
LEARNING CONTIGUITY-BASED HIERARCHICAL TASK 

MODELS FROM DEMONSTRATION 

 
 
 
 
 
 
 
 
 
 

A Thesis 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Leo Thomas Rossignac-Milon 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Bachelors of Science in the 
School of Computer Science 

 
 
 
 
 
 
 

Georgia Institute of Technology 
Dec 2014 

 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved by: 
 
Dr. Andrea Thomaz, Advisor 
School of Computer Science 
Georgia Institute of Technology 
 
Dr. Henrik Christensen 
School of Computer Science 
Georgia Institute of Technology 
 
 

 
 
 
Date Approved:  12/11/2014 

 
 



 

iv 

ACKNOWLEDGEMENTS 

 

 I wish to thank my mentor, Andrea Thomaz, for peaking my interest in the field 

of artificial intelligence and for guiding my research through out my undergraduate 

career.  

 

 
 
 
 
 
 
 
 
 
 

 



 v 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS #iv 

LIST OF FIGURES #vii 

LIST OF SYMBOLS AND ABBREVIATIONS #viii 

SUMMARY #ix 

CHAPTER 

1 INTRODUCTION #1 

2 LITERATURE REVIEW #3 

3 TEM: TERMINALOGY, NOTATION, CONSTRUCTION #9 

GROUPS #9 

TEM #11 

LEGAL TRAVERSAL #13 

LAZY LEGAL TRAVERSAL #14 

MINIMUM NUMBER OF DEMOS #14  

ADDING PRECONDITIONS #15 

4 INCREMENTAL CONSTRUCTION OF TEM, TEM++ #16 

THE INCREMENTAL APROACH #16 

5 EXPERIMENTAL VALIDATION #24 

6 CONCLUSION #26 

REFERENCES #27 



 vi 

 LIST OF FIGURES 

Page 

Figure 3.1: TEM of Series 1 #13 

Figure 4.1: TEM of Ti from Example 1 #16 

Figure 4.2: Graphical Overview of Example 1 #23 

Figure 5.1: Recreating the TESTER TEM using Random Traversals #25 

 

 



 vii 

LIST OF ABBREVIATIONS 

 

TEM  Task Execution Model 

HTN  Hierarchical Task Network 

U-Group  Unordered Group 

S-Group  Sequential Group 

R-Group  Reversible Group 

 

 

 

 

 



 viii 

SUMMARY 

We propose an incremental approach for learning a hierarchical task model from a 

series of demonstrations, where each demonstration is a permutation of a fixed number of 

different actions. Our hierarchical Task Execution Model, called TEM, is a tree, where 

each leaf represents an action and each node represents a composite action (or subtask). 

We distinguish three types of composite nodes (s-group: sequential, r-group: reversible, 

and u-group: unordered). Although the sub-task children of a node must always be 

executed as a contiguous (uninterrupted) sequence, the valid orders for that sequence 

depend on the node type. Hence, a TEM captures a well-defined set of contiguity and 

ordering constraints.  

TEM may be used to test quickly whether a candidate plan of actions is 

compatible with the task model and also to provide a list of valid actions at any step 

during the lazy execution of a task. Furthermore, it may be used to explain the task model 

by providing (to the human) its hierarchical decomposition into subtasks and defining 

explicit relations (constraints) of order and contiguity amongst them. Our target 

application is to allow a robot to learn a task, such as a house chore, in an unsupervised 

manner from a series of demonstrations performed by humans. We propose an 

incremental learning algorithm, called TEM++, which takes as input the current TEM 

learned from previous demonstrations as well as a new demonstration, and which 

produces a new TEM.  
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CHAPTER 1 

INTRODUCTION 

 An important and growing trend in robotics is focused on programming robots by 

demonstration. Such an approach is particularly well suited in robotics applications in the 

home and in flexible manufacturing cells where the same robot may need to be 

reprogrammed often to learn new tasks. We define the task as a sequence of actions. For 

example, in a home application, the task may be to cook chicken and the actions may be 

to open the cabinet, take out the pan, place the pan on the burner, turn on the burner, 

place the chicken in the pan, and so on. 

In this paper, we restrict our attention to situations where the task comprises a 

sequence of n distinct actions. As input, we assume a series of demonstrations, where 

each demonstration has a one-to-one mapping between its actions and the original n 

actions. Our objective is to compute a hierarchical task model, which represents all 

groups of actions that have been contiguous in every demonstration in the series. 

We nest these groups to create a hierarchical Task Execution Model, called TEM, which 

is represented by a tree. Each leaf represents an action and each node represents a 

composite action (or subtask) defined in terms of a group of children (nodes or leaves).  

We distinguish three types of composite nodes: s-group = sequential (fixed order), r-

group = reversible (reversible order), and u-group: unordered. Although the sub-task 

children of a node must always be executed as a continuous sequence, the valid orders for 

that sequence depend on the node type.  

The specific contributions presented here include:  
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-­‐ A formal definition of the target knowledge (all groups of actions that are always 

contiguous throughout a series of demonstrations). 

-­‐ A compact representation of this knowledge which may be used for several purposes: 

o Check whether a given action plan respects all the contiguity constraints. 

o Provide the robot with a list of valid actions, during the lazy execution of a 

task.  

o Provide a human teacher with a visually compact representation of what the 

robot understands as being the set of all the valid sequences of actions for a 

given task. 

-­‐ An incremental algorithm, TEM++, that builds a TEM for the first demo and then 

updates the TEM by incorporating the information provided by each subsequent 

demo, one demo at a time. 
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CHAPTER 2 

LITERATURE REVIEW 

Throughout the past decade, remote robot laboratories have appeared around the 

globe such as the PR2 Remote Lab at the Bosch Research and Technology Center and the 

Telerobot of the University of Western Australia (UWA). These remote labs have mostly 

been used for collaboration between researchers. Robotics equipment is expensive and 

many smaller labs that would otherwise be unable to test their developments are given the 

opportunity to become more significant contributors to the field of robotics. Remote 

robotics labs also provide standardization allowing researchers to compare various 

methodologies and algorithms on a shared platform [1]. 

However, remote labs have a range of applications that extend beyond sharing 

resources. The power of the Internet can be harnessed to increase not only the number of 

researchers working on a robot, but to also increase public exposure to robotics. So far, 

publicly accessible robot controllers have mainly been used for entertainment or 

educational purposes. The TeleGarden at the University of Southern California allows 

public users to water or plant flowers in a garden remotely by controlling a robot, and the 

Telerobot of UWA lets anyone with internet access play with colored blocks on one of 

their robots [1]. On the other hand, the REAL (Remotely Accessible Laboratory) in 

Brazil takes the more educational route, allowing students of collaborating universities to 

log into their XR4000 autonomous mobile robot [2].  

We believe that with the right public interface, web users could become useful 

subjects in experiments. By expanding the pool of subjects and decreasing the effort 
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involved in participation, the number and diversity of subjects involved in experiments 

should both rise significantly. Creating a remote lab involves 3D visualization of objects, 

controlling the robot easily and quickly, data logging, and robot monitoring [1]. Since our 

remote lab would be focused on Learning from Demonstration (LfD), the development 

involves designing a LfD algorithm that is appropriate to the context.  

Learning from Demonstration, a subset of Supervised Learning, consists of 

creating task models or policies by using examples of the task. There are three main 

groups of methodologies used today to learn these task models. The first is to build a 

mapping function that allows the robot to calculate the probability of performing each 

action based on its observations of the current world state. Alternatively, the robot can 

create a system model. This model tries to understand how each action affects the world 

state and is often combined with a reward function to help the robot choose which action 

will lead it to a more preferable state. The third method is to create preconditions and 

post-conditions for each action. These conditions can be used to plan the task [3].  

 On the data collection side of LfD, there are two ways to make demonstrations: 

imitation and demonstration. In imitation, the teacher performs the task, and the robot 

then tries to map the teacher’s actions to his own. In demonstration, the teacher 

physically moves the robot. For each of these methods, sensors can be placed either on 

the teacher or on the robot, and resulting mappings sometimes need to be performed [3]. 

However, remote robotics involves teleoperation, an ideal type of demonstration. In 

teleoperation, there is a direct mapping for the sensors and for the actions since both sets 

of data are gathered from the robot’s motor and sensory systems. All three policy-

learning methods described above can be used successfully using teleoperation. However, 
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one of the goals of our remote robotics laboratory is for the users to be able to better 

understand the current task model as they provide further demonstrations to help refine 

the model. For this visualization to be useful for more complex tasks, we must provide a 

mixture of ordering of actions as well as provide a hierarchical structure to the actions. 

These requirements, will constrain the methodologies that we can viably use. 

 Many researchers have attempted to solve partial ordering and hierarchical task 

structure with the use of structured dialogue from the teacher. A group of professors from 

Carnegie Mellon University’s School of Computer Science have developed a system of 

learning hierarchical task structure using verbal commands. The teacher can create and 

name tasks as well as describe the parameters involved in the task. Teachers can then 

reuse premade tasks within more complex tasks. This system, however, has the 

disadvantage that the teacher must be familiar with the very structured set of verbal 

commands allowed. Tasks must also be verbally programmed by using ‘if’, ‘then’, and 

‘go to’ statements. Moreover, the task models are stored as finite state machines, which 

do not allow the robot to easily update them as new knowledge is acquired [4].  

 Researchers at Mitsubishi Electric Research Laboratories also used structured 

dialogue, but their goal was to allow task models to incorporate partial ordering 

constraints. Using their system, the teacher can annotate tasks by writing out all 

preconditions for every action. The robot can then combine these annotations with a 

physical task demonstration to create the generalized task model. While this system 

allows for quick learning, it relies on the teacher to be familiar with the complex task 

programming language [5]. Neither of the methods that use structured dialogue is suitable 

for LfD, as the motive behind LfD is that end-users should be able to teach robots tasks 
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with little to no training. Also, for very complex tasks, even an expert may not be able to 

enumerate all conditions or partial ordering constraints. It seems reasonable that the 

teacher should simply be responsible for providing demonstrations and answering 

questions.  

 Fortunately, methods for learning partial task ordering without the use of 

structured dialogue have also been researched. A generalized task model can be formed 

using state related preconditions for each action combined with the ability to detect 

repetitions within a demonstration. A repetition is limited to a sequence of actions that 

appears multiple times in the demonstration. This type of model allows the robot to 

calculate which action is appropriate for its current state as well as to understand which 

sequences of actions can be performed repeatedly until the precondition is no longer 

present [6]. For example, a robot could learn that when it sees blocks inside a box, it 

should remove all blocks from the box until no more blocks are left in the box. 

Alternatively, it is also possible for task preconditions to be based on previous actions 

instead of on the current world state. One way to create such a task model is to find the 

longest common action subsequence of multiple demonstrations and then append any 

alternate action paths to this base model. The end result is an action plan that shows all 

valid possible paths from which the robot can choose. This technique allows for the 

model to be updated as more demonstrations are incorporated [7]. Using this model, a 

robot could for example learn that it can only place a ball in a box after having removed 

the block from it, which can in turn only happen after having opened the box. 

Unfortunately, both of these techniques are only for flat representations, making the 

current implementations incompatible for hierarchical tasks.  
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 However, action preconditions and world state preconditions are not mutually 

exclusive. The two can be combined for an even better task model. Algorithms that create 

these types of task models have been implemented at the University of South Carolina, 

with action preconditions taking precedence over world state preconditions. Perhaps 

more importantly, the behaviors in the task model were abstracted to hold either a single 

action or a sequence of sub-behaviors. If a behavior’s action preconditions and world 

state precondition are both met, the behavior is triggered, which in turn triggers sub-

behavior. When the behavior’s sub-behaviors have all finished, the behavior itself signals 

that it has been completed and the task moves to a new behavior. Detecting that a 

primitive behavior is completed involves checking that the action’s post-conditions are 

now a part of the world state. This implementation allows for both partial ordering 

constraints and hierarchical structure. The ability for behaviors to be abstracted with as 

many levels as needed is a powerful and much needed tool in LfD. While this task model 

structure is very promising, the model was preprogramed into the robot. The model was 

not learned from demonstration [8].  

 Existing algorithms that learn Hierarchical Task Networks (HTNs) by observation 

require the demonstration set to be coupled with either pre-encoded concepts or pre-

encoded subtasks. For example, an algorithm developed at Stanford’s Computational 

Learning Laboratory uses concepts that “are encoded in a hierarchical language and 

shape the system’s beliefs about the domain.” The system then uses back-wards chaining 

to find sequences of actions that resulted in a change in one of the domain concepts. 

These sequences are then labeled as sub-tasks [9]. In more recent work, the HTN-

MAKER algorithm detects tasks in a solution by finding intervals in the tasks where the 
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initial state and final state respectively match the pre-conditions and goals of the pre-

encoded task. HTN-Maker also requires all primitive actions to be pre-encoded in a 

similar manner [10]. Both of these HTN learning algorithms are limited to totally ordered 

sequences of subtasks. 

 In order to create a remote robotics laboratory where the robot is being taught in 

real time by untrained public internet users, the LfD algorithm used must be able to create 

task models that take into account both the ordering of behaviors as well as the 

hierarchical structure within behaviors. Moreover, the learning algorithm must be able to 

update its model on the fly as new demonstrations are provided. This algorithm must not 

be based on structured dialogue; nor must it force the users to pre-program or pre-

annotate tasks or concepts. Developing a task model that satisfies these requirements will 

achieve a secondary purpose by allowing it to be visualized in a manner that is more 

intuitive for the teacher. According to Russell, Halit Bener, and Chernova, end users 

acting as teachers for robots have a desire to understand what the robot is thinking or 

what the robot already knows about the task [11]. By showing teachers the current model 

in an intuitive manner, they will be able to understand what partial ordering option or 

hierarchical division the model has yet to learn. Thus, the user will be able to provide 

demonstrations that best refine the model, maximizing the value of each demonstration 

and increasing the learning curve of the robot. 
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CHAPTER 3 

TEM AND STEM: TERMINOLOGY, NOTATION, AND 

CONSTRUCTION 

In this section, we define our terminology, introduce a notation, and propose a 

construction process for computing a TEM from a given series of sequence 

demonstrations. 

Groups 

We associate each action with a label. Each label must have a unique identifier. 

For readability, we will let the identifiers be single lowercase characters for actions and 

single uppercase characters for composite actions. 

Therefore, we may denote each demonstration by a string, such as “axdfg”. 

Because we assume that all actions are different, for simplicity and without loss of 

generality, we assign these characters so that the string of the first demo is always 

“abcde…”. 

Let n denote the number of actions. 

For example, when n=9, the input may be: 

Series 1 

Demo 1: “abcdefghijkl” 

Demo 2: “bdacefgkljih” 

Demo 3: “kljihabdcefg” 
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Throughout this paper, we use the term group to denote two or more labels that 

appear contiguously in every demonstration. A single demo of n labels (actions) defines 

n(n+1)/2-n groups.  For example, a single demonstration of “uxv” defines the 3*4/2 -3 = 

3 groups: ux, xv, and uxv. The groups of a series are found in the intersection of the 

groups of all the individual demos. In Series 1, “abcd” and “hi” are both groups. Clearly, 

the entire string “abcdefghijkl” is also a group. 

A sorted group (abbreviated s-group) is a group of labels that appear in the same 

exact order in all demos. Additionally, an s-group should not be contained, as a proper 

subset, in any other s-group. For example, in Series 1, “efg” is an s-group, but “ef” is not, 

because “ef” is contained in “efg”. 

A reversible group (abbreviated r-group) is a group of labels that always appear 

either in a given order or in the exact reverse order. Again, an r-group is not contained, as 

a proper subset, in any other r-group. For example, in Series 1, “hij” is a R-Group. 

An unordered group (abbreviated u-group) is a group of size greater than 2 that 

does not contain a group as a proper subset. For example, in Series 1, “abcd” is a u-

group, but “hijkl” is not a u-group, because “hijkl” contains the groups “hij” and “kl”.  

Observe that all substrings of an s-group and of an r-group are also groups of the series. 

For convenience, we use the term TEM-group to refer to any of the s, r, or u 

groups. Note that the TEM-groups of a series are a subset of all the groups of that series. 

We use the following notation to identify TEM-groups in our textual representation of a 

TEM. 

The labels in a u-group are delimited by hard brackets: ‘[‘ and ‘]’. 

The labels in an s-group are delimited by angle brackets: ‘<‘ and ‘>’. 
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The labels in an r-group are delimited by curly brackets: ‘{‘ and ‘}’. 

For example, in Series 1, we identify the following TEM-groups: the unordered group 

[abcd],  the sequence <efg>,  the reversible group{hij}, and the sequence <kl>. 

TEM 

In Series 1, the group “hijkl” is neither a u-group, nor an s-group, nor a r-group. 

However, “hijkl” is a group of Series 1, since these 5 actions occur contiguously in all 

demos. To capture such knowledge, we define our Task Execution Model, or TEM, as a 

nested (hierarchical) formulation of the groups.  

To do so, we treat lowest-level TEM-groups as composite actions and assign a 

different label (upper case character) to each one of them. 

For example after identifying the TEM-groups in Series 1, we can re-rewrite its demos 

as:  

Series 1 

Demo 1: “XYZW” 

Demo 2: “WZXY” 

Demo 3: “ZWXY” 

Then, we perform the same TEM-group extraction on this new formulation. We repeat 

this process recursively until a single TEM-group is produced. 

From the re-rewritten demonstrations above, we find a new s-group “XY” and a new r-

group “ZW”.  

Where: 
X = [abcd] 
Y = <efg> 
Z = {hij} 
W= <kl> 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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Now, have a partially constructed TEM with two TEM-groups <XY> and {ZW} which 

we can expand as < [abcd] <efg> > and { {hij} <kl> }. 

Before creating the final TEM, we must correct a flaw in the current construction process. 

Notice that the r-group { {hij} <kl> } exactly encodes the following 5 groups: “hi”, “ij”, 

“hij”, “kl” and “hijkl”. However, the groups “jkl” and “ijkl” are always present in the 

three demonstrations. The r-group {hij} and its parent r-group {{hij} W} only appear in a 

reversed order when the other also does. Due to this fact, the r-group {hij} does not merit 

to be an r-group of its own. Thus, the parent r-group must absorb the child r-group, 

yielding {hij<kl>}.  

More generally, we add a step in the construction process as follows:  

Absorption 

When creating an r-group or an s-group, p, we must check all of its children.  

If one of the children, c, is also an r-group or an s-group (respectively) and c has 

always appeared in the same order as p, then p must absorb c. 

Absorbing c requires p to remove its child pointer to c and replace it with 

pointers to all of s’s children. 

After applying this rule, we modify the partially constructed TEM of Series 1 from: 

< [abcd] <efg> > { {hij} <kl> } to <[abcd]efg> {hij<kl>}. Notice that the s-group <efg> 

has also been absorbed. 

Let us now complete the TEM by performing another iteration of TEM-group extraction. 
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Series 1 

Demo 1: “UV” 

Demo 2: “VU” 

Demo 3: “VU” 

We see that the two TEM-groups are reversible, and so we create a final r-group {UV}. 

Since all demonstrations have been resolved to a single r-group, 

the construction process is complete. 

The final TEM of Series 1 is:  

{UV} = { <[X]efg> {hij<W>} } = { <[abcd]efg> {hij<kl>} }. 

This TEM is displayed in its graphical form in Figure 3.1. 

Notice that V={Z<W>} is an r-group child of the {UV} r-group. However, V should not 

be absorbed, since in Demo 3, V appears in order while UV appears in a reversed order: 

{Z<W>}U. 

Since the construction proposed above considers all the demos simultaneously and does 

not take their order into account, the TEM produced is independent of the order in which 

the demos are listed. Moreover, since we remove unnecessary nested s-groups, all 

equivalent TEMs have a unique structure. Two TEMs are equivalent if they encode the 

same groups. 

Legal Traversal 

Consider a tree representation of a TEM. The leaves represent the original actions. 

The composite (non-leaf) nodes represent composite actions and are each associated with 

a type: s, r or u group.  

Where: 
U = <[abcd]efg> 
V = {hij<kl>} 

 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 

Figure 3.1
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A legal traversal of a node visits all its children in some order, which depends on 

the type of the node. An s-group visits its children in the left-to-right order, while; an r-

group visits them in either the left-to-right or the right-to-left order. A u-group visits them 

in any order. 

To extract all the valid sequences encoded in a TEM, we enumerate all possible 

combinations of legal traversals and output the corresponding sequence. For example, the 

TEM { {ab} <cd> } produces valid permutations:  “abcd”, “bacd”, “cdab”, and “cdba”. 

Lazy Legal Traversal 

A TEM can be traversed lazily, outputting all legal candidate 

actions at any point during the traversal. This is accomplished by keeping track of which 

nodes have already been completed as well as the current node, N, which is initially the 

root node. To return a list of valid candidate actions, we recursively visit the children of 

N that could be legally traversed next, adding all encountered leaf nodes to the list. When 

an action is chosen, we mark it as complete, and set N to the selected action’s parent. If 

all of N’s children have been completed, we mark it as complete, and ascend the tree. 

Minimum Number of Demos 

Any TEM may be learned from only three carefully chosen demos. 

For example, the TEM: {[abc]<defg>{h<jk>l}} can be learned from Series 2. 

Series 2 

Demo 1: “abcdefghjkl”  

Demo 2: “hjkldefgbac” 

Demo 3: “ljkhdefgbca” 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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To prove this assertion, first observe that learning happens in parallel at all levels. 

Then consider that only one demo is needed to define the valid permutation of any s-

group. Two demos suffice to define the two permutations of a single r-group. However, 

as shown above, a third demo is needed to create an r-group that has a child r-group. 

Finally, a u-group may also require a third demo. A third demo is only required for u-

groups with only 3 children. For example [abc] can be learned from “abc”, “cba”, and 

“acb”, while [abcd] can be learned from “abcd” and “bdac”. Note that [abcd...wxyz] can 

be learned from “abcd…wxyz” and “…wcyazbxd…”. 

Adding Preconditions 

A TEM can be combined with action preconditions to create a more robust task 

model. Of course, s-groups and r-groups already have an exact ordering for their children, 

so no additional information is needed to capture the preconditions within them. 

However, we can use action preconditions to add ordering constraints to the children of a 

u-group.  

Testing if composite action C1 of a u-group is a precondition of a composite 

action C2 in that same u-group is simple. Due to the contiguity of each of the two 

children, we can arbitrarily chose a descendent d1 of C1 and a descendent d2 of C2 and test 

if one is a precondition of the other. 

The traversal of a u-group can easily be modified to respect preconditions. Of 

course, when using a TEM along with preconditions, more than 3 demos may be needed 

to specify the complete task model. 
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CHAPTER 4 

INCREMENTAL CONSTRUCTION OF TEM, TEM++ 

In this section, we propose an incremental process, TEM++. 

If we are given the TEM Ti that encodes the groups of the first i demos and we are given 

the next demo Di+1, we can incrementally compute the TEM Ti+1.  

The Incremental Approach 

Our incremental process transforms Di+1 into Ti+1 by processing the composite 

nodes of Si into Di+1, in a depth-first order, and possibly rearranging 

their children into new composite nodes. 

Example 1:  

Starting with Ti= < {abcde} [fgh] {<ijkl>mno} >    

and Di+1= “onklmjifhagbcde”,  

    we obtain Ti+1={ { on [<kl>m{ji}] }  [fhag{e{bcd}}]  } 

 Notice that the graphical version of Ti is shown in Figure 4.1. 

We explain below how a single composite node N of Ti is processed into Di+1. 

Pieces: 

When we process N into Di+1, we attempt to form a single new TEM-group out the 

children of N. However, if the children of N do not appear contiguously, this is not 

possible. Instead, we create several new TEM-groups. We re-label these TEM-groups (or 

ungrouped individual children) with a piece label. A piece label has the same unique 

Figure 4.1 
Ti 

 

 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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identifier as N’s label. In addition, a piece label records the total number of pieces that 

also came from N, its brothers.  

If N is a U-Group: 

By definition of a u-group, we know that no subset of these N’s children has always been 

contiguous. In Example 1, [def] is an unordered group. Even though “de” appears 

contiguously in the demo, it does not make sense to form a new TEM-group out of “de” 

in the next Ti+1. Since “de” is in an unordered group, there must have been some past 

demonstration where “d” and “e” did not appear contiguously. Otherwise, “de” would 

have been its own TEM-group. 

In order to process a u-group into a demo we must: 

1. Find all the children c of N (or all the pieces of c is c was broken when it was 

processed) 

2. If all c are contiguous in Di+1	
  

a. Create u-group with the same label as N which contains all c as 

children	
  

b. Assign a new label with a unique id to any c which currently has a 

piece-label	
  

3. Otherwise, re-label all c as pieces of N	
  

Example 1 (after processing [fgh]): 

Di+1= “onklmjifhagbcde” becomes 

Di+1= “onklmjiX3X3aX3ebcd”  

  

X3 indicates a piece of X from a 
brotherhood of size 3. 

Ti 
 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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If N is a S-Group or R-Group: 

There are three main parts in this process. Each part triggers the next, in a cyclical 

manner.  

1 - Find: The goal of this step is to find all groups of children of N that are contiguous 

both in the TEM-group and in the demo. Again, note that in the demo some of Ns 

children may have been split into pieces when they were previously processed. No piece 

can be in a group if that group does not also contain all of its brothers. 

In order for the next two parts to work correctly, we find groups from smallest to largest 

size. 

Notice that Find is a good candidate for dynamic programming. 

2 - Validate: Whenever a contiguous group is found in Find, we must ensure that it 

merits becoming a new TEM-group in the next TEM. A found group will only become a 

new TEM-group if it does not split apart an existing TEM-group created in this iteration.  

The newly created TEM-group becomes a specific type of TEM-group as defined below: 

 

 

N is a… 

 

The group 

contains pieces 

The group does not contain pieces 

The order of the group in D is the _____ as it is in N 

same reverse other 

S-Group u-group s-group r-group u-group 

R-Group u-group r-group r-group u-group 
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As described in the Absorption rule of the TEM construction, we want to ensure that no 

faulty r-groups or unneeded s-groups are produced: no r-group or s-group, p, should 

contain a child group whose order is always the same as p’s order.  

When constructing a TEM incrementally, determining if a parent should absorb a child is 

straightforward. When we create an s-group or an r-group, p, we must absorb any of its 

children, c, which satisfy the following two properties: 

• c has also been created during the processing of N 

• In D, the children of c appear in the same relative order as the children of p  

Since p and c both come from the same ordered group N, their children are guaranteed to 

have always been in the same relative order in all past demonstrations. 

On the other hand, if two groups were not both created during the processing of the N, we 

can be certain that the relative ordering of their children has not always been the same, by 

the structural properties that absorption guarantees for the previous TEM. Therefore, 

there is no need to consider abortion of two groups not created during the same 

processing. 

 

3 - Label: Once a new TEM-group has been validated and created, we re-label it with a 

unique id. Moreover, any of its children that are labeled as pieces must also be relabeled 

so they longer appear as pieces. 

 

Once the Find task reports that no larger groups can be found, we must label the topmost 

TEM-groups created during N’s processing. If N’s children appear contiguously in the 

demo, there will only be a single topmost TEM-group. In this case, the topmost TEM-
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group copies its label from N. Otherwise, there will be multiple top-most TEM-groups, 

all of which are re-labeled as pieces of N. 

 

 Example 1 (after processing {abcde}): 

Di+1= “onklmjifhagbcde”  

      = “onklmjiX3X3aX3ebcd” becomes 

Di+1= “onklmjifhag{e{bcd}}”  

      = “onklmjiX3X3W2X3W2”  

 First we must find the smallest contiguous groups. For simplicity, let us assume 

we find these groups from left to right. We first find “bc”. Since “bc” is in the r-group W, 

we know that they have always been contiguous. Since they are again contiguous in the 

demo, we can place them in a TEM-group. Now, we must validate “bc”. Since “bc” is 

currently in an r-group, we know that it has been reversible in the past. Thus, we create 

an r-group {bc}. We note that the current direction of {bc} is the same as in W. Finally, 

we can label {bc} with an id, P, for example. 

 Next, we find the contiguous group “cd”. However, when we try and validate 

“cd”, we see that constructing a group with only c and d, would break the {bc} group we 

just made. Thus, we reject “cd”. 

 There are no more groups of size 2 to find, so we next find the contiguous group 

“bcd”. Since making this group uses all of the previously made P group, we can 

successfully make a new r-group: {{bc}d} which we can label Q. We note that the 

current direction of {{bc}d} is the same as in W. We can now see that this situation 

Ti 
 

 
 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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requires absorption. Q and P have the same direction relative to W. Moreover, both Q and 

P have just been created during the processing of W. Thus, Q must absorb P. Now, Q is 

{bcd}.  

Finally, we find the contiguous group “ebcd”. Forming this group does not require 

splitting apart Q. The direction of “eQ” is the opposite of its direction in W:{Qe}. Thus, 

we should not absorb Q. Instead, we form a new r-group labeled R= {e{bcd}}. 

Now, there are no more groups to be found. Thus, we must find all the pieces of 

W: a and R={e{bcd}}. Since there are two pieces, we re-label them as pieces of W, W2. 

The new demo is now “onklmjideaf{e{bcd}}” = “onklmjiX3X3W2X3W2”. 

Example 1 (after processing <ijkl>): 

Di+1= “onklmjifhagbcde”  

      = “onklmjiX3X3W2X3W2”  becomes 

Di+1= “on<kl>m{ji}fhag{e{bcd}}”  

       = “onY2m Y2X3X3W2X3W2”  

When processing <ijkl> we find the contiguous group “ji” and create an r-group {ji}. We 

find the contiguous group “kl” and create an s-group <kl>. We label both of these groups 

as pieces of Y: Y2. 

Example 1 (after processing {Ymno}): 

Di+1= “onklmjifhagbcde”  

      = “onY2m Y2X3X3W2X3W2”  becomes 

Di+1= “{on[<kl>m{ji}]}fhag{e{bcd}}” 

       = “ZX3X3W2X3W2”  

Ti 
 

 
 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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When processing {Ymno}, we first find the contiguous group “on”. We create an r-group 

S={on} and we mark that this group is in the reverse order as compared to how it appears 

in current TEM.  

Next, we find the much larger contiguous group “Y2mY2”=“<kl>m{ji}”. Since this group 

contains pieces, we must form an unordered u-group T=[Y2mY2]=[<kl>m{ji}]. Notice 

that neither of the pieces of Y, Y2, can be grouped with m without also being grouped 

with the other piece.  

Finally, we find all the children of Z contiguously “onY2mY2” = “{on}[Y2mY2]” = “ST”. 

Note, that in current TEM, this group appears as “Y2Y2mno” = “[Y2mY2]{on}” = “TS”. 

Thus, we create an r-group V={ST} and mark this direction as opposite. Since both S and 

V are r-groups created in the processing of Z and since both S and V have been marked 

with the same relative order, V must absorb its child S. We are left with V = 

{on[Y2mY2]}.  

V is the only piece of Z, so we re-label V as Z={on[Y2mY2]}. 

Example 1 (after processing {WXZ}): 

Di+1= “onklmjifhagbcde”  

       = “ZX3X3W2X3W2” becomes 

Di+1= “{  { on[<kl>m{ji}] } [fhag{e{bcd}}]  }”  

       = “U”  

 

Ti 
 

 
 

U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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When processing U into “ZX3X3W2X3W2”, we first find the group “X3X3W2X3W2”, 

which is a u-group A=[X3X3W2X3W2], as it contains pieces. Finally, we find the entire 

demonstration as a single contiguous group, U={ZA}. 

 

Example 1 Overview 

Figure 4.2 
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U-Group: [unordered] 
S-Group: <sequential> 
R-Group: {reversible} 
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CHAPTER 5 

EXPERIMENTAL VALIDATION 

We validate the TEM and its construction as follows: 

First, we generate an initial TEM. We can then perform a lazy traversal of the 

TEM, randomly choosing from the possible actions at each step in the traversal. 

These random traversals are used to incrementally construct a new TEM. 

Eventually, the new TEM will be equivalent to the initial one. 

We constructed an initial TEM, TESTER, such that there existed: 

1. A	
  variety	
  of	
  node	
  structures	
  including:	
  

a. R-­‐groups:	
  {<><><>},	
  {{}{}{}},	
  {[][][]},	
  and	
  {[]{}<>}	
  

b. U-­‐groups:	
  [<><><>],	
  [{}{}{}],	
  [[][][]],	
  and	
  [[]{}<>]	
  

c. S-­‐groups:	
  <{}{}{}>,	
  <[][][]>,	
  and	
  <{}[]>	
  

2. R-­‐groups,	
  s-­‐groups,	
  and	
  u-­‐groups	
  with	
  their	
  minimum	
  number	
  of	
  children:	
  2,	
  

2,	
  and	
  3,	
  respectively.	
  

3. R-­‐groups,	
  s-­‐groups,	
  and	
  u-­‐groups	
  with	
  up	
  to	
  6	
  children.	
  

4. All	
  16	
  possible	
  types	
  of	
  3-­‐level	
  nesting,	
  such	
  as:	
  	
  

a. An	
  r-­‐group	
  containing	
  a	
  child	
  r-­‐group,	
  r,	
  such	
  that	
  r	
  contains	
  an	
  r-­‐group	
  

b. A	
  u-­‐group	
  containing	
  a	
  child	
  u-­‐group,	
  u,	
  such	
  that	
  u	
  contains	
  a	
  u-­‐group	
  

c. A	
  u-­‐group	
  containing	
  a	
  child	
  s-­‐group,	
  s,	
  such	
  that	
  s	
  contains	
  an	
  r-­‐group	
  

TESTER had a depth of 8 and contains 125 actions. 

TESTER was generated using 3 pre-determined demonstrations. 
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EXPERIMENT: 

We repeated the validation experiment 1000 times. In each experiment, we used 

random traversals from TESTER to create a new TEM, until the new TEM represented 

the same groups as TESTER. After each experiment, we noted how many random 

traversals were needed to recreate TESTER. The experiment was performed on a 

MacBook Pro running OSX 10.8.5 with 2.3GHz Intel Core i5. 

RESULT: 

 On average, it took 35.906 

random traversals to recreate 

TESTER with a standard deviation 

of 24.402. However, as you can see 

in Figure 5.1, the data is skewed to 

the right. The median number of 

traversals is only 29. At best, only 6 

random traversals were needed. 

However, as previously explained, three carefully chosen demonstrations would suffice 

to recreate TESTER. 

 During the 1000 experiments, there was a total of 35906 iterations, where an 

iteration is defined as randomly traversing TESTER, processing the traversal into another 

TEM, and comparing the two TEMs for equality. The total experimentation time was 

900.136 seconds, meaning that each iteration was performed in 0.02507 seconds, on 

average.  

Figure 5.1
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CHAPTER 6 

CONCLUSION 

 TEMs show promise as a model that can automatically detect the natural 

decomposition of demonstrations into subtasks. However, due to the limitations currently 

placed on the input demonstrations, TEMs are only appropriate to model tasks that 

comprise a unique set of actions, all of which must be executed. At best, if a task has 

several such execution paths, the task can be modeled using several TEMs.  

 Another limitation of TEMs is that a parallelizable action that can be performed at 

anytime within a demonstration will be able to break all contiguous groups. In such a 

situation, the resulting TEM will flatten to a single unordered group. Hence, TEMs are 

not useful for modeling several parallelizable tasks at the same time. 

 However, due to their low computational cost, TEMs may still prove useful when 

utilized to preprocess demonstrations. For example, since actions that pertain to the same 

task tend to yield a structurally interesting TEM, constructing TEMs from various subsets 

of actions could help detect parallelizable tasks whose actions have been interwoven. 

 More significantly, TEMs hint at the benefits of modeling the contiguity or 

proximity of groups of actions. For example, a more flexible task model could simply 

keep statistics on the distance between every pair of actions. When a sequence of actions 

is proposed, every pair of actions could be checked to ensure their proximity matches 

with some of previous demonstrations. 

 Modeling proximity or contiguity of actions has the potential to act as a beneficial 

supplement to existing Learning from Demonstration techniques. 
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