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PREFACE 
 
 
 

 The near ubiquitous presence of high speed internet access around the globe and the 

associated plunging capital costs of information has, as the distinguished author Thomas 

Friedman rightly stated, “flattened the world” [1].  Barriers such as geography, time, and 

language are eroding as the streaming of information incessantly laps against these 

previously impervious monoliths.  No longer are individuals strictly beholden to the 

hierarchical structures of nation-state, university, and corporation but are instead 

empowered through access to, now, many of the same tools and resources previously 

available only as part of these structures. As a consequence, collaboration between 

groups seemingly orthogonal to one another just a decade ago is currently not only 

possible, but common.   These collaborative processes, in turn, have moved work, 

progress, and innovation from centuries worn vertical “silos” spanning “top to bottom” 

and “bottom to top” into to a new hybridized horizontal coupling of effort in which the 

roles of the individual in the group, and even the group in general, are becoming ever less 

defined due to the pervasive interconnectedness of networks both social and literal.   

 A similar coupling and interconnectedness is occurring in physical structures as well 

due to the continually decreasing length and times scales at which devices are designed 

and operate.  At these smaller scales, energy ceases being defined solely as thermal, 

mechanical, electrical, or chemical in origin but is instead a  “total potential” defining the 

wavefunction of the system as a whole.  In this situation, a single environment (e.g., 

thermal, electrical, etc.) becomes less and less relevant as it is the interactions between 

environments that determine the response as much as their individual presence.   



 iv

Extending capability then necessitates understanding the coupling between environments 

as much as the environments themselves.  With such a perspective, this effort moves 

away from exclusive “silos” of analysis towards a more inclusive approach centered on 

“flattening” the characterization of  devices operating in this distinctly horizontal manner.  
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SUMMARY 
 
 
 
 Possessing a wide band gap and large break down field, gallium nitride (GaN) is of 

interest for a host of high power, high frequency applications including next generation 

cellular base stations, advanced military radar, and WiMAX networks.  Much of this 

interest stems from the continued development of the AlGaN/GaN high electron mobility 

transistor (HEMT) that is capable of operating at sizable power densities and switching 

speeds.  The same fields responsible for this performance, however, also elicit acute 

device heating and elastic loads.  These induced thermomechanical loads limit both 

performance and reliability thus necessitating continued improvement in the management 

and characterization of the coupled environments.  In response, this study establishes a 

new implementation of Raman spectroscopy capable of simultaneously measuring the 

operational temperature and stress in a HEMT using only the Stokes response. First, the 

linewidth (FWHM) of the Stokes signal is utilized to quantify the operating temperature 

of a HEMT independent to the influences of stress.  Second, a new method, incorporating 

the use of the linewidth and peak position in tandem, is developed to estimate the biaxial 

thermoelastic stress that arises during device operation.  With this capability, the 

HEMT’s resultant load is assessed, highlighting the large role of the residual stress on the 

total mechanical state of the device.  Subsequently, this same linewidth is leveraged to 

identify the distinct effect that electrical carriers have on the thermally relevant decay of 

longitudinal optical phonon modes. Further investigation of the lattice transport then 

concludes the study by way of an analytical treatment describing the significant influence 

of interfacial disorder on the energy transport at GaN/substrate boundaries.   
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CHAPTER 1 

INTRODUCTION 
 
 
 

1.1 Gallium Nitride (GaN) Power Electronics, Temperature, and Stress 

 Due to its wide bandgap, large breakdown field, and high electron mobility, gallium 

nitride (GaN) is extremely attractive for an array of both high power and high frequency 

applications [2].  With both commercial and military applications totaling a worldwide 

market of $4 billion dollars in 2006 alone, GaN is being developed for a variety of 

utilizations ranging from phased array radar systems, solid state light sources, wireless 

base stations, and even WiMAX broadband [3-7].  Of particular interest is the continued 

development of the AlGaN/GaN high electron mobility transistor (HEMT) that is capable 

of both large power densities (>30 W/mm) and switching speeds (>160 GHz) [8, 9].  

Although these performance metrics illustrate the potential of GaN devices, widespread 

realization of their use has been limited, in part, due to reliability concerns [10].  These 

reliability concerns stem from degradation mechanisms that significantly reduce the 

output power of the transistor within its first hours of operation [11-15].  While the 

degradation mechanisms themselves are not unequivocally specified, and in fact are the 

subject of much research, there is evidence indicating that increases in either temperature 

or stress during operation negatively impacts not only this rate of  failure but so too the 

overall performance of the device [16-21]. 
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 The dependence of the AlGaN/GaN HEMT to the dual effects of both temperature 

and stress evolves from the nature of the material system itself and, in particular, the 

strength of its piezoelectric response.  In such a device, shown schematically in Figure 1, 

a thin layer of aluminum alloyed gallium nitride (AlGaN) is grown atop a thicker region 

of GaN causing strain to develop due to the mismatch in lattice constants between the 

materials.  As each of the materials demonstrates a large piezoelectric response, this 

strain induces a sizable polarization within each layer.  The total polarization of the layers 

is then augmented due to the presence of a spontaneous contribution stemming from the 

lack of inversion symmetry in the wurtzite crystal arrangement of both the AlGaN and 

GaN [23].   In response to the entirety of the polarization, a macroscopic electric field is 

formed causing free carriers to be transported to the region of minimum potential in the 

system.  It is at the interface between the two layers that this minimum occurs and as a 

consequence free carriers aggregate therein forming what is known as a two-dimensional 

    
 

Figure 1.  Schematic representation (left) and an enhanced SEM image (right) of a 
typical GaN based HEMT (Note: thicknesses are not to scale in either portrayal).
Piezoelectric and spontaneous polarizations present in the AlGaN and GaN layers induce 
free carriers to the interface of these layers forming the 2DEG that gives rise to the 
device’s substantial capability. (SEM figure adapted from work of Burgaud et al. [22]) 
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electron gas (2DEG) [24].   In a GaN system, these polarizations are comparatively large 

causing the carrier concentration within the newly formed 2DEG to be substantial  

(~1013-1014 electrons/cm2) [24, 25].   Since the electronic performance of a device is 

limited only by the number of carriers and their ability to be transported, these high 

concentrations, and the large polarizations causing their formation, are central to the 

capability of the device.  Furthermore, those parameters affecting these polarizations, 

namely the temperature and stress, will then be a major determinant in the performance 

of the HEMT as well. 

 Qualitatively, the dependence of device performance on temperature and stress may 

be illustrated through consideration of three representative HEMTs fabricated by Wu et 

al. [26, 27] having varying aluminum concentrations in the barrier layer.     By increasing 

the amount of aluminum in the AlGaN layer, the degree of both the spontaneous and 
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Figure 2.  Dependence of the maximum power on the concentration of carriers in the 
2DEG of an AlGaN/GaN HEMT.  Results are calculated based on the published results 
of Wu et al. [26, 27] indicating that increases in 2DEG concentration correlate directly to 
heightened device performance. 
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piezoelectric polarization is enhanced, thereby heightening the 2DEG concentration in 

the channel.  Through comparison of the reported current voltage characteristics (I-V) of 

these devices, the maximum power of the device is observed to scale with the level of 

carrier concentration in the 2DEG as is seen in Figure 2 [28] and further supported by the 

simulations of references [29] and [30].  In light of these results, much of the device’s 

dependence upon temperature and stress may then be demonstrated solely through 

calculation of the 2DEG’s concentration as a function of these parameters.   

 To facilitate calculation of the 2DEG’s concentration as a function of temperature and 

stress, the analytical predictions of Ambacher et al. [25, 31] are employed.  Using this 

method, the 2DEG concentration is predicted according to the expression given below: 

 ( )
'

2
pol o

s B F C
AlGaN

n e E E
e d e

σ ε ε φ
⎛ ⎞

= − + − Δ⎜ ⎟
⎝ ⎠

 (1) 

where ns is the 2DEG concentration in units of carriers per cm2, σpol is the total 

polarization including both spontaneous and piezoelectric effects, and e is the elementary 

electron charge.  The final term accounts for those factors resisting the formation of the 

2DEG where οε and 'ε  are the absolute and relative permittivity, respectively.  dAlGaN is 

the thickness of the barrier, Beφ is the Schottky barrier located at the gate contact of the 

transistor, EF is GaN’s Fermi level, and finally, CΔΕ is the conduction band offset 

between the GaN and AlGaN layers.  Using this relation and the parameters reported in 

reference [32], the effect of stress on the 2DEG concentration was calculated by imposing 

an equivalent “external” strain on the materials such as that which could occur due to 

compromised packaging or mounting procedures.  The application of the simulated 

compressive stress reduces the concentration of the 2DEG (Figure 3) to such an extent 
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that the maximum power (Pmax) may be reduced by up to 3% with just 210 MPa of load, 

thus emphasizing the distinct coupling of the electrical and mechanical effects on the 

performance of the HEMT. 

 Coupling of the thermal and electrical effects must be considered as well due to the 

2DEG’s significant dependence upon temperature.  Using a similar procedure to the one 

described above, the effect of elevated temperature on the channel concentration was 

examined by assuming thermomechanical coupling of the device to a silicon carbide 

(SiC) substrate while incorporating the temperature dependent properties given in 

reference [33].  Once again, the examined parameter (temperature) has a distinct effect on 

the 2DEG concentration and hence the device performance as well.  However, unlike that 

seen with respect to stress, assuming no relaxation occurs in the AlGaN barrier, a 

heightened thermal load causes an increase in the 2DEG concentration due to the more 

acute tensile strain in the alloyed layer, which arises with thermal expansion.    

Nonetheless, the result indicates a distinct coupling of the thermal environment to the 
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Figure 3.  The dependence of the 2DEG concentration to the effects of (a) compressive 
stress and (b) temperature.  Both temperature and stress significantly change the 
concentration thereby altering device performance due to their presence. 
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electrical characteristics of the device.  This fact, taken in conjunction with the observed 

mechanical dependence, highlights the inherent and critical coupling of each type of 

physical phenomena in an AlGaN/GaN high electron mobility transistor.    

 In view of these conclusions, HEMT operation must be viewed in the guise of a “3-

D” coupled field feedback loop in which, as was illustrated, the electrical characteristics 

of the device are determined by the thermo-mechanical conditions. The thermo-

mechanical environment, however, is also primarily determined by the electrical output 

of the device due to joule heating, thermoelastic, and inverse piezoelectric effects, each of 

which evolve with current flow. Thus, when these results are taken in their totality, each 

environment acts to influence the others, and therefore, operation must be viewed in the 

“loop” of their coupling. As a consequence, it is this interplay between temperature 

(thermal), stress (mechanical), and electrical output that will inherently determine the 

capability, potential, and optimal performance of an AlGaN/GaN HEMT. 

 Not only is the level of performance in the transistor influenced by the thermo-

mechanical environment but so too is the device’s long term viability.  For example, the 

reliability of AlGaN/GaN transistors is inversely related to the device’s operational 

temperature as degradation has been observed to follow an Arrhenius relationship [34].  

Stress plays a role in the degradation as well, owing to defects that form at a rate 

proportional to the magnitude of the elastic load [12, 35, 36].  Reliability then, like 

performance, is intimately linked to the level of temperature and stress in the system. 

 Owing to this dual dependence of both performance and reliability to the level of 

temperature and stress in the HEMT, it is imperative that these parameters be accurately 

quantified and measured during the operation of the device.  The measurement and 
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prediction of these parameters is not trivial, however, due to the device’s small length 

scales (~1 μm) as well as the large gradients and coupled nature of the phenomena being 

measured.  Nonetheless, it remains critical that techniques be developed that meet these 

challenges in order that device performance be monitored, mean time to failure predicted, 

simulations verified, and mechanisms limiting reliability be understood.  In response, this 

study develops such methods, thereby allowing for fresh insight into the operation of the 

AlGaN/GaN HEMT, in addition to providing a new tool to be incorporated in the 

analysis of both GaN and other material systems.  To properly frame the approach, 

subsequent sections first provide context into the scope of the problem through a 

discussion of the theory behind both temperature and stress measurements along with 

descriptions of those techniques most often used to analyze microdevices.  Thereafter, the 

utility of Raman spectroscopy in the analysis of microdevices, and GaN devices in 

particular, is introduced. With this motivation, the chapter ends with an outline of the 

study as a whole. 

1.2 The Measurement of Temperature in GaN Devices 

1.2.1 Theory 

 At its most fundamental level, temperature is a measure of average atomic motion or 

energy.  Direct monitoring of this motion is intractable and hence the overwhelming 

majority of temperature measurements are instead indirect in nature.  These indirect 

methods monitor not the temperature itself, but rather, a separate temperature dependent 

phenomenon.  The dependent phenomena, in turn, arise as the major energy carriers, 

photons, electrons, and phonons; themselves have a statistical population dependent upon 
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the temperature.   Thus, it is not surprising that oftentimes the nature of their interaction 

is temperature dependent as well.   As a consequence, mensuration of temperature most 

often centers on the monitoring of the interaction between these energy carriers. 

 In semiconductor devices, these interactions are observed most often in one of three 

distinct manners, namely, through direct contact of a probe with the device, or in the 

measurement of the electrical, or optical response of the device during operation [37].  

Regardless of the manner employed, the ideal temperature measurement has a spatial 

resolution capable of identifying even the smallest temperature gradients while 

simultaneously having a temporal resolution fine enough to capture the entirety of salient 

transient behavior.  In addition, the measurement itself should have little or no effect on 

device function while being easily utilized in a diverse range of packaging architectures.  

As there is no single technique capable of meeting each of these criteria, semiconductor 

characterization is then a balance of amenities and liabilities as is shown in the following 

sections.   

1.2.2 Direct Contact Techniques of Temperature Measurement 

 Contact methods capitalize upon the thermal equilibration that occurs between a 

probe and the material of interest in order to investigate the temperature of a device. 

Through proper calibration of a particular thermal dependence of the probe, a dependence 

which may be optical in nature (liquid crystal thermography) but is most often 

electrically derived (e.g., thermocouple/Seebeck Effect), temperature is measured based 

on the heat flow between sample and probe [38].  Direct contact measurements range in 

complexity from use of a standard thermocouple to the incorporation of advanced AFM 

tips capable of sensing temperature with nanometer resolution [39].  For GaN devices, 
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the small resolution of the AFM approach has allowed for the examination of the effect 

of both biasing conditions and diamond substrates on temperature evolution [40, 41].  

The approach is limited spatially only by the tip size and is ideal for mapping operations, 

however, its temporal resolution is constrained by the heat transport dynamics between 

the tip, surrounding medium, and surface.  Furthermore, scanning probe methods are 

directly applicable only when the layer of interest is accessible.  With respect to 

AlGaN/GaN HEMTs, direct contact with the active, heat generating, region is not 

possible due to the presence of a passivation layer placed atop the device [42].  If this is 

the case, temperature of the active region may only be acquired through interpretation of 

the heat flow through this passivation layer.  Interpretation is most difficult in this 

situation, however, due to the complexity of the heat transfer environment in which the 

tip/interface dynamics, detailed material properties of the layers, and the interfacial heat 

transfer each act to complicate the analysis.   An excellent review of this type of 

metrology was given by Majumdar in 1999 [43].   

1.2.3 Electrical Techniques of Temperature Measurement 

 While direct contact methods rely on heat transfer to occur until two surfaces are 

isothermal, electrical methods rely on the changes in the transport of electrons to probe 

the temperature of the material.  In GaN devices, this approach has capitalized upon such 

phenomena as the temperature dependence of the Schottky barrier and dispersions in the 

DC I-V characteristics of the device to quantify temperature [17, 44, 45].  Due to the high 

transport speeds of the electrons, superb temporal resolution is easily obtainable; 

however, spatial resolution is limited as the acquired data averages between electrical 

contacts.    Yet as only circuit components are needed to obtain a measurement, this type 
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of measurement is well suited for applications where packaging makes the active surfaces 

of the device inaccessible. 

1.2.4 Optical Techniques of Temperature Measurement 

 Optical methods monitor the temperature dependence of photons either emitted 

(spontaneous or stimulated) or reflected from the region of interest.  This thermal 

dependence arises as several parameters affecting this radiation, e.g., the emissivity, 

reflectivity, as well as the electronic and lattice band structure, are themselves 

temperature dependent.  This has led to a host of different measurement techniques 

including pyrometry, interferometry, thermoreflectance, and Raman spectroscopy to 

name just a few of the many methods utilized in the analysis of microdevices.  An 

excellent review over the range of these techniques is provided by Zhang [46].  

 As the wave nature of the radiation serves as the probe in these methods, most far 

field applications have spatial resolutions limited only by the wavelength of the 

monitored photons ranging from 1 μm for visible light to nearly 10 μm for infrared 

imaging techniques  [47, 48].  Theoretically, the temporal resolution of these techniques 

is limited only by the interaction time between the device and the photons, ~1 fs, 

however, in practice the resolution is limited by the experimental equipment employed 

with the best reports being on the order of 20 fs [49].  These methods also rely on an 

optically viable surface for measurement, a stipulation which is not always fulfilled in 

multilayered and packaged devices. 
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 In the measurement of GaN devices, optical methods, particularly infrared and 

Raman thermography, are among the most frequently implemented techniques to 

measure temperature due to their non-invasive nature and relative ease of implementation 

[50].  Infrared thermography takes place by first mapping the emissivity of the device 

through calculation of the radiation leaving the surface at a known temperature.  Through 

incorporation of this acquired emissivity, the temperature of the device during operation 

may then be deduced via quantification of  the emitted radiation acquired from different 

regions of the device during operation [51].  Particularly advantageous in the 

measurement of AlGaN/GaN HEMTs, the technique allows for the entirety of the device 

to be measured simultaneously thereby allowing for a full two dimensional temperature 

map of the device (see Figure 4) to be acquired in a small amount of time.   

 Despite the allure of these maps, infrared thermography is limited as the resolution of 

the technique is constrained to ~5 μm due to the wavelength of the probing infrared 

radiation.  In addition, GaN is transparent to this same infrared radiation and, as such, the 

signal stemming from this region of interest becomes convoluted with the thermal 

  
 

Figure 4.  Optical micrograph (left) of an AlGaN/GaN HEMT and its associated 
temperature distribution during operation (right) as acquired using infrared 
thermography. 
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signature of the substrate layers underneath.  Due to these considerations, the quantitative 

values derived from infrared thermography often underestimate the temperature (see 

Figure 5), thus limiting the technique to qualitative comparisons rather than quantitative 

investigation [50, 52].  To meet this quantitative deficiency, Raman spectroscopy has 

been incorporated by several researchers in the investigation of AlGaN/GaN HEMTs due 

to the technique’s ability to more accurately measure temperature with nearly 1 μm 

resolution [53, 54].  As this method is the chief topic of this study, its further discussion 

will be left for subsequent sections. 
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Figure 5.  Comparison of temperature in a GaN based transmission line measurement 
(TLM) device obtained through a finite element model and infrared thermography.  Due 
to the limited spatial resolution and the transparency of GaN in the IR, infrared based 
measurements oftentimes under predict the magnitude of the temperature [52]. 
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1.3 The Measurement of Stress in GaN Devices 

1.3.1 Stress Measurement Theory and Technique  

 Like the investigation of temperature, the measurement of stress in microdevices is 

not a directly observable phenomenon.  Rather, the observed variation in material 

response is, in actuality, a response to the material’s level of strain.  A secondary step 

must then be undertaken to transform the acquired level of strain into its associated level 

of stress.  This translation of strain into stress frequently occurs either through analytical 

and numerical methods (e.g., FEA) or the direct calibration of the observed response to 

strain at a known level of stress [55].  Nonetheless, these measurements rely on the 

acquisition of strain and then its translation to stress while implicitly resting on the 

supposition that the entirety of the observed strain is due to elastic sources alone.  In GaN 

devices, however, this supposition is tenuous as both thermal expansion and piezoelectric 

induced strain are present in addition to elastic effects during operation.   

 Regardless of these complications, measurements of strain involve the close 

monitoring of deformation.  In order to capture the relevant aspects of this deformation in 

GaN based electronics, optical techniques are often utilized due to the probing radiation 

having a wavelength on par with that of the device.  These optical techniques may then 

be divided into two large classes in which the strain is acquired either ex or in situ to the 

actual device.  In ex situ measurements, strain is quantified through minimal interaction 

with the sample as the reflection of light tracks the movement of one point relative to a 

reference.  Both optical profilometry and interferometry adhere to this basic principle and 

have been employed in the characterization of GaN films and devices [56, 57].  However, 

due to the complications associated with increased temperature and the presence of 
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piezoelectric induced strains in GaN microelectronics, these techniques have been 

employed only in the quantification of residual stresses present in the material after 

processing while no analysis has taken place during actual device operation.    

 In situ techniques, on the other hand, do not monitor positional differences but instead 

alterations in the scattered light interacting with the sample.  This change in scattering 

occurs due to changes in the interatomic potential that arise when atoms move relative to 

one another during deformation.  With this change in interatomic potential, dispersions of 

both the electrons and crystal vibrations are modified.  As the scattering of the incident 

radiation is directly dependent upon these dispersions via Bragg’s law, their perturbation 

thus causes a subsequent variation in the scattered radiation thereby allowing for an 

estimation of the strain [58].   X-Ray diffraction, photoluminescence, as well as the oft 

applied Raman spectroscopy are each derived from this principle and have been utilized 

in the mechanical characterization of GaN films and devices [59-62].  Similar to ex situ 

techniques, however, temperature and piezoelectric contributions compromise these 

methods as well, thus limiting their implementation solely to the quantification of 

residual, rather than operational, stress levels. 

1.4 Raman Spectroscopy to Measure Temperature and Stress 

 While there is no such probe ideally suited to the analysis of AlGaN/GaN HEMTs, 

Raman spectroscopy is at the forefront of temperature and stress measurement for this 

device class due to the technique’s ability to non-invasively analyze the material on a 

length scale in line with that of the transistor.  The technique has been utilized to 

investigate the magnitude and distribution of both temperature and residual stress due to a 

variety of factors including device geometry, substrate, and defects [50, 56, 57, 63-69].  
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Due to this broad swath of capability along with its frequent implementation, the 

technique must be considered central to the characterization of AlGaN/GaN HEMTs.  

Consequently, further discussion of Raman spectroscopy, its principles and methods of 

implementation is warranted.  

1.4.1 Physical Basis of the Raman Technique 

 Similar in approach to any optical method, Raman spectroscopy takes place through 

bombardment of a surface with radiation while concomitantly observing the photonic 

energy reaching a detector.  In Raman spectroscopy, the energy that reaches the detector 

has been “changed” through scattering with the sample volume.   The nature of this 

scattering, and hence the degree to which the radiation is “changed,” depends upon the 

distribution of phonons and electrons within the material lattice. These distributions, in 

turn, are both temperature and stress dependent making the interactions, and hence the 

resulting Raman scattered radiation, dependent upon these parameters as well.  Thus the 

key to examining the temperature or stress dependence of the Raman scattered radiation 

is to understand the interaction between the incident radiation and the material lattice. 
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 Upon impingement of incident radiation to a surface, a photon with energy εi, may 

either be reflected, absorbed, or transmitted.  In Raman spectroscopy, the concern rests 

solely upon an interaction in which this photon is absorbed by either an electron or, in a 

dramatically more unlikely case, a phonon [70].  As part of this event, the absorbing 

species (i.e., the electron or phonon) is promoted from its equilibrium state of energy, εg, 

to an excited virtual state of energy, εL, resulting in a non-equilibrium distribution of the 

excited entity (see Figure 6).  Seemingly simultaneously, thermalization will occur 

whereby this excited entity will “relax” back to its equilibrium state and distribution.  

Most often this occurs directly thereby inducing the “re-emission” of a photon of energy 

equal to that  which was incident (εL-εg= εi)  in a process known as Rayleigh scattering.   

 
 

Figure 6.  Process flow diagram of Raman scattering where 3 separate events give rise to 
the detected inelastic scattering. Through observation of the change in radiation incident 
and emitted from the surface, deductions can be made with respect to the interaction of 
the light with the crystal lattice.
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 In a small statistical subset of these occurrences, however, an intermediate event takes 

place by which the excited species either absorbs or emits an additional energy carrier 

(i.e., phonon or electron) in the process of thermalizing as is shown in Figure 6 .  As a 

consequence of this intermediate event, the types of which are summarized in Table 1, 

the excited species moves to a secondary non-equilibrium virtual state of energy εm that 

is unequal to either its original ground (εg) or excited level (εL). Upon relaxation of the 

excited entity from energy εm to its original equilibrium energy εg, a “new” photon of 

energy εm - εg = εf will be emitted.  Due to the intermediate reaction, the emitted photon 

Table 1.  Scattering cascade giving rise to the Raman effect.  Although events numbered 
3 through 6 are possible, it is generally assumed that events 1 and 2 significantly 
dominate [70]. 
 

 Event 1 Event 1 
Δε 

Event 2 Event 2 
Δε 

Event 3 Event 3 
Δε 

Scattering 
Type 

1 
Photon (εi) 
absorption 
by electron 

εL -εg = 
εi 

Phonon (εD) 
absorption 
by electron 

εL+εD=εm 

Electron 
relaxation 
and photon 
emission 

εm -εg = 
εf 

Anti-Stokes 

2 
Photon (εi) 
absorption 
by electron 

εL -εg = 
εi 

Phonon (εD) 
emission by 
electron 

εL -εD=εm 

Electron 
relaxation 
and photon 
emission 

εm -εg = 
εf 

Stokes 

3 
Photon (εi) 
absorption 
by phonon 

εL -εg = 
εi 

Phonon (εD) 
absorption 
by phonon 

εL+εD=εm 

Phonon 
relaxation 
and photon 
emission 

εm -εg = 
εf 

Anti-Stokes 

4 
Photon (εi) 
absorption 
by phonon 

εL -εg = 
εi 

Phonon (εD) 
emission by 
phonon 

εL-εD= εm 

Phonon 
relaxation 
and photon 
emission 

εm -εg = 
εf 

Stokes 

5 
Photon (εi) 
absorption 
by phonon 

εL -εg = 
εi 

Electron 
(εD) 
absorption 
by phonon 

εL+εD=εm 

Phonon 
relaxation 
and photon 
emission 

εm -εg = 
εf 

Anti-Stokes 

6 
Photon (εi) 
absorption 
by phonon 

εL -εg = 
εi 

Electron 
(εD) 
emission by 
phonon 

εL-εD= εm 

Phonon 
relaxation 
and photon 
emission 

εm -εg = 
εf 

Stokes 
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will have an energy unequal to that of the incident radiation (εf ≠ εi) leading to what is 

known as inelastic scattering and the so called Raman effect.  By monitoring the 

difference between εf and εi, through the shift between the incident and exiting photon 

frequencies, a deduction of the intermediate reaction can take place thus providing insight 

into either the temperature or stress dependent characteristics of the crystal lattice.   

 The nature of the crystal’s dependence on temperature or stress may be illustrated 

through incorporation of classical theory to describe the interaction between the incident 

radiation and the lattice.  The analysis begins by defining two properties determined by 

the electronic distribution within a crystal lattice in equilibrium, namely the dipole 

moment, P, and electric polarizability, α.  The electric polarizability is a second order 

tensor response function that represents the volume and shape of the charge distribution 

in the lattice.  When radiation with electric field, E, is incident on the lattice, the induced 

dipole moment is given by, 

 oP ε α= Ε  (2) 

At any finite temperature, the presence of phonons causes the charge distribution, and 

hence the electric polarizability tensor, to constantly change with time.  These changes 

may be described through a Taylor series expansion of the polarizability about the 

equilibrium position of the lattice atoms: 

 '
' ......o

d q
dq

αα α= + +  (3) 

where αo is the polarizability at the equilibrium lattice spacing and q’ = qocos(ωpt) is the 

time-dependent change in the lattice spacing due to phonon vibrations with amplitude qo 

and frequency ωp.  Realizing that the incoming electric field, ( )coso RE E tω= , can be 
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written as an oscillatory function of amplitude Eo and frequency ωR, using Equation (3), 

Equation (2) may be written in expanded form: 

 'cos( ) cos( ) cos( )o o o R o o p o R
dP E t q t E t
dq

αε α ω ε ω ω= +  (4) 

where ωp is the frequency of the phonon vibration and ωR is the vibrational frequency of 

the incident photon.  Applying a trigonometric identity to Equation (4) leads to the 

following relation, 

 ( ) ( )' 'cos( ) cos ( ) cos ( )
2 2

o o o o o o
o o o R p R p R

q E q Ed dP E t t t
dq dq

ε εα αε α ω ω ω ω ω= + − + +  (5) 

 
The first term on the right hand side of Equation (5) accounts for Rayleigh scattering of 

photons.  The second and third terms result in Stokes and anti-Stokes Raman scattering, 

respectively, where the photons are shifted away from their incident frequency ωR by an 

amount equal to the optical phonon frequency ωp [71].   

 A representative figure of the resulting Raman spectrum illustrating each of these 

differing scattering components is shown in Figure 7.  From Equation (5), it is readily 

seen that the resulting Raman shift is directly dependent upon this phonon vibrating at ωp.  

The temperature and stress dependence of the Raman signal is then an exercise in 

examining the thermal and mechanical response of this phonon.  The following 

subsections describe the mechanisms by which this behavior may be captured by the 

Raman signal. 
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1.4.2 Temperature Dependence of the Raman Signal  

1.4.2.1 Measurement of Temperature via the Stokes to anti-Stokes Intensity Ratio 

 At a given frequency shift ( |ωR-ωp| ), the intensity of a Raman signal will be 

proportional to the number of phonons at frequency ωp present to take part in the 

scattering processes [70].  In an anti-Stokes process, the number of phonons that may be 

absorbed at a given temperature can be calculated from the Bose-Einstein distribution 

function described in Equation (6), 

 0
1

exp 1p

B

N

k T
ω

=
⎛ ⎞ −⎜ ⎟
⎝ ⎠
h

 (6) 

where h is the modified Planck’s constant, and kB the Boltzmann constant [72].  Similarly 

for a Stokes process, the total number of phonons will be this equilibrium distribution, 

 
 

Figure 7.  Representative Raman spectrum showing the Rayleigh, Stokes, and anti-
Stokes responses.  Although in reality the number of Rayleigh events far outweighs those 
of the Stokes and anti-Stokes variety, its response is mitigated through the use of filters in 
order to highlight the specific Raman contributions. 
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No, plus the emitted phonon for a cumulative total of 0 1N + .  Thus, the ratio in intensity 

of these two signals provides a measurement of temperature as delineated in Equation (7), 

 exp
1

AS o o

BS o

I N G k TI N
ω−⎛ ⎞≅ ≅ ⎜ ⎟

+ ⎝ ⎠
h  (7) 

where G is a calibration factor, while  IAS and IS are the anti-Stokes and Stokes intensities, 

respectively [73-75].   

 While the intensity ratio has been utilized in thermometry of III-V materials for over 

twenty years, its use remains extremely limited [76].  The method inherently requires 

longer experimental times as both the Stokes and anti-Stokes portions of the spectrum 

must be acquired.  In addition, the precise quantification of intensities is difficult causing 

the resulting measurements to have larger uncertainties as compared to other Raman 

based techniques [77, 78].  Due to these factors, few studies have incorporated the 

method to interrogate GaN based devices.  For example, only Aubry et al. [63] and Sarua 

et al. [79] have recently implemented the intensity ratio in the analysis of AlGaN/GaN 

devices  .   

1.4.2.2 Measurement of Temperature via the Stokes Peak Shift 

 Quantitative (extensive) measurements, such as those which compare intensities, are 

difficult to implement as the results will be dependent upon a host of experimental 

variables that determine signal strength.  Consequently, it is desirable to instead analyze a 

qualitative (intensive) aspect of the acquired signal.  In Raman spectroscopy, this is 

accomplished by examining the manner in which the vibratory aspects of the analyzed 

phonon change with temperature. 
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 When considering the Raman scattering of photons using visible monochromatic laser 

light, the conservation of energy and momentum generally require that photons interact 

with optically coupled phonons near the Brillouin zone center (Г-Point, see Figure 41), 

such that ωp in  Equation  (5) corresponds to the zone-center optical phonon [73].  Thus, 

the temperature dependence of the phonons in the vicinity of zone center will help 

explain the temperature dependence of the Raman response.  In general, the phonon 

vibrational modes and their dispersion can be modeled by considering a spring-oscillator 

system assuming that the force laws between the atoms or molecules in the lattice are 

known.  The solution for this type of classical oscillator reveals that the resulting lattice 

vibrational frequencies vary with the interatomic forces [58].  As the lattice is heated or 

cooled, the equilibrium positions of the atoms are displaced, resulting in an overall 

volumetric expansion or contraction of the lattice and a change in interatomic forces due 

to the anharmonicity of the bonds [80].  These changes in the interatomic forces modify 

the phonon vibrational frequencies that, in turn, are reflected in the resulting variance of 

the Raman peak position. 

 In addition to this volumetric contribution, interactions between the phonons 

themselves augment the frequency shift as well [80].  This occurs as the mere presence of 

a phonon will alter the equilibrium spacing of the atoms in a lattice.  With a change in 

equilibrium spacing, an associated altering of the interatomic forces will occur.  Due to 

this change in the interatomic forces, the frequency of oscillation of both this and other 

phonons will be modified, thus affecting the frequency of the Stokes and anti-Stokes 

scattering.  As the phonons responsible for this modification are governed by the Bose-

Einstein distribution of thermal occupation, the resulting Raman shift varies due to this 
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contribution in a completely temperature dependent manner free of the effects of strain 

[81].  This contribution due to the presence of phonon interaction is typically termed the 

explicit contribution. The total frequency shift in the Raman signal is then some 

superposition of the explicit and volumetric contributions.  Although either the Stokes or 

anti-Stokes contribution may be utilized in this analysis, typically the Stokes signal is 

incorporated as its signal is much stronger than its complement for the temperature range 

examined in most semiconductor devices. 

 In contrast to the intensity ratio, the peak position is easy to obtain and allows for a 

high degree of precision in the measurement of temperature.  As a consequence, this 

spectral feature serves as the work horse for most Raman thermometry measurements.  

This fact is exemplified with respect to GaN based devices as the method has been 

utilized to: ascertain the temperature distribution between the gate and drain [82-86], 

produce a 2D dimensional thermal map of a transistor [54, 68], examine the through 

thickness thermal gradient [50, 87, 88], investigate the transient response of a HEMT [89, 

90], and even to assess the robustness of other thermal measurement techniques [91].   

1.4.2.3 Measurement of Temperature via the Linewidth of the Stokes Response 

 The origin of Stokes linewidth arises due to the Heisenberg uncertainty principle.  

According to this principle, a measured species, in this case the phonon, may only be 

measured within a certain energy band (Δε) if its availability to be measured (i.e., 

lifetime) is finite.  This is described mathematically according to the energy-time 

uncertainty relation:  

 ε
τ

Γ ≈ Δ =
h  (8) 
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where Γ is the width of the Raman line and τ  is the scattering time for a phonon [92].   

From Equation (8), one can see that the measured linewidth of a Raman peak will then 

vary proportionally with scattering time of the phonon mode. The scattering time of this 

phonon mode is dependent upon a variety of factors including microstructural defects, 

material boundaries, and, most importantly, other phonons.   It is this dominant phonon-

phonon scattering that gives rise to the temperature dependence of the linewidth as the 

number of phonons available for scattering is dependent upon the temperature deferent 

Bose-Einstein population distribution.  As the temperature increases, so too does the 

number of phonons present, thereby increasing the likelihood of a scattering event.  This 

increased likelihood reduces the phonon lifetime thus increasing the linewidth and 

allowing the linewidth to be used as a probe of temperature. 

 Due to its distinct link with scattering, GaN studies incorporating the linewidth have 

been exclusively centered on the decomposition of different phonon modes [93-96].  

Studies with silicon, however, have showed promise for usage of this spectral component 

in the measurement of temperature [78, 81].  Despite this fact, no studies have yet utilized 

the linewidth in the thermal analysis of GaN devices. 

1.4.3 Stress Dependence of the Raman Signal 

 To illustrate the effects of stress and deformation on the Raman signal, consider two 

objects connected by a spring of force constant K.  The relative displacement of one 

mass, u, can be described using the dynamic relation where m  is the reduced mass of 

both objects and u&&  is the acceleration of that mass: 

 mu Ku=&&  (9) 
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If this spring were harmonic, the frequency, and as such the resulting peak position, of 

the normal modes could easily be found to be equivalent to K
mω =

 
irrespective of the 

mass’ displacement.  In reality, the spring connecting the two atoms is anharmonic and 

hence the force it imparts varies with strain.  This variance can be described using 

Equation (10)  where ε  is the applied strain: 

 1K Kε ε
ε

∂
=

∂
. (10) 

 To account for the effect of this anharmonicity, Equation (9) must be modified as 

follows: 

 ( )1mu K K uε= +&& . (11) 

The solution of Equation (11) allows for the changes of the normal mode vibrations to be 

solved as a function of strain and, in turn, the dependence of the peak position as well.  In 

practice, material dependent phonon deformation potentials (PDP) are utilized allowing 

for the modified spring constant to be described as 
1 ( , , )K m f p q r= ×  with p, q, and r as 

the PDP.  Specification of this spring constant then allows for Equation (11) to be solved 

through the following secular equation as was performed originally by Ganesan et al. 

[97]: 

 
( )

( )
( )

11 22 33 12 13

12 22 11 33 23

13 23 33 11 22

2 2
2 2 0
2 2

p q r r
r p q r
r r p q

ε ε ε λ ε ε
ε ε ε ε λ ε
ε ε ε ε ε λ

+ + −
+ + − =

+ + −
. (12) 

In the above relation, εij are the strain tensor components and λj are the eigenvalues for 

phonon polarization modes j.  The difference in frequencies of the Raman spectra with 
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(ωj) and without strain (ωo,j)  can be correlated using these eigenvalues according to the 

relation:  

 2 2
,j j o jλ ω ω= − . (13) 

In the special case of biaxial strain common in many MEMS and microelectronic thin 

film devices, ε12 = ε23=ε13=0, and the secular equation reduces to:

 
( )

( )
( )

11 22 33

22 11 33

33 11 22

0 0
0 0 0
0 0

p q
p q

p q

ε ε ε λ
ε ε ε λ

ε ε ε λ

+ + −
+ + − =

+ + −
. (14) 

The solution of this equation allows for the following simple relation between the shift in 

the Stokes peak to the level of stress present in the device: 

 Dω σΔ = . (15) 

where D is a calibration constant obtained separately and σ  is the stress.   

 The derivation of Equation (15)  demonstrates that the stress sensitivity of the Raman 

signal arises from a modification in the strength of the interatomic bonds (i.e., springs) in 

response to an elastic deformation (i.e., strain).  With a change in the strength of these 

bonds, the resulting frequency of the vibrational modes governed by these “springs” is 

altered as well.  This modification is “felt” by that portion of the Raman spectrum 

probing the energy of these modes, namely the peak position.  Notice that the physical 

causation for the spectral dependence stems from a relative displacement of one atom 

relative to another irrespective to the source of this displacement.  Therefore, as both 

temperature and elastic stress induce such a displacement, the peak position dependence 

to each of these effects is then identical in its causation and inherently convoluted in their 

dual presence.   



 27

 Due to this dual dependence of the peak position, Raman measurements have been  

limited to quantifications of only those stress components that may be measured apart 

from thermal loads.  Despite this significant limitation, Raman is frequently incorporated 

to examine the dependence of the residual stress to such factors as film thickness [66, 

98], substrate [99, 100], and surface depth [101].  In addition, the peak position has also 

been implemented to quantify the stress that evolves in response to the inverse 

piezoelectric effect [102].  However, as the operational thermoelastic stresses have not 

been quantified, measurement of the total load in AlGaN/GaN HEMTs has not been 

possible using Raman or any other technique.   

1.5 Limitations in the Analysis of GaN Devices Using Raman Spectroscopy 

 Upon application of an electric bias on an AlGaN/GaN HEMT, inverse piezoelectric 

effects immediately induce a strain in direct proportion to the level of field present at a 

distinct location.  Simultaneously, the potential field impels acceleration of the electrons 

through the device at which point the transistor begins to operate.  The transformation of 

the potential energy of the bias into kinetic energy of the electrons causes a level of 

heating in the device linked to the resistance of this carrier movement and the number of 

carriers present at a point in space.  The heating, in turn, leads to thermal expansion that 

serves to enhance the piezoelectric contribution to the total strain.  In total, the confluence 

of these mechanisms elicits a level of both heightened temperature and stress at all 

locations near the active region of the HEMT.  It is, therefore, imperative that the 

measurement techniques used to measure either of these parameters be then able to 

distinguish between them.  Otherwise, any resulting estimations will be in error as the 

signals will be convoluted between both thermal and elastic sources.   
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 Due to ease of acquisition and lower inherent uncertainties, the peak position  is the 

most frequently implemented method utilized to measure either temperature or stress in 

GaN devices [103].  Utilization of this spectral component is problematic in the analysis 

of AlGaN/GaN HEMTs, however, due to the dual presence of both temperature and 

stress during operation. The complication stems from the nature of the peak position 

signal, which is derived mainly from the interatomic potential between the atoms.  The 

interatomic potential, and hence the peak position, is modified by any strain regardless of 

its origin as is shown schematically in Figure 8. Consequently, under combined 

thermomechanical loading, this change in peak location becomes convoluted due to the 

simultaneous effects of both temperature and stress relegating the accurate measurement 

of either parameter impossible. In fact, previous studies have specified errors in the 

measurement of temperature of up to 40°C due to the presence of stress in GaN 

transistors [102, 104].  Furthermore, there has been no investigation, Raman or otherwise, 
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Figure 8.  Response of the Raman signal's peak position to the effects of both 
temperature (left) and stress (right).  The peak position shows a dependence to each effect 
making the measurement of either difficult in their simultaneous presence. 
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which has experimentally quantified the level of operational stress present in an 

AlGaN/GaN HEMT as thermal effects inherently mask the elastic response.   

1.6 Linewidth of the Stokes Response to Analyze AlGaN/GaN HEMTs 

 Unlike many other thermometry methods, Raman directly probes the lattice 

vibrations allowing for information concerning both the stress state and the optical 

phonon transport within the device to be gleaned in addition to the temperature. Most 

investigations, however, forfeit much of this additional information and sacrifice 

substantial accuracy in the very measurement of temperature through sole reliance on just 

a portion of the Raman response, namely, the Stokes peak position.  In response to these 

challenges, this study focuses on developing a Raman technique capable of both 

increasing the accuracy of device temperature measurement and sustaining the fidelity of 

the added lattice information inherently present in the signal through incorporation of an 

additional spectral component.   

 Often neglected, the linewidth (FWHM) of the Stokes response offers intriguing 

capability into meeting these objectives.   This aspect of the signal is directly related to 

the scattering time of the examined phonon mode, and until the most recent past, has 

been employed exclusively to analyze the lifetime of this lattice vibration [93, 96, 105].  

These scattering times are dominated by the population of the phonons themselves; a 

population governed solely by temperature through the Bose-Einstein distribution. Due to 

this temperature dependent population, it is possible to utilize the linewidth of the Raman 

spectrum to measure temperature [106].  In addition, the linewidth’s dependence upon the 

Bose-Einstein phonon distribution also suggests a possible independence of this part of 

the spectrum to thermoelastic stresses as was reported by Abel et al. [78].  Consequently, 
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increased accuracy in Raman temperature measurements in the presence of stress may be 

realized through use of this spectral component.   

 The incorporation of this newly proposed linewidth thermometry method allows for 

the operational stress in the device to be acquired as well.  Specifically, measurement of 

the temperature using the Raman linewidth allows for the Stokes peak position response 

to be deconvoluted from its dual dependence upon temperature and stress.  The 

successful use of this deconvolution will enable Raman spectroscopy to be the first 

technique capable of simultaneously probing the full thermomechanical response in 

operating electronic devices.  Furthermore, the linewidth also allows for insight into the 

evolution of these measured parameters as it probes the scattering of the phonon, and 

hence, its transport.  Therefore, through implementation of the linewidth new avenues are 

made available for a thorough quantitative description of the thermomechanical 

environment while offering a fresh glimpse into the qualitative nature of how this 

environment came to be. 

1.7 Method and Outline of Study 

 Specifically, the current study develops the use of the linewidth to overcome the 

limitations of peak position based Raman measurements in order to more thoroughly 

investigate the coupled thermo-electro-mechanical loop determining the performance and 

reliability of AlGaN/GaN HEMTs.   The methodology divides this task among two 

thrusts that leverage linewidth’s capability to probe the transistor’s response in both a 

quantitative and qualitative fashion.  Quantitatively, device assessment is first examined 

through investigation of temperature measurements performed in the presence of 

complex stresses during operation of GaN microelectronics (Chapter 2).  Using the 
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information obtained with respect to the stress dependence of the spectral components, a 

method to measure the operational thermoelastic stress in a single measurement is then 

described in Chapter 3.  With this new capability, the residual, thermoelastic, and 

piezoelectric induced stresses are compared to obtain the total load in an AlGaN/GaN 

HEMTs for the first time.    

 The secondary thrust of this investigation focuses on the role of lattice transport in the 

thermal response of GaN devices to aid in the qualitative explanation of the temperature 

values initially measured.  First, the additional lattice information implicitly contained, 

but frequently ignored, in the Raman spectrum is examined in order to help elucidate the 

role of phonon/carrier interaction in the dissipation of thermal energy.  Utilizing the 

linewidth to measure the lifetime of a series of phonon modes, the effect of free carrier 

concentration on the transport of phonons is investigated in Chapter 4 to identify energy 

bottlenecks that occur during device operation.  This study provides not only unique 

insight into the phonon modes that limit heat dissipation, but also provides critical 

phonon lifetime data needed for device simulation.  Subsequently, Chapter 5 further 

examines the role of lattice transport through a simulation of heat transport at the 

interfaces between the active, GaN, region of the device and the underlying substrate 

through which the majority of the thermal energy flows.  The role of disorder at these 

interfaces and the relative merits of the frequently employed substrates utilized in these 

devices are examined.  The final portion of this study (Chapter 6) serves to summarize 

the major findings and discusses the conclusions of the study as a whole. 
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CHAPTER 2 

MICRO-RAMAN THERMOMETRY IN THE PRESENCE OF COMPLEX 
STRESSES IN GAN DEVICES  

 
 
 

2.1 Overview and Approach 

 AlGaN/GaN HEMT device reliability is inversely related to the operational 

temperature as degradation has been observed to most often follow an Arrhenius 

relationship [34].  To accurately assess the nature of this thermally induced degradation 

and predict the resulting mean time to failure, it is then necessary to first acquire an 

accurate measurement of the temperature itself.   While a number of techniques have 

been utilized in the thermometry of GaN devices, Raman spectroscopy remains one of the 

most widely incorporated.  The 1 μm spatial resolution and relative ease of 

implementation have offered insight into physical phenomena previously undetectable by 

methods such as IR thermography [53, 54, 63, 68, 82, 84, 85, 87].  In Raman 

thermometry, temperature is deduced through analysis of the inelastic energy transfer 

between light (photons) and lattice vibrations (phonons).  As the incident light is 

invariant with device temperature, all deductions are based upon changes in the phonon 

behavior of the crystal.  Thus any aspect of the phonon that changes with temperature, i.e. 

its population, lifetime, or energy, can then be used to probe the thermal state of the 

device. 

 Temperature measurements using Raman spectroscopy are typically carried out by 

analyzing changes in the energy of zone-centered optical phonons through analysis of the 

Stokes peak position.  In such an approach, a shift in frequency of the peak is monitored 
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and subsequently converted to temperature using an appropriate calibration standard.  

Often, this calibration is acquired by tracking the change of a prominent Raman peak 

across the temperature range of interest.    Practically, this occurs by uniformly heating a 

sample and following the degree to which the peak shifts due to a known temperature 

change.  Upon calibrating a GaN epilayer structure, however, there is an inherent 

evolution of thermoelastic stress that arises due to mismatches in the coefficients of 

thermal expansion between the layers.  The extent to which this stress develops, in turn, 

affects the resulting calibration.  In fact, previous research has demonstrated that 

differences in the Raman calibration of GaN epilayer structures may be attributed to 

variances in the stress states between the samples [104]. As a consequence, a calibration 

is strictly valid only if the stress state at which the measurement is taken is identical to 

that at which the calibration was performed. 

 Similarly, a peak position based temperature measurement remains strictly valid only 

if the stress state during the acquisition is identical to that of the calibration.  In reality, 

 
 

Figure 9. Modeled temperature contours in HEMT device during (a) calibration and (b) 
operation.  Due to the difference in temperature distributions, the stress state during 
operation will be different than that of calibration.  The differing stress states will 
contribute to errors in the measurement of temperature when utilizing the Stokes peak 
position. 
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however, calibration occurs through uniform heating of the sample while a device in 

operation is subject to localized heating that induces a vastly different stress state (see 

Figure 9).  Hence, device temperature measurements using the Stokes peak shift are then 

subject to errors induced by the presence of stress as may be visualized in Figure 10.  

 During a typical measurement, for example, the device is initially investigated at a 

known reference temperature To (Point A).  Upon operation of the device, the 

temperature increases to some temperature T that, independent to the presence of stress, 

would induce a shift in the Raman response (Point B).  However, the presence of 

compressive stress that arises during sample heating suppresses this peak shift (Point C) 

resulting in an underestimation in the measurement of temperature.  This situation is 

particularly problematic for electronic devices that often have regions of localized 

heating (e.g., transistor channels) in which compressive stress states result due to the 
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Figure 10. Measurements of temperature using the peak position begin with a reference 
scan at a known temperature (Point A).  With an increase in temperature during 
calibration, the peak shifts to a lower wavenumber (Point B).  During operation of a 
device, compressive stress reduces the magnitude of this shift (Point C) causing errors in 
the resulting measurement of temperature. 
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thermal expansion constraints provided by the cooler surrounding material.  Thus, peak 

position based Raman thermometry of electronics is subject to under estimations in the 

measurement of temperature due to these compressive stresses.   

 The extent of this under estimation is directly proportional to the degree to which the 

stress state at calibration differs from that of measurement.  Therefore, if the deviation 

between the stress states is minimal, then the errors are small as well.  Regardless, it is 

necessary to consider the stress when making Raman temperature measurements as its 

presence may yield large, non-negligible, errors [102, 104].  Despite this fact, while some 

investigations have been performed with respect to both MEMS and GaN devices, the 

impact of evolving stress states on Raman thermometry has received limited attention in 

the literature [78, 82, 104, 106, 107]. 

 Stress independent Raman measurements may be accomplished by examining the 

solely temperature dependent phonon population through analysis of the ratio between 

the Stokes and anti-Stokes intensities [108, 109].  Although theoretically simplistic, the 

extensive nature of this measurement makes both calibration and experimentation quite 

difficult in practice [110].  In addition, the integration time is at least double that of a 

standard Stokes analysis making the approach time intensive as well as tedious.  In light 

of these considerations, the ideal Raman spectral component for thermal measurements 

would provide both the stress insensitivity of the Stokes/anti-Stokes ratio with the speed 

of the Stokes peak position measurement. 

 To this end, recent investigations have focused on performing temperature 

measurements utilizing the lifetime of the phonon through analysis of the linewidth of the 

Stokes response.  This aspect of the spectrum is stress insensitive in silicon based devices 
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thus allowing for thermal evaluation even in the presence of an evolving thermoelastic 

stress [106].  However, in GaN based devices, it is unclear whether this same 

insensitivity will remain as stress no longer stems solely from thermally induced effects 

but also due to piezoelectric contributions that may affect both the energy and the lifetime 

of the phonon. Such ambiguity demands that the full nature of the Raman response be 

examined with respect to these dual stress effects in order to develop an accurate 

temperature measurement technique independent of their presence. 

 In response to these aforementioned issues, this study presents an examination of the 

Raman response of the E2
High phonon mode in GaN to the effects of both mechanical and 

inverse piezoelectric induced stress. For each of the induced stresses, the dependence of 

the Stokes peak position, linewidth, and Stokes/anti-Stokes intensity ratio is examined. 

With knowledge of the spectral dependencies, temperature measurements that account for 

these stress effects were performed on two differing GaN device architectures through the 

use of both the Stokes linewidth and the ratio of Stokes to anti-Stokes intensities.  

Comparisons between measurements and a 3-D finite element model were then made in 

order to validate the experimental results. 

2.2 Device Technology 

 GaN devices utilized in this study are provided by RFMD® Inc.  The devices are 

based on an undoped AlGaN/GaN heterostructure epitaxially grown on an optimized 

GaN buffer layer that itself was grown on a semi-insulating silicon carbide (SiC) 

substrate.  A transmission line measurement device (TLM) was then created on this 

epilayer stack by patterning a source and drain using Ti/Al based ohmic contacts.  In the 

case of the TLM devices, these contacts are separated by a 20 μm channel that serves as 
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the active region of the device. A high electron mobility transistor (HEMT) was also 

fabricated on the same epilayer stack using similar source and drain contacts along with 

an additional 0.5 μm long Nickel Schottky barrier gate contact.  Further details on the 

processing and composition of both the TLM and HEMT, each of which are shown 

schematically in Figure 11, may be found in [111, 112].  Finally, in order to facilitate 

testing, the devices are wafer bonded to an alloyed copper/tungsten (Cu/W) package. 

2.3 Raman Instrumentation and Testing Procedure 

 All Raman experiments were performed through use of a Renishaw InVia Raman 

microscope with 180º backscattering geometry and 488 nm Ar+ laser (see Figure 12 ).  To 

facilitate the experiment, monochromatic laser light, insured through use of a rejection 

filter, is spatially collimated whereupon it is focused using standard microscopic optics 

resulting in a beam spot of as little as 1 μm [109].  Upon the radiation’s impingement 

with the surface, on the order of only 1 in 1000 incident photons are scattered by the 

analyte material.  Of this scattered radiation, less than 1% (i.e., 1 out of every 106 photons 

initially incident) actually stems from the Raman signal [113].  This necessitates that 

much of the radiation collected by the microscope objective be routed through a filter in 

 
Figure 11.  Schematic showing layout of (a) the entirety of the package (b) TLM and (c) 
HEMT including location of the Raman spot. 
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order to negate the overwhelming Rayleigh and reflected signal.  After filtering, the 

resulting Raman radiation passes through a slit that aligns the beam with the dove mirror.  

The dove mirror, in turn, directs the signal onto a grating that disperses the radiation into 

its constituent components via Bragg diffraction, thus allowing measurement of the light 

across the spectrum via a multi-channel CCD collector. 

 
 

 
 
Figure 12.  Renishaw InVia system (top) that performs the micro-Raman backscattering 
experiment, in which light is both scattered and collected via a microscope and 
subsequently measured utilizing a dispersive grating and CCD device. (Upper image 
courtesy of Renishaw plc.) 
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 For this study, a spectrometer focal length of 250 mm was employed in combination 

with a diffraction grating of 3000 lines/mm, allowing for a spectral dispersion of 0.46 cm-

1/pixel to be obtained at a slit width of 40 μm.  A slit width of 40 μm provides an 

attractive balance between detection capabilities and signal levels at the expense of some 

spectral resolution.  Even with this expense, however, the resolution is sufficient for 

detecting Stokes peak shifts to within ±0.037 cm-1 from Voigt fits of the isolated E2
High 

GaN Raman line.  A 50X objective with a numerical aperture (NA) of 0.5 and a “long” 

working distance of 8.6 mm was used to focus the probe laser beam and collect the 

Raman signature of the samples. Finally, as GaN is semi-transparent for the visible light 

used as a probe, laser heating of the sample is of minimal consequence. 

2.3.1 Calibration of the Raman Spectrum with Temperature 

 The acquisition of temperature using Raman spectroscopy necessitates an accurate 

calibration of the Raman response across the entirety of the temperature range of interest.  

To this end, a TS-1200 Linkam thermal stage (see Figure 13) is utilized to uniformly heat 

the calibrated species allowing for its response to be monitored at a series of known 

temperatures.  In this manner, temperature is directly correlated to a change in the Raman 

signal thereby enabling these changes to be utilized as a thermometry probe.  Practically, 

a complication arises in using the stage as the working distance of the objective is less 

than the distance from the heated surface to this optical component (see Figure 13). It is, 

therefore, necessary to utilize a spacer to raise the sample to a level within the objective’s 

working distance.  This spacer, however, has a non-negligible thermal resistance that 

induces a difference between the temperature of the crucible and that of the sample being 

examined.  To circumvent this difficulty, the well characterized Raman response of stress 
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free silicon was utilized as a surrogate sensor in order to specify the actual temperature of 

the sample even as it rested on the spacer [114].  In this manner, the Raman response of 

all spectral components may be calibrated irrespective to the nature of the crucible’s 

thermal environment.   

 Utilizing this procedure, two sample types were calibrated for this study.  In the first, 

the response of a monolithic crystal is analyzed such that the material response may be 

analyzed apart from the evolution of any stress.  This is particularly useful for the 

acquisition of the stress free response of the peak position that is utilized to quantify the 

thermoelastic stress in Chapter 3. With respect to the Stokes/anti-Stokes intensity ratio, 

however, differences in the optical characteristics of the monolithic sample and the 

device under test may be large.  These differences, in turn, may induce large uncertainties 

in the resulting measurement of temperature.  In response, all temperature measurements 

in this study were obtained through the calibration of an actual TLM device.  

         
 

Figure 13.  The Linkam TS-1200 heated stage is pictured (left) along with a schematic of
its cross section (right).  The stage is implemented to acquire the calibration of a 
material’s Raman’s response with temperature.  The stage uniformly heats the sample 
allowing for the response to be acquired at a known condition. (Image adapted from 
Linkam Scientific Instruments Ltd.)  
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Incorporation of this procedure minimizes both these optical differences as well as any 

microstructural variations between the calibrated species and the measured device.  While 

the usage of a multilayered device will undoubtedly induce a degree of stress dependence 

into the peak position calibration, the resulting temperature measurements will still be 

modified by the evolving stresses due the vastly different elastic states between 

calibration and device operation (see Figure 9).   

 Specifically, this type of calibration was obtained through analysis of the GaN E2
High 

mode at the midpoint of a TLM device from 23°C to 500°C.  For each measurement, at 

least 70 separate spectra were obtained with integration times adjusted such that peak 

heights remained constant at ~10,000 counts.  The acquired spectra were then fit using 

Voigt profiles in order to calculate the temperature dependency of the Stokes peak, 

linewidth and ratio of Stokes to anti-Stokes intensities.  After all measurements were 

completed, the dependencies were found to follow the expected linear, parabolic, and 

-8

-6

-4

-2

0

0

0.8

1.6

2.4

3.2

4

4.8

5.6

0 100 200 300 400 500

ω
−ω

ο [c
m

-1
] Γ−Γ

ο  [cm
-1]

T - T
o
 [oC]

(a)

5

10

15

0 100 200 300 400 500

I S
to

ke
s/I A

nt
i

T - T
o
 [oC]

(b)

 
Figure 14. Calibration of (a) Stokes peak position, (b) Stokes linewidth and (c) the ratio 
of Stokes to anti-Stokes intensity as a function of temperature at the midpoint of a 
packaged TLM device.  Using these curves, any change in a spectral component may be 
transformed to temperature if stress induced effects are negligible. 
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exponential trends for the peak position, linewidth, and intensity ratio, respectively, as is 

shown in Figure 14.   

 Through fitting of these trends, any change in the spectrum can be correlated to an 

equivalent change in temperature.  With respect to the peak position and linewidth, the 

temperature measurement is intensive in nature as a relative change from a known 

reference condition is transformed to an equivalent temperature using the linear and 

parabolic relationships in Equations (16) and (17) shown below, 

 ( )o oA T Tω ω= − +  (16) 

 ( ) ( )2
o o oB T T C T TΓ = − + − + Γ . (17) 

In the above equations, ω and Г are the measured peak position and linewidth at 

temperature T while ωo and Гo are the reference peak position and linewidth measured at 

the reference temperature of To.  A, B, and C are calibration constants, which are given 

alongside their 95% confidence intervals in Table 2 .  In contrast to the spectral 

Table 2.  Calibration constants and their 95% confidence intervals utilized to transform a 
spectral change into temperature. 
 

Peak Position Linewidth Intensity Ratio 

Calibration Constant Calibration Constant Calibration Constant 

A 

[cm-1/°C] 
-0.01411 ± 3e-5 

B 

[cm-1/°C2] 
1.207e-5 ± 2.4e-7 G 2.103 ±.029 

  
C 

[cm-1/°C] 
5.95e-3 ± 1.23e-4 

H 

[K] 
609.1 ±11.7 
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components described in Equations (16) and (17), the Stokes to anti-Stokes intensity ratio 

is extensive in nature and hence does not depend on a relative change (i.e., oω ω− ).  

Rather an absolute ratio is related to the temperature through calibration constants G and 

H described in Equation (18) below: 

 
H
TStokes

Anti

I G e
I

⎛ ⎞−⎜ ⎟
⎝ ⎠= ⋅ . (18) 

2.3.2 Effects of Mechanically Induced Stress on the Raman Spectrum 

 To quantify the effect of stress on the Raman spectrum, a 4 point bending procedure 

was performed on the epilayer stack consisting of the SiC, GaN, and AlGaN layers using 

the testing stage shown in Figure 15.  Under increasing levels of tensile stress of up to 

360 MPa applied along the basal plane (plane ⊥ to c-axis) of the GaN crystal, spectra 

were collected and analyzed with respect to the change in peak position, linewidth, and 

intensity ratio.  While the induced stress was uniaxial rather than biaxial in nature, the 

Raman response between the different stress states are linked due to the commonality in 

     
 

Figure 15.  Schematic representation of 4-point bending stage utilized to examine 
epilayer stack in either mechanically induced tension or compression. (Drawings courtesy 
of David Schmale at Sandia National Laboratories) 
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the phonon deformation potential within the basal plane [115].   

2.3.3 Effect of Inverse Piezoelectric Loads on the Raman Spectrum 

 Thermoelastically induced stresses are not the sole contributor to the overall stress 

state during the operation of GaN transistors as the inverse piezoelectric effect is 

prevalent as well.  Thus to understand the entirety of the stress’s effect on the Raman 

response, a HEMT device was powered under pinch off conditions in order to induce this 

type of load while simultaneously preventing device heating.  The Raman response was 

then characterized with varying source-drain biases ranging from 10-48 V, which gave 

rise to varying levels of stress stemming from the inverse piezoelectric effect.  With this 

approach, the Raman response is monitored under loads induced independent of Joule 

heating as the current is held below 0.02 mA in a manner similar to that of Sarua et al. 

[102]. 

2.3.4 Device Temperature Measurements 

 Using the acquired dependencies of the Raman response to temperature and stress, 

temperature measurements were carried out on both the TLM and 6-finger HEMT during 

device operation.  For all measurements, samples were mounted to a controlled heated 

stage with a thermal grease compound in order to reduce any contact resistance such that 

the backside package temperature of the device was maintained at 85 +/- 0.5°C as 

verified using, once again, Raman thermometry of a stress free sample of silicon.   The 

85°C package temperature is utilized as it induces higher operating temperatures and 

stress during device operation that allow for a more rigorous examination of each spectral 

component’s response.  For the TLM, Raman spectra were obtained at the midpoint of 
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the device under power dissipations of up to 6 +/- 0.01 W as monitored by a Keithley 

2430 SourceMeter®.  At each power level, the Stokes peak shift, linewidth, and intensity 

ratio were used to measure temperature.  A similar procedure was used in the analysis of 

the HEMT to examine temperatures at total dissipated powers levels up to 6.2 +/- 0.01 W 

(2.8 W/mm).  In this case, the Raman response was acquired along the 3rd finger at the 

midpoint of the channel between gate and drain halfway along the gate width as seen in 

Figure 11(C). 

2.4 Finite Element Modeling of Devices 

 To verify the temperature measurements acquired during the Raman experiments (as 

well as the stress measurements acquired as part of Chapter 3), finite element models of 

both the TLM and HEMT devices were built utilizing the ANSYS software package 

[116].  In order to simplify the systems under investigation, symmetry allowed for only 

one quarter of the geometry to be modeled as is shown in Figure 16 for the HEMT 

device.  This geometrical reduction limited the number of elements, thus speeding 

convergence.  To capture the essential non-linear physics of the devices, temperature 

dependent thermal properties were incorporated into the GaN, SiC, and Cu/W layers as 

shown in Table 3.  For the GaN, thermal conductivity values were acquired as a function 

of temperature through 3ω testing of MOCVD prepared GaN grown on sapphire, which 

is of similar quality to that of the epilayer stack [117]. Results from the test compare 

favorably with other reported values of thermal conductivity for GaN thin films with 

similar defect densities and doping profiles [118].  Further details on the 3ω technique are  

outlined in [119]. 



 46

 Additional layers in the packaged devices included a solder layer between the SiC 

and Cu/W, as well as a simulated thermal grease layer.  While the solder layer was 

included in the model specifically, the effects of the thermal grease layer were included 

through stipulation of a contact resistance between the bottom of the Cu/W package and 

the temperature of the heated stage (85°C).  This one dimensional approximation to the 

       
 

Figure 16.  Results from an electro-thermal coupled ANSYS simulation of the TLM and 
HEMT are compared to the Raman derived measurements of the temperature (Chapter 2) 
and biaxial thermoelastic stress (Chapter 3).  Quarter symmetry of the HEMTs material 
stack (Note: TLM not shown) (left) is examined with a refined grid (right) allowing for 
efficient computation of the device’s thermal and mechanical response. 

Table 3.  Thermal properties incorporated in the 3-D finite element model. 
 

Material Property Formula/Value Reference 
 

GaN 
 

k(T)  ( W/mK )
 

0.0013T2-1.3864T+547.41
 

Measured in this study
 

SiC k(T) (W/mK) 61100/(T-115)  
[120] 

 
Solder 

 
k (W/mK) 60 Supplied by vendor 

 
Cu/W Package 

 
k(T) (W/mK) -0.0004T2-0.7492T+18.20 [121] 
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grease layer is acceptable assuming the spreading resistance is small, which is likely 

owing to the extreme thinness of the layer. 

 It is important to note that the thin AlGaN layer used to generate the two-dimensional 

electron gas (2DEG) at the heterointerface of the bulk GaN layer is not modeled.  Typical 

AlGaN layers are extremely thin, typically two orders of magnitude smaller than the GaN 

film, thereby contributing little to the thermal signature.  The nature of such a thin film 

also allows for the heat generation to be added into the problem as a surface heat flux 

boundary condition instead of an embedded volumetric heat generation.  This 

implementation is advantageous as it significantly reduces the number of elements 

needed to accurately model the temperature response of the entire packaged device.  All 

solutions generated were then checked against multiple meshes to ensure proper 

convergence (see Figure 16 for final refined mesh).  Convergence was defined to be the 

point when the maximum temperature calculated between meshes deviated by less than 

1%. 

 Solutions generated with the finite element model allow for the temperature field to 

be known throughout the entirety of the three-dimensional structure.  This is not true, 

however, for measurements made with the micro-Raman technique.  Gallium nitride is 

semi-transparent to the 488 nm laser used in the experiments, and therefore, the Raman 

system is essentially probing a volume of GaN instead of a distinct focal point.  The 

resulting measurements are then a volume average through the GaN layer rather than a 

temperature at a distinct location.  This averaging will under-predict the maximum device 

temperature by an amount proportional to the input power.  Consequently, in order to 

compare the simulated results to the Raman data, the calculated temperature field was 
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averaged through the entirety of the GaN layer using a simulated cylindrical volume 1 

μm in diameter analogous to the region that is experimentally probed. 

2.5 Effect of Stress on the Raman Spectrum  

2.5.1 Effects of Mechanically Induced Stress on the Raman Spectrum 

 The effect of mechanical stresses on the Raman spectrum in GaN is shown in Figure 

17. As expected, the peak position shows a linear shift with stress.  This dependency 

arises due to changes in the interatomic potentials occurring between each of the atoms 

along the direction of the load.  The interatomic potential, in turn, is the greatest 

determinant of the phonon frequency and hence with its change comes an associated 

change in the  peak position response [80].  As these potential changes cause the peak 

position to shift to higher wavenumbers with compressive loads while decreasing with 

higher temperature, measurements derived from this aspect of the signal oftentimes under 

predict the temperature during analysis of an operational device [78, 106]. 
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Figure 17.  Effect of uniaxial stress on (a) Stokes peak position, Stokes linewidth, and (b) 
Stokes/anti-Stokes ratio applied upon the epilayer stack.  Only the peak position shows a 
dependence upon this mechanically induced stress along the non-polar planar direction. 
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 The same dependency on mechanical stress is not seen, however, in either the 

response of the linewidth or the ratio of Stokes to anti-Stokes intensities as is seen in 

Figure 17.  This independence arises due to the very nature of the signals from these 

components.  For example, the Stokes/anti-Stokes intensity ratio is chiefly dependent 

upon the population of the phonon being examined. Thus, as the number of phonons is 

determined by the temperature dependent Bose-Einstein distribution, the resultant signal 

is independent of the applied stress as the phonon’s population is independent of the 

stress’ presence as well. 

 Similarly, the linewidth shows independence to this type of stress as its response is 

largely population dependent as well.  Its signal arises as a consequence of the 

Heisenberg uncertainty relation, which stipulates that a measured species, in this case the 

phonon, may only be measured within a certain energy band if its availability to be 

measured (i.e. lifetime) is finite.  This lifetime, in turn, is dependent upon a variety of 

scattering sources including, most importantly, other phonons.  As phonon-phonon 

scattering most often dominates, it is then both the presence of, and interaction with, 

other phonons that will determine the linewidth of the Raman signal.  The presence of 

these other phonons is determined by, once again, the temperature dependent Bose-

Einstein population distribution while the interaction between phonons is decided by the 

dispersion of the crystal lattice stemming from the interatomic potential field [96].   

While the interatomic potential field certainly changes with stress, the empirical results of 

the bending test indicate that only a minimal change in the phonon-phonon scattering 

results when the stress is applied along the non-polar basal plane of the crystal.  As a 

result, both the linewidth and the Stokes/anti-Stokes intensity ratio may then be used to 
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measure temperature even in the presence of a biaxial stress oriented along this basal 

plane as often evolves during operation of a device. 

2.5.2 Effect of Inverse Piezoelectric Load on the Raman Spectrum 

 Unlike the one dimensional electric field present during operation of a TLM structure, 

a two dimensional field forms upon activation of the HEMT device.  The 2D field will be 

oriented in such a way that a planar component will be directed along the vector pointing 

from the source to the drain while a separate through thickness (vertical) contribution will 

form along the polar [0001] direction of the GaN crystal due the presence of the gate 

[102].  These electric fields will subsequently induce strains in the material due to the 

inverse piezoelectric effect.  Since GaN has only three independent non-zero components 

of the piezoelectric modulus, a shear strain is the sole component present during the 

operation of the TLM [122, 123].  During operation of a HEMT, this same shear strain is 

augmented by axial strains along each of the three principal directions resulting from the 

vertical field component.    The final stress state of the device will then result from these 

induced strains and the subsequent constraint to deformation supplied by the underlying 

SiC and any gradients that are present in the electric field.  Disparate from the 4-point 

bending test, it is of particular importance that the resulting stress state will have a non-

zero component along the polar (parallel to c-axis) [0001] direction.  
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 To examine if the induced stress along the polar direction affects the Raman response, 

a HEMT device was examined under pinch off conditions allowing for the development 

of inverse piezoelectric induced stresses apart from Joule heating.  Shown in Figure 18 is 

the effect of this loading on the Raman response for each of the examined aspects of the 

spectrum.  Similar in response to the mechanically induced stress, the peak position 

displays a linear dependence with increasing source-drain voltage indicating that the final 

stress is indeed directly proportional to the applied field.  The linewidth, meanwhile, is 

dependent upon the inverse piezoelectric effect as well.  This result is contrary to the 

initial 4 point bending investigation and indicates that the inverse piezoelectric effect 

distorts the dispersion to an extent that affects scattering and hence the linewidth.  Thus 

when subject to appreciable loads arising from the inverse piezoelectric effect, such as 

those present during HEMT operation, the linewidth, unless in some way corrected, will 
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Figure 18. Effect of the inverse piezoelectric effect on (a) the Stokes peak position and
linewidth and (b) the Stokes to anti-Stokes intensity ratio applied through biasing of a 
HEMT under pinch-off conditions.  Unlike that seen for 4-Point bending test, the 
linewidth displays dependence to this type of loading. 



 52

induce errors in the measurement of temperature.  Without a correction to the linewidth, 

it is then necessary to utilize the Stokes to anti-Stokes intensity ratio to measure 

temperature as this metric is insensitive to both types of loading as is shown in Figure 

17(b) and Figure 18(b). 

2.5.2.1 Origin of the Linewidth Dependence on Stresses Arising from the Inverse 

Piezoelectric Effect 

 The linewidth shows independence to stresses arising via a mechanically applied load 

whereas, as was shown in the previous section, its signal is acutely dependent on a load 

induced from the application of an electric field.  It remains unclear, however, as to 

whether it is the electric field itself that induces the linewidth’s change or instead if it is 

the direction of the induced stress being parallel to the polar c-axis that causes the 

dependence.  To further investigate this question, an additional 4-point bending test was 

performed on a non-polar bulk GaN crystal allowing for a load to be mechanically 

induced along the [0001] direction.   Specifically, the crystal was strained to failure both 

in tension and in compression while the linewidth response of the E2
High mode was again 

analyzed. 
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 Shown in Figure 19 is the response of the linewidth to both compressive and tensile 

loading along the polar direction.  The linewidth shows a subtle degree of dependence on 

this type of loading as broadening is observed to occur at heightened stress.  However, 

the response is nearly an order of magnitude weaker when compared to the induced 

change due to the piezoelectric loading (see Figure 18) although the amount of stress 

along the c-axis is of similar magnitude in either case (see Section 3.5.3)  [102].  

Consequently, the direction of the load cannot be the sole causation of the linewidth’s 

dependence on the stress induced from piezoelectric effects.  Rather, the underlying cause 

could stem from the combination of the dominant polar load with the secondary axial and 

shear components or the presence of the electric field itself.  Further investigation is 

warranted before a definitive answer can be obtained. 
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Figure 19.  Dependence of the linewidth to a load in the polar [0001] direction. 
Although there is a degree of dependence, its magnitude is an order of magnitude less 
than that observed under a piezoelectric induced load.  This suggests that the linewidth’s 
sensitivity arises from a cause in addition to just the direction of the strain. 
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2.6 Measurement of Device Temperature 

2.6.1 TLM Device 

 To investigate the capability of Raman thermometry in the presence of an evolving 

thermoelastic stress, a TLM device was probed at a package temperature of 85°C under 

dissipative powers of up to 6 W.  In order to completely assess the capability of 

measuring temperature at these large loads, each aspect of the Raman spectrum was 

utilized. Regardless of the method, temperature was obtained by comparing the 

difference in the Raman spectra between the unpowered reference (VSD = 0) and powered 

states.  The spectral difference was then transformed to a temperature using the 

appropriate calibrations shown in Figure 14 and subsequently compared with the finite 

element model in order to assess the suitability of each method.  At least 50 separate 

spectra were acquired at each experimental condition such that the resulting uncertainty 

in the temperature measurement was +/- 0.4, 2.0, and 4.9°C for the peak position, 

linewidth, and Stokes/anti-Stokes intensity ratio, respectively.  A more thorough 

explanation of the uncertainty in the measurements will be given in a subsequent section. 

 The resulting trends of temperature versus power are shown in Figure 20 for each of 

three aspects of the Raman spectra as well as the model.  Values of the measured 

temperature derived from both the linewidth and Stokes to anti-Stokes ratio correlate well 

with those of the model indicating the accuracy of each technique.  Meanwhile, the 

evolution of the thermoelastic stress causes the peak position to under predict the 

temperature by as much as 50°C in manner similar to that which occurs during the 

operation of silicon devices [78, 106].  These results indicate the efficacy of using either 
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the linewidth or intensity ratio even in the presence of thermal stresses without the need 

for any correction procedures. 

 Derived from these measurements, a separate conclusion can be made about the 

sensitivity of the linewidth to stresses arising from the inverse piezoelectric effect.  As 

shown in a previous section, the linewidth is modified with the application of the two 

dimensional electric field present during operation of a HEMT.  In a TLM, this field is 

one dimensional in nature and acts to produce only a shear stress in the material.  As the 

TLM cannot be operated under “pinch-off” conditions like the HEMT, it is unclear 

whether this shear stress will affect the linewidth.  The subsequent temperature 

measurements using the linewidth, however, show distinct correlation with estimates of 

both the Stokes/anti-Stokes ratio as well as the model, thereby indicating that this shear 

stress induced from the inverse piezoelectric effect must minimally affect the linewidth.    
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Figure 20. (a) Variation in the spectral response of the peak position and linewidth to 
increasing power levels in a TLM device (Note: intensity ratio is not shown).  (b)  Using 
these spectral changes with an appropriate calibration, operating temperature of the TLM 
device is estimated. The temperature measured using both the linewidth and Stokes/anti-
Stokes ratio correlate well with the prediction of the computational model.  The peak 
position significantly under predicts the temperature as it is affected by the presence of 
the evolving thermoelastic stress. 
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Therefore, it is the vertical field acting along the polar direction of the crystal present 

only during HEMT operation that is the dominant piezoelectric component and causes the 

subsequent changes in the linewidth. 

2.6.2 HEMT Device 

 Following a procedure similar to that undertaken in the analysis of the TLM device, 

the HEMT was investigated at a package temperature of 85°C under increasing levels of 

power dissipation up to 6.2 W (2.8 W/mm) with a source-drain bias (VSD) of 28 V.  Once 

again, each aspect of the Raman spectrum was used to evaluate temperature whereupon 

the efficacy of the methods was evaluated through comparison with the finite element 

model.  In this case, at least 70 separate spectra were acquired at each experimental 

condition such that the resulting uncertainty in the temperature measurement was +/- 

0.90, 2.5, and 4.1°C for the peak position, linewidth, and Stokes/anti-Stokes intensity 

ratio, respectively.   Shown in Figure 21 are the derived trends for temperature versus 

power for each of the different techniques.  Due to its sole temperature dependence, 

measurements derived from the Stokes to anti-Stokes intensity ratio are found to be 

closely correlated to the estimations of the model.  The result indicates the ability of the 

intensity ratio to measure temperature independent of the stress state in GaN devices.  

Both the linewidth and the peak position, however, significantly under predict the 

temperature due to the influence of the complex stress state arising from the dual effects 

of both the piezoelectric and thermally induced loads.  Consequently, in order to obtain a 

quick and accurate Raman thermometry method, the effects of these complex stresses 

must in some way be removed. 
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 Sarua et al. [102] assert that the level of piezoelectric induced stress will be similar 

regardless of whether the gate on  the transistor channel is opened or closed.  By 

following these results, errors in the temperature measurement due to the inverse 

piezoelectric effect may then be removed by simply comparing the difference in the 

Raman spectra between the powered and pinch-off, rather than unpowered, reference 

states.  Practically this is implemented by acquiring the reference state (ωο, Γο) under the 

pinch off conditions (VSD = 28 V, VG = -8 V) rather than the completely unpowered state 

(VSD = 0 V, VG = 0 V) and, once again, measuring the operating temperature of the 

HEMT.   As shown in Figure 22, it is clear that indeed the piezoelectric contribution may 

be removed using the pinch off reference condition as the measurements of temperature 

derived from the linewidth now show clear correlation to both the estimates from the 
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Figure 21. Operating temperature of a HEMT at a package temperature of 85°C acquired 
from Raman measurements derived using a standard un-powered reference condition. 
Only the measurements obtained from the Stokes to anti-Stokes intensity ratio correlate 
with the predicted operating temperatures due to this aspect’s independence to both 
thermally and piezoelectric induced stresses. 
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intensity ratio as well as the model.  However, despite the removal of the piezoelectric 

contribution, the peak position continues to under predict temperature as thermoelastic 

stresses remain a significant source of error. Nonetheless, through utilization of the pinch 

off reference condition, the linewidth allows for a Stokes based Raman temperature 

measurement independent of the complex stress states that arise during GaN transistor 

operation. 

2.7 Uncertainty in the Measurement of Temperature 

 Uncertainty in the predicted values of temperature stem from a variety of factors that 

influence the calculation of the position, intensity, and shape of the Raman peak.  These 

sources of error arise from changes in the actual spectrometer during testing, variation in 

the sampled volume due to drift in the microscope’s stage, spatial non-uniformities in the 

device response, or differences in the fitted spectra due to the inherent difficulty in fitting 
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Figure 22.  Operating temperature of a HEMT measured using Raman spectroscopy with 
a reference taken under pinch off conditions.  Using this non-standard reference condition 
allows for piezoelectric induced effects to be removed thus allowing for the accurate 
measurement of temperature through use of the Stokes linewidth. 
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a continuous Voigt function to a discrete “pixelated” data set.  To then quantitatively 

assess the accumulated uncertainty that is present due to each of these factors, the method 

of Kline and McClintock was utilized to vector sum the individual components present in 

the experiment [124].   

 Mathematically, this is accomplished through analysis of the equations predicting the 

temperature from a change in the analyzed spectral component.  With respect to the peak 

position based measurement, Equation (16) is first solved for temperature,  

 o
oT T

A
ω ω−

= + . (19) 

The individual uncertainties may then be linked to the final uncertainty in the 

measurement of temperature through analysis of Equation (19) as is shown below: 

 

1/ 222 2

o
o

T T TT A
A

δ δ δω δω
ω ω

⎧ ⎫⎛ ⎞∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
. (20) 

In Equation (20), Tδ , Aδ , δω , and oδω  are estimates of the 95% confidence intervals 

for the temperature, calibration constants, and peak position at the tested and reference 

conditions, respectively.  In the above relation, it is assumed that the reference 

temperature, To, remains constant throughout testing.  The confidence intervals, 

themselves, were reduced through the acquisition of multiple spectra during both 

calibration and testing.  As the resulting data sets maintained a Gaussian distribution as 

verified using  Pearson’s Chi-Square examination, the confidence intervals, Xδ , were 

then calculated from the standard deviations, stσ , of the acquired data set as given in the 

relation below: 

 1.97 stX
n
σδ =  (21) 
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where n is the number of acquired data points.  In all data sets, outliers were defined 

according to Chauvenet’s criterion [125].  Analogous procedures using Equations (17) 

and (18) for the linewidth and intensity ratio, respectively, were implemented as well 

allowing for the uncertainties in the totality of the measurements to be obtained.   

 The resulting uncertainty in the measurement of temperature for both the TLM and 

HEMT is shown in Figure 23 as a function of the dissipated power.  All uncertainty was 

found to be less than 5% of the resulting magnitude of the temperature measurement.  

Due to its extensive nature and non-linear response, the intensity ratio exhibits the 

greatest level of uncertainty as any drift in the optics of the spectrometer or the optical 

properties of the tested device tend to increase the scatter in the resulting measurements.  

This problem is circumvented in the peak position and linewidth based methodologies 

owing to the fact that only a relative change is measured and hence any drift in the 

system or device can be accounted for through use of periodic reference measurements 
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Figure 23. Uncertainty in the measurement of temperature for both the TLM (left) and 
HEMT (right) devices.  All errors are found to be less than 5% of the resulting 
temperature measurement. 
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taken throughout the analysis.   

 Not only is the measurement itself affected by the difficulty of an extensive based 

measurement, but so too is the calibration.  In fact, the total uncertainty in the intensity 

measurement stems from a comparable degree of scatter between both the measurement 

and calibration.  In contrast, the intensive measurements exhibit uncertainties dominated 

by the acquisition of the spectral components themselves, rather than their calibration, as 

the latter source is found to be of second order. The scatter in the acquisition of the 

spectral components stems from sources including not only those due to drift in the 

spectrometer but also from uncontrollable changes in the actual volume being 

interrogated.  These changes in volume occur due to the impossibility of perfectly 

fixturing a device throughout the acquisition of the Raman signal.  Due to this non-ideal 

fixturing, the device’s position randomly moves with respect to the focal point during 

acquisition of the signal (~6 minutes/data set).  As this movement occurs in a region of 

appreciable thermal gradient, the resulting acquisitions of the spectral components will 

then demonstrate heightened scatter.  It is believed that this positional drift is the main 

source of the uncertainty in the resulting temperature measurements and the reason that 

the HEMT, which is subject to larger gradients, exhibits greater scatter than the TLM (see 

Figure 23).     

 The level of uncertainty is found to remain relatively constant for all measurements 

regardless of the temperature measured.  The constant level of uncertainty, even as the 

magnitude of temperature increases, is in direct contrast to previous studies that have 

specified that scatter during Raman thermometry measurements increases with 

temperature [78, 126].  This study, however, unlike those previous, adjusted acquisition 
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times such that the signal to noise ratio (SNR) remained constant throughout all 

measurements and for all temperature levels.  This change allows for more constant 

fitting of the spectrum and hence reduced scatter in the resulting predictions. 

2.8 Validity of the Through Thickness Average Assumption 

2.8.1 Virtual Raman Investigation 

 Implicit in the measurement of transparent materials, and GaN in particular, is the 

probing of the entirety of the material in question.  As the vast majority of devices have 

through thickness temperature variations, it is necessary to investigate the manner in 

which the Raman signal, and subsequent temperature measurements, is modified by the 

thermal gradient.  Typically, it is assumed that the resulting signal is the average 

temperature through the thickness [54].  To quantify the validity of this assumption, a 

“reverse” Raman thermometry investigation is performed in which a known thermal 

gradient was used to estimate a virtual Raman response.  The virtual Raman response is 

then analyzed to calculate the resulting peak position and linewidth whereupon the 

“measured” temperature is found and compared to the average value through the layer 

defined by the specified temperature profile. 
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 Practically, this assessment occurs by first acquiring the through thickness response 

function of the spectrometer.  This response function describes the sensitivity of the 

spectrometer to material away from the focal plane and is acquired by successively 

comparing the intensity of the Raman signal as the focal plane is moved above and below 

the surface of the material of interest [127].  By analyzing an AlGaN/GaN HEMT in this 

manner, the response function was obtained and is shown in Figure 24.  The acquired 

response has a FWHM of 9.16 μm meaning that when a GaN device’s surface is 

analyzed, material at a depth of ~5 μm from the surface will influence the resulting curve 

at a weight of ½ that of the focal plane.  As the thickness of the GaN layers is less than 

this 5 μm, the entirety of the thickness will then affect the resulting Raman signal and, as 

expected, the subsequent temperature measurement.   
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Figure 24.  Through thickness response function of the spectrometer to an AlGaN/GaN
HEMT.  As the FWHM of this curve is 9.16 μm and the thickness of the GaN layer is 
less than 5 μm, the resulting spectrum will then be affected by the entirety of the GaN 
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 To assess whether this interaction may be accurately quantified through the oft 

employed assumption of a through-thickness average, a linear temperature gradient is 

assumed to exist in a 2 μm thick portion of GaN.  The gradients are varied such that the 

resulting temperature differences in the layer range from 10-50°C with the associated 

maximum temperature varied from 85-500°C.  The layer itself is separated into 500 

separate computational regions and a temperature is assigned to each region according to 

the assumed gradient and maximum device temperature.  Using these temperatures and 

the calibrations of the linewidth and peak position, an equivalent Raman spectrum is 

subsequently constructed for each of these computational regions.  The composite signal, 

analogous to that which would be acquired in an actual experiment, is obtained by 

summing each computational region’s response in a manner that is weighted according to 

the response function shown in Figure 24.   This composite signal is fitted using the curve 

fitting procedures previously described and the resulting “measured” temperature found 

according to the appropriate calibration.  The “measured” temperature is then compared 

to mathematical mean of the assumed temperature gradient in order to assess the validity 

of the through thickness assumption.  

 Shown in Figure 25 is the result of this procedure for both the peak position and 

linewidth based measurements.  It is found that for all gradients and temperature levels 

considered here, the difference between the peak position’s prediction and the through 

thickness average differs by less than a degree.  This difference is comparable to the level 

of uncertainty in the measurement, and therefore, the assumption of a through thickness 

average seems to be appropriate when utilizing the peak position.   The same conclusions 

can be reached for the linewidth when the gradient is below 15°C/μm or the maximum 
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temperature remains above 200°C.  Under conditions of low operating temperature and 

high gradient, however, differences between the average temperature and the 

measurement become far larger than the uncertainty thus giving pause to the use of this 

assumption.  

2.8.2 Experimental Investigation  

 Adopting the assumption of a through thickness temperature average during Raman 

thermometry of GaN devices necessitates that the gradients within the material remain 

reasonable.  Near the drain side of the gate, however, substantial thermal gradients arise 

in conjunction with the formation of the hot spot.  Although these vertical gradients 

dissipate at locations closer to the drain, it remains unclear whether the mitigated field 

present at the location of the measurements (midway between the gate and drain) limits 

the applicability of the through-thickness average assumption.  To assess the validity of 
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Figure 25.  Difference between Raman prediction and average temperature using the 
peak position (left) and linewidth (right).  The assumption of a through thickness average 
holds in all circumstances when utilizing the peak position, but caution must be taken at 
lower temperatures when incorporating the linewidth. 
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the utilized assumption, a series of 30 AlGaN/GaN HEMTs grown atop a silicon 

substrate were analyzed with respect to their operational temperature response.  By 

comparing the evolution of temperature both within the GaN and the underlying silicon 

through the simultaneous acquisition the Raman signal for each material, the magnitude 

of the through thickness temperature gradient may be qualitatively examined and the 

validity of the through thickness average further evaluated.   

 AlGaN/GaN HEMTs grown on silicon substrates are particularly applicable to this 

analysis due to material properties of the Si itself.  First, the lower thermal conductivity 

of silicon, as compared to SiC, induces larger temperature increases with power 

dissipation in the device.  These larger temperature increases, and the enhanced thermal 

resistance of the overall device, will lead to heightened thermal gradients and a more 

rigorous examination of the assumption.  Secondly, the Raman response of silicon is 

particularly large at a wavenumber of ~520 cm-1 while the examined GaN mode is 

located near 568 cm-1.    It is then possible, due to the transparency of the GaN and the 

spectral similarity in the responses, to measure each material’s temperature evolution 

simultaneously in a single acquisition of the Raman signal. Taking advantage of these 

facts, each of the 30 transistors were examined at conditions analogous to those described 

in Sections 2.3.4 and 2.6.2.  
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 Shown in Figure 26 are the resulting temperature measurements at increasing levels 

of power density for both the GaN and Si layers.  For all power inputs, the thermal 

response is nearly identical for both the active GaN and underlying Si substrate.  Notice, 

however, that while the GaN is transparent and, as such, information is acquired 

throughout the entirety of this layer, Si is opaque in the visible region of the spectrum.  

Therefore, the acquired temperatures of the Si correspond to the thermal level within the 

first 1 μm of the substrate.  The near equivalence in the temperatures between the two 

materials then seems to indicate that the measured values of the GaN are favorably 

weighted at depths near the interface as has been hypothesized previously [63].  In the 

previous section, however, it was shown that the spectrometer samples the entire GaN 

layer with minimal weighting (see Figure 24) rendering this deduction obsolete.  Thus, 
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Figure 26.  Temperature as a function of power density within both the active GaN layer 
and underlying Si substrate for an AlGaN/GaN HEMT. The resulting temperatures of 
each layer are nearly identical indicating that the through thickness temperature gradients 
in the region of the experiment are small, thus validating use of the through thickness 
average assumption for the resulting thermal measurements .   
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for the entirety of the GaN layer to demonstrate a temperature nearly equivalent to that of 

the underlying silicon, it must be reasoned that the through thickness temperature 

gradient is relatively small at the location of the measurement.  In light of this fact, the 

use of the through thickness assumption for both the peak position and linewidth based 

Raman thermometry methods remains reasonable for the devices analyzed in this study. 

2.9 Summary 

 Operating temperature is a key determinant in both the reliability and performance of 

GaN devices, thus making measurement of this parameter central to further development.  

Raman thermometry is an attractive tool for the acquisition of these temperatures as it is 

non-invasive and has the potential for spatial and temporal resolution on par with that of 

the device.  Thermal measurements derived from Raman are subject to errors, however, 

when the oft employed Stokes peak position is utilized owing to this spectral 

component’s dependence to not only temperature, but also thermoelastic and 

piezoelectric stresses.  To assess the magnitude of these errors and circumvent their 

inclusion, this study has investigated the totality of the Raman response in the presence of 

these stress effects.  Owing to the significant dependence of the peak position to the 

analyzed loads, temperature measurements derived from this portion of the spectrum 

were found to significantly under predict in comparison to those acquired utilizing the 

stress independent Stokes to anti-Stokes intensity ratio, highlighting the need for an 

alternative Raman thermometry procedure.  The linewidth of the same Stokes signal 

offers this alternative as it is capable of measuring temperature apart from stress effects 

through adoption of a proper reference condition that removes piezoelectric induced 

biasing.  By implementing the linewidth, temperature measurements may then be 
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acquired apart from stress induced biasing through sole use of the Stokes signal allowing 

for a mitigation of both thermal uncertainty and measurement duration.      
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CHAPTER 3 

ASSESSMENT OF RESIDUAL, PIEZOELECTRIC AND THERMOELASTIC 
STRESS LEVELS IN ALGAN/GAN HEMTS 

 
 
 

3.1 Overview and Approach 

 The tremendous capability of gallium nitride HEMTs exists as a direct result of large 

carrier concentrations (~1013 cm-2) that accumulate along the interface between the 

AlGaN and GaN layers due to the presence of both spontaneous and piezoelectric 

polarizations. While the spontaneous contribution is linked to the crystal structure itself, 

the degree of piezoelectric polarization is proportional to the level of strain, and hence 

stress, present in the device.  As a consequence, the carrier concentration, and in turn the 

resulting performance of the HEMT, is intrinsically linked to the stress level that evolves 

during operation [25, 128, 129].   

 The presence of this operational stress determines not only the level of HEMT 

performance but so too the long term viability of its operation as reliability is linked not 

only to operational temperature but the stress level as well [12, 35, 36].  The bond linking 

reliability and stress stems from defect generation during device operation in response to 

both thermoelastic and inverse piezoelectric effects. These defects act as traps for the 

transport of electrons and with their continual accrual comes degradation and eventual 

device failure [36].  Thus, it is of extreme relevance to measure the source of these 

defects, namely the stress, in order to further refine both the capability and overall device 

lifetime of AlGaN/GaN HEMTs. 
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 Full quantification and analysis of the stress necessitates investigation of each of the 

components that give rise to the total load placed on the device.  For AlGaN/GaN 

HEMTs, three distinct biaxial contributions are at play, namely, the residual, 

thermoelastic, and inverse piezoelectric stresses.  The residual stress evolves as a 

consequence of the processing schemes employed during fabrication and may be thought 

of in the context of an “as is” stress that is present at ambient conditions when the device 

is not in operation.   Raman spectroscopy has been frequently employed to measure these 

residual stresses at ambient temperatures through monitoring of the change in the Stokes 

peak position from its “true” stress-free value [62, 99, 130-132].  In a similar fashion, 

Sarua et al.  [102] propose a complementary methodology by which a change in peak 

position due to the application of bias on a HEMT is used to quantify the level of 

piezoelectric induced stress on a device.    

 However, as described in Chapter 1, the sole use of the peak position in this manner 

to measure the thermoelastic stress that evolves during device operation is impossible due 

to the dual dependence of this aspect of the signal on strains arising from both thermal 

expansion and elastic effects.  Due to this difficulty, there has, as yet, been no 

quantification, Raman or otherwise, to this key portion of the total stress.  Furthermore, it 

has been impossible to assess the magnitude of the total load present in the AlGaN/GaN 

HEMT or to identify the stress component that is most dominant. 

   As the peak position displays linear dependence to both temperature and elastic 

stresses, it is possible to extend the Raman technique to estimate operational stress 

through use of an additional aspect of the Raman response that is independent to strain.  

The independent parameter allows for the estimation of temperature that, in turn, allows 
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for the effects of thermal expansion to be removed from the peak position response.  With 

this effect removed, the peak position is singularly dependent on the stress and can be 

assessed using only calibrated response of the peak position to elastic deformation.  

Recently, this approach has been implemented using the linewidth (FWHM) of the same 

Stokes response to successfully measure evolution of biaxial thermoelastic stresses 

during operation of silicon based MEMS devices [106].  In GaN devices, an analogous 

approach should be applicable considering that the effects of both thermal and 

piezoelectric induced strains may be separated from the linewidth as was reported in 

Chapter 2 [133].  As such, use of the Stokes peak position and linewidth in tandem may 

then be employed to measure the operational biaxial thermoelastic stress, thus allowing 

for a full interrogation of the HEMT’s mechanical environment. 

 To demonstrate the method, the operational stresses in three separate devices were 

examined experimentally.  First, in order to limit the difficulties imposed due to 

piezoelectric induced stresses, viability of the technique is queried through examination 

of the thermoelastic stresses that occur during electric heating of a silicon based MEMS 

device and then compared for accuracy against a finite element model of the system.  

Subsequently, the same TLM and HEMT structures examined in Chapter 2 were once 

again investigated to estimate the operational thermoelastic stress in a GaN based system.  

The efficacy of the method was then judged based on comparison between the measured 

results and the coupled finite element model of the system [134].  With confidence in the 

measurement of operational thermoelastic stress, the role of substrate on the mechanical 

milieu is pursued through analyses of a series of AlGaN/GaN HEMTS built atop either 

silicon (Si) or silicon carbide (SiC).  For each type of device, the residual, piezoelectric, 
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and thermoelastic stress are compared in order to weigh the relative contribution of each 

component.  In such a way, the dominant stress component is identified in AlGaN/GaN 

HEMTs experimentally for the first time.   

3.2 Measurement of Operational Stress Using Raman Spectroscopy 

 Stress measurements derived from Raman spectroscopy rely on observations of 

changes in the location of the Stokes peak position.  These changes may be related to the 

to the stress level via Equation  (22) shown below, 

 s o Dω ω σ− =  (22) 

where ωs is the change in Stokes peak position due to stress relative to its reference 

position οω , σ is the stress, and D is a known calibration constant [106].  Of extreme 

importance is the fact that this calibration constant does not relate any change in the peak 

position to a corresponding stress.  Rather, it relates a known stress state (e.g., biaxial, 

hydrostatic, etc.) at a given temperature to a frequency change.  In the case of thin film 

devices, the stress evolves in an overwhelmingly biaxial fashion requiring that the 

resulting calibration of D then be acquired in this stress state. As shown previously, a 

similar relationship, Equation (16),  links a frequency change at a given magnitude and 

state of stress  to a corresponding temperature.   

 As both Equation (16) and (22) are linear, subject to a combined thermomechanical 

field, the resulting change in peak position is a superposition of each effect, 

 ' ( )Tot o oD A T Tω ω σ− = + −  (23) 

where ωTot  is the total change in peak position due to both temperature and stress while 

A’ is a calibration constant relating the response of the peak position to temperature under 
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stress free conditions.  Due to this superposition, investigations of devices while in 

operation result in 2 unknowns (temperature - T and stress -σ ) accompanied by a 

singular measurement ( )Totω , making estimation of either parameter most difficult. 

 Measurement of the operational stress through use of the peak position thus 

necessitates an independent measurement of temperature.  Practically, this may be 

accomplished in a singular acquisition of the Stokes response through utilization of the 

linewidth to acquire a stress independent measurement of temperature using the methods 

delineated in Chapter 2.  Thus, through rearrangement of Equation (23) and the stress 

independent measurement of temperature acquired through the linewidth, the operational 

stress of a device at elevated temperature is described as demonstrated below: 

 ( ) '( )Tot o oA T T
D

ω ω
σ

− − −
= . (24) 

 Although at first glance it may appear that Equation (24) allows for the measurement of 

any themoelastic stress, its use is limited to systems having an analogous stress state to 

that which was calibrated.   As most of the thin films comprising an electronic device 

evolve a biaxial thermoelastic stress during operation, analysis must then take place with 

a calibration constant, D, acquired under these conditions. 

3.3 Measurement of Operational Stress in Silicon MEMS Devices 

3.3.1 Sample Preparation 

 To investigate the thermal stress evolution in a MEMS structure during operation and 

simultaneously demonstrate the technique apart from complications arising from 

piezoelectric sources, polysilicon microheaters were analyzed using a micro-Raman 

mapping procedure.  The device consisted of a phosphorous doped polysilicon beam 
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deposited on a 3.9 μm thick layer of thermal oxide, which rested on a 500 μm thick layer 

of silicon.  The microheater was 10 μm wide by 300 μm long and had a thickness of 2.2 

μm.  The final doping of the microheater was 1020 atoms/cm3 and was achieved using an 

ion implantation procedure.  Details of  the fabrication scheme can be found elsewhere 

[135].  A schematic of the structure is shown in Figure 27.  The devices were used 

without releasing them from the underlying oxide layer in order to constrain the 

deformation of the beam creating appreciable levels of thermal stress during operation.     

3.3.2 Calibration of the Silicon Response to Temperature and Stress 

 The temperature response of the Stokes peak and linewidth were measured for a 

monolithic single-crystal silicon sample, which was mounted in an unconstrained manner 

as part of a temperature controlled stage (Linkham TS-1200).  Raman spectra were 

acquired in 100°C increments from ambient to 500°C as described elsewhere [136, 137]. 

 Twenty five spectra were taken at each temperature with acquisition times adjusted to 

 
 
Figure 27.  Schematic of polysilicon doped microheater measuring 300 μm long by 
10μm wide. 
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obtain a Stokes peak with at least 6000 CCD counts.  The values of the Stokes peak 

position and linewidth at each temperature, determined from Voigt curve fitting of the 

spectra, were used to calibrate the Raman response versus temperature.  The peak 

position and linewidth show a linear and parabolic fit similar to that seen in Figure 14 for 

GaN with calibration constants that compared well with those reported in the literature 

[126, 131].  A second calibration curve for the linewidth was then found using the four 

phonon process model first proposed by Balkansi et al. [73, 138].  The resulting fit 

agreed to within 1% of the empirically derived parabolic curve.  Using this model, the 

Raman linewidth at 0K was found to be within 5% of the value obtained by Hart et al. 

[74] indicating the pertinence of the calibration methods employed. 

 It should be noted that the calibration of linewidth as a function of temperature 

depends on the microstructure of the material; a smaller linewidth is observed with 

improved crystalline quality and larger crystal size that results from longer phonon 

lifetimes as per Equation (8) [139]. However, the relative change in linewidth (Г– Гo) is 

much less dependent on microstructural effects.  The change in linewidth with 

temperature arises due to phonon-phonon scattering mechanisms whose rate is primarily 

determined by the temperature dependent population of the phonons available for 

scattering.  While defects in the microstructure can increase phonon-impurity scattering 

and broaden the Raman linewidth, the defect’s contribution to temperature dependent 

changes is small as compared to phonon-phonon scattering. This is true as long as the 

microstructure remains stable with increasing temperature. This effect is seen in Figure 

28 where the relative change in Raman linewidth (Г– Гo) is plotted for several polysilicon 

and single-crystal silicon samples.  When the offset, Гo, is subtracted, all of the data 
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collapse to a single curve which suggests that the calibration of single-crystal Si can be 

applied to the samples in our study. By using single crystalline Si, it is ensured that the 

calibration of temperature dependent Raman characteristics comes from a stress-free 

sample for our analysis.  

 A calibration was also performed to determine the Raman response of the (001) plane 

under an applied stress along the [100] direction of single crystalline Si. Using a four 

point bending stage, the response of silicon to various levels of stress was analyzed both 

in compression and tension as described elsewhere [136, 137].    The Stokes peak 

position was found to vary linearly with stress (D = -3.6 cm-1/GPa, Equation (24) ) at a 

rate within 10% of the predicted biaxial constant given by De Wolf [131].  Although the 

four point bending procedure strains the material in a uniaxial fashion, this calibration is 
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Figure 28.  Relationship between temperature and relative linewidth for single crystalline 
and several polycrystalline silicon samples.  Data show that the temperature versus 
relative linewidth change is very similar regardless of the microstructural aspects of the 
silicon sample. 
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equally valid for biaxial stress within the same crystal plane [140].  Consequently, its use 

is warranted for the current analysis.  The linewidth, however, showed no detectable 

dependence on the state of stress. 

 With knowledge of the thermal and mechanical response of silicon, full temperature 

and stress fields were obtained on the polysilicon microheater through incorporation of a 

mapping procedure.  The mapping procedure was carried out using an automated x-y 

stage with 0.5 micron resolution.  Raman spectra were sampled at 2 μm intervals across 

the beam width and 6 μm periods along the length. Acquisition times were once again 

varied to obtain Stokes peaks with intensities of at least 6000 CCD counts on the 

microheater for each level of power dissipation.  

 Thermal stress evolution was probed by first taking a map of the beam at room 

temperature to account for residual stress in the beam.   The values for peak position and 

linewidth obtained during this initial ambient scan were then incorporated as ωο and Гo at 

each measurement point during subsequent powered scans for use in Equations (16) and 

(17).  In this manner, the biaxial thermal stress evolution was analyzed at powers of 240 

and 480 mW.  Total stress (i.e., both residual and thermal) can be found if reliable values 

for the peak position and linewidth are known for a particular material and microstructure 

at ambient stress free conditions.  In this study, only thermal stress evolution was 

examined as this allowed for a more direct comparison to a finite element model. 

3.3.3 Temperature Mapping of Si Microheaters 

 Figure 29 displays the 2D temperature maps of the microheater as a function of heater 

input power.   The temperatures were observed to be nearly uniform throughout the 

microheater at each power level.  Only near the ends of the microheater, where the 
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interconnect pads serve as a thermal sink, is there an appreciable temperature gradient.  

Since the stress distribution should follow the temperature distribution, this mapping 

procedure indicates that the stress should be relatively constant in the middle of the heater 

as well.  Such simple physical profiles provide a known response against which the 

measured values of stress and temperature can be compared, and from which the 

precision in the measurements can be estimated from the scatter in experimental data. 

 A comparison between the Stokes peak shift (Equation (16) ) and linewidth (Equation 

(17) ) based temperature profiles of the powered microheater are shown in Figure 30.  

The results show a significant difference between the two measurements, being on the 

order of 30°C at 240 mW and 60°C at 480 mW of dissipated power.  Considering the fact 

that the uncertainty in ambient stress measurements using Raman is normally reported to 

be approximately ±25 MPa for silicon [141], this would correspond to a temperature 

difference between the two methods of ±4.1°C.  As shown in Figure 30, the discrepancy 

between temperature measurements is much greater than this threshold, indicating that 

significant stress is present in the device, as expected.  Furthermore, since the predicted 

 
 

Figure 29.  Temperature (°C) maps of the beam at 240 mW (top) and 480 mW (bottom).
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peak position based temperature is less than the linewidth-based value, a compressive 

stress is anticipated.  The next sections will enumerate how to quantify this stress in a 

manner that minimizes uncertainty. 

3.3.4 Uncertainty in the Calculation of Stress 

 The uncertainty in the stress measurement is predominately controlled by the 

deviation in the measurement of the Stokes linewidth.  The effect of this deviation on the 

estimation of stress can be examined analytically using Equation (24) and vector 

summing the component uncertainties: 

 ( )
22

2
TTσ ω

σ σδ δ δ
ω Δ

⎛ ⎞∂ ∂⎛ ⎞= +⎜ ⎟⎜ ⎟∂Δ ∂⎝ ⎠ ⎝ ⎠
 (25) 

where Tot οω ω ωΔ = −  and T corresponds to the measured temperature.  Equation (25) 

ignores the contribution to uncertainty arising from the calibration of the Si response to 
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Figure 30.  Temperature distribution across the length of the microheater when 
dissipating 240 mW (top) and 480 mW of power (bottom).  The peak based method 
significantly under predicts the temperature indicating, as expected, that the beam is 
under a compressive stress. 
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stress as it was found to be of second order, thus allowing for the relation to be rewritten 

as: 

 ( )
22 '

2 1
T

A
D Dσ ωδ δ δ

ΓΔ

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (26) 

The ratio of A’/D is 6.1 MPa/°C for silicon, which results in a significant amount of stress 

uncertainty for only a small deviation in the measurement of temperature regardless of 

preciseness in measurement of the peak position.  As a consequence, it is imperative to 

reduce the variation in the measurement of temperature either through the use of superior 

experimental hardware or the employment of multiple measurement realizations.  In a 

mapping procedure like the one employed here, however, multiple acquisitions are 

untenable and hence reductions in uncertainty must be attained via an alternative route. 

 To estimate the inherent uncertainty in the method, stress free single-crystal Si was 

inserted into a Linkham environmental test stage and heated to temperatures between 100 

and 500°C.  A total of 25 Raman spectra were taken at each temperature in order to 

obtain a suitable distribution of the peak position and linewidth.  By measuring the 

change in peak position and calculating the temperature from the change in linewidth 

using Equation (17), a 95% confidence interval was calculated to obtain ωδΔ and Tδ , 

respectively.  Using Equation (26), the variation in stress was found to be on the order of  

+/- 40 MPa for a set of 25 acquisitions as is typically utilized in a standard measurement. 

Additional acquisitions were not seen to significantly change the distributions and hence 

this magnitude will be used as the intrinsic scatter in the silicon measurements for the rest 

of this study. 
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3.3.5 Determination of Stress in Si Microheaters from Mapping Procedure  

 Moderate levels of noise in the measurement of the linewidth-based temperature can 

introduce significant scatter in the measured stress profiles.  This fact is exacerbated 

when only a singular acquisition is acquired as is the case in a mapping operation. To 

mitigate this effect towards a level on par with that of a standard measurement in which 

at least 25 acquisitions are utilized, the measured thermal values were fit to an expected 

functional form of the temperature profile. The unreleased beam structure was modeled 

by considering an energy balance between 1D axial conduction, uniform Joule heating, 

and lateral heat losses that were proportional to the surface area and local temperature. 

With constant thermal conductivity and electrical resistivity, the governing differential 

equation for this steady state heat transfer problem is given by: 

 
2

2 0d M Q
dx

θ θ− + =  (27) 

where x is the axial position along the heater, and θ = Τ (x) – Tref  is the difference 

between the local heater temperature and an appropriate reference temperature, M is a 

parameter describing the relative importance of lateral heat losses to axial conduction, 

and Q represents the relative importance of Joule heating to axial conduction.  The 

solution to Equation (27) is given by 

 ( ) ( )1 22( ) sinh coshQx K Mx K Mx
M

θ = + +  (28) 

where K1 and K2 are constants.   

 By using Equation (28) to fit the temperature found using the linewidth,  the 

uncertainty in the measurement of stress may be reduced to the intrinsic value (i.e., +/- 40 

MPa) of a normal measurement apart from the mapping operation thereby allowing a 
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suitable stress map to be obtained with only one acquisition.  While the specific 

functional form shown in Equation (28) works well for MEMS with 1D conduction, it 

may also be possible to use other generalized functions such as polynomials, Fourier 

series, etc., to fit data sets for arbitrary geometries.  The use of generalized functions, 

however, requires additional assessment to determine the appropriate order of the 

function to be used in order to ensure there is no reproduction of high frequency scatter in 

the data.  The need for this type of filtering function can be removed with a reduction of 

the uncertainty in the measurement of temperature.   

3.3.6 Comparison of Mapping Results to Finite Element Models 

 To verify the calculation of stress obtained from the Raman mapping procedure, a 

separate finite-element model was developed using ANSYS 9.0 with multi-physics 

elements for the Si microheater.  Temperature dependent values for the thermal 

conductivity and thermal expansion coefficient were employed, while other material 

properties were assumed constant for each of the three materials: polysilicon, silicon 

dioxide, and silicon [142].   

 The model itself incorporated a fine mesh in the polysilicon beam and silicon dioxide 

layers to accurately resolve the temperature and stress distribution.  The temperature 

measurements, smoothed using Equation (28), were used as the surface boundary 

condition of the beam in the thermal analysis [135].  An additional boundary condition 

was obtained by placing a thermocouple on the backside of the silicon substrate during 

operation of the microheater.  Mechanical boundary conditions were incorporated that 

negated vertical displacement on the bottom of the substrate while fixing the two 

orthogonal edges leaving the opposite faces free to expand within the plane. 
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 Figure 31 shows a comparison of the biaxial stresses calculated from both the Raman 

measurement and the finite-element analysis for a microheater power of 240 mW and 480 

mW.  The data show fairly good agreement at a power of 240 mW with the stress 

averaged over the heater of σFEA = -160 MPa and σRaman = -153 MPa.  A similar trend was 

also seen at a power dissipation level of 480 mW with maximum stress levels of σFEA = -

348 MPa and σRaman = -304 MPa.  As seen in the figure, a degree of scatter is apparent in 

the Raman based stress measurements.  Although this scatter could be attributed to 

variations across the actual device, it is more likely that the variation arises from the 

inherent uncertainty in the system. 

 The discrepancy between the Raman measurement and FEA analysis grows to 44 

MPa at the higher power dissipation level.  It is believed that this is due to the use of a 

temperature independent Young’s modulus in the finite element calculation.  With a 

microheater temperature of 520°C, a reduction in the modulus of the polysilicon is 
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Figure 31.  Data comparison of biaxial stress calculated using finite-element analysis 
(FEA) and Raman spectroscopy for power dissipation levels of 240 mW (left) and 480 
mW (right).  At the higher power level, the Raman data shows a lower stress level than 
that calculated by FEA at a level close to the inherent uncertainty (±40 MPa).  This may 
be due to the use of a temperature independent modulus in the analysis. 
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expected resulting in a reduction of stress in the device, a fact not captured by the model.  

In spite of this finding, both data sets show encouraging results suggesting that it is 

possible to perform a stress analysis on devices under thermal loading using Raman 

spectroscopy. 

3.4 Measurement of Operational Thermoelastic Stresses in GaN Devices 

3.4.1 Experimental Methodology  

 Using the techniques described in the previous sections, the operational thermoelastic 

stresses in the AlGaN/GaN HEMT and TLM structures investigated in Chapter 2 are 

measured and compared against a finite element model of the system in order to judge the 

efficacy of the proposed methodology.  The necessary calibrations were obtained by first 

examining the E2
High mode of monolithic GaN in the temperature range of 23°C to 550°C  

in order to specify the stress free constant A’.  The stress response of this same mode was 

then analyzed and the magnitude of the biaxial calibration constant D found to be  -2.91 

cm-1/GPa  through loading of an epilayer stack in tension from 0-350 MPa (see Figure 

17(a) ).  This measured value of D compares well with other reports in the literature thus 

lending confidence to its use in the subsequent investigation [59, 115].  Furthermore, as 

the response of the analyzed E2
High phonon mode retains the same linear response 

irrespective of the nature of the strain, D remains valid even in the measurement of 

compressive stresses despite the tensile nature of the calibration [56, 115].  Its use is also 

applicable in the measurement of biaxial stresses despite the uniaxial conditions under 

which the constant is acquired.  This finding results from the equivalent phonon response 

to strains in either crystal direction within the basal plane thereby providing a path 

between uniaxial calibration and biaxial measurement [115]. 
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 The operational stress measurements of the TLM and HEMT were then obtained 

directly from the Raman acquisitions used to measure temperature in Chapter 2.  Pinch-

off reference conditions (VSD = 28 V, VG = -8 V) were utilized in the measurement of the 

HEMT such that the biaxial thermoelastic stresses could be quantified in a manner that 

minimized piezoelectric contributions.  Using Equation (24), the cumulative averages of 

the change in peak position and the measured temperature of the more than 75 Raman 

acquisitions acquired at each data point were then employed to calculate the magnitude of 

the operational thermoelastic stress in each of the devices.  

3.4.2 Finite Element Modeling of Operational Thermoelastic Stress 

 In order to verify the measurements acquired from Raman spectroscopy, the ANSYS 

model utilized in Chapter 2 was extended to analyze thermoelastic stress through a one 

way coupling of the energy and mechanical equations (see Figure 16 for model 

schematic) [143].  The applied boundary conditions used for the quarter symmetry of the 

simulation are shown in Figure 32.  These conditions, used in conjunction with the 

solution of the energy equation, allow for the estimation of the thermoelastic stress that 

forms during operation of both the TLM and HEMT.  To facilitate this estimation, 

interfaces are assumed to be in perfect contact between material layers with any softening 

being of negligible magnitude.  Like in the thermal simulation, the AlGaN layer is not 

modeled as it contributes little to the mechanical response due to its extreme thinness.  

Once again, solutions were checked against multiple meshes in order to ensure proper 

convergence.  Convergence was defined to occur when the maximum stress in the device 

deviated by less than 1% between meshes (see Figure 16 for refined mesh). 
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 In order to model a complex system such as the HEMT or TLM studied here, accurate 

material properties must be determined.  There exists a large body of work dedicated to 

determining material properties used in the construction of electronic devices.  

Consequently, the mechanical properties of the macroscopic material layers of the 

devices (i.e. substrate, package materials, and solder layer) can be determined with 

relative confidence due to the wide range of experimental procedures available and their 

uniform crystalline quality.  Thin films, specifically the GaN layer, are much more 

difficult to test, however, due to their small dimensions and the variability intrinsic in 

their processing.  These difficulties result in a wide range of values for the elastic 

modulus, thermal expansion coefficient, and Poisson ratio [144].  Care must be taken to 

incorporate material properties from the literature that are representative of the actual 

device since direct acquisition of these material properties from the studied devices is 

beyond the scope of this inquiry.   

 
 

Figure 32.  Geometry and mechanical boundary conditions utilized in the finite element 
model of the AlGaN/GaN HEMT.  These same conditions also exist on the corresponding 
opposite faces of the device such that the model accurately represents the complete 
fixturing of the device applied during testing.  Analogous conditions are applied on the 
TLM as well. 
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 In light of these concerns, material properties were chosen from the literature in a 

manner that maximized similarities between the processing, geometry, and film quality of 

the tested films and those used to construct the TLM and HEMTs considered here.  These 

properties are summarized in Table 4.   As seen from the table, an isotropic linear elastic 

assumption was used for all materials.  While anisotropic stiffness matrix elements are 

available in the literature,  large discrepancies continue to exist between the reported 

individual matrix elements [144].  On the other hand, the effective isotropic modulus 

calculated using these elements and the Poisson ratio shows much less variation between 

the published values.  Hence, while not ideal, the assumption of an isotropic effective 

modulus is incorporated as it allows for an overall reduction in the number of unknowns 

present in the simulation.   

Table 4.  Mechanical properties incorporated in the 3-D finite element model. 
 

Material Property Value Reference 
 

cα  (1/K) 3.17e-6 [145] 
 

aα (1/K) 5.59e-6 [145] 
 

ν  0.183 [146] 

 
GaN 

E (GPa) 388  [147] 
 

cα  (1/K) 4.7x10-6 
 

[148] 

aα (1/K) 4.30x10-6 [148] 
ν  0.175 [149] 

 
SiC 

E (GPa) 480 [149] 
α (1/K) 2.0x10-5 [149] 

ν  0.4 [149] 
 

Solder 
 E (GPa) 56 [149] 

α (1/K) 6.14x10-6  
ν  0.289  

 
Cu/W Package

 E (GPa) 357  
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 In order to compare the predicted values of stress from the model with those obtained 

from the Raman experiment, an averaging technique like that employed in the thermal 

simulation was utilized.  Since GaN is semi-transparent to the 488 nm light used in the 

experiments, information is obtained throughout the entire material volume and as such 

an average of the stress through the layer is measured.  To compensate for this fact, the 

model was averaged through the GaN thickness in order to facilitate comparison between 

computation and experimentation. Although this step was carried out to provide a “one to 

one” comparison of experiment and simulation, it is of note that throughout the GaN 

layer the simulated stress was found to remain nearly constant.     

 Additionally, the simulated stress was found to be overwhelmingly biaxial in nature. 

This is particularly salient as the calibration constant, D, utilized in Equation (24) is 

derived from the biaxial response of a crystal. As such, its use is only warranted in this 

particular loading condition.  Consequently, the verification of biaxial stress from the 

simulated results validates the use of this calibration constant in the measurements. 

3.4.3 Comparison of Raman and Finite Element Derived Thermoelastic Stress 

 Thermoelastic stress measurements of the GaN TLM and HEMT structures are 

complicated over silicon based devices due to several factors.  First, GaN is a 

piezoelectric active material and, hence with the application of an electric field, the 

material will strain due to this effect as well as those of the thermoelastic variety.  While 

piezoelectric response has been shown to be removable within the uncertainty of the 

thermal measurements, it is unclear to what extent the remnant that likely remains affects 

the subsequent stress measurement.  This fact is central to the capability of the technique 

as small errors in the measurement of temperature induce sizable errors in the 
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quantification of stress.  Secondly, unlike silicon, the properties of gallium nitride, both 

with respect to their Raman response and basic mechanical properties, continue to have 

wide scatter in the literature, thus inducing difficulties in the precise comparison of the 

experimental and computational results [56, 144, 150].   

 With these complications in mind, the resultant measurements of the biaxial 

thermoelastic stress are shown in Figure 33 for both the TLM and HEMT devices.  The 

experimental values correlate reasonably well with the predictions of the model when the 

host of uncertainties surrounding the measurement is considered.  The quantitative values 

of the uncertainty in the experiment were calculated using Equation (26) with the scatter 

in the measured peak position and temperature obtained from the 95% confidence 

intervals of the more than 70 Raman acquisitions taken at every point.  Additionally, 

uncertainty in the acquired stress values was further reduced through utilization of 

operational temperatures acquired from the lines of best fit to the measured values (i.e., 

the lines of Figure 20 and Figure 22 )  using an analogous procedure to that described in 

-350

-300

-250

-200

-150

-100

-50

0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Model 
Raman

Bi
ax

ia
l S

tre
ss

 [ 
M

Pa
 ]

Input Power [ W ]

TLM

-150

-100

-50

0

0.5 1 1.5 2 2.5 3

Model
Raman 

Bi
ax

ia
l S

tre
ss

 [ 
M

Pa
 ]

Power Density [ W/mm ]

HEMT

 
Figure 33.  Comparison of thermoelastic biaxial stress obtained through Raman 
spectroscopy and finite element analysis for a GaN based TLM (left) and HEMT (right). 
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Section 3.3.5.   

 Particularly interesting is the magnitude of the evolving thermoelastic stress in the 

transistor device, which reaches only ~1% of the yield strength of GaN even at high 

power [151].  Due to this relatively small magnitude, questions subsequently arise as to 

whether it is this thermoelastic stress component or rather the piezoelectric and residual 

contributions that are the dominant components of the total load driving the relaxation 

induced degradation [12, 36, 152].  As this technique shows promise in the determination 

of operational stress, this question can be approached through quantification and 

comparison of each stress component and the resultant stress state that evolves during 

device operation.  

3.5 Determination of Dominant Stress Components in AlGaN/GaN Based HEMTS  

3.5.1 Experimental Methodology 

 In order to assess the dominant component of the load present in an AlGaN/GaN 

HEMT, residual, thermoelastic, and inverse piezoelectric stresses are quantified for a 

series of devices grown atop both silicon (Si) and silicon carbide (SiC) substrates.  Each 

of these substrates has been suggested for widespread implementation into GaN based 

devices and while their merits have been investigated from a thermal perspective, 

comparison of their mechanical capabilities is still lacking [79].  To provide this 

comparison, 16 separate GaN on SiC AlGaN/GaN devices similar to that analyzed in the 

previous section, and described in Section 2.2, were measured to obtain the values of 

residual, thermoelastic, and inverse piezoelectric stresses.  Subsequently, a set of 30 GaN 

on Si AlGaN/GaN HEMTs were investigated in a synonymous procedure.  Measurements 

of the residual and inverse piezoelectric stress were obtained at ambient conditions while 
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thermoelastic stresses were obtained during operation at a package temperature of 85°C 

in an identical fashion to the previously described measurements.  In addition, although 

the device architectures between the two sets are not congruent, care was taken to ensure 

that inputs (i.e., power, bias) were equal such that comparisons between the series 

remained pertinent.  Finally, the great number of devices that were analyzed, 46 in total, 

allows for confidence that the comparisons between the data sets are significant and not 

the result of a peculiarity in an individual device.  In this manner, it is possible to 

determine with certainty the dominant loading contribution in the device. 

3.5.2 Determination of Residual Stress 

 Residual stress is measured by comparing the Raman signal of the specimen of 

interest as compared to a stress free sample of the same material.  The difference in the 

peak positions between these two measurements may then be utilized to calculate stress 

from Equation (22).   Use of Equation (22) with the obtained constant D, infers that the 

residual stress is biaxial in nature.  This is likely owing to the thin film architecture of the 

transistor, and as such its use is warranted here.  To then calculate the magnitude of this 

load, the stress free peak position of GaN was first found from a free standing bulk 

sample and calculated to 567.198 +/- 0.004 cm-1 for the utilized E2
High mode.  This value 

is within the range of values reported in the literature and allows for the determination of 

the residual stress to take place apart from spectrometer specific biasing [150, 153].  To 

obtain these stresses, each of the analyzed devices was measured at ambient conditions 

under no bias both before and after operational testing with no significant changes taking 

place for either material system.   
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 With respect to the devices built atop a SiC substrate, the resulting ambient peak 

position was found to be 566.96 +/-.05 cm-1.  This value, when used in conjunction with 

the position of the stress free sample and Equation (22), corresponds to a biaxial residual 

tensile stress in the sample of 87 +/- 16 MPa.  In a similar fashion, the residual peak 

position of the silicon substrate series was found to be located 565.74 +/- .05 cm-1 leading 

to a much larger biaxial residual stress in these devices of 499 +/- 16 MPa.  This larger 

magnitude arises from the great difference in the coefficients of thermal expansion that 

exist between the silicon and GaN (2.8-4.6 ppm/K difference). In comparison, the stress 

is greatly reduced in the devices having a SiC substrate as the discrepancy between the 

materials’ coefficients of thermal expansion are much smaller (0.28-2.08 ppm/K 

difference) [154].   Regardless, each system is initially in a state of residual tension, 

which will act to increase the initial carrier concentration of the 2DEG (see Figure 3). 

3.5.3 Determination of Piezoelectric Induced Stresses 

 Sarua et al. [102] assert that the level of stress induced from the piezoelectric stress 

remains the same regardless of the bias on the gate, and hence, irrespective of whether 

current is flowing through the transistor.  Therefore, the stress arising from this effect can 

be obtained by comparing the peak position of the device under both ambient and 

pinched off conditions whereupon Equation (22) can be utilized once again as the stress 

may be shown to be biaxial in nature.  Practically, this took place by analyzing each 

series of devices both before and after powered operation.  At each time, the devices were 

interrogated at ambient conditions under zero bias (VSD = 0 V, VG = 0 V) and at pinch-off 

conditions (VSD = 28 V, VG = -8 V) with the peak positions compared and subsequently 
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transformed to stress.  For the devices having a SiC substrate, the piezoelectric induced 

biaxial compressive stress was found to be -50 +/- 1 MPa.   

 Unlike what was seen in the devices with a SiC substrate, the transistors having a 

silicon substrate exhibited highly variable behavior before and after powered operation.  

Initially, there was very little change in the Raman signal with bias indicating that the 

evolution of stress from the inverse piezoelectric effect was minimal.  Contrarily, after 

testing, changes in the signal were observed that corresponded to an induced biaxial 

compressive stress of -75 +/- 5 MPa.  The cause for the dynamic nature of this stress 

evolution is unclear but does indicate the possibility of relaxation somewhere in the 

device architecture.  Notice, however, that unlike the residual stress, the values of the 

piezoelectric induced stresses between the Si and SiC samples are comparable.   

 To verify that the stresses estimated using this method are plausible, Sarua et al [102]. 

develop an uncoupled electromechanical analytical model of the system that links the 

strain, and in conjunction the change in peak position, to the electrical field.  Generally, 

this model derives from the thermodynamic relation linking the strain and the electric 

field at constant temperature via:  

 ij ijkl kl kij kS d Eε σ= +  (29) 

where εij is the strain,  Ek the electric field, σkl the stress, and dkij  along with Sijkl  are 

elements of the piezoelectric modulus and elastic compliance tensor, respectively [123].  

For the specific case of a AlGaN/GaN HEMT, this general relation may be simplified by 

assuming a free surface and rigid coupling of the GaN to the underlying substrate 

allowing for a prediction of the peak position change to a given electric field : 
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where 33ε and 33E  are the strain and the electric field in the through thickness (z) 

direction, β  is the phonon deformation potential linking a change in the peak position to 

strain, while the numbered subscripts correspond to matrix notation of a tensor [123].   

Utilizing this relation with a modeled electric field, comparisons can be made between 

the measured and predicted strain values.  Incorporating this procedure, which implicitly 

assumes a constant stress and electric field through the thickness of the transparent GaN 

layer, Sarua et al. [102] report similarities in the qualitative trends of the measured and 

modeled responses. However, despite this qualitative agreement, the magnitude of the 

experimentally obtained stress is reported to be ten times greater than that of the 

computation.   

 Using this same methodology on the devices of this study, a similar drastic over 

prediction was found when comparing the strains in the SiC series with a model of the 

electromagnetic response developed using Sentaurus by Dr. Eric Heller of the Air Force 

Research Laboratory.  Comparable values to within 24% between experiment and 

computation were found for the strain, however, if the maximum, rather than average, 

electric field was utilized in Equation (30).  This close correlation, especially if the great 

uncertainty in reported piezoelectric modulus of GaN is considered, indicates that 

although the total volume of the material is indeed probed by the Raman response, the 

material itself strains, like many thin films, according to the most intense load and hence 

the magnitude of the greatest electric field.  Furthermore, the correlation also lends 

confidence that our estimation of the piezoelectric induced stress is at least correct to 
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within an order of magnitude.  Consequently, this measured response allows for the load 

to be compared with the other calculated components of the stress. 

3.5.3.1 Confocal Investigation of Through Thickness Piezoelectric Stress Variations  

 To judge the suitability of assuming a uniform stress profile within the GaN layer 

according to the maximum electric field, a confocal examination of the piezoelectric 

induced stress evolution in a HEMT having a SiC substrate was performed.  In a confocal 

arrangement, the depth of field is substantially limited allowing for variations to be 

observed through the thickness of the GaN layer in spite of its transparency.  

Quantitatively, the employed confocal arrangement reduced the depth of field to ~ 1.6 

μm, which permits for comparison of the piezoelectric stress at discrete depths within the 

active layer [50].  Specifically, the experiment was implemented through acquisition of 

the Raman signal at 0.5 μm increments from the surface of the transistor until a depth of  

3.5 μm at both ambient and pinch-off (VDS= 28 V, VG= -8 V) conditions.  The 

differences in the peak positions at each depth level are then compared to judge if the 

piezoelectric induced stress varies within the film.  Notice that as the thickness of the 

GaN layer is ~2 μm, Raman acquisitions are acquired while the focal plane is actually 

within the underlying SiC substrate.  This occurs as the depth of field extends for ~ 1.6 

μm above and below the focal plane and as such relevant information is available for 

depths of up to the examined 3.5 μm (i.e., 1.6 μm into the SiC).   

 Simulated electric field profiles of AlGaN/GaN HEMTs predict a profile that 

exponentially decreases with distance away from the surface of the GaN layer [102].  It is 

expected that the induced piezoelectric stress should then follow a similar exponential 

decrease.  The magnitude of this elastic gradient is quite substantial inducing a predicted 
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change in the stress of nearly an order of magnitude inside the GaN.  Consequently, even 

if the acquired Raman signal is unable to resolve the finer aspects of this gradient owing 

to the depth of field being only marginally smaller than the layer itself, the large 

magnitude of the variation may be detected if, in fact, it is present.  However, 

examination of Figure 34 indicates that the piezoelectric induced stress remains nearly 

constant throughout the entire thickness.  Furthermore, the magnitude of this response, 

similar to that reported in the previous section, indicates that the stress seems to 

correspond to the maximum electric field rather than the average.  These results then 

provide experimental evidence that the piezoelectric stress profile in the GaN layer 

indeed remains fairly uniform. 
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Figure 34.  Variation of biaxial compressive stress due to the inverse piezoelectric effect
through the thickness of the GaN layer.  The induced stress remains similar through the 
entirety of the layer indicating that the response remains nearly constant despite the 
change in electric field.  
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3.5.4 Determination of Operational Thermoelastic Stress 

 Each of the 46 examined AlGaN/GaN HEMTs was tested at a backside package 

temperature of 85°C with a drain-source bias set to 28V.  Operational stresses were 

examined through appropriate adjustment of the gate such that five different power 

densities were examined between 0.9 and 2.8 W/mm.  The cumulative values and 

distributions of the temperature and peak position from all devices were then used in 

concert with Equations (24) and (26) to estimate the operational biaxial thermoelastic 

stress and uncertainty, respectively.   

 Shown in Figure 35 are the resultant measurements of the biaxial stress in each of the 

two types of devices.  Once again, the load in the silicon series of devices is much greater 

than that of the devices grown on SiC.  This result stems, like that seen with respect to the 

residual load, from the much greater coefficient of thermal expansion mismatch between 
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Figure 35.  Biaxial thermoelastic stress calculated during operation of an AlGaN/GaN 
HEMT grown atop a silicon and SiC substrate.  
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GaN and Si than that of a GaN/SiC system.  In addition, as the thermal conductivity of 

SiC is much greater than that of Si, the effect of this mismatch becomes exacerbated as 

the temperature in the silicon devices reaches in excess of twice that of the SiC series.  As 

a consequence of these factors, the resultant biaxial thermoelastic stress is nearly four 

times greater in the silicon devices for the same power load. 

3.5.5 Comparison of Different Stress Loads in AlGaN/GaN HEMTS  

 The different types of loading are directly compared in Figure 36 for both the SiC and 

Si series of devices.  In each case, the biaxial stress induced from the inverse 

piezoelectric effect is relatively small in comparison to the maximum thermoelastic stress 

that evolves during operation and those residual loads already present from the 

fabrication of the device itself. Furthermore, assuming the material is linear elastic for the 

conditions studied here, an assumption which is likely valid for the GaN but not the 
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Figure 36.  Comparison of the residual, inverse piezoelectric and thermoelastic loading 
(at 2.8 W/mm and a package temperature of 85°C) for AlGaN/GaN HEMTs grown on 
SiC and Si.  Note that as each individual component induces a biaxial stress, the resultant 
load will be biaxial as well. 
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AlGaN layer, the resultant stress state of the device during operation may be obtained 

through superposition of the individual biaxial stress components at each power level.  

Surprisingly, although large levels of compressive stress develop during operation of the 

Si devices, the resultant biaxial stress state is actually tensile and achieves a magnitude 

on par with that of the SiC devices at the highest levels of input power (see Figure 37).   

Likewise, the residual stress acts to mitigate the evolving compressive thermoelastic 

stress in the SiC devices.  In contrast to the Si series, however, the resultant state in the 

SiC/GaN system remains compressive throughout the entire range of powers 

investigated.  It is of note that these conclusions are dependent upon the backside 

package temperature (i.e., 85°C) as the absolute magnitude of the thermoelastic, and as 

such the resultant load, is dependent upon this value.  Consequently, at higher package 

temperatures when the thermoelastic stress contribution will be larger, the silicon devices 

should be expected to operate in a compressive regime at lower power densities.   

 The nature of the resultant stress is of great consequence as the concentration of 

carriers in the 2DEG increases while in tension but decreases under a compressive load 

(see Figure 3).  Consequently, the resultant load actually serves to increase the number of 

carriers and increase, assuming no relaxation in the AlGaN layer, the capability of the 

device built on silicon.  Contrarily, the nature of the load in the SiC series serves to 

decrease the capability of the device.  As the sign of this resultant load is determined 

primarily by the residual stress, future studies may investigate the manner to increase this 

tensile value without relaxation occurring in the AlGaN layer, thereby increasing the 

number of carriers with the concomitant increase in device performance. 
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3.6 Summary  

 The magnitude of the stress in an AlGaN/GaN HEMT is a primary determinant of the 

concentration of carriers and the overall performance of the device.  As a consequence, 

measurement of this parameter is central to the further refinement and improvement of 

this device class.  In response, this study has developed a method to measure the biaxial 

operational thermoelastic stresses that form during operation of MEMS and 

microelectronic devices through use of Raman spectroscopy.  Through utilization of the 

Stokes linewidth to measure temperature, the peak position was demonstrated to be 

capable of accurately measuring the evolving thermoelastic stress in a silicon based 

MEMS structure and two differing GaN architectures.    With the technique verified, GaN 

HEMTs grown on Si and SiC were examined to investigate the roles of the thermoelastic, 

inverse piezoelectric, and residual stresses on the overall device load.  Through this 
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Figure 37.  Resultant biaxial stress during operation at a package temperature of 85°C of 
an AlGaN/GaN HEMT grown on top of Si and SiC.  Although compressive stresses 
increase for each device with input power, the large residual stress of the Si series 
determines that these devices operate in tension. 
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investigation, the residual stresses were found to severely mitigate the evolving 

compressive thermoelastic stress to such an extent that the transistors grown on silicon 

operated in tension at even high thermal loads.  The dominant role of these residual 

stresses, illuminated through technique developed here, may be leveraged in future 

design to produce an AlGaN/GaN HEMT of greater performance and reliability. 
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 CHAPTER 4 

TEMPERATURE AND DOPING DEPENDENCE OF PHONON LIFETIMES 
AND DECAY PATHWAYS IN GAN 

 

4.1 Overview and Approach 

 Conceptual understanding of the temperatures quantitatively estimated in the previous 

chapters requires understanding of the dominant energy transfer mechanisms at play.  In 

particular, it is necessary to understand the manner in which energy cascades from an 

accelerated electron into the lattice and away from the active region of the device.  In 

GaN, electrons emit and interact with polar optical phonons as they are accelerated across 

the transistor channel.  From a thermal perspective, this route is problematic as these 

emitted optical phonon modes have low group velocities causing them to act as a 

capacitive energy reservoir for the energy emitted by electrons.  To dissipate the 

transferred energy effectively, these optical phonon modes must then decay into acoustic 

phonon modes that move with higher velocities.  At issue is the fact that the time scale 

for optical phonon emission by electrons is much smaller than the time scale for phonon 

decay.  This leads to a phenomenon known as the hot phonon bottleneck, which induces 

intense heating in the device channel with an associated reduction in both performance 

and reliability [155, 156].  While the hot phonon bottleneck is an area of much research, 

relatively little is known about the actual phonon transformations that give rise to the 

effect. 

 The lifetimes, and derivatively the transformations, of zone center (Г-Point, see 

Figure 41) optical phonons can be determined experimentally through a number of 

techniques including steady state and time resolved Raman spectroscopy, as well as 
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microwave noise measurements [93, 157, 158].  In using steady state Raman 

spectroscopy, the linewidth, Г (FWHM), of the Stokes peak can be directly correlated to 

the lifetime of the measured phonon through the energy-time uncertainty relation (see 

Equation (8) ) [93, 159].  Time resolved Raman spectroscopy, on the other hand, does not 

rely on this relation but instead deduces the lifetime through examination of the decay in 

the temporal response of the anti-Stokes Raman signal [160].  In contrast to these optical 

techniques, the microwave noise procedure relies upon an interaction between the phonon 

and the free carriers thus limiting its application to only particular modes. This interaction 

allows for the creation of a simple energy balance, which when used in concert with 

measurements of the rate at which electrons gain and lose energy, allows for estimation 

of the phonon lifetime [157, 161]. 

 Regardless of technique employed, measuring the lifetimes of a particular mode at 

several temperatures allows for prediction of the phonon decay path through use of 

perturbation theory.  Knowledge of the decay pathway, in turn, gives insight into the 

entire lattice energy cascade and visualization of the energy “flow”.  Through careful 

examination of this flow, energy bottlenecks may be identified and future avenues for 

device improvement through phonon engineering are illuminated.  Using standard Raman 

spectroscopy, previous studies have identified these pathways for 5 different phonon 

modes in standard bulk samples of GaN having relatively low free carrier concentrations 

(n<1017 cm-3) [96, 162].   

 In the presence of a high free carrier concentration ( 175 10n x> cm-3), however, the LO 

phonons become strongly coupled with the presence of plasmons forming what is 

commonly referred to as a longitudinal optical phonon-plasmon (LPP) coupled mode [66, 
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163].   Tsen et al. [158] have used this coupled mode, in turn, to deduce the lifetime of 

the A1(LO) phonon showing an inverse relationship between the rate of decay and the 

free carrier concentration.   Due to this dependency, questions arise as to the extent of 

free carrier interaction throughout the entirety of the energy cascade.  In response, this 

study analyzes decay of 4 phonon modes in a series of GaN samples having carrier 

concentrations ranging from 173 10x  to 181.24 10x cm-3 at temperatures varied from 23-300 

°C.  By incorporation of this method, the lifetime, decay pathways, and carrier 

dependencies will be enumerated for each of the modes thus offering insight into relevant 

the energy transfer mechanisms in GaN based devices. 

4.2 Experimental Methodology 

 A series of gallium nitride wafers were produced through use of a metal organic 

chemical vapor deposition (MOCVD).  Three different wurtzite GaN samples were 

examined in this study, namely: n-type (nGaN) acquired through Si infiltration, p-type 

(pGaN) attained utilizing an Mg implantation procedure, and bulk GaN (GaN). Through 

room temperature analysis of the spectral profiles of the LPP modes, it was found that the 

free carrier concentration for the n-type, p-type, and bulk GaN samples were: 181.24 10x , 

176.4 10x , and 173 10x cm-3, respectively [150]. Due to the nature of the doping procedures, 

it must be emphasized that these values correspond to only the free carrier concentration 

and not necessarily the actual level of doping (e.g., the amount of implanted Mg).  In 

addition, it is of note that the doped regions described thus far rest directly on top of an 

undoped GaN buffer layer in order to assure the highest quality lattice structures. Further 

details regarding both the growth and initial characterization of the GaN samples studied 

here can be found in references [164-166]. 
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 Phonon lifetime measurements were carried out using a Renishaw InVia Raman 

system.  The system utilized a 488 nm Ar+ laser in the 180° backscattering mode through 

a 50X objective. In this region of the spectrum, GaN is transparent, and as such, the 

probing radiation interacts with both the doped as well as the undoped GaN buffer layer.  

The acquired signals will thus have contributions stemming from each region.  However, 

as this buffer layer is consistent between each of the differently doped samples, 

qualitative comparisons between the specimens remain valid.  With this understanding, 

samples were measured at typical device operating  temperatures ranging from 23-300 °C 

using a Linkam TS-1200 heated stage along both the c and a axis (see Appendix for 

necessity of measuring along both axes) in order to capture 4 of the Raman active modes 

(A1(LO), A1(TO), E1(LO), and E2
High).  In the backscattering arrangement, the E1(LO) 

mode is forbidden and as such the actual measured values are that of  quasi-LO or Q(LO) 

mode.  This Q(LO) mode, however, has been used to directly estimate the lifetime of the 

E1(LO) mode in the work of Song et al. [96] and will likewise be used here.   

 Of the 4 modes investigated, the E2
High mode is the only non-polar phonon mode and 

will be used as a comparison to the behavior of the other polar optical phonon modes.  

This same mode is also used as a built in temperature sensor to verify sample temperature 

during the experiments through basic Raman thermometry techniques [103].  For each 

temperature and phonon mode, at least 20 acquisitions of the Raman signal were acquired 

resulting in uncertainties that were no more than +/- 3.7 % and most often less than +/-

1% of the measured lifetime value. 
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4.3 Results 

4.3.1 Temperature Dependence of the Phonon Lifetimes 

 The measured Raman linewidths are a convolution of effects stemming both from the 

spectrometer-induced broadening and the actual Lorentzian vibrational distribution of the 

phonons in the crystal lattice.  It is typically assumed that the spectrometer imposes a 

Gaussian response on the signal from the crystal lattice, which is itself Lorentzian in 

character.  Thus, the Raman spectrum is fitted using the mathematical convolution of 

these functions known as the Voigt profile [167].  Consequently, the “as acquired” 

measured linewidth cannot be used to obtain the phonon lifetime directly as it has effects 

evolving from both the crystal and the response function of the spectrometer. 

 To obtain the actual crystal lattice linewidth, the Voigt profile is deconvoluted using 

Posener’s Tables with knowledge of the Gaussian response function of the spectrometer 

[138, 168] .  The Gaussian response function can be determined through calibration with 

plasma lines of an extended neon source at varying slit widths.  The lifetime is 

subsequently calculated using the energy-time uncertainty relation with the true linewidth 

described here again for clarity in a restatement of  Equation (8) as [169]: 

 τ =
Γ
h  (31) 

where τ is the lifetime in ps, h is the modified Planck constant (5.3 cm-1 ps), and Г is the 

crystal linewidth. 

 Using this deconvolution procedure, phonon lifetimes were examined for the 4 

phonon modes in each of the 3 samples investigated. Quantitatively, it was found that the 

room temperature lifetimes of the E2
High, A1(LO), A1(TO), and E1(LO) modes were 2.56, 
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0.86, 0.63, and 0.66 ps, respectively for the bulk GaN sample.  These lifetimes correlate 

well with the recent work of Song et al. [96] who report similar values of 2.5, 0.75, 0.5, 

and 0.58 ps for these same respective modes for bulk GaN at room temperature. 

 Figure 38 shows the temperature dependence of the lifetimes for each of the five 

phonon modes for the bulk, p-doped, and n-doped GaN samples. From the figure, it is 

seen that for all samples an increase in temperature is accompanied by an associated 

decrease in phonon lifetime.  This decrease occurs as the rate of phonon-phonon 

scattering increases with temperature due to the associated increase in the phonon thermal 

occupancy and hence their interaction.  Yet despite this qualitative uniformity, there are 

significant quantitative differences in lifetime values for many of the modes.  This is 

exemplified for the A1(LO) mode where at room temperature the lifetime is seen to 

decrease from 0.86 ps with a carrier concentration of 173.1 10x cm-3 to 0.68 ps at a 

concentration of  181.24 10x cm-3.  The underlying cause for this discrepancy, whether it be 

changes in the lattice due to the doping procedure or actual phonon-carrier interaction, 

cannot be enumerated based solely upon the differences in these lifetime values. Rather, 

it is necessary to compare the decay processes for each of the different samples in order 
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Figure 38.  Phonon lifetime vs. temperature for each mode examined in (a) bulk GaN (b) 
p-type GaN (c) n-type GaN.   Analysis of the temperature dependence of these lifetimes 
can be used to identify the decay pathways of the phonon modes.
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to identify the underlying causes for the variation in the lifetimes.  Consequently, the 

subsequent sections will examine the decay pathways for each mode in order to 

determine the lifetime’s dependency on free carrier concentration. 

4.3.2 E2
High Phonon Decay Channels and Carrier Dependency 

 Using the temperature dependent phonon lifetimes seen in Figure 38, it is possible to 

determine the phonon decay pathways in the Brillouin zone.  Assuming that each optical 

phonon dissipates into two phonons in a so called 3 phonon process, Klemens obtained 

the following relation for the linewidth of a crystal based upon perturbation theory: 
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B
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kB is the Boltzmann’s constant, T is the temperature in Kelvin, h  is, again, modified 

Planck’s constant only this time in standard units of Joule-seconds, and ωi is the 

frequency of the resulting phonon after the scattering process [170].  Due to conservation 

of energy, the following relation must be satisfied: 0ω ω ω1 2= + .  Using Equation (32), 

the temperature dependent linewidths were fitted for the E2
High mode assuming a 

symmetric decay process (ωο/2= ω1= ω2=284 cm-1) and then transformed to a lifetime 

value per Equation (31).  As seen in Figure 39 for the bulk GaN sample, it was found that 

the resulting curve did not correlate well with the measured lifetime values.  

Consequently, it is necessary to account for more complex and possibly asymmetric 

decay mechanisms. 
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 Balkanski et al. [73] account for these complex decay mechanisms through 

modification of Klemens’ original model considering both 3 and 4 phonon processes.  In 

a 4 phonon process, decay of the phonon is assumed to occur into 3 separate phonons and 

revises Equation (32) into the form shown below: 
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where Г1 is an additional fitting parameter representing a portion of the linewidth at 0K.  

Incorporating this fitting procedure and assuming equivalent decay for the 4-phonon 

process (ω3= ω4= ω5=ω0/3).  Equation (33) was found to have excellent correlation with 

the data for the E2
High mode as seen in Figure 39.  As this same fitting model was also 

capable of predicting each of the differently doped samples’ responses (see Figure 40), it 
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Figure 39.  Measured E2
High mode for bulk GaN fitted accounting for only 3-phonon 

processes (dashed line) and using both 3 and 4-phonon processes (solid line).  It can be 
seen that 4-phonon processes are quite relevant at the temperatures examined here. 
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can be reasoned that the phonon decomposition mechanisms are identical despite the 

changes in free carrier concentration.    

 The actual path of decomposition may be identified through examination of the 

Brillouin zone of GaN as in any scattering event energy must be conserved while phonon 

momentum must similarly be preserved within a reciprocal lattice vector.  To examine 

the phonon momentum (energy was conserved as part of the fitting procedure), it must be 

noted that due to the wavevector of the incident light, it is only those phonons near the 

Gamma point that are measured during the acquisition of a 1st order Raman spectrum 

[150].  Consequently, in the assumption of a symmetric 3-Phonon decay process, 

conservation of the phonon momentum stipulates that the resulting phonons must have 

wavevectors opposite to one another with respect to the Gamma point of the Brillouin 
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Figure 40.  Phonon lifetime versus temperature for the E2
High mode of bulk, p-type, and 

n-type GaN where the symbols are the measured values while the lines represent the 
fitting obtained using Equation (33).  Notice that at higher temperatures the lifetimes 
converge indicating the dominance of phonon-phonon scattering and a lack of phonon-
carrier interaction.   
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zone.  This fact remains valid even after an Umklapp process, as with the addition or 

subtraction of a reciprocal lattice vector, the resulting phonon has an identical wavevector 

albeit in an adjacent zone. 

 In a similar manner, momentum conservation of the phonons necessitates that in a 4-

phonon process, the sum of the 3 resulting phonon wavevectors must equal zero.  As 

there is a relation between energy (frequency) and phonon momentum (wavevector) via 

the lattice dispersion curve, only certain transformations will be allowed. Thus by 

examining the scattering processes with respect to the dispersion curve, one can easily 

ensure the viability of a scattering mechanism while simultaneously tracing the decay 

pathway of the phonon. 

 Previously, it was shown that suitable fitting of the experimental lifetime data for the 

E2
High mode was obtained by assuming a symmetric decay process where the phonon 

 
 

Figure 41. Dispersion curve of wurtzite GaN as reported by Siegle et al. [149].  The 
decay of the E2

High phonon is shown to occur via a combination of symmetric 3 phonon 
and 4-phonon decay.  Notice the points (dots) on the curve satisfy the momentum 
criterion indicating an allowed scattering event. 
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decays into 2 phonons of energy ωo/2 and a 4 phonon process by which 3 phonons of 

energy ωo/3 result.  If the dispersion curve, as seen in Figure 41, is then examined at 

these resulting energies (the solid 284 cm-1 and dashed 189 cm-1 lines), decay can take 

place only if points on the dispersion curve are present that also satisfy the momentum 

criterion. For example, the momentum criterion is satisfied for symmetric decay at points 

on the dispersion that intersect the constant ωo/2 energy line as 2 resulting phonons of 

opposite wavevector at this intersection will result. Similarly, viability of the 4 phonon 

process can be ensured if intersection between the ωo/3 energy line and the dispersion 

curve occurs at a set of 3 locations such that the resulting wavevectors sum to 0.   In 

Figure 41, the solid and dashed arrows identify such locations along the constant ωo/2 

and ωo/3 energy lines, which satisfy these conditions for both the 3 and 4-phonon 

processes respectively. As a consequence, the hypothesized decay model is then validated 

while simultaneously illustrating possible avenues for the decomposition of the of the 

E2
High mode. Note that as the dispersion only gives information with respect to the 

directions of high symmetry and not the entire Brillouin zone, additional scattering 

pathways will no doubt be available.  Thus, Figure 41 gives possible, rather than 

definitive, pathways.  Yet even with knowledge of these possible decay routes, a 

preliminary picture of the energy cascade in GaN begins to form and the dominant cause 

of scattering can be identified through comparison of the lifetimes between differently 

doped samples. 

 The lifetime of a phonon is limited by interactions with boundaries, defects, free 

carriers, and other phonons.  If these interactions take place independent of one another, 

an assumption that may not remain strictly valid at high free carrier concentrations but is 
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often employed to analyze GaN carrier transport nonetheless, Matthiessen’s rule allows 

for the scattering as a whole to be examined through analysis of the individual scattering 

sources themselves [171-173]. During the Raman measurement, a large set of individual 

scattering events is probed and the resulting lifetime is an average composed of 

contributions from each of these scattering sources. This average is weighted toward 

those events occurring most often and, hence, the scattering source with the greatest 

strength. In general, the combined strength of a scattering source is population dependent, 

depending on defect density, phonon population, carrier population, etc. Differences in 

the measured lifetimes then arise due to disparities in the populations of the scattering 

sources themselves. Thus, by understanding the temperature dependent populations of the 

scattering sources, it becomes possible to identify the dominant scattering mechanism in 

each of the differently doped samples. 

 As GaN has a stable crystal arrangement, the microstructure may be assumed to 

remain static during the measurements and hence so too the number of defects.  Thus, 

with an increase in temperature, the number of scattering events arising from the presence 

of defects will remain largely constant.  In contrast, the number of both phonon-phonon 

and phonon-carrier scattering events will change with temperature as the number of these 

species available for interaction varies due to their temperature dependent Bose-Einstein 

and Fermi-Dirac distributions, respectively.  Therefore with an increase in temperature, 

and a concomitant increase in the number of phonons and free carriers, the measured 

lifetime will become ever more weighted to the effects of these species rather than those 

of the microstructure.  Consequently, comparison of the phonon lifetimes at higher 
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temperatures between each of the doped samples allows for the effects of phonon and 

carrier scattering to be isolated from those stemming from the microstructure. 

 Separation of the carrier and phonon effects may then occur by recognizing that each 

of the differently doped samples remains in a GaN wurtzite crystal arrangement and as 

such displays a similar dispersion.  While the dispersion may be slightly modified by the 

dopants alteration of the crystal stiffness, this effect is expected to be comparatively 

small, and as such the level of phonon-phonon scattering will be practically equivalent 

between the specimens.  In contrast, the number of carriers, and hence the level of carrier 

scattering, will be different between samples owing to the variance in doping 

concentration.  As the value of the lifetime is intrinsically tied to the population of the 

scatterers, similarities in the measured lifetimes may evolve only through a dominant 

source common to all samples.  Only phonon-phonon scattering is similar in each of the 

specimens, and thus a convergence in the value of the lifetimes indicates a dominance in 

this form of scattering and an associated independence to carrier scattering.  Using this 

deductive procedure, similarities in the lattice scattering are seen in Figure 40 where the 

lifetimes of the E2
High mode converge to a common value of ~1.25 ps near 300°C 

indicating a prevalence of phonon-phonon scattering and, as expected, an independence 

to carrier interaction.  At lower temperatures, meanwhile, the lifetime varies widely 

between samples as microstructural differences arising from the doping procedure 

become an ever more dominant scattering source. 

 The independence of this mode to carrier interaction is particularly relevant with 

respect to the measurements of temperature and stress described in the previous chapters.  

It is imperative, in order for these measurements to be accurate, that the utilized Raman 
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mode be independent to any factor outside that parameter being assessed.    

Consequently, the independence of the E2
High mode to carrier interactions further 

validates the methodology incorporated in the measurement of temperature and stress as 

its signal remains unaltered from the carriers that drive the operation of the device.  

4.3.3 A1(LO) and E1(LO) Phonon Decay Channels and Carrier Dependency 

 At high free carrier concentration, coupling occurs between the LO modes and 

plasmons creating a longitudinal optical phonon-plasmon coupled mode (LPP).  This LPP 

mode has a spectral shape dependent upon the frequency of the free carriers and has been 

used as a complement to Hall measurements in the determination of free carrier 

concentration [163, 174].  Recently Tsen et al. [158] used this LPP mode to measure the 

lifetime of the A1(LO) phonon assuming equivalent durations for both the coupled and 

vibrational modes.  Using this same assumption, it is possible to examine the 

decomposition processes of the A1(LO) and E1(LO) phonons.  In order to determine these 

processes, the modified Klemens decay model using the Ridley decomposition channel, 

presented in Equation (33), was utilized to simulate the temperature dependent lifetime 

response for both the A1(LO) and E1(LO) modes. 

 Unlike the E2
High mode, high energy A1(LO) and E1(LO) lifetimes can not be modeled 

using a symmetric phonon decay process since ωo/2 occurs in a large phonon bandgap of 

the dispersion curve.  For the A1(LO) mode, it has been both postulated theoretically by 

Ridley [175] and verified experimentally by Tsen et al. [176], that an asymmetric 3-

phonon process is the dominant decay pathway whereby the LO phonon decomposes into 

a TO and longitudinal acoustic (LA) mode.  Assuming this asymmetric decomposition 

for the 3-phonon process in Equation (33), while making no other assumptions for the 4-
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phonon process, the temperature dependence of the A1(LO) and E1(LO) modes was 

modeled for each of the different samples with excellent correlation as seen in Figure 42.  

From these fitted models, the ratio of Г0/ Г1 was found to be >50 for each case illustrating 

the clear dominance of the 3-phonon decay process.  The pathway for these 

transformations are shown in Figure 43 where it is evident that decay into the TO mode at 

a wavenumber of ~530 cm-1 indeed occurs.  In light of these results, it becomes apparent 

that the avenue for decay of the phonons themselves is independent of carrier 

concentration.   

 Due to intense Fröhlich interaction, the higher energy optical modes heavily interact 

with free carriers [153, 174].  Recently, this has been shown experimentally as under 

non-equilibrium fields the phonon lifetime of the A1(LO) mode is observed to vary 

inversely with the free carrier concentration [157, 158].  In this study, however, the 

incident laser light is below the bandgap of the GaN and the equilibrium response of the 
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Figure 42.  Lifetime of the (a) A1(LO) and (b) E1(LO) mode as a function of temperature. 
Unlike the E2

High mode, the lifetimes of the LO modes remain distinct across the entirety 
of the examined temperature range indicating interaction with the free carriers. As 
expected, the lifetimes decrease with an increase in free carrier concentration. 



 118

crystal is probed instead.  Yet despite this significant difference between the conditions in 

this study and those previous, a similar trend for the A1(LO), as well as the E1(LO) mode, 

is found as lifetime is seen to decrease across all temperatures with an increase in free 

carrier concentration (see Figure 42).  Quantitatively, this trend is exhibited at room 

temperature where lifetimes of the A1(LO) mode were found to vary between 0.86 and 

0.69 ps across a carrier concentration range of 173.1 10x to 181.2 10x cm-3.   These values are 

within the lifetime range of 2 to 0.51 ps recently reported by Tsen et al. [158] for GaN in 

a similar concentration regime. 

 The dependency of the lifetime to doping concentration occurs due to direct 

interaction of the phonons with the carriers rather than differences in the microstructure 

arising from to the doping procedures themselves.  While the doping process does induce 

distortion of the lattice, and hence strain fields that affect phonon scattering, these 

 
 

Figure 43.   Dispersion curve of wurtzite GaN as reported by Siegle et al.[177].  The 
asymmetric decay of the LO phonons occurs via decomposition into a TO mode.  Notice 
that although the 4-phonon process may occur via the dashed line, 3-phonon processes 
dominate in the determination of the lifetime for these modes. Note that although only the 
A1(LO) pathways are shown, pathways for the E1(LO) mode are extremely similar. 
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microstructural effects are not the dominant scattering source.  Rather, it is the carriers 

themselves that weigh most heavily on the scattering of the LO modes. This is first 

indicated upon investigation of Figure 42 where the lifetimes do not converge at higher 

temperatures.  The lack of convergence indicates that phonon-phonon scattering is not the 

dominant mechanism as was the case for the non-polar E2
High mode. Hence, an additional 

source of scattering either in the form of microstructural differences or direct 

carrier/phonon interaction must be present even at these higher temperatures. 

 To ascertain the nature of this additional scattering source, it is useful to examine the 

rate of change of the lifetime with respect to temperature ( Tτ∂ ∂ ). Utilizing the 

derivative is pertinent, allowing for the removal of microstructural effects as, again, this 

scattering source remains largely constant with temperature.  Consequently, through 

examination of the derivative only the effects of phonon-phonon and phonon-carrier 

scattering are investigated.  Hence, due to the sample’s common dispersion, a 
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Figure 44. Rate of change in the lifetime of the (a) A1(LO) and (b) E1(LO) mode with 
respect to temperature.  Utilizing the rate of change isolates the source of scattering to 
only other phonons and free carriers.  As the phonon-phonon scattering is equivalent 
between each of the samples, the discrepancy in the rate of change indicates that 
differences in the lifetime values may be attributed to direct phonon-carrier interaction. 
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convergence of the lifetime’s derivative with respect to temperature indicates that 

phonon-phonon scattering is dominant and thus differences in the actual lifetime evolve 

from microstructural differences.  Upon investigation of Figure 44, however, it is seen 

that for each LO mode the rate of change of the lifetime remains distinct at all 

temperatures.  This result indicates that the dominant source of scattering varies in its 

temperature dependent population between each of the specimens examined.  It may then 

be deduced that it is the carriers themselves that directly interact with the LO modes. 

4.3.4 A1(TO) Phonon Decay Channels and Carrier Dependency  

 Charge carriers in GaN strongly interact with the LO optical modes and thus several 

researchers have concentrated on the lifetimes of these polar optical phonons.  However, 

as shown in the previous section, the LO modes undergo asymmetric decay into 
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Figure 45.  Lifetime versus temperature for the A1(TO) mode.  Although convergence is 
seen at higher temperature for the lower doped samples (GaN & pGaN), the higher doped 
nGaN specimen has a lifetime clearly distinct from these other two specimens raising 
suspicions that carriers may interact with this mode. 
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transverse optical (TO) modes.  Thus, understanding the lifetimes and decay mechanisms 

of these transverse optical modes is also necessary to elucidate the entirety of the phonon 

energy cascade into acoustic modes.  To this end, the temperature dependence of the 

A1(TO) mode was fit using Equation (33) as shown in Figure 45. For each sample, 

excellent correlation between the model and data is achieved assuming symmetric decay 

for the 3-phonon process ( 2 ~ 266οω  cm-1) along with an associated value of 3οω  

utilized for the 4-phonon process.  This decay pathway is viable as indicated in Figure 46 

by the points of intersection annotated along the constant energy lines of 266 cm-1 and 

177 cm-1 corresponding to the 3 and 4 phonon processes, respectively.   

 Further examination of Figure 45 displays convergence of the lifetime at higher 

temperatures for the lower doped samples (GaN & pGaN) while the lifetime of nGaN 

specimen is continually lower.  This difference with doping does not arise due to direct 

interaction of the phonon with the carrier, however, but rather as a consequence of 

 
 
Figure 46.  Dispersion curve of wurtzite GaN as reported by Siegle et al. [177].  Decay 
for the A1(TO) occurs via both 3-phonon processes (solid line) and 4-phonon processes 
(dashed line).   
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heavier scattering with the microstructure in the nGaN sample.  Figure 47 verifies this 

assertion as the rate of change of the lifetime with temperature converges for each of the 

samples.  This indicates that the temperature dependent scattering sources are similar in 

each of the samples and thus carrier interaction does not occur.  Thus, carrier interaction 

does not permeate through the entirety of the energy cascade.  Instead, energy flows 

regardless of carrier concentration once decay from the higher energy LO modes is 

accomplished. 

 4.4 Summary 

 Using the energy-time uncertainty relation, phonon lifetimes were measured for four 

different optical modes in a series of gallium nitride samples each having a different free 

carrier concentration.  By measuring the lifetimes across the typical operating 

temperature spectrum for GaN devices, decay mechanisms and pathways for each of the 
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Figure 47. Rate of change in the lifetime of the A1(TO) and with respect to temperature. 
Convergence in this rate of change is seen for each of the differently doped samples 
indicating the absence of any phonon-carrier interaction.  Consequently, differences in 
the lifetimes arise due to interaction with the microstructure. 
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different modes were deduced.  Lower energy modes were found to decay via a 

combination of symmetric 3-phonon and 4 phonon processes.  In contrast, the higher 

energy LO modes decomposed primarily via asymmetric 3-phonon Ridley decay. 

Through use of previously determined dispersion relations, a graphical technique 

accounting for both the conservation of energy and phonon momentum allows for 

visualization of the entire energy cascade.  The effect of free carrier concentration on 

phonon decay was then examined for each of the four modes through analysis of both the 

lifetime and the rate of change of lifetime with respect to temperature.  Through this 

analysis, it was found that only the high energy LO modes directly interact with the free 

carriers while the modes into which the LO modes decay are independent to their 

presence.  Consequently, upon decomposition of an LO mode, energy propagates 

independent to the presence of carriers.  Therefore, the most significant bottleneck to 

energy dissipation in GaN devices occurs as a result of the inefficient decay of the LO 

modes into lower energy lattice vibrations.  Future studies should then focus on limiting 

the ability of free carriers to reabsorb these polar modes in order to maximize energy 

transfer thereby limiting the likelihood of hot spot formation. 
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CHAPTER 5 

ESTIMATING THE EFFECTS OF DISORDER ON THERMAL BOUNDARY 
CONDUCTANCE OF GAN/SUBSTRATE INTERFACES 

 
 
 

5.1 Overview and Approach 

 The transport of thermal energy across material interfaces is playing an ever 

increasing role in the response of thin-film and nanostructured devices.  Thermal 

boundary conductance (TBC), which describes the efficiency of heat flow at material 

interfaces, is a concept that must be understood in order to control the thermal response 

of material systems such as superlattices, thermoelectrics, nanocomposites, and even high 

power electronics.  While much effort is underway to predict and understand TBC from 

atomistic calculations, a need remains for more simple analytical calculations capable of 

capturing the salient transport mechanisms apart from intense computational rigor.  This 

is especially true when considering the impact of interfacial disorder on the thermal 

boundary conductance. 

 For AlGaN/GaN devices, the process of heat dissipation is complicated by the 

numerous interfaces that exist between the active device layer and the supporting 

substrate.  The large number of interfaces occurs as a result of the heteroepitaxial growth 

process, which requires either lattice matching of the active layer to the substrate or the 

growth of intermediate buffer layers to accommodate the lattice mismatch between the 

two materials.  Since it is difficult to find perfectly lattice matched substrates to nitride 

semiconductors, buffer layers or specific ternary alloys must be used near the substrate to 

allow for the construction of high quality devices.  These extra layers, and the associated 
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increase in the number of interfaces, undoubtedly affect the transmission of thermal 

energy from the device as a whole.  However, little work has been done to elucidate the 

nature of this interfacial resistance even though its magnitude has been shown to 

influence the temperature of GaN based HEMTs by as much as 60% [178] . 

 Obtaining estimates on thermal boundary conductance in thin-film semiconductor 

devices is often very challenging.  Experimental methods involving 3-ω  and transient 

thermoreflectance have been performed on multiple layers of heterogeneous materials  

from which the boundary resistance is calculated assuming known properties of the 

adjoining materials [179-182].  While these techniques have worked well, it is 

impractical to experimentally measure all permutations of material and interface 

structure.  Thus the development of predictive methods for such parametric studies is of 

primary importance. 

 Significant attention has been paid to molecular dynamics and atomistic models 

where the interfaces can be explicitly prescribed.  Not surprisingly, significant work has 

been devoted to silicon systems and in particular Si/Si grain boundaries.  Specifically, the 

analysis of well-defined phonon wave packets and their transmission at interfaces has 

been performed using atomic level simulations to determine thermal boundary 

conductance [183].  This wave packet approach has been utilized as well, in conjunction 

with more traditional molecular dynamics, to analyze the TBC of imperfect hetero-

interfaces with emphasis being placed on inelastic scattering [184].  Importantly, these 

studies have showed that the degree of disorder at the interface is a major determinant of 

the effective conductivity of an entire device [185]. 
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 The role of disorder is particularly important in GaN devices as most interfaces 

between thin films contain at least some degree of intermixing dependent upon the 

processing methods employed.  While atomistic modeling may capture details of the 

thermal energy transport across such disordered interfaces, it remains a daunting task to 

model all permutations of structural disorder that can be encountered in a real system.  

Thus, higher length scale analytical models, which contain some statistically averaged 

quantities from the microstructure, may provide a more tractable solution to such a 

problem. 

 The use of analytical models to estimate thermal boundary conductance between 

materials has frequently relied on the diffuse mismatch model (DMM) [179].  This 

method assumes that when a phonon interacts with an interface, it is diffusively scattered 

and hence transmission is dependent upon the ratio of the densities of states between the 

two materials.  Using this ratio, a transmission coefficient is calculated and the thermal 

boundary conductance is found by integrating over all phonon frequencies taking part in 

the thermal transport.  Inherent in the diffuse scattering assumption is that some degree of 

roughness or disorder is present at the interface.  However, the nature of this roughness 

cannot be accounted for in any explicit or implicit manner using the DMM.   

 Approaching the Debye temperature, smaller phonon wavelengths are excited in the 

material increasing the likelihood of multiple scattering events at a rough interface 

resulting in an overall decrease of the TBC.  As the DMM predicts only a singular 

diffusive scattering event, it is not surprising the model overestimates TBC in 

acoustically similar materials with disordered interfaces such as is the case in GaN 

devices [179, 186, 187].  To improve upon the DMM, previous studies have largely 
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focused on either using a more realistic density of states or investigating the extent to 

which phonons are indeed diffusively scattered [187, 188].  While enhancements to the 

analytical approach of calculating TBC have been made through these efforts, there still 

exists a need to account for the degree of interfacial disorder in the estimation.   This 

work seeks to account for this irregularity of an interface in order to produce a method 

that quickly estimates the thermal boundary conductance while lending insight into the 

sensitivity of material systems to interfacial quality.     

 To account for the interfacial disorder, a virtual crystal (VC) approximation within 

interface will be made.  In the virtual crystal approximation, the disordered region is 

replaced by a homogenized virtual crystal having effective properties based on the 

disordered medium [189].  Using this approach, transmission coefficients can be 

calculated on both sides of the homogenized crystal.  Dependence of the thermal 

boundary conductance on the degree of disorder can then be examined by altering the 

composition of the virtual crystal.  Thickness of the disordered interface is addressed 

through scaling of the conductance with respect to both the phonon mean free path in the 

virtual crystal and the thickness of the disordered region.  Through these extensions, a 

model is available that can approximate the effects of interface structure on thermal 

boundary conductance.   

 The virtual crystal diffuse mismatch model (VCDMM) is initially demonstrated 

through analysis of a chromium (Cr) and silicon interface that has been experimentally 

probed such that comparisons between the predicted and measured values of the thermal 

boundary conductance are possible.  With the model verified, the sensitivity of the 

thermal boundary conductance to interfacial disorder is analyzed for GaN systems.  In 
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this manner, substrates frequently employed in GaN devices, specifically Si, SiC, and 

sapphire, are compared as to their capability and robustness to transmit heat across the 

interface and away from the active region of the device. 

5.2 Theory and Derivation of Virtual Crystal Diffuse Mismatch Model (VCDMM) 

 The diffuse mismatch model calculates the thermal boundary conductance according 

to the following relation: 
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where h1-2,j is the TBC for a particular mode j, ωmax is the Debye cutoff frequency, h is 

the modified Planck constant, c1,j is a given mode velocity, and Nj is the phonon 

population for the temperature and mode of interest based on Debye theory.  Of special 

note is the transmission coefficient, α1−2, which quantifies the percentage of phonons able 

to forward scatter from side 1 to 2 and hence transmit thermal energy.  The transmission 

coefficient is found to be a ratio of the phonon propagation speeds in each material: 
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 In the diffuse mismatch model, it is assumed that the interface can cause only a single 

diffuse scattering event, neglecting any possibility that a phonon may be scattered 

multiple times.  However, if there is a finite thickness of disorder at the interface, the 

assumption of a single scattering event may not be satisfied.  In considering the interface 

between two materials, an interphase region of appreciable thickness with properties 

much different than those of the materials on either side may exist.  Since the diffuse 
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mismatch model cannot address this situation, it may be limited to applications of a 

perfect interface or where the interphase region is very small compared to the wavelength 

of the dominant heat carriers. 

 Modeling the interphase region is extremely complex as details of its structure and 

composition are not fully known.  On the other hand, effective material properties that 

homogenize the interphase can yield some insight into the region’s impact on TBC.  

Using such a method to estimate properties was first proposed by Abeles while 

investigating the thermal conductivity of mixed crystal alloys [189].  In this manner, 

prediction of the thermal conductivity in alloys such as SiGe was made possible over a 

wide range of compositions. 

 Through utilization of the virtual crystal approach, the interphase region is replaced 

by a virtual crystal, creating an interface with materials 1 and 2 as shown in Figure 48. 

The total thermal boundary conductance is then found by finding the equivalent 

conductance of the two interface system, 
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To calculate the conductance between a material and the virtual crystal, Equation (34) is 

used with modifications to account for the effects of the virtual crystal.  The only term 

that must be changed in this expression is the transmission ratio, which will be modified 

by the presence of the virtual crystal.  Equation (35) is now applied between material 1 

and the virtual crystal as well as material 2 and the virtual crystal in order to calculate the 

TBC in Equation (36). 
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 To calculate the unknown phonon propagation speeds in the virtual crystal required in 

Equation (35), Debye theory may be used as proposed by Abeles [189].  However, this 

methodology requires knowledge of the elastic constants of the virtual crystal.  Near the 

interface, however, estimation of these constants is quite difficult due to the inherent 

randomness of the interface.  As a consequence, it is assumed in this approach that the 

propagation can be modeled simply as a composite of the speeds of the host materials as 

shown below, where b1 is the percentage by mass of material 1 in the VC, 

 ( ), 1 1, 1 2,1VC j j jc b c b c= ⋅ + − . (37) 

 In considering the disorder analysis above, the depth of disorder has not been 

considered.  To incorporate the effect of this interface thickness a dimensionless 

parameter, the depth factor δ, is introduced,  

 ,/j VC jDδ ′= Λ . (38) 

In Equation (38), D’ is the actual depth or thickness of the interface while ,VC jΛ  is the 

mean free path of the virtual crystal for a particular mode.  This mean free path is 

calculated from kinetic theory using the relation between thermal conductivity, average 

phonon speed, and specific heat in the bulk,  

 
 

Figure 48.  Schematic representation of the virtual crystal interface accompanied with 
associated heat resistance circuit.  The interface region is replaced with a homogenized 
virtual crystal across which the phonon transmission coefficients are calculated leading to 
TBC predictions.   
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Calculation of the thermal conductivity in the virtual crystal is accomplished using the 

original approximation method by Abeles [189] while all other parameters are estimated 

using the rule of mixtures as in Equation (37).  The depth factor relates the relative region 

of disorder to the dominant mean free path of the heat carriers.  In this case, if δ >1, it is 

possible that the phonons can scatter multiple times in the interphase region.   Thus, the 

boundary conductance should scale with this factor.  As such, the depth factor is used to 

modify Equation (36) into the final form for evaluation of the thermal boundary 

conductance using the virtual crystal diffuse mismatch model (VCDMM), 
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In the case of metal-dielectric interfaces, the effect of electron-phonon coupling 

resistance should be accounted for by including the method of Majumdar and Reddy 

[190]. 

5.3 Validation of VCDMM via Analysis of a Cr/Si Interface 

 To compare the current model to experimental data, the interfacial thickness, D’, as 

well as the composition, b, of a disordered region must be known. Hopkins et al. [191, 

192] examined the effect of these parameters on TBC using both Auger spectroscopy and 

a transient thermoreflectance technique for a series of chromium/silicon interfaces. Using 

the reported interfacial thicknesses and deriving the virtual crystal composition from the 

given elemental concentration profiles, it is possible to compare the measured values of 

TBC to those predicted from the virtual crystal approach.  These comparisons were 
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carried out including electron-phonon coupling resistance using the value for chromium 

reported by Hostetler et al. [193] and material properties obtained from Swartz and Pohl 

[179].   Shown in Table 5 is a comparison of the virtual crystal model to the experimental 

data where in each case the VCDMM is within 18% of the measured values.  From the 

table, it can be seen that increased interfacial thickness results in a reduction in TBC as 

the number of scattering events increases.  These additional scattering mechanisms 

reduce the rate at which energy can be transported across the interface causing a decrease 

in the TBC. 

 While the thickness of the interface region plays a strong role in the TBC, the 

disorder within that phase also limits thermal transport due to the increase in scattering 

sites inherent with a loss of regular periodicity.  This effect is seen in Figure 49 for an 

interface between Cr and Si of thickness 9.5 nm for which the composition of the VC is 

allowed to vary from 10 – 90% Si.  When the concentration is near one-half, and disorder 

is maximized, TBC is minimized following the same qualitative trend of the effective 

thermal conductivity as predicted by the Abeles mixed crystal thermal conductivity 

model. 

Table 5.  Comparison of thermal boundary conductance (TBC) calculated from the 
virtual crystal diffuse mismatch model (VCDMM) to measured values for several Cr/Si 
interfaces [191, 192].  For each interface examined, the prediction is within 18% of 
measured value. 
 

Interface 
Thickness 

[ nm ] 

Virtual Crystal Comp.
 (% Si) 

Measured TBC
 [GW/m2K] 

VCDMM 
[GW/m2K] 

DMM 
[GW/m2K]

9.5 0.54 0.178 0.147 0.855 
14.8 0.67 0.113 0.118 0.855 
11.5 0.66 0.139 0.146 0.855 
10.1 0.48 0.150 0.131 0.855 
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5.4 Analysis of TBC in GAN/Substrate Systems using the VCDMM 

 A recent study by Fillipov et al. [178] has demonstrated that the maximum device 

temperature in a GaN based HEMT may depend on the thermal boundary conductance by 

as much as 60%.  Due to this significant dependence, it is relevant to evaluate the 

different interfaces commonly present in GaN devices through use of the virtual crystal 

diffuse mismatch model.  Specifically, the relative effects of interface quality (i.e., 

interface disorder and thickness) are investigated for substrate materials frequently used 

with GaN, namely sapphire, SiC, and silicon.  This is accomplished by examining each 

material interface across a range of thicknesses ranging from 0-200 nm for each different 

combination of concentration from 0.1 to 0.9.  The material properties utilized in each 

calculation are given in Table 6 where all simulations were assumed to take place at 

300K. 
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Figure 49.  Thermal boundary conductance of a 9.5 nm Cr/Si interface as a function of Si 
content.  The model shows a minimum thermal conductance occurring near 40% fraction 
of Si due to a peak in phonon scattering and an associated minimization of thermal 
conductivity. 
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 Using these simulation parameters, the TBC of the differing systems at a practically 

perfect interface (D’=0 nm, b=0.9 GaN) ranged in values from 0.203 GW/m2K for silicon 

to 0.095 GW/m2K for SiC.  These values over predict the values of analogous systems 

measured by Sarua et al. [79] by as much ~50%.  However, if the interface is assumed to 

extend for 30 nm in conjunction with the reported thicknesses of the nucleation layer 

used in this reference [79], correlation is found between the range of values reported 

experimentally and those predicted from the VCDMM.  This fact provides confidence in 

the implementation of the model with respect to GaN systems and allows for further 

investigation into this type of interface.  

 The quality of any interface is a function of the disorder of that interface and the 

thickness to which this disorder persists.  Using the virtual crystal method, the thickness 

is modeled using the depth factor of Equation (40).  Shown in Figure 50 is the effect of 

the interfacial region on the thermal boundary conductance assuming that the GaN 

composes 30% by mass of the virtual crystal.    As the extent of disorder at this interface 

persists, the TBC of the system falls as the likelihood of multiple scattering events 

increases. This fact is particularly evident as each of the materials displays a more than 

50% reduction in interfacial conductance once the disorder extends to only 20 nm.  

Table 6.  Material parameters utilized in simulation. (Values courtesy of [179, 194, 195]) 
 

Material Density  
[g/cm3] 

Longitudinal 
Phonon Velocity

[m/s] 
 

Transverse  
Phonon Velocity

[m/s] 
 

Transverse  
Phonon Velocity

[m/s] 
 

GaN 6.15 7960 4130 6310 
SiC 3.21 9500 4100 4100 

Sapphire 3.97 10890 6450 6450 
Silicon 2.33 8970 5332 5332 
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Particularly vulnerable to this disorder is the sapphire system, which suffers from a 

reduction in the TBC of 90% with the introduction of thickness effects.  As a 

consequence, the sapphire boundary demonstrates a TBC lower than that of the SiC 

system despite its initially higher value in the limit of a perfect interface.  Consequently, 

when introducing a GaN/sapphire system, the quality of the interface is of significant 

importance in the optimization of the TBC and hence the overall thermal capability of the 

device. 

 In addition to thickness, the actual degree of disorder in the interfacial region also 

plays a role, albeit a lesser one, in the determination of the thermal boundary 

conductance.  Figure 51 shows the decrease in TBC that occurs for each type of material 

system as the disorder is increased.  Notice that the minimum TBC occurs when the 

disorder is maximized, i.e., virtual crystal concentrations between 0.4 and 0.6, resulting 

in small decreases in the TBC.  This decrease is due to the reduction in phonon 
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Figure 50.  Prediction of TBC (left) using the VCDMM for a GaN on sapphire, SiC, or 
Si system as a function of the length of interfacial disorder.  The sapphire system, 
although having a higher predicted TBC for a perfect interface, shows a higher sensitivity
as displayed from the normalized values (right) to the persistence of disorder than do the 
other materials. 
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transmission that arises with the increasing number of scattering sites that inherently 

scale with the degree of disorder. The magnitude of this reduction relative to the depth 

factor is smaller, however, indicating that phonons are more sensitive to the extent rather 

than the degree of disorder.  

 The material systems scale in their sensitivity (i.e., % reduction in TBC) to the degree 

of disorder at a rate that is inversely related to the magnitude of their “ideal” TBC.  More 

simply, the material systems that have higher TBC seem to be more robust in the face of 

reduced interfacial quality than do those with lower interfacial heat transfer capabilities.  

Therefore, as this result is common to the extent of disorder as well, it is indispensable 

when a lower performing system is utilized that fabrication methods be employed that 

maximize interfacial quality due to these systems greater sensitivity to a non-ideal 

boundary. 
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Figure 51.  Dependence of TBC on degree of disorder for a GaN on sapphire, SiC, or Si 
system.  Both the magnitude (left) and normalized values (right) show, once again, that 
sapphire is acutely sensitive to an increase of disorder. 
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5.5 Summary  

 An extension of the diffuse mismatch model is presented for disordered interfaces.  

Utilizing a virtual crystal approximation for the interface, it is possible to estimate the 

thermal boundary conductance for interfaces with finite thickness and disorder.  While 

the model qualitatively follows the trends of limited experimental data on this topic, 

additional effects must still be added to this approach to capture the temperature 

dependence of both the phonon mean free path and TBC.  However, the current approach 

shows a simplistic method that captures physically motivated phenomena offering 

improvements over the diffuse mismatch model thus allowing for investigation into the 

sensitivity to disorder for a series of GaN/substrate systems.  Through this study, the 

extent of disorder was found to have a greater effect on the thermal boundary 

conductance than did the degree of intermixing while also demonstrating that those 

substrates having lower interfacial transport capabilities were more acutely sensitive to 

the presence of these disorder effects. 
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CHAPTER 6 

SUMMARY, OPPORTUNITIES, AND CONCLUSIONS  
 
 
 

6.1 Summary 

 The evolution of temperature and stress in AlGaN/GaN HEMTs directly impacts both 

the performance and reliability of this promising device class.  It is necessary that 

characterization methods be utilized that are capable of measuring each one of these 

parameters simultaneously present during operation.  Due to its non-invasive nature and 

favorable spatial resolution (~1 μm), Raman spectroscopy is often employed to 

investigate both the thermal and mechanical environments of GaN materials.  Difficulties 

arise, however, as the most common implementation of the technique monitors changes 

in the Stokes peak position that are sensitive to strains arising from both thermal and 

elastic sources.  This dual sensitivity, in turn, significantly limits the measurement of 

either temperature or stress in their concurrent presence as the signal becomes convoluted 

due to each contribution.  In response, this study has re-examined the use of Raman 

spectroscopy in the characterization of GaN systems.  Specifically, an original 

implementation has been described that allows for the simultaneous investigation of the 

thermal and mechanical response of GaN microelectronics.  The following serves as a 

summary of this technique, highlighting the major findings found through its 

development and initial application. 
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6.1.1 Micro-Raman Thermometry in the Presence of Complex Stresses in GaN 

Devices  

 The measurement of temperature is particularly salient in the analysis of AlGaN/GaN 

HEMTs as both the performance and reliability of the device scale inversely proportional 

to the magnitude of the thermal load.  Raman thermometry has proven particularly useful 

in this analysis as its spatial resolution and non-invasive probing make it alluring in the 

acquisition of quick and accurate measurements.  Most frequently, these measurements 

take place through the analysis of the Raman signal’s peak position to deduce 

temperature.  While this aspect of the signal is easy to work with and acquire, it is 

dualistically sensitive to strains arising from both thermal expansion and elastic (stress) 

effects. As a consequence, when a material is simultaneously subject to 

thermomechanical loading, such as that present during AlGaN/GaN HEMT operation, the 

measurement of temperature using the peak position becomes biased.   

 To compensate and quantify this effect, this study examined the full response of the 

Raman signal, including the linewidth (FWHM) and Stokes to anti-Stokes ratio as well as 

the peak position, to strains arising from thermal, elastic, and inverse piezoelectric 

effects.  The peak position, as expected, was found to be distinctly dependent on each 

type of strain.  This dependence, in turn, caused large under predictions in the subsequent 

temperature measurements of both a TLM and HEMT device subject to comparatively 

large thermoelastic and inverse piezoelectric stresses, respectively.  These errors, 

however, were found to be avoidable through the utilization of an alternative aspect of 

the signal dependent only to thermal effects. This fact was demonstrated through 

incorporation of the ratio of Stokes to anti-Stokes intensity, which is only dependent on 
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temperature irrespective of strain.  Consequently, utilizing this method, temperatures 

were measured in both devices at levels nearly identical to that predicted through finite 

element simulation.   

 While indisputably capable of measuring the temperature, the ratio of the Stokes to 

anti-Stokes signals is quite difficult to implement in practice and, at a minimum, requires 

twice as much experimental time as both portions of the Raman signal must now be 

acquired.  Due to these difficulties, it is desirable that a third aspect of the spectral signal 

be resolved to measure the temperature.  This study has focused on the implementation of 

the linewidth (FWHM) of the Stokes response due to this spectral artifact’s dependence 

on the lifetime and, as a derivative the population, of the phonon mode.  As a 

consequence, it was found that the linewidth was capable of measuring temperatures in 

the presence of thermoelastic stresses in GaN devices without any need for correction.  

However, the linewidth was found sensitive to the presence of the piezoelectric loads 

present during operation of AlGaN/GaN HEMTs.  While this sensitivity may be removed 

through proper choice of a biased reference condition, its physical causation remains 

unclear.  Regardless, the linewidth allows for the measurement of temperature in GaN 

devices apart from the effects of strain without the need for the acquisition of the anti-

Stokes signal.   

TAKEAWAY: 

 A key tool in the analysis of AlGaN/GaN HEMTs, Raman thermometry most often 

utilizes the peak position to acquire temperature despite significant errors that arise due to 

the sensitivity of this spectral component to elastic as well as thermal effects.  To remove 

these errors, this work has demonstrated linewidth based Raman thermometry allowing 
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for unbiased temperature measurements in operating microelectronics acquired from sole 

use of the Stokes signal.  

6.1.2 Assessment of Residual, Piezoelectric, and Thermoelastic Stress Levels in 

AlGaN/GaN HEMTs  

 AlGaN/GaN HEMTs achieve their great capability as a direct result of the intense 

aggregation of carriers that occur at the interfaces between the constituent GaN layer and 

its alloyed counterpart.  This carrier accumulation transpires in response to the polarizing 

fields present in the materials stemming from not only spontaneous sources but so too 

those of the piezoelectric variety.  These piezoelectric polarizations, in turn, evolve as a 

direct consequence of the strain and, hence, stress present in the system.  As such, these 

stresses are a major determinant in the resulting performance and reliability of the 

devices. It is, therefore, pertinent that these stress levels are accurately characterized.    

 While Raman spectroscopy has been utilized in the estimation of residual and 

piezoelectric stress levels, operational thermoelastic stresses have been impossible to 

obtain owing to the simultaneous presence of strains arising from both thermal expansion 

and elastic responses.  Estimation of these thermoelastic stresses is possible, however, if 

the thermal and elastic strains may be deconvoluted from one another.  With respect to 

the Raman signal, the peak position displays a linear dependence on each type of strain 

causing the total response to be a superposition of each effect in their dual presence.  In 

order to deconvolute the peak position signal, and thus pave the way for the measurement 

of the thermoelastic stress, all that is needed is a stress independent measurement of the 

temperature.  Once again, the linewidth of the same Stokes signal is capable of providing 
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this stress independent measurement, which allows for the peak position to be utilized in 

the interrogation of the operational thermoelastic stress.    

 The developed approach is first demonstrated on a silicon based MEMS device where 

the estimated levels of thermoelastic stress were found to closely correlate with those 

obtained from a finite element simulation of the system.  Subsequently, similar 

correlation between experiment and simulation was found in the analysis of GaN based 

TLM and HEMT devices.  Despite the agreement, as the technique uses two independent 

measurements in tandem (peak position and linewidth), uncertainty levels in the resulting 

measurements may be quite high.  It was found that these levels may be mitigated, 

however, through fitting of the raw experimental temperature (linewidth) data to an 

expected profile.  With this correction, the scatter is reduced substantially and allows for 

the estimation of operational thermoelastic stress with micron resolution. 

 With this new capability, it is possible to compare the relative magnitude of each   

stress component - residual, piezoelectric, and the now observable thermoelastic - present 

during the operation of an AlGaN/GaN HEMT.  This assessment was acquired through 

analysis of two series of devices grown atop either a silicon or silicon carbide substrate.  

Due to the vastly different coefficients of thermal expansion between the materials, the 

devices grown on a silicon substrate were found to have much larger residual tensile 

stresses than those grown on the more forgiving SiC.  Similarly, as power dissipation 

increases in the device, compressive stress levels in the Si series of devices dwarf their 

SiC counterpart while, in contrast, the piezoelectric induced stresses are comparable 

between each type of transistor.  Despite the differences in the magnitudes of each 

component stress, the resultant load in the devices is comparable at higher levels of input 
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power as the dominating residual stress is counteracted in almost equal measure by the 

evolving thermoelastic load.  Surprisingly, due to the dominance of the residual stress, 

the silicon series of devices persistently operate in a resultant state of tension while those 

grown on SiC perform in compression.  This fact may have distinct ramifications as the 

number of carriers in the channel, and hence the capability of the device, is dependent 

upon the nature of the stress. 

TAKEAWAY: 

 The measurement of operational stress in GaN devices has not been reported due to 

the difficulty in deducing loads when strains arise simultaneously from thermal, 

piezoelectric, and elastic sources.  As the stress state is central to the performance and 

reliability of these microelectronics, this study has developed a methodology capable of 

quantifying the operational thermoelastic stress, and in turn the total elastic load, through 

tandem use of the Raman signal’s peak position and linewidth.   

6.1.3 Temperature and Doping Dependence of Phonon Lifetimes and Decay 

Pathways in GaN 

  Beyond making quantitative observations of the thermal environment, Raman 

spectroscopy is also capable of providing conceptual insight into the mechanisms leading 

to the measured magnitudes.   Once more, this capability arises as a direct consequence 

of the linewidth of the Stokes signal.  This spectral feature is determined by the lifetime 

of the analyzed phonon and, as such, is directly related to the scattering and lattice 

transport mechanisms at play in the material.  These lattice transport mechanisms, in turn, 

are a major determinant in the transport of thermal energy in the GaN material system, 
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and thus their investigation provides a method in which the energy “flow” through the 

material may be observed.   

 In a GaN device, the flow of energy begins with the application of an electric bias, or 

potential, which serves to accelerate electrons through the material.  Due to the polar 

(ionic) nature of the GaN, these electrons then dissipate their energy through intense 

emission of the Raman “visible” high energy longitudinal optical (LO) phonons.  These 

high energy optical phonons, however, act as thermal reservoirs due to their low group 

velocity and must decompose into lower energy faster moving acoustic phonons in order 

to dissipate this excess “heat.”  The decomposition mechanisms of the high energy-slow 

moving optical phonons and the parameters affecting this decomposition are then critical 

to the total thermal management of GaN devices.  In response, this study has examined 

these decomposition mechanisms and their dependence upon the number of carriers in 

order to identify the chief bottlenecks in the transport of thermal energy. 

 Through measurement of the lifetime of several phonon modes at a series of 

temperatures via the linewidth, the pathways of decomposition were identified through 

the development of a graphical technique used in conjunction with the GaN dispersion 

curve and theoretical prediction centered on the energetic character of the decomposition.  

It was found that these pathways were invariant for all concentrations of carriers 

indicating that the lattice/lattice scattering takes place independent of the electronic 

milieu.   In contrast, the rate of decomposition was found to be dependent upon the 

number of carriers for those modes that are emitted by the electrons.  Taken together, 

these findings indicate that the “flow path” of thermal energy through the lattice takes 

place independent of the carriers.  However, it remains unclear whether the number of 
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carriers limits the decomposition of the high energy emitted LO modes through 

reabsorption or if, rather, a new energy dissipating “plasma” channel is created as the 

number of carriers passes some unknown threshold [158].  Regardless, it is only these 

emitted LO modes that are significantly affected by the electronic environment as all 

other modes display independence from this alternate physical environment. 

TAKEAWAY: 

 The rate and manner in which optical phonons decompose plays a central role in the 

thermal dissipation of energy in GaN devices.  Through measurement of the lifetimes of 

these modes at a series of temperatures, this study has identified the decomposition 

pathways of several phonon modes and the dependence of their decay rate on the 

presence of electrical carriers. While the pathways are invariant for all modes irrespective 

of the carrier concentration, those modes emitted by the carriers decay at a rate dependent 

upon this concentration highlighting the distinct role that the electronic environment 

plays on thermal transport.  

6.1.4 Estimating the Effects of Disorder on Thermal Boundary Conductance of 

GaN/Substrate Interfaces 

 The manufacture of the GaN films comprising the active region of the devices 

analyzed in this study takes place via an epitaxial growth process atop a substrate.   The 

quality, or ideality, of the interfaces between the GaN and substrate will vary in response 

to both the processing conditions employed as well as the physical nature of materials 

themselves.  These interfaces, meanwhile, have a distinct effect on the overall thermal 

transport of the device and may influence the final operating temperature by as much as 

60% [178].  Due to this large influence, it is necessary that the nature of this interfacial 
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thermal transport be understood such that its effect may be minimized.  However, as all 

interfaces are not “created equal,” it is equally important that this analysis in some way 

accounts for the variance in interfacial quality, which is undoubtedly present.   

 Measurement of interfacial thermal transport, or equally the thermal boundary 

conductance (TBC), is quite difficult and, as a consequence, most effort centers on 

simulations of the phenomenon.   While the frequently employed atomistic models allow 

for detailed analysis of the system, computational expense makes their use prohibitive in 

the analysis of the infinite arrangements of intermixing and disorder that occur with a 

change in the quality of the interface.  In response, this study has developed an extension 

of a frequently employed analytical prediction to account for the effect of interfacial 

quality on thermal transport.  By incorporating a virtual crystal to represent the finite 

interfacial region, or interphase, the diffuse mismatch model is scaled to account for the 

multiple scattering events that take place at a non-ideal interface thus allowing for the 

prediction to, in some way, account for the effect of interfacial quality.  After proving the 

validity of the approach through correlation with experimentally measured values of a 

Cr/Si interface, it was found that the length at which disorder persists affects the thermal 

transport of a GaN/substrate system more than the degree of intermixing that occurs in 

that interfacial region.  Additionally, systems having lower ideal thermal boundary 

conductance were found to be particularly sensitive to reductions in the interfacial 

quality.  Therefore, to properly account for the thermal boundary conductance during 

device design, decisions must be weighed not only with respect to material selection but 

also to a processing recipe maximizing interfacial quality as well. 
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TAKEAWAY: 

 Due to the many layered architectures utilized in the design of GaN electronics and 

micro/nano devices in general, interfacial transport is playing an increasingly important 

role in the overall thermal response.  While analytical models have proven useful in the 

prediction of this transport, their implementation has been limited to ideal interfaces.  

This study has demonstrated an analytical model capable of approximating transport 

through non-ideal interfaces in the prediction of TBC via the development of the Virtual 

Crystal Diffuse Mismatch Model. 

6.2 Opportunities 

 The present investigation is focused on the development and deployment of new 

semiconductor characterization methods while concurrently utilizing those techniques in 

the analysis of GaN devices.   As a consequence, future analysis stemming from this 

work will likely be divided between studies seeking extended optical characterization 

capabilities for electronic devices, in general, and those focused on the observation and 

improvement of the AlGaN/GaN HEMT, in particular.    In response, the proceeding 

subsections seek to highlight some of the more promising opportunities for each type of 

investigation.  

6.2.1 Opportunities in the General Characterization of Devices 

6.2.1.1 Size Constraints 

 Electronic devices are continually stretched to produce greater capability in ever 

smaller footprints. This trend toward smaller and more capable devices has not only lead 

to greater complications in the prediction and analysis of the response but so too its very 
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measurement. Oft incorporated optical techniques inherently rest on the supposition that 

the spatial resolution of the probing radiation provides a spatial resolution sufficient to 

analyze the device.  For radiation in the far field, the implication is that there are no 

salient features less than the diffraction limit.   In the case of visible light, this requires 

that the device have a “constant” response at length scales less than λ/2 ~0.5 μm.   As 

devices are now commercially available that are designed at length scales over an order 

of magnitude less than this 0.5 μm figure, characterization techniques capitalizing upon 

the advantages inherent in non-contact measurements must be developed for these length 

scales [196].  

 The most obvious solution towards this objective relies on the development of 

techniques utilizing incident radiation having wavelengths much smaller than that of 

visible light. Unfortunately, concomitant with the implementation of these small 

wavelengths (e.g., X-Ray) comes an associated increase in the amount of energy incident 

upon the device and thus the likelihood of damage to the sample.  In addition, practical 

utilization of these smaller, higher energy, wavelengths is extremely difficult due to the 

specialized optics necessary for their use.  Therefore, alternative approaches will likely 

center less on the wavelength of the radiation and more on the methodology by which it 

is focused.  Through the use of either sub-diffraction “superlenses” or near field 

radiation, spatial radiation less than the diffraction limit may be acquired thereby 

allowing for the characterization of devices at more pertinent length scales without the 

complication of utilizing small wavelength probing radiation [197]. 
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6.2.1.2 Two-Dimensional Mapping 

 Infrared thermography is one of the most popular techniques to investigate the 

temperature of electronic devices despite the fact that its spatial resolution of ~5 μm 

would be considered obsolete for most other methodologies.  The continued relevance of 

the technique stems from its capability to quickly and easily acquire a 2-dimensional 

temperature distribution with a minimal amount of effort.  A method that could achieve 

this capability on a length scale more on par with today’s devices would be extremely 

useful. 

 In most Raman experiments, the vast majority of the CCD quantifying the amount of 

light across the spectrum is under-utilized as the peak signal is only present across a very 

small portion of the detector.  If this portion may be quantified, then the surplus of the 

CCD pixels may then, through appropriate modification of the optics, be utilized to 

measure this same region of the spectrum at different X-Y locations simultaneously.  

While this would not allow for the entirety of the device to be mapped in “one shot” as 

occurs in IR measurements, it would allow for a 2D map with small spatial resolution to 

be acquired in a much smaller amount of time thereby combining the advantages of IR 

and micro-Raman thermometry. 

6.2.1.3 Simultaneous Electronic-Lattice Characterization 

 Semiconductor devices have electronic and lattice environments that are inextricably 

linked.  Energy is deposited, via a bias, into the electronic system and subsequently 

transferred to the lattice where the excess heat must be dissipated.  Measurement of the 

devices, however, typically occurs with respect to only one of these environments even 

though, in a light scattering event, energy transfer may occur with either the electronic or 
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lattice environment.  Therefore, it should be possible to implement techniques that 

optically analyze each of these environments simultaneously through proper filtering of 

the spectral and temporal signals.  For example, techniques such as photoluminescence, 

thermoreflectance and Raman spectrometry may be combined in order to probe the 

evolution of, among other factors, the electron phonon interaction central to the 

dissipation of thermal energy in GaN devices [198].  Regardless of the particular 

implementation, as incident light interacts with both the electronic and lattice 

environments simultaneously, techniques should be developed that more easily capitalize 

on the entirety of the signal as both portions of the response could be of value.    

6.2.2 Opportunities in the Analysis of AlGaN/GaN HEMTs 

6.2.2.1 AlGaN’s Role on the Behavior of AlGaN/GaN HEMTs 

 The operation of AlGaN/GaN HEMTs relies upon a large aggregation of carriers 

forming along the interface between the alloyed and unalloyed layers.  Throughout this 

study, our analysis has focused exclusively upon the GaN portion of this system with 

total disregard to the nature of the response in the alloyed layer despite its centrality to 

the operation of the transistor.  This deficiency stems from the fact that the AlGaN layer 

is quite difficult to investigate in practice, owing to the layer’s extreme thinness and 

similarity in Raman response to the undoped GaN.   Future studies should seek to fill this 

inadequacy. 

 To compensate for the small signal originating within the AlGaN layer, previous 

studies have capitalized on near-resonant Raman conditions through use of incident 

radiation above the band gap of the material in the form of UV radiation [87].  

Furthermore, as GaN and its alloys are opaque in this region, the UV light will only 
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sample from the “top” of the device allowing for the sole interrogation of the AlGaN 

apart from its unalloyed counterpart.  In using an above bandgap source, however, 

temperature measurements are complicated by the creation of electron-hole pairs that will 

modify the observed device’s operation.  Yet since the AlGaN layer has an extremely 

small thermal signature, its analysis with respect to temperature is not central and thus 

need not be sought.  Rather it is the stressing, and more importantly, the relaxing of this 

layer that is central to the performance of the device.  Therefore, use of UV-Raman 

should focus on specifying at which conditions, both in operation and processing, 

relaxation occurs in this alloyed layer. 

6.2.2.2 Hot Spot Quantification in AlGaN/GaN HEMTs 

 In a HEMT device, the electric field achieves its acme and “spikes” just beneath the 

gate on the side nearest to the drain (see Figure 1).  At this location, the potential energy 

embedded in the bias quickly manifests itself into a severe degree of kinetic energy 

within the electronic system.  All this kinetic energy must in some way be dissipated and, 

in response, the lattice is heated in a manner that “spikes” with the electric field at this 

same location.  The intense localized heating is termed the “hot spot” and corresponds to 

the location of maximum load within the device.  Due to the high level of load, it is 

within the hot spot that most failure is believed to originate and thus its investigation and 

quantification is of prime interest.  

 Optical access to this region is quite difficult in today’s devices, however, due to the 

employment of T-shaped gates and field plates that act to “hide” the hot spot from 

standard top-view backscattering methodologies.  This problem has been circumvented 

utilizing Raman spectroscopy imaged through the substrate in conjunction with confocal 
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microscopy techniques [50].  Even utilizing the confocal capabilities of the spectrometer, 

however, results in a temperature measurement averaged through a thickness of at least 3 

μm due to the dispersing effects of the substrate.  Unfortunately, the hot spot is unlikely 

to extend to such a depth and, as a consequence, the measurements will underestimate the 

true maximum due to averaging with the adjacent cooler region.   

 Therefore, an approach employing a through thickness depth of field on par with the 

hot spot must be implemented in order to quantify the true maximum temperature in the 

device.  As UV light is above the band gap of gallium nitride, it may be employed to 

achieve this depth of field.  For the same reason, however, utilizing this wavelength of 

incident radiation through the substrate (i.e., from the bottom) would not result in any 

information being obtained from the AlGaN/GaN layers due to the effects of absorption.  

It is then necessary that optical access to the hot spot be, in some way, obtained in a 

standard top view backscattering arrangement.  This access is, again, inhibited by the 

Ti/Al metallic layers of the gate and field plate and thus their effects must be removed.  

Thus, devices which utilize transparent conductive oxides may provide a logical path 

forward in investigating these features. 

6.2.2.3 Reliability of AlGaN/GaN HEMTs 

 With continued utilization, GaN based HEMTs suffer from degradation in their 

operational capabilities.   Subject to either RF or DC stress, drain current, output power, 

and gain each reduce with time causing significant reductions in the overall lifetime and 

viability of the device.  While the observation of this degradation has been reported [2, 9, 

13, 14, 16, 18, 20, 22, 34, 35, 42, 199-213], there has been a relatively limited amount of 

study focused on the mechanisms by which this degradation actually occurs.   
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 At its core, the capability of an electronic device is limited only by the number of 

available charge carriers and the ability for these carriers to move.  Study of degradation 

is then an examination into the changes in both electronic concentration and mobility 

with time.   In AlGaN/GaN systems, the concentration of electrons occurs as a direct 

result of large polarizations that arise due to both spontaneous and piezoelectric effects. 

Any change affecting this polarization will modify the active region of the device and 

cause a subsequent dispersion in performance.  For this reason, it is imperative that each 

of the mechanisms responsible for changes in the polarization be identified in order to 

limit HEMT degradation. 

 In order to maintain charge neutrality upon being polarized, pairs of positively 

charged holes and negatively charged electrons must be matched on opposing surfaces of 

the AlGaN layer [214].  If either a hole or electron gains sufficient energy to move away 

from its respective surfaces, the associated polarization will reduce causing a decline in 

available electrons and hence limited overall device performance.  The deleterious 

movement of these charged particles, in turn, arises as a direct consequence of the 

formation of traps that form at nearly every location between the gate and drain including 

the surface, bulk, and even adjacent to the gate itself [215]. While improved surface 

passivation and gate design have largely mitigated the formation of surface and gate 

traps, recent studies have deduced that defects formed in the bulk AlGaN layer are now a 

dominant cause of reduced performance [36, 152].  These bulk traps form not as a result 

of damage from “hot electrons” but rather as an outcome of stress relaxation in general, 

and specifically, cracking underneath the gate within the AlGaN/GaN layers [216].  Thus, 

it is the evolution and relaxation of stress in response to the large mechanical loads 



 154

induced due to residual, inverse piezoelectric, and thermoelastic effects that govern the 

rate of device degradation [17].   

 While previous studies have deduced this cascade of events, the exact conditions 

inducing relaxation have not been verified.  In response, future study may track the 

evolution of stress in all its components throughout both the GaN and AlGaN layers with 

continued device operation.  Additionally, the level of crystallinity in each layer may be 

monitored as well in order to observe the formation of defects.  By correlating these 

changes in stress and crystallinity to changes in the electronic performance, the multi-

physical nature of the degradation process may be probed directly and future avenues for 

device improvement illuminated. 

6.3 Conclusions 

 In physical structures, an interconnectedness evolves between the different 

environments (e.g., thermal, electrical, etc.) as the length and times scales over which 

devices operate decreases.  At this level, energy loses its distinction with respect to its 

thermal, mechanical, electrical, or chemical origin and instead is transformed into a “total 

potential” defining the wavefunction of the system as a whole.  Analysis particular to, for 

example, the electrical or thermal response becomes less and less relevant as the problem 

ceases to be defined by any one of these categories but instead by the electro-thermal 

interaction.   In GaN systems for example, these types of interactions are especially 

pertinent at even continuum length scales due to the strong piezoelectric response of the 

material in which each of the regimes - thermal, mechanical, and electrical - becomes 

powerfully coupled in a multi-physical feedback loop. This loop, in large part, determines 

the capability of the device and, as such, requires that the coupled nature be thoroughly 
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observed, characterized, and eventually, understood.  This study, through movement 

away from the singular “silos” of analysis towards a more “interconnected” approach (see 

Figure 52), has attempted to achieve just this.  

 The very nature of a semiconductor material lends itself to an interconnected 

approach due to the solid state characteristics of the lattice from which the material is 

ordered.  In these types of materials, the lattice may be thought of as a series of “balls and 

springs” interweaved within a three dimensional network.   At any finite energy, these 

balls (atoms) vibrate with respect to one another at a frequency governed by the behavior 

of the springs between them.  The springs (interatomic potential), in turn, are modified 

with any change in their displacement and thus any variation of the atom’s position 

relative to another.  As a consequence, with an alteration in the atomic position comes an 

associated dispersion in the frequency of the vibration (phonon).  Analyzing these 

vibrations then provides insight into those causes affecting the displacement of the atoms.   

 
 

Figure 52.  As devices become more coupled in their response, characterization must 
move from individual “silo” investigations of the environments in isolation (left) towards 
a more integrated examination of the device in its totality (right).   
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Likewise, the scattering of light off of this lattice is dependent upon the atomic 

arrangement, and hence vibration as well [58].   Therefore, analysis of light scattering, as 

occurs during Raman spectroscopy, allows for the atomic displacement, and in turn its 

physical causation, to be “seen” and subsequently quantified.  

 Specifically, these atomic displacements arise due to any strain that occurs in the 

material.   In a GaN device, strain arises from sources spanning the range of the physical 

spectrum - thermal, electrical, and mechanical – through thermal expansion, 

piezoelectric, and elastic effects, respectively.  Thus each of these physical environments, 

so coupled in a GaN device, are probed through the scattering of light in a Raman 

investigation.  This fact is both a complication and an opportunity.   

 Previous Raman investigations of GaN systems have largely ignored this physical 

coupling by focusing on a lone parameter.  Stress measurements were performed apart 

from both thermal and electrical effects.  Similarly, temperature measurements most 

often were acquired using only the peak position without regard to the coupled nature of 

this spectral artifact.  As a consequence, characterization has continually occurred in 

exclusive silos rather than from a coupled isometric perspective.   

 This study moves the characterization of a coupled system from a singular viewpoint 

to one that capitalizes, rather than being crippled, on the distinctly “flat” response.  By 

tracing each component of the Raman spectrum back to its physical origin, the entirety of 

the intermixed signal may be deconvoluted and utilized.  In such a manner, much of the 

multi-physical loop determining the capability of the GaN device is then illuminated.  

Temperature may be measured in the presence of stress.  Stress may be investigated in 

the presence of elevated temperatures as well as electrical effects.  Even the role of 
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electrical carriers on the transport of heat may now be seen, completing, however 

primitively, an experimentally derived glimpse of the 3-D thermo-electro-mechanical 

coupled loop at play in GaN materials.  Additionally, it is hoped that this analysis, in 

approach as much as method, has provided a glimpse at the further “flattening” of 

characterization, and subsequently design, necessary as technology runs headlong 

towards the room, no doubt, still aplenty at the bottom [217]. 
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APPENDIX 
 

RAMAN SELECTION RULES FOR HEXAGONAL GAN 
 
 
 

 In Chapter 4, measurement of the E1(LO) and A1(TO) phonon lifetimes required the 

Raman analysis to take place in such a manner that the incident light was parallel to the 

non-polar a axis.  The previous measurements of Chapter 2 and 3, however, employed a 

more common backscattering arrangement in which the probing radiation remained 

parallel to the polar c axis in order to monitor the E2
High phonon mode.  The necessity of 

turning the crystal “on edge” in order to observe certain modes arises as a consequence of 

the selection rules governing the Raman process. A short discussion of these rules in GaN 

materials is then pertinent. 

 The selection rules governing the Raman signal are determined by the vibratory 

aspects of the material being analyzed.  In the hexagonal GaN examined in this study, 

group theory predicts 6 Raman active optical modes: A1(LO), A1(TO), E1(LO), E1(TO), 

E2
High

, and E2
Low [150].  Of these modes, those delineated with the letter A, or “axial,” 

have atomic displacements parallel to the c-axis while, in contrast, all of the other modes 

have atomic movements within the basal plane.  The nature of this displacement is 

critical as momentum must be conserved in all light scattering processes.  Consequently, 

only phonons propagating in the same plane as the exciting and measured radiation will 

then be observable.  In a typical backscattering measurement where the incident light is 

parallel to the c-axis, this implies that every mode will be observable except the A1(TO) 

and E1(LO).   
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 Momentum conservation, however, is not the only condition determining the 

visibility of a particular Raman mode.   It is also necessary that the polarizability of a 

mode be capable of changing as a consequence of the incident electromagnetic field (see  

Equation (3) and (5) ).  This criterion is analytically described through the relation 

linking the scattering efficiency, S, to the experimental arrangement: 

 L SS e R e∝ ⋅ ⋅  ( .41) 

where R is the mode specific Raman tensor describing the ability of the polarizability to 

change, and eL and eS are the polarizability vectors of the incident and scattered radiation, 

respectively [219].  Using this proportionality and the Raman tensors described in Table 

7, the selection rules are defined in Table 8 for GaN.  As the z direction is defined to be 

oriented parallel to the c-axis, notice that only the A1(LO) and E2 modes are visible in a 

normal backscattering arrangement.  It is then necessary to turn the crystal on edge to 

observe the additional Raman active phonon modes.   

Table 7.  Raman tensors for hexagonal GaN  [218]. Letters within the parentheses 
correspond to the polarization of the given phonon mode while ⊗ indicates a non-zero 
element within the tensor.   
 

A1(z) E1(x) E1(y) E2 
0 0

0 0
0 0

⊗⎡ ⎤
⎢ ⎥⊗⎢ ⎥
⎢ ⎥⊗⎣ ⎦

0 0
0 0 0

0 0

⊗⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⊗⎣ ⎦

0 0 0
0 0
0 0

⎡ ⎤
⎢ ⎥⊗⎢ ⎥
⎢ ⎥⊗⎣ ⎦

0
0

0 0 0

⊗ ⊗⎡ ⎤
⎢ ⎥⊗ ⊗⎢ ⎥
⎢ ⎥⎣ ⎦

 

Table 8. Raman selection rules for hexagonal GaN using Porto notation to describe the 
propagating direction and polarization of the incident and scattered radiation.  
 

( , )z x x z  ( , )z x y z ( , )x z z x ( , )x y y x  ( , )x z y x ( , )x y z y  
A1(LO), E2 E2 A1(TO) A1(TO), E2 E1(TO) E1(LO), E1(TO)
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