
A PROGRAMMATIC INTERPRETATION OF COMBINATORY LOGICS

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Jorge Baralt-Torrijos

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Information and Computer Science

Georgia Institute of Technology

June, 1973

A PROGRAMMATIC INTERPRETATION OF COMBINATORY LOGICS

Chal imai l _JDuki^ijChiaravigllo"

Member: fcor-drOlTfakk

Member: William I , Grosky ^ ' ^

Date approved by Chalxman: ^JUHH I i^7^

This dissertation is dedicated with love

to Mayela, Libsen and Igor for their

patience and understanding during the years

of confinement which was inflicted on them

while I was engaged in this research.

Ill

ACKNOWLEDGMENTS

To begin, I would like to thank Professor Vladimir Slamecka

for providing me the opportunity of becoming part of the research

community in which I developed my dissertation. Also, my sincere

thanks are extended to the members of my reading committee. Professors

Gordon Pask and William J. Grosky for their invaluable comments on

my work, and to Professors Thomas Go Windeknecht, John M. Gwynn, and

Frederick A. Rossini for serving on the examining committee. Mr.

John Gehl deserves my thanks for his help in the proof-reading of

the final draft of this thesis. In addition, I am grateful to

numerous faculty members of Universidad Simon Bolivar, Universidad

Central de Vaaazuela, and Georgia Institute of Technology for their

continuous encouragement.

Finally, and most especially, I want to thank my thesis advisor,

Professor Lucio Chiaraviglio, for his expert guidance and valued

friendship. I will always be grateful to Professor Chiaraviglio for

having introduced me to the terrors and delights of logical reasoning.

My doctoral work was initially supported by Cia.Shell de

Venezuela, Ltd., and later by Universidad Simon Bolivar and by UNESCO

under the project VEN-31. This support is gratefully acknowledged.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

SUMMARY V

Chapter

I. INTRODUCTION 1

Motivation
Objective
Relevant Research

II. COMBINATORY CALCULI o 5

Morphology-
Theory Proper

III. COMBINATORY LOGICS 34

Referential Interpretation
Programmatic Interpretation

IV. CONCLUDING REMARKS 48

Conclusions
Future Research

BIBLIOGRAPHY 52

V

SUMMARY

The objective of this dissertation is to develop a formal

semantic theory for a programmatic interpretation of a wide range

of combinatory calculi. The morphology of a family of combinatory

calculi is presented. The notion of a tree of addresses for the

representation of constructions of combinatory terms is introduced,

and within that context such classical notions of combinatory logic

as combination and substitution are reviewed. The theory proper

of the calculi is described, and the notions of contraction,

immediate reduction, weak reduction, convertibility, and extensional

equivalence are introduced. The most important theorem of the first

part of the dissertation is one concerning the inverse of substitution.

The semantic framework of the calculi is specified, and the

calculi then become logics. The semantic completeness (in the refer­

ential sense) of these logics is proven. The programmatic interpreta­

tion is defined and the following notions are introduced: goal; process;

success of a process at attaining goals; and co-success of processes

in a goal language. Programmatic models are formally defined for

combinatory logics and the notion of programmatic equivalence among

combinatory terms is defined. Finally, the dissertation establishes

those requirements which the goal language should satisfy in order for

the semantic notion of programmatic equivalence to correspond with

the syntactic notion of convertibility.

CHAPTER I

INTRODUCTION

The development of computers and of programming languages has

been largely independent of the evolution of the mathematical theories

of computability and automata. Lately, however, there is an increasing

awareness by some computer scientists that abstract theories are needed

for the further development of their fieldo At the same time, mathema­

ticians and logicians have become interested in obtaining representations

of ordinary computing machines and programming languages in some of the

available formal theories.

Motivation

It may be considered that a theory is a system of assertions

about objects which requires a language for its formulation, where a

language is understood to mean a system of signs and of rules for their

use. When the object of study of a theory S is a formal language L,

then S is called the semiotics of L; L itself is called the object

language; and the language L', in which S is formulated, is called

the metalanguage.

In every situation in which a language is used, three features

can be identified: the expressions of the language; the objects

designated by the expressions of the language; and the users of the

language. Thus, within the semiotics of such a language, three

regions may be distinguished according to which of the mentioned

features receive attention: the syntax, which studies only the expres­

sions; the semantics, which concerns itself only with the relationships

between the expressions and the objects they designate; and the prag­

matics, which concerns itself with the users of the language and which

may include historical, sociological and psychological considerations.

The semiotic specification of a language L is provided by a

syntactic framework, a semantic framework based on the syntactic

framework, and a pragmatic framework based in turn on the semantic

framework and determined by a set of rules of use. This dissertation

is restricted to the semantic level, and no pragmatic considerations

are countenanced.

The syntactic framework consist of two parts: the morphology,

which determines the expressions in the language by means of a

vocabulary and a grammar; and the theory proper, which provides a

proof mechanism. A formal language for which only a morphology is

specified is called a syntactic system. If, in addition, a theory

proper is specified, then the language is called a calculus. I£,

finally, a semantic framework is determined, then the syntactic system

becomes a semantic system, and the calculus becomes a logic.

Semantic systems, and syntactic systems with non-formal rules

of interpretation, are used both for the description of objects and

properties of objects (in the case when they are first order languages)

and for the description of properties of properties of objects, etc.

(in the case when they are higher order languages). Logics, and

calculi with non-formal rules of interpretation, not only describe

objects and their properties but also provide the tools which can use

assertions about objects to derive the proof of other assertions.

Ordinary programming languages are syntactic systems with

non-formal rules of interpretation. However, they are weak in the

sense that all of their expressions are only terms used for the

description of objects; as a result, statements about the objects

cannot be formulated within the same language. The terms of

programming languages are called programs, and the objects denoted

by them are called procedures. Two of the properties about proce­

dures that it is desirable to be able to formulate are: correctness

(which applies if a procedure solves a problem) and equivalence

(which applies if two procedures solve the same class of problems).

A programming language could be extended by including in its

morphology the predicators required for the formulation of the pro­

perties mentioned above, but it will be useless to do this if a

proof mechanism is not available. However, since the statements to

be proven relate to procedures rather than to programs, the appro­

priate semantic framework may also be provided.

An alternative approach is to extend an existing logic so

that it will be adequate for the representation of procedures and

their properties. This extension is what is called a programmatic

extension of the logic.

Objective

The objective of this dissertation is to develop a formal

semantic theory for a programmatic interpretation of a wide range

of combinatory calculi.

A family of combinatory calculi is specified by a schematic

presentation of their morphology and theory proper. A referential

semantic framework is defined for that family of calculi, and it is

shown that the calculi are semantically complete in the referential

sense. The intuitive notion of problem is identified with the formal

notion of goal; the intuitive notion of procedure is identified with

the formal notion of process-generating agent; and programs are

identified with terms. The formal concepts of success and failure

at attaining goals are introduced, and a formal semantic notion of

programmatic equivalence is constructed on the basis of the mentioned

concepts. Finally, this dissertation establishes those requirements

which the goal language should satisfy in order for the semantic

notion of programmatic equivalence to correspond with the syntactic

notion of convertibility.

Relevant Research

Developments in the theory of computability resulted in the

emergence of new areas of study related to the three fundamental en­

tities in computing: algorithms, programs and computers. These areas

are known as, respectively, the theory of recursive functions, the

theory of formal languages, and the theory of finite automata. Since

these theories were born from theoretical developments, they each

take a theoretical approach, and the applicability of their results

is not always evident. McCarthy (1962) makes a clear statement of

the need for a theory of computation oriented to the solution of

practical and real problems rather than theoretical and hypothetical

problems. Again, within such a theory of computation, three areas of

specialization can be distinguished; they may be called the theory of

algorithms, the theory of programming languages, and the theory of

computing machines. For a description of the general developments

in the area of programming languages, the survey papers of De Bakker

(1970), Wegner (1972a), and Elspas et al. (1972) are recommended.

The works that are more closely related to the investigation

here reported are: Landin (1965), Orgass (1967), and Petznick (1970)

with respect to the relationship between combinatory logic and pro­

gramming languages; Wegner (1972b), Manna (1969), and Luckham at al. (1970)

with respect to program correctness and program equivalence; Van

Fraassen (1971), Bell and Slomson (1969), and Robinson (1965) with

respect to the referential interpretation; IfeMillo (1972) with

respect to the programmatic interpretation of programming languages;

and, of course, the works of Curry and Feys (1958) and Curry, Hindley

and Seldin (1972).

CHAPTER II

COMBINATORY CALCULI

In this chapter a family of systems of combinatory logic is

formally specified. They are called calculi rather^ than logics

because only the formalization of their syntax is defined and nothing

is mentioned about their semantics; they are called calculi rather

than syntactic systems because not only their morphology is presented

but also their theory proper. In order to be able to describe a

family of calculi, and not merely some particular calculus, the

syntax is presented in a schematic form.

Morphology

The morphology of the combinatory calculi comprises a vocabulary

that specifies the primitive symbols and a grammar that specifies the

set o£ rules o£ formation for terms and formulae.

Vocabulary

Atoms. The set of atoms A of a combinatory calculus CC is the

union of a non-empty finite set of individual constants C and a denumer-

able set of individual variables V.

Functors. CC can be minimally defined with only two functors:

the corner operator ' ~i ' and the equal-double-dot predicator '.̂ 'o'o

However, in order to simplify the proof of some theorems on semantics,

the following predicators are also included: '>', '->', '=>', '<=>'.

The set of predicators is denoted by P.

Grammar

Terms. The set of terms T of CC is defined as the smallest

set satisfying:

(i) Every atom is a term;

(ii) If t^ and t- are terms then 'tQ-̂ ' is a term.

^1

Formulae. The set of formulae F of CC is defined as the

smallest set that satisfies

(i) If tQ and t- are terms, then 't^ > t,' is a formula;

(ii) If tQ and t̂ are terms, then 't^ -> t̂ ' is a formula;

(iii) If tQ and t- are terms, then 't^ => t^' is a formula;

(iv) If t^ and t- are terms, then 't^ <=> t ' is a formula;

(v) If tQ and t, are terms, then 'tQ .=. t̂ ' is a formula.

Constructions

Let us assume that no atom is of the form

^On (1)
'̂l

Then, from the definition of term, it may be deduced that every term

that is not an atom (a non-atomic term) is of the form (1). In that

case tQ is called the functional component of t and t. is called the

argument component of t.

Let id be the identity function from the set of terms into

itself; and let 0 and 1 be partial functions from terms into terms

such that for all t, if t is a non-atomic term, then 0(t) is the

functional component of t and l(t) is its argument component; otherwise,

0 and 1 are undefined. Then the set of addresses Z) of CC can be defined

as the smallest set that contains the identity function and every finite

composition of the functions 0 and 1. Thus, for any address a in Z)

there is a finite, possibly empty, string of O's and I's that names

it according to the following rules:

(i) The null string names the identity function;

(ii) If the string X names the function 0" then OX names the

function O.a and IX names the function l.a.

In order to illustrate this, the following example may be consi­

dered: let Oil be the name of the address a, then a(t) = 0(1(l(t))),

if defined, denotes the functional component of the argument component

of the argument component of t.

If the functional component of a term t is not an atom, then t

may be represented by

00(t)-T 1 (2)
10(t) l(t) ^̂ ^

If the argument component of a term t is not an atom then t may

be represented by

0(t)n
01(t)n (3)

ll(t)

Combining (2) and (3), any term can be represented by a particular

type of tree structure. Thus

000(t)-T f — -J (4)
oioo(t)-| ooio(t)n 1 i(t)

llOO(t) lOlO(t) llO(t)

may be an acceptable representation for some term t.

If there is an address a such that for some terms t̂^ and t-,

tQ ~ a(t-), then tQ is said to be a component of t-, and if a is

different from the identity function then t« is called a proper

component of t-.

If 0"̂ and a- are two different addresses, but are such that

tQ = a^Ct-) = a-(t-), then it can be said that there are at least

two occurrences of t^ in t-, one in address a^ and the other in

address Q-.

For every occurrence of a term t^ in another term t- at some

address a, a finite sequence of terms t'^, t' , . . ., t' can be

constructed such that t^ = t' and t- = t' and for all 0 < i < n
0 0 1 n —

either t'. = 0(t'.^-) or t'. = l(t'.^,)» Such a sequence is called

the composition of t- from t^, and it is completely determined by a.

If the set of all atomic components of a term t is called

the support of the term, then the construction of t may be defined

as the set of all compositions of t from every occurrence of the

members of the support of t. A natural way to represent constructions

is by means of binary trees, such that every node in the tree corres­

ponds to an occurrence of some component (the left subtree of the node

corresponding to the functional component of the term in the node and

the right subtree corresponding to the argument component of the term

in the node). This can be illustrated by the following example.
If t is the term

10

ao-T—- -1 1

^1 ' l̂""" ' ^2 ^^
^2 ^2 ̂ 3

and â -, a-, a , a_ are atoms, then, the construction of t may be

represented by the binary tree.

^0 ̂ 1 1
^l-i ^i-I 1 â

^2 ^2 ̂ 3

^0~T— 1 ^2
^1 1 a^ , —^

^2 ^2 ̂ 3

a 0 1 1̂~"T 1
1
a

(6)

^ 1 ^ ^2 ̂ 3
2

^0 l̂~i ^ 1 ^ ^3
^2 ,̂ 2

/ \ / ^̂
^1 ^2 ^1 ^2

If the relation <^ is defined on the set Z) of addresses, such

that for any a , a , a e Z)

(i) 0 • a^ <Q a^

(ii) 1 • a^ <Q a^

(iii) If a^ <Q a^ and a^ <Q a^ then a^ <Q a^

Since a, ^̂ a„ implies that for any a_, a, inZ^a_*a- ^̂ ^A'^O' then

<Q is a strict partial order relation that may be represented by the

binary tree

11

/
/

o' 1
\

/ \ (7)

00 10 01 11

This tree is called the tree of addresses of CC.

A cut K of the tree of addresses may be defined as a subset of

TJ such that for all c^ e TJ either a» e K or there is some a e K such

that either a^ <Q a. or a. <Q a^; and for all a., a e K neither

a- <^ a nor a <^ a . Only finite cuts are considered in this

investigation.

If K is a cut, then the top of K is the set of all addresses

o^ such that there is some a e K and a <Q a^; and the bottom of K

is the set of all addresses QQ such that there is some a- e K and

GQ <Q a-. If KQ and K- are two different cuts, then KQ is said to

be smaller than K^, KQ <^ K^, if and only if the top of K^ is a proper

subset of the top of K-. If KN = {KQ, K., . . ., K] is a finite

set of cuts and UK is the union of their tops, and if SK is the union

of the sets (K. - UK) for all K. in KN, then it follows immediately

that SK is a cut greater than any K. different from SK, SK is called

the supremum cut of KN,

When the construction of some term t is represented upon the

tree of addresses such that in the node corresponding to the address

CT the term CT(t) is placed, then only a finite number of addresses

12

will correspond to a defined term, since every term has only a

finite number of components. The rest of the addresses remain

undefined.

If all the addresses of some cut K are defined when the con­

struction of some term t is represented in the tree of addresses,

then K is called a level of resolution of t. If KQ and K, are two

different levels of resolution of t and if K^ <- K- then K̂ is said

to be a higher level of resolution than K^. Since the set of all

the levels of resolution of t is finite, then it has a supremum;

moreover, since every member of that supremum is a member of some

level of resolution, the supremum is also a level of resolution.

This highest level of resolution is called the boundary of the term.

Such boundary uniquely determines the structure of the term; that is,

the set of all defined addresses. Two terms are said to be struc­

turally identical if and only if they have the same boundary.

The members of any cut K are well ordered by a relation < ,

defined naturally as follows:

If a- and a^ are any two addresses in the cut K, then

o ^-1^ ^n if aî d only if the name of Q- is XOZ and the name of

a- is YIZ for some strings of O's and I's X, Y, Z. If a, is not

of the form xOZ then it means that either a. is the identity func­

tion or the name of o^ is a string of I's only; in the first case

a^ is the only element of K and in the second case Q- is the last

element of K (that is, every element in K different from a. has

the form ^Oz), A similar analysis can be made if a„ is not of the

form YIZ. Therefore, < well-orders K.
k

13

If K is the boundary of some term t, then the sequence of

atoms corresponding to the members of K and ordered by the relation

<- is called the frame of t. Two terms are frame identical if and
k

only if they have the same frame. Two terms are identical if and

only if they are structural and frame identical.

For example, the term in (5) can be analyzed as follows:

(a) The boundary of t is the set

{000, 0100, 1100, 0010, 1010, 110, 1} that uniquely

defines the structure in (4);

(b) The frame of t is the sequence <aQ, a-, a^, a-, a„, a«, a.,y^\

and

(c) The support of t is the set f^Q, a,, a„, a«} .

Combinations

If B is a set of atoms and t is a term such that its support

is a subset of B, then t is called a combination of B and B is called

a basis for t. If the support of t is the set B, then t is called a

proper combination of B«

The construction of any combination t from a basis B involves

the following elementary operations: first, the cancellation of all

those atoms in B that are not in the support of t; second, the repro­

duction of those atoms that have more than one occurrence in t; third,

the rearrangement of the atoms to form the frame of the term; and

finally, the application of the corner operator to the elements on

the frame to form the term. If the combination is proper, then no

cancellation is required. Cancellation, duplication, permutation and

14

composition are called the elementary combinatory operations.

Substitution

So far, no distinction has been made between variables and

constants, and every assertion has used the more general notion of

atom. When these two types of atoms are differentiated, the

following definitions can be stated:

If t is a term, then the set of constants in the support of t

is called the fixed part of t and the set of variables in the support

of t is called the non-fixed part of t. The constant space of t is

that set of all addresses in the boundary of t that contains a constant,

and the variable space of t is the set of all addresses in the boundary

of t that contain a variable. It can be observed that the constant and

variable spaces of t form a partition of the boundary of t.

A term that does not have non-fixed part is called a closed

term, otherwise it is called an open term. The set of all closed terms

of CC is denoted by T . An open term that does not have a fixed part

is called a free term. If t is either a closed term or an explicit

term and v is a variable that is not a component of t, then t-n is

an explicit term. The terms that are not closed, free, or explicit

are called implicit terms. The explicit terms with only one constant

component are called primitive terms.

The non-fixed part of a formula is the union of the non-fixed

parts of the terms in the formula. It is called a closed formula if

and only if it has no non-fixed part. The set of all closed formulae

is denoted by F .

15

A formula 't^ > t ' is said to be a primitive formula if and

only if t^ is a primitive term and t- is a combination of the

non-fixed part of t^.

The existence of variables in a calculus is not justified if

the notion of substitution does not exist. In this thesis such a

notion is not included in the syntax but is formulated as a metatheore-

tic concept. Thus, suppose that t^ and t- are terms and v is a

variable in V, then Lt-/v] t^ denotes the term that results from the

substitution of t- for v in every occurrence of v in t„. This opera­

tion is defined by the following rules.

(51) [t/v] V = t for any t e T and v e V

(52) [t/v] a = a for any t e T, a e A, and a ̂ ^ v

(53) [t/v] (tQ-n) = [t/v] tQ-, for any t^, t̂ e T
t^ [t/v]t

(54) [t/v] (tQ > t^) = [t/v] tQ > [t/v] t^

(55) [t/v] (tQ -> t^) = [t/v] tQ -> [t/v] t^

(56) [t/v] (tQ => t^) = [t/v] tQ => [t/v] t^

(57) [t/v] (tQ <=> t^) = [t/v] tQ <=> [t/v] t^

(58) [t/v] (tQ .=. t^) = [t/v] tQ .=. [t/v] t^

As an immediate consequence of (Si), (S2), and (S3) the

following propositions can be formulated.

(59) [tQ/vQ] t is uniquely defined

(510) [VQ/VQ] t = t f or any VQ e V

(511) If VQ does not occur in t then [^Q/VQ] t = t

(512) If VQ and v̂ are distinct variables and either v^ does

1
Curry and Feys (1958), pp. 205-209.

16

not occur in t„ or v̂ . does not occur in t then

[t^/vQ] Ct^/v^] t = [[tQ/v^] t^/v^] [tQ/v^] t

As a corrollary of (Sl2) we have:

(S13) If v^ and v- are distinct variables and v- does not

occur in t^ and v^ does not occur in t̂ then

[t̂ /vQ] Ct̂ /v̂] t = [t̂ /v̂] UQ/VQ] t

A particular case of this is when t^, t- are closed terms.

Sometimes [t^ t̂ . . . t /v̂ , v- . . . v] t or [t./v.] t are 0 1 n O l n 1 1

used as abbreviations for [t^/v^] [t-/v,] . . . [t /v] t

Theory Proper

Following Curry's notation, the theory proper is the part of

the syntax that describes the axioms and the rules of transformation.

Axioms

Two types of axioms are considered in the definition of any

combinatory calculus: the axioms of reduction that are characteristic

of every calculus, and the axioms of reflexivity described by a schema

that is the same for all combinatory calculi with the same morphology.

Axioms of Reduction. Every combinatory calculus is charac­

terized by a set of primitive formulae R such that

(RED) If r e R then hr

Axioms of Reflexivity. For every term t in T

(REF) (i) f- t => t

(ii) l-t <=> t

(iii) |-.t .=• t

i/

Rules of Transformation

Again, two types of rules of transformation are considered:

the theorem-preserving rules and the rules of inference.

Theorem-Preserving Rules* For every formula f e F, every term

t e T, and every variable v e V then

(SBT) If l-f then Kt/v] f.

This rule is called the rule of substitution and is the only theorem-

preserving rule considered.

Rules of Inference. In order to simplify the presentation

of this rule, the metatheoretic predicator variable 'p' is used in

the formulation of the specific rule and followed by an enumeration

of the predicators that satisfy the rule. Thus, for any terms t^, t-,

t^ e T:

(RMN) If |-(tQ p t^) then i-Ct̂ -̂ P t̂ -i)

0̂ h

This is called the rule of right monotony and it is satisfied by the

predicators denoted by ->, =̂ >, <''^, and .—.

(LMN) If KtQ p t^) then hCt^-, p t̂ -̂)

2̂ 4

This is called the rule of left monotony and it is satisfied by the

predicators denoted by ->, =>, <'^, and .=«

(TRN) If KtQ p t^) and |̂ (t^ p t^) then |-(tQ p t^)

This is called the rule of transitivity and it is satisfied by the

predicators denoted by =>, <'^, and .=.

(SYM)lf V(tQ p t^) then I-(t̂ p t^)

18

This is called the rule of symmetry and it is satisfied by the

predicators denoted by <=> and .=.

If there exists a term t- that is not a component of neither

t^ nor t- then

(EXT) If KtQ-i . = . t -,) then 1-(t̂ » = o t).
t t
3 3

This is called the rule of extensionality.

Reduction

An occurrence t^ of a proper component of a term t e T is in a

functional position if and only if it is in some address whose name

is of the form OX for any string X of O's and I's, and it is in

argument position otherwise. If the address of t^ in t is a

member of the boundary of t, then t^ is called a leading element

of t, and in particular, if t^ is the first member of the frame

of t, then it is called the head of t. It is evident that every

leading element of t is the head of at least one component of t.

The name of the address of every leading element t^ of a

term t is of the form 0 X, where 0 is a non-null string of n O's,

and X is either the null string or any string of O's and I's starting

at the left with a 1. In this case, n is called the degree of t^

in t and X is the address of a component of t called the component

of t led by tQ. The terms in addresses whose names are of the form

k 1
10 X , for 0 < k < n , are called the arguments of t^ in t and

the set of all of them is called the environment of t^ in t. The

arguments of the head of a term are called the main arguments of

the term.

0 is the null string

ly

The head of the primitive term of any axiom of reduction is

called a combinator because it may be interpreted as an operator

that acts upon a set of variables, its environment, to produce a

combination of them. Since this interpretation is traditional in

the studies of combinatory logic and is fundamental for the objectives

of this thesis, calculi in which there are two different axioms of

reduction with the same combinator are not considered. Therefore,

there is a one-to-one correspondence between the set of combinators,

called the combinatory base of CC, and the set R of axioms of reduc­

tion. Then, it can be said without ambiguity that the presentation

pattern of a combinator is the primitive term of its corresponding

axiom of reduction, and that the combination pattern of a combinator

is the free term of its corresponding axiom of reduction.

If the combinatory base of CC is equal to its set of constants

C, then the calculus is said to be pure combinatory, otherwise it is

called an illative combinatory calculus. Although many of the works

related to this dissertation have used illative concepts, this investi­

gation is restricted to the case of pure combinatory calculi. And

wherever the word "combinatory" is used henceforth in this thesis,

it means pure combinatory.

Contraction. Every axiom of reduction, or every formula that

results from the application of the rule of substitution to some

axiom of reduction, is called a reduction rule. If t̂-. -̂ t, is a

reduction rule then t^ is called the redex of the rule and t, is

called the contractum of the rule; and the replacement of a redex

20

by its contractum is called a contraction.

The predicator '>' characterized by the axioms of reduction

and the rule of substitution may be viewed as a partial function that

maps terms into terms. It is partial because there are terms that

are not redexes, and it is a function as a consequence of the assump­

tion made that no redex may have two different contracta. This

function may also be called contraction. Thus, a contraction may

be redefined as the replacement of some term by its image under the

contraction function, if the function is defined for that term.

The following lemma is entered for the sake of completeness

but is not used in the sequel. Readers may skip this lemma.

Lemma 1. If f is a formula for the form 't^ > t-' and

V, v„, . . •, V are the variables in the non-fixed part of f,
i z n

then there are closed terms t', t', t', . . ., t' , such that if
1 2 3 n

f is not a theorem then

[t'^, t'^, . . ., t'^/v^, v^, . . • v^] f

is not a theorem.

Proof: If t^ > t- is not a theorem, then either t^ is not a

redex, or t, is not the contractum of the redex t̂ ..

Case 1. It t^ is not a redex, then either the head of t^ is

not a combinator or the degree of the head of tp. is not equal to the
0

order of the combinator that leads t̂ j.

Subcase 1.1, If the head of t^ is not a combinator then either

tQ is a variable or t^ is a non-atomic term. If t^ is a variable then

for any constants c,, c„, . . ., c
•̂ 1 2 n

21

1 [c^ c^, . . ., ĉ /vĵ , V2, . . ., v^] f

is not a theorem, since

[c^, c^, . . ., cjv^, v^, . . ., v^] tQ

is a constant and no constant can be a redex. If tQ is a non-atomic

term but its head is a variable v. then for any t', t'> • • •> t'

such that t'. is a constant for all j 9̂ i and t', is a closed redex
J 1

[t'^, t'2, . . ., t'^/v^, V2, . . ., v^] f

is not a theorem, since the degree of the head of the term

[t'^, t'^, . . 0, f^/v^, V2, . . ., v^] tQ

is greater than the order of the combinator that leads the term.

Subcase 1,.2. If the degree of the head of t^ is not equal to

the order of the combinator that leads it, then for any constants

^1' ^2' • • •' ̂ n

Lc^, C2, • . ., c^/v^, V2, . . . v^] f

is not a theorem, since substitution by atoms does not modify the

boundary of the terms and therefore does not modify the degree of

their leading elements.

Case 2. ^^ ^1 ^^ ^^^ ^^^ contractum of the redex t̂^ and q^

denotes the presentation pattern of the combinator leading t̂ .,

and q- denotes the combination pattern of the same combinator, then

either the boundary of q̂ is not a level of resolution of t-, or

it is, but there exist addresses o^ and a^ such that C^ is in the

variable space of q̂ and a is in the boundary of q and such that

CT̂ Cq̂) = (^i(^i) but CT̂ CtQ) ^ cr^(t^).

Subcase 2.1. If the boundary of q- is not a level of resolu­

tion of t- then for any constants c,, c„, . • ., c

22

[c^ C2, . . . c^/v^, v^, . . • v^] f

is not a theorem, since substitution by atoms does not modify the

boundary of the terms and therefore the boundary of q, is not a

level of resolution of

[c^ c^, . . ., cjv^, v^, . . ., v j t^

either.

Subcase 2.2o If the boundary of q- is a level of resolution

of t̂ and there exist addresses c^, Q- such that a^ is in the variable

space of q̂j and ĉ is in the boundary of q- and ̂ nCqn) ~ CT, (q̂) but

apj(tpj) f a-(t-), then either '̂ n(t/̂) and â (t̂) are not structural

identical or they are structural identical but not frame identical.

If cĴ Ct̂) and a-(t^) are not structural identical then for any

constants c-, c^, . o ., c ,
1 2 n

[c^, c , . . ., c /v^, V , . . ., V] f
i z n i z n

is not a theorem, since substitution by atoms does not modify boundaries,

and therefore it does not modify structures either. If o^{t^) and

a-(t-) are structural identical but not frame Identical then there

must be an address a^ in their boundary such that a^{a^{t^)) f a„(a-(t-))

If oAoAt^) and a„(a-(t-)) are two different constants then for any

closed terms t'-, t' , . . ., t' ,
1 2 n

Lt'^, t'^, . . ., t'^/v^, v^, . o ., v^] f

is not a theorem, since constants are not modified by substitution.

If a„(aQ(tQ)) is a constant c and a-(a„(tpj)) is a variable v. then for

any closed terms t', t', . . ., t' such that t', ̂ ^ c, J 1' 2' ' n 1 '

[t'^, t'2, . . ., t'^/v^, V2, . . ., v^] f

23

is not a theorem, since the frames of the components of the resulting

terms in the addresses QQ and a- respectively are not equal. The

case in which a_(a-(t-)) - c and c^ic^it^)) is a variable is the

same case as the preceding one. Finally, if ̂ oĈ n̂ '̂Ô ^ ^^ ^^^

variable v. and a^(a-(t-)) is the variable v. then for any closed

terms t ' , t ' , . ..,t',ift'.?*t'. then
1 2 n 1 J

[t'^ t'2 . • . t'^/v^, V2, . o ., v^] f

is not a theorem by the same reason as in the previous three cases.

Immediate Reduction. It may be the case that a term is not

a redex, but some component of it is indeed a redex. If it is desirable

to be able to replace every component of a term that is a redex by

its contractum then the rules of left and right monotony should be

added to contraction. The predicator *->* is called immediate reduc­

tion.

It is said that t̂ . immediately reduces to t-, t,̂ -> t,, if and

only if t- results from the contraction of exactly one of the redexes

in t^- If tp. does not have redexes, then it is called a normal form,

and it cannot immediately reduce to any term.

Null redexes. A null redex is a redex that contracts to itself.

The redexes in the axioms of reduction cannot be null, since no primi­

tive term can be a free term. Therefore, null redexes can only be

obtained by substitution. Thus, if

U-T 1 1 > U-l 1] ,gN
ti t„ .0. t t- t^ ... t
1 2 n 1 2 n

24

then the axiom of reduction corresponding to the combinator U must

be of the form

U - 1 — r r 1 > V.^—1 r 1 (9)
V- V_ ... V. ... V V- V^ ... V. ... V

1 2 J n 1 2 J n

Hence, the combinator U must have a duplicative effect in the sense

that the variable v. occurs twice in the combination pattern of U.
J

The simplest null redex is the one generated by the axiom

of reduction

U-̂ > v^n (10)

^1 ^1

that by substitution generates the rule of reduction

Un > Un
U U (11)

Lemma 2. If f is a formula of the form 't» -> t ' and v-, v„,

. . ., V are the variables in the non-fixed part of f, then there are n r »

closed terms t' , t' , . . ., t' such that if f is not a theorem then
1 2 n

[t'^, t'^, . . ., t'^/v^, v^, . . ., v^]f

is not a theorem.

Proof: Let a, a' be addresses in the set of addresses X) of the

combinatory calculus, and let <» the partial ordering that generates

the tree of addresses. Let Redex(a(t)) be true if and only if a(t)

is a redex, and Var(a(t)) be true if and only if a(t) is a variable.

Let [/] be the representation of the substitution

25

[t'^j t'^, . o ., t'^/v^, v^, . . ., v^].

By definition of immediate reduction

KtQ->t^) iff (3a)(Redex(a(tQ)) & (a*)(a'fo6.'-(a'<^a)^G*(tQ) =a'(t^))

6c h (a(tQ) > a (t^))).

that is

~ h (tQ -> t^) iff (a)(Redex(cr(tQ)) r» ((3a')(a' ?̂ a & -(a* <Q a) &

a'(tQ) ?^a'(tp) v^Ma(tQ) > a(tp)))

and also

--KC/ltQ -> C/lt^) iff (a)(Redex(a([/]tQ))i^ ((3a')(a' ?̂ a &

-(a* <Q a) 6ca'([/]tQ) ?^a'([/]tp) v-^ Ka([/]tQ) > a([/]t^))))

To prove that

~ \- (tQ -> t^) z> ~ V- ([/] tQ -> [/] t^)

is the same as proving that

(a)(Redex(a(tQ)) ̂ ((^a')(a'^ 6c~(a'<Qa) & a'Ct^) ?^a'(t^)) v

~ KaCtQ) >a(t^))))

implies

(a)(Redex(a([/]tQ))z> ((3 a ') (a ' f a 6. --(c' <Q a) 6. a 'CL/l t^) ^

a ' ([/] t p)) v ~ K a ([/] t Q > a ([/] t p)))

and this is an immediate consequence of proving that

a) Redex(a([/] t^)) iff Redex(a(tQ)) v Var(a(tQ))

b) Var(a(tQ))r»~Ka([/]tQ) > a([/]t^))

26

c) (3a')(a' ̂ 'a 6c~ (a* <Q a) fica'Ct^) ̂̂ a'(t^)) 3

(3a')(a' foe.-- (a' <Q a) &a'([/] t^) =a'([/] t^))

d) Redex(a(tQ)) &~f-(a(tQ) > a(t^)) 3 ~ h((j([/] t^) >

a([/] t^))

In order to satisfy a) above, the terms t' t', . o ., t'

in the substitution should be redexes.

In order to satisfy b), the redexes selected should be such

that if one is a substitute for a variable in some address then its

contractum should not be identical to the component in that address

after substitution has been made. To satisfy c) and d) it is

sufficient that

(G)(G eE&a(tQ) tG(t^) ^a([/] t^) ̂ ^ a([/] t^))

The only assertion that remains without proof is that for any

combinatory calculus a set of closed terms t', t' . . ., t'
L Z n

that satisfy a) through d) existso

In effect, any combinatory calculus has at least one constant,

and therefore at least one axiom of reduction. By the rules of

formation, a denumerable infinite set of closed terms can be generated

from the set of constants; therefore, substitution by closed terms

on the axioms of reduction generates a denumerable infinite set of

closed terms that are redexeso From this initial set of eligible

redexes are excluded those which are components of either t^ or t^;

since there are only a finite number of them, the resulting set of

eligible redexes is still denumerable infinite. The null redexes

are also excluded to satisfy condition b) above in the case that

27

aCtg) = a(t); the resulting set is again denumerable infinite,

since for every null redex that is generated from some axiom of

reduction there is at least one non-null redex generated from

the same axiom. All those redexes whose contractum is a component

of t are also excluded; since there are only a finite number of

them, the resulting set of eligibles remains denumerable infinite.

From this set the terms t' t' , . • ., t' can be selected in a
1 2 ' ' n

form that conditions a) through d) above are satisfied.

Combinatorial Completeness

It is often necessary to analyze the relationship between terms

that have been obtained by successive contractions from other terms.

To do that, transitivity is added to immediate reduction; if reflex-

ivity is also included, then a partial order relation among terms

(called reduction and characterized by the predicator =>) is obtained.

Sometimes this relation is called weak reduction to distinguish it from

strong reduction which in addition includes the rule of extensionality.
In this thesis the distinction is unnecessary since strong reduction is

not considered.

A combinatory calculus is said to be combinatorial complete if

and only if for every term t and for every variable v there is a term,

denoted by [v] t and called the functional abstraction of t with

respect to v, such that v is not a component of [v]t and

[v]tn =^ t (12)
"V

28

Indeed, it is always the case that if the calculus is combina­

torial complete, not one but many terms satisfy the conditions for

functional abstraction of some term t and variable v. Therefore, in

order to assure the uniqueness of the notation [vj t, an algorithm

should be provided to produce the functional abstraction given the

term and the variable. Such algorithms depend on the combinatory

base of the calculus but are not unique for that calculus; examples

of such algorithms can be found in Curry and Feys. The existence

of an algorithm is a sufficient condition for the combinatorial com­

pleteness of a calculus.

The notation for functional abstraction can be generalized

for the case of more than one argument; thus [v,, v„, . o ., v J t

stands for [v,] Lv^j • . ., [v] t, such that

[v^, v^, . . o, v^]tn 1 — 1 => t (13)
VT V„ ... V

1 2 n

It may be observed that for any free term t in a combinatorial

complete calculus, if v^, v„, . . ., v are the variables in the
1 2 n

support of t, then the formula (13) resembles an axiom of reduction.

Therefore, if the appropriate considerations are made, then in order

to mirror any calculus, it is sufficient to have a combinatory base

with the minimal number of combinators required for combinatorial

completeness.

Lemma 3. If f is a formula of the form 't_. => t ' and

V-, v„, . « ., V are the variables in the non-fixed part of f,

•"•Curry and Feys (1958), pp. 190-194,

29

then there are closed terms t', t', . . ., t' such that if f is
1' 2 ' n

not a theorem then

[t-,, f^. . . ., tWv^v^. . . ., v̂] f

is not a theorem.

Proof: The procedure used in the proof of lemma 2 can be

extended to the case of more than two terms; that is, to the case

of finite chains of immediate reductions such as

% -> q̂ -> • . • -> q„

In such case

Kqo -> q̂ L̂ -̂̂ -̂ l̂ /̂ qo "̂ ^^\^

and

\-(q^ -> q2)^~H([/]q^ -> C/lq̂)

and so on.

Then

— h(qo -> q̂) V - f-(q̂ -> q^) V . . . v ~ Kq^-i -> %)

implies

V . ..V ~ |'([/]q̂ _̂ -> [/]q̂)

and since

t.^t^^uit^fint^

30

Then

- h(to => t ^) r . ((q^Xq^) .o . (q^) (q^ = t^ & q^ = t^ :^ (~ h(qo->q^)

V o.. v ~ l-C^n-l "^ ^n^ ^ ^0 ^ ^1^

and

~ K t o -> t^) = ((q^Xq,) . . . (q„)(qo = [/ I tg & q„ = [/] t^ =>

e I- ([/]qo -> ll/]q^) V . . . v ~ (- ([/] q ^ . ^ -> [/]q^))) & Vlt^ t C/lt^)

and

h(tQ => t ^) 3 - K [/] t Q ==> [/] t^)

Combinatory Equivalence

In many interpretations of combinatory calculi, a partial

ordering is not a strong enough relation between terms because

equivalence must be countenanced. In this thesis two types of equiva­

lence relations among terms are considered: convertibility and ex-

tensional equivalence.

Convertibility. This relation is obtained by including the

rule of symmetry with the rules that define reduction. This relation

is characterized by the predicator '<'^', and its most important

property is the so-called Church-Rosser property, which says:

If tQ <=> t. then there is a t- such that

tQ => t^ and t^ => t^ (14)

31

Since the right-to-left implication in (14) is iiranediate by

transitivity and symmetry, then convertibility can be defined as

follows: t^ and t̂ are convertible if and only if there is some

term t- to which both t^ and t- reduce.

Lemma 4. If f is a formula of the form 't^ <=> t-' and

V,, v^, . . o, V are the variables in the non-fixed part of f, then

there are closed terms t', t', . o ., t' such that if f is not a
1' 2 n

theorem then

[t'^j t'^, . . ., t'^/v^, V2, . . ., v^] f

is not a theorem.

Proof: In the same form t h a t lemma 3

~ \- (tQ <=> t^) Z> (t^)(- h (tQ => t^) v ~ l-(t^ => t ^))

•=>it^)i- h ([/] tQ => C/lt^) v ~ K [/] t ^ => C/l t^))

=>~H([/]tQ<=> [/]t̂)

Extensional Equivalenceo This relation among terms is obtained

by adding the rule of extensionality to convertibility. It is char­

acterized by the predicator '.=.' and it is the most powerful relation

of the combinatory calculi studied in this investigation.

Lemma 5. If f is a formula of the form 't̂ . .=. t- ' and

V,, v_, . . ., V are the variables in the non-fixed part of f,
then there are closed terms t' , t' , . o ., t' such that if f

i z n
is not a theorem, then

[t'^, t'^, . o ., t'^/v^, v^, . . ., v^]f

is not a theorem, provided the combinatory calculus is combinatorial

32

complete.

Proof: This is done by proving that if for all closed terms

t' t' t'

[t'^, t'^, . . ., t'^/v^, v^, . . •» %3f

is a theorem then f is a theorem; and this is proven by induction.

Initial Case: If for all closed terms t' , [t' /v^] f is

a theorem then f is a theorem.

If f is of the form 't^ .=. t ' and t' is any closed term

then

a) [t'^/v^] tQ .=. [t'^/v^] t^ by hypothesis

b) [v^] tn.-^ .-. [v^] t̂ —I by combinatorial completeness
1 U j_, ••- ^ t'

^ ^ and (SBT)

c) Cv,] IQ .=. [v^] t- by extensionality.

d) [v^] tQ-, . = . [v,] t̂ -| by left monotony

e) tp. .=. t- by definition of functional

abstraction.

Induction Case: Let us suppose that if for all closed terms

^ 1 ̂ 2' • • •' ̂ n'

''^'l' ^'2' * * *' ̂ 'n^^l' ̂ 2' * * *' ̂ n"̂ ̂

is a theorem then f is a theorem. Then prove that if for all closed

terms t'^, t \ t'^ t'^+^.

[t'^, t'^, . . ., t'^, t^+/v^, v^, . . . v^+^]f

33

is a theorem then f is a theorem.

k [t-^, t'^, tWv^, v^. v„][f^+^/v^+^]f

by hypothesis

^ ^^'n+l'\+l^^^'V ''2' ••" ''nS' '2' •"' 'n̂ ^

by property of substitution

Kt'^, t'2, ..., t'^/v^, v^, .0., vjf

by initial case

I- f by hypothesis of induction

Inverse of Substitution

A predicator p is said to have an inverse of substitution in a

combinatory calculus, if and only if for any terms t^ and t.. if v, ,

Voj • • •» V are the variables in their non-fixed part, and for any
z n

closed terms t'- t „, . • ., t
1 2 n

[t'^, t'2, . . o, t'^/v^, v^, ..., v j (tQ p t^) o h tQ p t^ (15)

Theorem 1» All the predicators in the combinatory calculi

here described have inverse of substitution.

Proof: The proof is an immediate consequence of lemmas 1 to 5.

34

CHAPTER III

COMBINATORY LOGICS

In this chapter a semantic framework for the combinatory

calculi described in the previous chapter is specified. The systems

here presented are called combinatory logics in the sense that their

sjnitax as well as their semantics has been completely formalized.

No confusion should arise with the traditional connotation of com­

binatory logic as the study of functional application and functional

abstraction, where most of the primitive ideas have a fixed inter­

pretation.

Referential Interpretation

An interpretation of a calculus is a correspondence between

the formulae of the calculus and certain statements which are signi­

ficant without reference to the calculus. Curry and Feys call the

latter statements contensive statements. A calculus may have an

interpretation in another calculus or it may have a completely

intuitive interpretation. A particular type of interpretation,

2
called referential interpretation, assigns to the terms in the

•'"Curry and Feys, (1958) p. 21

^Van Fraassen, (1971) p. 107.

35

calculus elements in some domain of discourse, and to the predicators

in the calculus relations defined in the domain of discourse. In

this form, the contensive statements are membership statements; that

is, statements asserting that an element is or is not a member of

some set.

Realizations and Models

A realization of a combinatory logic is an ordered pair

<D, 6> such that:

a) D is a non-empty set called the domain of discourse of the

realization.

b) 6 is a function called the interpretation function of the

realization, and it is defined by:

(i) for every constant c, 6(c) e D,

2
(ii) for every predicator p, 6(p) c D ,

(iii) 6(-i): D̂ -> D.

c) Tis the set of all assignment functions YJ such that

Y : V -> D.

d) The interpretation of any term t for some assignment YJ

denoted by t[Y] is determined by the rules

(i) If t is a constant then t[Y] ~ 6(t),

(ii) If t is a variable then t[Y] ~ Y(t)

(iii) If t is a non-atomic term then

tCY] = 6(-i) < 0(t)[Y], l(t)[Y] >

It may be observed that if t is a closed term then t[Y] is the

same for any assignment YJ in this case the notation 6(t) may be used

36

instead of tCy] to emphasize the fact that the interpretation of

such a term is independent of the assignment.

e) The satisfaction of a formula f by some assignment YJ îi

a realization R, is denoted by R 1= fCy] and is determined

by the rule

RI=(tQ p t^) [y] iff < tQ [y], t^ [y] > e 6(p)

for any predicator p.

If a formula f is satisfied in a realization R, by every

assignment, R N f, then f is said to be valid in R. R is said to

be a model o£a combinatory logic CL if and only if every theorem

of CL is valid in Ro The set of all models of CL is denoted by

STR(CL)o

Semantic Completeness

A combinatory logic CL is semantic complete if and only if

every formula of CL that is valid in all models of CL is a theorem

of CL.

Theorem 2. Every combinatory logic specified by the syntactic

and semantic frameworks described above is semantic complete.

Proof: This theorem is proven by showing that if CL is the

combinatory logic in question then for every formula f of CL that

is not a theorem there is a model of CL, and an assignment of that

model for which f is not satisfied.

It is evident that a free model of CL is the model desired.

This model is constructed as follows:

37

a) The domain of discourse is the set of all atoms of CL and

all the tree-like structures obtained from the infixing

of the corner sign ' n ' between any two terms;

b) 6(-i) is the operation of infixing the corner sign between

any two terms to form a new term;

c) 6(p) for any predicator p is the set of all ordered pairs

< t^, t̂ > such that t^ p t- is a theorem of CL.

Thus, by construction, if 't̂ . p t ' is not a theorem then

< tpj, t- > ^ S(p), and therefore it is not satisfied by an assignment

Y such that, for any variable v, Y (v) ~ v.

Since every combinatory logic has a free model then it is

semantic complete.

Programmatic Interpretation

The notion of satisfaction of a formula by some assignment in

a model is the fundamental notion of the referential interpretation

of a calculus; however, if the calculus is to represent actions, then

a notion more appropriate than satisfaction is required. Success and

failure of a process for a goal in a model seem to be the concepts

demanded. An interpretation of a calculus in which the notion of

success is the fundamental notion is called a programmatic interpre­

tation of the calculus. Thus, in such interpretations, instead of a

domain of discourse, there is a goal language in which goals are for­

mulated. For every term that somehow represents a procedure (let us

call it a program) a set of processes relative to the goal language

is determined, and the germane contensive statements in this setting

38

refer to the co-success of processes relative to goals.

Goal Language

A goal language is a descriptive language used for the formula­

tion of goals, and relative to which the success of processes is

determined. Thus, it may be said that a goal language GL is a first

order semantic system; that is, it has a formalized morphology and

a formalized referential semantic framework. But GL does not have

a theory proper that characterizes its non-logical constants. Hence,

in the context of GL, it is proper to use the notion of a realiza­

tion, (i. e., any model of the lower predicate calculus that has the

appropriate structure) instead of the notion of a model.

Processes. If R = <D,6> is a realization of GL, V is the

r - V
set of variables of GL, and I - D is the set of assignments for

R, then a process TT in R can be defined as a function that maps the

natural numbers into assignments; that is

TT : a; -> r (16)

A process 77 is said to be bound for some set of assignments

if and only if there is a natural number n such that for every

natural number m if m > n then TT(m) is a member of the set. A

particular case is when the set has only one element; in this case,

the process is called terminating and the assignment in the set is

called the terminal assignment of the process.

Goals. If G is a set of ordered pairs of formulae of GL, and

g "̂ <go» &i^ ^s a member of G, then g is said to be a goal. G is

39

called a goal set of GL. If R is a realization of GL, and g. is a

formula of GL, then the satisfaction set of g. in R, denoted by

H(g.)> is defined as the set of all assignments that satisfy g. in

R. Therefore, for every goal there corresponds a pair <H(gQ), H(g^)>

of sets of assignments called the satisfaction space of the goal

in the realization R.

If TT is a process in some realization, and g is a goal in the

goal set G, then it is said that 'n' succeeds for g, Succ (TT ,g), if

and only if either 7r(0) is not a member of HCg^) or IT is bound for

the set H(g-), It is said that rr fails for g if and only if it

does not succeed for g.

Two processes TT and TT' in some realization are said to be

co-successful, Cosucc (TT , TTOJ if and only if for every goal g in

the goal set G

Succ (TT, g) = Succ (TT*, g). (17)

As a consequence of the two-way implication in its definition,

Cosucc is an equivalence relation, and as such, it generates a parti­

tion of the set of all processes in the realization. This partition

remains the same or becomes finer when new goals are included in the

goal set. That is, it may be the case that two processes that are

co-successful for some goal set G are not co-successful when a new

goal is included in G.

If the morphology of the goal language is extended, but the

goal set is not modified, then such extension is irrelevant for the

40

effects of goal satisfaction. Therefore, it may be assumed that the

goal language is as big as desired and that the goal set is what

determines the relevant elements of it.

Process-Generating Agents

P is a process-generating agent for some realization of the

goal language GL if and only if for some process TT in that reali­

zation and for all natural number i, '77'(i+1) is uniquely determined

from TTCi) by Po Thus, for the generation of a process "TT, it is

required that both the initial condition ^(0) = y and the process-

generating agent P be specified. This is denoted by '̂ = < P, y -̂»

A function from the set of assignments into the set of assign­

ments is an acceptable generating agent, but processes generated by

it are forced to be singular. The processes generated by the iteration

of the function are either non-repeating or periodic. That is, if "TT

is a process generated by such a function, and V(±) = '^(j) then

Tf(i+1) - 7r(j+l)o Non-singular processes must be generated by some

other kind of agent.

Programs. The executors of programs can also be considered to

be process-generating agents. These type of agents accomplish their

task by means of three mechanisms: a) a reading mechanism that maps

any initial assignment in a realization of the goal language into some

internal condition of the executor, determined by a suitable interpre­

tation of a programming language; b) an executing mechanism that generates

new internal conditions from the previous ones; and c) a writing me­

chanism that maps every internal condition into some assignment in the

41

realization of the goal language.

The internal conditions mentioned above are functions mapping

the set of variables of the programming language into a set of values

that are generally elements in a suitable interpretation of the

programming language. These internal conditions are what McCarthy

calls state vectors. Some formalizations identify the set of variables

of the programming language with the set of variables of the goal

language, and the set of values with its domain of discourse. In

such cases the reading and writing mechanisms become trivial; the

identity functions and then the executing mechanism completely

identify the process-generating agent.

The executing mechanisms for programming languages have

two principal components: one fixed for the programming language

(the interpreter); the other variable (the programs)^ Thus, if a

programming language has a defined interpreter, then whenever a program

is specified in that language the executing mechanism corresponding to

that program is completely determined.

Combinatory Process-Generating Agentso Let us suppose that

the set of variables of a combinatory logic CL and the set of variables

of the goal language are identical, and denoted by V; and suppose that

T denotes the set of terms of CL, T denotes the set of closed terms
c

of CL, and Z) denotes the set of addresses of CL, If R = < D, 6 > is

a realization of the goal language, then the quadruple < ̂ , p, a, 6 >

•'"McCarthy (1962), p. 24.

42

is a programmatic interpreter for CL in R if and only if

9

?

a

D -> T ; ̂ is called the representation function;
c

T -> T ; P is called the execution function;
c c

V -> Z/ ; a is called the allocation function;

and 6 is an interpretation function such that < D, 6 > is a
c c

referential model of CL.

For any term t in CL, a programmatic interpreter completely

defines a process-generating agent for R, denoted by the quintuple

< (f>, fy a, t , t > as follows:

a) The elements that correspond to the assignments in R are

constructions of closed terms represented in the tree of

addresses of CL.

b) The term that corresponds to the initial assignment is

determined by a realization-dependent reading mechanism

given by the function (p and substitution.

c) There is a realization-independent executing mechanism

that generates a sequence of terms by the iteration of the

function p.

d) There is a realization-dependent writing mechanism, con­

structed from the functions a and 6 , that generates

assignments in R corresponding to terms in CL.

Thus, if t^ is the term corresponding to the initial assignment

YJ and V,, v«, . . ., v are the variables in the non-fixed part of t,

then

tQ = [<P(Y(V^)), ^(Y(V2)), ..-, y'(Y(v̂))/v̂ , v^, ..., vjt ;

4J

for all i greater than zero

t, = P(t,.i) ;

and ±fV = <^, Pi Oif 6 , t, y ^ is the process generated by the

agent < V̂ , /̂ , a, 6 , t > and initial assignment Y> then for all

positive integer i and variable v

7r(0) = Y

7r(i)(v) =6 (a(v)(t.)) if a(v)(t.) is defined
c 1 1

and Tr(i)(v) ~ y (v) otherwise.

These considerations can be illustrated by the following

diagram

"^(0) = V

(/),t

•0 F

^(1)

a,6

•^ t .

P

1T(2) . .

a,6

•^ t ,

F

^a)
a,6

-> t
F

The sextuple < D, 6 , (p , p , a, 6 > is a programmatic model

of CL and the goal language GL if and only if < D, 6 > is a realiza-
G

tion of GL and <^,/^,a, 6 > i s a programmatic interpreter for
V*

that realization.

Programmatic Equivalence

If R is a realization of GL and P^ and P̂ are two process-

generating agents defined for R, then they are programmatic equiva­

lent, Peq (Ppj, P-.)? if and only if for every assignment Y

(<P^, Y >, < P., Y >) (18)

44

Two terms t_ and t are programmatic equivalent, Progeq (t̂ ., t)

if and only if for every programmatic model < D, 6 , Ẑ', p, a, 6 >
G c

Peq (<^, f, a, 5^, tQ >, <cp, f>, a, 6̂ , t^>). (19)

From their definitions, it is immediate that Peq, and Progeq

are equivalence relations, but since they involve much semantic

machinery it is desirable to have a syntactic substitute for them.

That is, a necessary and sufficient condition for two terms to be

programmatic equivalent is for them to be syntactic equivalent. The

next theorems determine the conditions under which this can be done

for a combinatory logic.

Theorem 3. For every predicator Eq in CL that satisfies

the rules of reflexivity, transitivity, and symmetry, and that has

an inverse of substitution, there is a non-empty goal set G for which

If Progeq (t^, t) then \- t^ Eq t .

Proof: Let g ~ < g^, g, > be the only goal in G, and let

M = < D, 6 , ^ t P 9 Oi, ^ > b e a programmatic model such that
G c

a) Every formula of CL is valid on < D, 6 > if and only

if it is a theorem of CLo Such a model exists since

CL is semantic complete in the referential sense and

< D, 6 > is a referential model of CL by definition
c -̂

of programmatic model.

b) 6 £. ̂ p» This is possible if we assume that the morphology

of CL is included in the morphology of the goal language.

This is an assumption that can always be made without side

45

effects, as has been mentioned before.

c) < D, 6 >)= g [y] . This is possible since g^ may be

a tautology.

d) g- is a formula of the form 't Eq v ' where t is any
1 g g g
closed term and v is a variable such that Qf(v) is the

g g

identity address.

d) (t Eq p (t)) for any term t.

Now let us prove that for the model M just described

If Peq («f, p , CV, 6̂ , tQ>, < ^, P , a, 6̂ , t^>) then V (t^ Eq t^)

This is the same as proving that for all assignment y

If Cosucc (<^, p , a, 6̂ , tQ, Y>> < ̂ > P > cv> Ŝ > t^ Y>) then I- (t^ Eq t^)

lo Succ (<'P,P , oi, 6̂ , tQ, Y>, g) iff

2. <D, 6 > ̂i g [ir(m)] where m is any natural number greater

than some natural number n, and

TT(m)(v) = S^Cc^CvXf'^CCvCYCv^)),..., H^(Y(Vj^))/v^,.oo,Vj^]tQ)))

or TT(m)(v) ~ Y(v) from condition c

3. <t [Tr(m)], v [Tr(m)]> e 6̂ (Eq) from 2 and definition
g g G

4. <6^ (tg), 6^ (p"* ([^(Y(v^))/v.]tQ))> e 6̂ (Eq) from

conditions b, d
5. h (t Eq f™ ([̂ (Y(v.))/v.]t^)) from 4, and condition a

6. > (t Eq [(^(Y(v.))/v.]tQ) from 5, condition e, & TRN

7. Ktg Eq [<^(Y(v^))/v^]tQ) s Succ (<(/',p, a, 6̂ , t^, Y>, g)

from 1 - 6

46

8. h (t Eq \.Cp(y(v^))/v/]t^) = Succ (<% f, a, 6̂ , t^, Y>, g)
g

from 7

9. ^ (t^ Eq [(/5(Y(v,))/v,]t^) = h(t^ Eq [^(Y (v,))/v,]t J
g I I U g 1 1 1

from 8, 7

10. h [^(Y(v^))/v^]tQ Eq l(f(y(v^))/v/]t^ from 9, TRN, SYM

11. H tQ Eq t̂ since Eq has an inverse of substitution and

tp has not been restricted.

Since (M)(Peq(PQ, P^)) implies that (3 M)(Peq (PQ, P ^)) then

Progeq (t^, t^) implies f-t̂ Eq t^.

Theorem 4. For every predicator Eq in CL that satisfies the

rules of reflexivity, transitivity, and symmetry and that has an

inverse of substitution, if the set of programmatic models is

restricted to those models that satisfy

a) 6^c6g

b) f- t Eq p (t) for every term t

c) a(v) is the identity address for some v
g g

then there is a non-empty goal set G for which

Progeq (t^, t^) = I- t^ Eq t^

Proof: Let g "= < gQ, g- > be the only goal in G, then the

proof of the theorem is in the inverse order of the proof of the

previous theorem, with the difference that in that theorem conditions

a), b) , c) are satisfied by one model only and in this theorem it is

necessary to force them to be satisfied by all models.
Theorem 5« If for every programmatic model of CL the execution

47

function p is restricted to satisfy the condition that t̂ . Eq t

implies the existence of a natural number n such that

f(t^) = f(t^),

then for every goal set G, Eq is a sufficient condition for programmatic

equivalence.

Proof: By construction, for every sequence of terms generated

by the iteration of the execution function, there corresponds a process

in every model determined by the reading and writing mechanisms of

the programmatic interpreter of the model. If both sequences of

terms are such that after some natural number they have the same

terms, then the corresponding processes have the same assignments

after the same natural number, and therefore they are bound for the

same sets of assignments. Hence, they co-succeed for any goal in

the model.

By hypothesis, and based on the rule of substitution and the

conclusion of the preceding paragraph, it may be further concluded

that Eq is a sufficient condition for programmatic equivalence.

48

CHAPTER IV

CONCLUDING REMARKS

Conclusions

Completeness of Convertibility

The most important conclusion of this investigation is what may

be called the programmatic completeness of convertibility. From

theorem 1, it is known that '<=>' has an inverse of substitution; it

therefore has all the qualifications needed by the predicator Eq

in theorem 3. There is thus a goal set for which convertibility is

a necessary condition for programmatic equivalence; furthermore, for

every goal set which includes that minimal goal set, convertibility

is also a necessary condition for programmatic equivalence.

If the restriction indicated in the formulation of theorem 5

is made, then convertibility is a necessary and sufficient condition

for programmatic equivalence for any goal set that includes a goal

of the form:

<gQ, t <=> v> (20)

where g^ is a tautology, t is any closed term, and v is any variable.

This goal may be called a kernel goal of convertibility.

The importance of this result is that mechanical proofs of

convertibility can be used for the proof of programmatic equivalence

of programs in the same, or even different, programming languages.

49

In the way that programmatic models were constructed for combinatory

logics, programmatic models can be constructed for programming

languages, and programmatic equivalence can be formulated in those

models as it was formulated for the models of the combinatory logics.

Moreover, if composed programmatic models for two programming

languages are constructed, then the problem of compiler correctness

for these languages can be formulated, studied, and hopefully, proved.

Thus, if the correctness of a compilation from some programming

language to a combinatory logic is proved, then the proof of the

programmatic equivalence of programs in that programming language

can be reduced to the proof of the programmatic equivalence of their

combinatory compilations, and this--as a consequence of the main

result of this dissertation--corresponds to the proof of convertibility

of such compilations.

A warning should be made concerning the inclusion of a kernel

goal of convertibility in the goal set with respect to the programmatic

equivalence of programs in a programming language, since the possibility-

exists that such an inclusion may produce an undesirable effect in some

language. This may especially be true in composed models where combina­

tory compilers have been studied.

Completeness of Extensional Equivalence

The second important conclusion of this investigation is a

consequence of theorems 1 and 4. From theorem 1 '.=.' has an inverse

of substitution, and from theorem 4 '.==.' is a necessary and sufficient

condition for programmatic equivalence for, some non-empty goal set G,

50

provided the appropriate restrictions are made on the set of models.

The attractiveness of this result derives from the fact that

extensional equivalence is a relation larger than convertibility and

that, under some conditions in which the introduction of the kernel

goal of convertibility might produce undesirable results, extensional

equivalence may be an appropriate alternative.

The deficiency of the result is that it requires a strong

restriction on the set of goals and on the set of models; thus, the

range of applicability of the result is not as broad as could be desired.

Future Research

The research here reported covers only one fundamental aspect

of a wider program of investigation oriented towards the development

of a logic of programming. The next steps to be taken in this

direction are:

1. Extend the notion of programmatic models, as defined for

combinatory logics, to programming languages. Most of the

work done in the area of semantics of programming languages

accepts the notion of an interpreter transforming a state

vector as the meaning of a program. Within the context of

this dissertation, this notion is true when the programmatic

model is a free model; that is, when the domain of inter­

pretation of the model is the same as the set of values of

the variables in the state vector.

2. Develop a semantic framework for the programmatic interpreta­

tion of compiling--in particular, compiling from a programming

51

language to a combinatory logic. In such a framework,

define the notion of compiler correctness. Prove the

correctness of some of the available translators. And

develop a language-independent combinatory compiler that

generates correct combinatory terms from programs in some

programming language, given the program, the syntax of

the language, and the programmatic semantics as defined

in 1.

3. Study the effect of the restrictions in theorems 3 - 5

in selected programming languages, and examine the

relationship between classical syntactical equivalence

relations on programming languages and combinatory

equivalence relations. Investigate possible extensions

of the equivalence relations discussed in this dissertation.

4. Compare the notion of goal as a pair of goal formulae

in the goal language with the notion of goal in cybernetics.

study the restrictions generated by considering goal as it

is viewed in this dissertation. (A possible extension of

this notion would be to consider goals as sequences of goal

formulae.)

5. Develop algorithms for the proofs of convertibility and

extensional equivalence. However, it should not be forgotten

that this problem has been proven undecidable for the most

general case.

52

BIBLIOGRAPHY

Barendregt, H. P., (1971), "Some Extensional Term Models for Combinatory
Logics and \-Calculi" Doctoral Thesis, U. Utrecht.

Bell, J. L., and Slomson, A. B., (1969), Models and Ultraproducts; an
Introduction. North-Holland, Amsterdam.

Blum, E. K., (1969), "Towards a Theory of Semantics and Compilers for
Programming Languages" J. Comp. and Syst. Sci., 3:248-275.

Bohm, C , (1966), "The CUCH as a Formal and Descriptive Language."
Proceeding of the IFIP Working Conference on Formal Language
Description Languages (Edo Steel T. Bo), 179-197.

Bohm, Co and Gross, W., (1966), "introduction to the CUCH." in Automata
Theory (Ed. Caianiello, E. R.), 35-65.

Braffort, Po and Hirschberg, D. (Eds.) (1963), Computer Programming
and Formal Systems, North-Holland, Amsterdam.

Burstall, R. Mo, and Landin, P. J., (1969), "Programs and their Proofs:
an Algebraic Approach" Machine Intelligence, 4:17-43.

Caianiello, E. Ro (Ed.), (1966), Automata Theory, Academic Press, N. Y.

Caracciolo Di Forino, A., (1965), "Linguistic Problem in Programming
Theory" in Information Processing 1965 (Ed. Kalenich, W. A.),
223-228.

Curry, Ho B. and Feys, R., (1958), Combinatory Logic, Vol I. North-
Holland, Amsterdam.

Curry, Ho B.; Hindley, R. J. and Seldin, J. Po, (1972), Combinatory
Logic, Vol. II North-Holland, Amsterdam.

De Bakker, J. W., (1970), "Semantics of Programming Languages."
Advances in Information Systems Science, 2:173-227.

De Millo, Ro A., (1972), "Formal Semantics and the Logical Structure of
Programming Languages." Doctoral Thesis, School of Info, and Comp.
Science. Georgia Institute of Technology.

Droege, S., (1971), "On the Practicality of Manna's Method of Verifying
the Termination and Correctness of Programs." Department of
Computer Science, Technical Report #11, Rutgers University.

file:///-Calculi

53

Elspas, B. et al., (1972), "An Assessment of Techniques for Proving
Program Correctness." Comp. Surveys, 4:97-147.

Floyd, R. W., (1967), "Assigning Meanings to Programs." in Mathematical
Aspects of Computer Science (Ed. Schwartz, J. T.), 19-32»

Fox, J. (Ed.), (1971) Computers and Automata. Polytechnic Press,
Brooklyn, N. Y.

Iverson, K. Eo, (1962), A Programming Language, Wiley, New York.

Kalenich, W. A. (Edo), (1965), Information Processing 1965 Spartan
Books, Washington, D. Co

Landin, P. J. (1964), "The Mechanical Evaluation of Expressions."
Computer J., 6:308-320.

Landin, P. Jo, (1965), "A Correspondence Between ALGOL 60 and Church's
X-notationo" Comm. ACM, 8:89-101 and 8:158-167.

Landin, Po J., (1966), "A Formal Description of ALGOL 60" in Formal
Language Description Languages (Steel, T. B. Ed.) 266-294.

Lucas, P. and Walk, K., (1970), "On the Formal Description of PL/I."
Annual Review in Automatic Programming, 6:105-181.

Luckham, D. C , Park, D.M.R., and Paterson, M. So, (1970), "On
Formalized Computer Programs." J. Comp. and Syst. Sci., 4:220-249.

McCarthy, J., (1962), "Towards a Mathematical Science of Computation."
in Information Processing 1962 (Popplewell, C. M. Edo) 21-28.

McCarthy, J,, (1963), "A Basis for a Mathematical Theory of Computation."
in Computer Programming and Formal Systems (Eds. Braffort P. and
Hirschberg D), 33-70.

McCarthy, J., (1965), "Problems in the Theory of Computation" in
Information Processing 1965 (kalenich, W. A. Ed.) 219-222.

McCarthy, J., (1966), "A Formal Description of a Subset of Algol."
in Formal Language Description Languages (Steel, T. B. Ed.) 1-12.

McCarthy, Jo, and Painter, J., (1967), "Correctness of a Compiler for
Arithmetic Expressions" (Ed. Schwartz, J. T.), 33-41.

Manna, Z., (1969), "The Correctness of Programs" J. Comp. and Syst. Sci.,
3:119-127.

Manna, Z. and McCarthy, J., (1970) "Properties of Programs and Partial
Function Logic" Machine Intelligence, 5:27-37.

54

Morris, J. Ho, (1968), "Lambda-Calculus Models of Programming Languages"
Doctoral Thesis, School of Management, Massachusetts Institute
of Technology.

Naur, P. (Ed.), (1963), "Revised Report on t̂ e Algorithmic Language
ALGOL 60." Comm. ACM, 6:1-17.

Orgass, R. J., (1967), "A Mathematical Theory of Computing Machine
Structure and Programming." Doctoral Thesis, Yale University.

Orgass, R. J. (1970), "Some Results Concerning Proofs of Statements
About Programs." J. Comp. and Syst. Sci., 4:74-88.

Orgass, Ro J. and Fitch, F. B., (1969), "A Theory of Computing Machines."
Studium Generale, 22:83-104.

Orgass, R. Je and Fitch, F. B., (1969), "A Theory of Programming
Languages." Studium Generale, 22:113-136.

Petznick, G. W., (1970), "Combinatory Programming" Doctoral Thesis,
Department of Computer Science, University of Wisconsino

Popplewell, Co No (Edo), (1962), Information Processing 1962, Nort-
Holland, Amsterdam.

Robinson, A., (1965), Introduction to Model Theory and to the Meta-
mathematics of Algebra. (2nd Ed.) North-Holland, Amsterdam.

Rustin, R. (Edo), (1972), Formal Semantics of Programming Languages,
Prentice-Hall, Englewood Cliffs, N. J.

Schwartz, Jo T. (Edo), (1967), Mathematical Aspects of Computer Sciences,
Amer. Math. Soc. Vol. 19, Providence, Ro I.

Scott, D. and Strachey, C , (1971), "Toward a Mathematical Semantics
for Computer Languages." in Computers and Automata (Fox, J. Ed.)
19-46.

Steel, T. B. (Ed.), (1966), Formal Language Description Languages for
Computer Programming. North-Holland, Amsterdam.

Strachey, C., (1966), "Towards a Formal Semantics" in Formal Language
Description Languages (Steel, T. B. Ed.) 198-220.

Van Fraassen, Bo C , (1971), Formal Semantics and Logic, MacMillan, No Y.

Venturini-Zilli, M., (1965), "̂X-K-Formulae for Vector Operators." ICC
Bulletin, 4:157-174.

Wadsworth, C , (1971), "Semantics and Pragmatics of the X-Calculus"
Doctoral Thesis, Oxford University.

55

Wegner, P., (1972a), "Programming Language Semanticsj" in Formal
Semantics of Programming Languages (Rustin, R. Ed,), 149-248.

Wegner, P., (1972b), "The Vienna Definition Language." Comp. Surveys
4:5-63.

6̂

VITA

Jorge Baralt-Torrijos was born in San Cristobal, Venezuela,

on May 4, 1943o He received the degree of Civil Engineer from the

Universidad Central de Venezuela in 1966. From 1968 to 1970 he

attended the Georgia Institute of Technology, where he earned the

degree of Master of Science in Information and Computer Science.

He was employed by Cia. Shell de Venezuela, Ltd. from 1966

to 1972 as a system programmer and a system analyst. Since 1972 he

has been in charge of the Coordination of the career on Computer

Science at the Universidad Simo'h Bolivar. He has held part-time

positions teaching at the Universidad Central de Venezuela and at

the Institute de Estudios Superiores de Administracion.

Mr. Baralt-Torriios has three publications, and has read two

papers before regional conferences. He has been a member of the

Association for Computing Machinery since 1968, of the American

Society for Information Science since 1968, and of the Asociacion

Venezolana de Ingenieria de Computacidh Electrdhica (AVICE) since 1966

He was president of AVICE for the period 1972-1973.

