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SUMMARY

Physical design (PD) automation has made significant progress in enhancing chip de-

sign productivity over the past three decades. However, with the relentless growth in

design complexity driven by Moore’s Law, traditional PD algorithms are now facing in-

creasing challenges in meeting desired power, performance, and area (PPA) targets within

a reasonable amount of runtime in advanced technologies. Fortunately, the advancement

of machine learning (ML) theory and its applications offer a new solution to this rising

challenge, where recent studies of ML-assisted PD have demonstrated great potentials in

revolutionizing conventional PD processes from synthesis to signoff.

The objective of this research is to develop ML algorithms that improve the final out-

comes and productivity of PD implementations for 2D and 3D integrated circuits (ICs). In

particular, various supervised, unsupervised, and reinforcement learning (RL) algorithms

are devised to tackle a broad spectrum of traditional PD problems, which are catego-

rized into four major themes in this dissertation. In the first theme, unsupervised learn-

ing algorithms are developed to perform tier partitioning in monolithic 3D (M3D) ICs,

and clustering-based placement optimization. In the second theme, generative adversarial

learning algorithms are devised to improve global placement of open-source placers, and

optimize CTS outcomes of commercial tools. In the third theme, RL frameworks are con-

structed to perform gate sizing for timing optimization, and drive concurrent clock and data

(CCD) optimization via intelligent endpoint prioritization. In the fourth theme, supervised

learning models are presented to predict threshold voltage (Vth) assignment for leakage

power optimization, and full-flow doomed run prediction.
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CHAPTER 1

INTRODUCTION

Modern physical design (PD) flows heavily rely on electronic design automation (EDA)

tools to generate graph design system (GDS) layouts from synthesized netlists that can be

manufactured by foundries. However, with the relentless progression of design complexity

and technology scaling driven by Moore’s Law, existing EDA tools are facing difficulties in

achieving desired power, performance, and area (PPA) targets due to the reliance on non-

generalizable heuristics. Particularly, many heuristic algorithms that were once effective

are now struggling to deliver satisfactory quality-of-results (QoR) in a reasonable amount

of runtime in advanced technologies. As the transistor counts of modern processors soar

beyond the billion mark, the PPA gap between what is “realizable” and what “should-

be-achieved-by-scaling” becomes ever wider, necessitating the need to search for more

reliable and generalizable algorithms, both “within” and “around” the tools to boost chip

design productivity and final outcomes [1].

1.1 Tackling Physical Design (PD) with Machine Learning (ML)

Given that a PD implementation involves solving various NP-hard problems such as par-

titioning, placement, routing, and gate-sizing, for which optimal solutions in polynomial-

time remain unknown [2], machine learning (ML) has emerged as a promising approach to

further advance the well-matured PD flow in the semiconductor industry. This is primarily

due to ML’s capability to attain a faster convergence in quality-of-results (QoR) through

efficient design space exploration (DSE), surpassing the limitations of conventional heuris-

tic methods [3]. In particular, ML algorithms make use of design and technology features

to perform early prediction or optimization for effective DSE, whereas traditional methods

simply rely on the same heuristics to find candidate solutions across various designs, dimin-
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Figure 1.1: A common GNN modeling architecture in PD.

ishing the benefits of technology scaling. In this dissertation, we explore the opportunities

of advancing modern PD flows using ML, where we devise supervised, unsupervised, and

reinforcement learning (RL) algorithms to revisit and solve a wide range of classical PD

problems in 2D and 3D ICs, including partitioning, placement, clock tree synthesis (CTS),

gate sizing, prediction and optimization of PPA metrics.

1.1.1 Graph Neural Networks for Netlist Encoding

To make accurate predictions or to discover hidden netlist characteristics that can drive

better PD optimization, ML algorithms deeply rely on the input vectors that are represen-

tative of underlying designs and technologies. Given the fact that very-large-scale integra-

tion (VLSI) netlists are essentially hypergraphs, where cells can be naturally considered as

nodes and nets can be viewed as edges, Graph Neural Networks (GNNs) have become one

of the most promising choices to encode netlist characteristics in an efficient and systematic

manner [4]. Generally speaking, GNNs follow a message passing scheme, where the goal

is to transform the initial features of each node into better representations by aggregating

the features from neighboring nodes. A feature vector of a node can be considered as a

message which is iteratively transformed and passed onto its neighboring nodes. At the

end of the GNN learning process, the learned node embeddings (i.e., the transformed fea-

tures) can be utilized as the inputs of downstream tasks such as link prediction, node-level

or graph-level classification and clustering [5].
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In the realm of PD, node embeddings learned by GNNs have been used to solve a wide

range of tasks, including partitioning [6], placement [7, 8, 9, 10], gate sizing [11, 12, 13],

activity simulation [14, 15], and PPA predictions [16, 17, 18, 19]. Figure 1.1 demon-

strates a common GNN modeling architecture of leveraging GNNs to solve conventional

PD problems. First, given an input netlist graph, an adjacency matrix denoting connec-

tivity among cells will be constructed through netlist transformation techniques, and node

features that represent design and technology characteristics will be collected. Then, node

representation learning conducted by GNNs is performed to transform the initial node-level

features into better representations, which can be taken as the inputs of various downstream

tasks, forming an end-to-end differentiable framework. In latter chapters, we demonstrate

more applications of GNNs in PD, where we show that by properly defining loss functions

and reward structures, GNNs can be incorporated with self-supervised and reinforcement

learning (RL) frameworks, respectively, to directly optimize key design metrics.

1.1.2 ML for Quality-of-Results (QoR) Prediction

One of the most crucial and straightforward use of ML algorithms in PD is the accurate pre-

diction of critical QoR metrics based on pre-defined tool configurations (e.g., QoR strategy,

tool parameters). This is often achieved by harnessing a large amount of historical data to

train parameterizable models, which are usually powered by deep neural networks or tree-

based algorithms. Ideally, these supervised models, once being trained with sufficient data,

will have the ability to perform accurate inferences on new designs or technologies, thus

enabling quicker and more informed decision making in new implementations, leading to

an immediate improvement in chip design productivity in terms of runtime and cost (e.g.,

computing resources, tool licenses). For instance, a PD doomed run predictor [17, 18] can

halt runs that are unlikely to meet pre-specified PPA targets in early design stages to reserve

computing resources for the more promising ones.
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1.1.3 From QoR Prediction to Optimization

Although prediction techniques achieved by supervised models provide instant productiv-

ity boost, these models often require a large amount of pre-generated training labels (i.e.,

ground-truths), making their applications prohibitive in the realm of PD as the generation

of each label is extremely time-consuming. Furthermore, predictive models can never fun-

damentally solve the pressing issue that existing heuristic algorithms in EDA tools can no

longer meet satisfactory QoR in advanced technologies such as 7nm and beyond. While

supervised models can provide “tool-accurate” predictions, achieving “better-than-tool”

results remains elusive. Hence, to truly reap the benefits of technology scaling, more

powerful QoR optimization techniques are needed to bridge the PPA gap between what

is available and what can be achieved, even at the cost of runtime.

Fortunately, ML offers a wide spectrum of optimization techniques that have demon-

strated their abilities to reach never-seen, super-human results across various domains [20].

For example, generative adversarial networks (GANs) [21] and diffusion models [22] gen-

erate hyper-realistic images purely from random noises, earning recognition in art competi-

tions; RL algorithms [23] have triumphed the best-in-class GO players in the world, making

moves that challenge conventional thinking of human. These success stories motivate us

to explore the powerful applications of ML in PD for QoR optimization. In this work,

we show that although using a fundamentally different approach from commercial tools,

“better-than-tool” optimization results can indeed be achieved by ML, especially with RL

and self-supervised learning.

1.2 Contribution and Organization

The main contributions of this dissertation encompass four different themes across 8 chap-

ters. The first theme corresponds to the development of unsupervised learning algorithms

for tier partitioning in monolithic 3D (M3D) ICs, and clustering-based VLSI placement
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optimization using GNNs. The second theme corresponds to the design of generative ad-

versarial learning frameworks for the improvements of DREAMPlace [24], a renowned

open-source placer, and the clock tree synthesis (CTS) process in a commercial tool flow.

The third theme corresponds to the construction of RL algorithms to solve gate sizing for

timing optimization, and concurrent clock and data (CCD) optimization via endpoint pri-

oritization. Finally, the last theme corresponds to the demonstration of supervised learning

methods for the classification of threshold voltage (Vth) assignment in signoff power opti-

mization, and the prediction of PD doomed runs.

Each part of the research is organized into a self-contained chapter as follows:

• In chapter 2, we present an unsupervised GNN-based framework named TP-GNN

for tier partitioning in M3D ICs, which is motivated by the severe drawbacks of the

state-of-the-art bin-based min-cut algorithm that introduce severe PPA degradation.

Instead of simply relying on cutsize to determine the tier assignment of each cell,

TP-GNN leverages design and technology features to solve the partitioning problem

by finding the assignments that minimize an unsupervised loss. Experimental results

on industrial designs demonstrate that TP-GNN significantly improves the QoR of

the state-of-the-art 3D implementation flows. Specifically, in OpenPiton, a RISC-

V-based multi-core system, we observe 27.4%, 7.7% and 20.3% improvements in

performance, wirelength, and energy-per-cycle, respectively.

• In chapter 3, we present the first PPA-directed, unsupervised, end-to-end placement

optimization framework that provides cell clustering constraints as placement guid-

ance to advance commercial placers. Specifically, we directly formulate traditional

PPA metrics as ML loss functions, and use graph clustering techniques to optimize

them by improving cell clustering assignments. Experimental results on commercial

GPU/CPU blocks under a commercial 5nm technology node and OpenCore bench-

marks under a foundry 28nm technology node demonstrate that our framework im-

proves the default design flow by up to 88% in post-route total negative slack (TNS)
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and delivers consistent improvements in wirelength and power.

• In chapter 4, we present DREAM-GAN, the first-ever placement optimization frame-

work that transfers the placement quality of an industry-leading commercial placer,

Synopsys ICC2, to a renowned open-source placer, DREAMPlace, using generative

adversarial learning. Without knowing the algorithms used by the tool, DREAM-

GAN facilitates transfer learning and directly improves DREAMPlace by optimizing

a differentiable loss that denotes the “similarity” between DREAMPlace-generated

placements and those in commercial databases. Experimental results on 6 indus-

trial designs not only show the our DREAM-GAN immediately improves the Power,

Performance, and Area (PPA) metrics at the placement stage, but also demonstrate

that these improvements last firmly to the post-route stage, where we observe im-

provements by up to 8.3% in wirelength, 7.4% in power, and 37.6% in TNS on a

commercial CPU benchmark.

• In chapter 5, we propose a novel framework named GAN-CTS, which utilizes con-

ditional GAN to predict and optimize CTS outcomes. Our framework is comprised

of three sequential learning stages. To precisely characterize distinct designs, we

leverage transfer learning to extract netlist features directly from placement images,

and with the extracted features along with the CTS input parameters, we adopt and

analyze different regression methods to predict the target CTS outcomes. Finally,

with the regression model, generative adversarial learning is leveraged to optimize

the target metrics. Experimental results on real-world designs demonstrate that our

framework (1) achieves an average prediction error of 3%, (2) improves the com-

mercial tool’s auto-generated clock tree by 20.7% in clock power, 21.5% in clock

wirelength, 36.1% in the worst skew, and (3) reaches an F1-score of 0.93 in the clas-

sification task of determining successful and failed CTS runs.

• In chapter 6, we present a novel framework named RL-Sizer to perform gate siz-
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ing for timing optimization the deep deterministic policy gradient (DDPG) [25] al-

gorithm. Unlike conventional sizing algorithms inherent in the tool using various

pseudo-heuristics that can not generalize globally, RL-Sizer performs the optimiza-

tion in a global and systematic manner. Experimental results demonstrate that RL-

Sizer outperforms the native sizing algorithm in an industry-leading commercial tool,

Synopsys ICC2, in terms of TNS and number of violating endpoints (NVE) on 4 out

of 6 commercial designs with negligible power overhead, while achieving parity on

the others.

• In chapter 7, we present RL-CCD, an RL agent that performs CCD optimization

through endpoint prioritization. RL-CCD is motivated by the fact that existing CCD

algorithms in commercial tools fail to prioritize violating endpoints for different opti-

mization strategies correctly, leading to flow-wise globally sub-optimal results. Par-

ticularly, they ignore the fact that different endpoints have distinct sensitivity to var-

ious optimization techniques, where they always use the same recipe of strategies to

fix all violating endpoints. RL-CCD overcomes this issue by selecting endpoints for

useful skew optimization using the proposed EP-GNN, an endpoint-oriented Graph

Neural Network (GNN) model, and a Transformer-based self-supervised attention

mechanism. Experimental results on 19 industrial designs in 5 − 12nm technolo-

gies demonstrate that RL-CCD achieves up to 64% TNS reduction and 66.5% NVE

improvement over the native implementation of an industry-leading commercial tool.

• In chapter 8, we present ECO-GNN, a transferable graph-learning-based framework,

which harnesses GNNs to perform commercial-quality signoff power optimization

through discrete Vth-assignment. The development of ECO-GNN is motivated by

the fact that the signoff engineering change order (ECO) optimization is highly time-

consuming in modern PD flows, and the power improvement is hard to predict in

advance. ECO-GNN strives to alleviate this issue by generating tool-accurate opti-
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mization results instantly without going through the entire ECO process. Further-

more, subgraph approximation technique is proposed to improve training and in-

ferencing time of ECO-GNN. We show that design instances with non-overlapping

subgraphs can be optimized in parallel so as to improve the inference time of the

learning-based model. Experimental results on 14 industrial designs, demonstrate

that our framework achieves up to 14X runtime improvement with similar signoff

power optimization quality compared with Synopsys PrimeTime, an industry-leading

signoff tool.

• In chapter 9, we propose PD-LSTM, a framework that leverages graph neural net-

works (GNNs) and long short-term memory (LSTM) networks to perform end-of-

flow power predictions sequentially from early PD stages. This work is motivated

by the fact that leading-edge designs on advanced nodes are pushing PD flow run-

time from days to weeks, and stringent time-to-market constraint necessitates effi-

cient PPA exploration by developing accurate models to evaluate netlist quality in

early design stages. Experimental results on two commercial CPU designs and five

OpenCore netlists demonstrate that PD-LSTM achieves high-fidelity total power pre-

diction results within 4% normalized root-mean-squared error (NRMSE) on unseen

netlists and a correlation coefficient score as high as 0.98.

• Finally, in chapter 10, we revisit and present the conclusion of each chapter.
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CHAPTER 2

A MACHINE LEARNING POWERED TIER PARTITIONING FRAMEWORK

FOR MONOLITHIC 3D ICS

2.1 Background and Motivation

2.1.1 Monolithic 3D (M3D) ICs

The 3D integration technology offers a promising path to continue technology scaling be-

yond Moore’s Law. It improves the Power, Performance, and Area (PPA) metrics of 2D

Integrated Circuits (ICs) by stacking multiple dies one on top of another using inter-tier

vias. Based on the die stacking method, 3D integrated circuits can be classified into three

categories: Through-Silicon Via (TSV) based, Monolithic Inter-tier Via (MIV) based, and

Face-to-Face (F2F) bonded [26]. Although TSV-based 3D ICs are developed the first, their

low integration densities due to large pitches and high parasitics hinder them from fully

realizing the benefits of 3D integration. In contrast, Monolithic 3D (M3D) Integration

has emerged as the most promising approach among the three, with its nano-scale MIVs

enabling more cost-effective inter-tier connections and finer physical design, resulting in

a significantly higher device density [27, 28]. Hence, in this chapter, we concentrate on

enhancing M3D implementation flows using Machine Learning (ML) [6, 29].

2.1.2 Limitations of Current Tier Partitioning Methods in M3D Flows

The greatest challenge in building high-quality 3D ICs is the placement process [30], as

there are currently no commercial Electronic Design Automation (EDA) tools available

that can perform 3D placement directly from 2D synthesized netlists. Hence, to address

this challenge and produce commercial-grade 3D ICs using industry-leading EDA tools,

state-of-the-art M3D implementation flows, such as Shrunk2D [31], Compact2D [32], and
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Snap3D [33], utilize commercial 2D placers to simulate 3D placement by performing tier

partitioning in ”projected 2D designs” rather than directly performing ”true 3D placement”

from 2D netlists.

Tier partitioning refers to the practice of allocating each design instance (i.e., cell or

macro) to a specific tier. This is a crucial step, as it determines the placement of standard

cells and inter-tier vias (such as MIVs), which significantly affects the Quality of Results

(QoR) of full-chip designs. State-of-the-art M3D flows [31, 32, 33] all adopt the bin-based

min-cut algorithm proposed in [31] to perform tier partitioning, which partitions netlists

by minimizing cutsize of pre-defined bins. Particularly, this algorithm first divides the 2D

design into several rectangular regions, known as ”bins,” on the x-y plane. Afterwards, it

uses an area-balanced min-cut partitioning algorithm to divide the cells within each bin into

different tiers (i.e., along the z-direction) while minimizing the cutsize of the partial netlist.

However, there are several significant drawbacks of this approach that lead to sub-optimal

3D full-chip designs, namely:

• Timing Degradation. The bin-based partitioning algorithm fails to consider the global

connections among bins. It only iteratively partitions the sub-netlist within a single

bin, which inevitably leads to a severe timing degradation.

• Low 3D Integration Density. Min-cut partition is not necessarily good for 3D inte-

gration as it might not realize the full potential of the high integration density that

monolithic 3D (M3D) integration provides.

• Placement Quality Degradation. Hierarchy information from RTL is completely ig-

nored in the existing bin-based algorithm. Therefore, extra cutsize will be introduced

and inter-tier vias will be inserted in sub-optimal locations, which results in a place-

ment quality degradation.

In this chapter, we address all the limitations outlined above. Our solution is TP-GNN,

a novel unsupervised learning-driven framework that uses Graph Neural Networks (GNNs)
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Figure 2.2: Partitioning-last M3D design flow.

and the weighted k-means clustering algorithm to perform tier partitioning. Unlike the pre-

vious bin-based min-cut method that disregards important design and technology param-

eters, our TP-GNN takes into account crucial information such as timing, hierarchy, and

technology information of the underlying designs. Our goal is to offer an innovative tier

partitioning framework that outperforms the current state-of-the-art M3D implementation

flows in terms of full-chip PPA metrics.

In this chapter, we address all the drawbacks raised above. We present TP-GNN, an

unsupervised graph-learning-based framework that performs tier partitioning using graph

neural networks (GNNs) and the weighted k-means clustering algorithm [34]. Unlike pre-

vious works that neglect design-related and technology-related parameters, we consider

timing, hierarchy, and library information in our algorithm. The goal of this work is to

present a novel tier partitioning framework that advances the state-of-the-art M3D imple-

mentation flows in terms of the full-chip PPA metrics.
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2.1.3 Different Styles of M3D Flows: Partitioning-First and Partitioning-Last

Active research in M3D ICs has been conducted extensively over the years, resulting in the

creation of numerous M3D implementation methods. Given that all M3D approaches must

separate logics onto different tiers during tier partitioning, which can occur either early

(partitioning-first) or late (partitioning-last) with respect to the placement stage. As a result,

M3D design flows can be divided into two categories: partitioning-first and partitioning-

last, as shown in Figure 2.1 and Figure 2.2. Below, we delve into the specifics of the two

types of M3D flows:

Partitioning-first M3D Flows:

The authors of [35] introduce the first partitioning-first M3D implementation flow, named

Cascade-2D, which seeks to enhance memory-intensive commercial CPU designs through

a 3D implementation. However, as Cascade-2D is limited in its scope, where the approach

does not generalize to a wider range of design styles, in this work, we take a more recent

flow, Snap-3D [33], as our baseline of partitioning-first M3D design flow. Snap-3D, which

achieves state-of-the-art results on popular benchmarks, is depicted in Figure Figure 2.1.

The central concept behind Snap-3D is the division of the row structure of a 2D place-

ment into even and odd sites, representing two distinct 3D dies. By carefully specifying

placement constraints in 2D commercial placers, standard cells can be placed in different

dies in a simultaneous, co-optimization manner. The original Snap-3D flow employs tiling

methods, akin to the min-cut partitioning used in Shrunk-2D and Compact-2D, to generate

such constraints. In this work, we leverage the proposed tier partitioning framework to

generate the constraints and demonstrate that our design-aware partitioning approach can

lead to better PPA results.
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Partitioning-last M3D Flows:

Shrunk-2D [31] and Compact-2D [32] are recognized as the leading partitioning-last M3D

implementation flows. These flows employ commercial tools for physical design imple-

mentations and differ in the manner of emulating 3D designs during the 2D stage. In

Shrunk-2D, standard cells are reduced in size by half for 2D placement and routing (P&R),

while in Compact-2D, the RC parasitics are scaled by a factor of 1/
√
2 without altering cell

size. Following the 2D P&R, cells are expanded in Shrunk-2D or projected in Compact-2D

onto a 2D die with half of the original footprint before tier partitioning, where as afore-

mentioned, both flows adopt the bin-based partitioning method, which leads to a significant

degradation in the quality of the final full-chip 3D design. The remaining stages after the

2D P&R stage for both flows are similar, starting from the legalization for both tiers to the

timing closure for tape-out.

Note that independent of the design style, our TP-GNN framework can significantly

advance all M3D flows in terms of the final full-chip PPA metrics by replacing the widely-

adopted bin-based min-cut tier partitioning algorithm with our ML-powered approach as

shown in Figure 2.1 and Figure 2.2. Moreover, we validate our framework’s ability to

handle heterogeneous 3D designs, where different technologies can be employed in each

tier. This is demonstrated through the use of Pin3D [36], a heterogeneous M3D design flow

based on a commercial multi-core CPU design. Our findings demonstrate that the TP-GNN

framework has the capability to understand technology features and carry out effective tier

partitioning.

Details on MIV planning (insertion):

For both partitioning-first and partitioning-last design flows, MIV insertions are performed

after obtaining the partitioning results at the 3D global routing stage as shown in Figure 2.1

and Figure 2.2. Specifically, in this stage, we stack the metal layers from top die and bottom

die together, and advise the router to perform global routing on the stacked metal layers,
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where MIVs are the vias that the router inserts between the top metal layer of the bottom

die and the bottom metal layer of the top die. For example, assume a two-tier M3D design

and each die has 6 metal layers (M1–M6), which results in 12 metal layers (M1–M12)

when stacked together during the 3D global routing phase, the MIVs are the vias that the

router inserts between the M6 and M7 layers. Note that the main purpose of MIVs is to

connect the cells located in different dies. In the above example, MIVs are leveraged to

connect the pins of the bottom die cells that are located in M1 with the pins of the top die

cells located in M7.

2.1.4 Heterogeneous 3D ICs Design Flow

Heterogeneous 3D ICs refer to the 3D chips that adopt more than one technologies within.

A common practice is to use different technologies for various dies (tiers). The main ben-

efit is that by using heterogeneous 3D stacking, 3D ICs in old technologies can reap the

performance gain of the 2D chips equipped with new technologies which are prohibitively

expensive to be developed. In other words, heterogeneous 3D integration may produce

competitive products as 2D technology scaling but at a lower cost. However, The de-

sign flows (Shrunk2D, Compact2D, Snap3D) introduced in the previous sub-section do

not support building heterogeneous 3D designs. To validate the proposed tier partitioning

framework in a broader scale, in this paper, we take Pin3D [36], a novel heterogeneous 3D

design flow, as our reference flow, and demonstrate that the proposed partitioning strategy

can achieve better full-chip PPA than the original partitioning strategy in Pin3D [36].

2.2 TP-GNN Algorithms

2.2.1 Overview

Figure 2.1 and Figure 2.2 demonstrate the integration of our proposed tier partitioning

framework TP-GNN with the state-of-the-art 3D design flows. As shown in the figures, the

input to the TP-GNN framework is a projected 2D design, where all the cells are placed,
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routed, and projected onto a 2D die with half of the 2D counterpart’s footprint. The output

of the framework is a partitioned design, where each cell is assigned to a unique tier.

Figure 8.1 shows the visualization of our framework. Given a projected 2D design

as shown in Figure 8.1(a), we transform the netlist hypergraph into an edge-contracted

clique-based graph as shown in Figure 8.1(b) by devising a hierarchy-aware edge contrac-

tion algorithm. After the contraction, we leverage GNNs to perform instance-based graph

representation learning as shown in Figure 8.1(c), where features within K-hop neighbors

(K = 2) of the target node are sampled and aggregated to learn accurate representations

for the downstream clustering stage.
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Algorithm 1 Hierarchy-aware edge contraction algorithm.
Input: G(V,E): original clique-based graph.
Output: G′(V ′, E′): edge-contracted clique-based graph.

1: E ← SortEdgesByWeight(E) (in ascending order)
2: for e = (u, v) ∈ E do
3: if u, v not contracted and u, v in the same hierarchy then
4: contract (u, v) to form a new vertex v′ ▷ in-place
5: v′x ← ux+vx

2 , v′y ←
uy+vy

2 ▷ update location
6: for n ∈ {neighbors(u) ∪ neighbors(v)} do
7: edgeWeight(v′, n) = |v′x − nx|+ |v′y − ny|
8: G′(V ′, E′)← G(V,E)

Finally, our tier partitioning framework TP-GNN is generalizable to every design, since

it learns the feature representations by optimizing an unsupervised loss function (unsu-

pervised learning). Also, it does not assume anything regarding the netlist structure or

design characteristics. Instead, it learns and adapts to various netlists using graph em-

bedding techniques. TP-GNN can be easily integrated with existing 3D implementation

flows to significantly improve the quality of the final full-chip design. Note that ideally,

our method can be extended to support multi-tier partitioning by clustering the nodes into

k > 2 groups. However, the transition will not be that smooth because it will depend on

the ways that pseudo-placements are generated and MIVs are inserted into multi-tiers. Fur-

thermore, currently state-of-the-art M3D design flows (Shrunk2D [31], Compact2D [32],

Snap3D [33], and Pin3D [36]) only support two-tier M3D designs, in this work, we focus

on improving the full-chip PPA metrics of two-tier 3D designs. The detailed algorithms

of our framework are described in the following sub-sections.

2.2.2 Hierarchy-Aware Edge Contraction

Starting from a projected 2D design, we first transform the original netlist (a directed hy-

pergraph) into an undirected clique-based graph G, where a net that originally contains k

cells forms a k-clique in G, and each edge e = (u, v) is assigned a weight representing

the Manhattan distance between cell u and cell v in the projected 2D placement. Then, we

apply a hierarchy-aware edge contraction algorithm ( Algorithm 1) on this graph G, where
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Table 2.1: Initial node features for partitioning last design flows in edge-contracted graph G′. Note
that a node may represent multiple cells in the design.

features descriptions
hierarchy “module” defined in the synthesized netlist
sum slack sum of worst slacks of all cells
sum slew sum of maximum pin slew of all cells
sum delay sum of worst delay of all cells
dist2source length of shortest path to clock source on G′

1-hop degree number of 1-hop neighbors on G′

2-hop degree number of 2-hop neighbors on G′

pairs of nodes within the same hierarchy are contracted into supernodes based on the as-

cending order of edge weights (lines 1-4). When a supernode v′ is obtained, we update the

edge weights between its neighbors and its center of gravity (lines 5-7). Note that the term

“hierarchy” refers to the “module” defined in the synthesized netlist (RTL).

The goal of Algorithm 1 is to prevent the severe placement quality degradation oc-

curred in Shrunk2D and Compact2D, which can be accounted by two reasons. First, cells

within the same hierarchy are highly connected with each other. If the hierarchy informa-

tion is ignored in the partitioning algorithm, inter-tier vias will be inserted in sub-optimal

locations that introduce redundant cuts. Second, previous works fail to consider the actual

cell distance in the 2D placement while performing partitioning. Cells that are nearby and

connected should have a higher chance to remain in the same tier compared with other

distant cells; otherwise, designs will suffer from severe 3D routing overhead. Finally, Al-

gorithm 1 can be performed recursively to condense the graph and to benefit from the run

time and memory requirement of the later graph learning. However, a denser graph does

not always achieve better PPA. In the experiments, we perform 2 runs of Algorithm 1 for

each design implemented by our framework.

2.2.3 GNN as Feature Aggregator

After obtaining the edge-contracted clique-based graph G′ from Algorithm 1, we leverage

GNN to perform graph learning. The goal of this stage is to learn accurate node representa-
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tions that capture the characteristics of the design regarding tier partitioning. These learned

representations are further utilized to determine the tier assignment in the later clustering

stage.

Before the actual learning process, we determine an initial feature vector for each node

as shown in Table 9.1. Note that features in Table 9.1 are designed for partitioning-last

M3D flows where the tier partitioning stage happens after 2D physical implementation

stage as shown in Figure 2.2. For partitioning-first design flow, the features are extracted

right after the synthesis stage. Due to the lack of physical implementations (e.g. placement

and routing), we drop the slack and slew features presented in Table 9.1 while remaining

others.

The features in the table span from a node’s structural information and its design at-

tributes. Unlike previous works that ignore timing information during tier partitioning, we

prevent the severe timing degradation by considering four timing related features as shown

in Table 9.1. Note that these initial node representations are insufficient to perform tier

partitioning. To learn better representations, we train GNNs to sample and aggregate the

neighboring features for each node. The GNN model will capture the local structural infor-

mation as well as the node attributes that are related to tier partitioning. Inspired by [37],

our feature aggregator aggregates the k-hop neighborhood features of a node v as follows:

fk
v = σ

fk−1
v + θk ·

1

sk

∑
u∈SNk(v)

fk−1
u

 , (2.1)

where σ is the sigmoid function, fk
v denotes the representation vector of node v at level k,

SNk(v) denotes the neighbors sampled at k-hop, sk denotes the corresponding sampling

size, and θk represents the parameters of the neural network (NN) at k-hop (each hop has

its own NN). Note that the concept of “level” is corresponding to the concept of “hop”,

where f 0
v is the initial features defined in Table 9.1 for node v, and fk=K

v is the final

representation after aggregation the information within the K-hop neighborhood of v. The
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aggregator (Equation Equation 2.1) can be considered as a “graph filter”, since it performs

instance-based learning that aggregates a node’s neighboring information iteratively. In the

experiments, we set K = 2 and each neural network (θ1, θ2) has an output dimension of

128. Finally, Figure 2.4 further demonstrates the feature aggregation process based on

Figure 8.1(c), where our goal is to construct the node representation for the target node g.

The learning process happens as follows. First, we sample a fixed amount of neighbors

from its 1-hop (denoted in blue) and 2-hop (denoted in green) neighbors. Then, starting

from the initial features {f 0}, we leverage a two-layer GNN to perform iterative feature

aggregation in order to construct the final representation f 2
g .

2.2.4 Unsupervised GNN Learning

In this work, we leverage unsupervised learning to train the TP-GNN framework. There-

fore, our framework is generalizable, since it does not require any pre-training before us-

ing. Here, we introduce an unsupervised instance-based loss function L(yv), which takes

yv = fK
v , the final representation vector of node v, as the input and calculates the cross-

entropy between v and its neighboring nodes N(v) (not necessary in K-hop) as:

L(yv) = −
∑

u∈N(v)

log(σ(y⊤v yu))

−
M∑
i=1

Eni∼Neg(v) log(σ(−y⊤v yni
)),

(2.2)

where Neg(v) denotes the negative sampling distribution of node v, and M denotes the

negative sampling size. In practice, rather than taking N(v) as the full k-hop neighborhood

of node v, which causes overfitting and damages computational efficiency, we perform a

random walk starting from node v to generate N(v) that represents the passed by nodes.

Also, in Equation Equation 7.1, the negative sampling technique improves the efficiency of

GNN learning, where an underlying idea is that the GNN model should not only improve

the similarity between a node v and its true contexts N(v), but also enhance the disparity
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of v to the false samples Neg(v) (nodes that are not occurred in the random walk).

Algorithm 2 TP-GNN training methodology.
We use default values of α = 0.001,K = 2, NRW = 5, LRW = 5,M = 30, s1 = 30, s2 =
20, β1 = 0.9, β2 = 0.999.
Input: G′(V ′, E′): edge-contracted clique-based graph. {f0}: initial features. α: learning rate,

K: depth of neighborhood, NRW : # random walks starting from a node, LRW : length of a
walk, M : negative sampling size, {sk, ∀k ∈ {1, ...,K}}: k-hop neighborhood sampling size,
σ: sigmoid function, {θk,∀k ∈ {1, ...,K}}: parameters of NN at hop k, {β1, β2}: Adam
parameters.

Output: {y}: learned node representations.
1: for v ∈ V ′ do ▷ random walks on each node
2: N(v)← {} ▷ initialization of neighboring nodes
3: for n← 1 to NRW do
4: cur v ← v
5: for l← 1 to LRW do
6: next v ← Sample a 1-hop neighbor of cur v
7: if next v is not v then
8: add next v to N(v)

9: cur v ← next v

10: while {θk} do not converge do ▷ train to converge
11: f0

v ←
f0
v

∥f0
v ∥2

,∀v ∈ V ′

12: for k ← 1 to K do ▷ aggregate neighborhood features
13: for v ∈ V ′ do
14: Sk ← Sample sk neighbors at k-hop neighborhood
15: fk

v = σ
(
fk−1
v + θk · 1

sk

∑
u∈Sk

fk−1
u

)
16: fk

v ←
fk
v

∥fk
v ∥2

,∀v ∈ V ′

17: yv ← fK
v ,∀v ∈ V ′

18: for v ∈ V ′ do ▷ minimize unsupervised loss
19: for u ∈ N(v) do
20: Neg(v)← Sample M samples from {V ′ −N(v)} \ v
21: neg loss←

∑
ni∈Neg(v) log(σ(−y⊤v yni))

22: gv ← ∇θ[log(σ(y
⊤
v yu)) + neg loss]

23: {θk} ← Adam(α, {θk}, gv, β1, β2)

2.2.5 GNN Training Methodology

To update the parameters of our framework, we introduce a gradient descent optimizer

Adam [38] to minimize L (Equation Equation 7.1). The detailed training methodology is

described in Algorithm 12. In lines 1-9, we perform random walks on every node v ∈ V ′ to

generate the neighborhood structures. Then, starting from the initial features ( Table 9.1),

20



Algorithm 3 Weighted k-means Clustering.
We use default value of k = 2.
Input: G′(V ′, E′): edge-contracted clique-based graph, {w}: node weights, {y}: node represen-

tations, k: number of clusters.
Output: {C1, ..., Ck}: k clusters.

1: Select k initial centroids {c1, ..., ck} randomly
2: repeat
3: {C1, ..., Ck} = argmin

C

∑k
i=1

∑
v∈Ci

w(v)∥yv − ci∥2

4: ci =

∑
v∈Ci

yvw(v)∑
v∈Ci

w(v) , ∀i = 1, ..., k

5: until {C1, ..., Ck} no longer change

we aggregate the neighborhood features for each node through Equation Equation 2.1 (lines

11-17). Finally, in lines 18-23, we leverage Adam to update the parameters of the GNNs

through the introduced unsupervised loss function (Equation Equation 7.1). After the learn-

ing process, the learned node representations {y} ∈ R128 are fed to the later clustering stage

to determine the tier assignment for each cell.

2.2.6 Weighted K-means Clustering

The final stage of the proposed framework is the clustering process, where we leverage the

weighted k-means clustering [39] to partition the edge-contracted clique-based graph G′ =

(V ′, E ′). The goal at this stage is to determine the tier assignment for each node v ∈ V ′

based on its learned representation yv from Algorithm 12. In this work, we introduce a

weight to each node v ∈ V ′ which denotes the total area of the gates that it represents. Note

that a node may represent multiple gates in the actual netlist, and gates corresponding to

the same node will be assigned to the same tier. Given the learned node representations {y}

and the weights {w}, the algorithm clusters the nodes V ′ into k weight-balanced groups

based on the similarity of {y}. Assume V ′ is classified into k clusters {C1, ..., Ck}, the loss

function is derived as

Lkmean =
k∑

i=1

∑
v∈Ci

w(v) · ∥yv − ci∥2, (2.3)
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Algorithm 4 Post-partitioning optimization.
We assume a two-tier 3D design and top die is faster.
Input: G(V,E): original 2D design, Ctop: instances in top tier, Cbot: instances in bottom tier.
Output: C ′

top and C ′
bot: updated partitioning results.

1: critCells← FindCellsOnCriticalPaths(G) ▷ in hash map
2: for net ∈ Nets do
3: critiCount← 0
4: for cell ∈ net do
5: if cell in critCells then ▷ O(1) look-up
6: critiCount++
7: if critiCount ≥ 0.5 ∗ countCell(net) then
8: Fix all cells on net in top tier. ▷ in-place

where ci =
∑

v∈Ci
yvw(v)∑

v∈Ci
w(v)

denotes the weighted centroid of cluster Ci. To update Equa-

tion Equation 2.3, we adopt an iterative minimization technique as illustrated in Algo-

rithm 3. Starting from an initial centroids {c1, ..., ck}, for each iteration, we determine the

clusters {C1, ..., Ck} by assigning each node to the centroid that has the minimum weighted

distance (line 3). After the assignments, we update the centroids based on the newly ob-

tained clusters (line 4). The clustering process is complete when the assignments no longer

change.

2.2.7 Post-partitioning Optimization

The clustering results of the weighted K-means algorithm ( Algorithm 3) can already be

taken as valid tier partitioning solutions. However, for certain design flows such as the

heterogeneous 3D design flow, extra handling on timing degradation during tier partitioning

phase is needed. The reason is that such design flow leverages different technologies in

various tiers, where the performance (timing) between BEOLs can vary by as much as

30% [40]. Therefore, the 3D designs can easily result in worse performance if cells on

critical paths in the original 2D design are partitioned randomly as occurred in Shrunk-2D

and Compact-2D.

To solve the above issue, in this work, we further propose a post-partitioning optimiza-

tion algorithm to mitigate the performance degradation of tier partitioning in heterogeneous
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3D design flows. The proposed algorithm is shown in Algorithm 4. Given a tier partition-

ing result that denotes the cell locations in top tier and bottom tier, we first build a hash

map to identify the critical cells in the original 2D design (Line 1). Then, for each net in

the design, if greater or equal to half of the cells are in the critical cell map, then we fix

the entire cells on the net in top tier (Lines 2–8). Note that the algorithm is based on the

assumption that top die is faster than bottom die (as in the Pin-3D [36] design flow).

2.2.8 Implementation Details

in this work, we apply the proposed TP-GNN framework to a variety styles of M3D de-

sign flows which include partitioning-first, partitioning-last, and heterogeneous 3D design

flows. In the partitioning-first design flow, since the tier partitioning happened before the

pseudo-placement, the timing related features in Table 9.1 are taken from a synthesis tool

(Synopsys Design Compiler), where in the partitioning-last design flow, the features are

found in Cadence Innovus. As for the feature “dist2source”, we take the hop-count as the

representation in partitioning-first design flows, and take the actual physical distance on

layout as the denotation in partitioning-last design flows. Finally, in the heterogeneous

design flow Pin-3D, since it accepts a partitioned design as inputs and continues the de-

sign flow through 3D legalization to tape-out, the feature extraction process is same as the

partitioning-last design flow.

2.3 Experimental Results

In this section, we perform thorough experiments to demonstrate the achievements of TP-

GNN framework. We validate our framework on 7 industrial designs, including two RISC-

V-based multi-core systems OpenPiton [41] and RocketCore [42], NOVA, LDPC, TATE,

JPEG from OpenCores.org, and NETCARD from ISPD 2012 benchmark [43]. All the 7

benchmarks are synthesized under TSMC 28nm technology node using Synopsys Design

Compiler 2015. We leverage Cadence Innovus Implementation System v18.1 to perform
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Figure 2.5: t-SNE visualizations of the learned node representations from GNN. Each dot represents
a cell in the design and is colored by its final tier assignment from Algorithm 3.

placement and routing, and utilize Synopsys PrimeTime 2018 for signoff analysis. Finally,

the TP-GNN framework is implemented in Python3 with Tensorflow library, and the train-

ing time is measured on a machine with 2.40 GHz CPU, 16 GB RAM, and a NVIDIA RTX

2070 graphics card. Note that for all 3D designs implemented by Shrunk2D and Com-

pact2D, we have performed bin sweeping to find the optimal bin size for fair comparisons.

2.3.1 GNN-related Results

First, to evaluate the graph learning, we leverage t-distributed stochastic neighboring em-

bedding [44] (t-SNE) technique to visualize the learned node representations {y} ∈ R128

from Algorithm 12 in R2 with OpenPiton [41]. The visualization result is shown in Fig-

ure 2.5, where we observe that the learned representations form two observable linear sep-

arable clusters. Based on the embedded locations in R2, we further color each dot (cell)

by its tier assignment from the weighted k-means algorithm ( Algorithm 3) and demon-

strate that the algorithm efficiently identify the two observable clusters. Now, we conclude

that our TP-GNN framework is capable of transforming the initial features into meaning-

ful high-dimension representations. In the later experiments, we demonstrate the superior

achievements of TP-GNN in a complete design flow.
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Table 2.2: Performance, area, and energy comparison of Shrunk-2D (S2D) [31] and TP-GNN flows
on RISC-V-based designs using F2F stacking. ∆ denotes the percentage difference between TP-
GNN and S2D.

Metrics 2D S2D TP-GNN (∆)
OpenPiton [41]

eff. freq. (MHz) 289 270 344 (27.4%)
WL (m) 6.33 4.91 4.56 (-7.7%)

energy/cycle (pJ) 343.94 339.73 270.52 (-20.3%)
footprint (mm2) 1.22 0.61 0.61

# MIVs 0 76,083 99,423 (30.7%)
critical path WL (um) 542.6 579.3 291.7 (-49.6%)

partitioning time (min) - 9 26
RocketCore [42]

eff. freq. (MHz) 832 921 964 (4.6%)
WL (m) 1.78 1.62 1.51 (-6.8%)

energy/cycle (pJ) 125.67 107.20 101.37 (-5.4%)
footprint (mm2) 0.28 0.14 0.14

# MIVs 0 38,627 22,738 (-41.1%)
critical path WL (um) 314.2 289.4 128.9 (-55.5%)

partitioning time (min) - 5 22

2.3.2 Maximum Performance Comparison

In this experiment, we perform maximum performance comparison between 2D, Shrunk2D,

and TP-GNN flows on two RISC-V-based designs: OpenPiton [41] (# macros: 28) and

RocketCore [42] (# macros: 6). Note that for designs with extensive memory macros such

as OpenPiton and RocketCore, Shrunk2D significantly outperforms Compact2D. There-

fore, we have taken the best-case scenario (Shrunk2D) of the existing state-of-the-art flows

to perform the comparison. The results are shown in Table 2.2, where we observe that our

TP-GNN flow significantly outperforms the Shrunk2D flow across the two designs. The

savings in timing-related metrics are noteworthy, where the critical path wirelength saving

is 52% in average and the effective frequency is 27.4% better in OpenPiton. Also, even

with a higher target frequency, TP-GNN consistently large wirelength saving. Figure 2.6

further shows the GDS layout comparison, where we observe that TP-GNN introduces

fewer cross-macro wires than Shrunk2D. Note that the partitioning time of the proposed

framework TP-GNN includes the runtime of both graph representation learning and the
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Table 2.3: Partitioning-first iso-performance comparison of Snap-3D [33] and TP-GNN flows.
∆Snap denotes the percentage difference between TP-GNN and the Snap-3D flow. We report the
time spend on tier partitioning in minutes.

Metrics 2D Snap-3D TP-GNN (∆Snap)
AES (2.8GHz) (# cells: 133,051)

WL (m) 1.78 1.35 1.34 (-0.8%)
power (mW ) 229.7 213.26 219.09 (+2.7%)

# MIV 0 51,138 44,533 (-12.9%)
WNS (ps) 69 48 36 (-25.0%)

partition-time - 3 hr 20 min
ECG (1.35GHz) (# cells: 96,416)

WL (m) 1.17 1.02 1.01 (-0.9%)
power (mW ) 307.2 286.52 284.02 (-0.9%)

# MIV 0 26,764 32,105 (+19.8%)
WNS (ps) 49 51 22 (-56.8%)

partition-time - 3 hr 18 min
JPEG (1.53GHz) (# cells: 219,534)

WL (m) 2.43 2.07 2.06 (-0.4%)
power (mW ) 704.5 668.5 665.4 (-0.4%)

# MIV 0 31,824 32,701 (+2.7%)
WNS (ps) 68 39 28 (-28.2%)

partition-time - 6 hr 24 min
LDPC (1.5GHz) (# cells: 41,817)

WL (m) 1.71 1.15 1.14 (-0.8%)
power (mW ) 192.2 134.9 133.6 (-0.9%)

# MIV 0 17,182 20,184 (+17.4%)
WNS (ps) 25 40 20 (-50.0%)

partition-time - 2 hr 14 min
NETCARD (1.0GHz) (# cells: 316,137)

WL (m) 7.82 6.77 6.78 (-0.1%)
power (mW ) 651.7 632.3 635.9 (-0.5%)

# MIV 0 50,341 47,366 (+5.9%)
WNS (ps) 56 37 40 (+8.1%)

partition-time - 8 hr 42 min
NOVA (1.0GHz) (# cells: 131,737)

WL (m) 2.33 2.25 2.26 (-0.4%)
power (mW ) 479.0 218.9 217.4 (-0.6%)

# MIV 0 18,423 17,238 (-6.5%)
WNS (ps) 47 31 29 (-6.4%)

partition-time - 8 hr 20 min
TATE (1.37GHz) (# cells: 211,911)

WL (m) 1.99 1.94 1.93 (-0.5%)
power (mW ) 395.7 397.3 396.4 (-0.2%)

# MIV 0 54,698 60,703 (+10.9%)
WNS (ps) 36 45 42 (-6.6%)

partition-time - 5 hr 22 min
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TP-GNN: bottom tier S2D: bottom tier

TP-GNN: top tier S2D: top tier

Figure 2.6: GDS layouts of OpenPiton [41] using TP-GNN vs. Shrunk-2D [31] flow. TP-GNN flow
achieves 7.7% better wirelength.

weighted k-means clustering algorithm. Since the graph learning is conducted in an unsu-

pervised manner (i.e., we do not need to pre-train the model), there is no runtime overhead

to apply the proposed framework.

2.3.3 Iso-Performance Comparison

In the this experiment, we perform iso-performance validation of TP-GNN in the state-of-

the-art partitioning-first (Snap-3D [33]) and partitioning-last (Shrunk-2D [31] and Compact-

2D [32]) M3D design flows across 6 real-world designs. Furthermore, due to the fact

that active research has been conducted extensively on solving the problem of 3D place-

ment [45, 46, 47], in this paper, we take a recent MIV-compatible 3D placement work [46]

as our reference “true” 3D placement flow termed True3D. The reason we use the term

“true” here is to show the difference between the (3D) placement results obtained by 3D

analytical placers [45, 46, 47] and 2D commercial tools (Shrunk-2D, Compact-2D). Note

that [46] does not propose a complete 3D design flow, to benchmark it against other flows

in full-chip design, we further route the placements results achieved by the 3D analytical
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placer using Cadence Innovus.

Note that in order to reasonably benchmark the analytical approach [46] that is orig-

inally developed for TSV-based 3D ICs with other M3D flows that we focus on in this

paper, we relax the penalty of inserting inter-tier vias in the objective function. The reason

is because M3D technology provides much cheaper 3D stacking cost than the TSV-based

3D technology.

As aforementioned, in this paper, we validate the proposed tier partitioning framework

on two different styles of M3D design flows. The results for partitioning-first design flow,

Snap3D [33], are shown in Table 2.3, and the results for the partitioning-last design flows,

Shrunk2D [31] and Compact2D [32], are shown in Table 2.4. In the partitioning-last de-

sign flows, we observe that TP-GNN consistently outperforms Shrunk2D and Compact2D

in QoR across all designs with only a little runtime overhead in tier partitioning. As for the

comparison between pseudo-3D (Shrunk2D, Compact2D) and true 3D (T3D) flow, we ob-

serve that the pseudo-3D flows consistently achieve much better PPA in terms of wirelength

and power, where the T3D flow does not always obtain better QoR metrics compared with

the original 2D designs.

In the partitioning-first design flow comparison, we observe that the final PPA results of

the original Snap-3D and the proposed TP-GNN enhanced flow are similar. This is mainly

because in such design flows, the tier partitioning stage occurs before any physical imple-

mentation (e.g. placement, routing etc.). Therefore, the impact of partitioning solutions to

the QoR of the 3D full-chip design is not as direct as the case of that in the partitioning-

last design flows, where tier partitioning directly determines the design quality degradation

occurred by 2D-3D transformation. Furthermore, we want to emphasize that the reason

Snap-3D implementation flow takes hours to perform tier partitioning is because it still re-

lies on the partitioning solutions from Shrunk-2D to take them as placement constraints.

Hence, we include the time to build the 2D implementation of Shrunk2D in the partitioning

time.
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Finally, head-to-head comparisons are available between partitioning-first and partitioning-

last design flows. We observe that in general, the Snap-3D (partitioning-first) design flow

gives better PPA metrics than the partitioning-last design flows. The key reason is that

Snap-3D tricks the commercial tool to optimize 3D placements during the pseudo 2D

placement stage, where both Shrunk-2D and Compact-2D require die-by-die legalization to

obtain a legal 3D placement solution after tier partitioning, which may degrade the quality

of the obtained partitioning solutions.

2.3.4 Sweeping Experiments on Contracting Edges

In this experiment, we demonstrate the PPA effect of executing different number of times

of the hierarchy-aware edge contraction algorithm ( Algorithm 1) on the LDPC benchmark.

The results are shown in Table 8.7. As aforementioned, the designs built by TP-GNN in

this work are achieved by running the algorithm two times. The straightforward benefit

of running Algorithm 1 is to prevent the short nets in the original 2D designs from being

partitioned into two separate tiers and turned into long nets, which may cause severe QoR

degradation. Nonetheless, as shown in the table, over-running the algorithm may as well in-

cur the QoR degradation in final full-chip design, because some optimization opportunities

are lost when various nodes are forced to be merged into one node.

2.3.5 Results on Heterogeneous 3D ICs

In this experiment, we validate the proposed framework on a heterogeneous 3D IC of a

commercial CPU-core based on the Pin3D [36] design flow, where fast corner is used for

top tier and slow corner is used for bottom tier (both in foundry 28nm). The results are

shown in Table 2.5. First, we observe that the proposed TP-GNN framework improves

many critical QoR metrics of the original Pin3D design flow. Second, we find that with the

post-partitioning optimization algorithm, TP-GNN can further optimize the full-chip PPA

with little runtime overhead. In particular, the performance of the 3D full-chip design is
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Table 2.4: Partitioning-last iso-performance comparison of True3D (T3D) [46], Shrunk-2D (S2D),
Compact-2D (C2D), and TP-GNN flows. ∆S and ∆C respectively denotes the percentage differ-
ence between TP-GNN vs. S2D and C2D. We report the time spend on tier partitioning in minutes.

Metrics 2D T3D S2D C2D TP-GNN (∆S , ∆C)
AES (2.8GHz) (# cells: 133,015)

WL (m) 1.78 1.86 1.45 1.42 1.46 (-0.6%, -2.8%)
power (mW ) 229.7 233.1 217.8 215.2 218.3 (-0.2%, -1.4%)

# MIV 0 43,895 41,262 39,403 44,921 (+8.8%, -14.0%)
WNS (ps) 69 51 33 38 41 (+24.2%, +7.8%)

partition-time - - 5 5 20
ECG (1.35GHz) (# cells: 96,416)

WL (m) 1.17 1.55 1.06 1.07 1.05 (-0.9%, -1.8%)
power (mW ) 307.2 311.4 290.2 291.3 288.9 (-0.4%, -0.8%)

# MIV 0 19,843 13,681 14,525 14,028 (+2.5%, -3.4%)
WNS (ps) 49 18 80 62 35 (-56.2%, -43.5%)

partition-time - - 3 3 18
JPEG (1.53GHz) (# cells: 219,534)

WL (m) 2.43 4.93 2.09 2.12 1.94 (-7.2%, -8.5%)
power (mW ) 704.5 727.9 674.2 675.9 665.1 (-1.3%, -1.6%)

# MIV 0 34,190 27,839 28,231 27,154 (-2.5%, -3.8%)
WNS (ps) 68 20 49 41 23 (-53.1%, -43.9%)

partition-time - - 8 8 24
LDPC (1.8GHz) (# cells: 43,381)

WL (m) 1.78 1.97 1.61 1.57 1.42 (-11.8.%, -9.6%)
power (mW ) 362.5 311.1 301.4 292.5 271.4 (-10.0%, -7.2%)

# MIV 0 12,509 8,955 9,237 7,454 (-25.6%, -27.9%)
WNS (ps) 34 29 26 20 16 (-38.5%, -20.0%)

partition-time - - 2 2 14
NETCARD (1.0GHz) (# cells: 316,137)

WL (m) 7.82 8.66 6.83 6.87 6.11 (-10.5%, -11.1%)
power (mW ) 651.7 702.4 639.8 639.2 598.9 (-6.4%, -6.3%)

# MIV 0 54,403 43,823 43,754 39,987 (-8.8%, -8.6%)
WNS (ps) 56 11 51 49 26 (-49.0%, -46.9%)

partition-time - - 14 14 42
NOVA (1.08GHz) (# cells: 131,737)

WL (m) 2.33 2.45 2.30 2.28 2.17 (-5.7%, -4.8%)
power (mW ) 479 396.5 220.2 216.9 211.0 (-4.6%, -2.7%)

# MIV 0 19,922 16,672 16,935 15,813 (-5.2%, -6.6%)
WNS (ps) 47 0 28 25 19 (-32.1%, -24.0%)

partition-time - - 5 5 20
TATE (1.37GHz) (# cells: 211,911)

WL (m) 1.99 2.41 1.97 1.95 1.92 (-2.5%, -1.5%)
power (mW ) 395.7 439.2 398.4 398.6 396.5 (-0.4%, -0.5%)

# MIV 0 70,457 56,467 56,820 59,727 (5.8%, 5.2%)
WNS (ps) 36 0 87 76 31 (-64.4%, -59.2%)

partition-time - - 8 8 22
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Table 2.5: Iso-Performance comparison on a heterogeneous 3D design of a commercial CPU design
implemented by Pin3D [36]. TP-GNNopt denotes the post-partitioning optimization ( Algorithm 4)
is enabled.

Metrics Pin3D TP-GNN TP-GNNopt

commercial CPU design in 1.2GHz
# cells: 176,352, # macros: 21

WL (m) 3.17 3.11 (-1.9%) 3.07 (-3.2%)
total power (mW ) 203.3 192.5 (-5.3%) 189.0 (-6.8%)

internal power (mW ) 96.3 90.9 (-5.6%) 88.4 (-8.2%)
switching power (mW ) 93.9 88.5 (-5.7%) 86.5 (-7.9%)

# MIV 30,155 34,068 28,883
WNS (ns) 0.452 0.237 (-47.5%) 0.085 (-81.2%)

partition-time 7 min 18 min 21 min

Table 2.6: Sweeping experiments on running hierarchy-aware edge contraction algorithm ( Algo-
rithm 1) multiple times.

LDPC 0-run 1-run 2-run 3-run 4-run
WL (m) 1.49 1.44 1.42 1.43 1.47

power (mW ) 277.5 272.1 271.4 272.8 280.5
# MIV 8,130 9,269 7,454 7,526 6,012

WNS (ps) 26 14 16 22 31
partitioning-time 20 18 14 13 11

pushed much higher.

We attribute the success of TP-GNN in heterogeneous 3D ICs in two-fold. First, due

to the fact that TP-GNN comprehends the technology features, timing related information

is taken into account while performing tier partitioning, where the original partitioning

algorithm that Pin3D adopts only considers to minimize the cutsize of connections. Second,

the post-partitioning optimization algorithm reckons the idea that cells on critical paths

should be considered carefully, which prevents the severe timing degradation that happens

in the original Pin3D design flow.
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2.4 Discussion

2.4.1 Why Does GNN Work Better?

Across the experiments for various fashions of M3D design flows, we observe that TP-

GNN framework significantly improves the timing from the state-of-the-art flows in con-

sistent. The main reason is that the original bin-based partitioning method ignores the

global connections among bins. It only partitions the sub-netlist within a bin. Therefore,

critical nets in the projected 2D designs are partitioned randomly. In TP-GNN framework,

we solve this issue by introducing timing related features to the graph learning, which

encourages cells on critical nets to be partitioned into same tier.

Furthermore, we observe that TP-GNN framework achieves great wirelength savings,

which can be explained by two reasons. First, Algorithm Algorithm 1 prevents nearby

and connected cells from being partitioned into different tiers, which reduces the signifi-

cant 3D routing overhead occurred in Shrunk2D and Compact2D flows. Second, with the

structural features introduced in Table Table 9.1 and the message passing characteristics of

the graph learning, cells that are logically connected would have similar node representa-

tions. Therefore, unlike bin-based partitioning method that partitions long nets randomly,

our framework partitions long nets based on the netlist structure.

Finally, we want to emphasize that TP-GNN runtime is measured from the beginning

of Algorithm Algorithm 1 to the end of Algorithm Algorithm 3. The runtime of our GNN-

based tier partitioning algorithm basically involves training our GNN using unsupervised

learning. Therefore, we do not report training vs. inferencing time separately as our GNN

learns while traversing the nodes in netlist graphs and collecting features from their neigh-

bors. The time complexity of our TP-GNN is linear in terms of the netlist size. This is

because our GNN model visits all the nodes in the netlist graph and spends a constant

amount of time collecting features from the neighbors. The total number of neighbors for

a given node under consideration is constant as we limit our neighbor search within a fixed
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Table 2.7: Timing impact between 3D (cross-tier) and 2D (same-tier) nets on ECG benchmark. The
unit for net length is µm, and the unit for delay is ps.

net type # path avg. length avg. delay wst. delay
cross-tier 43,645 21.2 1.3 58.9

same-tier (top) 86,083 7.6 0.3 35.7
same-tier (bot.) 101,493 9.5 0.4 29.5

hop count.

2.4.2 MIV Impact

In the experiments, we do not refrain the router to insert MIVs during the routing stage.

This is because as pointed out in [28], the inter-tier vias density of M3D designs can achieve

up to 100million/mm in a 14nm technology node, which leads to the conclusion that in

M3D designs, no inter-tier via density constraints are needed as in TSV-based designs.

Furthermore, as mentioned in [48], the minimization of MIV count no longer has a major

impact on the full-chip PPA of M3D designs. Therefore, in this paper, we do not strive for

minimizing the MIV count.

2.4.3 Timing Impact on Crossing Tiers

Due to the small pitch and low parasitic of MIVs (nano-scale), in M3D designs, the timing

impact of a net crossing different tiers is not as severe as in TSV-based designs. Since

MIVs possess similar RC characteristics to regular vias, the timing delay of a net in M3D

designs is proportional to its time (RC) constants. Table Table 2.7 quantifies the delay and

wirelength between cross-tier and same-tier nets on the ECG benchmark. As shown in the

table, although the average net delay of cross-tier nets is higher than same-tier nets, the

reason behind is that cross-tier nets tend to have longer wirelength and therefore higher RC

timing constants.
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2.5 Conclusion

In summary, we have proposed TP-GNN, a novel tier partitioning framework based on

graph neural network. First, we propose a hierarchy-aware edge contraction algorithm to

reduce the severe 3D routing overhead occurred in the bin-based partitioning algorithm.

Then, we map the classical tier partitioning problem into a clustering problem and solve

it with advanced machine learning techniques. The graph representation learning provides

the freedom for designers to deal with various partitioning objectives, and the unsupervised

learning promises the generality.
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CHAPTER 3

VLSI PLACEMENT OPTIMIZATION VIA PPA-DIRECTED SELF-SUPERVISED

DEEP GRAPH CLUSTERING

3.1 Background and Motivation

It is widely acknowledged that placement is the heart of every Physical Design (PD) flow

as the cell locations determined at this stage directly impacts the on-chip interconnects and

hence the capacitances and resistances induced, which are closely related to the Power,

Performance, and Area (PPA) metrics of the final full-chip design [49]. Driven by Moore’s

Law, modern Very-Large-Scale-Integrated (VLSI) designs easily consist of millions of in-

stances that are required to be placed and routed. However, existing placement algorithms

in commercial tools leverage various heuristics or analytical methods that do not scale

globally, which often leads to sub-optimal optimization results in advanced technologies.

Furthermore, modern VLSI designs are commonly over-complicated for tools’ inherent al-

gorithms to optimize in a systematic manner. Hence, in real-world practice, designers often

provide additional instance grouping information to commercial placers in order to guide

placement optimization towards a better direction. In this work, instead of manually spec-

ify cell clustering constraints as placement guidance, we explore Machine Learning (ML)

techniques to automate this process unsupervisedly [8].

3.1.1 Related Works: ML in VLSI Placement

To improve VLSI placement using ML techniques, several works have been proposed to

predict placement metrics using supervised learning. A recent work [50] developed an en-

semble framework to predict congestion and timing metrics based on a massive database

that contains 72 industrial designs with millions of instances. Another work [10] utilized
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Figure 3.1: Our PPA-directed placement optimization framework in an industrial PD flow.
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Figure 3.2: Difference between prior works [6, 7] and ours. Our framework is end-to-end differen-
tiable and directly optimizes PPA metrics as ML loss functions.

reinforcement learning (RL) to improve placement quality by tuning dozens of placement

parameters through thousands of placement iterations. Still another work [51] further com-

bined simulated annealing and RL in a cyclic framework to conduct iterative placement

optimization. The drawbacks of these works are self-evident that they either require a huge

database to be pre-generated or an extremely long runtime for learning convergence. Not to

mention that their learning-based models are limited to the designs or technologies which

they are trained upon. Therefore, whether their models are generalizable to unseen netlists

is questionable.

Unlike supervised learning that requires pre-generated labels for training, unsupervised

learning strives to discover hidden patterns of input data through self-representation learn-

ing. In the realm of EDA, since VLSI netlists are essentially hypergraphs, graph neural

networks (GNNs) have been widely used to distill netlist information in an unsupervised

manner. Recently, previous works [6, 7] both utilized GNNs to perform node representa-
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Figure 3.3: Our PPA-directed unsupervised deep graph clustering framework. Given a netlist graph,
initial node features, and PPA tool analysis (congestion, timing, power), our framework is trained
to optimize PPA metrics as ML loss functions by jointly improving the node embeddings and the
clustering assignments in an end-to-end manner.

tion learning to extract the netlist characteristics that are related to placement optimization,

upon which the weighted K-means clustering algorithm [34] is applied to identify the cell

clusters that are essential to improve the underlying placement. However, this two-step

approach often leads to inferior optimization results. The main reason is that the node

representation learning conducted by GNNs is not “goal-directed” because the embedding

step and the clustering step are not end-to-end differentiable. This implies neither can their

GNN models generate better embeddings through the evaluations of the clustering results,

nor can their clustering algorithms refine the assignments based on the improved node em-

beddings.

3.1.2 Our Goal: PPA-Directed Placement Optimization

in this chapter, we aim to overcome the above issue by developing an end-to-end, PPA-

directed placement optimization framework. Instead of relying a two-step approach as

previous works [6, 7], our framework jointly improves both GNN embeddings and clus-

tering assignments by directly optimizing PPA metrics as ML loss functions. Figure 3.1

shows an overview of the proposed framework in an industrial design flow and Figure 4.2

illustrates the key difference between our work and the previous related works [6, 7]. The

only assumption of this work is that there exists some cell clustering assignments that are
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beneficial to the underlying placement and the subsequent PD stages if being optimized

timely, and the main objective of this paper is to present a low-cost yet highly effective

technique to identify such clusters.

As shown in Figure 3.1, given an initial placement, the proposed framework learns to

discover the cell clusters that are critical for post-route PPA improvements by directly min-

imizing PPA metrics as ML loss functions, which are formulated unsupervisedly from the

timing, power, and congestion analysis based on the current placement. During the learning

process, both node representation learning conducted by GNNs and the clustering assign-

ments are jointly optimized through gradient descent. After the learning is complete, the

final clustering assignments are taken as soft constraints to the subsequent placement opti-

mization steps where the commercial placer will spend effort in placing cells in the same

cluster close to each other. Note that the entire learning process is conducted in an unsuper-

vised manner and does not require any pre-generated database, which implies the proposed

framework can be applied to any unseen design or technology. Finally, the detailed runtime

of each stage measured with one of our benchmarks is also shown in Figure 3.1. Compared

with the entire design flow, the proposed placement optimization technique only introduces

negligible runtime overhead.

The goal of this work is to present a placement optimization framework that has a strong

positive impact on the PPA quality at the end of the flow with small runtime overhead. It

is no doubt that the ultimate goal of every PD implementation is to meet the end-of-flow

PPA target closures, and we believe the best way to achieve this is to start from a better

placement. The key contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first work that directly formulates PPA

metrics as ML loss functions and optimizes them to improve the placement quality

of commercial tools that are widely used across the entire semiconductor industry.

• To the best of our knowledge, we are the first work that develops an end-to-end un-

supervised clustering framework in the realm of EDA where the embedding learning
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and the clustering assignments are jointly updated in a goal-directed manner.

• We validate the proposed framework in an industrial PD flow using a commercial

5nm technology and benchmarks with millions of cells. We not only show that our

framework immediately improves the PPA metrics at the placement stage, but also

demonstrate that the improvements last firmly to the post-route stage.

• We show that the proposed PPA-inspired ML loss functions can be directly leveraged

for placement evaluation, which correlate well with the end-of-flow PPA metrics.

• We show that the proposed framework can not only be integrated with industry-

leading commercial tools, but can also be combined with the state-of-the-art aca-

demic placer DREAMPlace [24] and greatly improve design quality.

• We demonstrate that the proposed framework PPA-GNN can be integrated with pre-

dictive models so as to enable ad-hoc optimization on the predicted metrics.

3.2 Framework Overview

Before diving into the details, we first present an overview of our framework as shown

in Figure 3.3. In summary, our framework leverages unsupervised deep embedded cluster-

ing [52] equipped with GNN representation learning to identify the cell clustering assign-

ments that can be used to optimize design PPA metrics. The inputs to our framework are

a netlist graph G = (V,E), initial node features Y 0 ∈ R|V |x|F |, and tool-based PPA anal-

ysis of the underlying placement, which includes congestion scores H ∈ R|V |, maximum

switching activities S ∈ R|V |, and the adjacency matrix of timing critical paths Adj′. The

key output of our framework is the probability matrix Q ∈ R|V |x|C| where each element

Qij represents the probability of a cell i belonging to a cluster j. During the learning pro-

cess, our framework will jointly refine the node embeddings and the clustering assignments

by minimizing the proposed PPA-inspired ML loss functions and other objectives using a

gradient descent optimizer.
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Figure 3.4: Proposed netlist transformation that honors timing propagation. “Skip-connections”
link start points and end points of timing paths during GNN message passing.

The main motivation behind the proposed clustering-based placement optimization

framework is that if we know a path is timing critical, or if we know a net is in high switch-

ing activity, then we would like to shorten the path or the net by moving cells closer to each

other in order to reduce the resistances and capacitances involved. In addition, if we know

an area is highly congested, then we would want to spread out the cells within to reduce the

congestion as it directly impacts the routing afterwards. To summarize, during the place-

ment optimization phase, we want to improve the cell locations based on the current PPA

evaluations. In fact, similar strategies [53, 54, 55, 56] have been deployed in placement

tools throughout the years using analytical techniques. In this work, we aim to unleash

the power of ML to achieve similar optimization goals but in a more systematic and global

manner by directly formulating crucial PPA metrics as ML loss functions. Finally, the key

difference between our work and previous works [6, 7] is summarized in Figure 4.2. Unlike

previous works requiring a two-step approach to identify essential cell clusters, we develop

an end-to-end PPA-directed framework that achieves better optimization results. As afore-

mentioned, our main assumption is that the final placement quality can be significantly

improved if certain clustering constraints can be acknowledged during the optimization

phase. The main focus of this work is to discover such cell clustering assignments using

ML algorithms in a fully-automated manner.
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3.3 Algorithms

3.3.1 Netlist Transformation

Since a VLSI netlist is inherently a hypergraph G = (V,E) and the node representa-

tion learning conducted by GNNs relies on an adjacency matrix A ∈ R|V |x|V | where each

element Aij ∈ {0, 1} denotes whether learning messages can be passed from node i to

node j, a netlist transformation is needed prior to GNN representation learning. Previous

GNN-based placement optimization works [6, 7, 10] all adopted the renowned clique-based

model [57] for the transformation. However, this approach suffers from the fact that the

number of edges in the transformed graph grows quadratically to the number of nodes in the

original netlist, which not only causes memory issues on industrial designs, but also weak-

ens the expressiveness of representation learning as it will be hard for GNNs to identify

important node connections from a large amount of edges.

To overcome these issues, we propose a new transformation method as shown in Fig-

ure 3.4. The proposed method brings two timing-related improvements upon the clique-

based technique. First, for every net in the original netlist, we only introduce the driver-

to-load connection(s) in the transformed graph instead of forcing every cell on the same

net to share connections with each other. Second, given that the receptive field of a GNN

model is limited by its number of layers, we introduce “skip-connections” (denoted in red)

to link start points and end points of timing paths, which enables GNNs to more easily cap-

ture timing-related effects. In our transformation, the number of edges in the transformed

graph grows pseudo-linearly to the number of nodes in the original netlist, which is fully

applicable on industrial designs.

3.3.2 Node-Level Feature Collection

Prior to the graph learning, we compute initial node-specific features for each design in-

stance (i.e., cell). These features are carefully determined based on domain expertise and
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are expected to characterize an instance’s impact to the optimization engine.

Hierarchical Cell Name Encoding using Transformer

Previous works [6, 7] have proven that the design hierarchy information is critical to place-

ment optimization as cells within the same hierarchy tend to have more connections with

each other. However, they either utilize simple integer-based encoding [6] or a suffix-tree

model [7] to encode such hierarchical information, which is not desirable for ML applica-

tions. Because ML models will assume numerically similar inputs (e.g., integers that are

close to each other) to possess resembling meanings, which may not be the case in design

hierarchies. Unlike previous works that leverage deterministic approaches, in this work, we

leverage the renowned sentence-BERT model [58] to encode the hierarchy information for

every cell in the design by considering their hierarchical names as sentences, where each

hierarchy or sub-hierarchy denotes a token (i.e., word). Given any design, the sentence-

BERT model will perform self-supervised learning to construct the embeddings of each

token based on their positions in different hierarchical names (i.e., sentences) and synergy

with other tokens. After the learning is complete, the name embeddings of each cell are

obtained by taking mean-pooling across the representations of each token within.

Logic-to-Memory Affinity

Due to the fact that logic-to-memory paths are often the critical paths in modern VLSI

designs, balancing the locations of cells on these critical paths may prevent wires from

detouring, which possibly improves timing [9]. Following from [6], for each cell, we

compute its shortest logic distance to each memory macro in the underlying design as

initial features.

Timing-Related Features

To capture the timing impact, we compute the worst slack value at a cell’s output pin and
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Table 3.1: Our initial node features for deep graph clustering. M denotes the number of memory
macros.

type # dim. description
name embeddings 16 hierarchical name encoded by

S-BERT [58]
memory affinity M shortest logic distance to each

memory
wst output slack 1 worst slack value at output pin
wst output slew 1 maximum transition at output

pin
wst input slew 1 maximum transition among in-

put pin(s)
largest activity 1 largest switching activity value

among nets
locations 2 (x,y) location of initial place-

ment

the worst slew values at both pins as its timing features using a commercial static timing

analysis (STA) engine. Therefore, cells on timing critical paths will be enforced to have

similar timing-related features, which increases the probability of them being assigned to

the same cluster. During placement optimization, if these critical cells are moved closer to

each other, the overall timing will likely be improved. Note that apart from this feature-

wise timing enhancement, in subsection 3.3.4, we will present more details on the approach

of optimizing timing as an ML loss function directly.

Power-Related Features

Power is another crucial placement objective besides timing. To improve power dissipa-

tion, in this work, we specifically focus on improving the dynamic power by taking the

largest switching activity among the nets that each cell is connected to as one of its initial

features. The key idea is that if we know a net is consuming excessive switching power, it

is usually power-wise beneficial to move the cells on this net closer to each other. Again,

as aforementioned, besides this feature-wise improvement, we will present more details in

later sections on how to systematically improve power consumption by formulating it as a

learning objective. Finally, Table Table 9.1 summarizes the initial features we collect for
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each cell in the design. We want to emphasize that for different designs, the total dimen-

sion of the initial cell features will vary depending on the number of pre-placed memory

macros.

3.3.3 Node Representation Learning

After collecting the initial features for each cell in the design, we leverage GNNs to perform

node representation learning. The main objective of the representation learning is to trans-

form the initial node features into meaningful embeddings by considering the connectivity

among cells. In the realm of PD, the embeddings learned by many variants of GNNs have

been leveraged to solve the downstream tasks including 2D/3D placement optimization [9,

10, 7, 6], PPA predictions [19, 59, 17, 60, 61], gate sizing [12, 11, 13], activity simu-

lation [14, 62] etc. In this work, considering the runtime and memory benefits that graph

inductive learning brings, we leverage GraphSAGE [37] to perform the node representation

learning as:

yk−1
N(v) = mean pool

(
{Wagg

k yk−1
u , ∀u ∈ N(v)}

)
,

ykv = sigmoid
(
Wproj

k · concat
[
yk−1
v , yk−1

N(v)

])
,

(3.1)

where N(v) denotes the neighbors of node v, W agg
k and W proj

k denote the aggregation

and projection matrices at the k-th layer of the GNN module. After the transformation

through Equation 9.1, the initial node features of each cell y0v will be transformed into yKv ,

where K denotes the total number of layers. The dimensions of yKv is subject to the number

of neurons at the last layer. In the implementation, we set K = 6 and dim(yKv ) = 32.

Similarity Loss Lsim

Now, we define the first objective function of the proposed framework, which is termed as

the “similarity loss” and can be directly calculated from the GNN learned embeddings. The

key idea of this loss function is to let nodes that are logically close to each other have similar

representations, while making nodes that are logically distant have dissimilar embeddings.
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The loss function Lsim is designed as:

Lsim =
∑
v

− ∑
u∈N(v)

log
(
σ(y⊤v yu)

)
−

∑
k∼rand

log
(
σ(−y⊤v yk)

) , (3.2)

where yv denotes the learned embeddings of node v, σ denotes the sigmoid function, and

rand denotes the random sampling operation over the full netlist graph. By minimiz-

ing Equation 3.2, neighboring nodes will be encouraged to have similar embeddings y,

which increases the probability of them being assigned to the same cluster and hence pre-

vents creating long pin-to-pin connections. Therefore, as shown in Figure 3.3, we con-

sider Equation 3.2 as preventing the creation of long wires.

3.3.4 PPA-Directed Deep Graph Clustering

One of the highlights of our work is that instead of using the K-means clustering algo-

rithm [34] to discover the cell clusters as in many previous works [7, 6], we devise a

methodology to transform the GNN learned node embeddings into a probability matrix

Q ∈ R|V |x|C| as shown in Figure 3.3, where each element Qij denotes the probability of a

node i belonging to a cluster j. With this probability matrix Q, we can further formulate

the traditional PPA metrics as ML loss functions by calculating the “expected PPA impact”

of the current clustering assignments. Then, we can leverage gradient descent to optimize

these PPA metrics by jointly improving node representation learning and cell clustering as-

signments. We want to emphasize that unlike previous works [7, 6], the entire framework

from representation learning to clustering is end-to-end differentiable. In the following

sub-sections, we present step-by-step details on constructing the probability matrix Q and

formulating the proposed PPA-inspired ML loss functions.
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Unsupervised Clustering Loss Lcl

One of the main challenges of the clustering task is the non-existence of label guidance.

To overcome this challenge, we devise a self-reinforcing method that iteratively converts

“distances” of trained GNN node embeddings {y} into “probabilities” of clustering assign-

ments. Particularly, we leverage the Student’s t-distribution [63] as a kernel to perform the

distance-to-probability conversion as:

Qic =
(1 + ∥yi − µc∥2)−1∑
k (1 + ∥yi − µk∥2)−1 , (3.3)

where Qic denotes the probability of node i belonging to cluster c, yi denotes the learned

GNN node embeddings of node i, and µc denotes the embeddings of centroid c which is a

trainable vector that is improved in every iteration, and ∥·∥2 denotes the Euclidean distance.

Note that Q is a stochastic matrix, which means every element is greater or equal to 0 and

every row sums up to 1.

To optimize the clustering assignments (i.e., matrix Q) in a self-reinforcing manner [64],

we further construct a target matrix P by strengthening the assignments of Q as:

Pic =
Q2

ic/
∑

i Qic∑
k Q

2
ik/

∑
i Qik

. (3.4)

The rationale behind Equation 3.4 is that since Q is a stochastic matrix which means 0 ≤

Qic ≤ 1, raising and then normalizing by the second power will make the probability

distribution of each row (i.e., assignment distribution of a cell) skew towards to the largest

value. Hence, the assignments are strengthened. Now, with the target matrix P and the

approximate matrix Q, we can define the clustering loss Lcl as:

Lcl = KL(P ||Q), (3.5)

where KL denotes the Kullback-Leibler divergence [65]. Minimizing Equation 3.5 will
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Figure 3.5: Illustration of congestion loss and power loss formulations that rely on entropy maxi-
mization and minimization. Note that both distributions are normalized as probabilities.

encourage the matrix Q to approximate the matrix P . To this end, we have bridged the

gap between node representation learning and cell clustering by converting the GNN node

embeddings into cell clustering probabilities. With the probability matrix Q that repre-

sents clustering assignments, we can further quantify its “expected” impact on important

PPA metrics, which allows us to perform gradient descent in an end-to-end manner be-

tween node representation learning and cell clustering. However, the above presented tech-

niques are still not sufficient to truly discover the cell clusters that are critical for placement

optimization as they are not “goal-directed”. To overcome this issue, in the following

sub-sections, we complete the proposed framework by formulating the conventional PPA

metrics as ML loss functions.

Congestion Loss Lcong

Congestion is one of the most important placement objectives as it highly correlates with

the on-chip routability which directly impacts the performance and power of the full-chip

design [59]. A placement even with good wirelength estimation is still not usable if the

underlying congestion is poor. In this work, to reduce cell congestion, we adopt the con-

cept of cell spreading as many renowned works [66, 54, 55] by introducing a density-aware
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objective to our framework. The key idea is that if we have the information regarding the

current congestion hotspots, we can train the framework to adjust the clustering assign-

ments in order to spread the cells out from those “hot” regions. We formulate this objective

and the corresponding loss function Lcong as:

max entropy
(
Q⊤H

)
→ Lcong = −entropy

(
Q⊤H

)
, (3.6)

where H ∈ R|V | is a vector that denotes the congestion score of each cell, Q⊤H ∈ R|C| thus

represents the expected congestion score of each cluster, and finally entropy(·) denotes the

function mapping that first normalizes each element by the sum of all elements, and then

calculates the Shannon entropy [67] of the normalized probability vector. By maximizing

the entropy, the probability matrix Q will be encouraged to find the clustering assignments

that spread out cells in the congested regions as the maximum entropy is achieved by hav-

ing an equal amount of congestion (i.e.,
∑

v Hv

|C| ) in each cluster. The illustration of our

congestion objective is shown in the upper-part of Figure 3.5.

Timing Loss Ltiming

Performance has been the dominant PPA metric in the past decade, where research on

timing-driven placement (TDP) has been conducted extensively. Although many ML-based

timing optimization techniques [61, 11] have been proposed to improve timing Engineering

Change Orders (ECOs) in late design stages, it is widely acknowledged that the best way to

improve sign-off performance is to start from a better placement. Generally speaking, TDP

is designed specifically to improve interconnections on timing critical paths [56], where

popular approaches can be categorized into two streams: net-based and path-based. Since

the goal of the proposed framework is to discover the critical cell clusters from a global

placement, we reckon that by taking the path-based approach, we can improve the timing

more easily without changing the underlying placement drastically.
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linearity of
expectation

Figure 3.6: Illustration of “cut-size” loss formulation.

In this work, our key idea to improve timing is to let the cells on timing critical paths

have higher chances in being clustered into the same group and hence the wires in between

can be shortened during placement optimization. To achieve this, as in [68], we formulate

the “cut-size” of timing critical paths as an ML loss function, which is resulted from the cur-

rent clustering assignments Q. Figure Figure 3.6 shows an illustration of our cut-size loss

formulation. Note that although a two-way partitioning example is shown in the figure, this

formulation can be easily extended to handle multi-way partitioning by considering more

probability combinations. In a generalized matrix form representation for |C|-way parti-

tioning, we formulate the cut-size as timing loss Ltiming based on the probability matrix

Q ∈ R|V |x|C| as:

Ltiming = reduce sum
(
Q⊤ (

1−Q⊤)⊙ Acritic

)
, (3.7)

where Acritic denotes the adjacency matrix of timing critical paths, reduce sum(·) denotes

the operation that adds up all the input elements, and ⊙ denotes the element-wise multipli-

cation. By minimizing Equation 3.7, the Q will be encouraged to improve the clustering

assignments to minimize the cut-size of timing critical paths.

Power Loss Lpower

Recently, with the burgeoning surge in the demand for hand-held and wearable devices,

low-power has become the prime objective in many design implementation flows. Aside
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from register banking, most of the low-power placement approaches leverage the technique

of activity-aware net weighting [69] to reduce dynamic power, where the key idea is to

make nets with high switching activities have shorter physical wirelength to reduce their

capacitances. Inspired by this concept, in this work, we formulate the power objective and

the loss function Lpower as:

min entropy
(
Q⊤S

)
→ Lpower = entropy

(
Q⊤S

)
, (3.8)

where S ∈ R|V | represents the largest switching activity of the nets that a cell is connecting

to. The idea behind Equation 3.8 is similar to that of the congestion loss as shown in the

bottom-part of Figure 3.5. The only difference is that here we are minimizing rather than

maximizing the entropy to aggregate the cells that are connected to high switching activity

nets in order to shorten their interconnects.

3.3.5 End-to-End Unsupervised Training

Now, after describing all the objectives of our framework as summarized in Figure 3.3,

we jointly optimize them using a gradient descent optimizer Adam [38] to minimize the

weighted sum of each objective as:

L = Lsim + λ1Lcl + λ2Lcong + λ3Ltiming + λ4Lpower, (3.9)

where λi ≥ 0 controls the contribution of each objective to the clustering assignment. After

the training is complete, we obtain the final clustering assignment of each cell v as:

assignment of node v = argmax
c

Qvc. (3.10)

Algorithm Algorithm 5 summarizes the entire end-to-end training process. In Lines 1–4,

we first pre-train the weights of the GNN module using similarity loss (i.e., Equation 3.2).
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Algorithm 5 End-to-End Unsupervised Training Methodology.
We use default values of sim epoch = 10, full epoch = 50, α = 0.001, β1 = 0.9, β2 =
0.999, λ1 = 1, λ2 = 10, λ3 = 1, λ4 = 0.5.

Input: G = (V,E): transformed graph. {y0}: initial node features. H ∈ R|V |: congestion scores.
Acritic: critical path adjacency matrix. S ∈ R|V |: maximum switching activities. {W}:
weights of GNN. sim epoch: number of epochs for similarity-only learning. full epoch:
number of epochs for full-objective learning. {β1, β2}: Adam params. α: learning rate.
{λ1, λ2, λ3, λ4}: objective weights.

Output: Z ∈ R|V |: final clustering assignment of each cell
1: for i = 0; i < sim epoch; ++i do ▷ Pre-train GNN weights
2: y ← GNN(G, y0;W ) ▷ GNN embeddings by Equation 9.1
3: Lsim ← sim loss (y) ▷ similarity loss by Equation 3.2
4: W ← Adam (Lsim, β1, β2, α;W ) ▷ update GNN
5: {µ} ← obtain initial centroids from y using K-means
6: add {µ} to ML computational graph ▷ make {µ} trainable
7: for i = 0; i < full epoch; ++i do
8: y ← GNN(G, y0;W ) ▷ GNN embeddings by Equation 9.1
9: Lsim ← sim loss (y) ▷ similarity loss by Equation 3.2

10: Q← probability matrix from {y, µ} ▷ by Equation 3.3
11: if i % 3 == 0 then
12: P ← target matrix from Q ▷ by Equation 3.4
13: Lcl ← clustering loss from {P,Q} ▷ by Equation 3.5
14: Lcong ← congestion loss from {Q,H} ▷ by Equation 3.6
15: Ltiming ← timing loss from {Q,Acritic} ▷ by Equation 3.7
16: Lpower ← power loss from {Q,S} ▷ by Equation 3.8
17: L = Lsim + λ1Lcl + λ2Lcong + λ3Ltiming + λ4Lpower

18: W,µ← Adam (L, β1, β2, α;W,µ) ▷ update GNN, centroids
19: Z ← get argmax of Q by row ▷ final clustering assignments

Then, in Lines 5–6, based on the pre-trained embeddings, we obtain the initial clustering

centers {µ} (i.e., centroids) in high dimensions using the K-means algorithm [34] and make

these centroids trainable by adding them to the ML computational graph. Note that the K-

means algorithm is only conducted once and for all to obtain the initial clusters. In Lines

7–19, we compute each objective function as described in the above equations and jointly

optimize them using gradient descent. It is worth to mention that in Lines 11–12, we update

the target matrix P once in every three iterations to stabilize the convergence. Finally, the

computed gradients are taken to update the parameters in the underlying ML computational

graph including the GNN weight matrices {W} and the center locations {µ}. The entire

training process is unsupervised and takes less than 30 minutes on designs with millions

51



of cells by using a single Nvidia Tesla A100 GPU, which introduces almost no runtime

overhead to the entire flow.

3.3.6 Integration with Commercial EDA Tools

Now, we illustrate how to leverage the obtained clustering assignments to improve the

placement optimization of modern placers. For Cadence Innovus [70], the command to

create a clustering constraint is: createInstGroup {cell names} -softguide. As for Synop-

sys ICC2 [71], the corresponding command is: create placement attraction {cell names}.

During the placement optimization phase, both tools will spend effort in grouping cells in

the same cluster closer to each other. Note that for each cluster suggested by the proposed

framework, we will create a clustering constraint with one of the above commands depend-

ing on which tool we are using. Due to proprietary issues, we unfortunately cannot disclose

the underlying tool that is being used in the experimental results. But, we can confidently

mention that the proposed framework works for both tools.

3.3.7 Integration with DREAMPlace [24]

DREAMPlace is a recent open-source placer that has brought a huge revolution to academic

research thanks to its fast placement computation enabled by GPU acceleration. Here, we

demonstrate how to integrate the proposed framework with DREAMPlace to improve the

final achieved PPA metrics. The key idea is that with the clustering results obtained, for

each cluster, we can create a sub-netlist which is optimized jointly with the full-netlist (i.e.,

whole design) during the gradient descent update. For example, assume at an iteration a

cell has a location (x, y), and with the original full-netlist update (i.e., default update in

DREAMPlace), it is assigned a gradient (∆full x,∆full y). Now, if the cell is in a cluster

c, we will compute another gradient (∆c x,∆c y) by minimizing the wirelegnth of the

sub-netlist that is created by other cells in the same cluster c. Note that both full-netlist

and sub-netlist updates leverage the same wirelength objective function. Hence, with the
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integration of the proposed framework, the final gradient of the cell becomes the sum of

the two gradients as: (∆full x+∆c x,∆full y+∆c y). Finally, by multiplying this gradient

with the learning rate, we obtain the final amount and direction of the location change for

this cell.

3.3.8 Integration with Prediction Models

Recently, many learning-driven supervised models have been proposed to predict critical

QoR metrics to improve chip design productivity by shortening turn-around time [1]. How-

ever, such models lack the ability to perform QoR optimization. Even if they are able to

inference on unseen designs, the achieved results are at most “tool-accirate”, which means

they can never be better than the ones achieved by default tool flows. To overcome this is-

sue, in this chapter, we present the use case of combining the proposed optimization frame-

work PPA-GNN with predictive models, where we specifically focus on timing prediction

models. Particularly, we first train a binary classification model based on the feature set

shown in Table 9.1 to predict whether a cell will result in a negative slack value after place-

ment optimization. Then, with the pre-trained timing classification model, we introduce an

ad-hoc similarity loss Lpred on the predicted timing violating cells as:

Lsim = −
∑

v′∈Vpred

∥yv′ − µpred∥2, (3.11)

where µpred = 1
|Vpred|

∑
v′∈Vpred

yv′ denotes the centroid (after graph learning) of the pre-

dicted instances. Essentially, Equation 3.11 encourages the predicted timing violating cells

to have similar node representations after graph learning, which greatly increases the prob-

ability of them being assigned to the same cluster.
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Table 3.2: Our three academic benchmarks and their attributes under a foundry 28nm technology
(attributes of six commercial benchmarks are described in section 7.4 due to proprietary.)

Design # Cells # Flip-Flops # Nets
B19 34290 3420 36625

DMA 10451 2062 11304
DES 49853 8802 51247
VGA 57228 17054 60350

Figure 3.7: Unsupervised PPA-directed clustering results on block1 at a commercial 5nm technol-
ogy. The figure is intentionally blurred due to proprietary.

3.4 Experimental Results

We validate the proposed framework PPA-GNN on 6 industrial GPU/CPU designs in a

commercial 5nm technology node and 4 OpenCore designs at a foundry 28nm technology.

Among the industrial designs, the total number of cells ranges from 1.3M to 1.6M , the

number of flops ranges from 95k to 150k, and the number of macros ranging from 20 to

150. Due to proprietary issues we cannot disclose the exact attributes of each design. As

for the OpenCore designs, their detailed attributes are presented in Table 9.2. PPA-GNN

is implemented with the PyTorch library. As aforementioned, the entire training process

(Algorithm Algorithm 5) is conducted on a single NV IDIA TESLA V 100 GPU with

32GB memory. For each of the benchmark, the runtime of our framework only takes less

than 30 minutes, which is negligible compared with the runtime of the entire design flow.
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Table 3.4: Optimization results analysis using proposed PPA losses. Colored entries denote better
evaluations.

design
congestion entropy path cut-size power entropy
default ours default ours default ours

block1 1.901 1.902 908.6 905.5 1.940 1.937
block2 2.356 2.360 629.4 603.7 2.142 2.139
block3 2.289 2.291 864.1 835.3 2.106 2.104
block4 2.014 2.015 789.4 784.5 1.995 1.988
block5 2.471 2.469 892.5 864.2 2.485 2.483
block6 1.844 1.848 1113.2 1028.7 - -

Figure 3.8: Impact on congestion after placement. Our optimization technique reduces the worst
congestion by 60.9%.The worst congestion is defined by the commercial tool to be the largest
contiguous overflowing area.

3.4.1 Optimization Results on Industrial Flows

Table 4.2 shows the detailed PPA impact of the proposed framework being integrated with

an industrial design flow. We observe that across all the benchmarks, our PPA-directed deep

graph clustering technique demonstrates consistent post-route PPA improvements. On the

benchmark “block1”, it significantly improves the post-route total negative slack (TNS) by

88%, and reduces the worst negative slack (WNS) from 88ps to 9ps. Another trend worth to

mention is that the proposed framework consistently improves the clock wirelength and the

clock power across all designs. We believe these clock-related improvements are resulted

from the “skip-connection” technique proposed in Figure 3.4 that introduces GNN message
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Figure 3.9: Illustration of PPA-GNN impact on timing critical paths from post-place to post-route.
Critical wires are in yellow and cells are in red.

passing edges between launch flops and capture flops. In the table, we particularly highlight

the improvements at the post-route stage in red as we believe the end-of-flow PPA values are

the most accurate metrics to evaluate any PD optimization technique. Finally, to determine

the total number of clusters |C| that each benchmark is clustered into, we sweep around

the integers between 7 and 14 (inclusive) to find the number that achieves the minimum

value of Equation 7.1 (i.e., the weighted sum of each objective). In a latter sub-section we

will show that the proposed PPA-inspired ML loss functions can be directly utilized for

placement evaluation.

With the detailed optimization results presented, we now take “block1” as a case study

to analyze and demonstrate the detailed PPA impact of our framework. Figure 3.7 vi-

sualizes its clustering result, where each color represents a cluster and is taken as a soft

constraint to the underlying placement engine. Figure 3.8 demonstrates the congestion im-

pact of the proposed framework, where we observe that the worst congested area is greatly

reduced by 60.9%. We believe this improvement proves the effectiveness of our conges-
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tion loss function (Equation Equation 3.6). Figure 3.9 further shows the impact on timing

critical paths from the post-place stage to the post-route stage, where we observe that the

proposed technique helps to reduce the number of violating paths significantly.

Analysis on Optimization Results using PPA Losses.

Throughout the past several decades, half-perimeter wirelength (HPWL) and overflow have

been the two dominant metrics for placement evaluation. However, these two popular

metrics do not show good correlation with post-route PPA values in advanced technology

nodes. Take the HPWL metric for example, in Table 4.2, we see that with our framework,

both block2 and block5 have worse placement wirelength estimations compared with the

default flow, however, at the post-route stage, our framework achieves better PPA metrics

including the wirelength itself. This shows the inaccuracy of using HPWL as the evaluation

metric.

Here, we show that our PPA loss functions can deliver more accurate placement eval-

uation than the renowned HPWL metric. The key idea is that given two final placements

from the same initial placement, we want to discern which one is better for the subsequent

PD stages using the proposed PPA losses with the clustering assignments obtained from the

initial placement. To achieve this, we leverage Equation 3.3 to transform the final 2D dis-

tances between cells and centroids into probabilities to compute the PPA losses, where the

centroid of each cluster is the center of gravity of the cells within. The evaluation results

are shown in Table 3.4. We observe that our PPA loss functions deliver accurate placement

evaluations and correlate well with the post-route PPA metrics.

3.4.2 Optimization Results on DREAMPlace

In this experiment, we integrate the proposed framework with DREAMPlace [24] and com-

pare the PPA metrics between the flows using the default DREAMPlace placement and our

enhanced DREAMPlace placement. Since in this work we are focusing on full-flow PPA
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Table 3.5: DREAMPlace [24] integration results on block1. “DREAM” denotes the DREAMPlace
default placement.

PD post-place post-cts post-route
stage DREAM ours DREAM ours DREAM ours

WNS (ns) -0.107 -0.062 -0.081 -0.066 -0.065 -0.047 (-27.7%)
TNS (ns) -74.96 -74.50 -145.73 -98.62 -25.05 -12.92 (-48.4%)

# vios 4203 3637 7312 6372 1908 1461 (-23.4%)
WL 1 0.952 1 0.953 1 0.954

power 1 0.979 1 0.981 1 0.979

Table 3.6: Comparison between proposed PPA-directed clustering framework and a single-way
clustering work [7]. The number of clusters |C|[23] used for previous work is obtained from the
sweeping experiments they proposed.

PD post-place post-cts post-route
stage [7] ours [7] ours [7] ours

design: block1 ( > 1.3M cells ), |C|[23] = 13, |C|ours = 10

WNS (ns) -0.044 -0.039 -0.048 -0.039 -0.056 -0.009 (-83.9%)
TNS (ns) -35.35 -14.18 -67.71 -61.45 -2.965 -0.032 (-98.9%)

# vios 3119 1622 6411 6049 867 149 (-82.8%)
WL 1 0.999 1 0.998 1 0.999

design: block6 ( > 1.3M cells ), |C|[23] = 10, |C|ours = 8

WNS (ns) -0.058 -0.073 -0.193 -0.121 -0.115 -0.107 (-6.9%)
TNS (ns) -6.42 -6.06 -23.35 -19.29 -27.37 -15.85 (-42.1%)

# vios 479 374 1608 1333 1118 413 (-63.1%)
WL 1 0.993 1 0.981 1 0.992

improvements, the comparison is done by first leveraging DREAMPlace to generate two

initial placements (default and ours), and then leveraging a commercial tool to perform

placement optimization and the subsequent PD implementations. Note that the integration

happens within DREAMPlace. We modify the source code based on the procedures pre-

sented in subsection 3.3.7. The full-flow comparison results are presented in Table 3.5. We

observe that the proposed framework helps to improve every major PPA metric across all

the stages significantly.

3.4.3 Comparisons with Single-Way Clustering [7]

One of the highlights of this work is that we directly formulate crucial PPA metrics as ML

loss functions, and leverage them to guide both node representation learning and clustering
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default tool flow ours

TNS: -8.37ns, WNS: -0.39ns TNS: -3.01ns (-64%), WNS: -0.22ns

Figure 3.10: Illustration of attraction impact on timing violating cells with the DMA benchmark.
The left figure shows the distribution of the cells whose output pins have negative slack values in the
default tool flow (i.e., without attraction). The right figure shows that with the clustering constraints
generated by PPA-GNN, the initially violating cells aggregate closer.

process in an end-to-end, mutually-reinforcing manner. To demonstrate the effectiveness

of our approach, in this experiment, we perform head-to-head comparisons with the previ-

ous work [7] that requires a two-step process to determine the clustering assignments (the

difference between our work and the previous work is illustrated in Figure 4.2). Table 3.6

demonstrates the comparison results. We observe that our framework achieves significantly

better optimization results in every major PPA metric across all the stages, which clearly

demonstrates the benefits of our PPA-directed clustering approach. We believe the im-

provements come from the fact that compared with the previous work [7], not only can

our GNN module perform better feature transformation with the PPA feedback from the

clustering assignments, but also can our clustering module finds better assignments based

on the improved node representations.

3.4.4 Optimization Results with Timing Prediction Models

As described in subsection 3.3.8, in this chapter, we present the use case of integrating

the proposed optimization framework with a classification-based timing prediction model

that generates a binary decision for each instance on whether it will be timing violating

after the placement optimization of the default tool flow. In this experiment, we use the
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GNN modeling architecture proposed in [12] to realize the timing classification model, and

to validate the integration in a meaningful manner, we perform the experiment in a cross

validation setting. That is, for each OpenCore benchmark shown in Table 9.2, we only use

the other three benchmarks to train the timing prediction model while remaining it unseen

for validation. By introducing the ad-hoc similarity loss function shown in Equation 3.11

in the PPA-GNN training cycle, we obtain the optimization results shown in Figure 3.10,

where we clearly observe that the initially timing violating cells in the default tool flow

(i.e., without using PPA-GNN) has a more scattered distribution compared with the one

showing in the right of the figure, and the achieved TNS value is improved by 64%.

3.4.5 Why Does PPA-GNN Work?

In the experiments (Table 4.2 and Table 3.6), we demonstrate that the proposed placement

optimization framework improves the full-chip PPA quality of the default tool flow and a

previous work [7] significantly on industrial designs with millions of instances in a com-

mercial 5nm technology node. We believe the good optimization results of our framework

can be accounted by the following reasons:

Global and Systematic Optimization

We think the first reason comes from the fact that the proposed ML-based placement op-

timization technique improves design PPA metrics more globally and systematically com-

pared with the existing heuristic algorithms in commercial tools that often perform the

optimization in a local and ad-hoc manner (i.e., path-by-path, cone-by-cone, or subgraph-

by-subgraph) because of their inabilities to deal with large design complexity. Unlike these

heuristic algorithms, our framework optimizes the entire netlist graph as a complete entity,

where the PPA-related objectives are calculated across every cell in the design. Therefore,

it has the ability to capture the complicated interactions among instances that are distant to

each other.
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PPA-Directed End-to-End Optimization

Unlike previous graph unsupervised learning works [7, 6] that leverages GNNs to obtain

node embeddings without any guidance from the subsequent clustering task, in this work,

we design PPA-inspired ML loss functions related to congestion, timing, and power to

optimize both node representation learning and clustering assignments in an end-to-end

manner. In contrary to previous works that improve PPA metrics indirectly, our frame-

work works as a stand-alone optimizer that directly improves the PPA metrics using ML

algorithms. The direct benefits of our approach is demonstrated in Table 3.6.

Strong Correlation with Post-Route Metrics

Table 3.4 shows that the proposed PPA loss functions can be directly utilized as place-

ment evaluation metrics which correlate well with the post-route PPA results (Table 4.2).

This means that by minimizing our PPA-inspired ML loss functions, we are improving the

underlying placement in the same direction as improving post-route PPA metrics, which

drives the optimization in an accurate manner.

3.5 Conclusion

In this chapter, we have presented the first placement optimization framework named PPA-

GNN that directly formulates PPA metrics as ML loss functions and optimizes them to

discover the cell clusters that can improve the underlying placement and end-of-flow PPA

metrics. We perform detailed and thorough validation of the proposed framework with

different integrations. First, we show that PPA-GNN can be seamlessly integrated with

industry-leading commercial tools in an industrial design implementation flow to immedi-

ately improve key PPA metrics after placement optimization. More importantly, we demon-

strate that these improvements last firmly to the post-route stage. Second, we show that

PPA-GNN can be integrated with a renowned academic placer, DREAMPlace, to signif-
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icantly improve the achieved end-of-flow QoR metrics. Finally, we demonstrate that the

proposed framework can be elegantly integrated with predictive models so as to enable

targeted optimization on the predicted metrics, where we use timing as an example. We

think this work shall demonstrate that ML algorithms can not only be utilized to solve the

prediction or simulation tasks in EDA, but can also be leveraged as stand-alone algorithms

that directly optimize PPA metrics.
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CHAPTER 4

BRIDGING OPEN-SOURCE AND COMMERCIAL PLACERS USING

GENERATIVE ADVERSARIAL NETWORKS AND TRANSFER LEARNING

4.1 Background and Motivation

DREAMPlace [lin2019dreamplace] is a renowned open-source placer that provides GPU-

acceleratable infrastructure for placements of Very-Large-Scale-Integration (VLSI) cir-

cuits. It achieves orders of magnitude speed up over RePlace [54], the state-of-the art

academic placer, by converting its placement objectives into costumed CUDA kernels us-

ing a deep learning toolkit PyTorch [72]. However, as RePlace, vanilla DREAMPlace only

has a limited objective focus on wirelength and density. Particularly, it cannot consume

many other essential constraints (e.g., timing, power) as commercial Physical Design (PD)

tools, leading to inferior placement quality. This motivates us to ask the following question:

Is there any way to advance DREAMPlace towards commercial-quality without knowing

the secret sauces of those black-boxed commercial engines? In this chapter, we prove that

the answer is yes. Particularly, via generative adversarial learning.

In this work, we present the first-ever learning-driven placement optimization frame-

work named DREAM-GAN that directly improves DREAMPlace using generative ad-

versarial learning. The key idea is that although we do not know the underlying algo-

rithms or constraints used by the tools, we can “quantify placement similarity” between

DREAMPlace-generated placements and tool-optimized placements using generative learn-

ing, and by optimizing the differentiable similarity scores computed from a discriminator,

we can narrow the distribution gap between DREAMPlace and commercial tools. This

is a simple, yet highly effective approach, which is greatly motivated by the success of

Generative Adversarial Networks (GANs) [21] in real-world applications, where signals in
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Figure 4.1: High-level overview of DREAM-GAN that performs placement optimization using gen-
erative adversarial learning. Note that DREAM-GAN facilitates transfer learning between different
designs.

(original DREAMPlace) ( ours: DREAM-GAN )
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Figure 4.2: Difference in objectives between DREAMPlace [lin2019dreamplace] and DREAM-
GAN at each placement iteration. The cell locations generated from DREAMPlace are encouraged
to follow the ones in commercial database.

different domains (e.g., texts and images) can be converted to each other by parameterizing

target distributions using differentiable frameworks.

Figure 4.1 presents a high-level overview of DREAM-GAN, where the vanilla DREAM-

Place is considered as a “generator” whose goal is to generate the placements that follow

similar distributions as the tool-optimized ones in the databases (which are optimized for

different Power, Performance, and Area (PPA) objectives). To achieve this, a discriminator,

built upon Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN),

is developed to quantify the placement similarity between two types of placement (i.e.,

DREAMPlace-generated and tool-optimized). The goal of the discriminator is to make

correct judgements by telling whether its input is coming from commercial databases or
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DREAMPlace, whereas one of the objectives of DREAMPlace (in our DREAM-GAN set-

tings), is to “fool” the discriminator by generating similar (or realistic) placements as the

ones in the database.

Figure 4.2 shows the key objective difference between the proposed framework DREAM-

GAN and the original DREAMPlace. Aside from optimizing the wirelength (WL) and

density objectives as in the vanilla DREAMPlace, in each placement iteration, we further

compute a differentiable similarity loss using GNN-based and CNN-based discriminators.

Note that the in our generative settings, the input design of DREAMPlace and the designs

in the commercial database are not necessarily the same. That is, DREAM-GAN facili-

tates transfer learning to perform placement optimization on unseen netlists, which is the

greatest strength of the proposed method.

The goal of this work is to demonstrate that the placement quality (or style) of a placer

can be transferred onto another through generative adversarial learning without knowing

its algorithms. Particularly, we show that, DREAMPlace, as a differentiable placement

engine, can be elegantly used as a generator that generates tool-alike placements of the

underlying gate-level input netlists.

4.2 Related Work

Analytical placers [54, 73] have brought tremendous success to the EDA industry in the

last decade. However, modern VLSI designs easily consist of millions of instances that are

required to be placed on constrained layouts. Existing CPU-intensive analytical placers are

struggling to meet this demand in a reasonable amount of runtime.

To overcome the runtime barrier, DREAMPlace [lin2019dreamplace] and Xplace [74]

leveraged GPUs to significantly accelerate the runtime of those traditional analytical plac-

ers without degrading the Quality-of-Results (QoR), which is benefited from the recent

advancement in open-source deep learning infrastructures such as Pytorch [72]. Nonethe-

less, as aforementioned, the placement solutions these open-source placers achieved are
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Figure 4.3: Illustration of integrating open-source placers into an industrial design flow using Syn-
opsys ICC2, where the global placement stage is replaced with proceeding stages remain the same.

still not comparable to commercial tools’.

Beyond runtime improvement, the development of ML Theory and its applications have

enabled placement quality optimization using learning-driven frameworks. The authors

of [8] proposed an unsupervised graph clustering framework equipped with PPA-inspired

ML loss functions to improve commercial tool placement quality by generating cell cluster-

ing constraints as placement guidance. For macro placement, the authors of [9] presented a

seminal work of using Reinforcement Learning (RL) to determine macro locations without

human in the loop, achieving superhuman results.

In this work, we aim to combine the best of both worlds: the runtime improvements

from GPU-based placers, and the QoR improvements from learning-driven techniques.

Particularly, we extend the original DREAMPlace framework using generative adversar-

ial learning to optimize its solution quality. The use of GAN-based approaches in th

realm of PD is still in its early stages, which is mainly because it requires creative prob-

lem formulation and thinking. Previous work [75] has demonstrated that GAN can be

used for commercial tool clock tree parameters prediction and optimization, where pa-

67



DREAMPlace commercial tool

(same global density target at 0.85)

Figure 4.4: Comparison of cell density maps between DREAMPlace and Synopsys ICC2 under the
same global placement density target. It is observed that the commercial tool has extra intelligence
on where to locally aggregate or spread out cells in order to optimize crucial PPA metrics while
satisfying the global density constraints.

rameters are considered as signals to be optimized, and a generator is developed to op-

timize parameters from input random noise. Motivated by [75], in this chapter, we pro-

posed DREAM-GAN, which transfers the placement quality of commercial placers onto

DREAMPlace [lin2019dreamplace] effortlessly. We demonstrate that fast and optimized

VLSI placement can indeed be achieved.

Finally, in this chapter, we not only show that DREAM-GAN immediately improves

the placement quality of DREAMPlace after global placement, but also demonstrate that

the improvements last firmly to the post-route stage. Figure 4.3 shows the integration

of the proposed framework DREAM-GAN with an industry-leading commercial PD tool,

Synopsys ICC2. Experimental results demonstrate that DREAM-GAN improves vanilla

DREAMPlace by up to 8.3% in wirelength, 7.4% in power on a commercial CPU design

at the post-route stage.

4.3 Overview and Motivation

It is widely acknowledged that generative adversarial learning is a promising paradigm that

effectively captures complicated distributions using generative and discriminative models

which have “opposite” objectives. Generally speaking, the goal of the generator is to gener-
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ate target distribution alike data from random (or non-meaningful) distributions, while the

goal of the discriminator is to distinguish the source of its inputs (i.e., from the generator

or from the target distribution). Note that both generator and discriminator can be realized

by any differentiable system (i.e., not necessarily neural networks). As aforementioned,

in this chapter we consider DREAMPlace, a differentiable placement system, as a genera-

tor whose goal is to generate placements that follow similar distributions as the ones in a

tool-optimized database.

Our discriminator leverages CNNs and GNNs to determine the origin of its input source

that alternates in each iteration of GAN training, where CNNs are responsible to encode cell

bin-density maps, and GNNs are responsible to encode netlist connectivity. The rationale

behind using GNNs for netlist encoding is that netlists are essentially hypergraphs whose

node connectivity is critical to placers. The motivation behind using CNNs for bin-density

map encoding is shown in Figure 4.4. We observe that under the same global density

target, the commercial tool has extra intelligence on locally aggregating or loosening cells

in order to improve design PPA metrics globally, where DREAMPlace naively strives to

make every local bin to have the same local density target as the global density target. This

density variation is proven to be critical to the success of placement optimization in [8].

The observation shown in Figure 4.4 strongly motivates us to leverage bin-density map

as one the indicators of placement similarity, and CNNs thus become the second-to-none

choice to perform encoding on it as they are well-known for grid signals (e.g., images)

classification.

Finally, it should be mentioned that many placement metrics can be used for evaluations

of placement similarity. In this work, we empirically find out that by using bin-density

maps and GNN netlist embeddings as indicators, DREAM-GAN can already effectively

advance DREAMPlace towards commercial quality. Furthermore, the beauty behind our

approach is that our indicators can provide similarity scores for netlists in different sizes.

Hence, the design that DREAMPlace is optimizing does not have be inside the database.
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Figure 4.5: Illustration of GNN netlist transformation and graph pooling. First, following from [8],
we perform timing-aware netlist transformation by only taking timing arcs as GNN message pass-
ing edges. Then, we perform attention graph pooling to construct the final graph-level vector that
characterizes the input placement. Note that the poolings are differentiable (i.e, learnable), meaning
that the clustering results (e.g., {a, c, e} is now a cluster) will change across training iterations. The
obtained graph-level vector is fed to downstream networks to quantify placement similarity.

DREAM-GAN is able to optimize unseen designs.

4.3.1 Database Construction

A high-quality placer is helpful to demonstrate the proposed placement optimization tech-

nique using generative adversarial learning. In this chapter, we take Synopsys ICC2, an

industry-leading commercial tool, as our reference tool for database construction. Partic-

ularly, we sweep around essential placement parameters offered by ICC2 as shown in Ta-

ble 4.1. The combinations of these parameters form a high-dimensional space, leading to

a variety of placements that have distinct PPA focus, including performance-driven place-

ments, low-power placements, routability-driven placements, etc. Nonetheless, we want

to emphasize that our framework is not limited to any objective focus. DREAM-GAN

can be equipped with any database to transfer the placement quality (or style) within onto

DREAMPlace. More importantly, the designs in the database and the design that DREAM-

Place is optimizing do not have to be the same. DREAM-GAN facilitates transfer learning

for placement optimization.
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Table 4.1: Parameters we leverage for database generation.

ICC2 parameters type (values) description
set qor strategy enum (3) set optimization priority

low power effort enum (4) effort in low power op-
timization

congestion effort enum (3) effort in congestion op-
timization

is timing driven bool (2) is timing-driven place-
ment

is power driven bool (2) is power-driven place-
ment

buffer aware bool (2) buffering of high-fanout
nets

coarse density float ([0.7,0.9]) density of global place-
ment

target route density float ([0.7,0.9]) density of early global
routing

4.4 DREAM-GAN Algorithms

The key idea of DREAM-GAN is to transfer the placement quality (or more precisely,

style) of one placer onto another1 through generative adversarial learning. To achieve this, a

discriminator built upon GNNs and CNNs is developed to quantify similarity of placements

between different placers. Since the similarity scores have to be differentiable to update the

underlying cell locations (so as to improve DREAMPlace), a differentiable graph pooling

methodology is adopted, and a differentiable bin-density map transformation technique

named Soft-Bin is proposed.

4.4.1 GNN-based Discriminator

Graph representation learning conducted by GNNs is an effective technique to encode

netlist connectivity and node attributes into a meaningful representations. In this chap-

ter, we leverage GNNs to perform graph-level encoding on the netlist graph G = (V,E)

of a given placement, where (x, y) locations of each cell are taken as node attributes. The

1In this chapter, we show the optimization results on DREAMPlace, but DREAM-GAN can work on any
differentiable placement infrastructure.
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goal of our GNN module is to obtain a graph-level vector g that is representative of the un-

derlying netlist G. This graph-level vector is further taken as the input of the downstream

network to quantify placement similarity.

Figure 4.5 illustrates the graph learning process of the proposed DREAM-GAN frame-

work. Starting from an input placement, we first perform timing-aware netlist transfor-

mation as in [8]. The transformation only preserves timing arcs as GNN message passing

edges. Then, following from GraphSAGE [37], an inductive based message passing pro-

cess is leveraged to transform the initial features of each node into better representations

through neighborhood aggregation as:

hk−1
Neigh(v) = reduce mean

(
{Wagg

k hk−1
u , ∀u ∈ Neigh(v)}

)
,

hk
v = σ

(
Wproj

k · concat
[
hk−1
v , hk−1

Neigh(v)

])
,

(4.1)

where k denotes the transformation level, σ denotes the sigmoid function, Neigh(v) de-

notes the neighbors of node v, W agg
k and W proj

k denote the aggregation and projection

matrices at the k-th layer of the GNN model. Note that Equation 9.1 is repeated for every

cell in the design. In the implementation, our GNN has three layers (K = 3), and each of

them has a 32 hidden dimensions. Hence, the final node embeddings {h3
v, ∀v ∈ V } has 32

dimensions.

At each level k of the node representation learning, a differentiable graph attention

pooling mechanism [76] is applied to coarsen the graph via a soft clustering assignment

Ck, where nodes belonging to the same cluster will be merged into a super-node through

mean pooling, which can be derived as:

Hk+1 = CkHk, Ak+1 = Ak
TCkAk, (4.2)

where Hk = {hk
v ,∀v ∈ V }, Ak denotes the adjacency matrix at level k, and Ck ∈

R|V |k+1x|V |k denotes the mapping of nodes between level k and level k + 1, where a node
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v may be merged into a super-node or stay as itself. At the end of the entire graph rep-

resentation learning, a mean pooling is applied across the remaining nodes to obtain the

final graph-level vector g, which is taken as one of the indicators of placement similarity.

A graphical illustration of the entire graph learning process is shown in Figure 4.5.

Finally, we want to emphasize that both DREAMPlace-generated placements and tool-

optimized placements go through the same graph learning process as shown in Figure 4.5.

Let Dgnn denote the discriminator network parameters that are related to graph representa-

tion learning, the graph representation learning objective Lgnn can be derived using cross-

entropy as:

Lgnn =E(G,x,y)∼database [log(Dgnn(G, x, y))]

+ E(G,x,y)∼DREAM [log(1−Dgnn(G, x, y))] .

(4.3)

Equation 5.8 reflects the adversarial nature in our DREAM-GAN framework that depend-

ing on the sources of input, we train the discriminator to make corresponding correct

judgements. With enough training iterations, our GNN module is able to extract the in-

formation that tells the key difference between DREAMPlace-generated placement and the

tool-optimized ones.

4.4.2 Soft-Bin: Differentiable 2D Bin-Density Map Transformation

So far, we have introduced how DREAM-GAN encodes netlist connectivity using GNNs by

leveraging a differentiable attention pooling mechanism with cell locations as initial node

features. Now, we present the details of how DREAM-GAN leverages bin-density maps to

characterize and differentiate different placements with CNNs, where the key motivation

behind is illustrated in Figure 4.4.

It should first be mentioned that most common bin-density calculation method using

the simple formula of dividing the total cell area in a bin by the total bin area is not differ-

entiable, as the act of assigning a cell to a particular bin is deterministic. Although such

computation is “exact” and accurate, a probabilistic calculation method is needed in order
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Algorithm 6 Soft-Bin Transformation.
Input: G = (V,E): input netlist, {Xv, Yv ∀v ∈ V }: cell locations of the input placement, W :

with of floorplan, H: height of floorplan, b width: bin width, b height: bin height.
Output: M ∈ R|V |x|V | : differentiable 2D bin-density map.

1: M [∗][∗]← 0 ▷ initialize M to 0
2: bin area = b width ∗ b height
3: num w ← floor( W

b width)
4: num h← floor( H

b height)
5: for i = 0; i < num w; ++i do
6: for j = 0; j < num h; ++j do
7: V ′ ← filter{i ∗ num w ≤ Xv < (i+ 1) ∗ num w∀v ∈ V }
8: V ′ ← filter{j ∗ num h ≤ Yv < (j + 1) ∗ num h∀v ∈ V ′}
9: for v ∈ V ′ do

10: b←M [i][j]
11: neigh bins← get adjacent or diagonal bins of b
12: dist vec← [] ▷ distance vector of cell v to each bin
13: dist vec.push back(∥bx − vx, by − vy∥2)
14: for nb ∈ neigh bins do
15: dist vec.push back(∥nbx − vx, nby − vy∥2)
16: prob vec← softmax

(
dist vec−1

)
17: area vec← areav ∗ prob vec ▷ expected values
18: update M by area vec ▷ add area of each bin to M
19: M ← M

bin area ▷ convert expected area to expected density

to compute gradients based on cell (x, y) locations so as to improve the underlying place-

ment through gradient descent. To achieve this, we develop a differentiable bin-density

transformation technique named Soft-Bin as shown in Algorithm Algorithm 6.

The key idea behind Algorithm Algorithm 6 is that instead of deterministically assign-

ing each cell to an exact bin purely based on its location, we can probabilistically distribute

the area of a cell onto its neighboring bins, which can be achieved by any activation function

that maps real values into probabilities. In this chapter, we use softmax for such compu-

tation. The beauty of our probabilistic bin-density calculation approach is that it enables

the underlying cell locations to be updated along with any operation (i.e., maximization or

minimization) of the computed density. That is, with the proposed Soft-Bin technique, cell

locations can be directly updated using gradient descent by optimizing the similarity loss

computed from the CNN-based discriminator.

The proposed Soft-Bin algorithm works as follows. In Lines 1–4, we initialize the bin
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Figure 4.6: Generative adversarial learning conducted by CNNs using the proposed Soft-Bin density
map transformation technique. The goal of DREAMPlace is to generate the placements that have
similar bin-density maps as the ones in the commercial database.

density map M based on the specifications from inputs. The cells corresponding to each

bin can be obtained using Lines 7–8. Now, as shown in Lines 10–15, for each cell that

deterministically belongs to a target bin b, we first identify its neighboring bins (adjacent

or diagonal) neigh bins, and then compute a distance vector dist vec that denotes the Eu-

clidean distance between the target cell to each bin (including b and neigh bins). Finally,

we transform the distance vector dist vec into a probability vector prob vec using the soft-

max function as shown in Line 16, and the “expected” area contribution can be calculated

using Line 17. After updating the bin-density map M by the expected area contribution of

each cell in the design, we obtain the final density of each bin using Line 19.

4.4.3 CNN-Based Discriminator

With the proposed Soft-Bin technique for differentiable bin-density map transformation,

we now describe the adversarial learning conducted by the CNN-based discriminator as

shown in Figure 4.6. The rationale behind is to consider bin-density maps as single-channel

grid signals where CNN filters can perform 2D convolutions upon. Note that the pro-

posed Soft-Bin technique is only utilized transform DREAMPlace-generated placements

into (soft) bin-density maps. The “exact” bin-density map computation as aforementioned

is adopted for the transformation of tool-generated placements as they are not required to
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Figure 4.7: Detailed architecture of DREAM-GAN that leverages CNN-based and GNN-based dis-
criminators to quantify placement similarity between different placement sources.

be differentiable. Finally, let Dcnn be the network parameters related to bin-density map

differentiation, the objective of the CNN-based discriminator Lcnn can be derived as:

Lcnn =E(G,x,y)∼database [log(Dcnn (G, exact map(x, y)))]

+ E(G,x,y)∼DREAM [log(1−Dcnn (G,Soft-Bin(x, y)))] ,

(4.4)

where the exact map denotes the exact bin-density calculation, which is responsible for

placements from commercial databases.

4.4.4 Putting All Together: End-to-End DREAM-GAN Training

Figure 4.7 shows the detailed architecture of the CNN-based and the GNN-based discrim-

inators. Note that placements originating from DREAMPlace do not have to be the same

as the ones from the commercial database, since DREAM-GAN does not explicitly take

design information such as number of cells or number of nets as features. All the com-
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putations involved are “size-independent”, meaning that netlists in different sizes will be

encoded to vectors in the same dimensions, which is true for both CNN-based and GNN-

based discriminator networks. Finally, at each placement iteration, the similarity objective

Lsim and the overall objective L of our DREAM-GAN can be formulated as:

L = Lvanilla + Lsim, Lsim = λ1Lgnn + λ2Lcnn (4.5)

where Lvanilla denotes the wirelength and density objectives computed from the vanilla

DREAMPlace, {λ} denote the hyper-parameters for loss weighting. In the implementation,

we set λ1 = 1 and λ2 = 10. These values are decided through empirical experiments, where

we observe that the CNN-based discriminator plays a more important role in the success of

DREAM-GAN. Hence, we weight its objective by a higher number. Finally, the training

methodology works as follows. In the first 200 iterations, we only update the cell locations

through Lvanilla as the placement at this phase is far from valid. Then, for every iteration

after 150th, we optimize Lsim three times more than Lvanilla to advance the underlying

placement towards commercial quality.

4.5 Experimental Results

In this chapter, we validate DREAM-GAN with 3 commercial CPU benchmarks and 3

OpenCore benchmarks using the TSMC 28nm technology node. The commercial database

is generated by randomly sampling the parameters listed in Table 4.1 using Synopsys ICC2,

where per benchmark, 100 placements are generated with different PPA objectives. In the

experiments, we not only demonstrate that DREAM-GAN significantly improves vanilla

DREAMPlace in single-design optimization, but also show that it achieves superior opti-

mization results on unseen designs that are not in the database.
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DREAM-GAN commercial tool

placement after optimization

Figure 4.8: Density map comparison between the proposed DREAM-GAN and Synopsys ICC2 on
the CPU-2 benchmark.

4.5.1 Single-Design Optimization Results

In this experiment, we perform single-design optimization by using the same design be-

tween DREAMPlace (the generator) and the target database. Our purpose is to demon-

strate the effectiveness of using generative adversarial learning for placement optimiza-

tion. Table 4.2 demonstrates the detailed optimization results, where we clearly observe

that DREAM-GAN consistently outperforms vanilla DREAMPlace at each major PD stage

across all 4 industrial benchmarks. Although the same design is used in the database dur-

ing training, we still believe the achieved results are highly remarkable as DREAM-GAN

is NOT using any “memorization” technique such as explicit net-matching, cell-alignment

etc. The superior results are purely achieved by optimizing placement similarity scores

via generative adversarial learning. Figure 4.8 further shows the bin-density map compar-

ison between DREAM-GAN and ICC2, where we observe that although the underlying

placements are visually different, the achieved bin-density maps are indeed similar, which

demonstrates the effectiveness of the CNN-based discriminator.

4.5.2 Transfer Learning on Unseen Designs

In this experiment, we demonstrate that DREAM-GAN can indeed perform placement opti-

mization on unseen designs. Precisely, we are not using the same design between DREAM-
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Place (the generator) and the target database as in the previous experiment. Instead, we

perform the placement optimization on an unseen design by using 5 other different designs

to build database (in this work, we use 6 benchmarks in total). The optimization results are

shown in Table 4.3, where we observe that with transfer learning on distinct designs (right-

most column) we can further improve the PPA metrics compared with using single-design

for the optimization (middle column). Below, we provide our thoughts on the implications

of the results achieved.

4.5.3 Discussion of Optimization Results

We believe the tremendous success of the proposed framework, DREAM-GAN, has three

major implications: (1) “Placement style” can be transferred from one placer to another.

This argument is supported by Table 4.2 that by using single-design optimization, DREAM-

GAN can significantly improve vanilla DREAMPlace on industrial benchmarks in consis-

tent. (2) “Placement style” is more related to a placer itself than the designs being placed.

This argument is validated by Table 4.3, where we observe that placement quality can not

only be transferred in the same designs, but also in completely different ones. (3) Without

knowing the underlying algorithms or constraints, the “placement style” of a black-boxed

placer can still be parameterized through generative adversarial learning.

Furthermore, in the experiments, we observe that DREAM-GAN not only improves

the wirelength significantly, but also introduces notable improvements in power. We think

this is because by following the placement distribution of ICC2 in terms of cell locations,

DREAM-GAN will introduce less buffers and logic fixing than the vanilla DREAMPlace

during many optimization steps throughout the flow, which effectively results in less power

consumption. Finally, we would like to emphasize that the runtime difference between

the vanilla DREAMPlace and the proposed DREAM-GAN is no more than 10 minutes

across all benchmarks, which is practically negligible compared with the global placement

runtime of ICC2.
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4.6 Conclusion

In this chapter, we have presented DREAM-GAN which is the first-ever learning-driven

framework that improves an open-source placer towards commercial-quality using genera-

tive adversarial learning. In the experiments, we demonstrate that DREAM-GAN not only

significantly advances vanilla DREAMPlace in single-design optimization, but also facili-

tates transfer learning to perform optimization on unseen designs. The main assumption of

this work is that “placement style (quality)” is born with a placer itself which can be pa-

rameterized and transferred to another placer through generative adversarial learning. This

assumption is proven empirically in this chapter. We believe this work shall present new

routes in advancing placement.
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CHAPTER 5

GAN-CTS: A GENERATIVE ADVERSARIAL FRAMEWORK FOR CLOCK

TREE PREDICTION AND OPTIMIZATION

5.1 Background and Motivation

Clock tree synthesis (CTS) is a critical stage of physical design, since clock networks con-

stitute a high percentage of the total power in the final full-chip design. An optimized clock

tree helps to avoid serious design issues such as excessive power consumption, high rout-

ing congestion, and elongated timing closure [77]. However, due to the high complexity

and run time of the modern electronic design automation (EDA) tools, designers are strug-

gling to synthesize high-quality clock trees that optimize key desired metrics such as clock

power, skew, clock wirelength, etc. To find the input parameters that achieve the design

targets, designers have to search in a wide range of candidate parameters, which is usually

fulfilled in a manual and highly time-consuming calibration fashion.

To automate this task and alleviate the burden for designers, several machine learning

(ML) techniques have been proposed to predict the clock network metrics [75]. Previous

work [78] utilizes data mining tools to estimate the achieved skew and insertion delay. The

authors of [79] employ statistical learning and meta-modeling methods to predict more

essential metrics such as clock power and clock wirelength. The authors of [80] further

consider the effect of non-uniform sinks and different placement aspect ratios. Another

work [81] utilizes artificial neural networks (ANNs) to predict the transient clock power

consumption based on the estimation of clock tree components. However, these previous

works merely focus on enhancing the prediction of CTS metrics rather than the optimiza-

tion of the outcomes. Therefore, their methods are not sufficient to achieve high-quality

clock trees without the aid of other heuristic algorithms. To optimize CTS metrics, a recent
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work [82] develops an ML-powered clock tree construction algorithm which generates op-

timized clock trees based on a pre-trained CTS buffer prediction framework that estimates

buffer usage. The proposed algorithm is proven to be generalizable on unseen designs.

The goal of this work is to construct a general and practical CTS modeling framework,

which has the ability to predict CTS outcomes in high precision and perform CTS opti-

mization by generating the CTS input parameter sets that lead to optimized clock trees

for general designs in an unsupervised manner. Specifically, we take an industry-leading

commercial tool, Cadence Innovus, as reference and demonstrates the feasibility of the

proposed framework upon it. The proposed CTS prediction and optimization framework

named GAN-CTS achieves the following aspects:

• Generalizability: We aim to develop a generalizable framework that achieves high-

quality clock trees on general designs. We achieve this by leveraging generative

adversarial learning which has the capability to inference optimized CTS input pa-

rameter sets on unseen designs.

• Interpretability: Instead of considering our framework as a black box, we lever-

age a gradient-based attribution method [83] to interpret the prediction made by the

proposed framework.

• Optimality: Despite that the optimality of a clock tree is hard to demonstrate, in

this work, we compare the optimization results achieved by the proposed framework

to the ones achieved by the default settings of Cadence Innovus, and show that the

proposed framework reaches never-seen, high-quality CTS optimization results.

5.2 Designing Experiments

5.2.1 Database Analysis

We formally define the clock tree synthesis (CTS) prediction and optimization problems as

follows:
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Figure 5.1: Total power (mW) and wirelength (mm) distributions among 115.5k full-chip designs
of all 11 benchmarks in our database.

Table 5.1: Our benchmarks and their attributes in TSMC 28nm.

Design Name # Nets # FFs # Cells Usage
AES-128 90,905 10,688 113,168

training

B19 34,399 3,420 33,784
DES PERF 48,523 8,802 48,289

LDPC 42,018 2,048 39,377
NETCARD 317,974 87,317 316,137

NOVA 138,171 29,122 136,537
TATE 185,379 31,409 184,601
ECG 85,058 14,018 84,127

testing
JPEG 231,934 37,642 219,064

LEON3MP 341,263 108,724 341,000
VGA LCD 56,279 17,054 56,194

Problem 1 (CTS Outcomes Prediction). Given a pre-CTS placement P and a CTS input

parameters set X , predict the post-CTS outcomes Y without performing any actual CTS

process.

Problem 2 (CTS Outcomes Optimization). Given a pre-CTS placement P , generate a

CTS input parameters set X̂ that leads to optimized CTS outcomes Ŷ .

In this work, we tackle Problem 1 and Problem 2 through machine learning approaches.

Before elaborating the modeling process, we first describe and analyze our database.

5.2.2 Database Construction

To build the database, we utilize Synopsys Design Compiler 2015 to synthesize the netlists

and leverage Cadence Innovus Implementation System v18.1 to perform the placement and
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Table 5.2: Modeling parameters we use and their values.

type parameters values or ranges

placement
aspect ratio {0.5, 0.75, · · · , 1.5}
utilization {0.4, 0.45, · · · , 0.7}

CTS

max skew (ns) [0.01, 0.2]
max fanout [50, 250]

max cap trunk (pF) [0.05, 0.3]
max cap leaf (pF) [0.05, 0.3]

max slew trunk (ns) [0.03, 0.3]
max slew leaf (ns) [0.03, 0.3]
max latency (ns) [0, 1]

max earlyRouting layer {2, 3, 4, 5, 6}
min earlyRouting layer {1, 2, 3, 4, 5}

max buffer density [0.3, 0.8]

CTS processes. The database is constructed based on TSMC-28nm technology node. In

this work, we leverage 5 designs which are B19, LEON3MP, NETCARD, DES PERF,

VGA LCD from the ISPD 2012 benchmark [43], and 6 other designs, including AES-

128, LDPC, NOVA, ECG, TATE, JPEG, from Opencores.org to conduct the experiments.

Table 9.2 shows the attributes of all 11 designs after being synthesized at 1125MHZ.

Table 9.1 presents the modeling parameters and their ranges of values that we utilize.

The ranges of the CTS related parameters are determined by reasonably widening the com-

mercial tool’s auto-setting values based on domain expertise. The goal is to generate a

database with high variety in terms of clock metrics so that the proposed framework can

better differentiate good designs from the bad ones, and comprehend which combinations

of the parameters can lead to optimized clock trees. Among the modeling features, aspect

ratio and utilization rate represent physical structures. The min and max early routing lay-

ers (min ≤ max) indicate the metal layers utilized in the early global routing (EGR) stage,

which is a procedure to reserve space for future detailed signal routing during the CTS

stage (EGR is contained in CTS). Note that although “skew” is taken as an input target as

shown in the table, commercial tools will not necessarily meet the skew target during CTS

(skew is often further improved in future design steps), which makes the skew prediction

(one of the CTS outcomes we focus in this work) problem non-trivial.
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Table 5.3: Clock trees with different input slew constraints for Nova benchmark.

tree A tree B tree C
max trunk slew (ns) 0.1 0.1 0.05
max leaf slew (ns) 0.1 0.05 0.05
# inserted buffers 2,556 600 1,124
total power (mW) 164.7 154.5 158.8
clock power (mW) 27.9 22.6 24.9

clock wirelength (mm) 118.7 97.3 101.6
maximum skew (ns) 0.06 0.1 0.07

The combinations of the two placement related parameters give us 35 different place-

ments per netlist. By running CTS with randomly sampled input parameters, we generate

300 clock trees per placement. Therefore, in total, we have 115.5k datum (clock tree in-

stances) across 11 different netlists in our database. To substantiate the generality of our

framework, in the experiments, we only utilize 7 netlists during the training process and

perform the validations on the remained 4 unseen netlists as indicated in Table 9.2.

Figure 5.1 shows the total power and wirelength distributions of all 115.5k clock trees in

the database. It demonstrates the variety of our database as well as the difficulty to model

the CTS process across different benchmarks. Table 5.3 demonstrates the complicated

impact of different input slew constraints on essential CTS metrics. We observe that if a

single tighter slew constraint is merely given on leaf cells (from design A to design B), the

total number of inserted buffers drastically decreases. However, if tighter slew constraints

are given on both trunk cells and leaf cells (from design A to design C), more buffers are

inserted compared with the previous approach. In summary, the above analyses show that

the behavior of the commercial CTS engine is very sophisticated and counter-intuitive,

which is mainly due to the complicated high-dimensional inter-correlation among different

CTS input parameters [79]. In this paper, we aim to employ machine learning methods to

demystify the complicated CTS process.

In this paper, we consider the clock tree auto-generated by the commercial tool as a

baseline to evaluate the trees generated by our framework. As mentioned in section 5.3,

we define a CTS run as successful if two out of the three achieved target metrics, which
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are clock power, clock wirelength, and clock skew, are better than the ones of the auto-

generated clock tree. In section 8.8, we demonstrate the CTS metrics and layout compar-

isons between the optimized clock trees generated by our framework and the one auto-

generated by the commercial tool.

5.3 Overview of GAN-CTS

It has been widely acknowledged that GAN is a promising model that learns the compli-

cated real-world data through a generative approach [84]. A vanilla GAN structure contains

a generator and a discriminator which are both neural networks. The goal of the generator

is to generate meaningful data from a given distribution such as random noise, while the

objective of the discriminator is to distinguish the generated samples from the real samples

that are targeted to be mimicked. Predicated on the vanilla GAN structure, in conditional

GAN, an external conditional input is further introduced to both generator and discrimina-

tor. This conditional input enables the model to direct the data generation process based

on different conditions, which benefits us to generate suitable CTS input parameters sets

with respect to different benchmarks and even the ones that are not utilized in the training

process.

A high-level view of our framework named GAN-CTS is shown in Figure 8.1. The

framework is comprised of three sequential training (learning) stages. The first training

stage is to extract key design features from placement images which represent flip flop

distributions, clock net distributions, and trial routing results. Note that trial routing is a

process performed in the end of the placement stage in the modern physical design flow. It

provides a quick estimation of the routing congestion based on the given placement. To ex-

tract features from images, we adopt transfer learning by using a pre-trained convolutional

neural network (CNN) named ResNet-50 [85], which is a 50-layer residual network that

has skip connections. The goal of transfer learning is to leverage the trained convolutional

filters to distill the hidden information in the placement layouts.
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Figure 5.2: A high-level view of this work and the three objectives we have achieved. The first
objective is to predict the CTS outcomes in high precision. The second objective is to recommend
designers good CTS input settings. The third objective is to determine whether the input settings
outperform commercial tool’s auto-setting.

In the second training stage, we leverage the extracted features from the previous fea-

ture extraction stage as well as the clock tree instances in the database to train the regres-

sion model for CTS outcomes predictions. In this work, we select three essential CTS

metrics that well represent the quality of a clock tree as the prediction and optimization

targets. These three selected metrics are clock power, clock wirelength, and the achieved

maximum skew. We compare two different regression approaches which are the meta-

modeling technique adopted by previous work [80] and the proposed multi-task learning

technique. We demonstrate that the proposed technique reaches better prediction accuracy

with a much shorter training time. Furthermore, as mentioned in section 9.1, we do not

consider our model as a black box as previous works. To interpret the predictions made

by the regression model, we leverage a gradient-based attribution method [86] to quanti-

tatively determine the importance of each CTS input parameter subject to different target

outcomes.

The last training stage of our framework involves generative adversarial learning, where

we leverage a conditional GAN to perform the CTS optimization and classification tasks.

The regression model trained earlier now acts as a supervisor to guide the generator to

generate the CTS input parameters sets that lead to optimized clock trees. Note that the ex-

89



tracted placement features from transfer learning are taken as the conditional input, where

the original inputs of the vanilla GAN model are termed as the regular inputs in this work.

The advantage of having the conditional input is to control the modes of the generated data,

where we consider different benchmarks as different modes. Therefore, with the condi-

tional approach, our framework has the ability to optimize unseen benchmarks that are not

utilized during the training process.

Finally, a highlight of our framework is that a multi-task learning is conducted by the

discriminator. In addition to the conventional task of distinguishing between the generated

and the real samples, we introduce a new task of classifying successful and failed CTS runs.

In this paper, we strictly define a CTS run as successful if two out of the three achieved

target CTS metrics mentioned earlier are better than the ones achieved automatically by the

commercial CTS engine.

In the end of the training process, we acquire four models as follows.

• A placement feature extractor E which precisely characterizes different designs from

placement images.

• A regression model R which performs high precision predictions of target CTS out-

comes.

• A generator G which generates CTS input parameters sets that lead to optimized

clock trees.

• A discriminator D which predicts the success and failure of CTS runs.

5.4 GAN-CTS Algorithms

In this section, we first describe the process of feature extraction. Then, we present our

methodologies to solve the CTS outcomes prediction and optimization problems (Prob-

lem 1 and Problem 2). In the meantime, we illustrate the detailed structures of the models.

In the end, we summarize the overall training process in a complete algorithm.
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Figure 5.3: Our image feature extraction flow. The extracted features are colored in red. Note
that each raw image vector extracted from ResNet-50 has 1024 dimensions. The concatenate layer
thereby forms a vector in 3072 dimensions. Finally, with an auxiliary input that denotes the number
of flip flops, the input of the self-devised FC layers are in 3073 dimensions.

Figure 5.4: Visualization of trial routing image in 12 different convolutional filters of ResNet-
50 [85], where the usage of metal layers is well captured across different filters.

5.4.1 Placement Image Feature Extraction

One of the innovations of this work is that we directly utilize placement images as inputs to

predict and optimize the target CTS outcomes. The key rationale is that placement images

contain important information of designs. Previous work [59] has demonstrated the effi-

ciency of using placement images to predict routability and design rule violations (DRVs).

In this work, we leverage the extracted features from placement images to solve CTS out-

comes prediction and optimization problems. Our approach is built upon convolutional

neural network (CNN) and transfer learning. As shown in Figure 5.3 we devise our own

fully connected (FC) layers upon the pre-trained model named ResNet-50 [85], which is a
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Figure 5.5: t-SNE visualizations of the original placement image vectors and the extracted feature
vectors from our transfer learning flow, where the extracted features successfully characterize dif-
ferent designs.

CNN-based model pre-trained on the well-known ImageNet [87] dataset with millions of

images.

Figure 5.4 shows the visualization of a trial routing image passing through twelve se-

lected convolutional filters inside the pre-trained ResNet-50 model. In the figure, we ob-

serve that important information such as usage of metal layers is well captured. Although

ResNet-50 is powerful on many image datasets, it is not devised specifically for the phys-

ical design problems. Therefore, to extract key design features from the high dimensional

vectors, we devise a feature extraction flow with transfer learning as shown in Figure 5.3,

where four self-designed FC layers are appended on top of the ResNet-50 model to predict

the commercial tool’s estimation of total power right after the placement stage. As shown

in the figure, since placement images cannot precisely reflect the actual size of a design,

we introduce an auxiliary input with one dimension which represents the total number of

flip flops to the first FC layer by concatenating it with the direct extracted features of the

ResNet-50, In the training process, we fix the parameters of the pre-trained ResNet-50

model and only update the parameters of the self-devised FC layers. When the training is

completed, each pre-CTS placement is encoded into a vector with 512 dimensions, which

is the output of the first FC layer (denoted in red in the figure).
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Our transfer learning approach accepts any image sizes, since we only utilize the pre-

trained convolutional filters rather than the FC layers of the original ResNet-50 model. In

the implementation, all the images in the database are in a dimension of 700 x 717 x 3. The

achieved mean absolute percentage error of the unseen validation netlists is less than 0.7%,

where the maximum absolute percentage error is 5% across training designs. However,

since a low prediction error does not guarantee a good feature representation, we lever-

age a dimension reduction technique named t-distributed stochastic neighbor embedding

(t-SNE) [44] to visualize the extracted features (∈ R512) in R2 as shown in Figure 5.5.

In the figure, we observe that different placements belonging to the same netlist are clus-

tered together and those belonging to different netlists are well separated. Therefore, we

conclude that the extracted features well capture the design characteristics.

Finally, to justify the achievement of transfer learning, in section 8.8, we perform an

experiment of comparing the CTS prediction results between with and without using trans-

fer learning from the ResNet-50 model. Since the goal of transfer learning is to precisely

characterize different designs, in the setting without using transfer learning, we handcrafted

4 features to represent the extracted features in Figure 5.3. These 4 features include number

of cells, number of flip flops, number of nets, and number of ports in the design.

5.4.2 CTS Outcomes Prediction

Constructing a precise regression model is the key step to solve Problem 1. Following

the feature extraction process, we train the regression model with the extracted features to

predict the target CTS outcomes. As mentioned in section 5.3, in this paper, we target at

predicting and optimizing three CTS outcomes which are clock power, clock wirelength,

and the maximum skew. In this work, we analyze two different strategies to construct the

regression model.

Multi-Model Uni-Output. The first strategy is built upon meta-modeling, which is the

strategy adopted by the state-of-the-art academic works [79] and [80]. The key concept
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Figure 5.6: Visualization of single metal-model, which is stacked by three base models through
weighted least square regression.

of meta-modeling is that for each target CTS outcome, a single meta-model is constructed

by combining multiple base models through a high-level aggregation function. This en-

sembled meta-model is expected to make more stable and accurate predictions than any

individual base model. In [79] and [80], traditional regression techniques such as radial

basis functions (RBF) [88] and support vector machine (SVM) are utilized as the base

models, where the weighted least square regression [89] is leveraged as the aggregation

function in both works. However, these regression techniques utilized in the base models

of previous works are known to be easily biased to the dataset [vapnik2013nature], which

thereby cannot be generalized to unseen designs.

To overcome the drawback of previous works, we leverage xgboost [90], catboost [91],

neural network (NN) as the base models of our framework. These base models are com-

bined through the weighted least square regression [89] as previous works to construct the

meta-model. Note that each target CTS outcome requires a meta-model for the prediction,

therefore, we construct three meta-models to predict the three target CTS metrics as men-

tioned earlier. As shown in Figure 5.6, each base model takes the features extracted from

the feature extraction process and the CTS parameters as inputs, and outputs the prediction

of the specific clock metric. The core idea of meta-modeling is to reduce the variance of

each base model, and therefore eliminate the impact of the bias in the database. However,
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Figure 5.7: Our proposed multi-objective regression model. The detailed architectures are as fol-
lows. The shared FC layers colored in green have number of neurons equal to 512, 256, and 128
in sequential, where each dedicated FC layer group has number of neurons equal to 64, 32, 1 from
input to output.

a foreseeable issue of using the meta-modeling technique is that it requires a long training

time due to the large number of the training parameters.

Uni-Model Multi-Output. The second strategy we adopt to construct the regression

model is through multi-task (multi-objective) learning, where we build a multi-output deep

neural network to predict the three target CTS metrics simultaneously. The visualization

of the model is shown in Figure 5.7. The model takes the extracted features along with the

CTS parameters as inputs and outputs three predictions simultaneously. As shown in the

figure, the inputs are passed through shared layers and dedicated layers to predict the clock

metrics. The key rationale of multi-task learning is that different CTS outcomes are not

independent of each other (e.g. clock wirelength often has a high correlation with clock

power). Therefore, instead of isolating the parameters for each prediction as in the meta-

learning approach, we leverage shared layers to enable different objectives to own mutual

information, which helps to reduce the training time as well as enhances the accuracy of

the predictions. In the training process, we utilize mean squared error as the loss function,

and leverage dropout layers inside the model to prevent it from overfitting. The validation
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results of this experiment are shown in section 8.8, where we observe that the multi-task

learning approach achieves higher accuracy in a shorter training time comparing to the

meta-learning approach.

5.4.3 Interpreting Prediction Results

In this work, we do not treat the regression model as a black box as previous works. Instead,

we leverage a gradient-based attribution algorithm named DeepLIFT [83] to interpret the

predictions. The algorithm aims to determine the attribution (relevance) value of each input

neuron subject to different outputs. Assume our regression model R takes an input vector

x = [x1, ..., xN ] ∈ RN and produces an output vector S = [S1, ..., Sk]. DeepLIFT proceeds

ali, the attribution of neuron i at layer l, in a backward fashion by calculating the activation

difference of the neuron between the target input x and reference input x̂. The procedure is

derived as

aLi =


Si(x)− Si(x̂) if neuron i is the output of interest

0 otherwise,
(5.1)

ali =
∑
j

zji − ẑji∑
i zji −

∑
i ẑji
· al+1

j , (5.2)

where L denotes the output layer, and zji is the weighted activation of neuron i onto neuron

j in the next layer. In the implementation, we take the reference input x̂ as the input

parameters of the auto-generated clock tree.

5.4.4 CTS Optimization

In this paper, we develop two CTS optimization techniques based on the presented re-

gression model. Specifically, the objective of the optimization problem (Problem 2) is to

find the CTS input parameter sets of the commercial tool that lead to optimized clock trees.

Note that in the experiments, we select the multi-task learning regression model (uni-model

multi-output) as the base model (guidance provider) for optimization, since it achieves the
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Figure 5.8: Detailed structure of our GAN generator.

best prediction accuracy compared with other models.

GAN-based Optimization

The first optimization approach we develop leverages generative adversarial learning to

perform the optimization, where we train a generative model (the generator) that learns to

generate the parameter sets which lead to optimized CTS outcomes. As aforementioned,

prior to the GAN learning, we pre-train the regression model as the guidance provider. The

generator is expected to generate optimized CTS input parameter sets by maximizing the

CTS quality predicted by the pre-trained regression model. Before illustrating the objec-

tives of the optimization process, we first describe the model structure of the generator.

Figure 5.8 shows the detailed structure of the generator. The generator G is a neural

network parameterized by θg which samples a regular input z with 100 dimensions from

a N(0, 1) Gaussian distribution pz, and samples the extracted placement features f from

the database pd as the conditional input. The leaky ReLU [92] layers are employed as

activation functions of the input and hidden layers to project latent variables onto a wider

domain, which eliminates the bearing of vanishing gradients. Batch normalization [93]

layers are utilized to normalize the inputs of each hidden layers to zero-mean and unit-
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variance, which accelerates the training process since the oscillation of gradient descent is

reduced. Finally, for the output layer, the number of neurons D denotes the number of CTS

modeling parameters, and a hyperbolic tangent layer is chosen as the activation function to

match the domain of the normalized samples drawn from the database. Since when training

the discriminator, we normalize the real samples x from the database to x̂ ∈ [−1, 1] as

x̂ =
x

maxx∈supp(x)(x)
× 2− 1. (5.3)

In GAN-CTS, the generator has two objectives. The first is to generate realistic samples

that deceive the discriminator, where the corresponding objective function is

LGD
= Ez,f [log(D(G(z, f))]. (5.4)

The second objective is to generate the CTS input parameter sets that lead to optimized

clock trees by maximizing the clock tree quality r predicted by the regression model, where

r is defined as

r := H(G(z, f)) = −
N∏
i=1

Ri(G(z, f))

auto-setting result of target i
. (5.5)

In Equation 5.5, N denotes the number of target CTS outcomes and Ri denotes the cor-

responding prediction of the regression model. In the implementation, we have N = 3

which represents the clock wirelength, clock power, and the maximum skew. The objective

function of maximizing the prediction of clock tree quality can be formulated as

LGP
= Ez,f [r]. (5.6)

Finally, by combining the two objective functions, we formulate the training process of the
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Algorithm 7 Bayesian optimization for CTS.
We leverage UCB [94] to realize the acquisition function.
Input: R: a pre-trained regression model, a(x): an acquisition function.
Output: {x}: optimized CTS parameter sets.

1: Initialize a prior function f(x).
2: repeat
3: {x}ki=1 ← Sample k sets of CTS parameters based on a(x) such that f(x) is maximized.
4: {r}ki=1 ← Evaluate {x}ki=1 using R by Equation 5.5.
5: Update f(x) with {x}ki=1, {r}ki=1 using Gaussian Process.
6: until {r}ki=1 no longer improve.

generator as

max
G

Ez∼pz
f∼pd

[log(D(G(z, f))) + r]. (5.7)

Bayesian Optimization

In addition of training a GAN-based framework that performs the optimization by learn-

ing key parameter distributions in a generative manner, in this work, we also leverage the

Bayesian optimization [95] technique to solve the CTS optimization problem for compar-

ison. Bayesian optimization is a popular surrogate optimization technique that optimizes

black-box functions of arbitrary forms. Unlike neural networks that require gradients to

update the network parameters, Bayesian optimization models a prior (surrogate) function

using Gaussian process to characterize the target black-box function. Recently, in the realm

of EDA, previous work [96] has applied such technique to perform parameter optimization

of commercial tools, where it is shown that the achieved results are better than the ones

achieved by the Genetic [97] which is used widely for parameter optimization.

In this paper, instead of leveraging Bayesian optimization to directly optimize the com-

mercial tool that introduces significant runtime as the previous work [96] that introduces

costly runtime, we leverage it to optimize the pre-trained regression model. The optimiza-

tion is summarized in Algorithm 7, which outputs the CTS input parameter sets {x} that

lead to optimized clock trees. The acquisition function a(x) guides the sampling of the

next CTS parameter sets {x}ki=1 which are utilized to update the prior (surrogate) function
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f(x). In the implementation, the sampling of the acquisition function a(x) is performed

based on upper confidence bound [94] (UCB). Note that since in our scenario, our goal is

to minimize the reward r (Equation 5.5) to optimize clock trees, we leverage Bayesian op-

timization to maximize−r. At each step of the iteration, Gaussian process is fit into known

samples (parameter sets previously explored) to update the prior (surrogate) function f(x).

Joint GAN-based and Bayesian-based Optimization

In this work, we further combine the two presented optimization techniques to optimize the

CTS metrics. Since a trained GAN-based framework has the ability to suggest optimized

CTS input parameter sets in constant time, for the Bayesian-based approach, instead of

starting with randomly sampled observations as shown in Algorithm 7, we leverage the

GAN-based model to suggest the initial CTS parameter sets. Furthermore, because the

CTS input parameter sets suggested by the GAN-based model are expected to be in a

more reliable (optimized) region than the ones achieved by sampling randomly, we further

leverage a sequential domain reduction technique introduced in [98] to adaptively refine

the search space based on the existing explored solutions. The key rationale behind is

that instead of searching new parameter sets from the original wide ranges as shown in

Table 9.1, for each parameter, we can refine the sample range based on parameter sets

suggested by the GAN-based framework which are already optimized. We expect this

combined optimization technique can help us achieve better optimization results than any

individual technique. The optimization results are shown in section 8.8.

5.4.5 Success vs. Failure Classification

The classification of successful and failed CTS runs are performed in the discriminator. To

describe how the classification task works, we first illustrate the structure of the discrim-

inator as shown in Figure 5.9. The discriminator takes a regular input which is either the

generated samples G(z, f ; θg) or the real samples x from the database pd, and a conditional
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Figure 5.9: Detailed structure of our GAN discriminator.

input which denotes the features extracted from placement images. Note that when the reg-

ular input represents the real samples x, the conditional input f should be aligned to x. The

reason we introduce a conditional input to the discriminator is that it helps the discrimina-

tor to distinguish better between the generated and the real samples under different modes

(benchmarks). As shown in Equation 5.3, since each CTS input parameters has a different

unit, we normalize real samples x from the database to x̂ ∈ [−1, 1] to improve the stability

of the GAN training process.

In GAN-CTS, the discriminator also has two objectives as the discriminator. One is to

distinguish the generated samples from the real samples, which is derived as

LDg =E(x,f)∼pd [log(Dg(x, f))]

+ Ez∼pz
f∼pd

[log(1−Dg(G(z, f)))].
(5.8)

The other objective is to classify whether a given input parameter set can lead to a success-

101



ful CTS run or not, where the objective is be formulated as

LDs = Ex∼pd [log(Ds(x, f))], (5.9)

which represents the cross-entropy between the classification groundtruths and the predic-

tions made by our framework. Note that the definition of successful and failed CTS runs

are defined in section 5.3, and the discriminator is updated by Equation 5.9 only when the

regular input represents the real samples x. The reason we introduce a new objective to the

discriminator is because its attribute is similar as the discriminator’s conventional objective,

where both of them are performing binary classification. Therefore, some latent features

can be shared in the early network as shown in Figure 5.9. Finally, the training process of

the discriminator is summarized as

max
D

E(x,f)∼pd [log(Dg(x, f)) + log(Ds(x, f))]

+ Ez∼pz
f∼pd

[log(1−Dg(G(z, f)))].

(5.10)

5.4.6 Training Methodology

Based on the structures and the objective functions presented, we now illustrate the training

process of our framework in Algorithm 8, where a gradient descent optimizer Adam [38]

is utilized across different training stages. First, we train the regression model (lines 2-9)

which serves as a guidance provider in the training process of the conditional GAN. Note

that the regression model we adopt in the GAN-CTS framework is constructed through

multi-task learning. Following from the regression learning, we train the generator and dis-

criminator alternatively (lines 10-25), since the two networks have antagonistic objectives.

The parameters of the discriminator are split into θd1 and θd2 (θd1 ∩ θd2 ̸= ϕ) to represent

different tasks, since a multi-task learning is conducted. The overall training process is

completed when the losses of the generator and the discriminator reach an equilibrium,
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Algorithm 8 GAN-CTS training methodology.
We use default values of αr = 1e−4, αGAN = 1e−4, β1 = 0.9, β2 = 0.999, m = 128.
Input: {f}: extracted placement features, {x}: training data, {Y }: target CTS metrics for predic-

tion and optimization.
Input: αr: learning rate of regression model, αGAN : learning rate of GAN, m: batch size, {θr}0:

initial parameters of regression model, θg0 : initial parameters of generator, {θd}0: initial pa-
rameters of discriminator, {β1, β2}: Adam parameters.

Output: R: regression model, G: generator, D: discriminator.
1: N ← length(y)
2: while {θr} do not converge do
3: Sample a batch of training data {x(i)}mi=1 ∼ pd
4: Take features {f (i)}mi=1 corresponding to {x(i)}mi=1

5: for k ← 1 to N do
6: grk ← ∇r[

1
m

∑m
i=1(Rk(f

(i), x(i))− Y
(i)
k )2]

7: θrk ← Adam(αR, θrk , grk , β1, β2)

8: while θg and θd do not converge do
9: Sample a batch of training data {x(i)}mi=1 ∼ pd

10: Take features {f (i)}mi=1 corresponding to {x(i)}mi=1

11: Sample a batch of random vectors {z(i)}mi=1 ∼ pz
12: gd1 ← ∇θd1

[ 1m
∑m

i=1 log(Dθd1
(x(i), f (i)))

+ 1
m

∑m
i=1 log(1−Dθd1

(Gθg(z
(i), f (i))))]

13: θd1 ← Adam(αGAN , θd1 , gd1 , β1, β2)
14: gd2 ← ∇θd2

[ 1m
∑m

i=1 log(Dθd2
(x(i), f (i)))]

15: θd2 ← Adam(αGAN , θd2 , gd2 , β1, β2)
16: Sample a batch of random vectors {z(i)}mi=1 ∼ pz
17: Sample a batch of features {f (i)}mi=1

18: gθ ← −∇θg
1
m

∑m
i=1 log(Dθd1

(Gθg(z
(i), f (i))))

19: θg ← Adam(αGAN , θg, gθ, β1, β2)

20: r ←
∏N

k=1
Rk(G({z(i)}mi=1,{f (i)}mi=1))
auto-setting result of outcome k

21: gθ ← −∇θg
1
m

∑m
i=1 r

(i)

22: θg ← Adam(αGAN , θg, gθ, β1, β2)

which takes about 24 hours on a machine with 2.40 GHz CPU and a NVIDIA RTX 2070

graphics card.

5.5 Experimental Results

In this section, we describe several experiments that demonstrate the achievements of

GAN-CTS framework. The framework is implemented in Python3 with Keras [99] library.

As mentioned in section 5.2, we utilize Cadence Innovus v18.1 to generate a database con-

taining 115.5k clock trees with 385 different placements across 11 netlists under TSMC-
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28nm technology node. The designs we utilize are shown in Table 9.2, which are from

ISPD 2012 benchmark [43] and OpenCores.org To prove the generality of our framework,

we only use 7 netlists during the training process, and leverage the rest four designs (ECG,

LEON, JPEG, VGA) to perform the validations.

5.5.1 CTS Prediction and Interpretation Results

In this experiment, we evaluate the regression approaches on three target CTS outcomes

with two evaluation metrics: mean absolute percentage error (MAPE), maximum absolute

percentage error (MAXE), and correlation coefficient (CC). Table 5.4 demonstrates the

evaluation results of the three different regression approaches presented earlier. The first

approach termed multi-model uni-output represents the meta-modeling method, where for

each CTS target outcome, we build a dedicated meta-model using the structure defined

in Figure 5.6. The second approach named uni-model uni-output leverages the modeling

method shown in Figure 5.7, where we build a single model to predict three target CTS

outcomes simultaneously. Finally, the third approach follows the modeling structure of

the second approach, however, instead of using the features (∈ R512) extracted from the

transfer learning flow, we handcrafted 4 features to represent different designs. These 4

features include number of cells, number of flip flops, number of nets, and number of ports

in a given design.

It is shown that the second approach (multi-task learning with transfer learning en-

abled) achieves lower evaluation errors among all target metrics on the unseen netlists than

the other approaches. Note that the training time of the multi-task learning approach is

about 3 hours, where the training time of the meta-learning approach is about 6 hours (cal-

culated by summing training time of individual meta-models). Two main conclusions can

be drawn from this experiment. First, the multi-task learning takes the advantage of the fact

that different CTS outcomes are not independent of each other. Therefore, shared layers

not only expedite the training process but also improve the prediction accuracy of CTS tar-
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Figure 5.10: Relative importance of CTS input parameters on skew, power, and wirelength for JPEG
benchmark.

gets. Second, it is demonstrated that the transfer learning approach provides a better way

to characterize different designs compared with using the manually enumerated features.

Indeed, many important design characteristics related to CTS process such as the distri-

bution of flip flops and the metal layer usage of trial routing are not straightforward to be

enumerated manually. Therefore, transfer learning provides a great benefit to characterize

different designs.

In spite of the high prediction accuracy achieved, designers would not benefit much

without explaining the predictions made by the model. Understanding the reasons behind

the predictions is crucial. As shown in Figure 5.10, we evaluate the importance of each

CTS input parameter based on the predictions presented in Table 5.4. As mentioned in

subsection 5.4.2, we define the importance through a gradient-based attribution method

named DeepLIFT [83]. The algorithm quantifies the relevance of input parameters with

respect to different outputs. Since the input of the regression model contains the CTS

input parameters and the extracted features, in this interpretation experiment, we focus on

determining the relative importance among CTS input parameters by further normalizing

the relevance scores to [0, 1]. Note that the normalization is performed within the CTS input
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5
5

Figure 5.11: Distributions of random generated vs. GAN-CTS generated clock trees on the ECG
benchmark. The commercial auto-setting achieved a clock tree with values of 23.56mW in clock
power, 49.69mm in clock wirelength, and 16ps in skew.

parameters. Below, we explain two important phenomenons observed from Figure 5.10.

1. The slew constraints for leaf cells and trunk cells have great impacts on clock power

and clock wirelength. Indeed, with a tight slew constraint, more buffers need to be

inserted to meet the timing target, which ultimately results in higher clock power and

clock wirelength.

2. The max EGR layer has high impacts on maximum skew and clock wirelength. The

reason is that signal nets are often routed in top metal layers (e.g. M5, M6). If signal

nets are forced to route in low metal layers (e.g. M1. M2) that are reserved to route

clock nets, there will be many detours in the clock routing because clock nets will

inevitably use low metal layers to connect the sinks, which results in long clock paths

and hence a large maximum skew.

5.5.2 CTS Optimization Results

In this experiment, we demonstrate the optimization results achieved by our GAN-CTS
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Figure 5.12: Bayesian optimization on VGA benchmark (starting from random sampled CTS pa-
rameter sets). Reward r is defined in Equation Equation 5.5.

framework compared with the Bayesian optimization [95] technique leveraged by previous

work [96] and the auto-setting offered by the commercial tool, where a joint optimization is

performed on three target CTS metrics: clock wirelength, clock power, and the maximum

skew. Figure 5.11 first shows the optimization result of the ECG benchmark, where the

blue dots denote the original clock trees in the database, and the red stars represent the

clock trees generated by GAN-CTS. To plot the figure, we first take the extracted features

of the pre-CTS placements as conditional inputs, and then utilize the trained generator to

suggest 100 sets of CTS input parameters. With these suggested parameters sets, we further

leverage the commercial tool to perform actual CTS processes. Finally, according to the

target optimization metrics, we plot the scatter distributions of the clock trees suggested by

GAN-CTS together with the ones originally generated in the database. Note that the input

parameters of the clock trees in the database are randomly sampled from the ranges shown

in Table 9.1.

The detailed optimization results on the four unseen netlists are shown in Table 5.5 and

the corresponding CTS input parameters are shown in Table 5.6. The method “GAN-CTS

+ bayes“ denotes the combined optimization technique presented in subsubsection 5.4.4,

where we take the GAN-CTS suggested parameter sets as the initial sets of the Bayesian
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Table 5.5: Achieved clock metrics comparison between commercial auto-setting (auto), Bayesian
optimization (bayes), and GAN-CTS. The method “GAN-CTS + bayes” denotes using the generator
suggested CTS parameter sets as the initial solutions of Bayesisan optimization along with the
sequential domain reduction technique [98]. Note that the four benchmarks are unseen during the
training phase.

netlist CTS metrics auto-setting bayes GAN-CTS GAN-CTS + bayes

ecg

# inserted buffers 417 128 (-69.3%) 96 (-76.9%) 92 (-77.9%)
clock power (mW) 23.56 19.11 (-18.8%) 18.72 (-20.5%) 18.61 (-21.0%)

clock WL (mm) 49.69 43.09 (-13.2%) 42.36 (-14.7%) 42.30 (-14.8%)
maximum skew (ns) 0.016 0.018 (+12.5%) 0.014 (-12.5%) 0.014 (-12.5%)

jpeg

# inserted buffers 1093 296 (-72.9%) 240 (-78.0%) 268 (-75.5%)
clock power (mW) 33.26 27.32 (-17.9%) 26.33 (-20.8%) 27.14 (-18.4%)

clock WL (mm) 130.71 118.07 (-9.7%) 115.22 (-11.9%) 116.49 (-10.8%)
maximum skew (ns) 0.022 0.024 (+9.0%) 0.024 (+9.0%) 0.023 (+4.5%)

leon

# inserted buffers 2962 1453 (-50.9%) 824 (-72.2%) 798 (-73.1%)
clock power (mW) 81.12 74.28 (-8.4%) 69.69 (-14.1%) 67.94 (-16.2%)

clock WL (mm) 326.36 307.81 (-5.6%) 296.15 (-9.2%) 292.88 (-10.2%)
maximum skew (ns) 0.03 0.032 (+6.6%) 0.028 (-6.6%) 0.029 (-3.3%)

vga

# inserted buffers 505 186 (-63.1%) 109 (-78.4%) 127 (-74.8%)
clock power (mW) 33.72 29.16 (-13.5%) 26.74 (-20.7%) 27.75 (-17.7%)

clock WL (mm) 52.61 45.31 (-13.8%) 41.29 (-21.5%) 41.60 (-20.9%)
maximum skew (ns) 0.036 0.033 (-8.3%) 0.023 (-36.1%) 0.022 (-38.8%)

optimization process and leverage the sequential domain reduction technique [98] to refine

the search space. We observe in general, the combined technique reaches better CTS opti-

mization results in terms of the reward defined in Equation Equation 5.5, and the proposed

GAN-CTS framework outperforms the basic Bayesian optimization technique adopted by

the previous work [96] across all unseen designs. This in fact demonstrates that the pro-

posed GAN-CTS framework provides better starting points for the vanilla Bayesian opti-

mization approach. Note that the selection of the GAN-CTS generated trees is conducted

by taking the clock tree with the least maximum skew among the 100 trees suggested. Fig-

ure 5.12 further shows the Bayesian optimization process on the VGA benchmark, where

the iteration stops when the reward evaluation no longer improves after 15 iterations. Fi-

nally, Figure 8.8 further exhibits the layout comparison of the four testing benchmarks (un-

seen during training). It is observant that the clock wirelength of the GAN-CTS optimized

tree is much shorter than the one auto-generated by the commercial engine.
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Figure 5.13: VGA slew sweeping experiments. Out of the 10 CTS input parameters as shown in
Table 9.1, we sweep around the leaf and trunk target slew values while fixing others as auto-set
and generate 500 clock trees in total. For each CTS metrics (i.e., clock power, clock wirelength,
and maximum achieved skew), we plot the scatter distribution of the 500 clock trees denoted in
blue and red dots, where red dots denote the ones whose underlying CTS metric are better than the
auto-generated clock tree from the commercial tool. In summary, compared with the auto-generated
clock tree, there are 61 (out of 500) trees whose clock power are better, 50 whose clock wirelength
are better, and 32 whose achieved skew values are better, where the corresponding Venn diagram is
shown in Figure 5.14.

5.5.3 Success vs. Failure Classification Results

In the final experiment, we demonstrate the classification results achieved by the discrimi-

nator of determining successful and failed CTS runs. As mentioned in section 5.3, success

and failure are defined by comparing the CTS metrics of the clock trees generated by GAN-

CTS to the one auto-generated by the commercial tool. If two out of three target metrics are

better, then we consider it as a success. Table 8.5 summarizes the classification results in

a confusion matrix with NOVA benchmark. The accuracy and the F1-score are 0.930 and

0.932, respectively. With the accuracy demonstrated, we believe designers can not only

benefit from the generator but also the discriminator by efficiently pruning out the CTS

input parameter sets that have little advantage over the the commercial auto-setting.
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Figure 5.14: Venn diagram of the VGA slew sweeping experiment (Figure 5.13). Note that a number
on a colored region denotes the number of trees fall into that region, where a number on an uncolored
region denotes the number of trees in the shape boundary.

Figure 5.15: CTS metric distribution of the VGA slew experiment (Figure 13). The red dots denote
the clock trees that are achieved with both trunk slew and leaf slew targets smaller than 0.1ns.

5.6 Discussion

The proposed framework, GAN-CTS, is a helper model (rather than a surrogate model)

of commercial CTS engines, whose goal is to support the engines to find the CTS input

parameter combinations that result in optimized clock trees. In this work, we take Cadence

Innovus as our reference commercial tool, however, the proposed method can be easily

applied to other tools which also parameterize the CTS process into different input settings.

Note that the goal of this work is not to replace the existing commercial CTS engines, but
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GAN-CTS optimized

(clk WL: 296.15mm)

commercial auto-setting

(clk WL: 326.36mm)
GAN-CTS optimized

(clk WL: 41.29mm)

commercial auto-setting

(clk WL: 52.61mm)
Design: LEON3MP Design: VGA_LCD

GAN-CTS optimized

(clk WL: 42.36 mm)

commercial auto-setting

(clk WL: 49.69mm)
GAN-CTS optimized

(clk WL: 115.22mm)

commercial auto-setting

(clk WL: 130.71mm)
Design: ECG Design: JPEG

Figure 5.16: Clock tree layout comparison of four validation benchmarks. GAN-CTS optimized
clock trees have observant clock wirelength saving. The detailed comparisons are reported in Ta-
ble 5.5.

to provide tool users fast and reliable CTS prediction and optimization techniques without

spending significant amount of time in design space exploration. In the below sub-sections,

we further describe different aspects of the proposed CTS modeling method in detail.

5.6.1 Non-triviality of the CTS Modeling Problem

The CTS modeling problem we are dealing with in this work is in fact a high-dimensional

modeling problem, which is stated in [80] to be difficult and non-trivial due to the curse of

high dimensionality [100]. To quantify the non-triviality of this problem in our experimen-

tal settings, we perform a slew sweeping experiment on the VGA benchmark, where we

generate 500 clock trees by sweeping the leaf and trunk slew targets while fixing all other

input parameters in Table 9.1 as auto-set. The experimental result is shown in Figure 5.13.

For the three CTS metrics we focus on in this work, we plot the scatter distribution of the
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Table 5.6: GAN-CTS suggested and commercial auto-setting’s CTS input parameters (refer to Ta-
ble 5.5). Note that the commercial clock router has the same auto-setting values for different de-
signs. The capacitance constraints in the auto-setting scenario are varied from net to net, which are
subject to the max capacitance constraint of the driving pins.

CTS
ecg jpeg leon vga

auto
parameters setting

max skew (ns) 0.11 0.14 0.04 0.02 0.05
max fanout 120 139 173 84 100

max cap trunk (pF) 0.24 0.16 0.28 0.11 net-based
max cap leaf (pF) 0.22 0.12 0.19 0.25 net-based

max slew trunk (ns) 0.081 0.285 0.066 0.123 0.05
max slew leaf (ns) 0.047 0.107 0.098 0.074 0.05
max latency (ns) 0.31 0.26 0.15 0.28 0.1
max eGR layer 5 4 4 5 6
min eGR layer 3 2 3 3 2

max buffer density 0.72 0.63 0.69 0.68 0.75

Table 5.7: Confusion matrix of success vs. failure classification in LEON benchmark. Failure
means worse than auto-setting.

Predictions
Success Failure Total

Ground Success 6974 522 7496
Truths Failure 498 2251 2749

Total 7472 2773 10245

500 clock trees, where the red colored dots denote the trees whose achieved metric is better

than the one achieved by the commercial tool auto-generated clock tree. In the figure, we

observe that there is no apparent “sweet spot” that guarantees high quality clock trees. In

addition, Figure 5.14 shows the Venn diagram from the three subplots in Figure 5.13, and

Figure 5.15 demonstrates further the distributions of the tree targeted CTS metrics in this

work, where we observe that there is no apparent sweet spot of the slew targets that guar-

antee to result in optimized clock trees. It is shown that out of 500 generated clock trees,

only 14 of them (2.8%) whose all three CTS outcomes (clock power, clock wirelength, and

achieved skew) are better than the ones achieved by the auto-generated clock tree.
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5.6.2 Train/Test Splitting of Benchmarks

The training and testing split among the 11 designs utilized in this work is not performed

in a purely random fashion. Instead, we strive to make the training set to be “comprehen-

sive” that covers a variety of designs from small to large. One of the limitations of the

proposed work is that the model is required to be pre-trained on a few designs, however,

as shown in the experiment, after training on the 7 designs as shown in Table 9.2, GAN-

CTS is able to achieve accurate prediction and high-quality prediction results on the largest

design, (LEON), which also has the largest power consumption. The main reason is that

GAN-CTS does not perform the optimization completely based on previous experience

(seen designs). Instead, given a new design, it leverages unsupervised techniques to extract

the underlying design features in order to generate high-quality clock trees. Finally, we

expect the proposed framework to achieve lower MAPE/MAXE prediction error and better

optimization results if a bigger a higher variety of training set is available.

5.6.3 Discussion of Prediction Results

As shown in Table 5.4, we observe that the MAXE (worst-case prediction error) is slightly

high for the skew prediction. This in fact can be accounted in two-fold. First, as mentioned

in section 5.4, the regression model is trained by least square regression [89], which min-

imizes the mean squared (L2) error to update the network parameters. It is known that the

L2 error (loss) minimization tends to optimize the average prediction error across all sam-

ples that reaches stable solutions, where the L1 error minimization tends to optimize the

error on outliers and thus results in unstable (sparse) solutions [101]. Therefore, as shown

in the table, even the MAPE (average error) for skew prediction is bounded within 5%,

some outliers still create corner cases that aggravate the MAXE metric. Second, as pointed

out in previous works [79, 80], timing in general is a hard-to-predict metric due to the

sophisticated behaviour of the commercial timing engines. In particular, during CTS, com-

mercial tools will often override the skew target that is taken as input in order to optimize
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other metrics such as power and wirelength, which results in the uncorrelation between the

target closure and the final achieved outcome.

5.6.4 Discussion of Optimization Results

The success of GAN-CTS on optimizing CTS metrics can mainly be explained in two-

fold. First, instead of performing block-box optimization as the Bayesian optimization

technique, GAN-CTS leverages the generator to learn the key distribution for different de-

signs through conditional generative learning, which gives our framework better generality

over other approaches. Second, the proposed transfer learning technique well differenti-

ates various designs. The extracted features that contain precious design information help

the framework to find better and more curated CTS parameter sets that result in optimized

clock trees for unseen netlists.

5.7 Conclusion

In this paper, we have shown that machine learning offers promising solutions for designers

to reach the desired CTS targets with small amount of effort. We have proposed a novel

framework named GAN-CTS that uses discriminative techniques to predict and classify the

CTS outcomes as well as leverages generative adversarial learning to optimize the desired

metrics. Experimental results conducted on the unseen netlists demonstrate the proposed

framework is generalizable and practical.
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CHAPTER 6

RL-SIZER: VLSI GATE SIZING FOR TIMING OPTIMIZATION USING DEEP

REINFORCEMENT LEARNING

6.1 Background and Motivation

Gate sizing for power, performance, and area (PPA) optimization is the backbone of modern

physical design (PD) flows, which is used extensively from synthesis to signoff. It is an

algorithmic process of assigning an appropriate size (gate type) to each optimizable design

instance from a set of equivalent standard cell libraries under different process, voltage,

and temperature (PVT) corners. For an instance, the number of available gate sizes is

discrete and is limited by the underlying technology. This makes gate sizing an NP-hard

problem [102], where the solution space scales exponentially with respect to the size of

netlist.

Existing gate sizing algorithms in electronic design automation (EDA) tools are based

on various pseudo-linear heuristics or analytical methods driven by (statistical) static timing

analysis (STA) that easily result in globally sub-optimal sizing solutions. As the benefit of

technology scaling saturates, leading edge high-performance low-power design flows are

seeking to make the final PPA boost by leveraging more powerful sizing algorithms, even at

the cost of runtime (or, increased turn-around time (TAT)), in order to achieve the desired

PPA scalability at advanced process nodes. Therefore, time-to-market and best-in-class

PPA requirements create a push-pull situation in EDA flows under advanced technologies

(e.g., 16nm to 5nm).

Reinforcement learning (RL) is a promising machine learning (ML) paradigm that has

been demonstrated to achieve super-human performance in many high-dimensional control

problems [103]. In the realm of EDA, a recent work [104] shows that how RL may be used
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for macro placement to improve design TAT and PPA. In addition, RL is applied to solve

transistor sizing for analog designs [105], global routing [106], and technology mapping

[107]. Nonetheless, we have to invent and engineer a different RL algorithmic framework

to solve our gate sizing problem due to the significantly larger solution space compared

with these previous works.

The goal of this work is to build the first high-dimensional RL framework, RL-Sizer,

which formulates the classic gate sizing problem as an RL process and solves it by applying

advanced RL algorithms equipped with graph neural networks (GNNs). To demonstrate the

feasibility of the proposed RL formulation, we specifically focus on the problem of gate

sizing for timing optimization at the post-route stage, where the goal is to optimize the total

negative slack (TNS) of a design. Unlike prior works [108, 109] that perform aggressive

optimization based on meta-heuristics or non-generalizable analytical methods that assume

convexity of the objective functions, our RL agent optimizes design performance in a more

global and flexible (i.e., customized loss function) manner with the consideration of design

and technology features (multi-corner multi-mode) encoded by GNNs.

The outcome of our effort is a universal RL-based gate sizing framework that performs

timing optimization across various advanced technologies for industrial-scale designs. To

our knowledge, this is the first work that formulates the classic gate-sizing problem as an

RL problem (control problem), and presents advanced RL algorithms equipped with graph

representation learning techniques to solve it. The contributions of this work are as follows:

• We present RL-Sizer, the first-ever RL-based gate sizing algorithm for timing op-

timization. RL-Sizer achieves competitive TNS optimization results to an industry-

leading commercial tool on six commercial designs using advanced technology nodes

(5nm, 12nm, 16nm), and specifically, in four designs, RL-Sizer can significantly

outperform the commercial sizing engine on TNS and number of violating endpoints

(NVEs) with negligible total power overhead.

• We develop a graph-based feature encoder using GNNs that captures the instance
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characteristics related to timing optimization. These encoded features are taken as

the inputs of RL-Sizer and are proven to be highly useful.

• We demonstrate the effectiveness of our “local-graph” method for fast timing ap-

proximation. For a target instance, we elegantly take the TNS change of its “local

three-hop neighborhood graph structure” (termed as local-graph) as the reward of the

sizing move taken instead of the entire netlist. This local-graph approximation can be

easily threaded across various instances, which significantly accelerates the learning

process.

6.2 Reinforcement Learning Formulation

6.2.1 Gate Sizing as a Control Problem

The gate sizing problem can be intuitively formulated as a Markov Decision Process (MDP),

as there are many sequential decisions made iteratively regarding sizes of gates on critical

(and, sometimes sub-critical) paths to achieve target timing closure. Therefore, we can

conceptually apply RL algorithms to solve it (i.e., maximize the reward of this process).

Given a set of design instances to be sized for timing optimization, we train an RL agent to

sequentially determine their final gate sizes. Here we present key terminologies and con-

cepts of an RL process, and illustrate how they are mapped to the gate sizing problem in

our work.

• State (s): A state s represents a “design instance”, which is realized by concatenat-

ing the encoded features of its local three-hop neighborhood (by GNNs), and the

technology features extracted from libraries.

• Action (a): An action a refers to the “new gate size” assigned to the design instance

in state s. In the implementation, it is realized as the “driving strength change” ∆d.

Assume an instance whose current size has strength d. After taking an action (a sizing
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move), it is assigned the gate size in the technology whose strength is the closest to

d′ = d+∆d among all possible choices.

• Reward (r): A reward r is the outcome of performing an action a on an instance in

state s. In our case, it represents the TNS change of the instance’s “local-graph”. For

each sizing iteration, the goal of RL-Sizer is to maximize the total reward (sum of

individual rewards) of all instances.

• Trajectory (τ ): A trajectory τ refers to a sizing iteration (an RL process), from time

step t = 0 to t = T (final time step). At each time step t, there is a corresponding

state st, action at, and reward rt pair denoted as (st, at, rt). Note that a complete gate

sizing run in commercial tools consists of multiple trajectories.

Figure 6.1 shows an illustration of our RL gate sizing process, where we consider each

selected instance as a unique RL state and determine their new gate sizes sequentially (the

instance selection algorithm is illustrated in section 6.3). Note that STA update using a

commercial tool is performed once at the end of a sizing iteration, which provides the RL

reward for each action taken. We want to emphasize that instances in a common sizing

iteration (RL trajectory) are not independent of each other. Actions (gate sizes) that are

taken in previous time steps (prior instances) will contribute to the sizing decision of the

current time step. We leverage a policy gradient algorithm named Deep Deterministic

Policy Gradient (DDPG) [25] to capture this dependency and to optimize the total reward.

6.2.2 Our Key Concept: Local-Graph Approximation

As mentioned earlier, we propose the concept of “local-graph” for RL state encoding (Fig-

ure 6.1(b)) and RL reward approximation. Given a target instance, the “local-graph” of

this instance refers to its local “three-hop neighborhood graph structure” from the netlist.

The rationale is two-fold. First, the final gate size of a target instance not only depends on

the characteristics of itself, but also the behavior of its neighbors (e.g. the capacitive load
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Figure 6.1: Illustration of our RL gate sizing process. (a) Input netlist with 3 end points (EPs).
First, we identify the worst critical path in the design (red), and then for each endpoint, we identify
the most negative slack path (e.g. blue) overlapping with the design critical path. Finally, instances
on these paths (the design critical path and the other paths overlapped with it) are selected for one
sizing iteration. (b) Sort the selected instances in topological order, and determine their final gate
sizes sequentially by considering each of them as an RL state. STA is performed after all selected
instances are assigned new sizes. (c) Example of local-graph encoding using GNNs on gate “d”.
The encoded state vector is taken as the input of the RL agent to determine the action (new gate
type).

that this target instance is driving). We leverage GNNs (to be elaborated in Section sub-

section 6.3.3) to encode such neighboring information into a vector as an RL state vector,

which serves as the input of the RL agent for the decision of the corresponding RL action

(i.e., new gate size).

Second, the timing impact of a gate sizing move on a design instance to the overall

netlist diminishes as the hop count increases. Therefore, instead of taking the total design

TNS change as the RL reward of a sizing move (ideal case, but computationally expensive),

we take the TNS change of its local-graph. This way, the reward gives fast and good

fidelity approximation, while offering an opportunity for parallel computation. That is, an

improvement in local-graph TNS mostly results in positive design (netlist) TNS change,

and vice versa.
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Figure 6.2: Overview of our RL-Sizer framework. Given the selected instances from Algorithm Al-
gorithm 9, for each instance (e.g. red), we take its encoded local-graph features along with the
technology information as the RL state st, and leverage RL-Sizer to determine the RL action at
assigned. An STA update is performed when all selected instances are assigned new gate sizes.
Finally, we take the “local-graph TNS change” as the RL reward of each action taken. Rewards
across time steps (instances) are leveraged to update RL-Sizer through the DDPG algorithm [25].

6.2.3 Graph Representation Learning

GNNs have revolutionized many research areas [37] by performing effective graph repre-

sentation learning that encodes graph information into meaningful embeddings through a

message passing scheme. Since VLSI netlists are represented as hypergraphs, we can apply

GNNs to them. Recently, many studies have demonstrated the great potency of applying

GNNs to solve EDA problems, such as transistor sizing [105], layout decomposition [110],

power estimation [lufast, 14], and circuit partitioning [6]. We leverage GNNs to distill

netlist features that are related to timing. Specifically, given a target instance for sizing, we

utilize GNNs to encode the features within its local-graph (3-hop neighborhood), and take

the encoded features as the input of the RL framework to determine its final gate size.

6.3 RL-Sizer Algorithms

In this work, we focus our problem on the post-route stage, which is the PD stage that

designers struggle the most for timing optimization. However, our method generalizes to

other stages of the PD flow as well. The goal of our framework, RL-Sizer, is to optimize

the design performance in terms of TNS by making good sizing moves on combinational

instances. Note that we do not size sequential instances.
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6.3.1 Overview

Figure 6.2 shows a high-level overview of our framework. First, we develop an instance

selection algorithm to select the combinational instances that must be sized to improve

design TNS. These selected instances form a sizing iteration (an RL trajectory). Note

that a complete gate sizing run consists of multiple sizing iterations. For each selected

instance, we use GNNs to encode its “local-graph” (described in section 8.4), and take

the encoded features along with the technology features that represent the driving strength,

capacitance, and slew constraints as the RL state st. We define the corresponding RL reward

rt subject to the RL action at taken at time step t as the TNS change on its local-graph. Note

that as aforementioned, each selected instance belongs to a unique time step and is sized

sequentially from time step t = 0 to t = T (last instance). This order is based on netlist

topology.

At each time step t, the objective of RL-Sizer is to maximize the long-term return Gt,

which is denoted as

max
θ

Gt(πθ) = Eτ

[
T∑

k=0

γkrt+k

]
, (6.1)

where π denotes the policy function (network) parameterized by θ, which takes the state st

as input and outputs the action at, γ denotes the reward discount factor. To maximize this

objective G, we perform gradient descent on the policy parameters θ using the DDPG [25]

loss function update. In the following sub-sections, we present each component of our

framework in detail.

6.3.2 Instance Selection

Selecting feasible instances that can possibly improve design TNS is essential to the success

of RL-Sizer. Algorithm Algorithm 9 presents our instance selection process. Given a routed

design G = (V,E), where V denotes the design instances and E denotes the connections,

our algorithm identifies the target instances V ′ ∈ V that will further be sized sequentially
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Algorithm 9 Instance selection for a sizing iteration (RL trajectory).
Input: G = (V,E): a post-route netlist.
Output: V ′ ∈ V : selected instances to be sized.

1: Run full-chip STA.
2: W ← current worst negative slack (WNS) path in the design
3: Initialize V ′← {non-overlapping instances in W}
4: {P} ← for each endpoint, identify its worst negative path
5: for p ∈ {P} do
6: if p is overlapping with W then
7: for v ∈ p do
8: if v’s local-graph does not overlap with {V ′}’s then
9: add instance v on path p to set V ′

10: V ′ ← topological sort(V ′) ▷ linear time, achieved by DFS

by RL-Sizer in (netlist) topological order.

Note that as shown in the algorithm, selected instances in V ′ do not share “overlap-

ping” local-graphs, which means instances in a sizing iteration do not overlap in their local

3-hop neighborhood. This is to minimize the sizing impact between each other, since in

our settings (as shown in Figure 6.2), instances in a common iteration are sized simulta-

neously (i.e., an STA update is performed once per iteration). Ideally, one can perform an

STA update per sizing move of an instance to completely address the issue of interference.

However, this approach is impractical due to the computation expense of STA on VLSI

designs. In our experiments, we find that with the proposed technique of “non-overlapping

local-graphs”, RL-Sizer can effectively determine the feasible size for each selected in-

stance that optimizes TNS.

6.3.3 Encoding RL State using GNNs

Initial Node Features

Prior to the local-graph encoding using GNNs, we compute the initial node-specific fea-

tures for each design instance as shown in Table 9.1. These features are carefully chosen

based on domain expertise and are expected to characterize an instance’s sizing impact to

design timing. However, these features are not sufficient for RL-Sizer to determine the
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Table 6.1: Initial node features for GNN encoding.

features descriptions
slack worst slack of paths through instance

in slew worst input pin slew
out slew output pin slew
arc delay worst cell arc (input to output pin) delay

nom delay nominal delay (fan-out of 4)
cell cap cell capacitance

drv length driving (output) net length
drv load sum of driving capacitance (net + cell)
drv res sum of driving resistance

fanin cap average capacitance of fan-ins
sibling cap sum of capacitance of siblings

gate sizes that optimize design performance, because the final gate size of a target instance

not only depends on these features, but also the information from its neighboring nodes.

Therefore, we use GNNs as a local-graph encoder to obtain better representations in graph-

level. Note that the initial features are not normalized instance-wise, since for each sizing

iteration, we select a new set of instances to be sized.

Local-Graph Encoding

Based on the initial node features defined in Table 9.1, we leverage GraphSAGE [37], a

variant of GNNs, to encode local-graph features for each selected instance. Given a local-

graph sG of a target instance v, for each node v′ ∈ sG, we first transform the initial node

features h0
v′ into embeddings at level k = K as:

hk−1
N(v′) = mean pool

(
{Wagg

k hk−1
u , ∀u ∈ N(v′)}

)
,

hk
v′ = sigmoid

(
Wproj

k · concat
[
hk−1
v′ , hk−1

N(v′)

])
,

(6.2)

where N(v′) denotes the neighbors of node v′, W agg and W proj denote the aggregation

and projection matrices that are achieved by neural networks (neurons). At the end of the

transformation (level K), we take the mean pooling of hk=K
v′ across every node v′ ∈ sG to
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obtain the final local-graph feature vector st of the target instance v at time step t as:

st = concat
[
mean pool

({
hk=K
v′

})
, tech(v)

]
, (6.3)

where tech(v) denotes the technology features (from library files) of instance v in terms of

driving strength, capacitance, and slew constraints of the current gate size. This vector st,

which characterizes the local-graph and the underlying instance, is taken as the input of the

RL-Sizer agent to determine the new gate size that helps improve the design performance.

Note that the dimension of the GNN-encoded vector hv′ is subject to the number of neurons

in the last layer of the GNN module, which is 64 in our implementation.

6.3.4 Policy and Value Networks

We use DDPG [25], a variant of actor-critic algorithms, to build RL-Sizer. All actor-critic

algorithms have two components that learn jointly: actor and critic. In deep RL (RL pow-

ered by neural networks), actor refers to the policy network which learns a parameterized

policy π(s) that maps a state vector s to an action a. Next, critic refers to the value network

which learns a value function Q(s, a) that evaluates the (discounted) reward of taking an

action a on a state s.

Algorithm Algorithm 10 presents the training process of RL-Sizer based on the DDPG [25]

loss function update. In DDPG, the learning update of the Q-function Q is based on the

Bellman equation, which suggests the Q-value Q(s, a) at current state s to be computed in

a dynamic programming manner as

Q(st, at) = E
[
rt + γ ∗max

at+1

Q(st+1, at+1)

]
. (6.4)

In DDPG, the goal of the policy network π is to generate the action at subject to the state

st that maximizes the Q-value Q(st, at). The idea is that the higher the Q-value Q(s, a) is,
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Algorithm 10 RL-Sizer training methodology.
Input: Initial Policy Network parameters θπ, Initial Q Network parameters θQ, Target networks

update ratio ρ, Netlist G = (V,E)
Output: Policy Network parameters θπ; Q Network parameters θQ

1: Initialize target networks (policy-, Q-) parameters {ϕ} as ϕπ ← θπ, ϕQ ← θQ, Replay Buffer
B ← {}

2: while design TNS does not converge do
3: {V ′} ← instance selection(G) ▷ Algorithm Algorithm 9
4: {s} ← local-graph encoding(V ′) ▷ Equation 9.1, Equation 9.2
5: T ← |s| ▷ # of states (instances)
6: for t = 0; t < T ; t++ do ▷ Assign actions for all cells
7: at ← π(st|θπ)
8: Perform actions {a} and STA update to get rewards {r}
9: Store all (st, at, rt, st+1) pairs in the replay buffer B

10: Sample a batch of T buffers {(st, at, rt, st+1)} from B
11: for t = 0; t < T ; t++ do ▷ Compute update targets y
12: yt ← rt + γ ∗QϕQ

(st+1, π (st+1|ϕπ))

13: Update Q Network∇θQ

∑
t(QθQ(st, at)− yt)

2

14: Update Policy Network∇θπ

∑
tQθQ(st, π(st|θπ))

15: ϕπ ← ρϕπ + (1− ρ)θπ
16: ϕQ ← ρϕQ + (1− ρ)θQ ▷ Temporal difference update

the better the action a is. The objective of the policy network π can thus be formulated as

max
θπ

E [Q(st, π(st|θπ))] , (6.5)

where π(st|θπ)) is the action output by the policy network π based on the encoded state

vector st.

As shown in the algorithm, both the value and policy networks are trained by a tech-

nique named temporal difference update, where for each network, we maintain a “target

network” (with parameter ϕ) whose update is a trajectory slower than that of the main net-

work (with parameter θ). For example, if the main network is updated in τi, then the the

target network is updated in τi+1. By using a replay buffer B that contains old experiences

from previous trajectories, the temporal difference update is expected to stabilize the train-

ing process. Finally, when the training completes, we obtain an actor, the policy network

π, that performs the gate sizing moves to improve design performance. Figure Figure 6.3
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Figure 6.3: Our RL agent architecture that consists of value and policy networks. Table Table 6.2
provides the dimension information.

Table 6.2: Dimension of RL-Sizer layers.

component input hidden output
shared layers local-graph G=(V,E) (64, 64) (GNN) 64 (FC)

policy network 64 (shared) (64, 32) (ReLU) 1 (action)
value network 65 (shared + action) (64, 32) (ReLU) 1 (value)

further shows the architecture of our RL agent that utilizes the value and policy networks.

6.3.5 Implementation Details: Challenges of ML in EDA

Our framework, RL-Sizer, is implemented in the source code of Synopsys IC-Compiler II

(ICC2). Due to the fact that EDA tools are generally implemented in C++, while machine

learning frameworks are mainly supported in Python, one of our main challenges is to

communicate between these two language interfaces, since the communication introduces

costly runtime overhead. Ideally, at each time step t of a sizing iteration, we can perform

an action at on an instance and calculate the reward rt immediately, so that instances in

a common iteration will not interfere with each other. However, in our implementation,

this ideal approach is not feasible considering the sizes of VLSI netlists. Even with the

proposed technique of local-graph approximation, the runtime will still explode due to

the communication overhead between C++ and Python. Therefore, to make the proposed

framework practical, we only perform a full-chip STA update (i.e., switching from Python

to C++) when all selected instances in a common iteration are assigned actions by the
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Table 6.3: Our commercial benchmarks and their attributes.

Design Tech. Node # Nets # Macros # Instances
block1 5nm 93,370 0 95,636
block2 5nm 145,893 0 151,258
block3 12nm 145,545 0 142,528
block4 12nm 430,141 35 462,755

block5 (SoC) 16nm 36,783 9 6,850
block6 16nm 72,748 0 71,604

policy network (Lines 6–7 in Algorithm Algorithm 10). After calculating all the rewards

{r} in the commercial tool, we again switch from C++ to Python and leverage gradient

descent to update the network parameters.

6.4 Experimental Results

In the experiments, we validate the proposed framework on 6 commercial designs (re-

named due to confidentiality) in advanced technology nodes as shown in Table 9.2, and

demonstrate how RL-Sizer improves the native sizing algorithms in Synopsys ICC2, an

industry-leading commercial tool.

6.4.1 Optimization Results

Table 7.2 demonstrates the optimization results on our benchmarks as shown in Table 9.2,

where we observe that RL-Sizer can outperform or match the optimization results achieved

by the reference commercial tool. Note that this is a head-to-head comparison, where the

objectives of RL-Sizer and the commercial tool are exactly the same, which is optimizing

design TNS through combinational sizing at the post-route stage. In RL-Sizer, we run

Algorithm Algorithm 10 for each design from scratch (i.e., the policy and value networks

are trained from the beginning). We terminate the algorithm when design TNS no longer

improves across 10 consecutive iterations. The results suggest that RL-Sizer is able to

generalize across various designs and technology nodes. It also generalizes for both macro-

heavy and macro-less designs.
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Figure 6.4 further shows the design TNS after each sizing iteration (RL trajectory) of

RL-Sizer on “block2” (5nm). Although the entire training process takes about 14 hours

(250 iterations) to reduce TNS from -101.82ns to -0.81ns, it takes less then 3 hours (13

iterations) to quickly recover the initial TNS to -2.18ns. Note that the runtime in the table

(and above) for both commercial tool and RL-Sizer is measured on the same machine

without GPU support, and we do not limit the runtime of the commercial tool in order to

perform thorough optimization (i.e., the tool stops the sizing optimization when the timing

can no longer be improved). As for RL-Sizer, the stopping mechanism is aforementioned,

and we expect the runtime to be significantly improved when GPUs are utilized.

6.4.2 Discussion of Optimization Results

The fact that RL-Sizer is able to perform commercial-grade timing optimization results on

6 different designs demonstrates its generality. However, we observe that RL-Sizer does

not always outperform the commercial tool even though it adopts a more global approach

to perform the optimization. This inferiority in fact happens on the designs that both the

commercial tool and RL-Sizer are able to optimize the design TNS to “near zero”. How-

ever, since RL-Sizer lacks rigid heuristics to “close design timing” as the commercial tool,

the optimization results stagnate when no sizing action leads to positive reward. Ways to

locally improve optimization results so as to completely close design timing are the areas

for our future investigation.

Our further analysis reveal the following regarding the success of our RL-Sizer com-

pared with the commercial tool:

1. We accept “setback” moves: the goal of RL-Sizer is to maximize the total reward

(i.e., sum of individual rewards) of a given iteration. Instead of striving to completely

fix the entire slack violation for each selected instance, at some states, RL-Sizer

learns to “setback” to create more sizing room for future states in order to achieve a

global optima.
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Figure 6.4: RL-Sizer sizing iterations on block2 (5nm). It takes 250 iterations (about 14 hours)
to improve TNS from -101.82 to -0.81 (ns). However, the TNS quickly converges in the first 13
iterations (less than 3 hours).

2. Our well-defined features: the initial node features in Table 9.1 accurately character-

ize the sizing behaviour of each instance. Despite these features are not sufficient to

determine the final gate size of an instance, with the aid of the graph representation

learning, they provide vital information for policy and value networks to effectively

determine the sizes that optimize design performance.

Finally, we want to emphasize that although the main focus of this work is timing

optimization, our framework can be extended to jointly optimize other PPA metrics such

as power and area by incorporating them in the reward calculation (e.g., r = ∆timing + α ∗

∆power + β ∗∆area).

6.5 Conclusion

Several prior works have made significant progress to improve VLSI gate sizing. In this

chapter, we take a new approach to solve the well-studied gate sizing problem using novel

RL algorithms. We propose RL-Sizer, a GNN-powered policy gradient-based framework

that performs automatic gate sizing for timing optimization without any human interven-

tion. We believe the achieved optimization results shall demonstrate the great potentials of

leveraging RL algorithms to solve classic EDA problems.

131



CHAPTER 7

RL-CCD: CONCURRENT CLOCK AND DATA OPTIMIZATION USING

ATTENTION-BASED SELF-SUPERVISED REINFORCEMENT LEARNING

7.1 Background and Motivation

Modern Physical Design (PD) tools interleave clock skewing and delay (logic) fixing strate-

gies to perform timing optimization, which is often termed as Concurrent Clock and Data

(CCD) optimization. In general, CCD aims to find an optimal balance between “clock”

and “logic” optimization so as to resolve violating timing endpoints in a flow-wise glob-

ally optimized manner. However, existing CCD algorithms fail to achieve this goal, mainly

because they neglect the following vital fact:

• Not all violating endpoints are equal. Different violating endpoints have distinct

sensitivity for various optimization strategies. To truly achieve global optimal re-

sults, some of them are better to be “fixed more” by clock-path optimization (i.e., a

larger portion of their slack values should be resolved by clock fixing), while others

are better to be “fixed more” by data-path amendment. However, existing CCD algo-

rithms have no intelligence on weighing the balance between different strategies in

endpoint level, leading to flow-wise sub-optimal results.

In this chapter, we overcome this critical issue by presenting RL-CCD, a Reinforcement

Learning (RL) agent that performs intelligent endpoint prioritization. RL-CCD is built

upon a customized Graph Neural Networks (GNNs) named EP-GNN for endpoint encod-

ing, and an attention-based encoder-decoder network using self-supervised learning [111].

Prior to CCD optimization, RL-CCD selects a subset of violating endpoints that should

be prioritized for clock-path optimization using useful skew (rather than data-path opti-

mization using buffering, sizing, restructuring etc.), to achieve flow-wise globally optimal
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Figure 7.1: Default tool flow vs. our RL-enhanced flow that performs endpoint prioritization using
graph learning and self-supervised attention [111].

Power, Performance, and Area (PPA) metrics.

The goal of this work is to unleash the true power of CCD optimization in commercial

tools using RL. Note that modern PD tools preform CCD optimization throughout the entire

PD flow. To demonstrate the effectiveness of our RL-CCD framework, we specifically

focus on improving the timing quality of CCD optimization at the placement stage, where

the goal is to achieve better Total Negative Slack (TNS) values at the end of the entire

placement optimization, which involves CCD and other optimization techniques. In this

work, we take an industry-leading commercial PD tool as our reference tool (name will

be disclosed upon acceptance), and demonstrate that RL-CCD significantly improves the

tool’s native implementation flow.

Figure 7.1 highlights the innovations of our framework and the key differences over the

native implementation of the reference commercial tool. Given a globally placed netlist,

unlike the default tool flow that has no intelligence on balancing CCD optimization tech-
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niques via endpoint prioritization, our RL agent selects a group of violating endpoints that

should be prioritized for clock-path optimization using useful skew. Note that the total opti-

mization steps between the left flow (default) and the right flow (ours) are exactly the same.

Except for endpoint prioritization using margin (which is removed after useful skew), RL-

CCD is not taking any additional optimization step.

The outcome of our effort is a universal (i.e., generalize to any design and technol-

ogy) RL-based framework, which drastically improves the CCD optimization quality of an

industry-leading commercial tool. Our main contributions are as follows:

• We discover a new PD problem and demonstrate its importance. That is, finding a

balance between clock-path and data-path optimization through endpoint prioritiza-

tion in commercial tool flows so as to reach flow-wise globally optimal results.

• We present RL-CCD, the first-ever endpoint prioritization framework that focuses

on improving timing quality of CCD optimization in commercial tools. RL-CCD

achieves up to 64% TNS improvements (avg. 23%), and up to 66% number of

violating endpoints (NVE) reduction (avg.19%) on 19 industrial designs in advanced

technologies (5nm, 7nm, 12nm).

• RL-CCD facilitates transfer learning and self-supervised learning, which makes it

generalizable to any design or technology. A pre-trained RL-CCD agent can signifi-

cantly improve the optimization results with only few iterations of training.

7.2 Related Works

7.2.1 Predictive Useful Skew

Useful skew is a well-known technique that improves design timing by adjusting clock ar-

rival time. However, as pointed out in [113], computed skew adjustments often require redo

synthesis or placement to truly realize timing benefits. To break the chicken-egg problem
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(i.e., iterative back annotation of skew), the authors of [114] proposed a “predictive” useful

skew technique for one-pass timing optimization, where the TNS value can be improved

by up to 5%. In this work, since commercial PD tools have well-integrated useful skew

techniques into CCD optimization and reach considerable success, we are not focusing on

improving the native useful skew implementation in tools. Our specific focus is to balance

clock-path and data-path optimization techniques offered by commercial tools via endpoint

prioritization, which is an under-researched problem.

7.2.2 Learning-Driven Timing Prediction

Fast and accurate timing prediction methods are essential to improve design productivity.

Previous work [61] presented a tree-based technique to predict the time-consuming post-

route path-based timing analysis (PBA) results from pre-route graph-based analysis (GBA)

data. Another work [60] presented a timing engine inspired GNN-based framework for

slack and arrival time prediction on timing endpoints. Recently, the authors of [115] ex-

plored the use of Transformer [111] to perform gate sizing for timing optimization, where

a 1400x speed up is achieved in obtaining tool-accurate sizing moves on unseen netlists.

Nonetheless, in this work, we are not comparing RL-CCD with above methods as the focus

of RL is to improve optimization quality rather than prediction accuracy.

7.2.3 RL in EDA: Going Beyond Commercial Tool Quality

As the benefit of scaling saturates, leading-edge commercial tools are seeking more power-

ful methods for PPA optimization even at the cost of runtime. RL thus becomes a promising

solution as it does not require any labeled data and has been demonstrated to achieve never-

seen, high-quality optimization results in many fields [112]. In PD, the authors of [9] de-

veloped an RL agent for floorplanning, which generates superhuman floorplans that human

labor is not able to achieve. Another work [11] proposed RL-Sizer to tackle the VLSI gate

sizing problem, a traditional EDA optimization task. It is shown that RL-Sizer can outper-
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Figure 7.3: Illustration of endpoint fan-in cone overlapping. Note that the fan-in cone tracing of an
endpoint stops at its previous startpoints. The overlapping ratio is calculated as dividing the number
of overlapped cells by the total number of fan-in cone cells.

form the default sizing algorithms in a commercial tool although it adopts a fundamentally

different approach. With the above success stories, in this work, we decide to continue the

research of RL in PD, aiming at going beyond what state-of-the-art commercial tools are

able to achieve.

7.3 RL-CCD Algorithms

Given a globally placed netlist G = (V,E), the ultimate goal of RL-CCD is to select a

group of violating endpoints V ′ ∈ V to be prioritized for useful skew optimization, such

that the TNS value after the proceeding placement optimization steps can be optimized.

Note that V ′ is an empty set in the native implementation of the reference commercial tool.

In this work, we demonstrate that by selecting proper V ′, the achieved TNS value can be

drastically improved.

7.3.1 Overview and Reinforcement Learning Formulation

Figure 8.1 shows a high-level overview of our RL endpoint selection process. As afore-

mentioned, the goal of our RL agent, RL-CCD, is to select the endpoints (colored in red)

that should be prioritized for clock-path optimization, The key idea behind is to let the use-

ful skew engine “over-fix” the timing of the RL-selected endpoints so that the proceeding
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Figure 7.4: Illustration of RL-CCD endpoint selection process. At each time step t, RL-CCD
first leverages the proposed EP-GNN model to obtain endpoint embeddings F

(t)
EP = {Fe, ∀e ∈

EP}, which is considered as the RL state st. Then, based on the embeddings, a LSTM network
is utilized as an encoder to encode past actions {at−1} sequentially. Its final hidden vector ht is
taken as the query vector qt for the downstream attention-based decoder network. Using a self-
supervised attention mechanism [111], the decoder takes the query vector qt and current endpoint
embeddings F

(t)
EP as inputs and outputs a probability vector Pt ∈ R|EP | which is used to sample

one endpoint (i.e., action at) at current iteration. An overlapping calculation is followed to mask out
other endpoints whose fan-in cones have an overlapping ratio higher than a pre-defined threshold ρ
with the selected endpoint (Figure 7.3). The features (Table 7.1) are updated accordingly and the
loop continues until all endpoints are either selected or masked.

delay (logic) optimization techniques can spend less effort on them, which together result

in flow-wise optimal solutions. We understand another route may also work (i.e., useful

skew “under-fix”), however, we empirically observe that the proposed method (i.e., useful

skew “over-fix”) works significantly better.

Our endpoint prioritization problem is a combinatorial optimization problem. In this

work, we choose to formulate it as a Markov Decision Process (MDP) and use RL algo-

rithms to solve it. Below, we formally describe the formulation in key MDP terminologies:

• States (s): A state st represents the status of the endpoint set EP ∈ V in the netlist

graph G = (V,E), which is encoded by the proposed EP-GNN framework via fan-in

cone aggregation.

• Actions (a): An action at refers to the endpoint being selected.

• State Transition: By taking an action at in a state st, the probability distribution over
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the next state st+1.

• Reward (r): In our settings, the rewards are zero for intermediate actions {a1..aT−1}

except for the last action aT , which represents the final achieved TNS value after the

entire placement optimization, including CCD and other optimization techniques.

• Trajectory (τ ): A trajectory τ refers to a complete selection process from time step

t = 1 to t = T , where at each time step t, there is a corresponding state st, action at,

and reward rt pair denoted as (st, at, rt).

The ultimate goal of our RL agent, RL-CCD, is to obtain an optimal policy π that maxi-

mizes the expected return J at the end of a trajectory R(τ), which can be denoted as:

max
θ

J(πθ) = Eτ∼πθ
[R(τ)], (7.1)

where πθ denotes the policy parameterized by θ which represents all trainable parameters

of the RL-CCD framework.

7.3.2 Detailed Architecture

RL-CCD consists of three main components: (1) a GNN module that generates endpoint

embeddings, (2) a Long Short-Term Memory (LSTM) [116] network for past actions en-

coding, and (3) a self-supervised attention module to decode actions from probabilities.

Note that each of them is hardly independent of each other. Figure 7.4 depicts the details of

how they function together in one RL time step t, forming a circular selection loop. Below,

we describe each main component in detail:

Netlist Encoding using GNNs

GNNs have shown promising results in advancing many traditional PD tasks thanks to their

ability to perform effective graph representation learning [4]. In this work, we present EP-
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Table 7.1: Initial node features for EP-GNN endpoint encoding. Note that the first attribute “RL
masked” will be updated in each RL training iteration based on the selection of new endpoint and
overlapping calculation.

name # dim. description
RL masked 1 is selected or masked by RL-

CCD
locations 2 cell (x,y) location in global

placement
outNet cap 1 output net capacitance
load cap 1 sum of driving load capacitance
cell cap 1 cell input capacitance

cell power 2 cell internal power and leakage
power

net power 1 output net switching power
max toggle 1 maximum toggle rate at output

pin
wst slack 1 worst slack of paths through

cell
wst output slew 1 worst output transition
wst input slew 1 worst input transition

GNN, an endpoint-oriented GNN framework that focuses on generating node embeddings

of timing path endpoints through iterative neighborhood and fan-in cone aggregation.

Prior to the actual graph learning, we first construct GNN message passing edges using

the netlist transformation technique proposed in [4]. Then, for each node in the trans-

formed graph, we hand-craft a comprehensive list of features as shown in Table 7.1, which

include timing, power, and physical attributes. With the message passing edges and the

initial features defined, we leverage the proposed EP-GNN framework to obtain endpoint

embeddings.

Our EP-GNN framework has three graph convolution layers and one fully-connected

(FC) layer. All graph convolution layers have the same hidden dimension, and each of them

transforms the node features {fv,∀v ∈ V } from layer l − 1 to layer l as follows:

f l
v = σ

γf l−1
v ·Θproj + (1− γ) ·Θagg

 1

|N(v)|
∑

j∈N(v)

f l−1
j

 , (7.2)
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where σ denotes sigmoid function, N(v) denotes the local neighborhood of node v, γ de-

notes the trainable parameter that weighs the importance between the self-projection and

neighborhood-aggregation operations that are parameterized by Θproj and Θagg respec-

tively, which are both realized by neural networks. After completing the graph convolution,

a FC layer ΘFC is followed to compute the final representations of each endpoint e among

the endpoint set EP as:

fe = ΘFC

f l=3
e +

∑
j∈cone(e)

f l=3
j

 , (7.3)

where cone(e) denotes the fan-in cone of the endpoint e. In our implementation, the graph

convolution layer has a dimension of 32, and the final FC layer has a dimension of 16.

Hence, the generated endpoint embeddings are in 16 dimensions.

Since the masking mechanism based on overlapping calculation change some node

features (i.e., “RL masked” in Table 7.1) after each selection, the graph learning by EP-

GNN is conducted in every RL time step t, where the computed endpoint embeddings

F
(t)
EP = {f (t)

e ,∀e ∈ EP} are considered as the RL state st. These endpoint embed-

dings are taken as the inputs to the downstream LSTM-based encoder network and the

self-supervised attention module to decide the next endpoint to select (i.e., RL action at).

Past Actions Encoding using LSTM

Our encoder-decoder structure as shown in Figure 7.4 is inspired by the renowned Trans-

former architecture proposed in [111]. In this work, we customize the renowned architec-

ture to solve our specific problem by replacing the encoder with a LSTM network to encode

the past RL actions, and by simplifying the attention mechanism to focus on generating the

probability distribution of RL actions. Our effort significantly reduces the number of pa-

rameters required for training, making the framework fully applicable to industrial designs

with millions of instances.
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At each time step t, the goal of our LSTM-based encoder is to generate a query vector

qt for the proceeding decoder network by sequentially encoding the past actions taken in all

previous time steps (i.e., a1 to at−1). The rationale behind using LSTM [116], a renowned

sequence encoding network, for past actions encoding is that the decision of each selection

is made sequentially, and each of them should not be independent of each other. Hence,

at each training iteration, our LSTM network takes the EP-GNN node embeddings of the

previously selected endpoints {fat−1} and the previous hidden vector ht−1 as inputs, and

outputs a new hidden vector ht that is taken as the query vector qt to the decoder as:

it = σ(Wi · [ht−1, at−1] + bi), ft = σ(Wf · [ht−1, at−1] + bf ),

ot = σ(Wo · [ht−1, at−1] + bo), c̃t = tanh(Wc[ht−1, xt] + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t, ht = ot ⊙ tanh(ct), qt = ht (7.4)

where i, f , o, c the input gate, forget gate, output gate, cell gate, respectively, {W} denotes

the trainable weights. Note that the hidden vector ht is passed to both the decoder network

at the current time step t and the LSTM-encoder itself in the next time step t+ 1.

Current Action Decoding using Self-Supervised Attention

The goal of the decoder network is to generate a probability vector Pt ∈ R|EP |, where

each element P (i)
t represents the probability of an endpoint i being selected at the current

time step t. To efficiently consider all endpoints at once for the selection, in this work,

we leverage a self-supervised attention mechanism [111] to build the decoder network.

Inspired from from pointer networks [117], given a query vector qt and GNN embeddings

F
(t)
EP ∈ R|EP |x16 of all endpoints in the design {fe,∀e ∈ EP}, each element A(i)

t in the
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final attention vector At ∈ R|EP | is computed as:

A
(i)
t =


vT tanh

(
W1 · F (t)

EP +W2 · qt
)

if ep-i is valid

−∞ otherwise,
(7.5)

where v, W1, and W2 are the learning parameters of the self-supervised attention module,

and the condition “valid” denotes not being previously selected or masked. As aforemen-

tioned, the query vector qt is the hidden vector ht of the LSTM encoder network. Basically,

Equation 7.5 aims to find the weight matrices that jointly quantify the importance of all

endpoints EP in the design. With a higher attention score A
(i)
t , an endpoint i will have a

higher probability of being chosen at the current time step t.

To compute the probability P
(i)
t of each endpoint i being selected at time step t, we use

softmax to transform attention scores into probabilities as:

P
(i)
t = softmax(A

(i)
t ) =

eA
(i)
t∑

k A
(k)
t

,∀i ∈ EP. (7.6)

Note that for the endpoints that are not valid in current iteration, their probabilities of being

selected will be zero as they all have an attention score equal to −∞ from Equation 7.5.

Finally, based on the distribution Pt ∈ R|EP |, at each iteration t, we perform sampling

to select one endpoint for useful skew prioritization. Note that the entire attention-based

action decoding process is preformed in a self-supervised manner. That is, we are not using

any pre-defined label or guidance as many other supervised frameworks. Hence, RL-CCD

is generalizable to any design or technology as the entire selection process is purely based

on design characteristics.

7.3.3 Fan-in Cone Overlap Masking and the Rationale Behind

As shown in Figure 7.4, RL-CCD selects endpoints sequentially and the selection process

completes when all endpoints in the design are either masked or selected. Our masking
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Algorithm 11 RL-CCD training methodology. We use ρ = 0.3 as default.
Input: Netlist G = (V,E), Initial EP-GNN parameters θgnn, Initial LSTM encoder parameters

θLSTM , Initial attention-based decoder parameters θattn, Overlapping threshold ρ, Violating
endpoints EP

Output: RL-CCD parameters {θgnn, θLSTM , θattn}
1: t← 0 ▷ RL time step
2: Randomly initialize all training parameters {θgnn, θLSTM , θattn}
3: h0 ← 0, Fa0 ← 0 ▷ initialize LSTM inputs with zero vectors
4: selected endpoints← {}
5: while not all violating endpoints are masked or selected do
6: {FEP } ← EP-GNN encoding(G,EP |θgnn) ▷ Equations Equation 7.2, Equation 7.3
7: ht ← LSTM

(
Fat−1 , ht−1

∣∣ θLSTM ) ▷ at−1 is prior chosen ep
8: qt ← ht ▷ take LSTM hidden vector as attention query vector
9: Pt ← Attention(FEP , qt|θattn) ▷ Equations Equation 7.5, Equation 7.6

10: at ← sample one endpoint from Pt ▷ selected ep
11: G,EP ← overlap masking(G,EP, at, ρ) ▷ fan-in cone
12: selected endpoints← add at to selection set
13: t← t+ 1 ▷ total time steps will vary by design
14: Use margin to worsen timing of all selected endpoints to WNS
15: Run clock-path optimization using useful skew
16: Remove all added margins in Line 12, continue remaining place opt.
17: R← final TNS after completing entire placement optimization
18: REINFORCE update∇θπ

∑
tR · log π(at|{θgnn, θLSTM , θattn})

19: Repeat from Line 2 until TNS is optimized

strategy is as follows: at each time step t, we mask out the endpoints whose fan-in cones

have an overlapping ratio higher than a pre-defined threshold ρ with the selected endpoint

at. The ratio calculation is described in Figure 7.3. The rationale behind is two-fold: (1)

from design knowledge, successive endpoints are better not to be prioritized at the same

time, otherwise it may cause ping-pong effect on clock arrival adjustments [61], and (2) for

different designs, our strategy allows the RL agent to decide the total number of endpoints

to select by either aggressively selecting highly-overlapped endpoints to mask out the rest

faster or vice versa based on design characteristics.

7.3.4 Training Methodology

In this work, we leverage REINFORCE [112], a renowned policy gradient algorithm, to

train our RL-CCD framework. The objective of our RL agent is defined in Equation 7.1,
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which is to maximize the expected return J(πθ) of each trajectory τ , where π repre-

sents the entire RL-CCD framework and θ denotes all parameters involved. To maximize

the objective J , we perform gradient descent on the parameters of the entire framework

{θgnn, θLSTM , θattn}, and it is shown in [112] that the gradient of the objective J can be

derived as:

∇θJ(πθ) = Eτ∼πθ

[
T∑
t=0

R(τ)∇θ log πθ (at|st)

]
, (7.7)

where in our settings, R(τ) is the achieved TNS value after completing the entire placement

optimization. Equation 7.7 denotes that the gradient of the objective is equivalent to the

expected sum of the gradients of the log probabilities of the taken actions, weighted by the

achieved reward at the end of the trajectory.

Algorithm Algorithm 11 illustrates the end-to-end training process of our RL-CCD

framework. We first initialize the inputs of the LSTM encoder to zero vectors in Line 3.

Then, in Lines 5–13, we sequentially determine an action at, which denotes the endpoint

to be selected at each RL time step t. Note that an overlap masking is performed in Line

11 to mask out the endpoints whose fan-in cones have an overlapping ratio greater than

ρ = 0.3 with the selected endpoint. When the selection process completes, in Line 14, we

worsen the timing of all selected endpoints to design WNS before entering the useful skew

optimization (Line 15). These added margins are removed after the clock-path optimization

(Line 16). Finally, we run through the remaining placement optimization steps and obtain

the final achieved TNS value in Line 17, which is taken as the RL reward. With the reward,

all parameters are jointly updated in Line 18, and the whole process repeats until the reward

(TNS) is optimized.

7.4 Experimental Results

In the experiments, we validate RL-CCD on 19 commercial designs (renamed due to con-

fidentiality) in advanced technologies 5 − 12nm. RL-CCD is integrated with an industry-
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Figure 7.5: Histogram of clock arrival adjustments on block11 (180K cells). Each pair of juxtaposed
color bars has the same range of arrival values.

leading commercial PD tool (name will be disclosed upon acceptance). The goal of RL-

CCD is to find an optimal balance between clock-path and data-path (i.e., CCD) optimiza-

tion through endpoint prioritization, so as to optimize design timing in terms of TNS. To

perform fair and apple-to-apple comparison as shown in Figure 7.1, we use the same seed

in each run to completely remove non-deterministic run-to-run variation. Also, RL-CCD

does not leverage any additional optimization step other than the original ones used in the

default tool flow (i.e., exact same recipe is used for both RL-CCD and the tool’s native im-

plementation). Finally, the runtime of both RL-CCD and the commercial tool is measured

on the same farm machine without GPU support. RL-CCD is implemented using Python

and TCL (no internal C++ code needed). Below, we clearly demonstrate that RL-CCD

significantly improves the optimization quality of the reference commercial tool.

7.4.1 Single-Design Optimization Results

Table 7.2 demonstrates the optimization results achieved by training Algorithm 11 from

scratch. Both reference tool and RL-CCD take the same global placements as inputs, where

their attributes are reported in the left-most column. In the middle and right-most columns,

it is shown that RL-CCD consistently outperforms the default tool flow (without endpoint

prioritization) across all benchmarks, where we observe significant timing improvements
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in TNS by up to 64.4% (with an average improvement of 24%), and in NVE by up to 66.5%

(with an average improvement of 19.4%). Figure 7.5 further demonstrates the prioritization

impact of RL-CCD in terms of clock arrival adjustments on clock pins. It is shown that by

intelligently prioritizing 74 critical endpoints out of the entire design (block11 with 180K

cells), RL-CCD is able to efficiently affect the behaviour of the underlying useful skew

engine to perform better optimization.

We believe the significant timing improvements achieved are not coming from the sac-

rifice of power, because RL-CCD is not degrading the power quality in general as reported

by the sophisticated reference tool. In fact, although power is not an explicit objective, RL-

CCD still achieves an average of 0.2% improvement via intelligent endpoint prioritization.

Nonetheless, as different skewing solutions may impact downstream clock networks, we

agree that the most accurate approach to justify power impact is to run through the entire

PD flow, which, however, would easily take weeks to accomplish with our commercial

benchmarks. Hence, in this work, we specifically focus on improving the CCD optimiza-

tion quality at the placement stage to demonstrate the effectiveness of the proposed RL

framework.

Finally, the training of RL-CCD is achieved using multi-processing on CPU-only farm

machines. Particularly, for each design, we launch 8 parallel processes to train the frame-

work parameters. The training is terminated when the TNS value no longer improves in 3

consecutive iterations. For both reference tool and RL-CCD, we enable 16 threads to per-

form the entire placement optimization, including CCD and other optimization techniques.

We understand that the runtime of RL-CCD may be prohibitive for other industrial designs

in the real-world. Hence, we leverage transfer learning to further improve it as follows.

7.4.2 Transfer Learning on Unseen Designs

The key idea of transfer learning is to reuse pre-trained parameters in unseen domains, so

that a framework that is trained upon certain samples can reach faster convergence in the
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Figure 7.6: Transfer learning on block19 (922K cells) by using a pre-trained EP-GNN model, where
comparable optimization results is achieved in a much faster convergence rate.

unseen ones. In this work, RL-CCD facilitates transfer learning by reusing the proposed

EP-GNN model which is responsible for generating endpoint embeddings. Particularly,

we first use the same EP-GNN model to perform RL training on different designs in the

same technology (note that the encoder-decoder frameworks are distinct as the number of

available endpoints varies by design). Then, after the training is completed, we load the

weights and biases of the pre-trained EP-GNN model (with a new encoder-decoder frame-

work) to perform RL training (Algorithm 11) on “unseen” designs. Figure 7.6 shows the

transfer learning results on block19 (922K cells). It is shown that with transfer learning,

RL-CCD can quickly converge to comparable optimization results compared with training

the entire framework (i.e., EP-GNN + encoder-decoder) from scratch as in Table 7.2. The

key rationale behind our transfer learning approach is that GNN netlist encoding should

be universal (at least in the same technology). Hence, starting from more accurate embed-

dings, RL-CCD should be able to reach optimized solutions in faster convergence, which

is proved in Figure 7.6.

7.4.3 Discussion: Why Does RL-CCD Work?

The development of RL-CCD is strongly motivated by the fact that commercial tools are

ignoring endpoint sensitivity “across different optimization strategies”. They adopt the
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same sequence of optimization steps to fix timing, however, they fail to make use of the

fact that different endpoints react to various strategies distinctly (e.g., some are easier fixed

from clock-path, while others, datapath). This is the key information that RL-CCD is

learning, which eventually brings tremendous success. Finally, we attribute part of our

success to the proposed fan-in cone overlap masking technique, which efficiently prunes

out the action space, while allowing the RL agent to decide the total number of endpoints

to pick subject to design characteristics.

7.5 Conclusion

In this chapter, we discover a new problem of balancing clock-path and data-path optimiza-

tion in commercial tool flows, and solve it by using endpoint prioritization with RL. The

proposed framework, RL-CCD, significantly improves the timing optimization quality of

an industry-leading commercial tool across 19 commercial benchmarks in advanced tech-

nologies 5− 12nm. This work shall demonstrate the importance of the observed problem,

and the strength of using RL algorithms to solve it.
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CHAPTER 8

ECO-GNN: SIGNOFF POWER PREDICTION USING GRAPH NEURAL

NETWORKS WITH SUBGRAPH APPROXIMATION

8.1 Background and Motivation

Handheld and wearable devices are significantly proliferating in today’s semiconductor

markets and demand extremely low power dissipation while operating at voltages as low

as 0.45V . However, in advanced technology nodes, power optimization has become much

more complicated than optimizations on other design metrics such as wirelength and delay,

which is due to the dominance of leakage power and its complicated relation with the

dynamic power [118]. It is well known that leakage power increases exponentially with the

scaling of threshold voltage (Vth). Therefore, low-voltage design in advanced technology

nodes such as 7nm, 5nm and below require design implementation tools to aggressively

optimize leakage power at various stages of commercial physical design (PD) flows, which

are often achieved by Engineering Change Orders (ECOs) that involve gate-sizing and Vth-

assignment. In this chapter, we specifically focus on improving the power ECO at the

signoff stage, which is more time-consuming than the power optimizations at other PD

stages because it requires a precise calculation of the delay budget.

In modern chip design flows, ECOs are performed extensively from synthesis to signoff

with an aim to optimize power, performance and area (PPA) metrics. Every top semicon-

ductor design company runs multiple iterations of signoff ECO to achieve the target PPA.

However, in advanced technology nodes, power optimization has become much more com-

plicated than optimizations on other design metrics such as wirelength and timing, which

is mainly due to the dominance of leakage power and its complicated relation with the

dynamic power [118]. Even though design implementation tools have developed various
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power optimization techniques throughout the years, designers still heavily rely on signoff

tools to recover power at the signoff stage using ECO change-lists. Nonetheless, since

power ECO in signoff tools requires accurate timing budget calculation (e.g., path-based

timing analysis) during the optimization, it is extremely time-consuming and thus bottle-

necks the chip design process. Therefore, in this work, we aim to develop a learning-based

framework, ECO-GNN, that has the ability to perform signoff power prediction to improve

the chip design turn-around time.

Gate sizing and Vth-assignment are the two popular techniques to optimize design

power consumption. However, since gate-sizing requires further legalization and routing to

validate the design after the optimization, Vth-assignment is the preferred approach during

signoff ECO as it causes minimum disturbance to the overall placed and routed layout. In

Synopsys PrimeTime, Vth-assignments during signoff ECO not only optimize the leakage

power, but also reduce the dynamic power simultaneously [119]. Nonetheless, this opti-

mization conducted by PrimeTime is time-consuming and the tool itself remains a black-

box for designers. Therefore, in this work, our goal is to develop a fast, explainable signoff

power optimization framework that has the ability to perform commercial quality signoff

power optimization instantly as well as the facility to explain the achieved optimization

results.

Vth-assignment refers to assigning an appropriate Vth type for each design instance

from a set of standard cell libraries to perform power optimization without violating timing

constraints [120]. Note that for a given design instance, all the available Vth types have

the same footprint, and the total number of the available types is limited to the discrete

values of threshold voltages specified by the technology. This optimization problem is

proven to be NP-hard [102], which means the optimality of a sizing solution is hard to be

demonstrated and implies great opportunities to employ machine learning techniques for

solving this problem.

Modern commercial signoff tools perform signoff power ECO based on sophisticated
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in-house timing models. The models precisely calculate the timing budget for every design

instance to help the signoff engines conduct timing-constrained power optimization. The

optimization results achieved by these tools are considered as golden QoR in the industry,

however, there are two significant drawbacks in the current industrial signoff flows, namely:

• Extremely long runtime. A signoff power ECO run often takes several days on

an industrial scale design and requires human-in-the-loop for enhancement, which

drastically bottlenecks the chip development process.

• Obscure improvement. The power improvement is unknown in advance. Designers

tend to run multiple optimization configurations in parallel in order to select the best

one in the end, which consumes significant amount of computing resources.

• Partial netlist update. In many real-world scenarios, designers would only want

to perform the signoff power optimization on a few selected instances with positive

slack margin in order to prevent severe timing degradation. However, the improve-

ments that can be generated from these instances are often unclear until after spend-

ing significant amount of time in ECO iterations.

In this work, we overcome the above issues by presenting ECO-GNN, which is a graph-

learning-based framework that leverages graph neural networks (GNNs) to perform Vth-

assignments for fast signoff power optimization [12]. Specifically, we present two ap-

proaches to overcome the issues. First, we present a classification-based technique to pre-

dict the final Vth-assignment of each design instance that will be made by PrimeTime during

the ECO using the information of the entire netlist. Second, we further propose a “subgraph

approximation” technique to demonstrate the ability of our framework on predicting the ac-

tual power savings of targeted design instances. In summary, after performing supervised

learning on several designs with the assignment ground-truths given by Synopsys Prime-

Time, our framework has the ability to perform tool-accurate signoff power optimization

on unseen designs instantly without degrading the performance or introducing new design
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rule violations (DRVs). To validate our framework, we consider Synopsys PrimeTime as

our baseline, and demonstrate that ECO-GNN achieves comparable optimization results

with up to 14X runtime improvement on the ISPD-2012 benchmarks [43] and other real-

world designs, including a RISC-V based multi-core system.

The goal of this work is to provide designers a fast and accurate signoff power opti-

mization framework with high fidelity as the industry-standard commercial tool, Synopsys

PrimeTime. The key contributions of this chapter are summarized as follows:

1. Our first major finding is that ECO-GNN learns the behaviour of Synopsys Prime-

Time effectively and generates comparable optimization results at inference time.

2. Our second major finding is that ECO-GNN generally shows better power saving

but worse timing saving compared with Synopsys PrimeTime. This indicates that

ECO-GNN algorithms are more effective in power optimization.

3. Unlike commercial tools or previous works (see section 8.2) that require multiple

iterations to assign appropriate Vth types, our framework ECO-GNN only needs one-

pass to determine the final Vth type for every design instance.

4. Rather than treating our learning-driven framework as a blackbox, we implement a

GNN-based explanation method [121] to quantitatively interpret the Vth-assignment

predictions made by our framework. Given a target node, the method identifies the in-

fluential local sub-graph that has high contribution to its Vth-assignment. We believe

this interpretability would help designers understand the complicated characteristics

of discrete sizing during signoff ECO.

5. After demonstrating the effectiveness of using GNNs to model using whole netlist

information, we propose a subgraph approximation technique to speed up the training

and inferencing time of the proposed GNN model using local graph structures of

targeted instances without sacrificing the accuracy.
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6. In this chapter, we explore both classification and regression approaches to predict

ECO power optimization results, with an ultimate goal of helping designers reduce

the chip design turn-around time. We demonstrate that the proposed framework can

not only predict the end Vth-assignment of each design instance with high F1-score,

but also deliver accurate estimations of the power saving from the optimization.

7. We demonstrate that the proposed subgraph approximation technique can not only be

utilized to solve the regression problem of predicting actual power saving, but also be

leveraged to improve the classification accuracy of the prediction of Vth-assignment.

8. To the best of our knowledge, this is the first work that formulates signoff power

optimization problem into a graph learning problem, and validates the proposed

framework using an industrial-leading commercial tool under an advanced technol-

ogy node.

8.2 Related Works

The literature in Vth-assignment for power optimization has been researched extensively

throughout the past decade. Early works mainly focus on using analytical and heuristic (i.e.,

non-analytical) methods to improve the optimization, however, these methods demonstrate

poor generalization results across different technologies and designs. Recently, ML-based

approaches emerge as promising alternatives to tackle the problem, which often demon-

strate better optimization results in much lesser runtime. In the following list, we summa-

rize previous works into these three categories:

• Non-Analytical Methods: First, we introduce the heuristic-based algorithms. This

category contains methods that leverage greedy-based [122, 120, 123], simulated

annealing [124, 125], or dynamic programming [126, 127] algorithms to find feasible

solutions. However, there are a few major drawbacks in these algorithms. First, these

algorithms often demonstrate poor convergence results, which is because they often
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assume the design global optimum of power optimization can be achieved by iterative

finding the local optimum of cell-based power saving. Second, these approaches are

highly sensitive to heuristics and are often design or technology specific. Therefore,

they are hard to be extended to never-seen designs or various technologies.

• Analytical Methods: Another popular category is the analytical-based approach. Al-

gorithms in this category often formulate the power optimization problem into a con-

vex optimization [128, 129] or a Lagrangian optimization problem [130, 127, 131,

109] whose objective is to maximize the power reduction through discrete sizing

under certain timing constraints. These methods are considered to yield better and

more reliable optimization results than the non-analytical methods. However, solving

an optimization problem using numerical approaches is extremely time-consuming.

Given that a real-world design can easily introduce tens of thousands of variables,

these approaches are limited for real-world usage.

• Machine Learning (ML): It is widely acknowledged that ML has emerged as a promis-

ing approach to solve the Vth-assignment problem with huge benefits in runtime sav-

ing, which is critical for productivity. The authors of [132] leverage linear regression

to find feasible solutions based on path slack estimation. Another work [118] uti-

lizes support vector machine (SVM) with lazy timing analysis to further enhance the

optimization quality. However, these studies neglect that the final gate-type of each

design instance highly depends on the characteristics of its neighbors. Therefore,

they are not sufficient to perform the power optimization accurately without spend-

ing significant amount of time in feature engineering.

To leverage the netlist graph information in solving the power optimization prob-

lem, recently, the authors of [13, 133, 134, 12] propose graph learning-based frame-

works to predict the leakage power saving of each design instance based on its local

neighborhood information. These approaches demonstrate significant accuracy im-
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provement compared with the above traditional ML-based approach while achieving

similar runtime saving. Hence, it is proven that the sizing result of a targeted cell

highly depends on the features of its neighbors. However, these GNN-based litera-

ture neglect the fact that the receptive field of their GNN models are only subject to

the number of layers of the graph convolutional layers, which is less than 3 across

all previous works. That is, if a GNN model has k convolutional layers, then the

power saving prediction of an instance will only depend on the features within its

local k-hop neighborhood structure and nothing beyond. In other words, the final

gate-sizing prediction of a design instance will only depend on its local subgraph.

Unlike previous works that rely on full-graph approaches to predict sizing solutions,

in this chapter, we present a subgraph approximation technique find the solutions in

much faster runtime and higher accuracy. Details of the proposed methodology will

be discussed in section 8.6.

Finally, besides the specific shortcomings raised in each of the category above, there

exist several common drawbacks in most of the previous works. First, the timing models

they leverage are over-simplified, which does not reflect real-world scenarios. In this chap-

ter, we think the validation from commercial signoff engine is critical to the application

of the proposed models. Second, the original ISPD-2012 benchmarks [43] that most of

them leverage for evaluations are problematic. We analyze the benchmarks using Synopsys

PrimeTime, and discover that the original worst negative slack values across all the designs

range from −1ns to −8ns, where all the target frequencies are less than 1GHz. This sim-

ple fact makes previous works unrealistic, because the power optimization is meaningful

only if the optimized designs are in signoff quality. Finally, none of the previous works

interpret the optimization results achieved by their methods, where they all consider their

optimization engines/models as blackboxes.
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Figure 8.1: High-level view of our ECO-GNN framework, (a) input netlist, (b) graph representation
learning, (c) Vth prediction. Note that (b) and (c) visualize the original netlist in a clique-based
representation.

8.3 Designing of Experiments

Inspired from the limitations and drawbacks of the previous works, in this chapter, we con-

sider Synopsys PrimeTime, a leading industrial signoff tool, as our baseline and propose

ECO-GNN, a transferable graph-learning-based signoff power optimization framework that

can be easily integrated with any modern PD flow. To provide fair and meaningful compar-

isons with prior works, we re-synthesize the ISPD-2012 benchmarks using TSMC 28nm

technology node and demonstrate that our framework ECO-GNN performs commercial-

quality signoff power optimization instantly on these designs. Furthermore, we leverage a

GNN-based explanation method [121] to interpret the Vth-assignments made by our frame-

work to ensure that our framework is reliable.

8.4 Overview of ECO-GNN Framework

Recently, GNNs have revolutionized many research areas, spanning from biology, social

science, chemistry, and many others [37]. They perform effective graph representation
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learning, where the goal is to construct meaningful node embeddings that accurately char-

acterize the nodes in the graph. In general, GNNs follow a message passing scheme, where

a feature vector of a node can be considered as a message being iteratively transformed and

passed to its neighboring nodes. At the end of the graph learning process, the initial node

features are transformed into better representations that can be utilized in downstream tasks

such as link prediction, node classification, and clustering [5].

Figure 8.1 presents a high-level view of our framework ECO-GNN. Since VLSI netlists

can be naturally represented as hypergraphs, in this chapter, we leverage a specific variant

of GNNs named GraphSAGE [37] to conduct graph representation learning directly on

the netlist graphs. After getting the learned representations, we utilize a softmax-based

classification model to predict the Vth-assignments that optimize the signoff power. Note

that the entire learning is an end-to-end process. The classification loss that represents the

cross-entropy between our predictions and the ground-truths from Synopsys PrimeTime is

utilized to update the parameters inside GNN and the classification model through gradient

descent.

The detailed learning process shown in Figure 8.1 works as follows. Given an input

netlist as shown in Figure 8.1(a), to determine the Vth-assignment of the target cell (red-

colored), we first leverage a GNN to sample and aggregate the features from its neighboring

cells as shown in Figure 8.1(b). Then, we predict its Vth-assignment based on the aggre-

gated representation vector as shown in Figure 8.1(c).

8.4.1 Our Objectives: Regression and Classification

The goal of this work is to construct a “general framework” that achieves commercial-

quality signoff power optimization results at inference time (the testing time of the model).

To achieve this goal, we explore two modeling approaches to solve different categories of

problems: the regression and the classification problems. In this chapter, a regression-based

model refers to the framework that predicts the “power difference” before and after ECO
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Figure 8.2: Initial feature construction of cell d, where its fan-ins {a, b}, siblings {c, e}, and fan-
outs {f, g} are taken into consideration.

optimization, where a classification-based model refers to the framework that generates the

sizing results (i.e., assigning a new Vth-type for each design instance). These two types of

problems are inherently difference and subject to various real-world applications depending

on the use cases. In section 8.6, we present a “subgraph approximation” technique to solve

the regression problem, and leverage a node representation learning-based technique to

solve the classification problem. Finally, note that our framework does not assume any

pre-defined netlist structure, so it is generalizable to every design. After learning on a

few designs, it has the facility to determine the Vth-assignments on the unseen ones that

optimize the signoff power.

8.5 Design of Experiments

In this work, we follow the experimental setting of the ISPD-2012 power optimization

contest as many previous works, where all the cells in a given design are initially in the

lowest Vth type (tightest timing constraint). As mentioned in section 8.2, we re-synthesize

the ISPD benchmarks using TSMC 28nm technology node to ensure all the designs are in

signoff performance before conducting the power optimization through Vth-assignments.

8.5.1 Problem Formulation

Given a netlist G = (V,E), where V denotes the instances in the design, and E represents

the logical connections. Assume that for each instance v ∈ V , there are n Vth-assignments

available from the standard cell libraries. Let xj
v = 1 if instance v is realized with j-th
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Table 8.1: 20 initial node features used in our GNN. We obtain them using an initial PPA analysis.

type # dim. description
max output slew 1 max transition of output pin
max input slew 1 max transition of input pin(s)
wst output slack 1 worst slack of output pin
wst input slack 1 worst slack of input pin(s)
output cap limit 4 max driving cap of output pin per

Vth

max leakage 4 max leakage per Vth

tot input cap 1 sum of input pin cap
tot fanout cap 1 output net cap + input pin cap of fan-

outs
tot fanout slack 1 sum of worst slack of fan-outs
wst fanout slack 1 worst. slack of fan-outs
avg fanin cap 1 average cap of fan-ins
wst fanin slack 1 worst slack of fan-ins
tot sibling cap 1 sum of input pin cap of siblings
tot sibling slack 1 sum of worst slack of siblings

Vth choice in the libraries and xj
v = 0 otherwise. We formally define the signoff power

optimization problem as follow:

minimize
|V |∑
i=1

n∑
j=1

P (vji )x
j
vi
, (8.1)

where P (vji ) represents the signoff power of instance vi when j-th choice of Vth-assignment

is realized such that the worst negative slack (WNS) along with the total negative slack

(TNS) do not degrade after the assignments, and no new DRVs are added.

8.5.2 Initial Node Features

Before leveraging GNN to conduct graph learning, we define an initial feature vector for

each design instance as shown in Table 9.1. The term “initial” indicates that during the

graph learning process, these original features are transformed to other representations

that are more beneficial for the classification model to determine the appropriate Vth-

assignments that optimzie signoff power.

Features in Table 9.1 are extracted from technology files, SPEF files, and timing reports.
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Figure 8.3: Illustration of our ECO-GNN learning process. The inputs include a netlist graph
represented in an adjacency matrix A and its initial features h0v defined in Table 9.1. First, we
perform graph learning to generate the node embeddings that represent the netlist better than the
initial features. Figure Figure 8.4 provides details of the GNN structure used. Next, with the learned
node embeddings, we conduct softmax-based classification to determine the final Vth-assignment
that optimizes the signoff power.

These 20 features are chosen based on domain knowledge and parameter sweeping experi-

ments. Most of them are related to timing, because during the signoff power optimization,

an instance’s Vth-assignment changes only if the WNS and TNS do not degrade, and no DRV

is introduced. Figure 8.2 further illustrates the feature construction process. To determine

the initial features of a target instance d, we take the information of its fanins (instances

{a, b}), siblings (instances {c, e}), and fanouts (instances {f, g}) into account. However,

these manually engineered features are not sufficient to predict the Vth-assignments that

optimize the design signoff power. To get better node representations, we leverage GNNs

to perform the graph representation learning.

8.6 ECO-GNN Algorithm

8.6.1 Overview of the Algorithm

Figure 8.3 shows a detailed illustration of the learning process in ECO-GNN framework.

Given a netlist graph G = (V,E), our framework first takes the initial node features defined

in Table 9.1 as inputs. Then, it leverages GraphSAGE [37], a variant of GNNs to perform
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Table 8.2: Dimension of matrices used in our work (see Figure Figure 8.3). v denotes the number
of gates in the circuit.

matrix meaning dimension
A adjacency matrix of the netlist graph v × v
h0v initial node features from PPA analysis v × 20
hkv node embedding extracted by GNN v × 128
P Vth-assignments from softmax function v × 4

graph learning. The goal of graph learning is to obtain the node representations that better

capture the underlying characteristics of the given netlist than the intial features. After

graph learning, the learned representation vector of each node v ∈ V is projected to a logit

vector Pv through a softmax-based classification model, which is a neural network. The

vector Pv represents the probability distribution of node v belonging to different Vth flavors

that are available in the standard cell libraries.

Table Table 8.2 shows the size of matrices used in our framework. The adjacency matrix

A represents the logical connections in the netlist, and the initial node features {h0
v ∀v ∈ V }

are the cell attributes shown in Table 9.1. Note that the whole learning process, from graph

learning to Vth classification, is end-to-end differentiable. Therefore, the parameters in the

GNN and classification modules can be updated simultaneously using gradient descent.

8.6.2 GNN: Feature Aggregator

The goal of graph learning is to construct accurate node embeddings through effective fea-

ture aggregation. GNN functions as a feature aggregator that transforms the initial features

h0
v for each node v ∈ V into better representations hK

v by sampling and aggregating the

features within v’s K-hop neighborhood. This aggregation process is performed iteratively,

where for each hop k ∈ {1, ..., K}, a dedicated neural network (NN) Wk is developed to

perform the transformation. These K dedicated NNs together form the GNN module in our

framework as shown in Figure 8.4. Since the number of neighbors of a node scales expo-

nentially as the hop-count increases, we fix the sampling size sk at each hop k to improve

the computational efficiency and to prevent overfitting.
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Figure 8.4: Our GNN architecture that maps the initial node features (20) into learned embedding
features (128).

Following the graph learning approach presented in [37], in this work, for each node

v ∈ V , we obtain its representation vector hk
v at level1 k by aggregating its representation

hk−1
v at the previous level with the features of its neighbors Nk(v) sampled at k-hop as

hk−1
Nk(v)

= maxpool
(
{Wagg

k hk−1
u , ∀u ∈ Nk(v)}

)
,

hk
v = sigmoid

(
Wproj

k · concat[hk−1
v , hk−1

Nv(v)
]
)
,

(8.2)

where W agg
k and W proj

k denote the aggregation and projection matrices respectively, which

together form the weights of the NN dedicated in sampling and aggregating features at

the k-hop neighborhood. In the implementation, we set k ∈ {1, 2, 3}, and each NN

(W1,W2,W3) in the GNN module has an output dimension of 128. Note that the num-

bers 128 and 3 are chosen empirically based on parameter sweeping experiments.2

In summary, the initial feature vector h0
v for each node v ∈ V is transformed to hK=3

v

in R128. The GNN model utilized in our framework can be considered as a “node filter”,

because it iterates through every design instance to find better node representations that can

1Level is corresponding to the hop-count. When aggregating the features of a node at level k, the infor-
mation within its k-hop neighborhood is considered.

2We varied them while monitoring the overall power saving vs. training time tradeoff. Due to the page
limit, we omit the related experimental results. But, a general trend shows that the higher the values are, the
more the power saving is at the cost of training time. But, the power saving saturates after some point.
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be utilized in the latter classification task of determining the Vth-assignments that optimize

the design signoff power.

8.6.3 Loss Function

After leveraging GNN to perform graph representation learning, we take the learned node

embeddings {hK
v ∈ R128,∀v ∈ V } as the inputs of our softmax-based classification model,

which is a neural network, in order to determine the appropriate Vth-assignment for each

design instance. As shown in Figure 8.3, the end of the classification model connects to

a softmax function that outputs P , which is a |V | × n matrix denoting the probability of

each node v belonging to n different Vth flavors, where ∀v ∈ V ,
∑n

c=1 Pvc = 1. Note

that n is limited to the discrete Vth values specified by the technology. The technology we

utilize in this work is TSMC 28nm which has n = 4. A novelty of this work is that we

map the discrete Vth-sizing problem into a multi-class classification problem, where the

classification loss function is defined as:

L = −
|V |∑
i=1

n∑
c=1

Yiclog(Pic), (8.3)

where Y ∈ R|V |×n denotes the Vth-assignments made by the Synopsys PrimeTime ECO

engine, which are taken as ground-truths. Essentially, our loss function (Equation 8.3)

represents the cross-entropy between Y and P distributions. By minimizing Equation 8.3,

we can update the parameters in the entire ECO-GNN framework.

8.6.4 Training Methodology

The training process of ECO-GNN is supervised, where we use the Vth-assignments ob-

tained from Synopsys PrimeTime ECO engine as ground-truths, and minimize a super-

vised loss function to update the GNN parameters. The main reason we discard traditional

machine learning techniques as the ones used in previous works [118, 132] is that these
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Algorithm 12 ECO-GNN training methodology.
We use default values of K = 3, α = 0.001, s1 = 25, s2 = 20, s3 = 15, β1 = 0.9, β2 = 0.999.
Input: (1) G(V,E): netlist graph, (2) A|V |×|V |: adjacency matrix, (3) Y : tool optimization results,

(4) n: number of available Vth flavors, (5) {h0v,∀v ∈ V }: initial features. (6) K: depth
of aggregation level, (7) {sk,∀k ∈ {1, ...,K}}: sampling size at k-hop neighborhood, (8)
{Wk,∀k ∈ {1, ...,K}}: parameters of NN at hop k, (9) α: learning rate, (10) {β1, β2}: Adam
parameters.

Output: P|V |: Vth-assignment prediction of each instance.
1: while {Wk} do not converge do
2: h0v ←

h0
v

∥h0
v∥2

,∀v ∈ V ▷ initial features from Table 9.1
3: for k ← 1 to K do
4: for v ∈ V do ▷ sample and aggregate by Equation 9.1
5: Nk(v)← Sample sk neighbors at k-hop
6: hkNk(v)

= maxpool
(
{Wagg

k hk−1
u , ∀u ∈ Nk(v)}

)
7: hkv = sigmoid

(
Wproj

k · concat[hk−1
v , hkNv(v)

]
)

8: hkv ←
hk
v

∥hk
v∥2

, ∀v ∈ V ▷ reduce gradient oscillation

9: for v ∈ V ′ do ▷ minimize Equation 8.3
10: pv ← softmax(WNN

k · fK
v )

11: gv ← ∇θ[
∑n

c=1 Yiclog(pvc)]
12: {Wk} ← Adam(α, {Wk}, gv, β1, β2)

techniques fail to consider the neighborhood information of an instance while determining

the Vth-assignment, where the assignment certainly depends on the neighborhood structure

such as the impacts of the propagated arrivals and transition effects.

Algorithm 12 summarizes the training process. Lines 3–10 illustrate the sampling and

aggregating process in graph learning, where for each node v ∈ V , we aggregate its neigh-

boring features at each hop k ∈ K through Equation 9.1. Note that before performing each

aggregation, we normalize the node representations at previous level as shown in Line 2

and Line 9. This normalization accelerates the overall training process by reducing the os-

cillation of gradient descent. Based on the learned representation vectors, in Lines 11–15

we calculate the cross-entropy loss (Equation 8.3) from the softmax-based classification

model, and leverage a gradient descent optimizer named Adam [38] to update the parame-

ters in the framework by minimizing the loss function. The overall training process takes

about 12 hours on the 9 training designs shown in Table 9.2 with a machine that has a 2.40

GHz CPU and a NVIDIA RTX 2070 graphic cards with 16 GB memory.
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8.6.5 Complexity Analysis

The time complexity of ECO-GNN is linear with respect to the netlist size. Since the sam-

pling size (sk) at each aggregation level is constrained, GNN modules spend constant time

in visiting every design instance and collecting features from its neighbors. Due to the

large sparsity of the netlist adjacency matrix, we realize the adjacency matrix A shown in

Table 8.2 in the compressed sparse row (CSR) format [135]. Therefore, the space com-

plexity of ECO-GNN is pseudo-linear rather than quadratic with respect to the netlist size

because it is mainly constrained by the number of nets of the underlying design. As shown

in Algorithm 12, our framework conducts instance-based learning, where each instance

(cell) in the design can be considered as a data point. Given a netlist G = (V,E), There-

fore, after learning on the 9 training designs presented in Table 9.2 which in total contain

millions of data points, our framework achieves remarkable optimization results.

8.6.6 Handling Unseen Designs

A highlight of this work is that a trained ECO-GNN framework has the ability to perform

commercial-quality signoff power optimization on unseen designs at inference time. This

capability is independent of the netlist structure or the netlist size, because to determine

the Vth-assignments that optimize the signoff power in an unseen design, we only need to

take the initial features and the adjacency matrix as inputs, and ECO-GNN will determine

the appropriate Vth-assignments through constant time inferencing. Unlike PrimeTime and

previous works that require multiple iterations to determine the final Vth-assignments, our

framework is a one-pass tool that generates tool-accurate results instantly.

8.6.7 A Regression Perspective: Subgraph Approximation for Fast Power Prediction

Up to now, we have presented a complete graph learning-based framework that can predict

the final Vth-assignment of each design instance without actually running signoff power

ECO which is highly time-consuming. Specifically, we cast the ECO signoff power op-
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timization prediction as a classification problem, where we present a GNN-based model

that classifies each design instance to a specific Vth-type. Nonetheless, in many real-world

scenarios, designers are seeking for a direct estimate of the actual power saving value (i.e.,

regression) before running any optimization or performing any netlist update using ECO

change-lists. In addition, on certain occasions, designers would only want to conduct the

ECO power optimization on partial netlist rather than the whole netlist. For instance, in

modern industrial design flows, it is common to solely perform the signoff power opti-

mization on the design instances whose slack values are larger than a pre-defined threshold,

which is because the ECO changes made on these instances (with large positive slack val-

ues) will introduce the least timing impact to the overall placed and routed design. There-

fore, in this section, we will present a new methodology that meets these needs of designers.

Although we can apply Algorithm 12 to overcome the above problem of partially op-

timizing the netlist by performing a full-graph (i.e., full-netlist) inference on every design

instance, this computation will introduce excessively unnecessary computational resources

and runtime given that the optimization is targeted on a few instances. To overcome this

issue, we propose a new methodology named “subgraph appoximation”, where instead of

using the information of the entire netlist to predict the final gate types of a few instances,

we leverage GNN to encode the features from their local subgraphs.

Given a target instance v ∈ G, the subgraph sGv of this instance v refers to its local

three-hop neighborhood graph structure of the underlying netlist. For each selected in-

stances V that meet the slack threshold for signoff power optimization, we leverage GNNs

to perform subgraph encoding, where the goal is to construct a meaningful graph-level

feature representations that capture the characteristics of the targeted instances. Note that

the philosophy behind this subgraph-based approach is fundamentally different from the

previous approach. The current approach focuses on learning “graph-level” vectors that

characterize the information related to optimizing single design instance, where the previ-

ous approach (i.e., Algorithm 12) dedicates on learning the “node-level” embeddings that
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Figure 8.5: Overview of subgraph approximation for power prediction of target instance (red-
colored). Target nodes refer to the design instances that are selected for partial netlist update.

capture the interaction among all instances in the netlist. Based on the initial node fea-

tures defined in Table 9.1, we first leverage Equation 9.1 to transform the initial features to

high-dimensional representations. Then, for each node v in a subgraph sG, we obtain the

graph-level vector s through

s = concat
[
mean pool

({
hk=K
v

})
, feat(v)

]
, (8.4)

where feat(v) denotes the underlying features of the target instance v that is selected for

the power optimization, which includes the current power consumption (internal and driv-

ing net switching power), cell capacitance (input pin cap), driving strength, and the worst

transition values of input and output pins. The subgraph vector s, which characterizes

the “local” information of the target instance v that is related to its power optimization,

will be taken as the input of fully-connected layers to directly predict the change of power

consumption.

Finally, Figure 8.5 demonstrates an overview of the subgraph-based power prediction

flow, where the goal is to predict the power difference before and after performing power

optimization on the target instance colored in red. The detail steps are as follow. First, we

leverage GNN to preform node representation learning on the local 3-hop neighborhood

subgraph of the target instance, which includes the fanout/fanin cells up to three levels
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Algorithm 13 Assisting Vth-assignment with subgraph approximation.
Input: (1) G(V,E): netlist graph, (2) A|V |×|V |: adjacency matrix, (3) t: target instance, (4)

WECO−GNN : weights of ECO-GNN, (5) Wnn: weights of feedfoward neural networks, (6)
Y : tool optimization results

Output: {pt}: Vth-assignment of instance t.
1: while {W} do not converge do
2: st ← 3-hop local subgraph of instance t
3: gt ← subgraph encoding of st ▷ graph-level vector as in Figure 8.5
4: ht ← ECO-GNN(G,A;WECO−GNN ) ▷ node embeddings of cell t from full-graph

learning
5: ct ← concat[gt, ht] ▷ concatenate graph-level vector with node embeddings
6: pt ← softmax(Wnn · ct)
7: gt ← ∇θ[

∑4
c=1 Yiclog(ptc)]

8: {W} ← Adam(α, {W}, gt)

and the sibling cells up to two levels. This node representation learning will transforms

the initial features of each cell in the subgraph into high-dimensional representations (128

dimensions). Then, a global mean pooling is performed across each cell in the subgraph to

obtain a graph-level vector, which is expected to represent the ECO-related characteristics

of the target instance. Finally, the graph-level vector, along with the initial feature vector

of the targeted instance, is fed to a downstream feed-forward neural network to predict the

actual power saving and mean-squared-error (MSE) is utilized as the loss function to train

the entire framework.

8.6.8 Assisting Vth-Assignment with Subgraph Approximation

The Vth-assignment problem is a classification task by nature as the available gate sizes

are discrete, which we solve by leveraging GNNs to encode full-netlist information as

shown in Algorithm 12. However, as aforementioned, the purpose of the proposed subgraph

approximation technique is to perform regression-based power prediction by merely using

partial-netlist information. Therefore, to assist the Vth-assignment task with the subgraph

approximation technique, a learning methodology needs to be developed to bridge the gap

between the classification and the regression tasks.
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Algorithm 13 summarizes how the subgraph approximation technique can be leveraged

to assist the traditional Vth-assignment task, where the key idea is to leverage the encoded

graph-level vector from subgraph approximation as additional information to help predict

the final Vth type of the target instance. The detail steps are as follow. First, we leverage

the subgraph approximation technique to encode the local 3-hop neighborhood subgraph

of the target instance t to obtain a graph-level vector gt (Lines 2–3). Then, we leverage the

aforementioned ECO-GNN framework to perform node representation learning and obtain

the learned embeddings ht of the target instance (Line 4). Finally, we concatenate the

graph-level vector (describing the local neighborhood structure) and the learned embed-

dings as input to the downstream feedforward classification network to predict the final Vth

assignment. Note that the entire algorithm is end-to-end differentiable.

8.7 Explaining Prediction Results

Understanding the reasons behind the predictions of ML models can give users better trust

in the models. In this work, we explore explanation techniques that provide insights of the

Vth-assignment predictions made by the proposed framework ECO-GNN. Given a targeted

instance for explanation, we will explore its local subgraph to determine what are the im-

portant factors in terms of neighboring nodes and connected nets that drive the prediction

of the proposed graph learning-based framework.

8.7.1 Inner Workings of GNN Predictions

Unlike previous works who consider their optimization engines as blackboxes, in this chap-

ter, we implement a GNN-based explanation method [121] to interpret the Vth-assignment

predictions made by our framework ECO-GNN. Given a set of target instances {v} ∈ V in

a netlist graph G = (V,E), the goal is to find an influential sub-graph GS = (VS, ES) that

has high contribution to the decision of {v}’s Vth-assignments. The objective of finding

such sub-graph GS can be quantitatively formulated as maximizing the mutual information
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(MI) between the original graph G and the sub-graph GS as:

max
GS

MI(G,GS) = H(Y )−H(Y |G = GS), (8.5)

where H(·) denotes the entropy of the given distribution and Y represents the Vth prediction

distribution of the target instances. Since H(Y ), the entropy of the prediction distribution

based on the original graph, is a constant, maximizing Equation 8.5 is equivalent to mini-

mizing the conditional entropy H(Y |G = GS) which can be formulated as:

H(Y |G = GS) = −EY |G=GS
[log (Pθ(Y |G = GS))] , (8.6)

where θ denotes the parameters of the trained ECO-GNN framework. Note that due to

the fact that the number of neighbors of the target nodes increases exponentially as the

hop-count increases, in the implementation, we constrain GS to search within the one-hop

neighbors of the target instances {v}. In the context of the actual netlist, GS represents the

cells that are either the fanins, fanouts, or siblings of {v} as well as the message passing

flows (edge connectivities) that demonstrate how important features are aggregated. We

believe this interpretability would give designers precious insights on what the framework

has learned and whether the Vth-assignments are reliable or not.

8.8 Experimental Results

In this section, we demonstrate the achievements of our ECO-GNN framework, which is

implemented in Python3 with Tensorflow 1.0 library. We leverage 7 designs from the ISPD-

2012 benchmark [43] and 7 other industrial designs to conduct the experiments. All 14

designs are synthesized under TSMC 28nm technology node by Synopsys Design Compiler

2015, and placed and routed using Cadence Innovus v18.1. To validate the signoff power

optimization results of ECO-GNN, we use Synopsys PrimeTime 2018 to perform timing

and power analysis, and consider the PrimeTime ECO engine as the baseline across all
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Table 8.3: Our benchmarks and their attributes in TSMC 28nm. MPL denotes the maximum path
length of timing paths, SR denotes the spectral radius of the adjacency matrix, and RCC denotes the
Rich Club Coefficient (10−4).

Design Name # Nets # FFs # Cells MPL SR RCC Usage
RocketCore 93,812 16,784 90,859 68 381 7

training

AES-128 90,905 10,688 113,168 17 68 12
NOVA 138,171 29,122 136,537 32 185 3
ECG 85,058 14,018 84,127 29 76 8

LDPC 42,018 2,048 39,377 23 229 14
DMA 10,898 2,062 10,215 15 29 52

PCI BRIDGE 1,381 310 1,221 24 33 307
DES PERF 48,523 8,802 48,289 17 28 29

B19 34,399 3,420 33,784 35 29 22
TATE 185,379 31,409 184,601 31 26 5

testing
JPEG 231,934 37,642 219,064 26 173 4

VGA LCD 56,279 17,054 56,194 24 25 19
LEON3MP 341,263 108,724 341,000 48 28 3
NETCARD 317,974 87,317 316,137 37 31 4

experiments.

8.8.1 Benchmarks Details and Timing Corners

As mentioned in section 8.2, due to the unrealistic nature of the ISPD-2012 benchmark

that the worst negative slacks in the original designs range from −1ns to −8ns, we re-

implement all seven ISPD designs using TSMC 28nm technology node and commercial

PD tools. Aside from the ISPD benchmarks, we introduce 7 other renowned industrial

designs, including JPEG, TATE, LDPC, AES-128, NOVA, ECG from OpenCores.org, and

RocketCore [42] which is a RISC-V-based multi-core system. To substantiate the generality

of our framework, we utilize 9 designs in the training process, and perform the validations

on the 5 unseen ones. The characteristics of these 14 designs are shown in Table 9.2. In the

table, we also demonstrate the graph-related statistics, which include the maximum path

length of timing paths, the spectral radius (i.e., maximum eigenvalue of adjacency matrix),

and the Rich Club Coefficient (an indicator of connectivity).

Following the experimental settings of the ISPD-2012 contest where all the designs

are synthesized with one timing corner and one Vth flavor which has the tightest timing
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Figure 8.6: Prediction results of subgraph approximation. We validated the subgraph model on 4
unseen designs. Each dot in the plots represents a design instances whose initial slack is above
200ps before ECO power optimization.

constraint, in this work, we synthesize all the designs using typical corner and ultra-low Vth

flavor (tightest timing constraint) in TSMC 28nm for fair comparisons. In the PrimeTime

ECO for signoff power optimization, each design instance is enabled to be swapped into

one of the three other Vth flavors, which are low, high, and ultra-high types, or remain as

the ultra-low type (4 choices in total). Therefore, the solution space of our Vth-assignment

problem is 4|V |, which is almost impossible for designers to perform design exploration in

an exhaustive manner.

8.8.2 Subgraph Approximation Results

As aforementioned, in this chapter, we not only develop a classification-based model to

predict the final Vth-type of each design instance using entire netlist information, we also

present the subgraph approximation technique to estimate the power recovery of individual

instances during signoff ECO. Table 8.4 demonstrates the prediction results on 4 unseen
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Table 8.4: Subgraph approximation prediction results on unseen benchmarks. CC denotes the Pear-
son correlation coefficient and is calculated against the ICC2 optimization results.

Unseen Design VGA JPEG TATE LEON
NRMSE % 2.2 2.8 1.7 1.4

CC 0.96 0.97 0.97 0.98
total power before 212.7 376.8 345.0 576.6

(mW) after 197.9 342.3 328.7 552.4
WNS before -3.4 -13.1 -2.4 -16.3
(ps) after -3.1 -12.8 -2.3 -16.2
TNS before -14.1 -228.7 -3.2 -246.0
(ps) after -12.4 -202.5 -3.0 -239.3

Table 8.5: Confusion matrix comparison of Vth-assignment with and without subgraph approxima-
tion on the VGA benchmark. Each count represents an instance whose slack value is greater than
200ps before the PrimeTime ECO optimization.

predictions (accuracy: 0.94)
w.o. subgraph ultra-low low high ultra-high Total

ultra-low 429 17 53 82 581
ground low 22 1557 144 202 1925
-truths high 14 18 5026 166 5224

ultra-high 45 111 189 9110 9455
Total 510 1703 5412 9560 17185

designs. In this chapter, we specifically focus on two metrics to evaluate the model: nor-

malized root-mean-squared error (NRMSE) and the correlation coefficient (CC). Note that

NRMSE is calculated by normalizing the RMSE which inherently comes with a “unit”

(e.g., mW ) by the difference between the maximum and minimum ground truth values

(i.e., NRMSE = RMSE
powermax−powermin

). NRMSE is a popular comparison metric that re-

moves the effect of unit scale. As shown in the figure, we observe that the proposed model

consistently delivers highly accurate prediction results across the unseen benchmarks. Fi-

nally, Figure 8.5 shows the scatter distribution of the prediction results, where each dot

represents an actual subgraph whose worst slack value before the optimization is 200ps.

8.8.3 Prediction results of Vth-Assignment with Subgraph Approximation

In this experiment, we demonstrate the effectiveness of using the proposed subgraph ap-
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predictions (accuracy: 0.96)
w. subgraph ultra-low low high ultra-high Total

ultra-low 518 26 23 14 581
ground low 12 1645 188 80 1925
-truths high 21 93 4973 137 5224

ultra-high 37 19 124 9275 9455
Total 588 1783 5308 9506 17185

proximation technique to improve the prediction task of Vth-assignment. Table 8.5 demon-

strates the detailed prediction results in the format of confusion matrices. The upper table

shows the results without using the subgraph approximation technique, and the lower ta-

ble demonstrates the results achieved with subgraph approximation using Algorithm 13.

In the table, we observe that the subgraph approximation technique can indeed boost the

prediction accuracy, which is expected as more information (e.g., the graph-level vector) is

curated for the model to make better predictions.

8.8.4 Discussion of Subgraph Approximation

One of the highlights of this chapter is the proposed concept of subgraph approximation,

which enables fast and accurate prediction of power optimization. The rationale behind

the proposed subgraph approximation technique is two-fold. First, given that power and

timing are often inter-related with each other and the power recovery in ECO often comes

under the sacrifice of timing degradation, the final Vth-type of a target instance v will not

only depends on its direct one-hop neighbors, but also other neighbors that may or may not

locate on the same timing paths. Therefore, we leverage GNNs to encode such neighboring

information for the final prediction of its power recovery. Second, the reason we do not

select a huge number of hops to perform the subgraph encoding is because the QoR impact

of a single gate sizing move on a design instance to the overall netlist diminishes quickly

as the hop count increases.
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8.8.5 Optimization Results on Unseen Designs

In this experiment, we compare the signoff power optimization results achieved by our

framework ECO-GNN with the commercial tool Synopsys PrimeTime. To substantiate the

generality of ECO-GNN, we only use 9 designs for training, and perform validations on

the 5 unseen ones as shown in Table 9.2. Note that to perform meaningful and reasonable

signoff power optimization, each design is originally implemented in signoff frequency,

where the WNS is close to 0. The optimization constraints are that the WNS and TNS

do not degrade and no violation is introduced after the optimization.

Table 8.6 demonstrates the optimization results. Compared with PrimeTime, ECO-

GNN achieves up to 14X runtime improvement with similar optimization quality. Unlike

previous works that do not utilize commercial signoff tools for validations, we demonstrate

that our framework performs tool-accurate signoff power optimization without degrading

the original signoff performance of each unseen design. Note that each design in Table 8.6

has different target frequencies, which proves that the optimization achieved is not confined

by design characteristics. The inference time of ECO-GNN is measured on a machine

with 2.40 GHz CPU and a NVIDIA RTX 2070 graphics card with 16GB memory, where

Synopsys PrimeTime is ran on a machine with 2.50 GHz CPU and 8 cores enabled.

Table 8.6 also reports the micro F1-score as the evaluation metric of the classification

task, owing to the fact that our framework ECO-GNN is performing supervised learning

that we take the Vth-assignments from Synopsys PrimeTime as ground-truths in the training

process. Note that micro F1-score represents the accuracy of multi-class classification. In

the table, we observe that ECO-GNN performs the the Vth-assignments in high fidelity as

PrimeTime.

Finally, due to the fact that Vth-assignments directly optimize the design leakage power,

Figure 8.8 further shows the instance-based leakage power consumption maps of the unseen

designs, which are corresponding to the optimization results presented in Table 8.6. In the

figure, we compare the leakage power consumption of each instance in the original designs
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Table 8.7: Sweeping experiments on maximum number of aggregation level (K) of GNN. The entry
represents the F1 score of the classification results.

Designs (F1-score) K=1 K=2 K=3 K=4 K=5
TATE 0.39 0.78 0.90 0.82 0.73
JPEG 0.33 0.74 0.85 0.81 0.70

VGA LCD 0.42 0.81 0.89 0.85 0.74
LEON3MP 0.36 0.84 0.88 0.79 0.66
NETCARD 0.41 0.69 0.86 0.83 0.72

with the ones after using ECO-GNN to perform signoff power optimization. Across all

designs, we observe that ECO-GNN effectively reduces the overall leakage power without

introducing extra hotspots.

Sweeping Experiments on GNN Aggregation Level

In the realm of graph learning using GNNs, choosing a right number of the maximum ag-

gregation level is critical to the success of representation learning. Nonetheless, it is known

that GNNs tend to suffer from the over-smoothing problem [136], which is an issue that

the representations among different nodes become indistinguishable and thus the prediction

accuracy becomes worse. Therefore, for the majority of GNN applications, the number of

aggregation level is empirically set to a number between 2 and 4 (inclusive) [137]. In this

chapter, we validate the hypothesis by providing sweeping experiments over the GNN ag-

gregation level as shown in Table 8.7, where we clearly observe that in the classification

task of predicting final Vth-type for each design instance, the best accuracy occurs when

the number of aggregation level is set to 3.

8.8.6 Discussion of Optimization Results

Power Perspective. As shown in Table 8.6, the optimizations through Vth-assignments

achieved by our framework and PrimeTime improve both leakage power and total sig-

noff power. This is because we follow the experimental settings from the ISPD-2012

contest [43] as many previous works [122, 120, 123, 124, 131, 109, 118]. The setting
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high Vt
ultra-high Vt
target (low Vt)

Figure 8.7: Graph learning explanation on b19 benchmark. The majority of the neighbors are ultra-
high Vth, but cells with lower Vth types have higher importance to the target node. As a result, low
Vth is assigned to the target node.

suggests all the cells to be in ultra-low Vth (tightest timing constraint) before the optimiza-

tion. Therefore, for a design instance, a swap from ultra-low Vth to other Vth types in

TSMC 28nm not only improves its static power (leakage) but also the dynamic power as

the capacitance load is reduced.

Timing Perspective. As shown in the table, we observe that the WNS and TNS get

improved as well. This comes from the fact that although PrimeTime will not upsize the

Vth type of the cells that are on critical (negative slack) paths, the driving load of such cells

may still be reduced if some of its fanout cells that are not on critical paths are swapped to

higher Vth types, which in the end improves the overall timing as a by-product.

8.8.7 GNN Explanation

Instead of viewing our framework ECO-GNN as a blackbox, we validate our optimization

results by explaining the Vth-assignments made by our framework. Figure 8.7 demon-

strates the explanation results on the b19 design, where we plot the graph learning com-

putational graph centered on the target node colored in red along with its neighbors using

force-directed placement drawing [138]. Note that although we present single-instance ex-
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Figure 8.8: Leakage power consumption of each design instance before and after using ECO-GNN
to perform optimizations. The designs are unseen during training, and the unit is mW .

planation in this experiment for clarity, the proposed explanation method can be leveraged

to perform the explanation of multi-instance as well.

To explain the Vth-assignment on the target node (red), we identify the important mes-

sage passing flows within the local sub-graph. As mentioned in subsection 8.7.1, we con-

strain the explanation method to search within the one-hop neighborhood. Therefore, ev-

ery neighboring node in Figure 8.7 is either the fanin, fanout, or sibling of the target node.

However, as shown in the figure, the influential features may not be passed directly from the

neighbors to the target even though they are one-hop neighbors. This is because the mes-

sage passing scheme in graph learning is bi-directional. For better illustration, in Figure 8.7,

we plot two directed edges for each bi-directional edge in the graph learning computational

graph to show how the influential features are being passed.

Figure 8.7 shows that the Vth-assignment made by ECO-GNN on the target node is

reliable, because we observe that the final Vth type of the target node is more influenced

by its minority neighbors who are in lower Vth types rather than the majority neighbors

that are in the ultra-high Vth type. This aligns well with common design knowledge. Since

cells in lower Vth types have larger capacitance, tighter constraints will be imposed on

their drivers compared with cells in high-level Vth types. Therefore, we conclude that the
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Vth-assignment made by ECO-GNN on the target cell is reliable.

8.8.8 Why Does ECO-GNN Work?

In the experiments, we demonstrate that ECO-GNN achieves commercial quality signoff

power optimization results with negligible runtime compared with Synopsys PrimeTime.

The achievements of our framework can be accounted by two reasons. First, the initial mod-

eling features (Table 9.1) accurately capture the underlying characteristics of each design

instance that are related to the signoff power optimization. Specifically, the timing related

features provide solid information for our framework to select appropriate Vth-assignments

that optimize signoff power with the consideration of timing budget. Second, GNNs are

highly powerful for solving the optimization problems on graphs. The final Vth-assignment

of an instance highly depends on the information of its neighborhood structure. Therefore,

unlike previous works [118, 132] who use traditional machine learning techniques to pre-

dict the Vth-assignment of an instance solely based on its handcrafted features, our frame-

work acts as a graph filter that aggregates an instance’s neighboring information to more

accurately determine its final Vth-assignment through the classification model. Finally,

with the validations from the explanation method, we conclude that this work successfully

presents a solution to the long lasting Vth-assignment problem.

In spite of the superior performance achieved, we still see some limitations of the pro-

posed framework. We observe that Synopsys PrimeTime consistently delivers better timing

results, and ECO-GNN does not consistently improve the signoff power from the com-

mercial tool. In fact, this is resulted from the modeling errors occurred in the learning

process. Although we take the Vth-assignments from Synopsys PrimeTime as the ground-

truths, there always exists a gap between the predictions of our framework and the actual

assignments made by the tool. Nonetheless, the goal of this work is not to replace com-

mercial signoff tools, but to provide PD engineers a fast, accurate, and reliable estimation

of the amount of power recovery to expect from the signoff tools.
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8.8.9 Related Works on Improving Chip Design Turnaround Time

Although the main focus of this work is to improve the turn-around time of signoff power

optimization, related works have been developed to improve chip design productivity in

different endeavors. Recently, as the hardware resources become more powerful, GPU-

accelerated algorithms have been developed to significantly improve runtime of different

tasks [139]. Previous work [140] develops a novel static timing analysis (STA) engine on a

GPU-CPU hybrid system that greatly achieves a 3.6X speed-up on designs with over mil-

lion of cells. Another work [24] further leverages GPU and deep learning toolkit, PyTorch,

to advance placement, where the runtime is improved by 30X without degrading solution

quality. As the technology scaling continuously increases the design complexity, in the

future, methodologies to improve design turnaround time will be ever-critical.

8.9 Conclusion

In this chapter, we have proposed two different ML modeling approaches in classification

and regression aspects to overcome the inherent challenges of the current signoff power op-

timization flow. The proposed framework, ECO-GNN, can not only provides commercial-

quality tool-accurate signoff power optimization results instantly on unseen designs, but

also has the ability to estimate the power savings of targeted instances using information

obtained from local graph structure. Furthermore, we present a GNN-based explanation

method to demonstrate the reliability of our framework, which gives designers better rea-

sonings about the predictions of the models.
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CHAPTER 9

DOOMED RUN PREDICTION IN PHYSICAL DESIGN BY EXPLOITING

SEQUENTIAL FLOW AND GRAPH LEARNING

9.1 Background and Motivation

Modern low-power physical design (PD) implementation flows require designers to per-

form design space exploration (DSE) in search of the tool configurations (i.e., input param-

eters of each design stage) that lead to desired end-of-flow power targets [141]. However,

with the ever-increasing design complexity driven by Moore’s Law, leading-edge industrial

designs in advanced technology nodes are pushing PD full-flow runtime into several weeks,

which prohibits designers from performing effective power, performance, and area (PPA)

exploration. Therefore, a methodology that performs accurate end-of-flow PPA predictions

in early design stages is urgently needed, which allows designers to perform efficient DSE

by terminating the runs that are doomed to fail early [142].

Recently, the authors of [17] have attempted to tackle the PD doomed run prediction

problem by predicting end-of-flow design total negative slack (TNS). However, the litera-

ture only focuses on building a prediction model to capture the effect of sweeping target

frequency and utilization rate (i.e., two parameters) that are set at the beginning of a flow,

where all the other tool parameters are fixed. This makes previous work [17] impractical

because modern PD implementation tools such as Cadence Innovus and Synopsys IC Com-

piler II (ICC2) offer hundreds of tool parameters throughout the PD flow for designers to

explore.

To overcome the above issue and truly build a doomed run prediction framework that

will benefit PD engineers, in this chapter, we specifically focus on the aspect of power

and develop an end-to-end learning-based model named PD-LSTM using graph neural net-
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Figure 9.1: Overview of our sequential modeling approach.

works (GNNs) and long short-term memory (LSTM) networks [116]. Our framework pre-

dicts end-of-flow total power consumption in early design stages by sequentially encoding

the input parameters specified for each intermediate PD stage. The goal of this work is

to develop an early-stage power prediction framework that outputs an end-of-flow total

power prediction accurately at each intermediate PD stage by incorporating DSE through

sequential modeling.

Figure 9.1 demonstrates a high-level view of the proposed modeling approach based on

a reference commercial PD tool Synopsys ICC2. As shown in the figure, unlike previous

work [17] assuming the underlying implementation is fixed, in this work, we accept the

fact that designers may explore various parameters at each intermediate PD stage. Note

that due to the space limit, Figure 9.1 does not show all intermediate PD stages that we

select for modeling. In this work, we select 8 design stages offered publicly by ICC2 to

perform sequential modeling using GNNs and LSTM.

At each modeling stage, our framework PD-LSTM will strive to directly predict the

end-of-flow total power value by leveraging all the information obtained up to the current

stage along with the tool parameters that designers plan to explore in the future stages
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Figure 9.3: ICC2 correlation analysis of sequential PD stages on a commercial CPU design. We
select 4 intermediate PD stages and plot the power estimation of ICC2 at each stage to the final
achieved power value. We observe that power estimations in early design stages are poorly correlate
with the end-of-flow power values.

(i.e., a look-ahead mechanism). With the proposed framework, we envision designers to

easily perform the following two operations that are not imaginable before: (1) on-the-

fly changing input parameters of future PD stages, which enables a more efficient PPA

exploration, and (2) performing early termination on the implementations that are doomed

to miss the power targets.

Ideally, we only want to perform the end-of-flow prediction as early as possible in the

PD flow. However, there is an accuracy and runtime trade-off between a machine learn-

ing (ML) model’s prediction and its input features collection. With more features collected

from late stages, ML models are expected to make better predictions in terms of fidelity and

correlation. In this work, we properly balance this trade-off with sequential modeling tech-

niques by iteratively predicting power at each modeling stage. Note that although at each

PD stage, the commercial tool will originally output a power prediction of the underlying

design, this estimation from the tool is not accurate. In the experiments, we demonstrate

that the proposed framework, PD-LSTM, consistently outperforms commercial tool’s early

stage power estimations and is generalizable to unseen netlists that are not utilized during

the training process.
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9.2 Overview: PD Flow Modeling

It has been widely acknowledged that GNNs are powerful ML models that encode graph

knowledge into meaningful representations. Since VLSI netlists can be naturally repre-

sented as hypergraphs, in this work, we leverage GNNs to distill netlist information at

each intermediate PD stage. Given that a netlist under a PD implementation is dynami-

cally changing from stage to stage due to buffer insertion or removal, logic restructuring,

fanout re-design etc., the goal of applying GNNs in this work is to encode these netlist up-

dates effectively, where the encoded information is further taken as the input of the LSTM

framework to perform power estimation.

Figure 9.2 presents a high-level overview of our PD-LSTM framework. The key idea

behind is to model the PD flow as a sequential process, and perform on-the-fly end-of-

flow total power estimation at each targeted modeling stage. Intuitively, with the proposed

framework, designers can perform early termination of an implementation without waiting

several weeks to obtain the end-of-flow power results. Furthermore, to enable a more fine-

grained DSE for better PPA exploration, we train the proposed framework to incorporate

the tool parameters specified by designers. That is, parameter configurations are taken as

the inputs of the framework. Unlike previous work [17] which assumes the underlying

parameters are fixed, in this work, the proposed framework accepts on-the-fly tuning of the

input parameters at each intermediate PD stages.

Numerous parameters are offered by ICC2 for PPA exploration. In this work, we select

19 parameters by design expertise to perform PD flow modeling which are shown in the

right of Figure 9.2. The high-level parameters are known to have profound impact to the

overall PD flow. Specifically, “CCD” stands for “concurrent clock data optimization”,

which is a key feature of ICC2 that optimizes clock and data paths for PPA optimization.

Finally, we would like to mention that one of our input features to the LSTM framework

is the power estimation made by the commercial tool ICC2. Although it is known that this
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power estimation made by the tool is not accurate, we reckon that it may act as a baseline

for the model to improve from. In this work, the main objective of PD-LSTM is to provide

better end-of-flow power estimations than the commercial tool ICC2 in early design stages.

9.3 Design of Experiments

9.3.1 Database Construction

The proposed framework adopts supervised learning, which requires a database to be pre-

generated for the model to be trained upon. To build the database, we leverage Synopsys

Design Compiler to synthesize RTL into gate-level netlists, and utilize Synopsys ICC2 to

perform physical implementations. In this work, we utilize 2 commercial multi-core CPU

designs and 5 OpenCore designs to perform the experiments. All the designs are synthe-

sized under TSMC 28nm technology node at their best achievable frequency. For each

synthesized netlist, we generate 200 PD implementations by randomly sampling 19 tool

parameters as shown in Figure 9.2. These parameters govern the tool behaviour of vari-

ous PD stages such as placement, clock tree synthesis (CTS), and routing, which directly

impact the final design quality-of-results (QoR).

9.3.2 Database Analysis

Correlation Analysis

Since the goal of this work is to perform high-fidelity end-of-flow power estimation in early

stages of the PD flow, the power estimation from the commercial tool of each intermediate

PD stage becomes a natural and meaningful baseline for us. Figure 9.3 demonstrates a

correlation analysis between the tool estimated power value at selected PD stage and the

end-of-flow achieved power value. Note that each dot in the figure represents an actual PD

implementation. We observe that as moving toward the end of the design flow, the tool

provides more accurate power estimations with higher correlation coefficient (Pearson).
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Figure 9.4: CCD parameter sweeping experiment. We observe that the end-of-flow power values
can vary as much as 15% by only sweeping two parameters, and the best achieved power occurs
under a non-intuitive combination.

However, in the early stages of the design flow (e.g., placement), the power estimations

of the tool correlate poorly with the final achieved value. This motivates us to build a

framework that can provide accurate power estimation in early stages of the design flow.

CCD Parameter Sweeping

As aforementioned, in ICC2, CCD optimization is a key methodology to improve design

PPA during many optimization phases throughout the entire design flow. In this work,

we select two CCD related parameters: “prepone” and “postpone”, which are numerical

numbers denoting the maximum reduction and increment, respectively, of the clock latency

to registers. These two values are extremely critical, since the change of clock latency will

have a direct impact on clock skew that governs the setup and hold margins of timing

paths. Ultimately, the power consumption will be affected by the tightness or looseness of

the timing margins. For example, buffer insertion is usually applied to fix timing violations,

which inevitably increase the internal power.

Figure 9.4 demonstrates a CCD parameter sweeping experiment on a commercial multi-

core CPU design. In this experiment, we only sweep around the two CCD parameters
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Table 9.1: Initial node features defined for each design instance.

feature name description
min slack min data delay - max clock delay
max slack max data delay - min clock delay
wst output slew maximum transition of output pin
wst input slew maximum transition of input pin
drv net power switching power of driving net
switching power cell switching power
int power cell internal power
leakage cell leakage power

introduced earlier: prepone and postpone, from 0 (ns) to 0.25 (ns) with an interval of

0.05, while fixing all other input parameters (shown in Figure 9.2). We observe that the

best achieved power occurs when prepone and postpone values are set to 0.1 and 0.15

respectively, which is non-intuitive. Also, it is shown that the achieved power can vary

as much as 15% only by simply sweeping these two parameters. Therefore, we believe a

framework that predicts end-of-flow power estimation while considering the effect of tool

parameters sweeping is highly needed to perform efficient PPA exploration.

9.4 PD-LSTM Algorithms

In this work, we develop a flow-based ML-powered framework named PD-LSTM that

performs on-thy-fly end-of-flow total power prediction at each intermediate PD stage by

incorporating the dynamic netlist evolution and various parameter specifications. The goal

of our framework is to perform early and accurate power predictions by leveraging graph

learning and sequential flow modeling. Specifically, there are two main components in

our framework, which are the GNN model and the LSTM network that are responsible for

netlist encoding and time-series modeling, respectively.

9.4.1 Initial Node Features for Graph Learning

To fully benefit from the graph representation learning conducted by GNNs, prior to the

learning process, we have to hand-craft related features for each design instance. Table 9.1
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Figure 9.5: Netlist-to-vector encoding using GNNs. The GNN aggregation is performed from k = 0
(initial features) to k = K (learned representations) where K is the number of layers.

summarizes the features we utilize for GNN modeling. As shown in the table, besides

the power features that are directly related to our power prediction task, for each design

instance, we also carefully monitor its timing information by introducing timing-related

features. The key reason is that timing and power are highly-related with each other. As

aforementioned, buffers or inverters often need to be inserted to fix timing violations, and

on the other hand, if a design has enough timing budget, power can often be improved by

relaxing timing margins [61]. During graph learning, these initial features of a cell will be

transformed into meaningful high-dimensional representations by recursively aggregating

neighborhood information.

9.4.2 Graph Embedding

The goal of graph representation learning is to obtain a graph embedding vector that ac-

curately characterizes the underlying netlist. GNNs perform graph representation learning

through a messaging passing scheme, where the initial representation vector of a node (i.e.,

a design instance) can be viewed as a message being recursively transformed and passed

onto its neighboring nodes. This message passing process will capture the structural infor-

mation of the graph and the complex interactions among nodes.
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The GNN module is consisted of a set of neuron layers and each of them is responsible

to perform aggregation at a specific level k. Figure 9.5 summarizes the netlist to graph

vector encoding process using GNN, where for each node we recursively aggregate its

neighborhood information from previous level k to obtain the representation in the next

level k + 1. Let hk
v denote the representation vector of node v at level k, and h0

v represent

the initial features defined in Table 9.1. Then, following from [37], we design our GNN

model to transform the features from level k to level k + 1 as:

hk−1
Nk(v)

= reduce mean
(
{Wagg

k hk−1
u , ∀u ∈ Nk(v)}

)
,

hk
v = σ

(
Wproj

k · concat
[
hk−1
v , hk−1

Nk(v)

])
,

(9.1)

where σ denotes the sigmoid function, Nk(v) denotes the neighboring nodes of node v,

W agg
k and W proj

k denote the aggregation and projection matrices at level k respectively,

which together represent the neuron layer at level k. Finally, after the last transformation

at level k = K, we take global mean pooling of hk=K
v across every node in the graph to

obtain the final vector gt in graph-level at timestep t (i.e., an intermediate PD stage) as:

gt = concat
[
mean pooling

({
hk=K
v

})
, estPower, params

]
, (9.2)

where “estPower” denotes the commercial tool’s estimation power at the current stage,

and “params” represents the tool parameters that the underlying PD implementation ex-

plores, which includes both past (i.e., up to timestep t) and future (i.e., after timestep t)

exploration. The vectors {gt|t=7
t=0} across 8 intermediate PD stages are further taken as the

inputs of the downstream LSTM framework.

9.4.3 PD Sequential Modeling using LSTM

Since PD is a sequential process where the output of an intermediate stage is the input of

the next stage, the encoded graph vectors {gt|t=7
t=0} are highly related with each other. There-
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Figure 9.6: Architecture of the proposed PD-LSTM framework.

fore, in this work, we leverage a LSTM network [116] to model such dependency by con-

sidering the encoded vectors across various stages as time-domain dependent information.

Figure 9.6 demonstrates the detailed architecture of our framework PD-LSTM.Combined

with the GNN model presented above, here, we present an end-to-end framework that lever-

ages LSTM architecture to predict end-of-flow total power value at each timestep t based

on the encoded graph vectors.

Basically, the LSTM network is a variant of recurrent neural networks (RNNs) that has

a backward connection. That is, at each timestep t, the LSTM network will receive not

only the inputs from the current time step, but also the outputs from the previous timestep

t − 1 as shown in Figure 9.6. Note that since at the beginning there is no previous output,
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the state vector is usually set to 0. The key idea of LSTM is that the network possesses

long-term and short-term memories to learn about which information to be disposed of and

which to be kept track of. Specifically, a LSTM cell is consisted of three gates, which

are input gate i, forget gate f , and output gate o subject to a timestep t. Given an input

sequence gt, the LSTM performs the encoding procedure as follows

it = σ(Wi · [ht−1, at−1] + bi), ft = σ(Wf · [ht−1, at−1] + bf ),

ot = σ(Wo · [ht−1, at−1] + bo), c̃t = tanh(Wc[ht−1, xt] + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t, ht = ot ⊙ tanh(ct), qt = ht (9.3)

where {W} and {b} denote the weights and biases, σ denotes the sigmoid activation

function, st−1 denotes the output from the previous time step, and ⊙ denotes the element-

wise multiplication. As shown in Figure 9.6, unlike previous work [lud1] that trains the

LSTM framework to predict the target value only at the final time step, in this work, our

LSTM model outputs a prediction representing the end-of-flow total power estimation at

every time step. Finally, in this work, we take the mean-squared-error (MSE) as the loss

function to train the model. Note that the proposed framework PD-LSTM is end-to-end dif-

ferentiable, which means the parameters in both GNN module and the LSTM network are

jointly updated in the same computational graph by optimizing the MSE at each timestep t

through a gradient descent optimizer.

9.5 Experimental Results

In this section, we demonstrate the achievements of our PD-LSTM framework, which is im-

plemented in Python3 and the PyTorch library. Specifically, we validate our framework on

two commercial multi-core CPU designs and five OpenCore benchmarks with a train/test

split ratio of 4:3. As aforementioned, for each design, we generate 200 complete PD imple-
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Table 9.2: Our benchmarks and their attributes in TSMC 28nm.

Design Name # Nets # FFs # Cells Usage
CPU-A 206,224 22,366 202,791

training
ECG 85,058 14,018 84,127
VGA 56,279 17,054 56,194
JPEG 231,934 37,642 219,064

CPU-B 542,391 47,552 597,085
testingAES 90,905 10,688 113,168

LDPC 42,018 2,048 39,377

inter-design encoding

CPU-B

AES

LDPC

intra-design encoding on AES

initial_opt

final_place

clock_opt

route_auto

(a) (b)

Figure 9.7: t-SNE visualization of GNN netlist encoding. (a) Each dot represents a complete PD
run of an unseen netlist. (b) Each dot denotes a netlist graph at a specific PD stage.

mentations by randomly sampling the parameters shown in Figure 9.2. The characteristics

of these designs after synthesizing under TSMC 28nm are shown in Table 9.2.

9.5.1 GNN Netlist Encoding Results

Graph encoding is the key to the success of the proposed PD-LSTM framework. Here,

we leverage the t-distributed stochastic neighboring embedding [44] (t-SNE) algorithm to

visualize the embedding results in R2. The visualization results are shown in Figure 9.7.

In Figure 9.7 (a), for each unseen design, we concatenate the encoded graph vector of each

modeling stage and utilize t-SNE to visualize the concatenated vector (128 ∗ 8 dimensions)

in R2. As for Figure 9.7 (b), within the AES benchmark, we visualize the distribution of

the encoded graph vector in 128 dimensions extracted from four selected modeling stages.
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Figure 9.8: Training loss iteration.

In the figure, we observe that our GNN module not only clearly differentiates the charac-

teristics of different designs, but also comprehends features from various modeling stages.

Hence, we conclude that the proposed GNN model is generalizable.

9.5.2 Sequential Learning Results

Figure 9.8 demonstrates the training loss iteration of the selected modeling stages. We ob-

serve that the losses of early design stages require more iterations to reach convergence.

Table 9.3 demonstrates the prediction results of the proposed PD-LSTM framework on

the unseen netlists that are not utilized in the training process. In this work, our PD-

LSTM has 8 modeling stages and for each stage, the framework will output an end-of-

flow power estimation as ICC2. NRMSE denotes the normalized root-mean-squared er-

ror and is calculated by normalizing the RMSE that inherently comes with a “unit” (e.g.,

mW ) by the difference between the maximum and minimum ground truth values (i.e.,

NRMSE = RMSE
powermax−powermin

). NRMSE is a popular comparison metric that removes

the effect of unit scale. As shown in the table, we observe that the predictions made by

PD-LSTM consistently outperform the ones made by ICC2 starting from early stages of

the design flow in terms of correlation coefficient (CC), which directly proves that the pro-

posed framework delivers better end-of-flow total power estimation. Finally, as moving
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Table 9.3: PD-LSTM end-of-flow prediction results on “unseen” designs. CC denotes the Pearson
correlation coefficient. NRMSE denotes the accuracy of our model. All metrics are computed
against end-of-flow total power values.

PD stage unseen NRMSE
ICC2 CC our CC

(avg time) design (%)

initial place
CPU-B 29.8 0.42 0.46

(3%)
AES 24.7 0.26 0.5

LDPC 21.2 0.18 0.37

initial drc
CPU-B 22.1 0.43 0.58

(4%)
AES 28.6 0.25 0.52

LDPC 27.3 0.18 0.38

initial opt
CPU-B 18.5 0.42 0.72

(7%)
AES 12.1 0.32 0.68

LDPC 12.9 0.31 0.66

final place
CPU-B 11.2 0.45 0.81

(22%)
AES 9.7 0.35 0.86

LDPC 9.2 0.32 0.72

build clock
CPU-B 8.2 0.41 0.89

(6%)
AES 7.1 0.47 0.9

LDPC 8.7 0.43 0.88

route clock
CPU-B 5.9 0.42 0.94

(7%)
AES 6.4 0.76 0.92

LDPC 5.8 0.74 0.93

clock opt
CPU-B 5.2 0.65 0.95

(12%)
AES 6.4 0.96 0.96

LDPC 3.9 0.92 0.95

route auto
CPU-B 4.1 0.75 0.98

(8%)
AES 5.3 0.96 0.97

LDPC 3.7 0.94 0.97
*remaining routing optimization stages take 31% of runtime.
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closer to the end of the design flow, we see that the power predictions become more ac-

curate for both ICC2 and the proposed framework. This is expected because with more

features collected from latter stages of the design flow, ML models are expected to make

better predictions in terms of fidelity and correlation.

9.6 Conclusion

In this work, we have proposed PD-LSTM, a flow-based framework that leverages graph

learning and sequential modeling to perform end-of-flow total power estimation starting

from early PD stages. The proposed framework consistently demonstrates better power es-

timation results across various intermediate modeling stages than the reference commercial

PD tool ICC2. In spite of the superior prediction results achieved, in the future, we aim to

explore the possibilities to leverage PD-LSTM to perform on-the-fly PPA optimization by

dynamically searching for optimized parameters.
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CHAPTER 10

CONCLUSION

10.1 A Machine Learning Powered Tier Partitioning Framework for Monolithic 3D

ICs

In this study, we have presented an unsupervised, graph-learning-based, tier partitioning

framework named TP-GNN to mitigate the significant drawbacks of the existing tier parti-

tioning algorithm, the bin-based min-cut algorithm, in the state-of-the-art M3D implemen-

tation flows. First, we proposed a hierarchy-aware edge contraction algorithm to reduce

3D routing overhead occurred in the bin-based min-cut partitioning algorithm by merging

chosen nodes into super-nodes. Then, we consider the classic tier partitioning problem as a

clustering problem and solved it using GNNs. The graph representation learning provides

the freedom for designers to deal with various partitioning objectives, and the unsupervised

learning promises the generality of our framework. We validate our framework using var-

ious styles of M3D design flows, including partitioning-first, partitioning-last, and hetero-

geneous. We observe significant PPA improvements over the bin-based min-cut algorithm

across numerous industrial designs in the TSMC 28nm technology.

10.2 VLSI Placement Optimization via PPA-Directed Self-Supervised Deep Graph

Clustering

In this study, we have developed the first PPA-directed, self-supervised placement opti-

mization framework that directly formulates PPA metrics as ML loss functions, and opti-

mizes them through gradient descent. Given a globally-placed netlist as input, our frame-

work, PPA-GNN, generates the cell clustering constraints that can be taken as additional

constrains to a commercial placer in order to improve the underlying placement during the
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placement optimization phase. Unlike previous works that rely on a two-step process to

generate such constraints, PPA-GNN is end-to-end differentiable. That is, the node repre-

sentation learning and the clustering assignments are jointly updated through optimization

of PPA metrics. We validate our framework using industrial million-scale design in ad-

vanced technologies, where we not only demonstrate that PPA-GNN produces immediate

PPA improvements at the placement stage, but also show that the improvements last firmly

to the post-route stage.

10.3 Bridging Open-Source and Commercial Placers using Generative Adversarial

Networks and Transfer Learning

In this study, we have presented DREAM-GAN, which advances the renowned open-source

placer DREAMPlace using generative adversarial learning. In our settings, we consider

DREAMPlace as a generator, and develop two discriminators with one using CNNs and the

other using GNNs to characterize bin-density maps and netlist information, respectively. At

each placement iteration, we not only train DREAMPlace to optimize conventional met-

rics: wirelength and density, but also improve the underlying cell locations to optimize the

similarity scores output by the proposed discriminators. Experimental results demonstrate

DREAM-GAN outperforms the vanilla DREAMPlace across every critical PPA metric in

6 industrial designs using under advanced technologies.

10.4 GAN-CTS: A Generative Adversarial Framework for Clock Tree Prediction

and Optimization

In this study, we have presented GAN-CTS, which is a generative adversarial framework

for clock tree prediction and optimization. First, to precisely characterize distinct designs,

we leverage transfer learning to extract netlist features directly from placement images.

Second, we perform regression learning using various methods to predict the target CTS

outcomes and demonstrate that the proposed multi-task learning approach achieves better

201



accuracy than the meta-modeling method adopted by previous works. To fully benefit from

the predictions made by our framework, we further quantitatively interpret the importance

of each CTS input parameter subject to various design objectives through attribution-based

learning. Finally, generative adversarial learning is leveraged to optimize the target clock

metrics with the guidance provided by the pre-trained regression model. To substantiate

the generality of our framework, we perform validations on four unseen netlists that are

not utilized in the training process. Experimental results conducted on real-world designs

demonstrate that our framework significantly outperforms the default CTS process inherent

in the commercial tool.

10.5 RL-Sizer: VLSI Gate Sizing for Timing Optimization using Deep Reinforce-

ment Learning

In this study, we have developed RL-Sizer, an RL agent that performs gate sizing for timing

optimization. Particularly, we re-formulate the traditional gate sizing process as a control

problem, and solve it using RL algorithms. RL-sizer is integrated with an industry-leading

commercial EDA tool, Synopsys ICC2. With a completely different approach, RL-Sizer

achieves better, if not equal, performance as the tool’s native sizing algorithm that has been

developed relentlessly over the past decade. Experimental results on industrial designs in

5− 12nm technologies demonstrate that RL-Sizer outperforms the native sizing algorithm

in 4 out of 6 designs with a significant margin.

10.6 RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-

Supervised Reinforcement Learning

In this study, we investigate a brand new research problem. That is, balancing clock-path

and data-path optimization strategies in commercial tools through endpoint prioritization,

which is motivated by the fact that commercial tools always adopt fixed recipes to resolve

violating endpoints, neglecting the fact that not all endpoints are equal as some are more
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easily fixed by data-path optimization techniques, while others, clock-path. We propose

RL-CCD, an attention-based, self-supervised RL framework that prioritizes endpoints for

useful skew optimization using margin. Experimental results on 19 industrial designs in

5 − 16nm technologies clearly demonstrate that our framework significantly outperforms

the default CCD engine across every benchmark, with TNS reduction up to 64%.

10.7 ECO-GNN: Signoff Power Prediction using Graph Neural Networks with Sub-

graph Approximation

In this study, we explore supervised learning techniques to improve the signoff power op-

timization process. Particularly, we have proposed two different modeling approaches in

terms of classification and regression to improve the turn-around time of the optimization

step. We demonstrate that the proposed framework, ECO-GNN, can not only provides

commercial-quality tool-accurate signoff power optimization results instantly on unseen

designs, but also has the ability to estimate the power savings of targeted instances using

information obtained from local subgraph. Furthermore, instead of blindly relying on the

predictions, we explore explanation method to interpret the rationales behind the predic-

tions, which makes the proposed framework more trustworthy.

10.8 Doomed Run Prediction in Physical Design by Exploiting Sequential Flow and

Graph Learning

In this study, we present PD-LSTM, a PD doomed run prediction framework that performs

end-of-flow total power prediction from early stages of the design flow. As PD is a sequen-

tial process where netlists undergo several optimizations and physical updates from stage

to stage, PD-LSTM leverages GNNs and LSTM for effective sequential modeling. Utiliz-

ing t-SNE, a dimension reduction technique, we demonstrate that the graph embeddings

produced by our GNN module not only have the capability to differentiate between di-

verse netlists, but also to distinguish the same netlist at varying stages. In the experiments,
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we show that PD-LSTM consistently achieves better power estimations compared with the

default estimation of the reference commercial tool.

10.9 Concluding Remarks

We believe this research have demonstrated the promising potentials of advancing modern

PD implementations flows for 2D and 3D ICs. Particularly, we show that ML algorithms

can not only be used as PPA predictors but directly as optimizers. Undoubtedly, more

efforts to further improve the chip design productivity and the final outcomes in the post-

Moore era, however, we reckon that we have shown the new horizons of revolutionizing

PD with ML.

204



REFERENCES

[1] A. B. Kahng and Z. Wang, “Ml for design qor prediction,” in Machine Learning
Applications in Electronic Design Automation, Springer, 2022, pp. 3–33.

[2] S. Sahni and A. Bhatt, “The complexity of design automation problems,” in Pro-
ceedings of the 17th Design Automation Conference, 1980, pp. 402–411.

[3] G. Huang et al., “Machine learning for electronic design automation: A survey,”
ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 26,
no. 5, pp. 1–46, 2021.

[4] Y.-C. Lu and S. K. Lim, “On advancing physical design using graph neural net-
works,” in Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design, 2022, pp. 1–7.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive sur-
vey on graph neural networks,” IEEE transactions on neural networks and learning
systems, vol. 32, no. 1, pp. 4–24, 2020.

[6] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim, “Tp-gnn: A graph
neural network framework for tier partitioning in monolithic 3d ics,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

[7] Y.-C. Lu, S. Pentapati, and S. K. Lim, “The law of attraction: Affinity-aware place-
ment optimization using graph neural networks,” in Proceedings of the 2021 Inter-
national Symposium on Physical Design, 2021, pp. 7–14.

[8] Y.-C. Lu, T. Yang, S. K. Lim, and H. Ren, “Placement optimization via ppa-directed
graph clustering,” in Proceedings of the 2022 ACM/IEEE Workshop on Machine
Learning for CAD, 2022.

[9] A. Mirhoseini et al., “A graph placement methodology for fast chip design,” Na-
ture, vol. 594, no. 7862, pp. 207–212, 2021.

[10] A. Agnesina, K. Chang, and S. K. Lim, “Vlsi placement parameter optimization
using deep reinforcement learning,” in Proceedings of the 39th International Con-
ference on Computer-Aided Design, 2020, pp. 1–9.

[11] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim, “Rl-sizer: Vlsi gate sizing for
timing optimization using deep reinforcement learning,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2021, pp. 733–738.

205



[12] Y.-C. Lu, S. Nath, S. S. K. Pentapati, and S. K. Lim, “A fast learning-driven signoff
power optimization framework,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), IEEE, 2020, pp. 1–9.

[13] U. Mallappa and C.-K. Cheng, “Gra-lpo: Graph convolution based leakage power
optimization,” in 2021 26th Asia and South Pacific Design Automation Conference
(ASP-DAC), IEEE, 2021, pp. 697–702.

[14] Y. Zhang, H. Ren, and B. Khailany, “Grannite: Graph neural network inference
for transferable power estimation,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), IEEE, 2020, pp. 1–6.

[15] K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and I. H.-R. Jiang, “Timing macro mod-
eling with graph neural networks,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 1219–1224.

[16] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine inspired
graph neural network model for pre-routing slack prediction,” in Proceedings of the
59th Annual Design Automation Conference 2022, ACM, 2022.

[17] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim, “Doomed run prediction in phys-
ical design by exploiting sequential flow and graph learning,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), IEEE, 2021, pp. 1–
9.

[18] Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving early physical syn-
thesis exploration through end-of-flow total power prediction,” in Proceedings of
the 2022 ACM/IEEE Workshop on Machine Learning for CAD, 2022.

[19] Z. Xie, R. Liang, X. Xu, J. Hu, Y. Duan, and Y. Chen, “Net 2: A graph attention
network method customized for pre-placement net length estimation,” in 2021 26th
Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, 2021,
pp. 671–677.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[21] I. Goodfellow et al., “Generative adversarial networks,” Communications of the
ACM, vol. 63, no. 11, pp. 139–144, 2020.

[22] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[23] D. Silver et al., “Mastering the game of go with deep neural networks and tree
search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

206



[24] Y. Lin et al., “Dreamplace: Deep learning toolkit-enabled gpu acceleration for mod-
ern vlsi placement,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 4, pp. 748–761, 2020.

[25] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[26] J. Knechtel and J. Lienig, “Physical design automation for 3d chip stacks: Chal-
lenges and solutions,” in Proceedings of the 2016 on International Symposium on
Physical Design, ACM, 2016.

[27] K. Arabi, K. Samadi, and Y. Du, “3d vlsi: A scalable integration beyond 2d,” in Pro-
ceedings of the 2015 Symposium on International Symposium on Physical Design,
ACM, 2015.

[28] M. Vinet et al., “Monolithic 3d integration: A powerful alternative to classical 2d
scaling,” in 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Con-
ference (S3S), IEEE, 2014, pp. 1–3.

[29] Y.-C. Lu, S. Pentapati, L. Zhu, G. Murali, K. Samadi, and S. K. Lim, “A ma-
chine learning-powered tier partitioning methodology for monolithic 3-d ics,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 11, pp. 4575–4586, 2021.

[30] O. Billoint et al., “A comprehensive study of monolithic 3d cell on cell design using
commercial 2d tool,” in 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, 2015.

[31] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Shrunk-2-d: A physical design method-
ology to build commercial-quality monolithic 3-d ics,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 10, 2017.

[32] B. W. Ku, K. Chang, and S. K. Lim, “Compact-2d: A physical design methodol-
ogy to build commercial-quality face-to-face-bonded 3d ics,” in Proceedings of the
2018 International Symposium on Physical Design, ACM, 2018.

[33] P. Vanna-Iampikul, C. Shao, Y.-C. Lu, S. Pentapati, and S. K. Lim, “Snap-3d: A
constrained placement-driven physical design methodology for face-to-face-bonded
3d ics,” in Proceedings of the 2021 International Symposium on Physical Design,
2021, pp. 39–46.

[34] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, 1982.

207



[35] K. Chang et al., “Cascade2d: A design-aware partitioning approach to monolithic
3d ic with 2d commercial tools,” in Proceedings of the 35th International Confer-
ence on Computer-Aided Design, ACM, 2016.

[36] S. S. K. Pentapati, K. Chang, V. Gerousis, R. Sengupta, and S. K. Lim, “Pin-3d: A
physical synthesis and post-layout optimization flow for heterogeneous monolithic
3d ics,” in Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[37] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[39] R. C. De Amorim and B. Mirkin, “Minkowski metric, feature weighting and anoma-
lous cluster initializing in k-means clustering,” Pattern Recognition, 2012.

[40] S. K. Samal, D. Nayak, M. Ichihashi, S. Banna, and S. K. Lim, “Tier partitioning
strategy to mitigate beol degradation and cost issues in monolithic 3d ics,” in Pro-
ceedings of the 35th International Conference on Computer-Aided Design, ACM,
2016, p. 129.

[41] J. Balkind et al., “Openpiton: An open source manycore research framework,” in
ACM SIGARCH Computer Architecture News, ACM, 2016.

[42] K. Asanovic et al., “The rocket chip generator,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[43] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo, “The ispd-
2012 discrete cell sizing contest and benchmark suite,” in Proceedings of the 2012
ACM international symposium on International Symposium on Physical Design,
ACM, 2012, pp. 161–164.

[44] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[45] J. Cong and G. Luo, “A multilevel analytical placement for 3d ics,” in 2009 Asia
and South Pacific Design Automation Conference, IEEE, 2009, pp. 361–366.

[46] G. Luo, Y. Shi, and J. Cong, “An analytical placement framework for 3-d ics and its
extension on thermal awareness,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 4, 2013.

208



[47] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “Tsv-aware analytical placement for
3-d ic designs based on a novel weighted-average wirelength model,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 2013.

[48] H. Sarhan, S. Thuries, O. Billoint, and F. Clermidy, “An unbalanced area ratio study
for high performance monolithic 3d integrated circuits,” in 2015 IEEE Computer
Society Annual Symposium on VLSI.

[49] A. B. Kahng, “Advancing placement,” in Proceedings of the 2021 International
Symposium on Physical Design, 2021, pp. 15–22.

[50] X. Gao et al., “Congestion and timing aware macro placement using machine learn-
ing predictions from different data sources: Cross-design model applicability and
the discerning ensemble,” in Proceedings of the 2022 International Symposium on
Physical Design, 2022, pp. 195–202.

[51] D. Vashisht et al., “Placement in integrated circuits using cyclic reinforcement
learning and simulated annealing,” arXiv preprint arXiv:2011.07577, 2020.

[52] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis,” in International conference on machine learning, PMLR, 2016.

[53] M.-K. Hsu et al., “Ntuplace4h: A novel routability-driven placement algorithm for
hierarchical mixed-size circuit designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 33, no. 12, pp. 1914–1927, 2014.

[54] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solu-
tion quality and routability validation in global placement,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 9,
pp. 1717–1730, 2018.

[55] X. He, Y. Wang, Y. Guo, and E. F. Young, “Ripple 2.0: Improved movement of
cells in routability-driven placement,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 22, no. 1, pp. 1–26, 2016.

[56] D. Z. Pan, B. Halpin, and H. Ren, “Timing-driven placement,” Handbook of Algo-
rithms for Physical Design Automation, pp. 423–446, 2008.

[57] L. Hagen and A. B. Kahng, “A new approach to effective circuit clustering,” in
IEEE/ACM International Conference On Computer Aided Design (ICCAD), IEEE,
1992, pp. 422–427.

[58] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

209



[59] Z. Xie et al., “Routenet: Routability prediction for mixed-size designs using convo-
lutional neural network,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design.

[60] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine in-
spired graph neural network model for pre-routing slack prediction,” in 2022 59th
ACM/IEEE Design Automation Conference (DAC), IEEE, 2022.

[61] S. Nath and V. Khandelwal, “Machine learning-enabled high-frequency low-power
digital design implementation at advanced process nodes,” in Proceedings of the
2021 International Symposium on Physical Design, 2021, pp. 83–90.

[62] W. Jin, L. Chen, S. Sadiqbatcha, S. Peng, and S. X.-D. Tan, “Emgraph: Fast learning-
based electromigration analysis for multi-segment interconnect using graph convo-
lution networks,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
IEEE, 2021, pp. 919–924.

[63] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of ma-
chine learning research, vol. 9, no. 11, 2008.

[64] X. Liu et al., “Self-supervised learning: Generative or contrastive,” IEEE Transac-
tions on Knowledge and Data Engineering, 2021.

[65] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of
mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[66] C.-C. Huang, C.-H. Chiou, K.-H. Tseng, and Y.-W. Chang, “Detailed-routing-driven
analytical standard-cell placement,” in The 20th Asia and South Pacific Design Au-
tomation Conference, IEEE, 2015, pp. 378–383.

[67] C. E. Shannon, “A mathematical theory of communication,” The Bell system tech-
nical journal, vol. 27, no. 3, pp. 379–423, 1948.

[68] A. Nazi, W. Hang, A. Goldie, S. Ravi, and A. Mirhoseini, “Gap: Generalizable
approximate graph partitioning framework,” arXiv:1903.00614, 2019.

[69] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang, “Power-aware placement,”
in Proceedings of the 42nd annual Design Automation Conference, 2005, pp. 795–
800.

[70] C. Inc., Innovus user guide, 2022.

[71] S. Inc., Icc2 user guide, 2022.

210



[72] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems’19,

[73] X. He et al., “Ripple 2.0: High quality routability-driven placement via global
router integration,” in Proceedings of the 50th Annual Design Automation Con-
ference, 2013, pp. 1–6.

[74] L. Liu, B. Fu, M. D. Wong, and E. F. Young, “Xplace: An extremely fast and
extensible global placement framework,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, 2022, pp. 1309–1314.

[75] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “Gan-cts: A genera-
tive adversarial framework for clock tree prediction and optimization,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE,
2019, pp. 1–8.

[76] Z. Ying et al., “Hierarchical graph representation learning with differentiable pool-
ing,” 2018 Advances in neural information processing systems,

[77] A. Datli, U. Eksi, and G. Isik, “A clock tree synthesis flow tailored for low power,”
in https://www.design-reuse.com/articles/33873/clock-tree-synthesis-flow-tailored-
for-low-power.html, 2013.

[78] A. B. Kahng and S. Mantik, “A system for automatic recording and prediction of
design quality metrics,” in isqed, IEEE, 2001.

[79] A. B. Kahng, B. Lin, and S. Nath, “Enhanced metamodeling techniques for high-
dimensional ic design estimation problems,” in Proceedings of the Conference on
Design, Automation and Test in Europe, 2013.

[80] A. B. Kahng, B. Lin, and S. Nath, “High-dimensional metamodeling for prediction
of clock tree synthesis outcomes,” in System Level Interconnect Prediction (SLIP),
ACM/IEEE International Workshop on, IEEE, 2013.

[81] Y. Kwon, J. Jung, I. Han, and Y. Shin, “Transient clock power estimation of pre-cts
netlist,” in Circuits and Systems (ISCAS), 2018 IEEE International Symposium on,
IEEE, 2018.

[82] S. Koh, Y. Kwon, and Y. Shin, “Pre-layout clock tree estimation and optimization
using artificial neural network,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, 2020, pp. 193–198.

[83] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just a black box:
Learning important features through propagating activation differences,” arXiv preprint
arXiv:1605.01713, 2016.

211



[84] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang, “Generative ad-
versarial networks: Introduction and outlook,” IEEE/CAA Journal of Automatica
Sinica, vol. 4, no. 4, pp. 588–598, 2017.

[85] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

[86] M. Ancona et al., “Towards better understanding of gradient-based attribution meth-
ods for deep neural networks,” in International Conference on Learning Represen-
tations, 2018.

[87] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition, 2009.

[88] D. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive
networks, complex systems, vol. 2,” 1988.

[89] N. Cressie, “Fitting variogram models by weighted least squares,” Journal of the
international Association for mathematical Geology, vol. 17, no. 5, pp. 563–586,
1985.

[90] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, ACM, 2016.

[91] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost:
Unbiased boosting with categorical features,” in Advances in neural information
processing systems, 2018, pp. 6638–6648.

[92] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations
in convolutional network,” arXiv:1505.00853, 2015.

[93] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv:1502.03167, 2015.

[94] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process opti-
mization in the bandit setting: No regret and experimental design,” arXiv preprint
arXiv:0912.3995, 2009.

[95] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of ma-
chine learning algorithms,” Advances in neural information processing systems,
vol. 25, pp. 2951–2959, 2012.

212



[96] Y. Ma, Z. Yu, and B. Yu, “Cad tool design space exploration via bayesian optimiza-
tion,” arXiv preprint arXiv:1912.06460, 2019.

[97] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2,
pp. 65–85, 1994.

[98] N. Stander and K. Craig, “On the robustness of a simple domain reduction scheme
for simulation-based optimization,” Engineering Computations, 2002.

[99] F. Chollet et al., Keras, 2015.

[100] G. V. Trunk, “A problem of dimensionality: A simple example,” IEEE Transactions
on pattern analysis and machine intelligence, no. 3, pp. 306–307, 1979.

[101] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge uni-
versity press, 2004.

[102] W. Ning, “Strongly np-hard discrete gate-sizing problems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 8,
pp. 1045–1051, 1994.

[103] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[104] A. Mirhoseini et al., “Chip placement with deep reinforcement learning,” arXiv
preprint arXiv:2004.10746, 2020.

[105] H. Wang, K. Wang, J. Yang, N. Sun, H. Lee, and S. Han, “Gcn-rl circuit designer:
Transferable transistor sizing with graph neural networks and reinforcement learn-
ing,” in ACM/IEEE 57th Design Automation Conference (DAC), IEEE, 2020, pp. 1–
6.

[106] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. Burak Kara, “A deep
reinforcement learning approach for global routing,” Journal of Mechanical De-
sign, vol. 142, no. 6, 2020.

[107] G. Pasandi, S. Nazarian, and M. Pedram, “Approximate logic synthesis: A rein-
forcement learning-based technology mapping approach,” in 20th International
Symposium on Quality Electronic Design (ISQED), IEEE, 2019, pp. 26–32.

[108] C.-P. Chen, C. C. Chu, and D. Wong, “Fast and exact simultaneous gate and wire
sizing by lagrangian relaxation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 7, pp. 1014–1025, 1999.

213



[109] S. Roy, D. Liu, J. Um, and D. Z. Pan, “Osfa: A new paradigm of gate-sizing for
power/performance optimizations under multiple operating conditions,” in Design
Automation Conference, ACM, 2015, p. 129.

[110] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “Paragraph: Layout parasitics and
device parameter prediction using graph neural networks,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2020, pp. 1–6.

[111] A. Vaswani et al., “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[112] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine learning, vol. 8, no. 3-4, 1992.

[113] K. Wang, L. Duan, and X. Cheng, “Extensiveslackbalance: An approach to make
front-end tools aware of clock skew scheduling,” in 2006 43rd ACM/IEEE Design
Automation Conference (DAC).

[114] T.-B. Chan, A. B. Kahng, and J. Li, “Nolo: A no-loop, predictive useful skew
methodology for improved timing in ic implementation,” in Fifteenth International
Symposium on Quality Electronic Design, IEEE, 2014, pp. 504–509.

[115] S. Nath, G. Pradipta, C. Hu, T. Yang, B. Khailany, and H. Ren, “Transsizer: A
novel transformer-based fast gate sizer,” in IEEE/ACM International Conference
On Computer Aided Design (ICCAD), 2022.

[116] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[117] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in neural
information processing systems, vol. 28, 2015.

[118] S. Patanjali, M. Patnaik, S. Potluri, and V. Kamakoti, “Mltimer: Leakage power
minimization in digital circuits using machine learning and adaptive lazy timing
analysis,” Journal of Low Power Electronics, vol. 14, no. 2, pp. 285–301, 2018.

[119] S. Sirichotiyakul, T. Edwards, C. Oh, and J. Zuo, Primetime user guide: Funda-
mentals, 2005.

[120] S. Mok, J. Lee, and P. Gupta, “Discrete sizing for leakage power optimization in
physical design: A comparative study,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 18, no. 1, p. 15, 2013.

214



[121] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnn explainer: A tool
for post-hoc explanation of graph neural networks,” arXiv preprint arXiv:1903.03894,
2019.

[122] J. Hu, A. B. Kahng, S. Kang, M.-C. Kim, and I. L. Markov, “Sensitivity-guided
metaheuristics for accurate discrete gate sizing,” in Proceedings of the International
Conference on Computer-Aided Design, 2012, pp. 233–239.

[123] M. Rahman and C. Sechen, “Post-synthesis leakage power minimization,” in 2012
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2012, pp. 99–104.

[124] T. Reimann, G. Posser, G. Flach, M. Johann, and R. Reis, “Simultaneous gate siz-
ing and vt assignment using fanin/fanout ratio and simulated annealing,” in 2013
IEEE International Symposium on Circuits and Systems (ISCAS2013), IEEE, 2013,
pp. 2549–2552.

[125] M. Hashimoto, H. Onodera, and K. Tamaru, “A power optimization method con-
sidering glitch reduction by gate sizing,” in Proceedings of the 1998 international
symposium on Low power electronics and design, 1998, pp. 221–226.

[126] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and threshold
voltage assignment,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 2, pp. 223–234, 2010.

[127] L. Li, P. Kang, Y. Lu, and H. Zhou, “An efficient algorithm for library-based cell-
type selection in high-performance low-power designs,” in Proceedings of the In-
ternational Conference on Computer-Aided Design, ACM, 2012, pp. 226–232.

[128] J. Singh, V. Nookala, Z.-Q. Luo, and S. Sapatnekar, “Robust gate sizing by geo-
metric programming,” in Proceedings. 42nd Design Automation Conference, 2005.,
IEEE, 2005, pp. 315–320.

[129] S. Roy, W. Chen, C. C.-P. Chen, and Y. H. Hu, “Numerically convex forms and
their application in gate sizing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 9, pp. 1637–1647, 2007.

[130] M. M. Ozdal, S. Burns, and J. Hu, “Gate sizing and device technology selection
algorithms for high-performance industrial designs,” in Proceedings of the Inter-
national Conference on Computer-Aided Design, IEEE Press, 2011, pp. 724–731.

[131] A. Sharma, D. Chinnery, S. Bhardwaj, and C. Chu, “Fast lagrangian relaxation
based gate sizing using multi-threading,” in 2015 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), IEEE, 2015, pp. 426–433.

215



[132] S. Bao, “Optimizing leakage power using machine learning,” CS Department, Stan-
ford University, 2010.

[133] K. Wang and P. Cao, “A graph neural network method for fast eco leakage power
optimization,” in 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC), IEEE, 2022, pp. 196–201.

[134] W. Lee, Y. Kwon, and Y. Shin, “Fast eco leakage optimization using graph convo-
lutional network,” in Proceedings of the 2020 on Great Lakes Symposium on VLSI,
2020, pp. 187–192.

[135] J. B. White and P. Sadayappan, “On improving the performance of sparse matrix-
vector multiplication,” in Proceedings Fourth International Conference on High-
Performance Computing, IEEE, 1997, pp. 66–71.

[136] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,
pp. 3438–3445.

[137] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural networks:
A review of methods and applications,” arXiv preprint arXiv:1812.08434, 2018.

[138] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-directed place-
ment,” Software: Practice and experience, vol. 21, no. 11, pp. 1129–1164, 1991.

[139] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A lightweight parallel
and heterogeneous task graph computing system,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 6, pp. 1303–1320, 2021.

[140] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing analysis,” in Pro-
ceedings of the 39th International Conference on Computer-Aided Design, 2020,
pp. 1–9.

[141] D. MacMillen, R. Camposano, D. Hill, and T. W. Williams, “An industrial view
of electronic design automation,” IEEE transactions on computer-aided design of
integrated circuits and systems, vol. 19, no. 12, pp. 1428–1448, 2000.

[142] A. B. Kahng, “New directions for learning-based ic design tools and methodolo-
gies,” in 2018 23rd Asia and South Pacific Design Automation Conference (ASP-
DAC), IEEE, 2018, pp. 405–410.

216



PUBLICATIONS

This dissertation is based on and/or related to the works and results presented in the fol-

lowing publications in print:

[1] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “Gan-cts: A gener-

ative adversarial framework for clock tree prediction and optimization,” in 2019

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE,

2019, 1–8 (Best Paper Nomination).

[2] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim, “Tp-gnn: A graph

neural network framework for tier partitioning in monolithic 3d ics,” in 2020 57th

ACM/IEEE Design Automation Conference (DAC), IEEE, 2020, 1–6 (Best Paper

Nomination).

[3] Y.-C. Lu, S. Nath, S. S. K. Pentapati, and S. K. Lim, “A fast learning-driven signoff

power optimization framework,” in 2020 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), IEEE, 2020, pp. 1–9.

[4] Y.-C. Lu, S. Pentapati, and S. K. Lim, “Vlsi placement optimization using graph

neural networks,” in Proceedings of the 34th Advances in Neural Information Pro-

cessing Systems (NeurIPS) Workshop on ML for Systems, Virtual, 2020, pp. 6–12.

[5] Y.-C. Lu, S. Pentapati, and S. K. Lim, “The law of attraction: Affinity-aware place-

ment optimization using graph neural networks,” in Proceedings of the 2021 Inter-

national Symposium on Physical Design, 2021, 7–14 (Best Paper Nomination).

[6] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim, “Rl-sizer: Vlsi gate sizing for

timing optimization using deep reinforcement learning,” in 2021 58th ACM/IEEE

Design Automation Conference (DAC), IEEE, 2021, pp. 733–738.

217



[7] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim, “Doomed run prediction in phys-

ical design by exploiting sequential flow and graph learning,” in 2021 IEEE/ACM

International Conference On Computer Aided Design (ICCAD), IEEE, 2021, pp. 1–

9.

[8] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, “A clock tree prediction

and optimization framework using generative adversarial learning,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 9,

pp. 3104–3117, 2021.

[9] Y.-C. Lu, S. Pentapati, L. Zhu, G. Murali, K. Samadi, and S. K. Lim, “A ma-

chine learning-powered tier partitioning methodology for monolithic 3-d ics,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,

no. 11, pp. 4575–4586, 2021.

[10] Y.-C. Lu and S. K. Lim, “On advancing physical design using graph neural net-

works,” in 2022 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2022, pp. 1–7.

[11] Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving early physical syn-

thesis exploration through end-of-flow total power prediction,” in 2022 ACM/IEEE

4th Workshop on Machine Learning for CAD (MLCAD), IEEE, 2022, pp. 97–102.

[12] Y.-C. Lu, T. Yang, S. K. Lim, and H. Ren, “Placement optimization via ppa-

directed graph clustering,” in 2022 ACM/IEEE 4th Workshop on Machine Learning

for CAD (MLCAD), IEEE, 2022, 1–6 (Best Student Paper Award).

[13] Y.-C. Lu, S. Nath, S. Pentapati, and S. K. Lim, “Eco-gnn: Signoff power prediction

using graph neural networks with subgraph approximation,” ACM Transactions on

Design Automation of Electronic Systems, 2022.

218



[14] Y.-C. Lu, H. Ren, H.-H. Hsiao, and S. K. Lim, “Dream-gan: Advancing dreamplace

towards commercial-quality using generative adversarial learning,” in Proceedings

of the 2023 International Symposium on Physical Design, 2023.

[15] Y.-C. Lu, W.-T. Chan, D. Guo, S. Kundu, V. Khandelwal, and S. K. Lim, “Rl-

ccd: Concurrent clock and data optimization using attention-based self-supervised

reinforcement learning,” in 2023 60th ACM/IEEE Design Automation Conference

(DAC), 2023.

In addition, the author has completed works unrelated to this dissertation presented in the

following publications in print:

[1] S.-C. Hung, Y.-C. Lu, S. K. Lim, and K. Chakrabarty, “Power supply noise-aware

scan test pattern reshaping for at-speed delay fault testing of monolithic 3d ics,” in

2020 IEEE 29th Asian Test Symposium (ATS), IEEE, 2020, pp. 1–6.

[2] P. Vanna-Iampikul, C. Shao, Y.-C. Lu, S. Pentapati, and S. K. Lim, “Snap-3d: A

constrained placement-driven physical design methodology for face-to-face-bonded

3d ics,” in Proceedings of the 2021 International Symposium on Physical Design,

2021, pp. 39–46.

[3] S.-C. Hung, Y.-C. Lu, S. K. Lim, and K. Chakrabarty, “Power supply noise-aware

at-speed delay fault testing of monolithic 3-d ics,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 29, no. 11, pp. 1875–1888, 2021.

[4] P. Vanna-Iampikul et al., “Snap-3d: A constrained placement-driven physical de-

sign methodology for high performance 3d ics,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2022.

[5] L. Zhu, N. E. Bethur, Y.-C. Lu, Y. Cho, Y. Im, and S. K. Lim, “3d ic tier partitioning

of memory macros: Ppa vs. thermal tradeoffs,” in Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design, 2022, pp. 1–6.

219



VITA

Yi-Chen Lu was born in Taipei, Taiwan in 1994. He received the B.S. degree in Electrical

Engineering from National Taiwan University, Taipei, Taiwan, in 2017, and the M.S. degree

in Electrical and Computer Engineering from Georgia Institute of Technology, Atlanta, GA,

USA, in 2019, where is is currently a Ph.D. candidate.

He has been working as a graduate research assistant in the Georgia Tech Computer

Aided Design (GTCAD) Laboratory since 2018 under the advisement of Dr. Sung Kyu

Lim. His research focuses on devising machine learning (ML) and graph algorithms to

improve physical design flows for 2D and 3D integrated circuits (ICs).

220


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Tackling Physical Design (PD) with Machine Learning (ML)
	Contribution and Organization

	2 | A Machine Learning Powered Tier Partitioning Framework for Monolithic 3D ICs
	Background and Motivation
	TP-GNN Algorithms
	Experimental Results
	Discussion
	Conclusion

	3 | VLSI Placement Optimization via PPA-Directed Self-Supervised Deep Graph Clustering
	Background and Motivation
	Framework Overview
	Algorithms
	Experimental Results
	Conclusion 

	4 | Bridging Open-Source and Commercial Placers using Generative Adversarial Networks and Transfer Learning
	Background and Motivation
	Related Work
	Overview and Motivation
	DREAM-GAN Algorithms
	Experimental Results
	Conclusion

	5 | GAN-CTS: A Generative Adversarial Framework for Clock Tree Prediction and Optimization
	Background and Motivation
	Designing Experiments
	Overview of GAN-CTS
	GAN-CTS Algorithms
	Experimental Results
	Discussion
	Conclusion

	6 | RL-Sizer: VLSI Gate Sizing for Timing Optimization using Deep Reinforcement Learning
	Background and Motivation
	Reinforcement Learning Formulation
	RL-Sizer Algorithms
	Experimental Results
	Conclusion

	7 | RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-Supervised Reinforcement Learning
	Background and Motivation
	Related Works
	RL-CCD Algorithms
	Experimental Results
	Conclusion

	8 | ECO-GNN: Signoff Power Prediction using Graph Neural Networks with Subgraph Approximation
	Background and Motivation
	Related Works
	Designing of Experiments
	Overview of ECO-GNN Framework
	Design of Experiments
	ECO-GNN Algorithm
	Explaining Prediction Results
	Experimental Results
	Conclusion

	9 | Doomed Run Prediction in Physical Design by Exploiting Sequential Flow and Graph Learning
	Background and Motivation
	Overview: PD Flow Modeling
	Design of Experiments
	PD-LSTM Algorithms
	Experimental Results
	Conclusion

	10 | Conclusion
	A Machine Learning Powered Tier Partitioning Framework for Monolithic 3D ICs
	VLSI Placement Optimization via PPA-Directed Self-Supervised Deep Graph Clustering
	Bridging Open-Source and Commercial Placers using Generative Adversarial Networks and Transfer Learning
	GAN-CTS: A Generative Adversarial Framework for Clock Tree Prediction and Optimization
	RL-Sizer: VLSI Gate Sizing for Timing Optimization using Deep Reinforcement Learning
	RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-Supervised Reinforcement Learning
	ECO-GNN: Signoff Power Prediction using Graph Neural Networks with Subgraph Approximation
	Doomed Run Prediction in Physical Design by Exploiting Sequential Flow and Graph Learning
	Concluding Remarks

	References
	Publications

	Vita

