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Bi_GHTNESS REVERSION OF MECHANICAL PULPS PART _II'
PHOTOINDUCED DEGRADATION OF LIGNIN

ON CELLULOSE MAT_X

Cang Li and Arthur J. Ragauskas*
Institute of Paper Science and Technology
500 10th Street, NW, Atlanta, GA 30318

ABSTRACT

An acidic dioxane extraction procedure was employed to isolate lignin
from softwood bleached chemithermomechanical pulp (BCTMP). The isolated
lignin was characterized spectroscopically and applied on cellulose testsheets.
The treated cell_ose testsheets were shown to exhibit photoyetlowing properties
comparable to BCTMP. The photolyzed lignin was re-isolated and characterized
by using spectroscopic techniques. The UV-VIS and FT-IR studies implied the
elimination of guaiacyl structure of lignin and the formation of the carboxyl
and/or unconjugated carbonyl groups during the photoyellowing process. The
steady-state emission intensity of the excited states of guaiacyl structures
decreases with increasing photolysis time, suggesting the formation of quinones
during photolysis. NMR analysis of the photolyzed lignin indicated that _e
formyi, methoxy, and uncondensed phenolics decrease in concentration as the
irradiation proceeds. In contrast, condensed lignin and carboxylic acids increase
as photolysis time is increased. These results are explained within the mechanism
of lignin photodegradation.

_' INTRODUCTION

High-yield mechanical pulping is an attractive technology for addressing
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many of the challenges of modem papermak'mg operations. The production of

high-yield pulps provides a valuable _mish with little environmental impact,

improved wood utilization practice, and simplified manufacturing techniques.

Unfortunately, the well-known photoyetlowing properties of mechanical pulp

have hindered additional usage of this valuable furnish. 1

The photoyelIowing of mechanical pulp is generally attributed to the

lignin component of the fiber. Although the exact mechanism of photoyellowing

is not _lly understood, substantial advancemems have been made in this field of

wood chemistry over the last two decades. 1'3 It is generally believed that several

subunits of lignin, including stilbenes, conjugated phenolics, coniferyI aldehyde,

cc-carbonyI-[3-O-aryI structures, and catechols, can absorb near ultraviolet light (L'

300-400 nm) eventually resuking in the photoformation of chromophores in the

visible spectrum. 2 Para- and ortho-quinones have been detected in irradiated

pulp and are believed to contribute to the discoloration of mechanical pulp along

with other color bodies. Inasmuch as these photoproducts are formed in small

amounts and are difficult to isolate from irradiated mechanical pulp, a variety of

model systems have been employed to study the photodegradation of lignin. This

report examines the photodegradation properties of lignin extracted from BCTMP

pulp and photolyzed with near-UV light.

EXPERIMENTAL

Materials

Ail reagents and solvents were commercially purchased and used as

received. A commercial softwood BCTMP, impregnated and bleached with

hy&ogen peroxide, was employed for ali studies in this report. Whatman # 3
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filter paper was used as cellulose testsheets. All water used in _s repo_ was

· initially deionized and then subsequently purified through a Ultrapure Water

System.

instrumentation

_1 NMR spectra were recorded on a 400 MHz Bruker DMX spectrometer

at 25°C. A Perkin-Elmer 320 UV-VIS spectrophotometer was used to measure the

absorption spectra. FT-IR spectroscopy was carried out with a Nicolet 550

spectrometer at room temperature. The emission spectra were performed with a

Perkin-Elmer LS-5B luminescent spectrometer (_,¢x= 280 nm). The photoageing

experiments were performed with a Rayonet Photochemic_ Reactor (_R-100)

with sixteen black lamps (_'max:350 nm). A fan located at the bottom of the

photochemic_ reactor was employed to maintain a photolysis temperature of

<30°C. A Technidyne Brightimeter Micro S-5 was used to measure the TAPPI

brightness of each testsheet according to TAPPI procedure T452 om-92, s

Procedures

Isolation of lignin fi'om BCTMP.6 Before isolation of the lign'm, the

softwood BC'['MP was Soxhlet extracted wi_ acetone for 24 h. The dry pulp (150

g) was then refluxed in a 0.01 N HC1 dioxane-water (3 L, 8.5:1.5) solution under

argon for 1 h. The pulp was filtered and washed with fresh dioxane (200 mL x 3).

The combined aliquots were neutralized with powder NaHCO3, filtered, and

concentrated under reduced pressure at _ 45°C. The concentrated solution was

added to 700 mL of a 0.006 N aqueous HC1 and the precipitated lignin was twice
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washed with acidified water (pH 2-3) and then _eeze-dried. The iyophilized

lignin was subsequently dried underhigh vacuum (- 0.006 Torr) at 50°C for at

least 24 h. The yield of lignin was calculated to be 0.7% based on the mass of

pulp initially used (% lignin yield = mass of lign'm isolated/mass of lignin in

pulp).

Filter papers treated with lignin. Cellulose testsheets (- I50 g/m2) were

sprayed with a 9'1 dioxane-water solution (5 mL) cont.aining BCTMP Iignin

(0.0870 g). The treated handsheets were dried overnight in the absence of light

prior to irradiation.

UV photolysis of the treated filter papers. Four lignin-impregnated

cellulose testsheets were attached to a merry-go-round and phototyzed in a

Rayonet RPR-100 photochemical reactor at-30°C. Each side of the paper was

photolyzed for half the photolysis period. At selected time periods, the irradiated

testsheets were removed from the reactor and equilibrated to a constant

temperature of 22°C (+ 2.0 °) and a relative humidity of 50% (+ 2.0%) for 4 h prior

to measuring TAPPI brightness values, s

Extraction of the photolyzed lignin. The photolyzed fiker papers were

extracted with 9'1 dioxane-water mixture (100 mL x 3). The combined extracts

were fihered and concentrated under reduced pressure at 45°C. The photolyzed

lignin was freeze-dried and then further dried with a high vacuum pump at 50°C

for 24 h. T_s procedure typically yielded 83-99% lignin recovery (see Table 1).

Quantitative 1H NMR spectroscopy. Functional group analysis of the

residual Iignin samples was accomplished, in general, following Lundqmst's

procedure of analyzing lignin (0.0150 g) in dry DMSO-d6 (0.50 mL). 7 As a slight
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· modification to this literature procedure, we employed sodium-3-trimethyisilyl

propionate-2,2,3,3-d4 (0.0480 g) as an internal standard to quantify functional
8

groups.

TABLE 1' Recovery of Lignin from Cellulose Testsheets.

::::::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::2::::::::::::::::::::::::2:22:22:2:22::22222::2222:2::22222::::22:2:2::2::222:22:222:22222:2:22222:222:22222::2:222::22::2:::2:a- ::::::lit!i11!lUUlltlnllllttllll,wlt11111

Period Irradiation, min Mass Recovery, %

0.0 99
1.0 99
2.0 97
4.0 93
8.0 91
30.0 88
60.0 83

a calculated by determining initial mass o/3'iigni:'n'appii'ed °nto teStsheet
and mass of lignin recovered after p-dioxane extraction.

FT-IR spectroscopy. Lignin samples (0.1 mg) were mixed with KBr

powder (0.20 g) and immediately analyzed. Typical spectral data were

accomplished with 128 scans/sample at room temperature. Background spectra

were collected with a pure KBr pellet.

UV-VIS spectroscopy. Lignin samples (0.18 mg) were dissolved in 9:1

dioxane-water mixture (t 00 mL) and the spectra (_,: 200-800 nm) were recorded

immediately thereafter at room temperature; absorption at 280 nm was also

measured.
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Emission spectroscopy. The lignin solutions that were used in UV-ViS

.... absorption spectrum measurements were subsequently used to determined the

emission spectrum by steady-state excitation at 280 nm.

RESULTS AN,D ,D!SCUSS!O,,N

The fundamental photoyelIowing chemistry of mechanical pulp has been

frequently studied with Iignin model compounds, t'9 These investigations have

established many of the fundamental reactio_ believed to be involved in the

photoyellowing process. To tin, her broaden our knowledge of the mechanisms of

brightness reversion, several researchers have begun to examine the

photochemistry of isolated lignin. The most common source of lignin studied to

date is milled wood lignin (MWL). Destin6 et al. l° demonstrated that the

photodegradation of MWL is influenced by the presence of oxygen; whereas

Agrolpoulos 11noted that changes in functional groups of milled wood Iignin were

dependent upon the period of irradiation.

Isolation of lignin fi'om BCTMP. Gellerstedt et al. I2 employed a mildly

acidic aqueous dioxane solution (pH 4) to relinquish the end-groups of

mechanical pulp lignin and examined their photochemistry. To facilitate the

release of additional lignin, we examined the use of a more acidic aqueous

dioxane solution (pH 2) to extract additional !igmn _om BCTMP.

The extraction of Iignin from a softwood BCTMP was accomplished using

a modification of the acidic dioxane extraction procedure that has been commo_y

employed to recover lignin from kraft pulps. One of our primary considerations

for the Iignin isolation procedure was to extract lignin from BCTMP without

significantly introducing new chromophores in the visible range. A series of
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· preliminary studies indicated that these concerns were best addressed refluxing

.... BCTMP pulp in a 0.01 N HC1 9:1 dioxane-water solution for 1 h under an argon

atmosphere.

Photoreversion properties of isolated lignin. To determine if the lignin

isolated from the BCTMP fibers exhibited brightness reversion properties, the

extracted lignin was redissolved in an aqueous dioxane solution and applied onto

cellulose testSheets. Initi_ly, we examined sever_ levels of applications of tignin

(0.5-5% by weight) onto cell_ose testsheets. The treated testsheets were

irradiated with a 300-400 nm light source and TAPPI brightness measurements

were periodically taken. The photoreversion properties of these testsheets are

summarized in Figure 1, and these data demonstrate that the lignin impregnated

cellulose testsheets exhibit brightness reversion properties. These resets _so

suggested that the photoreversion properties of these testsheets approach an

asymptotic reversion limit near 5% lignin applied onto a cellulose testsheet.

The photoreversion properties of the 3% lignin-cettulose testsheets were

then evaluated against BCTMP and acid hydrolyzed BCTMP testsheets. In

addition, the extracted lignin (3% by weight) was applied to testsheets prepared

from the acidolysis treatment of BCTMP p_p. Figure 2 summarizes the changes

in TAPPI brightness as these testsheets were irra_ated with a 300-400 nm light

source for varying time periods. All the testsheets exhibited comparable

brighmess reversion properties consisting of a very fast reversion phase (ca. first

15 min of irradiation) and a subsequent slower phase.

Characterization of post-photolyzed lignin. To study the photo-

degradation of BCTMP iignin, the irradiated testsheets were extracted with p-

dioxane. Table 1 summarizes the mass recovery of lignin after irradiation. In

general, the mass recovery of tignin was above 90% but did decrease as the
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phototysis time was increased, suggesting the photoproducts of Iignin might be

chemically and/or physically incorporated into the cellulose matrix.

1HNMR analysis. NMR analysis of lignin is a facile means of analyzing

many of the structural components of lignin. Lundquist ? has shown that

underivatized tignin can be qu_titatively anatyzed by _H NMR for a variety of

functional groups. The _H NMR of the extracted Iignin from BCTMP is shown

below in Figure 3. This spectrum has structural features that are simit_ to one

isolated from softwood pulp reported by Lundquist 13and Akerback et al. TM

Employing this procedure for the lignins recovered in Table t, the content

of methoxy, aromatic, condensed and non-condensed phenolic, formyl, and acidic

groups could be readily determined. The resets of these analyses are summarized

in Figures 4 to 6.

Figure 4A shows that a component of the uncondensed phenolic units in

lignin are rapidly consumed in the early stages of the photolysis experiment.

Interestingly, the loss of uncondensed phenotics is accompanied by an increase in

the overall amounts of condensed phenotics (see Figure 4B). It is well known that
· · · 15

unstable phenolic radicals can easily undergo _mer2atton and a comparable

mechanism is most likely contributing to the formation of condensed phenolics

observed in Figure 4B. The loss of aromatic protons (see Fig. 5A) as the ligmn

samples are irradiated is also consistent with a condensation mechanism, although

other mechanism(s) could also contribute to this phenomenon. The loss of

methoxy groups (see Fig. 5B) during photolysis has been previously noted by

Leary 16when mech_cal p_p was irradiated; our results are consistent with these

results.

Accompanying the photoinitiated loss of phenolic groups is an increase in

the acid content of the photolyzed Iign'm, as shown in Figure 6. The increase in

acidic groups (see Fig. 6A) during photolysis is supportive of the overall oxidative
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mechanisms that have been suggested during the photoyellowing of mechmc_

pulp. The loss of formyl groups (see Fig. 6B) during phototysis can be attributed,

at least in part, to simple oxidation of the corresponding acid.

FT-IR spectroscopy. FT-IR analysis of the isolated !ignin samples

provided an alternative means of characterizing the changes :in tignin d_ing

photolysis. As shown in Figure 7, several FT-IR signfls of lignin are modified

dung irradiation.

The signal at 1726 cm '1 is very prominent in the irradiated lignin; whereas

in the IR spectra of non-photolyzed lignin, this signal is substantiflty dim'_shed.

This IR band has been assigned to carbonyl group of carboxyl and unconjugated

carbonyl groups (conjugated carbonyl absorbs at 1715-1680 cm-1),t7-18Agarwal et
19

al. had notably similar trends when using FT-IR to characterize photoyellowed

TMPs. Our results suggest that the isolated lignin from softwood BCTMP :must

undergo a rather rapid oxidation process, in the early phase of brightness

reversion.

As reported by Schultz, I8 quantitative anflysis of IR spectra can be

determined upon the signal at 1600 cm-I. This signal, due to an aromatic C-H

stretch, provides a facile means of correlating signals measuring relative sign_

intensities. The ratio of absorbencies from 1726 cm '1 to 1600 cm'1 for the

untreated and photolyzed lignins are summarized in Figure 8. Unfortunately,

these results can be viewed as only semiquantitative since the NMR analysis

suggests that a portion of aromatic C-H groups in lignin are decreas'mg upon

photolysis.

Nonetheless, the FT-IR analyses are consistent with the NMR results,

suggesting that acid groups increase with increasing irradiation time. Both

spectroscopic techniques suggest that there is a fast and slow phases to the

photooxidation of lignin.
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UV-VIS spectroscopy. Absorption spectra of Iignin were measured in a

9'1 dioxane-water mixture as a function of photolysis time. A new band with

maximum at 280 nm, a shoulder at 240 nm, and a sharp peak at 220 nm were

observed as the period of irradiation was extended. These absorption bands are in

good agreement with studies reported by Lin et al.2° for softwood MWL lignin.

The change in the 280 nm absorption band d_ing UV h-radiation is given in Table

2. This band (280 nm) decreases as the photolysis time is increased. There is no

shift in absorption maximum, suggesting no contribution from the photoproducts.

The decrease in absorbance at 280 nm may be consistent with the brightness loss,
21-22

i.e. the formation of chromophores. It is believed that the maximum at 280 nm

is attributed to the absorption of phenylpropane (or guaiacyl structure), a basic

structural unit of ligm. The elimination of the phenylpropane struct_e upon the

photolysis is consistent with the formation of acid and/or the loss of aromatic

protons observed with NMR 'm this study.

TABLE 2' Absorbance at 280 m and Relative Fluorescent Emission Intensity at
360 nm of the Extracted Lignin as a F_ction of Photolysis Time.

Time,min Abs. RelativeEm. Intensity

0.0 0.328 1.0
1.0 0.258 0.86
2.0 0.242 0.82
4.0 0.221 0.89
8.0 0.232 0.80
30.0 0.1.92 0.57
60.0 0.204 0.58
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Emission spectroscopy. The solutions used in UV-VIS absorption

measurement were _so employed :in the measurement of emission spectra. The

results are given in Table 2. The emission intensity at maximin of 360 nm

decreases as the photolysis time is increased. It is noted that the absorbance at 280

nm decreases as photolysis time is increased (see Table 2). If we assume that the

decrease in absorbance at 280 nm is due to the degradation of lignin and no

contribution is due to the absorption from photoproducts, _e conclusion can be

made that the decrease in emission intensity is mm_y due to the decrease in

absorbance. This is because the tess photons absorbed by lignin, i.e., lesser

number of excited molecules, the less photons wilt emit. Since the photoproducts,

such as quinone structures, have no emission at 280 nm excitation, 23the decrease

in the emission intensity may suggest that the formation of _e quinones increases

with increasing irradiation time.

CONCL:USIO. NS

Lignin isolated from softwood BCTMP under mild acid hydrolysis

conditions (pH 2) exhibks brightness reversion properties. As a result, the isolated

Iignin can be used as a model in the study of brightness reversion of mechanical

pulp. The photoproducts of Iignin might chemicflly and/or physically incorporate

into the cellulose fiber during photoyellowing. The increase in condensed lignin

and carboxylic acids during photolysis is attributed to the photooxidation of

lignin, whch is consistent wi_ the decrease in the formyl, methoxy, and

uncondensed phenotics in lignin. _e ch_ges in functional groups during UV

irradiation may play an important role in understanding the mechanism of

brightness reversion of mechanical p_ps.
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FIGURE CAPTIONS

FIGURE 1. TAPPI Brightness of the testsheets treated with several IeveIs of
applications of }ignin (0.5-5% by weight) as a function of photoIysis time.

FIGURE 2. TAPPI Brightness as a hmction of photolysis time for testsheets
prepared from: (e) BCTMP; to) refiuxing BCTMP in an aqueous dioxane
solution (pH 2.0) for 60 min under argon; tv) cellulose and testshcet treated with
3% lignin; tV) refluxing BCTMP in an aqueous dioxane solution (pH 2.0) for 60
min under argon and testsheet treated with 3% lignin.

FIGURE 3. NMR spectrum of the isolated BCTMP }ignin (t5 mg) without
irradiation in dry DMSO-d6 (0.50 mL).

FIGURE 4. Number of mole of proton for condensed and uncondenscd phenolic
units in lignin as a function of photolysis time.

FIGURE 5. Number of mote of proton for methoxy and aromatic units in lignin
as a functio n of photolysis time.

FIGURE 6. Number of mole of proton for £ormyl and acidic units in lignin as a
function of photolysis time.

FIGURE 7. FT-IR spectra of unphotolyzed and photolyzed lignin.

FIGURE 8. FT-IR relative intensity (I726/I600 cm 'l) as a hmction of phototysis
time.
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