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ABSTRACT 

A STUDY. OF THE RESIDUAL 

LATERAL PRESSURES INDUCED IN 

A COHESIVE SOIL AFTER COMPACTION 

Andrew Jackson Glenn, III 

( 1*0 Pages) 

Directed by Professor George F. Sowers 

The purpose of this study is to determine the magnitude of 

the residual lateral earth pressures remaining in a cohesive soil 

after compaction. 

For the purpose of this investigation, a pressure cell was 

designed* SR-U electrical resistivity strain gages were utilized 

in these cells to give indications of strain when the cell diaphragm 

was depressed. Each cell was calibrated by recording the correspond­

ing strains for a range of uniform pressures applied on the diaphragm. 

The cells were used to measure the earth pressure being ex­

erted on a concrete wall. The following five tests were conducteds 

1) Loose dumping the soil into place 

2) Compacting the soil in 3-inch layers with a 10-pound hand 

tamper 

3) Compacting the soil in U-inch layers with a 210-pound 

gasoline (BARCO) rammer. 

k) Compacting only the 18 inches nearest the wall. The soil 

was compacted in U-inch layers using a 210-pound gasoline 
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(BARCO) rammer. 

5) Compacting the soil in 6-inch layers with a sheepsfoot 

roller. 

The conclusions resulting from these tests are: 

1) The compaction of cohesive soils produces much higher 

residual lateral earth pressures than the loose dumping of the same 

soil. 

2) The residual earth pressures within a compacted backfill 

are probably equal to or greater than the computed At-Rest earch 

pressures* 

3) Residual lateral earth pressures are greater for the 

greater compactive efforts of larger and heavier compaction machines. 

h) Residual lateral earth pressures are affected by time. 

They are reduced in the first day or two after completion of com­

paction. 
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CHAPTER I 

INTRODUCTION 

General Background - For centuries, some of the most important 

structures that engineers have had to design and construct have been 

those which serve to restrain the lateral movement of earth masses. 

These structures are usually referred to as retaining walls, and 

they must be designed to resist the lateral and vertical pressures 

resulting from the earth mass they are supporting. Before an 

engineer can design a retaining wall, he must first be able to de­

termine the magnitude, direction, and distribution of the pressures 

which will be acting upon the wall. This problem has long been 

recognized. Written records from the eighteenth century on show the 

considerable amount of time and energy that has been expanded in the 

development of earth-pressure theories from both experimental work 

and observation of construction practive. A summary of the theories, 

observations, and experimental work on earth pressure has been made 

by Jacob Feld (11)* Gregory P. Tschebotarioff (7) has also combined 

the classical theories of Coulomb Rankine with the modern theories 

which have resulted from more recent observations and testing. 

Usually, structures which are to retain earth masses are con­

structed before the earth mass is placed or backfilled against them,. 

In many cases it is necessary that these backfills be compacted by 

mechanical means to increase their strength, density, and ability to 
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support further loadings without damaging settlement occurring. It 

has been suspected that the process of compacting a soil causes an in­

crease in the lateral pressures within the soil mass* However, little 

is known concerning the magnitude and distribution of the lateral earth 

pressures against walls resulting from compaction. This is an impor­

tant question left unanswered. 

In same cases, excessive deflections of retaining structures 

have occurred during the construction of compacted fills against them. 

This fact has lead to the belief that lateral earth pressures do ex­

ist in magnitude worthy of consideration in the design of structures.. 

It remains to be proven by actual measurement, whether or not the 

pressures exist and contribute materially to the forces acting on the 

retaining structure. If lateral pressures due to compaction do exist, 

they may be of a temporary nature only. However, if they are residual 

in nature they would be of considerable importance. 

The accepted theories of today recognize three determinate 

values of lateral earth pressure caused by the soils weight aloneJ 

the Active, Passive, and At-Rest states of lateral earth pressure. 

The Active state of lateral earth pressure is defined as the state 

that exists when lateral expansion of the soil takesplace due to an 

outward deflection of the retaining structure sufficient to shear the 

soil mass. This movement is necessary in order to mobilize the in­

ternal friction and cohesive properties of the soil, an action which 

in turn reduces the lateral pressure on the retaining structure. Thus 

the full Active state is the lower limit of the 3a tera! earth pressure 

and exists immediately preceding 'and during failure of the soil in its 
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effort to hold itself intact. 

Conversely, the Passive state exists when lateral compression 

of the soil takes place because of an inward deflection of the re­

taining structure. The passive state is the upper limit of lateral 

earth pressure. This maximum also exists just before the failure of 

the soil in shear, when a l l internal friction and cohesive properties 

have been mobilised. 

The At-Rest state of lateral earth pressure has also been 

termed the neutral lateral earth pressure. It is defined as the 

lateral earth pressure which exists in a mass of soil which has 

neither contracted nor expanded after its formation. 

Previous Testing - Other than the tests conducted by A. Robb 

at Georgia Tech (l), no studies of residual lateral earth pressures 

which remain in a soil due to previously imposed loadings have been 

found. Mr. Robb !s tests were conducted using a thin-walled compact­

ion cylinder on the sides of which electric strain gages were fitted 

and calibrated to measure lateral pressure, While this study pro­

vided a valuable starting point for future studies of residual 

lateral earth pressures, the results obtained were necessarily af­

fected by the use of a small-scale device. The use of large-scale 

field tests would reduce the confining effect, which is present in 

small-scale testing. 

In recent years, large-scale experimental tests have been con­

ducted. It had become apparent that further conjecture concerning 

the subject of earth pressure was useless without new information oh-
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tained through controlled testing of soils on a large scale* 

Terzaghi (2), Spangler (3>), and Tschebotarioff (3) have probably been 

the more prominent investigators using this approach. Their investi­

gations included the effects upon lateral earth pressure due to com­

bining both yielding and non-yielding walls with both sands and 

cohesive soils in dry, partially saturated, and flooded conditions. 

The effects of concentrated loads applied to the surface of the soil 

mass behind retaining walls were also studied. Although these 

studies shed light on earth pressure problems in general, they do not 

attempt to answer the problem of residual lateral earth pressures. 

Purpose - The purpose of this investigation is to continue 

work begun by A. Robb in determining the magnitude of the lateral 

earth pressures remaining in a cohesive soil after compaction. It is 

hoped that use of large-scale field tests will reduce to a minimum 

any effects of confinement which may have been encountered in the 

small-scale tests conducted by Mr. Robb. 
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CHAPTER II 

EQUIPMENT 

Large-scale testing of lateral earth pressures usually has 

involved the construction of expensive structures and measuring 

devices and elaborate installations. The ideal pressure-measuring 

device would be cheap to manufacture and easy to install, yet give 

the required sensitivity and accuracy of measurement. It should be 

stable over long periods of measurement, even when placed beneath the 

ground water table. Such a device could be installed to measure the 

pressures exerted on actual structures and abandoned after the re­

quired information has been obtained. Its pressure should not af­

fect the soil stresses which exist around it. In the past, several 

methods have been used to measure the magnitude of the lateral earth 

pressures acting on either a model or a full-sized structure. 

One of the earliest devices employed the principle of the re­

lation between the friction of soil, on a steel band due to a given 

pressure normal to the band face and the force required to extract the 

band from the soil. Later, the measurement of the reaction forces 

necessary to hold the test wall in place was used as a means of deter­

mining the approximate magnitude and distribution of lateral earth 

pressures. 

Pressure Cell - The development of pressure cells in recent 

years has allowed further studies of earth pressures encountered under 
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field conditions. One of the more prominent designs has been the 

Goldbeck cell (U). This cell utilizes an electrical contact which is 

opened or broken by small movements of the cell diaphragm. The pres­

sure exerted upon the cell diaphragm is measured by balancing it with 

air pressure from within the cell. Readings are taken at both the 

breaking and the reestablishment of electrical contact and are ave­

raged in order to obtain the soil pressure. 

The development of the SR-Lj. electrical resistivity strain gage 

has made possible the accurate measurement of strains previously im­

possible. They have been used by Tschebotarioff in his earth pres­

sure experiments at Princeton (7), as well as by the engineers at the 

Tflfeterways Experiment Station of the Corps of Engineers in Vicksburg, 

Mississippi (8). 

In recent years, pressure cells for field use have been de­

veloped at the tpfeterways Experiment Station of the Corps of Engineers 

in Vicksburg, Mississippi. These cells were used in studies of both 

long and short duration in connection with earth and concrete dams, 

retaining walls, airport pavements and other types of structures. 

"All of these devices employ electrical gaging methods whereby move­

ments of a diaphragm or bellows resulting from the pressure variations 

under study are converted to electrical signals for observations and/ 

or recording at convenient locations remote from the point of pressure 

application. The pressure transducers utilize SR-h strain gages with 

the exception of one type of low range hydrodynamic cell, which 

utilizes the Schaevitz linear differential transformer. By means of 
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previously determined calibration constants the observed or recorded 

electrical signals from the pressure cells can be interpreted as 
•a-

pressure values at the points of measurement." Although these cells 

have been fairly successful and reliable, they are also very expen­

sive to construct* For the purposes of this investigation, it was 

decided to attempt the adaptation of the SE-l* strain gage to a def-

ferent design of pressure cell* It was hoped that this design would 

enable accurate, sensitive measurement of pressures combined with 

easy cell installation, remote indication and recording, and low 

equipment costs* 

The electrical resistivity strain gage operates on the 

principle that the resistance to a flow of an electric current is in­

versely proportional to the cross-sectional area of the conductor. 

Essentially, the gage consists of a short length of very fine wire 

(about .001 inch in diameter) which is attached to the piece being 

tested so that the wire is strained equally with the test piece. 

The electrical resistance of the wire used for these gages changes 

as the wire is strained. This change in resistance (a small frac­

tion of an ohm), when detected by the proper instruments, is an 

accurate measurement of the strain in the wire and hence the strain 

in the underlying material being tested. Previous studies (6) of 

the effects of the thickness and size of pressure cells upon the re­

corded results indicate that the ideal would be a small diameter 

* Pressure Cells for Field Use, Bulletin No. UO, Waterways Experi-
ment Station, Corps of Engineers, U. S. Army, Vicksburg, Mississ­
ippi. 
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Fig, 1. Earth Press-ore Cell Showing Leading Dimensions 
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cell of infinite simal thickness* The ideal cell would also measure 

pressure without any movement of the weighing area or the diaphragm. 

To approximate these ideal conditions, a cell was designed which was 

k inches in diameter and 7/l6 of an inch in thickness (see Fig. 1). 

Essentially, it consisted of a round, 3/8-inch-thick aluminum block 

base with a dish-shaped depression in one face and a l/l6-inch-thick: 

diaphragm. A type A strain gage was attached to the underside of the 

diaphragm. This was to be the measuring or active gage. Another 

similar gage was attached to the base of the cell for use as the 

temperature compensating or dummy gage. The two gages were properly 

connected within the cell to allow the use of only three lead wires. 

These wires were introduced into the cell through small holes drilled 

through the side of the base. The gage and all connections within 

the cell were insulated from electrical grounding to the base and 

coated with beeswax in an effort to make them as waterproof as pos­

sible. The diaphragm was attached to the base with 12 machine 

screws, using a non-hardening type of gasket compound to seal the 

connection. The entry holes for the lead wires were then poured full 

with melted beeswax to seal out moisture. 

A Baldwin Type L strain indicator was used to indicate the 

electrical resistance changes that occurred with diaphragm deflection. 

A six-position Baldwin switch box was used to allow switching from 

one cell to another in taking readings, without any errors occurring 

because of changing lead connections. 

A circuit reversing switch was incorporated into the hook-up 
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to allow normal and reverse readings of electrical resistance changes. 

This operation had been suggested by Perry & Mssner (9) as a means 

of eliminating zero drift with time. Since the strain indicator 

measures electrical resistance by means of the Wheatstone Bridge 

Principle, reversing the positions of the active and the dummy gages 

and averaging the resulting readings will produce a reading that is 

correct for drift. 

Calibration Equipment - It was not the intention of this de­

sign to compute mathematically the pressure on the cell diaphragm 

from the measured strain. The main reason for not computing the pres­

sure in that manner is the unknown amount of restraint to diaphragm 

movement which is present in the connection of the diaphragm to the 

block or body. Instead the cells were individually calibrated under 

conditions as near to those which would be encountered in actual 

field use, 

A steel cylinder 12 inches high and 11 inches in diameter was 

used to place the cells under pressure. Because the cells were to be 

used in the field to measure pressure against a concrete wall, a con­

crete block was placed in the bottom of the cylinder for the cell to 

lie upon. There was a small hole in the side of the cylinder for the 

lead wires. The pressure on the cell was supplied by air pressure 

acting through a very thin flexible rubber membrane. In order to 

simulate actual field conditions more closely and to minimize soil 

arching effects, the cell was covered with approximately 2-1/2 inches 

of the same soil that was to be used in the field tests. The rubber 

membrane was placed on top of the soil, and a steel cover with heavy 
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rubber gaskets was bolted down tight to hold the membrane in place 

and to provide an air tight seal. Compressed air entered through the 

top and forced the membrane down on the soil with a uniform pressure. 

The use of a flexible membrane for the application of the load had 

already been determined as preferable to a rigid plate by Tschebotar-

ioff in his experiments with the Lateral Earth Pressure Meter (7). He 

found that friction between the soil and the rigid pressure plate pre­

vented or retarded lateral expansion of the soil and consequently re­

duced lateral earth pressures. Since the thin rubber membrane is 

flexible, it will not produce this undesirable effect. 

A mercury manometer was used to measure the air pressure in­

side the cylinder. This manometer was graduated to read pressure in 

psf. A pressure regulator and additional needle valve connected in 

series were used to control accurately the air pressure exerted on 

the membrane. 

Poissonfs Ratio - The small-scale lateral pressure measuring 

device developed by A. Robb (l) at the Georgia Institute of Technology 

was used to determine the Poissonfs Ratio of the soil used in the 

field. This device consisted of a thin-walled steel cylinder which 

was slotted into horizontal bands on one side. Electric SR-lt strain 

gages were placed on these bands to measure their lateral strain when 

a pressure load was exerted by the soil inside. These lateral strains 

could in turn be converted into lateral pressures through the use of 

previously calibrated curves. 

The various physical properties and characteristics of the 
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soils used in the field tests were determined by the use of standard 

soil mechanics laboratory equipment and tests (10). The following 

tests were conducted! 

Grain Size (sieve hydrometer) 

Unconfined Compression 

Triaxial Shear 

Standard 3 layer Proctor Compaction. 
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CHAPTER III 

PRESSURE CELi CALIBRATION 

The pressure cell was placed on the concrete block which 

rested in the bottom of the calibration cylinder. The cylinder was 

then filled with the same soil which was to be used in the field 

tests. The thin rubber membrane was placed over the top of t|ie 

cylinder, and the steel top bolted down. To load the pressure cell 

being calibrated, air pressure was applied to the top of the rubber 

membrane. The magnitude of the air pressure being applied was 

measured directly in psf using a mercury manometer, and the corres­

ponding strain readings were obtained from the Baldwin Type L strain 

indicator. Calibration runs were accomplished using 100 psf and 200 

psf increments on both the loading and unloading cycles. 

The first attempts to calibrate the cells disclosed the fol­

lowing factsJ 

(1) The calibration curve was not linear, 

(2) There was a hysteresis effect in the unloading cycle of 

the curves. 

(3) Each cell had to be loaded and unloaded a number of times 

before its calibrations became uniform. 

(U) Each cell produced a different calibration curve. 

The changing in calibration of a new cell during its first few 

loading cycles was remedied by subjecting it to cyclic loading until 
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it stabilized. This phenomenon was probably due to small changes in 

the seating of the diaphragm due to plastic flow of the gasket material. 

After this stabilization occurred, further calibrations were not af­

fected by time. Two or more calibration runs were usually sufficient 

to establish a smooth curve. 

The calibration curves for the cells which were used are in­

cluded in the Appendix. 
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Fig* 2. Peachtree - Baker Building Te^t Pit Showing 
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Fig. 3. Location of Pressure Cells at Allen Steam Plant, Charlotte,NoC. 
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CHAPTER IV 

FIELD-TEST PROCEDURE 

Four field tests were conducted at the site of the Feachtree-

Baker Building in Atlanta, during its construction. The actual 

location was within the building, out of the weather. The measure­

ment of pressures was made with the pressure cells placed on the 

upper 6 feet of an 8-inch-thick reinforced concrete retaining wall 

that extended between two floors of the building. This wall was 10 

ft, tall and was supported laterally at either end by the floor slabs 

(see Fig. 2). The soil that was used in backfilling against the wall 

was a fine to coarse sandy micaceous silt with a fairly constant 

moisture content of approximately 18 per cent. 

The four tests were conducted in the following manners 

Test I The backfill was made by loose-dumping the soil. Three 

cells had been mounted with plaster of paris to the wall at a depth of 

six feet below the final height of fill. Readings were taken over a 

period of one weekj however, two of the cells showed signs of in­

stability on the second day. 

Test II The backfill was made in 3-inch lifts using a 10-

pound hand tamper to compact the soil. Six cells were used in this 

test, two cells at each level of measurement. Using plaster of paris, 

the cells were mounted on the wall at depths of 2, ii and 6 feet below 

the final backfill surface. Readings were taken for a period of 2 days. 
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Che cell at the 2-foot level and one cell at the 6-foot level became 

unstable and their results were not valid. 

Test III The backfill was made in ii-inch lifts, compacting the 

entire backfill area with the use of a gasoline (Barco) rammer weigh­

ing 210 pounds. Readings were taken for a period of k days. 

Test IV The backfill was made in the same manner as described 

for Test III except that compaction was limited to a zone of 18 inches 

wide adjacent to the wall. The remainder of the backfill was merely 

dumped into place. Readings were taken for a period of one week. 

At the completion of each test, moisture content and undis­

turbed samples were obtained from the fill directly in front of the 

pressure cells at each level of measurement. From these samples, the 

unit weight, moisture content, cohesion, and internal friction values 

of the fill material were determined. 

Test V The fifth test was conducted at the Duke Power Gom-

pany fs Allen Plant Site in Gharllotte, North Carolina. Cells were in­

stalled on a thick reinforced concrete retaining wall. The wall was 

kO feet high and was laterally supported at both top and bottom. The 

cells were installed at distances of 17, 27 and 37 feet below.the wall 

top (see Fig. 3)« Compaction of the backfill was accomplished with 

the use of sheepsfoot rollers drawn by a bulldozer. The test was con­

ducted over a period of two weeks, with the height of the fill being 

measured for each corresponding pressure measurement. 
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THSORT 

The lateral earth pressure in a large soil mass above the 

water table, due to the weight of the soil above it, is equal to some 

function of the vertical pressure. Therefore, if * ^, where 

«= vertical pressure 

^V" * unit weight of soil 

h * height of soil above location concerned 

then €5^ * Ko -y^* where Ko is the coefficient of earth pressure 

at rest* 

Based on Hookes Law of stress being proportional to strain, 

the following general equations can be derived for the unit strain, , 

within a large elastic body. 

where? £3 x* £3y* are normal components of stress parallel 

to the x, y and z axes 

( , ( , £ are unit elongations in the x, y and z x y z 

directions 

S - modulus of elasticity or — - — 

[i m Poisson!s Ratio, ratio of horizontal to vertical strain 

£ m . for strain in one direction 
x w 
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e y - ii ( e x • e 2 ) 

This latter is a general equation for the lateral unit strain with:Ln 

a large elastic body. Since the At-Rest condition has been defined 

in Chapter I, as that in which no lateral contraction or expansion 

has taken place after its placement, the following must be so, 

C SB G 

From this relationship, the expression for the coefficient of earth 

pressure of rest becomes 

0 1 - n 

The Poisson's Ratio of the soils used in these tests was found 
3 

to be equal to .3. Therefore, K - —*• » « ,I±3. This value 
0 1.0 - 3 

of K Q was used to compute the earth pressure of rest for comparison 

with measured values of earth pressure from the field tests. 

Expressions for the Active and Passive lateral earth pressures 

acting on a wall have been derived and can be found in any textbook on 

soil mechanics. The theory is based upon Coulomb's Sliding wedge 

analysis. The expressions are as follows! 



Active State - <o>h = K A ^ - <E>Y tan 2 (U5 - 2) 

- 2 c tan (U5 - ^ 2 ) 

Passive State K ^ * £ L tan 2 (1.5 + ^ 2 ) 
P V V 

+ 2 c tan (1.5 + ̂ 2 ) 

where 6 ? • ~Vh a s P r e v ^ o u s l y described 

0 • the angle of internal friction for that particular 

soil 

c • cohesion value for that particular soil. 

If a soil is loosely placed behind an unyielding structure, 

the lateral earth pressure existing on the wall is equal to the earth 

pressure At-Rest. If, instead, the fill is made by mechanically com­

pacting it, the horizontal pressures existing in the soil at the 

moment of compaction are greater than the At-Rest pressures. This 

condition is due to the added vertical loading. Since soil is com­

posed of relatively incompressible particles, compaction takes place 

by the movement of particles across one another to form a more dense 

state. In order for this movement to take place, the interparticle 

frictional and cohesive forces which restrain the movement of the 

particles must be overcome. Conversely, it is theorized that in order 

for lateral expansion to take place after compaction, these same forces 

of friction and cohesion must be overcome. It is not known whether or 

not these intergranular properties of friction and cohesion remain the 
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same for compaction and expansion. 

Friction between the soil and the structure against which it 

is being compacted probably influences the amount of residual lateral 

pressure* Tschebotarioff (7) has noted the effect of friction between 

a rigid compaction plate and the soil in reducing the amount of lateral 

pressure measured in a small-scale lateral earth pressure meter. It 

is reasoned that like the inter-granular forces of friction and 

cohesion, similar forces will be overcome in compacting the soil down 

against the wall. When the compaction forces are removed, the upward 

movement is resisted by these same forces. Whereas these forces un­

doubtedly help maintain higher residual lateral forces in small-scale 

devices, such as those used by G. Tschebotarioff (7) and A* Robb (1), 

there is some question as to how large this effect would be when a 

soil is confined by a structure on only one side. 
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DISCUSSION OF RESULTS 

Tests 1, 2, 3, and k - The results of the field tests show 

that residual lateral earth pressures do exist after compaction and 

that they greatly exceed the pressures which were measured for the 

same soil when it was loosely dumped into place. The measured 

residual pressures were equal to or, more often, considerably greater 

than the computed At-Rest pressures. Fig. 7 is a graph which shows 

the average residual lateral pressure exerted on the wall at the dif­

ferent levels for each of the four tests conducted at the Peachtree 

and Baker Building site. The computed At-Rest pressure is also shown 

on the graph for comparison. 

Figures 8 and 9 are graphs which show the relationship betweeai 

lateral pressure and time. They also show the height of fill above 

the cell at the time the pressure was measured, A study of these 

graphs reveals a gradual decrease of residual pressure with time to 

a value which appears to be the lowest residual pressure for each 

particular set of conditions. This final residual pressure was greater 

than the computed At-Rest pressure in all cases. 

Test V Figures 10 through lit show the relationship between 

residual lateral earth pressure and the depth below the backfill sur­

face for test V. The computed At-Rest earth pressures are also shown 

for comparison. Several things can be noted from these graphs. 
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(1) With the exception), of the middle cell, the residual pressures 

seem to be equal to or greater than the computed earth pressure At-

Rest, (2) The pressures recorded near the surface are approximately 

equal to the At-Rest pressure values, and the pressures recorded at 

the deepest point are greater than the At-Rest pressures. (3) All 

of the graphs show an increase in residual lateral earth pressure 

with an increase in depth. 

There are two probable reasons for the lower than expected 

pressures which were recorded by the middle cell. The wall was 

laterally supported at the top and bottom, and since the middle cell 

was near the center height of the wall, any deflection of the wall 

would-have been more pronounced here than where the bottom cell was 

located, W l l deflection would probably not affect the upper cell 

very much because only several feet of fill covered it at the time 

of the last reading shown qn the graphs. The other possibility is 

that the compaction of the fill was not as thorough at the level at 

which the middle cell was installed* 

Figures l£ and 16 show the relationship between residual 

lateral earth pressure, time and the height of fill. The general 

trend of these graphs is a gradual reduction in residual pressures 

with time when no additional fill or compaction is being accomplished. 

The graphs also show the increase in lateral earth pressures with an 

increase in the height of fill above the level of pressure measurement* 

No formula or mathematical relationship between the lateral 

earth pressures recorded in these studies and the physical properties 
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of the soils as determined by standard laboratory tests, could be 

obtained. Possibly the standard laboratory tests of todya do not de­

termine the physical properties of a soil in such a manner that these 

properties have a simple relationship to measured residual earth pres­

sures. 

Conclusions and Recommendations 

From this study the following conclusions have been reached! 

1) The compaction of cohesive soils produces much higher 

residual lateral earth pressures than the loose dumping of 

the same soils. 

2) The residual lateral earth pressures within a compacted 

backfill are probably equal to or greater than the com­

puted At-Rest earth pressures. 

3) Residual lateral earth pressures are greater for the 

greater compactive efforts of larger and heavier compaction 

machines. 

h) Residual lateral earth pressures are affected by time. 

They are reduced in the first day or two after completion 

of compaction. 

It is recommended that further testing be done with the use of 

improved cells. 

The use of the Bakelite type of SR-U strain gage would reduce 

creep and produce a more accurate cell for prolonged measurements. 

Better insulation from moisture could probably be attained through the 

use of Pefrosene-A Wax and a single, more rigid type of entrance for 

the three lead wires. 
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Fig.5* Triaxial Shear Test of Average Sample 



Fig. 6. Typical Pressure Cell Calibration Curve 
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