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Abstract

A computational tool is developed to simulate the propagation of a discrete

fracture within a continuum damage process zone. Microcrack initiation and

propagation prior to coalescence are represented by a nonlocal anisotropic

Continuum Damage Mechanics (CDM) model in which the crack density is

calculated explicitly. A damage threshold is defined to mark the beginning

of crack coalescence. When that threshold is reached, a cohesive segment

is inserted in the mesh to replace a portion of the damage process zone by

a segment of discrete fracture. Discretization is done with the extended

Finite Element Method (XFEM), which makes it possible to simulate frac-

ture propagation without assigning the fracture path a priori. Rigorous cal-

ibration procedures are established for the cohesive strength (related to the

damage threshold) and for the cohesive energy release rate, to ensure the bal-

ance of energy dissipated at the micro and macro scales. The XFEM-based

tool is implemented into an open source object-oriented numerical package

(OOFEM), and used to simulate wedge splitting and three-point bending
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tests. Results demonstrate that the proposed numerical method captures

the entire failure process in mode I, from a mesh-independent diffuse dam-

age zone to a localized fracture. Future work will investigate mixed mode

fracture propagation.

Keywords: Nonlocal damage model, Micromechanics, Cohesive zone

model, Damage to fracture transition, Anisotropy, Extended finite element

method
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1. Introduction

Macro-fracture propagation results from micro-crack coalescence. Mod-

eling fracture propagation at the macro-scale in interaction with micro-scale

structure evolution is of great interest in many fields of engineering. Over

the last few decades, numerous numerical methods were proposed to model

multiscale fracture propagation, including: (1) Direct numerical simulation

(brute-force full scale simulation); (2) Homogenization-based multiscale ap-

proach; and (3) Damage-fracture transition techniques.

In direct numerical simulation approaches, the morphology of each mi-

crostructure phase (grains, voids, micro-cracks) is explicitly discretized and

each phase is assigned its specific constitutive model. For example, Brazilian

tests of rock materials [1] were simulated directly with the discrete element

method (DEM) and three-point bending tests of asphalt concrete [2] were

simulated directly with the finite element method (FEM). Direct numerical

simulations only require the micromechanical behavior, through constitutive

laws in FEM and contact bonds in DEM. The macroscopic behavior is rep-

resented by the superposition of microscopic behaviors. Direct numerical

simulations are very efficient to predict fracture initiation and propagation

at laboratory scale. However, the computational cost is not manageable for

metric-scale problems, even with state-of-the-art supercomputing capabili-

ties.

The computational homogenized multiscale simulation method can be

used in replacement of the standard stress-strain phenomenological consti-

tutive models that depend on macroscopic internal variables. The pointwise

overall stress-strain behavior (i.e. stress-strain behavior at each Gauss point),
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evaluated from the solution of an auxiliary Boundary Value Problem (BVP)

over a Representative Elementary Volume (REV), is endowed with a geomet-

rical description of the material morphology [3]. Computation Homogeniza-

tion (CH) is used to connect the two scales. Several CH techniques exist [4].

In the standard CH, the macroscopic kinematic quantities (strain or defor-

mation gradient) are downscaled to the micro-scale as boundary conditions

to solve the BVP. Once the micro-scale BVP with explicit inhomogeneities is

solved by the FEM, CH is performed over the REV to obtain the stress tensor

and the Jacobian at the macroscopic level. Because finite element simulations

are performed to solve two nested BVPs (micro and macro), the method is

also known as FE2 scheme [5]. By contrast, continuous-discontinuous ho-

mogenization consists in incorporating a discrete crack at the macro-scale - a

technique known as the multi-scale discontinuity aggregation method [6, 7, 8].

Aside from the continuous-discontinuous CH, efforts were made to homoge-

nize the continuum softening behavior at the micro-scale into a cohesive zone

model at the macro-scale [9, 10, 11]: the macro-scale interfacial displacement

jump is downscaled as a boundary condition for a micro-scale interfacial REV

with finite thickness, and the solution of interfacial REV traction is upscaled

as the macro-scale cohesive traction by homogenization. Compared to the

direct simulation method, CH schemes are efficient to simulate engineering

problems at the metric scale. However, CH is still computationally expensive

because of the hierarchical BVPs simulation. In addition, constitutive laws

at micro-scale are still required and may not be known a priori.

The technique of transition from damage to fracture consists in coupling

a Continuum Damage Mechanics (CDM) model with a discrete fracture me-
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chanics model using an advanced discretization method. As explained in

[12, 13, 14, 15, 16], the failure process of quasi-brittle materials involves two

stages: diffused damage inception followed by extensive damage localization

leading to macro-fracture propagation. In the following, we call “process

zone” the zone with diffused micro crack inception in the first stage. The

most widely used numerical tools to model the failure process are classified

either as CDM methods or as fracture mechanics methods. CDM methods

employ constitutive laws with full stress softening and regularization tech-

niques [17, 18, 19] and allow capturing diffused damage arising at the early

phase of material failure, in the form of stiffness degradation. However, it

cannot explicitly predict the formation of macro fracture surfaces, and it suf-

fers from spurious damage development due to excessive strain under high

stress [20, 21]. Fracture mechanics models can avoid the issues encountered

in nonlocal CDM models by creating discrete surfaces. However, linear elas-

tic fracture mechanics models cannot account for the development of the

damage process zone. In the widely used Cohesive Zone Models (CZM),

the process zone is lumped into a single line (respectively, a single surface)

in 2D (respectively, 3D). Besides, the implementation of fracture mechanics

models is challenging because the dynamic representation of discrete frac-

ture surfaces requires sophisticated finite element discretization. The em-

bedded crack method [12], the eXtended Finite Element Method (XFEM)

[16], and the method of interface-element-inserted-on-the-fly [22] are among

the most efficient techniques available to date to discretize the domain to

conform with the geometry of the fracture. It is also worth noting that the

phase-field method belongs to the category of continuum damage models.
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As demonstrated in [23, 24, 25], phase-field fracture propagation models are

numerically equivalent to an integration based nonlocal isotropic damage

model, and are mathematically similar to gradient-based non-local damage

models. Phase-field methods are computationally efficient but face serious

challenges when it is required to model fracture surfaces explicitly.

Provided that neither CDM models nor fracture mechanics models alone

can properly represent the two stages of fracture propagation, a coherent

computational framework that models the transition from diffused damage

to localized cohesive fracture is desirable. The very first attempt of coupling

CDM and fracture mechanics was made by Planas and collaborators [26],

who proved that the cohesive fracture model is a particular case of nonlocal

damage formulation. Later, Mazars and Pijaudier-Cabot published a paper

[27] in which they established an equivalence between the energy dissipated

for opening a discrete fracture and the energy dissipated for producing a di-

lute distribution of micro-cracks (diffused damage). This energy equivalence

was further used by Cazes and collaborators [28, 29] to construct a cohe-

sive law from a nonlocal damage model in the framework of thermodynam-

ics. Based on similar thermodynamic principles, Jirasek and Zimmermann

[30, 12] used an integral type nonlocal damage model to predict micro-crack

propagation and the transition to cohesive fracture debonding, in which the

fracture was modeled by the embedded crack method. The energy equiva-

lence is enforced at the local element, and the transition triggers when the

local element strain across the embedded crack reaches a critical value. The

same idea of energy equivalence at the tip element was adopted by Roth

and collaborators [31], except that the transition could occur at any level of
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damage, and the integration-based nonlocal regularization was performed on

stress instead of strain. In [13], macro fracture is modeled with traction free

surfaces (no cohesive model) using the XFEM, and the transition happens

when the gradient enhanced damage variable reaches unity. Comi and col-

laborators [32, 14] coupled an integral type nonlocal damage model with a

mode I cohesive zone model using the XFEM. The transition triggers at a

certain damage threshold, which is not a constant: it is related to the size of

the element at the fracture tip, and the energy equivalence is established by

assigning to the cohesive zone model the same amount of energy as the en-

ergy not yet dissipated by the nonlocal model within the process zone. Wang

and Waisman [33, 16] extended this idea to mixed mode fracture propagation

with damage-fracture transition. Recently, Cuvilliez and collaborators [15]

designed a flexible modeling framework, in which the cohesive law is derived

from the gradient damage model, and the transition from continuum damage

to discrete cohesive fracture can happen at any level of damage. Leclerc and

collaborators [34] further incorporated the effect of stress triaxiality into the

macro cohesive zone model during the transition.

The numerical methods of transition from continuum damage to discrete

fracture reviewed above have significant value; however, a few shortcom-

ings still need to be addressed. First, in the diffused damage development

phase, isotropic damage constitutive laws cannot account for anisotropic stiff-

ness degradation due to the initiation of micro cracks in multiple directions.

Anisotropic CDM models are necessary. Second, phenomenological damage

cannot explicitly represent crack density evolution. Micromechanical damage

models should be used for modeling multiscale fracture propagation. Third,
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the transition is the result of micro crack interaction and coalescence, hence

the threshold value should be rigorously defined and calibrated.

In this paper, we couple a nonlocal micromechanics based damage model

with a CZM by using the XFEM. In Section 2, we present an anisotropic

CDM model in which the free enthalpy is obtained by integrating open and

closed crack surface displacement jumps for a discrete set of crack orientations

uniformly distributed on a unit sphere. We construct an equivalent strain

variable to account for deformation induced by open cracks. We formulate a

criterion to predict the evolution of the damage tensor in terms of equivalent

strain. An integration based nonlocal regularization is employed to alleviate

mesh dependence when cracks are open. In Section 3, we briefly introduce

the Park-Paulino-Roesler (PPR) CZM [35], employed in this paper to char-

acterize the macro cohesive fracture behavior. We rigorously calibrate the

critical damage value that marks the transition from diffused micro-cracks

to macro-fracture, as well as the strength and energy release rate of the PPR

cohesive law. Constitutive laws at both micro- and macro- scales are coupled

by employing the XFEM. In Section 4, we derive the strong and weak forms

of the governing equations, we describe the algorithm used for computing the

Jacobian and the macro-fracture tip advancement and we explain the state

variables mapping technique. Wedge splitting and three-point bending tests

are simulated to assess the performance of the proposed framework; results

are presented in Section 5.
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2. Micro-scale Damage Model

2.1. Derivation of the Expression of the Free Energy

We adopt the expression of the free enthalpy established in [36, 37, 38]

for a REV of volume Ωr and external boundary ∂Ωr subjected to a uniform

stress σ. It is assumed that penny shaped microscopic cracks of various

orientations are embedded in an isotropic linear elastic matrix of compliance

tensor S0. Each microscopic crack is characterized by its normal direction −→n

and its radius a. The macro strain of a REV that contains a single set of N

microcracks oriented in planes normal to −→n is the sum of the elastic strain of

the matrix and of the strains due to the normal and shear crack displacement

jumps, as sketched in Fig. 1. We adopt a dilute homogenization scheme, in

which it is assumed that microcracks do not interact. As explained in [39, 40],

the expression of the free enthalpy for a REV with a single set of N cracks is

obtained as:

G∗ =
1

2
σ : S0 : σ +

1

2
c0ρ(−→n · σ · −→n )〈−→n · σ · −→n 〉+

+
1

2
c1ρ[(σ · σ) : (−→n ⊗−→n )− σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σ]

(1)

in which we note 〈x〉+ = x, x ≥ 0, and 〈x〉+ = 0, x < 0. The coefficient c0

(respectively c1) is defined as the normal (respectively shear) elastic compli-

ance of the crack. ρ(−→n ) is the crack density, for the set of N cracks oriented

in planes perpendicular to −→n . We define:

c0 =
16

3

1− ν2
0

E0

, c1 =
32

3

1− ν2
0

(2− ν0)E0

, ρ =
Na3

|Ωr|
(2)

where E0 and ν0 are the Young’s modulus and Poisson’s ratio of the matrix.
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σ
τ

        Dilute 
Homogenization

Integration over
   a unit sphere

REV: meso continuum scaleSingle crack: micro scale

Figure 1: Procedure to obtain the expression of the REV Gibbs free energy: (1) sum the

elastic deformation energy stored in N cracks of same orientation; (2) integrate the result

over the unit sphere to account for all possible crack orientations.

For several crack sets of different orientations, the Gibbs free energy of

the REV is obtained by integrating G∗ for a distribution of crack densities

ρ(−→n ), over the unit sphere S2 = {−→n , |−→n |= 1} shown in Fig. 1, as follows:

G =
1

2
σ : S0 : σ +

1

8π

∫
S2

{c0 ρ(−→n )(−→n · σ · −→n )〈−→n · σ · −→n 〉+

+ c1 ρ(−→n )[(σ · σ) : (−→n ⊗−→n )− σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σ]}dS
(3)

At the scale of the REV, the second order crack density tensor ρ is defined

in such a way that: ρ(−→n ) = −→n · ρ · −→n . The second order damage tensor is

defined as follows:

Ω =
1

4π

∫
S2

ρ(−→n )(−→n ⊗−→n )dS =
1

4π

∫ 2π

0

∫ π

0

ρ(−→n )(−→n ⊗−→n )sinθdφdθ (4)

It can be shown mathematically (see [41, 37] for details) that the crack

density function ρ(−→n ) is related to the damage tensor as follows:

ρ(−→n ) =
3

2
(5−→n ·Ω · −→n − TrΩ) (5)

The free energy is the sum of the elastic deformation energy stored in

the matrix and of the elastic energy stored in the displacement jumps across
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crack surfaces. Let us consider two particular cases: either all cracks are open

(−→n · σ · −→n > 0), or all cracks are closed (−→n · σ · −→n < 0). After introducing

the relation (5) in the expression of Gibbs energy and integrating over the

unit sphere (Eq. 3), we obtain the macroscopic free enthalpy as a function

of the second order damage tensor Ω, as follows:

G(σ,Ω) =
1

2
σ : S0 : σ + a1 TrΩ(Trσ)2 + a2 Tr(σ · σ ·Ω)

+ a3 TrσTr(Ω · σ) + a4 TrΩ Tr(σ · σ)

(6)

Please refer to Appendix A for the details of the mathematical derivations.

The four coefficients a1, a2, a3 and a4 are given as

a1 =
−µ
140

c1, a2 =
7 + 2µ

14
c1, a3 =

µ

14
c1, a4 =

−µ
70
c1 (7)

with µ = −ν0 for open cracks and µ = −2 for closed cracks. Note that the

expression of the free enthalpy obtained from micro-mechanical principles in

Eq. 6 is similar to that assumed in a number of purely phenomenological

models, e.g. [42, 43]. In the following, µ = −ν0 for open cracks is used as

we focus on modeling the propagation of a macro-fracture as a result from

micro crack inception and growth.

The damage driving force (energy release rate), conjugated to the damage

tensor, is defined as:

Y =
∂G(σ,Ω)

∂Ω
= a1 (Trσ)2 δ + a2 σ · σ + a3 Tr(σ)σ + a4 Tr(σ · σ)δ (8)

where the Kronecker symbol δ stands for second order identity tensor. The
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stress/strain relation is obtained by thermodynamic conjugation:

ε =
∂G(σ,Ω)

∂σ
=

1 + ν0

E0

σ − ν0

E0

(Trσ) δ + 2a1(TrΩ Trσ) δ + a2(σ ·Ω + Ω · σ)

+ a3[ Tr(σ ·Ω) δ + (Trσ) Ω ] + 2a4(TrΩ)σ

(9)

2.2. Damage Evolution and Nonlocal Regularization

Following Mazars and Pijaudier-Cabot [44], we define the local equivalent

strain in terms of the positive principal strain components (noted 〈εI〉), as:

ε̂ =

√√√√ 3∑
I=1

〈εI〉2 (10)

We consider linear hardening/softening in the damage criterion:

f(ε,Ω) = ε̂− (κ+ ηTrΩ) (11)

where κ and η are material parameters. The damage evolution law is pos-

tulated so as to obtain damage patterns that conform to the observations as

Ω̇ = λ̇D = λ̇


〈ε1〉2/ε̂2 0 0

0 〈ε2〉2/ε̂2 0

0 0 〈ε3〉2/ε̂2

 . (12)

We can easily verify that a uniaxial tensile loading in direction 1 can only

result in cracks perpendicular to direction 1 because ε̂ = ε1 > 0. The value

of the Lagrangian multipliers λ̇ is determined from consistency conditions

applied to the damage criterion (Eq. 11):

0 =
∂f

∂ε̂
dε̂+

∂f

∂Ω
: dΩ = ˙̂ε− ηδ : Ω̇, → λ̇ = ˙̂ε/η ≥ 0 (13)
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According to the consistency equations, the damage rate Ω̇ is always

non-negative. Since the damage driving force Y is positive definite (Eq.

8), the positivity of energy dissipation is ensured, i.e., the second law of

thermodynamics is satisfied:

Y : Ω̇ ≥ 0 (14)

The formulated constitutive model yields strain softening behavior due

to open micro crack evolution, which leads to the well known spurious local-

ization and mesh dependency issues. A well-posed boundary value problem

can be recovered by utilizing localization limiters, based on integration or

gradient based nonlocal regularization [45], micro-structure enrichment [46],

or local adjustment of material properties based on element size and direc-

tion (crack band theory) [47]. In this paper, we use an integration-based

non-local technique [48]: the evolution of the internal variables at a material

point does not only depend on the stress and strain at that point, but also on

the field variables within an influence domain surrounding that point. The

size of the nonlocal influence domain is controlled by a characteristic inter-

nal length lc, which is a material parameter usually equal to 2 to 3 times the

maximum size of grains encountered in a polycrystal [49]. Mathematically,

we replaced the equivalent strains that control damage evolution (Eq. 10)

by their weighted average defined on an influence domain V , as follows:

ε̂nl(x) =

∫
V

ω(x, ξ)ε̂(ξ)dV (ξ) (15)

where x is the position vector of the material point considered, and ξ is

the position vector of points in the influence domain of x. ω(x, ξ) is the
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nonlocal weight function, which decreases monotonically as the distance r =

‖x − ξ‖ increases. Note that if field variables are uniform, the value of

damage should be uniform. Hence the non-local value of the equivalent

strains should be equal to the local value of equivalent strains in the uniform

strain field. This implies that weight functions should satisfy the partition

of unity:
∫
V
ω(x, ξ)dV (ξ) = 1. Accordingly, weight functions usually take

the following general form:

ω(x, ξ) =
ω0(x, ξ)∫

V
ω0(x, ξ)dV (ξ)

=
ω0(x, ξ)

Vr(x)
(16)

where Vr(x) is the so-called characteristic volume. The exact form of the

weight function ω0(x, ξ) depends on the material considered. The Gauss

function (normal distribution) and the bell-shaped function are the most

widely used weight functions for isotropic media. Here, we adopt the bell-

shaped function, expressed as:

ω0(r) =
〈

1− r2

l2c

〉2

. (17)

The advantage of the bell-shaped function is that the nonlocal influence zone

only depends on lc: no cut-off is needed to ensure that the weight function

is zero outside of the influence zone. In the FEM, nonlocal variables are

calculated as the weighted average of local variables obtained iteratively at

the Gauss points located in the influence zone [18, 38]. For instance, the

nonlocal equivalent strain is expressed as:

ε̂nl(x) =

∑NGP

j=1 ω0(‖x− ξj‖)ε̂(ξj)∆Vj∑NGP

j=1 ω0(‖x− ξj‖)∆Vj
(18)

where NGP the total number of Gauss points inside the influence zone of
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material point x. ∆Vj is the integration volume associated with the jth

Gauss point.

Note that the proposed model does not consider inelastic/plastic defor-

mation. The monotonic increase in damage (micro-crack density) only con-

tributes to the degradation of material stiffness. When the material is un-

loaded, the opened micro-cracks close. The unloading path is a straight line

to the point of zero stress and zero strain. The slope of that line corresponds

to the damaged stiffness of the REV. Additionally, the tangent stiffness, de-

fined as the derivative of stress by strain, has additional terms that stem from

the non-local regularization. When these second-order terms are dropped,

the expression of stiffness boils down to that of the secant stiffness, which

means that the quadratic convergence rate of the global iteration scheme is

lost.

3. Coupling Cohesive Fracture Propagation with Continuum Dam-

age Zone Evolution

3.1. Critical Damage Threshold Calibration

The constitutive model proposed in Section 2, based on a dilute homog-

enization scheme, relates macro-scale stress-strain behavior with micro-scale

crack density, as long as crack interactions can be neglected. Crack interac-

tion is followed by crack coalescence and macro-fracture formation. Macro-

scale fracture propagation cannot be predicted by CDM and requires a frac-

ture mechanics approach based on the concept of stress-intensity factor, en-

ergy release rate, Crack Tip Opening Displacement (CTOD) or Crack Mouth

Opening Displacement (CMOD). In this paper, a CZM is adopted to capture
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the softening induced by the separation of macro-fracture surfaces. We start

by calibrating the critical damage (i.e., crack density) which marks the transi-

tion between continuum damage propagation and macro-fracture formation.

To this aim, we calculate the damaged Young’s modulus of a 2D REV that

contains one set of parallel equally sized cracks, by using two methods: first,

the proposed continuum damage model, which does not account for micro-

crack interaction; second, Kachanov’s micro-mechanical model [50], which

accounts for micro-crack interaction. The critical damage value is defined as

the level of damage above which the predictions of damaged elastic stiffness

differ in the two models. Details are provided below.

σ∞ σ∞

k nk∙σ
∞

Due to interaction

Figure 2: Crack interaction model in Kachanov’s theory.

In the 2D micro-mechanical damage model proposed by Kachanov, the

stress and strain fields in a linear elastic plate containing N cracks, subjected

to the stress σ∞ at infinity, are calculated as those in a plate subjected to

zero far field stress and containing N loaded micro-cracks. The faces of each

micro-crack (i = 1, ..., N) are subjected to the traction t0i = ni ·σ∞, in which

ni is the unit vector normal to the faces of the i − th crack. According to

the superposition theory for elastic media, this problem can be solved by

considering N plates containing only one crack subjected to the traction ti
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(i = 1, ..., N), defined as the sum of t0i and the additional tractions due to

stress interactions with the other micro-cracks. The superposition method is

illustrated in Fig. 2. The tractions can be determined by solving a system

of integral equations, as follows [50]:

ti(ζi) = t0i +ni ·
∑
j 6=i

∫ lj

−lj
σnj (ζi, ζj)[nj · tj(ζj)] +στj (ζi, ζj)[τj · tj(ζj)]dζj (19)

in which lj is the half length of the j−th crack and τj is the unit vector that is

tangential to the faces of the j − th crack. σnj (ζi, ζj) (respectively στj (ζi, ζj))

is the stress tensor at the current point ζi on the i − th crack, generated

by a pair of equal and opposite unit forces located at point ζj along the

normal (respectively tangential) direction of the j − th crack. Following the

approximation proposed and validated by Kachanov [50], we can obtain the

tractions ti(ζi) by solving the system of Eqs. 19. The detailed procedure is

provided in [51].

The average relative displacement vector < bi > across the faces of the i−

th crack is found by superposing the displacements due to punctual tractions

at each point of the i− th crack faces [50]:

< bi >=
4li
E0

∫ li

−li
ti(ζi)[1− (ζi/li)

2]1/2dζi (20)

in which E0 is the Young’s modulus of the matrix (bounding material) be-

tween the cracks. The fourth order effective compliance tensor Seff is used

to relate the average strain < ε > to the applied far field stress σ∞ over a

representative area A:

< ε >= Seff : σ∞ = S0 : σ∞ +
1

2A

N∑
i=1

∫ li

−li
[ni(ζi)bi(ζi) + bi(ζi)ni(ζi)]dζi

(21)

17



where S0 is elastic compliance tensor without cracks, and ni(ζi) is the unit

vector normal to the i − th crack face at point ζi. We consider flat cracks,

for which ni(ζi) is a constant. Eq. 21 thus becomes:

< ε >= S0 : σ∞ +
li
A

N∑
i=1

[ni < bi > + < bi > ni] (22)

The expressions of the stress distributions that are involved in the integral

terms of Eqs. 19 and 20 are very complex, which makes it challenging to ob-

tain the exact solution of the traction and displacement distributions along

each crack face. To overcome this problem, several approximation meth-

ods were proposed [50, 52, 53, 54]. In the following, we adopt Kachanov’s

approximation method [50], in which Eq. 20 is written as follows:

< bi >=
π li
E0

< ti > (23)

where < ti > is the mean traction field that applies to the i− th crack.

l

D

Size ratio: R=l/D

σ∞
τ∞

x

y

Figure 3: Random crack pattern adopted to calculate the reduction of stiffness due to

damage in the proposed CDM model and in Kachanov’s theory.

In the following, we consider a 2D REV that contains cracks perpendicular

to the x-axis, and we calculate the Young’s modulus in the x-direction. We
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randomly populate the crack centers inside the REV as shown Fig. 3. The

crack density in Kachanov’s model (ρ) is defined in the same way as in the

proposed CDM model (Eq. 2). But since the problem solved here is in 2D,

the crack surface area and the REV volume are replaced by the crack length

and the REV area, respectively. As a result:

Ωxx = ρx =
1

A

N∑
i=1

l2i (24)

In the present case, because all the cracks are perpendicular to the x-axis,

the elastic moduli are affected by the crack density (ρx) in Kachanov’s model,

and by the xx− component of the damage tensor (Ωxx) in the continuum

damage model. We simulated a simple tensile test at the material point with

the continuum model. The effective Young’s modulus along the x-direction

(solid black line in Fig. 4) was obtained from the compliance tensor, as

follows:

S =
∂2G(σ,Ω)

∂σ2
(25)

where G is Gibbs free energy expressed in Eq. 6. We calculated the damaged

elastic tensor with Kachanov’s model for several values of crack density, by

either increasing the number of cracks in the REV with a fixed crack length

(crack initiation), or by increasing the length of a fixed number of cracks in

the REV (crack propagation). Note that in all simulations, the centers of

the cracks were randomly distributed inside the REV, with non-overlap and

non-intersection constraints. To ensure that the domain of size D remained

a REV, we used a ratio R = l/D of 1/25.

Fig. 4 shows the evolution of effective modulus Eeff
xx as the crack den-

sity (damage) in the x-axis increases, for two different initial moduli. It is
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worth noting that the value of the damaged Young’s modulus only depends

on crack density - and not on the type of damage growth (crack initiation

vs. crack propagation). Since the free energy expression (Eq. 6) is calcu-

lated from a dilute homogenization scheme, the effective modulus predicted

by the continuum model (solid black line) coincides with that predicted by

Kachanov’s model (markers & red dashed line) until crack density exceeds

Ωeff
xx = ρx = 0.2. When crack density exceeds 0.2, the modulus degradation

rate predicted by Kachanov’s theory is lower than in the CDM model, be-

cause of stress shadowing effects (due to crack interactions). Moreover, the

point that marks the divergence between the two models does not depend

on the initial modulus used for calculation (case 1 vs. case 2). In summary,

Ωcrit = 0.2 is the limit value above which the interaction between micro

cracks cannot be ignored: it marks the transition from diffused micro-scale

cracks to concentrated macro-fracture.
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Figure 4: Damaged Youngs’ modulus calculated with the continuum model and with

Kachanov’s micro-mechanical model for a set of cracks perpendicular to the x-axis.
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3.2. Macro-scale Cohesive Zone Model: PPR

Above the critical damage threshold Ωcrit = 0.2, the continuum assump-

tion is not valid any longer, and damage needs to be replaced by a macro-

fracture segment in the FEM model. We use a CZM governed by a traction-

separation law to represent the macro fracture. In this paper, we list the

main equations of the potential based Park-Paulino-Roesler (PPR) [35] co-

hesive model, adopted here. The PPR model is different from non-potential

based cohesive zone models, in which ad hoc traction-separation laws are

defined in terms of effective displacement. As a result, the PPR model guar-

antees that the tangent stiffness within the softening region is negative, and

does not exhibit any non-physical interface behavior under complex loading

conditions [55].

σmax

Tn(Δn,0)

0 δnc δn Δn

φnφn

τmax

τmax

Tn(0, Δt)

δt

δt

δct

δct Δt

φt

Macro Fracture

Mathematical crack tip     Cohesive crack tip      Material  crack tip

Fracture wake

δnc/tc

δn/c

Figure 5: PPR cohesive model of macro-fracture propagation.
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In the PPR cohesive zone model [35], a unified potential is constructed so

as to meet the following requirements: (i) Complete normal and shear failure

are reached when either the normal or the tangential separation reaches a

maximum value; (ii) The traction rate is equal to zero when the traction is

equal to the cohesive strength; (iii) The energy release rate is equal to the

area enclosed by the traction-separation curve.

The expression of the potential is

Ψ(∆n,∆t) = min(φn, φt) +
[
Γn

(
1− ∆n

δn

)α(m
α

+
∆n

δn

)m
+ 〈φn − φt〉

]
×
[
Γt

(
1− |∆t|

δt

)β(n
β

+
|∆t|
δt

)n
+ 〈φt − φn〉

]
.

(26)

where ∆n and ∆t (respectively δn and δt) stand for the separations in the

normal and shear directions at the current time (respectively, at failure) as

shown in Fig. 5. φn (respectively φt) is the mode I (respectively, mode II)

cohesive energy release rate. α and β are the shape factors that control the

concave or convex nature of the softening curve. The mechanical response

of brittle materials is best represented by power law softening equations or

bilinear softening laws [56]. Accordingly, we use α = β = 4, which allows

representing concave shaped softening curves with a power law. The traction

vector (Tn, Tt) is obtained directly from the derivative of the potential in Eq.
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26:

Tn(∆n,∆t) =
Γn
δn

[
m
(

1− ∆n

δn

)α(m
α

+
∆n

δn

)m−1

− α
(

1− ∆n

δn

)α−1(m
α

+
∆n

δn

)m]
×
[
Γt

(
1− |∆t|

δt

)β(n
β

+
|∆t|
δt

)n
+ 〈φt − φn〉

]
Tt(∆n,∆t) =

Γt
δt

[
n
(

1− |∆t|
δt

)β(n
β

+
|∆t|
δt

)n−1

− β
(

1− |∆t|
δt

)β−1(n
β

+
|∆t|
δt

)n]
×
[
Γn

(
1− ∆n

δn

)α(m
α

+
∆n

δn

)m
+ 〈φn − φt〉

] ∆t

|∆t|
(27)

where Γn and Γt are energy constants, related to φn and φt as follows:

Γn = (−φn)〈φn−φt〉/(φn−φt)
( α
m

)m
, Γt = (−φt)〈φt−φn〉/(φt−φn)

(β
n

)n
. (28)

where m,n, called the non-dimensional exponents, are expressed in terms

of the constant shape factors α, β and of the initial slope indicators (λn, λt),

as follows:

m =
α(α− 1)λ2

n

(1− αλ2
n)
, n =

β(β − 1)λ2
t

(1− βλ2
t )

(29)

The initial slope indicators are defined as the ratios of critical crack open-

ing width to the final crack opening width (Fig. 5), i.e. λn = δnc/δn, λt =

δtc/δt. Usually, the extrinsic CZM, in which the elastic behavior (or initial

ascending slope) is excluded, is used to model fracture propagation when a

cohesive segment or a cohesive interface element is adaptively inserted. Only

the softening branch is used, because the elastic deformation of the mate-

rial is already accounted for by the continuum model. However, numerical

simulations indicate that the absence of one-to-one relationship at the point

∆n = ∆t = 0 causes stability issues. In the following, we use the intrinsic

cohesive zone model with λn = λt = 0.001 to improve the convergence rate,

and to avoid unwanted elastic separation.
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To close the formulation of the PPR cohesive model, relationships be-

tween the cohesive strengths (σmax, τmax) and the final normal and shear

crack opening widths (δn, δt) are needed. The traction rate is equal to zero

when traction is equal to the cohesive strength, so we have:

δn =
φn
σmax

αλn

(
1− λn

)α−1

(
α

m
+ 1)

( α
m
λn + 1

)m−1

δt =
φt
τmax

βλt

(
1− λt

)β−1

(
β

n
+ 1)

(β
n
λt + 1

)n−1
(30)

Different from monotonic loading, the potential is not directly used for

unloading and reloading. Following the strategy presented in [35, 57], a scaled

linear relationship is adopted and implemented, as follows:

T un (∆n,∆t) =Tn(∆nmax ,∆t)
∆n

∆nmax

T ut (∆n,∆t) =Tt(∆n,∆tmax)
∆t

∆tmax

(31)

where ∆nmax (respectively, ∆tmax) is the maximum normal (respectively, ab-

solute tangential) separation ever reached in the loading history. Note that

we adopted the penalty stiffness approach to model fracture surface contact

behavior. As explained in [58], the tangent Jacobian matrix can be calcu-

lated analytically in the potential based CZM, which is critical to achieve

quadratic convergence in FEM simulations. The reader is referred to [35, 57]

for the expression of the Jacobian matrix for loading, unloading, and reload-

ing phases.

3.3. Cohesive Strength and Energy Release Rate of the PPR CZM

The cohesive zone model presented in Section 3.2 for pure mode I macro

fracture propagation requires 4 material parameters. Here, we consider that
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the shape factors are α = β = 4 and that the initial slope indicator are

λn = λt = 0.001 - these values are typical for brittle materials. As a result,

only the cohesive strength σmax and the cohesive energy release rate φn need

to be calibrated. The transition from an element with diffuse damage at

Ωcrit = 0.2 to an element with a cohesive fracture is handled by writing the

equilibrium of forces before and after the separation of the damaged element.

The cohesive strength at a Gauss Point along the cohesive segment should

equal the projected stress interpolated from the stress state of the element,

as shown in Fig. 6. Numerically, we first obtain the stress tensor σn at

all the nodes of the element from the stress state σg of the Gauss Points,

according to the procedure described in Section 4.4. Then, we use the shape

functions to interpolate the stress state at the location of the Gauss points

of the cohesive zone (see section 4.3 for details on how to find the position of

the newly created cohesive segment). Finally, we multiply the interpolated

stress tensor by the normal unit vector orthogonal to the fracture segment

−→n to obtain the cohesive strength σmax.

For the cohesive energy release rate, we adopt the method described in

[16], which ensures that the energy dissipated for propagating a unit area

of fracture is the same for the CZM alone and for the CZM coupled to the

non-local CDM model. Mathematically, this energy equivalence is expressed

as ∫ t

0

Ncz∑
i=1

Gf l
Γ
i dτ =

∫ t

0

Ncz∑
i=1

φil
Γ
i dτ + EΩ (32)

where Gf is the fracture energy release rate measured from laboratory exper-

iments, in which the creation of macro-scale fracture surfaces is assumed to

be the only source of energy dissipation. lΓi is the fracture length in 2D (or
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Figure 6: Numerical method employed to determine the CZM PPR cohesive strength.

fracture surface area in 3D) associated with the Gauss Point i as shown in

Fig. 6. Ncz is the total number of cohesive Gauss Points in the system. EΩ

represents the amount of energy dissipated by diffused damage development

within the process zone, expressed as:

EΩ =

∫ t

0

∫
Ωp

σ : ε̇dΩdτ − 1

2

∫
Ωp

σ : εdΩ. (33)

Numerically, we first use Eq. 33 to calculate the total energy released

by continuum damage development within the process zone Ωp (shaded in

blue in Fig. 7). The size of the process zone in the direction perpendicular

to the macro fracture is related to the nonlocal internal length parameter

lc. Here, the width of the process zone size is equal to 2 × lc because the

nonlocal weight function is bell-shaped (i.e., the weight function is zero be-
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Figure 7: Numerical method employed to determine cohesive energy release rate.

yond a distance lc). Through Eq. 33, it is also assumed that the previously

developed process zone (shaded in gray) is frozen after the transition from

continuum damage to cohesive fracture. In other words, the elements in the

shaded gray area are governed by a linear elastic constitutive function with

reduced stiffness C(Ωcrit); no more energy dissipation comes from those bulk

elements. Furthermore, we note that the length (area in 3D) of the newly

formed cohesive segments is ls, which indicates that the energy that should

be dissipated to create the correct amount of fracture surfaces is Gf ls. We

use Eq. 32 to obtain the energy release rate for each cohesive Gauss point,

as

φn = Gf − EΩ/ls. (34)
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4. Numerical Implementation

4.1. Governing Equation

Consider a domain Ω, as shown in Fig. 8, containing a fracture Γd.

A prescribed traction t̄ is imposed on the boundary Γt and a prescribed

displacement ū is imposed on the boundary Γu. Along the boundary of the

macro-fracture, positive and negative cohesive tractions (t+, t−) are imposed

on the positive and negative surfaces (Γ+
d ,Γ

−
d ). The equilibrium governing

equation and the associated natural boundary conditions are expressed as:

∇ · σ + b = 0 in Ω

σ · n = t̄ on Γt

σ · n+
Γd

= −σ · n−Γd
= t+ = −t− = t(Tn, Tt) on Γd

(35)

where σ is the Cauchy stress tensor and b is the body force per unit volume.

n is the outward normal unit vector on the outer boundary, n+
Γd

and n−Γd
are

the outward normal to the fracture boundary, from the positive and negative

subdomains, respectively (see Fig. 8). The kinematic equations include the

strain-displacement relationship, the definition of cohesive separation and

the essential boundary conditions, as follows:

ε = ∇u in Ω

JuK(∆n,∆t) = u− − u+ on Γd

u = ū on Γu

(36)

Finally, we relate the stress σ with the strain ε and the cohesive traction

t with the separation JuK through the constitutive laws developed in Sections

28



2 and 3.2, and formally written as:

σ = C(Ω) : ε = S−1(Ω) : ε in Ω

t(Tn, Tt) = KcohJuK(∆n,∆t) on Γd

(37)

where C = S−1 is the fourth-order stiffness tensor. Kcoh is the second-order

stiffness tensor of the cohesive zone (i.e. the stiffness in the separation law).

Γ

Γu

u

Γt

t

+

- Ω

Γd

nΓd
+

nΓd

+

t+

t
Φ>0

Φ<0

Figure 8: Boundary conditions imposed on the domain of the bulk, Ω, and on the macro-

fracture Γd. Note the level set function φ(x) is defined as the normal distance to the frac-

ture surface/curve, using the same sign (positive/negative) as fracture surfaces (Γ+
d ,Γ

−
d ).

Accordingly, the location of the fracture is defined mathematically by φ(x) = 0.

In order to implement the governing equation into a finite element code,

the strong form of the governing equations above needs to be transformed

into a weak form. We multiply the equilibrium equations by a virtual dis-

placement function δu and integrate it over the whole domain Ω. After

utilizing the divergence theorem and the boundary conditions, we have the
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weak form as:∫
Ω

∇δu : σdΩ +

∫
Γd

δJuK · tdΓ =

∫
Γt

δu · t̄dΓ +

∫
Ω

δu ·bdΩ, ∀δu ∈ V (38)

where V represents the space of all possible displacement fields that satisfy

δu = 0 on Γu.

4.2. XFEM Discretization

Simulating fracture propagation without imposing a predefined fracture

path is a long-standing issue. Techniques employed in engineering include:

inserting interface elements to the boundaries of all regular finite elements

prior to the loading simulation [59, 60], dynamically inserting interface ele-

ments to the fracture path during the simulation [61, 22], and using the eX-

tended Finite Element Method (XFEM) in which extra degrees of freedom

are added to the nodes of the elements where the fracture passes through

[62], based on the concept of partition of unity [63]. In this paper, we adopt

the XFEM to discretize the primary variable, the displacement field. Note

that the classical branch functions which are used to approximate the near

tip stress singularity are not used here, because the stress singularity does

not exist in the coupled CDM-CZM framework. Only the Heaviside jump

function is used. Consequently, the approximation of the displacement field

reads:

uh(x) =
∑
i∈S

Ni(x)ui +
∑
i∈SH

Ni(x)
1

2
[H(x)−H(xi)]ai, ∀x ∈ Ω

= Nu(x)U +Na(x)A

(39)

in which S is the set of all nodal points and SH is the set of enriched nodes

that constitute elements bisected by the fracture. ui and ai denote the nodal
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values of the displacement field associated with the standard and enriched

degrees of freedom (DOF), respectively. Ni(x) is the standard shape function

associated with node i, and the Heaviside jump function H(x) is defined as

HΓd
(x) =

+1, φ(x) > 0

−1, φ(x) < 0

(40)

where φ(x) is the level set function, the definition of which is illustrated in

Fig. 8. It is worth noting that we shift the jump function in Eq. 39, to avoid

the problem of post processing for blending elements [64]. By substituting

the values of the Heaviside definition in Eq. 39, we obtain the following form

of the displacement jump:

Ju(x, t)K =
∑
i∈SH

Ni(x)ai = Nu(x)A (41)

By substituting the approximation functions 39-41 into the weak form of

the governing equation 38, the following discretized residual equations can

be obtained:

Ru = F int
u − F ext

u = 0

Ra = F int
a + F coh − F ext

a = 0
(42)

in which we used Voigt notations. F int
α , F ext

α and F coh are the internal force

vector, the external force vector and the cohesive force vector respectively,

defined as:

F int
α =

∫
Ω

BT
ασdΩ

F ext
α =

∫
Γt

Nαt̄dΓ +

∫
Ω

NαbdΩ

F coh =

∫
Γd

NuΛ
T t(Tn, Tt)dΓ

(43)
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where Bα represents the derivatives of the shape functions, as follows:

Bα =


Nα,x 0

0 Nα,y

Nα,y Nα,x

 , (44)

and Λ is the rotation matrix defined as

Λ =

 cosθ sinθ

−sinθ cosθ

 . (45)

θ in Eq. 45 is the angle between the fracture path and the horizontal axis.

Λ is used here to transform the cohesive traction t, formulated in the local

coordinate system, to the global coordinate system.

The nonlinear system of Eqs. 42 needs to be solved iteratively. We adopt

the Newton-Raphson resolution algorithm, in which Eqs. 42 are linearized

with respect to displacements at the equilibrium iteration k of the incremen-

tal step n+ 1, as follows:Ru

Ra

k+1

n+1

=

Ru

Ra

k
n+1

+ Jkn+1

δu
δa

k
n+1

= 0 (46)

where J is the Jabobian matrix (or the consistent tangent stiffness matrix),

expressed as:

J =

Ru
,u Ru

,a

Ra
,u Ra

,a

 =

Kuu Kua

KT
ua Kaa +Kcoh

 (47)

in which Kαβ is the tangent stiffness matrix, expressed as

Kαβ =

∫
Ω

(
BT
αS−1(Ω)Bβ +BT

α

∂S−1

∂u
Bβu

)
dΩ, (48)
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and Kcoh is the cohesive stiffness Kcoh = ∂F coh/∂a, which can be obtained

explicitly through ∂(Tn, Tt)/∂(∆n,∆t). Note that in the FEM, the analytical

expression of J is typically sought so as to achieve a quadratic convergence

rate. Unfortunately, due to the particular formulation of the continuum

damage model, we cannot obtain the analytical expression of the second

term of Eq. 48 because the stiffness tensor C = S−1 cannot be expressed

explicitly. So we use the secant stiffness matrix method, in which only the

first term of Eq. 48 is considered. Convergence can still be achieved at the

cost of more iterations (linear convergence rate).

4.3. Fracture Tip Advancement Algorithm

In order to couple the CZM and the non-local CDM model with the

XFEM, an explicit algorithm is needed: (1) To determine when to split bulk

elements and to insert a cohesive segment; (2) To calculate the propagation

direction of the macro-fracture; and (3) To determine the fracture propa-

gation length. In Section 3, we calibrated the transition from continuum

damage to macro-fracture and we found that the critical damage value is

Ωcrit = 0.2 for the continuum damage model presented in Section 2. A simple

implementation scheme consists in checking systematically the state variables

at the Gauss points of elements ahead of fracture tip (Fig. 9). If the value of

damage at one Gauss point exceeds Ωcrit, the fracture tip advances towards

that Gauss point, with known propagation direction and length. However,

this simple algorithm becomes ineffective when multiple Gauss points at dif-

ferent locations exceed the threshold at the same load increment. Let us

recall that the continuum damage model is enhanced with nonlocal regular-

ization for tensile softening, thus, the area of damage development ahead of
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the fracture tip (i.e. the size of process zone) is correlated with the internal

length parameter lc, as shown in Fig. 9. Like in the methods presented in

[65, 16], we assume that the fracture propagates when the component of the

weighted damage tensor over the half circle patch ahead of the fracture tip

(shaded in blue) exceeds the threshold Ωcrit. We first obtain the weighted

damage tensor Ω̄ using the bell-shaped weight function ω0(‖x− ξ‖) through

Ω̄(xtip) =

∫
ΩT

ω(xtip, ξ)Ω(ξ)dΩT (ξ) =

∑NGP

j=1 ω0(‖xtip − ξj‖)Ω(ξj)∆Vj∑NGP

j=1 ω0(‖xtip − ξj‖)∆Vj
(49)

where xtip and ξ are the global coordinates of fracture tip and Gauss points

in ΩT , respectively. NGP is the total number of Gauss points in ΩT , and

∆VJ is the geometrical volume associated with Gauss point j. Please note

that the size of ΩT is controlled by the internal length lc since we chose a

bell-shaped weight function (17) for nonlocal enhancement.

We discretize the half circle shown in Fig. 9 into a series of directions

m, and we project the weighted damage tensor on the direction n normal to

the direction m used for discretization: Ωn = nT ·Ω · n. Then we compare

the maximum value of the projected damage components, max(Ωn), with

the threshold Ωcrit. If max(Ωn) ≥ Ωcrit, we propagate the fracture along the

direction of m normal to the unit vector n. For all the simulations in this

paper, we choose a user-defined growth length ∆a = lc, since the size of the

process zone is controlled by the internal length and equal to 2 × lc. It is

worth noting that a cohesive segment is not inserted into an element unless

the element is completely cut by the fracture (see Fig. 9). At all times, the

balance of energy is ensured because the energy that would be dissipated
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by a small segment of discrete fracture is actually dissipated in the form of

continuum damage.

lc

lc

Regular CDM Gauss Point

Cohesive Zone Gauss Point

Enriched Nodes

Tip detection region

Propagation direction

m

n

ΩT

Figure 9: Macro cohesive fracture initiation algorithm based on the projection of the

weighted damage tensor.

4.4. SPR State Variable Mapping

An element being cut by a fracture should be divided into subdomains

inside which the displacements are continuous functions. In this study, we

employ the classical sub-region quadrature technique [66] to divide a quadri-

lateral element into multiple triangles, and we use three Gauss points within

each triangle to calculate the Jacobian matrix and the residual. Conse-

quently, the number and the location of Gauss points with in an element

that is cut during fracture propagation is changed. It is thus necessary to

remap the internal and state variables, such as damage and stress, from the

initial to the new set of Gauss points. Variable mapping accuracy has a
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significant influence on the equilibrium recovery rate after the fracture tip

advancement. In this paper, the super-convergent patch recovery (SPR) pro-

posed by Zienkiewicz and Zhu [67] is adopted. In the SPR, two steps need to

be performed numerically: (1) A construction step, in which the state vari-

ables at nodes of an element are interpolated by least square fitting from the

neighboring Gauss points; (2) A recovery step, in which the state variables

at the new Gauss points are interpolated from the nodes by using the shape

functions of the element.

5. Engineering Examples of Micro-macro Fracture Propagation

5.1. Wedge Splitting

We implemented the coupled CDM-CZM framework based on the XFEM

into an open source finite element package programmed in C++, called

‘Object-Oriented Finite Element Method’ (OOFEM) [68, 69]. To check that

the framework can be used to model micro-macro fracture propagation, a

wedge splitting benchmark example is first simulated. The geometry and

boundary conditions are shown in Fig. 10. The thickness of the specimen

is 97 mm, like in the laboratory experiment described in [70]. The material

parameters listed in Table 1 are used, in which the elastic constants (E0, ν0)

and the total energy release rate Gf are adopted from [70]. Note that lc is

typically 2-3 times the maximum aggregate size in brittle solids [49]. We cali-

brate the damage evolution parameters (η, κ) for an internal length of lc = 16

mm, by matching the numerical load-displacement curve to the experimental

one. The domain is discretized with linear quadrilateral elements with two

different mesh densities to investigate mesh dependency. It is expected that
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a horizontal fracture will initiate from the notch and will gradually propagate

into a horizontal fracture in pure mode I.

30mm 85mm

4mm

200 mm

70mm

60mm

70mm

160mm

CMOD measure point

Thinkness=97 mm

10mm

P

Figure 10: Geometry and boundary conditions of the wedge splitting test.

Table 1: Material parameters used for the wedge splitting test.

Young’s modulus E0 (GPa) 25.2

Poisson’s ratio ν0 0.2

Damage evolution parameters
η 1.325× 10−4

κ 2.5× 10−4

Internal length lc (mm) 16

Total energy release rate Gf (N/mm) 0.101

As shown in Fig. 11, we simulate wedge-splitting test with different

values of (η, κ) until the simulated force-CMOD (crack mouth opening dis-

placement) curves (dashed lines) match well the experimental measurements
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[70] (solid dark line). In addition, we simulate a case in which the ma-

trix is elastic (no damage) and in which the energy is solely dissipated by

macro fracture surface formation (CZM). For this particular case, we used

a cohesive strength of 6.6 MPa from [70], and the cohesive segments along

the pre-assigned fracture path were inserted at the start of simulation. The

global force-CMOD response of the CZM is represented by a solid blue line

in Fig. 11. The curves predicted by the proposed CDM-CZM framework

match the experimental data until the maximum force is reached. After the

peak, the CDM-CZM simulation results are similar to those obtained with

the CZM, but depart from the experimental response by up to 25%. These

discrepancies can be explained by: (i) The zero-thickness of the pre-assigned

cohesive segment, which has artificial compliance; this results in additional

CMOD in the CZM simulation before the peak; (ii) The shape of the cohe-

sive traction-separation law, which influences the global softening curve: the

shape factors α = β = 4 used in the PPR cohesive law are not appropriate

for this particular material: Note that α/β < 2 results in convex softening

for ductile materials, α/β > 2 results in concave softening for brittle/quasi-

brittle material. Sophisticated calibration methods will be developed for the

shape factors in future work. Overall, the global response reflected in the

load-CMOD curve is predicted accurately before the peak; an error of up to

25% is made between the peak and a residual load of 1 kN, and the error is

around 65% when the residual load is close to zero.

Fig. 12 shows several stages of the macro fracture propagation accom-

panied by damage process zone evolution. The tip of the macro cohesive

fracture is behind the front of the process zone at all stages, which indi-
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Figure 11: Load vs CMOD response: comparison of numerical and experimental results.

cates a smooth transition from damage to fracture. The size of the process

zone is constant throughout the simulation, and, due to non-local enhance-

ment, the response is not mesh-dependent. Note that the maximum damage

within the process zone is max(Ωy) = 0.4 - greater than the damage thresh-

old Ωcrit = 0.2. This is due to the fact that the threshold Ωcrit is applied on

a weighted damage tensor and not on the components of damage itself.

Fig. 13 illustrates the transformation of the energy input into elastic

deformation energy and dissipated energy over time, as a function of the

CMOD. ET denotes the total energy input, computed by multiplying the ap-

plied force P with the displacement at the nodes where the force is applied.

EE is the elastic energy stored within the system. EC represents the dissi-

pated cohesive energy due to macro fracture propagation, and it is calculated

by multiplying the cohesive energy release rate φn by the length of propa-
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Figure 12: Contour of the damage component Ωy (horizontal micro cracks) and macro

cohesive fracture path shown on the deformed mesh (displacements magnified ×5). Top

row: fine mesh with 1450 elements in the zone of interest; lower row: coarse mesh with

645 elements in the zone of interest.

gated macro fracture, and the thickness of the specimen. The last term EΩ is

the dissipated energy due to micro fracture development; it can be computed

by Eq. 33. We present the evolution of energy for the three cases simulated

in Fig. 11 (CZM only, CDM-CZM with a coarse mesh, CDM-CZM with a

fine mesh). Similar to the load-displacement curve, the differences between

the three cases are due to the artificial compliance of the CZM and to the

shape factors of the PPR cohesive model. Despite these discrepancies, all

the simulated cases show that the evolution of energy follows three phases.

In the initial phase, all the input work is transformed and stored as elas-

tic energy within the system. In the second phase, energy is dissipated by

micro-crack and macro-fracture propagation while the elastic energy of the
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Figure 13: Evolution of the components of energy during the wedge splitting test: work

input ET , elastic energy EE , dissipated energy by cohesive fracture propagation EC and

by continuum damage EΩ. CZM only (“Cohesive fracture only”), CDM-CZM with coarse

mesh (“Transition-coarse”), CDM-CZM with fine mesh (“Transition-fine”).

system keeps increasing. In the final phase, most of the input work is dis-

sipated immediately, and some of the stored elastic energy gets dissipated

as well, to propagate the micro-cracks and the macro-fracture. The elastic

energy of the system tends to zero. We can also note that the percentage

of energy dissipated by micro-crack propagation (damage development) is

significantly smaller than the amount of energy dissipated by macro-fracture

surface formation. To conclude, the proposed framework can successfully

simulate mode I macro-fracture propagation with a damage process zone,

the size of which depends on microstructure properties. Most of the input
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work is dissipated to create macro-fracture surfaces.

5.2. Three-point Bending

A three-point bending test is simulated with the proposed non-local CDM-

CZM model. The geometry and boundary conditions of the laboratory ex-

periment described in [71] are adopted here - see Fig. 14. An initial notch

of 20 mm in depth and 4 mm in width is considered. The thickness of the

specimen is 100 mm. Like in the previous case, the elastic constants and the

total energy release rate measured from [71] are directly used for the simula-

tion. The internal length is fixed as lc = 12 mm, and the material parameters

controlling continuum damage evolution are calibrated by fitting the force-

deflection curve against experimental results. We used two mesh densities.

Both mesh densities yielded the same results (Fig. 15), which demonstrates

that nonlocal regularization can alleviate mesh dependency. We adjusted the

material parameters by trial and error; the best match was found to be the

one shown in Fig. 15, in which the experimental data is represented by a

black solid curve, and the numerical prediction is marked in dashed lines.

We also simulated the three-point bending test with CZM only by in-

serting cohesive segments aligned with the notch before the loading sim-

ulation, using the coarser mesh density. The CZM global response curve

(F − u) marked in blue solid line matches the results obtained with the

CDM-CZM framework. Note that for the case with CZM only, we chose

the cohesive strength σmax = 6.12 MPa and the cohesive energy release rate

φn = Gf = 0.1963N/mm, from [71]. The 6 CDM-CZM parameters used for

the simulations are listed in Table 2.

Fig. 16 represents the distribution of horizontal stress σx, nonlocal equiv-
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Figure 14: Geometry and boundary conditions of the three-point bending test.

Table 2: Material parameters used for the three-point bending test.

Young’s modulus E0 (GPa) 50.0

Poission’s ratio ν0 0.2

Damage evolution parameters
η 8.5× 10−5

κ 3.0× 10−4

Internal length lc (mm) 12

Total energy release rate Gf (N/mm) 0.1963

alent strain ε̂nl and damage component Ωx obtained with the coarser mesh

in the central zone of the beam, marked by a blue dashed in Fig. 14. The

traction-separation law predicts traction (reflected from σx) even after the

initiation of the macro-fracture. The material fracture tip (no traction, de-

fined in Fig. 5) is behind the mathematical fracture tip (cohesive segment

inserted). The nonlocal equivalent strain is non-zero only in the vicinity of

the macro fracture tip area, indicating that the fracture surface behind the

material fracture tip is unloaded: the elastic energy stored during previous

load increments flows into the tip area and is dissipated. Vertical micro-

cracks develop within the process zone, which surrounds the macro-fracture.
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Figure 15: Load-deflection curve for the three-point bending test: comparison of experi-

mental and numerical results.

Fig. 17 shows the evolution of the total input work ET , the stored elastic

energy EE, and the dissipated energy by macro cohesive fracture propaga-

tion EC and by micro-cracks development EΩ. Similar to the wedge splitting

case, the evolution of energy presents three main phases, and the percentage

of dissipated energy by micro-crack initiation and propagation EΩ is insignif-

icant compared to the energy dissipated by macro-fracture formation. It is

also worth noting that a discrepancy exists between the predictions made by

the proposed CDM-CZM framework and those made by the CZM alone, even

if the global responses (F − u curve in Fig. 15) are similar. This result indi-

cates that the technique of pre-inserting cohesive elements along the fracture

path (CZM alone) leads to an inaccurate energy dissipation, due to artificial
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stiffness. Dynamically inserting cohesive elements (CDM-CZM framework)

is more accurate in terms of energy dissipation.

6. Conclusions

In this paper, we present a novel numerical framework that couples a

nonlocal micromechanics based anisotropic damage model with a cohesive

zone model. This multi-scale framework captures the failure process in brittle

solids, from the nucleation of micro-cracks to the formation of macro-fracture.

A non-local micromechanics-based continuum damage model is proposed

to predict the material response from the microscopic scale to the REV scale.

A dilute homogenization scheme is adopted for calculating the deformation

energy of the REV, which is attributed to the elastic deformation of the

matrix and to the displacement jumps at open and closed micro-crack faces.

The Gibbs free energy is obtained by integrating the energy potentials of

the different sets of micro-cracks on the unit sphere. An explicit expression

of the free energy of the REV is provided when all micro-cracks are open

and when all micro-cracks are closed. Tensile damage criteria depend on

equivalent strains defined in terms of positive principal strains. Damage

evolution law is obtained from consistency condition and from postulate on

damage potential. The model is enriched by non-local equivalent strain,

calculated as the weighted average of equivalent strain on an influence zone

of material-specific characteristic size.

From the REV scale to the macroscopic scale, the potential based PPR

cohesive zone model is adopted to characterize the macro-fracture behavior.

The critical damage level that marks the transition from continuum damage
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to discrete cohesive fracture is defined as the damage above which the damage

stiffness tensor calculated with the proposed non-local damage model (which

does not account for crack interactions) stops matching the stiffness tensor

calculated from Kachanov’s micromechancis-based damage model (which ac-

counts for crack interactions). We find a critical damage threshold of 0.2.

Furthermore, an energy equivalence criterion is established to determine the

cohesive strength and the cohesive energy release rate, so that the total dissi-

pated energy by propagating macro-fracture and micro-cracks for a unit area

equals the energy release rate measured in the laboratory.

We couple the non-local continuum damage model with the discrete co-

hesive zone model by using a XFEM discretization technique. After deriving

the secant Jacobian matrix, we implement the proposed framework into an

open source finite element package. A weighted damage tensor around the

tip area is employed to determine the direction and length of the macro-

fracture that propagates. The SPR method is used to map state variables

after remeshing. Utilizing the proposed computational tool, a wedge split-

ting test and a three-point bending test are simulated. Results demonstrate

that the framework can successfully capture the propagation of a mode I

macro-fracture within a damage process zone. The size of the process zone

is mesh independent owing to the nonlocal regularization, and the predicted

global responses match satisfactorily the experimental measurements. In ad-

dition, simulation results reveal that most of the energy is dissipated to create

macro-fracture surfaces and that the amount of energy dissipated by damage

development is negligible.

The proposed CDM-CZM framework still have limitations. For instance,
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it is impossible to properly simulate micro-macro fracture propagation in

mixed mode, due to the choice of the constitutive CDM model. First, it

is impossible to obtain the tangent Jacobian matrix without the explicit ex-

pression of the damage stiffness matrix C, which results in convergence issues

for complex stress paths. Second, the dilute homogenization scheme limits

the degradation of modulus, so that the softening stress-strain curve cannot

reach zero stress, which can weaken the performance of nonlocal regulariza-

tion. This challenge will be addressed in future studies by employing the

Mori-Tanaka homogenization scheme, which accounts for crack interaction.
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Appendix A. Derivation of the free enthalpy

The derivation of the expression of the free enthalpy (Eq. 6) is obtained

by integrating the free enthalpy of single family cracks (Eq. 1) over the unit

sphere and by using the definition of damage tensor in Eq. 5. Since there

are 2 terms in the kernel of the integral, we show them one by one in the
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following for the case of open cracks:

1

8π

∫
S2

{c0 ρ(−→n )(−→n · σ · −→n )〈−→n · σ · −→n 〉+}dS

=
3c0

16π

∫
S2

(5−→n ·Ω · −→n − TrΩ)(−→n · σ · −→n )2dS

(50)

in which

5

∫
S2

(−→n ·Ω · −→n )(−→n · σ · −→n )2dS

=5(Ω⊗ σ) ::

∫
S2

−→n ⊗−→n ⊗−→n ⊗−→n ⊗−→n ⊗−→n dS : σ

=
4π

21
TrΩ(Trσ)2 +

32π

21
Tr(σ · σ ·Ω) +

16π

21
TrσTr(Ω · σ) +

8π

21
TrΩ Tr(σ · σ),

(51)

and

− TrΩ

∫
S2

(−→n · σ · −→n )2dS =
−4π

15
TrΩ(Trσ)2 +

−8π

15
TrΩ Tr(σ · σ). (52)

Similarly, we have

1

8π

∫
S2

{c1ρ(−→n )[(σ · σ) : (−→n ⊗−→n )− σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σ]}dS

=
3c1

16π

∫
S2

{(5−→n ·Ω · −→n − TrΩ)[(σ · σ) : (−→n ⊗−→n )− σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σ]}dS

(53)

where

5

∫
S2

{(−→n ·Ω · −→n )⊗ (σ · σ) : (−→n ⊗−→n )}dS =
8π

3
Tr(σ · σ ·Ω) +

4π

3
TrΩ Tr(σ · σ),

(54)

−TrΩ

∫
S2

(σ · σ) : (−→n ⊗−→n )dS =
−4π

3
TrΩ Tr(σ · σ), (55)
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− TrΩ

∫
S2

−σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σdS =
4π

15
TrΩ(Trσ)2 +

8π

15
TrΩ Tr(σ · σ).

(56)

After summing up all the coefficients, we can obtain the portion of the

macroscopic free enthalpy that is due to the micro-cracks in terms of the

second order damage tensor Ω, as follows:

Gcrack =
ν0

140
c1 TrΩ(Trσ)2 +

7− 2ν0

14
c1 Tr(σ · σ ·Ω)

+
−ν0

14
c1 TrσTr(Ω · σ) +

ν0

70
c1 TrΩ Tr(σ · σ)

(57)

Note that the relations (−→n · σ · −→n )2 = σ : (−→n ⊗ −→n ⊗ −→n ⊗ −→n ) : σ and

c0 = 2−ν0
2
c1 are used for the derivation. The energy expression for closed

micro-cracks will have no contribution from Eq. 50 since 〈−→n · σ · −→n 〉+ = 0,

and it is reflected by the different set of coefficients in Eq. 6.
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Figure 16: Contour of horizontal stress σx, nonlocal equivalent strain ε̂nlt and damage

component Ωx (vertical micro cracks) in the central part of the beam subjected to three

-point bending (see blue area in Fig. 14). Deformed mesh (×50) at different stages of

macro fracture propagation.
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Figure 17: Evolution of the components of energy during the three-point bending test:

work input ET , elastic energy EE , dissipated energy by cohesive fracture propagation EC

and by continuum damage EΩ. CZM only (“Cohesive fracture only”), CDM-CZM with

coarse mesh (“Transition-coarse”), CDM-CZM with fine mesh (“Transition-fine”).
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