling problem.

We will state necessary and sufficient conditions for the
solvability of the decoupling problem for LSMs in certain special
cases. The proofs of these assertions are essentially the same as those
given in [111] for conventional continuocus-time linear systems over the
field of real numbers and thus will not be reproduced here.

In the remainder of this section, let Riup denote the supremal

reachability flat such that

. £
R;u c n N, 1 e£
P j=1 R
j i
Case 1. Rank C=n=r

This assumption means that there is a one-to-one correspondence
between state variables and output variables. Furthermore, in view of

(8.8.1), rank C = n implies that
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L
n N(C,) = {0} (8.8.2)
oy

Theorem 8.8.1. Suppose that {(8.8.2) holds. Then a solution

to the decoupling problem exists if and only if

i _ .
PR+ N(ED) = PO, i ek

Case 2. Rank G = Rank[Gl, G2,. ., Gﬂ] =m (8.8.3)
This assumption is equivalent to
£ 4
R(BYy = = R(B) nR (8.8.4)
i=1

where Ri, i ¢ £, is any fixed solution of the decoupling problem for
which (8.8.3) holds. The equivalence of {8.8.3) and (8.8.4) follows
from the fact that rank G = m implies that dim R(G) = m, or R(G) = U
and thus

£ .
R(B) = BU = BR(G) =B 5 R(G) = R(B) n R c R(B)

i=1

Theorem 8.8.2. Suppose that (8.8.4) holds. Then a solution

to the decoupling problem exists if and only if

£ )
R(B) = I R(B) nR'
i=1 sup
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Case 3. Rank B = £

This assumption means that there is a one-to-ome correspondence

between the inputs and the outputs. Rank B = £ implies that
dim R(B) = £ (8.8.5)

Theorem 8.8.3. 1If (8.8.5) holds, then the decoupling problem

has a solution if and only if

£
R(B) = I

i
. R(B) n Rsup

1
We will conclude this chapter with a final observation: It
can be shown that every projective geometry is a modular lattice, and
every affine geometry is a semimodular lattice. Thus, the contents
of this chapter can also be couched in the language of lattice theory
{cf. [119]). It appears that an effective exploitation of the inter-
connections among linear sequential machines, coding theory, finite
projective and affine geometries, and lattice theory warrants much

further research.

Summary and Conclusions

In this chapter, using the language of finite affine and pro-
jective geometries, certain state reachability aspects of a geometric
theory which was recently introduced by Wonham and Morse [111], [112],
[113], and independently by Basile and Marro [5], [6], [7] for
continuous—time linear systems, were adapted and specialized for LSMs
(ef. [5], [61, [7]1, [8], (9], [10], [&0], [81], [83], [84], [85], [108],

[111], [112]1, [1131, [114]).



304

CHAPTER IX

OUTPUT REACHABILITY AND OUTPUT CONTROLLABILITY OF LSMS

Similar to the concepts of state reachability and state con-
trollability, it makes sense to define the noticns of output reach-
abiliyt and output contrellabiliyt for LSMs which, generally speaking,
refer to the transferability of initial outputs to final outputs by
input sequences of finite lengths. In view of the fact that states
and ocutputs of the LSM M = (A, B, C) are connected by the linear map
C: X— V, it is natural to expect that most of the results developed
for the properties of state reachability and state controllability may
be easily checked to see if they can be appropriately modified to
yield similar results for output reachability and output controllability.
Therefore, based on this understanding, in this chapter we will only

very briefly discuss the concept of output reachability of LSMs.

9.1. Output Reachability of LSMs

This section is essentially an imitation of Section 4.1 with
the aim of pointing out the type of modifications that have to be made
for converting certain state reachability criteria to corresponding
output reachability criteria.

Throughout this chapter, r = dim V.

Definition 9.1.1, An output yl 2 Oy of the LSM M = (A, B, C)

\ . 0
is said to be reachable from the output y e Y if there exists an
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input sequence w ¢ U* which transfers yo to yl; if £g(w) = £, then

y1 is said to be f-reachable from yO. The LSM M is said to be £-
output reachable if every output of M is £-reachable for at least one
particular £. The smallest integer £ for which M is f-output reach-
able is called the ocutput reachability index of M.

Now if we define

) 0
y = {outputs reachable from y }
e, 0
ng ) - {outputs reachable from yO in
J exactly j clock periods}
0
V§y ) = {outputs reachable from yO in

at most j clock periods}

then Lemma 4.1.1 - Lemma 4.1.4 also hold for the above output sets and

can be restated as follows:

0 o e, 0 @ 0

Lemma 9.1.1. vy ) = o vy oy ny )
j=0 4 j=0

0 0 0

Lemma 9.1.2. Véy ) < Viy )_5 N V(y )

' 0
Lemma 9.1.3. 1If there exists an integer t such that VEY ) <

(v%)
Vty for all t' = t, then

0 0
y?y ) _ y(y ) _ E
o J t j=0

0
vy o ;fyo)

j

Lemma 9.1.4. Let M = (A, B, C) be an LSM with an output yo e Vv

for which there exists an integer j such that
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0 0
vy Ly
3 i+l

Then

0
v§y0) _ o)

With the aid of the above results and notation, the following
theorem can be proved in precisely the same manner as Theorem 4.1.3.

Theorem 9.1.1. Every output of the n-dimensional LSM M =

(A, B, C)}, reachable from the zero output 0,,, can be reached in at
©0) 0

most r clock periods, that is, Vr =V

Theorem 92.1.2., For the LSM M = (A, B, C) the set of all reach-

~able outputs from the zero output OV in at most £ clock periods is the

range of the linear map

K,z [CAE_lB, CA£_2B,. . ., CAB, CB] : U* — V

That is,

Proof. Since a zero input leaves the zero state OX unchanged

and OV = COX’ if an output y can be reached from the zero output by

appiving an input sequence u(®)u(l). . . u{j-1) of length j < £, then

y can also be reached from Oy by first applying the input sequence

OE_J, that is, a string of £-j successive zero inputs, and then apply-
ing u(0)u(l). . . u(j-1). Thus, for all u(O)u(l). . . u(j-1) e Uh*

- e - (0,)

and all j < £, Véy) = Véy). Therefore, y ¢ V Y if and only if
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there exists an input sequence u(®u(l). . . u(€-1) of length exactly

£ such that

- £-1 .
y = CAEOX + 3 eI )
i=0
or
(u(0) ]
u{l)
y = 1cat s, cat%s,. . .. cas, cB] ;

LU(E—I)J

Thus v ¢ R(KO). 0
With the aid of Theorem 9.1.1, we can derive a simple critericn
for checking the output reachability of an LSM.

Theorem 9.1.3. The 1LSM M = (A, B, C) is output reachable if

and only if

rank[cA® 'B, cA"%B,. . ., CAB, CB] = r = dim V

Proof. The LSM M = (A, B, C) is output reachable if and only

©,) ©Op (O
if Yy =Y or, since V = Vr by Theorem 9.1.1, if and only if,
(0y)
dim ¥ = dim ¥
. n-1 n-2
r = dim R{[CA B, CA B,. . ., CAB, CB])
-1 n-2

r = rank[cA" "B, cA™ “B,. . ., CAB, CB] [
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A trivial consequence of this theorem is that every single-
output LSM is output reachable.

It is clear that the output reachability criterion of Theorem
9.1.3 is similar to the state reachability criterion of Theorem 4.1.4,
In fact, these criteria become identical if r = n and C = In' There-
fore, output reazhability implies state reachability for the LSM M =
(A, B, C) only if r = n and C is nonsingular. On the other hand, it
is easy to see that state reachability implies output reachability if
and only if rank C = r. Thus, in general, state reachability is neither
necessary nor sufficient for output reachability.

Corollary 9.1.1. The LSM M = (A, B, C) is output reachable if

and only if the matrix

BBT(AT)n—J—lCT e GF(q)rxr

is neonsingular.

Corollary 9.1.2. The LSM M = (A, B, C) is £-output reachable

£ <n, if and only if

- )
rank[CAE lB, CAE B,. . ., CAB, CB] = r

Corollary 9.1.3. Let the minimal polynomial of A be of degree

s £ n. Then the LSM M = (A, B, C) is £-output reachable for some
£ > s, if and only if it is s-output reachable.

In applying Theorem 9.1.3 it is required to compute the entire
output reachability matrix KO. However, in many cases the output
reachability property can be checked by considering a matrix of rela-

tively smaller size. This simplification is based on the following result.
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Theorem 9.1.4. If j is the least integer such that rank[CB,

- '+
CAB,. . ., CAJB] = rank[CB, CAB,. . ., CAYT'B], then rank [CB, CAB,
.y CAEB] = rank [CB, CAB,. . ., CAJB] for all £ < j, and j <€ min
{n-s, n-1}, where s = rank CB and n is the degree of the minimal poly-

nomial of A.

Corollary 9.1.4. (Simplified Output Reachability Criterion)

If rank CB = s, then the LSM M = (A, B, C) is output reachable if and
\ n-s
only if rank[CB, CAB,. . ., CA B} = r.

Corollary 9.1.5. 1If rank CB = s, then the LSM M = (A, B, C)

. , A4 ¢ rxr | .
is output reachable if and only if KoKo e GF(q) is nonsingular,

where §0 = [CB, CAB,. . ., CA" "B].

In a similar manner various other concepts and results per-
taining to the properties of state reachability and state controllability
presented in the previous chapters may be appropriately modified and

adapted for output reachability and output controllability of LSMs.

Summary and Conclusions

In this chapter it was briefly demonstrated that although
state reachability and output reachability are essentially distinct
concepts in the sense that, in general, one does not imply the other,
nevertheless the simple mathematical relationship between the state
and output of a Mealy LSM may be utilized to see, in a straightforward
manner, if any given state reachability criterion can be restated in
terms of the output reachability property of LSMs. In view of this
fact and in the interest of avoiding unnecessary repetition, an exten-
sive development and documentation of the concepts of output reach-

ability and output controllability was not pursued.
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CHAPTER X

OBSERVABILITY AND STATE OBSERVER DESIGN FOR LSMS

This chapter will be devoted to a brief discussion of the con-
cept of state observability of LSMs and some of its applications. A
complete duality relationship will be established between the properties
of state reachability and state observability which can be used to re-
state, in a straightforward manner, all the results pertaining to
reachability in terms of observability. The important role of the
property of observability will be illustrated by presenting some
design procedures for Luenberger type state observers of full and

reduced order for single-cutput and general multivariable LSMs.

10.1. State Observability of LSMs

Closely linked with the notion of state reachability of LSMs
is the dual notion of observability, or diagnosability. Loosely
speaking, observability refers to the possibility of reconstructing
the state from output measurements. Thus, the dual relationship
between reachability and observability is intuitively clear: an LSM
is reachable if every state can be reached by a suitable choice of
input sequences; it is observable if every state can be computed by
suitable processing of outputs.

In discussing state reachability and other state related con-

cepts, it was always implicitly assumed that the entire state vector
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is available. Suppose, however, that the state vector or some sub-
vector of it is not directly accessible for measurement. Then the
natural question of interest is how to "observe' the dynamical behavior
of the entire state vector if the only available measurements are the
output components yi(k), i e r. 1In other words, suppose that a 'black
box" having the string u(0)u(l). . . u{f-1) as its input and y(1)vy(2)
.« .+ y(&) as its output is in state xO. How can we verify that the
"box" is in fact in state xo without "opening" it? This state deter-
mination problem can be solved by applying inputs to the given LSM

and checking that the resulting outputs are indeed appropriate to

the LSM started in state xo, that is, by feeding sequences w e U* and

checking the responses p 0(w), where
X

_ 0
pot U — V¥V, wl— o (0 =nex), w
X X

(#] 1 . . ;
If two states x and x of the LSM have identical response functions,
then there is no way of telling "from the outside" whether the LSM is
. , 1 . , .
in state xo or in state x°. This suggests the following definition
of observability.

Definition 10.1.1. The LSM M = (A, B, C) is observable if

, R 0 1
for every pair of distinct states x and x° there exists at least one
input sequence to which they respond differently, that is, there
exists w g U* such that p 0(w) Zzp l(W)-
X

This result implies state determinability in the following

stronger sense.
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Definition 10.1.2. The LSM M = (A, B, C) is said to be £~

observable if and only if every initial state x(0) of M can be deter-
mined from the input-output record {u(0)u(l). . . u(f€-1)}, {y(1)y(2)
.+« » y(£)}. The smallest integer Eo for which M is ﬂo—observable is
called the observability indexr of M.

Therefore, the property of observability refers to deducing
the present state of an LSM from fufure output observations. However,
there is a complementary state determination problem called recow-
structibility, determinability, or identifiability which refers to
deducing the present state from the past output record. This property
is essential in data filtering problems since usually past output
values are available in such situations. It turms out that for time-
invariant LSMs state observability and state reconstructibility imply
each other.

In order to derive explicit criteria for checking observability
and also for the purpose of establishing the relationship between the
properties of state observability and state reachability, we will
exploit the connection between the notions of observability and indis-
tinguishability established in Definition 10.1.1.

Iin Section 3.4, it was noted that two states xl and x2 of the
LSM M = (A, B, C) are f-indistinguishable if and only if xl - x2 £

N(L), where

CA

=
1H

e

CAE—l
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But by Lemma 8.2.2, N(L) = R(LT)l so that we have the following equiva-
lent characterization of f-indistinguishability.

Lemma 10.1.1. Two states Xl and x2 of the LSM M = (A, B, C)
are f-indistinguishable if and only if xl - x2 € R(LT)l, that is, if

and only if the vector xl - x2 is orthogonal to

T O TAT T E-lCT

Ry = r(ic”, a'c", aH%",. . ., @" 1 (10.1.1)

Comparing (10.1.1}) with the state reachability matrix K = [B, AB,

2 : A£—1

A°B,. . ., B}, we immediately see that (10.1.1) can be Interpreted

as the set of all states of the LSM
T T
z{k+1) = A z(k) + C v{k) (10.1.2)

reachable, in at most £ steps, from the zero state of (10.1.2). Now

letting SE denote the set of states of (10.1.2) that are reachable

from the zero state in at most £ steps, and SO be the set of all states
0 0 o 0

reachable from the zero state, then clearly S£~1 §'S£ E_Sn < 87, and

Lemma 10.1.1 can be equivalently restated as follows.

Lemma 10.1.2, Two states xl and x2 of the LSM M = (A, B, C)

1
are f-indistinguishable if and only if x~ - kz e SOt

£

The above discussion leads ta the following important result.

Theorem 10.1.1. The LSM M = (A, B, C) is observable if and

only if the LSM M° : z(k+1) = A'z(k) + C'v(k) is reachable.
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Proof. Let xl and x2 be any two arbitrary states of M. Then

by definition M is observable if and only if indistinguishability of

xl and x2 implies that xl =

b4 Thus in view of Lemma 10.1.2, M is
. . 1 2 ol . s
observable if and only if (x* - x")} ¢ Sﬂ for all £ > 0 implies that
1 2 . , \ , 1 2
x = x . That is, M is observable if and only if (x° - x") ¢
(Sg = So)l implies that xl = xz. But this implies that M is observ-

able if and only if st - {OX}’ that is, the only vector orthogonal

Q

to all the reachable states of M° is OX' Thus S° = {Ox}l = X,

Therefore, M is observable if and only if all states of M° are reach-

able. []

Corollary 10.1.1. The LSM M = (A, B, C) of dimension n is

observable if and only if

rank([C', A'C',. . ., AN" ) = n (10.1.3)

In terms of the condition (10.1.3), the observability index

ﬂo of Definition 10.1.2 can be characterized as

= min3 : rank(fc’, A7c,. . ., DI = n} 20.1.4)

If we define the dual of the LSM M = (A, B, C) to be the LSM
o T T T
M =(A, C, B), then we have proved the celebrated Kalman Duality

Theorem of conventional linear systems for linear machines.

Theorem 10.1.2. (Duality Theorem) The LSM M = (A, B, C) is

observable (reachable) if and only if its dual M = (AT, CT, BT) is

reachable (observable).
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Before we discuss the implications of this duality relation-
ship for LSMs, we want to reexamine the link between the concepts of
indistinguishability and observability in geometric terms.

From Definition 10.1.1, it follows that a state x of the LSM

M = (A, B, C} is unobservable if and only if x~n 0. But

x v 0 <= x ¢ N(L)

(c (0)
CcA 0
= | X =,
ca™? 0,
l_

== cA¥ k=0, 3¢en

B
m
=
~
o
=3
[ S
!
—_
~
e
a3
1=

= x
_ n
<=2 x ¢ 0 N(CA

Therefore,

Neead™h (10.1.5)

M~
1t
ro o

j=1
is the unobservable subspace of the LSM M = (A, B, C). Clearly Al ¢ Z.
Thus the orthogonal complement ZL of (10.1.5) is the set of observable

states of M. Consequently M is observable if and only if Z = {OX} or

equivalently, if and only if

< x° (10.1.6)
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Using the above results, we will present a different proof of
the Duality Theorem.

Theorem 10.1.3. (Duality Theorem) Let ¢ : X —> V¥ and A :

X —> X be linear maps with duals 't ¥° > X% and AT & X° — X°.

Then the LSM M = (A, B, C) is observable (reachable) if and only if the
(o) T T T .

dual LSM M = (A, C, B ) is reachable (observable).

Proof., In view of (10.1.5) and Lemma 8.2.2, we have

1 1
n N n .
Ni = 1N N(CAJ'l) = 3 [N(CAJhl)]

j=1 j=1

n 7,j-1 T T T.n-1.T
= @HITTREH) =rcT, <A, L L, @™ ey

5=1

= {a' | R(c} (10.1.7)

Therefore, NO = {OX}, that is, M is observable if and only if
T T o . . . o
{A [ R(C' )} = X', that is, if and only if M is reachable. [J
The observability index Eo given by (10.1.4) can be alter-

natively characterized in terms of (10.1.5) and (10.1.7) as follows:

(o)
]

] 1-1
min{j : n N{(CcA™ ) = {0}} (10.1.8)

)
1

j .
min{j : ¥ (&) R = X%} (10.1.9)
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10.2. Consequences of the Duality Theorem

The Duality Theorem is certainly a fortunate result in that it
obviates the necessity of developing a separate detailed cbservability
theory for LS5Ms. In view of this duality relationship, all the re-
sults in Chapters IV, V, Vi, VII, and VIII pertaining to state reach-
ability can be dualized, in a straightforward manner, to yield the
corresponding results in terms of cobservability. For example, all
the 24 state reachability criteria of Theorem 6.1.1 for the single-
input LSM (A, b, cT) can be dualized by simply replacing A by AT and
b by (cT)T = ¢ to yield 24 observability criteria for the single-output
LSM (A, b, cT). Likewise, it is sufficient to replace A by AT and B
by CT in any of the state reachability properties of Theorem 6.3.1
in order to obtain various equivalent statements for the observability
of the LSM (A, B, C). Thus such a simple rule makes it unnecessary
to forumlate explicitly all the various equivalent forms of the property
of observability.

However, it should be pointed out that there is one minor excep-
tion: observability is not, in general, invariant under the action
of state feedback. To see this, suppose that the LSM M = (A, B, C) is
observable, that is, rank[CT, ATCT,. . ey (AT)n_lcT] = n, Then if the
feedback homomorphism F can be chosen such that A = -BF, then the
observability matrix of the feedback compensated LSM M = (A + BF, B, C)
= (0, B, C) becomes {CT, 0,. . ., 0]. Hence if rank C < n, then M

is not observable.
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13.3. State Minimization and Observability of LSMs

From Section 2.4, we recall that a minimal LSM is one in which
no two states are Indistinguishable. This, in turn, implies that a

minimal I.SM M = (A, B, C) is observable, that is,

(¢

rank L = rank]|- =n

If, on the other hand, the LSM M = (A, B, C) is not observable, that
v AR Y

is, rank L < n, then the minimal form M = (A, B, C) of M which will
be of smaller dimensionality than M can be determined by some simple
procedures [22], [41]. The process by which the characterizing matrices
of M are computed is referred to as the mimimization of M.

A slightly more general notion related to minimality is that
of irreducibility of an LSM. In Theorem 4.2.1 it was established that
if an LSM M is not state reachable, then it can be reduced to a reach-
able LSM M which is of smaller dimension than and zero-state equivalent
to M. A special state transformation was introduced in Theorem 4.2.2
to transform M to the unreachable isomorphic form (4.2.1) from which
M can be extracted. Obviously, similar reducibility results can be
asserted in terms of the observability property by virtue of the Duality

Theorem.

The dual of Theorem 4.2.1 can be stated as follows:
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Theorem 10.3.1. Tf the LSM M = (A, B, C) is not observable,

that is, rank L = s < n, then there exists an isomorphism P : X — X,

y R -1
P ¢ GF(n, q), such that the isomorphic LSM M = (A, B, C) = (PAP ~,

PB, CP-l) has the form

~1 . -1 .
x (k+1) All ¢ x (k) Bl
= + ulk)
2 (k1) A A LIxE(K) B
21 22 2
X ()
1 (k)
where xl(k) € GF(q)S, All £ GF(q)SXS, Bl £ GF(q)Sxm, and Cl € GF(q)rXS.
v - - -
Furthermore, the s-~dimensional LSM M = (All’ Bl’ Cl) is observable and

hence is the minimal form of and zero-state equivalent to M.

As an important consequence of this theorem, we conclude that
the dual of Theorem 4.2.2 provides a new state minimization algorithm
tor LSMs.

The above results lead to the following irreducibility criteriom
for LSMs.

Theorem 10.3.2. The LSM M = (A, B, C) is irreducible if and

only if it is both reachable and observable.
Proof. 1f M is either unreachable or unobservable then by
Theorem 4.2.1 and Theorem 10.3.1 it is reducible. Therefore, assume

that M is both reachable and observable, and that there exists an LSM
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v

v LAY
M= (A, B, C) of dimension n, < n that is zero-state equivalent to

1

M, that is,

-1 v
—_— VVR—§—
a3 leu(y) = 3 A I lgu(y)
3=0 j=0
which implies that
_ VVp_ 1V
CAE g - CAE lB, £en (10.3.1)

Consider the product of the observability and reachability matrices

of M
fC W
CA 1
K = | (B, AB, , A" 1B
ca™ )
[ - \
CB CAB . ca™ g
2 n
CAB CA“B . cA™B
i ] . (10.3.2)
ca™ g cats . . . ca?(07 D)y

In view of (10.3.1), (10.3.2) becomes
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fvv \"ATAY VVn=1V
CB CAB . . . CAMTUE 1
VvV M VvV
CAB CA™B . . . CAB
LK_ = - . .
VVL_ 1V VvV 2% 13V
ca™ g A" . caZ{n-1y
(v |
C
vV
CA
v ATAYS Vn_lV
=1 [B, AB,. s A Bj
VV.._
ca"™)
Vv
= LK {(10.3.3)

By hypothesis, rank L = rank K = n and hence rank LK = n. Since

vv n,xn, vV

LK ¢ GF(q) , the maximum rank of LK can be n- But in view of
vV

{(10.3.3), rank LK = rank LK, that is, n = n, which is obviously a

1

contradiction since n, < n. Therefore, if an LSM is both reachable

and observable, then it is irreducible, []

10.4. State Observer Design for LSMs

The utilization of the important concept of state feedback in
the design of various compensation schemes for LSMs obviously hinges
upon the availability of all the state variables. However, in practice
some or all of the state variables may not be available because they
may not be accessible for direct measurement or the number of measuring

devices may be limited. Therefore, if the state of the LSM is to be
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used in some synthesis or design process, then a reasonable substitute
for the state vector must be found. This is usually accomplished by
designing an auxiliary data processor, called a state observer, a state
estimator, or a state reconstructor. A state observer 1s essentially
an LSM which uses the input and output sequences of the original LSM
and after a finite number of clock periods reconstructs the state vec-
tor of the given LSM without error regardless of the error in the ini-
tial estimate of the state vector. The property of observability

plays a central role in this state reconstruction process. In order

to demonstrate this process for LSMs, we will first discuss a state
observer design procedure for single-ocutput LSMs and then show that

for any observable multivariable LSM a state observer can be constructed
which would consist of an assemblage of state observers for single-
output LSMs.

Consider the single-cutput LSM

Ml : x(k+1)

Ax(k) + bulk) (10.4.13)

¢ x(k) (10.4.1b)

I

y (k)

and assume that A, b, and ¢ are completely known, but the state vector
%(k) is not accessible for direct measurement. Then the problem of

state observer design is to determine another LSM

-~

M, $(k+1) = Ax(k) + bu(i) + hy(k) (10.4.2)
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which accepts u(k) and y(k) of Ml as its inputs and after a finite
number of clock periods produces an estimate x(k) of x(k) without
error regardless of the error in the initial estimate x(0) of x(0).

~

Clearly if we can determine A, b, and h such that the error vector

X = x(K) - x(k) (10.4.3)

~

approaches the zero vector in a finite number of steps, then x(k) is
the desired estimate of x(k), and thus the design problem is solved.
From (10.4.1) - (10.4.3) it follows that the error dynamics

can be described as
x(ktl) = Ax(K) + (A - A - hc)x(k) + (b - byu(k)  (10.4.4)

Since we want ;(k) to be an equilibrium state of (10.4.4), we must

choose
A=A-hc', b=h (10.4.5)
which reduces (10.4.4) to the autonomous LSM
x(k+1) = (A - he)x(k) (10.4.6)
In view of (10.4.5), the observer (10.4.2) becomes
x(k+1) = Ax(K) + bu(k) + h(y(k) - o'x(k)) (10.4.7)

A combined realization diagram of (10.4.1) and (10.4.7) is shown in

Fig. 10.4.1.



324

- x(k+1 x(k
u(k) b ) (kt+1) > 1l T Sy (k)
A <
r-F— - - - " — —_- - —__t-_- - —_ —— |
! |
| |
} h ()t
I |
| - |
' |
| |
! 1
)
! T !
| [
|
! j
i {
i |
l x(ktd) M %€k i -
} b — + w - > x(k)
| !
| !
| }
I ]
| \
J A i
| |
| Observer = —— d

Fig. 10.4.1. State Observer Realization Diagram.

In order to choose h to force x(k) to zero in a finite number of steps,
we congider the following two possibilities for the known initial esti-
mate x(0) of x(0);

(1) 1if x(0) = x(0), then solving (10.4.1) and (10.4.7)} recur-

sively, we obtain
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Ax(0) + bu(0)

It

0, x(1) x{1)

y(0) - < x(0)

Ax(1) + bu(1)

Tx(1) = 0, %(2) x(2)

.

y(1)

*

it

g(£) - ¢ w(8) = 0, R(L+1) = Ax(L) + bu(l) = x(&+1)

Therefore, in the present case the observer (10.4.7) generates the
exact value of the state regardless of the choice of h.
(ii) 4if x(0) = x(0), then solving (10.4.6) recursively, we

obtain after the £ th interation
_ o= .
x(£) = (A - he ) x(0) {10.4.8)

The error vector x in (9.4.8) will approach the zero vector if and

only if there exists a vector h such that

- hent =0 (10.4.9)

But this is precisely the dual statement of the reachability property
80 of Theorem 6.1.1. That is, there exists a vector h such that
(10.4.9) holds if and only if the LSM (10.4.1) is observable. Further-
more, the smallest integer £ for which (10.4.9) holds is the observ-
ability index of (A, b, cT). Therefore, for an observable LSM M1 =

(A, b, cT) it is always possible to construct the desirable observer.
In fact, this state observer will be time-optimal in the sense that

it will produce an errorless estimate of the state vector in the

smallest number of clock periods, equal to the observability index of

the given LSM M) = (A, b, cT).
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Suppose that the LSM M. = (A, b, cT) is n-observable. In order

1

to determine the required observer gain h, we apply the matrix identity
n

)

(5.3.4) to (A - th = 0 and obtain

A - heD)™ = A" - [(A - he D™, (A - B h,
T 5
C
cTA
. . ., (A - hehHh, n1l - =0
‘ TAn-l
Thus
[a - heD™ T, A4 -0eH™2h,. . ., (A - heDh, h]
(71
c
cTA
n
U (10.4.10)
cTAn—l

5

Therefore, choosing h to be the nth column of the matrix on the right
side of (10.4.10), gives the desired observer gain.
We will illustrate the above procedure by an example. Consi-

der the following LSM M. = (A, b, cT) over GF(2):

1
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s '4 3 !
xl(k+1)} 10 1 fxl(k) 0

x2(k+l) = |0 1 0 XZ(k) + 11| u(k)

x3(k+l) Ll 1 oJ x3(k)J 1

(10.4.11)

rx1(k)\

y() = [1 0 11]x,(k)

S
Since
o7 10 1
rank |c A = rank 10 1 1| = 3
42 1 0 0

the given LSM is 3-observable. In order to determine h, we need to
compute the third celumn of the matrix

-1

By direct computation, w¢ find that A3 = I3 and hence



L -k !
c c 0O 0 1
ad |Ta = (c'a =1 1 1
Ta? T’ 1 0 1
Therefore,
s .9
by 1
h=|h,| = |1
"3 LY

Thus the time-optimal observer is given by

r’\ b ' W r’\ N r N
Xl(k+l) 1 ¢ 1 xl(k) 0

;2(k+l) = (0 1 O ;z(k) + 1| u(k)

x. (k+1) 1 1 0](x.(k) 1
3 J L J\B J

1
+ 11600 - % 00 - 2,00)

1

A combined realization circuit for the given LSM and its associated

state observer is shown in Fig. 10.4.2.

328
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LSM (9.4.11) — v (k)

x, ()

x, ()

{ x4 (K)
f 2

x (k)

Fig. 10.4.2. Realization Circuit for the LSM of Example 10.4.1.

At this point, we would like to pause momentarily for consi-
deration of some questions that arise naturally concerning the effect
of feedback that employs the estimated state vector ;(k) instead of
the original state vector x(k). Let the LSM Ml(A, b, cT) be reachable
and observable. Then two questions of interest are: (i) Will the

characteristic polynomial of Ml be preserved under a state feedback

of the form
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w(k) = £ x(k) + v(k) (10.4.12)

where the vector f has been chosen with respect to x(k)? (ii) What is
the overall effect of introducing the observer in the LSM Ml?

In order to resolve these questions, we need to determine the
overall description of the given LSM and its associated observer. Sub-

stituting (10.4.1b) and (10.4.12) into (10.4.1la) and (10.4.7), we

obtain the desired combined representation as follows:

% (k+1) A+bE ' 0 x(k) b
= + v(k)

x(k+1) he'  A-he 4bf | |x(k) b

Now using the special state isomorphism x F——> Px = x, where

(10.4.13) is transformed to the following isomorphic representation:

T

% (k+1) AbET -bE' | x(k) b

+ v{k) (10.4.14)

x(k+1) 0  A-hc']lx(k) 0

From (10.4.14) it follows that the characteristic polynomial of the

combined LSM (10.4.13) is equal to the product of the characteristic

~

polynomials of the given LSM M., and the associated observer Ml'

1
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Therefore, there is no difference in state feedback between using

A

x(k) or x(k), and the characteristic polynomial of Ml remains invariant.
In view of the above separation property, the design of a state

feedback and that of a state observer can be carried out independently.

(n—-1)-Dimensional State Qbserver for Single-Qutput LSMs

The state observer Ml given by (10.4.7) is clearly of dimension

estimates all the n components xi(k) of Ml' However,

~

n, that is, M1

with the help of the following result, it is always possible to re-
place the n-dimensional observer (10.4.7) by an (n-1)-dimensional one
and still obtain an estimate of the entire state vector. This reduc-
tion in dimensionality results into considerable computational and
storage savings for observable multivariable LSMs.

Theorem 10.4.1. Suppose that the LSMs M. = (A, b, cT) and

M, = (A, b, 1) = (APt

1

, Pb, cTP*l) are isomorphic under the iso-
morphism P : X — X, P ¢ GF(n, q). Then their observer gains are
related as h = Ph.

Proof. The observer (10.4.7) for the LSM ﬁl becomes
x(k+1) = Ax(k) + bu(k) + h(y(k) - ¢ x(k)) (10.4.15)

On the other hand, the isomorphism x{k) F——ﬁ Px(k) = x(k) transforms

(10.4.7) to
i(k+1) = PAP'li(k) + pbu(k) + Ph(y(k) - cTP_li(k)) (10.4.16)

Comparing {(10.4.15) and (10.4.16) vyields the desired result. [J
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Therefore, by virtue of this result we can use any canonical
form of the given LSM to design a state observer. This freedom of
choice of LSM representation can obviously lead to considerable com-
putational efficiency. For instance, if we choose to work with the

N ~ T
canonical form (A, b, ¢ ), where

(0 1 0o o0 ...0 ]
0o 0 1 0 0
i z : : : : : ; ! =[1 0. 0]
o 0 0 0 ...1
La0 a, a, a; . .. an—lJ

then the observability matrix appearing in (10.4.11) will be an iden-

tity matrix which obviously simplifies the computation of h.

However, if we employ the above procedure, then the resulting

-~

state observer will produce an estimate x of the transformed state

x and not of the state x of the given L.SM. Since x and x are related

-1" . . z . . . .
by x = P "x, if the estimate x is passed through a device with gain

~

P l, then the output x = P_li of this device will give the desired
estimate of x.

In the ensuing discussion of designing an (n-1)-dimensional
state observer WwWe will make use of a particular canonical form
which can be obtained by dualizing (5.2.3) as follows:

Theorem 10.4.2, 1If the LSM Ml = (A, b, cT) is observable, then

there exists an isomorphism P : X —> X, P ¢ GF{(n, ¢q), such that the

= (A, b, cT) = (PAP—l, Pb, cTP_l) has the canonical

isomorphic LSM Ml

form
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~ 5 r b rm b r 3
xl(k+l) 0O 0 0. . .0 2 xl(k) bl
x2(k+1) 10 0. ..0Q a; xz(k) b2
. I . . . + |- u(k) (10.4.17)
x_(ict1) 00 0. ..t a x| [|b
£ 3
xl(k)
xz(k)

Y(k) = [0, 0,. . ., 0, 1] *

Lx“(k)J

where fC(A) = (A)n -~ a (X} - . . . —a,x - a_. is the characteristic

1 0

polynomial of Ml' The isomorphism P is given by

n-1

f l\( . .
al a, . an-l c
.
—a2 —a3 . c A
N L )
T n-2
-an_1 1 c A
1 , cTAn—lJ

From (10.4.17) we see that y(k) = xn(k), and hence the last
state component is known and measurable. Thus there is no need to
estimate xn(k). Consequently we need only estimate the first (n-1)

components of x(k).
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We now claim that the following (n-1)-dimensional LSM is a

state observer for (10.4.17):

[z 2
xl(k+l) 0 0 0O 0 xl(k) bl 3
xz(k+1) 1 0 0. . .0 XZ(k) b2 a;
2 = - + |- u(k) + y (k)
x3(k+1) o 1 0. ..0 x3(k) . b3 a,
K1 (K41 | {0 I E ST O] B Y ey
(10.4.18)
To see this, let
£ . A s b - ~
xl(k) 0 0 0 0 bl
1 0 0. 0
z(k) = xz(k) : A = 0 10 0 b = b2
- (k C b
o (O 0 00 1| Pt
{(10.4.19)
[ S
xl(k) aO
) %, (k) _la
z{k) = 2 ; a = 1
xn—l(k)J Lan—ZJ
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In terms of the above motation and xn(k), the inaccessible

states of the LSM (10.4.17) can be expressed as follows:

2(k+1) = Az(k) + E;n(k) + bu(k) (10.4.20)

Since from (10.4.17) y(k) = ;n(k)’ (10.4.20) becomes
2(k+1) = Az(k) + ay(k) + bu(k) (10.4.21)

Similarly, rewriting the observer description (10.4.18) in terms of

the notation (10.4.19), we obtain
2(k+1) = Az(k) + bulk) + ay(k) (10.4.22)

In view of (10.4.21) and (10.4.22), the error can be expressed as

2(k+1) = z(kH1) = Alz(K) - (k)] (10.4.23)
Solving (10.4.23) recursively, we obtain
200 - 2(k) = A512(0) - 2¢0) ], £ =0, 1, . . .

But K£ =0 for £ = n-1, that is, the matrix A is {n-1)-nilpotent since

its characteristic polynomial is fC(A) = ()\)n_1 and by the Cayley-

-—n-1 X
A = 0. Therefore, the estimate z becomes

Hamilton Theorem fC(K) =

equal to the true value z of the state after the nth iteration regard-
less of the quality of the initial estimate z(0). Thus (10.4.18) is
an (n-1)-dimensional state observer for the LSM (10.4.17).

Recall that the LSM Ml = (A, b, cT) given by (10.4.17) was

obtained from the original LSM M. = (A, b, cT) by the state transformation

1
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x F——b Px = x, that is, M1 = (A, b, cT) = (PAPO, Pb, cTP—l). There-

fore, the state observer (10.4.18) generates %i(k), 1 e n~1l. 1In order

~

to obtain xi(k), i e n-1, we simply multiply ii(k) by P&l, that is,
" -1= X
xi(k) =P xi(k), i e n-1.

To illustrate the above procedure, we will construct a 2-
dimensional state observer for the LSM (10.4.11). The first step is
to transform the LSM (10.4.11) to (10.4.17) using the isomorphism P

specified in Theorem 10.4.2., Thus we compute

10 0 1 0 0
P=,0 1 1{; Plo1 11
1 0 1 1 0 1

The LSM (10.4.11) is transformed to

. N ¢ Y (- 3 £
(xl(k+l) 0 0 1 (xl(k) 0
;2(k+1) =1 0 0 ;z(k) + |olutio)
k()| (001 0 |xy(0 L
(10.4.24)
{;1(k)

y(k) = [0 0 1] ;z(k)
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Therefore, the 2-dimensional state observer is

(o~ s \r: r-\ r~
il(k+1) 0 0f|x,(k) 0 1

= + u(k) + y(k)

2 <
xz(k+1) 1 0f|x,(k) 0 0

~

A realization circuit for the generation of x(k) is shown in Fig. i0.4.3.

u(k) LSM(9.4.24) - y(k)

|

——-—:a-;cl(k)

p H)ﬁ(z(k)
j ——-)xB(k)

Fig. 10.4.3. Realization Circuit for the 2-Dimensional State
Observer for the LSM of Example 10.4.11.
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(n-r)-Dimensional State Observer for Multivariable LSMs

The results derived for the single—output LSM can be easily
extended to the more general multivariable case. To this end, we will
choose a particular quasi-canonical form for the LSM M = (A, B, C).
Assuming that M is observable and C has full rank, the reachable quasi-
canonical representation (5.1.27) can be dualized as follows: Let

the matrix C ¢ GF(q)rxn be partitioned as

O A r (10.4.25)

9]
1l
.

(1 ]
c
2
c
‘c \ .
r
CA2 c
1
CA2 ) c A
. c2A
LCAH-l )
r
c A
r.n-1
lc A




339

has n linearly independent rows. We first choose these independent

2 1 2
rows Iin the order cl, C 5e o v cr, c A, czA,. . ey crA, clA s ey
retaining the independent ones and discarding those that are linearly

dependent on their predecessors, and then rearrange them to form the

following matrix:

U<
"

where m, are the observability indices of M = (A, B, C), and thus

satisfy the relation ml + m, + .. .+ m = .
ij . v-1
Let w-, iex, je m, s denote the columns of P and write

P_l in terms of its columns as follows:



Let y,=m, +m, + . . . m,, £ € r. Then using the y,-th columns of
v £ 1 2 L £

P—l, we form the following matrix:

Im 1m m. -1 Im 2m 2m m. -1 2m
Pz [w l, Aw l,. . ., A 1 W 1; W 2, Aw 2,. « v, A z W 2;
rm
w [ Awrmr m -1 rm
’ ’ » » A w ]
VV_
Since PP = In and consequently

Sateld = 1 if 1 =5 and § = t+1

0 otherwise
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it is easy to show that the columns of P are linearly independent and

thus form a basis for X. By direct computation it is easy to see that

the isomorphic LSM M = (A, B, C) = (APt

quasi-canonical form:

x ( ) 11 12 ° ¢ AL x (k) Bl
2 (k+1) A A A |22 @) B
X 21 “p2 vt ot Bor||® 2
_ = . ] . + | Ju(k) (10.4
- . . . - -
x (ktD) rl “r2° rr‘\x (k) Br/
( ' | )rﬁl
y, () 0 0...0 110 0 .0 0, 0 0...0 offx
| o
) : I -
y,0[ 10 0...0 010 0...0 1 10 0...0 0llx’
= i [ |
. . . . .;. . . Sheeate . . e
. . . . PO . . ol I a - . .
| | |
- . . - ] . . . s | | « ] . .
1 | : ~
{yr(k) 0 0...0 0i0 O...0 0/ 10 0...0 1|'xF
\

(10.4

, PB, CP_l) has the following

.26)

N

(k)

(k)

.
-

(k)
J

.27)
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where

x, . (k)

.. K)
x (k) = ,ier (10.4.28)

0 0. . .0 %
1 0...0 *
m,Xm
. . Xm,
N L eGF() * Y, 1exr  (10.4.29)
0 0. . .1 #
o 0. 0 *
0 0. 0 *
-~ m,xm,
=R - |l ec6F(q t Y, ier, jem, (10.4.30)
1) . . . - _1
0 0. . .0 %

and *'s denote possibly nonzero entries.
Now consider any mi—dimensional, i ¢ 1, submachine of the above
quasi-canonical LSM with state vector of the form (10.4.28). Then the

i-th submachine can be expressed as follows:

~i i P - .
x (k+1) = Aiix (k) + . Aijx (k) + Biu(k), ier (10.4.31)

i

TR

|
k|
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However, from (10.4.30) it is clear that the first (mi~1) columns of

the matrices A,.,, i e 1r, j e ™, are identically zeroc and thus
ij =

~i ~i
= i j 10.4.32
Aijx (k) amjxjmj(k), ier, je Ti (10 )

where a; is the mjth column of Aij' Substituting (10.4.32) into the
i
gsecond term on the right side of (10.4.31) and observing that in view

of (10.4.27), yi(k) = %50 (k), i € £, we have

1
i aen | fo o o o [ (k) ‘
xil( +1) e e . xil
. ME
Xiz(k+l) 1 ¢ 0. . .0 Xiz(k)
. _ e
x, 5 (c+1) 0 1 0...0 %, 5(k)
x.  (k+1) 0 0 0 1 %(|x, (k)
. im,

L 1 [ I 1 J

r - ~

+ L a y.(k) +Buk), ier (10.4.33)

. m,” ] i —

=1 ]

j=1

Therefore, the general multivariable LSM (10.4.26) - (10.4.30) has been
reduced to r individual multi-input single-output submachines of the
form (10.4.33), each driven by the directly measurable signals u(k) and
y(k), and each characterized by a known state component ;im.(k) = yi(k),
i e r. Since the input does not play any role in the desig; of state

observers, and the submachines (10.4.33) are single-output and m, -

observable, i ¢ r, we can employ the (n-1)-dimensional state observer
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design procedure, developed in the preceding subsection for single-
output LSMs, r times for (10.4.33). Since each submachine of (10.4.33)

requires an (mi-l)—dimensional observer, an overall observer of total
T

dimension I (mi—l) = n-r can be employed to estimate the entire
i=1.

state vector x(k) of the given multivariable LSM.

Summary and Conclusions

In this chapter the concept of state observability of LSMs
which is dual to that of state reachability, and some other related
topics were investigated. More specifically, after demonstrating the
duality relationship between state observability and state reachability,
the duality theorem of Kalman [61] was proved for LSMs, and its con-
sequences were discussed. As an illustration of the significance of
state observability property in estimating the inaccessible state
components of an LSM, some design procedures for full- and reduced
order state observers of Luenberger type for both single- and multi-

input LSMs were presented (cf. [60], [70], [71], [1l06]).
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CHAPTER XI

CONCLUSTIONS AND RECOMMENDATIONS

The primary objective of the research reported in this disser-
tation was to investigate the possibility of developing a structure
theory for the important class of finite-state linear sequential
machines in the framework of modern multivariable control theory.
Examining the parallelisms and interconnections between the disciplines
of sequential machines and control systems, selecting the state reach-
ability property as the pivotal component of this structure theory,
and adopting a finite-geometric point of view, we have introduced and
developed in detail a number of concepts for linear sequential machines
that may be summarized as follows:

The important concepts of state reachability and state control-
lability were extensively investigated. Twenty-four state reachability
criteria for single-input LSMs and eighteen state reachability criteria
for multi-input LSMs were formulated. In each case the equivalence
of these criteria was proved. Furthermore, some equivalence classes
of state reachable LSMs with respect to certain transformation groups
were identified. The implications of the state reachability property
relative to some structural invariants, canonical forms, and state
variable feedback were discussed. In particular, the application of
the reachability indices in the invariant description of LSMs via

Brunovsky's canonical form was demonstrated.



345

Exploiting the eigenstructures of LSMs in the framework of
generalized eigenvectors and Jordan canonical forms, additional state
reachability criteria which explicitly involve the Jordan canconical
form were presented. The possibility of maintaining the state reach-
ability property of a reachable multivariable LSM by scalar control
sequences was characterized in terms of the Jordan cancnical repre-
sentation of an LSM. The concept of selective state reachability
which makes heavy use of the generalized eigenproperties was intro-
duced and developed in detail for LSMs.

Further aspects of the concept of state reachability, in con-
junction with state feedback, were studied in the context of the finite
projective geometry and certain classes of flats related to the struc-
tural properties of LSMs were characterized, their applications to
gome areas of LSMs were demonstrated, and algorithms for thelr compu-
tation were discussed.

Finally, the concept of state observability, which is dual
to that of state reachability, was investigated. A complete duality
relationship between the state reachability and state ohservability
properties was established. 1In view of this duality, all the results
pertaining to state reachability can be restated in terms of observ-
ability in a simple and direct manner. As an illustration of the cen-
tral role of the property of observability in the state reconstruction
problem, some design procedures for full- and reduced-order state

observers for both single- and multi-input LSMs were presented.
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Recommendations for Further Research

For the purpose of developing an integrated multivariable
machine control theory, our results can be supplemented by investi-
gating other aspects of time-invariant LSMs such as realization, non-
interaction, inversion, identification, decentralization, optimal
regulation, and so forth. Similar investigations need to be carried
out for deterministic time-varying LSMs, stochastic time-invariant
LSMs, and various types of stechastic time-varying LSMs. Most of
these areas of LSM are virtually untouched.

The use of formal pelynomials and pelynomial matrices in the
study of various aspects of LS5Ms, as pointed out in Section 3.6, seems
to be a promising area of research. This approach which does not
involve the use of any transform techniques can lead te the develop-
ment of a comprehensive theory for time-invariant 1.SMs paralleling an
existing theory for linear systems promoted by Rosenbrock [97], Wolovich
[110], and others, which is based on the Laplace transform method.

In our study of LSMs nc combinatorial analysis was utilized.
It seems that many combinatorial structures of the finite projective
geometry can be used to characterize certain aspects of LSMs. This
area, especially in conjunction with geometric coding theory, warrants
much further research.

As was demonstrated throughout this dissertation, there exist
many similarities between linear machines and conventional linear sys-
tems. Unfortunately, at present very few such similarities exist

between nonlinear contrecl systems and general automata, and thus there
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does not seem to exist any appreciable interchange of ideas between
these disciplines. We believe that the investigation of a special
class of finite-state quasi-linear systems which we will term bi-
linear machines, will contribute to a better rapprochement between
these two areas of dynamical systems. Recently, conventional bilinear
systems due to their modeling capability, vast areas of applicability
and mathematical tractability have attracted a lot of attention.

A deterministic time-invariant finite-state bilinear sequen-
tial machine is described by the following vector difference equations

over GF(qg):

x(k+1) = Ax(k) +

[ e B~ |

N, u, (kyx(k) + Bu(k)
i“i

i=1

y(k) = Cx(k)

where A ¢ GF(q)nxn, Ni £ GF(q)nxn, iem, Be GF(q)nxm, and C ¢ GF(q)rxn.
This model can be transformed to an equivalent homogeneous-in-
the-state model by defining the following new state variables and

characterizing matrices:

x(k) ] A 0O
z(k) = ; F =
i ) 0 0
N, bt
1
Gi = ; H = [C 0]
0 0
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where b" ¢ GF(q)n, i € m, are the columns of B. Thus we have
m

z(k+1) F+ I

i

. Giui(k) z{k)

Hz(k)

y(k}

Due to its "quasi-linear'" nature, the class of bilinear machines
will constitute a transitional link between linear sequential machines
which, as we have seen in this research, lend themselves to thorough
analysis, and general nonlinear sequential machines for which no
general theory exists. Moreover, from a modeling point of wview, bi-
linear machines seem to be a reasonable compromise between the con-
flicting demands of accuracy and simplicity. This class of machines
will make it possible to overcome, on the one hand, the represent-
ability and precision limitations imposed by the linear models and,
on the other hand, the theoretical and computational complications
associated with more highly nonlinear sequential machine models.
Furthermore, due to their intrinsic variable structure and adaptivity
characteristics, bilinear sequential machines are more controllable
compared to linear machines. This property of bilinear machines is
due to the existence of the multiplicative control action on the evolu-
tion of the state dynamics of the machine. That is, the input sequence
u(k) & U* controls the state dynamics not only additively by means of
the term Bu(k), but also in a multiplicative way by means of the term
m

X Niui(k)x(k). Thus, intuitively, for a bilinear machine the control

i=1
should be more effective than for a linear machine with only an additive
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control action. Clearly the most desirable feature of bilinear machines
is the "quasi-linear" form of their nonlinearity which seems to admit
the extension of certain aspects of linear machine theory to bilinear

machines.
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APPENDIX

Finite Projective and Affine Spaces and Geometries

For the purpose of easy reference, we have collected, in this
appendix, a few basic definitions and facts concerning finite projec-
tive and affine geometries. Comprehensive coverage of these subjects

is available in [30].

Projective Spaces

Definition 1. A triple (P, L, #*), where P and L are disjoint

sets and * is a relation on PxL, that is, P n L = ¢ and * c Pxl, is
called an inecidence structure. The elements of P are called "points,”

those of L "lines;'" and * is called the "incidence' relation, where

the terms "point," "line," and "incidence'" are undefined. If the
ordered pair {(r, s) is an element of *, we will write r *# s, which is
to be read "r is on s,"” or "r and s are incident,'" or "s passes through
r." The incidence structure (P, L, *) is called finite if the sets
P and L are finite.

If certain conditions, in the form of axioms, are imposed on
an incidence structure (P, L, *), we will obtain a mathematical struc-

ture, called a preojective space which is defined next.

Definition 2. An incidence structure (P, L, *) is called a

projective space if the following conditions are satisfied:
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Pl1. 1If r, s € P such that r # s, then there exists exactly
one line £ £ L such that v *# £ and ¢ * £. This is
usually denoted by r + s = £.

P2. For £ £ [, there exist distinct points r, s, t € P such
that r + s + t = £.

P3. Ifr, s, t, u, v ¢ P are distinct points such that r,

s, and t are nonceollinear, uer + s, and ver + t, then
(s + t)n(u+ v) € P. That is, any line passing through
two sides of a triangle at points other than vertices
intersect the third side.

Next we will present some illustrative examples of projective

spaces.

Example 1. Let (F, + , +) be a field, S any set containing at

{f : §8— F : f(x) = 0 ¥x e S§}. TFor f,

least three elements, and P
g e Pand 2 ¢ F, define f + g and af by (f + g)(x) = f(x) + g(x) and
(af)(x) = af(x) ¥x ¢ S, respectively, and let f = ag, denoted by f = g,

a # 0, imply that f, g ¢ P. Further, for f, g ¢ P, define f *# g =

{af + bg : a, b ¢ F and not both a = 0, b = 0}. Then for f, g, f',

g' e P, T4 g=1f"%g' <= f 2 f"and g = g'. Finally, let L

H

{f*g:f, gePand f 4 g} Then for f, g ¢ P such that f * g and
hel, feh<= geh., Then the triple (P, L, ¢) is a projective

space.
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i

Example 2. Let P = {(xl, Xyse + s xn) e F . (xl, Xosr v s
xn) z (0, 0,. . ., 0) and n = 3}, x; = ay, == (xl, Xose = s xn) ~
(yl, Yore + v yn) ¥ (xl, Xpse o es xn), (yl, Yose + yn) £ Fn,
Y¥acfF,a=0,1ien. Letl = {(ax1 + byl, axy + byg,. o .y ax_ ¥ byn)
:a, beF, (a, b) 2 (0, 0), (x,, Xyse « -, xn), (yls Yore + oo yn) £

1" 72

n “ .
Fo, (xl, Xy s . xn) z (yl, Ypre « oo yn)}. Then the incidence struc
ture (P, L, ¢) is a projective space. This space 15 included in that

of Example 1 if we let S = {1, 2,. . ., n}.

Example 3. Let

{(1’090)’ (0)1’0)9 (0’0,1)) (l!l’l)! (l’l,o)) (O,l’l)! (13031)}

-
1t

= {«1,0,0»,«0,1,0»,=0,0,1»«1,1,1®»«1,1,0»«0,1,1l»«1,0,1>}

—
11

and let the incidence relation * be as displayed in the following

figure:

(1,0,0)

Then the incidence structure (P, L, *) is a projective space. This
space for which F = GF(2) is clearly a special case of the projective

space of Example 2.
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Finite Projective Geometry

Let P(Xv+1(q)) denote the set of all subspaces of a (v+l1)-
dimensional vector space Xv+l(q) over GF(q), and define P = {§ ¢
P(Xv+l(q)) t dim S =1} and L = {T ¢ P(Xv+l(q)) : dim T = 2}. Now if
¢ denotes the set inclusion relation, then it can be shown that the
incidence structure (P, L, <) forms a projective space.

The collection of all subspaces of Xv+1(q) together with the
natural containment relation is called the v-dimensional finite pro-
Jective geometry which will be denoted by P(Xv+l(q))’ or simply by
Pv(X). If S is a subspace of xu+1(Q)’ then the projective dimension
of S is defined to be dim § - 1, and will be denoted by p dim S. The
dimension of the geometry Pv(X), written p dim PU(X), will be p dim
Xv+l(q)' The elements of projective dimensions 0, 1, and 2 are called
projective points, projective lines, and projective planes, respectively.
An element of Pv(X) of projective dimension p dim Xv+l(q)—l is called
a hyperplane in Pv(X).

If we were to think of the points of Pv(X) as its most funda-
mental objects, then their intersection (or indeed, the intersection
of any two of them) would be the "natural" empty set; so the zero sub-

space of X  (q), whose algebraic dimension is zero and whose projec-

v+l
tive dimension is -1, is the empty space in PU(X).

If §$ is a subspace of Xv+l(q)’ then P{S), the projective geo-
metry generated by the collection of subspaces of S, is contained in

a natural way in Pv(X), and all the objects of P(S) are also objects

of Pv(X), with the same projective dimension, and P(8) is called a
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subgeometry of Pv(X). In particular, if S is a projective point,
then P(S) consists only of the two elements {0} and §. Moreoever,
the point S is determined by any nonzero vector s ¢ S, that is, < s >
= 8, and such a vector is called a homogeneous vector for S.

Definition 3. Let P(X) and P(X') be projective peometries

over GF(q). A map 7 : P(X) — P(X') is called a projectivity of
P(X) onto P(X') if

(a) S e P(X) = 7(8) e P(X")

(b) ScT <= m8) cn(M ¥S, Te PX)

(c) For every element S' ¢ P(X') there exists a unique ele-

ment S € P(X) such that w(8) = §'.

In particular, if X = X' then 7 is called an autoprojectivity,
or a collineation of P(X).

From the above definition it is clear that the identity map
on a projective geometry, composition of projectivities, and inverses
of projectivities are likewise well determined projectivities.

Theorem 1. Let Xi e P(X), 1 e £, and let 7 be a projectivity

of P(X) onte P(X'). Then

£ £
ol T X, = E ﬁ(X.)
i=1 * i=1 :
and
£ £
Tl n X = n q(X.)
i=1 1 g1 1

That is, projectivities preserve sum and intersection.
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Theorem 2. A projectivity maps points on points.

Theorem 3. Projectivities preserve dimensions.

If Pv(X) is a projective geometry of dimension v over the field
GF(q), then a coordinatization of Pv(X), or a projective cocrdinate

system for P_(X), is any projectivity m : P (X) —> Pv(GF(q)"*l). Let

o . . + , . ~
XO’ Xl, . Xv+l be points of Pv(X) no v+l of which lie in a hyper
plane. Then there is a unique projectivity = : Pv(X) —> Pv(GF(q)v+l)
. v+l .
such that W(Xi) = < e’ >, 1 ¢ vtl, and ﬂ(XO) =< 1 e >, where {el},
i=1

1

i ¢ v+1, is the standard basis of GF(q)v+ . The set {XO, X

IEEEREEE
Xu+1} is called a frame of reference for Pv(X) with unit point XO and
simplex {Xl, XZ,. . e, Xv+l}' It is important to realize that for the
unique determination of a projective coordinate system for Pv(X) we
must augment a simplex of reference with the unit point. This require-
ment is due to an ambiguity in the choice of Xi = < xi >, 1 g vtl,
except in the case where the ground field is GF{(2), because each xi

may be multiplied by any arbitrary nonzero scalar in GF(q). In a

sense, the unit point "stiffens up'" the simplex of reference.

Dual Projective Geometries

A duality 6 of a projective geometry P(X) over the field GF(qg)
onto the projective geometry P(X') over the field GF(q) is a monotone
decreasing monomorphism, that is, it is a monomorphism such that for
R, 8§ e P(X), Rc § <= 6(R) 2 6(S). As immediate conmsequences of
this definition, it can be easily seen that the inverse of a duality
is a duality, well-defined composition of dualities is a projectivity,

dualities interchange sums and intersections, and dualities interchange
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points and hyperplanes. Dualities of P(X) onto itself are called auto-

dualities, also correlations, of P(X), and a projective geometry possess—

ing an auto-duality is called self-dual. Two projective geometries are

said to be duals of each other if there exists a duality between them.
Instead of discussing dualities in a general setting, it will

suffice for our purpocses to restrict our attention to a particular

type of duality, namely the annihilator mapping connecting P(X) and

the dual geometry P(Xo), where Xz(q) is the canonical dual vector

space of Xn(q). It is easy to see that the annihilator mapping o :

S }——9 SO, where § © Xn(q) and S° = {f ¢ Xs(q) : f(s) = 0 ¥ s e S} is

a monomorphism of P(X) onto P(XO), and has the following properties:

dim $° = dim X (q) - dim S, $°° =5, S c T «<— §° > 7° %S, T ¢ P(X),

£ o 2" ) £ o £ o
(= Si) = n Si, (n Si) = I Si’ VSi e P(X), 1 ¢ £, {0} =
i=l i=1 i=1 i=1

0
Xn(q), and (Xn(q)) = {0}.
The relationships between the geometries P(X) and P(XO) can

often be most easily discussed in terms of the dual coordinates. Let

2

(XO, X l) be a frame of reference for P(X) and (xl, X g0 o uy

100 s Xv+
vtl . - , .
x ) be any basis of Xv+1(q) determining it. Then the corresponding

R "1 “vtl . S
dual basis (%, xz,. . e xv ) determines, through the annihilator

mapping, a unique dual frame of reference (RO’ il" . s iv+l) for
PX%).

Further relationships between P(X) and P(XO) are provided by
the duality principle of projective geometry. A proposition II in a

v—dimensional projective geometry over the field GF(q) is a statement

involving only the elements of the geometry and the underlying incidence
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relations. It is usually phrased in terms of intersections, joins,
and dimensions. The dual proposition 1° is defined to be the state-
ment obtained from II by changing ¢ to > throughout and hence replacing
intersection, join, and dimension £ by join, intersection, and
dimension v-1-£, respectively. The principle of duality essentially
states that if I is a proposition which is true in all v-dimensional
projective geometries over a given field GF(g), then 1° is also true
in all v~dimensional projective geometries over GF{q). <Clearly this
principle "doubles" the theorems at our disposal without our having

to do any extra work.

Finite Affine Geometry

The collection of all cosets of Xn(q), denoted by A(X), forms
a mathematical structure called a finite affine geometry whose points
are the cosets of rank 0, that is, essentially the elements of Xn(q),
and whose lines are the cosets of rank 1. This geometry, like the
projective geometry P(X}, has its own unique set of incidence axioms
and incidence propositicons which can be developed directly. However,
it turns out that there exist strong connections between P(X) and A(X)
which can be exploited te study the constructive interplay between
these geometries, and in most cases, either one can be used to study
the other; for instance, the propositions of incidence in A(X) can be
easily deduced from those in P(X). More specifically, A(X) can be

embedded in P(X).
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Theorem 3.12.1. (The Embedding Theorem). If H is any hyper-

plane in P(X) and x € X(q), x ¢ H, then the mapping ¢ : A(x + H) —>
P(X) induced by ¢ @ C }—*9 < (>, C e A(x + H), has the following
properties:

(1) ¢ is a monomorphism;

H

(2) $(AGx+ M) =P = IS<cx(@ :S&H < POO;

(3) Cec " <= < C>c<C'>%, ("¢ Alx+H);
2

12 ¢~

(4) C, e Ax+H), i¢e &

C. 2@ = < n Ci > =
i=1 i=1
. < Ci > 3

12 e P

i

(5) dim C = p dim < C > ¥C ¢ A(x + H);

(6) C[{CM <= < C>nHc<C >nHor

<C>nfHoc< C' >nH; C, C" e Alx+ ).

Parts (1) and (2) of this theorem provide the essential link
between A(X) and P(X) by using $ to carry over to ﬁ c P(X) the basic
geometrical notions in A(x + H), such as inclusion, intersection,
dimension, and parallelism. This scheme is frequently employed in
geometry to generate more general geometrical structures.

Parts (3) - (6) of the above theorem ensure the compatibility
of the inherent structure of A as a subset of P(X) with those carried
over from A(x + H) by &.

In summary, the Embedding Theorem provides a procedure by
which an affine geometry is cbtained from a projective geometry. This
is accomplished simply by deleting a hyperplane from P(X). The deleted

hyperplane is called the hyperplane at infinity. That all affine
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geometries obtained by this process have the same structure follows
from the fact that any two hyperplanes of P(X) are isomorphic to
each other.

Other close relationships between projective and affine geo-
metires exist with respect to their isomorphism structures. In parti-
cular, it can be shown that if H and H' are hyperplanes in P(X) over
the field F and P(X') over F' determining the affine geometries A and
A', respectively, then any projective isomorphism m : P{X) — P{X")
for which w(H) = H', restricts to an affine isomorphism o : A — A'.
Conversely, any affine isomorphism o : A —> A' is the restriction
of just one such projective isomorphism w. If F = F', then = is a

projectivity if and only if o is an affinity.
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