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SUMMARY

This thesis presents the formulation of a family of two-regime car-following models

where both free-flow and congestion regimes obey random processes. This formulation

generalizes previous efforts based on Brownian and geometric Brownian acceleration pro-

cesses, each reproducing a different feature of traffic instabilities.

We show that the unified model is able to capture virtually all types of traffic instabilities

consistently with empirical data, including oscillations, speed-capacity relationship, and

the concave growth pattern of vehicle speeds along a platoon.

The probability density of vehicle positions turns out to be analytical in our model, and

therefore parameters can be estimated using maximum likelihood. This allows us to test

a wide variety of hypotheses using statistical inference methods, such as the homogeneity

of the driver/vehicle population and the statistical significance of the impacts of roadway

geometry.

Using data from two controlled car-following experiments and one uncontrolled car-

following dataset, we find that (i) model parameters are similar across repeated experiments

within the same dataset but different across datasets, (ii) the acceleration error process is

closer to a Brownian motion, and (iii) drivers press the gas pedal harder than usual when

they come to an upgrade segment. The model is flexible so that newer vehicle technologies

can be incorporated to test such hypotheses as differences in the car-following parameters

of automated and regular vehicles, when data becomes available.

xv



CHAPTER 1

INTRODUCTION

Traffic congestion is a big concern for motorists. Due to traffic congestion, financial

costs, emission, environmental pollution and the likelihood of car crashes increase (Bilbao-

Ubillos, 2008). In most cases, it is not desirable to increase roadway capacity by expanding

the road from a resource allocation perspective. Therefore, traffic operations become a cru-

cial method to mitigate traffic congestion around the world (Ahmed, 1999). However, the

mechanisms of traffics are very complex, especially in congestion. Studies have shown

that the performance of the transportation system is subject to weather, roadway geom-

etry, driver behavior and many other factors (Kilpeläinen and Summala, 2007; Li et al.,

2007; Chen et al., 2012b). Meanwhile, several traffic phenomena are not well explained by

existing models. For example, a model to explain traffic oscillation and capacity drop si-

multaneously is still lacking (Laval and Leclercq, 2010; Yuan et al., 2018). This challenge

is described in detail in Chapter 2. Therefore, in order to perform better traffic operations

and management, a comprehensive understanding of the underlying reasons behind traffic

congestion is needed. This motivates us to take a detailed analysis of car-following models

at the microscopic level.

Toward this end, a two-regime microscopic-level car-following model is developed

in Chapter 3. The model combines previous modeling work based on Brownian motion

(Laval, Toth, and Zhou, 2014) and geometric Brownian motion (Yuan et al., 2018) vehicle

acceleration process. The model takes advantage of both types of acceleration processes

and can reproduce different features of traffic instabilities consistent with empirical data, in-

cluding traffic oscillations, capacity drop and the concave growth pattern of vehicle speeds

along a platoon, as reported in Jiang et al. (2014). A detailed analysis of the model is

also provided in Chapter 3. Not only we are able to simulate traffic instabilities, consis-
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tently with field data but we prove the ability of the model to explain these phenomena

analytically.

In Chapter 4, we show that another highlight of the model is that the free-flow and

congestion regimes follow stochastic process and the probability density function of the

vehicle positions can be solved analytically for the first time. This allows us to use maxi-

mum likelihood estimation to estimate model parameters and opens the door for statistical

inference, also for the first time in our discipline.

In particular, we can use statistical inference methods to test a wide variety of hypothe-

ses, such as the homogeneity of the driver/vehicle population and the statistical significance

of the impacts of roadway geometry or weather. In Chapter 5, by taking advantage of the

model and the NGSIM datasets (James Colyar, 2007), we found evidence that the cur-

rent assumption in existing acceleration models does not apply to car drivers, who tend to

overcome half of the gravitational effects by using more engine power. Truck drivers only

compensate for 5% of the loss, possibly because of limited engine power. This finding is

important because the results show that the current acceleration models are underestimating

the emission and energy consumption by about 10 % in an acceleration process at uphill

grades, as shown in Chapter 5.

In Chapter 6, we provide the main conclusions and future directions of this thesis work.
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CHAPTER 2

BACKGROUND

2.1 Car-following Models

Car-following behavior is a basic microscopic-level driver behavior. Car-following models

describe the driving behavior of the following vehicle in reaction to the leading vehicle

without lane changing or traffic signals (Xu et al., 2013).

To the best of our knowledge, the concept of car-following is first mentioned in Pipes

(1953), who study the dynamics of traffic based on ”law of separation”, where the desired

”following distance” is a linear function of velocity of the following vehicle. In the late

fifties, Chandler, Herman, and Montroll (1958) and Herman et al. (1959) study the Gazis-

Herman-Rothery (GHR) model. The model is calibrated and validated with empirical data.

Also, this microscopic model is able to connect with macroscopic characteristics in traf-

fic by integration (Gazis, Herman, and Potts, 1959; Gazis, Herman, and Rothery, 1961).

On the other hand, Michaels (1963) notes that human factors could have a great impact

on the driver behavior. This study builds a connection between car-following models and

psychology. Later, many car-following models are developed to explain the nonlinear char-

acteristics in congested traffic (Bando et al., 1995; Treiber, Hennecke, and Helbing, 2000;

Newell, 2002). With the development of artificial intelligent, neural networks are used to

model car-following behavior Dougherty (1995).

Most car-following models can be classified into the following categories: (i) stimulus-

response models as in Newell (1961) and Gazis, Herman, and Rothery (1961), (ii) psycho-

physical models, such as Widemann Model (Wiedemann and Reiter, 1992) and Fritzsche

Model (Fritzsche and Ag, 1994), (iii) crash-avoidance models, such as Gipps Model (Gipps,

1981) and IDM Model (Kesting, Treiber, and Helbing, 2010; Treiber, Hennecke, and Hel-
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bing, 2000), (iv) optimal-velocity models such as Optimal Velocity Model in Bando et al.

(1995), Generalized Force Model in Helbing and Tilch (1998) and Full Velocity Differ-

ence Model in Jiang, Wu, and Zhu (2001). However, most of these models do not consider

the variation among the behavior of different drivers while studies (Laval and Leclercq,

2010; Chen et al., 2012b) show that timid and aggressive drivers are responsible for traffic

oscillations. The model proposed in this thesis is not classified into the four traditional

categories listed above but extends Newell’s model with bounded accelerations (Newell,

2002) such that stochastic vehicle acceleration process can be incorporated to model the

variation among drivers.

2.2 Modeling Traffic Instabilities

2.2.1 Traffic oscillations

Stop-and-go driving conditions in traffic oscillations disturb motorists. Mauch and Cassidy

(2002), Laval (2005), Laval and Daganzo (2006), Ahn and Cassidy (2007), and Zheng et al.

(2011) have demonstrated that lane changing is a major factor causing traffic oscillations.

However, a convincing explanation for this phenomenon on a one-lane road is still lacking.

Stop-and-go traffic on a one-lane ring road without lane changing movements has been

empirically found by Sugiyama et al. (2008).

To fill this gap, several analytical studies have proposed that a small driving instability

may grow into mature traffic oscillations in the absence of lane changing (Treiber, Hen-

necke, and Helbing, 1999; Wilson, 2008; Wilson and Ward, 2011; Treiber and Kesting,

2012; Treiber and Kesting, 2017). However, these models require either further model

validation with empirical data or a careful selection of parameter values.

On the other hand, Laval and Leclercq (2010), Chen et al. (2012a), and Chen et al.

(2012b) argue that timid or aggressive car-following behaviors caused the formation and

propagation of traffic oscillations. These models are validated with empirical data, but they

require at least four parameters that are not directly observable. Laval, Toth, and Zhou
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Figure 2.1: Time-space diagram on a 600m-long segment during 15 minutes. Grade profile
is also shown in the figure. (a) NGSIM field data. (b) Simulation results based on the
model with Brownian motion acceleration process. This figure is from Laval, Toth, and
Zhou (2014).

(2014) assume a constant standard deviation of driver acceleration, resulting in a Brownian

motion (BM) process only one unobservable parameter. There simulation results compared

with field data can be seen in Figure 2.1. Delpiano et al. (2015) proposed a social force

car-following model implementation of this theory that includes finite decelerations. These

two models successfully replicate realistic traffic oscillations at uphill segments but are

unable to explain capacity drop phenomenon introduced in the next section.

2.2.2 Capacity drop

It has been empirically observed for years that the queue discharge rate at bottlenecks is

lower after the queue forms. This phenomenon is called capacity drop (Hall and Agyemang-

Duah, 1991) has long been correlated with lane changing activity (Laval and Daganzo,

2006; Coifman and Kim, 2011; Leclercq, Laval, and Chiabaut, 2011; Yuan, Knoop, and

Hoogendoorn, 2015; Chen and Ahn, 2018; Jin, 2017; Kontorinaki et al., 2017). But re-

searchers have observed that capacity drop can occur in the absence of lane changing (Oh

5



and Yeo, 2015). To explain this, Wong and Wong (2002) takes the distribution of drivers’

desired free-flow speeds in a traffic into account. However, empirically validation of this

assumption is lacking. Yuan et al. (2018) argue that empirical data reveals that the standard

deviation of the driver desired acceleration is not constant, as in the BM model (Laval,

Toth, and Zhou, 2014), but decreases linearly with speed, leading to a geometric Brownian

acceleration process. This geometric Brownian acceleration process successfully explains

capacity drop but does not produce periodic traffic oscillations (Xu and Laval, 2018).

2.2.3 Concave growth of platoon oscillation

The concave growth of the vehicle platoon oscillation was first observed by Jiang et al.

(2014) shown in Figure 2.2, where the standard deviation of vehicle speed grows concavely

along the platoon. Tian et al. (2016) find that the growth pattern in different oscillations

collapses into a single concave curve, which indicates the law of the oscillation growth is

universal. Treiber and Kesting (2017) shows that the Brownian motion model in Laval,

Toth, and Zhou (2014), and the IDM model with noise and indifference regions are all able

to reproduce the concave growth pattern, indicating strongly that a stochastic component is

vital for replicating this important phenomena.

For a theoretical proof of the concave growth of the speed standard deviation along a

vehicle platoon, consider a vehicle platoon with vehicle id 0, 1, 2, ...,n from downstream

to upstream. Let vi denote the speed of the i-th vehicle. The lead vehicle (indexed by 0)

travels at a constant speed v0. We assume the following relationships:

v1 = v0 + ε1

v2 = v1 + ε2

......

vn = vn−1 + εn
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Figure 2.2: Figure is from Jiang et al. (2014). The relationship between the standard devia-
tion of vehicle speeds against car number suggests there is a concave growth of the vehicle
platoon oscillation.

where εis follow the same normal distribution εi ∼ N(0,Var [εi]). We have vn = v0 +
∑
εi

and Var [vn] =
∑

Var [εi] = nVar [εi] . According to the Central Limit Theorem, vn follows

a normal distribution with a mean of v0 and the following standard deviation:

SD [vn] =
√
n
√

Var [εi] ∝
√
n,

which proves that the standard deviation of vehicle speed grows concavely along the pla-

toon.
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2.3 Traffic stream properties

There are three main macroscopic variables to describe a traffic stream: (i) flow q is the

number of vehicles passing a position per unit of time, (ii) density k is the number of

vehicles per unit length and (iii) speed v (average of all vehicles) is the distance moved

per unit of time. There is a fundamental relationship between the three variables in traffic:

q = kv.

In the microscopic level, there are also three variables to describe traffic: (i) headway

h is the time between two consecutive vehicles at a given location, (ii) spacing s is the

distance between 2 consecutive vehicles at a given time, and (iii) speed v of a single vehicle

at a given time. For a homogeneous vehicle platoon, we have the following relationship:

h = 1
q
, s = 1

k
and s = hv.

2.4 Time-space diagrams

A time-space diagram is commonly used to show vehicle trajectories. The X-axis of the

diagram represents time and the Y-axis represents distance. An example of time-space

diagram is given in Figure 2.3, which shows the acceleration process of a vehicle. In the

time-space diagram, the slope of the tangent of the trajectory represents the speed of the

vehicle.

The time-space diagram is also used to show the trajectories of a vehicle platoon. An

example is given in Figure 2.4, which shows the trajectory of a 3-vehicle platoon. In the

figure, h represents the headway of vehicle 1 and 2 at location x1, s is the spacing of vehicle

1 and 2 at time t1, and −w1, −w2 are the wave speeds. The wave speed will change based

on the field traffic conditions but a typical value of the wave speed is -14 mi/hr or -20 km/hr.

The propagation of the traffic waves could be reproduced by the kinematic wave model to

be introduced hereafter.
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Figure 2.3: A time-space diagram showing the trajectory of an accelerating vehicle.

Figure 2.4: A time-space diagram showing the trajectory of a vehicle platoon consisting of
3 vehicles.

2.5 The Kinematic wave model

The Kinematic wave (KW) model is first developed by Lighthill and Whitham (1955). This

model can predict travel time, queue length and many other travel behaviors at various of
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bottlenecks. The KW model is the combination of the conservation law and the fundamen-

tal diagram q = F (k).

Conservation law

For a road segment without entrances or exists the conservation law is a first-order PDE:

∂k

∂t
+
∂q

∂x
= 0 (2.1)

where k is the density and q = F (k) is the flow as a function of density.

2.5.1 The Fundamental Diagram

The Fundamental Diagram in traffic flow is a diagram that illustrates the relationship be-

tween the flow q and density k. It contains two branches: (i) the free-flow branch and (ii)

the congestion branch. A triangular fundamental diagram is widely used as an approxima-

tion. One example is given in Figure 2.5, where Q is the capacity, kc is the critical density,

kj is the jam density, u is the free-flow speed and −w is the wave speed.

Figure 2.5: The triangular fundamental diagram for a one-lane road with a capacity of Q.
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2.6 From the KW model to Newell’s car-following model

In this section, we will introduce the deravation of Newell’s car-following model from

the KW model. We start with introducing the definition of cumulative count curves and

maximum passing rate.

Cumulative count curves, N(t, x), give the cumulative number of vehicles that have

passed location x by time t. Cumulative count curves have the following properties:

q =
∂N

∂t
, k = −∂N

∂x
. (2.2)

The maximum passing rate is the maximum passing rate in terms of an observer:

R(v) = sup
k
{F (k)− vk} , (2.3)

where v ∈ [−w, u] is the speed of the observer. If we assume a triangular fundamental

diagram, we have:

R(v) = Q− kcv, (2.4)

where kc is the critical density in the fundamental diagram.

For a road segment, the fundamental diagram q = F (k) gives the following PDE:


∂N

∂t
− F (−∂N

∂x
) = 0, (fundamental diagram)

N(B) = G(B), B ∈ B, (boundary conditions)

(2.5a)

(2.5b)

which is of the Hamilton-Jacobi type. The solution is:

N(P ) = min
B∈BP

{
G(B) + (t− tB)R

(
x− xB
t− tB

)}
, (2.6)

where P ≡ (tP , xP ) is a generic point andB ≡ (tB, xB) is a point at the boundary BP . The
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Figure 2.6: The solution of the Hamilton-Jacobi PDE. U means upstream of the boundary
and D is the downstream. The path between P and B is minimized based on the solution.

point B needs to be selected along the boundary such that the cost from P to B is minimized.

If the triangular fundamental diagram is assumed, one can simplify (2.6) as:

N(P ) = min
B∈BP

{G(B) + (t− tB)Q− (x− xB)kc} . (2.7)

In traffic flow theory, the following three representations are equivalent:

• N(t, x) : number of vehicles that passed location x by time t,

• X(t, n) : position of vehicle n at time t.

• T (n, x) : time that the n th vehicle passes location x.

We showed how to solve N(t, x) above and hereafter we follow similar procedure to

solve X(t, n). Notice the representations in traffic flow are equivalent, from (2.6), one can

easily obtain:

X(t, n) = min
B∈BP

{
G(tB, nB) + (t− tB)R

(
n− nB
t− tB

)}
, (2.8)
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if we assume a triangular fundamental diagram, we have the following relationships:

V (s) = min{u, s/τ − w} and R(q̃) = u− scq̃, (2.9)

where V (s) is speed v in a function of spacing s similar to q = F (k), sc = 1
kc

is the critical

spacing, and q̃ is the wave flow similar to the speed of the observer ṽ. Combining (2.8) and

(2.9), one can have:

X(t, n) = min

{
min
y∈BP
{X(0, y) + ut− (n− y)}, X(t− nτ, 0)− nδ

}
, (2.10)

where jam spacing δ = uτ − sc.

If the spacing of the vehicles are constant at t = 0, i.e. the initial condition is linear, one

can rewrite (2.10) by interpreting the upstream of the boundary (0,0) as (t−∆t, n−∆n):

X(t, n) = min {X(t−∆t, n) + u∆t,X(t−∆nτ, n−∆n)−∆nδ} . (2.11)

By setting ∆n = 1 and choosing τ as ∆t, one can rewrite (2.11) as:

xj(t) = min{xj(t− τ) + uτ︸ ︷︷ ︸
free-flow term

, xj−1(t− τ)− δ︸ ︷︷ ︸
congestion term

}, (2.12)

Notice that we rewrite X(t, n) as xj(t). The notation xj(t) represents the location of

j-th vehicle at time t for the rest of the thesis.

Figure 2.7 is a graphical interpretation of Newell’s car-following model.
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Figure 2.7: Newell’s car following model.
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CHAPTER 3

THE PROPOSED MODEL

This chapter is modified from the following published paper:

Xu, T., & Laval, J. A. (2019). Analysis of a Two-Regime Stochastic Car-Following Model:

Explaining Capacity Drop and Oscillation Instabilities. Transportation Research Record.

Vol. 2673, pp. 610-619

3.1 Introduction

Stop-and-go driving conditions (traffic oscillations) in traffic congestion increase not only

financial costs and environmental pollution (Bilbao-Ubillos, 2008) but also the likelihood

of car crashes (Zheng, Ahn, and Monsere, 2010). Intensive research has been done on

its contributing factors and properties. However, we still have limited knowledge about

traffic oscillations. Mauch and Cassidy (2002), Laval (2005), Laval and Daganzo (2006),

Ahn and Cassidy (2007), and Zheng et al. (2011) have demonstrated that lane changing is a

major factor causing traffic oscillations and Sugiyama et al. (2008) showed that stop-and-go

traffic can occur on a one-lane ring road without lane changing movements. A convincing

explanation for this phenomenon is still lacking.

Several analytical studies have proposed that a small driving instability may grow into

mature traffic oscillations in the absence of lane changing (Treiber, Hennecke, and Hel-

bing, 1999; Wilson, 2008; Wilson and Ward, 2011; Treiber and Kesting, 2012; Treiber

and Kesting, 2017). However, these models require either further model validation with

empirical data or a careful selection of parameter values. On the other hand, Laval and

Leclercq (2010) and Chen et al. (2012a) argue that timid or aggressive car-following be-

haviors caused the formation and propagation of traffic oscillations. These models are
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validated with empirical data, but they require at least four parameters that are not directly

observable.

A more parsimonious family of car-following models, able to reproduce most traffic in-

stabilities, is based on stochastic processes to describe drivers’ desired accelerations. Laval,

Toth, and Zhou (2014) assume a constant standard deviation of driver acceleration, result-

ing in a Brownian motion (BM) process that explained realistic traffic oscillations with

only one unobservable parameter. However, this model is unable to explain the decreasing

relationship between queue discharge rate and the speed in the queue, as observed empiri-

cally in (Yuan, Knoop, and Hoogendoorn, 2015), and called “speed-capacity relationship”

hereafter.

Yuan et al. (2018) argue that empirical data reveals that the standard deviation of the

driver desired acceleration is not constant, as in the BM model, but decreases linearly with

speed, leading to a geometric Brownian acceleration process. This geometric Brownian

acceleration process successfully explains empirical speed-capacity relationships but does

not produce periodic traffic oscillations. This thesis aims to regulate the type of driver error

on a scale from Brownian motion (BM) to geometric Brownian motion (g-BM) acceleration

processes, and thus we can capture all said features of traffic instabilities.

3.2 Stochastic desired acceleration car-following framework

Car-following models based on stochastic desired acceleration models started with Laval,

Toth, and Zhou (2014). They generalize Newell’s car-following framework (Newell, 2002)

with bounded accelerations (Leclercq et al., 2007; Leclercq and Laval, 2007; Laval and

Leclercq, 2008; Laval and Leclercq, 2010; Leclercq, Laval, and Chiabaut, 2011) by in-

cluding a stochastic process to account for driver error during acceleration. It was found

that this component is crucial for capturing realistic formation and propagation of traffic
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oscillations. The model can be expressed as:

xj(t) = min{xj(t− τ) + ξj(τ)︸ ︷︷ ︸
free-flow

, xj−1(t− τ)− δ︸ ︷︷ ︸
congestion

}, (3.1)

where xj(t) is the position of j-th vehicle at time t, τ is the wave trip time between

two consecutive vehicle trajectories and δ is the jam spacing. In this two-regime modeling

framework the congestion term is deterministic while the free-flow term is stochastic. The

ξj(τ) is a realization of the stochastic process describing the desired displacement of vehi-

cle j during t− τ and t. This displacement is as a result of a stochastic desired acceleration

model, which gives desired acceleration:

a = a(v), (3.2)

that the driver imposes to the vehicle when traveling at speed v(t) at time t under free-flow

conditions, i.e., when unobstructed by the leading vehicle. The desired acceleration model

captures both driver behavior and the physical limitations imposed by roadway geometry

on the engine.

Based on empirical measurements, Laval, Toth, and Zhou (2014) suggests the following

linear model for the mean desired acceleration E [a(v)] under free-flow conditions:

E [a(v)] = (vc − v(t)) β, (3.3)

where v(t) is the vehicle speed, vc is the desired speed and β is the inverse relaxation time.

(3.3) can be time-integrated twice to give

E [ξ(t)] = vct− (1− e−βt)(vc − v0)/β, (3.4)

The key to this modeling framework is the specification of the acceleration error around
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Figure 3.1: Relation between queue discharge rate and the speed at the bottleneck. The data
is collected on three-lane sections on two freeways in the Netherlands by Yuan, Knoop, and
Hoogendoorn (2015).

the mean desired vehicle acceleration E [a(v)], which has profound implications in the abil-

ity of the model to replicate traffic instabilities. Laval, Toth, and Zhou (2014) assume that

vehicle accelerations are normally distributed with a constant standard deviation, SD [a(v)]

, which gives the following BM stochastic differential equation:

BM:

dξ(t) = v(t)dt, ξ(0) = 0,

dv(t) = (vc − v(t))βdt+ σdW (t), v(0) = v0,

(3.5a)

(3.5b)

whereW (t) is a standard BM and σ is its diffusion coefficient. This is probably the simplest

model that captures (i) bounded accelerations due to gravity and (ii) produce realistic traffic

oscillations (due to driver random errors while accelerating).

However, Yuan et al. (2018) observe that model (3.1)-(3.5) is unable to reproduce the

speed-capacity relationship, as observed empirically in (Yuan, Knoop, and Hoogendoorn,

2015), shown in Fig. 3.1. Notice that the speed-capacity relationship is intimately related

to the hysteresis phenomenon in traffic flow (Treiterer and Myers, 1974; Ahn, Vadlamani,

and Laval, 2013; Chen et al., 2012a). Hysteresis refers to the discrepancy in the traffic

states before and after a platoon of vehicles passes through a congested wave, were most
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Figure 3.2: Standard deviation of the desired accelerations in 5-m/s speed bins. A linear
function SD [a(v(t))] = 0.015v(t) + 0.47 is applied to fit the data. The data are from car-
following experiments in Laval, Toth, and Zhou (2014), collected when the test vehicle is
the platoon leader stopped in front of a red signal.

of the time the deceleration phase exhibits higher flow than the acceleration phase (Laval,

2011). The speed-capacity relationship can be considered as a special case where the flow

in the acceleration phase is related to the speed inside the congested wave. Based on the

empirical data shown in Fig. 3.2, they argued that the standard deviation of the driver

desired acceleration, SD [a(v(t))], is not constant but decreases linearly with the speed.

Assuming that SD [a(v(t))] vanishes at vc, the problem can be modeled as a g-BM, i.e.:

g-BM:

dξ(t) = v(t)dt, ξ(0) = 0,

dv(t) = (vc − v(t))βdt+ (vc − v(t)) σ dW (t), v(0) = v0,

(3.6a)

(3.6b)

Although model (3.1)-(3.4) and (3.6) was shown to reproduce the bottleneck discharge

rate-speed in queue relationship, it loses the ability to produce realistic traffic oscillations

as shown in Fig. 3.3. Here we argue that this is due to the error term vanishing at the

desired speed, per (3.6b), which implies that at high speeds oscillations are not likely to

form.

To implement these models and the one presented momentarily, one has to solve (3.5)
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Figure 3.3: Traffic patterns generated using g-BM model, showing the model’s inability to
generate realistic traffic oscillations despite the different model parameter values. The sim-
ulations were conducted on a 1-lane, 600m road segment with a 100m, 5 percent upgrade.

and (3.6) to obtain the distribution v(t) and ξ(t). Then, we generate a realization of ξ(t) and

use it in the car-following model (3.1). Notice that ξ(t) =
∫ t

0
v(s)ds tends to be normally

distributed (by the Central Limit Theorem) all we need are the mean and variance of ξ(t),

which can be obtained analytically.

3.3 The proposed model

A general two-regime stochastic car-following model may be formulated as follows. Let

the random processXj(t) represent the position of vehicle j at time t, and let f(x; Θ) be the

probability density function of Xj(t) given the set of model parameters Θ = (θ1, θ2, . . .)

and the data x={xj(ti)}, which represents the observed trajectories of all vehicles j =

1, 2, . . . at times ti, i = 1, 2, . . . up to time t. According to (3.1) we write

Xj(t) = min{Y (x; Θ), Z(x; Θ)} (3.7)

If random processes Y and Z are Bivariate normally distributed (BVM) with a correla-
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tion ρ0:

(Y, Z) ∼ BV N(µY , σY , µZ , σZ , ρ0),

where µ− and σ− are the mean and standard deviation of the variable in subscript, one can

show that (Nadarajah and Kotz, 2008):

f(x; Θ) =

e
− (x−µY )2

2σ2
Y erfc

 x−µZ√
1−ρ20σz

− ρ0(x−µY )√
1−ρ20σY√

2


2
√

2πσY
+

e
− (x−µZ)2

2σ2z erfc

 x−µY√
1−ρ20σY

− ρ0(x−µZ)√
1−ρ20σz√

2


2
√

2πσz
(3.8)

where erfc(x) = 2√
π

∫∞
x
e−t

2
dt is the complementary error function. This result is

notable because the model is analytical and lends itself nicely to be estimated using MLE.

In addition, it should have a much better explanatory power compared to existing models

that are additive such as (4.1).

3.3.1 The congestion term

Based on our previous discussion, it is advantageous to consider both the free-flow (Y )

and the congestion (Z) terms normally distributed, as opposed to the original model (3.1)

where Z is deterministic. As demonstrated empirically in Ahn, Cassidy, and Laval (2003)

parameters τ and δ can be assumed to follow the bivariate normal (BVN) distribution (Ahn,

Cassidy, and Laval, 2003), i.e.

(τ, δ) ∼ BV N(µτ , µδ, στ , σδ, ρ).

Instead of taking the parameters directly from Ahn, Cassidy, and Laval (2003), here we

estimate them in conjunction with the free-flow regime parameters, which are formulated

next.
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3.3.2 The free-flow term

We start by rewriting the proposed car-following model (3.1)-(3.13) as:

Xj(t) = min{xj(t− τ ′) + ξj(τ
′)︸ ︷︷ ︸

free-flow (Y)

, xj−1(t− τ)− δ︸ ︷︷ ︸
congestion (Z)

}, (3.9)

to emphasize that the time lag in free-flow, τ ′, and in congestion, τ , do not have to be the

same, as customary in the literature, and should be statistically independent. Furthermore,

we argue that τ ′ should not be interpreted as a parameter because it simply defines the

initial conditions for the free-flowing component. For simplicity, we fix the value of τ ′ in

the parameter estimation process to

τ ′ = 1.2s,

which is a typical value for the time step in Newell-type car-following models, but any

comparable value could be used instead. The main ingredients of the free-flow regime

formulation is the displacement ξj , as explained next.

The extended desired acceleration model

Section 2 showed that there is a trade-off between the specification of the acceleration

error (i.e, BM or g-BM) and the traffic feature that can be replicated (i.e., realistic traf-

fic oscillations or speed-capacity relationship). In this thesis, we introduce a single extra

dimensionless parameter m ≥ 1, that produces models in a scale from the g-BM model

(m = 1) to the BM model (m >> 1), and therefore generalizes the models in the previous

section; see Fig. 3.4. The hope is that a suitable value of m will produce a model with the

best features of the BM and g-BM models, namely:

1. realistic traffic oscillations: the BM model produces traffic oscillations even at high

speeds because the acceleration error SD [a(v(t))] is independent of the speed. In
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Figure 3.4: Desired acceleration models. In the proposed model the standard deviation of
the desired acceleration decrease linearly with the vehicle speed, but does not vanish at vc.
The region between two purple lines represents the 95% probability interval of accelera-
tions.

contrast, the g-BM model cannot because the SD [a(v(t))] is assumed to be zero at

the desired speed vc.

2. speed-capacity relationship: the g-BM model reproduces this relationship because

SD [a(v(t))] is a decreasing function of the speed. In contrast, the BM model cannot

because SD [a(v(t))] is assumed constant.

Based on these observations, we conjecture that the acceleration error SD [a(v(t))] has to be

nonzero at vc and be a decreasing function of the speed. Here, we impose that SD [a(v(t))]

vanish at mvc and the stochastic differential equation for the proposed acceleration model

becomes:

dξ(t) = v(t)dt, ξ(0) = 0,

dv(t) = (vc − v(t))βdt+ (mvc − v(t))σdW (t), v(0) = v0,

(3.10a)

(3.10b)

and has analytical solution. For the car-following implementation we simply generate ξ(t)

as a normal random variable with mean E [ξ(t)] given by (3.4) and Var [ξ(t)] shown in

Appendix A.

As mentioned previously, the parameter m can be interpreted as a knob that regulates
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how close the model is to the BM or g-BM models. When m = 1, it can be seen immedi-

ately from (3.10b) that the proposed model is equivalent to the g-BM car-following model.

When m >> 1, the model is equivalent to the BM model. To see this, notice that

SD [a(v)]

SD [a(0)]
=

(mvc − v)σdW (t)

(mvc − 0)σdW (t)
= 1− v

mvc
. (3.11)

A reasonable vehicle speed v is usually greater than 0 and smaller than 2vc, so we have

0 < v
vc
< 2. Along with m >> 1, we have 1 − v

mvc
≈ 1 − 0 = 1, and thus we can say

that the driver error, SD [a(v(t))], is constant in terms of vehicle speed, and therefore the

acceleration process is a BM.

Physical bounds on the parameters m, σ̃

As with any normally distributed random variable there is always a probability that it will

be negative. Following Laval, Toth, and Zhou (2014), for the worst case scenario v(0) = 0,

we need P{ṽ(βτ) ≤ 0} ≤ α, for a small prescribed α. For typical values β ≈ 0.07s−1 and

τ ≈ 1.2s and α = 0.05, one has:

mσ̃ ≤ 0.2

is a secure range of parameter values for the acceleration process starting from a complete

stop. If a negative speed is realized in the simulation, it should be set to 0.

Here, mσ̃ ≤ 0.2 is the secure range of parameters during an acceleration process from a

complete stop, i.e. v(0) = 0. For usual cases, for example when v(0) = 60 km/h, the

bound of the product of two parameters could be much higher because v(βτ) ≤ 0 is very

unlikely to happen.
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Formulation with roadway upgrade

To take the upgrade of the roadway into account, we replace (3.3) by

E [a(v)] = (u− v(t)) β − αgmax{0, G}, (3.12)

where u is the free-flow speed, i.e. the desired speed on a flat road segment, g = 9.81 m/s2

is the acceleration of gravity, G is the roadway grade expressed as a decimal and α is a

dimensionless parameter. Notice that in the literature α = 1, which is consistent with the

assumption that the acceleration due to gravity in the direction of movement, gmax{0, G},

is subtracted, in its entirety, from the acceleration the driver would impose to the vehicle on

a flat segment, (vc− v(t)) β. Here, we add the parameter α to relax this strong assumption

in the literature: 0 < α < 1 indicates they compensate for the upgrade, i.e. that they press

the gas pedal harder than they would on a flat segment, while α > 1 implies a softer than

usual pressing. Values of α < 0 are unlikely as it would indicate that acceleration increases

with the upgrade

Notice that the desired speed becomes a function of the upgrade, and can be expressed

as:

vc = u− αgmax{0, G}/β. (3.13)

Dimensionless formulation

In this section we formulate the proposed model in a dimensionless form to identify a the

key parameters that drive the model. One possibility is the following transformations:

t̃ = βt, ṽ(t̃) = v(t̃)/vc, ξ̃(t̃) = βξ(t̃)/vc, σ̃2 = σ2/β. (3.14)
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where dimensionless variables are indicated with a tilde. It follows that the dimensionless

form of (3.10) is:

ξ̃(t̃) = v(t̃)dt, ξ̃(0) = 0,

ṽ(t̃) = (1− ṽ(t̃))dt̃+ (m− ṽ(t̃))σ̃dW (t̃), ṽ(0) = v0/vc,

(3.15a)

(3.15b)

It can be seen that besides the initial conditions ξ̃(0) and ṽ(0), the only two non-observable

parameters that drive this model are m and σ̃.

3.4 Model Properties

In this section, we undertake a detailed analysis of the unified model and show that it is

able to replicate virtually all types of traffic instabilities consistently with empirical data,

including oscillations, capacity drop, hysteresis and the concave growth pattern of vehicle

speeds along a platoon recently reported in Jiang et al. (2014).

3.4.1 The free-flow acceleration process

In this section we analyze the variability of the free-flow acceleration process (3.10). To

eliminate irrelevant parameters from this analysis, we can formulate the key variables of

this model in dimensionless form. One possibility is the following transformations:

t̃ = βt, ṽ(t̃) = v(t̃)/vc, σ̃2 = σ2/β. (3.16)

where dimensionless variables are indicated with a tilde.

Figure 3.5 shows 5 realizations of the free-flow acceleration process (3.10) along with

the 90% probability bounds, for different values of model parameters. All three combina-

tions of parameter values capture the exponential growth of the vehicle speed during the

acceleration process, but they all exhibit different variabilities. As a reference, the figure

also includes the empirical data from Laval2014.
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Figure 3.5: Five realizations along with the 90% probability bounds for the acceleration
process starting from ṽ0 = 0 along with empirical vehicle acceleration data in Laval, Toth,
and Zhou (2014). In the figures, each line represents each acceleration process and the gray
area represents the 90% probability bounds.

.

The speed variability can be measured by the coefficient of variation of the dimension-

less speed: C[ṽ(t̃)] = V [ṽ(t̃)]1/2/E[ṽ(t̃)]. we present C[ṽ(t̃)]/(mσ̃) in Figure 3.6, which

shows that most of the speed variability occurs at the beginning of an acceleration process,

i.e. for ṽ0 < 0.5 but converges for all values of ṽ0. It can be shown that this value is almost

independent of σ̃ and also independent of m for large ms. One can obtain that C[ṽ(t̃)]

converges to (m−1)σ̃√
2−σ2 . For a g-BM model, i.e. m = 1, the variability of speed converges

to 0. For a BM model, i.e. m >> 1, σ̃ ≤ 0.23
m
≈ 0, the value C[ṽ(t̃)]/(mσ̃) converges to

(m−1)σ̃

mσ̃
√

2−σ2 ≈
√

0.5, which corresponds well with Laval, Toth, and Zhou (2014). A similar

analysis shows that the position variability converges to 0 regardless of the initial speed.

These results indicate that regardless of the parameter values, the speed variability is

maximal at the beginning of the acceleration process and that it slowly converges to a value

between 0 and
√

1/2 as time passes.
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Figure 3.6: Rescaled coefficient of variation for the dimensionless speed ṽ(t̃) for several
values of the initial speed ṽ0.

.

3.4.2 Concave growth of platoon oscillation

The concave growth of the vehicle platoon oscillation was first observed by Jiang et al.

(2014). Tian et al. (2016) find that the growth pattern in different oscillations collapses

into a single concave curve, which indicates the law of the oscillation growth is universal.

Treiber and Kesting (2017) shows that the Brownian motion model in Laval, Toth, and Zhou

(2014), and the IDM model with noise and indifference regions are all able to reproduce

the concave growth pattern, indicating strongly that a stochastic component is vital for

replicating this important phenomena.

Table 3.1 shows the estimated values of only a part of parameters of the proposed model,

where for simplicity we assumed ρ = 0 in the estimation. For more information of the

estimation of parameter values, readers are referred to Chapter 4.

Here we show that the model analyzed in this thesis is also able to reproduce the con-

cave growth of the platoon oscillation; see Figure 3.7. The left column in the figure corre-

sponds to the model results with parameters from Table 3.1, where it can be seen that the

fit deteriorates for low lead vehicle speeds. The right column in the figure correspond to

the same parameter values except for m and σ̃ who were chosen to optimize the fit with
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Figure 3.7: Simulated speed standard deviations for 25 vehicles in a vehicle platoon. The
leading vehicle drives at vlead = 30 km/h, vlead = 40 km/h and vlead = 50 km/h. The
gray dots are obtained from Jiang’s car-following experiments (Jiang et al., 2014). The
probability bounds in the left column are generated with the estimated parameter values in
Table 3.1 while those in the right column are generated with the selected parameter values.
The selected values are m = 1.25, σ̃ = 0.165 for vlead = 30 km/h and vlead = 40 km/h,
and the selected values are the same as the estimated values for vlead = 50 km/h.

.

the data. This shows that the proposed model reproduces the concave growth of platoon

oscillation, and that the parameters m and σ̃ dictate the shape of the growth.
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Table 3.1: Parameter value estimation results from the car-following experiment data (Jiang
et al., 2014)

Parameter Estimated value t-stat
µτ 0.62 3.3
µδ 4.94 3.8
β 80 96.8
m 9.8 6.1
σ̃ 0.020 5.8
στ 0.24 0.6
σδ 2.27 1.0

We also conducted 300-vehicle car-following simulation experiment that shows that

the speed standard deviation first increases with vehicle index in a concave way and then

stabilizes; see Figure 3.8. This result is consistent with Li and Ouyang (2011) and Yuan

et al. (2018).

Figure 3.8: Simulated speed standard deviations for 25 vehicles in a vehicle platoon. The
leading vehicle drives at vlead = 30 km/h (left column) and vlead = 50 km/h (right column).
Parameter values arem = 1.25, σ̃ = 0.176. The lines in the figures represents the 5th, 25th,
50th, 75th and 95th percentile of the realizations.

.

It is interesting to investigate the maximum oscillation amplitude and also the number

of vehicles (stable vehicle index) it takes to stop the oscillation growth; see Figure 3.8.

We conducted simulations with different lead vehicle speeds and model parameters. It is

shown that the maximum oscillation amplitude is an increasing function of the lead vehicle

speed, almost independent of model parameters. In the meantime, the stable vehicle index
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increases with vlead and decreases with the product of mσ̃. This relationship is visualized

in Figure 3.9.

Figure 3.9: Relationship between the maximum speed variation (left column), the stable
vehicle index (right column) and the vlead, mσ̃. Here the speed process does not start with
ṽ(0) = 0 so we can accept a larger range of mσ̃ than we mentioned in the previous section.

.

3.4.3 Periodic oscillation at uphill bottlenecks

In this section, we study the effects of the parameters m and σ̃ on the period and amplitude

of the oscillations produced by the model, and compare them with empirical data. We

conducted simulations on a 600m one-lane flat road except for a 100m uphill segment

starting at location x =400 m.

To take roadway grade into account, one can express the desired speed as vc = u −

gG/β, where g = 9.81 m/s2 is the acceleration of gravity and G is the grade expressed

as a decimal. We used a free-flow speed u = 120km/h for the simulations and varying

the parameters β, G, m and σ̃ within their typical ranges. Then we used Fourier spectrum

analysis to estimate the period and amplitude of the speed series oscillations 100m upstream

of the bottom of the upgrade, as suggested by Li, Peng, and Ouyang (2010) and Laval, Toth,

and Zhou (2014).

Figure 3.10 shows the distribution of dimensionless periods (period times β) and di-

mensionless amplitudes (amplitude divided by vc) as a function of mσ̃ and the average
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speed at the start of the uphill segment, Vavg. It can be seen that: (i) the dimensionless

period is a decreasing function of mσ̃ and the dimensionless amplitude is an increasing

function of mσ̃ (ii) the distribution of dimensionless period and dimensionless amplitude

as a function of Vavg accords well with the empirical data in Treiber and Kesting (2012)

and Knoop et al. (2012), and (iii) all distributions exhibits a large variance. These results

are similar to those in Laval, Toth, and Zhou (2014) except that the relationship between

the dimensionless period and amplitude are correlated with mσ̃ but not simply σ̃.

The relationship between Vavg and mσ̃ is presented in Figure 3.11. Vavg decreases

with mσ̃. Again, this result is similar to Laval, Toth, and Zhou (2014) except that Vavg is

correlated with mσ̃ but not only σ̃. This indicates that the average speed at the bottleneck

decreases with the the randomness of driver accelerations.

3.4.4 Speed-capacity relationship in congestion

Recent empirical findings by Yuan, Knoop, and Hoogendoorn (2015) show that the queue

discharge rate out of a moving jam increases with the speed in the queue. On average,

they observed that the capacity drop magnitude is around 26% when the vehicular speed

in congestion is 0 km/h and decreases as the vehicular speed increases. The mechanisms

behind this “speed-capacity” relationship was recently unveiled in Yuan et al. (2018): the

key ingredients are bounded vehicle acceleration and an error term that decreases with

the speed. As noted earlier, the geometric Brownian motion model in Yuan et al. (2018)

reproduces this phenomenon for the first time but loses the ability to generate realistic traffic

oscillations. The model analyzed in this thesis does not have this drawback, as shown next.

We perform the simulation of a 25-vehicle car-following experiment on a one-lane road

with no passing, where the lead vehicle drives initially at a constant low speed, then ac-

celerates to free-flow speed in the resulting discharge rate is measured at that location; see

Figure 3.12.

Figure 3.14 plots the results, where it can be seen that the model is able to successfully
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Figure 3.10: The dimensionless period and the dimensionless amplitude as a function of
model parameter mσ̃ and Vavg. The lines represents the 5th, 25th, 50th, 75th and 95th
percentile of the simulation results. The orange circles in part (c) are empirical data origi-
nally taken from Treiber and Kesting (2012) and the blue dots in part (c) and (d) are taken
from Knoop et al. (2012). To convert the empirical data in dimensionless form we used
w = 18km/h, β = 0.07s−1 and the following linear regression on the simulated data:
vc = 3.6Vavg − 71.4.

reproduce the increasing speed-capacity relationship and that the slope of this increasing

relationship is inversely proportional to m. This is as expected because small values of m

means that the model is closer to the geometric Brownian motion model.

The important point here, is that a value of m ≈ 1.2 is able to replicate both the speed-
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Figure 3.11: Average speed at the bottom of the uphill segment as a function of mσ̃. The
lines represents the 5th, 25th, 50th, 75th and 95th percentile of the simulation results.

.

Figure 3.12: A sample trajectory of the queue discharge experiment with ṽ0 = 0.1, m =
1.25 and σ̃ = 0.35. The initial spacing of the vehicles is calculated based on the triangular
fundamental diagram ρ = δ+ ṽ0τ . Discharge rate is measured at the black dash line where
the vehicle speeds reach free flow speed.

capacity relationship and realistic traffic oscillations. To see this, the speed-capacity re-

lationship is shown in Figure 3.14 and 3.15, and an example of the realization of traffic

oscillations is provided in Figure 3.13.

34



Figure 3.13: An example of the realistic traffic oscillations generated with the proposed
model. The model parameters are m = 1.2 and σ̃ = 0.16.

Figure 3.14: (a) Simulation results and a linear fitting of the desired model with parameter
m = 1, which shows a positive relationship between queue discharge rate and speed in
congestion. (b) Dimensionless queue discharge rate as a function of dimensionless speed
in congestion for m ∈ {1, 1.2, 3, 10}. The model gradually loses its ability to catch the
positive relationship between speed and queue discharge rate with the increase of the value
of m. The dimensionless queue discharge rate is the ratio of the queue discharge rate to the
roadway capacity.

We also find that for the queue discharge rate at decreases with σ̃ for the same values

of m and ṽ, two examples are provided in Figure 3.15. As we can see, for m = 1.25 and

ṽ = 0.6, the corresponding dimensionless queue discharge rates are approximately 0.95,

0.91 and 0.87 for σ̃ = 0.15, 0.25, and 0.35.
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Figure 3.15: Dimensionless queue discharge rate as a function of speed for different values
of σ̃. In the figures, we can observe that for the same speed, queue discharge rate decreases
with σ̃.

3.4.5 Vehicle speed distributions

Here we use repeated simulations of the same scenario to approximate the speed distribu-

tion of each vehicle n = 1, 2, . . . in a platoon, where the trajectory of the leader n = 1 is

taken from empirical data. We use two datasets: (i) from Jiang et al. (2014) who perform

a car-following experiment with 25 vehicles on a two-way 3.5 km suburban road, and (ii)

from Laval, Toth, and Zhou (2014) who perform a similar car-following experiment on a

two-lane road near Georgia Tech with six vehicles. The grade data is also provided. For

both two datasets, the realizations of the follower speeds (15th vehicle for dataset 1, and

6th vehicle for dataset 2) fall into the probability bands and the width of the probability

band is a function of mσ̃. Examples are provided in Figure 3.16. In the predictions, the

trajectories of the platoon leader and the initial conditions of all followers are provided.

Then we run simulations repeatedly to get the distributions of the predicted vehicle speed.

3.4.6 Oscillations propagating downstream

Here we conduct simulations with the proposed model. A comparison between the simula-

tion results and field data is also presented.
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Figure 3.16: Results of car-following experiments with initial data from Jiang et al. (2014)
(top row) and Laval, Toth, and Zhou (2014) (bottom row). The observed speeds for the
leader and the vehicles are shown in solid lines. The shaded area represents the 90%-
probability band of the predicted vehicle speed. The vehicle speed curve has been shifted
to the left by the wave trip time between the two vehicles.

For each vehicle in the simulation, we randomly generate τj and δj for 25 cars based on

the estimated mean and standard error values from dataset 1. In the simulation, we input the

leader trajectory from dataset 1 and then generate initial conditions of the platoon based on

parameters τj and δj . Given the estimated parameter values from dataset 1 and the initial

conditions, we generate vehicle trajectories one by one with the model (3.7) - (4.2). The

results are shown in Fig. 3.17.

In Fig. 3.17, we can see that the simulation results and the real data show high resem-

blance. The high-speed regions in the experiments occur at similar places in the simula-

tions. Besides, we can observe oscillation propagating downstream and trajectories that

”bounce” at the end of the vehicle-platoon in both field data and simulation results, as

explained next.
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It is well-known that traffic oscillations in congested traffic propagate upstream at the

wave speed of approximately 20 km/hr. To our surprise, however, dataset 1 exhibits oscil-

lation that travel downstream, and this phenomenon also occurs in our simulation results;

see Fig. 3.17.

To explain this, recall that the driver acceleration process is a stochastic process, where

some drivers would appear to accelerate more aggressively than others. As a result, large

spacing will appear between leaders that are more aggressive than their followers, which

can lead to low-density traffic states in the platoon. Let “A” denote these free-flow states

where vehicles have the possibility of accelerating to speeds close to the free-flow speeds;

see Figs. 3.17 and 3.18. Notice that these “pockets” of free flow inside congestion have

been observed empirically in Kim and Cassidy (2012). Eventually, these vehicles will catch

up to the leader traveling at a nearly constant speed and inducing congested traffic states

“U” in Fig. 3.18. As a result, and according to kinematic wave theory, a shock is produced

between states A and U which travels at the speed sAU shown in the figure. That the speed

sAU is positive means that the flow in state A tends to be lower than in state U because of

the large spacings mentioned earlier. After the first shock, the process starts over leading

to periodic oscillations moving downstream.

We also notice that in Fig. 3.17 (c) and (d), there is a slight difference in terms of

vehicle spacings. But what is important here is that the speed-contour plots in (c) and (d)

match well, which means the simulation captures the main macroscopic features of the field

trajectories.

3.5 Discussion

This chapter presents a generalization of the works conducted by Laval, Toth, and Zhou

(2014) and Yuan et al. (2018), each producing different features of traffic instabilities, by

adding a dimensionless parameter m. This parameter regulates the type of driver free ac-

celeration error on a scale from Brownian motion (BM, m >> 1) to geometric Brownian
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(g-BM, m = 1) acceleration processes. When m >> 1, this model captures proper peri-

odicity of traffic oscillations at bottlenecks and demonstrates that human factor alone can

cause traffic instabilities. This result accords with the work conducted by Laval, Toth,

and Zhou (2014) well. When m = 1, this model is equivalent to the model in (Yuan et al.,

2018), which successfully reproduces the speed-capacity relationship observed empirically.

To understand why m >> 1 leads to oscillations, recall that for oscillations to develop

first they have to form. From equation (11b) note that the error added to the vehicle tra-

jectory decreases with vehicle speed. When m = 1 this error goes to zero when traveling

at the desired speed, which prevents any initial perturbation from occurring, let alone de-

veloping into a fully grown oscillation. When m >> 1 the error is greater than zero and

increasing with m, which allows the initial perturbation to occur (and possibly grow into

a mature oscillation). To understand why m → 1 leads to speed-capacity relationship in

bottleneck, consider a (n+1)-vehicle car-following experiment on a one-lane road with no

passing, as shown in Fig. 3.19. In this experiment the lead vehicle drives initially at a

constant low speed v0, then accelerates to free-flow speed in the resulting discharge rate is

measured at that location x = 0. We can express the discharge flow as:

Q =
n

tn − t0
, (3.17)

where tn is the time that vehicle n crosses the measurement location, i.e. xn(tn) = Lwhich

is also equal to nδ and t0 = −nτ in our case. Using the law of total probability we can

write:

P (xn(t) ≥ L) = P (xn(t) ≥ L | tn ≤ t)P (tn ≤ t) + P (xn(t) ≥ L | tn > t)P (tn > t)

= 1× P (tn ≤ t) + 0× P (tn > t)

= P (tn ≤ t).

(3.18)

The second equality in (3.18) follows from xn(t) being a monotonic increasing function,
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and thus xn(t) ≥ xn(tn) = L only if tn ≤ t. Consequently, P (xn(t) ≥ L | tn ≤ t) = 1

and P (xn(t) ≥ L | tn > t) = 0. Combining (3.17) and (3.18) we have that the cumulative

distribution function of the discharge rate Q can be written as:

P (Q < q) = P (tn >
n

q
+ t0)

= P (xn(
n

q
+ t0) < L)

= 1− 1

4
erfc

nδ − E
[
ξn(n(1−τq)

q
)
]

√
2SD

[
ξn(n(1−τq)

q
)
]
 erfc

(
δq − u√

2q
√
σ2
δ + σ2

τu
2

) (3.19)

which is analytical. Fig. 3.20 shows the expected value of the discharge flow, E(Q),

against the speed in congestion for different model parameters. The left panel in the figure

shows that the slope of the line decreases withm, and the model loses its ability to generate

speed-capacity relationship in the Brownian motion limit.

The right panel in the figure strongly suggests that the product m · σ̃ is the main pa-

rameter of the model, while the bottom panel illustrates how the discharge flow decreases

with m · σ̃. We verified that these results hold for a wide range for the remaining parameter

values.

We find that if we select m ≈ 1.2, the model could do both the oscillation and speed-

capacity relationship (Xu and Laval, 2019). In the future, we plan to do statistical tests

on the model homogeneity between different drivers and different vehicle classes (regu-

lar vehicles and trucks). If we find the model parameters are not homogeneous between

different drivers or vehicle types, we will consider assigning different values of ms to dif-

ferent groups of drivers or vehicles to build hybrid models. Such hybrid models have good

potential to reproduce different types of traffic instabilities.
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Figure 3.17: A comparison between field trajectory data and simulation results. (a) Trajec-
tories of a northbound car-following experiment; (b) simulation of the experiment in (a);
(c) trajectories of a southbound car-following experiment; (d) simulation of the experiment
in (c). The low-speed areas are identified in red or yellow, while high-speed areas are iden-
tified in purple or blue. We can observe the high resemblance between real trajectories and
simulation results. In the figures, we can observe different traffic states U and A which will
be explained next and shown in Figure 3.18.
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Figure 3.18: The triangular fundamental diagram used to analyze the unusual wave speed
and the trajectory bounces. The ellipse represents the possible positions of traffic state A.
The purple lines represents the possible traffic shock waves with negative or positive wave
speed.

Figure 3.19: The discharge flow experiment: vehicles are travelling at a constant low speed
v0 at the beginning and then accelerate to free-flow speed. The trajectory of nth vehicle
xj(tn) is shown in the figure and tn is the time that the nth vehicle crosses the measurement
location.
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Figure 3.20: The plot of discharge flow against speed in congestion. We used n = 50, µδ =
6m, µτ = 0.75s, u = 100km/h, β = 200h−1, σδ = 1m and στ = 0.4s.
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CHAPTER 4

PARAMETER ESTIMATION AND STATISTICAL INFERENCE

This chapter is modified from the published paper:

Xu, T., & Laval, J. A. (2020). Statistical inference for two-regime stochastic car-following

models. Transportation Research Part B. 134, pp. 210-228.

4.1 Introduction

The estimation of stochastic car-following model parameters has a short history because the

vast majority of car-following models existing in the literature are deterministic. To the best

of our knowledge, the only relevant reference would be Ahmed (1999) and Hoogendoorn

and Ossen (2005), who use MLE for stochastic car-following models of the type:

xj(t) = F (x; Θ) + ε (4.1)

where xj(t) is the vehicle position time t (or speed or acceleration), F is a deterministic

car-following model with parameters Θ = (θ1, θ2, . . .), x={xj(ti)} are the trajectory data

points for vehicle j = 1, 2, . . . at times ti, i = 1, 2, . . ., and ε is a normal random variable

with mean of zero and constant standard deviation. The problem with this formulation is

that the additive error may not be appropriate for car-following models, which are generally

accepted to be two-regime models, such as the one analyzed in this thesis. These models

recognize that the free-flow and congestion components obey completely different laws,

which are reconciled under the minimum operator. It follows that a stochastic extension

would not be an additive model. If random noises are to be added in such models, each

regime should include errors of different nature and magnitudes, which would not be con-

sistent with (4.1). In the proposed model of this thesis work, the probability density of
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vehicle positions turns out to be analytical. This means that we are not constrained by the

additive error assumption of existing formulations, and model parameters will have better

statistical properties.

4.2 Formulation

In this section, we apply maximum-likelihood estimation (MLE) to estimate the parameters

in our proposed model (3.9). Based on the formulation in the previous section, it is not

difficult to show that the mean and variance of the free-flow term (Y = xj(t− τ ′) + ξj(τ
′))

and congestion term (Z = xj−1(t− τ)− δ) are given by:



µY = xj(t− τ ′) + E [ξ(τ ′)] ,

σ2
Y = Var [ξ(τ ′)] ,

µZ = xj−1(t− µτ )− µδ − aj−1(t− µτ )σ2
τ/2,

σ2
Z = v2

j−1(t− µτ )σ2
τ + σ2

δ + 2ρv2
j−1(t− µτ )στσδ,

(4.2a)

(4.2b)

(4.2c)

(4.2d)

which is all we need to evaluate (3.8). In (4.2a) and (4.2b) recall that τ ′ = 1.2s is a constant,

and that E [ξ(t)] is given in (3.4) and Var [ξ(t)] in Appendix A. For (4.2c) and (4.2d) we

used second- and first-order approximations (Ang and Tang, 2007) for E [xj−1(t− τ)− δ]

and Var [xj−1(t− τ)− δ] , respectively, and aj−1(t) is the acceleration of vehicle j − 1 at

time t.

Before we can use MLE to estimate the parameters:

Θ = (µτ , µδ, u, β,m, σ̃, ρ, στ , σδ, α, ρ0)

we perform three additional steps. First, we constrain the parameter search space within

the upper and lower bounds shown in Table 4.1, to ensure that the estimation results remain

physically meaningful and to avoid spurious local maxima.
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Table 4.1: Upper and lower bounds for parameter estimation
Parameter Lower bound Upper bound
µτ 0.4 2.0
µδ 3 20
u 60 90
β 50 350
m 1 10
σ̃ 0 0.3
ρ -1 1
στ 0 1
σδ 0 5
α -2 4
ρ0 -1 1

Secondly, we perform a third-order interpolation on the discrete trajectory data so that

the xj(t), its derivative vj(t) and its second derivative aj(t) become continuous functions

of time. This is illustrated in Fig. 4.1, where at times {t1, t2, ...ti, ...}, we have x =

{xj(t1), xj(t2), ...xj(ti), ...} represented by circles, the {xj(t1 − τ ′), xj(t2 − τ ′), ...xj(ti −

τ ′), ...} in (4.2a) represented by triangles and the {xj−1(t1−µτ ), xj−1(t2−µτ ), ...xj−1(ti−

µτ ), ...} in (4.2c) represented by squares. The randomness of parameter τ is shown by the

uncertainty of the position of the squares on Fig. 4.1.

4.2.1 Data

We have two independent datasets for the parameter estimation.

Dataset 1: Jiang et al. (2014) conduct a car-following experiment with 25 vehicles

all equipped with data collection devices. In this experiment, the vehicle platoon traveled

northbound and southbound repeatedly, on a two-way 3.5 km suburban road segment in

Hefei, China. An example of trajectory data is provided in Fig. 4.2. The grade data is also

contained in the dataset.

Dataset 2: The second dataset is from (Laval, Toth, and Zhou, 2014) who perform a

similar car-following experiment on a two-lane road near Georgia Tech with six vehicles.

The grade data is also provided.
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In both two sets of experiments, the lead vehicle was instructed to maintain a given

constant speed while other vehicles were expected to follow its leader naturally. There was

no interference from traffic signals or other vehicles in the experiments.

Fig. 4.2 shows a typical car-following experiment, with the lead vehicle maintaining a

constant low speed. Notice that the followers travel at speeds higher than the lead vehicle

speed occasionally, as seen by the blue region in the figure, which is possible because the

leader speed is much lower than the free-flow speed u.

4.3 Estimation results and statistical inference

Here we present the MLE parameters using all the data within each data set, and also for

each particular experiment within each data set.

We randomly choose five car-following experiments from dataset 1. For each car-

following experiment, we select a data point xj(ti) each dt = 12 sec during a five-minute

period for the first 15 cars such that 25 data points are used for each car and 375 data points

are used in each car-following experiment. We perform MLE for each car-following exper-

iment and also for the overall dataset (375 × 5 = 1875 data points are used in total). For

dataset 2, we used the same method for the six-vehicle platoon with a smaller dt = 8 sec

during a 140-second period. 18 data points are used for each vehicle and 18× 5 = 90 data

points are used in each car-following experiment. 90 × 5 = 450 data points are used for

the estimation of the overall dataset. We decreased the value of dt for dataset 2 in order

to obtain more sample points without sacrificing independence. We tested different values

of dt and find that the correlation among data points are negligible with the chosen dt.

The parameter evaluation results for the overall datasets are provided in Table 4.2 and the

results for each car-following experiments are listed in Table 5.3 and Table 5.2.

Parameters u and β are two major parameters in the free-flow branch, which determine

the mean of the vehicle acceleration and ξ. The estimation results of u and β for both

datasets have high statistical significance. These two variables are both significant. The
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Table 4.2: MLE parameter values for the overall datasets

Parameter
Dataset 1 Dataset 2
mean value t-stat mean value t-stat

µ̂δ 5.78 12.4 4.28 3.8
µ̂τ 0.54 7. 0.46 6.6
û 60.14 40.3 70. 24.9
β̂ 94.78 66.9 210.11 7.4
m̂ 6.13 9.1 4.21 3.3̂̃σ 0.04 8.2 0.05 2.7
ρ̂ -0.49 -1.4 -0.46 -4.7
σ̂δ 1.63 2.1 4.88 4.6
σ̂τ 0.32 3.2 0.25 7.8
α̂ 0.55 9.6 0.56 5.8
ρ̂0 -0.85 -29.3 -0.83 -12.6

Table 4.3: MLE parameter values for dataset 1
Experiment

µ̂δ µ̂τ û β̂ ̂̃m ̂̃σ ρ̂ σ̂δ σ̂τ α̂ ρ̂0 log likelihood
mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat

1 5.24 6.2 0.65 3.5 60. 19. 66.7 15.4 10. 1.4 0.02 1.4 -0.93 -2. 1.45 0.5 0.66 1.2 0.51 15.3 -0.83 -10.2 2546
2 6.03 6.3 0.74 6.2 66.93 5.9 88.76 34.8 4.46 4.2 0.05 3.5 -0.71 -3.8 2.33 3.5 0.56 3.2 0.91 3.5 -0.56 -2.6 2447
3 5.53 108.4 0.59 14.9 60.52 3.6 86.62 13.8 7.31 1.4 0.04 1.1 -0.71 -0.1 0.12 1.6 0.19 1.7 0.52 1.3 -0.8 -9.7 2416
4 3.44 2. 0.84 2.8 61.52 44.8 142.22 20.8 6.49 3.7 0.04 3.4 -0.93 -30. 4.23 8.9 0.74 4.9 0.96 4.7 -1. -2572.1 2393
5 6.13 6.6 0.5 3.8 60.11 7.9 70.69 9.9 8.76 2.3 0.03 2.2 -0.86 -4.4 2.66 1.6 0.41 1.7 0.51 2.8 -0.84 -12. 2484

Overall 5.78 12.4 0.54 7. 60.14 40.3 94.78 66.9 6.13 9.1 0.04 8.2 -0.49 -1.4 1.63 2.1 0.32 3.2 0.55 9.6 -0.85 -29.3 12259
Likelihood-ratio test statistic Λ(x) = 54, the P-Value is 0.144

free-flow speed u in dataset 2 is slightly higher than in dataset 1. The maximum acceler-

ation uβ represents the desired acceleration when is at rest. A quick calculation tells us

uβ in dataset 2 are approximately twice that in dataset 1, indicating the vehicles in dataset

2 have much larger acceleration at rest than those in dataset 1. This result might be ex-

plained because in dataset 1 the lead vehicle is controlled to be traveling at a low speed

near 30 km/h while leaders in dataset 2 are traveling at higher speeds. Parameters m and

σ̃ determine the stochastic term in the free-flow branch. We have m >> 1 for both two

datasets with high t-statistic and this indicates the driver acceleration process is closer to

BM according to (3.11).

Parameters τ and δ are the key parameters controlling the congested branch in the

Table 4.4: MLE parameter values for dataset 2
Experiment

µ̂δ µ̂τ û β̂ ̂̃m ̂̃σ ρ̂ σ̂δ σ̂τ α̂ ρ̂0 log likelihood
mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat

1 6.45 7.8 0.56 6.2 65.01 5.8 268.75 2.4 4.44 3.9 0.05 3.2 -0.59 -1.7 3.16 2.5 0.41 0.8 0.57 3.5 -1. -40. 541
2 6.43 5.5 0.57 3.9 68.88 13.5 203.43 3.9 3.88 1.6 0.05 1.3 -0.62 -1.3 2.54 1.5 0.3 1.6 0.91 3.5 -0.63 -1.6 565
3 4.54 0.9 0.44 1.2 72.64 8. 223.17 3.3 8.84 2.9 0.02 2.6 -0.61 -4.9 2.85 0.4 0.4 13.3 0.56 1.4 -0.64 -1.7 555
4 4.16 1.3 0.42 1.4 65.44 4.4 222.04 1.7 6.37 1.4 0.03 1.3 -0.61 -0.7 2.68 0.6 0.53 1.4 0.54 2.5 -0.82 -6.1 539
5 6.87 3.8 0.5 5.8 80.49 17.2 260.93 4.9 3.46 2.7 0.04 1.9 -0.67 -0.6 2.5 2. 0.35 1.3 0.87 3.1 -0.49 -1.1 550

Overall 4.28 3.8 0.46 6.6 70. 24.9 210.11 7.4 4.21 3.3 0.05 2.7 -0.46 -4.7 4.88 4.6 0.25 7.8 0.56 5.8 -0.83 -12.6 2734
Likelihood-ratio test statistic Λ(x) = 32, the P-Value is 0.911
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Table 4.5: 95%-CIs of m for each car-following experiment

Experiment
Dataset 1 Dataset 2
lower bound upper bound lower bound upper bound

1 -4.0 24.0 2.2 6.7
2 -1.8 10.7 -0.8 8.6
3 -2.9 17.5 2.9 14.8
4 3.1 9.9 -2.4 15.1
5 1.3 16.2 1.0 6.0
Overall 4.8 7.5 1.7 6.7

model. Both µτ and µδ are statistically significant variables for the overall model given

the high t-statistic. A typical value of τ would be around 1.2s and that of δ would be 7m.

However, the estimated values of τ and δ are much smaller than the typical values, which

means the vehicles in both datasets follow its leader closer than that in a typical vehicle

platoon. We also find that τ and δ are negatively correlated because the estimated values of

ρ are both less than 0 for both datasets and with high t-statistic. As can be seen in Fig.4.3,

this is as expected because all feasible (τ ,δ) pairs give points on segment AB, and moving

along this segment one can see that if τ increases then δ decreases and vice-versa.

Next, we take advantage of the statistical inference tools made possible by MLE to test

several interesting hypotheses.

4.3.1 BM or g-BM?

Recall that we obtained high values of m in the estimation. Here we present the 95%-

confidence intervals (CIs) of parameter m to test the hypotheses that m = 1. As we can

see from Table 4.5, m = 1 is contained in five of these CIs so we cannot reject the null

hypothesis H0 : m = 1 in these five cases. However, the CIs of parameter m in most

experiments strongly indicate that m > 1. Given the estimated mean value and CIs of m,

one can see that the acceleration process is closer to BM than g-BM.

It can be seen that these CIs are fairly wide, and could be narrowed by increasing the

sample size.
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4.3.2 Are parameters different across datasets?

Here we test parameter homogeneity across datasets by performing likelihood-ratio tests.

The methodology is summarized in Appendix B. If we estimate the parameters for each

dataset, we have n1 = 2 × 11 = 22 parameters. If we estimate the parameters for two

datasets combined, we have n2 = 10 parameters. We have Λ(x) = 2
[
`(x; Θ̂1)− `(x, Θ̂2)

]
=

2((12259+2734)−13808)) = 2370, resulting in a p-value of 0.000 with degrees of freedom

of 20. This means we cannot accept the null hypothesis that the model with n1 parameters

has similar goodness-of-fit as the model with n2 parameters, with a significance level of

0.05. In other words, we cannot use unified parameter values for these two datasets. This

result might be explained given that the values of β are significantly different across the

two datasets.

4.3.3 Are parameters different across experiments?

Here we test parameter homogeneity across car-following experiments by performing likelihood-

ratio tests. If we estimate parameter values for each experiment, we have n1 = 5×11 = 55

parameters. If we estimate parameter values for the overall dataset, we have n2 = 11 pa-

rameters. Therefore, the degrees of freedom is 44. We have Λ1(x) = 54 (p-value is 0.14)

for dataset 1 and Λ2(x) = 32 (p-value is 0.91) for dataset 2. This means we accept the null

hypothesis that the model with n1 parameters has similar goodness-of-fit as the model with

n2 parameters with a significance level of 0.05.

4.3.4 Should grade data be included in the model?

Here we discuss the importance of the grade in the model by testing the significance of

parameter α in the model. The estimation results of α were shown in Table 5.3 for the

overall models and in 5.2 for the individual experiments, giving the strong indication that

this parameter is very significant in all cases. The fact that in all cases 0.5 ≤ α̂ ≤ 1 reveals

that drivers tend to compensate for the upgrade, as explained in section 3.2.2, and that the
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Table 4.6: 95%-CIs of α for each car-following experiment

Experiment
Dataset 1 Dataset 2
lower bound upper bound lower bound upper bound

1 0.2 1.2 0.3 0.9
2 0.3 1.0 0.4 1.4
3 0.7 1.2 -0.2 1.4
4 0.1 1.2 0.1 1.0
5 0.3 0.9 0.3 1.4
Overall 0.5 0.7 0.4 0.8

current assumption in the literature that α = 1 might not be warranted.

To take a closer look, the 95%-confidence intervals (CIs) of α are shown in Table 4.6.

It can be seen that the lower bounds are almost all positive, which is reassuring of the fact

that upgrades have a detrimental effect on acceleration. That some upper bounds are > 1

is problematic, as it indicates that some drivers might press the gas pedal softer than they

would on level terrain, which is counterintuitive. However, this only happens in individual

experiments where the reduced sample size might be to blame. In fact, the overall models

exhibit upper and lower bounds that are very reasonable. In Chapter 5, we study the impact

of roadway grade on vehicle accelerations more in detail with the NGSIM field trajectory

data.

51



Figure 4.1: Key aspects for maximum likelihood estimation. In this figure, xj(t) represents
the interpolated trajectory of vehicle j. To perform the maximum likelihood estimation, we
first choose discrete times t1, t2, ..., ti, ... as our data x. Then for each time ti, the circle
represents the observed position of vehicle j at ti, the triangle represents the observed
position of vehicle j at time (ti −∆t), and the square represents the observed positions of
vehicle j − 1 at time (ti− τ). The zoomed in figure shows that the positions of squares are
not fixed but depend on the value of the random variable τ . The uncertainty of the position
of the squares indicates the randomness of parameter τ .
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Figure 4.2: An example of the trajectory data collected in a series of car-following experi-
ments (Jiang et al., 2014). S=4 represents the ordinal number of the experiment.

Figure 4.3: This figure helps us understand the negative correlation between τ and δ. Note
that all feasible (τ ,δ) pairs give points on segment AB. Moving along this segment one can
see that if τ increases then δ decreases and vice-versa.
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CHAPTER 5

DRIVER REACTIONS TO UPHILL GRADES

This chapter is modified from the following paper:

Xu, T., & Laval, J. A. (2020). Driver Reactions to Uphill Grades: Inference from a Stochas-

tic Car-following Model. Accepted by Transportation Research Record.

5.1 Introduction

Modeling truck performance with roadway grade has a long history. Back in the 1970s,

researchers collected speed and weight data for trucks operating on highway grades (Walton

and Lee, 1975). Based on the data, they find that trucks experience great acceleration

loss on uphill segments and the magnitude of acceleration loss depends on the approach

speed. Later, the previous study was extended in Gillespie (1985) and the authors develop

a methodology to predict truck acceleration loss on grades for different classes of trucks.

These studies for designing climbing lanes only consider the tangent vertical profiles so Yu

(2005) focuses on the impact of vertical curvature on truck performance.

The impact of the roadway grade on passenger cars has long been neglected. In the

AASHTO report (Officials, 2011), the authors point out that passenger cars can generally

negotiate with a grade of 5 percent or less without significant acceleration loss. Modeling

work to incorporate roadway grade with vehicle acceleration can be found in Laval (2004)

where the author argues that roadway grade is a key ingredient to produce traffic instabil-

ities as observed empirically. In this study, the crawl speed for both passenger cars and

trucks is calculated based on the free motion model in McLean (1989). Later, the author

successfully replicates periodic oscillations at uphill segments with a car-following model

that includes the effects of gravity (Laval, Toth, and Zhou, 2014). They assume that on

an upgrade segment, the acceleration due to gravity in the direction of movement, gG, is
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subtracted from the acceleration a driver would have imposed on a vehicle on a flat seg-

ment. However, this assumption implies that drivers do not press the gas pedal harder on

uphill segments, which may not be the actual case, as reported in Bernat Goñi Ros (2016).

The study in Bernat Goñi Ros (2016) presents a novel car-following model along with a

lane-changing model and find that the influence of roadway grade on vehicle longitudinal

motion is more realistic than that predicted by existing models. However, this study did not

investigate the difference among vehicle classes and more data are needed for calibration

and validation.

The purpose of this chapter is to test the impact of roadway grade on vehicles and find

the difference between regular vehicles and trucks. We use the US101 dataset to estimate

model parameters. Then statistical tests are performed. In the end, a discussion is provided.

5.2 Dataset

5.2.1 Trajectory data

The Next Generation SIMulation (NGSIM) datasets contain detailed and accurate field data

for traffic research and development. In this thesis, we use the US Highway 101 (US 101)

dataset, which contains detailed vehicle trajectory data on southbound US 101, also known

as the Hollywood Freeway, in Los Angeles, CA, collected on June 15th, 2005. The length

of the study segment is approximately 640 meters (2,100 feet). There are five mainline

lanes throughout the section and one auxiliary lane through a portion of the corridor be-

tween the on-ramp at Ventura Boulevard and the off-ramp at Cahuenga Boulevard (See Fig.

5.1). This dataset provides the precise location of each vehicle area every one-tenth of a

second during 45 minutes in the morning rush hour. This period includes uncongested and

congested traffic states and the transition between these two states. (James Colyar, 2007)

A time-space diagram of the vehicle trajectories are given the Fig. 5.2. In Fig. 5.2, the

distance of each vehicle is drawn against time. the slope of the trajectories indicates the

vehicles’ speed. The green color represents a free-flow state and the red color represents a
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congestion state. We can observe periodic traffic congestion from the visualization of the

dataset.

Figure 5.1: The site for US 101 data collection. (James Colyar, 2007)

Figure 5.2: A visualization of the US 101 dataset. (Laval, Toth, and Zhou, 2014)

5.2.2 Grade Data

Modeling vehicle acceleration with roadway grade requires high-accuracy grade data. We

used Google Earth to obtain the elevation profile along the study corridor, and derived the

grade data using a second-order interpolation; see Fig. 5.2. One can see that the segment

has an average upgrade around 2%, with larger grades near the beginning of the segment.

Also note in this figure that the oscillations are not caused by the grade, but by a crew of

workers located near the 400m mark, as reported in Chen et al. (2014).
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5.2.3 Sample size

We use the data from five mainline lanes during the period of 7:50 to 8:05. Lane 1 is the

leftmost lane and Lane 5 is the rightmost lane. We removed vehicles that performed lane

changing during the period. Remaining vehicles are used in the parameter estimation.

For vehicle i, if it entered the study corridor at tenter and leaved the study corridor at

tleave, we can generate 50 uniform random variables t1, t2, ...t50 between tenter and tleave as

our sample time stamp, such that we will have 50 sample points for one vehicle. In Table

5.1, we summarize the sample size for the parameter estimation for each lane, each vehicle

class.

Table 5.1: Number of sample points for parameter estimation (50 sample points each vehi-
cle)

Lane Motorcycles Cars Trucks Total
1 300 13,450 50 13,800
2 150 10,750 0 10,900
3 0 9,150 200 9,350
4 100 6,650 100 6,850
5 50 5,800 100 5,950

Total 600 45,800 450 46,850

Data for each vehicle are randomly divided into five groups, each with a size of 10.

Four groups (80% of the data) are used as training data and the remainder group (20% of

the data) is used as validation data (James et al., 2013). For the four groups of training data,

we use maximum likelihood to estimate parameter values, then we use the results from the

four training groups separately on the validation data. The estimation result that gives the

biggest log-likelihood value on the validation data is selected as the final estimation result.

5.3 Estimation results and statistical inference

5.3.1 Homogeneity among vehicle classes

Table 5.2 summarizes the estimation results for different vehicle classes. The first three

rows in this table give the results for models estimated with data only involving the corre-
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sponding vehicle class as the follower, while the last row corresponds to a model estimated

with the overall data set, without distinguishing vehicle types. It can be seen that we cannot

reject the hypothesis that model parameters are different for different vehicle classes.

Fig. 5.3 shows the 95% confidence intervals (CI) of the estimated values of β, σ̃,

and α, which can be used to test the equality of these parameter values across vehicle

types simply by observing if these intervals overlap or not. The half width of the error

bars equals the standard deviation of the corresponding parameter. It can be seen that the

intervals for motorcycles and trucks are much wider than that of passenger cars, which is

the consequence of the sample sizes available to us. We can see that the main differences

between cars and trucks are in the following parameters:

1. β: Trucks have a higher value than cars for this parameter, which implies that trucks

tended to accelerate more aggressively than cars.

2. σ̃: Trucks exhibit a higher value, which implies that truck drivers have a larger vari-

ation when accelerating, which might be related to the number of gears that truck

engines use when accelerating.

3. α: Again, this parameter is larger for trucks, and the implications are discussed be-

low.

Of the findings above, we believe that the last one is the most significant in terms of

the impact of current modeling frameworks. Recall that the parameter α represents the

proportion of the gravitational forces due to upgrades that are absorbed by the motion of

the vehicle, and has been assumed to be 100% until now. Our estimation results show that

for regular vehicles, α̂ = 0.51 and for heavy vehicles α̂ = 0.96. This means that car drivers

demand more power from the engine to compensate for gravitational forces such that their

actual motion loses only about 50% of what they would have lost had they continued to

drive without compensating.
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In the case of trucks, we can see that the standard assumption in the literature is appro-

priate, as they seem to compensate for only 4% of the gravitational force. For motorcycles,

α̂ = 0.79 is significantly higher than for regular vehicles, which may seem counter-intuitive

since motorcycles have a much higher power-to-weight ratio. A possible explanation is

that, precisely for this reason, motorcycles are almost always in the car-following model

with little slack for extra acceleration.

Table 5.2: MLE parameter values for different vehicle types
Vehicle Class

µ̂δ µ̂τ û β̂ ̂̃m ̂̃σ ρ̂ σ̂δ σ̂τ α̂ ρ̂0 log likelihood
mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat

motorcycle 5.59 3.4 0.4 3.7 70.09 3. 90.07 2.6 4.06 3.1 0.23 3. -0.48 -5.2 1.69 9.8 1. 15.2 0.79 1.8 0.32 2.8 549
regular vehicle 7.76 65.8 0.4 25.3 76.92 144.7 97.58 336.3 4.1 74.9 0.11 97.3 0.17 3.3 1.43 21.1 0.35 30.6 0.51 87. -0.1 -5.4 49,638
heavy vehicle 4.54 1.4 0.43 1.4 73.45 17.5 116.26 369.1 3.38 44.2 0.22 12.6 -0.48 -1.5 1.46 3. 0.57 3.9 0.96 14. -0.39 -3. 488

Overall 8.06 72.8 0.4 28. 85.23 21.9 118.27 36.3 4.48 34. 0.07 36.5 0.26 11.7 1.89 27.8 0.22 29.7 0.61 44.3 -0.14 -9.5 50,419
Likelihood-ratio test statistic Λ(x) = 512, the P-Value is 0.000

Figure 5.3: 95% Confidence Intervals of the estimated values of β, σ̃, and α for different
vehicle classes.

The estimation of ρ0 indicates that the correlation between Y and Z for this dataset is

very weak (| ¯̂ρ0| < 0.4), especially for cars (| ¯̂ρ0| = 0.1). For the rest of this chapter, we

assume that Y and Z are independent, which help us to reduce one parameter ρ0 in the

model.

5.3.2 Homogeneity among lanes

Table 5.3 and 5.4 includes the estimation results for separate lanes, and Fig. 5.4 shows the

CIs of estimated parameter values. It can be seen from Table 5.3 that the p-value of the

likelihood ratio test is larger than 0.01, which indicates that the additional complexity of

59



the model for the three middle lanes is not justified with a significance level of 0.01. As

we can see from the results, the only slight difference between the vehicles on three middle

lanes are in τ and the way they deal with upgrades, which is implied by the different values

of α.

These results accord well with Fig. 5.4, where we can verify that most parameter values

are the same for Lane 2, 3 and 4 since their confidence intervals overlap. It can be seen that

the main difference between the middle three lanes compared to the median and shoulder

lane resides in the jam spacing, where in the middle lanes is substantially higher. This can

be explained by the higher proportion of trucks and the smaller proportion of motorcycles

usually observed in the middle lanes. Another significant difference among lanes can be

seen in the middle part of the figure, where middle lanes exhibit a significantly smaller

diffusion coefficient σ̃. This implies that these lanes driver acceleration tends to have less

variation than on other lanes. Unfortunately, the explanation that is due to the higher pro-

portion of trucks does not apply here since we have seen the trucks tend to have a higher

σ̃. Another possibility is that these lanes exhibit less stop-and-go activity compared to the

other lanes and therefore provide fewer opportunities for accelerating in free flow, which is

when σ̃ can be estimated.

Table 5.3: MLE parameter values for different lanes
Lane ID

µ̂δ µ̂τ û β̂ ̂̃m ̂̃σ ρ̂ σ̂δ σ̂τ α̂
log likelihood

mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat
1 4.39 5.5 0.4 3.9 74.0 16.9 92.8 87.6 4.04 14.2 0.16 29.7 - 0.29 - 6.3 2. 42. 0.67 44.5 0.82 17.1 14,429
2 7.83 36.4 0.4 11.4 76.9 10.2 97.6 5.4 5.08 28.6 0.07 10.4 - 0.03 - 0.1 1.07 6.6 0.53 16.7 0.47 2.6 12,062
3 7.82 19.5 0.93 41.2 76.9 58. 97.6 19.9 5.08 10.2 0.07 10.5 - 0.03 - 1.5 1.07 7.9 0.51 57.1 0.45 8.4 10,003
4 7.78 84.6 0.4 30.7 76.9 14.6 97.6 4.6 5.08 6.6 0.07 5.6 - 0.05 - 0.2 1.08 2.7 0.18 4.6 0.26 2.1 7,844
5 5.35 6.5 0.4 6.7 70.0 28.9 90.0 91.9 2.93 124.5 0.25 18. - 0.55 - 0.8 1.79 3.1 0.57 5.1 0.71 17.2 6,430

Overall 7.06 48.4 0.4 22.5 80.9 53.7 107.4 101.1 4.82 31.6 0.08 30.9 0.21 13.3 1.9 15.4 0.31 19.3 0.53 58.3 50,389
Likelihood-ratio test statistic Λ(x) = 758, the P-Value is 0.000

Table 5.4: MLE parameter values for three middle lanes
Lane ID

µ̂δ µ̂τ û β̂ ̂̃m ̂̃σ ρ̂ σ̂δ σ̂τ α̂
log likelihood

mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat mean t-stat
2 7.83 36.4 0.4 11.4 76.9 10.2 97.6 5.4 5.08 28.6 0.07 10.4 - 0.03 - 0.1 1.07 6.6 0.53 16.7 0.47 2.6 12,062
3 7.82 19.5 0.93 41.2 76.9 58. 97.6 19.9 5.08 10.2 0.07 10.5 - 0.03 - 1.5 1.07 7.9 0.51 57.1 0.45 8.4 10,003
4 7.78 84.6 0.4 30.7 76.9 14.6 97.6 4.6 5.08 6.6 0.07 5.6 - 0.05 - 0.2 1.08 2.7 0.18 4.6 0.26 2.1 7,844

three lanes together 7.81 44.7 0.7 35.1 76.91 207.7 97.57 3102.8 5.08 468.4 0.07 154.4 -0.03 -0.2 1.07 10. 0.51 25.3 0.43 209.5 29,891
Likelihood-ratio test statistic Λ(x) = 36, the P-Value is 0.015
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Figure 5.4: 95% Confidence Intervals of the estimated values of δ, σ̃, and α based on data
from five lanes.

5.4 Discussion

In this chapter, we have used statistical inference based on the maximum likelihood estima-

tion of a two-regime stochastic car-following model using NGSIM data. Our main finding

pertains to the impact of uphill grades on the acceleration drivers choose to impose on their

vehicles. We found evidence that the current assumption in the existing free-motion ac-

celeration models (α=1) does not apply to car drivers, who tend to overcome half of the

gravitational effects by using more engine power. Truck drivers only compensate for 4%

of the loss, possibly because of limited engine power; however, more truck data is needed

to increase our confidence in these results.

This finding is important for current applications because it means not only that cur-

rent models are severely overestimating the operational impacts that uphill grades have on

regular vehicles, but also underestimating their environmental impacts. For example, the

VISSIM model (PTV, 2015) uses α = 1 and emissions calculations do not consider driver

compensation as found here. We calculated the emission and energy consumption for a

Honda Pilot 2004 with the MOVES model (USEPA, 2019). In the simulation experiment,

the car is accelerating from a complete stop on a 5% uphill segment. The free-flow speed

u = 100 km/h and the inverse relaxation time β = 0.07s−1. The results are shown in
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Table 5.5: CO2 emission and energy consumption comparison for different values of α

Distance Traveled (m)
CO2 Emission (gram) Energy Consumption (kJ)

α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1
500 287.7 254 210.1 4003 3535 2924

1000 484.5 418.9 366.5 6742 5816 5387
2000 857.4 744.7 673.1 11931 10362 9366

Table 5.5. The results showing that the current free-motion acceleration models (α = 1)

are underestimating the environmental impacts by 10 % in an acceleration process at uphill

grades.

We also find that car-following model parameters related to the acceleration process are

significantly different among shoulder, median and middle lanes. We saw that this can be

partially explained by the greater proportion of trucks the middle lanes, but more data is

needed to complete the analysis.

Parameters δ and τ are the key parameters controlling the congested branch in the

model. In the model, we assume they follow a bi-variate normal distribution, as suggested

in Ahn, Cassidy, and Laval (2003). From the estimation results, we find the correlation be-

tween δ and τ is zero because the parameter ρ has a low t-statistic. This result is consistent

with Ahn, Cassidy, and Laval (2003) and indicates that traffic waves propagate as a random

walk.

62



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis presents a generalization of the works conducted by Laval, Toth, and Zhou

(2014) and Yuan et al. (2018), each producing different features of traffic instabilities by

adding a dimensionless parameter m. The model in this thesis regulates the type of driver

free acceleration error on a scale from Brownian motion (BM, m >> 1) to geometric

Brownian (g-BM, m = 1) acceleration processes. When m >> 1, this model captures

proper periodicity of traffic oscillations at bottlenecks and demonstrates that human factor

alone can cause traffic instabilities. This result accords with the work conducted by Laval,

Toth, and Zhou (2014) well. When m = 1, this model is equivalent to the model in

(Yuan et al., 2018), which successfully reproduces the speed-capacity relationship observed

empirically. The main contribution of the thesis is that if we select a proper value for m

(m ≈ 1.2) in the proposed model, the model can explain both the oscillation and speed-

capacity relationship.

The model is so flexible that it can be combined with lane changing models (Laval

and Daganzo, 2006) in microscopic-level traffic simulation (Chilukuri, Laval, and Guin,

2014). The interference of traffic signals could also be accomplished by simply changing

the desired vehicle speed in the model. That is, with this empirically validated model, we

can simulate almost every scenario in traffic streams without too much additional work.

Another major contribution of this thesis lies in the estimation of the parameter values.

The probability density function of the vehicle position in the proposed model turns our

to be analytical such that model parameters can be easily estimated with MLE without an

additive error term. This idea could provide reference for other studies outside of the traffic

flow area, that it is beneficiary to model a process controlled by two random processes

such that model parameters can be estimated with MLE without an additive error term. In
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addition, we combine cross-validation method with the maximum likelihood estimation by

dividing the data into training data and validation data. Using validation data could help us

avoid over-fitting such that the results are more reliable.

The framework of the two-regime stochastic car-following models also allows us to

perform statistical tests on various cases, such as the homogeneity of the driver/vehicle

population and the statistical significance of the impacts of roadway geometry or weather.

With the help with this tool and the NGSIM datasets, we find that current free-motion

models are not only severely overestimating the operational impacts that uphill grades have

on regular vehicles, but also underestimating their environmental impacts.

The study in this thesis also has the following limitations and these limitations should

be the focus of future research. One of the limitations of this study is that we assumed

a linear model between vehicle acceleration and roadway grade. However, the impact of

roadway grade on the vehicle acceleration may be nonlinear. In future research, we will es-

timate different functional forms for f(G) for different values of G, including downgrades.

The function f(G) could be piece-wise linear, polynomial or more complex. Some options

for f(G) is shown in Fig. 6.1. We will carefully compare different models and choose the

best fit of f(G) based on various datasets. We also plan to investigate the impact of gradi-

ent sequence on vehicle acceleration behavior as an extension of the current work. Also,

increasing the sample size of trucks and motorcycles is helpful in the future. The data gives

a strong indication that the value of m is larger than 3, which means that the acceleration

processes of drivers are closer to BM than g-BM. Unfortunately, it also means that the

model loses its ability to explain the speed-capacity relationship. This could be explained

by a number of reasons and should be the focus of future research. One possibility is that

m might be different for different traffic states and vehicles may have values of m ≈ 1

when the queue is discharging. This assumption needs to be tested in the future.

Finally, we conjecture that the proposed model is well suited to represent the operations

of automated vehicles. To see this, (i) manufacturers strive to implement car-following
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Figure 6.1: Possible relationships between f(G) and roadway grade in the model.

behaviors that are similar to human drivers, (ii) AVs also have to overcome gravity and

are subject to limited engine power, which implies that a bounded acceleration model is in

order for AVs as well, (iii) existing single-regime models for AV’s can be incorporated in

the congestion term in (3.9) by expressing them in terms of vehicle positions rather than

acceleration. In the future, the impacts of AVs on this model might be tested with statistical

inference methods. Preliminary results indicates that there is a significant difference among

the current commercial AV models.
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Appendix A

Var [ξ(t)] =
1

β2(2β2 − 3βσ2 + σ4)2
e−t(β+σ2)(et(−β+σ2)(−1 + eβt)((vc − v0)2

+eβt((5 + 2(−4 +m)m)v2
c + 2(−1 + 2m)vcv0 − v2

0))σ8 + 4β4et(−β+σ2)

((−1 + etσ
2

)(vc − v0)2 + e2βt(−1 +m)2tv2
cσ

2 + 4eβt(−1 +m)tvc(−vc + v0)σ2

2β3e−βtσ2(6etσ
2

(vc − v0)2 − e2tσ2

((2 +m)vc − 3v0)(mvc − v0) + 4et(β+σ2)

(−2mv2
c +m2v2

c + 2vcv0 − v2
0 + 4(−1 +m)tvc(vc − v0)σ2) + et(2β+σ2)

((2− 4m)vcv0 + v2
0 + v2

c (−6 + 10m− 3m2 − 5(−1 +m)2tσ2)))

2βσ6(3et(−β+σ2)(vc − v0)2 + etσ
2

(−5v2
0 + 2vcv0(1 + 4m− (−1 +m)tσ2)

+v2
c (8− 18m+ 5m2 + 2(−1 +m)tσ2))− et(β+σ2)(4(−1 + 2m)vcv0 − 2v2

0

+v2
c (11− 18m+ 5m2 + (−1 +m)2tσ2))) + β2e−βtσ4(−13etσ

2

(β − v0)2

+2e2tσ2

(−mvc + v0)2 − 4et(β+σ2)(4et(β+σ2)(4(1 + (−3 +m)m)v2
c

+4(1 +m)vcv0 − 4v2
0 + 5(−1 +m)tvc(vc − v0)σ2) + et(2β+σ2)(10(−1 + 2m)vcv0

−5v2
0 + v2

c (29− 48m+ 14m2 + 8(−1 +m)2tσ2))))
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Appendix B: MLE

We use MLE for the estimation of parameters in our proposed model. In a nutshell, MLE

consists in finding the value of Θ that maximize the log-likelihood `(x; Θ) =
∑

i,j ln[f(xj(ti); Θ)].

This gives the MLE estimator of Θ, and is denoted Θ̂. MLE is appealing because for

large samples one can perform statistical inference analysis to answer important questions

in car-following behavior. For large samples the distribution of MLE estimators tends to

the multivariate normal distribution, i.e. Θ̂
dist→ N(Θ,SD [Θ]), where the covariance matrix

SD [Θ] can be approximated using the Cramer-Rao lower bound: SD [Θ] ≈ J(Θ̂)−1 where

J(Θ) = −∂2`(Θ)
∂Θ2 is the observed Fisher’s information for the sample. This important result

allows us to use the statistical inference toolbox, in particular confidence intervals and

hypothesis testing.

A likelihood-ratio test can be used to compare the goodness-of-fit of different model

specifications. For example, if we have two models with number of parameters n1 and n2

(n1 > n2), respectively, the likelihood-ratio test statistic is Λ(x) = 2
[
`(x; Θ̂1)− `(x, Θ̂2)

]
which follows a chi-square distribution with n1 − n2 degrees of freedom. For more infor-

mation on MLE, the reader is referred to Hubbert (2012).
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