
KNOWLEDGEABLE DEVELOPMENT ENVIRONMENTS
USING SHARED DESIGN MODELS

Robert Neches, Jim Foley, Pedro Szekely, Piyawadee Sukaviriya, Ping Luo, Srdjan
Kovacevic, Scott Hudson

USC / Information Sciences Institute and Georgia Institute of Technology

ABSTRACT

We describe MASTERMIND, a step toward our vision of a
knowledge-based design-time and run-time environment
where human-computer interfaces development is centered
around an all-encompassing design model. The
MASTERMIND approach is intended to provide integration
and continuity across the entire life cycle of the user
interface. In addition it facilitates higher quality work
within each phase of the life cycle. MASTERMIND is an
open framework, in which the design knowledge base allows
multiple tools to come into play and makes knowledge
created by each tool accessible to the others.

KEYWORDS: models, collaboration, design, development

INTRODUCTION

The challenge facing the research community is to provide
the bass for an effective, integrated suite of tools to support
the entire lifecycle of an interface. This means that the tools
must be given a great deal more knowledge than they
currently have about the product they are intended to
construct. It means that this knowledge must be preserved
and shared between tools across the software lifecycle.

In an effort to move our research in this direction, we at
Information Sciences Institute and Georgia Tech have been
collaborating on the design of a shared system called
MASTERMIND, which is comprised of a knowledge base, a
design-time environment, and a run-time environment. In
MASTERMIND (which stands for Models Allowing Shared
Tools and Explicit Representations to Make Interfaces
Natural to Develop), the knowledge base serves as an
integrating framework that allows separate tools to integrate
into the design- and run-time environments.

Part of our underlying thesis in MASTERMIND is that
models of interface concepts need to be a shared community
resource that drives the creation of an architecture and tool
suite for design, development, and maintenance. If
knowledge of these concepts can be built into the tools, then
greater assistance can be provided earlier in the design
process, individual tools will become much more
interoperable, and it will become possible to build
knowledge bases about particular designs which can greatly
facilitate their maintenance and extension.

These benefits come at a cost -- modelling entails a certain
degree of additional effort. However, our argument is that

this cost can, and should, be paid primarily when creating
tools and environments rather than when building
applications. Creating knowledgeable development
environments is the way to provide the benefits of a model-
based approach to application developers without making
modeling too burdensome to be practical.

We will develop our view of a community-resource
knowledge base according to the following exposition.
First, we will describe the issues that arise over the course
of the software lifecycle for a user interface design. We wish
to make two major points from that analysis: (1) each phase
is facilitated if we can carry over knowledge from previous
phases; and (2) it is possible to identify the nature of the
knowledge that needs to be carried over.

Having argued generally that this carryover is beneficial,
next we will point out specific complementary benefits that
arise from using shared models to combine tools developed
under two complementary model-based approaches: the
HUMANOID effort ongoing at Information Sciences
Institute and the UIDE work at George Washington
University and Georgia Tech.

After reviewing the leverage that these tools provide each
other, our next topic will be the mechanisms that will allow
them to be combined. In particular, we will describe our
progress toward a unified model that supports prototyping
from partial specifications, design critiquing, context-
sensitive control of presentations, and context-sensitive
animated help and tutorials.

Once that unified model has been explained, we will then
turn to a consideration of the practical issues that must be
addressed in moving toward an open, extensible environment
in which such a model can serve to bring together our
tools. We will close by speculating about the possibilities
that this approach opens up for integrating and
disseminating the results of research in the HCI community.

AN ANALYSIS OF THE UI LIFECYCLE: WHY A
MODEL-BASED APPROACH IS NEEDED

Development of a user interface starts with an existing
system (computerized or manual) that must be analyzed in
order to understand what users need to accomplish and where
the bottlenecks lie in attempting to do so. This problem
identification process, which relies on techniques for task
analysis and user monitoring, leads to the definition of a
specific design problem. Elements of that design problem, at

2

this point in the process, involve a description of the task
and identification of requirements for improvements in
quality, speed, and/or accuracy of particular task
components. Today, that task description is rarely made
explicit (although techniques exist to do so [10]). Little
help beyond force of will is available to ensure that the
design evolves in line with that description. Yet the task
analysis deals in goals, operators, methods, and selectors --
elements that, as we will see, are part of the interface design
representation. Properly modeled, task analyses could feed
directly into the design.

In the next phase, conceptualization, design policies need to
be set in order to provide for an interface which addresses the
task analysis and requirements resulting from problem
identification. Conceptualization, and the prototyping
phase which follows it, can be viewed as a search through a
space of alternative designs. This notion of search for a
design that satisfices (rather than necessarily optimizing)
multiple criteria is central to current research trends.
Conceptualization formulates design policies that define
regions in the space. Prototyping works within those
abstractions to create a specific design specified at an
executable level.

In particular, elements of a conceptualization describe design
commitments. These include decisions about the choice and
nature of application and interaction objects presented to
users through the interface. Other commitments involve
policy decisions about choices of interaction paradigms and
dialogue techniques, as well as the general look-and-feel
offered via input and output media. If we wish to express
these commitments explicitly, then we benefit from having
a model of tasks since the design policy commitments made
during conceptualization build on our assumptions about the
activities that the interface will support.

Many design commitments are made during these phases. It
is only in the next phase, prototyping, that the design
representation grows to include actual executable software.
Unfortunately, the current generation of tools ignores the
earlier phases. Interface builders and other interface
programming aids really only help in creating code after the
designer has a sense of what is wanted. As we have argued
elsewhere [22], although some experimentation is possible,
the cost of backing away from a commitment is quite high
once much software is built.

A great deal is to be gained by maintaining an explicit
declarative representation that covers both the design model
and the code implementing it. Such a representation enables
semi-automated design critics to evaluate the design with
respect to issues such as usability and learnability. By
providing higher levels of abstraction at which to specify the
interface, it also empowers more rapid exploration of design
alternatives and therefore faster arrival at a satisfactory
design. A representation of the design goals allows us to
provide help in managing the activities required to
implement design policies.

As the software lifecycle proceeds into usage and
maintenance phases, knowledge accumulated in the previous
phases can be put to good use -- but only, of course, if there
is a model that preserves it for use by tools in the run-time
environment. In particular, knowledge of how the design
mapped its model of the application onto its model of
presentation methods is important, as is knowledge about
tasks and goals. Carrying this knowledge over from design-
time to run-time allows us to program systems that can
make context-sensitive decisions about the best presentation
technique to use for particular data. It allows us to define
help and guidance systems that can help with how-to
questions, that know enough about the presentation to be
able to generate effective animations, and that maintain the
accuracy of their help without extra programming effort
because their help is generated from the design itself.

In summary, a declarative model-oriented approach allows
separate tools, operating at very different times thoughout
the lifecycle, to take advantage of knowledge collected by
other tools and thereby build better interfaces with less
effort. To accomplish this, we need a model capturing:

• task structure, and the goals, subgoals, operators,
methods and selectors which comprise the means for
accomplishing tasks

• conceptual design abstractions and policy decisions about
structural and functional properties of the interface
which constrain a particular design

• mappings of conceptual structure to uses of i/o media in
system displays

• mappings of low-level, empirically-recordable user
gestures onto higher-level semantics recorded in the
design model

There are several advantages to this approach. The
declarative model is a common representation that tools can
reason about, and allows the tools that operate on it to
cooperate. Because all components of the system share the
knowledge in the model, the model promotes interface
consistency within and across systems and reusability in the
construction of new interfaces. Also, the declarative nature
of the model allows system builders to more easily
understand and extend the model.

CARRY-OVER OF KNOWLEDGE BETWEEN
DESIGN-TIME AND RUN-TIME TOOLS AND
ENVIRONMENTS

We have built a number of tools which operate at design
time and at run time by making use of the kind of
knowledge just listed.

ISI's model-based user interface development environment is
HUMANOID [20, 21, 22]. Its contribution to interface
design is that it lets designers express abstract
conceptualizations in an executable form, allowing designers
to experiment with scenarios and dialogues even before the
system model is completely concretized. The consequence is
that designers can get an executable version of their design

3

quickly, experiment with it in action, and then repeat the
process after adding only whatever details are necessary to
extend it along the particular dimension currently of interest
to them.

HUMANOID models the functional capabilities of the
system as a set of objects and operations, and partitions the
model of the style and requirements of the interface into four
dimensions that can be varied independently:

1. Presentation. The presentation defines the visual
appearance of the interface.

2. Manipulation. The manipulation specification defines the
gestures that can be applied to the objects presented, and
the effects of those gestures on the state of the system
and the interface.

3. Sequencing. The sequencing defines the order in which
manipulations are enabled. Many sequencing constraints
follow from the data flow constraints specified in the
system functionality model (e.g., a command cannot be
invoked unless all its inputs are correct). Additional
constraints can be imposed during dialogue design.

4. Action side-effects. Action side-effects refer to actions
that an interface performs automatically as side effects of
the action of a manipulation (e.g., a newly created object
can become automatically selected).

HUMANOID provides facilities to incrementally refine the
system functionality model and to refine any of the
dimensions of interface style to allow the exploration of a
large set of interface designs, while allowing the design to
be executed at any time.

In addition to supporting design exploration, HUMANOID's
model allows it to construct displays whose characteristics
depend on the runtime values of system data structures.
HUMANOID reasons about the values of the data structures
and the presentation policies defined in the presentation
dimension of interface style to determine the resulting
presentation. HUMANOID's model also allows it record the
dependencies between displays and system data structures,
enabling it to automatically update the displays when the
data structures change.

Georgia Tech's model-based user interface development
environment is UIDE, the User Interface Design
Environment [3, 4, 6, 7]. UIDE's models support rich
descriptions of the application. The basic elements of the
model are: the class hierarchy of objects which exist in the
system, properties of the objects, actions which can be
performed on the objects, units of information (parameters)
required by the actions, and pre- and postconditions for the
actions.

A variety of run-time and design-time uses have been made
of the representation. For design time, tests have been
developed for certain aspects of completeness, consistency
and command reachability [4, 1]. UIDE can automatically
organize menus and dialogue boxes [11], including use of
style-guide knowledge encapsulated in a rule base [2]. It can

automatically create an interface to the application, using
menus, dialogue boxes, and direct manipulation [6]. It has
been extended to evaluate the interface design with respect to
speed of use, using a key-stroke model type of analysis
which accounts for different interaction techniques and action
sequences [16].

At run-time, UIDE can explain why a command is disabled
(based on false predicates in its preconditions), and partially
explain what a command does (based on the semantics
implied by its preconditions, postconditions, and action
class [4]. It can provide procedural help, via animation of a
mouse and keyboard on the screen, taking into account the
current application context [18, 19]. Specifically, the
sequence of commands which must be executed to carry out
a (potentially disabled) command is animated, based on back-
chaining from the target command. Finally, it can control
actual execution of the application, including enabling and
disabling of menu items, as well as display of menus,
dialogue boxes, and windows [6, 8].

PROGRESS TOWARD A UNIFIED MODEL

Both our groups start from a base of implemented software,
which is written in terms of their own current generic
model, and which processes declarative user interface design
specifications written in the terminology defined by their
generic model. Our work therefore begins with aligning the
models, producing an initial knowledge base that merges the
best representational approaches of each. For example, the
ISI model has a richer and more flexible approach to
specifying interactive dialogues, while Georgia Tech's is
stronger when describing the effects of commands.

Our call for explicit user interface design models is an
interesting application of the DARPA Knowledge Sharing
Effort's development methodology for large knowledge-
based systems [12]. In the Knowledge Sharing Effort's
methodology, sharing and reuse of software is greatly
facilitated by adopting a common ontology: i.e., a set of
agreements about how to model the topic area. Their work is
developing tools to facilitate the evolution of such
ontologies, so there are compelling opportunities for that
line of work to leverage user interface research and vice
versa.

The problems in defining an ontology of user interface
designs are to structure the design space into relatively
orthogonal dimensions, and to provide a characterization of
implications and interdependencies between design
commitments. Structuring the design space organizes
design tools so that any aspect of a design can be revised
with minimal necessity to recode other aspects. Modeling
implications and interdependencies lets design spaces be
pruned more quickly, by using knowledge to restrict the
search to alternatives consistent with current design
commitments.

TTTThhhheeee MMMMAAAASSSSTTTTEEEERRRRMMMMIIIINNNNDDDD GGGGeeeennnneeeerrrriiiicccc MMMMooooddddeeeellll

As it stands now, our models for interface development

4

contain the following kinds of information.

Application Semantics. The application semantics is a
description of the functional capabilities of the system as a
set of objects and commands. In building a model of the
application semantics for an interface design, the designer is
making explicit what we earlier called the conceptual design
of the system. That is, without making commitments
about the appearance or behavior of the interface, the
designer's model of application semantics captures abstract
commitments about the capabilities that the interface will
offer and the type of information it will allow users to see
and manipulate. The MASTERMIND generic application
semantics model defines the vocabulary in which these
commitments can be expressed.

Figure 1 shows the part of that model representing objects, a
fusion of the models in [21, 22] and [4, 6, 7]. The model
contains a superset of the information contained in the
definition of a class in typical object-oriented programming
languages. Object class definitions typically state only the
slots of an object and the types of values that each slot can
contain. The additional knowledge represented in our model,
in attributes such as formatter, slot-class and validator, is
used by various components of the design and run-time
tools.

For example, the formatter attribute contains knowledge that
the interface software needs to translate between the internal
representation of an object and textual forms (e.g., to
construct the labels of menus that allow the user to choose
from a set of objects). Parsers contain knowledge to convert
from a textual representation of an object to its internal
form, which is used by interfaces that allow the user to type
in the identifier of an object. Validators attached to the
object model tell how to check consistency of values
supplied when a user attempts to input an instance of that
class. Organizing knowledge in this fashion facilitates
prototyping of partial designs, because it allows the system
to use class inheritance to fill in parsers and formatters from
the generic model for use during execution of designs for
which more application-specific methods have not yet been
provided.

Two unusual pieces of knowledge in the model of object
slots are the slot-class and the validator. The slot-class
contains knowledge about the semantics of the slot that the
presentation component can use to aid in the design of
displays. For example, one kind of slot-class in our model
is called Part-Of; it indicates that the values of the slot are in
a part-of relationship with respect to the object. Such
knowledge can be used to pick out certain presentatation
methods and rule out others.

The unique aspect of validators is that they contain, in
addition to a procedure to test a condition (predicate), a
specification of the error messages to show the user for the
different error conditions that the validator can detect (error-
conditions). Storing the error messages with the validator
separates the representation of the error messages from the

presentation techniques used to communicate them to the
user. This gives the presentation component the flexibility
to choose a presentation technique appropriate to the current
situation.

The object model, which comes mostly from UIDE,
together with the presentation model, which comes mostly
from HUMANOID, enables MASTERMIND to provide
capabilities unavailable in UIDE or HUMANOID. For
example, the object model provides design-time information
that DON, the automatic dialogue-box generation
component of UIDE uses to group and select the interaction
techniques in a dialogue box. Similar uses of the object
model could be incorporated into HUMANOID, to increase
HUMANOID’s ability to automatically design displays,
while conserving the context-sensitive presentation
capabilities of HUMANOID.

Figure 2 shows the MASTERMIND command model,
derived from HUMANOID's and UIDE's. Commands model
the operations that can be performed on objects.

The command model contains knowledge about the inputs of
a command, the conditions under which the command can be
executed (preconditions, exceptions, validator), and the
effects of the command (post-conditions and side-effects).
The run-time environment uses some of this knowledge to
acquire values for nputs from the user: the legal values of
the inputs (type, validator, alternatives, min, max), default
values, parsers and formatter. Knowledge from the
command model is also used to control the sequencing for
acquiring the input values from the user.

The preconditions, postconditions, exceptions and side-
effects provide knowledge about the semantics of an
operation that can be used by many tools. For example, the
animated help generation system uses preconditions and
postconditions to figure out the sequence of actions that a
user needs to perform to carry out a task. The presentation
component enables and disables menu-items when the
preconditions of commands change. The help system can
explain why a command is disabled based on unsatisfied
preconditions and whether the values of inputs are incorrect
or missing.

Presentation and Behavior. The presentation model
describes the visual appearance of the interface, and the
behavior model defines the gestures that can be applied to
the objects presented, and the effects of those gestures on the
state of the system and the interface.

Figure 3 shows MASTERMIND's merger of the
presentation and manipulation models in HUMANOID and
UIDE. A presentation is modeled as a composition of
simpler presentations called parts. In addition to the parts,
the model contains knowledge about the layout of the parts,
the kind of data that the presentation can display, the
contexts in which the presentation is appropriate
(applicability-condition), the input behaviors associated with
the presentation, and other presentations that might be more

5

appropriate in certain contexts (refinements).

Each part of a presentation contains knowledge about
conditions when the part should be included in the complete
presentation (inclusion-condition), knowledge that allows a
part to be replicated when the data to be presented is a list
(replication-data), and knowledge about different choices of
presentation methods for displaying that part .

The model of behaviors is based on the Garnet Interactors
Model. Briefly, a behavior describes the area of a
presentation where it is active, the events that invoke it and
stop it, and the action to be executed (see [Garnet-Interactors]
for more details).

The model of presentation and behavior is used by the run-
time system to generate context-sensitive presentations by
matching the types in the slots of objects with the types and
predicates in the data attributes of presentations.

Together, the presentation and command models let
MASTERMIND-based interfaces provide animated help for
free. The animation generation works from the command
model to figure out the sequence of steps to animate, and
from the presentation model to construct the contents of the
animation. Animation generation is a compelling example
of the benefit of the MASTERMIND approach because it
piggybacks on knowledge that is in the model for other
purposes.

Sequencing and Action Side-Effects. Sequencing defines
the order in which input behaviors are enabled. Action side-
effects refer to actions that an interface performs
automatically as side effects of the action of a manipulation
(e.g., a newly created object can become automatically
selected).

Our model of sequencing and side-effects is described in
detail in [HUMNAOID] and [UIDE]. The main feature of
the model, that distinguishes it from the models used in
other UIMSs, is that sequencing is not represented
explicitly, either as a finite state machine or an event
system. Instead, sequencing constraints are derived from the
data flow constraints specified in the system functionality
model (e.g., a command cannot be invoked unless all its
inputs are correct) and from the preconditions,
postconditions and exceptions of a command. Additional
sequencing constraints (e.g. that certain inputs should be
prompted for in sequence) are defined by annotating groups
(Figure B) with declarative descriptions of the sequencing
desired.

Planned Extensions to the Model. A number of design
issues are not currently covered in our model. Our future
plans include coverage of: policies that define global style
characteristics of the interface, characteristics of the delivery
platforms, end-user characteristics and preferences, and user
tasks.

DDDDeeeessssiiiiggggnnnn aaaannnndddd EEEExxxxeeeeccccuuuuttttiiiioooonnnn iiiinnnn MMMMAAAASSSSTTTTEEEERRRRMMMMIIIINNNNDDDD

In our model-based approach, interface developers specify
interfaces by modeling the desired features declaratively in
terms defined in the generic knowledge base. Unlike the
traditional approach to interface construction, where
programmers spend most of the effort writing and debugging
procedural code, our goal is for developers using
MASTERMIND to spend the bulk of their effort writing
declarative specifications that extend and specialize the
generic model. As these specifications evolve, the tools
that we described in the previous section can interpret those
specfications to provide assistance in critiquing the design,
executing and evaluating partially specified designs, and
managing the activities necessary for extending the
specifications.

The run-time environment of an application developed with
MASTERMIND consists of a standard software module that
is a component of every application program. The run-time
component module uses the model of the application and its
interface, along with knowledge about the state of the
application program's run-time data structures, in order to
generate and control the interface of the application, interpret
inputs, and provide help to the end user.

To interpret inputs, the run-time system uses the
presentation model to map the input event into the
application data referenced by it, and triggers the appropriate
commands according to the application's model of behavior
and sequencing.

To produce or update the display of an application data
structure, the run-time system queries the model for a
presentation component capable of displaying the data
structure. The model returns the most specific presentation
component suitable for displaying the data structure in the
given context (e.g. taking into account data type congruence
and size restrictions), and the run-time system uses it to
produce or update the display. Note that the presentation
component obtained from the model might either be a
default inherited from Mastermind’s generic knowledge base,
or a more specific presentation component specified by an
interface's designer. This mechanism is the key to two
valuable properties of MASTERMIND: (1) built-in support
for context sensitive presentation; and, (2) the ability to
generate default behavior that fills in for deferred design
commitments, thereby making even incomplete
specifications executable and testable.

RELATED WORK

Other user interface management systems which derive the
user interface from a high-level specification of the
semantics of a program are MIKE [15], and UofA* [17],
which are able to generate a default interface from a minimal
application description, and provide a few parameters that a
designer can set to control the resulting interface.

Our model of commands allows designers to exert much
finer control over dialogue sequencing. In addition, we
provide a library of command groups that allows designers
to very easily specify the dialogue structures that MIKE and

6

UofA* support. We also provide finer control over
presentation design, and offer richer descriptions of
application semantics that can be used to support more
sophisticated design tools.

Interface builders such as the Next Interface Builder [14], and
OpenInterface [13] are a different class of tools to aid in the
design of interfaces. These tools make it very easy to
construct the particular interfaces that they support, but are
very poor for design exploration. Designers have to commit
to particular presentation, layout and interaction techniques
early in the design. Making global policy changes, such as
changing the way choices are presented, is difficult because
it requires manually editing a large number of displays. A
model-based approach handles both these problems.

CONCLUSIONS

An overall architecture centered around an all-encompassing
design model would provide integration and continuity
across the entire lifecycle of a user interface in addition to
enabling more powerful results within each phase. Today's
interface development environments are primitive with
respect to what is needed.

The state of the art today is an architecture consisting of a
library of low-level objects like menus and buttons, and
specification and prototyping tools consisting of aids for
drawing what individual displays should look like.
Prototyping in today's environment really means that -- if
enough code is also written -- you can test the interface
before the application is done. However, it does not mean
that it is easy to experiment with different interface designs
or easily see how a partially conceptualized design might
look.

The opportunity exists to go far beyond this, not by
throwing away that architecture, but by building on it.
MASTERMIND is a first step in that direction.

MASTERMIND is best thought of as a framework that
others can build on, with some pieces instantiated. The
framework supports design, execution, help, and
maintenance for well-designed user interfaces to advanced
applications. We have identified certain design tools that fill
missing needs: visual aids for developing design models,
tools for managing and automating multi-step design
refinements, and critics based on design policies. Because
the framework is open, other tools can be added later. For
example, if the pychological research on analyzing the
usability of proposed designs matures to the the point where
it enables creation of automated design usability critics, the
extensible nature of the MASTERMIND design makes it
feasible for other researchers to add those tools.

Similar observations apply to the MASTERMIND run-time
environment. For example, as psychological research
progresses on identifying bottlenecks in the use of
implemented designs, it should be easily possible to
augment the run-time environment in order to collect and
analyze performance data from users interacting with the

interface system. In fact, the user task models that we plan
to build in order to support more sophisticated help and
interactive guidance may well contribute to such an
extension.

For these reasons, MASTERMIND offers a valuable path
toward a comprehensive, interoperable suite of tools, what
the recent ISAT study on intelligent interfaces referred to as
a knowledgeable development environment. [9]

Although MASTERMIND only instantiates a portion of
that comprehensive framework, it has significant merit in its
own right. Among other innovations, it will represent a
major step toward explicit representation and support for
early, conceptual phases of design. Designers can partially
describe their designs, by providing descriptions of
application functionality and data structures or by using
abstractions about presentation, manipulation, or
sequencing. Because this approach allows execution and
testing of partially-specified designs, because it also
facilitates exploration of design alternatives, and because it
allows stating and enforcing high-level design policies,
MASTERMIND will facilitate rapid production of much
more thoughtfully designed user interfaces.

MASTERMIND uses the knowledge created in the design
process to provide useful run-time services, such as context-
sensitive presentation and help, which would not be possible
without a design model.

An integrated set of easy-to-use tools with the above
properties would provide a much faster and cheaper path to
the creation of usable, maintainable, and better-adapted
interfaces. Knowledgeable development environments would
dramatically change the nature of interface system
development. It would ease the task of initial design. It
would let design and evolution extend throughout the
lifecycle, and it would soften unhealthy boundaries between
designers and end users.

The result would be improvements in the quality, cost, and
production time of advanced user interfaces. Quality would
increase because first-pass interface designs would be better,
because there would be more opportunity to iteratively refine
the designs, and because end users would have greater
participation and influence in ensuring that their needs and
limitations were addressed. Cost would decrease because
interfaces could be developed and tested much more quickly,
because better adaptivity to task requirements would
simplify training and because better design would enhance
user productivity. Production time would be speeded
because prototyping would be faster and more complete,
because the distinction between prototypes and deployed
systems could be blurred/eliminated, and because generation
of informational materials would not entail extra effort.

Thus, we believe that much more powerful systems can be
built much more quickly in the future -- if two conditions
are met:

7

• we organize our development and maintenance tools
around explicit models

• we begin, as a community, to work towards sharing
common models

Doing so will allow the research community to compose
our tools together to create development and maintenance
environments far superior to what any of us could build
alone.

ACKNOWLEDGEMENTS

The research reported in this paper was supported by
DARPA through Contract Numbers NCC 2-719 and
N00174-91-0015 at ISI, and by grants from SUN, Siemens,
and the State of Georgia at Georgia Tech.

REFERENCES

[1] Braudes, R.E., and J.L. Sibert, "ConMod: A System
for Conceptual Consistency Verification and
Communication," SIGCHI Bulletin 23(1), Jan. 1991,
pp.92-94.

[2] DeBaar, D, K. Mullet, and J. Foley. Coupling
Application Design and User Interface Design,
Proceedings CHI'92 - SIGCHI 1992 Computer Human
Interaction Conference, ACM, New York, NY, 1992,
in press.

[3] Foley, J., C. Gibbs, W. Kim, and S. Kovacevic, A
Knowledge Base for a User Interface Management
System, Proceedings CHI '88 - 1988 SIGCHI
Computer-Human Interaction Conference, ACM, New
York, 1988, pp. 67-72.

[4] Foley, J., W. Kim, S. Kovacevic, and K. Murray,
Designing Interfaces at a High Level of Abstraction,
IEEE Software, 6(1), January 1989, pp. 25-32.

[5] Foley, J., A. van Dam, S. Feiner, and J. Hughes,
Computer Graphics – Principles and Practice, Addison-
Wesley, Reading, MA, 1990.

[6] Foley, J., W. Kim, S. Kovacevic and K. Murray,
UIDE - An Intelligent User Interface Design
Environment, in J. Sullivan and S. Tyler (eds.)
Architectures for Intelligent User Interfaces: Elements
and Prototypes, Addison-Wesley, Reading MA, 1991,
pp.339-384.

[7] Foley, J., D. Gieskens, W. Kim, S. Kovacevic, L.
Moran and P. Sukaviriya, A Second-Generation
Knowledge Base for the User Interface Design
Environment, GWI-IIST-91-13, Dept. of Electrical
Engineering and Computer Science, The George
Washington University, Washington DC 20052, 1991.

[8] Gieskens, D. and J. Foley, Controlling User Interface
Objects Through Pre- and Postconditions, Proceedings
CHI'92 - SIGCHI 1992 Computer Human Interaction
Conference, ACM, New York, NY, 1992, in press.

[9] Intelligent User Interfaces. ISI/RR-91-288, USC/ISI,
4676 Admiralty Way, Marina del Rey, CA 90292,
September 1991.

[10] John, B. E., Extensions of GOMS Analyses to Expert
Performance, Requiring Perception of Dynamic Visual
and Auditory Information, Proceedings of ACM
CHI’90 Conference on Human Factors in Computing
Systems, pp. 107-115.

[11] Kim, W. and J. Foley, DON: User Interface
Presentation Design Assistant, Proceedings
SIGGRAPH Symposium on User Interface Software
and Technology, ACM, New York, 1990, pp. 10-20.

[12] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T.
Senator, and W.R. Swartout. Enabling Technology for
Knowledge Sharing. AI Magazine, Volume 12 No. 3 ,
Fall 1991, pp.36-56.

[13] Neuron Data, Inc. 1991. Open Interface Toolkit. 156
University Ave. Palo Alto, CA 94301.

[14] NeXT, Inc. 1990. Interface Builder, Palo Alto, CA.

[15] D. Olsen. MIKE: The Menu Interaction Kontrol
Environment. ACM Transactions on Graphics, vol 17,
no 3, pp. 43-50, 1986.

[16] Senay, H., P. Sukaviriya, L. Moran, Planning for
Automatic Help Generation, Proceedings of Working
Conference on Engineering for Human Computer
Interactions, IFIP, August 1989.

[17] G. Singh and M. Green. A High-level User Interface
Management System. In Proceedings SIGCHI'89.
April 1989, pp. 133-138.

[18] Sukaviriya, P., Dynamic Construction of Animated
Help from Application Context, Proceedings of ACM
SIGGRAPH 1988 Symposium on User Interface
Software and Technology (UIST '88), 1988, ACM,
New York, NY, pp. 190-202.

[19] Sukaviriya, P and J. Foley, Coupling a UI Framework
with Automatic Generation of Context-Sensitive
Animated Help, Proceedings of ACM SIGGRAPH
1990 Symposium on User Interface Software and
Technology (UIST '90), ACM, New York, 1990, pp.
152-156.

[20] P. Szekely. Standardizing the interface between
applications and UIMS's. In Proceedings UIST'89.
November 1989, pp. 34-42.

[21] P. Szekely. Template-based mapping of application
data to interactive displays. In Proceedings UIST'90.
October 1990, pp. 1-9.

[22] P. Szekely, P. Luo, and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. In
Proceedings of CHI'92, The National Conference on
Computer-Human Interaction, May, 1992, pp. 507-
515.

