
DECOMPOSITION ALGORITHMS FOR CERTAIN INTEGER PROBLEMS
OVER NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Yijiang Li

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2023

© Yijiang Li 2023

DECOMPOSITION ALGORITHMS FOR CERTAIN INTEGER PROBLEMS
OVER NETWORKS

Thesis committee:

Dr. Nikolaos Sahinidis
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Santanu Dey
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Diego Cifuentes
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. John-Paul Clarke
Cockrell School of Engineering
The University of Texas at Austin

Dr. Alejandro Toriello
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Date approved: July 20 2023

All theory depends on assumptions which are not quite true. That is what makes it theory.

Robert M. Solow

To my family

ACKNOWLEDGMENTS

There are many people to whom I owe many thanks for their guidance, help, love, and

support for the past five years. First and foremost, I would like to express my deepest grat-

itude to my advisors, Nikolaos Sahinidis and Santanu Dey. I have had the great privilege

to spend a lot time working with and learning from them who have always been supportive

to me. I especially enjoyed their passion and intellectual depth during our meetings and

their lighthearted sense of humors outside of work. Special thanks should go to John-Paul

Clarke. Professor Clarke guided me into the realm of academic research and offered his

support and guidance that began in my undergraduate study and continued throughout my

PhD journey. I would also like to thank Diego Cifuentes and Alejandro Toriello for serving

as my committee members and providing valuable feedback and suggestions to this thesis.

I am grateful to the financial support from the U.S. Department of Energy for my PhD

study and to my collaborators Naresh Susarla, Markus Drouven, and Miguel Zamarripa for

many insightful discussions that have provided me with fresh perspectives and expanded

my understanding. I am grateful to my mentors and colleagues during my internships at

Argonne National Laboratory and Amazon. In particular, I thank Sven Leyffer, Kibaek

Kim, Matt Menickelly, Yuan Li, Xiaoyan Si, Semih Atakan, Louis Faugère, and Ye Chun.

I would like to thank my fellow graduate students who brought fun and inspirations to

my life, to name a few, Minas Chatzos, Prakirt Jhunjhunwala, Sajad Kohdadadian, Ana-

toliy Kuznetsov, Chungjae Lee, Yan Li, Shancong Mou, Jiachen Shi, Yuyang Shi, Hairong

Wang, Zilong Wang, Haotian Wu, Enpeng Yuan, Shaowu Yuchi, and Keyu Zhu. I would

also like to thank Zaiwei Chen, Chenghao Duan, Scott Guan, Yiguo Liu, Ke Pan, and Ci

Song with whom I have had numerous get-togethers and trips with laughter and joy. Last

but not least, I would like to thank my friends, Hongzhao Guan, Kim Huang, Chenkai Shao,

Pat Wang, Richard Wang, Robert Xu, and Jimmy Zhang for their accompany in the best

and worst of times for more than ten years.

v

I wanted to thank my parents for their endless love and support for every success and

setback I have gone through and every decision I made. Thank you for all the encourage-

ments and inspirations in all of my pursuits and dreams. I am deeply indebted to my wife,

Starry, for her unconditional love and understanding. Her abundant knowledge in history,

art and sociology has sparked between us numerous long yet fruitful conversations. Our

shared passions in travel, culinary experiences and museum-going have enriched my life

outside academic research with pleasures and cherished memories.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xiii

Summary . xiv

Chapter 1: Introduction . 1

Chapter 2: Using Submodularity within Column Generation to Solve the Flight-
to-Gate Assignment Problem . 4

2.1 Introduction . 4

2.1.1 Motivation and literature survey 4

2.1.2 Contributions of this chapter . 7

2.2 Problem setup . 8

2.3 Column generation formulation . 11

2.3.1 Master problem consideration . 11

2.3.2 The set covering master problem 11

2.3.3 The pricing problems . 12

2.4 Solving the pricing problem . 15

vii

2.4.1 Pre-processing . 15

2.4.2 Submodular approximation algorithm 15

2.4.3 Dynamic programming algorithm 20

2.4.4 Alternative reformulation of the pricing problems 24

2.4.5 Large-sized instances . 26

2.5 Feasible solutions and branching scheme 28

2.5.1 Feasible solutions . 28

2.5.2 Branching on the assignment decisions 29

2.6 Computational experiments . 31

2.6.1 Instance generation and initialization 31

2.6.2 Software and hardware . 34

2.6.3 Computational results . 35

2.6.4 Summary of the computational results 44

2.7 Conclusion . 44

2.8 Appendix A. Proof of Theorem 2.4.1 . 45

2.9 Appendix B. Rational input data for dynamic programming algorithm . . . 49

2.10 Appendix C. Rolling horizon method . 52

Chapter 3: A decomposition framework for gas network design 54

3.1 Introduction . 54

3.2 Literature review . 56

3.3 Problem description . 58

3.3.1 Technical background . 58

viii

3.3.2 Design problem . 61

3.4 Decomposition framework . 64

3.4.1 CVXNLP . 64

3.4.2 Primal bound loop . 67

3.4.3 Binary search on budget . 70

3.4.4 Initial budget search . 70

3.5 Numerical experiments . 72

3.5.1 Instances . 72

3.5.2 Implementation considerations and settings 73

3.5.3 Results . 75

3.6 Conclusion . 79

Chapter 4: Optimizing the designs and operations of water networks: a decom-
position approach . 86

4.1 Introduction . 86

4.2 Literature review . 87

4.3 Problem description . 89

4.3.1 Technical background . 89

4.3.2 A summary on problem formulation 92

4.4 Primal solutions . 94

4.4.1 CVXNLP based decomposition 96

4.4.2 Time decomposition . 99

4.5 Numerical experiments . 104

4.5.1 Instances . 104

ix

4.5.2 Implementation settings . 105

4.5.3 Results . 106

4.6 Conclusion . 107

Chapter 5: Modeling and solving cascading failures across interdependent in-
frastructure systems . 110

5.1 Introduction . 110

5.2 Literature review . 111

5.3 Problem formulation . 113

5.3.1 Notations . 114

5.3.2 Optimization model . 115

5.4 Decomposition approach . 118

5.5 Computational results . 121

5.5.1 Instances . 121

5.5.2 Computational settings . 123

5.5.3 Results . 123

5.5.4 Comparison with existing work . 127

5.6 Conclusion . 128

Chapter 6: Conclusion . 132

References . 134

x

LIST OF TABLES

2.1 Instance information. 32

2.2 Summary of arrivals at ATL. 34

2.3 Performances of the MIP formulation. 35

2.4 Pricing problem methods on small-sized instances. 37

2.5 Pricing problem methods on moderate-sized instances. 39

2.6 Pricing problem methods on large-sized instances. 42

3.1 Constraint blocks . 65

3.2 Nodes in Gaslib-582 network . 73

3.3 Arcs in Gaslib-582 network . 73

3.4 Computational results with and without perspective strengthening for warm 31 77

3.5 Gap in (%) without (w/o) and with (w) perspective strengthening 78

3.6 Computational results with and without perspective strengthening for mild 3838 84

3.7 Computational results with and without perspective strengthening for cool 2803 84

3.8 Computational results with and without perspective strengthening for cold 4218 84

3.9 Computational results with and without perspective strengthening for freez-
ing 188 . 85

4.1 Constraint blocks . 95

xi

4.2 Characteristics of the network . 105

4.3 Computational results for T = 24 . 107

4.4 Computational results for T = 53 . 108

5.1 Facility information . 122

5.2 Instance information . 123

5.3 Comparison of nonlinear formulation and McCormick envelopes 124

5.4 Computational results for instance f128 130

5.5 Computational results for instance f210 131

xii

LIST OF FIGURES

2.1 Plot of functions g1(t) and g8(t). 21

5.1 Full progress of z and z . 125

5.2 Progress of z and z from iteration 50 onwards 126

5.3 Progress of gap . 127

xiii

SUMMARY

Integer optimization stands as a fundamental and widely embraced tool in addressing

many real-world problems. Among the abundant applications of integer optimization, nu-

merous network-related problems arise and exhibit significant influence in many areas such

as transportation, energy systems, and supply chain management. The intricate nature of

these problems often results in complicated large-scale formulations that are computation-

ally expensive to solve directly. Instead, decomposition is a more computationally tractable

means in many cases. In this thesis, we focus on a few integer problems over networks and

relevant decomposition algorithms.

First, we investigate the airport flight-to-gate assignment problem, where the goal is to

minimize the total delays by optimally assigning each scheduled flight to a compatible gate.

We provide a column generation approach for solving this problem. Specifically, we use a

set covering formulation for the master problem and decompose the pricing problem such

that each gate is the basis for an independent pricing problem to be solved for assignment

patterns with negative reduced costs. We use a combination of an approximation algorithm

based on the submodularity of the underlying set and dynamic programming algorithm to

solve the independent pricing problems. We show that the dynamic programming algorithm

is pseudo-polynomial under the special cases of integer inputs. We also design and employ

a rolling horizon method and block decomposition algorithm to solve the large-sized in-

stances. Finally, we perform extensive computational experiments using both synthetic

and real-world operational data from Atlanta Hartsfield-Jackson International Airport to

validate the performance of our approach.

Second, we focus on the gas network design problem. Gas networks are used to trans-

port natural gas, which is an important resource for both residential and industrial cus-

tomers throughout the world. The gas network design problem is a challenging nonlinear

and non-convex optimization problem. Additional challenges arise due to the binary vari-

xiv

ables needed to model the pipe sizing and status of certain network components. We pro-

pose a decomposition framework that separates the binary variables from the challenging

nonlinear and non-convex constraints. In particular, we utilize a two-stage procedure that

involves a convex reformulation of the original problem that solves for the binary variables

and iteratively checks whether the set of values of binary variables produce a set of fea-

sible flows and potentials. Finally, we conduct experiments on the Gaslib-582 network,

a publicly available benchmark instance, to validate and analyze the performance of our

framework.

Third, we consider the water network design and operation problems in one single

problem. In general, water network problems can be divided into two categories, the de-

sign problem and the operation problem. The design problem considers pipe sizing and

placements of pump stations, while the operation problem is commonly multiple time pe-

riod problem that accounts for temporal changes in supply and demand, and considers the

scheduling of the installed pump stations. We focus our attention on the so-called produced

water that is co-produced from oil and gas. In solving the resulting formulation, we ob-

serve that it is more difficult to obtain a primal (feasible) solution while the dual bounds

can be improved by the solver relatively easier. As a result, we propose two methods to

obtain good primal (feasible) solutions. One method is based on a similar decomposition

framework that is used in chapter 3 while the other method is based on time decompo-

sition. We conduct computational experiments on a network derived from The Produced

Water Optimization Initiative (PARETO) ([1]) case study.

Fourth, we study the resiliency of infrastructure networks. An infrastructure network

generally consists of multiple types of infrastructure facilities that are interdependent. In

the event of natural disaster, some of the infrastructure nodes can be damaged and disabled

creating failures and such failures can propagate to other facilities that depend on the dis-

abled facilities creating a cascade of failures and eventually a potential system collapse.

We propose a bilevel interdiction model to study this problem of cascading failures in an

xv

interdependent infrastructure system with a probabilistic dependency graph. We utilize a

Benders type decomposition algorithm to solve the resulting formulation. Computational

experiments are performed using synthetic networks with partial real-world data to validate

the performance of this algorithm.

Some of the contents of the thesis can be found in [2, 3, 4, 5].

xvi

CHAPTER 1

INTRODUCTION

Optimization has been a fundamental tool in study a wide range of real-world prob-

lems across various domains, including transportation, energy systems, and supply chain

management. Mixed-Integer Linear Programming (MILP) and Mixed-Integer Nonlinear

Programming (MINLP) are particularly well-suited because of the discrete nature of some

of the decisions involved. MILP and MINLP consider a combination of integer (binary)

and continuous decision variables providing a flexible framework to capture the essences

of the problems. Many applications can be effectively modeled using linear constraints.

Nonetheless, there are cases where nonlinear phenomena that cannot be easily and accu-

rately modeled by linear constraints introduce nonlinearity into the model. For instance,

energy system often involves nonlinear constraints based on laws of physics or operational

limits of system components. Furthermore, problems in these domains frequently revolve

around networks or can be formulated based on classical network problems. For exam-

ple, problems in energy system could consider the construction or expansion of natural

gas or water networks and problems in transportation often relate to optimizing flows on

networks.

Extensive research in the theories and development of general-purpose solvers have

greatly advanced the field of solving MILP and MINLP. Various solvers demonstrate rel-

atively strong performances in solving small-scale to medium-scale models. However, as

real-world problems continue to grow in complexities, the resulting models become in-

creasingly large-scale or even extreme-scale, characterized by large numbers of variables

and constraints and the computational resources needed to explore the solution space in-

crease exponentially, leading to excessive computational time. To address the challenges,

ongoing research focuses on developing novel techniques and algorithmic improvements.

1

Among the diverse techniques, decomposition methods play a significant role. Decomposi-

tion involves breaking down a problem into smaller and more computationally contractable

subproblems.

Formally, a MILP or a MINLP can be expressed as

min f(x, z) (1.0.1)

s.t. g(x, z) ≤ 0 (1.0.2)

x ∈ Rm (1.0.3)

z ∈ Zn, (1.0.4)

where f(x, z) and g(x, z) are functions of the decision variables x and z. The objective

function f(·, ·) and constraints g(·, ·) can be linear or nonlinear functions. x are the contin-

uous variables while z are the integer variables. In some cases, z are restricted to be binary,

i.e., z ∈ {0, 1}n. [6] and [7] offer a wealth of discussions covering both the theoretical

foundations and practical applications of MILP and MINLP.

The rest of the thesis is organized as follows. In chapter 2, we study the airport flight-

to-gate assignment problem. A column generation scheme is proposed for problem. A

combination of approximation algorithm and dynamic programming is used in solving the

pricing problems. For the large-sized instances, a rolling horizon framework is imple-

mented on top of the proposed approach. Chapters 3 considers the natural gas network

design problem. To separate the nonlinearity and non-convexity from the large number

of binary variables, we propose a decomposition framework in which the core component

consists of a master problem that solves for the binary variables and a subproblem that

checks the feasibility of the values obtained from the master problem. Chapter 4 combines

the water network design and operation problems into one single problem. Two decompo-

sition algorithms are proposed to obtain good primal (feasible) solutions. One is based on

the framework introduced in chapter 3 and the other is based on time decomposition. In

2

chapter 5, we identify the most severe contingencies in an infrastructure network. A bilevel

formulation and a Benders type decomposition algorithm are proposed. Lastly, in chapter

6, we conclude the thesis.

Note that each chapter in this thesis is self-contained. In other words, there may be

overlap of notations across the chapters. We also discuss the relevant literature and contri-

butions in each chapter.

3

CHAPTER 2

USING SUBMODULARITY WITHIN COLUMN GENERATION TO SOLVE THE

FLIGHT-TO-GATE ASSIGNMENT PROBLEM

2.1 Introduction

2.1.1 Motivation and literature survey

Airports throughout the world have seen a rapid increase in the numbers of flights and

passengers over the past decade. Not withstanding the current decline due to COVID-19,

the international Air Transport Association [8] expects 7.2 billion passengers to travel in

2035, a near doubling of the 3.8 billion air travelers in 2016. The vast majority of current

airport facilities, in particular airport terminals, are not sized to handle such traffic. And,

although expansions in capacity have been planned for the long term, in the near future

the requisite capacity expansions are unlikely to materialize. Airports will therefore see

increases in delays and associated increases in the cost of delays that are similar to or

in excess of the $1.6 billion or 6 percent increase, from $26.6 to $28.2 billion, that was

observed between 2017 and 2018 [9]. These expected increases in the magnitude and cost

of delays can only be mitigated through improved airport operations management.

One critical area of airport operations is the optimal and efficient assignment of arriving

flights to gates. The airport flight-to-gate assignment problem has been extensively stud-

ied by many researchers in both the operations research and aviation communities. Many

models and algorithms have been proposed. For a detailed review of past work in this area,

we refer the readers to [10] and [11], but give a brief overview of the popular objectives

and the common solution methods.

There are three popular objectives to consider in the models. The first one is the max-

imization of passenger satisfaction levels. In particular, researchers consider walking dis-

4

tances and waiting or transit time as proxies for the passenger satisfaction level. A more

detailed approach involves a differentiation between the transfer passengers and destination

passengers. In these models, the costs associated with the assignments of two flights to any

two gates reflect the distance between the two gates and the connection time between the

two flights. Interested readers are referred to [12, 13, 14, 15]. The second class of objective

focuses on airport and airline operations. Some papers, such as [16] and [17], consider

the minimization of the number of ungated flights or equivalently the number of flights as-

signed to the remote gates or introduce costs only incurred when the flights are assigned to

remote gates to differentiate the priorities of the flights. Moreover, [18] and [19] point out

that airlines likely have preferences over which set of gates to park their flights leading to

the consideration of maximizing total gate preference scores. The third popular objective

is to improve the robustness of the solution to schedule variations. Due to the uncertain

nature of the air transportation system, arrival times and departure times are likely to be

stochastic subject to various factors such as weather and maintenance. Early arrival and

late departure may cause the arriving flight to wait for the departing flight at the assigned

gate to push back. This phenomenon is referred to as a gate conflict. Other studies consider

robustness with respect to minimizing the expected gate conflict time. In the event of major

disruptions such as severe weather or maintenance delays, airport has to be able to quickly

recover from the deviations from the original arrival schedules and adjust the flight-to-gate

assignments to reduce any potential delays. Readers are referred to the work of [20] and

[21]. Since the above mentioned three objectives are all very important to take into account

and neither of the objectives is superior than the other two, some combinations of them are

also explored. The weighted sum method is more common in such line of considerations,

but a pareto-based approach has been utilized as well. The papers [22] and [23] are exam-

ples of studies that use weighted sum approach while [24] approaches this problem with a

pareto local search method.

Due to the generalNP-hard nature of the problem, it can be extremely difficult to solve

5

the problems directly and exactly. Many solution algorithms and heuristics have been pro-

posed. In much of the work to date, an integer programming or mixed integer programming

formulation is first presented and solver is called to obtain a solution and validate the model.

These formulations are large and complex because of the many complicated constraints re-

quired to reflect real world phenomena. Consequently, it is very time-consuming if not

impossible to obtain solutions within reasonable amount of time and it is challenging to

improve these solution methodologies. Readers are referred to [21] and [25] for the de-

tails of these models. In addition to integer programming or mixed integer programming

approach, [26] uses a stochastic optimization model to capture the uncertain nature of the

problem and study the occurrence of gate conflicts. The paper [27] uses a column genera-

tion method together with a branch-and-bound algorithm to obtain integral solutions. They

give a description of the column generation method and a general strategy to apply the

branch-and-bound algorithm. However, they have not given any explicit mathematical for-

mulations for the column generation scheme and they have not discussed any strategies or

methods to tackle the pricing problems. Due to the limitations/challenges presented in us-

ing exact formulations for this problem, heuristics are extensively used. Popular heuristics

such as genetic algorithms and Tabu search algorithms have been explored. Tabu search

algorithm performs a local search around the current solution and prohibits searching at

previous search points by keeping a list of those points for a few iterations while genetic

algorithm is inspired from the evolutionary idea where a chromosome of higher fitness is

more likely to survive and it involves operations of selections, crossover, and mutations.

For an implementation of these two metaheuristics, readers are referred to [15]. Moreover,

[28] implemented a MIP-based heuristic which is adapted from many popular heuristic

and they show that the adaptation gives a good performance. Lastly, there are some other

heuristics based on neighborhood search, breakout local search, Fuzzy Bee Colony opti-

mization (FBCO), and particle swarm optimization (PSO). Readers are referred to [29, 30,

31] for these heuristics.

6

2.1.2 Contributions of this chapter

As we discussed previously, there are gaps in both the formulations and solution method-

ologies of the flight-to-gate assignment problem that need to be addressed. In this chapter,

we focus on the airport operations and aim to minimize the arrival delays over all the flights.

We propose an exact solution method that is capable of obtaining the flight-to-gate assign-

ments at busy hub airports where a large number of flights are seen on a daily basis. Our

main contributions are summarized below.

1. Column generation formulation. We present an explicit column generation formu-

lation with a set covering master problem and we decompose the pricing problem

into independent problems to which we apply both heuristic and exact algorithms

to obtain favorable assignment patterns. Such decomposition allows us to simplify

the pricing problem formulations and reduce the size of the individual pricing prob-

lem significantly. Experiments show that this formulation is far more efficient than a

conventional compact mixed integer programming formulation.

2. Pricing problem algorithms. We explore a few approximation methods and exact

algorithms to efficiently solve individual pricing problems after the decomposition.

In particular,

• We show and exploit the submodularity of the objective functions of the pricing

problems to design an approximation algorithm. To the best of our knowledge,

this is the first use of submodularity to efficiently solve the pricing problems in

a column generation setting.

• We derive an exact dynamic programming algorithm based on a recursive for-

mula and show that the direct implementation of the algorithm works reason-

ably well in practice. We show the algorithm to be pseudo-polynomial in the

special case of integer inputs and present a new heuristic based on this observa-

tion.

7

• We propose a block decomposition heuristic and prove it is a 2-approximation

algorithm for large-sized instances.

The structure of the rest of this chapter is as follows. In Section 2.2, we provide a

description of the flight-to-gate assignment problem. In Section 2.3, we provide the for-

mulation for the column generation algorithm, and the exact algorithms and heuristics used

for solving the pricing problems are discussed in Section 2.4. Specifically, a submodular

maximization approximation algorithm is described in Subsection 2.4.2 and a dynamic pro-

gramming algorithm with complexity analyses is presented in Subsection 2.4.3. In Subsec-

tion 2.4.5, we present a new block decomposition approximation for large-sized instances.

We discuss the branching scheme and our method for retrieving integer feasible solutions

in Section 2.5. Results of the computational experiments are presented in Section 2.6. Fi-

nally, we make some concluding remarks and discuss possible extensions of this work in

Section 2.7 .

2.2 Problem setup

The flight-to-gate assignment problem may be described as follows. Let the set of

flights be F and the set of gates be G. Each flight i ∈ F has an arrival time, ai, an

airline, and an aircraft type which determines its minimum turn time, τi, the minimum

duration for which the flight must remain after parking at its assigned gate before being

ready for departure. Each gate k ∈ G has a buffer time, bk, that has to be observed between

consecutive flights, and a set of allowable aircraft types. The solution of the problem gives

an assignment in which each flight is assigned to one gate. For each flight i, we define its

arrival delay as the difference between its arrival time, ai and the park time at its assigned

gate, tgi . The decisions are the gate assignment, xik, the park time, tgi , and the push back

time, tpi , for i ∈ F and k ∈ G. In particular, the decision variables xik are equal to 1 if

flight i is assigned to gate k and otherwise equal to 0. In addition, we also consider the

notion of compatibility, αik, where a flight can only be assigned to a compatible gate. In

8

particular, αik equal to 1 if flight i is compatible to gate k and equal to 0 otherwise. The

compatibilities are determined by various factors including gate types (heavy or regular),

flight types (heavy or regular), and airline preferences. Two additional conditions have to

be met for an assignment to be valid:

1. A flight occupies its assigned gate for a duration of at least its minimum turn time,

τi, for i ∈ F .

2. A pair of flights that are assigned to the same gate cannot occupy the gate at the same

time and the buffer time, bk, must be observed before the gate becomes ready for the

next flight.

We further assume independence of the gates which exclude interference between the

gates. This assumptions can be justified from a practical perspective. Note first that we

are only considering arrival delays in this chapter. The current practices of many airports

is that pushbacks of the departing flights are coordinated by the ramp towers. Whenever a

pushback of a flight is in the way of an arriving flight into its assigned gate, the pushback is

delayed. Note that such delays are rare in many of the large airport where there are multiple

taxi ways in the ramp area to minimize blockage of arriving flights by the departing flights.

Consequently, what affects the park time of an arriving flight most is its assigned gate

and the departing flight at the assigned gate. Based on the above descriptions, we give a

compact mixed integer programming formulation below,

min
∑
i∈F

(tgi − ai) (2.2.1)

subject to
∑
k∈G

xik = 1, ∀i ∈ F (2.2.2)

tgi + τi ≤ tpi , ∀i ∈ F (2.2.3)

tgi ≥ ai, ∀i ∈ F (2.2.4)

tpi + bk − tgj ≤M(2− xik − xjk), i < j, ∀i, j ∈ F , ∀k ∈ G (2.2.5)

9

xik ≤ αik, ∀i ∈ F , j ∈ G (2.2.6)

xik ∈ {0, 1}, ∀i ∈ F , k ∈ G (2.2.7)

tgi , t
p
i ≥ 0, ∀i ∈ F , (2.2.8)

where M is a sufficiently large constant. The expression in (2.2.1) gives the objective func-

tion which minimizes the total arrival delays. Constraint (2.2.2) ensures that each flight

is assigned to exactly one gate. Constraint (2.2.3) ensures the flight parks at a gate for at

least a duration of the minimum turn time (condition 1 above). Constraint (2.2.4) ensures

that the park time, tgi , is no earlier than the arrival time, ai. We want to emphasize that we

do not impose an upper bound on the park times, tgi , since it is possible that an arriving

flight has to wait at its assigned gate for a long period of time for the departing flight that is

currently occupying the gate to pushback due to various reasons, such as weather, technical

difficulties, or security reasons, although the chance of such long wait is slim. In addition,

imposing such upper bounds on the park times can lead to infeasibility sometimes. Con-

dition 2 above leads to constraint (2.2.5) which observes the buffer time, bk. It considers

all pairs of flights i < j. When they are assigned to the same gate, the difference between

tpi and tgj must be at least the buffer time of the gate, bk. Constraint (2.2.6) is the compati-

bility constraint to ensure the flights are only assigned to the compatible gates. Constraints

(2.2.7) and (2.2.8) are binary and non-negativity requirements on the decision variables

respectively. We will show in computational experiments that this compact formulation is

not ideal to obtain the desired flight-to-gate assignment efficiently. We instead propose a

column generation approach to solve the problem. Note also that this setup is in fact similar

to what airlines do for their flight-to-gate assignments in the real world. Interested readers

are referred to [32].

10

2.3 Column generation formulation

2.3.1 Master problem consideration

Constraint (2.2.2) in the compact mixed integer programming formulation suggests a

set partitioning master problem should be used in the column generation formulation. How-

ever, as many papers, such as [33] and [34], have pointed out, a set covering master prob-

lem formulation is numerically more stable when solving its linear programming relaxation

compared to a set partitioning master problem. Therefore, we present a set covering master

problem formulation where the constraint in which each flight is assigned to exactly one

gate is replaced by a constraint in which each flight is assigned to at least one gate. Since

this gives a relaxation and we are minimizing the total arrival delay that is non-increasing

after removing a flight from a gate, the set covering master problem either produces a set

partitioning assignment or a set covering assignment in which we can fix each flight with

multiple assignments to one of its assigned gates and recover a set partitioning assignment

that has a total arrival delay at most as large as that of the original set covering assignment.

2.3.2 The set covering master problem

We define the following parameters:

Pk := the set of all feasible assignment patterns for gate k

δkip :=

1 if flight i is assigned on pattern p ∈ Pk of gate k

0 otherwise

ckp := the arrival delay of pattern p ∈ Pk.

Note that δkip and ckp are constants that can be computed for a given assignment pattern. The

decision variables zkp (k ∈ G, p ∈ Pk) are equal to 1 if pattern p of gate k is used and 0

11

otherwise. Then the set covering master problem is given by

min
∑
k∈G

∑
p∈Pk

ckpz
k
p (2.3.1)

subject to
∑
k∈G

∑
p∈Pk

δkipz
k
p ≥ 1, ∀i ∈ F (πi) (2.3.2)

∑
p∈Pk

zkp = 1, ∀k ∈ G (µk) (2.3.3)

zkp ∈ {0, 1}, ∀k ∈ G, p ∈ Pk. (2.3.4)

The objective (2.3.1) is an expression for total arrival delays by summing the arrival

delays of all patterns over all gates. Constraint (2.3.2) is the cover constraint that ensures

each flight is assigned to at least one gate. Constraint (2.3.3) is the availability constraint

that ensures only one pattern of each gate is selected. Last constraint (2.3.4) is the binary

requirements on the decision variables zkp (k ∈ G, p ∈ Pk) and relaxing these constraints

to 0 ≤ zkp ≤ 1 gives the linear programming relaxation of the set covering master problem.

The linear programming relaxation is then solved in each iteration.

2.3.3 The pricing problems

In the pricing problem, we construct feasible assignment patterns for each gate. If we

associate dual variables πi with (2.3.2) and µk with (2.3.3), the reduced cost c̄kp (k ∈ G, p ∈

Pk) of a pattern p of gate k is given by

c̄kp = ckp −
∑
i∈F

δkipπi − µk. (2.3.5)

Given a feasible solution z to the linear programming relaxation of (2.3.2) - (2.3.4), we

know that z is optimal if and only if the optimal assignment patterns generated from the

12

pricing problem have non-negative reduced costs. Then the pricing problem is given by

min{ckp −
∑
i∈F

δkipπi − µk : k ∈ G, p ∈ Pk}. (2.3.6)

Since we assume each gate is independent, we can further decompose the pricing prob-

lem into |G| independent pricing problems, one for each gate. The kth pricing problem is

given by

min{ckp −
∑
i∈F

δkipπi − µk : p ∈ Pk}. (2.3.7)

For the decision variables, similar to the compact formulation (2.2.1) - (2.2.8), we use

binary decision variables xik which are equal to 1 if flight i is assigned at gate k and equal

to 0 otherwise, and continuous variables tgi and tpi for the park times and push back times

of flight i respectively. Recall the definitions of the constants δkip and ckp which are given by

δkip :=

1 if flight i is assigned on pattern p ∈ Pk of gate k

0 otherwise

ckp := the arrival delay of pattern p ∈ Pk.

When the pricing problems are solved to generate a new assignment pattern p, the

values of the constants, δkip, are determined using the values of the decision variables xik

and ckp is the sum of all individual arrival delay, tgi −ai. Let M denote a large constant, then

the kth pricing problem is given by

min
∑
i∈F

(tgi − ai)−
∑
i∈F

xikπi − µk (2.3.8)

subject to tgi + τi ≤ tpi , ∀i ∈ F (2.3.9)

tgi ≥ ai, ∀i ∈ F (2.3.10)

13

tpi + bk − tgj ≤M(2− xik − xjk), ∀i < j, i, j ∈ F (2.3.11)

xik ≤ αik, ∀i ∈ F , k ∈ G (2.3.12)

xik ∈ {0, 1}, ∀i ∈ F , k ∈ G (2.3.13)

tgi , t
p
i ≥ 0, ∀i ∈ F . (2.3.14)

The objective function (2.3.8) is obtained by expressing ckp explicitly in decision vari-

ables tgi and parameters ai, and substituting the parameters δkip by the decision variables

xik. Constraints (2.3.9) - (2.3.14) follow directly from the constraints (2.2.3) - (2.2.8) in

the compact mixed integer programming formulation. However, we do not need constraint

(2.2.2). For flights that are not assigned to this gate, we assume their arrival delays to be

zero.

The solutions xik from a pricing problem form a potential assignment pattern. If the

corresponding reduced cost given by the objective value is negative, then this assignment

pattern is favorable and added to the master problem.

We want to point out that µk is a constant in the kth pricing problem and thus dropping

this term we can equivalently solve (2.3.8) - (2.3.14) by solving the following maximization

problem:

max −
∑
i∈F

(tgi − ai) +
∑
i∈F

xikπi (2.3.15)

subject to (2.3.9)− (2.3.14).

This equivalent problem is intuitively easier to interpret as we may consider πi as the

benefits of accepting flight i at the cost of an arrival delay tgi − ai. Consequently, we are

attempting to maximize the total net benefits over all flights. We refer to this maximization

problem as the pricing problem for any gate in all following sections and use the terms total

net benefits and reduced cost interchangeably.

14

2.4 Solving the pricing problem

2.4.1 Pre-processing

The decomposition of the pricing problem into smaller pricing problems allows addi-

tional pre-processing of the set of flights F for each gate. Consider a particular gate k, we

can construct a subset of flights F ′ ⊆ F to include only compatible flights and flights with

positive dual variables πi. To see this fixing is correct, the incompatible flights are not al-

lowed to be assigned to this gate while accepting the flights with πi ≤ 0 does not contribute

any benefit at the cost of arrival delays of other flights. For the rest of the discussions in

this section, we use the subset of flights F ′ and assume |F ′| = n. Note that for different

gates, the set F ′ could be different.

2.4.2 Submodular approximation algorithm

Submodularity is a well studied property of set functions and there are many exist-

ing algorithms that can approximate the task of maximizing a submodular function very

efficiently and effectively. We notice that, in the context of the flight-to-gate assignment

problem, the submodularity of the objective function (2.3.15) is very intuitive. Consider

any gate and given a set of accepted flights at this gate, the impact of accepting an additional

flight on the total arrival delay of this set of flights is at least as large as that of accepting

the additional flight with a subset of those flights.

Formally consider the pricing problem for gate k and recall that our objective after

pre-processing the set of flights is

max −
∑
i∈F ′

(tgi − ai) +
∑
i∈F ′

xipπi.

For simplicity, we denote tgi − ai by △tgi and clearly △tgi ≥ 0. We define a function

15

f : 2F
′ 7→ R as follows,

f(A) = −
∑
i∈A

△tg,Ai +
∑
i∈A

πi. (2.4.1)

We further denote the variables △tgi under a set of assigned flights A by an additional

superscript A and assume that the values of △tg,Ai for i /∈ A to be zero. By the definition

of f , we have that f(∅) = 0. For a given set of assigned flights A, the constraints (2.3.9) -

(2.3.11) can be incorporated when evaluating f(A). Specifically, let the flights in the set A

be 1, 2, . . . |A| and the total benefits
∑

i∈A πi can be computed. What remains is to compute

the arrival delays. Note that the first flight parks at the gate at its arrival time, a1, and pushes

back after a duration of its minimum turn time at a1 + τ1. The gate becomes available for

the second flight after a duration of the buffer time at a1+ τ1+ bk. Consequently, an arrival

delay of a1+ τ1+ bk− a2 on the second flight is incurred if the second flight arrives earlier

than a1 + τ1 + bk and it parks at a1 + τ1 + bk. Otherwise, there is no arrival delay on the

second flight and it parks at its arrival time, a2. The same procedure can be applied to the

rest of flights in the set A to compute f(A).

Note that since the subset of flights F ′ are all compatible to this gate and the above

procedure incorporates constraints (2.3.9) - (2.3.11), we can pose the pricing problems as

the following equivalent unconstrained maximization problem

max{f(A) : A ⊆ 2F
′}. (subMax)

In order to show the submodularity of the function f , we need the following observation

about the variables△tgi .

Lemma 2.4.1. If A ⊆ B ⊆ F ′, then

∑
i∈B

△tg,Bi ≥
∑
i∈A

△tg,Ai .

16

proof of Lemma 2.4.1. We can rewrite the left hand side expressions into

∑
i∈B

△tg,Bi =
∑
i∈A

△tg,Bi +
∑

i∈B\A

△tg,Bi

≥
∑
i∈A

△tg,Ai +
∑

i∈B\A

△tg,Bi .

The last inequality is valid because A ⊆ B, for any i ∈ A, thus the arrival delay of i

in the set of assigned flights B of larger cardinality is at least as large as its arrival delay

in the set of assigned flights A ⊆ B. Additionally, since △tg,Bi ≥ 0, we have the desired

inequality.

We next show that f is a submodular function.

Lemma 2.4.2. f is a submodular set function defined on F ′.

proof of Lemma 2.4.2. First note that we use the expression “the park time of a flight is

pushed to the right” to mean the park time of this flight is delayed and consequently this

flight experiences a larger arrival delay. Formally, given a set of flights A, the park time of

flight i is pushed to the right in another set of flight B if ∆tg,Ai ≤ ∆tg,Bi .

Now suppose that A ⊆ B ⊆ F ′ and u /∈ F ′\B, we compare f(A∪{u})−f(A) against

f(B ∪ {u})− f(B),

f(A ∪ {u})− f(A) = −
∑

i∈A∪{u}

△t
g,A∪{u}
i +

∑
i∈A∪{u}

πi −

(
−
∑
i∈A

△tg,Ai +
∑
i∈A

πi

)

= −

(∑
i∈A

△t
g,A∪{u}
i −

∑
i∈A

△tg,Ai

)
+ (πu −△tg,A∪{u}

u). (2.4.2)

Similarly, we have that

f(B ∪ {u})− f(B) = −

(∑
i∈B

△t
g,B∪{u}
i −

∑
i∈B

△tg,Bi

)
+ (πu −△tg,B∪{u}

u). (2.4.3)

17

Since A ⊆ B, the arrival delay of u in the set of assigned flights B is at least as

large as that of u in the set of assigned flights A and then △t
g,A∪{u}
u ≤ △t

g,B∪{u}
u . Thus

πu −△t
g,A∪{u}
u ≥ πu −△t

g,B∪{u}
u . For the first term in the expressions (2.4.2) and (2.4.3),

we consider the following cases when accepting an additional flight u to A and B:

1. The park times remain unchanged for all i ∈ B and thus i ∈ A. Both terms are zero.

We have f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B).

2. The park times are pushed to the right for a set of flights I ⊆ B. If I ∩ A ̸= ∅,

following similar arguments for u, we see that the increase in the arrival delay of a

flight i ∈ I ∩A in the set of assigned flights B is at least as large as that of i in the set

of assigned flights A. In addition, there are potentially increases in arrival delays of

flights in the set I ∩ Ac. Therefore, the first term in (2.4.2) is less negative than that

in (2.4.3). If I ∩ A = ∅, the first term in (2.4.2) is zero while the first term in (2.4.3)

is non-positive. We have again f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B).

The two cases above verify that when we accept an additional flight u, we have f(A ∪

{u})− f(A) ≥ f(B ∪ {u})− f(B) and this shows that f is a submodular function.

We want to point out that f is not monotonic in general. Suppose that A ⊆ B ⊆ F ′,

then

f(B)− f(A) = −
∑
i∈B

△tg,Bi +
∑
i∈B

πi −

(
−
∑
i∈A

△tg,Ai +
∑
i∈A

πi

)

= −

(∑
i∈B

△tg,Bi −
∑
i∈A

△tg,Ai

)
+
∑

i∈B\A

πi.

The first term−
(∑

i∈B△tg,Bi −
∑

i∈A△tg,Ai

)
is always non-positive by Lemma 2.4.1.

However, since πi ≥ 0 for all i ∈ F and
∑

i∈B\A πi ≥ 0, f(B) − f(A) is not necessarily

always non-negative or non-positive and thus f is not monotone in general.

Now we can utilize an existing submodular maximization algorithm by [35] which is

18

shown below as algorithm 1. In this algorithm, we select each flight in the set of flights F ′

with a probability. Let Xi and Yi be two random sets to be updated in each iteration and we

initialize X0 = ∅ and Y0 = F ′. We also denote the elements in F ′ by 1, 2, . . . , n.

Algorithm 1: Submodular Maximization(f,F ′)
1 Initialize X0 ← ∅, Y0 ← F ′

2 for i = 1, 2, . . . , n do
3 ai ← f(Xi−1 ∪ {i})− f(Xi−1)
4 bi ← f(Yi−1\{i})− f(Yi−1)
5 a′i ← max{ai, 0}, b′i ← max{bi, 0}
6 with probability a′i/(a

′
i + b′i)

∗ do: ▷ ∗ If a′i = b′i = 0, we assume
a′i/(a

′
i + b′i) = 1

7 Xi ← Xi−1 ∪ {i}, Yi ← Yi−1

8 else (with the compliment probability b′i/(b
′
i + a′i))

9 Xi ← Xi−1, Yi ← Yi−1\{i}
10 end
11 return Xn (or equivalently Yn)

The following theorem establishes a theoretical approximation guarantee of Algorithm

1.

Theorem 2.4.1. Let f : 2F
′ 7→ R defined by (2.4.1), and OPT be the true optimal solution

of the problem (subMax) and Xn (or equivalently Yn) is the set returned by the algorithm.

If f(F ′) ≥ 0, then E(f(Xn)) ≥ f(OPT)/2.

proof of Theorem 2.4.1. The proof is a very minor modification of what is given in [35]

and attached in Appendix A for a reference and completeness. The modification is since

we require f(F ′) ≥ 0 instead of f(A) ≥ 0 for all A ⊆ F ′.

Although it is possible that the condition on f to obtain the theoretical guarantee is

not satisfied, the assignment patterns that are generated can still have favorable total net

benefits. We discuss later in the numerical experiment section about the implementation of

this algorithm and its performance.

19

2.4.3 Dynamic programming algorithm

Approximation algorithm can be efficient in generating favorable assignment patterns,

however, exact optimal solutions to the pricing problems have to be obtained to prove

optimality at each node. This would typically be done using a general integer programming

solver. However, this can be slow. To reduce overall solution time, we have developed and

now present a much more effective dynamic programming algorithm to achieve this task.

We divide up the analyses of the dynamic programming algorithm into three cases based

on the input type, namely, general input, rational input, and integer input. We note that the

analysis in the case of integer input is a simplification of the analysis used in the case of

rational input. In addition, although in many cases, the input is not integer, the algorithm

developed in that section can serve as another approximation algorithm. Therefore, we

defer the details of the analysis in case of rational input to Appendix B.

The general case.

For any gate k, we define an auxiliary function gi(t) to be the maximum total net bene-

fits from optimally accepting flights in the set {i, i+ 1, · · · , n} where the smallest indexed

accepted flight from {i, i+1, . . . , n} can be accepted any time after time t. To give a formal

definition,

gi(t) = max
xik,xi+1,k,...,xnk

{∑
j≥i

xjkπj −
∑
j≥i

(tgj − aj) | tgj ≥ t, ∀j ∈ {i, i+ 1, . . . , n}

}
.

(2.4.4)

As an illustration, we present an example of a set of 8 arrivals and show in Figure 2.1

the functions gi(t). In particular, the left plot shows the function g1(t) while the right plot

shows the function g8(t).

We observe that the optimal value of the kth pricing problem is g1(0). We introduce the

notion of processing time of a flight i at gate k which consists of the minimum turn time

20

0 2 4 6 8 10 12 14 16 18 20 22 24
time

0

5

10

15

20

25

30

fu
nc

tio
n

va
lu

e

0 2 4 6 8 10 12 14 16 18 20 22 24
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fu
nc

tio
n

va
lu

e

Figure 2.1: Plot of functions g1(t) and g8(t).

and the buffer time and denote the processing time of flight i by pi := τi + bk. In the rest

of this section, we drop the index k as we are solving the pricing problem for a fixed gate

k. Based on the definition of gi(t), we can derive the following recursive formula,

Lemma 2.4.3.

gi(t) =

0 if i ≥ n+ 1

gi(ai) if t ≤ ai

gi+1(t) if t > ai + πi

max{(ai + πi − t) + gi+1(t+ pi), gi+1(t)} if ai < t ≤ ai + πi.

(2.4.5)

proof of Lemma 2.4.3. Similar to the proof of Lemma 2.4.2, we use the expression “the

park time of a flight is pushed to the right” to mean the park time of this flight is delayed

and consequently this flight experiences a larger arrival delay.

We consider each case separately.

1. This is the terminating case. If i ≥ n+1, we do not have any flights and thus receive

a zero net benefit.

2. Since a flight cannot park earlier than its arrival time, the total net benefits for any

21

t ≤ ai are equal to gi(ai).

3. If the current time t > ai + πi, accepting the flight i does not contribute to the total

net benefits as πi − (t − ai) < 0. In addition, the park times of flights in the set

{i+1, i+2, · · · , n} are potentially pushed to the right in the presence of flight i and

their arrival delays are at least as large as the arrival delays in the absence of flight i.

Consequently, we do not accept flight i at this gate. From the above analyses, we see

that ai + πi is the latest time beyond which we do not accept flight i. We denote this

time as the end point and ai as the start point of flight i’s acceptance window.

4. In this last case, we compare the total net benefits between accepting and not accept-

ing flight i. In the former case, if we accept flight i at the current time t, the net

benefit gained from flight i is ai + πi − t and earliest possible park time for flight

i+1 is t+ pi. In the latter case, if we do not accept flight i, the earliest possible park

time for flight i+ 1 is t.

A direct implementation of the formula (2.4.5) recursively considers whether to accept

each flight for all flights starting with the first flight. Algorithm 2 below shows an imple-

mentation to obtain the value of g1(0). Note that since we define the function gi(t) for all

continuous values of t, it was not immediately clear whether Algorithm 2 would run in

finite time. Thus we verify that Algorithm 2 runs in finite time next.

Proposition 2.4.1. For any value of i and t, Algorithm 2 runs in finite time. In particular,

to evaluate gi(t) for any t, the procedure EVALORACLE(i, t) is recursively called 2(n−i+1)

times in the worst case.

Proof. The proof is by backward induction. If i = n, evaluating the function gn(t) for any

t is equivalent to the procedure EVALORACLE(i, t) with input n and t which further calls

the procedure EVALORACLE(i, t) at most 2 times with input n+1 and t or n+1 and t+pn.

22

This gives the base case. Suppose that the statement is true for i = n, n−1, . . . , j+1. Now

consider i = j and gj(t) for any t, the procedure EVALORACLE(i, t) with input j and t

further calls the procedure EVALORACLE(i, t) at most 2 times with input j + 1 and t or

j+1 and t+ pi. The former is equivalent to the value of gj+1(t) and the latter is equivalent

to the value of gj+1(t + pi). The inductive step shows that both call requires at most 2n−j

further recursive calls to the procedure EVALORACLE(i, t). Therefore, gi(t) for any t

requires a total of 2 · 2n−j = 2n−j+1 recursive calls, which completes the proof.

Algorithm 2: EvalOracle(i, t); Evaluation of gi(t) and optimal assignment S
1 Input: i, t
2 if i = n+ 1 then return 0, S = ∅;
3 else
4 if t ≤ ai then return EvalOracle(i, ai);
5 else if t ≥ ai + πi then return EvalOracle(i+ 1, t), S ← S ∪ {0};
6 else
7 if (ai + πi − t)+EvalOracle(i+ 1, t+ pi) ≥ EvalOracle(i+ 1, t) then
8 return (ai + πi − t)+EvalOracle(i+ 1, t+ pi), S ← S ∪ {1}
9 end

10 else return EvalOracle(i+ 1, t), S ← S ∪ {0};
11 end
12 end

The case of integral input data.

We now propose an implementation of the dynamic programming algorithm with a

running time of O(nc) in the case of integral input data. In Appendix B, we analyzed the

case when the data is rational and we constructed the functions gi(t) in the interval [0, c] by

recursively evaluating the functions at the potential breakpoints from the set

{0, e, 2e, 3e, . . . , c} where e ∈ {1/d, 1/2d, 1/3d, . . . , 1/(i+ 1)d},

where d is the common denominator. If we now assume the input data are integral, we can

further reduce the set to {0, 1, 2, . . . , c}. Formally, we have the following theorem.

23

Theorem 2.4.2. Assume all input data are integral, it suffices to evaluate a function gi(t)

at t ∈ {0, 1, 2, . . . , c} to construct the function.

Proof. Consider any set of accepted flights, S, and let the flights in A be 1, 2, . . . , |A|.

Following similar arguments in the subsection 2.4.2, we can assign the park time of the first

flight to be a1 and the gate becomes available for the second flight at time min{a2, a1+p1}.

Therefore, we see that the park time for flight i is given by
∑i−1

j=2min{aj, aj−1 + pj−1} +∑i−1
j=2 pj for i ≥ 3. Note that the park time of flight i is the sum of the park time and

processing time of flight i − 1. Since we assume all input data are integral, the park times

for all flights are integral.

Next, we optimally assign the flights 1, 2, . . . , n in the set F ′ based on the recursive

formula (2.4.5). For any flight j, if we accept j, it can only be accepted at an integral time

that is either determined by the accepted flights before j or aj . If we do not accept j, we

move on to optimally assigning the flights j + 1, j + 2, . . . , n and the arguments for j can

be applied. Therefore, decisions on whether to accept the flights all occur at integral times

and we only need to evaluate gi(t) at the integral times in [0, c] to construct that gi(t).

Based on the above observation, an implementation of the dynamic programming algo-

rithm with a running time of O(nc) is shown below as Algorithm 3. Note that this is an im-

plementation of the backward version of the dynamic programming algorithm. Lastly note

that in the cases where not all input data are integers, this algorithm works as an approxima-

tion algorithm and provides an alternative to the submodular maximization approximation

algorithm. This new approximation algorithm is referred to as the approximative dynamic

programming algorithm (ADP) in the computational experiments.

2.4.4 Alternative reformulation of the pricing problems

Alternatively, the pricing problem can be formulated as a variant of the shortest path

problem with time windows known as the shortest path problem with time windows and

24

Algorithm 3: Alternative implementation of the dynamic programming algorithm
1 Let gi(0 . . . c) be a table where i ∈ {1, 2, · · · , n+ 1}.
2 for t← c to 0 do
3 gn+1(t)← 0, St ← ∅
4 end
5 for i← n to 1 do
6 for t← c to 0 do
7 if t ≤ ai then gi(t)← gi(ai), St ← Sai;
8 else if t ≥ ai + πi then gi(t)← gi+1(t), St ← St ∪ {0};
9 else

10 if ai + πi − t+ gi+1(t+ pi) ≥ gi+1(t) then
gi(t)← ai + πi − t+ gi+1(t+ pi), St ← St ∪ {1};

11 else gi(t)← gi+1(t), St ← St ∪ {0};
12 end
13 end
14 end
15 return g1(0), S0

time costs (SPPTWTC) in which there is an additional linear cost associated with the ser-

vice start time at each node. Such a problem is studied in details in [36]. To formulate the

pricing problems as a SPPTWTC, a source and a sink need to be introduced and each of

the flights in the set F ′ represents a node in the network. The cost associated with each arc

between nodes i and j is given by the negative of the corresponding dual variable value,

−πij . To solve the SPPTWTC problem, a dynamic programming algorithm is proposed

in [36]. This dynamic programming algorithm is derived based on the general labelling

algorithm for the shortest path problems with time windows. For a detailed discussion of

the labeling algorithm and some relevant extensions, we refer the readers to [37] and [38].

One of the key reasons for the effectiveness of this dynamic programming algorithm is the

use of upper bounds on the service start times to eliminate labels that are infeasible with

respect to the time windows, so that the number of labels created is significantly reduced.

However, if we reformulate our pricing problems as SPPTWTC, the lack of upper bounds

on the park times leads to an exponential number of labels rendering the dynamic program-

ming algorithm proposed in [36] ineffective. Nonetheless, if one wanted to enforce upper

25

bounds on the park times, one would definitely be able to leverage the work in [37], [38],

and [36]. Therefore, we did not pursue this reformulation further.

2.4.5 Large-sized instances

The total number of arrivals into a busy international airport can be very large and the

proposed dynamic programming algorithm can be slow to obtain the optimal assignments.

We utilize two ways to further decompose the pricing problem of each gate to tackle large-

sized instances. One is a 2-approximation algorithm and the other is a standard rolling

horizon method. As the standard rolling horizon method is common in many applications,

we defer the details of implementations to Appendix C.

Block decomposition approximation.

When dealing with a large number of arrival flights, the flights can be usually divided

into blocks based on the interactions between the flights to reduce the problem sizes. We

introduce the idea of an adjacency parameter, denoted by σ. A formal definition of σ is as

follows.

Definition 2.4.1. For each flight i, let j be the earliest flight after i such that aj > ai+πi+

pi, and denote σi := min{j − i, n− i}, then σ := max1≤i≤n σi.

Note that this adjacency parameter is likely to differ across the gates and change after

a new iteration of the master problem is solved with the updated set Pk. The use of the

adjacency parameter also appears in the work of [39]. Now we are ready to give the block

decomposition approximation algorithm.

Note that we refer to the discussions in Subsection 2.4.2 for the computation of the total

net benefits f(S). We now provide an approximation guarantee for Algorithm 4.

Theorem 2.4.3. Let S∗ and OPT be the true optimal assignment and optimal objective

value of the pricing problem respectively and let S be the assignment returned by Algorithm

4 and OPTS be the objective value associated with S, then OPTS ≥ OPT/2.

26

Algorithm 4: Block decomposition approximation
1 Input: adjacency parameter σ
2 Divide the set F ′ into ⌊n/σ⌋+ 1 blocks such that each of block has σ flights and

the last block has n− ⌊n/σ⌋ · σ flights
3 Solve for the optimal assignment in each of the blocks
4 Compute the sum of the total net benefits of the odd-indexed blocks and

even-indexed blocks and let B be the collection of blocks with a larger sum of the
total net benefits

5 Construct an assignment, S, by cascading the optimal assignments from the blocks
in B

6 Compute the total net benefits of the assignment S, f(S)
7 return S, f(S)

proof of Theorem 2.4.3. Label all the blocks by 1, 2, . . . , ⌊n/σ⌋, ⌊n/σ⌋+ 1 and let the op-

timal objective value of each block be OPTi for i ∈ [⌊n/σ⌋ + 1]. By the construction of

the blocks, we have that ∑
i∈[⌊n/σ⌋+1]

OPTi ≥ OPT. (2.4.6)

Now without loss of generality, we assume that the sum of the total net benefits of the

odd-indexed blocks is larger than that of the even-indexed blocks, then we have that

2
∑
i is odd

OPTi ≥
∑
i is odd

OPTi +
∑

i is even

OPTi ≥ OPT. (2.4.7)

Now we show that we can construct a valid assignment by just cascading the optimal

assignments from the odd-indexed blocks. Let I1, I2 be any two consecutive odd-indexed

blocks and let f1 be the last flight in block I1 and f2 be the first flight in I2 respectively.

From the construction of the blocks, we have that f2 − f1 > σ since they are from two

different blocks. In addition, by the definition of the adjacency parameter, we have af2 >

af1 +πf1 +pf1 and, in fact, af2 > ai+πi+pi for any flight i in block I1. Recall that ai+πi

is the end point of flight i’s acceptance window beyond which i is not accepted. Therefore,

the optimal assignment of the flights in the block I1 does not conflict with whether to

accept f2 in the optimal assignment of the flights in the block I2 and cascading the optimal

27

assignments of I1 and I2 forms a valid assignment. Repeating this argument for all the

odd-indexed blocks, we see cascading the optimal assignments of those blocks form a valid

assignment pattern.

Therefore, we have that

OPTS =
∑
i is odd

OPTi ≥ OPT/2, (2.4.8)

which completes the proof.

Note that Theorem 2.4.3 implies that if there exists an assignment pattern with posi-

tive total net benefits, the block decomposition approximation algorithm has to return an

assignment pattern, S, with a positive OPTS and thus S is a favorable assignment pattern.

Furthermore, Algorithm 4 can be improved as follows. Suppose the odd-indexed blocks

have a larger sum of the total net benefits and we construct a valid assignment pattern from

the odd-indexed blocks. We can still potentially accept more flights from the even-indexed

blocks to contribute more net benefits as long as accepting those flights does not violate

constraints (2.3.9) - (2.3.11).

Lastly, as the adjacency parameter, σ, is computed based on the interactions between

flights, it is not likely to be very large. Most flights park at the gate to get ready for the next

flight leg with a relatively short turn time and thus they have limited interactions with other

flights that arrive hours later.

2.5 Feasible solutions and branching scheme

2.5.1 Feasible solutions

After optimality is achieved in the linear programming relaxation of the master problem

(2.3.1) - (2.3.4), we solve the master problem with the binary requirements of the decision

variables reinstated to obtain a feasible solution. We refer to this problem as the binary

program. The objective value of the linear programming relaxation provides a lower bound

28

on the optimal objective value while the binary program provides an upper bound on the

optimal objective value. Subsequently, we can study the quality of the binary program

solution by the following,

gaproot =
UBroot − LBroot

LBroot

, (2.5.1)

where UBroot is the upper bound from the binary program and LBroot is the lower bound

from the linear programming relaxation. In the cases where LBroot is zero, we use the

absolute gap of UBroot−LBroot which is denoted by an additional notation of “(a)” after the

numerical. We will use the abbreviations of UB and LB to represent the upper bound from

the binary program and lower bound from the linear programming relaxation respectively

in the computational experiments section.

2.5.2 Branching on the assignment decisions

In many cases, although we can obtain a feasible solution from the binary program,

the quality of that solution is poor. Thus, we propose a branching rule on the assignment

decisions to obtain better solutions. Formally, let z∗ be an optimal solution to the linear

programming relaxation of the master problem (2.3.1) - (2.3.4). The corresponding assign-

ment decision for each flight i given by

y∗ik :=
∑
p∈Pk

δkipz
k∗
p , ∀i ∈ F , k ∈ G. (2.5.2)

Consider a fractional z∗, as δkip is either 0 or 1, there may exist 0 < y∗ik < 1 for a

particular i and k. When such a fractional assignment decision occurs, we denote the i and

k values by î and k̂. We present a branching scheme on this assignment decision which is

adapted from [40]. We force yîk̂ = 1 on the left branch and yîk̂ = 0 on the right branch by

adding valid inequalities. In particular, flight î can be forced to use gate k̂ by the following

29

inequality, ∑
p∈Pk̂

(1− δk̂
îp
)zk̂p +

∑
k∈F\k̂

∑
p∈Pk

δk
îp
zkp ≤ 0. (2.5.3)

On the other side of the branch where flight î can be forced not to use gate k̂ by the

following inequality, ∑
p∈Pk̂

δk̂
îp
zk̂p ≤ 0. (2.5.4)

Note that after the branching constraints are added, the objective functions in the pricing

problems have to be updated to incorporate the dual information of these constraints. By

updating the dual variables of the constraints (2.3.2) and (2.3.3), we can keep the objective

functions in the same format. Let the dual variables to the branching constraints be λîk̂. On

the left branches, if k = k̂, we have the new objective function as

min
∑
i∈F

(tgi − ai)−
∑
i∈F

xikπi − µk − (1− xîk)λîk̂

⇔ min
∑
i∈F

(tgi − ai)−

∑
i∈F\̂i

xikπi + xîk(πî + λîk̂)

− (µk + λîk̂). (2.5.5)

When k ̸= k̂, the new objective function becomes

min
∑
i∈F

(tgi − ai)−
∑
i∈F

xikπi − µk − xîkλîk̂

⇔ min
∑
i∈F

(tgi − ai)−

∑
i∈F\̂i

xikπi + xîk(πî + λîk̂)

− µk. (2.5.6)

Now on the right branches, if k = k̂, we obtain the same objective function as shown

in (2.5.6). When k ̸= k̂, the objective function remains unchanged.

We want to point out that the dynamic programming and approximation algorithms

have to be adapted at a node where some branching constraints have been added, otherwise

the assignment patterns that are generated can potentially violate the branching constraints.

30

In particular, it is easy to modify the pricing problem methods for the right branches. If

flight î is forced not to use gate k̂, we can remove flight î from the subset of flights F ′

during the pre-processing. However, it is more difficult on the left branches when we force

flight î to use gate k̂. As flight î can be accepted at any time in the interval, [aî, aî + πî], we

need to first determine the optimal time to accept flight î after which the rest of the flights

in the set F ′ can be optimally assigned. This is more difficult to implement because the

time in [aî, aî + πî] takes continuous values. To deal with this issue, we run the pricing

problem algorithms with the constraints implied by the branching decisions by solving an

Integer Program directly using a solver to prove optimality.

2.6 Computational experiments

2.6.1 Instance generation and initialization

We test the proposed methods on randomly generated instances and instances derived

from real world data. The detailed information about each instance is reported in Table

2.1 and a summary of the real world operational data is presented in Table 2.2. For the

randomly generated instances, we generate the inter-arrival time of two consecutive flights

based on a uniform distribution such that each gate has an arriving flight every 75 to 180

minutes on average depending on the size of the instances. We use the minimum turn time

data from a major U.S. airline. Furthermore, we generate each gate with a type which

determines whether it can accommodate heavy aircraft, a set of eligible airlines, and a

buffer time. The buffer times are set to be identical in our experiments for simplicity, but

they can be adjusted accordingly if needed. The compatibility data, αik, used in constraints

(2.2.6) and (2.3.12) as well as pre-processing step of the pricing problem algorithms, can

be computed based on the aircraft type, the gate type, and the set of eligible airlines.

For the real world instances, we use arrivals from multiple days in 2019 before the

COVID-19 pandemic from the Atlanta Hartsfield-Jackson Airport, the busiest airport by

passenger traffic. The data are obtained from the U.S. Bureau of Transportation Statistics

31

website. Note that for instances that do not use arrivals in the whole 24 hours’ period, we

report the time interval during which the arrivals are used. As it is difficult to obtain the

precise information about the gates, we generate the gates in a similar way as described

above, but with an additional consideration. As very large percentage of arrivals into ATL

are Delta Air Lines (DAL) flights and DAL operates many gates at ATL, a large number of

gates allow DAL flights.

Once we have the set of arrivals and the set of gates for an instance, we initialize the

instance. For each of the test instance, the set of feasible patterns Pk for all gate k have

to be initialized to contain at least one pattern to satisfy the availability constraint (2.3.3)

in the master problem. Moreover, the union of Pk has to satisfy the covering constraint

(2.3.2). Since we start with empty Pk, we provide each gate a feasible assignment pattern by

randomly assigning each flight to a compatible gate to have an overall feasible assignment.

Consequently, at the beginning of the proposed procedure, there is an assignment pattern

for each gate. We note that although this is a simple initialization procedure, we do not

expect any more complex initialization procedure could show significant improvements. In

addition, our termination criteria is a relative gap of 2% or an absolute gap of 0.5 (in case

the optimal objective of the root node LP relaxation is 0.

Table 2.1: Instance information.

no. (name) size source |F| |G| |F|/|G| inter-arr(min.)

1 (f30g5s) small synthetic 30 5 6.00 12.07

2 (f30g10s) small synthetic 30 10 3.00 9.66

3 (f50g10s) small synthetic 50 10 5.00 8.53

4 (f50f20s) small synthetic 50 20 2.50 4.37

5 (f100g35s) small synthetic 100 35 2.86 2.72

6 (f100g50s) small synthetic 100 50 2.00 1.75

7 (f150g50s1) moderate synthetic 150 50 3.00 2.01

8 (f150g50s2) moderate synthetic 150 50 3.00 2.30

9 (f150g50s3) moderate synthetic 150 50 3.00 2.10

32

Table 2.1 continued

10 (f200g100a1) moderate
10:00-13:12

200 100 2.00 0.96
08/23/19

11 (f200g100a2) moderate
13:00-15:51

200 100 2.00 0.86
08/23/19

12 (f300g150s1) moderate synthetic 300 150 2.00 0.51

13 (f300g150s2) moderate synthetic 300 150 2.00 0.49

14 (f300g150s3) moderate synthetic 300 150 2.00 0.48

15 (f300g150a1) moderate
10:00-14:31

300 150 2.00 0.90
08/23/19

16 (f300g150a2) moderate
13:00-17:47

300 150 2.00 0.95
08/23/19

17 (f800g200s1) large synthetic 800 200 4.00 0.77

18 (f800g200s2) large synthetic 800 200 4.00 0.73

19 (f800g200s3) large synthetic 800 200 4.00 0.75

20 (f800g200a1) large
10:00-23:13

800 200 4.00 0.99
08/19/19

21 (f800g200a2) large
10:00-23:13

800 200 4.00 0.99
08/20/19

22 (f800g200a3) large
10:00-23:41

800 200 4.00 1.02
08/21/19

23 (f800g200a4) large
10:00-22:36

800 200 4.00 0.95
08/22/19

24 (f800g200a5) large
10:00-22:22

800 200 4.00 0.93
08/23/19

25 (f1000g200s1) large synthetic 1000 200 5.00 0.93

26 (f1000g200s2) large synthetic 1000 200 5.00 0.89

27 (f1000g200s3) large synthetic 1000 200 5.00 0.89

28 (f1000g200a1) large
6:00-21:50

1000 200 5.00 0.95
08/19/19

29 (f1000g200a2) large
6:00-21:41

1000 200 5.00 0.94

33

Table 2.1 continued

08/20/19

30 (f1000g200a3) large
6:00-21:37

1000 200 5.00 0.94
08/21/19

31 (f1000g200a4) large
6:00-21:21

1000 200 5.00 0.92
08/22/19

32 (f1000g200a5) large
6:00-21:21

1000 200 5.00 0.92
08/23/19

33 (f1113g192a19) large 08/19/19 1113 192 5.80 1.28

34 (f1095g192a20) large 08/20/19 1095 192 5.70 1.30

35 (f1092g192a21) large 08/21/19 1092 192 5.69 1.31

36 (f1125g192a22) large 08/22/19 1125 192 5.86 1.28

37 (f1125g192a23) large 08/23/19 1125 192 5.86 1.27

Table 2.2: Summary of arrivals at ATL.

date. no. of gates no. of arrivals

Aug 19, 2019 192 1113 (687 Delta, 39 American, 8 United, 379 Other)

Aug 20, 2019 192 1095 (681 Delta, 32 American, 9 United, 373 Other)

Aug 21, 2019 192 1092 (675 Delta, 35 American, 10 United, 372 Other)

Aug 22, 2019 192 1125 (684 Delta, 40 American, 11 United, 390 Other)

Aug 23, 2019 192 1125 (684 Delta, 39 American, 11 United, 391 Other)

2.6.2 Software and hardware

For the implementation, the pricing problem algorithms are implemented in Python.

Gurobi (version 9.1) ([41]) is used whenever a commercial solver is needed. The compu-

tations are performed on an Unix system with a 12-core CPU and 16GB RAM. We also set

a limit of 8 hours for each instance.

34

2.6.3 Computational results

For a complete comparison, the performance of the compact mixed integer program-

ming (MIP) formulation (2.2.1) - (2.2.8) is considered using the small-sized instances and

shown in Table 2.3. The formulation is solved using the Gurobi solver. As we have noted

before, the MIP formulation is not ideal for this problem as evidenced in Table 2.3.

Table 2.3: Performances of the MIP formulation.

method instance no. time(sec.) incumbent obj. best bound

MIP

1 (f30g5s) 339.78 1203.26 1203.26

2 (f30g10s) 6948.33 258.53 258.53

3 (f50g10s) 5347.46 74.73 74.73

4 (f50f20s) incomplete 18.64 0.00

5 (f100g35s) incomplete 1.66 0.00

6 (f100g50s) incomplete 1.14 0.00

For the following results, note that we proposed to obtain a feasible solution at the

root node by reinstating the binary requirement and compute the quality of the solution by

(2.5.1). In addition, we use the following notations to report results in tables:

• ct: computation time in second;

• rt: computation time spent on the root node in second,

in addition to the “LBroot”, “UBroot”, and “gaproot” introduced previously. Note that these

values are obtained at the root node.

Small-sized instances.

It is important to note that we can combine the pricing problem algorithms presented

in Section 2.4 in our implementation. For the small-sized instances, we test the following

ways:

35

1. Gurobi solver (S)

2. Dynamic programming algorithm (DP)

3. 70 iterations of submodular maximization followed by the dynamic programming

algorithm (SM+DP)

4. 25 iterations of approximative dynamic programming algorithm followed by the dy-

namic programming algorithm (ADP+DP).

We run a fixed number of iterations of both SM and ADP across different instances as

discussed above, and no attempt has been made to tune these parameters. For a particular

class of instances, tuning these parameters may provide even better results.

In the solver option (Option 1 above), specifically, we set the Gurobi “PoolSearch-

Mode” parameter to 2 and request the solver to provide up to 75 feasible solutions and add

as many as possible to the master problem. The updated solver parameters does not dete-

riorate the performance of the solver as we observe the solver very rarely performs extra

computations after the optimal solution is found to fill the feasible solution pool. These

extra feasible solutions are likely assignment patterns with favorable reduced costs and can

potentially reduce the number of times the pricing problems are solved.

The detailed computational results for the small-sized instances are shown in Table

2.4. We see that our proposed approaches out-perform the Gurobi solver (S) in all six

instances, even with just the dynamic programming algorithm alone (DP). While the ap-

proximation algorithms are designed to provide additional improvements relative to the

dynamic programming algorithm, however, they do not offer any substantial boost in these

small instances and, on the contrary, we see the dynamic programming algorithm alone

achieves better computation time. In addition, the binary program solutions obtained with

different methods differ in some of instances. This is likely due to three methods, namely,

DP, SM, and ADP, are generating different patterns. In general, if we increase the size of

the instance, it becomes more difficult to solve. We observe that the flight to gate ratio has

36

an impact on the time. In particular, although instance 1 is smaller in size than instances 2

and 4 are, it takes longer to solve than both instances 2 and 4 do. The flight to gate ratio

determines how congested the gates are. The higher the ratio, the larger the number of

flights each gate on average has to accept. Instances with higher ratio require more delicate

assignments. Furthermore, in contrast to the worse case theoretical analysis, the dynamic

programming algorithm performs well. This is likely due to the fact that the inter-arrival

times are much shorter than the processing times and consequently many recursive calls to

the evaluation oracle have input t beyond the corresponding flights’ acceptance windows.

Table 2.4: Pricing problem methods on small-sized instances.

instance methods ct(sec.) rt(sec.) LBroot UBroot gaproot(%) final obj. node(s)

1

(f30g5s)

S 130.71 130.71 1203.26 1203.26 0.00 1203.26 1

DP 68.83 68.83 1203.26 1203.26 0.00 1203.26 1

SM+DP 48.46 27.52 1203.26 1448.98 20.4 1203.26 3

ADP+DP 33.64 33.64 1203.26 1203.26 0.00 1203.26 1

2

(f30g10s)

S 26.52 26.52 258.53 258.53 0.00 258.53 1

DP 2.15 2.15 258.53 258.53 0.00 258.53 1

SM+DP 0.63 0.63 258.53 258.53 0.00 258.53 1

ADP+DP 3.52 3.52 258.53 258.53 0.00 258.53 1

3

(f50g10s)

S 91.85 91.85 74.73 74.73 0.00 74.73 1

DP 39.86 25.52 74.73 77.84 4.00 74.73 5

SM+DP 38.60 26.73 74.73 80.79 7.50 74.73 5

ADP+DP 30.79 30.79 74.73 74.73 0.00 74.73 1

4

(f50f20s)

S 47.63 47.63 18.64 18.64 0.00 18.64 1

DP 1.72 1.72 18.64 18.64 0.00 18.64 1

SM+DP 1.44 1.44 18.64 18.64 0.00 18.64 1

ADP+DP 10.07 10.07 18.64 18.64 0.00 18.64 1

5

(f100g35s)

S 1495.42 1495.42 1.66 1.66 0.00 1.66 1

DP 189.61 37.92 1.66 1.88 11.70 1.66 26

SM+DP 20.67 20.67 1.66 1.66 0.00 1.66 1

37

Table 2.4 continued

ADP+DP 46.89 46.89 1.66 1.66 0.00 1.66 1

6

(f100g50s)

S 1893.26 1893.26 1.14 1.14 0.00 1.14 1

DP 17.89 17.89 1.14 1.14 0.00 1.14 1

SM+DP 10.06 10.06 1.14 1.14 0.00 1.14 1

ADP+DP 29.67 29.67 1.14 1.14 0.00 1.14 1

Moderate-sized instances.

Next we show the computational results for the moderate-sized instances. As we have

seen that the solver option is not as effective as other options are in solving the small-

sized instances, only the options of DP, SM+DP, and ADP+DP are considered in this set of

experiments. As we pointed out previously, we run 70 iterations of SM and 25 iterations of

ADP across all instances.

The results are shown in Table 2.5. We see the same trend of longer time taken to

solve an instance of larger size. Since the flight to gate ratios are small for these moderate-

sized instances, we do not see any obvious impact of the ratio. The boost in performances

from the submodular maximization approximation algorithm is much more obvious in the

moderated-sized instances and in some cases, the approximative dynamic programming

algorithm improves the computation time. The running time of either approximation al-

gorithm increases linearly with the size of the set of flights. Given a larger set of flights,

each iteration of the approximation algorithm takes much less time compared to each itera-

tion of the dynamic programming algorithm. Nonetheless, we observe that the submodular

maximization out-performs the approximative dynamic programming in all instances as

the assignment patterns that are generated by the submodular maximization are usually of

better total net benefits than those that are generated by the approximative dynamic pro-

gramming. Moreover, we observe small variations in the times taken across instances of

the same size and this suggests that besides the sizes of the set of flights and the set of

gates, other factors associated with the flights and the gates can complicate the problem. In

addition, although we see that even though some of the synthetic instances and real world

instances have the same number of flights and gates, the performances are very different

38

and it is likely due to arrivals in the real world instances are much more complex than those

in the synthetic instances.

Table 2.5: Pricing problem methods on moderate-sized instances.

instance methods ct(sec.) rt(sec.) LBroot UBroot gaproot(%) final obj. node(s)

7

(f150g50s1)

DP 770.74 479.53 0.0 0.69 0.69(a) 0.0 82

SM+DP 346.58 346.58 0.0 0.0 0.00(a) 0.0 1

ADP+DP 985.58 985.58 0.0 0.22 0.22(a) 0.22 1

8

(f150g50s2)

DP 2108.45 1866.29 0.90 1.11 23.3 0.9 23

SM+DP 486.85 156.04 0.90 5.32 491 0.9 50

ADP+DP 1034.31 631.49 0.9 1.90 52.6 0.9 50

9

(f150g50s3)

DP 1185.55 1185.55 10.74 10.74 0.00 10.74 1

SM+DP 439.70 439.70 10.74 10.74 0.00 10.74 1

ADP+DP 498.51 498.51 10.74 10.74 0.0 10.74 1

10

(f200g100a1)

DP 5002.04 5002.04 0.0 0.0 0.00(a) 0.0 1

SM+DP 929.45 929.45 0.0 0.0 0.00(a) 0.0 1

ADP+DP 4689.39 4689.39 0.0 0.0 0.00(a) 0.0 1

11

(f200g100a2)

DP 2883.41 2883.41 0.0 0.0 0.00(a) 0.0 1

SM+DP 570.75 570.75 0.0 0.0 0.00(a) 0.0 1

ADP+DP 3168.33 3168.33 0.0 0.0 0.00(a) 0.0 1

12

(f300g150s1)

DP 8918.69 8918.69 349.10 349.10 0.00 349.10 1

SM+DP 2833.93 2833.93 349.10 349.10 0.00 349.10 1

ADP+DP 6891.40 6891.40 349.10 349.10 0.00 349.10 1

13

(f300g150s2)

DP 7927.31 7927.31 203.00 203.00 0.00 203.00 1

SM+DP 3111.97 3111.97 203.10 203.10 0.00 203.10 1

ADP+DP 6284.43 6284.43 203.10 203.10 0.00 203.10 1

14

(f300g150s3)

DP 7830.18 7830.18 414.12 414.12 0.00 414.12 1

SM+DP 4570.69 4570.69 414.12 414.12 0.00 414.12 1

ADP+DP 8734.09 8734.09 414.12 414.12 0.00 414.12 1

15

(f300g150a1)

DP 25132.32 25132.32 0.0 0.0 0.00(a) 0.0 1

SM+DP 14032.56 14032.56 0.0 0.0 0.00(a) 0.0 1

39

Table 2.5 continued

ADP+DP 23449.23 23449.23 0.0 0.0 0.00(a) 0.0 1

16

(f300g150a2)

DP 15249.75 15249.75 0.0 0.0 0.00(a) 0.0 1

SM+DP 13052.81 13052.81 0.0 0.0 0.00(a) 0.0 1

ADP+DP 19874.84 19874.84 0.0 0.0 0.00(a) 0.0 1

Large-sized instances.

Following the experiments on the moderate-sized instances, we move on to the large-

sized instances. As we discussed in the Subsection 2.4.5, we can utilize the block decom-

position approximation and rolling horizon framework to tackle the large-sized instances.

The horizon size and window size are important parameters in the rolling horizon frame-

work. We first perform parametric studies to understand how the horizon size and window

size affect the performances. We vary the horizon size and window size to test the perfor-

mances of the rolling horizon method on random large-sized instances. We observe that for

any window size, smaller horizon sizes result in better performances. However, very small

horizon size does not further reduce the time taken as the quality of the assignment patterns

that are generated under small horizon sizes is poor and more iterations are needed to reach

the optimality.

For the large-sized instances, we again have a few possible ways to solve the pricing

problems because we can either use a fixed or a dynamically determined horizon size for

the rolling horizon method and also utilize the approximation algorithms. Here is a detailed

breakdown:

1. Rolling horizon method (horizon size: σ, window size: 1) (RHD)

2. Rolling horizon method (horizon size: 20, window size: 1) (RHF)

3. Rolling horizon method (horizon size: min(20, σ), window size: 1) (RHM)

40

4. Submodular maximization if σ > 60 in the first 25 iterations and rolling horizon

method otherwise (horizon size: min(20, σ), window size: 1) (SM+RHM)

5. 30 iterations of block decomposition approximation followed by the rolling horizon

method (horizon size: σ, window size: 1) (BD+RHD)

where σ is the adjacency parameter that depends on the values of the dual variables as

described in Subsection 2.4.5. Furthermore, submodular maximization can generally pro-

vide assignment patterns of good quality and has a linear running time in the size of the

set of flights, so its performance remains very effective for these large-sized instances.

It can potentially improve the performances and serve as a benchmark for the block de-

composition approximation. Note that whenever an algorithm is needed to evaluate the

optimal assignment during the rolling horizon process or the block decomposition approx-

imation, the direct implementation of the dynamic programming algorithm (Algorithm 2)

is used. Again, for these large-sized instances, we use the same parameters across different

instances and there can be potential improvements if parameters are tuned for individual

cases. Nonetheless, we present results with a fixed set of parameters which still confirm

the strong performances of our proposed approaches.

The results of the computations are shown in Table 2.6. After extensive experiments,

we observe that the adjacency parameters, σ, can be very large at beginning and, con-

sequently, the options of RHD and BD+RHD that involve decomposition based on these

parameters become very ineffective and unable to obtain a good solution within the al-

located time limit. Therefore, we do not report the results of these two options in Table

2.6. From the results in the table, we see the rolling horizon method with a fixed horizon

size performs much better than the same method with a horizon size of σ which struggles to

solve these large-sized instances. If we further keep the horizon size at most 20 in the RHM

option, we obtain comparable if not slightly better performances in all instances compared

to the rolling horizon method with a fixed horizon size. However, submodular maximiza-

tion algorithm efficiently provides assignment patterns of good quality when σ is large and

improves the performances compared to both RHF and RHM options in all instances. The

benefits of using submodular maximization algorithm is especially significant in the cases

41

derived from ATL arrivals. The reductions in computation time can be as large as about

50%. For instances 33-37, we show that our proposed approach can solve the flight-to-gate

problem with arrivals in a single day for the busiest airport in the world within very reason-

able amount of time.

Table 2.6: Pricing problem methods on large-sized instances.

instance methods ct(sec.) rt(sec.) LBroot UBroot gaproot(%) final obj. node(s)

17

(f800g200s1)

RHF 1160.33 1160.33 0.0 0.0 0.00(a) 0.0 1

RHM 1147.62 1147.62 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1067.63 1067.63 0.0 0.0 0.00(a) 0.0 1

18

(f800g200s2)

RHF 1166.7 1166.7 0.0 0.0 0.00(a) 0.0 1

RHM 1076.56 1076.56 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1010.11 1010.11 0.0 0.0 0.00(a) 0.0 1

19

(f800g200s3)

RHF 1015.80 1015.80 0.0 0.0 0.00(a) 0.0 1

RHM 899.28 899.28 0.0 0.0 0.00(a) 0.0 1

SM+RHM 975.88 975.88 0.0 0.0 0.00(a) 0.0 1

20

(f800g200a1)

RHF 2313.15 2313.15 0.0 0.0 0.00(a) 0.0 1

RHM 2381.8 2381.8 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1570.65 1570.65 0.0 0.0 0.00(a) 0.0 1

21

(f800g200a2)

RHF 2033.91 2033.91 0.0 0.0 0.00(a) 0.0 1

RHM 2138.42 2138.42 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1708.62 1708.62 0.0 0.0 0.00(a) 0.0 1

22

(f800g200a3)

RHF 2658.21 2658.21 0.0 0.0 0.00(a) 0.0 1

RHM 2673.93 2673.93 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1714.31 1714.31 0.0 0.0 0.00(a) 0.0 1

23

(f800g200a4)

RHF 2457.84 2457.84 0.0 0.0 0.00(a) 0.0 1

RHM 2444.43 2444.43 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1769.04 1769.04 0.0 0.0 0.00(a) 0.0 1

24

(f800g200a5)

RHF 30932.55 3093.55 0.0 0.0 0.00(a) 0.0 1

RHM 2989.79 2989.79 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1818.73 1818.73 0.0 0.25 0.25(a) 0.25 1

25

(f1000g200s1)

RHF 1675.46 1675.46 0.0 0.0 0.00(a) 0.0 1

42

Table 2.6 continued

RHM 1540.65 1540.65 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1440.66 1440.66 0.0 0.0 0.00(a) 0.0 1

26

(f1000g200s2)

RHF 2286.41 2286.41 0.0 0.0 0.00(a) 0.0 1

RHM 1959.05 1959.05 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1843.98 1843.98 0.0 0.0 0.00(a) 0.0 1

27

(f1000g200s3)

RHF 1720.46 1720.46 0.0 0.0 0.00(a) 0.0 1

RHM 1585.0 1585.0 0.0 0.0 0.00(a) 0.0 1

SM+RHM 1580.16 1580.16 0.0 0.0 0.00(a) 0.0 1

28

(f1000g200a1)

RHF 5858.02 5858.02 0.0 0.0 0.00(a) 0.0 1

RHM 6354.51 6354.51 0.0 0.0 0.00(a) 0.0 1

SM+RHM 3407.24 3407.24 0.0 0.0 0.00(a) 0.0 1

29

(f1000g200a2)

RHF 7270.22 7270.22 0.0 0.0 0.00(a) 0.0 1

RHM 7342.51 7342.51 0.0 0.0 0.00(a) 0.0 1

SM+RHM 3206.97 3206.97 0.0 0.0 0.00(a) 0.0 1

30

(f1000g200a3)

RHF 4922.02 4922.02 0.0 0.0 0.00(a) 0.0 1

RHM 4844.84 4844.84 0.0 0.0 0.00(a) 0.0 1

SM+RHM 3701.92 3701.92 0.0 0.0 0.00(a) 0.0 1

31

(f1000g200a4)

RHF 5897.09 5897.09 0.0 0.0 0.00(a) 0.0 1

RHM 5715.54 5715.54 0.0 0.0 0.00(a) 0.0 1

SM+RHM 3093.73 3093.73 0.0 0.0 0.00(a) 0.0 1

32

(f1000g200a5)

RHF 4913.89 4913.89 0.0 0.0 0.00(a) 0.0 1

RHM 4654.29 4654.29 0.0 0.0 0.00(a) 0.0 1

SM+RHM 2966.66 2966.66 0.0 0.0 0.00(a) 0.0 1

33

(f1113g192a19)

RHF 6305.36 6305.36 0.0 0.0 0.00(a) 0.0 1

RHM 6177.28 6177.28 0.0 0.0 0.00(a) 0.0 1

SM+RHM 3865.39 3865.39 0.0 0.0 0.00(a) 0.0 1

34

(f1095g192a20)

RHF 5763.05 5763.05 0.0 0.0 0.00(a) 0.0 1

RHM 6808.54 6808.54 0.0 0.0 0.00(a) 0.0 1

SM+RHM 3420.51 3420.51 0.0 0.0 0.00(a) 0.0 1

35

(f1092g192a21)

RHF 7156.45 7156.45 0.0 0.0 0.00(a) 0.0 1

RHM 8568.96 8568.96 0.0 0.0 0.00(a) 0.0 1

43

Table 2.6 continued

SM+RHM 3603.5 3603.5 0.0 0.0 0.00(a) 0.0 1

36

(f1125g192a22)

RHF 8384.49 8384.49 0.0 0.0 0.00(a) 0.0 1

RHM 9347.75 9347.75 0.0 0.0 0.00(a) 0.0 1

SM+RHM 4279.68 4279.68 0.0 0.0 0.00(a) 0.0 1

37

(f1125g192a23)

RHF 7784.41 7784.41 0.0 0.0 0.00(a) 0.0 1

RHM 7727.33 7727.33 0.0 0.0 0.00(a) 0.0 1

SM+RHM 4325.52 4325.52 0.0 0.0 0.00(a) 0.0 1

2.6.4 Summary of the computational results

In summary, it seems that the dynamic programming algorithm together with the sub-

modular maximization offer the best performance for the small-sized and moderate-sized

problems. For the large-sized instances, it seems that running the submodular maximiza-

tion algorithm when σ is large and using the rolling horizon method while keeping the

horizon sizes at most 20 otherwise lead to the best performances. Moreover, the binary

program produces feasible solutions of good quality for almost all instances as the gaps

are usually very small. The amount of time taken to obtain those feasible solutions is also

reasonable in practice.

Finally note that all instance data can be accessed online at the authors’ websites.

2.7 Conclusion

In conclusion, we use a column generation approach to solve the flight-to-gate assign-

ment problem aimed at minimizing the total arrival delays. Instead of using the integer pro-

gram solver for the pricing problem, more efficient approximation algorithms and dynamic

programming algorithms are proposed. Among the proposed algorithms, submodular max-

imization algorithm shows very strong performances on the small and medium-sized in-

stances and together with the rolling horizon framework, it allows us to obtain solutions of

44

very good quality very efficiently for the large-sized instances.

There are few possible extensions to consider. One of them is to consider the interfer-

ence between different gates. With different airport layouts, this can be realized by linking

constraints in the master problem or a decomposition of the pricing problem by gate groups

instead of by each individual gate. Another extension is to take the uncertainties in the ar-

rival times and turn times into consideration. A stochastic programming approach may be

suitable to tackle this version of the problem.

2.8 Appendix A. Proof of Theorem 2.4.1

This proof is given in [35] and we modified it to match our assumption.

Let OPT denote an optimal solution and OPTi := (OPT ∪ Xi) ∩ Yi, then we have that

OPT0 = OPT and OPTn = Xn = Yn. Here are two useful lemmas to be used later in the

proof of the theorem.

Lemma 2.8.1. For every 1 ≤ i ≤ n, ai + bi ≥ 0.

Proof. Proof of Lemma 2.8.1. Note that if f is a submodular function with a ground set

F ′, we have that if A,B ⊂ F ′, f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Now, we see that (Xi−1 ∪ {ui})∪ (Yi−1\{ui}) = Yi−1 and (Xi−1 ∪ {ui})∩ (Yi−1\{ui}) =

Xi−1. Then by the above definition, we have that

ai + bi = [f(Xi−1 ∪ {ui})− f(Xi−1)] + [f(Yi−1 ∪ {ui})− f(Yi−1)] (2.8.1)

= [f(Xi−1 ∪ {ui}) + f(Yi−1\{ui})]− [f(Xi−1) + f(Yi−1)] ≥ 0. (2.8.2)

Lemma 2.8.2. For every 1 ≤ i ≤ n,

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] (2.8.3)

45

Proof. Proof of Lemma 2.8.2. It is sufficient to prove (2.8.3) conditioned on any event of

the form Xi−1 = Si−1, when Si−1 = {u1, · · · , ui−1} and the probability Xi−1 = Si−1 is

non-zero. Hence fix such an event for a given Si−1. The rest of the proof implicitly assumes

everything is conditioned on this event. Note due to conditioning, the following quantities

become constants,

• Yi−1 = Si−1 ∪ {ui, · · · , un}

• OPTi−1 := (OPT ∪Xi−1) ∩ Yi−1 = Si−1 ∪ (OPT ∩ {ui, · · · , un})

• ai and bi.

From Lemma 2.8.1, we have ai + bi ≥ 0, so we only need to consider three cases.

1. ai ≥ 0 and bi < 0. In this case, a′i/(a
′
i + b′i) = 1. Then we have Yi = Yi−1 and

Xi = Si−1 ∪ {ui}. Hence f(Yi−1)− f(Yi) = 0. Also, OPTi = (OPT ∪Xi) ∩ Yi =

(OPT ∪Xi−1 ∪ {ui}) ∩ Yi−1 = OPTi−1 ∪ {ui}. Then we are left to prove that

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
1

2
[f(Xi)− f(Xi−1)] =

ai
2
. (2.8.4)

If ui ∈ OPTi−1, then the left hand side is zero and this inequality is satisfied. If

ui /∈ OPTi−1, then we note that

OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1 ⊆ Yi−1\{ui}. (2.8.5)

Next, by the definition of submodularity of f , we have now

f(OPTi−1)−f(OPTi−1∪{ui}) ≤ f(Yi−1\{ui})−f(Yi−1) = bi ≤ 0 ≤ ai
2
. (2.8.6)

2. ai < 0 and bi ≥ 0. This case is analogous to the previous case.

46

3. ai ≥ 0 and bi > 0. In this case, we have a′i = ai and b′i = bi. Then we can compute

the left hand side of (2.8.3) by

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
[f(Xi−1 ∪ {ui})− f(Xi−1)]

+
bi

ai + bi
[f(Yi−1 ∩ {ui})− f(Yi−1)]

(2.8.7)

=
a2i + b2i
ai + bi

. (2.8.8)

Next we upper bound E[f(OPTi−1)− f(OPTi)],

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
[f(OPTi−1)− f(OPTi−1) ∪ {ui}]

+
bi

ai + bi
[f(OPTi−1)− f(OPTi−1\{ui})] (2.8.9)

≤ aibi
ai + bi

. (2.8.10)

Last inequality follows from the following cases. Note that ui ∈ Yi−1 and ui /∈ Xi−1,

(a) ui /∈ OPTi−1, then we note that the second term of the left hand side the last

inequality is zero and

OPTi−1 = (OPT ∪Xi−1) ∩ Yi−1 ⊆ Yi−1\{ui}. (2.8.11)

Next, by the definition of submodularity of f , we have now

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤ f(Yi−1\{ui})− f(Yi−1) = bi. (2.8.12)

(b) ui ∈ OPTi−1, then we note that the first term of the left hand side the last

47

inequality is zero and

Xi−1 ⊆ (OPT ∪Xi−1) ∩ Yi−1\{ui} = OPTi−1\{ui}. (2.8.13)

Next, by the definition of submodularity of f , we have now

f(OPTi−1)− f(OPTi−1\{ui}) ≤ f(Xi−1 ∪ {ui})− f(Xi−1) = ai. (2.8.14)

Then with (2.8.8) and (2.8.10), we are left to verify

aibi
ai + bi

≤ 1

2

(
a2i + b2i
ai + bi

)
, (2.8.15)

which can be easily verified.

With the two Lemmas, we are ready to show the approximation guarantee of the algo-

rithm.

Proof. Proof of Theorem 2.4.1. If we sum all inequalities from lemma 2.8.2 over 1 ≤ i ≤

n, we have that

n∑
i=1

E[f(OPTi−1)− f(OPTi)] ≤
1

2

n∑
i=1

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)]

(2.8.16)

=⇒ E[f(OPT0)− f(OPTn)] ≤
1

2
E[f(Xn)− f(X0) + f(Yn)− f(Y0)]. (2.8.17)

Note that X0 = ∅, so we have f(X0) = 0 and by our assumption we have f(Y0) = f(F ′) ≥

0. In addition, we have OPT0 = OPT and OPTn = Xn = Yn, so (2.8.17) gives that

f(OPT) ≤ 1

2
E[2f(Xn)− f(Y0)] + Ef(Xn) ≤

1

2
E[2f(Xn)] + Ef(Xn) =⇒ 1

2
f(OPT) ≤ Ef(Xn).

48

2.9 Appendix B. Rational input data for dynamic programming algorithm

Recall a direct implementation of the dynamic programming algorithm terminates with

a worst case 2n recursive calls as proven in Proposition 2.4.1. We can improve the com-

plexity significantly if we further assume all input data are rationals and run a backward

version of the dynamic programming algorithm. Input data includes all input parameters

to the pricing problems, namely the arrival times, ai, the dual information, πi, and the pro-

cessing time, pi. Without loss of generality, we assume the input data are expressed as

rationals with a common denominator. We introduce a new notion of last time to consider

for the pricing problems, denoted by c. This is the time beyond which no further flights are

accepted. It suffices to choose c as an + max1≤i≤n πi. For any flight j, if we consider the

function gj(t) with t > c, we get that t > al + πl for j ≤ l ≤ n. Consequently the function

value gj(t) = gl(t) = gn+1(t) = 0 and xlk = 0 for j ≤ l ≤ n.

For every i ∈ [n], we see that the function gi(t) is piece-wise linear and we label the

points where the slope of the function changes as the breakpoints of the function. When

we have integral input data, each gi(t) does not have too many breakpoints. The following

theorem gives a formal statement about this observation.

Theorem 2.9.1. Assume all input data are rational and c is last time to consider. Let

the common denominator be d, then each function gi(t) for i ∈ [n] has at most O(n2dc)

breakpoints.

To prove Theorem 2.9.1, we first consider the possible slopes for a particular function

gn−i(t).

Lemma 2.9.1. Given a function gn−i(t), its slope can only take values from the set {0,−1, · · · ,−i−

1}

49

proof of Lemma 2.9.1. We prove this lemma by backward induction. We observe that the

function gn(t) is given by

gn(t) =

πn if t ≤ an

an + πn − t if an < t ≤ an + πn

0 if t > an + πn.

(2.9.1)

The set of slopes of function gn(t) is {0,−1}. This is the base case of n. Suppose

the statement is true for n, n − 1, · · · , n − i. Then the set of possible slopes of gn−i(t) is

{0,−1, . . . ,−i− 1}. Now consider the function gn−i−1(t), based on the recursive formula

(2.4.5),

gn−i−1(t) =

gn−i−1(ai) if t ≤ an−i−1

gn−i(t) if t > an−i−1 + πn−i−1

max{an−i−1 + πn−i−1 − t+ gn−i(t+ pn−i−1), gn−i(t)} if an−i−1 < t ≤ an−i−1 + πn−i−1.

(2.9.2)

In the second case, the set of possible slopes of gn−i−1(t) is the same as that of gn−i(t). In

the third case, gn−i−1(t) can have an additional slope than gn−i does. If gn−i(t + pn−i−1)

has a slope of −i− 1, the slope of gn−i−1(t) can be −i− 2. Therefore, the set of possible

slopes of gn−i−1 is {0,−1, . . . ,−i−2}. Thus the statement is also true for n− i−1, which

completes the proof.

Intuitively, the slope of the function corresponds to the rate of loss in the total net

benefits if we delay the park times of flights. For the flight n − i, it can only potentially

affect the park times of itself and flights after it, i.e. from the set {n− i, n− i+ 1, . . . , n}

and the corresponding function gn−i(t) can have slopes from the set {0,−1, . . . ,−i− 1}.

Now we are ready to give a proof of theorem 2.9.1.

proof of Theorem 2.9.1. Consider a function gn−i(t), from the recursive formula (2.4.5),

50

we observe that all the potential breakpoints can be computed by equating the two compo-

nents in the max expression. The solution of t may constitute a breakpoint of gn−i. As a

result, we consider the following linear equation

(an−i + πn−i − t) + gn−i+1(t+ pi) = gn−i+1(t). (2.9.3)

Functions gn−i+1(t+ pi) and gn−i+1(t) are piece-wise linear in variable t. We can write

gn−i+1(t+ pi) = c1 − k1t and gn−i+1(t) = c2 − k2t, (2.9.4)

where c1 and c2 are rational constants and k1 and k2 are integer constants. We only consider

cases where k1 + 1 ̸= k2, otherwise the two functions on the left hand side and right hand

side of (2.9.3) have the same slope and do not constitute a breakpoint. Now equation (2.9.3)

can be rewritten as

an−i + πn−i − t+ c1 − k1t = c2 − k2t =⇒ t =
|an−i + πn−i + c1 − c2|

|k1 + 1− k2|
. (2.9.5)

As shown in lemma 2.9.1, k1 and k2 only take values from the set {0,−1, . . . ,−i} and

thus |k1 + 1 − k2| can only take values from the set {1, . . . , i + 1}. In addition, since the

input data are rationals with a common denominator d, the numerator an−i+πn−i+ c1− c2

can be expressed as C/d where C is an integer. Then all the breakpoints of function gn−i(t)

are in the set

{0, e, 2e, 3e, . . . , c} where e ∈ {1/d, 1/2d, 1/3d, . . . , 1/(i+ 1)d}. (2.9.6)

The total number of breakpoints is then at most 1dc + 2dc + 3dc + · · · + (i + 1)dc =

O(n2dc), which completes the proof.

Note that since each of the functions gi(t) has at most O(n2dc) breakpoints, we only

51

need to evaluate the function at these potential breakpoints to construct the function and

consequently we need to run in O(n3dc) to construct all functions gi(t) in the interval

[0, c]. In particular, note that only the function values at the points in the list of the potential

breakpoints are needed since the functions are all piece-wise linear. We can first construct

the function gn(t) in the interval [0, c] by evaluating the function at the points in the list of

the potential breakpoints given in (2.9.6) in reverse order and then we construct the function

gj(t) for 1 ≤ j ≤ n − 1 using previously constructed functions gl(t) for j + 1 ≤ l ≤ n

based on the recursive formula (2.4.5).

Although the above analyses provide a simpler complexity in the case of rational input

data, it is not very effective in practice as the common denominator d can be large after

scaling the input data.

2.10 Appendix C. Rolling horizon method

The rolling horizon framework can also be utilized to decompose the pricing problems

to reduce their sizes. As with any implementation of the rolling horizon method, we must

decide on two parameters. One is the horizon size and the other is the window size. The

horizon size can be either fixed or dynamically determined for each gate and each iteration.

The adjacency parameter given in Definition 2.4.1 is an example of possible dynamically

determined horizon sizes. We give a brief implementation of the rolling horizon method in

Algorithm 5 that we have implemented in our experiments. Similar to the block decom-

position approximation algorithm, we refer to the discussions in Subsection 2.4.2 for the

computation of the total net benefits f(S) and the time at which the gate becomes available

under a set of assigned flights.

52

Algorithm 5: Rolling horizon
1 Input: horizon size, l, and window size, w
2 Initialize s = 0, t = 0, and S = ∅
3 while s+ l ≤ n do
4 Solve for the optimal assignment for the flights {s+ 1, s+ 2, . . . , s+ l} at

time t
5 Fix the assignments of first w flights and add them to S
6 t←

time at which the gate becomes available under the set of assigned flights S
7 s← s+ w

8 end
9 Solve for the optimal assignment for the flights {s+ 1, s+ 2, . . . , n} at time t

10 Fix the assignments of the flights {s+ 1, s+ 2, . . . , n} and add them to S
11 Compute the total net benefits of the assignment S, f(S) return S, f(S)

53

CHAPTER 3

A DECOMPOSITION FRAMEWORK FOR GAS NETWORK DESIGN

3.1 Introduction

Natural gas is a very important and common resource for both residential and industrial

customers around the world. In the United States alone, a total of 27.7 trillion cubic feet

of natural gas were delivered to 77.3 million customers in 2020 ([42]). To transport natural

gas to meet this demand, a natural gas transportation system has been developed which

was worth $187.9 billion in 2020 ([43]). A gas transportation system is usually modeled

as a directed graph where the nodes can be customers with demands, manufacturers with

supplies, or in-nodes that do not have either demands or supplies, while the arcs represent

various system components. Modeling and optimizing gas transportation systems is very

challenging due to the complex nature of the physical principles governing the operations

of the system components. Generally, these models involve nonlinear and non-convex

constraints. Even simple models of the system components lead to challenging problems,

as the scale of realistic instances is quite large compared to what state-of-the-art solvers

can tackle.

In general, the system components (the arcs) can be divided into pipes, short pipes,

resistors, compressors, valves, and control valves. Pipes constitute the majority of the

system components. Control valves are sometimes referred to as regulators as well. Each

of the system components serves a different role. The components can be grouped into

passive components and active components. Pipes, short pipes, and resistors are passive

system components and do not have on and off states. Compressors, control valves, and

valves are active system components with on and off states. There are several types of gas

network optimization problems. Most problems involve the decision on the flowrates in

54

the arcs and the potentials at the nodes. Commonly used benchmarking instances are based

on the Belgian network ([44] and [45]) of size up to 23 nodes and the Gaslib networks of

various sizes up to 4197 nodes ([46]).

In this chapter, we study the design problem, which considers a given set of pipe lo-

cations. The main decisions involve choosing the pipe diameters, the states for valves,

compressors, and control valves, and flowrates and potentials to transport gas to satisfy the

given demand and supply scenarios while minimizing the network construction costs. We

call this version of design problem the design-from-scratch variant, different from the re-

inforcement version; details are provided in Section 3.2. The demand and supply scenarios

are commonly referred to as nominations.

The main contributions of this chapter are the following. We propose a decomposition

framework that involves an iterative procedure of solving a convex integer master problem

and a verification subproblem for the solutions obtained from the master problem, and

a binary search to minimize the construction cost of the pipes. We use the Gaslib-582

network with 582 nodes to validate our framework. To the best of our knowledge, this is

the first study that solves the gas network design problem on such large-scale instances.

Previous literature (reviewed below in Section 3.2) on design-from-scratch version of the

problem has not considered any instance with over 500 nodes, and these works do not

simultaneously consider active elements, discrete diameter choices, and general (non-tree)

underlying networks.

The structure of the remainder of this chapter is as follows. We give a summary of

the relevant literature in Section 3.2. Section 3.3 presents the technical background and

a compact formulation for the design problem while Section 3.4 presents the decomposi-

tion framework. Implementation considerations and numerical experiments to validate the

decomposition framework are presented in Section 3.5. Lastly, in Section 3.6, we present

concluding remarks and future research directions.

55

3.2 Literature review

Gas network systems have been an important topic of study in the past several decades.

As the relevant literature is rather extensive, here we review only works that are most

closely related to ours. For a detailed review of the literature, we refer the interested readers

to [47] and [48]. In addition, [49] provides an overview on the modeling and common

solution approaches in gas network systems.

Among the types of problems studied, we focus below on two relevant problem types,

the nomination validation problem and design problem. In the nomination validation prob-

lem, we assume a nomination is given. In the case where active system components are

not considered, the problem aims to evaluate whether the existing network topology is fea-

sible with respect to the given nomination. In the case where active system components

are involved, the problem aims to determine whether there exist feasible configurations

for the active system components along with rest of the components such that the result-

ing network is feasible with respect to the nomination. Work in this area includes [50,

51, 52, 53, 45, 54, 55, 56, 57]. In particular, [50] presents a convexification scheme to

find the convex hull of a “Y” junction in the network to deal with the non-convex con-

straints arising from the governing physical principles. The paper by [51] presents four

approaches for solving nomination validation problems. The first approach is a piece-wise

linear approximation scheme that utilizes the generalized incremental model to linearize

the nonlinear constraints; the approximation is improved iteratively by adding more lin-

earization points. The second approach is a spatial branch-and-bound algorithm, which

iteratively partitions the feasible region and refines the estimations and relaxations of the

original problem in each partition to obtain dual bounds on the solution. The next approach

in [51] is called RedNLP, a two-stage procedure, in which heuristics and reformulations

are employed to find promising configurations of the active system components and the

feasibility of configurations is checked in the second stage. The last approach considered

56

is called the smoothing procedure, commonly used for mathematical programs with equi-

librium constraints, to model the discrete decisions corresponding to the configurations

of the active system components with continuous variables. Numerical experiments and

comparisons across the four approaches are performed on the Gaslib-582 network. Over-

all, the spatial branch-and-bound outperforms the other three approaches. The papers by

[52] and [53] consider additional constraints of satisfying heat-power demand and supply

in the nomination validation problem. In both works, an alternating direction method is

applied to a linearized approximation model and numerical experiments are performed on

the Gaslib-4197 network.

The design problem can be divided into the reinforcement problem and the design-

from-scratch problem. In the reinforcement problem, it is assumed that an existing topol-

ogy is given. The problem considers the options to install additional system components,

mostly pipes and compressors, to satisfy a given nomination while minimizing the con-

struction costs of the new system components. The cost of a new pipe is usually a function

of its diameter and, as a result, diameter selection becomes a decision for the pipes. The

design-from-scratch problem assumes no existing pipes in the network and makes decisions

on the diameters for all pipes. In both the reinforcement problem and the design-from-

scratch problem, the diameter choices can be continuous or discrete. Recent works that

study the reinforcement problem include [58, 59, 60, 44, 61]. In particular, [58] considers

the reinforcement problem with continuous diameters and utilizes a two-stage formula-

tion. The first-stage problem is a convex nonlinear program to compute favorable diameter

choices and flowrates, while the second-stage problem checks whether the first-stage so-

lution is feasible with respect to the nomination by solving for the potential at each node.

This convex program was formally introduced in [62] and adapted to solve a network prob-

lem in [63]. The numerical experiments were performed on the Belgian network. The

work in [59] considers also a reinforcement problem with discrete diameters. To deal with

the non-convexity from the governing physical principles, the paper considers reformula-

57

tions and a convex relaxation which is second-order conic representable. These authors

also utilize perspective strengthening that is studied in [64] and [65] to enhance the re-

laxation. Numerical experiments were performed on both Belgian and Gaslib networks.

For the design-from-scratch problem, [60] considers discrete diameter choices without any

active components. A bilevel formulation is proposed and in solving the formulation, the

discrete variables corresponding to the discrete diameter choices are first transformed to

continuous variables. Subsequently, the lower-level problem is reformulated via conjugate

duality while a trust region algorithm is developed for the upper-level problem. Numerical

experiments were performed using two networks of size up to 14 nodes. The paper by [44]

studies a variant of the design-from-scratch problem with continuous diameter choices and

solve the model by a bundle method with generalized gradient. Numerical experiments are

performed with the Belgian network. Lastly, [61] consider the problem on a tree-shaped

network with continuous diameter and “approximate discrete diameter” obtained from the

optimal continuous diameter. These authors develop an iterative procedure to solve the

problem; their approach contracts the tree (network) converting the original tree into a sin-

gle equivalent arc. Numerical illustrations of this procedure were performed on networks

of size up to 36 nodes.

3.3 Problem description

3.3.1 Technical background

In this section, we provide necessary technical background on gas networks that we

will need for our formulations later. For more details, we refer the interested readers to

[66, 51, 46, 49]. For the remainder of this chapter, we use a directed graph G = (V ,A)

to represent a gas network, where each arc a ∈ A represents a system component of the

network and each node v ∈ V can be a customer, a manufacturer, or an in-node. For each

node v ∈ V we track its pressure pv and potential πv, where the pressure and potential are

58

related by the equation:

πv = p2v. (3.3.1)

We denote lower and upper bounds on the potential at a node v by πmin
v and πmax

v respec-

tively.

Pipes: as mentioned earlier, a majority of the arcs in gas networks is pipes. A pipe

a = (v, w) is specified by its length l, diameter D, and material properties. The flowrate

in arc a, denoted as qa, is upper bounded by a value qmax
a which is determined by the cross-

sectional area, A := πD2/4, and material properties. We assume a linear relation between

the value of qmax
a and the cross-sectional area, i.e.,

qmax
a ∝ A. (3.3.2)

The gas flow in pipe a = (v, w) is described by a set of partial differential equations

derived from conservation of mass and conservation of momentum which, under certain

assumptions, can be simplified to

πv − πw = p2v − p2w = αa|qa|qa, (3.3.3)

where αa is the pressure loss coefficient. The pressure loss coefficient, αa, depends on the

material and diameter of the pipe and a few properties of the natural gas. As pipes allow bi-

directional flow, the sign of the potential drop depends on the direction of the flow resulting

in the absolute value of the flowrate variable qa in the equation.

Short pipes: short pipes are used for modeling purposes to handle complicated contract

situations and are modeled as lossless pipes, i.e., a short pipe a is a regular pipe with αa = 0.

Resistors: resistors are commonly used to model pressure or potential drop. In this

work, we assume resistors behave in the same way as pipes in terms of potential drop. We

59

refer to [51] for alternative ways to model resistors.

Compressors: compressors are used to increase potential along an arc. There are many

models proposed for compressors. In this chapter, we adopt the model used in [58]. For a

compressor a = (v, w), we use a binary variable za to indicate the on and off states where

za = 1 indicates the compressor is on and za = 0 otherwise. When the compressor is on, it

allows flow from v to w and increases the potential from v to w. When it is off, it does not

allow any flow. As a result, we have the following relations for a compressor:

πv − πw ≤ 0, qa ≥ 0, if za = 1 (3.3.4)

qa = 0, if za = 0. (3.3.5)

Additionally, there are limits on potential ratio as follows:

κmin
a πv ≤ πw ≤ κmax

a πv, (3.3.6)

where κmin
a = 1 and κmax

a ≥ 1 are typical for a compressor (see [59]). Furthermore, when a

compressor a = (v, w) is on, it can impose additional bounds on the potentials at nodes v

and w. We denote those bounds by (πmin
v)′ and (πmax

w)′.

Valves: valves are incorporated in the network to join or separate two nodes. They

allow bi-directional flow when they are on. A binary variable za is used to model the on

and off states of valves. For a valve a = (v, w), za = 1 indicates the valve is on and za = 0

otherwise. When a valve is on, the potentials at the two end nodes have to be equal. When

a valve is off, it does not allow any flow. Formally, the constraints for a valve a = (v, w)

are expressed as follows:

πv = πw, qa arbitrary, if za = 1 (3.3.7)

qa = 0, πv, πw arbitrary, if za = 0. (3.3.8)

60

Control valves: contrary to a compressor, the presence of a control valve in the network

results in potential relief. We adopt a similar model that is used for compressors. For a

control valve a = (v, w), a binary variable za is used to indicate its states. When it is on,

it allows flow from v to w and causes a potential relief from v to w. When it is off, it does

not allow any flow. We have the following model for the control valve:

πv − πw ≥ 0, qa ≥ 0, if za = 1 (3.3.9)

qa = 0, if za = 0. (3.3.10)

The limits on the potential relief are given by

κmin
a πv ≤ πw ≤ κmax

a πv, (3.3.11)

where κmin
a > 0 and κmax

a ≤ 1 are typical for a control valve (see [59]). A control valve

(v, w) can impose additional bounds on the potentials at nodes v and w when it is on.

Similar to compressors, we denote those bounds by (πmin
v)′ and (πmax

w)′.

3.3.2 Design problem

We consider the design of a gas network for a given set of pipe locations (arcs), whose

diameters we must decide. As discussed in the previous section, we have different system

components and thus we divide the arc set A into A = Ap ∪ Asp ∪ Ar ∪ Acp ∪ Av ∪ Acv

where Ap, Asp, Ar, Acp, Av, and Acv are the set of pipes, short pipes, resistors, compressors,

valves, and control valves respectively. We consider discrete diameter choices in our setting

and denote the diameter choices by the set [n] := {1, 2, . . . , n}. We use binary variables

za,i, a ∈ Ap and i ∈ [n], to model the discrete diameter choices of the pipes. We further

denote the length and diameter of the pipe a ∈ Ap with the diameter choice i ∈ [n] by la

and Da,i, respectively, and we use the same cost function, fa,i, that is used in [58] and [59],

61

namely

fa,i = la(1.04081
−6D2.5

a,i + 11.2155). (3.3.12)

Note a trade-off in the selection of the diameters. A larger diameter, on one hand, leads

to a smaller potential drop coefficient and a higher maximum flowrate, while, on the other

hand, leads to a larger cost fa,i. We introduce a flow direction variable xdir
a ∈ {0, 1} for

a ∈ Ap ∪ Asp ∪ Ar ∪ Av to account for the bidirectional flow. Recall that compressors

and control valves only allow one flow direction. For a pipe a ∈ Ap, as a result of the

multiple diameter choices, we have multiple flowrate variables qa,i for each i ∈ [n]. We

decompose the flow into positive flow and negative flow, i.e., for a ∈ Ap, qa,i = q+a,i − q−a,i

and for a ∈ Asp ∪ Ar ∪ Av, qa = q+a − q−a . The maximum flowrate limit qmax
a can be

defined individually for each diameter choice i as qmax
a,i by relation (3.3.2). Similarly, the

potential drop coefficients αa,i can be computed for each diameter choice. Furthermore, for

a node v ∈ V , we denote the set of incoming arcs and outgoing arcs by A2(v) and A1(v),

respectively, i.e., A2(v) = {a ∈ A|a = (w, v)} and A1(v) = {a ∈ A|a = (v, w)}. We use

dv to denote the demand or supply at a node v ∈ V .

With this notation and technical background, we give a formulation to the design prob-

lem:

min
∑
a∈Ap

∑
i∈[n]

fa,iza,i (3.3.13)

s.t.
∑

a∈A2(v)\Ap

q+a −
∑

a∈A2(v)\Ap∪Acp∪Acv

q−a −

 ∑
a∈A1(v)\Ap

q+a −
∑

a∈A1(v)\Ap∪Acp∪Acv

q−a

+
∑
i∈[n]

∑
a∈A2(v)∩Ap

(q+a,i − q−a,i)−
∑
i∈[n]

∑
a∈A1(v)∩Ap

(q+a,i − q−a.i) = dv, v ∈ V (3.3.14)

πmin
v ≤ πv ≤ πmax

v , v ∈ V (3.3.15)

xdir
a ∈ {0, 1}, a ∈ Ap ∪Asp ∪Av ∪Ar (3.3.16)

0 ≤ q−a,i, q
+
a,i ≤ qmax

a,i za,i, ∀i ∈ [n], a ∈ Ap (3.3.17)

πv − πw =
∑
i∈[n]

αa,i(q
+
a,i)

2 −
∑
i∈[n]

αa,i(q
−
a,i)

2, a ∈ Ap (3.3.18)

62

0 ≤ q+a,i ≤ qmax
a,i x

dir
a , a ∈ Ap, i ∈ [n] (3.3.19)

0 ≤ q−a,i ≤ qmax
a,i (1− xdir

a), a ∈ Ap, i ∈ [n] (3.3.20)∑
i∈[n]

za,i = 1, a ∈ Ap (3.3.21)

πv = πw, a ∈ Asp (3.3.22)

0 ≤ q+a ≤ qmax
a xdir

a , a ∈ Asp (3.3.23)

0 ≤ q−a ≤ qmax
a (1− xdir

a), a ∈ Asp (3.3.24)

πv − πw = αa(q
+
a)

2 − αa(q
−
a)

2, a ∈ Ar (3.3.25)

0 ≤ q+a ≤ qmax
a xdir

a , a ∈ Ar (3.3.26)

0 ≤ q−a ≤ qmax
a (1− xdir

a), a ∈ Ar (3.3.27)

κmin
a πv −M(1− za) ≤ πw ≤ κmax

a πv +M(1− za), a ∈ Acp ∪Acv (3.3.28)

0 ≤ q+a ≤ qmax
a za, a ∈ Acp ∪Acv (3.3.29)

(πmin
v)′ −M(1− za) ≤ πv, a = (v, w) ∈ Acp ∪Acv (3.3.30)

πw ≤ (πmax
w)′ +M(1− za), a = (v, w) ∈ Acp ∪Acv (3.3.31)

πv − πw ≤M(1− za), a ∈ Av (3.3.32)

πv − πw ≥ −M(1− za), a ∈ Av (3.3.33)

0 ≤ q−a , q
+
a ≤ qmax

a za, a ∈ Av (3.3.34)

0 ≤ q+a ≤ qmax
a xdir

a , a ∈ Av (3.3.35)

0 ≤ q−a ≤ qmax
a (1− xdir

a), a ∈ Av. (3.3.36)

In this model, the objective function (3.3.13) minimizes the construction cost of the

pipes, also known as the budget. The scalar M represents a large number. For the con-

straints that involve M , we can alternatively write them in a nonlinear fashion, which elim-

inates the need for big-Ms. In particular, for constraints (3.3.28) and (3.3.30)-(3.3.31), we

have

zaκ
min
a πv ≤ πw, a ∈ Acp ∪ Acv (3.3.37)

63

zaπw ≤ κmax
a πv, a ∈ Acp ∪ Acv (3.3.38)

za(π
min
v)′ ≤ πv, a ∈ Acp ∪ Acv (3.3.39)

zaπw ≤ (πmax
w)′, a ∈ Acp ∪ Acv, (3.3.40)

and for constraints (3.3.32)-(3.3.33), we have

(πv − πw)za = 0, a ∈ Av. (3.3.41)

We group the constraints in blocks with block names and provide a summary in Table

3.1. We will refer to the corresponding set of constraints by their block name.

Note that the above formulation can be extended to the reinforcement problem by con-

sidering, for each existing pipe, an additional diameter choice with no cost along with

potential loss equation (3.3.3) in which the potential loss coefficient is computed based on

the diameter of the existing pipe.

3.4 Decomposition framework

We now present a decomposition framework to solve the design problem. The decom-

position consists of three major components: primal bound loop, binary search on budget,

and initial budget search. Before we present the details on each component, we introduce

more background on the convex program introduced in [62] and adapted in [63], which was

mentioned briefly in literature review.

3.4.1 CVXNLP

The convex program is called (CVXNLP) in [67]; we adopt the same name. We base

the discussions of (CVXNLP) on a gas network in contrast to a water network in [67] in

this section for completeness. For a network with only pipes, i.e., A = Ap, (CVXNLP) is

64

Table 3.1: Constraint blocks

C
on

st
ra

in
ts

B
lo

ck
na

m
es

E
xp

la
na

tio
ns

(3
.3

.1
4)

F
l
o
w
c
o
n
s
e
r
v

Fl
ow

co
ns

er
va

tio
n

(3
.3

.1
5)

-(
3.

3.
16

)
B
o
u
n
d

B
ou

nd
s

on
po

te
nt

ia
ls

(3
.3

.1
5)

;b
in

ar
y

di
re

ct
io

ns
(3

.3
.1

6)

(3
.3

.1
7)

-(
3.

3.
21

)
P
i
p
e

Fl
ow

lim
its

on
di

am
et

er
ch

oi
ce

s
(3

.3
.1

7)
;p

ot
en

tia
ld

ro
p

(3
.3

.1
8)

;
flo

w
lim

its
on

di
re

ct
io

ns
(3

.3
.1

9)
-(

3.
3.

20
);

di
am

et
er

se
le

ct
io

n
(3

.3
.2

1)
(3

.3
.2

2)
-(

3.
3.

24
)

S
h
o
r
t
p
i
p
e

Po
te

nt
ia

l(
3.

3.
22

);
flo

w
lim

its
on

di
re

ct
io

ns
(3

.3
.2

3)
-(

3.
3.

24
)

(3
.3

.2
5)

-(
3.

3.
27

)
R
e
s
i
s
t
o
r

Po
te

nt
ia

ld
ro

p
(3

.3
.2

5)
;fl

ow
lim

it
on

di
re

ct
io

ns
(3

.3
.2

6)
-(

3.
3.

27
)

(3
.3

.2
8)

-(
3.

3.
31

)
C
o
m
p
a
n
d

D
ep

en
d

on
on

/o
ff

st
at

es
;P

ot
en

tia
li

nc
re

as
e/

re
lie

fl
im

it
(3

.3
.2

8)
;

c
o
n
t
v
a
l
v
e

flo
w

lim
it

(3
.3

.2
9)

;a
dd

iti
on

al
bo

un
ds

(3
.3

.3
0)

-(
3.

3.
31

)

(3
.3

.3
2)

-(
3.

3.
36

)
V
a
l
v
e

D
ep

en
d

on
on

/o
ff

st
at

es
;P

ot
en

tia
l(

3.
3.

32
)-

(3
.3

.3
3)

;
flo

w
lim

it
(3

.3
.3

4)
;fl

ow
lim

its
on

di
re

ct
io

ns
(3

.3
.3

5)
-(

3.
3.

36
)

(3
.3

.2
9)

,(
3.

3.
37

)-
(3

.3
.4

0)
C
o
m
p
a
n
d

Sa
m

e
as
C
o
m
p
a
n
d
c
o
n
t
v
a
l
v
e

b
l
o
c
k

c
o
n
t
v
a
l
v
e
n
l

(3
.3

.3
4)

-(
3.

3.
36

),
(3

.3
.4

1)
V
a
l
v
e
n
l

Sa
m

e
as
V
a
l
v
e

bl
oc

k

65

closely related to the following set of network analysis equations:

πv − πw = sgn(qa)ϕ(|qa|), a ∈ Ap (3.4.1)∑
a∈A2(v)

qa −
∑

a∈A1(v)

qa = dv, v ∈ V , (3.4.2)

where sgn(·) is the sign function and ϕ(·) is the potential loss function. In the network anal-

ysis equations, (3.4.1) is the potential drop equation and (3.4.2) is the flow conservation.

(CVXNLP) is formally given by

min
∑
a∈Ap

Φ(q+a) + Φ(q−a) (3.4.3)

s.t.
∑

a∈A2(v)

(q+a − q−a)−
∑

a∈A1(v)

(q+a − q−a) = dv, v ∈ V (3.4.4)

0 ≤ q−a , q
+
a , a ∈ Ap, (3.4.5)

where Φ(·) is defined by

Φ(q) =

∫ q

0

ϕ(q′)dq′. (3.4.6)

(CVXNLP) is formally linked to the network analysis equations by the following theorem.

Theorem 3.4.1. If the potential loss function ϕ(·) is strictly monotonically increasing func-

tion of flowrate, q, with ϕ(0) = 0, then there exists a solution (π, q) to the network analysis

equations if and only if there exists a solution (q̂+, q̂−, λ̂, µ̂+, µ̂−) to (CVXNLP) where λ,

µ+, and µ− are dual variables to the flow conservation constraint (3.4.4) and bounds con-

straints (3.4.5), respectively.

Proof. The proof is adapted from a proof in [67] and can be found in Appendix 3.6.

The monotonicity assumption needed for the theorem to hold is commonly satisfied

by gas networks. In addition, as a result of the equivalence between (CVXNLP) and the

network analysis equations stated in Theorem 3.4.1, we can solve the convex (CVXNLP)

66

in lieu of the non-convex network analysis equations and obtain a solution (π, q). As there

are no bounds enforced in the network analysis equations for π, we have to perform an

additional step to verify that π satisfies the corresponding bounds.

3.4.2 Primal bound loop

The equivalence discussed in Section 3.4.1 motivates us to develop a decomposition

procedure that solves a variant of (CVXNLP) as a master problem, while a subproblem is

used to check for feasibility. We call this procedure the primal bound loop, which checks

whether a budget C is feasible with respect to a nomination. The master problem, denoted

by (Pm), is based on (CVXNLP) and is as follows:

(Pm) min
∑
i∈[n]

∑
a∈Ap

αa,i

3
(q+a,i)

3 +
αa,i

3
(q−a,i)

3 +
∑
a∈Ar

αa

3
(q+a)

3 +
αa

3
(q−a)

3 (3.4.7)

s.t. (3.3.14), (3.3.17), (3.3.21), (3.3.29), (3.3.34)

0 ≤ q−a , q
+
a ≤ qmax

a , a ∈ Asp ∪ Ar (3.4.8)∑
a∈Ap

∑
i∈[n]

fa,iza,i ≤ C. (3.4.9)

In this model, the objective function (3.4.7) extends (CVXNLP) to account for multiple

flow variables q+a,i for a ∈ Ap and i ∈ [n]. Constraint (3.3.14) is the flow conservation.

Constraints (3.3.17) and (3.3.21) on the pipes ensure one diameter choice is selected and

the corresponding flow limit is enforced. Constraints (3.3.29) and (3.3.34) on the active

system components ensure flows are only allowed when the corresponding binaries are

on. Constraint (3.4.8) enforces the flow limit on the short pipes and resistors. The last

constraint (3.4.9) is a budget constraint on the construction cost of pipes.

The above model differs from (CVXNLP) mainly in two ways. Firstly, we have intro-

duced the diameter choices, za,i for a ∈ Ap and i ∈ [n] and configurations for the active

system components, za for a ∈ Acp ∪Acv ∪Av. If the diameter choices and configurations

67

of the active system components are fixed, (Pm) resembles the original (CVXNLP). Sec-

ondly, we have a constraint to upper bound the construction cost of pipes by the budget C.

We hope to obtain favorable diameter choices and active system component configurations

from solving this modified (CVXNLP) due to the equivalence between (CVXNLP) and the

network analysis equations shown in Theorem 3.4.1. In the solution of (Pm), we denote

the optimal diameter choices by z∗a,i for a ∈ Ap and i ∈ [n] and the optimal active system

configurations by z∗a for a ∈ Acp ∪ Acv ∪ Av. We can then compute the potential loss

coefficient and the flow limit of each pipe as follows:

αa =
∑
i∈[n]

αa,iz
∗
a,i, a ∈ Ap (3.4.10)

qmax
a =

∑
i∈[n]

qmax
a,i z

∗
a,i, a ∈ Ap. (3.4.11)

For the subproblem, denoted by (Ps), since we have additional active system components

for which the constraints governing their corresponding potential changes are not included

in network analysis equations, we solve a variant of the nomination validation problem, in-

stead of performing simple bound violation verifications, to check if the diameter choices

and configurations of the active system components are feasible with respect to the nomi-

nation. (Ps) is given by:

(Ps) Find q+a , q
−
a , x

dir
a , πv (3.4.12)

s.t. Flow conserv

Bound

Pipe

Short pipe

Resistor

Comp and cont valve(nl)

68

Valve(nl).

In this nomination validation problem, we solve a feasibility problem with seven blocks

of constraints that are simplified from the blocks in Table 3.1. We list the changes to the

constraints as follows.

Flow conserv: with the diameter choices fixed, we only need two flow variables,

q+a and q−a , for each pipe a ∈ Ap and the simplified flow conservation constraint is given

by:

∑
a∈A2(v)

q+a −
∑

a∈A2(v)\Acp∪Acv

q−a −

 ∑
a∈A1(v)

q+a −
∑

a∈A1(v)\Acp∪Acv

q−a

 = dv, v ∈ V .

(3.4.13)

Pipe: with the diameter choices determined, we compute the potential loss coeffi-

cients and flow limits, and we write the potential loss constraints as

πv − πw = αa(q
+
a)

2 − αa(q
−
a)

2, a ∈ Ap, (3.4.14)

and use the computed flow limits qmax
a from (3.4.11) as:

0 ≤ q+a ≤ qmax
a xdir

a , a ∈ Ap (3.4.15)

0 ≤ q−a ≤ qmax
a (1− xdir

a), a ∈ Ap. (3.4.16)

Comp and cont valve(nl): we fix the compressor and control valve configura-

tions obtained in (Pm). The constraints are then linear and free of M .

Valve(nl): we fix the valve configurations obtained in (Pm). The constraints are

then linear and free of M .

There are no changes to other constraints.

Note that this nomination validation problem is still non-convex due to constraint (3.4.14)

69

and the potential loss constraint for resistors. There can be two outcomes from solving this

subproblem (Ps). If it is infeasible, we can add an integer no-good cut to the master prob-

lem (Pm) of the form:

∑
a∈Acp∪Acv∪Av ,z∗a=0

za +
∑

a∈Acp∪Acv∪Av ,z∗a=1

(1− za)

+
∑
i∈[n]

∑
a∈Ap,z∗a,i=0

za,i +
∑
i∈[n]

∑
a∈Ap,z∗a,i=1

(1− za,i) ≥ 1. (3.4.17)

If it is feasible, we call budget C a feasible budget with respect to the nomination.

The iterative procedure terminates when we obtain a feasible budget or when the master

problem (Pm) becomes infeasible after adding some integer no-good cuts. In the latter case,

we call budget C an infeasible budget.

3.4.3 Binary search on budget

As the goal of this design problem is to minimize the construction cost of the network,

we propose a binary search procedure to do so. A feasible budget from the primal bound

loop provides an upper bound, C, on the budget while an infeasible budget provides a lower

bound, C, on the budget. We present the binary search in Algorithm 6. For the termination

conditions of the binary search in Line 2, we consider a time limit, absolute gap εe, i.e,

C − C < εe, or relative gap εr, i.e., (C − C)/C < εr.

3.4.4 Initial budget search

To obtain a better initial starting budget for the binary search, we propose the following

initial budget search procedure. This procedure is again an iterative procedure involving a

master problem and a subproblem. The master problem, denoted by (Im), is given by

(Im) min
∑
a∈Ap

∑
i∈[n]

fa,iza,i (3.4.18)

70

Algorithm 6: Binary search of budget
1 Input: Initial budget C, upper bound C =∞ and valid lower bound C by budget

initialization ▷ see Section 3.4.4
2 while not terminated do
3 Solve problems (Pm) and (Ps) with budget C ▷ primal bound loop
4 if C is a feasible budget then
5 if C < C then C = C;
6 if C/2 ≤ C then C = (C + C)/2;
7 else C = C/2;
8 else if C is an infeasible budget then
9 if C > C then C = C;

10 if 2C ≥ C then C = (C + C)/2;
11 else C = 2C;
12 else ▷ primal bound loop terminated due to time limit
13 if 2C ≥ C then C = (C + C)/2;
14 else C = 2C;
15 end
16 end

s.t. (3.3.21)

za,i ∈ {0, 1}, a ∈ Ap, i ∈ [n] (3.4.19)

za ∈ {0, 1}, a ∈ Acp. (3.4.20)

In this model, the objective function (3.4.18) is the same as the design model which min-

imizes the construction cost of the pipes. Constraint (3.3.21) allows exactly one diameter

choice for each pipe to be selected. In (Im), we only consider the selection of diameter

choices and configurations of the compressors. This integer program aims to obtain the

cheapest construction cost of the pipes along with the compressor configurations, and can

be solved very quickly due to the much smaller feasible space and simpler structure com-

pared to (Pm). We can similarly compute the potential loss coefficients and flow limits

based on the optimal diameter choices as shown in (3.4.10) and (3.4.11).

The subproblem is a variant of the nomination validation problem which includes the

configurations of valves and control valves to check if the diameter choices and compressor

71

configurations are feasible with respect to the nomination. The subproblem, denoted by

(Is), is the same as (Ps), except for the constraints on the control valves and the valves

since we do not obtain configurations for them from the master problem (Im) in contrast to

(Pm). We list the changes from (Ps) to obtain (Is).

Variables: we add the binary variables for the on and off states of control valves and

valves.

Constraints: Comp and cont valve(nl): we fix the configurations of com-

pressors obtained in (Im) and consequently the constraints for compressors are now lin-

ear and free of M . For the control valves, our preliminary studies suggest the use of

comp and cont valve nl block.

Valve(nl): Our preliminary studies suggest the use of Valve nl block for valves.

There are no changes to other constraints.

Solving the subproblem (Is) has two outcomes. If the cheapest diameter choices and

compressor configurations are infeasible with respect to the nomination, we add an inte-

ger no-good cut for that set of diameter choices and compressor configurations similar to

(3.4.17) to the master problem (Im) and resolve. Otherwise, we obtain the optimal bud-

get, i.e., the optimal budget for this nomination is the corresponding objective value of

(Im). The initial budget search procedure can be run for a certain time or a fixed number

of iterations. It produces an objective value below which there is no feasible budget, thus

producing an initial dual bound. This lower bound on the optimal objective function value

of the network design problem can be used to initialize the binary search.

3.5 Numerical experiments

3.5.1 Instances

Our numerical experiments are based on the Gaslib library Gaslib-582 network. The

size of the problem is given in Tables 3.2 and 3.3. Depending on the nomination, a source

node may have zero supply and a sink node may have zero demand.

72

Table 3.2: Nodes in Gaslib-582 network

Sources Sinks In-nodes
31 129 422

Table 3.3: Arcs in Gaslib-582 network

Pipes Short pipes Resistors Compressors Control valves Valves
278 269 8 5 23 26

The nominations given with the Gaslib network in [46] are divided into five categories,

namely, warm, mild, cool, cold, and freezing, to simulate the temperature conditions. There

are two observations about the nominations. Firstly, as temperature conditions change from

warm to freezing, the nominations become more demanding. There are more sinks with

positive demands and the magnitudes of demands increase. Secondly, the nominations from

the same temperature category vary much less compared to nominations across temperature

categories. Therefore, we pick one nomination from each temperature category for the

experiments. In all experiments, we vary the nomination by stress levels similar to [59].

In particular, we use the stress levels {0, 1, 0.5, 1.0, 1.5, 2.0} and multiply each stress

level by the demand dv for each v ∈ V in a nomination to create an instance. For each

pipe, based on the diameter given in the Gaslib network, we use multipliers from the set

{0.8, 1.0, 1.3, 1.5} to create 4 different diameter choices.

3.5.2 Implementation considerations and settings

We first provide some notes on the implementation of the primal bound loop. As the

objective function (3.4.7) in the master problem (Pm) is cubic in the flow variables, there

are several possible ways to implement it:

• There are nonlinear mixed integer program solvers that can take the master problem

(Pm) as it is, for example, BARON ([68]) and SCIP ([69]).

• The cubic objective function is second-order conic representable. For each of the

cubic terms in the flow variable, we can introduce an additional variable. Conse-

73

quently, we obtain a constraint in the form of q3 ≤ t where q represents the flow

variable and t represents the new variable that is an upper bound to q3 and we can

write the second-order conic representation of q3 ≤ t by

s ≥ 0, s+ q ≥ 0, (s+ q)2 ≤ w, w2 ≤ t(s+ q). (3.5.1)

The resulting second-order conic program can be handled by specialized solvers such

as MOSEK ([70]).

• To take advantage of the Gurobi’s ([41]) improved capability in solving quadratic

programs, for each of the cubic terms in the flow variable q in the objective function,

we introduce an additional variable qqua with qqua = q2. Consequently, we have a

bilinear term qqqua in the objective function with an additional constraint. The con-

straint qqua = q2 can be re-written into the convex constraint qqua ≥ q2. Moreover,

for the pipes, as we have binary variables corresponding to the diameter choices,

the convex constraint qqua ≥ q2 can be strengthened to qquaz ≥ q2 by perspective

strengthening ([64]) where z represents the binary variable for the diameter choice.

We implemented all three methods. Even though the original cubic formulation (used

with BARON 22.9.1 ([71]) and SCIP 7.0.1 ([72])) and the second-order conic formulation

(used with MOSEK 9.3.10 ([70])) are convex, these solvers tend to be slower due to the

presence of the binary variables. On the other hand, Gurobi 9.5.1 ([41]) is able to handle the

reformulation of the cubic objective function well. As a result, we decided to use Gurobi

9.5.1 to solve (Pm) and (Ps). This also gives us the opportunity to study the impact of

perspective strengthening on the computational speed.

In addition, since we only use the values of the binary variables of the pipe diameter

choices and active system component configurations from the master problem (Pm) to fix

the corresponding variables in the subproblem (Ps), we do not need to solve the master

problem (Pm) to optimality. We can either set a time limit or a non-default optimality gap

74

and we opt to use a time limit of 60 sec.

We run the experiments on a computer with an Intel i9 CPU (3.70GHz) with 64GB

RAM. The computer runs the Ubuntu 20.04 LTS operating system. The framework is

coded in Python with Pyomo. We use Gurobi 9.5.1 to solve problems (Im) and (Is) as well.

Algorithm 7 shows the exact steps we use to solve the problem combining the procedures

from the primal bound loop, the binary search on budget, and the initial budget search.

Algorithm 7: Overall procedure
1 Initial budget search (Im) and (Is) is run for 10 min. ▷ Initial budget

search phase
2 if a feasible budget is obtained then terminate with the optimal budget for this

nomination;
3 else ▷ Binary search phase
4 Set starting budget based on the returned value from initial budget search;
5 Binary search is run for 5 hr; for each candidate budget, primal bound loop

(Pm) and (Ps) is run for 45 min to check if the budget is feasible.
6 end
7 return C and C from binary search

A note on the time limit for the initial budget search. We performed studies to extend

the time limit to longer than 10 min and the improvement on the returned value is not

significant. As a result, we decided to limit the initial budget search to 10 min.

3.5.3 Results

In this section, we present the computational results. In addition to the results from our

proposed framework, we provide some discussions about the compact formulation and an-

other approach adapted from [59] using computational studies on the nomination warm 31,

which comes from the least demanding temperature categories.

We first discuss the performance of the compact formulation with objective function

(3.3.13) along with constraint blocks of Flow conserv, Bound, Pipe, Short pipe,

Resistor, Comp and cont valve or Comp and cont valve nl, and Valve or

Valve nl. Solvers that support the non-convex integer program are considered. SCIP and

75

BARON are able to find a lower bound very quickly, but they tend to be slower in finding

a feasible solution to close the gap after hours of computation. We also discovered that

Gurobi at times returns solutions with large constraint violations for the compact formula-

tion. Note that CPLEX currently only supports non-convexity in the objective function and

hence is not applicable.

The papers by [59] and [61] are two recent works on gas network expansion. The

work of [61] specifically considers a tree-like network while the Gaslib-582 network con-

tains cycles. Although [59] mainly focuses on the reinforcement problem, the approach

can be modified to tackle the design problem. The authors in [59] construct a convex

mixed-integer second-order conic (MISOC) relaxation of the reinforcement formulation,

and fix all the binary decision variables after solving the relaxation to obtain a nomination

validation problem. The resulting nonlinear program is then solved by a solver to obtain a

solution if the nonlinear program is feasible. If the nonlinear program is infeasible, then the

authors propose to use any feasible solutions to the relaxation. We adapt a similar MISOC

relaxation for the pipes and resistors. We leave the details of this relaxation in Appendix

3.6. In our computations, following the procedure and solving the nomination validation

problem worked well for instances with up to 40 nodes, but did not yield feasible solutions

for larger instances.

Next, we present the results from our framework. We define gap to be

gap =
C − C

C
. (3.5.2)

We present the detailed results for one of the nominations, warm 31, in Table 3.4 and

compare the gaps from implementations with and without perspective strengthening for all

nominations in Table 3.5 where C and C are reported in 106, and gaps are reported in %.

The column “Imp” reports the percentage improvements from perspective strengthening.

The detailed results for the rest of the nominations are provided in Appendix 3.6.

76

From the results, we see that our framework is able to find a feasible budget for all

25 instances. In particular, it provides an optimal budget for 13 instances and a budget

with less than 25% gaps for another four instances. There are a few instances where we

reached the time limit with large gaps. We mark these instances in bold. These instances

are with higher stress levels and/or worse temperature conditions. As we increase the stress

level and/or deteriorate the temperature conditions (from warm to freezing) making the

nominations more demanding, we observe that it becomes more difficult to find feasible

solutions in the primal bound loops to prove a feasible budget and thus close the gap by

binary search. The primal bound loops hit the time limit much more often. In addition, for

all instances, we are not able to prove infeasible budget from the primal bound loop. While

a large number of binary solutions are feasible to the master problem (Pm), each integer

no-good cut only invalidates one of them. As a result, the lower bounds on budget, C, are

almost the same across different nominations and stress levels.

Furthermore, the perspective strengthening is shown to be effective in closing the gaps

for higher stress levels. There are only two instances (mild 3838 and cold 4218 at stress

level of 1.5) for which the implementation without perspective strengthening achieves bet-

ter gaps than the implementation with perspective strengthening. The average and largest

improvements from perspective strengthening are about 31% (excluding the instances that

are solved to optimality both with and without perspective strengthening) and 86%, respec-

tively from perspective strengthening. The improvements are all due to obtaining better

feasible solutions.

Table 3.4: Computational results with and without perspective strengthening for warm 31

Stress
Without perspective strengthening With perspective strengthening

Imp(%)
C C gap C C gap

0.1 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
0.5 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
1.0 12620.2 12585.6 0.27 12602.9 12585.6 0.13 50
1.5 14797.9 12585.6 17.57 14355.5 12585.6 14.06 20
2.0 19812.3 12585.6 57.42 18091.8 12585.6 43.75 24

77

Table 3.5: Gap in (%) without (w/o) and with (w) perspective strengthening

St
re

ss
w

ar
m

31
m

ild
38

38
co

ol
28

03
co

ld
42

18
fr

ee
zi

ng
18

8
w

/o
w

w
/o

w
w

/o
w

w
/o

w
w

/o
w

0.
1

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
5

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
0

0.
27

0.
13

0.
00

0.
00

4.
78

0.
68

18
.7

5
14

.3
5

38
.2

7
24

.9
9

1.
5

17
.5

7
14

.0
6

32
.8

1
37

.5
0

51
.5

6
24

.6
1

96
.8

7
16

2.
49

23
7.

52
16

2.
49

2.
0

57
.4

2
43

.7
5

20
6.

25
87

.5
0

19
9.

99
57

.4
2

25
0.

00
16

2.
49

28
7.

89
20

6.
25

78

3.6 Conclusion

In conclusion, we study the gas network design problem, where diameter choices of

pipes and active system component configurations are decided. We propose a decom-

position framework to solve the problem. In particular, in the primal bound loop of the

framework, for a given budget, we modify a convex NLP formulation to construct master

problems to obtain favorable diameter choices and active system component configura-

tions, and validate their feasibility in the subproblem. Binary search is performed as an

outer loop to minimize the budget. We also proposed a procedure to obtain a good initial

budget for the binary search. The proposed framework was tested on the Gaslib-582 net-

work and instances were created from combining nominations under different temperature

conditions and stress level multipliers. The computational results show that the framework

is able to find an optimal budget in many cases.

There are a few future directions that could be explored. The cost of operating the

network may be an interest from an operator’s perspective. Our framework can be adapted

and applied to incorporate the cost of operations with simple modifications.

Acknowledgement

This work was conducted as part of the Institute for the Design of Advanced Energy

Systems (IDAES) with support through the Simulation-Based Engineering, Crosscutting

Research Program and the Solid Oxide Fuel Cell Program’s Integrated Energy Systems

thrust within the U.S. Department of Energy’s Office of Fossil Energy and Carbon Man-

agement.

79

Appendix A: Proof of Theorem 3.4.1

Proof. We first consider the if part. Suppose that (q̂+, q̂−, λ̂, µ̂+, µ̂−) solves (CVXNLP).

Consider the first-order stationary conditions for (CVXNLP) as follows:

ϕ(q̂+a)− µ̂+
a − λ̂v + λ̂w = 0, a = (v, w) ∈ Ap (3.6.1)

ϕ(q̂−a)− µ̂−
a + λ̂v − λ̂w = 0, a = (v, w) ∈ Ap (3.6.2)

q̂+a , µ̂
+
a ≥ 0, a = (v, w) ∈ Ap (3.6.3)

q̂+a · µ̂+
a = 0, a = (v, w) ∈ Ap (3.6.4)

q̂−a , µ̂
−
a ≥ 0, a = (v, w) ∈ Ap (3.6.5)

q̂−a · µ̂−
a = 0, a = (v, w) ∈ Ap (3.6.6)∑

a∈A2(v)

(q̂+a − q̂−a)−
∑

a∈A1(v)

(q̂+a − q̂−a) = dv, v ∈ V . (3.6.7)

First, it cannot happen that q̂+a , q̂
−
a > 0 for any a ∈ Ap, otherwise, we can define

q̃+a = max{q̂+a − q̂−a , 0}, q̃−a = max{0, q̂−a − q̂+a }, (3.6.8)

where q̃+a ≤ q̂+a and q̃−a ≤ q̂−a . The new flow values q̃+a and q̃−a are feasible and because

of the strict monotonicity of ϕ(·), they result in a smaller objective value which contradicts

the optimality of q̂+ and q̂−. Furthermore, the complementary slackness conditions imply

that, if q̂+a (or q̂−a) > 0, then µ̂+
a (or µ̂−

a) = 0. If q̂+a = q̂−a = 0 for some a, then adding

(3.6.1) and (3.6.2) gives

µ̂+
a + µ̂−

a = 0 =⇒ µ̂+
a = µ̂−

a = 0. (3.6.9)

Consequently, we can simplify (3.6.1) and (3.6.2) by differentiating the cases on q+a and

80

q−a to be

ϕ(q̂+a)− λ̂v + λ̂w = 0, a = (v, w) : q̂+a > 0 (3.6.10)

ϕ(q̂−a) + λ̂v − λ̂w = 0, a = (v, w) : q̂−a > 0 (3.6.11)

λ̂v − λ̂w = 0, a = (v, w) : q̂+a = q̂−a = 0. (3.6.12)

Now define (π, q) as

πv = λ̂v, v ∈ V (3.6.13)

qa = q̂+a − q̂−a , a ∈ Ap, (3.6.14)

and we see (π, q) satisfies the network analysis equations.

Now we consider the only if part. Suppose that (π, q) solves the network analysis

equations. We define the following:

q̂+a = max{0, qa}, a ∈ Ap (3.6.15)

q̂−a = |min{0, qa}|, a ∈ Ap (3.6.16)

λ̂v = πv, v ∈ V (3.6.17)

µ̂+
a = max{0, πw − πv + ϕ(q̂+a)}, a = (v, w) ∈ Ap (3.6.18)

µ̂−
a = max{0, πv − πw + ϕ(q̂−a)}, a = (v, w) ∈ Ap. (3.6.19)

Then (q̂+, q̂−, λ̂, µ̂+, µ̂−) satisfies the first-order stationary conditions. To see this, we

first verify that, when qa ≥ 0, then q̂+a = qa ≥ 0 and q̂−a = 0. From the potential loss

equation (3.4.1) in network analysis equations, we have that: πv − πw = ϕ(qa) = ϕ(q̂+a).

Consequently, we have

µ̂+
a = max{0, πw − πv + ϕ(q̂+a)} = 0 (3.6.20)

81

µ̂−
a = max{0, πv − πw + ϕ(q̂−a)} = max{0, ϕ(q̂+a) + ϕ(0)} = ϕ(q̂+a) ≥ 0, (3.6.21)

and

ϕ(q̂+a)− µ̂+
a − λ̂v + λ̂w = ϕ(q̂+a)− 0− πv + πw = 0 (3.6.22)

ϕ(q̂−a)− µ̂−
a + λ̂v − λ̂w = ϕ(0)− ϕ(q̂+a) + πv − πw = 0. (3.6.23)

Similarly, we can verify for qa < 0. Furthermore, the strict monotonically increasing

property of ϕ(·) implies the convexity of Φ(·). The constraints in (CVXNLP) are linear

and thus (CVXNLP) is convex. The satisfaction of the first-order stationary conditions is

necessary and sufficient for (π, q) to be an optimal solution to (CVXNLP) and it is the

unique optimal solution due to the convexity.

Appendix B: Mixed-integer second-order conic (MISOC) relaxation

The relaxations are constructed for the pipes and resistors. For the pipes, instead of

decomposing the flow variables qa,i into q+a,i and q−a,i, we define two binary variables x+
a

and x−
a for the flow directions and enforce x+

a + x−
a = 1. If x+

a = 1, then qa,i ≥ 0 and if

x−
a = 1, then qa,i < 0. In addition, we create multiple potential variables πv,i and πw,i for

a = (v, w) ∈ Ap and i ∈ [n]. Now consider a pipe a = (v, w) and a diameter choice i, we

can write the potential loss as

(x+
a − x−

a)(πv,i − πw,i) = αa,iq
2
a,i. (3.6.24)

The left-hand side of (3.6.24) is bilinear. If we define γa,i = (x+
a −x−

a)(πv,i−πw,i), we

can write the standard McCormick relaxation for γa,i = (x+
a − x−

a)(πv,i − πw,i) by

γa,i ≥ πw,i − πv,i + (πmin
v − πmax

w)(x+
a − x−

a + 1) (3.6.25)

82

γa,i ≥ πv,i − πw,i + (πmax
v − πmin

w)(x+
a − x−

a − 1) (3.6.26)

γa,i ≥ πw,i − πv,i + (πmax
v − πmin

w)(x+
a − x−

a + 1) (3.6.27)

γa,i ≥ πv,i − πw,i + (πmin
v − πmax

w)(x+
a − x−

a − 1). (3.6.28)

With γa,i defined, constraint (3.6.24) can be written as γa,i = αa,iq
2
a,i and can be further

relaxed to become convex as follows:

γa,i ≥ αa,iq
2
a,i. (3.6.29)

Applying perspective strengthening to the relaxed constraint gives

za,iγa,i ≥ αa,iq
2
a,i. (3.6.30)

Now the potential loss constraint (3.3.18) for pipes becomes

πv − πw =
∑
i∈[n]

γa,i. (3.6.31)

We can create similar relaxations for the resistors. For a resistor a = (v, w) ∈ Ar, we

have

γa ≥ πw − πv + (πmin
v − πmax

w)(x+
a − x−

a + 1) (3.6.32)

γa ≥ πv − πw + (πmax
v − πmin

w)(x+
a − x−

a − 1) (3.6.33)

γa ≥ πw − πv + (πmax
v − πmin

w)(x+
a − x−

a + 1) (3.6.34)

γa ≥ πv − πw + (πmin
v − πmax

w)(x+
a − x−

a − 1) (3.6.35)

γa ≥ αaq
2
a. (3.6.36)

Additionally, the binary variables xdir
a in constraints (3.3.19)-(3.3.20) and (3.3.26)-(3.3.27)

that govern flow limits on directions are replaced by x+
a and x−

a correspondingly. We keep

83

the rest of constraints unchanged and obtain a convex MISOC relaxation of the design

problem as a result.

Appendix C: Detailed computational results

All values of C and C are reported in 106 and gaps are reported in %. The column “Imp”

reports the percentage improvements from perspective strengthening. Instances marked in

bold are those with large gaps at time limit.

Table 3.6: Computational results with and without perspective strengthening for mild 3838

Stress
Without perspective strengthening With perspective strengthening

Imp(%)
C C gap C C gap

0.1 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
0.5 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
1.0 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
1.5 16715.4 12585.6 32.81 17305.3 12585.6 37.50 -14
2.0 38543.6 12585.6 206.25 23598.1 12585.6 87.50 58

Table 3.7: Computational results with and without perspective strengthening for cool 2803

Stress
Without perspective strengthening With perspective strengthening

Imp(%)
C C gap C C gap

0.1 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
0.5 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
1.0 13187.9 12585.6 4.78 12671.6 12585.6 0.68 86
1.5 19075.2 12585.6 51.56 15683.0 12585.6 24.61 52
2.0 37756.9 12585.6 199.99 19812.6 12585.6 57.42 71

Table 3.8: Computational results with and without perspective strengthening for cold 4218

Stress
Without perspective strengthening With perspective strengthening

Imp(%)
C C gap C C gap

0.1 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
0.5 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
1.0 14945.5 12585.6 18.75 14392.3 12585.6 14.36 23
1.5 24778.0 12585.6 96.87 33037.2 12585.6 162.49 -68
2.0 44049.9 12585.6 250.00 33037.2 12585.6 162.49 35

84

Table 3.9: Computational results with and without perspective strengthening for freez-
ing 188

Stress
Without perspective strengthening With perspective strengthening

Imp(%)
C C gap C C gap

0.1 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
0.5 12585.2 12585.2 0.00 12585.2 12585.2 0.00 -
1.0 17402.4 12585.6 38.27 15732.0 12585.6 24.99 35
1.5 42479.6 12585.6 237.52 33037.2 12585.6 162.49 32
2.0 48818.7 12585.6 287.89 38543.6 12585.6 206.25 28

85

CHAPTER 4

OPTIMIZING THE DESIGNS AND OPERATIONS OF WATER NETWORKS: A

DECOMPOSITION APPROACH

4.1 Introduction

Water is a vital resource for both residential and industrial usage around the world. It

is sourced from various natural sources and requires a distribution network for its trans-

portation. The type of water network used can vary depending on the characteristics of

the water sources. In 2019, the total capital spending on water infrastructure was approx-

imately $48 billion. However, it is projected that a total of $129 billion will be needed to

ensure continued access to sufficient water in the years to come [73]. Our work explores

the challenges associated with the management of the so-called “produced water” that is

co-produced when oil and gas are recovered from reservoirs. Reports indicate that the vol-

ume of produced water continues to grow while disposal capacities are decreasing [74],

necessitating improved treatment and reuse options, as well as more efficient designs and

operations of water networks.

We highlight several key characteristics for produced water networks. Firstly, the vol-

ume of water produced typically starts high and gradually decreases over time. This tempo-

ral trend of the amount of water produced often leads to a multiple time period formulation.

Secondly, as produced water is commonly co-produced with oil and gas in a basin where

the network is heavily influenced by the elevations of the nodes. Such elevation change

between two nodes in the network introduces additional pressure change that has to be in-

cluded into the problem formulation. Lastly, pump stations have to be installed at some

locations of the network to boost the pressure of the water to avoid violations of the bounds

of the pressure. There is commonly an upper limit on the number of pump stations that can

86

be installed. Therefore, the locations of pump stations are design decisions that must be

carefully considered.

In addition, we consider the design and operation aspects of water networks in one

problem in this chapter. Generally, the design aspect considers pipe sizing and placements

of pump stations while the operation aspect considers a multiple time period formulation

that accounts for the temporal changes in supply and demand, and considers the scheduling

of the installed pump stations.

The remainder of this chapter is organized as follows. We review the relevant literature

in Section 4.2. Section 4.3 provides the technical background and a compact formulation

for the problem. Section 4.4 discusses two algorithms to obtain primal solutions. In par-

ticular, Section 4.4.1 presents a similar decomposition framework to what is proposed in

chapter 3 and Section 4.4.2 is based on a time decomposition of the compact formulation.

We present the computational experiments and discuss the results in Section 4.5. Lastly,

we conclude this chapter and give some future directions in Section 4.6.

4.2 Literature review

The topic of water network design is popular in the literature. For example, [75] provide

a comprehensive review of the types of problems in water system design. [76] and [77]

focus on the solution methodologies and algorithms used to solve water network design

problems. We refer interested readers to these works for broader knowledge.

We first review some relevant literature on the design problem and the operation prob-

lem. For the design problem, [78] considers a design problem to select the diameters of

the pipes in a purely gravity-fed network with no pump stations or relief valves. They

present a Mixed-Integer Nonlinear Programming (MINLP) formulation and focus on re-

formulations and implementation considerations to optimize the performance of Bonmin

[79, 80]. The numerical experiments are performed using benchmark networks found in

MIPLIB [81]. [67] also considers a design problem on pipe diameter selections without

87

pump stations or relief valves. A similar MINLP model is presented in which the nonlinear

constraints governing the water flow are linearized. The author then uses a linearization-

based LP/NLP-BB framework to solve the model and proposes a new leaf-node problem

for the framework to correct the discrepancies introduced by linearization. The same set of

benchmark networks from [78] is used in the numerical experiments. Later, [82] produces

a follow-up study to propose a new formulation on the leaf-node problem from the earlier

study [67]. Numerical results from the new formulation show improvements for several

networks. [83] studies a slightly different design problem on the optimal placements of re-

lief valves to minimize the average zone pressure. They use a MINLP model to investigate

other linear relaxation schemes using a tailored domain reduction procedure to strengthen

the relaxations. Computational experiments are performed using benchmark networks and

include one real-world network from the UK. For the operation problem, [84] assumes

that a fixed topology is given and consider the pump scheduling problem. The authors

propose a Lagrangian decomposition approach to decouple the constraints for different pe-

riods in a MINLP formulation and allow the smaller subproblems to be solved separately.

The authors also propose a simulation-based heuristic to account for additional operation

constraints on the pump stations. Numerical results are obtained on two networks with

up to 47 nodes. [85] uses a LP/NLP-based BB framework to study the pump scheduling

problem. They propose a linear relaxation of the original non-convex formulation to be

use in a branch-and-bound framework. They also propose a specialized primal heuristic to

repair near-feasible integer solutions from the linear relaxation and improve computational

efficiency.

It is common for the operation problem to include the so-called minimum-up and

minimum-down constraints that model the technical requirements of the pump stations,

sometimes known as the additional operation constraints. The minimum-up (resp. down)

constraints indicate once a pump station is switched on (resp. off), it has to stay on (resp.

off) for a given minimum number of periods. There have been many detailed studies of

88

the polytope formed by these constraints in the power system design domain, for example,

[86]. A few sets of the minimum-up and minimum-down constraints have been proposed

that differ on the number of variables used. [87] studies the “one-variable” variant of the

polytope while [88] studies the “two-variables” variant. A discussion and a comparison

across the variants can be found in [86].

Lastly, time decomposition can be used to reduce the complexity and size when solving

multiple time period problems. In such an approach, the original problem is divided into

smaller problems, each considering only a subset of the time periods. Rolling horizon is

one of popular time decomposition schemes and a recent study on the properties of rolling

horizon for multiple time period optimization can be found in [89].

4.3 Problem description

4.3.1 Technical background

In this section, we review the necessary background information on modeling the water

network using only the components in our setting. We denote the set of T time periods by

{1, . . . , T}. We use a directed graph G = (V ,A) to represent the water network. Each

vertex v ∈ V can be a customer with demand, a reservoir with supply, or an in-node with

neither demand nor supply. There is a pressure variable pv,t associated with the vertex in

each time period t ∈ {1, . . . , T}, which are lower and upper bounded by pmin
v and pmax

v ,

respectively. Each arc a ∈ A represents a pipe and we use the set Ap to denote the set of

pipes, i.e., A = Ap.

Pipes: A pipe a = (v, w) is specified by its length la, diameter Da, and material prop-

erties. We use qa,t to denote the volumetric flowrate for the pipe in period t ∈ {1, . . . , T}.

The maximum flowrate, qmax
a is proportional to its cross-section area A = πD2

a/4. The

pipe allows bi-directional water flows, and a constraint reflecting the max flowrate and

89

bi-directional flow is given by

−qmax
a ≤ qa,t ≤ qmax

a , t ∈ {1, . . . , T}. (4.3.1)

Before we discuss pressure changes across the pipe, recall that the locations of pump sta-

tions are design decisions. Additionally, we assume that each pipe has a relief valve. Conse-

quently, in addition to the pressure change due to friction and elevation, additional pressure

increase from a pump station or pressure relief from a relief valve can be incurred. We

begin the discussion with the pressure loss due to friction. Water flow in a pipe is gov-

erned by a set of partial differential equations. Under steady-state flow and other technical

assumptions, we can simplify the partial differential equations to a set of nonlinear equa-

tions. There are two variants. The first one is the Hazen-Williams equation, which is given

by

pv,t − pw,t =
10.704la

C1.852D4.87
a

ρg|qa,t|q0.852a,t , t ∈ {1, . . . , T} (4.3.2)

where C is the Hazen-Williams constant which is dependent on the material properties of

the pipe, ρ is the density of water, and g is the gravitational acceleration constant. The

second one is the Darcy equation which is given by

pv,t − pw,t = fD
8la

π2gD5
a

ρg|qa,t|qa,t, t ∈ {1, . . . , T} (4.3.3)

where fD is the friction coefficient that is dependent on the Reynolds number of water flow

and other material properties of the pipe. We can write both equations in a simpler form as

pv,t − pw,t = αa|qa,t|qηa,t, t ∈ {1, . . . , T} (4.3.4)

where we call αa the pressure loss coefficient and η is 0.852 or 1. Elevation change across a

pipe introduces a pressure change that is proportional to the elevation change. Formally, if

we denote the elevation at v and w by ev and ew respectively, the pressure change induced

90

by the elevation change is given by

δa = (ev − ew)ρg. (4.3.5)

Note that δa is constant and can be computed before solving the problem.

Next, to model the decision on whether to install a pump station on this pipe, we use a

binary variable, zI,a, where zI,a = 1 if a pump station is installed and 0 otherwise. In ad-

dition, we introduce two additional continuous variables, ∆I,a,t and ∆R,a,t, to indicate the

amount of pressure increase induced by a pump station and the amount of pressure relief

induced by a relief valve in period t ∈ {1, . . . , T} respectively. The pressure increase in-

duced by a pump station is upper bounded by ∆I,a. Generally, the upper bound on pressure

relief induced by a relief valve can be very large and thus we do not have an upper bound

on ∆R,a,t.

As a result, the total pressure change across a pipe due to friction, elevation, and addi-

tional pressure increase or relief is given by

pv,t − pw,t = αa|qa,t|qηa,t + δa −∆I,a,t +∆R,a,t, t ∈ {1, . . . , T}. (4.3.6)

Constraints on pump stations: We denote the upper bound on the number of pump

stations for the whole network by N . We write a constraint as follows:

∑
a∈Ap

zI,a ≤ N. (4.3.7)

Next, we write the so-called minimum-up and minimum-down constraints. Specifically,

once a pump station a ∈ Ap is switched on (resp. off), it must stay on (resp. off) for a

total of τo (resp. τf) periods. We decide to the “one-variable” variant of the constraints (see

Section 4.2) as we do not consider start-up costs. We use binary variables ξa,t to indicate

the status of the pump station, where ξa,t equals to 1 if the pump station is on in period t

91

and 0 otherwise. The minimum-up and minimum-down constraints are given by

ξa,t ≤ zI,a, t ∈ {1, . . . , T} (4.3.8)

ξa,t − ξa,t−1 ≤ ξa,τ , t ∈ {2, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τo, T}} (4.3.9)

ξa,t−1 − ξa,t ≤ 1− ξa,τ , t ∈ {2, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τf , T}}. (4.3.10)

Additionally, we consider an upper bound, Ma, on the number of periods a pump station

is on to simulate the operational cost constraint. Formally, we have the following

∑
t∈{1,...,T}

ξa,t ≤Ma. (4.3.11)

Note that the upper bounds, Ma and Ma′ , can differ for two pipes a, a′ ∈ Ap.

Reservoirs: Reservoirs are the common sources for the supply of water into the net-

work. It is common practice to assume that pressures at reservoirs are fixed. Consequently,

if we denote the set of reservoirs as V src ⊂ V , we have that

pv,t = psrc
v,t, v ∈ V src, t ∈ {1, . . . , T}, (4.3.12)

where psrc
v,t are the fixed pressure values.

4.3.2 A summary on problem formulation

We consider discrete diameter choices for the pipes by the set [n] := {1, 2, . . . , n}

and use binary variables za,i for a ∈ Ap and i ∈ [n] to indicate the diameter choices.

The diameter value corresponding to za,i is denoted by Da,i. We denote the fixed cost of

constructing a pipe with a diameter Da,i by fa,i. In addition, we create copies of flow

variables qa,t for different diameters as qa,t,i and differentiate the maximum flowrate qmax
a,i

for each diameter choice. As pipes allow bi-directional water flows, we introduce binary

flow direction variables xdir
a,t to indicate the flow direction for a ∈ Ap in time period t

92

and decompose the flows into positive and negative flows. As a result, the flow variables

are q+a,t,i and q−a,t,i for pipes. For each vertex v ∈ V , we denote the set of incoming and

outgoing arcs by A2(v) and A1(v), respectively, i.e., A2(v) = {a ∈ A|a = (w, v)} and

A1(v) = {a ∈ A|a = (v, w)}. Lastly, we use dv,t to denote the demand (a supply can be

reflected by a negative demand value) at a vertex v ∈ V in period t. With these additional

notations, we are ready to give the formulation of the problem.

Objective min
∑
a∈Ap

∑
i∈[n]

fa,iza,i (4.3.13)

s.t.

Flow conserv
∑
i∈[n]

∑
a∈A2(v)

(q+a,t,i − q−a,t,i)−
∑
i∈[n]

∑
a∈A1(v)

(q+a,t,i − q−a,t,i) = dv,t,

v ∈ V, t ∈ {1, . . . , T} (4.3.14)

Pressures pmin
v ≤ pv,t ≤ pmax

v , v ∈ V\V src, t ∈ {1, . . . , T} (4.3.15)

pv,t = psrc
v,t, v ∈ V src, t ∈ {1, . . . , T} (4.3.16)

Pipes 0 ≤ q−a,t,i, q
+
a,t,i ≤ qmax

a,i za,i, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T} (4.3.17)

pv,t − pw,t =
∑
i∈[n]

αa,i(q
+
a,t,i)

1+η −
∑
i∈[n]

αa,i(q
−
a,t,i)

1+η + δa −∆I,a,t +∆R,a,t,

a ∈ Ap, t ∈ {1, . . . , T} (4.3.18)

0 ≤ q+a,t,i ≤ qmax
a,i x

dir
a,t, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T} (4.3.19)

0 ≤ q−a,t,i ≤ qmax
a,i (1− xdir

a,t), a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T} (4.3.20)∑
i∈[n]

za,i = 1, a ∈ Ap (4.3.21)

Pump stations∆I,a,t ≤ ∆I,aξa,t, a ∈ Ap, t ∈ {1, . . . , T} (4.3.22)

ξa,t ≤ zI,a, a ∈ Ap, t ∈ {1, . . . , T} (4.3.23)∑
a∈Ap

zI,a ≤ N (4.3.24)

∑
t∈{1,...,T}

ξa,t ≤Ma, a ∈ Ap (4.3.25)

93

ξa,t − ξa,t−1 ≤ ξa,τ , a ∈ Ap, t ∈ {2, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τo, T}}

(4.3.26)

ξa,t−1 − ξa,t ≤ 1− ξa,τ , a ∈ Ap, t ∈ {2, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τf , T}}.

(4.3.27)

Note that η is 0.852 or 1 depending on the choices of Hazen-Williams equation or Darcy

equation. For the remainder of this chapter, we use Hazen-Williams equation as it is the

more common choice in literature and in practice, i.e., η = 0.852. This results in a general

nonlinear and non-convex formulation. We group the objective function and the constraints

into blocks. A summary of the blocks is given in Table 4.1.

There are a few solvers that take the formulation directly. In particular, we consider

BARON ([68]) and SCIP ([69]). In our preliminary study, we notice that both solvers are

able to improve the dual bounds constantly, but it can be hard to obtain primal (feasible)

solutions in some instances. This observation motivates us to investigate means to obtain

primal solutions and provide them to the solvers.

4.4 Primal solutions

This section presents the two algorithms to obtain primal solutions. The first algorithm

is adapted from the decomposition algorithm presented in Section 3.4 in chapter 3 and is

based on the convex program (CVXNLP) (see [67] and Section 3.4.1 for its properties).

The main components in this algorithm is a primal bound loop and an initial budget search.

The second algorithm is based on time decomposition. In particular, we propose a rolling

horizon type algorithm to obtain primal solutions to the problem.

94

Table 4.1: Constraint blocks

R
ef

er
en

ce
s

B
lo

ck
na

m
es

E
xp

la
na

tio
ns

(4
.3

.1
3)

O
b
j
e
c
t
i
v
e

O
bj

ec
tiv

e
fu

nc
tio

n
to

m
in

im
iz

e
th

e
to

ta
lc

os
to

fc
on

st
ru

ct
io

ns
(t

he
bu

dg
et

)
(4

.3
.1

4)
F
l
o
w

c
o
n
s
e
r
v

Fl
ow

co
ns

er
va

tio
n

(t
o

sa
tis

fy
de

m
an

d
an

d
su

pp
ly

)
(4

.3
.1

5)
-(

4.
3.

16
)

P
r
e
s
s
u
r
e
s

N
on

-s
ou

rc
e

no
de

pr
es

su
re

bo
un

ds
(4

.3
.1

5)
;s

ou
rc

e
no

de
pr

es
su

re
s

(4
.3

.1
6)

(4
.3

.1
7)

-(
4.

3.
21

)
P
i
p
e
s

Fl
ow

lim
its

on
di

am
et

er
ch

oi
ce

s
(4

.3
.1

7)
;p

re
ss

ur
e

ch
an

ge
(4

.3
.1

8)
;

flo
w

lim
its

on
di

re
ct

io
ns

(4
.3

.1
9)

-(
4.

3.
20

);
di

am
et

er
se

le
ct

io
n

(4
.3

.2
1)

(4
.3

.2
2)

-(
4.

3.
27

)
P
u
m
p

s
t
a
t
i
o
n
s

Pr
es

su
re

in
cr

ea
se

lim
it

(4
.3

.2
2)

;
pu

m
p

st
at

io
ns

ca
n

be
on

on
ly

w
he

n
in

st
al

le
d

(4
.3

.2
3)

;
re

so
ur

ce
lim

it
on

nu
m

be
ro

fp
um

p
st

at
io

ns
(4

.3
.2

4)
;

re
so

ur
ce

lim
it

on
nu

m
be

ro
fp

er
io

ds
a

pu
m

p
st

at
io

n
is

on
(4

.3
.2

5)
;

m
in

im
um

-u
p

(4
.3

.2
6)

;m
in

im
um

-d
ow

n
(4

.3
.2

7)

95

4.4.1 CVXNLP based decomposition

Primal bound loop

The primal bound loop consists of a master problem and a subproblem. The primal

bound loop checks if, for a given budget C, there exists a set of feasible flows and pressures

to satisfy the demand and supply along with a set of feasible diameter choices, locations of

pump stations, and scheduling of the pump stations and relief valves. The master problem

is based on (CVXNLP) and is given as

(Pm) min
∑

t∈{1,...,T}

∑
i∈[n]

∑
a∈Ap

αa,i

1 + η
(q+a,t,i)

1+η + δaq
+
a,t,i +

αa,i

1 + η
(q−a,t,i)

1+η + δaq
−
a,t,i

−
∑

t∈{1,...,T}

∑
v∈V src

psrc
v,t

∑
i∈[n]

∑
a∈A2(v)

(q+a,t,i − q−a,t,i)−
∑
i∈[n]

∑
a∈A1(v)

(q+a,t,i − q−a,t,i)

(4.4.1)

s.t.
∑
i∈[n]

∑
a∈A2(v)

(q+a,t,i − q−a,t,i)−
∑
i∈[n]

∑
a∈A1(v)

(q+a,t,i − q−a,t,i) = dv,t, v ∈ V\V src, t ∈ {1, . . . , T}

(4.4.2)

0 ≤ q−a,t,i, q
+
a,t,i ≤ qmax

a,i za,i, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T} (4.4.3)∑
i∈[n]

za,i = 1, ∀a ∈ Ap (4.4.4)

∑
a∈Ap

∑
i∈[n]

fa,iza,i ≤ C. (4.4.5)

Note that in the objective function (4.4.1), we do not include the pressure increase

∆I,a,t or the pressure relief ∆R,a,t. The reasons are two-fold. Firstly, we do not consider

the decisions of locations of the pump stations in the master problem (Pm). Secondly, we

can rewrite the pressure change equation (4.3.17) as

pv,t − pw,t +∆I,a,t −∆R,a,t =
∑
i∈[n]

αa,i(q
+
a,t,i)

1+η −
∑
i∈[n]

αa,i(q
−
a,t,i)

1+η + δa. (4.4.6)

As a result, we can think of the values of ∆I,a,t and ∆R,a,t as part of the pressure pv,t or

96

pw,t.

From (Pm), we can obtain a set of binary solutions for diameter choices, z∗a,i, for a ∈ Ap

and i ∈ [n]. Consequently, we can compute the pressure loss coefficient and the max

flowrate for each pipe a ∈ Ap by

αa =
∑
i∈[n]

αa,iz
∗
a,i (4.4.7)

qmax
a =

∑
i∈[n]

qmax
a,i z

∗
a,i. (4.4.8)

Then, we can fix the corresponding binary variables and obtain a subproblem (Ps) that

differs from the compact formulation (4.3.13) - (4.3.27) only in a few blocks. Formally, we

describe the changes in each of the blocks.

• Objective Instead of minimizing the total construction costs, we have a feasibility

objective function as

Find q+a,t, q
−
a,t, x

dir
a,t, pv,t, zI,a, ξa,t,∆I,a,t,∆R,a,t (4.4.9)

• Flow conserv Once we obtain the diameter choices, we only have one set of the

flowrate variables for each pipe a ∈ Ap in each time period t ∈ {1, . . . , T}, denoted

by q+a,t and q−a,t. We can then write the flow conservation constraint as

∑
a∈A2(v)

(q+a,t − q−a,t)−
∑

a∈A1(v)

(q+a,t − q−a,t) = dv,t, v ∈ V , t ∈ {1, . . . , T} (4.4.10)

• Pressures block remains unchanged.

• Pipes Similar to the Flow conserv block, we only need one set of the flowrate

variables, q+a,t and q−a,t, for a ∈ Ap and t ∈ {1, . . . , T}. We simplify the Pipes block

97

as follows:

pv,t − pw,t = αa(q
+
a,t)

1+η − αa(q
−
a,t)

1+η + δa −∆I,a,t +∆R,a,t, a ∈ Ap, t ∈ {1, . . . , T}

(4.4.11)

0 ≤ q+a,t ≤ qmax
a xdir

a,t, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T} (4.4.12)

0 ≤ q−a,t ≤ qmax
a (1− xdir

a,t), a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T}. (4.4.13)

• Pump stations block remains unchanged.

If the subproblem (Ps) is infeasible, we can add an integer no-good cut to the master

problem (Pm) of the form,

∑
i∈[n]

∑
a∈Ap,z∗a,i=0

za,i +
∑
i∈[n]

∑
a∈Ap,z∗a,i=1

(1− za,i) ≥ 1, (4.4.14)

and resolve the master problem (Pm). On the other hand, if (Ps) is feasible, we then obtain a

set of primal solution to the original formulation with an objective value of
∑

a∈Ap

∑
i∈[n] fa,iz

∗
a,i.

The primal bound loop terminates when we obtain a primal solution or when it reaches a

pre-set time limit. In the latter case, we double the budget C and re-run the primal bound

loop.

Initial budget search

To obtain an initial starting budget for the primal bound loop. We propose an initial

budget search procedure which is a loop consisting of a master problem and subproblem.

The master problem (Im) is given as follows:

(Im) min
∑
a∈Ap

∑
i∈[n]

fa,iza,i (4.4.15)

s.t.
∑
i∈[n]

za,i = 1, ∀a ∈ Ap (4.4.16)

98

za,i ∈ {0, 1}, a ∈ Ap, i ∈ [n]. (4.4.17)

We only consider the diameter choices in (Im) and pick the cheapest available diameter

choices. This problems can be solved very quickly compared to (Pm). Once we obtain

a set of solution z∗a,i for a ∈ Ap and i ∈ [n], we use (4.4.7) and (4.4.8) to compute the

pressure loss coefficients and max flowrates respectively. The resulting subproblem is the

same as (Ps). If (Ps) is feasible, we conclude that the original problem has been solved and

the optimal cost is
∑

a∈Ap

∑
i∈[n] fa,iz

∗
a,i, otherwise, we add the integer no-good cut of the

form (4.4.14) and resolve (Im). We run this search with a time limit and return the objective

value of (Im) in the last iteration before termination if no feasible budget is obtained.

Summary of the algorithm

Algorithm 8 presents the overall procedure with both components from the previous

sections.

Algorithm 8: CVXNLP based decomposition
1 Initial budget search is run for 10 min. ▷ (iteratively solving (Im)

and (Ps))
2 if a feasible budget is obtained then
3 Terminate with the optimal construction costs for this set of demand and supply
4 end
5 else
6 Set starting budget based on the returned value from initial budget search;
7 Primal bound loop is run for 45 min for each budget. ▷ (iteratively

solving (Pm) and (Ps))
8 end
9 return Primal solutions or no primal solution found

4.4.2 Time decomposition

In this section, we discuss the rolling horizon type decomposition. Consider a T̃ < T

such that, if we restrict the original problem to {1, . . . , T̃}, the problem can be solved to a

99

target gap ε relatively efficiently. As we discussed in Section 4.1, one of the characteristics

of produced water is that the volume of water produced typically is high at the beginning

and gradually decreases over time. Such a characteristic means that the diameter choices

from solving the problem with restricted time periods {1, . . . , T̃} are very likely to be

feasible with respect to the volume of water produced in {T̃ + 1, . . . , T}. Additionally,

we argue that a pump station is more likely needed when the amount of water produced is

high. Consider a pipe a = (v, w) and the pressure change equation without a pump station

or a relief valve for a single diameter choice in a time period t. We also include the bounds

on the pressure variables and we have

pv,t − pw,t = αaq
+
a,t

1+η − αaq
−
a,t

1+η (4.4.18)

pmin
v ≤ pv,t ≤ pmax

v (4.4.19)

pmin
w ≤ pw,t ≤ pmax

w . (4.4.20)

When the volume of water is higher, there is a larger frictional pressure loss leading to

either a higher pressure value at v or a smaller pressure value at w. Therefore, the upper

bound at v or the lower bound at w could be violated. A pump station on this pipe is the

only way to allow the pressures at v and w to be feasible by reducing the frictional pressure

loss at the same flowrate.

With the two observations, we now present the rolling horizon type algorithm. For a

given T̃ , we first modify the constraint (4.3.25) to be

∑
t∈{1,...,T̃}

ξa,t ≤Ma
T̃

T
, a ∈ Ap, (4.4.21)

and solve the resulting restricted problem for the time periods {1, . . . , T̃} to a target gap

ε. We can then obtain a set of binary solutions for diameter choices z∗a,i and the locations

of the pump stations z∗I,a for a ∈ Ap and i ∈ [n]. Additionally, we obtain a set of binary

100

solutions for the status of the pump stations ξ∗a,t for a ∈ Ap and t ∈ {1, . . . , T̃}. Once we

fix the diameter choices and locations of the pump stations, we obtain a feasibility problem

(Pr) for the remaining time periods t ∈ {T̃ + 1, . . . , T} by modifications to the objective

and constraint blocks as follows,

• Objective Instead of minimizing the total cost on pipes, we have a feasibility

objective function as

Find q+a,t, q
−
a,t, x

dir
a,t, pv,t, zI,a, ξa,t,∆I,a,t,∆R,a,t (4.4.22)

• Pressures block remains unchanged.

• Flow conserv Once we obtain the diameter choices, we only have one set of the

flowrate variables for each pipe a ∈ Ap in each time period t ∈ {T̃ + 1, . . . , T},

denoted by q+a,t and q−a,t. We can then write the flow conservation constraint as

∑
a∈A2(v)

(q+a,t−q−a,t)−
∑

a∈A1(v)

(q+a,t−q−a,t) = dv,t, v ∈ V , t ∈ {T̃+1, . . . , T} (4.4.23)

• Pipes Similar to the Flow conserv block, we only need one set of the flowrate

variables, q+a,t and q−a,t, for a ∈ Ap and t ∈ {T̃ + 1, . . . , T}. We simplify the Pipes

block as follows:

pv,t − pw,t = αa(q
+
a,t)

1+η − αa(q
−
a,t)

1+η + δa −∆I,a,t +∆R,a,t,

a ∈ Ap, t ∈ {T̃ + 1, . . . , T} (4.4.24)

0 ≤ q+a,t ≤ qmax
a xdir

a,t, a ∈ Ap, i ∈ [n], t ∈ {T̃ + 1, . . . , T} (4.4.25)

0 ≤ q−a,t ≤ qmax
a (1− xdir

a,t), a ∈ Ap, i ∈ [n], t ∈ {T̃ + 1, . . . , T}. (4.4.26)

• Pump stations Once we fix the locations of the pump stations, we simplify this

101

block as follows,

∆I,a,t ≤ ∆I,aξa,t, a ∈ Ap, t ∈ {T̃ + 1, . . . , T} (4.4.27)

ξa,t ≤ z∗I,a, a ∈ Ap, t ∈ {T̃ + 1, . . . , T} (4.4.28)∑
t∈{T̃+1,...,T}

ξa,t ≤Ma(1−
T̃

T
), a ∈ Ap (4.4.29)

ξa,t − ξa,t−1 ≤ ξa,τ , a ∈ Ap, t ∈ {πa,T̃ ,o, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τo, T}}

(4.4.30)

ξa,t−1 − ξa,t ≤ 1− ξa,τ , a ∈ Ap, t ∈ {πa,T̃ ,f , . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τf , T}},

(4.4.31)

where πa,T̃ ,o and πa,T̃ ,f are two parameters that depend on the values of ξ∗a,t for

a ∈ Ap and t ∈ {1, . . . , T̃} and note we may need to fix the variables ξa,t for

t ∈ {T̃+1, . . . , T} for the pipes that have pump stations installed due to minimum-up

constraint (4.3.26) and minimum-down constraint (4.3.27). Formally, if we denote

set of pipes where the pump stations are installed by Ã, we have the fixing procedure

in Algorithm 9.

If the problem (Pr) is feasible, we then combine the variable values from the restricted

problem for time periods {1, . . . , T̃} and (Pr) to obtain a primal solution to the original

problem with the same objective value as the restricted problem. Otherwise, we can pick a

different T̃ or target gap ε and repeat the algorithm.

Note that we can adapt this algorithm when the volume of water produced fluctuates

across the time periods by constructing a restricted problem for a total of T̃ periods with

the highest volume of water produced and then solving a similar feasibility problem for the

remaining time periods. Additionally, the fixing procedure in Algorithm 9 needs to have

minor modifications.

102

Algorithm 9: Fixing procedure

1 for a ∈ Ã do
2 Initialize to = T̃

3 while to ≥ T̃ − τo + 1 and to ≥ 2 do
4 if ξ∗a,to − ξ∗a,to−1 = 1 then
5 Fix ξa,τ = 1 for τ ∈ {T̃ + 1, . . . , to + τo}
6 Set πa,T̃ ,o = to + τo + 1

7 end
8 to = to − 1

9 end
10 Initialize tf = T̃

11 while tf ≥ T̃ − τf + 1 and tf ≥ 2 do
12 if ξ∗a,tf−1 − ξ∗a,tf = 1 then
13 Fix ξa,τ = 0 for τ ∈ {T̃ + 1, . . . , tf + τf}
14 Set πa,T̃ ,f = tf + τf + 1

15 end
16 tf = tf − 1

17 end
18 if πa,T̃ ,o has not been set then Set πa,T̃ ,o = T̃ + 2;
19 if πa,T̃ ,f has not been set then Set πa,T̃ ,f = T̃ + 2;
20 end

103

Summary of the algorithm

We now give a summary of the algorithm. Note that there is a trade-off in selecting

T̃ and ε. A combination of small T̃ and large ε leads to a restricted problem that can be

solved fast, however, the diameter choices and locations of pump stations obtained from

such a restricted problem may not result in a feasible (Pr). In the implementation of this

algorithm, we can select T̃ from a set T and ε from a set E . Consequently, we may obtain

a set of primal solutions. The algorithm is shown in Algorithm 10.

Algorithm 10: Time decomposition
1 Initialize Sol = ∅
2 for T̃ ∈ T do
3 for ε ∈ E do
4 Solve the restricted problem for time periods {1, . . . , T̃} to a target gap of ε

by SCIP
5 Solve the problem (Pr) for time periods {T̃ + 1, . . . , T} after the fixing

procedure (Algorithm 9)
6 if (Pr) is feasible then
7 Add the primal solution and objective value to Sol
8 end
9 end

10 end
11 if Sol ̸= ∅ then return The primal solution with smallest objective value;
12 else return No primal solution found;

4.5 Numerical experiments

4.5.1 Instances

Our numerical experiments are performed on a network that is derived from The Pro-

duced Water Optimization Initiative (PARETO) strategic case study ([1]). The characteris-

tics of the network are given in Table 4.2 and we refer the readers to PARETO’s website

for more details of the network. We consider two values of T with T = 24 and T = 53.

The base demand and supply scenario follows the same temporal trend as those given in

104

PARETO’s strategic case study. In addition, similar to the numerical experiments in chap-

ter 3, we use stress factors to create additional demand and supply scenarios. Specifically,

the stress factors are selected from the set {0.1, 0.5, 1.5, 2.0} and directly multiplied to the

base demand and supply values of each individual node to create new demand and supply

scenarios. In this way, the base scenario has a stress factor of 1.0. We consider 4 different

diameter choices for each pipe and we assume the fixed construction cost of each pipe is

proportional to the circumference of the pipe.

Table 4.2: Characteristics of the network

Sources Sinks In-nodes Pipes
19 7 29 58

4.5.2 Implementation settings

We run the experiments on a computer with an Intel i9 CPU (3.70GHz) with 64GB

RAM. The computer runs the Ubuntu 20.04 LTS operating system. The formulation is

coded in Python with Pyomo. We use SCIP ([69]) via GAMS to solve all optimization

tasks. Algorithm 11 shows the exact steps we use to solve the problem starting from ob-

taining the first primal solution to providing it to SCIP as the initial point and running

SCIP to improve the dual bounds and in some cases obtain better primal solutions. For a

comparison, we also use SCIP to solve the MINLP formulation directly for 5 hours.

Algorithm 11: Overall procedure
1 Run CVXNLP based decomposition (Algorithm 8) or time decomposition

(Algorithm 10)
2 if a primal solution is obtained then
3 Record the amount of time taken to obtain the primal solution;
4 Provide the primal solution to SCIP;
5 Run SCIP for the remainder of 5 hours
6 end
7 return Primal bound C and dual bound C

105

4.5.3 Results

In this section, we present the computational results. We compare the performances

of solving the MINLP formulation by SCIP directly, Algorithm 11 with CVXNLP based

composition, and Algorithm 11 with time decomposition. We report the primal bound C,

lower bound C, and percentage gap which is computed by

gap =
C − C

C
. (4.5.1)

The first set of results for T = 24 is in Table 4.3, where C and C are reported in 104. We

see that SCIP is only able to find primal solutions for stress factors 1.0 and 2.0 while Algo-

rithm 11 with either CVXNLP based decomposition or time decomposition, we are able to

find primal solutions for all stress factors with a largest optimality gap of about 25%. We

observe further improvement from Algorithm 11 with time decomposition from CVXNLP

based decomposition. Additionally, we report that SCIP obtained new primal solutions for

stress factors 0.5 and 1.0 when Algorithm 11 with CVXNLP based decomposition. The

final primal solution reported has about 37.6% and 38.5% improvements from the primal

solutions provided to SCIP for these two stress factors, respectively. For all other demand

and supply scenarios, the final primal solutions reported are obtained from Algorithm 11.

Furthermore, from the comparisons of the dual bounds C, we see that SCIP has the best

dual bounds as Algorithm 11 takes time to obtain the primal solutions. The better dual

bounds for Algorithm 11 with time decomposition indicate that time decomposition out-

performs CVXNLP based decomposition. The general expectation is that as we increase

the stress factor, the demand and supply scenario becomes more challenging to solve. How-

ever, this trend is not obvious in using SCIP directly. For stress factors 0.5 and 1.0, SCIP

obtained the primal solutions via built-in heuristics. We believe with some stress factors,

the problem may present structures that could trigger certain heuristics in SCIP while in

general, it remains very challenging to obtain primal solutions using SCIP directly.

106

Table 4.3: Computational results for T = 24

Stress
MINLP by SCIP Algorithm 11; CVXNLP Algorithm 11; time decomp

C C gap(%) C C gap (%) C C gap (%)
0.1 - 2443.39 - 2443.39 2443.39 0.00 2443.39 2443.39 0.00
0.5 - 2498.78 - 2682.88 2493.39 7.60 2616.23 2496.77 4.78
1.0 3070.02 2632.23 16.63 2892.44 2627.61 10.08 2789.74 2631.38 6.02
1.5 - 2805.03 - 3219.64 2793.41 15.26 3023.93 2804.21 7.84
2.0 3276.69 2937.63 11.54 3683.82 2918.45 26.23 3199.12 2937.07 8.92

The next set of results for T = 53 is in Table 4.4 and similarly C and C are reported

in 104. With more time periods, the problems become harder to solve. SCIP now is not

able to obtain a primal solution for any of the stress factors. Algorithm 11 with CVXNLP

based decomposition is able to obtain primal solutions for all stress factors except 2.0

while Algorithm 11 with time decomposition is able to obtain primal solutions for all stress

factors with a largest optimality gap of less than 15%. The results for T = 53 confirm

the expectated trend for increasing the stress factors. Unlike a few instances with T = 24,

all primal solutions reported in this table are obtained from Algorithm 11. We note that

CVXNLP based decomposition struggles to find good primal solutions for stress factors 1.0

and 1.5 with large optimality gaps. Moreover, we see that the dual bounds for Algorithm 11

with CVXNLP based decomposition and with time decomposition are comparable and this

indicates with T = 53, the time taken to obtain a primal solution from time decomposition

is much longer than the time taken with T = 24. If we consider an even larger network or

more time periods, solving the restricted problem for {1, . . . , T̃} (Step 4 of Algorithm 10)

directly with a solver may not be ideal for the computation time needed. Instead, we can

potentially use the CVXNLP based decomposition to solve the restricted problem much

more efficiently.

4.6 Conclusion

In chapter 4, we study a water network problem which considers the design problem

and operation problem at the same time. The resulting compact formulation is a non-

107

Table 4.4: Computational results for T = 53

Stress
MINLP by SCIP Algorithm 11; CVXNLP Algorithm 11; time decomp

C C gap(%) C C gap (%) C C gap (%)
0.1 - 2443.39 - 2443.39 2443.39 0.00 2443.39 2443.39 0.00
0.5 - 2493.29 - 2721.64 2493.29 9.16 2645.06 2493.29 6.09
1.0 - 2599.72 - 4822.70 2583.69 86.66 2828.82 2582.85 9.52
1.5 - 2748.69 - 5288.98 2715.45 94.77 3054.41 2711.14 12.66
2.0 - 2857.61 - - - - 3212.51 2829.65 13.53

convex MINLP and we observe that either BARON or SCIP is able to constantly improve

on the dual bounds of the formulation, but is slow in finding primal solutions. We propose

two algorithms to obtain primal solutions. One algorithm is based on the convex program

CVXNLP and similar to the framework proposed in chapter 3 and the other is a rolling

horizon type algorithm. We perform computational studies using a network derived from

the PARETO strategic case study and results show that the algorithms proposed can obtain

good primal solutions in the majority of the demand and supply scenarios and the algorithm

based on time decomposition outperforms the algorithm based on CVXNLP. Nonetheless,

there is a potential that combines the two algorithms for even larger network or more time

periods.

There are a few future directions that can be pursued. One is to consider the operation

costs of the pump stations and the relief valves. Both algorithms proposed can be adapted

for these additional cost components.

Acknowledgement

We gratefully acknowledge support from the U.S. Department of Energy, Office of

Fossil Energy and Carbon Management, through the Environmentally Prudent Stewardship

Program.

108

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government nor any agency thereof, nor any

of their employees, makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any information, appa-

ratus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the United States Government or

any agency thereof. The views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency thereof.

Attribution

Team KeyLogic’s contributions to this work were funded by the National Energy Tech-

nology Laboratory under the Mission Execution and Strategic Analysis contract (DE-FE0025912)

for support services.

109

CHAPTER 5

MODELING AND SOLVING CASCADING FAILURES ACROSS

INTERDEPENDENT INFRASTRUCTURE SYSTEMS

5.1 Introduction

Physical infrastructure systems provide crucial resources such as power, water, and

medical treatments for both residential and industrial activities. An infrastructure system

generally consists of multiple types of facilities and these infrastructure facilities can be

damaged and disabled in an event of natural disaster. A hurricane, for example, could leave

particular infrastructure facilities in-operable (i.e., disabled) costing significant damage. In

addition, physical infrastructure systems are generally interdependent. A cascading failure

happens when one in-operable facility propagates the failure to other facilities that depend

on it. Such failures, if not handled properly, could propagate further and lead to an overall

system collapse. This motivates us to study an interdependent and interconnected infras-

tructure system and identify the most severe contingencies, or a combination of failures

of facilities in terms of their impact on the service level of the network, and in particu-

lar, how cascading failures affect the overall system. The identified set of infrastructure

is essential to the network’s functionality and deserves special attentions in the events of

natural disasters. We propose a model that does not assume a given detailed description

of the connectivity of the infrastructure system, instead, we use a probabilistic model to

create likely connectivity patterns. We pose this problem as a bilevel interdiction problem

in the attacked-defender (AD) framework where the attacker (i.e., natural disaster) seeks

a set of infrastructure that maximizes the disruption to the network and the defender (i.e.,

network operator) maximizes the remaining service level of the network given the attacked

infrastructures and cascade of failures.

110

The rest of this Chapter is organized as follows. Section 5.2 provides the literature re-

view on relevant work. Section 5.3 presents the bilevel interdiction model while Section

5.4 demonstrates the decomposition algorithm. Section 5.5 presents the numerical experi-

ments. Lastly Section 5.6 concludes the chapter.

5.2 Literature review

Studies of the cascading failures in networks can be considered as part of the studies of

resilient networks. For a detailed review on the resilience of networks, we refer to [90].

We first give a summary of the ways to model this problem. Relevant work can be

divided into two sets. The first set of work focuses on abstract network model and studies

the effect of cascading failures in network via tools other than optimization. The work [91]

studies the propagation of cascading failures in networks of different characteristics and

presents a study accounting for the dynamics of the nodes in the network and analyzing

the impact of various degree of disruptions to the nodes in the network. [92] considers a

similar model for the cascading condition and proposes an algorithm to select a set of more

instrumental nodes in propagating the failure process. In addition, they consider additional

parameters that affect cascading failures and run simulation to validate the proposed algo-

rithm. [93] proposes a new way to model the overloads due to cascading failures in the risk

and reliability assessment of complex infrastructure systems. An illustration on the effect

of the proposed model is performed on power systems. The second set of work utilizes

optimization tools to tackle the problems and usually focuses on power or electric systems.

This set of work includes [94, 96, 97, 98, 99, 100, 101, 102, 103, 95]. Most of these

work use the attacker-defender framework, a bilevel formulation, to model the problem on

power or electric network. In general, in the bilevel formulation, the attacker (i.e., leader)

decides on which set of nodes to disable and the defender (i.e., follower) decides on the

operation of the network to minimize the disruption of the given attack. In particular, [98]

presents the general frameworks of attacker-defender which results in a bilevel formulation

111

and defender-attacker which could extend the bilevel formulation into a trilevel formula-

tion with fortification by the defender before the decisions of the attacker. The authors

consider applications in power systems and petroleum reserve system. Some work con-

sider different features in the follower problem which is commonly an optimal power flow

problem. The work [97] considers additional elements, recovery transformers, in the power

grids and studies the values of these transformers to the networks against attack. Another

work [96] incorporates an additional operation, line switching, into the follower problem.

The authors perform the vulnerability analysis of the power grids and study the mitigation

effect of having line switching operations. To the best of our knowledge, there has not been

a work that studies the general infrastructure network and considers the effect of cascading

failure. In addition, the previous work generally assume the network is deterministic and

given.

There are many methods and algorithms proposed to solve bilevel optimization prob-

lems. As, in most cases, the attacker decisions are modeled by binary variables, the result-

ing problem is a bilevel mixed-integer problem. We give a summary of relevant techniques

and refer to the work [104] for more details. In general, there are two types of algorithms.

The first is reformulating the bilevel problems into single level problems. A common re-

formulation of a bilevel problem is the value function reformulation and the associated

so-called high point relaxation where the reformulation keeps all the constraints and re-

laxes the optimality condition for the follower problem objective function. The solutions

that are infeasible with respect to the optimality condition are then cut off iteratively. The

work [105] proposes a new class of intersection cuts that is proven to be effective in cut-

ting off these infeasible points and reducing the size of the branch-and-bound tree from

the high point relaxation. The authors validate the performance by considering common

bilevel benchmark instances. Another single level reformulation utilizes the KKT condi-

tions or the duality theory to rewrite the follower problem. The work [100] considers both

to reformulate the bilevel problem into a single level problem. This reformulation can be

112

effective when the follower problem is relatively easy, for example, a linear program. The

next type of algorithm is decomposition and iterative algorithm. The work [106] constructs

an approximate leader problem from previously explored leader problem solutions and pro-

poses an iterative algorithm. When the follower problem satisfies certain assumptions, the

proposed algorithm can be further improved. The authors demonstrate the effectiveness of

the algorithm with min-max 0-1 knapsack problem and min-max clique problem. The work

[107] follows up on [106] and further improves algorithm. In [95], the authors propose a

novel relaxation that leads to certain problem structures that scale well computationally

with problem size. Benders decomposition algorithm is adapted by [94]. The work [94]

computes a cut for each explored leader problem solution. The authors consider power or

electric system as an application of the proposed procedure. In addition, there are work

that study the strategy on exploring the leader problem feasible space, such as [108]. Meta-

heuristics can also be applied. A modified Binary Particle Swarm Optimization (BPSO) is

proposed in [102] to solve the bilevel formulation in power systems.

5.3 Problem formulation

Our goal is to identify the most severe contingencies, or combination of failures of

facilities in terms of their impact on the service level of the network. We formulate this

problem as a bilevel interdiction problem, or Stackelberg game. In our model, the leader

(e.g., the hurricane) selects facilities that it disables so that the remaining service of the

network is minimized. The follower (e.g., network operator) tries to maximize the service

subject to the disabled facilities, taking the cascade of failures through the network into

account. The follower problem is itself a multistage optimization problem, where each

stage models a progression of the cascade. We assume the progression of the cascade to be

synchronized for simplicity.

113

5.3.1 Notations

We use the convention that sets are denoted by calligraphic parameters; parameters

and constants are denoted by upper-case characters; optimization variables are denoted by

lower-case characters.

• Sets:

– F is the set of facilities (nodes).

– A ⊂ F×F is the set of directed arcs that indicate dependencies, i.e., (s, f) ∈ A

indicates that facility f depends on facility s.

– Wf ≥ 0 is the importance weight of facility f ∈ F .

– Ps,f is the probability variable of an arc (s, f) ∈ A that connects facility s to

facility f . We use Pf to denote the vector that contains the probability variables

Ps,f .

– Pf denotes the family of arc probability distribution for a facility f ∈ F . A

generic polyhedron description of Pf is given as follows,

Pf := {Ps,f ≥ 0 :
∑

s∈F :(s,f)∈A

Ps,f = 1,
∑

s∈F :(s,f)∈A

U f
l,sPs,f ≥ uf

l , l ∈ L},

(5.3.1)

where U f
l,s and uf

l are given constants and L is the index set of the constraints.

• Parameters:

– N := card(F) is the total number of facilities.

– Nc ≤ N is the maximum number of facilities that can be disabled by the leader.

– Ns ≥ 1 is the number of stages that we model in our cascade in the follower

problem.

• Decision variables:

114

– xf ∈ {0, 1} are the upper-level decisions, where xf equals to 1 if facility f is

disabled and 0 otherwise. We use x to denote the vector that contains all xf .

– yf,i ∈ [0, 1] are the decision variables in stage i for i ∈ {1, 2, . . . , Ns}; we

interpret the variables yf,i as the fractional capacity which is determined by

the arc probability between dependent facilities and decision variables from

previous stages. We use yi to denote the vector that contains all yf,i for stage i.

Given an facility type, we assume that we know a deterministic hypergraph H that

describes the dependency relationships between facilities of different types. Below are

some notations for the dependency relationships.

• T is the set of facility types.

• Tf ∈ T is the facility type of a particular facility f .

• AH ⊂ T ×T denotes the set of arcs inH; an arc (Ts, Tf) ∈ AH means that facilities

of type Tf are dependent on facilities of type Ts.

5.3.2 Optimization model

With the notations, we define the leader and follower problems in turn. Consider a

particular facility f , an arc probability Ps,f ∈ Pf and xs for s ∈ F , we can compute the

total loss of capacities from the upstream dependencies as

∑
t∈T :(t,Tf)∈AH

∑
s∈F :Ts=t

Ps,fxs =
∑

s:(s,f)∈A

Ps,fxs. (5.3.2)

Next, assuming linear degradation of capacity and the worst-case realization of Pf , we

have that then

yf,1 ≤ min
Pf∈Pf

ϕf (Pf ,x) :=

1− ∑
s:(s,f)∈A

Ps,fxs

+

, (5.3.3)

115

where [·]+ := max{·, 0}. With these notations, we are ready to give our multistage formu-

lation of the problem,

min
x∈{0,1}N

max
0≤y≤1

∑
f∈F

Ns∑
i=1

Wfyf,i (5.3.4)

subject to e⊤x ≤ Nc (5.3.5)

yf,1 ≤ 1− xf , f ∈ F (5.3.6)

yf,1 ≤ min
Pf∈Pf

ϕf (Pf ,x), f ∈ F (5.3.7)

yf,i ≤ yf,i−1, f ∈ F , i ∈ {2, . . . , Ns} (5.3.8)

yf,i ≤ min
Pf∈Pf

ϕf (Pf ,yi−1), f ∈ F , i ∈ {2, . . . , Ns}, (5.3.9)

where functions ϕf in constraints (5.3.7) and (5.3.9) have the form shown in (5.3.3) and

we replace x and yf,1 with the corresponding 1 − yi−1 and yf,i expressions in (5.3.9)

respectively. We use e to represent the vector of all ones and we refer the constraint e⊤x ≤

Nc as the budget constraint for the leader.

Furthermore, we denote the follower problem Q(x̄) with a fixed value of x = x̄ as

follows,

Q(x̄) := max
0≤y≤1

∑
f∈F

Ns∑
i=1

Wfyf,i (5.3.10)

subject to yf,1 ≤ 1− x̄f , f ∈ F (5.3.11)

yf,1 ≤ min
Pf∈Pf

ϕf (Pf , x̄), f ∈ F (5.3.12)

yf,i ≤ yf,i−1, f ∈ F , i ∈ {2, . . . , Ns} (5.3.13)

yf,i ≤ min
Pf∈Pf

ϕf (Pf ,yi−1), f ∈ F , i ∈ {2, . . . , Ns}, (5.3.14)

Consider constraints (5.3.12), the right-hand-side minimization problem can be rewritten

116

as the following problem and we indicate the dual variables in the brackets,

min ξ (5.3.15)

subject to ξ ≥ 1−
∑

s:(s,f)∈A

Ps,f x̄s (λf,1) (5.3.16)

ξ ≥ 0 (5.3.17)

Ps,f ≥ 0 (5.3.18)∑
s∈F

Ps,f = 1 (qf,1) (5.3.19)

∑
s∈F

U f
l,sPs,f ≥ uf

l , l ∈ L (vf,1,l), (5.3.20)

and the dual of (5.3.15)-(5.3.20) is given by

max qf,1 + uf⊤
vf,1 + λf,1 (5.3.21)

subject to qf,1 +Uf
s

⊤
vf,1 + λf,1x̄s ≤ 0, s ∈ F , (s, f) ∈ A (5.3.22)

qf,1 +Uf
s

⊤
vf,1 ≤ 0, s ∈ F : (Ts, Tf) /∈ AH (5.3.23)

0 ≤ vf,1, 0 ≤ λf,1 ≤ 1, (5.3.24)

where uf , vf,1, and Uf
s of length L are the vectors that contain the entries of uf

l , vf,1,l, and

U f
l,s for l ∈ L respectively. Similarly, for constraints (5.3.14), we can write the correspond-

ing dual for each i ∈ {2, . . . , Ns},

max qf,i + uf⊤
vf,i + λf,i (5.3.25)

subject to qf,i +Uf
s

⊤
vf,i + λf,i(1− ys,i−1) ≤ 0, s ∈ F , (s, f) ∈ A (5.3.26)

qf,i +Uf
s

⊤
vf,i ≤ 0, s ∈ F : (Ts, Tf) /∈ AH (5.3.27)

0 ≤ vf,i, 0 ≤ λf,i ≤ 1. (5.3.28)

Consequently, we arrive at an equivalent reformulation of the problem as follows (see [109]

117

Section 3.3.3),

min
x∈{0,1}N

max
∑
f∈F

Ns∑
i=1

Wfyf,i (5.3.29)

subject to e⊤x ≤ Nc (5.3.30)

yf,1 ≤ 1− xf , f ∈ F (5.3.31)

yf,1 ≤ qf,1 + uf⊤
vf,1 + λf,1, f ∈ F (5.3.32)

(5.3.22)− (5.3.24), f ∈ F

yf,i ≤ yf,i−1, f ∈ F , i ∈ {2, . . . , Ns} (5.3.33)

yf,i ≤ qf,i + uf⊤
vf,i + λf,i, f ∈ F , i ∈ {2, . . . , Ns} (5.3.34)

(5.3.26)− (5.3.28), f ∈ F

0 ≤ yf,i ≤ 1, f ∈ F , i ∈ {1, . . . , Ns}, (5.3.35)

as well as a reformulation of the follower problem Q(x̄). We can utilize the McCormick

envelopes to linearize the bilinear constraints (5.3.26) by ζf,s,i = λf,iys,i−1 and we have the

following set of constraints for (5.3.26),

qf,i + U⊤
s,fvf,i + λf,i − ζf,s,i ≤ 0, s ∈ F , (s, f) ∈ A (5.3.36)

ζf,s,i ≥ 0, s ∈ F , (s, f) ∈ A (5.3.37)

ζf,s,i ≥ λf,i + ys,i−1 − 1, s ∈ F , (s, f) ∈ A (5.3.38)

ζf,s,i ≤ λf,i, s ∈ F , (s, f) ∈ A (5.3.39)

ζf,s,i ≤ ys,i−1, s ∈ F , (s, f) ∈ A. (5.3.40)

5.4 Decomposition approach

In this section, we present a Benders type decomposition algorithm.

First, for the ease of exposition, we rewrite the problem in a compact form, where in

118

addition to x and y, we write q, λ, v as the vector forms of the corresponding variables

respectively, as

min
x∈X

max
0≤y≤1,q,λ,v

W⊤y (5.4.1)

s.t. g(x,y, q,λ,v) ≤ 0, (5.4.2)

where X is the feasible region for x and same as defined before. g(x,y, q,λ,v) ≤ 0

denotes the constraints of the follower problem. We first present the master problem (MP),

(MP) min z (5.4.3)

s.t. z ≥ Q(xi)−
∑

f∈F :xi
f=0

αf (xf − xi
f), i ∈ I (5.4.4)

x ∈ X, (5.4.5)

where I is the index set for the previously explored leader solution xi and Q(xi) is the

objective value of the follower problem for xi. Constraint (5.4.4) are the optimality cuts

and provide lower bounds to the objective value z. The coefficients αf for f ∈ F computes

the reduction in the service capacity of the network if facility f is disabled, i.e., xf changes

from 0 to 1. We compute these coefficients for f ∈ F in Algorithm 12. We use [Ns] to

denote the set {1, . . . , Ns} and P f,s to represent upper bounds on the arc probabilities Pf,s

for f, s ∈ F . Since Algorithm 12 relies on the network structure and number of stages, it

only needs to be executed once before the first iteration. Note that the upper bounds on the

arc probability P f,s depends on the description of the arc probability distribution set Ps.

Next, from the construction of the master problem (MP), the subproblem is exactly

the follower problem, Q(x∗), to solve for the maximum remaining service capacity of the

network given the leader solution x∗. Using our compact form, the subproblem (SP) is

119

Algorithm 12: Computation of αf

1 Input: Wf for f ∈ F , A, P f,s for f, s ∈ F such that (f, s) ∈ A
2 Output: αf for f ∈ F
3 Let αf,i be a table for f ∈ F and i ∈ [Ns]
4 for f ∈ F do
5 αf,1 = Wf +

∑
s∈F :(f,s)∈A WsP f,s

6 for i ∈ {2, . . . , Ns} do
7 αf,i = Wf +

∑
s∈F :(f,s)∈A αs,i−1P f,s

8 end
9 end

10 for f ∈ F do
11 αf =

∑
i∈[Ns]

αf,i

12 end
13 return αf for f ∈ F

given by,

(SP) Q(x∗) = max
0≤y≤1,q,λ,v

W⊤y (5.4.6)

s.t. g(x∗,y, q,λ,v) ≤ 0. (5.4.7)

We are now ready to present the overall procedure in Algorithm 13 with a target gap ε

in percentage. In practice, we can use any feasible solution of the master problem (MP) to

construct a subproblem (SP) and obtain a cut. However, only the objective values associated

with optimal solutions are valid lower bounds to update z in step 7 of Algorithm 13.

Next, we present a modification of the algorithm. We consider the strengthening of cut

(5.4.4) in the form of

z ≥ Q(xi)−
∑

f∈F :xi
f=0

αf (xf − xi
f) +

∑
f∈F :xi

f=1

βf (x
i)(xf − xi

f). (5.4.8)

The coefficients βf (x
i) computes the release of service capacity of network if a facility f

that is disabled in xi is instead operational. Unlike the coefficients of αf , βf (x
i) depends

on a particular leader solution xi and we can utilize auxiliary problems to compute them.

120

Algorithm 13: Decomposition algorithm
1 Input: Target gap ε
2 Initialize z =∞, z = 0, i = 0
3 Compute the cut coefficients αf

4 while (z − z)/z > ε do
5 i = i+ 1
6 Solve the master problem (MP) to obtain the solution xi and zi

7 if zi > z then update z = zi;
8 Fix x = xi and solve the subproblem (SP)
9 if Q(xi) < z then update z = Q(xi);

10 Add cut (5.4.4) to (MP)
11 end
12 return ε-optimal solution xi

Consider a particular xi and f such that xi
f = 1, we use x̃ to denote the new vector obtained

from changing xi
f to 0 while keeping the rest of components unchanged. We solve the

subproblem (SP) Q(x̃) and set βf (x
i) to be Q(x̃) − Q(xi). We repeat the process for all

facilities that are disabled in xi to obtain a strengthened cut of (5.4.8). Depending on the

value of Nc, this may require solving a few auxiliary problems.

5.5 Computational results

5.5.1 Instances

In the computational experiments, we use synthetic networks to validate the proposed

algorithm as it is generally difficult and sensitive to obtain real-world data on the loca-

tions and types of infrastructure facilities. Our synthetic instances are generated based on

frequency and importance data provided by Decision and Infrastructure Science (DIS) di-

vision at Argonne National Laboratory, USA. We present the characteristics of the facility

types and importance weights in Table 5.1.

The frequency column in Table 5.1 indicates the distribution of facilities. We first

generate the facilities according to their frequencies. To generate the dependency graph A,

for facilities s and f such that (Ts, Tf) ∈ AH, we use the Euclidean distance, denoted by

121

Table 5.1: Facility information

Facility type Upstream dependencies Frequency W

Cell tower Substation 0.0438 23
EMS Substation, cell tower, water, health care 0.0501 20

Thermal generation Transport, cell tower 0.00887 113
Renewable generation Cell tower 0.0162 62

Substation Thermal or renewable generation, cell tower 0.178 6
Health care Transport, EMS, substation, cell tower, water 0.0391 26
Pharmacies Transport, substation, cell tower, water 0.527 2
Transport Cell tower, substation, water 0.0318 31

Water Substation, transport, cell tower 0.105 10

dsf and Hoffman model to compute a base value for the probability P̃s.f , i.e.,

P̃s,f =
1

d2sf
. (5.5.1)

We also set a threshold value below which we set P̃s,f to be zero since those facilities are

too far away from each other to have the dependent relationship. This also allows us to

keep the formulation simple and consistent as we do not need to differentiate between s

and s̃ with Ps,f = 0 and Ps̃,f > 0 in constraints (5.3.22) and (5.3.26). The differences

are reflected by the coefficients in the description of Pf . Base on the value of P̃s,f , we

construct the set Pf as

Pf = {Ps,f ≥ 0,
∑

s∈F :(s,f)∈A

Ps,f = 1, |Ps,f − P̃s,f | ≤ δP̃s,f , s, f ∈ F , (s, f) ∈ A},

(5.5.2)

with δ = 0.1. Consequently, we can obtain upper bounds, P s,f , for Ps,f used in Algorithm

12 by (1 + δ)P̃s,f .

For our experiments, we generate 2 networks that vary in the number of facilities. Table

5.2 shows a breakdown on the size of the instances.

We want to point out that many larger infrastructure networks can be mapped into

smaller networks of sizes that are comparable to our synthetic networks by grouping in-

122

Table 5.2: Instance information

Instance name f128 f210

No. of facilities 128 210
No. of arcs in A 1044 2033

frastructure facilities by their geographical proximity. This is valid because often natural

disaster events can disable multiple facilities located in an area rather than a single facility.

The dependency graph can be constructed by considering the functionalities of the facilities

in the groups. As a result, we are interested in identifying most important facility groups in

the networks.

5.5.2 Computational settings

We run the experiments on a computer with an Intel i9 CPU with 64GB RAM. The

computer runs the Ubuntu 20.04 LTS operating system. The algorithm is coded in Julia

1.6.1 ([110]) and JuMP. Based on our preliminary experiments, we decided to use Gurobi

9.5.1 ([41]) to solve both master problem (MP) and subproblem (SP). For each instance,

we set an 1 hour time limit. We set the target gap to be 1% while using 10 feasible solutions

including the optimal solution from the master problem (MP) to generate optimality cuts.

5.5.3 Results

In this section, we compare the performances between the nonlinear formulation and the

McCormick envelopes as well as across the variants of the algorithm. We denote Algorithm

13 with optimality cuts (5.4.4) by Benders and with strengthened optimality cuts (5.4.8)

by Benders-S respectively. As strengthening requires solving auxiliary problems, it is

not practical to perform strengthening for all feasible solutions and we only strengthen the

optimality cut for the optimal solution from the master problem (MP).

We first compare the performances from using the nonlinear formulation and the Mc-

Cormick envelopes for the follower problem (SP). In particular, the nonlinear formulation

123

for the follower problem utilizes constraint (5.3.26) while the McCormick envelopes uti-

lize the constraints (5.3.36)-(5.3.40). We opt to use the variant Benders to solve the

problem and report the detailed results in Table 5.3. The column “Iter.” reports the number

of iterations.

Table 5.3: Comparison of nonlinear formulation and McCormick envelopes

Instance name Method Ns Nc Time (s.) Iter. Optimal obj Disabled facilities

f128
Nonlinear 3 5 176.87 24 3754.69 1, 17, 33, 67, 97

McCormick 3 5 14.36 24 3754.69 1, 17, 33, 67, 97

f210
Nonlinear 3 5 490.21 30 6052.88 1, 43, 85, 106, 148

McCormick 3 5 39.94 29 6052.88 1, 43, 85, 106, 148

In this set of experiments, we choose the number of stages of cascade (Ns) and number

of disabled facilities (Nc) to be such that both the nonlinear formulations and McCormick

envelopes can be solved within the time limit. We observe that using McCormick envelopes

yields the same optimal objective values and solutions (i.e., disabled facilities) as using the

nonlinear formulations does, but the computation times with McCormick envelopes are

significantly shorter. The average improvement in computation time from McCormick

envelopes is about 91.8%. In addition, the number of iterations needed to achieve the target

gap do not differ significantly for both formulations.

Next, we compare the performances between the variants Benders and Benders-S.

As the McCormick envelopes outperform the nonlinear formulation significantly in com-

putation time, in this set of experiments, we use the McCormick envelopes for the follower

problem (SP). We first present the plots for the progress of upper bound z and the lower

bound z as well as the gaps as computed by

Gap =
z − z

z
× 100%. (5.5.3)

Figures 5.1 to 5.3 show the plots for instance f210 with 3 stages of cascade (Ns = 3)

and 8 disabled facilities (Nc = 8). We observe that the gap between z and z reduces very

quickly in the first 30 iterations for all both variants. After approximately 80 iterations,

124

the upper bound z remains unchanged while computations are carried out to close the gaps

from improving the lower bound z. This observation suggests that the optimal solution

and objective values are likely to be found early in the execution of the algorithm while

proving optimality is a much more challenging task. In addition, the number of iterations

needed to reach the target gap for Benders-S is also significantly smaller than that for

Benders. We want to point out that Benders terminates with a gap of 1.48% in the given

time limit while Benders-S achieves the target gap in about 40 minutes. This shows

the effectiveness of the strengthened optimality cuts despite, in each iterations, additional

auxiliary problems have to be solved in the Benders-S variant.

Figure 5.1: Full progress of z and z

The next set of results report scalability of the algorithm. In particular, we vary the

number of stages of cascade (Ns) and number of disabled facilities (Nc) for both networks.

Similar to the previous set of experiments, we use McCormick envelopes for the follower

problem (SP). In Tables 5.4 and 5.5, we report the detailed computational results. From

both tables, we see that with smaller number of stages of cascade (Ns = 1 or 2) in the

follower problem, both variants of the algorithms solve the problem to optimality in a rela-

tively short amount of time. As we increase the number of stages of cascade, the problems

125

Figure 5.2: Progress of z and z from iteration 50 onwards

become much more challenging to solve. When we consider 4 stages of cascade (Ns = 4),

we see that in few cases we reach the time limit with non-zero gaps. Nonetheless, we ob-

serve similar progresses of the z and z as well as gaps to what are shown in Figures 5.1 to

5.2. The algorithm is able to find feasible solutions in these cases, but more computations

are needed to improve the lower bounds to close the gap and prove the feasible solutions

are optimal. Even with the non-zero gaps, these feasible solutions have their practical uses.

In addition, we see that the increasing the number of stages of cascade (Ns) has a more

significant impact than increasing the number of disabled facilities (Nc) on the computa-

tion. This observation aligns with we expected. As we increase the number of stages of

cascade (Ns), the follower problem (SP) becomes larger with more variables on the ex-

pected fractional capacity, while as we increase the number of disabled facilities (Nc), we

do not change the size of the follower problem (SP). When the problems are relatively easy

with small number of stages of cascade (Ns) or disabled facilities (Nc), we see Benders

outperforms Benders-S that requires solving additional auxiliary problems in the pro-

cess. The effectiveness of the strengthened optimality cuts becomes obvious when the

problems are challenging to solve with larger number of stages of cascade (Ns) or disabled

126

Figure 5.3: Progress of gap

facilities (Nc). There are few instances where Benders terminates with non-zero gaps

while Benders-S is able to close the gaps despite the time taken per each iteration with

Benders-S is longer.

5.5.4 Comparison with existing work

As we discussed in Section 5.2, there are two categories of approaches existed in the

literature. One relies on reformulation and relaxation of the original problem to obtain a

single-level problem. As we consider worse-case scenario from the probabilistic network,

the resulting follower problem is a nonlinear multistage problem. Even in the case of using

McCormick envelopes in place of the nonlinear constraints, it is difficult to reformulate

the bilevel problem into a single-level problem. The size of the final problem could also

be too large for performances. The other approach is decomposition and iterative proce-

dures. We first discuss the iterative algorithm proposed in [106] and [107] that leverages

an approximate leader problem constructed from previously explored leader problem so-

lutions. We have implemented the the basic version of the algorithm in our study, but we

observed that the algorithm explores every single feasible leader problem solution before it

127

terminates. Due to the large number of feasible leader problem solutions in our setting, the

algorithm cannot obtain the optimal solution with the target gap of 1% even for instance

f128 with one stage of cascade (Ns = 1) in the given time limit. The main procedure

in the improved version is to construct a new follower problem solution from a sequence

of previously explored solutions. The new follower problem solution has to be feasible to

all constraints and then a valid lower bound can be obtained. However, the construction of

such follower problem assumes certain structures on the follower problem and our follower

problem does not share such structures. Next, we note that Benders shares some simi-

larity with the algorithm proposed in [94] and [97], nonetheless, the strengthened variant

Benders-S proposed in this chapter has further improvements in its performances.

5.6 Conclusion

In conclusion, we study the effect of cascading failures in an interdependent infrastruc-

ture network. In particular, we try to identify the most severe contingencies in the network

considering an event of natural disaster which could disable some of facilities to cause

failures and the failures can propagate further to other dependent facilities. We propose a

bilevel interdiction model for this problem. Due the complexity of the follower problem,

it is difficult to reformulate the bilevel problem into a single level problem. We instead

propose a Benders type decomposition algorithm and study a strengthened variant of it.

We validate the proposed algorithm using two synthetic networks and vary the number of

stages of cascade and number of disabled facilities. The proposed algorithm is shown to

be able to obtain the optimal solutions in most cases, while, in some challenging cases,

feasible solutions of practical usefulness.

For the future directions, we could explore other ways to strengthen the optimality

cuts and study other classes of valid inequalities to help close the gaps for the challenging

cases when the number of stages of cascade is large. Furthermore, we can study and take

advantages of the structures in the network and dependency graph to further reduce the

128

feasible space in the leader problem. One example is to utilize any symmetries in the

network and dependency graph to generate more valid inequalities in each iteration of the

algorithm.

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office

of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-

06CH11357. This work was also supported by the U.S. Department of Energy through

grant DE-FG02-05ER25694.

129

Table 5.4: Computational results for instance f128

Ns Nc
Benders Benders-S

Time (s.) Iteration Gap(%) Time (s.) Iteration Gap(%)

1

2 1.02 2 0.0 1.13 2 0.0
3 1.14 3 0.0 1.24 3 0.0
4 1.17 3 0.0 1.28 3 0.0
5 1.16 3 0.0 1.28 3 0.0
6 1.33 4 0.0 1.65 4 0.0
7 1.71 6 0.0 1.89 5 0.0
8 3.05 12 0.0 2.67 8 0.0
9 4.06 16 0.0 3.89 10 0.0
10 4.68 18 0.0 4.54 11 0.0

2

2 1.91 2 0.0 1.99 2 0.0
3 1.97 3 0.0 2.25 3 0.0
4 2.40 4 0.0 2.62 4 0.0
5 2.55 5 0.0 3.09 5 0.0
6 3.37 8 0.0 3.79 6 0.0
7 6.62 16 0.0 5.91 11 0.0
8 13.87 28 0.0 13.36 19 0.0
9 70.29 54 0.0 59.3 35 0.0
10 269.23 97 0.0 230.65 60 0.0

3

2 3.12 3 0.0 3.29 3 0.0
3 3.51 4 0.0 3.550 3 0.0
4 6.12 9 0.0 5.52 7 0.0
5 14.36 24 0.0 12.05 15 0.0
6 29.55 37 0.0 25.47 27 0.0
7 134.47 69 0.0 103.71 44 0.0
8 460.04 124 0.0 367.74 77 0.0
9 2105.39 250 0.0 1436.06 149 0.0
10 3600 271 7.36 3600 206 4.85

4

2 5.73 3 0.0 5.94 3 0.0
3 7.51 6 0.0 7.74 5 0.0
4 20.16 19 0.0 19.97 14 0.0
5 49.96 41 0.0 46.00 29 0.0
6 202.77 88 0.0 170.64 59 0.0
7 585.16 145 0.0 515.25 99 0.0
8 2854.24 305 0.0 2147.91 202 0.0
9 3600 288 11.49 3600 222 9.16
10 3600 232 43.81 3600 173 38.12

130

Table 5.5: Computational results for instance f210

Ns Nc
Benders Benders-S

Time (s.) Iteration Gap(%) Time (s.) Iteration Gap(%)

1

2 3.89 2 0.0 4.04 2 0.0
3 3.93 2 0.0 4.1 2 0.0
4 4.15 3 0.0 4.56 3 0.0
5 4.15 3 0.0 4.58 3 0.0
6 4.31 3 0.0 4.55 3 0.0
7 4.43 4 0.0 4.71 3 0.0
8 5.22 6 0.0 6.31 6 0.0
9 7.37 12 0.0 8.05 9 0.0
10 15.21 25 0.0 133.66 15 0.0

2

2 6.24 2 0.0 6.5 2 0.0
3 6.59 3 0.0 7.18 3 0.0
4 6.76 3 0.0 7.23 3 0.0
5 6.79 3 0.0 7.29 3 0.0
6 7.89 5 0.0 8.36 4 0.0
7 8.54 6 0.0 9.25 5 0.0
8 27.29 30 0.0 16.09 11 0.0
9 99.83 70 0.0 87.18 42 0.0
10 480.63 129 0.0 297.42 71 0.0

3

2 9.59 3 0.0 10.06 3 0.0
3 10.49 4 0.0 11.33 4 0.0
4 15.13 9 0.0 15.07 7 0.0
5 39.94 29 0.0 31.93 17 0.0
6 100.55 61 0.0 73.56 33 0.0
7 410.82 123 0.0 246.05 69 0.0
8 3600 300 1.48 2086.63 167 0.0
9 3600 275 5.37 3600 193 3.97
10 3600 240 9.77 3600 166 9.08

4

2 17.33 4 0.0 15.92 3 0.0
3 39.31 12 0.0 30.60 8 0.0
4 158.56 50 0.0 95.98 25 0.0
5 444.04 108 0.0 301.88 63 0.0
6 1277.96 184 0.0 882.34 110 0.0
7 3600 282 2.78 3339.4 215 0.0
8 3600 258 10.45 3600 185 9.12
9 3600 233 20.99 3600 163 19.79
10 3600 216 36.48 3600 144 35.13

131

CHAPTER 6

CONCLUSION

We study four integer problems from the domain of transportation, energy systems, and

general infrastructure networks in this thesis. We propose a decomposition framework for

each of the problem and computational experiments show that our proposed decomposition

frameworks can solve majority of the instances to optimality or with small gaps. On one

hand, the column generation framework in chapter 2 and the Benders type decomposition

algorithm in chapter 5 belong to the category of general-purpose algorithms. In fact, Ben-

ders decomposition is a row generation framework. In addition, the time decomposition,

specifically, rolling horizon, in chapter 2 and chapter 4 is also a general-purpose algorithm.

It is commonly used in problems with multiple time periods to decompose the problems

into smaller problems based on the time periods. On the other hand, the decomposition

framework based on the convex program, CVXNLP, in chapters 3 and 4 is a specialized

algorithm that requires the problems to have certain structures. Nonetheless, this type of

framework can be generalized to a general-purpose two-phase decomposition framework

where we solve for the values of some variables in the first phase via reformulations or

heuristics and solve for the remaining variables after fixing the values of the variables that

are solved in the first phase.

We summarize the future research directions that are applicable to the problems we

study in this thesis and many more applications of MILP and MINLP. The first one is better

strategies for the exploration of the binary (integer) variable space and cut generation. In

chapters 3, 4, and 5, we have a lot of binary variables creating a large feasible space to

explore. Both the integer no-good cuts and the Benders optimality cuts are constructed

based on a single solution. There are techniques such as [111, 112] that consider stronger

cuts which are constructed from many previously explored solutions. The second one is

132

the incorporation of additional problem features. This will improve on the accuracy of the

models and the results obtained from solving the models. The consideration of the gate

interference in chapter 2, and additional cost components in chapters 3 and 4, are examples

in this regard.

133

REFERENCES

[1] M. G. Drouven, A. J. Calderon, M. A. Zamarripa, and K. Beattie, “Pareto: An open-
source produced water optimization framework,” Optimization and Engineering,
2022.

[2] Y. Li, J.-P. Clarke, and S. S. Dey, “Using submodularity within column generation
to solve the flight-to-gate assignment problem,” Trnasportation Research Part C:
Emerging Technology, vol. 129, no. 103217, 2021.

[3] Y. Li, S. S. Dey, and N. V. Sahinidis, “A decomposition framework for gas network
design,” 2023.

[4] Y. Li, S. S. Dey, and N. V. Sahinidis, “Optimizing the designs and operations of
water networks: A decomposition approach,” 2023.

[5] Y. Li, K. Kim, S. Leyffer, and M. Menickelly, “Modeling and solving cascading
failures across interdependent infrastructure systems,” 2023.

[6] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. New
York, Wiley, 1988.

[7] M. Conforti, G. Cornuejols, and G. Zambelli, Integer Programming. Springer Pub-
lishing Company, Incorporated, 2014, ISBN: 3319110071.

[8] IATA, Iata pressroom, https:/ /www.iata.org/en/pressroom/pr/2016- 10- 18- 02,
Accessed: Feb 13, 2020, 2016.

[9] FAA, Air traffic by the numbers, Federal Aviation Administration, 2019.

[10] A. Bouras, M. A. Ghaleb, U. S. Suryahatmaja, and A. M. Salem, “The airport gate
assignment problem: A survey,” The Scientific World Journal, vol. 2014, p. 923 859,
2014.

[11] G. S. Das, F. Gzara, and T. Stutzle, “A review on airport gate assignment problems:
Single versus multi objective approaches,” Omega, vol. 92, p. 102 146, 2020.

[12] S. Mokhtarimousavi, D. Talebi, and H. Asgari, “A non-dominated sorting genetic
algorithm approach for optimization of multi-objective airport gate assignment
problem,” Transportation Research Record, vol. 2672, no. 23, pp. 59–70, 2018.

[13] C.-H. Cheng, S. C. Ho, and C.-L. Kwan, “The use of meta-heuristics for airport
gate assignment,” Expert Systems with Applications, vol. 39, no. 16, pp. 12 430–
12 437, 2012.

134

https://www.iata.org/en/pressroom/pr/2016-10-18-02

[14] S. Yan and C.-H. Tang, “A heuristic approach for airport gate assignments for
stochastis flight delays,” European Journal of Operations Research, vol. 180, no. 2,
pp. 547–567, 2007.

[15] S. H. Kim, E. Feron, and J.-P. Clarke, “Gate assignment to minimize passenger
transit time and aircraft taxi time,” Journal of Guidance, Control, and Dynamics,
vol. 36, no. 2, pp. 59–70, 2013.

[16] I. Kaliszewski, J. Micoforidis, and J. Stanczak, “Multiobjective optimization in
the airport gate assignment problem, exact versus evolutionary multiobjective op-
timization,” Computer Science, vol. 18, no. 1, p. 41, 2007.

[17] Y. Cheng, “A knowledge-based airport gate assignment system integrated with
mathematical programming,” Computers & Industrial Engineering, vol. 32, no. 4,
pp. 837–852, 1997.

[18] F. Jaehn, “Solving the flight gate assignment problem using dynamic program-
ming,” Z Betriebswirtsch, vol. 80, pp. 1027–1039, 2010.

[19] U. M. Neuman and J. A. D. Atkin, “Airport gate assignment considering ground
movement,” in Computational Logistics, D. Pacino, S. Voß, and R. M. Jensen, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 184–198, ISBN: 978-3-
642-41019-2.

[20] U. Dorndorf, F. Jaehn, and E. Pesch, “Flight gate assignment and recovery strate-
gies with stochastic arrival and departure times,” OR Spectrum 39, 65-93, vol. 39,
pp. 65–93, 2017.

[21] V. P. Kumar and M. Bielaire, “Multi-objective airport gate assignment problem in
planning and operations,” Journal of Advanced Transportation, vol. 48, pp. 902–
926, 2013.

[22] S. H. Kim, E. Feron, J.-P. Clarke, A. Marzuoli, and D. Delahaye, “Airport gate
scheduling for passengers, aircraft, and operations,” Journal of Air Transporation,
AIAA, vol. 25, no. 4, pp. 109–144, 2017.

[23] U. Dorndort, F. Jaehn, and E. Pesch, “Flight gate scheduling with respect to a ref-
erence schedule,” Annals of Operations Research, vol. 194, pp. 177–187, 2012.

[24] G. S. Das, “New multi objective models for the gate assignment problem,” Com-
puters & industrial Engineering, vol. 109, pp. 347–356, 2017.

[25] C.-H. Tang and W.-C. Wang, “Airport gate assignments for airline-specific gates,”
Journal of Air Transport Management, vol. 30, pp. 10–16, 2013.

135

[26] M. Seker and N. Noyan, “Stochastic optimization models for the airport gate as-
signment problem,” Transportation Research Part E: Logistics and Transportation
Review, vol. 48, no. 2, pp. 438–459, 2012.

[27] S. Yan and C.-M. Huo, “Optimization of multiple objective gate assignments,”
Transportation Research Part A: Policy and Practice, vol. 35, pp. 413–432, 2001.

[28] C. Yu, D. Zhang, and H. Lau, “Mip-based heuristics for solving robust gate as-
signment problems,” Computers & Industrial Engineering, vol. 93, pp. 171–191,
2016.

[29] C. Yu, D. Zhang, and H. Lau, “An adaptive large neighborhood search heuristic
for solving a robust gate assignment problem,” Expert Systems with Applications,
vol. 84, pp. 143–154, 2017.

[30] U. Benlic, E. K. Burke, and J. R. Woodward, “Breakout local search for the multi-
objective gate allocation problem,” Computes & Operations Research, vol. 78,
pp. 80–93, 2017.

[31] W. Deng, H. Zhao, X. Yang, J. Xiong, M. Sun, and B. Li, “Study on an improved
adaptive pso algorithm for solving multi-objective gate assignment,” Applied Soft
Computing (59) October 2017, Pages 288-302, vol. 59, pp. 288–302, 2017.

[32] J. Xu and G. Bailey, “The airport gate assignment problem: Mathematical model
and a tabu search algorithm,” Proceedings of the 34th Hawaii International Con-
ference on System Sciences, vol. 3, p. 10, Feb. 2001.

[33] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance,
“Branch-and-price: Column generation for solving huge integer programs,” Oper-
ations Research, vol. 46, no. 3, pp. 316–329, 1996.

[34] M. Desrochers, J. Desrosiers, and M. Solomon, “A new optimization algorithm
for the vehicle routing problem with time window,” Operations Research, vol. 40,
no. 2, pp. 342–354, 1992.

[35] N. Buchbinder, M. Feldman, J. (Naor, and R. Schwartz, “A tight linear time (1/2)-
approximation for unconstrained submodular maximization,” SIAM J. COMPUT.,
vol. 44, no. 5, pp. 1384–1402, 2012.

[36] I. Ioachim, S. Gerlinas, F. Soumis, and J. Desrosiers, “A dynamic programming
algorithms for the shortest path problem with time windows and linear node costs,”
Networks, Vol.31, pp. 193-204, vol. 31, pp. 193–204, 1998.

[37] M. Desrochers and F. Soumis, “A generalized permanent labeling algorithm for the
shortest path problem with time windows,” INFOR, vol. 26, pp. 191–212, 1988.

136

[38] Y. Dumas, F. Soumis, and J. Desrosiers, “Technical note-optimizing the schedule
for a fixed vehicle path with convex inconvenience costs,” Transportation Science
24(2):145-152, vol. 24, no. 2, pp. 145–152, 1990.

[39] D. Buitendijk, “First order stability flexible gate scheduling,” 2014, Thesis.

[40] D. Ryan and B. Foster, “An integer programming approach to scheduling,” Opera-
tions Research Quarterly (1970-1977), vol. 27, no. 2, pp. 367–384, 1981.

[41] L. Gurobi Optimization, Gurobi optimizer reference manual, 2022.

[42] U.S. EIA, Natural gas explained, https://www.eia.gov/energyexplained/natural-
gas/natural-gas-pipelines.php, Accessed: 04-21-2022, 2021.

[43] S. Sullivan and S. Dlin, Year in pipelines: Growth in us natural gas pipeline assets
slowed again in 2020, https: / /www.spglobal .com/marketintelligence/en/news-
insights / latest - news - headlines / year - in - pipelines - growth - in - us - natural - gas -
pipeline-assets\-slowed-again-in-2020-66386728, Accessed: 04-21-2022, 2021.

[44] D. D. Wolf and Y. Smeers, “Optimal dimensioning of pipe networks with applica-
tion to gas transmission networks,” Operations Research, vol. 44, no. 4, pp. 596–
608, 1996.

[45] D. D. Wolf and Y. Smeers, “The gas transmission problem solved by an extension
of the simplex algorithm,” Management Science, vol. 46, no. 11, pp. 1454–1465,
2000.

[46] M. Schmidt et al., “Gaslib - a library of gas network instances,” data, vol. 2, no. 4,
p. 40, 2015.

[47] R. Z. Rio-Mercado and C. Borraz-Sanchez, “Optimization problems in natural
gas transportation systems: A state-of-the-art review,” Applied Energy, vol. 147,
pp. 536–555, 2015.

[48] Q. P. Zheng, S. Rebennack, N. A. Iliadis, and P. Pardalos, in Handbook of Power
Systems I, P. M. Pardalos, S. Rebennack, M. V. F. Pereira, and N. A. Iliadis, Eds.
Heidebergy: Springer Berlin, 2010, ch. Optimization Models in the Natural Gas
Industry.

[49] F. M. Hante and M. Schmidt, “Gas transport network optimization: Mixed-integer
nonlinear models,” Optimization-online, 2023.

[50] F. Liers, A. Martin, M. Merkert, N. Mertens, and D. Michaels, “Solving mixed-
integer nonlinear optimization problems using simultaneous convexification–a case

137

https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php
https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assets\-slowed-again-in-2020-66386728
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assets\-slowed-again-in-2020-66386728
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/year-in-pipelines-growth-in-us-natural-gas-pipeline-assets\-slowed-again-in-2020-66386728

study for gas networks,” Journal of Global Optimization, vol. 80, pp. 307–340,
2021.

[51] M. E. Pfetsch et al., “Validation of nominations in gas network optimization: Mod-
els, methods, and solutions,” Optimization Methods and Software, vol. 30, no. 1,
pp. 15–53, 2015.

[52] B. Geibler, A. Morsi, L. Schewe, and M. Schmidt, “Solving power-constrained gas
transportation problems using an mip-based alternating direction method,” Com-
puters & Chemical Engineering, vol. 82, pp. 303–317, 2015.

[53] B. Geibler, A. Morsi, L. Schewe, and M. Schmidt, “Solving highly detailed gas
transport minlps: Block separability and penalty alternating direction methods,”
INFORMS Journal on Computing, vol. 30, no. 2, pp. 309–323, 2018.

[54] R. Burlacu, B. Geissler, and L. Schewe, “Solving mixed-integer nonlinear pro-
grams using adaptively refined mixed-integer linear programmes,” Optimization
Methods and Software, vol. 35, no. 1, pp. 37–64, 2020.

[55] T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe, Eds., Evaluating Gas Network
Capacities. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015.

[56] D. Rose, M. Schmidt, M. C. Steinbach, and B. M. Willert, “Computational opti-
mization of gas compressor stations: Minlp models versus continuous reformula-
tions,” Math Meth Oper Res, vol. 83, pp. 409–444, 2016.

[57] M. Schmidt, M. C. Steinbach, and B. M. Willert, “High detail stationary optimiza-
tion models for gas networks: Validation and results,” Optim Eng, vol. 17, pp. 437–
472, 2016.

[58] F. Babonneau, Y. Nesterov, and J.-P. Vial, “Design and operations of gas transmis-
sion networks,” Operations Research, vol. 60, no. 1, pp. 34–47, 2012.

[59] C. Borraz-Sanchez, R. Bent, S. Backhaus, H. Hijazi, and P. V. Hentenryck, “Convex
relaxations for gas expansion planning,” INFORMS Journal on Computing, vol. 28,
pp. 645–656, 2016.

[60] J. Zhang and D. Zhu, “A bilevel programming method for pipe network optimiza-
tion,” SIAM J. Optimization, vol. 6, no. 3, pp. 838–857, 1996.

[61] N. Shiono and H. Suzuki, “Optimal pipe-sizing problem of tree-shaped gas dis-
tribution networks,” European Journal of Operational Research, vol. 252, no. 2,
pp. 550–560, 2016.

138

[62] C. Cherry, “Some general theorems for non-linear systems possessing reactance,”
Philos. Mag., vol. 42, no. 7, pp. 1161–1177, 1951.

[63] M. Collins, L. Cooper, R. Helgason, J. Kennington, and L. LeBlanc, “Solving the
pipe network analysis problem using optimization techniques,” Management Sci-
ence, vol. 24, no. 7, pp. 747–760, 1978.

[64] A. Frangioni and C. Gentile, “Perspective cuts for a class of convex 0-1 mixed
integer programs,” Math. Program., vol. 106, pp. 225–236, 2006.

[65] O. Günlük and J. Linderoth, “Perspective reformulation of mixed integer nonlinear
programs with indicator variables,” Math. Program., vol. 124, pp. 183–205, 2010.

[66] J. Humpola, “Gas network optimization by minlp,” 2014, PhD Dissertation.

[67] A. U. Raghunathan, “Global optimization of nonlinear network design,” SIAM J.
OPTIM, vol. 23, no. 1, pp. 268–295, 2013.

[68] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-cut approach to
global optimization,” Math. Program., vol. 103, pp. 225–249, 2 2005.

[69] T. Achterberg, “Scip: Solving constraint integer programs,” Mathematical Pro-
gramming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[70] M. ApS, The mosek optimization toolbox for python manual. version 9.3.10. 2022.

[71] N. V. Sahinidis, Baron 22.9.1: Global optimization of mixed-integer nonlinear pro-
grams, user’s manual, 2022.

[72] G. Gamrath et al., “The scip optimization suite 7.0,” Optimization Online, Techni-
cal Report, Mar. 2020.

[73] A. S. of Civil Engineers, “The economic benefits of investing in water infrastruc-
ture,” Value of water campaign.

[74] J. S. o. G. University of Texas at Austin, “Hydraulic fracturing water cycle,” 2020,
https://news.utexas.edu/2020/02/20/water- reuse-could-be-key- for- future-of-
hydraulic-fracturing/.

[75] H. Mala-Jetmarova, N. Sultanova, and D. Savic, “Lost in optimisation of water dis-
tribution systems? a literature review of system design,” Environmental Modelling
& Software, vol. 93, pp. 209–254, 2017.

139

https://news.utexas.edu/2020/02/20/water-reuse-could-be-key-for-future-of-hydraulic-fracturing/
https://news.utexas.edu/2020/02/20/water-reuse-could-be-key-for-future-of-hydraulic-fracturing/

[76] C. D’Ambrosio, A. Lodi, S. Wiese, and C. Bragalli, “Mathematical programming
techniques in water network optimization,” European Journal of Operational Re-
search, vol. 243, pp. 774–788, 2015.

[77] P. M. Castro and J. P. Teles, “Comparison of global optimization algorithms for the
design of water-using networks,” Computers and Chemical Engineering, vol. 52,
pp. 249–261, 2013.

[78] C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth, “On the optimal design
of water distribution networks: A practical minlp approach,” Optim Eng, vol. 13,
pp. 219–246, 2012.

[79] B. P and L. J, Bonmin users’ manul. tech rep, 2006.

[80] B. P. B. L et al., “An algorithmic framework for convex mixed integer nonlinear
programs,” Discrete Optim, vol. 5, pp. 186–204, 2008.

[81] A. Gleixner et al., “MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-
Integer Programming Library,” Mathematical Programming Computation, 2021.

[82] S. Rajagopalan, “Design and maintenance planning problems in commodity distri-
bution and chemical site networks,” 2018, PhD Dissertation.

[83] F. Pecci, E. Abraham, and I. Stoianov, “Global optimality bounds for the placement
of control valves in water supply networks,” Optimization and Engineering, vol. 20,
pp. 457–495, 2019.

[84] B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, and B. Eck, “A lagrangian
decomposition approach for the pump scheduling problem in water networks,” Eu-
ropean Journal of Operational Research, vol. 241, pp. 490–501, 2015.

[85] G. Bonvin, S. Demassey, and A. Lodi, “Pump scheduling in drinking water distri-
bution networks with an lp/nlp-bbased branch and bound,” Optimization and Engi-
neering, vol. 22, pp. 1275–1313, 2021.

[86] J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight mixed integer linear program-
ming formulations for the unit commitment problem,” IEEE transactions on power
systems, vol. 27, no. 1, 2012.

[87] J. Lee, J. Leung, and F. Margot, “Min-up/min-down polytops,” Discrete Optimiza-
tion, vol. 1, pp. 77–85, 2004.

[88] D. Rajan and S. Takriti, “Minimum up/down polytopes of the unit commitment
problem with start-up costs,” IBM Research Report, 2005, RC23628 (W0506-050).

140

[89] L. Glomb, F. Liers, and F. Rosel, “A rolling-horizon approach for multi-period
optimization,” European Journal of Operational Research, vol. 300, pp. 189–206,
2022.

[90] D. K. Mishra, M. J. Ghadi, A. azizivahed, L. Li, and J. Zhang, “A review on re-
silience studies in active distribution systems,” Renewable and Sustainable Energy
Reviews, vol. 135, p. 110 201, 2021.

[91] D. Duan et al., “Universal behavior of cascading failures interdependent networks,”
Applied Physical Sciences, vol. 116, no. 45, pp. 22 452–22 457, 2019.

[92] A. Smolyak, O. Levy, I. Vodenska, S. Buldyrev, and S. Havlin, “Mitigation of cas-
cading failures in complex networks,” Scientific Reports, vol. 10, p. 16 124, 2020.

[93] L. Duenas-Osorio and S. M. Vemuru, “Cascading failures in complex infrastructure
systems,” Structural Safety, vol. 31, no. 2, pp. 157–167, 2009.

[94] J. Salmeron, K. Wood, and R. Baldick, “Worst-case interdiction analysis of large-
scale electric power grids,” IEEE Transactions on Power Systems, vol. 24, no. 1,
pp. 96–104, 2009.

[95] E. Johnson and S. S. Dey, “A scalable lower bound for the worst-case relay attack
problem on the transmission grid,” INFORMS Journal on Computing, vol. 34, no. 4,
pp. 2296–2312, 2022.

[96] L. Zhao and B. Zeng, “Vulnerability analysis of power grids with line switching,”
IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2727–2736, 2013.

[97] J. Salmeron and R. K. Wood, “The value of recovery transformers in protecting
an electric transmission grid against attack,” IEEE Transactions on Power Systems,
vol. 30, no. 5, pp. 2396–2403, 2015.

[98] G. Brown, M. Carlyle, J. Salmeron, and K. Wood, “Defending critical infrastruc-
ture,” Interfaces, vol. 36, no. 6, pp. 530–544, 2006.

[99] K. Sundar, S. Misra, R. Bent, and F. Pan, “Credible interdiction for transmission
systems,” IEEE Transactions on Control of Network Systems, vol. 8, no. 2, pp. 738–
748, 2021.

[100] J. Arroyo, “Bilevel programming applied to power system vulnerability analysis
under multiple contingencies,” IET Gener. Transm. Distrib., vol. 4, no. 2, pp. 178–
190, 2010.

[101] R. K. Wood, “Bilevel network interdiction models:formulations and solutions,” Wi-
ley Encyclopedia of Operations Research and Management Science, 2010.

141

[102] A. Z. G. Seyyedi, M. J. Armand, S. Shahmoradi, S. M. Rashid, E. Akbari, and
A. J. K. Al-Hassanawy, “Iterative optimization of a bi-level formulation to iden-
tify severe contingencies in power transmission systems,” International Journal of
Electrical Power and Energy Systems, vol. 145, p. 108 670, 2023.

[103] Y. Wang and R. Baldick, “Interdiction analysis of electric grids combining cas-
cading outage and medium-term impacts,” IEEE Transactions on Power Systems,
vol. 29, no. 5, pp. 2160–2168, 2014.

[104] T. Kleinert, M. Labbe, I. Ljubic, and M. Schmidt, “A survey on mixed-integer pro-
gramming techniques in bilevel optimization,” EURO Journal on Computational
Optimization, vol. 9, p. 100 007, 2021.

[105] M. Fischetti, I. Ljubie, M. Monaci, and M. Sinnl, “A new general-purpose algo-
rithm for mixed-integer bilevel linear programs,” Operations Research, vol. 65,
no. 6, pp. 1615–1637, 2020.

[106] Y. Tang, J.-P. P. Richard, and J. C. Smith, “A class of algorithms for mixed-integer
bilevel min-max optimization,” Journal of Global Optimization, vol. 66, pp. 225–
262, 2016.

[107] K. Taninmis, N. Aras, and I. K. Altinel, “Improved x-space algorithm for min-max
bilevel problems with an application to misinformation spread in social networks,”
European Journal of Operational Research, vol. 297, no. 1, pp. 40–52, 2022.

[108] L. Lozano and J. C. Smith, “A backward sampling framework for interdiction prob-
lems with fortification,” INFORMS Journal on Computing, vol. 29, no. 1, pp. 123–
139, 2022.

[109] A. Nemirovski, Introduction to linear optimization, 2016.

[110] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, 2017.

[111] G. Angulo, S. Ahmed, S. S. Dey, and V. Kaibel, “Forbidden vertices,” Mathematics
of Operations Research, vol. 40, no. 2, pp. 350–360, 2015.

[112] G. Angulo, S. Ahmed, and S. S. Dey, “Improving the integer l-shaped method,”
INFORMS Journal on Computing, vol. 28, no. 3, pp. 483–499, 2016.

142

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Using Submodularity within Column Generation to Solve the Flight-to-Gate Assignment Problem
	Introduction
	Problem setup
	Column generation formulation
	Solving the pricing problem
	Feasible solutions and branching scheme
	Computational experiments
	Conclusion
	Appendix A. Proof of Theorem 2.4.1
	Appendix B. Rational input data for dynamic programming algorithm
	Appendix C. Rolling horizon method

	3 | A decomposition framework for gas network design
	Introduction
	Literature review
	Problem description
	Decomposition framework
	Numerical experiments
	Conclusion

	4 | Optimizing the designs and operations of water networks: a decomposition approach
	Introduction
	Literature review
	Problem description
	Primal solutions
	Numerical experiments
	Conclusion

	5 | Modeling and solving cascading failures across interdependent infrastructure systems
	Introduction
	Literature review
	Problem formulation
	Decomposition approach
	Computational results
	Conclusion

	6 | Conclusion
	References

