
GENOMIC BASIS OF EVOLUTIONARY RADIATION IN LAKE 

MALAWI CICHLIDS 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

by 

 

Chinar Patil 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in Biology in the 

School of Biological Sciences 

 

Georgia Institute of Technology 

December 2018 

 

 

COPYRIGHT © 2018 BY CHINAR PATIL 



GENOMIC BASIS OF ADAPTIVE RADIATION IN LAKE MALAWI 

CICHLIDS 

 

Approved by:   

 

 

  

Dr. J T Streelman, Advisor 

School of Biological Sciences 

Georgia Institute of Technology 

 Dr. Michael Goodisman 

School of Biological Sciences 

Georgia Institute of Technology 

 

 

  

Dr. Soojin Yi 

School of Biological Sciences 

Georgia Institute of Technology 

 Dr. Fredrik O. Vannberg 

School of Biological Sciences 

Georgia Institute of Technology 

 

 

  

Dr. Reade B. Roberts 

W. M. Keck Center for Behavioral Biology 

Comparative Medicine Institute 

North Carolina State University 

  

   

  Date Approved:  [October 31, 2018 ] 

 



 

 

 

 

 

Dedicated to Neha Ahirrao and Palvi Patil. One for the past, one 

for the future.  



 

iv 

ACKNOWLEDGEMENTS 

 I would like to begin by thanking my advisor Todd Streelman for standing by me 

through thick and thin, teaching me valuable lessons and doing a lot of the heavy lifting 

required to make me the scientist I am today. I would also like to thank past and present 

members of the Streelman Lab, too many to name all, but in no particular order, Nick 

Parnell, Kawther Abdilleh, Jon Sylvester, Karen Pottin, Amanda Ballard, Natalie Haddad, 

Paula Lavantucksin, Zack Johnson, Teresa Fowler and many others.  

 Beyond just the Streelman lab, I have had the privilege of collaborating with other 

labs, learning from professors at Georgia Tech . I would like to thank Ryan York, Soojin 

Yi, Michael Goodisman, Patrick McGrath, Fred Vannberg, Reade Roberts, Joe Lachance 

among others. I would also like to specifically thank Shweta Biliya from the genomics core 

who was invaluable support as I fumbled my way through sequencing and somehow ended 

up with some nice data.  

 Life in graduate is impossible without friends who share in the journey. In addition 

to members of the Streelman lab, I would like to thank Linh Chau, Jessica Pruett, Shefali 

Harankhedkar, Samit Watve, Swetha Srinivasan, Jennifer Pentz, Lavanya Risheshwar, 

Laurel Jenkins and William Gignac for sharing listening to me complain, being my sound-

board for (usually unsound) ideas and most importantly, giving me company while I eat.  

 Nothing is life is possible without family. I would like to thank my mom and dad 

for making me who I am in every which way, my brother and sister-in-law, who have been 

my pillars of support in Atlanta and my niece who is an all-round bundle of joy.    



 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES vii 

LIST OF FIGURES viii 

SUMMARY x 

CHAPTER 1. Introduction 1 

CHAPTER 2. Genome-enabled discovery of functional variants in brain and 

behavior 4 
2.1 Introduction 5 
2.2 Results and Discussion 8 

2.2.1 The genomic signature of rock-sand divergence 8 
2.2.2 A gastrula-stage map of rock-sand divergence 12 

2.2.3 The genomics of social challenge and opportunity 15 
2.2.4 Genome-enabled discovery of natural variants in brain and behaviour 17 

2.3 Methods 18 

2.3.1 Genome sequencing 18 
2.3.2 Genetically Divergent Regions 19 

2.3.3 Conserved elements 19 
2.3.4 RNA Extraction and Sequencing 20 

2.3.5 Differential Gene Expression Analysis 21 
2.3.6 Forebrain and eye measurements 22 

2.3.7 Staging during gastrula 23 
2.3.8 Immunohistochemical staining 23 
2.3.9 Quantitative PCR 24 

2.3.10 Rock-Sand hybridization and genotyping 24 
2.3.11 F2 Analysis 25 

2.3.12 PhastCons analysis 26 

CHAPTER 3. Behavior-dependent cis-regulation reveals genes and pathways 

associated with bower building in cichlid fishes 28 
3.1 Introduction 29 
3.2 Results 29 

3.2.1 Extensive genetic differences exist between pit and castle species 29 
3.2.2 Characterizing variants associated with bower type 33 

3.2.3 Allele sharing amongst bower building species may be due to introgression 34 
3.2.4 Bower building is associated with context dependent allele-specific expression

 36 
3.2.5 Context and lineage-specific induction identifies behaviour dependent genes 

and pathways 39 



 vi 

3.2.6 Bower-associated SNPs and cis-regulatory variation 42 
3.3 Discussion 43 

3.4 Methods 47 
3.4.1 Bower behavioural measurements 47 
3.4.2 Genome sequencing, alignment and variant identification 48 
3.4.3 Tests of genetic divergence and enrichment 49 
3.4.4 Identifying structural variants 50 

3.4.5 Improved genome annotation 51 
3.4.6 Assigning SNPs and genome contigs to linkage maps 51 
3.4.7 Phylogenetic analysis 52 
3.4.8 Ancestral Allele Reconstruction 52 
3.4.9 Detection of ancient/derived allele enrichment among pit and castle species 52 

3.4.10 Analyses of gene flow and incomplete lineage sorting 53 
3.4.11 Four population tests 54 
3.4.12 RNA Sequence library construction 55 

3.4.13 RNA-seq alignments and SNP calling 56 

3.4.14 Detection and quantification of allele-specific expression (ASE) 57 
3.4.15 Identifying differential allele-specific expression (diffASE) 59 
3.4.16 Gene set enrichment tests 60 

CHAPTER 4. Discussion 62 
4.1 Conclusions 62 

4.2 Publications 68 

APPENDIX A. Supplemental Information for Chapter 2 69 

APPENDIX B: Supplemental information for chapter 3 71 

REFERENCES 80 

 



 vii 

LIST OF TABLES 

Table 1.1 List of Malawi species sequenced 

Table 2-1 Enrichment test for Rock-Sand Variants 

Table 2-2 Rock Sand Genes present in SFARI db, Neurcristopathy db and 

CNEs 

Table 2-3 Differentially Expressed Genes in Rock Sand F1 males 

Table 2-4 Rock Sand intersect Pit Castle divergence 

Table 3-1 Pit Castle divergent genes, enrichment test 

Table 3-2 Allele-specific expression results from MBASED 

Table 3-3 Gene set enrichments resulting from the sign test 

Table 3-4 Four population comparisons with significantly negative f4 statistics 

 

  



 viii 

LIST OF FIGURES 

Figure Title Page number 

2-1 Rock Sand Genomic Variation 8 

2-2 Functional Variants More Likely to be Divergent 9 

2-3 Rock Sand irx1b Expression Patterns 11 

2-4 Contextual Differential Gene Expression 14 

2-5 Astatotilapia calliptera State 17 

3-1 Bower Building 30 

3-2 Genome-Wide Divergence Associated with Bower Building 31 

3-3 Complex Phylogenetic Relationships Among Sand-dwelling 

Malawi Cichlids 

35 

3-4 Behaviorally Dependent Allele Specific Expression 38 

3-5 Intersection of Genome-Wide SNPs and ASE 41 

A-1 Differences in Rock and Sand 69 

A-2 Tel % differences in Rock and Sand 70 

B-1 Comparison of genetic divergence and association patterns 

across the genome 

71 

B-2 Genome-wide ancestral and derived SNP enrichments 72 

B-3 Genomic distribution and FST of new and ancient SNPs 73 

B-4 Topology weighting with TWISST 74 

B-5 TREEMIX scenarios 75 

B-6 Genome-wide fd distribution 76 

B-7 Ontogeny of Copadichromis virginalis x Mchenga conoph-

oros F1 hybrid bower building 

77 

B-8 Genes with discordant and concordant allele-specific ex-

pression (ASE) across behavioral states 

78 

B-9 The distribution of allele specific expression across F1 hy-

brid samples and contexts 

79 

 



 ix 

LIST OF SYMBOLS AND ABBREVIATIONS 

ANR Anterior Neural Ridge 

CNE Conserved Non-coding Element 

EG Early gastrula 

hpf Hours Post Fertilization  

InDel Insertion / Deletion 

LG Late Gastrula 

LG Linkage Group 

LoF Loss of Function 

MB Megabases 

MG Mid gastrula 

NGS Next Generation Sequencing 

SNP Single Nucleotide Polymorphism 



 x 

SUMMARY 

Understanding the genomic basis and origin of phenotypic variation is one of the 

fundamental questions of biology. Next generation sequencing technologies have afforded 

evolutionary biologists unprecedented access to whole genome sequences allowing for in-

depth investigations into the bases of phenotypic divergence in non-model organisms.  

Adaptive radiations provide a window into recent and ongoing adaptive phenotypic 

evolution. Lake Malawi was colonized by a single haplochromine lineage diversifying and 

colonizing the lake in unprecedented numbers. Lake Malawi has about 500-800 recently 

evolved, closely related cichlid species reflecting phenotypic diversity along the lines of 

habitat, trophic levels and communication. This genetic system has long served as a screen 

of phenotypic variation that can be used as 'natural mutants' to elucidate the basis of crucial 

aspects of tooth diversity, craniofacial development, brain development, retina develop-

ment, opsin diversity and many other phenotypes in Lake Malawi cichlids. The ability to 

make viable and fertile interspecific hybrids in the laboratory lends additional strength to 

this experimental model. In the following study, I examine in detail the basis and origin of 

phenotypic diversity in Malawi Cichlid lineages along two different axes of adaptive evo-

lutionary differentiation of habitat and communication.  

First, I demonstrate a way to identify all the functional variation associated with an 

older divergence within Lake Malawi. Lake Malawi cichlids are broadly divided into rock 

dwelling and sand dwelling cichlids based on their habitat. A comparison of 8 rock and 14 

sand dweller genomes sequenced at high coverage reveals the genetic variation associated 



 xi 

with divergence along the rock versus sand branches of the Lake Malawi cichlid phylog-

eny. Divergent variants are (a) more significantly found in regions with a high conservation 

score indicating functional regions and are also (b) enriched in intergenic regions indicating 

regulatory differences. Genes near divergent variants are significantly enriched for path-

ways related to early brain development and adult behavior. F1 rock-dam X sand-sire hy-

brid males can perform either rock parent like or sand parent like mating behavior depend-

ing on social context. Differentially expressed genes between socially rock and socially 

sand males are enriched for some of the same brain and behavior related pathways revealed 

by the genomic comparison. A key early development gene , irx1b has an alternately fixed 

deletion that segregates rock and sand and also shows spatial and temporal patterning dif-

ferences that define the neural plate border leading to differences in the eye field versus the 

telencephalon. Genomic comparison indicates that variants are significantly associated 

with genes involved in behavior and early brain development that reflect behavioral differ-

ences between rock and sand and also early developmental differences between rock and 

sand. 

Second, using a more recently evolved phenotype, the bower-building behavior,  I 

uncover the genomic basis of mating behavior. Within the sand dweller lineage, males from 

many species build typical species specific bower for mating display. I compare 9 males 

from 9 castle building species to 11 males from 11 pit digging species within the sand 

dweller lineage. Genomic comparisons show that the bower building has evolved multiple 

times with thousands of genetic variants strongly associated with pit digging and castle 

building, suggesting a highly polygenic architecture. F1 hybrid males of pit and castle spe-

cies sequentially first dig a pit and then build a castle bower. Whole brain transcriptomes 
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of behaving F1 showed that genes near behavior-associated variants display behavior-de-

pendent allele-specific expression with preferential expression of the pit-species allele dur-

ing pit digging, and of the castle-species allele during castle building. These genes are 

highly enriched for functions related to neurodevelopment and neural plasticity. 
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CHAPTER 1. INTRODUCTION 

 Identifying genes contributing to observed phenotypes is a fundamental question in 

biology. Phenotypic evolution is inextricably linked to genomic variation and diversifica-

tion[1]. The Next Generation Sequencing [NGS] revolution has given everyone unprece-

dented access to large amounts of genomic data[2, 3] vastly enlarging our understanding 

of these processes on a whole genome scale[4]. With this understanding comes the reali-

zation that the question of control of complex traits itself has complex answers [5]. In this 

framework, we can ask what set of traits are shaped by speciation that define species di-

vergence.  

 Adaptive radiations, usually driven by ecological opportunity, are exceptional mod-

els for understanding the genetic underpinnings of adaptive phenotypic diversity[6, 7]. 

Young radiations are characterized by species with low genotypic divergence with inter-

mediary or transitionary phenotypic variation[8]. Adaptive radiations are known to follow 

a three stage model that describes the sequential diversification of a lineage as it colonizes 

a new habitat[9]. A diversifying lineage colonizing a new niche will sequentially diverge 

along the axes of habitat, followed by trophic levels and feeding strategies followed by the 

most recent divergence along the axis of communication.  

 Studies looking for genetic underpinnings of phenotypic divergence have revealed 

one of two genomic patterns associated with a given set of traits, depending on the stage 

and age of the radiation. Every time the marine threespine stickleback colonizes freshwater 

lakes in North America, the eda locus is targeted independently in the genome associated 

with the loss of armor and spines[10]. Carrion crows in Europe are divided into all-black 
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in the west and grey-hooded in the east with a small region of overlap in the middle of the 

continent. In the face of gene-flow, phenotypic divergence between the two types of crows 

is maintained almost entirely by a < 2 Megabases region in the genome that contains within 

it genes associated with pigmentation and visual perception[11]. A genome-wide compar-

ison of divergent regions associated with beak shape diversity in the iconic Darwin’s 

finches shows, in addition to one highly characterized 240kb region , peaks of divergence 

all throughout the genome[8]. In a younger radiation along the crater lakes surrounding the 

larger lakes of the East Africa Rift Valley Lake system of diversifying lineages of cichlid 

fishes we see islands of speciation in the genome, many regions characterized by diver-

gence higher than baseline[12]. Depending on the age of divergence of an adaptive radia-

tion and their place in the three stage model of divergence we see a pattern of either one or 

two big regions of the genome defining the phenotypic divergence or these divergent re-

gions of the genome spread out over the entire genome.  

 Lake Malawi cichlids consist of over 500 unique cichlid species most of which 

come from a single haplochromine lineage colonizing the lake between 1-5 million years 

ago[13-15]. The diversification of the Lake Malawi cichlid lineage is characterized first 

along habitat followed by trophic levels and then communication axes. This starts with the 

division of the lineage into rock dwelling and sand dwelling cichlids that further diversify 

into food acquisition adaptations followed by differentiation into a wide array of mating 

and display strategies[9, 16]. Lake Malawi cichlids fit the requirement of having a large 

enough pool of natural phenotypic variants with low genotypic variation[13, 17] . This 

naturally occurring variation is a powerful screen for phenotype association studies. The 
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presence of naturally occurring variation can be used as a natural variant screen for pheno-

typic association studies[18]. “Natural mutants” have been used to uncover the basis and 

mechanics of specific divergent phenotypes in Lake Malawi cichlid system to uncover the 

basis of craniofacial diversity[19], dental diversity[20], visual pigment diversity[21], sex 

determination and color[22], forebrain diversity[23, 24]. Here I leverage the power of the 

Lake Malawi cichlid system using whole genome re-sequencing to uncover a majority of 

the genomic differences associated with a phenotype.  

 In this thesis, I lay out two genomic comparisons within the Lake Malawi cichlids 

I target the fundamental divergence in the Lake Malawi where the original cichlid lineage 

diverged into rock dwellers and sand dwellers based on habitat. I try to link the genomic 

variation in the older rock-sand divergence to observable phenotypic differences between 

the two lineages. Within the sand dweller lineage, males of many species build species 

specific typical bowers. I use these bowers as an extended phenotype and link the variation 

between species that build two quantifiably different bower types to the genetic variation 

between them. I sequence a total of 28 male individuals from 28 species ( Table 1-1) from 

Lake Malawi and use the genomic variation associated with the phenotypes to delve deeper 

into the evolutionary trajectory of the diversification of the Lake Malawi cichlid lineage 

along the three stages of adaptive radiation.  

 

.  
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CHAPTER 2. GENOME-ENABLED DISCOVERY OF FUNC-

TIONAL VARIANTS IN BRAIN AND BEHAVIOR1 

 The genomic basis of adaptive divergence in species divergence is a central ques-

tion in evolutionary biology. Lake Malawi cichlids are a powerful adaptive divergence 

model due to the large number of species with extreme phenotypic diversity along axes of 

evolutionary divergence but very low genomic differences. We compare whole genomes 

of 8 rock dwelling and 14 sand dwelling species reflecting the fundamental rock versus 

sand divergence in the Malawi cichlid lineage to reveal genetic variants diverging between 

rock and sand and 4484 genes lie in or around them. Divergent variants are also enriched 

for intergenic regions with a high conservation score indication functional divergence in 

regulatory regions. Genes near divergent variants are significantly enriched for pathways 

related early brain development and adult behavior. irx1b is a key brain development gene 

found near a divergent region and we show it defines rock and sand differences in early 

development stages in spatial and temporal patterning. Independently, in F1 rock-dam X 

sand-sire hybrid males we demonstrate that context dependent rock-like and sand-like be-

havior is accompanied by differential transcriptional expression among genes near diver-

gent variants. We have leveraged the 'natural mutant' screen in our model to recover a 

majority of the functional differences between species using whole genome sequencing 

with confirmation from independent targeted experiments. We show that the rock versus 

                                                 

1 Patil C, Sylvester JB, Abdilleh K, Malinsky M, Norsworthy M, Pottin K, Bloomquist RF, McGrath PT, 

Streelman JT (in prep) Genome-enabled discovery of functional variants in brain and behavior    

CP Contribution: Genome sequencing, Genome assembly, behavior assay, brain transcriptomics, differential 

expression analysis 



 5 

sand divergence in Lake Malawi is to a large extent associated with early developmental 

patterning in the brain and gene pathways associated with adult behavior.  

2.1 Introduction 

 While simpler traits can be linked to their genetic basis by direct association, we do 

not understand fully how emergent complex traits are linked to genetic control. The most 

complex trait whose genomic basis we do not fully understand is behavior. The question 

of linking genes to behavior was framed in 1974 as the “dual encoding problem” [25]. 

Complex traits like behavior are driven by two layers of control, both contributing to the 

ultimate behavioral phenotype. A broad range of genes expressed in a developing brain 

establishes cellular neural architecture. Interactions between various cellular components 

of the brain is what gives rise to behavior. Only genetic analysis or only cellular level 

experiments are not sufficient for explaining the basis of a behavior although both are 

clearly necessary. To understand behavior, therefore, we must untangle both effects, how 

genes lay out a nervous system and how the nervous system network gives rise to specific 

behavioral phenotypes.  

 Even though behaviors often have a strong genetic basis, it has been difficult to 

identify natural causative genetic changes. A significant problem is the complexity and 

non-linearity of genetic interactions among causative variants, which make their identifi-

cation a significant challenge. In fact, this is a complication for nearly all complex traits, 

not just behaviors. Upwards of 93% of human disease related variants – the complex traits 

for which we have the most data from genome wide association studies (GWAS) – reside 

in noncoding DNA sequence. Many of these noncoding variants are regulatory, that is, they 
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affect the expression of genes[26]. GWAS loci often impact genes near the variant itself – 

in this case, they are termed cis-acting expression quantitative trait loci[27, 28]. Overall, it 

is unclear how the genome is activated to produce phenotype, and this may be more vexing 

for context-dependent traits of the nervous system like behaviors. Over the past decade, a 

number of systems have been developed to identify the neural and/or genetic basis of nat-

ural behaviors (e.g., those that evolve in the wild, and not in the laboratory) among verte-

brates. These systems and behaviors include vole and field mouse parental care[29, 30], 

bird song[31] and stickleback schooling[32]. Conceptually, researchers seek to know if the 

genetic basis of behavior follows general rules, like for instance, the incorporation of cis-

regulatory logic in the genetic basis of development[33]. Our goal is to identify genetic 

variants associated with the dual encoding of behavior, using the Lake Malawi cichlid sys-

tem as a model.  

 The Malawi cichlid system is an apposite one for our research aims. The assem-

blage comprises hundreds of closely related species that have diversified in the last 500,000 

to one million years[15], such that the genomes of individuals across species boundaries 

remain highly similar. For example, nucleotide diversity across the Malawi species assem-

blage (0.26%)[17] is less than that among lab strains of the zebrafish (0.48%)[34], compa-

rable to that of chimpanzees (0.24%)[35] and humans (0.11%)[36] and contrasts with the 

~1.2% divergence between chimp and human[37]. An appreciable fraction (~50%) of ge-

netic polymorphism identified in Malawi species segregates deeply in cichlid lineages from 

throughout East Africa -- suggesting that ancient genetic variation fuels diversification of 

the Malawi flock[17]. Set against this background of genome similarity, Malawi cichlids 

exhibit staggering diversity in phenotypes including pigmentation, sex determination[22, 



 7 

38], craniofacial[20, 39, 40] and brain patterning [23, 24]. Recent work has focused on the 

genomic and early developmental underpinnings of this diversity, in rock- vs. sand-dwell-

ing species[23, 24, 39, 41] . 

 Rock- vs. sand- species form ecologically distinct groups similar to other ecotypes 

in well-known adaptive radiations (marine vs. freshwater sticklebacks; tree vs. ground 

finches and anoles)[9]. The main difference in this case is that each of the rock- and sand- 

groups contains more than 200 species. Recent divergence, rapid speciation and meta-pop-

ulation dynamics synergistically lead to the broad sharing of polymorphism across the 

rock-sand speciation continuum[41]. Malawi rock-dwellers are strongly territorial and ag-

gressive; they breed and feed at high density in complex 3D rock-reef habitats. Most eat 

algae from the substratum with strongly reinforced jaws packed with teeth. Adult rock-

dweller brains exhibit enlarged anterior components, telencephala and olfactory bulbs. 

Sand-dwellers are less site-specific and less aggressive. They breed on leks where males 

build sand ‘bowers’ to attract females. Many capture small prey using acute vision and 

fast-moving gracile jaws; their brains and sensory apparatus are elaborated for more pos-

terior structures optic tecta, thalamus and eyes (Appendix A Figure 1). 

 We target the fundamental divergence in the Lake Malawi where the original cich-

lid lineage diverged into rock dwellers and sand dwellers based on habitat. We compare 

whole genomes of rock dwelling and sand dwelling species in an unbiased screen looking 

for divergent regions. We then delve deeper into more details of the mechanisms of key 

variants associated with rock/sand divergent genomic regions. We sequenced genomes of 

8 male individuals from 8 rock dwelling species and 14 male individuals from 14 sand 

dwelling species (Table 1-1)  .  
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2.2 Results and Discussion 

2.2.1 The genomic signature of rock-sand divergence 

 We compared whole genomes of 8 rock dwellers and 14 sand dwellers aiming to 

uncover the divergent regions associated with rock versus sand evolutionary diversifica-

tion. We aligned genomes to a reference genome of nearly 1 gigabase[42]. We identify 

approximately 22 million Single Nucleotide Polymorphisms [SNPs] and 200,000 Inser-

tion-Deletions [InDels]. We use FST per SNP, averaged across 10kb windows and for each 

InDels to calculate the divergence between the rock and sand species. We found that 0.06% 

Figure 2-1 : Rock Sand Genomic Variation | (A) A maximum likelihood phylogeny of 8 rock and 

14 sand species based on informative SNPs throughout the genome. (B) A plot of Z-FST across 

the genome for individual genomes in 10kb windows going up and InDels going down. Threshold 

lines indicate 2.5% FDR. (C) Gene Ontology(GO) enrichment for genes near variant regions with 

the GO terms scaled in two dimensions based on semantic similarity.  
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of SNPs and 0.44% of InDels are alternately fixed between rock- and sand- groups. When 

these divergent variants and genome regions are mapped to linkage groups (chromosomes), 

it is apparent that each chromosome carries the signature of rock- vs. sand- divergence(Fig-

ure 2-1). 

 A total of 4,484 genes lie within 25 kb of either an alternately fixed variant, a highly 

divergent 10kb window [2.5%FDR] or a highly divergent InDel region [2.5% FDR]. Path-

way enrichment analysis [43] of human homologs/analogs for these genes reveals catego-

ries implicating early embryonic development, brain development, synaptic transmission 

and neuronal function (Table 2-1)(Figure 2-1C). Divergent genes are significantly enriched 

for factors implicated in human neurological disease like Autism Spectrum Disorder 

(SFARI, Fisher’s exact test p value < 2e-16) and disorders related to the neural crest [44], 

(Fisher’s exact test p value < 2e-16, Table 2-1). Highlights amongst these lists include 

avpr1a, cntnap2, GABA receptors, glutamate receptors and members of the Fox, Hox, Dlx 

Irx, Hh, Wnt and Bmp families/pathways.  

Figure 2-2 Functional Variants more likely to be Divergent | PhastCons scores across the ge-

nome subdivided by regions of the genome and further into bins of FST . Flanking and Intergenic 

regions have low conservation scores compared to Coding regions, Introns and UTRs. PhastCons, 

, indicating functionality, is significantly higher for higher bins of FST values ( Wilcoxon rank sum p 

value < 2e-16)  
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 96% of all variants we discovered are predicted to be non-coding. Among fixed 

variants, 3.5% were found in coding regions, ~17% in intergenic regions (gene deserts), 

38% in introns, 38% in flanking regions (within 25kb up- or downstream of a gene), and 

3% in annotated UTRs. Rock vs. sand fixed variants were more likely to be missense/loss-

of-function (LoF, 72.6%) than silent (27.3%). We aligned published cichlid reference ge-

nomes [13] and calculated a PhastCons score across the genome, measuring evolutionary 

conversation of each nucleotide position and hence putative functionality of the region. For 

both coding and non-coding portions of the genome, more divergent genetic variants had 

higher PhastCons scores (Figure 2-2), suggesting that the variants we have discovered are 

enriched for function.  

 Given the degree of craniofacial divergence between rock- and sand- groups, and 

genome wide enrichment for craniofacial and neural crest biology, we examined published 

datasets of neural crest and craniofacial enhancers [45, 46] in mammals. These data allow 

us to identify (i) craniofacial and neural crest cell enhancers conserved between mammals 

and cichlids and (ii) fixed SNPs between rock and sand species within conserved enhancer 

elements. A total of 275 craniofacial enhancer elements and 234 human neural crest cell 

enhancers are evolutionarily conserved between mammals and cichlids. Fixed SNPs were 

found within the enhancer elements of key genes integral to CNCC development and mi-

gration (Table 2-2). Notably, from both enhancer datasets, fixed SNPs were found within 

the enhancer elements of the gene nr2f2, a nuclear receptor gene that co-localizes with the 

master neural crest regulator tfap2a. 
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 We recently examined genome-wide divergence amongst sand-dweller groups that 

construct pit versus castle bowers, sand-made structures used to attract females for mat-

ing[47]. We asked whether rock-sand and pit-castle genomes had diverged similarly. Out 

of 3070 genes that are targeted by 10kb High FST regions in the rock vs. sand comparison, 

483 overlap with 1090 genes that are targeted by High FST regions in the pit vs. castle 

Figure 2-3 Rock Sand irx1b expression patterns | (A)Relative spatial expression patterns of 

irx1b in red, P-SMAD in green and DAPI in blue during EG, MG and LG. note the differences 

marked in the schematic marking the neural plate and the larger field of irx1b in the anterior domain.  

(B)Distribution of copy number from RT-PCR of rock(red) and sand(blue) alleles in F2 embryos 

heterozygous for irx1b. irx1b expression peaks in the sand allele earlier during MG  (C) In-situ 

hybridization showing relative differences in shh activity, foxg1(telencephalon marker) activity and 

(D) rx3(eye field marker) activity in F2 individuals index for the irx1b allele.  



 12 

comparison (p-value < 2e-9, Fisher’s exact test). Lake Malawi evolutionary radiations have 

likely targeted similar genetic modules across evolutionary timescales, although the spe-

cific mutations differ. 

 Genome-wide divergence of rock vs. sand Malawi cichlids involves a relatively 

small percentage of genetic variants. Divergent variants are (a) evolutionarily conserved 

and (b) enriched for genes and pathways involved in embryonic development, brain devel-

opment and function, human neurological disorders and diseases of the neural crest. Given 

these strong patterns of enrichment, we used the experimental power of the Malawi cichlid 

system to interrogate features of early development and adult behavior likely to differ be-

tween rock- and sand- groups. 

2.2.2 A gastrula-stage map of rock-sand divergence 

 The complexity of the vertebrate brain is first laid out in the neural plate, a single-

cell thick sheet of cells that forms between the non-neural ectoderm and the germ ring at 

gastrulation stage. Neural crest cells are specified just outside of the presumptive neural 

plate, under the control of bone morphogenetic protein (BMP) and Wingless (Wnt) sig-

nals[48]. The neural plate, in turn, is polarized under the influence of rostral (BMP) and 

caudal (Wnt) signals[49]. Thus, during gastrula and neurula stages, neighboring cellular 

territories are defined one from the other, in part by interacting BMP and Wnt gradients, to 

generate neural vs. neural crest (craniofacial) precursors. IRX genes act as transcriptional 

repressors of BMP signal in gastrulation, and also function to specify the neural 

plate[50].BMPs in turn are protective of the anterior-most region of the neural plate, which 



 13 

will ultimately give rise to the telencephalon, and suppress the early eye[49]. Given alter-

natively fixed SNPs and InDels in the irx1b gene (above and[23]), expected interactions 

with BMP signal in the early embryo and known telencephalon vs. eye size differences 

between rock- vs. sand- species[23, 24], we examined and quantified the early activity of 

irx1b and BMP in rock- vs. sand- embryos. 

 We designed a custom microfluidic device to orient and image cichlid embryos in 

toto at gastrula and neurula stages[51]. In early gastrula (EG), irx1b (red) and BMP signal 

(green) delineate complementary dorsal and ventral domains of the embryo (Figure 2-3A). 

By mid-gastrula (MG), irx1b shows two expression domains, one in the posterior portion 

of the developing neural plate (np) and the second co-expressed with psmad activity around 

its anterior border. This second domain, overlapping with BMP activity, is the pre-placodal 

region and will give rise to sensory placode precursors and rostral-most populations of 

migratory neural crest cells[49, 52, 53]. By late gastrula (LG), the domains of irx1b ex-

pression and Psmad activity sharpen around the leading edge of the neural plate but remain 

overlapping around the periphery. Notably, sand-dwellers (S) express more irx1b in the 

anterior domain than rock-dwellers at EG and MG and then define the boundary of the 

neural plate earlier in LG. As a consequence, BMP signal has a longer-lasting influence on 

the neural plate in rock-dwelling species, which is predicted to result in a relatively larger 

telencephalon and smaller eye field[49].  

 We developed a panel of rock- x sand- hybrid crosses to formally evaluate the role 

of irx1b in forebrain diversification. We used quantitative RT-PCR to measure allele-spe-

cific expression (ASE) in heterozygous rock- x sand- F2 hybrids, across gastrulation. We 

observed that the sand- irx1b allele was expressed at significantly higher levels (average 
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of 2.5-fold) and that this difference was largely confined to MG (Figure 2-3B). Rock- x 

sand- F2 hybrids, indexed for irx1b genotype, were raised to neurula and somitogenesis 

stages and we examined the activity of shh, foxg1 (a marker of the telencephalon), and rx3 

(a marker of the eye field), by in situ hybridization. F2 individuals homozygous for rock- 

Figure 2-4 Contextual Differential Gene Expression | (A) A Schematic of the rock/sand behav-

ioral paradigm. Terracotta pots simulate rocks on one side with sand on the other side separated 

by empty tank space. (B) Differential gene expression heatmap for whole brain transcriptomes of 

F1 males behaving in either rock or sand social contexts. Note that the individuals cluster by social 

context and not cross relation. (C) Gene Ontology (GO) terms enriched for differentially expressed 

genes separated onto two axes based on semantic similarity.  
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irx1b alleles exhibited a larger and more rostral domain of shh expression, an earlier and 

larger domain of foxg1, which marks the presumptive telencephalon, and a smaller rx3 

domain (Figure 2-3C D). Note that these phenotypic differences between rock- vs. sand- 

irx1b genotype match the known expression divergence observed amongst rock- vs. sand- 

species (Figure 2-1)[23, 24]. Finally, when we raised rock- x sand- F2 to juvenile stage and 

compare the relative size of the telencephalon among irx1b genotypes, individuals homo-

zygous for rock- alleles exhibit larger telencephala (Appendix A Figure 2). We conclude 

that genetic variants in and around the irx1b gene contribute to divergent specification of 

the Malawi cichlid forebrain. This is notable because the differences in gene expression 

and BMP activity we detect are noticeable before brain structures are apparent. 

2.2.3 The genomics of social challenge and opportunity 

 One of the main differences between rock- and sand-dwellers is their means of male 

display and courtship behavior. Rock- males defend caves year round and are highly ag-

gressive, they court females in these caves; sand- males breed seasonally on leks and build 

and bowers to attract females and mitigate male-male aggression. Given this difference, 

and genome-wide enrichment for categories related to adult behavior and neuronal function 

(Table 2-1), we sought to evaluate the brain gene expression profiles of male courtship 

display. To assess male display and courtship behavior, we designed a courtship preference 

assay. We evaluated social interactions between males and females using a 40-gallon tank 

design with a ‘rock’ habitat at one end and ‘sand’ at the other, separated by glass bottom 

(Figure 2-4A). When parental rock- species are placed in this tank paradigm, males court 

females over the rocks. Males of sand- species court females over sand and construct spe-

cies-appropriate bowers. When single rock- x sand- F1 males were placed in this set up 
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with F1 females, males invariably courted females over the ‘rock’ habitat, suggesting ge-

netic dominance. When two rock- x sand- F1 males were allowed to compete for F1 females 

in this tank paradigm, something interesting happened. One male, typically the larger, 

courted females over the rock habitat, and the other simultaneously constructed bowers to 

court females in the sand. We detected no difference in GSI (gonadal-somatic index) be-

tween F1 males behaving as ‘socially rock’ vs. ‘socially sand.’ This observation of diver-

gent behavior among interacting F1 brothers suggests an interaction between the genome 

and the social environment in these males. 

 We used RNA-seq to investigate the context dependent behavior of rock- x sand- 

F1 males in the courtship preference assay (described above). Whole brains of F1 males 

tested singly (n=2 lone) as well as F1 brothers assayed in dyads (n=4 dyads) were dissected 

after sacrifice during courtship and interrogated using RNA-seq. Genes were considered 

significantly differentially expressed between “socially rock” and “socially sand” brains if 

they exhibited both a fold change ≥ 2 and crossed the threshold of Padj < 0.05. Based on 

this criterion, we found 832 genes differentially expressed between brain transcriptomes 

(Figure 2-4B, Table 2-3). Gene expression profiles clustered not by fraternal relatedness, 

but rather by behavior (Figure 2-4B). Males from dyads that courted females over rocks 

had expression profiles similar to single males (who also courted over rocks) but distinct 

from their brothers that built bowers and courted females over sand in the same tank. Using 

GeneAnalytics[43], we observed significant functional enrichment for brain regions (e.g., 

cerebral cortex); mental disorders (e.g., Schizophrenia and Frontotemporal Dementia); 

neural pathways (e.g., Transmission Across Chemical Synapses, Axon Guidance, Neuro-

transmitter Release, Oxytocin Signaling, Synaptic Transmission and Brain Development) 



 17 

and brain phenotypes (e.g., Ataxia, Abnormal Spatial Learning and Abnormal CNS Syn-

aptic Transmission). Roughly 38% of differentially expressed genes also contained genet-

ically differentiated SNPs between rock- and sand- species (p-value < 2e-6, Fisher’s exact 

test), implying considerable cis-acting genetic variation. These context-dependent differ-

ences in brain gene expression are striking and imply rapid and concerted changes in brain 

expression modules as males encounter changing social challenge and opportunity[47, 54].  

2.2.4 Genome-enabled discovery of natural variants in brain and behaviour 

 African cichlids are textbook examples of evolutionary diversification. One of the 

hallmark features of cichlid genomes is allele sharing between species, due in part to gene 

flow across premating species barriers and the retention of ancestral polymorphism [13]. 

We sought to explore where the genetic variants differentiating rock- from sand- Malawi 

species came from. To do so, we compared rock- and sand- genomes to the genome of 

Astatotilapia calliptera, a riverine species located within, but not endemic to, Lake Malawi. 

Previous research suggests that A calliptera genomes from within and just outside Lake 

Malawi are composites of rock and sand alleles[17]. We painted A. calliptera chromosomes 

Figure 2-5 Astatotilapia calliptera state | 13000 informative SNP markers across the genome on 

all Linkage Groups marked green if homozygous for the rock allele, blue if homozygous for the 

sand allele and red if polymorphic 
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to identify the state of rock- vs. sand- divergent variants (Figure 2-5). For 42% of differen-

tiated variants, rock- species share the same allelic state with A. calliptera, in 11.5% of 

cases, A. calliptera is polymorphic (heterozygous). Notably, we observed numerous re-

gions (e.g., chromosome 14), some as large as 4 Mb, with predominant runs of either rock- 

or sand- alleles in the A. calliptera genome. These large regions are evidence of either very 

strong divergent selection between rock- and sand- groups, and/or secondary contact be-

tween A. calliptera and rock- or sand- lineages. 

 Our goal in this work was to identify genetic variants associated with differences 

in brain and behavior, because this has been difficult to do in other vertebrate systems. We 

followed an approach of evolutionary forward genetics[55], wherein we sequenced and 

compared the full genomes of rock- vs. sand- Lake Malawi species groups, known to differ 

in brain and craniofacial features, as well as social and courtship behaviors. We found a 

small percentage (0.06%) of total variants to be genetically differentiated, but nonetheless 

these variants were enriched for functional categories related to brain and craniofacial de-

velopment, neuronal function and behavior. This list of variants constitutes a starting place 

for follow up study in the Malawi system. To illustrate that point, we carried out experi-

ments to uncover new biology in early brain development and later brain function (behav-

ior) – the two components of Brenner’s dual encoding problem from genes to behavior. 

2.3 Methods 

2.3.1 Genome sequencing 

 We used genomic DNA from the fin clips (Qiagen DNeasy, Cat #69504) from 8 

rock dwelling and 14 sand dwelling Lake Malawi species (Table 1-1) obtained from fish 
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located in-house or from field samples. We made libraries using the Illumina Nextera Li-

brary prep kit to perform paired-end sequencing on the Illumina Hi-Seq 2500 at Georgia 

Tech. Genome assembly, variant discovery and annotation was done using the Metriaclima 

zebra reference genome version MZ_UMD2a [42] using standard BWA[56] and GATK 

practices[57]. The maximum likelihood tree in Figure 2-1A was made using 

SNPhylo[58]on the variant data.  

2.3.2 Genetically Divergent Regions 

 Vcftools[59] was used to calculate and FST (--weir-fst-pop) between the 8 rock and 

14 sand species. Variants with FST = 1 were noted to be alternately fixed between rock and 

sand in our dataset. FST was also measured across 10kb windows(--fst-window-size. Sig-

nificance thresholds were marked using the fdrtool package in R. All variants were anno-

tated using Snpeff 4.3i[60] and GeneAnalytics [43] was used to test the genes within 25 kb 

of significant variants for enrichment of functional categories.  

2.3.3 Conserved elements 

 A comparative genomic approach was used to identify putatively conserved crani-

ofacial and neural crest CNEs between mammals and M. zebra. Experimentally verified 

and published genome-wide craniofacial and neural crest enhancers active during early 

embryonic stages that play a role in shaping the development of neural crest and craniofa-

cial structures in mammals were identified[45, 46]. We used the liftOver tool [61], which 

identifies conserved orthologous genomic regions between species to identify conserved 

CNEs between human, mouse and the M. zebra genome. Starting from mouse and human, 
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we identified orthologous craniofacial and neural crest CNEs in Nile Tilapia and Me-

triaclima zebra.  

2.3.4 RNA Extraction and Sequencing 

 Adult F1 rock male♂ x sand female♀ hybrids were reared in tanks with a simulated 

rock habitat on one side and simulated sand habitat on another separated by empty tank 

space. As soon as a pair of brothers in this tank set-up exhibited territoriality (danced for 

females) on both sides at the same time, they were rapidly decapitated, and their brains 

were fixed in RNA-Later. The males were designated as ‘Socially Rock’ or ‘Socially Sand’ 

depending on the side of the tank they used as their territory. Two of the males, designated 

as ‘Lone’ were the only males in their tank. A total of 10 males were sacrificed:  

 

Socially Rock F1 Hybrid Males Socially Sand F1 Hybrid Males Socially Lone F1 Hybrid Males 

Metriaclima zebra ♂ 

x 

Tramitichromis intermedius ♀ 

Metriaclima zebra ♂ 

x 

Tramitichromis intermedius ♀ 

Metriaclima zebra ♂ 

x 

 Mchenga conophoros ♀ 

Petrotilapia nigra ♂ 

x 

Aulonacara baenschi ♀ 

Petrotilapia nigra ♂ 

x 

Aulonacara baenschi ♀ 

Labeotropheus feulleborni ♂ 

x 

Mchenga conophoros ♀ 

Petrotilapia nigra ♂ 

x 

Mchenga conophoros ♀ 

Petrotilapia nigra male ♂ 

x 

Mchenga conophoros ♀ 

 

Labeotropheus feulleborni ♂ 

x 

Mchenga conophoros ♀ 

Labeotropheus feulleborni ♂ 

x 

Mchenga conophoros ♀ 
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 Tissues were frozen in liquid nitrogen, homogenized using a mortar and pestle and 

placed in trizol. Following standard chloroform extraction RNeasy mini columns (Qiagen) 

were utilized to purify RNA for storage at -80ᴼC. Total RNA was quantified using Qubit 

(Molecular Probes) and quality analyzed using the Agilent 2100 Bioanalyzer System for 

RNA library preparation. RNA input was normalized to 1µg and libraries were prepared 

using the TruSeq Stranded mRNA Sample Prep Kit (Illumina- Kit A). Libraries were again 

quantified, quality assessed, and normalized for sequencing on the HiSeq 2500 Illumina 

Sequencing System. 

2.3.5 Differential Gene Expression Analysis   

 Raw sequence reads from “Social Rock” and “Social Sand” samples were quality 

controlled using the NGS QC Toolkit[62]. Raw reads with an average PHRED quality 

score below 20 were filtered out. The remaining reads were further trimmed of low-quality 

bases at the 3’ end. High quality sequence reads were aligned to the M.zebra reference 

genome MZ_UMD2a [42] using TopHat v2.0.9[63]. On average, across all samples, over 

95% of reads mapped to the reference genome. The resulting TopHat2 output bam files 

were sorted and converted to sam files using samtools v0.19 [64]. Sorted sam files were 

used as input for the HTSeq-count v0.6.1 program to obtain fragment counts for each lo-

cus[65]. Fragment counts were scale-normalized across all samples using the 

calcNormFactors function in the edgeR package v3.6.8[66]. Relative consistency among 

replicates and samples was determined via the Multidimensional scaling (MDS) feature 

within the edgeR package in R. Scale-normalized fragment counts were converted into log2 
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counts per million reads mapped (cpm) with precision weights using voom and fit to a 

linear model using the limma package v3.20.9[67]. Pairwise contrasts were constructed 

between socially rock and socially sand samples. After correcting for multiple comparisons 

using the Benjamini-Hochberg method[68], genes were considered differentially expressed 

between socially rock and socially sand samples if they exhibited both a fold change ≥ 2 

and Padj < 0.05. 

2.3.6 Forebrain and eye measurements 

 The forebrain and eyes were measured by integrating the area of transverse sections 

in embryos of rock- and sand-dweller cichlid species, using previously published meth-

ods[24]. The rock-dweller species included Cynotilapia afra (CA, planktivore), Labeotro-

pheus fuelleborni (LF, algivore) and Maylandia zebra (MZ, generalist); sand-dweller spe-

cies included Aulonocara jacobfreibergi (AJ, ‘sonar’ hunter), Copadichromis borleyi (CB, 

planktivore) and Mchenga conophoros (MC, insectivore/generalist). Embryos from each 

species were measured starting from the earliest eyes can be differentiated from the fore-

brain (mid-somitogenesis, stage 12) and at each stage until the forebrain has defined 

prosomeres (early pharyngula, stage 14)[23]. To keep measurements standardized across 

stages, all measurements were defined by forebrain morphology at the earliest timepoint 

(stage 12). The ‘eye’ measurement remains consistent at all stages, the ‘anterior’ measure-

ment includes the telencephalon and presumptive olfactory bulb, and the ‘posterior’ meas-

urement includes the diencephalon and each of its constitutive prosomeres (dorsal and ven-

tral thalamus and hypothalamus). To facilitate measurements, we used gene expression of 

rx3 (for stage 12 embryos) and pax6 (stage 13 and 14) to identify the different structures 

of the forebrain and eye.  
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2.3.7 Staging during gastrula 

 Cichlid gastrulation was split into three sub stages within the gastrula stage 9. Gas-

trulation lasts 8 to 12 hours, depending on the species, and is defined as after the shield (as 

described in zebrafish) stage until the presence of the first somite at the beginning of the 

neurula stage 10. Embryos were classified as early gastrula (EG) by an asymmetry in epib-

oly after shield stage until the formation of a ridge that is analogous to the anterior neural 

ridge (ANR) in chick and mouse and the anterior neural border in zebrafish. At that point 

embryos are classified as mid gastrula (MG). MG lasts until the formation of the dorsal-

ventral axis, defined by further lengthening of one side of the embryo, which begins to 

thicken as epiboly progresses. This is the dorsal side of the embryo, and the side opposite 

the ANR is classified the ventral side of the embryo. At this point the embryos are defined 

as late gastrula (LG). LG ends with the specification of the neural plate, which appears as 

a portion of the dorsal embryo that is raised relative to ventral side, usually in line with the 

ANR. In addition to these morphological markers, EG, MG, and LG can be identified via 

gene expression of dx3b, irx1b, tlc, and sox2, which all have recognizably different expres-

sion domains at each sub-stage. 

2.3.8 Immunohistochemical staining 

 Embryos were harvested at 24 hours post fertilization (hpf) from each of the rock- 

and sand-dwelling cichlid species that were measured, along with Metriaclima patricki for 

rock- and Tramitichromis intermedius for sand-dwellers. The embryos were cultured until 

they reached gastrula stage, approximately 36 to 40 hpf, then fixed at intervals throughout 

gastrula until neurula. The embryos were then treated with auto-fluorescence reducer 
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(1.55mL 5M NaCl, 250ul Tris-HCl, pH 7.5, and 95mg NaBH4) overnight, and 10% 2-

mercaptoethanol for 1 hour. Next, whole mount in situ hybridization was done, using a 

modification of methods previously published in Fraser et al. 2008. Each gene was visual-

ized using Fast Red (naphthol chromogen, Roche Diagnostics), which fluoresces at near 

red wavelengths (500-650 nm). After in situ hybridization, embryos were immunostained 

for pSMAD 1,5,8 protein, using protocols published in Tucker et al. 2008. Embryos were 

then bathed in Vectashield (Vector Labs) containing DAPI and placed in a specially built 

mold that accommodates the large yolk and holds the embryo upright. Embryos were then 

scanned using a Zeiss LSM 700-405 confocal microscope and processed using LSM 700 

software and Image J. 

2.3.9 Quantitative PCR 

 A subset of the embryos cultured for IHC were fixed in RNALater (Qiagen), a total 

of 12 individuals for each species of rock- and sand-dweller. The embryos were dissected 

to remove most of the yolk and the total RNA was extracted from each individual using an 

RNA Extraction Kit (Qiagen). The amount of bmp4, irx1b, or sox2 was quantified using a 

one-step RT qPCR kit (Express One-Step SYBR GreenER kit, Invitrogen) and RT-PCR 

Machine (Mastercycler by Eppendorf). Each gene of interest was standardized against 

beta-actin [69] using the equation 2^-(gene of interest – beta-actin) to generate delta Ct. 

Each individual had a total of three replicates for each gene, and the experiment was re-

peated at least once. 

2.3.10 Rock-Sand hybridization and genotyping 
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 Two rock-sand crosses, one between Copadichromis borleyi (CB, sand-dweller 

sire) and Maylandia zebra (MZ, rock-dweller dam) and another between Mchenga conoph-

oros (MC, sand- sire) and Petrotilapia sp. ‘thick bar’ (PT, rock- dam), were artificially 

generated by taking the eggs from the dam just prior to spawning and mixing with sperm 

from the sire. The resultant F1 were grown in tanks and allowed to spawn normally to 

generate F2. Several F2 broods were taken from multiple F1 females for each cross, a total 

of 355 individuals for the CB x MZ cross and 608 for the MC x PT cross. The embryos 

were fixed at every stage starting at gastrula (stage 9) until early pharyngula (stage 14). 

The F2 embryos were either RNA-extracted (stages 9 and 10) or DNA- extracted (stages 

11-14). RNA extraction followed the same protocol as normal embryos, DNA extraction 

was performed by fixing the embryos in 70% ethanol, then removing the tail from each 

individual and extracting the DNA using an extraction kit (Qiagen). Following extraction, 

the F2 embryos were genotyped using custom probes (CAAATCTCCC[C/T]CCGCGGC, 

Taqman custom probes, Invitrogen) designed to identify a SNP in irx1b using RT-PCR. A 

subset of the embryos was also sequenced at a 900 bp interval around the irx1b SNP to 

verify the custom probes. 

2.3.11 F2 Analysis 

 The F2 at stages 9 and 10 had their irx1b quantified using the same protocol as the 

normal embryos. The data was then separated by genotypic class and tested with an 

ANOVA, followed by a Tukey’s multiple comparison test to determine significance be-

tween classes. In individuals heterozygous for the irx1b allele, the amount of mRNA spe-

cific to each allele of irx1b was quantified by using the RNA-to-Ct kit (Invitrogen) and the 
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custom probes. The delta Ct for each heterozygote was generated with the equation, 2^(al-

lele from dam – allele from sire). The F2 at the later stages (stages 11 – 14) were either 

sectioned and measured for eye/forebrain using the same protocol for normal embryos or 

treated with in situ hybridization to visualize genes involved in the formation of the fore-

brain and eye.  

2.3.12 PhastCons analysis  

 Pairwise alignments generated using lastz v1.02[70], with the following parame-

ters: “B=2 C=0 E=150 H=0 K=4500 L=3000 M=254 O=600 Q=human_chimp.v2.q T=2 

Y=15000” . This was followed by using Jim Kent’s axtChain tool with -minScore=5000 

for cichlid-cichlid and -minScore=3000 for cichlid-other teleost alignments. Additional 

tools with default parameters were then used following the UCSC whole-genome align-

ment paradigm (http://genomewiki.ucsc.edu/index.php/Whole_genome_align-

ment_howto) in order to obtain a contiguous pairwise alignment. Multiple alignment were 

generated from pairwise alignments using the multiz v11.2[71] program using default pa-

rameters and the following pre-determined phylogenetic tree: (((((((M. zebra, P. nyererei), 

A. burtoni), N. brichardi), O. niloticus), medaka), stickleback), zebrafish), in agreement 

with Brawand et al.[13].Sequence conservation scores were then obtained using the 

phastCons[72] with a phylogenetic model estimated by the phyloFit[73] program, both 

from the PHAST software package (v.1.3). The model fitting was done using default pa-

rameters. The phastCons was run in two iterations, first to obtain the free parameters of the 

model (--estimate-trees and --no-post-probs) and then using the output from this we run 

phastCons again the conservation scores. For the ‘cichlid-only’ phastCons runs, we used -
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-target-coverage 0.3 --expected-length 100, while for the broader teleost dataset we speci-

fied --target-coverage 0.125 --expected-length 20, which resulted in 53% coverage of exon 

sequences by conserved elements.   
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CHAPTER 3. BEHAVIOR-DEPENDENT CIS-REGULATION RE-

VEALS GENES AND PATHWAYS ASSOCIATED WITH BOWER 

BUILDING IN CICHLID FISHES2 

Many behaviors are associated with heritable genetic variation. Genetic mapping has re-

vealed genomic regions or, in a few cases, specific genes explaining part of this variation . 

However, the genetic basis of behavioral evolution remains unclear. Here I investigate the 

evolution of an innate extended phenotype, bower building, among cichlid fishes of Lake 

Malawi. Males build bowers of two types, pits or castles, to attract females for mating. we 

performed comparative genome-wide analyses of 20 bower building species and found that 

these phenotypes have evolved multiple times with thousands of genetic variants strongly 

associated with this behavior, suggesting a polygenic architecture. Remarkably, F1 hybrids 

of a pit-digging and a castle-building species perform sequential construction of first a pit 

and then a castle bower. Analysis of brain gene expression in these hybrids showed that 

genes near behavior-associated variants display behavior-dependent allele-specific expres-

sion with preferential expression of the pit-species allele during pit digging, and of the 

castle-species allele during castle building. These genes are highly enriched for functions 

elated to neurodevelopment and neural plasticity. Our results suggest that natural behaviors 

                                                 
2 York RA†, Patil C†, Abdilleh K, Johnson ZV, Conte MA, Genner MJ, McGrath PT, Fraser HB, Fernald 

HB, Streelman JT (2018) Behavior-dependent cis regulation reveals genes and pathways associated with 

bower building in cichlid fishes , Proceedings of the National Academy of Sciences Nov 2018, 201810140; 

DOI: 10.1073/pnas.1810140115 

CP contribution: Sequenced Genomes, assembled genomes, ancient / new allele analysis and gene enrich-

ment. 
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are associated with complex genetic architectures that alter behavior via cis-regulatory dif-

ferences whose effects on gene expression are specific to the behavior itself.  

3.1 Introduction 

 Understanding behavioral evolution requires identifying the genetic and 

regulatory architectures encoding neural development and function. To characterize the 

evolution of a complex social behavior, we focused on the remarkable bower building feats 

performed by ~200 cichlid fish species in Lake Malawi that live on sandy substrate. Bowers 

are species-specific sand structures that serve as signals in male-male competition and fe-

male mate choice[74]. Malawi cichlid species build two basic bower types: 1) pits, which 

are depressions that resemble nests in the sand, and 2) castles, which resemble miniature 

volcanoes[75]. Bower building requires highly repetitive activity in which males perform 

hundreds of scoop-spit bouts with their mouths per hour, interspersing construction with 

the courtship of females and aggressive encounters with conspecific males (Figure 3-

1a)[75, 76]. To dig pits, males collect sand from the center of the pit and spit it elsewhere, 

while to build castles, males gather sand from elsewhere and spit it in a targeted location 

(Figure 3-1b, c). Pit and castle bower types are distributed widely across the Malawi cichlid 

sand-dweller phylogeny, suggesting that parallel evolution and/or hybridization may be 

responsible (4). Furthermore, bower building is innate. Naïve males born in an aquarium, 

who have neither experienced sand nor other males, perform species-specific bower be-

havior when housed with sand and gravid females. 

3.2 Results 

3.2.1 Extensive genetic differences exist between pit and castle species  
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To identify genetic variants associated with bower building, we sequenced the ge-

nomes of 20 male individuals from 20 sand-dwelling Lake Malawi cichlid species: eleven 

pit-digging species and nine castle-building species (Table 1-1). Species in these two 

groups construct either pits or castles despite differences in color pattern, ecology, feeding 

Figure 3-1 Bower building | (A) Characteristic behavioral patterns associated with pit (top) and 

castle (bottom) bower building. (B) Average locations of scoops (grey) and spits (red) during bower 

building trials in the pit species Copadichromis virginalis and the castle species Mchenga conoph-

oros. Consensus locations of the bowers are indicated by the hashed black circles. (C) Results of 

a Student’s t-test (two-tailed, p = 0.006) comparing difference score (mm) between C. virginalis 

(pit; yellow) and M. conophoros (castle; green). (D) Maximum likelihood phylogeny from genome-

wide variants of the species sequenced in this study, numbers at nodes are bootstrap support 

values.  
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mode and other characteristics[75]. Sequence reads from each species (mean coverage 

Figure 3-2 Genome-wide divergence associated with bower building | (A) Manhattan plot of 

genome-wide ZFST for SNPs and INDELs between pit and castle species. (B) Semantic similarity 

of Gene Ontology Biological Process terms enriched for high FST variants. (C) Barplot of SNP pro-

portions per FST cutoff for ancestral and derived SNPs. SNPs in which castle species possess the 

alternate allele are colored red, those in which pit species possess the alternate are colored blue. 

*** = Fisher’s exact p <0.001.  
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~25X) were aligned using the Malawi cichlid reference genome[77] and mapped to Malawi 

linkage groups (Methods). A maximum likelihood phylogeny based on variant sites (Figure 

3-1d) is consistent with repeated evolution of pit-digging and castle-building behavior in 

our sampled species.  

Like other recently evolved species flocks[8], East African cichlids share genetic 

polymorphisms because of incomplete lineage sorting and hybridization[13, 17, 41, 78]. 

Therefore, we used both population-based and phylogeny-based analytical approaches to 

understand genomic correlates of bower building. We applied the population-based fixa-

tion index (FST) to identify genomic regions differentiating pit vs. castle species. We ob-

served ~15.5 million single nucleotide polymorphisms (SNPs) and ~130,000 insertion/de-

letions (indels) in the sample set. 1.5% of variable sites were notably divergent between pit 

vs. castle groups (FST > 0.2, compared to 0.08 genome-wide mean). We compared patterns 

of FST divergence across the genome (Figure 2a) to a population-structure corrected GWAS 

on bower behavior and found that the two are strongly correlated (Appendix B, Figure 1). 

We next identified outlier 10-kilobase (kb) regions based on mean FST of SNPs 

(10% FDR, FST > 0.2) and individual insertions or deletions (indels; 10% FDR, FST > 0.1; 

Figure 2a). Outlier regions were observed on every linkage group, but peaks on LG2 and 

LG11 are striking for their size (1.3 megabases [Mb] and 6 Mb, respectively) and con-

sistency across SNP and indel data. Broad peaks of differentiation on LGs 2 and 11 could 

be caused by structural changes (e.g., inversions[79]) associated with bower behavior or, 

for instance, other traits like male sex determination[22] (T. Kocher, pers. comm.). How-

ever, sex determination systems are not known for these species, and we could not identify 
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structural variants that could explain the broad peaks of genetic differentiation on LGs 2 or 

11[80, 81] (Methods).  

3.2.2  Characterizing variants associated with bower type  

  We hypothesized that if high-FST regions across the genome are the product of se-

lection on bower building or associated behavioral traits, then they should be enriched near 

genes involved in brain function and development. To test this, we examined 1563 genes, 

located within 25 kb of an outlier 10 kb region (~30% of these genes are located on LGs 2 

and 11), for functional enrichment[43]. This gene set was significantly enriched for tissue 

types, pathways, human disorders and phenotypes associated with brain development and 

behavior, including axon guidance, synaptic transmission, autism spectrum disorder and 

spatial learning (Appendix B Figure 2b, Table 3-1). Together, these analyses identify ge-

nomic regions and genetic variants associated with bower behavior and demonstrate that 

genes near these variants are strikingly enriched for putative function in brain and behavior.  

To assess the role of ancestral variation in differentiation of pit-digging vs. castle-

building behaviors, we classified SNPs as either new if they were only found in sand-

dwellers or ancient if they were also found in the genomes of non-sand-dwellers, including 

species from other African rift lakes. For new variants found only in sand-dweller species, 

we marked alleles as derived if they were not shared with the rock-dweller Metriaclima 

zebra reference genome (Appendix B Figure 2a). Such standing genetic variation has been 

recruited for rapid adaptation in sticklebacks and other cichlid fish species[10, 13]. We 

used odds ratios from a Fisher’s exact test comparing SNP-level allele counts to infer 

whether pit-digging and castle-building preferentially associated with ancestral or derived 
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alleles or not (Appendix B Figure 2b). We found that among more genetically diverged 

SNPs, castle-building species tended to have derived alleles (p < 0.0001) while pit-digging 

species were enriched for ancestral alleles (p < 0.0001; Figure 2c). Indeed, increasing FST 

was related to greater divergence in odds ratios between derived and ancestral alleles (Ap-

pendix B Figure 2c). Furthermore, when comparing the overall distribution of FST 

measures, 9% of all SNPs were ancient, but in high FST variants (FST ≥ 0.2), this proportion 

was elevated to 20% (Chi-squared test, p-value < 2.2e-16;  Appendix B Figure 3). These 

data suggest that standing genetic variation, as well as derived alleles shared by castle-

building species, both contribute to the overall genetic architecture of bower behavior.  

3.2.3 Allele sharing amongst bower building species may be due to introgression  

The above observations, along with low bootstrap support values for some nodes 

on the whole-genome maximum likelihood (ML) phylogeny (Figure 3-1d), suggest that 

sand-dweller genomes may have been subject to evolutionary processes leading to species 

tree contraventions, such as incomplete lineage sorting and introgression. To test this, we 

constructed ML phylogenies from non-overlapping windows of 10,000 SNPs (1,927 in to-

tal)[82]. The resulting local phylogenies demonstrate that a variety of tree topologies are 

present (Figure 3-3a). Using TWISST[83], a method that measures the “weights” of vari-

ous tree topologies genome-wide, we found moderate to strong support for a variety of 

trees including several that group species by bower phenotype (Figure 3-3b; Appendix B 

Figure 4a-b). Furthermore, support for trees that group by bower phenotype varied across 

linkage groups with an extremely strong increase in weights on LG 2 and 11, reflecting 

strong genetic divergence seen via FST in these regions (Figure 3-3c-d; Appendix B Figure 

4c).  
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  We next tested for signals of admixture by comparing the observed similarity in 

allele frequencies among species pairs to those expected given their phylogenetic related-

ness (as established by comparisons to pairs of outgroup species)[84]. We found many 

Figure 3-3 Complex phylogenetic relationships among sand-dwelling Malawi cichlids | (A) 

1,927 phylogenies resulting from non-overlapping 10,000 SNP windows were plotted using Densi-

Tree. The consensus phylogeny produced by DensiTree is colored black. (B) Barplot of mean ge-

nome-wide weightings for the fifteen tree topologies tested with Twisst. Trees grouping clades by 

bower phenotype (topos 15, 10, and 3) are highlighted. See SI Appendix, Figure S4 for visualiza-

tions of all fifteen topologies. (C) Stacked plot of topology weightings along an example region of 

linkage group 11 with strong support for groupings by phenotype. (D) Example stacked plot of a 

mixed weight region on linkage group 10. (E) Heatmap of the most significant f4 values. Species in 

the x and y axes were either B or C in the form f4(A,B;C,A. calliptera). Pit and castle species names 

are colored blue and red, respectively. A darker red square indicates more signal of gene flow 

between the species pairs in the respective row and column. 
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species pairs with signals of gene flow that were stronger than expected by chance as evi-

denced by significantly negative admixture statistics (Figure 3-3e; Methods). Similarly, 

using TREEMIX[85] we found that analyses of admixture scenarios incorporating all spe-

cies in our data set also supported multiple admixture events, though the predicted number 

and specifics of these events could not be confidently estimated (Appendix B Figure 5). 

We also observed that signals of admixture varied by genomic location and in many cases 

recapitulated regions of high divergence (Appendix B Figure 6)[12]. Given these species’ 

high degrees of relatedness and the potential of natural selection acting on standing genetic 

variation, it is difficult to ascertain the importance of introgression in the evolution of 

bower building. Nonetheless, taken together these patterns suggest that gene flow has oc-

curred across the sand-dwelling clade and may have impacted variants important for bower 

building. Our observations of complex evolutionary histories reflecting both segregation 

of ancestral polymorphism and gene flow between species are consistent with findings 

from other recent studies of African cichlid genome-wide divergence[12, 13]. Specific hy-

potheses of gene flow between bower building species could be tested by additional popu-

lation and geographic sampling[86].  

3.2.4 Bower building is associated with context dependent allele-specific expression 

Behavioral traits can be associated with rapid transcriptional changes and distinct 

neurogenomic states[87] so we next asked how gene expression was activated in the brains 

of pit-digging vs. castle-building cichlids. To do this, we assayed whole-brain gene expres-

sion (RNA-seq) in interspecific hybrid males to measure allele-specific expression (ASE), 

an approach that can identify cis-regulatory divergence between closely related species[88, 

89]. We crossed the pit-digging Copadichromis virginalis (CV; sire) with the castle-builder 
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Mchenga conophoros (MC; dam) based on previous laboratory observations confirming 

the viability of this cross. Remarkably, CVxMC F1 hybrids produced an unusual interme-

diate “pit-castle” bower by carrying out parental behaviors in sequence. First, a pit is ex-

cavated for several days to weeks followed by a transition to construction of a castle (Ap-

pendix B Figure 7). This observation suggests that both pit-digging and castle-building 

behavioral control circuits are functional in the F1 male brain. We took advantage of this 

sequential bower construction to compare brain RNA-seq data from CVxMC F1 hybrid 

males during three behavioral contexts: pit-digging (n=2), castle-building (n=2), or in iso-

lation without conspecifics or sand (control; n=2) (Figure 3-4a). Given that the terminology 

for behaviors observed in the hybrids overlaps with that used for the pure-species genomic 

comparisons above, we will from here on denote F1 hybrid behavior with the suffix “-

phase”. Sequences were aligned using the Metriaclima zebra reference genome and ASE 

was measured from gene-level read counts.  

We found the presence of ASE in the brain transcriptomes of fish in all three be-

havioral contexts. We identified 621 genes with significant ASE across replicates in at least 

one behavioral context (Table 3-2; Bonferroni corrected p <0.05). Because many of these 

genes may be unrelated to bower building, we reasoned that differential ASE (diffASE) 

across contexts—e.g. cases where one allele is more highly expressed than the other only 

during the pit-phase or castle-phase—would enrich for those involved in the behavior. We 

found robust variation in the number of CV- and MC-biased genes between behavioral 

contexts that, surprisingly, reflected a pattern of species bias (Figure 3-4b). Specifically, 

significantly more genes are MC-biased during the castle-phase compared to the pit-phase 
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(counts: 196 MC biased genes, 40 CV biased genes; Fisher’s exact p < 7.45x10-19) or com-

pared to isolation (counts: 125 MC biased genes, 48 CV biased genes; Fisher’s exact p = 

Figure 3-4 Behaviorally-dependent allele-specific expression | (A) Cartoon of allele-specific 

expression under different contexts. In context 1, the sequence in the transcription factor binding 

site (TFBS1) is identical between the two alleles, leading to an expected ~50:50 allelic ratio in the 

F1 hybrid. In context 2, there is a variant between the species in TFBS2 leading to allele-specific 

expression (ASE) in the F1 hybrid. (B) Barplots indicating the distribution of significantly differen-

tially biased genes across building and digging contexts. Significance calculated using a Fisher’s 

exact test (***; p < 5 x 10-5). (C) Semantic similarity of Gene Ontology Biological Process terms 

enriched for genes with differential allele-specific expression (diffASE). Node size is the log of the 

size of the category represented. Nodes are colored by the log10(p-value) of the enrichment. (D) 

Example result from a sign test comparing context-dependent allele-specific expression (Signal 

transduction; Reactome pathway R-HSA-162582). 
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1.37x10-7), while significantly more genes are CV-biased during the pit-phase compared 

to the castle-phase (counts: 13 MC biased genes, 88 CV biased genes; Fisher’s exact p = 

3.03x10-11) and during the pit-phase compared to isolation (counts: 48 MC biased genes, 

129 CV biased genes; Fisher’s exact p = 2.58 x 10-8). Furthermore, we identified a number 

of individual genes with “discordant ASE” because their direction of allelic bias switched 

between behavioral contexts (Appendix B Figure 8a-b). Notable examples of this phenom-

enon include the genes atp1b4 (Digging: CV allele 2.98-fold higher expression; Building: 

MC allele 10.83-fold higher), an ion pump with brain-specific expression in fish[90], and 

dgcr8 (Digging: CV allele 2.55 fold higher; Building: MC allele 2.75 fold higher), a core 

component in microRNA biogenesis that is required for inhibitory synaptic function[91] 

(Appendix B Figure 8; Full results in table 3-2).  

These patterns of differential allelic expression in F1 animals indicate an unex-

pected amount of dynamic genomic regulation associated with behavior. Notably we ob-

served that, within the same brain containing alleles from both parental genomes, castle-

building cis-regulatory elements are specifically activated during the castle-phase and vice 

versa for the pit-phase . These results add to a growing body of literature illustrating context 

dependent transcriptional response with experience or changes in behavior[92, 93] and fur-

ther suggest that evolutionary differences between species in relation to brain function and 

behavior may arise from variation in such context-dependent regulation of gene expression.  

3.2.5 Context and lineage-specific induction identifies behaviour dependent genes and 

pathways 
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 We reasoned that if the context-dependent ASE observed above is biologically rel-

evant then genes with shared patterns of allelic induction across contexts should be en-

riched for similar functional roles. To this end we first identified genes with significant 

differential ASE (diffASE) –varying ratios between CV and MC alleles dependent on con-

text - between at least two of the three behavioral contexts (Methods; 435 genes). We per-

formed gene set enrichment analysis using all other genes detected in at least one of the 

three contexts (9,703 genes) as background. This analysis identified a number of enriched 

categories spanning various aspects of neural structure and function (Table 3-3). For ex-

ample, genes with diffASE were significantly enriched in a number of neural specific Re-

actome pathways such as transmission across chemical synapses (R-HSA-888590; q-value 

= 8.13 x 10-6) and GABA synthesis, release, reuptake and degradation (R-HSA-112315; q-

value = 5.38 x 10-7). Enriched gene ontology biological processes categories were predom-

inately related to synaptic function, neurotransmitter regulation and signaling, and ion 

transport and binding (Figure 3-4c; Table 3-3) while cellular component sets included 

structures and loci important for neuronal function such as clathrin-sculpted vesicles 

(GO:0060198; q-value = 1.06 x 10-5) and postsynaptic densities (GO:0014069; q-value = 

3.46 x 10-5).  

 We further refined these tests by identifying genes that displayed significant differ-

ential induction of one or both alleles during building or digging behaviors (Methods; n 

building upregulated genes = 171; n digging upregulated genes = 174). These genes differ 

from those with diffASE in that the comparison of interest is the expression of individual 
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alleles across rather than within contexts. While diffASE is ascertained by identifying dif-

ferent ratios between alleles, differential induction is more similar to traditional differential 

expression tests in that it is concerned with the expression of individual alleles across con-

texts. Analyzing these genes might then provide insight into the divergence of context-

dependent regulation of alleles between CV and MC. To assay the roles of genes with 

differential induction we performed gene set enrichment tests as above. Genes upregulated 

during building were enriched for neurotransmitter release (R-HSA-112310; q-value = 

4.70 x 10-2) and ion channel transport (R-HSA-983712; q-value = 1.97 x 10-7). Similarly 

digging induced genes were associated with ion homeostasis (R-HSA-5578775; q-value = 

2.90 x 10-2) and chemical synaptic transmission (GO:0007268; q-value = 3.20x10-2). These 

results indicate that genes with differential ASE and induction are coherently enriched for 

specific neural processes in comparison to the rest of the transcriptome, adding evidence 

Figure 3-5 Intersection of genome-wide SNPs and ASE | (A) Barplot comparing the number of 

ASE, non-ASE, and diffASE (across all contexts) genes associated with highly divergent SNPs 

between pit and castle species. p-values computed with a Fisher’s exact test comparing genes 

overlapping SNPs and genes not overlapping SNPs (***; p < 1 x 10-4) (B) Categories in which the 

observed amount of observed overlap (blue) between genes associated with highly divergent SNPs 

and with ASE is significantly greater than expected (grey). 
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to the idea that context-dependent gene regulation may support distinct neural states related 

to behavior.  

 We extended this analysis to explore the role of lineage-specific differences in gene 

regulation via consideration of independent regulation of CV and MC alleles across behav-

ior states. To do so we applied a sign test to the directionality of CV and MC alleles be-

tween the pit- and castle-phases [89, 94] (Table 3-2). We compared the allelic counts of 

individual genes across phases (pit- vs. castle), avoiding a bias for the sampled tissue as 

opposed to a typical gene ontology enrichment test which would compare the complete 

focal gene list to a background. We found several hierarchically organized gene sets that 

matched a pattern of significant differential induction of CV and MC alleles between dig-

ging and building (Table 3-3). The identified gene sets were largely involved in cell sig-

naling and communication (example plotted in Figure 3-4d). These observations suggest 

that lineage-specific selection may have played a role in producing differential regulation 

of neural signaling genes in CV and MC related to their species-specific bower behavior.  

3.2.6 Bower-associated SNPs and cis-regulatory variation  

Finally, we asked the extent to which genomic divergence amongst bower building 

species is associated with cis-regulatory changes inferred from the CVxMC intercross. If 

natural selection had acted on regulatory variants associated with pit-digging and castle-

building, it would result in enrichment of highly differentiated SNPs proximal to genes that 

display ASE. Indeed, we found that ASE genes were significantly enriched near high FST 

SNPs (Figure 3-5a; 48/621 ASE genes vs. 332/10221 non-ASE genes; Fisher’s exact p = 
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2.07 x 10-7). Furthermore, this enrichment increases when considering those genes display-

ing diffASE (Figure 3-5a). We also detected over thirty pathways that showed significant 

overlap between ASE and high FST gene lists (Figure 3-5b; Bonferroni corrected p < 0.05; 

hypergeometric test). As in previous analyses of ASE and FST alone, many of these path-

ways are involved in neurodevelopment, neuroplasticity, and behavioral regulation, sug-

gesting concordance between patterns of genetic and regulatory divergence among bower 

building species.  

3.3 Discussion 

By combining genome sequencing across many closely related species with analy-

sis of allele-specific expression in the brains of behaving hybrid animals we here provided 

a genome-wide view of how a complex behavior has evolved. Our results suggest that the 

evolution of bower building was associated with polygenic selection on old and new ge-

netic variants that regulate genes involved in neural activity and synaptic plasticity in spe-

cific behavioral contexts. The observation of context dependent ASE associated with se-

quential pit-digging and castle-building behavior in F1 males suggests how cis-regulatory 

divergence across many genes may combine to produce the evolutionary divergence of a 

complex behavior. 

The elevated FST values at thousands of variants among the 20 diverse bower build-

ing species examined revealed that bower building is associated with a complex, yet phy-

logenetically consistent, genetic architecture. The observation that these sites are both an-

cestral – polymorphisms shared with species outside of Lake Malawi – and derived paral-

lels similar findings from studies of Malawi cichlids[12, 13, 41] and other recently evolved 
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species flocks such as sticklebacks [10] and finches[8]. Notably, we found that castle-

building species tended to possess derived variants at more genetically diverged sites sug-

gesting that, at least from a genomic perspective, castle-building is the younger, derived 

behavior. The observation that the species believed to be similar to the common ancestor 

of Malawi cichlids, Astatotilapia calliptera, digs pits and is positioned at the base of the 

Lake Malawi phylogeny lends credence to this idea (Figure 3-1a). The phylogenetic distri-

bution of bower building suggests that repeated instances of selection, be it on standing 

variation or introgressed alleles, may have acted to differentially fix the genetic architec-

ture associated with castle bowers in a number of sand-dwelling species. That we detect 

potential genomic signatures of gene flow supports the notion that introgression may have 

played a role in the propagation of the derived castle-building behavior among sand-dwell-

ing cichlid species. The importance of gene flow across species boundaries has been high-

lighted before in cichlid fish adaptive evolution [13, 95], but bower building represents a 

special case of this general phenomenon, as the behavior is sex-specific and unlikely to 

increase male survival. It will be interesting to test specific hypotheses of gene flow be-

tween particular bower-building species using more targeted sampling and genetic meth-

ods.  

Given the large regions of increased genetic divergence identified on linkage 

groups 2 and 11, it is intriguing to consider the possibility that there may be ‘supergene’-

like elements underlying bower building, similar to those that have been found to be asso-

ciated with other animal behaviors such as male reproductive morphs in the ruff[96, 97] or 

insect social organization [98]. Our observation that F1 hybrids of a cross between pit and 
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castle species can build both structures, and do so in a mutually exclusive, sequential fash-

ion may further support the notion that the varying bower types require genomic regions 

working in a modular and independent fashion. Such a finding would not be without prec-

edent among the cichlids of Lake Malawi. The orange-blotch (OB) coloration phenotype, 

found among >20 species of rock-dwelling species, is associated with a tightly-linked ge-

nomic locus resembling a supergene in its size and inheritance and has independently arisen 

at least three times[38]. 

Our approach to sequence the genomes of individuals from pit-digging vs. castle-

building species has identified numerous genetic variants associated with bower behavior, 

not unlike the genetic architecture of other complex traits including human neurological 

disorders[99]. Integrating genome sequencing with RNA-seq from F1 hybrid brains pairs 

our strategy with the complexity of the bower trait. Our results fit the general pattern ob-

served in other complex traits: numerous genetic associations with the phenotype[5], and 

an expectation that many of these variants exert their effects via context dependent cis-

regulation of gene expression[27, 100]. Models like Malawi cichlids may thus occupy a 

‘sweet spot’ in complexity - combining a rich genetic, evolutionary, and phenotypic profile 

with tractable biology – that could reveal novel insights into the origins of behavioral di-

versity. Of utmost importance will be continued efforts toward correct phenotypic catego-

rization of such complex traits. In this study, we decided to characterize bower building 

into two qualitative categories and used this definition to perform genome-wide tests across 

twenty diverse species. Yet our species cohort may share other traits correlated with bower 

type, adding noise to our measures of genetic association, or may represent more than two 

behavioral strategies (though this scenario seems unlikely given the behavioral and genetic 
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findings presented here). In general, the use of bower building as a model complex trait 

will be benefited by careful work on the roles of ontogeny, intra-specific variation, and 

behavioral variability in the regulation of this behavior.  

The extensive, context-dependent transcriptomic divergence associated with bower 

building in F1 hybrids provides intriguing insights into the regulatory basis of behavioral 

evolution. For example, it appears that bower building is defined by modularity at multiple 

levels of biological organization. The transition in CV x MC F1 hybrids from pit to castle 

bowers may be considered as a shift between distinct behavioral modules associated with 

distinct behavioral patterns reflective of the respective parental species. The finding that 

these phases are associated with distinct transcriptomic states suggests that the pit and cas-

tle-alleles function modularly based on behavioral context, best reflected by the significant 

number of genes displaying discordant ASE across these behavioral modules. This is in 

opposition to other scenarios in which regulatory divergence might be static across behav-

ioral conditions or minimal in the context of brain function and behavior. Instead, the tran-

scriptomic states associated with the pit- and castle-phases in F1 hybrids appear to be more 

similar to those found between tissues in an organism, arising from potentially distinct 

regulatory or epigenomic cellular environments. In this case, given the genomic and evo-

lutionary signatures identified by the whole-genome analyses, it appears that these differ-

ences in regulation are at least partly due to extensive sequence-level variation in a number 

of functionally related regulatory elements associated with behavior. Notably, this may 

suggest that the genome harbors regulatory loci specifically involved in the dynamic coor-

dination of behavior and brain function analogous to well-known genetic modulators of 

morphology and that these loci underlie the evolution of behavioral diversity.  



 47 

3.4 Methods 

3.4.1 Bower behavioural measurements  

 Individual adult, reproductive subject males (Copadichromis virginalis, n=4; 

Mchenga conophoros, n=4) were each housed with 1-3 adult, reproductive stimulus fe-

males of the same species in 43.2 cm x 91.4 cm x 40.6 cm (160 liters) glass aquariums 

maintained on a 12:12 hour light:dark cycle. In each tank, a 5.1 cm deep, 35.6 cm diameter 

tray (Dynamic Design; Newbury Black Poly Saucer, SA1412BK) was placed and filled 

with sand (CaribSea Inc.; Sahara Sand, 00254). For each subject, 90 to 120 minute videos 

were recorded between 3-8 hours after lights on during periods of high bower building 

activity using a GoPro camera (GoPro; Hero4 Silver, CHDHY-401) housed in a waterproof 

compartment (GoPro; Clear Standard Housing, AHSRH401) and placed top-down directly 

above the sand-filled tray. Behavior of male subjects was scored using The Observer XT 

12 software (Noldus) according to the following definitions: “scooping” was defined as 

opening of the mouth and collection of sand, and “spitting” was defined as expulsion of 

sand from the mouth. For each individual, screenshots were captured at the precise moment 

of every scoop and spit event, and these screenshots were exported to Paint (Microsoft) to 

extract spatial coordinates of the mouth for every scoop and spit event.  

 Bower building difference scores were calculated to measure the spatial dispersion 

of scoops compared to the spatial dispersion of spits for each subject male. To calculate 

the difference score for each subject, we first determined the coordinates for each subject’s 

average scoop location and average spit location. Using these coordinates, the absolute 

distance was then calculated from the average spit location to each individual spit location, 
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and from the average scoop location to each individual scoop location. In order to generate 

a quantitative metric of spatial dispersion, these distances were then averaged, yielding two 

distance “scores” for each subject, one for scoops and one for spits. To compare the spatial 

dispersion of scoops versus spits, the difference between these distance scores (scoop dis-

tance score minus spit distance score) was calculated for each subject, thus providing an 

estimate of differences in spatial patterns of scooping and spitting sand for each animal. A 

Student’s t-test (two-tailed) was used to compare these difference scores between species.  

3.4.2 Genome sequencing, alignment and variant identification  

 We chose diverse representative species of pit-digging and castle-building groups, 

selected from multiple genera across the phylogenetic tree of sand-dwellers[75]. Genomic 

DNA was extracted from fin clips of 20 individuals collected in Lake Malawi (11 pit-dig-

gers and 9 castle-builders, Table 1-1) using the Qiagen DNeasy kit (Qiagen Cat # 69504).  

 Libraries were constructed following the Illumina TruSeq DNA library preparation 

protocol. Paired-end sequencing (2x100) was performed on the Illumina Hi-Seq2500 at 

Georgia Tech. Raw sequence reads were quality controlled using the NGS QC Toolkit[62]. 

Quality control was performed as follows: first, raw reads with an average PHRED quality 

score below 20 were removed. The remaining reads were further trimmed of low-quality 

bases at the 3’ end. QC reads for each of the genomes were aligned to the new Metriaclima 

zebra reference genome[77] using bwa-mem (version 0.7.4) and default parame-

ters[56].We used Picard Tools (https://broadinstitute.github.io/picard/) to mark PCR du-

plicates. Sequences were mapped to 87% of the reference genome on average, with mean 

coverage of 24.31X. Variant discovery and filtering was performed using HaplotypeCaller 
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within the Genome Analysis Toolkit(GATK) program according to GATK best practice 

recommendations[101-103].  

 Deletions were identified using modifications to a previously published ap-

proach[104]. Candidate deletions were first identified using ‘chimeric’ reads as identified 

by bwa[56] (i.e. reads that included the SA tag) where each alignment mapped to the same 

contig and the same strand. These reads were used to infer the breakpoints and insertion 

sequence of a candidate deletion. Candidate deletions that were also present in the sequenc-

ing of M. zebra were excluded as likely errors in the reference sequence. Each candidate 

deletion was then genotyped in each of the pit and castle species by collecting all the reads 

with primary alignments that fell within 10bp of the candidate deletion and a mapping 

quality score greater than 10. These reads were realigned to both the reference and the 

candidate deletion sequence using a striped Smith Waterman Alignment from the scikit-

bio Python library. Reads were classified as reference, mutant, or undetermined based upon 

their mapping score to the two alleles. Deletions were categorized as homozygous mutant 

if 80% or more of the reads were categorized as mutant, homozygous reference if 80% or 

more of the reads were identified as reference, and heterozygote if they fell in between. 

Candidate deletions that were reference homozygous in all species were filtered from the 

dataset.  

3.4.3 Tests of genetic divergence and enrichment  

 We excluded sites with more than 50% missing genotypes from the whole genome 

sequencing data. We calculated FST per variant and in 10kb windows using the –weir-

fst-pop parameter from the VCFTOOLS program[59] with the flags -fst-window-
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size 0 for individual sites and -fst-window-size 10000 for 10kb windows. Nucle-

otide divergence was calculated using VCFTOOLS with the -window-pi 10000 flag. 

Thresholds were estimated using R-package FDR-TOOL[105]. FST values were converted 

to a normalized scale for visualizing these data on linkage groups (Figure 2a) using Fisher’s 

Z-transformation. To compare FST to a population-structure controlled genome-wide asso-

ciation analysis we employed GEMMA v 0.96[106]. We first computed a kinship matrix 

using the filtered sites from which FST was calculated and then performed the association 

test on bower type using a linear mixed model (-lmm flag) factoring in relatedness via the 

kinship matrix.  

 SNP and indel variants were annotated using the SnpEff (4.3i) program[60] and 

analyzed for functional enrichment using GeneAnalytics (geneanalytics.gene-

cards.org)[43]. Using the binomial distribution, this algorithm tests the null hypothesis that 

there is no functional overrepresentation. A resulting score is presented for each match in 

the form of a -log2 transformed p-value corrected for multiple comparisons via the false 

discovery rate method. Scores are arranged into three significance categories: high (Padj < 

0.0001, medium (Padj < 0.05) and low (Padj > 0.05). Semantic similarity plots for signifi-

cantly enriched categories were produced with REVIGO[107]. 

3.4.4 Identifying structural variants  

 To predict structural variants on a genome wide basis, we used BreakDanc-

ermax(1.1)[80] with default parameters. As read pair mismatches in size (pairs are farther 

away than expected) and direction (pairs in the same orientation) can be used to identify 
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inversions, we also used the Integrated Genome Browser[81] to manually validate pre-

dicted structural variants from BreakDancer-max, particularly those on LGs 2 and 11. 

Thousands of structural variants were predicted for each species, but none consistently as-

sociated with the broad FST peaks on LGs 2 and 11.  

3.4.5 Improved genome annotation  

 In the original NCBI release of the latest M. zebra reference genome[77], 

15,361/26,490 predicted protein-coding genes were annotated as hypothetical, or without 

orthologs. To improve this annotation, we identified orthologs for genes in two additional 

ways: 1) a phylogenetic method using Treefam, a curated database of phylogenetic trees of 

animal genes and 2) via reciprocal blast against the human genome and 5 fish ge-

nomes[108]. The final annotation merged orthologous genes identified by both methods. 

1900 hypothetical genes remain.  

3.4.6 Assigning SNPs and genome contigs to linkage maps  

 We used Chromonomer (1.03)[109] to anchor the gap-filled “M_zebra_UMD1” 

assembly[77] to linkage groups (LGs) using two different genetic maps, both generated via 

traditional F2 crosses and genotyped with RAD-seq. First, a genetic map from 160 F2 from 

a cross of Metriaclima zebra and M. mbenjii resulting in 834 markers in 22 LGs and span-

ning 1,933 cM[110] was used to anchor the M_zebra_UMD1 assembly. This initial an-

chored assembly was subsequently re-anchored with Chromonomer using a second genetic 

map. The second genetic map was generated by genotyping 268 F2 from a cross of Labeo-

tropheus fuelleborni and Tropheops ‘red cheek’ resulting in 946 markers in 24 LGs and 
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spanning 1453.3 cM[19]. BWA mem (version 0.7.12-r1044)[111] was used in both Chro-

monomer runs to create the input SAM file by aligning respective map marker sequences 

to the appropriate assembly or intermediate assembly. A minimum of two markers was 

required to anchor a contig to a particular LG. The resulting FASTA file of the anchored 

M_zebra_UMD1 assembly was used for subsequent analysis.  

3.4.7 Phylogenetic analysis  

 A maximum likelihood phylogeny was constructed with the variant data using the 

SNPhylo pipeline[58]. Default parameters were used with an additional flag -M 0.5.  

3.4.8 Ancestral Allele Reconstruction  

 Pairwise whole-genome alignments of Neolamprologus brichardi (species belong-

ing to an older radiation from Lake Tanganyika), Astatotilapia burtoni (a riverine species 

found in East Africa around Lake Tanganyika) and Pundamilia nyererei (species from a 

recent radiation in Lake Victoria) were constructed each against the latest Lake Malawi 

cichlid genome, Metriaclima zebra using the last alignment algorithm (A.burtoni against 

M.zebra, P. nyererei against M.zebra, N. brichardi against M.zebra)[112]. The generated 

.maf files from the alignment were converted to sam format using the maf-convert script 

within the last alignment package. Resulting sam files were converted to bam format via 

SAMtools[64] and used to add ancestral allele information into the vcf file obtained from 

variant discovery.  

3.4.9 Detection of ancient/derived allele enrichment among pit and castle species  



 53 

 To assess biases in the presence of ancient (polymorphic within and outside of Lake 

Malawi) and derived (polymorphic only among sand-dwelling species) alleles among pit 

and castle species we first intersected our SNP-level FST measurements with the lists of 

ancient and derived SNPs as identified through the ancestral allele reconstruction methods 

outlined above. We then calculated a p-value and odds ratio on allele counts at each SNP 

using a Fisher exact test. We assessed both the degree of divergence at each SNP via FST 

values and the direction of divergence through the odds ratios (ORs) from the Fisher’s 

exact test. For example, at derived SNPs, an OR <1 indicated that the castle-building spe-

cies tended to possess the derived allele while an OR >1 indicated a bias toward the derived 

allele for the pit-diggers. For ancient SNPs, an OR <1 indicated that the castle-building 

species tended to possess the non-M. zebra allele (recall that variants were called in relation 

to the M. zebra reference genome) while an OR >1 indicated that pit-digging species tended 

to possess the non-M. zebra allele.  

 To assess systematic differences in the possession of derived or ancient variants 

between pit and castle species we performed Fisher’s exact tests at various FST thresholds. 

These tests were applied to both the proportion of SNPs with an OR>1 and OR <1 for the 

derived and ancient lists (as seen in figure 2C) in addition to comparing the mean ORs at 

various p-value thresholds (as seen in SI Appendix, Figure S2c).  

3.4.10 Analyses of gene flow and incomplete lineage sorting  

Maximum Likelihood phylogenies were produced for 10kb genomic bins using the 

python function phyml_sliding_windows.py created by Simon Martin (available at 
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github.com/simonhmartin/genomics_general). This resulted in 1,927 trees that were sub-

sequently visualized using DensiTree v2.2.5[82].  

We used TWISST[83] to analyze the distribution of phylogenetic topologies across 

genomic windows. To do so the .vcf file containing genotype information for the pit and 

castle species was filtered to include only bi-allelic sites in which all species possessed 

genotypes. Indels were also removed. The function phyml_sliding_windows.py was then 

used to create ML phylogenies from these variants in windows containing 50 informative 

SNPs. TWISST was then run on these trees, testing for variation in the tree topologies in 

the following five clades:  

Clade 1 (Pit-diggers): Trematrocranus placodon, Dimidiochromis kiwinge, Dimidio-

chromis compressiceps, Tramitichromis intermedius, Mylochromis sphaerodon, Mylo-

chromis lateristriga  

Clade 2 (Copadichromis virginalis): Copadichromis virginalis  

Clade 3 (Copadichromis castle-builders): Copadichromis sp. “mloto goldcrest”, Copadi-

chromis likomae  

Clade 4 (Castle-builders): Mylochromis anaphrymus, Ctenopharynx nitidus, Otopharynx 

argyrosoma, Mchenga conophoros, Nyassachromis ‘Otter’  

Clade 5 (Astatotilapia calliptera): Astatotilapia calliptera  

3.4.11 Four population tests  
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 TREEMIX was run on genotype counts using the settings –k 2000 and –m 

1,2,4,6,8,10 to assess support for admixture events among bower building species. 

We extended this analysis by computing the f4 statistic for every possible four population 

combination using the fourpop function in TREEMIX with the setting –k 500. p-values 

were calculated for every four population comparison from the reported z-scores and ad-

justed using Bonferroni correction. In order to use A. calliptera as an outgroup in the de-

tection of possible gene flow among sand-dwellers, results for just the combination (A, B; 

C, A. calliptera) were extracted. This led to 14,536 comparisons, of which 3,706 had sig-

nificant (Bonferroni corrected p < 0.05) f4 statistics (Figure 3-3e; Table 3-4). The most 

significant comparisons for each species pair where the species were (A, B;C,D) and 

(A,B;C,D) were then collected.  

 We used the fd statistic to identify patterns of possible introgression across the ge-

nome. The fd statistic functions similar to f4 in that it compares genotype frequencies be-

tween four populations but, whereas f4 is a genome-wide measure, fd can be calculated 

locally within genomic windows and therefore allows for the detection of genomic regions 

with particularly strong signals of introgression19. We calculated fd using the python func-

tion ABBABABAwindows.py created by Simon Martin (available at github.com/simonh-

martin/genomics_general) over 10kb windows containing at least 50 informative SNPs for 

the four population groups identified as most significant from analyses of the f4 statistic.     

3.4.12 RNA Sequence library construction  

 To assess the allele specific expression, whole brains were obtained from the fol-

lowing animals:  
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1 Copadichromis virginalis (CV) male; digging (Sire of all analyzed F1 hybrids)  

2 CV x Mchenga conophoros (MC) F1 hybrids; digging  

2  CV x MC F1 hybrids; building  

2  CV x MC F1 hybrids; isolated  

 For these experiments individual males were housed with 3-5 conspecific females 

and allowed to develop territories and initiate bower construction. We confirmed that 

bower behavior was being performed reliably (consistent for >24 hours) and on the evening 

before the experiment we separated focal males from females using a transparent divider 

and flattened the bower. At lights on the next morning the barrier was removed and the 

males’ behavior observed. Males were sacrificed via decapitation 30 minutes after the ini-

tiation of consistent behavior and, to prevent mRNA degradation, brains were dissected 

into RNAlater (ThermoFisher Cat. #AM7020) less than 10 minutes after sacrifice. Whole 

brains were homogenized in TRIzol (ThermoFisher Cat. #12183555) using a pestle. RNA 

was isolated using a Qiagen RNeasy mini kit (Qiagen Cat. # 74104). RNA-seq libraries 

were constructed using Illumina TruSeq kits, following manufacturer protocols. All librar-

ies were sequenced as multiplexed samples in one lane of an Illumina HiSeq 2000. Two 

biological replicates per context were chosen for analyzing allele-specific expression 

(ASE) following methods from previous publications[89] that found a similar sample size 

was sufficient for reliably detecting allelic biases from RNA-seq data 

3.4.13 RNA-seq alignments and SNP calling  
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  RNA-seq read quality was assessed using FastQC (bioinformat-

ics.bbsrc.ac.uk/projects/fastqc/). Illumina adapters were removed using SeqPrep 

(github.com/jstjohn/SeqPrep). We obtained the M. zebra genome assembly and annota-

tions from NCBI RefSeq (Assembly accession: GCF_000238955.2; Assembly name: 

M_zebra_UMD1). RNA-seq reads were aligned to the M. zebra genome using STAR 

2.4[113] with the options -- SortedByCoordinate, --outSAMattributes MD 

NH NM, and --clip5pNbases 6. 

  Read groups were added with AddOrReplaceReadGroups.jar in Picard Tools 1.92 

(github.com/broadinstitute/picard). The resulting bam files were sorted using 

SAMtools[64]. Duplicate reads were marked using MarkDuplicates.jar in Picard Tools. 

We then applied GATK 3.3 indel realignment and duplicate removal and performed SNP 

and INDEL discovery using UnifiedGenotyper following the suggested GATK Best Prac-

tices[101-103].  

  We filtered the resulting .vcf files to identify all heterozygous sites in the F1 hybrid 

samples with quality scores greater than 30. We also produced a list of all homozygous 

sites in the CV parental sample with quality scores greater than 30. To allow proper phasing 

of heterozygous sites we filtered the F1 hybrid list to just sites that intersected with the CV 

homozygous SNPs.  

3.4.14 Detection and quantification of allele-specific expression (ASE)  

 The M. zebra reference genome was masked at high-confidence heterozygous sites 

using the perl script MaskReferencefromBED.pl (github.com/TheFraserLab/ASEr). To 

control for reference bias all hybrid samples were then re-aligned to this masked reference 
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using the same STAR options as above. Duplicates were marked using MarkDuplicates.jar 

in Picard Tools and the bam files were sorted using Sam Tools. SNP-level ASE was then 

calculated with the python script CountSNPASE.py (github.com/TheFraserLab/ASEr).  

  All downstream ASE analyses were conducted using R version 3.2.3[114]. After 

SNP-level ASE was calculated we filtered for >5 counts per allele for every gene within 

each sample. In order to conduct gene-level analyses the subset of SNPs that met this ex-

pression cutoff were then summed without normalization into gene-level counts using the 

gene coordinates in the ref_M_zebra_UMD1_top_level.gff3 annotation (NCBI M. zebra 

Annotation Release 102). For all genes in each sample ASE was calculated by taking the 

log2 ratio of the gene-level CV allele counts over the gene-level MC allele counts. After 

filtering and summing into genes we investigated the distribution of ASE ratios across all 

genes for each sample. Distributions consistently skewed toward either allele could be po-

tentially indicative of biases in read alignment or other technical artifacts. Analysis of ASE 

ratio distributions showed each to be roughly normal and centered around a log2 ratio of 

zero, indicating a lack of evidence for strong bias toward either species’ allele across sam-

ples (Figure S9).  

 We next calculated significance of ASE per gene. Since allelic counts from RNA-

seq data are prone to overdispersion we identified significant ASE using a beta-binomial 

test comparing the CV and MC counts at each gene with the R package MBASED[115] 

(1- sample analysis; default parameters; run for 1,000,000 simulations). The resulting p-

values were adjusted for multiple tests using Bonferroni correction. For a gene to be con-

sidered significant within a context we required that both replicates possessed Bonferroni 



 59 

All p-values < 0.05 and that the direction of ASE (either CV biased or MC biased) was the 

same between replicates.  

3.4.15 Identifying differential allele-specific expression (diffASE)  

  Differential allele-specific expression (diffASE) and differential allelic induction 

were identified using the 2-sample analysis in MBASED[115] (default parameters; run for 

1,000,000 simulations) which, like in the 1-sample analysis used to assay ASE, employs a 

beta-binomial model of read counts to control for over dispersion. MBASED was used to 

compare all possible pairings of the three behavioral contexts (digging, building, and iso-

lated). This produced the pairings: digging x building, digging x isolated, and building x 

isolated. Furthermore, since MBASED tests for significance in only one of the two contexts 

at a time, we also ran all three comparisons in their reciprocal directions (building x dig-

ging, isolated x digging, and isolated x building). To identify diffASE, the expression of 

the CV and MC alleles within each context were compared (i.e. CV allelecontext1 vs. MC 

allelecontext1 compared to CV allelecontext2 vs. MC allelecontext2). Significant cases represent 

scenarios in which the ratios between the alleles diverge between contexts (as represented 

in figure 4a). Differential induction was assayed by testing for significant variation between 

CV and MC alleles across contexts, using the ratio of each allele to itself for the test of 

significance (i.e. CV allelecontext1 vs. CV allelecontext2 compared to MC allelecontext1 vs. MC 

allelecontext2). 
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The resulting p-values for each pairing were combined across replicated using 

Fisher’s method and adjusted with Bonferroni correction. We then compared these com-

bined and adjusted p-values across the reciprocal contexts (e.g. digging x isolated vs. iso-

lated x digging) and selected the lowest p-value for downstream analyses.  

3.4.16 Gene set enrichment tests 

  For the enrichment analyses of diffASE genes and genes with allelic induction in 

building and digging the corresponding lists were produced as well as background sets 

corresponding to all other genes detected in one of the three behavioral contexts. Gene 

enrichments were calculated with PANTHER[116] and filtered for a q-value < 0.05. The 

allelic induction lists were produced in a similar method to those for diffASE by using 

MBASED but differed in that instead of comparing alleles within contexts, the analysis 

was run on alleles across contexts (e.g. comparing CV allele expression in digging vs. 

building). The resulting p-values would then reflect differential induction of each allele 

across pairs of contexts. For the gene set enrichment tests, genes were only selected that 

had significant induction (Bonferroni corrected p-value < 0.05) of at least one allele in 

either the building or digging contexts alone. Semantic similarity plots for significantly 

enriched categories were produced with REVIGO (45). 

 Lineage-specific variation was assayed by comparing the number of genes enriched 

within gene sets that possessed differential allelic induction of either the CV or MC alleles 

during building or digging. To do so a .gmt file containing gene sets from the human 

KEGG, GO, Msigdb, NCI, IOB, NetPath, HumanCyc, reactome, and Panther databases 
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was downloaded from the Bader lab website (http://download.baderlab.org/EM_Gene-

sets/) in April 2018. Genes were then assigned to categories and a Fisher’s exact test was 

performed on a 2x2 contingency table in which the rows represented digging and building 

and the columns were the CV and MC alleles. To limit the number of tests performed we 

ran the Fisher’s exact test on each ontology independently required each gene set to have 

20 genes represented. The resulting p-values were then adjusted for multiple tests using 

Bonferroni correction. 

  

http://download.baderlab.org/EM_Genesets/)
http://download.baderlab.org/EM_Genesets/)
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CHAPTER 4. DISCUSSION  

4.1  Conclusions 

 Lake Malawi cichlids are an excellent model for studying the genetic basis of phe-

notypic diversity. I have leveraged the strengths of the system to answer fundamental ques-

tions about the origins and nature of the genomic variation that gives rise to the phenotypic 

diversity in the Lake Malawi cichlid assemblage. Malawi cichlids have extremely low gen-

otypic divergence coupled with extremes of phenotypic variation. We have the ability to 

make interspecific hybrids and assay for the effects of the parental alleles in F1 and F2 

genetic environments. These allow for powerful experimental designs backed by a large 

dataset of whole genome sequences I generated and aligned to a reference species within 

the lake.  

 The colonization of Lake Malawi follows the classic 3 stages model of adaptive 

radiation. First the cichlids diverge along the axis of habitat - rock and sand - then diversify 

along trophic levels to generate diversity in feeding apparatus and strategies followed fi-

nally by diversification along the axis of communication giving rise to the large variety of 

mating strategies color patterns and body morphs[9]. Using representative species from the 

cichlid assemblage, we have looked deeper into the genetic basis of phenotypic divergences 

along these axes of evolution.  

 The habitat differences of rock and sand dwelling cichlids are reflected in the wide 

range of associated phenotypes that define the two lineages. Chief among them are the 

fundamental differences in behavior. Rock species tend to be territorial and breed all year 
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round. Sand species tend to be seasonal and have defined bower building and lekking be-

haviors. Just like the genomic divergence defining beak shape diversity in Darwin’s finches 

is spread throughout the genome[8], the peaks of divergent SNPs and InDels that segregate 

rock and sand are distributed on all linkage groups. The divergent variants between rock 

and sand are highly functional and are associated with gene sets that are enriched for path-

ways associated with early development and behavior. The observable behavioral differ-

ences between rock and sand species are associated with brain development and adult be-

havior, a scenario encapsulated by Sydney Brenner’s [25] dual encoding problem of be-

havior. Early embryonic development patterns lead to differences in brain structure, which 

in turn leads to differences in neuronal expression patterns in adult behavior. Early and late 

stage embryos of rock and sand parents as well as hybrids indexed for the parental allele 

show clear spatial and temporal patterns that lead to differences in the relative sizes of the 

telencephalon and eye fields. Adult F1 males across five independent and distinct rock X 

sand crosses cluster transcriptomes according to social context rather than cross identity.  

 According to the 3 stage model of adaptive radiation, a divergence along the lines 

of habitat is followed by divergence along trophic levels followed by communication. 

These levels aren’t discretely defined along the axis of time to the exclusion of each other. 

An organism colonizing a new environment merely prioritizes diversification along a cer-

tain axis at different stages of evolutionary radiation. A rock lineage divergence, for in-

stance, is also characterized by evolution of novel craniofacial morphology and different 

colors for camouflage and mating. These differences are elaborated in subsequent diversi-

fication along the process of colonization. A large sampling of species along the more fun-

damental rock-sand divergence will include within each lineage differences that evolved 
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after, within each lineage, along the axes of trophic levels and communication. As such it 

is difficult in the dataset described here to define the genotypic divergence in the case of 

craniofacial traits like development of neural crest cells for example as limited to rock sand 

divergence or a combination of signal from the rock sand divergence and the subsequent 

divergence along the lines of trophic levels. A detailed look at all the phenotypic differ-

ences between my choice of representative rock and sand species could resolve these ques-

tions and define each phenotypic variation with the myriad genotypic variants. A subset of 

the species considered here can be used in conjunction with other species that clearly di-

verge along the second level of evolutionary radiation and a comparison of the variants that 

segregate habitat differences versus those that segregate trophic adaptations should yield 

interesting patterns of the relative contribution of different evolutionary forces in shaping 

an extant lineage.  

 Within the sand dwelling lineage, moving to the third, most recent axis of adaptive 

divergence, we see males from many species construct typical bowers in the sand to attract 

females[75, 117, 118]. Many studies of young radiations of divergent phenotypes evolving 

in the face of gene flow have shown patterns in the genome of “islands “ of diversification 

as soon in hooded versus black carrion crows[11], divergent cichlid ecomorphs in the small 

crater lakes in East Africa[12] among others. From the many bower building cichlids 

within Lake Malawi, we chose typical species from two distinct bower types. Pit diggers, 

typified by Copadichromis virginalis dig pits in the sand while castle-builders, typified by 

Mchenga conophoros construct sand-castles in the sandy lake bottom. The divergent SNPs 

and InDels are clustered around two prominent peaks on LG2 and LG11 along with smaller 
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peaks in other regions. Genes associated with the divergent variants are enriched for path-

ways associated with brain and behavior function. Using reference genomes from cichlid 

species outside of the sand dweller lineage, I show that ancestral variation has been retained 

and reused in the evolution of bower building. There is also evidence for gene flow and 

introgression within the sand dwelling lineage. Pit X Castle F1 hybrid males, interestingly, 

show both parental behaviors separated by time. Allele specific expression analysis on be-

having F1 male brains provide evidence for cis-regulatory elements involved in castle 

building and pit digging. Context specific activation of digging or building gene sets that 

were enriched for categories of neural function indicates a role for lineage specific selection 

on these sets of genes.  

 Complex traits, like behavior, have complex genetic architecture[5]. Using a robust 

data set of whole genomes sequenced at high coverage I have used comparative genomics 

to isolate the variation associated with specific and typical behavioral differences in diver-

gent lineages. Using targeted experiments to further define the role of these variants re-

vealed interesting genes and pathways associated with the behavioral differences as well 

as the evolutionary mechanisms involved in the divergence of these lineages.  

 The 28 genomes sequenced at high coverage were chosen on the basis of maximum 

diversity epitomizing the Lake Malawi cichlid variation whenever possible. Although the 

approach treats divergent lineages as populations identify differentiating genes, the 28 ge-

nomes represent 28 species and not dichotomous populations. I operate under the assump-

tion that a divergent variant present in the individual male representative of its species in 

many similar species is present at high frequency in each population. Rapid advances in 

genome sequences will make population level assays a reality in the near future and this 
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assumption can be tested. While the pit castle divergence explicitly looks at male behav-

ioral differences, the major behavioral differences in the rock-sand lineage also implicitly 

concern males. All the individuals sequenced were males as were the brains analyzed for 

transcriptional differences. Female mate choice clearly plays a role in the evolution of dif-

ferences in mating strategies and a wider population sample would include both sexes and 

account for sex linked and sex limited traits that diversify in the rock-sand and pit-castle 

lineages. This is an especially thorny issue with the pit-castle divergence where sexual 

selection plays a strong role in defining the divergence of bower types. Aligning the ge-

nomes to a newer reference genome resolves the peaks on LG2 and LG11 into one big peak 

on LG11. The peak of divergence on LG11 shows a signature of a characteristic inversion 

in the genome, indicating a putative sex determining locus. Bower building in males and 

female preference for bower types both could be sex-linked traits that diverge on the puta-

tive sex determining locus. Finer scaled genomic assays sampling the bower associated 

phenotypic variance in males and females should resolve the role of sex linkage in the 

evolution of this genomic signature on LG11.  

 Another assumption that underlies some of the inferences I draw above is an adap-

tive one. Starting with a scan that defines all divergence as involved in adaptive diver-

gences ignores non adaptive forces that may have shaped a genome. Indeed, the distributed 

genomic variants across the genome for older divergences like the rock-sand split indicate 

some of these divergent variants could either be due to genetic drift or due to non-uniform 

mutation rates on different parts of the genome. I show that a majority of these variants are 

associated with an adaptive signal and associated with functional variation. We also have 

evidence from other experiments not shown here that genomic divergence for the rock-
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sand and pit-castle genomic variants does not correlate to measure of nucleotide diversity. 

The adaptive nature of variants near genes of interest also rely on a reliable annotation of 

a high quality reference genome. Cichlids are a nontraditional model organism with a rel-

atively new reference genome that is constantly undergoing improvements. With the work 

undertaken by the Streelman lab and the East Africa cichlid community as a whole, we will 

have detailed and fine scaled data in the future to address these questions that I have en-

countered and managed to only indirectly address.  

 We have an extremely information rich data set to apply the strategies laid down in 

this thesis for other traits. Following the three stages model of adaptive radiation, cichlids 

have also diversified along the axis of trophic morphology. We have the expertise in the 

lab to delve deeper into the evolution of diversity in tooth and jaw morphology, tooth shape 

and feeding strategies. We are capable of setting up high throughput behavioral assays in 

the lab asking detailed questions of fine scaled behavior evolution. New advances in se-

quencing technologies like single-cell sequencing allows us to tease apart the neuronal ar-

chitecture and expression patterns therein associated with complex behavior. All of these 

new directions of research in the lab are greatly aided by having a convenient resource of 

a substantial number of individuals sequenced at high coverage. We have already started 

work on a number of these questions building on the platform laid out by the work in this 

thesis. Complex polygenic traits have complex mechanisms that need extensive multi-dis-

ciplinary approaches to solve. I have built upon the existing knowledge base in the 

Streelman Lab and have set up a foundation so that we can answer interesting questions 

going forward.  
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APPENDIX A. SUPPLEMENTAL INFORMATION FOR CHAPTER 2  

 

Appendix A Figure 1 : Differences between in rock and sand  | Jaw shape differences 

between rock dweller (A) and sand dweller (B). Rock dweller eyes are smaller . Relative 

sizes of the optic tectum and the telencephalon in adult Rock dwellers(C) clearly different 

in the Sand dweller (D) which has a larger optic tectum.   
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Appendix A Figure 2: Telencephalon Differences in Rock Sand and Hybrids | Grown 

F2 individuals indexed for the irx1b allele compared to parental individuals for volumet-

ric size of the telencephalon relative to the whole brain.  
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APPENDIX B: SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

 

Appendix B Figure 1 : Comparison of genetic divergence and association patterns 

across the genome.  Independent measures of pit versus castle divergence, FST [z-trans-

formed FST] and ancestry-corrected GWAS [-log10 (pvalue)], across the genome show 

highly similar patterns.  
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Appendix B Figure 2 :Genome-wide ancestral and derived SNP enrichments | (A) Car-

toon describing the identification of derived and ancestral SNPs through whole-genome 

alignment with 5 non-sand dweller genomes (B) Representative high odds ratio and low 

odds ratio SNPs as identified by a GWAS on bower type. GWAS across the genome mir-

rors patterns of FST [Figure S1] (C) Violin plots of the GWAS odds ratio for SNPs at in-

creasingly stringent p-value cutoffs, divided into derived (red) and ancestral (pink) group-

ings. *** = Kruskal-wallis p <0.0001. 
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 Appendix B Figure 3 : Genomic distribution and FST of new and ancient SNPs | Bars 

indicate proportion of genomic features represented by SNPs binned by FST values for 

new SNPs (polymorphic only within Lake Malawi), ancient SNPs (polymorphic within 

and outside of Lake Malawi, and all SNPs.  
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 Appendix B Figure 4 : Topology weighting with TWISST | (A) Phylogeny of the clades 

used in the Twisst analyses. Branches are colored red and blue for pit and castle species, 

respectively. (B) The 15 topologies (“topos”) weighted by Twisst with the phylogenies that 

group by bower phenotype highlighted with grey backgrounds. (D) Barplot of mean com-

bined tree weightings for the three ‘phenotype’ topos (topo3, topo10, topo15) as binned by 

linkage group. 
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Appendix B Figure 5 : TREEMIX scenarios | Phylogenies are plotted with migration edges 

for 1, 2, 4, 6, 8, and 10 migrations. All plotted migration edges are significant. Pit and 

castle species names are colored blue and red, respectively. 
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Appendix B Figure 6 :Genome-wide fd distribution | Genome-wide scatterplots of fd for 

the five most significant comparisons from the f4 analyses (cartoon comparisons presented 

next to the scatterplots). Higher fd values indicate greater support for introgression at that 

locus. 
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Appendix B Figure 7 : Ontogeny of Copadichromis virginalis x Mchenga conophoros F1 

hybrid bower building | The cartoon indicates the typical progression of bower building 

stages during a courtship “season”, proceeding from the initiation of pit-digging to the 

transition to castle-building. 
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Appendix B Figure 8 : Genes with discordant and concordant allele-specific expression 

(ASE) across behavioral states | (A) Cartoon examples of the log2 ASE ratio between C. 

virginalis (“CV”; pit) and M. conophoros (“MC”; castle) alleles for genes showing con-

cordant ASE (same direction in allelic bias between behaviors) and discordant ASE (dif-

ferent direction in allelic bias). (B) Scatterplot of the number of genes with concordant and 

discordant ASE at different log2 ASE ratio thresholds. (C) Barplot of gene-level RNA-seq 

expression counts for CV and MC alleles across digging and building behaviors for the 

gene atp1b4. (D) Barplot of gene-level RNA-seq expression counts for CV and MC alleles 

across digging and building behaviors for the gene dgcr8. 
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 Appendix B Figure 9 : The distribution of allele specific expression across F1 hybrid 

samples and conditions | Density plots representing the distribution of log2(CV allele 

counts/MC allele counts) for all genes measured after thresholding (see methods) in each 

sequencing sample.  
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