
Automatic Deployment and Formation Control of Decentralized
Multi-Agent Networks

Brian S. Smith, Magnus Egerstedt, and Ayanna Howard

Abstract— Novel tools are needed to deploy multi-agent
networks in applications that require a high degree of accuracy
in the achievement and maintenance of geometric formations.
This is the case when deploying distributed sensing devices
across large spatial domains. Through so-called Embedded
Graph Grammars (EGGs), this paper develops a method for
automatically generating control programs that ensure that
a multi-robot network is deployed according to the desired
configuration. This paper presents a communication protocol
needed for implementing and executing the control programs
in an accurate and deadlock-free manner.

I. I NTRODUCTION

Formations, i.e. multi-robot configurations that satisfy
certain geometric properties (e.g. [1], [2], [3]), can be repre-
sented through weighted graphs. In these graphs, the vertices
represent the agents, while the weighted edges specify the
corresponding inter-agent distances of the formation (e.g. [4],
[5], [6]). In this paper, we use directed graph-encodings of
the target formations. We assume that the graph contains the
minimal number of edges to maintain the geometrical shape
of the desired formation. For each edge in the formation,
the responsibility of maintaining the distance is delegated to
a single agent, denoted by the edge’s direction. Thus, this
directed graph represents aminimally persistent formation
[7].

In this paper, we take these minimally persistent forma-
tions as inputs to an algorithm that automatically generates
the appropriate control program for ensuring that the actual
robots achieve and maintain the target formation. We achieve
this by defining and executingEmbedded Graph Grammars
(EGGs) [8]. EGGs support the specifications of different
control laws and the local network characteristics under
which the control laws are applicable. We describe a method
for defining an EGG that produces a persistent formation
given a sequence of purely combinatorial graph operations
that produce the formation. We also present a communication
scheme calledprioritized lock negotiationfor implementing
the resulting EGG on a distributed network of agents.

II. PRELIMINARIES

Here, we review basic assumptions and terminology. We
assume that the multi-agent team consists ofn planar mobile
robots, with xi(t) ∈ ℜ2 being the position of agenti at
time t, i ∈ N = {i, . . . , n}. We moreover assume that the
dynamics of each robot is given by a single integrator, i.e.
ẋi(t) = ui(t), i ∈ N . We also assume there is a defined

The authors are with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
{brian,magnus,ayanna.howard}@ece.gatech.edu

proximity range∆ ∈ ℜ. A robot can identify and sense the
relative position of other robots if and only if those robots
are within proximity range. We moreover assume a user
graphically inputs the desiredrelative positionspi ∈ ℜ2, i ∈
N of the planar robots to specify the target formation. As the
robots are assumed to be homogeneous, it does not matter
what robot is assigned to what position. We also assume that
the formation is translationally and rotationally invariant.

A. Minimally Persistent Target Specifications

We letG be a minimally persistent graph that, along with
the relative positions, defines the set of inter-agent distances
to be kept and the geometry of the desired formation. In
fact, G is a weighted, directed graph defined by the triple
(V, E, δ), whereV = {V1, . . . , Vn} is the vertex set,E ⊂
V×V is the edges set, andδ : E → ℜ gives the edge weights
as δ(Vi, Vj) = ‖pi − pj‖. As G is minimally persistent, it
has been shown how to build up such a graph by a sequence
of subgraphs [9]. This sequence starts with a graph with
only two vertices,G2. We refer to this graph as theleader-
follower seed graph. Here, one of the vertices is the leader
and the other is the follower.

We assume that the next graphG3 in the sequence contains
three vertices, obtained through a so-calleddirected vertex
addition, whereVk is added, along with edges(Vk, Vi) and
(Vk, Vj). Adding vertices in this systematic fashion results
in a so-calledHenneberg sequence[10] of nested subgraphs
G2, G3, . . . , Gn, with Gn = G. We use the shorthand
V(Gp) and E(Gp) to denote the vertex and edge sets of
Gp respectively. The sequence itself can be automatically
generated fromG [9]. This paper assumes that the sequence
G2, . . . , Gn = G is given, and produces automatically
generated control laws that ensure that the actual robots
achieve the target formation. The generation of these control
laws is the main topic of the next section.

B. Robot Networks as Vertex-Labeled Graphs

An Embedded Graph Grammar(EGG) [8] is a formalism
that encodes dynamic, geometric, and network properties of
a multi-agent system in a unified manner. In this paper, we
discuss how to construct an appropriate EGG for building
up the desired target formationG through an assembly
process based on the Henneberg sequenceG2, . . . , Gn from
the previous sections. At the core of an EGG is the notion of
a graph-grammarthat takes as inputs vertex-labeled graphs
and produces other vertex labeled graphs according to a given
rule set. Through the application of the rules in the rule set,



edges may be removed or added to the graph, and the vertex
labels may change.

For the development in this paper, the graph that we are
interested in is one that keeps track of what actual robots
have been assigned to what target positions in the formation,
as well as what robots are in charge of maintaining what
inter-robot distances. We denote this vertex-labeled graph by
G(t) = (V, E(t), l), whereV = {V1, . . . , Vn} is the vertex
set, E(t) is the edge set (at timet), and l assigns a label
to each vertex. As a result, this graph is time dependent in
that the vertex labels are dynamic and edges may be added
as time progresses. Here,G(t) corresponds to a graphical
encoding of what the robots are actually doing at timet,
while G encodes the target formation.

The vertex label functionl assigns to each vertex inG(t)
either a vertex inV(G) or the unassigned labelw /∈ V(G).
It also associates a Boolean value to each vertexVi ∈
V depending on whether or not the corresponding agent
i has reached its target destination. We use the notation
l(Vi).assign ∈ V ∪ {w} to denote the desired position in
the target formation that agenti has been assigned to, and
l(Vi).f inal ∈ {true, false} as a flag that indicates whether
or not agenti has converged sufficiently close to its target
destination. If l(Vi).assign = w, we say that agenti is
a wanderer. Otherwise, we say that agenti is an assigned
agent.

In the development of the EGG for assemblingG sequen-
tially, we need to define the initial condition forG(t). We let
G(0) = (V, E(0), l0), with E(0) = ∅, l0(Vi).assign = w,
and l0(Vi).f inal = false ∀i ∈ N . This graph serves as the
initial condition to a trajectory overG(t) as the minimally
persistent graphG is assembled, which is the topic of the
next section.

III. E MBEDDED GRAPH GRAMMARS FOR SEQUENTIAL

TARGET FORMATION ASSEMBLY

A. Rules, Guards, and Control Laws

As the robots move around and establish links with
neighboring robots, corresponding to distances that are to
be maintained in order to produce the target formationG,
the network topology changes. In order to characterize this
mechanism, we define graph-transitionrules. Each rule con-
sists of a vertex-labeledleft graphL (the input to the rule),
a vertex-labeledright graph R (the output to the rule), and
a guard that defines the geometric conditions under which
the rule is applicable. In order for ruler to be applicable
to the robot network, some subset ofG(t) must ”look” like
L ∈ r. For this, we follow the notation in [8] and we define
a witnessh : VL 7→ V as a label-preserving isomorphism
between the verticesVL of the left graphL and the vertices
of G(t). Witnesses formalize the notion of when two graphs
”look” the same (including vertex labels and adjacencies).It
is not enough that the left graph in the rule and a subgraph
of G(t) are isomorphic. We also require certain geometric
conditions to be satisfied. These are encoded through aguard
functiong : H × (ℜ2 × · · · × ℜ2) 7→ {true, false}, where
H is the set of all witnesses for a specific rule. When a

witness for a rule exists and the guard evaluates totrue,
we say that the guard issatisfiedand the rule isapplicable.
If a rule is applicable, the subgraph ofG(t) isomorphic to
VL (denoted byh(VL)) can be replaced inG(t) by the right
graphR in the rule. A guarded rule is represented by the
triple r = (L ⇀ R, g). As a final building block, each
assignment in the vertex labels (i.e.l(i).assign) corresponds
to a particular control mode. In the remainder of this section,
we define the specific rules and appropriate control modes
that ensure that the target formationG is achieved.

B. Leader-Follower Rules

In Section II, we saw that the first subgraph in the
Henneberg sequence was the leader-follower seed graphG2,
with V(G2) = {Vi1 , Vi2}, andE(G2) = {(Vi2 , Vi1)}. Due
to the direction of the edge,Vi2 is in charge of ensuring that
the proper distance is maintained between the vertices, and
for that reason we callVi1 the leaderandVi2 the follower.

Leader-Follower Position Rule

Through the leader-follower seed graph we can define a
leader-follower position ruleas rp

lf = (Lp
lf ⇀ Rp

lf , gp
lf ),

where the left graph is given by the initial conditionLp
lf =

G(0) = (V, ∅, l0) and the right graph is given byRp
lf =

(V p
Rlf

, Ep
Rlf

, lpRlf
), with

V p
Rlf

= V

Ep
Rlf

= {(V2, V1)}

lpRlf
(Vi) =







(Vi1 , true) if Vi = V1

(Vi2 , false) if Vi = V2

(w, false) o.w.

Given a witnessh for this rule, the guardgp
lf evaluates to

true if and only if corresponding roboth(V1) can detect and
communicate with each robot in the network, i.e.‖xh(V1) −
xh(Vj)‖ < ∆ ∀Vj ∈ V . Since the left graph is the initial
graph G(0), this implies that, initially, any robot within
proximity range of all other robots can potentially be a leader,
and any robot within proximity range to a potential leader is
a potential follower.

As lpRlf
(V1).f inal = true, i.e the leader agent has already

achieved the desired position, the corresponding control law
is simply ẋh(V1)(t) = 0. We let the follower move according
to

ẋh(V2)(t) = x⋆
h(V2) − xh(V2)(t),

wherex⋆
h(V2) is the static target position given by

x⋆
h(V2) = xh(V1)+

δ(Vi1 , Vi2)

‖xh(V2)(t) − xh(V1)‖
(xh(V2)(t)−xh(V1)).

Leader-Follower Final Rule

As the follower is approaching the target position asymp-
totically, we also have a condition under which we consider
the maneuver to be completed. For this we define theleader-
follower final rule, rf

lf = (Lf
lf ⇀ Rf

lf , gf
lf ), whose only

effect is that the label at vertexV2 is changed fromfalse to
true when ‖x⋆

h(V2)
− xh(V2)(t)‖ < ǫ, for a given threshold

valueǫ > 0.



C. Vertex Addition Rules

In Section II, we describe how vertex additions gener-
ate subsequent subgraphsG3, . . . , Gn = G of the Hen-
neberg sequence. Assume that, for subgraphGp, there exists
{Vj1 , Vj2} ∈ V(Gp) and a vertex addition operation adds
vertex Vj3 to V(Gp) and edges{(Vj3 , Vj1), (Vj3 , Vj2)} to
E(Gp) to produce subgraphGp+1. Due to the directions
of these edges,Vj3 is in charge of ensuring the proper
distance is maintained to verticesVj1 andVj2 . This vertex
addition operation defines avertex addition position ruleas
rp
va = (Lp

va ⇀ Rp
va, gp

va), where the left graph is given by
Lp

va = (V p
Lva

, Ep
Lva

, lpLva
), with

V p
Lva

= {V1, V2, V3}

Ep
Lva

=







{(V1, V2)} if ∃(Vj1 , Vj2) ∈ E(G)
{(V2, V1)} if ∃(Vj2 , Vj1) ∈ E(G)

∅ o.w.

lpLva
(Vj) =







(Vj1 , true) if Vj = V1

(Vj2 , true) if Vj = V2

(w, false) if Vj = V3

and the right graph is given byRp
lf = (V p

Rva
, Ep

Rva
, lpRva

),
with

V p
Rva

= {V1, V2, V3}
Ep

Rva
= {(V3, V1), (V3, V2)} ∪ Ep

Lva

lpRva
(Vj) =







(Vj1 , true) if Vj = V1

(Vj2 , true) if Vj = V2

(Vj3 , false) if Vj = V3

Given a witnessh for this rule, the guardgp
va evaluates to

true if an only if the corresponding roboth(V3) is close
enough toh(V1) and h(V2) to be able to detect them, i.e.
‖xh(V3) − xh(V1)‖ < ∆ and‖xh(V3) − xh(V2)‖ < ∆.

Since this rule assigns edges only toh(V3), we must
define a control law forẋh(V3)(t) based onxh(V1)(t) and
xh(V2)(t). Note that these three verticesh(V1), h(V2), and
h(V3) have been assigned to verticesVj1 , Vj2 , andVj3 in
V(G), respectively. Therefore, positions{pj1 , pj2 , pj3} from
Section II define the relative geometry that is desired for the
corresponding robots. Roboth(V3) can determine its target
position byx⋆

h(V3)(t) = f(xh(V1)(t), xh(V2)(t), pj1 , pj2 , pj3)
wheref performs the corresponding translation and rotation.
We let this robot move according to

ẋh(V3)(t) = x⋆
h(V3)(t) − xh(V3)(t).

If we assume thatVj1 andVj2 are the leader and follower,
then the leader-follower rule implies that they converge to
the appropriate distance, which implies that agenth(V3)
converges to the desired geometric relationship toh(V1) and
h(V2). By induction, this implies that all robots added by a
vertex addition rule converge to their appropriate geometric
relationship with robotsh(V1) andh(V2) in their respective
witnesses.

Vertex Addition Final Rule

As roboth(V3) is approaching the target position asymp-
totically, we also have a condition under which we consider
the maneuver to be completed. For this we define thevertex

addition final rule rf
va = (Lf

va ⇀ Rf
va, gf

va), whose only
effect is that the label at vertexV3 is changed fromfalse to
true when‖x⋆

h(V3)(t)−xh(V3)(t)‖ < ǫ, for a given threshold
valueǫ > 0.

D. Wander Mode

The previous rules allow robots to achieve desired ge-
ometric relationships. However, the guards for these rules
depend on robots labeledw satisfying geometric conditions
with robots in the rule witnesses. Therefore, we require a
mode that ensures that robots labeledw eventually satisfy
these constraints. We call this modewander mode.

To implement wander mode, each assigned robot with
a label Vi ∈ V(G) is given a hop-counterλ, which it
communicates to all assigned robots within proximity range.
We set to zero the hop-counters of all assigned robots whose
labels allow them to participate in vertex addition position
rules that have not been applied. This implies that their labels
occur in the left graph of position rules that have not yet
been applied (This also requires robots to ”keep track” of
what rules have and have not been applied, an issue that
is discussed in the following section). Assume that robot
i is an assigned robot that cannot participate in a vertex
addition position rule. Assume thatΛi is the set of all the
hop-counters of all robots within proximity range ofi. Then
we define roboti’s hop-counter by

λi =

{

min(Λi) + 1 if min(Λi) < n
n o.w.

(1)

Since all robots with hop-counters equal to zero have been
assigned positions inG, this implies that there always exists
a ”path” of assigned robots with decreasing hop-counters
that leads to a hop-counter of zero, if such a robot exists.
Therefore, wander mode is defined so that wanderers perform
circular motion around the robot with the lowest hop-counter
in proximity range. When a robot with a lower hop-counter
comes into its perception, it switches to perform circular
motion around this robot. This process repeats until the
wanderer finds an assigned robot with a hop-counter equal
to zero. The circular motion is performed with a radius equal
to the largest weight of the edges inE(G). This guarantees
that the wanderer finds the next robot in the path, since the
weight of all edges inE(G) < ∆ and the next robot in the
path must be within∆ of the current robot the wander is
circling.

Once a wanderer encounters an robot whose hop counter
equals zero, it enters an exclusive partnering relationship
with that robot. The assigned partneri changes its hop-
counter from zero tomin(Λi)+1. The assigned partner also
refuses any more partnerships with other wanderers. Since all
edgesE(G) < ∆, as a wanderer circles its partner at a radius
equal to the largest weight inE(G) it satisfies the guards of
any potentially applicable rule. As each rule is applied, the
robots involved in the rule application reevaluate their hop-
counters as defined in (1).

Note that each vertex addition rule has two vertices with
labels that assign a hop-counter of zero to assigned robots.



This implies that two wanderers can potentially be partnered
with different robots, but for the same rule. Therefore, if
the hop-counter changes from zero to another value, this
signals any partnered wanderers to abandon the partnership
and to follow a path to another robot with a zero hop-
counter. Since this situation only occurs when all robots
required for a vertex addition rule are present, then this
implies that the redundant partnered wanderer is always
freed, and can proceed towards another vertex addition rule
opportunity. The definition of hop-counters also implies that,
when all robots that can participate in vertex additions have
partners, there may be intervals of time where there is no
hop-counter equal to zero. However, this situation guarantees
that a vertex addition rule is applied, since all assigned robots
that can participate in vertex additions have a partnered
wanderer. Eventually, vertex addition rules assign positions
to wanderers.

IV. RULE EVALUATION AND COMMUNICATION

This section discusses the implementation of this EGG
on a network of robots, in terms of rule evaluation and
communication. We assume that the label and adjacency
information is distributed across the network such that each
robot has immediate access only to its own label and
adjacency information. The label and adjacency information
corresponding to other robots can only be obtained through
communication. The robots in the network must change
modes and execute control laws in a manner defined by the
EGG’s guarded rules, labels, and the corresponding control
law for each label. For the EGG we have defined, this also
requires the network to guarantee that no rule is applied
more than once to prevent redundant position assignments,
and that robots keep track of what rules have not been
applied to effectively update their hop-counters. Since this
is a decentralized network, this implies that robots must
negotiate rule applications in a manner consistent with the
EGG.

A. Primaries and Rule Evaluation

For each ruler = (L ⇀ R, g), there is an assigned vertex
Vi ∈ VL of the left graphL such that the guard function
requires that‖xh(Vi)(t) − xh(Vj)(t)‖ < ∆ ∀Vj ∈ VL. We
define Vi as the primary vertex of the rule. For leader-
follower position rules, this is the vertex corresponding to
the leader robot. For vertex addition position rules, this is
the vertex corresponding to the wanderer in the left graph.
For final rules, this is the vertex with thefalse final label.

When a witness exists that maps a rule’s primary vertex
to a robot’s vertex inG(t), we say that the robot is a
primary robot. Since the primary robots are within proximity
range of each robot corresponding to the witness of an
applicable rule, then these robots can obtain all the local
graph information necessary to apply a rule to a subgraph of
the embedded graph and, thereby, modify that information
in a manner defined by the applicable rule. Because all the
primary vertices of each rule correspond to robots in wander
mode, we insist that only wanderers attempt to apply rules,

and only with witnesses that map them to the primaries of
the rules. Each wander robot determines whether or not it
is a primary by requesting the local graph information of its
neighbors and comparing it to the left graphs of the rules to
see if one is applicable. If so, then the primary robots attempt
to apply the rules to the embedded graph by modifying the
local graph information of its neighbors. This process is
called rule evaluation.

B. Prioritized Lock Negotiation

It is necessary that each primary robot has exclusive
control of all robots necessary to apply a rule; if not, then it
is possible for multiple primary robots to modify the graph
information in a manner inconsistent with the rules, or apply
a rule more than once, producinggraph inconsistencies.
Graph inconsistencies occur when there exists subgraphs of
G(t) that are not intended to exist by the EGG design.
To prevent graph inconsistencies, we define aprioritized
lock negotiationcommunication scheme. This scheme gives
primaries exclusive control of other robots’ EGG information
through a series oflock negotiations. When a primary robot
wants to apply a rule involving another robot, it performs a
lock requestfor that robot. If the robot being requested for
a lock is unlocked, it accepts the lock of the primary and
records the primary’s index. The locked robot refuses any
lock requests while locked. Once locked, the locked robot
allows the owner of its lock to modify the locked robot’s
EGG information.

Once a primary has locked the entire set of robots neces-
sary for the rule application, it verifies that the rule is still
applicable, i.e. the graph information is still consistentwith
the rule, and the rule has not been applied. Since each robot
has its own copy of the rule set, we exploit the locality of
the guarded rules to prevent any rule from being applied
more than once. As each rule is applied, it is removed from
the rule sets of the robots involved in the application. Then,
before a primary can apply a rule with its locked robots,
it must first verify that each locked robot has the rule in
its rule set. Since each robot removes the leader-follower
positions rules from their set of rules as it is applied (with
the entire graph), this guarantees that the leader-follower
position rule is applied only once. Similarly, when vertex
addition rules are applied, the corresponding vertex addition
position rule is removed from the rule sets of the involved
robots. The vertex addition rule cannot be repeated, since
the involved robots have already removed it from their rule
sets. This implies that all rules are never applied more than
once. This also allows the assigned robots to have accurate
knowledge of which rules can still be applied, which they
use to determine the hop-counters. When the primary has
completed all modifications of graph information necessary
to apply the rule, it thenunlocksall the robots it has locked.

With many primary robots attempting to lock sets of other
robots, it is possible for primary robots to lock robots in a
manner that prevents any applicable rule from being applied.
We define this asdeadlock. To prevent deadlock, we define
a priority to each robot that corresponds to its index. We



say that roboti has a higher priority than robotj if i < j.
Since each robot has a unique index, no robots have the
same priority. When a locked robot refuses a lock request,
it communicates the index of the primary that locked it to
the robot requesting the lock. If it has a higher priority than
the robot that owns the lock, it immediately retries the lock
request. If it has a lower priority than the robot that owns
the lock, it immediately unlocks all robots that it owns locks
for, and waits for a timeτ before reattempting the rule.

We assume thatτ is defined as a worst-case period of time
long enough to allown robots to attemptn rule negotiations
in series. When robots compete for locks, there is always
a lowest priority robot. If no robot can acquire a lock to
all the robots involved in a rule application, then the lowest
priority robot always releases its locks and waits for timeτ
before trying again. Even if more robots begin attempting to
compete for the same locks, the delay timeτ is defined for
a worst-case scenario ofn robots competing. This implies
that, in a worst-case scenario, there will eventually be only
one robot attempting to acquire locks. Therefore, the network
cannot be constantly deadlocked.

V. I MPLEMENTATION SCENARIO

To consider the application of this EGG on a network of
mobile robots, we assume the following scenario: We have
a network ofn robots with data collection sensors, and we
wish to distribute them in a 5 m triangular coverage pattern
over an area of interest. We assume that the robots have a
proximity range of∆ = 6 m. We enter a triangulation pattern
of positions in our graphical program discussed in section II
and shown in Fig. 1.

This graphical program allows us to enter the proximity
range and, using the algorithms presented in [9], determines
that the formation is persistently feasible and defines the
minimally persistent graphG shown in Fig. 1, as well as
a leader-follower seedG2 (here, with vertices 1 and 2),
and a sequence of vertex addition operations that define a
Henneberg sequenceG2, . . . , Gn = G. Using the methods
previously described, the program generates the EGG defined
by G. We assume the robots are programmed to implement
this EGG, along with prioritized lock negotiation, and are
positioned in the area of interest such that at least one robot
is within proximity range of all robots. Then the EGG is
executed.

VI. RESULTS

The scenario discussed in Section V is simulated forn =7
andn =25 robots, as well as numerous random target forma-
tions, including random numbers of robots and random edge
weights. In each simulation, the resulting states of the robots
are checked to make sure that all robots are within proximity
range of any robots necessary for control calculations. Also,
the rule evaluation simulates the prioritized lock negotiation.
During simulation, witnesses are exhaustively searched, and
when rules are applicable, each primary robot in the network
is assigned a corresponding witness to attempt to apply, if
one exists for that robot. In this way, we attempt to maximize

Fig. 1. A graphical program derivesG from a set of desired positions
entered by a user, representing a desired formation. This program also
simulates the network in the left plotting area.

the number of robots competing for locks. The lock requests
are assigned a random order to arrive at their corresponding
robots.

Fig. 2 shows the simulation results of the scenario in
Section V wheren =7. The graphical program in Fig.
1 simulates the network in the left window, from which
Fig. 2 and Fig. 3 are taken. In Fig. 2(a), we see that at
least one wanderer is in proximity range of all robots in
the network. This implies that the leader-follower position
rule is applicable, and it is applied, shown in Fig. 2(b). In
these figures, the numbers correspond to the vertex indices
in Fig. 1, and a dash (”-”) indicates that thefinal field is
false. While vertex addition operations define a sequence
of subgraphs, many vertex addition rules can be applied
concurrently. As shown in Fig. 2(c), two vertex addition
position rules are applied simultaneously, before either has
been finalized. This is because these rules depend only on the
presence of two assigned vertices inG(t), not on the entire
subgraph before the corresponding vertex addition operation.
In this way, EGGs can take advantage of concurrency to
accomplish the formation task. The wanderers spend most of
their time in wander mode circling the leader robot 1 because
this robot’s label is in the left graph of every vertex addition
position rule. Finally, the EGG has successfully completed,
as shown in Fig. 2(h).

To demonstrate further the impact of concurrency and the
effectiveness of the wander mode, we implemented a similar
scenario withn =25 robots, shown in Fig. 3. Using the same
proximity range∆ and edge weights in the previous scenario.
As rules are executed, and wanderers begin satisfying the
guards of vertex addition rules, more and more rules are
able to apply concurrently. Eventually, the large triangulation
pattern is completed.

To verify these results, many thousands of randomly
generated positions were used to define minimally persistent
graphs, vertex addition operations, and EGGs. Experiments
show that the most ”risky” formations are those where edge
weights are close to the proximity range∆. Since the final
rules in Section III switch thefinal label totrue when the
robots are withinǫ of there desired positions, thenǫ defines
a maximum error that can be present before vertex additions



w
w

w

w

w
ww

4

(a) t = 0 s

w

w

w

w

w

1 −2

(b) t = 1 s

w
w

w

1 2

−3−4

(c) t = 4 s

w
w

w

1 2

5

−3

−4

(d) t = 5 s

ww

1 2

4

−3

−6

(e) t = 8 s

w 1 2

3

46

−5

(f) t = 12 s

1 2

3

4

5

6

−7

(g) t = 16 s

1 2

3

4

5

6

7

(h) t = 18 s

Fig. 2. EGG execution to assemble a hexagon triangular coverage pattern.

are performed. Ifǫ is too large, and edges have weights close
to ∆, it is possible that enough error is present to force a
robot to be outside of proximity range of the robots necessary
for its control calculations. This situation was monitoredin
simulation. Experiments show that when this occurs, it is
possible to redefineǫ to be smaller in a manner such that
this does not occur in repeated execution. Experiments also
show that it is always possible to defineτ such that the
prioritized lock negotiation never deadlocks.

In practice, the parametersǫ andτ are determined by the
robot hardware involved. Typically,ǫ is minimally defined to
adequately represent when the robot has driven sufficiently
close to its goal to indicate to other robots that its maneuver
is completed. This varies with the precision of the sensor
hardware, and making it as small as possible helps guarantees
that the areas within proximity range of assigned robots do
not change quickly. Also,τ is both a function of the network
size and the robot’s communication hardware. Typically,
τ is estimated by determining the time required for robot
negotiations and how it scales with network size. However,
it is only necessary to define it sufficiently large.

VII. C ONCLUSIONS

Given minimally persistent target formations and Hen-
neberg sequences corresponding to vertex additions, we
present automatic tools to generate EGGs that allow these
formations to emerge in a network of mobile robots. This
includes a description of graph-based representations of
target formations and the multi-agent network of robots, as
well as rules for specifying changes in network topology and
the control modes of the individual robots. We also present a
communication scheme that enables a distributed network of
robots to implement these EGGs effectively, in a manner that
both guarantees the accuracy of the EGG implementation
as well as the avoidance of deadlock. These methods are

(a) t = 0 s (b) t = 6 s

(c) t = 9 s (d) t = 13 s

(e) t = 15 s (f) t = 17 s

(g) t = 20 s (h) t = 30 s

Fig. 3. EGG execution to assemble a large triangular coverage pattern.

verified in simulation for a variety of target formations and
network sizes. All experiments demonstrate that it is possible
to define control laws and communication scheme parameters
to achieve these goals for minimally persistent target forma-
tions generated by Henneberg sequences of vertex additions.

REFERENCES

[1] P. Ogren, M. Egerstedt, and X. Hu, “A control lyapunov function
approach to multi-agent coordination,”IEEE Transactions on Robotics
and Automation, vol. 18, no. 5, pp. 847–851, Oct 2002.

[2] G. A. Kaminka and R. Glick, “Towards robust multi-robot formations,”
in Conference on International Robotics and Automation, 2006, pp.
582–8.

[3] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE
Transactions on Robotics, vol. 22, no. 4, pp. 637–49, August 2006.

[4] T. Eren, W. Whiteley, B. D. O. Anderson, A. S. Morse, and P.N. Bel-
humeur, “Information structures to secure control of rigidformations
with leader-follower architecture,” inProceedings of the American
Control Conference, Portland, Oregon, June 2005, pp. 2966–2971.

[5] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,”IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, June
2003.

[6] M. Ji and M. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness,”IEEE Transactions
on Robotics, vol. 23, no. 4, pp. 693–703, Aug 2007.

[7] J. M. Hendrickx, B. D. O. Anderson, J.-C. Delvenne, and V.D.
Blondel, “Directed graphs for the analysis of rigidity and persistence
in autonomous agent systems,”International Journal of Robust and
Nonlinear Control, 2000.

[8] J. M. McNew and E. Klavins, “Locally interacting hybrid systems with
embedded graph grammars,” inConference on Decision and Control,
2006, to Appear.

[9] B. Smith, M. Egerstedt, and A. Howard, “Automatic generation of per-
sistent formations for multi-agent networks under range constraints,” in
Proceedings of the International Conference on Robot Communication
and Coordination, 2007.

[10] L. Henneberg, “Die graphische statik der starren systeme,” 1911.


