KNOWLEDGEABLE DEVELOPMENT ENVIRONMENTS
USING SHARED DESIGN MODELS

Robert Necheslim Foley, Pedro Szekely, Piyawadee Sukaviriya, Ping Luo, Srdjan
Kovacevic, Scott Hudson

USC / Information Sciences Institute and Georgia Institute of Technology

ABSTRACT this cost can, and should, be paid primarily when creating

We describe MASTERMIND, a step toward our vision of ato0Is and environments rather than when building
knowledge-based design-time and run-time environmerPPlications. Creating knowledgeable development
where human-computer interfaces development is centeré@vironments is the way to provide the benefits of a model-
around an all-encompassing design model. Th@ased_ approach to application deve_lopers without making
MASTERMIND approach is intended to provide integrationmodeling too burdensome to be practical.
and continuity across the entire life cycle of the user . . .
interface. In addition it facilitates higher quality work W& Will develop our view of a community-resource
within each phase of the life cycle. MASTERMIND is an knowledge' base ﬁ}ccord'”.g to the follpwmg exposition.
open framework, in which the design knowledge base allo irst, we will describe the issues that arise over the course
multiple tools to come into play and makes knowledgeOf the software I|_fecycl_e for a user |nterface_de5|gn. We wish
created by each tool accessible to the others. to make two major points from that analysis: (1) each phase
is facilitated if we can carry over knowledge from previous

KEYWORDS: models, collaboration, design, development Phases; and (2) it is possible to identify the nature of the
knowledge that needs to be carried over.

INTRODUCTION q v th h b ‘ |
. - . Having argued generally that this carryover is beneficial,
The challenge facing the research community is to IoroV'dﬁext we will point out specific complementary benefits that

the bass for an effective, integrated suite of tools to suppo tise from using shared models to combine tools developec

the entire lifecycle of an interface. This means that the toolg "o complementary model-based approaches: the
must be given a great deal more knowledge than the .

; MUMANOID effort ongoing at Information Sciences
currently have about the_product they are intended t stitute and the UIDE work at George Washington
construct. It means that this knowledge must be preserv

and shared between tools across the software lifecycle. Iversity and Georgia Tech.

fter reviewing the leverage that these tools provide each
ther, our next topic will be the mechanisms that will allow

em to be combined. In particular, we will describe our
rogress toward a unified model that supports prototyping
om partial specifications, design critiquing, context-

ensitive control of presentations, and context-sensitive
animated help and tutorials.

In an effort to move our research in this direction, we a
Information Sciences Institute and Georgia Tech have bee[
collaborating on the design of a shared system calle
MASTERMIND, which is comprised of a knowledge base, 8,
design-time environment, and a run-time environment. I%
MASTERMIND (which stands foModels Allowing Shared
Tools and Explicit Representations to M ake I nterfaces
Natural to Develop), the knowledge base serves as a
integrating framework that allows separate tools to integr
into the design- and run-time environments.

"Once that unified model has been explained, we will then
% to a consideration of the practical issues that must be
addressed in moving toward an open, extensible environmen
in which such a model can serve to bring together our
tools. We will close by speculating about the possibilities
tHat this approach opens up for integrating and

sseminating the results of research in the HCI community.

Part of our underlying thesis in MASTERMIND is that
models of interface concepts need to be a shared commun
resource that drives the creation of an architecture and to
suite for design, development, and maintenance. |
knOWIedge of these concepts can be built into the tools, thE'AN ANALYSIS OF THE Ul LIFECYCLE: WHY A
greater assistance can be provided earlier in the deSigfiODEL-BASED APPROACH IS NEEDED

process, individual tools will become much moreDevelo ment of a user interface starts with an existin
interoperable, and it will become possible to build P 9

. . . stem (computerized or manual) that must be analyzed ir
knquledge t_)ases_ about particular des_|gns which can great?(der to (undegstand what users ne)ed to accomplish an)a wher
facilitate their maintenance and extension. P

the bottlenecks lie in attempting to do so. This problem

These benefits come at a cost -- modelling entails a certalfientification process, which relies on techniques for task

degree of additional effort. However, our argument is thag@lysis and user monitoring, leads to the definition of a
specific design problem. Elements of that design problem, at

this point in the process, involve a description of the tasis the software lifecycle proceeds into usage and
and identification of requirements for improvements inmaintenance phases, knowledge accumulated in the previou
quality, speed, and/or accuracy of particular taskphases can be put to good use -- but only, of course, if thert
components. Today, that task description is rarely made a model that preserves it for use by tools in the run-time
explicit (although techniques exist to do so [10]). Littleenvironment. In particular, knowledge of how the design
help beyond force of will is available to ensure that themapped its model of the application onto its model of
design evolves in line with that description. Yet the taskpresentation methods is important, as is knowledge about
analysis deals in goals, operators, methods, and selectordasks and goals. Carrying this knowledge over from design-
elements that, as we will see, are part of the interface desigime to run-time allows us to program systems that can
representation. Properly modeled, task analyses could feathke context-sensitive decisions about the best presentatio
directly into the design. technique to use for particular data. It allows us to define
help and guidance systems that can help with how-to
In the next phase, conceptualizatidesign policiesneed to questions, that know enough about the presentation to be
be set in order to provide for an interface which addresses tiale to generate effective animations, and that maintain the
task analysis and requirements resulting from probleraccuracy of their help without extra programming effort
identification. Conceptualization, and the prototypingbecause their help is generated from the design itself.
phase which follows it, can be viewed as a search through a
space of alternative designs. This notion of search for Bn summary, a declarative model-oriented approach allows
design that satisfices (rather than necessarily optimizinggeparate tools, operating at very different times thoughout
multiple criteria is central to current research trendsthe lifecycle, to take advantage of knowledge collected by
Conceptualization formulates design policies that defin@ther tools and thereby build better interfaces with less
regions in the space. Prototyping works within thoseeffort. To accomplish this, we need a model capturing:
abstractions to create a specific design specified at a
executable level. e task structure, and the goals, subgoals, operators
methods and selectors which comprise the means for
In particular, elements of a conceptualization describe design accomplishing tasks

commitments. These include decisions about the choice apd conceptual design abstractions and policy decisions abou

nature of application and interaction objects presented 10 o ctyral and functional properties of the interface
users through the interface. Other commitments involve \hich constrain a particular design

policy decisions about choices of interaction paradigms and)) o
dialogue techniques, as well as the general look-and-fe& Mappings of conceptual structure to uses of i/o media in

offered via input and output media. If we wish to express System displays

these commitments explicitly, then we benefit from having. mappings of low-level, empirica”y_recordab]e user

a model of tasks since the design policy commitments made gestures onto higher-level semantics recorded in the
during conceptualization build on our assumptions about the jesjgn model

activities that the interface will support. .
PP There are several advantages to this approach. The

Many design commitments are made during these phases.dgclarative model is a common representation that tools car
is only in the next phase, prototyping, that the desigféason about, and allows the tools that operate on it to
representation grows to include actual executable softwarg00perate. Because all components of the system share tt
Unfortunately, the current generation of tools ignores th&nowledge in the model, the model promotes interface
earlier phases. Interface builders and other interfacgonsistency within and across systems and reusability in the
programming aids really only help in creating code after th&onstruction of new interfaces. Also, the declarative nature
designer has a sense of what is wanted. As we have argueid theé model allows system builders to more easily
elsewhere [22], although some experimentation is possiblgnderstand and extend the model.

the cost of backing away from a commitment is quite higrl:ARRY OVER OF KNOWLEDGE BETWEEN

once much software is built. DESIGN-TIME AND RUN-TIME TOOLS AND

A great deal is to be gained by maintaining an explicitENVIRONME'\ITS

declarative representation that covers both the design modéfe have built a number of tools which operate at design
and the code implementing it. Such a representation enablégie and at run time by making use of the kind of
semi-automated design critics to evaluate the design witknowledge just listed.

respect to issues such as usability and learnability. By)))
providing higher levels of abstraction at which to specify thePlSl s model-based user interface deve_lopr_nent environment i
interface, it also empowers more rapid exploration of desighft UMANOID [20, 21, 22]. Its contribution to interface
alternatives and therefore faster arrival at a satisfactor§€sign is that it lets designers express abstract

design. A representation of the design goals allows us fgpnceptualizations in an executable form, allowing designers
provide help in managing the activities required totO experiment with scenarios and dialogues even before the

implement design policies. system model is completely concretized. The consequence i
that designers can get an executable version of their desig!

quickly, experiment with it in action, and then repeat theautomatically create an interface to the application, using

process after adding only whatever details are necessaryntenus, dialogue boxes, and direct manipulation [6]. It has

extend it along the particular dimension currently of interesbeen extended to evaluate the interface design with respect t

to them. speed of use, using a key-stroke model type of analysis
which accounts for different interaction techniques and action

HUMANOID models the functional capabilities of the sequences [16].

system as a set of objects and operations, and partitions the

model of the style and requirements of the interface into foult run-time, UIDE can explain why a command is disabled

dimensions that can be varied independently: (based on false predicates in its preconditions), and partially
explain what a command does (based on the semantic:

1. Presentation. The presentation defines the visudhmplied by its preconditions, postconditions, and action

appearance of the interface. class [4]. It can provide procedural help, via animation of a

2. Manipulation. The manipulation specification defines theouse and keyboard on the screen, taking into account the
gestures that can be applied to the objects presented, fiffrent application context [18, 19]. Specifically, the

the effects of those gestures on the state of the syste¥gduence of commands which must be executed to carry ot
and the interface. a (potentially disabled) command is animated, based on back

aining from the target command. Finally, it can control
tual execution of the application, including enabling and
sabling of menu items, as well as display of menus,
alogue boxes, and windows [6, 8].

3. Sequencing. The sequencing defines the order in whicg;
manipulations are enabled. Many sequencing constrainfg
follow from the data flow constraints specified in the ;
system functionality model (e.g., a command cannot be

invoked unless all its inputs are correct). AdditionalpPROGRESS TOWARD A UNIFIED MODEL

constraints can be imposed during dialogue design. .
Both our groups start from a base of implemented software,
4. Action side-effects. Action side-effects refer to actionsyhich is written in terms of their own current generic
that an interface performs automatically as side effects ghodel, and which processes declarative user interface desig
the action of a manipulation (e.g., a newly created objecipecifications written in the terminology defined by their
can become automatically selected). generic model. Our work therefore begins with aligning the

HUMANOID provides facilities to incrementally refine the models, producing an initial knowledge base that merges the
system functionality model and to refine any of thebest representational approaches of each. For example, th
dimensions of interface style to allow the exploration of dSI model has a richer and more flexible approach to

large set of interface designs, while allowing the design tépecifying interactive dialogues, while Georgia Tech's is
be executed at any time. stronger when describing the effects of commands.

In addition to supporting design exploration, HUMANOID's Our call for explicit user interface design models is an
model allows it to construct displays whose characteristiciiteresting application of the DARPA Knowledge Sharing
depend on the runtime values of system data structurekffort's development methodology for large knowledge-
HUMANOID reasons about the values of the data structureiased systems [12]. In the Knowledge Sharing Effort's
and the presentation policies defined in the presentatiofethodology, sharing and reuse of software is greatly
dimension of interface style to determine the resultindacilitated by adopting a common ontology: i.e., a set of
presentation. HUMANOID's model also allows it record theagreements about how to model the topic area. Their work is
dependencies between displays and system data structurdgveloping tools to facilitate the evolution of such

enabling it to automatically update the displays when th@ntologies, so there are compelling opportunities for that
data structures change. line of work to leverage user interface research and vice

versa.

Georgia Tech's model-based user interface development

environment is UIDE, the User Interface DesignThe problems in defining an ontology of user interface

Environment [3, 4, 6, 7]. UIDE's models support richdesigns are to structure the design space into relatively

descriptions of the application. The basic elements of therthogonal dimensions, and to provide a characterization of

model are: the class hierarchy of objects which exist in thgnplications and interdependencies between design

system, properties of the objects, actions which can bgommitments. Structuring the design space organizes

performed on the objects, units of information (parametersjesign tools so that any aspect of a design can be revise

required by the actions, and pre- and postconditions for th&ith minimal necessity to recode other aspects. Modeling

actions. implications and interdependencies lets design spaces b
pruned more quickly, by using knowledge to restrict the

A variety of run-time and design-time uses have been madkearch to alternatives consistent with current design

of the representation. For design time, tests have be@mmitments.

developed for certain aspects of completeness, consistency

and cc_)mmand reachab_lhty [4, 1]. UIDE can autqmatu:ally he MASTERMIND Generic Model

organize menus and dialogue boxes [11], including use o

style-guide knowledge encapsulated in a rule base [2]. It cahs it stands now, our models for interface development

contain the following kinds of information. presentation techniques used to communicate them to the
user. This gives the presentation component the flexibility
Application Semantics. The application semantics is a to choose a presentation technique appropriate to the currer
description of the functional capabilities of the system as gituation.
set ofobjects andcommands. In building a model of the
application semantics for an interface design, the designer the object model, which comes mostly from UIDE,
making explicit what we earlier called the conceptual desigtogether with the presentation model, which comes mostly
of the system. That is, without making commitmentsfrom HUMANOID, enables MASTERMIND to provide
about the appearance or behavior of the interface, thmapabilities unavailable in UIDE or HUMANOID. For
designer's model of application semantics captures abstraetample, the object model provides design-time information
commitments about the capabilities that the interface wilthat DON, the automatic dialogue-box generation
offer and the type of information it will allow users to seecomponent of UIDE uses to group and select the interaction
and manipulate. The MASTERMIND generic applicationtechniques in a dialogue box. Similar uses of the object
semantics model defines the vocabulary in which thesmodel could be incorporated into HUMANOID, to increase
commitments can be expressed. HUMANOID’s ability to automatically design displays,
while conserving the context-sensitive presentation
Figure 1 shows the part of that model representing objects,capabilities of HUMANOID.
fusion of the models in [21, 22] and [4, 6, 7]. The model
contains a superset of the information contained in th&igure 2 shows the MASTERMINZommand model,
definition of a class in typical object-oriented programmingderived from HUMANOIDsand UIDE's. Commands model
languages. Obiject class definitions typically state only théhe operations that can be performed on objects.
slots of an object and the types of values that each slot can
contain. The additional knowledge represented in our model,he command model contains knowledge aboutriéts of
in attributes such a®rmatter, slot-class andvalidator, is @ command, the conditions under which the command can b
used by various components of the design and run-timexecuted freconditions, exceptions, validator), and the
tools. effects of the commandgdst-conditions and side-effects).
The run-time environment uses some of this knowledge to
For example, théormatter attribute contains knowledge that acquire values for nputs from the user: the legal values of
the interface software needs to translate between the interrthke inputs fype, validator, alternatives, min, max), default
representation of an object and textual forms (e.g., toalues, parsers and formatter. Knowledge from the
construct the labels of menus that allow the user to choos®mmmand model is also used to control the sequencing foi
from a set of objects)Parsers contain knowledge to convert acquiring the input values from the user.
from a textual representation of an object to its internal
form, which is used by interfaces that allow the user to typdhe preconditions, postconditions, exceptions and side-
in the identifier of an object.Validators attached to the effects provide knowledge about the semantics of an
object model tell how to check consistency of valueperation that can be used by many tools. For example, the
supplied when a user attempts to input an instance of thanimated help generation system uses preconditions ant
class. Organizing knowledge in this fashion facilitategpostconditions to figure out the sequence of actions that &
prototyping of partial designs, because it allows the systemser needs to perform to carry out a task. The presentatiol
to use class inheritance to fill in parsers and formatters frogomponent enables and disables menu-items when the
the generic model for use during execution of designs fopreconditions of commands change. The help system car
which more application-specific methods have not yet bee@xplain why a command is disabled based on unsatisfied
provided. preconditions and whether the values of inputs are incorreci
or missing.
Two unusual pieces of knowledge in the model of object
slots are theslot-class and thevalidator. The slot-class Presentation and Behavior. The presentation model
contains knowledge about the semantics of the slot that titkescribes the visual appearance of the interface, and th
presentation component can use to aid in the design dfhavior model defines the gestures that can be applied t«
displays. For example, one kind of slot-class in our modéghe objects presented, and the effects of those gestures on tt
is calledPart-Of; it indicates that the values of the slot are instate of the system and the interface.
a part-of relationship with respect to the object. Such

knowledge can be used to pick out certain presentatatidnigure 3 shows MASTERMIND's merger of the
methods and rule out others. presentation and manipulation models in HUMANOID and

UIDE. A presentation is modeled as a composition of
The unique aspect of validators is that they contain, isimpler presentations callgurts. In addition to the parts,
addition to a procedure to test a conditipneflicate), a the model contains knowledge about kagout of the parts,
specification of the error messages to show the user for tiiee kind ofdata that the presentation can display, the
different error conditions that the validator can detecb(- contexts in which the presentation is appropriate
conditions). Storing the error messages with the validatoapplicability-condition), the inputbehaviors associated with
separates the representation of the error messages from the presentation, and other presentations that might be mor

appropriate in certain contexteijnements). In our model-based approach, interface developers specify

interfaces by modeling the desired features declaratively in
Each part of a presentation contains knowledge abouérms defined in the generic knowledge base. Unlike the
conditions when the part should be included in the completgaditional approach to interface construction, where
presentationiiclusion-condition), knowledge that allows a programmers spend most of the effort writing and debugging
part to be replicated when the data to be presented is a listocedural code, our goal is for developers using
(replication-data), and knowledge about differectioicesof ~ MASTERMIND to spend the bulk of their effort writing
presentation methods for displaying that part . declarative specifications that extend and specialize the

generic model. As these specifications evolve, the tools
The model of behaviors is based on the Garnet Interactotgat we described in the previous section can interpret those
Model. Briefly, a behavior describes the area of aspecfications to provide assistance in critiquing the design,
presentation where it is active, the events that invoke it angixecuting and evaluating partially specified designs, and
stop it, and the action to be executed (see [Garnet-Interactorplanaging the activities necessary for extending the
for more details). specifications.

The model of presentation and behavior is used by the rurrhe run-time environment of an application developed with
time system to generate context-sensitive presentations IWYASTERMIND consists of a standard software module that
matching the types in the slots of objects with the types and a component of every application program. The run-time
predicates in the data attributes of presentations. component module uses the model of the application and it

i interface, along with knowledge about the state of the
Together, the presentation and command models lgfyplication program's run-time data structures, in order to

MASTERMIND-based interfaces provide animated help forgenerate and control the interface of the application, interpret
free. The animation generation works from the comman%dputs, and provide help to the end user.

model to figure out the sequence of steps to animate, an

from the presentation model to construct the contents of theg interpret inputs, the run-time system uses the
animation. Animation generation is a compelling exampléeyresentation model to map the input event into the
of the benefit of the MASTERMIND approach because itapplication data referenced by it, and triggers the appropriate
piggybacks on knowledge that is in the model for otheeommands according to the application's model of behavior
purposes. and sequencing.

Sequencing and Action Side-Effects. Sequencing defines To produce or update the display of an application data
the order in which input behaviors are enabled. Action sidestructure, the run-time system queries the model for a
effects refer to actions that an interface performsyresentation component capable of displaying the data
automatically as side effects of the action of a manipulatiotructure. The model returns the most specific presentatior
(e.g., a newly created object can become automaticallyomponent suitable for displaying the data structure in the
selected). given context (e.g. taking into account data type congruence

)))] and size restrictions), and the run-time system uses it to

detail in [HUMNAOID] and [UIDE]. The main feature of component obtained from the model might either be a
the model, that distinguishes it from the models used iRiefault inherited from Mastermind’s generic knowledge base,
other UIMSs, is that sequencing is not represented; 5 more specific presentation component specified by an
explicitly, either as a finite state machine or an evenfyterface's designer. This mechanism is the key to two
system. Instead, sequencing constraints are denved_ frorr_l tPgluable properties of MASTERMIND: (1) built-in support

data flow constraints specified in the system functionalityfor context sensitive presentation; and, (2) the ability to
model (e.g., a command cannot be invoked unless all itgenerate default behavior that fills in for deferred design

inputs are correct) and from the preconditionscommitments, thereby making even incomplete
postconditions and exceptions of a command. Additionaipecifications executable and testable.

sequencing constraints (e.g. that certain inputs should be
prompted for in sequence) are defined by annotating groupsELATED WORK
(Figure B) with declarative descriptions of the sequencin

desired Bther user interface management systems which derive the

user interface from a high-level specification of the
Planned Extensions to the Model. A number of design semantics of a program are MIKE [15], and UofA* [17],
issues are not currently covered in our model. Our futur}g’h'Ch are able to generate a default interface from a minimal

plans include coverage of: policies that define global StylgggilIcnaetlrogagessectntgt?:ﬁt?c:}(1hr:ar?glsdu?tii fei\r/]\{{g?:é;neters that 2
characteristics of the interface, characteristics of the deIiver?/ 9 9 :

platforms, end-user characteristics and preferences, and USShr model of commands allows designers to exert much

tasks. finer control over dialogue sequencing. In addition, we
provide a library of command groups that allows designers
Design and Execution in MASTERMIND to very easily specify the dialogue structures that MIKE and

UofA* support. We also provide finer control over interface system. In fact, the user task models that we plar
presentation design, and offer richer descriptions ofo build in order to support more sophisticated help and
application semantics that can be used to support moieteractive guidance may well contribute to such an
sophisticated design tools. extension.

Interface builders such as the Next Interface Builder [14], anBor these reasons, MASTERMIND offers a valuable path
Openinterface [13] are a different class of tools to aid in théoward a comprehensive, interoperable suite of tools, what
design of interfaces. These tools make it very easy tthe recent ISAT study on intelligent interfaces referred to as
construct the particular interfaces that they support, but aeknowl edgeable devel opment environment. [9]

very poor for design exploration. Designers have to commit

to particular presentation, layout and interaction techniquelthough MASTERMIND only instantiates a portion of
early in the design. Making global policy changes, such ahat comprehensive framework, it has significant merit in its
changing the way choices are presented, is difficult becausavn right. Among other innovations, it will represent a
it requires manually editing a large number of displays. Anajor step toward explicit representation and support for

model-based approach handles both these problems. early, conceptual phases of design. Designers can partially
describe their designs, by providing descriptions of
CONCLUSIONS application functionality and data structures or by using

An overall architecture centered around an all-encompassifPstractions about presentation, manipulation, or
design model would provide integration and continuitySeguencing. Because this approach allows execution ant
across the entire lifecycle of a user interface in addition teSting of partially-specified designs, because it also
enabling more powerful results within each phase. Todayfgmhtates exploration of design alternatives, and because it

interface development environments are primitive with@llows stating and enforcing high-level design policies,
respect to what is needed. MASTERMIND will facilitate rapid production of much

more thoughtfully designed user interfaces.

The state of the art today is an architecture consisting of a . .
library of low-level objects like menus and buttons, andMASTERMIND uses the knowledge created in the design

specification and prototyping tools consisting of aids forProcess to provide useful run-time services, such as context
drawing what individual displays should look like. S€nsitive presentation and help, which would not be possible
Prototyping in today's environment really means that -- ifvithout a design model.

enough code is also written -- you can test the interfa% . d ¢ | ith the ab
before the application is done. However, it does not mean” 'Ntegrated set of easy-to-use tools with the above

that it is easy to experiment with different interface design&'oPerties would provide a much faster and cheaper path

or easily see how a partially conceptualized design mightpe creation of usable, maintainable, and_ better-adaptec
look. interfaces. Knowledgeable development environments would

dramatically change the nature of interface system

The opportunity exists to go far beyond this, not bydevelopment. It would ease the task of initial design. It

throwing away that architecture, but by building on it.would let design and evolution extend throughout the
MASTERMIND is a first step in that direction. lifecycle, and it would soften unhealthy boundaries between

designers and end users.
MASTERMIND is best thought of as a framework that , .)
others can build on, with some pieces instantiated. Thé&he result would be improvements in the quality, cost, and
framework supports design, execution, help, androduction time of advanced user interfaces. Quality would
maintenance for well-designed user interfaces to advancdgcrease because first-pass interface designs would be bette
applications. We have identified certain design tools that filPecause there would be more opportunity to iteratively refine
missing needs: visual aids for developing design modelhe designs, and because end users would have great
tools for managing and automating multi-step desigrParticipation and influence in ensuring that their needs and
refinements, and critics based on design policies. BecauliBlitations were addressed. Cost would decrease becaus
the framework is open, other tools can be added later. F#Herfaces could be developed and tested much more quickly
example, if the pychological research on analyzing th&€cause better adaptivity to task requirements would
usability of proposed designs matures to the the point whe®@Mmplify training and because better design would enhance
it enables creation of automated design usability critics, th#Ser productivity. Production time would be speeded
extensible nature of the MASTERMIND design makes ito€cause prototyping would be faster and more complete,
feasible for other researchers to add those tools. because the distinction between prototypes and deployec

systems could be blurred/eliminated, and because generatio
Similar observations apply to the MASTERMIND run-time Of informational materials would not entail extra effort.
environment. For example, as psychological research)
progresses on identifying bottlenecks in the use of NUs, we believe that much more powerful systems can be
implemented designs, it should be easily possible t§uilt much more quickly in the future -- if two conditions
augment the run-time environment in order to collect and@'® Met:
analyze performance data from users interacting with the

we organize our development and maintenance toold0] John, B. E., Extensions of GOMS Analyses to Expert

around explicit models

we begin, as a community, to work towards sharing
common models

Doing so will allow the research community to compos

our tools together to create development and maintenance

environments far superior to what any of us could build
alone.

ACKNOWLEDGEMENTS

11]

(12]

The research reported in this paper was supported by
DARPA through Contract Numbers NCC 2-719 and
NO00174-91-0015 at ISI, and by grants from SUN, Siemens,

and the State of Georgia at Georgia Tech.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

for Conceptual Consistency Verification and
Communication,"SIGCHI Bulletin 23(1), Jan. 1991,
pp.92-94.

DeBaar, D, K. Mullet, and J. Foley. Coupling
Application Design and User Interface Design,
Proceedings CHI'92 - SIGCHI 1992 Computer Human
Interaction Conference, ACM, New York, NY, 1992,
in press.

Foley, J., C. Gibbs, W. Kim, and S. Kovacevic, A

(13]

: (14]
Braudes, R.E., and J.L. Sibert, "ConMod: A Systerrhs]

(16]

(17]

Knowledge Base for a User Interface Management
System, Proceedings CHI '88 - 1988 SIGCHI[18]

Computer-Human Interaction Conference, ACM, New
York, 1988, pp. 67-72.

Foley, J., W. Kim, S. Kovacevic, and K. Murray,
Designing Interfaces at a High Level of Abstraction,
IEEE Software, 6(1), January 1989, pp. 25-32.

(19]

Foley, J., A. van Dam, S. Feiner, and J. Hughes,
Computer Graphics — Principles and Practice, Addison-

Wesley, Reading, MA, 1990.

Foley, J., W. Kim, S. Kovacevic and K. Murray,
UIDE - An Intelligent User Interface Design
Environment, in J. Sullivan and S. Tyler (eds.
Architectures for Intelligent User Interfaces: Elements
and Prototypes, Addison-Wesley, Reading MA, 1991,
pp.339-384.

Foley, J., D. Gieskens, W. Kim, S. Kovacevic, L.
Moran and P. Sukaviriya, A Second-Generation

y[20]

(21]

Knowledge Base for the User Interface Design[22]

Environment, GWI-11ST-91-13, Dept. of Electrical

Engineering and Computer Science, The George

Washington University, Washington DC 20052, 1991.
Gieskens, D. and J. Foley, Controlling User Interface

Objects Through Pre- and Postconditions, Proceedings

CHI'92 - SIGCHI 1992 Computer Human Interaction
Conference, ACM, New York, NY, 1992, in press.

Intelligent User Interfaces. ISI/RR-91-288, USC/ISI,
4676 Admiralty Way, Marina del Rey, CA 90292,
September 1991.

Performance, Requiring Perception of Dynamic Visual
and Auditory Information, Proceedings of ACM
CHI'90 Conference on Human Factors in Computing
Systems, pp. 107-115.

Kim, W. and J. Foley, DON: User Interface
Presentation Design Assistant, Proceedings
SIGGRAPH Symposium on User Interface Software
and Technology, ACM, New York, 1990, pp. 10-20.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T.
Senator, and W.R. Swartout. Enabling Technology for
Knowledge Sharing. Al Magazine, Volume 12 No. 3,
Fall 1991, pp.36-56.

Neuron Data, Inc. 1991. Open Interface Toolkit. 156
University Ave. Palo Alto, CA 94301.

NeXT, Inc. 1990. Interface Builder, Palo Alto, CA.

D. Olsen. MIKE: The Menu Interaction Kontrol
Environment. ACM Transactions on Graphics, vol 17,
no 3, pp. 43-50, 1986.

Senay, H., P. Sukaviriya, L. Moran, Planning for
Automatic Help Generation, Proceedings of Working
Conference on Engineering for Human Computer
Interactions, IFIP, August 1989.

G. Singh and M. Green. A High-level User Interface
Management System. In Proceedings SIGCHI'89.
April 1989, pp. 133-138.

Sukaviriya, P., Dynamic Construction of Animated
Help from Application Context, Proceedings of ACM
SIGGRAPH 1988 Symposium on User Interface
Software and Technology (UIST '88), 1988, ACM,
New York, NY, pp. 190-202.

Sukaviriya, P and J. Foley, Coupling a Ul Framework
with Automatic Generation of Context-Sensitive

Animated Help, Proceedings of ACM SIGGRAPH

1990 Symposium on User Interface Software and
Technology (UIST '90), ACM, New York, 1990, pp.

152-156.

P. Szekely. Standardizing the interface between
applications and UIMS's. In Proceedings UIST'89.
November 1989, pp. 34-42.

P. Szekely. Template-based mapping of application
data to interactive displays. In Proceedings UIST'90.
October 1990, pp. 1-9.

P. Szekely, P. Luo, and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. In
Proceedings of CHI'92, The National Conference on
Computer-Human Interaction, May, 1992, pp. 507-
515.

