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V 

SUMMARY 

The objective of this dissertation is to develop a formal 

semantic theory for a programmatic interpretation of a wide range 

of combinatory calculi. The morphology of a family of combinatory 

calculi is presented. The notion of a tree of addresses for the 

representation of constructions of combinatory terms is introduced, 

and within that context such classical notions of combinatory logic 

as combination and substitution are reviewed. The theory proper 

of the calculi is described, and the notions of contraction, 

immediate reduction, weak reduction, convertibility, and extensional 

equivalence are introduced. The most important theorem of the first 

part of the dissertation is one concerning the inverse of substitution. 

The semantic framework of the calculi is specified, and the 

calculi then become logics. The semantic completeness (in the refer

ential sense) of these logics is proven. The programmatic interpreta

tion is defined and the following notions are introduced: goal; process; 

success of a process at attaining goals; and co-success of processes 

in a goal language. Programmatic models are formally defined for 

combinatory logics and the notion of programmatic equivalence among 

combinatory terms is defined. Finally, the dissertation establishes 

those requirements which the goal language should satisfy in order for 

the semantic notion of programmatic equivalence to correspond with 

the syntactic notion of convertibility. 



CHAPTER I 

INTRODUCTION 

The development of computers and of programming languages has 

been largely independent of the evolution of the mathematical theories 

of computability and automata. Lately, however, there is an increasing 

awareness by some computer scientists that abstract theories are needed 

for the further development of their fieldo At the same time, mathema

ticians and logicians have become interested in obtaining representations 

of ordinary computing machines and programming languages in some of the 

available formal theories. 

Motivation 

It may be considered that a theory is a system of assertions 

about objects which requires a language for its formulation, where a 

language is understood to mean a system of signs and of rules for their 

use. When the object of study of a theory S is a formal language L, 

then S is called the semiotics of L; L itself is called the object 

language; and the language L', in which S is formulated, is called 

the metalanguage. 

In every situation in which a language is used, three features 

can be identified: the expressions of the language; the objects 

designated by the expressions of the language; and the users of the 

language. Thus, within the semiotics of such a language, three 

regions may be distinguished according to which of the mentioned 



features receive attention: the syntax, which studies only the expres

sions; the semantics, which concerns itself only with the relationships 

between the expressions and the objects they designate; and the prag

matics, which concerns itself with the users of the language and which 

may include historical, sociological and psychological considerations. 

The semiotic specification of a language L is provided by a 

syntactic framework, a semantic framework based on the syntactic 

framework, and a pragmatic framework based in turn on the semantic 

framework and determined by a set of rules of use. This dissertation 

is restricted to the semantic level, and no pragmatic considerations 

are countenanced. 

The syntactic framework consist of two parts: the morphology, 

which determines the expressions in the language by means of a 

vocabulary and a grammar; and the theory proper, which provides a 

proof mechanism. A formal language for which only a morphology is 

specified is called a syntactic system. If, in addition, a theory 

proper is specified, then the language is called a calculus. I£, 

finally, a semantic framework is determined, then the syntactic system 

becomes a semantic system, and the calculus becomes a logic. 

Semantic systems, and syntactic systems with non-formal rules 

of interpretation, are used both for the description of objects and 

properties of objects (in the case when they are first order languages) 

and for the description of properties of properties of objects, etc. 

(in the case when they are higher order languages). Logics, and 

calculi with non-formal rules of interpretation, not only describe 

objects and their properties but also provide the tools which can use 



assertions about objects to derive the proof of other assertions. 

Ordinary programming languages are syntactic systems with 

non-formal rules of interpretation. However, they are weak in the 

sense that all of their expressions are only terms used for the 

description of objects; as a result, statements about the objects 

cannot be formulated within the same language. The terms of 

programming languages are called programs, and the objects denoted 

by them are called procedures. Two of the properties about proce

dures that it is desirable to be able to formulate are: correctness 

(which applies if a procedure solves a problem) and equivalence 

(which applies if two procedures solve the same class of problems). 

A programming language could be extended by including in its 

morphology the predicators required for the formulation of the pro

perties mentioned above, but it will be useless to do this if a 

proof mechanism is not available. However, since the statements to 

be proven relate to procedures rather than to programs, the appro

priate semantic framework may also be provided. 

An alternative approach is to extend an existing logic so 

that it will be adequate for the representation of procedures and 

their properties. This extension is what is called a programmatic 

extension of the logic. 

Objective 

The objective of this dissertation is to develop a formal 

semantic theory for a programmatic interpretation of a wide range 

of combinatory calculi. 



A family of combinatory calculi is specified by a schematic 

presentation of their morphology and theory proper. A referential 

semantic framework is defined for that family of calculi, and it is 

shown that the calculi are semantically complete in the referential 

sense. The intuitive notion of problem is identified with the formal 

notion of goal; the intuitive notion of procedure is identified with 

the formal notion of process-generating agent; and programs are 

identified with terms. The formal concepts of success and failure 

at attaining goals are introduced, and a formal semantic notion of 

programmatic equivalence is constructed on the basis of the mentioned 

concepts. Finally, this dissertation establishes those requirements 

which the goal language should satisfy in order for the semantic 

notion of programmatic equivalence to correspond with the syntactic 

notion of convertibility. 

Relevant Research 

Developments in the theory of computability resulted in the 

emergence of new areas of study related to the three fundamental en

tities in computing: algorithms, programs and computers. These areas 

are known as, respectively, the theory of recursive functions, the 

theory of formal languages, and the theory of finite automata. Since 

these theories were born from theoretical developments, they each 

take a theoretical approach, and the applicability of their results 

is not always evident. McCarthy (1962) makes a clear statement of 

the need for a theory of computation oriented to the solution of 

practical and real problems rather than theoretical and hypothetical 



problems. Again, within such a theory of computation, three areas of 

specialization can be distinguished; they may be called the theory of 

algorithms, the theory of programming languages, and the theory of 

computing machines. For a description of the general developments 

in the area of programming languages, the survey papers of De Bakker 

(1970), Wegner (1972a), and Elspas et al. (1972) are recommended. 

The works that are more closely related to the investigation 

here reported are: Landin (1965), Orgass (1967), and Petznick (1970) 

with respect to the relationship between combinatory logic and pro

gramming languages; Wegner (1972b), Manna (1969), and Luckham at al. (1970) 

with respect to program correctness and program equivalence; Van 

Fraassen (1971), Bell and Slomson (1969), and Robinson (1965) with 

respect to the referential interpretation; IfeMillo (1972) with 

respect to the programmatic interpretation of programming languages; 

and, of course, the works of Curry and Feys (1958) and Curry, Hindley 

and Seldin (1972). 



CHAPTER II 

COMBINATORY CALCULI 

In this chapter a family of systems of combinatory logic is 

formally specified. They are called calculi rather^ than logics 

because only the formalization of their syntax is defined and nothing 

is mentioned about their semantics; they are called calculi rather 

than syntactic systems because not only their morphology is presented 

but also their theory proper. In order to be able to describe a 

family of calculi, and not merely some particular calculus, the 

syntax is presented in a schematic form. 

Morphology 

The morphology of the combinatory calculi comprises a vocabulary 

that specifies the primitive symbols and a grammar that specifies the 

set o£ rules o£ formation for terms and formulae. 

Vocabulary 

Atoms. The set of atoms A of a combinatory calculus CC is the 

union of a non-empty finite set of individual constants C and a denumer-

able set of individual variables V. 

Functors. CC can be minimally defined with only two functors: 

the corner operator ' ~i ' and the equal-double-dot predicator '.̂ 'o'o 

However, in order to simplify the proof of some theorems on semantics, 

the following predicators are also included: '>', '->', '=>', '<=>'. 

The set of predicators is denoted by P. 



Grammar 

Terms. The set of terms T of CC is defined as the smallest 

set satisfying: 

(i) Every atom is a term; 

(ii) If t^ and t- are terms then 'tQ-̂  ' is a term. 

^1 

Formulae. The set of formulae F of CC is defined as the 

smallest set that satisfies 

(i) If tQ and t- are terms, then 't^ > t,' is a formula; 

(ii) If tQ and t̂  are terms, then 't^ -> t̂  ' is a formula; 

(iii) If tQ and t- are terms, then 't^ => t^' is a formula; 

(iv) If t^ and t- are terms, then 't^ <=> t ' is a formula; 

(v) If tQ and t, are terms, then 'tQ .=. t̂  ' is a formula. 

Constructions 

Let us assume that no atom is of the form 

^On (1) 
'̂l 

Then, from the definition of term, it may be deduced that every term 

that is not an atom (a non-atomic term) is of the form (1). In that 

case tQ is called the functional component of t and t. is called the 

argument component of t. 

Let id be the identity function from the set of terms into 

itself; and let 0 and 1 be partial functions from terms into terms 

such that for all t, if t is a non-atomic term, then 0(t) is the 

functional component of t and l(t) is its argument component; otherwise, 



0 and 1 are undefined. Then the set of addresses Z) of CC can be defined 

as the smallest set that contains the identity function and every finite 

composition of the functions 0 and 1. Thus, for any address a in Z) 

there is a finite, possibly empty, string of O's and I's that names 

it according to the following rules: 

(i) The null string names the identity function; 

(ii) If the string X names the function 0" then OX names the 

function O.a and IX names the function l.a. 

In order to illustrate this, the following example may be consi

dered: let Oil be the name of the address a, then a(t) = 0(1(l(t))), 

if defined, denotes the functional component of the argument component 

of the argument component of t. 

If the functional component of a term t is not an atom, then t 

may be represented by 

00(t)-T 1 (2) 
10(t) l(t) ^̂ ^ 

If the argument component of a term t is not an atom then t may 

be represented by 

0(t)n 
01(t)n (3) 

ll(t) 

Combining (2) and (3), any term can be represented by a particular 

type of tree structure. Thus 

000(t)-T f — -J (4) 
oioo(t)-| ooio(t)n 1 i(t) 

llOO(t) lOlO(t) llO(t) 



may be an acceptable representation for some term t. 

If there is an address a such that for some terms t̂^ and t-, 

tQ ~ a(t-), then tQ is said to be a component of t-, and if a is 

different from the identity function then t« is called a proper 

component of t-. 

If 0"̂  and a- are two different addresses, but are such that 

tQ = a^Ct-) = a-(t-), then it can be said that there are at least 

two occurrences of t^ in t-, one in address a^ and the other in 

address Q-. 

For every occurrence of a term t^ in another term t- at some 

address a, a finite sequence of terms t'^, t' , . . ., t' can be 

constructed such that t^ = t' and t- = t' and for all 0 < i < n 
0 0 1 n — 

either t'. = 0(t'.^-) or t'. = l(t'.^,)» Such a sequence is called 

the composition of t- from t^, and it is completely determined by a. 

If the set of all atomic components of a term t is called 

the support of the term, then the construction of t may be defined 

as the set of all compositions of t from every occurrence of the 

members of the support of t. A natural way to represent constructions 

is by means of binary trees, such that every node in the tree corres

ponds to an occurrence of some component (the left subtree of the node 

corresponding to the functional component of the term in the node and 

the right subtree corresponding to the argument component of the term 

in the node). This can be illustrated by the following example. 
If t is the term 
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ao-T—- -1 1 

^1 ' l̂""" ' ^2 ^^ 
^2 ^2 ̂ 3 

and â -, a-, a , a_ are atoms, then, the construction of t may be 

represented by the binary tree. 

^0 ̂  1 1 
^l-i ^i-I 1 â  

^2 ^2 ̂ 3 

^0~T— 1 ^2 
^1 1 a^ , —^ 

^2 ^2 ̂ 3 

a 0 1 1̂~"T 1 
1 
a 

(6) 

^ 1 ^ ^2 ̂ 3 
2 

^0 l̂~i ^ 1 ^ ^3 
^2 ,̂ 2 

/ \ / ^̂  
^1 ^2 ^1 ^2 

If the relation <^ is defined on the set Z) of addresses, such 

that for any a , a , a e Z) 

(i) 0 • a^ <Q a^ 

(ii) 1 • a^ <Q a^ 

(iii) If a^ <Q a^ and a^ <Q a^ then a^ <Q a^ 

Since a, ^̂  a„ implies that for any a_, a, inZ^a_*a- ^̂  ^A'^O' then 

<Q is a strict partial order relation that may be represented by the 

binary tree 
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/ 
/ 

o' 1 
\ 

/ \ (7) 

00 10 01 11 

This tree is called the tree of addresses of CC. 

A cut K of the tree of addresses may be defined as a subset of 

TJ such that for all c^ e TJ either a» e K or there is some a e K such 

that either a^ <Q a. or a. <Q a^; and for all a., a e K neither 

a- <^ a nor a <^ a . Only finite cuts are considered in this 

investigation. 

If K is a cut, then the top of K is the set of all addresses 

o^ such that there is some a e K and a <Q a^; and the bottom of K 

is the set of all addresses QQ such that there is some a- e K and 

GQ <Q a-. If KQ and K- are two different cuts, then KQ is said to 

be smaller than K^, KQ <^ K^, if and only if the top of K^ is a proper 

subset of the top of K-. If KN = {KQ, K., . . ., K ] is a finite 

set of cuts and UK is the union of their tops, and if SK is the union 

of the sets (K. - UK) for all K. in KN, then it follows immediately 

that SK is a cut greater than any K. different from SK, SK is called 

the supremum cut of KN, 

When the construction of some term t is represented upon the 

tree of addresses such that in the node corresponding to the address 

CT the term CT(t) is placed, then only a finite number of addresses 
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will correspond to a defined term, since every term has only a 

finite number of components. The rest of the addresses remain 

undefined. 

If all the addresses of some cut K are defined when the con

struction of some term t is represented in the tree of addresses, 

then K is called a level of resolution of t. If KQ and K, are two 

different levels of resolution of t and if K^ <- K- then K̂  is said 

to be a higher level of resolution than K^. Since the set of all 

the levels of resolution of t is finite, then it has a supremum; 

moreover, since every member of that supremum is a member of some 

level of resolution, the supremum is also a level of resolution. 

This highest level of resolution is called the boundary of the term. 

Such boundary uniquely determines the structure of the term; that is, 

the set of all defined addresses. Two terms are said to be struc

turally identical if and only if they have the same boundary. 

The members of any cut K are well ordered by a relation < , 

defined naturally as follows: 

If a- and a^ are any two addresses in the cut K, then 

o ^-1^ ^n if aî d only if the name of Q- is XOZ and the name of 

a- is YIZ for some strings of O's and I's X, Y, Z. If a, is not 

of the form xOZ then it means that either a. is the identity func

tion or the name of o^ is a string of I's only; in the first case 

a^ is the only element of K and in the second case Q- is the last 

element of K (that is, every element in K different from a. has 

the form ^Oz), A similar analysis can be made if a„ is not of the 

form YIZ. Therefore, < well-orders K. 
k 



13 

If K is the boundary of some term t, then the sequence of 

atoms corresponding to the members of K and ordered by the relation 

<- is called the frame of t. Two terms are frame identical if and 
k 

only if they have the same frame. Two terms are identical if and 

only if they are structural and frame identical. 

For example, the term in (5) can be analyzed as follows: 

(a) The boundary of t is the set 

{000, 0100, 1100, 0010, 1010, 110, 1} that uniquely 

defines the structure in (4); 

(b) The frame of t is the sequence <aQ, a-, a^, a-, a„, a«, a.,y^\ 

and 

(c) The support of t is the set f^Q, a,, a„, a«} . 

Combinations 

If B is a set of atoms and t is a term such that its support 

is a subset of B, then t is called a combination of B and B is called 

a basis for t. If the support of t is the set B, then t is called a 

proper combination of B« 

The construction of any combination t from a basis B involves 

the following elementary operations: first, the cancellation of all 

those atoms in B that are not in the support of t; second, the repro

duction of those atoms that have more than one occurrence in t; third, 

the rearrangement of the atoms to form the frame of the term; and 

finally, the application of the corner operator to the elements on 

the frame to form the term. If the combination is proper, then no 

cancellation is required. Cancellation, duplication, permutation and 
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composition are called the elementary combinatory operations. 

Substitution 

So far, no distinction has been made between variables and 

constants, and every assertion has used the more general notion of 

atom. When these two types of atoms are differentiated, the 

following definitions can be stated: 

If t is a term, then the set of constants in the support of t 

is called the fixed part of t and the set of variables in the support 

of t is called the non-fixed part of t. The constant space of t is 

that set of all addresses in the boundary of t that contains a constant, 

and the variable space of t is the set of all addresses in the boundary 

of t that contain a variable. It can be observed that the constant and 

variable spaces of t form a partition of the boundary of t. 

A term that does not have non-fixed part is called a closed 

term, otherwise it is called an open term. The set of all closed terms 

of CC is denoted by T . An open term that does not have a fixed part 

is called a free term. If t is either a closed term or an explicit 

term and v is a variable that is not a component of t, then t-n is 

an explicit term. The terms that are not closed, free, or explicit 

are called implicit terms. The explicit terms with only one constant 

component are called primitive terms. 

The non-fixed part of a formula is the union of the non-fixed 

parts of the terms in the formula. It is called a closed formula if 

and only if it has no non-fixed part. The set of all closed formulae 

is denoted by F . 
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A formula 't^ > t ' is said to be a primitive formula if and 

only if t^ is a primitive term and t- is a combination of the 

non-fixed part of t^. 

The existence of variables in a calculus is not justified if 

the notion of substitution does not exist. In this thesis such a 

notion is not included in the syntax but is formulated as a metatheore-

tic concept. Thus, suppose that t^ and t- are terms and v is a 

variable in V, then Lt-/v] t^ denotes the term that results from the 

substitution of t- for v in every occurrence of v in t„. This opera

tion is defined by the following rules. 

(51) [t/v] V = t for any t e T and v e V 

(52) [t/v] a = a for any t e T, a e A, and a ̂ ^ v 

(53) [t/v] (tQ-n ) = [t/v] tQ-, for any t^, t̂  e T 
t^ [t/v]t 

(54) [t/v] (tQ > t^) = [t/v] tQ > [t/v] t^ 

(55) [t/v] (tQ -> t^) = [t/v] tQ -> [t/v] t^ 

(56) [t/v] (tQ => t^) = [t/v] tQ => [t/v] t^ 

(57) [t/v] (tQ <=> t^) = [t/v] tQ <=> [t/v] t^ 

(58) [t/v] (tQ .=. t^) = [t/v] tQ .=. [t/v] t^ 

As an immediate consequence of (Si), (S2), and (S3) the 

following propositions can be formulated. 

(59) [tQ/vQ] t is uniquely defined 

(510) [VQ/VQ] t = t f or any VQ e V 

(511) If VQ does not occur in t then [^Q/VQ] t = t 

(512) If VQ and v̂  are distinct variables and either v^ does 

1 
Curry and Feys (1958), pp. 205-209. 
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not occur in t„ or v̂ . does not occur in t then 

[t^/vQ] Ct^/v^] t = [ [tQ/v^] t^/v^] [tQ/v^] t 

As a corrollary of (Sl2) we have: 

(S13) If v^ and v- are distinct variables and v- does not 

occur in t^ and v^ does not occur in t̂  then 

[t̂ /vQ] Ct̂ /v̂ ] t = [t̂ /v̂ ] UQ/VQ] t 

A particular case of this is when t^, t- are closed terms. 

Sometimes [t^ t̂  . . . t /v̂ , v- . . . v ] t or [t./v.] t are 0 1 n O l n 1 1 

used as abbreviations for [t^/v^] [t-/v,] . . . [t /v ] t 

Theory Proper 

Following Curry's notation, the theory proper is the part of 

the syntax that describes the axioms and the rules of transformation. 

Axioms 

Two types of axioms are considered in the definition of any 

combinatory calculus: the axioms of reduction that are characteristic 

of every calculus, and the axioms of reflexivity described by a schema 

that is the same for all combinatory calculi with the same morphology. 

Axioms of Reduction. Every combinatory calculus is charac

terized by a set of primitive formulae R such that 

(RED) If r e R then hr 

Axioms of Reflexivity. For every term t in T 

(REF) (i) f- t => t 

(ii) l-t <=> t 

(iii) |-.t .=• t 
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Rules of Transformation 

Again, two types of rules of transformation are considered: 

the theorem-preserving rules and the rules of inference. 

Theorem-Preserving Rules* For every formula f e F, every term 

t e T, and every variable v e V then 

(SBT) If l-f then Kt/v] f. 

This rule is called the rule of substitution and is the only theorem-

preserving rule considered. 

Rules of Inference. In order to simplify the presentation 

of this rule, the metatheoretic predicator variable 'p' is used in 

the formulation of the specific rule and followed by an enumeration 

of the predicators that satisfy the rule. Thus, for any terms t^, t-, 

t^ e T: 

(RMN) If |-(tQ p t^) then i-Ct̂ -̂  P t̂ -i ) 

0̂ h 

This is called the rule of right monotony and it is satisfied by the 

predicators denoted by ->, =̂ >, <''^, and .—. 

(LMN) If KtQ p t^) then hCt^-, p t̂ -̂  ) 

2̂ 4 

This is called the rule of left monotony and it is satisfied by the 

predicators denoted by ->, =>, <'^, and .=« 

(TRN) If KtQ p t^) and |̂  (t^ p t^) then |-(tQ p t^) 

This is called the rule of transitivity and it is satisfied by the 

predicators denoted by =>, <'^, and .=. 

(SYM)lf V(tQ p t^) then I-(t̂  p t^) 
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This is called the rule of symmetry and it is satisfied by the 

predicators denoted by <=> and .=. 

If there exists a term t- that is not a component of neither 

t^ nor t- then 

(EXT) If KtQ-i . = . t -, ) then 1-(t̂  » = o t ). 
t t 
3 3 

This is called the rule of extensionality. 

Reduction 

An occurrence t^ of a proper component of a term t e T is in a 

functional position if and only if it is in some address whose name 

is of the form OX for any string X of O's and I's, and it is in 

argument position otherwise. If the address of t^ in t is a 

member of the boundary of t, then t^ is called a leading element 

of t, and in particular, if t^ is the first member of the frame 

of t, then it is called the head of t. It is evident that every 

leading element of t is the head of at least one component of t. 

The name of the address of every leading element t^ of a 

term t is of the form 0 X, where 0 is a non-null string of n O's, 

and X is either the null string or any string of O's and I's starting 

at the left with a 1. In this case, n is called the degree of t^ 

in t and X is the address of a component of t called the component 

of t led by tQ. The terms in addresses whose names are of the form 

k 1 
10 X , for 0 < k < n , are called the arguments of t^ in t and 

the set of all of them is called the environment of t^ in t. The 

arguments of the head of a term are called the main arguments of 

the term. 

0 is the null string 
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The head of the primitive term of any axiom of reduction is 

called a combinator because it may be interpreted as an operator 

that acts upon a set of variables, its environment, to produce a 

combination of them. Since this interpretation is traditional in 

the studies of combinatory logic and is fundamental for the objectives 

of this thesis, calculi in which there are two different axioms of 

reduction with the same combinator are not considered. Therefore, 

there is a one-to-one correspondence between the set of combinators, 

called the combinatory base of CC, and the set R of axioms of reduc

tion. Then, it can be said without ambiguity that the presentation 

pattern of a combinator is the primitive term of its corresponding 

axiom of reduction, and that the combination pattern of a combinator 

is the free term of its corresponding axiom of reduction. 

If the combinatory base of CC is equal to its set of constants 

C, then the calculus is said to be pure combinatory, otherwise it is 

called an illative combinatory calculus. Although many of the works 

related to this dissertation have used illative concepts, this investi

gation is restricted to the case of pure combinatory calculi. And 

wherever the word "combinatory" is used henceforth in this thesis, 

it means pure combinatory. 

Contraction. Every axiom of reduction, or every formula that 

results from the application of the rule of substitution to some 

axiom of reduction, is called a reduction rule. If t̂-. -̂  t, is a 

reduction rule then t^ is called the redex of the rule and t, is 

called the contractum of the rule; and the replacement of a redex 
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by its contractum is called a contraction. 

The predicator '>' characterized by the axioms of reduction 

and the rule of substitution may be viewed as a partial function that 

maps terms into terms. It is partial because there are terms that 

are not redexes, and it is a function as a consequence of the assump

tion made that no redex may have two different contracta. This 

function may also be called contraction. Thus, a contraction may 

be redefined as the replacement of some term by its image under the 

contraction function, if the function is defined for that term. 

The following lemma is entered for the sake of completeness 

but is not used in the sequel. Readers may skip this lemma. 

Lemma 1. If f is a formula for the form 't^ > t-' and 

V, v„, . . •, V are the variables in the non-fixed part of f, 
i z n 

then there are closed terms t', t', t', . . ., t' , such that if 
1 2 3 n 

f is not a theorem then 

[t'^, t'^, . . ., t'^/v^, v^, . . • v^] f 

is not a theorem. 

Proof: If t^ > t- is not a theorem, then either t^ is not a 

redex, or t, is not the contractum of the redex t̂ .. 

Case 1. It t^ is not a redex, then either the head of t^ is 

not a combinator or the degree of the head of tp. is not equal to the 
0 

order of the combinator that leads t̂ j. 

Subcase 1.1, If the head of t^ is not a combinator then either 

tQ is a variable or t^ is a non-atomic term. If t^ is a variable then 

for any constants c,, c„, . . ., c 
•̂  1 2 n 
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1 [c^ c^, . . ., ĉ /vĵ , V2, . . ., v^] f 

is not a theorem, since 

[c^, c^, . . ., cjv^, v^, . . ., v^] tQ 

is a constant and no constant can be a redex. If tQ is a non-atomic 

term but its head is a variable v. then for any t', t'> • • •> t' 

such that t'. is a constant for all j 9̂  i and t', is a closed redex 
J 1 

[t'^, t'2, . . ., t'^/v^, V2, . . ., v^] f 

is not a theorem, since the degree of the head of the term 

[t'^, t'^, . . 0, f^/v^, V2, . . ., v^] tQ 

is greater than the order of the combinator that leads the term. 

Subcase 1,.2. If the degree of the head of t^ is not equal to 

the order of the combinator that leads it, then for any constants 

^1' ^2' • • •' ̂ n 

Lc^, C2, • . ., c^/v^, V2, . . . v^] f 

is not a theorem, since substitution by atoms does not modify the 

boundary of the terms and therefore does not modify the degree of 

their leading elements. 

Case 2. ^^ ^1 ^^ ^^^ ^^^ contractum of the redex t̂^ and q^ 

denotes the presentation pattern of the combinator leading t̂ ., 

and q- denotes the combination pattern of the same combinator, then 

either the boundary of q̂  is not a level of resolution of t-, or 

it is, but there exist addresses o^ and a^ such that C^ is in the 

variable space of q̂  and a is in the boundary of q and such that 

CT̂ Cq̂ ) = (^i(^i) but CT̂ CtQ) ^ cr^(t^). 

Subcase 2.1. If the boundary of q- is not a level of resolu

tion of t- then for any constants c,, c„, . • ., c 
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[c^ C2, . . . c^/v^, v^, . . • v^] f 

is not a theorem, since substitution by atoms does not modify the 

boundary of the terms and therefore the boundary of q, is not a 

level of resolution of 

[c^ c^, . . ., cjv^, v^, . . ., v j t^ 

either. 

Subcase 2.2o If the boundary of q- is a level of resolution 

of t̂  and there exist addresses c^, Q- such that a^ is in the variable 

space of q̂j and ĉ  is in the boundary of q- and ̂ nCqn) ~ CT, (q̂  ) but 

apj(tpj) f a-(t-), then either '̂ n(t/̂ ) and â  (t̂  ) are not structural 

identical or they are structural identical but not frame identical. 

If cĴ Ct̂ ) and a-(t^) are not structural identical then for any 

constants c-, c^, . o ., c , 
1 2 n 

[c^, c , . . ., c /v^, V , . . ., V ] f 
i z n i z n 

is not a theorem, since substitution by atoms does not modify boundaries, 

and therefore it does not modify structures either. If o^{t^) and 

a-(t-) are structural identical but not frame Identical then there 

must be an address a^ in their boundary such that a^{a^{t^)) f a„(a-(t-)) 

If oAoAt^) and a„(a-(t-)) are two different constants then for any 

closed terms t'-, t' , . . ., t' , 
1 2 n 

Lt'^, t'^, . . ., t'^/v^, v^, . o ., v^] f 

is not a theorem, since constants are not modified by substitution. 

If a„(aQ(tQ)) is a constant c and a-(a„(tpj)) is a variable v. then for 

any closed terms t', t', . . ., t' such that t', ̂ ^ c, J 1' 2' ' n 1 ' 

[t'^, t'2, . . ., t'^/v^, V2, . . ., v^] f 
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is not a theorem, since the frames of the components of the resulting 

terms in the addresses QQ and a- respectively are not equal. The 

case in which a_(a-(t-)) - c and c^ic^it^)) is a variable is the 

same case as the preceding one. Finally, if ̂ oĈ n̂ '̂Ô ^ ^^ ^^^ 

variable v. and a^(a-(t-)) is the variable v. then for any closed 

terms t ' , t ' , . ..,t',ift'.?*t'. then 
1 2 n 1 J 

[t'^ t'2 . • . t'^/v^, V2, . o ., v^] f 

is not a theorem by the same reason as in the previous three cases. 

Immediate Reduction. It may be the case that a term is not 

a redex, but some component of it is indeed a redex. If it is desirable 

to be able to replace every component of a term that is a redex by 

its contractum then the rules of left and right monotony should be 

added to contraction. The predicator *->* is called immediate reduc

tion. 

It is said that t̂ . immediately reduces to t-, t,̂  -> t,, if and 

only if t- results from the contraction of exactly one of the redexes 

in t^- If tp. does not have redexes, then it is called a normal form, 

and it cannot immediately reduce to any term. 

Null redexes. A null redex is a redex that contracts to itself. 

The redexes in the axioms of reduction cannot be null, since no primi

tive term can be a free term. Therefore, null redexes can only be 

obtained by substitution. Thus, if 

U-T 1 1 > U-l 1 ] ,gN 
ti t„ .0. t t- t^ ... t 
1 2 n 1 2 n 
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then the axiom of reduction corresponding to the combinator U must 

be of the form 

U - 1 — r r 1 > V.^—1 r 1 (9) 
V- V_ ... V. ... V V- V^ ... V. ... V 

1 2 J n 1 2 J n 

Hence, the combinator U must have a duplicative effect in the sense 

that the variable v. occurs twice in the combination pattern of U. 
J 

The simplest null redex is the one generated by the axiom 

of reduction 

U-̂  > v^n (10) 

^1 ^1 

that by substitution generates the rule of reduction 

Un > Un 
U U (11) 

Lemma 2. If f is a formula of the form 't» -> t ' and v-, v„, 

. . ., V are the variables in the non-fixed part of f, then there are n r » 

closed terms t' , t' , . . ., t' such that if f is not a theorem then 
1 2 n 

[t'^, t'^, . . ., t'^/v^, v^, . . ., v^]f 

is not a theorem. 

Proof: Let a, a' be addresses in the set of addresses X) of the 

combinatory calculus, and let <» the partial ordering that generates 

the tree of addresses. Let Redex(a(t)) be true if and only if a(t) 

is a redex, and Var(a(t)) be true if and only if a(t) is a variable. 

Let [/] be the representation of the substitution 
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[t'^j t'^, . o ., t'^/v^, v^, . . ., v^]. 

By definition of immediate reduction 

KtQ->t^) iff (3a)(Redex(a(tQ)) & (a*)(a'fo6.'-(a'<^a)^G*(tQ) =a'(t^)) 

6c h (a(tQ) > a (t^))). 

that is 

~ h (tQ -> t^) iff (a)( Redex(cr(tQ)) r» ((3a')(a' ?̂  a & -(a* <Q a) & 

a'(tQ) ?^a'(tp) v^Ma(tQ) > a(tp))) 

and also 

--KC/ltQ -> C/lt^) iff (a)( Redex(a([/]tQ))i^ ((3a')(a' ?̂  a & 

-(a* <Q a) 6ca'([/]tQ) ?^a'([/]tp) v-^ Ka([/]tQ) > a([/]t^)))) 

To prove that 

~ \- (tQ -> t^) z> ~ V- ([/] tQ -> [/] t^) 

is the same as proving that 

(a)( Redex(a(tQ)) ̂  ((^a')(a'^ 6c~(a'<Qa) & a'Ct^) ?^a'(t^)) v 

~ KaCtQ) >a(t^)))) 

implies 

(a)( Redex(a([/]tQ))z> ( ( 3 a ' ) ( a ' f a 6. --(c' <Q a) 6. a 'CL/l t^) ^ 

a ' ( [ / ] t p ) ) v ~ K a ( [ / ] t Q > a ( [ / ] t p ) ) ) 

and this is an immediate consequence of proving that 

a) Redex(a([/] t^)) iff Redex(a(tQ)) v Var(a(tQ)) 

b) Var(a(tQ))r»~Ka([/]tQ) > a([/]t^)) 
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c) (3a')(a' ̂ 'a 6c~ (a* <Q a) fica'Ct^) ̂̂  a'(t^)) 3 

(3a')(a' foe.-- (a' <Q a) &a'([/] t^) =a'([/] t^)) 

d) Redex(a(tQ)) &~f-(a(tQ) > a(t^)) 3 ~ h((j([/] t^) > 

a([/] t^)) 

In order to satisfy a) above, the terms t' t', . o ., t' 

in the substitution should be redexes. 

In order to satisfy b), the redexes selected should be such 

that if one is a substitute for a variable in some address then its 

contractum should not be identical to the component in that address 

after substitution has been made. To satisfy c) and d) it is 

sufficient that 

(G)(G eE&a(tQ) tG(t^) ^a([/] t^) ̂ ^ a([/] t^)) 

The only assertion that remains without proof is that for any 

combinatory calculus a set of closed terms t', t' . . ., t' 
L Z n 

that satisfy a) through d) existso 

In effect, any combinatory calculus has at least one constant, 

and therefore at least one axiom of reduction. By the rules of 

formation, a denumerable infinite set of closed terms can be generated 

from the set of constants; therefore, substitution by closed terms 

on the axioms of reduction generates a denumerable infinite set of 

closed terms that are redexeso From this initial set of eligible 

redexes are excluded those which are components of either t^ or t^; 

since there are only a finite number of them, the resulting set of 

eligible redexes is still denumerable infinite. The null redexes 

are also excluded to satisfy condition b) above in the case that 
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aCtg) = a(t ); the resulting set is again denumerable infinite, 

since for every null redex that is generated from some axiom of 

reduction there is at least one non-null redex generated from 

the same axiom. All those redexes whose contractum is a component 

of t are also excluded; since there are only a finite number of 

them, the resulting set of eligibles remains denumerable infinite. 

From this set the terms t' t' , . • ., t' can be selected in a 
1 2 ' ' n 

form that conditions a) through d) above are satisfied. 

Combinatorial Completeness 

It is often necessary to analyze the relationship between terms 

that have been obtained by successive contractions from other terms. 

To do that, transitivity is added to immediate reduction; if reflex-

ivity is also included, then a partial order relation among terms 

(called reduction and characterized by the predicator =>) is obtained. 

Sometimes this relation is called weak reduction to distinguish it from 

strong reduction which in addition includes the rule of extensionality. 
In this thesis the distinction is unnecessary since strong reduction is 

not considered. 

A combinatory calculus is said to be combinatorial complete if 

and only if for every term t and for every variable v there is a term, 

denoted by [v] t and called the functional abstraction of t with 

respect to v, such that v is not a component of [v]t and 

[v]tn =^ t (12) 
"V 
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Indeed, it is always the case that if the calculus is combina

torial complete, not one but many terms satisfy the conditions for 

functional abstraction of some term t and variable v. Therefore, in 

order to assure the uniqueness of the notation [vj t, an algorithm 

should be provided to produce the functional abstraction given the 

term and the variable. Such algorithms depend on the combinatory 

base of the calculus but are not unique for that calculus; examples 

of such algorithms can be found in Curry and Feys. The existence 

of an algorithm is a sufficient condition for the combinatorial com

pleteness of a calculus. 

The notation for functional abstraction can be generalized 

for the case of more than one argument; thus [v,, v„, . o ., v J t 

stands for [v,] Lv^j • . ., [v ] t, such that 

[v^, v^, . . o, v^]tn 1 — 1 => t (13) 
VT V„ ... V 

1 2 n 

It may be observed that for any free term t in a combinatorial 

complete calculus, if v^, v„, . . ., v are the variables in the 
1 2 n 

support of t, then the formula (13) resembles an axiom of reduction. 

Therefore, if the appropriate considerations are made, then in order 

to mirror any calculus, it is sufficient to have a combinatory base 

with the minimal number of combinators required for combinatorial 

completeness. 

Lemma 3. If f is a formula of the form 't_. => t ' and 

V-, v„, . « ., V are the variables in the non-fixed part of f, 

•"•Curry and Feys (1958), pp. 190-194, 
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then there are closed terms t', t', . . ., t' such that if f is 
1' 2 ' n 

not a theorem then 

[t-,, f^. . . ., tWv^v^. . . ., v̂ ] f 

is not a theorem. 

Proof: The procedure used in the proof of lemma 2 can be 

extended to the case of more than two terms; that is, to the case 

of finite chains of immediate reductions such as 

% -> q̂  -> • . • -> q„ 

In such case 

Kqo -> q̂ L̂ -̂̂ -̂ l̂ /̂ qo "̂  ^^\^ 

and 

\-(q^ -> q2)^~H([/]q^ -> C/lq̂ ) 

and so on. 

Then 

— h(qo -> q̂ ) V - f-(q̂  -> q^) V . . . v ~ Kq^-i -> %) 

implies 

V . ..V ~ |'([/]q̂ _̂  -> [/]q̂ ) 

and since 

t.^t^^uit^fint^ 
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Then 

- h( to => t ^ ) r . ((q^Xq^) .o . (q^) (q^ = t^ & q^ = t^ :^ (~ h(qo->q^) 

V o.. v ~ l-C^n-l "^ ^n^ ^ ^0 ^ ^1^ 

and 

~ K t o -> t^) = ( (q^Xq,) . . . (q„)(qo = [ / I tg & q„ = [ / ] t^ => 

e I- ([ / ]qo -> ll/]q^) V . . . v ~ ( - ( [ / ] q ^ . ^ -> [ / ]q^))) & Vlt^ t C/lt^) 

and 

h(tQ => t ^ ) 3 - K [ / ] t Q ==> [ / ] t^ ) 

Combinatory Equivalence 

In many interpretations of combinatory calculi, a partial 

ordering is not a strong enough relation between terms because 

equivalence must be countenanced. In this thesis two types of equiva

lence relations among terms are considered: convertibility and ex-

tensional equivalence. 

Convertibility. This relation is obtained by including the 

rule of symmetry with the rules that define reduction. This relation 

is characterized by the predicator '<'^', and its most important 

property is the so-called Church-Rosser property, which says: 

If tQ <=> t. then there is a t- such that 

tQ => t^ and t^ => t^ (14) 
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Since the right-to-left implication in (14) is iiranediate by 

transitivity and symmetry, then convertibility can be defined as 

follows: t^ and t̂  are convertible if and only if there is some 

term t- to which both t^ and t- reduce. 

Lemma 4. If f is a formula of the form 't^ <=> t-' and 

V,, v^, . . o, V are the variables in the non-fixed part of f, then 

there are closed terms t', t', . o ., t' such that if f is not a 
1' 2 n 

theorem then 

[t'^j t'^, . . ., t'^/v^, V2, . . ., v^] f 

is not a theorem. 

Proof: In the same form t h a t lemma 3 

~ \- (tQ <=> t^ ) Z> (t^)(- h (tQ => t^ ) v ~ l-(t^ => t ^ ) ) 

•=>it^)i- h ([ /] tQ => C/lt^) v ~ K [ / ] t ^ => C/l t^)) 

=>~H([/]tQ<=> [/]t̂ ) 

Extensional Equivalenceo This relation among terms is obtained 

by adding the rule of extensionality to convertibility. It is char

acterized by the predicator '.=.' and it is the most powerful relation 

of the combinatory calculi studied in this investigation. 

Lemma 5. If f is a formula of the form 't̂ . .=. t- ' and 

V,, v_, . . ., V are the variables in the non-fixed part of f, 
then there are closed terms t' , t' , . o ., t' such that if f 

i z n 
is not a theorem, then 

[t'^, t'^, . o ., t'^/v^, v^, . . ., v^]f 

is not a theorem, provided the combinatory calculus is combinatorial 
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complete. 

Proof: This is done by proving that if for all closed terms 

t' t' t' 

[t'^, t'^, . . ., t'^/v^, v^, . . •» %3f 

is a theorem then f is a theorem; and this is proven by induction. 

Initial Case: If for all closed terms t' , [t' /v^] f is 

a theorem then f is a theorem. 

If f is of the form 't^ .=. t ' and t' is any closed term 

then 

a) [t'^/v^] tQ .=. [t'^/v^] t^ by hypothesis 

b) [v^] tn.-^ .-. [v^] t̂ —I by combinatorial completeness 
1 U j_, ••- ^ t' 

^ ^ and (SBT) 

c) Cv,] IQ .=. [v^] t- by extensionality. 

d) [v^] tQ-, . = . [v,] t̂ -| by left monotony 

e) tp. .=. t- by definition of functional 

abstraction. 

Induction Case: Let us suppose that if for all closed terms 

^ 1 ̂  2' • • •' ̂  n' 

''^'l' ^'2' * * *' ̂ 'n^^l' ̂ 2' * * *' ̂ n"̂  ̂  

is a theorem then f is a theorem. Then prove that if for all closed 

terms t'^, t \ . . . . t'^ t'^+^. 

[t'^, t'^, . . ., t'^, t^+/v^, v^, . . . v^+^]f 
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is a theorem then f is a theorem. 

k [t-^, t'^, . . .. tWv^, v^. . ... v„][f^+^/v^+^]f 

by hypothesis 

^ ^^'n+l'\+l^^^'V ''2' ••" ''nS' '2' •"' 'n̂ ^ 

by property of substitution 

Kt'^, t'2, ..., t'^/v^, v^, .0., vjf 

by initial case 

I- f by hypothesis of induction 

Inverse of Substitution 

A predicator p is said to have an inverse of substitution in a 

combinatory calculus, if and only if for any terms t^ and t.. if v, , 

Voj • • •» V are the variables in their non-fixed part, and for any 
z n 

closed terms t'- t „, . • ., t 
1 2 n 

[t'^, t'2, . . o, t'^/v^, v^, ..., v j (tQ p t^) o h tQ p t^ (15) 

Theorem 1» All the predicators in the combinatory calculi 

here described have inverse of substitution. 

Proof: The proof is an immediate consequence of lemmas 1 to 5. 
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CHAPTER III 

COMBINATORY LOGICS 

In this chapter a semantic framework for the combinatory 

calculi described in the previous chapter is specified. The systems 

here presented are called combinatory logics in the sense that their 

sjnitax as well as their semantics has been completely formalized. 

No confusion should arise with the traditional connotation of com

binatory logic as the study of functional application and functional 

abstraction, where most of the primitive ideas have a fixed inter

pretation. 

Referential Interpretation 

An interpretation of a calculus is a correspondence between 

the formulae of the calculus and certain statements which are signi

ficant without reference to the calculus. Curry and Feys call the 

latter statements contensive statements. A calculus may have an 

interpretation in another calculus or it may have a completely 

intuitive interpretation. A particular type of interpretation, 

2 
called referential interpretation, assigns to the terms in the 

•'"Curry and Feys, (1958) p. 21 

^Van Fraassen, (1971) p. 107. 
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calculus elements in some domain of discourse, and to the predicators 

in the calculus relations defined in the domain of discourse. In 

this form, the contensive statements are membership statements; that 

is, statements asserting that an element is or is not a member of 

some set. 

Realizations and Models 

A realization of a combinatory logic is an ordered pair 

<D, 6> such that: 

a) D is a non-empty set called the domain of discourse of the 

realization. 

b) 6 is a function called the interpretation function of the 

realization, and it is defined by: 

(i) for every constant c, 6(c) e D, 

2 
(ii) for every predicator p, 6(p) c D , 

(iii) 6(-i): D̂  -> D. 

c) Tis the set of all assignment functions YJ such that 

Y : V -> D. 

d) The interpretation of any term t for some assignment YJ 

denoted by t[Y] is determined by the rules 

(i) If t is a constant then t[Y] ~ 6(t), 

(ii) If t is a variable then t[Y] ~ Y(t) 

(iii) If t is a non-atomic term then 

tCY] = 6(-i) < 0(t)[Y], l(t)[Y] > 

It may be observed that if t is a closed term then t[Y] is the 

same for any assignment YJ in this case the notation 6(t) may be used 



36 

instead of tCy] to emphasize the fact that the interpretation of 

such a term is independent of the assignment. 

e) The satisfaction of a formula f by some assignment YJ îi 

a realization R, is denoted by R 1= fCy] and is determined 

by the rule 

RI=(tQ p t^) [y] iff < tQ [y], t^ [y] > e 6(p) 

for any predicator p. 

If a formula f is satisfied in a realization R, by every 

assignment, R N f, then f is said to be valid in R. R is said to 

be a model o£a combinatory logic CL if and only if every theorem 

of CL is valid in Ro The set of all models of CL is denoted by 

STR(CL)o 

Semantic Completeness 

A combinatory logic CL is semantic complete if and only if 

every formula of CL that is valid in all models of CL is a theorem 

of CL. 

Theorem 2. Every combinatory logic specified by the syntactic 

and semantic frameworks described above is semantic complete. 

Proof: This theorem is proven by showing that if CL is the 

combinatory logic in question then for every formula f of CL that 

is not a theorem there is a model of CL, and an assignment of that 

model for which f is not satisfied. 

It is evident that a free model of CL is the model desired. 

This model is constructed as follows: 
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a) The domain of discourse is the set of all atoms of CL and 

all the tree-like structures obtained from the infixing 

of the corner sign ' n ' between any two terms; 

b) 6(-i) is the operation of infixing the corner sign between 

any two terms to form a new term; 

c) 6(p) for any predicator p is the set of all ordered pairs 

< t^, t̂  > such that t^ p t- is a theorem of CL. 

Thus, by construction, if 't̂ . p t ' is not a theorem then 

< tpj, t- > ^ S(p), and therefore it is not satisfied by an assignment 

Y such that, for any variable v, Y (v) ~ v. 

Since every combinatory logic has a free model then it is 

semantic complete. 

Programmatic Interpretation 

The notion of satisfaction of a formula by some assignment in 

a model is the fundamental notion of the referential interpretation 

of a calculus; however, if the calculus is to represent actions, then 

a notion more appropriate than satisfaction is required. Success and 

failure of a process for a goal in a model seem to be the concepts 

demanded. An interpretation of a calculus in which the notion of 

success is the fundamental notion is called a programmatic interpre

tation of the calculus. Thus, in such interpretations, instead of a 

domain of discourse, there is a goal language in which goals are for

mulated. For every term that somehow represents a procedure (let us 

call it a program) a set of processes relative to the goal language 

is determined, and the germane contensive statements in this setting 
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refer to the co-success of processes relative to goals. 

Goal Language 

A goal language is a descriptive language used for the formula

tion of goals, and relative to which the success of processes is 

determined. Thus, it may be said that a goal language GL is a first 

order semantic system; that is, it has a formalized morphology and 

a formalized referential semantic framework. But GL does not have 

a theory proper that characterizes its non-logical constants. Hence, 

in the context of GL, it is proper to use the notion of a realiza

tion, (i. e., any model of the lower predicate calculus that has the 

appropriate structure) instead of the notion of a model. 

Processes. If R = <D,6> is a realization of GL, V is the 

r - V 
set of variables of GL, and I - D is the set of assignments for 

R, then a process TT in R can be defined as a function that maps the 

natural numbers into assignments; that is 

TT : a; -> r (16) 

A process 77 is said to be bound for some set of assignments 

if and only if there is a natural number n such that for every 

natural number m if m > n then TT(m) is a member of the set. A 

particular case is when the set has only one element; in this case, 

the process is called terminating and the assignment in the set is 

called the terminal assignment of the process. 

Goals. If G is a set of ordered pairs of formulae of GL, and 

g "̂  <go» &i^ ^s a member of G, then g is said to be a goal. G is 
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called a goal set of GL. If R is a realization of GL, and g. is a 

formula of GL, then the satisfaction set of g. in R, denoted by 

H(g.)> is defined as the set of all assignments that satisfy g. in 

R. Therefore, for every goal there corresponds a pair <H(gQ), H(g^)> 

of sets of assignments called the satisfaction space of the goal 

in the realization R. 

If TT is a process in some realization, and g is a goal in the 

goal set G, then it is said that 'n' succeeds for g, Succ (TT ,g), if 

and only if either 7r(0) is not a member of HCg^) or IT is bound for 

the set H(g-), It is said that rr fails for g if and only if it 

does not succeed for g. 

Two processes TT and TT' in some realization are said to be 

co-successful, Cosucc ( TT , TTOJ if and only if for every goal g in 

the goal set G 

Succ (TT, g) = Succ (TT*, g). (17) 

As a consequence of the two-way implication in its definition, 

Cosucc is an equivalence relation, and as such, it generates a parti

tion of the set of all processes in the realization. This partition 

remains the same or becomes finer when new goals are included in the 

goal set. That is, it may be the case that two processes that are 

co-successful for some goal set G are not co-successful when a new 

goal is included in G. 

If the morphology of the goal language is extended, but the 

goal set is not modified, then such extension is irrelevant for the 
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effects of goal satisfaction. Therefore, it may be assumed that the 

goal language is as big as desired and that the goal set is what 

determines the relevant elements of it. 

Process-Generating Agents 

P is a process-generating agent for some realization of the 

goal language GL if and only if for some process TT in that reali

zation and for all natural number i, '77'(i+1) is uniquely determined 

from TTCi) by Po Thus, for the generation of a process "TT, it is 

required that both the initial condition ^(0) = y and the process-

generating agent P be specified. This is denoted by '̂  = < P, y -̂» 

A function from the set of assignments into the set of assign

ments is an acceptable generating agent, but processes generated by 

it are forced to be singular. The processes generated by the iteration 

of the function are either non-repeating or periodic. That is, if "TT 

is a process generated by such a function, and V(±) = '^(j) then 

Tf(i+1) - 7r(j+l)o Non-singular processes must be generated by some 

other kind of agent. 

Programs. The executors of programs can also be considered to 

be process-generating agents. These type of agents accomplish their 

task by means of three mechanisms: a) a reading mechanism that maps 

any initial assignment in a realization of the goal language into some 

internal condition of the executor, determined by a suitable interpre

tation of a programming language; b) an executing mechanism that generates 

new internal conditions from the previous ones; and c) a writing me

chanism that maps every internal condition into some assignment in the 
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realization of the goal language. 

The internal conditions mentioned above are functions mapping 

the set of variables of the programming language into a set of values 

that are generally elements in a suitable interpretation of the 

programming language. These internal conditions are what McCarthy 

calls state vectors. Some formalizations identify the set of variables 

of the programming language with the set of variables of the goal 

language, and the set of values with its domain of discourse. In 

such cases the reading and writing mechanisms become trivial; the 

identity functions and then the executing mechanism completely 

identify the process-generating agent. 

The executing mechanisms for programming languages have 

two principal components: one fixed for the programming language 

(the interpreter); the other variable (the programs)^ Thus, if a 

programming language has a defined interpreter, then whenever a program 

is specified in that language the executing mechanism corresponding to 

that program is completely determined. 

Combinatory Process-Generating Agentso Let us suppose that 

the set of variables of a combinatory logic CL and the set of variables 

of the goal language are identical, and denoted by V; and suppose that 

T denotes the set of terms of CL, T denotes the set of closed terms 
c 

of CL, and Z) denotes the set of addresses of CL, If R = < D, 6 > is 

a realization of the goal language, then the quadruple < ̂ , p, a, 6 > 

•'"McCarthy (1962), p. 24. 
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is a programmatic interpreter for CL in R if and only if 

9 

? 

a 

D -> T ; ̂  is called the representation function; 
c 

T -> T ; P is called the execution function; 
c c 

V -> Z/ ; a is called the allocation function; 

and 6 is an interpretation function such that < D, 6 > is a 
c c 

referential model of CL. 

For any term t in CL, a programmatic interpreter completely 

defines a process-generating agent for R, denoted by the quintuple 

< (f>, fy a, t , t > as follows: 

a) The elements that correspond to the assignments in R are 

constructions of closed terms represented in the tree of 

addresses of CL. 

b) The term that corresponds to the initial assignment is 

determined by a realization-dependent reading mechanism 

given by the function (p and substitution. 

c) There is a realization-independent executing mechanism 

that generates a sequence of terms by the iteration of the 

function p. 

d) There is a realization-dependent writing mechanism, con

structed from the functions a and 6 , that generates 

assignments in R corresponding to terms in CL. 

Thus, if t^ is the term corresponding to the initial assignment 

YJ and V,, v«, . . ., v are the variables in the non-fixed part of t, 

then 

tQ = [<P(Y(V^)), ^(Y(V2)), ..-, y'(Y(v̂ ))/v̂ , v^, ..., vjt ; 
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for all i greater than zero 

t, = P(t,.i) ; 

and ±fV = <^, Pi Oif 6 , t, y ^ is the process generated by the 

agent < V̂  , /̂  , a, 6 , t > and initial assignment Y> then for all 

positive integer i and variable v 

7r(0) = Y 

7r(i)(v) =6 (a(v)(t.)) if a(v)(t.) is defined 
c 1 1 

and Tr(i)(v) ~ y (v) otherwise. 

These considerations can be illustrated by the following 

diagram 

"^(0) = V 

(/),t 

•0 F 

^(1) 

a,6 

•^ t . 

P 

1T(2) . . 

a,6 

•^ t , 

F 

^a) 
a,6 

-> t 
F 

The sextuple < D, 6 , (p , p , a, 6 > is a programmatic model 

of CL and the goal language GL if and only if < D, 6 > is a realiza-
G 

tion of GL and <^,/^,a, 6 > i s a programmatic interpreter for 
V* 

that realization. 

Programmatic Equivalence 

If R is a realization of GL and P^ and P̂  are two process-

generating agents defined for R, then they are programmatic equiva

lent, Peq (Ppj, P-.)? if and only if for every assignment Y 

( <P^, Y >, < P., Y > ) (18) 
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Two terms t_ and t are programmatic equivalent, Progeq (t̂ ., t ) 

if and only if for every programmatic model < D, 6 , Ẑ', p, a, 6 > 
G c 

Peq (<^, f, a, 5^, tQ >, <cp, f>, a, 6̂ , t^>). (19) 

From their definitions, it is immediate that Peq, and Progeq 

are equivalence relations, but since they involve much semantic 

machinery it is desirable to have a syntactic substitute for them. 

That is, a necessary and sufficient condition for two terms to be 

programmatic equivalent is for them to be syntactic equivalent. The 

next theorems determine the conditions under which this can be done 

for a combinatory logic. 

Theorem 3. For every predicator Eq in CL that satisfies 

the rules of reflexivity, transitivity, and symmetry, and that has 

an inverse of substitution, there is a non-empty goal set G for which 

If Progeq (t^, t ) then \- t^ Eq t . 

Proof: Let g ~ < g^, g, > be the only goal in G, and let 

M = < D, 6 , ^ t P 9 Oi, ^ > b e a programmatic model such that 
G c 

a) Every formula of CL is valid on < D, 6 > if and only 

if it is a theorem of CLo Such a model exists since 

CL is semantic complete in the referential sense and 

< D, 6 > is a referential model of CL by definition 
c -̂  

of programmatic model. 

b) 6 £. ̂ p» This is possible if we assume that the morphology 

of CL is included in the morphology of the goal language. 

This is an assumption that can always be made without side 
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effects, as has been mentioned before. 

c) < D, 6 > )= g [y] . This is possible since g^ may be 

a tautology. 

d) g- is a formula of the form 't Eq v ' where t is any 
1 g g g 
closed term and v is a variable such that Qf(v ) is the 

g g 

identity address. 

d) (t Eq p (t)) for any term t. 

Now let us prove that for the model M just described 

If Peq («f, p , CV, 6̂ , tQ>, < ^, P , a, 6̂ , t^>) then V (t^ Eq t^) 

This is the same as proving that for all assignment y 

If Cosucc (<^, p , a, 6̂ , tQ, Y>> < ̂ > P > cv> Ŝ > t^ Y>) then I- (t^ Eq t^) 

lo Succ (<'P,P , oi, 6̂ , tQ, Y>, g) iff 

2. <D, 6 > ̂i g [ir(m)] where m is any natural number greater 

than some natural number n, and 

TT(m)(v) = S^Cc^CvXf'^CCvCYCv^)),..., H^(Y(Vj^))/v^,.oo,Vj^]tQ))) 

or TT(m)(v) ~ Y(v) from condition c 

3. <t [Tr(m)], v [ Tr(m)]> e 6̂  (Eq) from 2 and definition 
g g G 

4. <6^ (tg), 6^ (p"* ([^(Y(v^))/v.]tQ))> e 6̂  (Eq) from 

conditions b, d 
5. h (t Eq f™ ([ ̂ (Y(v.))/v.]t^)) from 4, and condition a 

6. > (t Eq [ (^(Y(v.))/v.]tQ) from 5, condition e, & TRN 

7. Ktg Eq [<^(Y(v^))/v^]tQ) s Succ (<(/',p, a, 6̂ , t^, Y>, g) 

from 1 - 6 



46 

8. h (t Eq \.Cp(y(v^))/v/]t^) = Succ (<% f, a, 6̂ , t^, Y>, g) 
g 

from 7 

9. ^ (t^ Eq [(/5(Y(v,))/v,]t^) = h(t^ Eq [^(Y (v, ))/v,]t J 
g I I U g 1 1 1 

from 8, 7 

10. h [^(Y(v^))/v^]tQ Eq l(f(y(v^))/v/]t^ from 9, TRN, SYM 

11. H tQ Eq t̂  since Eq has an inverse of substitution and 

tp has not been restricted. 

Since (M)(Peq(PQ, P^)) implies that (3 M)(Peq (PQ, P ^ ) ) then 

Progeq (t^, t^) implies f-t̂  Eq t^. 

Theorem 4. For every predicator Eq in CL that satisfies the 

rules of reflexivity, transitivity, and symmetry and that has an 

inverse of substitution, if the set of programmatic models is 

restricted to those models that satisfy 

a) 6^c6g 

b) f- t Eq p (t) for every term t 

c) a(v ) is the identity address for some v 
g g 

then there is a non-empty goal set G for which 

Progeq (t^, t^) = I- t^ Eq t^ 

Proof: Let g "= < gQ, g- > be the only goal in G, then the 

proof of the theorem is in the inverse order of the proof of the 

previous theorem, with the difference that in that theorem conditions 

a), b ) , c) are satisfied by one model only and in this theorem it is 

necessary to force them to be satisfied by all models. 
Theorem 5« If for every programmatic model of CL the execution 
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function p is restricted to satisfy the condition that t̂ . Eq t 

implies the existence of a natural number n such that 

f(t^) = f(t^), 

then for every goal set G, Eq is a sufficient condition for programmatic 

equivalence. 

Proof: By construction, for every sequence of terms generated 

by the iteration of the execution function, there corresponds a process 

in every model determined by the reading and writing mechanisms of 

the programmatic interpreter of the model. If both sequences of 

terms are such that after some natural number they have the same 

terms, then the corresponding processes have the same assignments 

after the same natural number, and therefore they are bound for the 

same sets of assignments. Hence, they co-succeed for any goal in 

the model. 

By hypothesis, and based on the rule of substitution and the 

conclusion of the preceding paragraph, it may be further concluded 

that Eq is a sufficient condition for programmatic equivalence. 
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CHAPTER IV 

CONCLUDING REMARKS 

Conclusions 

Completeness of Convertibility 

The most important conclusion of this investigation is what may 

be called the programmatic completeness of convertibility. From 

theorem 1, it is known that '<=>' has an inverse of substitution; it 

therefore has all the qualifications needed by the predicator Eq 

in theorem 3. There is thus a goal set for which convertibility is 

a necessary condition for programmatic equivalence; furthermore, for 

every goal set which includes that minimal goal set, convertibility 

is also a necessary condition for programmatic equivalence. 

If the restriction indicated in the formulation of theorem 5 

is made, then convertibility is a necessary and sufficient condition 

for programmatic equivalence for any goal set that includes a goal 

of the form: 

<gQ, t <=> v> (20) 

where g^ is a tautology, t is any closed term, and v is any variable. 

This goal may be called a kernel goal of convertibility. 

The importance of this result is that mechanical proofs of 

convertibility can be used for the proof of programmatic equivalence 

of programs in the same, or even different, programming languages. 
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In the way that programmatic models were constructed for combinatory 

logics, programmatic models can be constructed for programming 

languages, and programmatic equivalence can be formulated in those 

models as it was formulated for the models of the combinatory logics. 

Moreover, if composed programmatic models for two programming 

languages are constructed, then the problem of compiler correctness 

for these languages can be formulated, studied, and hopefully, proved. 

Thus, if the correctness of a compilation from some programming 

language to a combinatory logic is proved, then the proof of the 

programmatic equivalence of programs in that programming language 

can be reduced to the proof of the programmatic equivalence of their 

combinatory compilations, and this--as a consequence of the main 

result of this dissertation--corresponds to the proof of convertibility 

of such compilations. 

A warning should be made concerning the inclusion of a kernel 

goal of convertibility in the goal set with respect to the programmatic 

equivalence of programs in a programming language, since the possibility-

exists that such an inclusion may produce an undesirable effect in some 

language. This may especially be true in composed models where combina

tory compilers have been studied. 

Completeness of Extensional Equivalence 

The second important conclusion of this investigation is a 

consequence of theorems 1 and 4. From theorem 1 '.=.' has an inverse 

of substitution, and from theorem 4 '.==.' is a necessary and sufficient 

condition for programmatic equivalence for, some non-empty goal set G, 
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provided the appropriate restrictions are made on the set of models. 

The attractiveness of this result derives from the fact that 

extensional equivalence is a relation larger than convertibility and 

that, under some conditions in which the introduction of the kernel 

goal of convertibility might produce undesirable results, extensional 

equivalence may be an appropriate alternative. 

The deficiency of the result is that it requires a strong 

restriction on the set of goals and on the set of models; thus, the 

range of applicability of the result is not as broad as could be desired. 

Future Research 

The research here reported covers only one fundamental aspect 

of a wider program of investigation oriented towards the development 

of a logic of programming. The next steps to be taken in this 

direction are: 

1. Extend the notion of programmatic models, as defined for 

combinatory logics, to programming languages. Most of the 

work done in the area of semantics of programming languages 

accepts the notion of an interpreter transforming a state 

vector as the meaning of a program. Within the context of 

this dissertation, this notion is true when the programmatic 

model is a free model; that is, when the domain of inter

pretation of the model is the same as the set of values of 

the variables in the state vector. 

2. Develop a semantic framework for the programmatic interpreta

tion of compiling--in particular, compiling from a programming 
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language to a combinatory logic. In such a framework, 

define the notion of compiler correctness. Prove the 

correctness of some of the available translators. And 

develop a language-independent combinatory compiler that 

generates correct combinatory terms from programs in some 

programming language, given the program, the syntax of 

the language, and the programmatic semantics as defined 

in 1. 

3. Study the effect of the restrictions in theorems 3 - 5 

in selected programming languages, and examine the 

relationship between classical syntactical equivalence 

relations on programming languages and combinatory 

equivalence relations. Investigate possible extensions 

of the equivalence relations discussed in this dissertation. 

4. Compare the notion of goal as a pair of goal formulae 

in the goal language with the notion of goal in cybernetics. 

study the restrictions generated by considering goal as it 

is viewed in this dissertation. (A possible extension of 

this notion would be to consider goals as sequences of goal 

formulae.) 

5. Develop algorithms for the proofs of convertibility and 

extensional equivalence. However, it should not be forgotten 

that this problem has been proven undecidable for the most 

general case. 
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