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SUMMARY 

This thesis derives necessary and sufficient conditions for designs 

to estimate the slope of a response surface with minimal bias contribution 

to expected mean square error. It also investigates the traditional least 

squares estimation all-bias design for estimating slope and presents a 

necessary condition for the design which is easily calculated for a spher­

ical region of interest. 

The investigation demonstrates that in the case of a linear approxi­

mation to a quadratic response, the easily generated least squares esti­

mate of slope is unbiased for an all-bias design and is independent of 

design parameters. Two examples illustrate this significant result. They 

also show the importance of considering the full true relationship in 

selecting designs to estimate slope by minimum bias estimation. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Polynomial models are widely used in the physical sciences and in 

engineering to approximate the response of a system. The procedure usu­

ally is to gather observational data relating a response, say y, to a 

set of k independent variables, x^, x^,•••,x^, and then to fit an appro­

priate polynomial by least squares. One problem in this procedure is 

deciding on the degree of polynomial required. The desire for simple 

models often leads the experimenter to select a polynomial of too low 

a degree to adequately represent the mechanism producing the response. 

When the polynomial is of too low a degree, the error in the response 

includes not only random observational error, or variance, but also 

systematic error due to an inadequate model, or bias. 

In 1958, Box and Draper (2) demonstrated that in certain situa­

tions the bias error resulting from the choice of an inadequate approxi­

mating polynomial is a more significant contributor to expected mean 

square error than is variance. That disclosure stimulated considerable 

research, because at that time the criteria for selecting a response 

surface design were based on minimization of variance and considered 

bias only as a secondary measure of effectiveness. The main result of 

Box and Draper's research was the class of all-bias designs which 

attempted to select design parameters such that the bias contribution to 

expected mean square error was minimized. 
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These all-bias or near all-bias designs had a smaller expected mean 

square error than designs resulting from classical criteria (2). Further 

research indicated that in some, if not most, cases a still smaller 

expected mean square error might be achieved. In 1969, Karson, et al.« 

(3) introduced the concept of minimum bias estimation which minimized the 

bias component of expected mean square error by the choice of the esti­

mator. By using the resulting design flexibility to minimize variance, 

they were able to achieve a smaller expected mean square error than with 

the all-bias design. The result is a more effective design. 

1.2 Estimating the Slope of a Response Surface 

The data collected in an experiment, i.e., the response variable, 

is not always the variable of interest to the experimenter. In meteorology, 

for example, researchers use balloons to measure wind velocity. The bal­

loons are light enough that the velocity of the balloon may be taken as 

the actual wind velocity. It is not possible to measure the velocity of 

the balloon directly, but its exact position can be determined very accu­

rately. In this example the first derivative of the data, i.e., the slope 
* 

of the response surface, is the variable of interest. Similar problems 

occur in rocketry where the observed variable is position and the variable 

of interest is the first derivative (velocity) or the second derivative 

(acceleration) of the data. 

The development of effective designs to estimate slope has been 

considered from several viewpoints. Atkinson (l) proposed designs to 

estimate the slope of a response surface. He applied the Box-Draper 

effectiveness criterion and used least squares estimation. Lure and 

Example taken from Lure and Wenning (4). 
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Wenning (4) investigated the degree of polynomial required to provide a 

sufficiently accurate estimate of the first derivative of a data set. 

They also used least squares to estimate the unknown parameters. 

1.3 Statement of the Problem 

Previous efforts to develop designs to estimate the slope of a 

response surface have concentrated on least squares as the estimation 

technique. It would seem reasonable to expect that a smaller expected 

mean square error could be achieved when minimum bias estimation is 

applied to the problem. In fact, such a result has been shown when the 

response is represented by a polynomial containing only one independent 

variable (5). The main thrust of this investigation will be to apply the 

concept of minimum bias estimation to estimate the slope of a multifac-

tor response surface. 
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CHAPTER II 

LITERATURE SURVEY 

Munsch (5) has provided an excellent and thorough survey of the 

literature pertinent to experimental design criteria in response sur­

face methodology. He also organized much of the more important work and 

examined relationships among the various concepts and criteria. The 

interested reader is referred to that work. This chapter will present 

only those portions of the published works upon which this research is 

based. 

Box and Draper (2) proposed the criterion of minimization of 

expected mean square error over a specified region of interest as a 

measure of design effectiveness. They further showed that the expected 

mean square error, say J, may be expressed as the sum of two componentsi 

V, the variance and B, the squared bias. 

Let f|(£.) be a response which is a function of the vector of 

independent variables, i.e., • (?^, Z^t * • •'Sp)• ^ e assume that f)(£) 

may be truly represented by a polynomial of degree d^. We will approxi­

mate f)(̂ ) with the quantity y (£) where y (r) is represented by a poly-

is to be minimized on the average over the region R. We transform the 

vector [ to a vector, x. such that the center of the region R is at the 

origin of the x 4s. Thus x' » (x., x.,...,x ), and the expected squared 

2.1 Box and Draper 

nomial of degree d. < d The expected squared 

P 
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difference becomes 

e{y(i) - T,(x)}2 

To average the squared difference over R, we integrate over R and divide 

the result by the volume of the region R as follows* 

K f ify(a) - ti(x)}2 d(x) 
J R J 

where 

d(x) « d(x 1),d(x 2),.,d(x p) 

and 

K"1 - f d(x) . 
R 

In order to compare designs with different numbers of points we write the 

design effectiveness criterion. J, as 

6 R 

One then attempts to find experimental designs which will minimize J for 

a specific situation and model. 

Clearly, J may be more simply expressed. Squaring the quantity 

in brackets in (2.1.1), we obtain 

[y(x)] 2 - 2y(x)»,(x) + [«,(x.)]2 -

[y(x)] 2 - E2[?(x)] • E2[9(x)] - 2y(x)„(x) + h ( i ) ] 2 . 
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Taking expectation 

E[9(x)] 2 - i2[y(x)] + E2[y(x)] - 2E[y{i)],(a) + [ n(x)] 2 , 

thus equation (2.1.1) becomes 

J - J {E[y(x)] 2-E 2[9(x)]}d(x) +
N-|J{E[?(x)] -n(x)} 2d( 2) . (2.1.2) 

The first term in the right hand side of equation (2.1.2) is recognized 

as the variance of y(x) averaged over the region R, which was called V. 

Likewise, the second term is the squared bias averaged over R, which was 

called B. Therefore 

Karson, et al̂ .. (3) proposed a different approach to the problem 

of minimizing J, the expected mean square error. They assumed the pres­

ence of bias due to higher order terms than those present in the model 

and adopted a method of estimation aimed directly at minimization of that 

bias. 

Recall equation (2.1.2). Define e to be a random variable such 

that E(e) • 0 and Var(e) * a . The bias term is 

J - V + B 

2.2 Minimum Bias Estimation 

(2.2.1) 

where 

(2.2.2) 

is now a polynomial of degree d + k - 1 and 



y(x) - (2.2.3) 

i s a f i t t ed polynomial of degree d - 1. Then E[y (x ) ] i s a polynomial 

of degree d - 1, say 

E[9(x)] m • 

So equation (2.2.1) may be written as 

R 

J r - ̂ ^ ^ x ^ i i - ̂ ) ~ 2(a1 - i S ^ ' ^ ^ + ^ x ^ d U ) 

^ [(ii " ^ 1 ) V u ( a 1 - g.x) - 2(a1 - V 1 2 P 2
+ L ^ 2 2 £ 2

] > ( 2 ' 2 * 4 ) 

NK 
2 

where 

^11 * K I ^ijdCi.) (2.2.5a) 

**12 * K I (2.2.5b) 

li 2 2 * K J x ^ d t x ) • (2.2.5c) 
R 

Differentiating (2.2.4) with respect to and equating the results to 

zero yields 

which implies 



-1 • *1 + ^ 1 ^ 2 (2.2.6) 

- A£ , 

where 

a - h k X 2

] 

&• - tailed • 

The condition for minimum B shown in (2.2.7) is subject only to the 

quantity being estimable. 

Now, if we let y be the vector of N observations (data vector), 

then b may be expressed as a linear transformation of y, say 

Referring to equations (2.2.2) and (2.2.3) we define X^ as the matrix 

of values taken by the terms of x^ for the N experimental combinations, 

X^ is a similar matrix for the values taken by the terms of and 

X * [X^JX^]* Then, E(y.) may be expressed as 

E(y.) • (2.2.8) 

which implies 

T'X * A . 

We may solve for the minimum value of B by substituting from (2.2.6) 

into (2.2.4) to obtain 

Min B « J_ ^ _ . 
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Karson also points out that for the case where T* • (XfX.r-V the Box-

firaper condition is satisfied, i.e • t 

( X J X ^ X ^ 11*12 * 

The all-bias design is therefore shown to be a special case of the class 

of designs which minimize B. 

The work of interest on this topic is that of Atkinson (l). He 

proposed designs to estimate the slope of a response surface; that is, 

the first derivative of the data. His designs are based on the Box-Draper 

effectiveness criterion, and he uses substantially the same approach to 

the problem. Of particular interest is his general discussion of the case 

where the data is equated to a polynomial in several independent varia­

bles, 

2.3 Estimating the Slope of a Response Surface 

where 

x * (l,x ,x 

The least squares estimates of the parameters are 

-1 * ( Xi Xi)~ l xi* 9 (2.3.1) 

where X^ and y, are defined as in section 2.2 above. 

The true response is 

The estimated slopes at a point are 



10 

K M 

The true slopes at XQ a*e 

For example, if the model is a first order approximation to a quadratic 

response which is a function of three independent variables (p « 3), then 

where 

y - 2 ^ 

9. ' kx 

1 * hh + *2&2 

(2.3.2) 

2^ * (l, x^ x 2, x 3) 

b x « (b0, b l f b 2, b 3) 

^ « (P Q, P > P > P 3) 

/ 2 2 2 x 

x^ * • X 2 ' x3 ' *\*2* xl x3* X2 X3 

&o " (P U» P 22' P33' P12' P13« ^ 

2 X 1 0 0 X20 x30 0 

0 

LP 

2 x 2 0 0 X10 0 10 

2 X 3 0 0 x10 X 2 0 J 

The vector of biases may be calculated from 



fi(a) - X • 

Substituting from (2.3.1) into (2.3.2) 

E( a) « E{(X^X1)-1X1* ir} 

« (X'X^-^EtyJ , 

and substituting from (2.2.8) yields 

E(a) - a x + U p ^ r ^ x ^ , (2.3.3) 

where X^ is defined as in section 2.2 above. We now use the results of 

(2.3.3) to write the vector of biases at x^ a s 

Atkinson carries the expression forward one more step placing it in 

terms of adjusted x variables, but the above equation is sufficient for 

our purposes. It is worth emphasizing that (2.3.4) is the vector of 

biases at the point XQ. The next step by Atkinson was to derive a design 

criterion based on minimizing expected mean square error. He proceeded 

by first specifying a direction in which slope is to be estimated and 

then minimizing error after averaging over all such directions. 

The details of Atkinson's method are not critical to this inves­

tigation, but his conclusions are vital. He found that the best design 

for estimating the slope over any region centered at that point. Further, 

he demonstrated that designing experiments to estimate the slope of a sur­

face in any specific direction is the same as designing experiments to 

obtain precise estimates of the slopes along the factor axes. 

(2.3.4) 
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These conclusions are used as starting points to develop a simpler 

criterion statement using least squares estimation (section 3.1 below). 

Atkinson's second conclusion is interpreted to mean that the slope at 

any point in the region may be expressed as a vector of components of 

slope parallel to the factor axes. The bias vector is similarly 

expressed and is averaged over the entire region of interest. This 

technique includes of necessity averaging over all directions. The 

transformations made on independent variables heretofore and carried through 

in the following chapters are precisely those which center the region of 

interest at the point where the slope is to be estimated. 

2.4 Minimum Bias Estimation of the Slope of a Response Surface 

In a 1971 master's thesis Munsch (5) applied the concept of minimum 

bias estimation to the problem of estimating the slope of a response sur­

face. He limited his development to the case where the data is a func­

tion of one independent variable only. By restricting the analysis to 

the case of one independent variable, he was able to express the condi­

tions for minimum bias estimation in terms of the matrices and 

defined in equation (2.2.5a-e). Thus Munsch's results closely resemble 

those of Karson. 

When one attempts to extend Munsch's development to the case 

where the data is a function of k independent variables, k > 1, the 

matrices, P^y * r e no longer convenient. Munsch points out that the 

ji^, matrices may be defined as moment matrices of a uniform probability 

distribution over the region R. In the following chapter a different 

set of matrices will be defined which may be thought of as moment matrices 

of the slope of the same distribution over the same region. 
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CHAPTER III 

MINIMUM BIAS ESTIMATION OF THE SLOPE OF A RESPONSE SURFACE 

3.1 Estimation by Least Squares, the All-bias Design 

This section displays a development of the all-bias design for 

estimating slope that is closer in concept to the Box and Draper (2) 

method than is Atkinson's (l) approach. Definitions and concepts of 

use in later sections are introduced. The derivation depends on summing 

and averaging the components (parallel to the factor axes) of variance 

and squared bias. Clearly that technique cannot be used without assum­

ing Atkinson's conclusions (see section 2.3). 

Assume a response, say TJ, which is accurately represented by a 

polynomial of degree d in k (k > l) independent variables, i.e., 

1 " P 0
 + 2 ^ + ^ 2 + e 9 

where e is a random variable such that E(e) * 0, Var (e) * a and 

x 1 * (x^, x^,...,x^) is a vector of transformed factors as defined in 

section 2.1. Further, let x^ contain only terms of order d, and x̂  con­

tain all remaining terms. For example, if k • 2 and d * 3, then 

I F 2 2 x 

2<2 * V * ^ » *2f x\ 9 *2 9 *1*2 

* , I 3 3 2 2\ 
—2 *1 ' *2 ' *1 *2* *1*2 

The true response, TJ, is to be approximated by a fitted polynomial of 

degree d -1, i.e., 
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y - ° 0 + i{kx • (3.1.1) 

Suppose, however, that the variable of interest is the slope of 

the response rj, say X * "j^ • Then the intercept term, 0Q, is of no inter­

est, and it is convenient to define a new response variable, say r)*, where 

1* » In -P Q) « + x ^ 2 + e . 

Clearly £ is unchanged, i.e., 

where is a matrix, the i**1 row of which is obtained by the partial 

differentiation of xj with respect to x^. The true slope, X> m a Y D e approx­

imated by the slope of y, say a. Here again the intercept, b^, is of no 

interest. We may define 

9* - (y - b Q) « x ^ (3.1.2) 

without changing a, i.e., 

~ dy dy* n , 
a dx dx_ 1—1 

The expected squared difference between the true slope x and its 

approximation g. is 

E(S - X ) 2 . 

It can be easily shown, just as in section 2.1, that the expected mean 

square error over the region R is 



1 5 

<J~ WR 

where 

K * • F dx and dx * dx., dx0,...,dx. 

The argument of the expectation in this expression is a vector squared. 

While there are possibly other definitions of the square of a vector, 

here it is taken to be a scalar, the product of the transpose of the vec­

tor and the vector itself. Thus, 

( A - X ) 2 - ( A - R ) ' T £ - y) 

- A ' A - A V - R ' A + x.t 

- A ' A - [ £ ( A ) ] 2 + T E ( G ) ] 2 - 2 A 1 + T ' R . 

Thence, since E(§) is itself a vector, we obtain 

L A - X ) 2 - A ' A - T E L S ) ] ^ ) ] * ^ ® ) ] ^ ® ) ] 

- 2 § Y + I I . 

Taking the expectation yields 

E(fi - T ) 2 " E ( F A ) - [ E ( F ) ] ' [ E ( S ) ] + [ E ( A ) ] ' [ E ( | ) ] 
- 2 [ E ( G ) ] Y + X V 

• E ( F I 2 ) - [ e ( 3 ) ] 2 + [e(|) - R L 2 

which implies 

J - ~ J ( E ( £ 2 ) - £ E ( A ) ] 2 } d x • B | J [ E ® - r ] 2 dx . ( 3 . 1 . 3 ) 
6 R (5 R 
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The first term in the right hand side of the equation is plainly the 

sum of the variances of the components of g. integrated and averaged 

over the region R. which we shall call Var (£). The second term is the 

sum of the squared biases of the components of § integrated and 

averaged over R. 

Atkinson (l) has shown that designing experiments to estimate slope 

in any direction is the same as designing experiments to estimate slope 

parallel to the factor axes. The components of c£ are precisely the 

slopes parallel to the factor axes. Then designing an experiment to 

minimize the sum of the squared biases of the components of which sum 

is averaged over R, will be the same as designing an experiment to mini­

mize the bias of the estimate of slope in any specific direction. 

The bias component of J is 

(3.1.4) 

We need E(£). The quantity 

implies 

E(£) - £ 0 ) ^ ) 

* ^ ( b ^ . 

The least squares estimate of b is well known to be 
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where is a matrix the elements of the i v" row of which are the values 

taken by the terms of x̂  ^ o r **** experimental combination, and y # 

is the vector of the N observations of the transformed response vari­

able y*. So 

E(bx) - ECU^)-^/] 

Since it can be shown that 

E(y*) - \lx + 

where is a matrix similar to X for the terms of x2> w e n a v e 

E ^ ) - ( X ^ ) ' 1 X|X1fi>1 + (X'X 1)" 1XjX 2g > 2 

- % + (xjx^^xjx^ 

and finally 

Then, substituting in (3.1.4) yields 

»• Hi/.(v»i • w ' w -*)2 <*• 
Since 

t • DA + ̂  , 
we obtain 
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6 R 
where 

A - (X^X 1)" 1X*X 2 . 

Then 

B * 2 I & 2 ( A ' D I D l A - A , D 1 D 2 " D 2 D 1 A + D 2 D 2 ) g - 2 d x ' (3.1.5) 6 R 
Define 

All * K 1 DI Di d x- (3.1.6a) 
R 

A 1 2 - K J DJD 2 dx (3.1.6b) R 
A22 * K J D ^ d x (3.1.6c) 

R 

Substitute the ÂJ rs into (3,1.5) to obtain 

B - J5 CFII<A'ANA
 "* A' Ai2 " A 1 2 A + A 2 2 ^ 2 ] ' 

This can be rewritten to isolate A as follows. 

B » S { ^ 2 2 ^12^11^12 +
 ( A " A L I A12 ) , All ( A " A L I A12 ) ] &2^" ( 3 # 1 # 7 ) 

The minimum value of B cannot be calculated from (3.1.7). but it 

can be said that a necessary condition for minimum B is that (A ""ÂJÂ 2) 
be the null matrix, because Â  is positive definite (See Appendix B), 



19 

Therefore, for minimum B 

A - A ^ 1 2 - [0] ( 3 . 1 . 8 ) 

implies 

A - A** . 

Since 

A « (XJX 1)" 1X|X 2 , 

a sufficient condition for ( 3 . 1 . 8 ) is 

X 1 X 1 * All a n d X 1 X 2 * A 1 2 ( 3 . 1 . 9 ) 

To present this condition a more familiar form, rewrite A as 

A « N(X^X 1)" 1N" 1(XJX 2) , 

which implies that N - 1(XJX ) * L and N'^XJX ) - A . 

The quantities N~*(X£X^) and N'^X^X^ clearly are moment matrices 

of the form of and M^ 2 for the model of ( 3 . 1 . 2 ) , say, 

M n * N " 1 ( x i x i ) 

M 1 2 * N ' 1 ( X i X 2 ) 

The observed response, however, is y; not y*. Therefore, for 

the condition ( 3 . 1 . 9 ) to be meaningful, it must be related to the model 

of ( 3 . 1 . 1 ) . The moment matrices, and M^ 2, of this model are 
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M12 * N " 1 ' X i X
2

) 

where * * 2
 a n c* *1 * * 1 being a (N x l) vector of l's. Then 

clearly, condition (3.1.9) specifies all elements of M ^ except those in 

the first row and first column and all elements of M ^ except those in 

the first row, i.e., 

M 11 
r~ . —> 

* 

• M 1 2 " m • M 1 2 " L A 1 2 J 

3.2 Minimum Bias Estimation 

In this approach, suggested initially by Karson, et aK, (K, 1969), 

we search for necessary and sufficient conditions for the estimator b 

which insure that the value of B is minimal. As in the preceding section 

we lean heavily on Atkinson's conclusions. Starting with an equation for 

the value of B we derive conditions for b to minimize B. Recall (3.1.4), 

B [E(|) -*]*dx . 
6 R 

Note that £ Is a vector each component of which is a polynomial of degree 

d - 2. Then E(g[) is also a vector of polynomials of degree d - 2, 

E(g) - D a . (3.2.1) 

Then B * ^ J [D̂ g_ - ".J2(*x. Expand and substitute the a matrices to 

obtain 

B - ^ [(& - fti>*Aii(3. " ̂ ) - 2( a.-ii) ,^i2^2 + g-2 A22^2 ]- ( 3 ' 2 - 2 ) 
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setting • 0 yields 

2A n(a - ̂ ) - 2 A 1 2 £ 2 « 0 

implies 

- * h + ^11^12^2 (3.2.3) 

« % 

where 

R * [I »Aj*A 1 2] and £• * * ̂  • 

Substituting in (3.2.1) yields 

•nd, since E(gJ * D^E(b^), we obtain 

E(b x) « R 

a necessary and sufficient condition for minimum B is that the estimator 

b^ be such that E(b^) * R ft. The condition is subject only to the restric­

tion that R & be estimable in X * [X^ » X ]. 

The all-bias design of section 3.1 may be shown to be a special 

case of minimum bias estimation. Define y as before; then b^ may be 

expressed as a linear transformation of y*, say 

b x * T'y* . 

This implies that 

E(b x) - T*E(y*) - R ft. 
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Since E(y*) * X ft, where X and ft are as previously defined, we have 

T'Xft - Rft 

which implies 

T'X « R . 

If T' - ( X ^ ) " ^ , then [ ( X J X ^ ^ X ^ » ( X J X ^ X ^ ] - [I i A j ^ 1 2 ] , 

or X1«X1 « A u and X ^ « A 1 2 , 

which are just the conditions of (3.1.9) for an all bias design. 

The minimum value of B may be calculated quite simply. Substi­

tute the value for a from (3.2.3) into the expression for B in (3.2.2). 

This yields 

3.3 Minimization of Variance 

A class of designs has been demonstrated which minimizes B, the 

bias contribution to expected mean square error. From that class the 

particular design which yields minimum variance within the class is now 

to be selected. Specifically we wish to minimize Var (£) subject to 

E(b^) *Rft. Recall that | is a vector, and that the quantity Var (g.) 

was defined in section 3.1 as the sum of the variances of the components 

of g.. 

A component of E(£), say E(g^), may be written, 

E(g A) - l u R f t 
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where is a row vector, the i**1 row of D^. The minimum variance 

point estimate of a linear combination, d ^ R&, is 

^i * i u
R ( x , x ) " l x V (3.3.1) 

Note that the entire X matrix, X • [X^ t X^] is involved. Further, X*X 

must be nonsingular (or the generalized inverse of X*X, say G, used in 

place of (X'X) and R & must be estimable in X. The variance portion 

of J in (3.1.3) is 

V - ^ J R { E < i 2 ) -[E(£)] 2}dx, 

and the argument is recognized as the sum of the variances of the compo­

nents of Then V will be minimized if each of the terms in the argu­

ment satisfies the requirements of (3.3.1). Specifically, since £ • D^T' 

then for each i, 

i l i T ^ * m g ^ R U ' X r V y . * 

implies 

T * R U ' X J ^ X 1 , 

and the minimum variance of g^ is 

Min Var (g^) - d ^ R U ' X ) " 1R td» 1 

which implies 

k 

Min V • NK £ JJ [i uR(X'X) ̂ R'dJ^dxj . 
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The derivations presented in this chapter have shown a new, 

simple way to specify the all-bias design for estimating the slope of a 

response surface. Further, a necessary and sufficient condition has been 

demonstrated for the class of bias minimizing designs which estimate 

slope. The all-bias design is shown to be a special case of the class 

of bias minimizing designs. A second special case which minimizes vari­

ance within the class has been developed. In the next chapter we shall 

compare these two cases for specific design problems. 
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CHAPTER IV 

DESIGNS FOR USE IN PRACTICE 

Two examples of the case k » 2, d - 2 are examined. The mini­

mum variance design with minimum bias estimation is compared to the all 

bias design. 

4.1 The Case k * 2, d * 2, - ±a^, * ±a 2 > 

a 4 Point Design with no Interaction 

The true quadratic relationship is 

'2"2 22~2 

1 * (T| *P0) * + P 2
X 2 + P 1 1 X 1 + ^ 2 2 X 2 + e 

and the fitted model 

y * b Q + b ^ + b 2 x 2 

y* - (y - b Q) « b 1 x 1 + b 2 x 2 

The X, y*, and (X'X)" 1 matrices are, 

l\ «X2] 

0 

0 

22 
O 
0 

a, 
- a . 

2 2 
*2 

2 
*1 0 # _ 

t X * [Y*1 2 
*2 0 

0 •22 
0 2 

'2 J A . 
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U'X) -1 I 
2 

-2 

-4 

-4 
{2 J 

Part At Least Squares Estimation* All-bias Design 

The least squares estimator of is 

h m (X;V~LXI**9 

and the bias and variance components of expected mean square error can 

be shown to be 

v.A|j{E(a2) -[EG)]2}DX 

-r f Var(fl) d£ 

where 

VAR(L) - £ VAR (g^ 
i«l 
1 2( -2 , -2v 

* 2 fl U l + a 2 5 

NK 
which implies V • 

0 
2K 

N / -2 , -2s 
2 U l + *2 ) • 

and 

B -*§J* fc<fi) - X] 2d(x.) 0 R 
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where 

A • '1 0" , A X 2 - "0 

.0 1. .0 0. C 2 
Therefore, B - ̂  0 * 2 ) . 

The bias is independent of the choice of a^ and a^* Consider, 

however, that the model is first order in the presence of a second order 

system. Further, b^ does not include the intercept. A similar result 

is well known in another situation. A 2 factorial design used to fit 

a first order model in the presence of a second order system without 

interaction introduces bias only to the intercept term (6, 114), 

Part Bi Minimum Bias Estimation. Minimum Variance Design 

The estimator is 

b. - ryj 

where 

Thus 

-:1 

-1 
- a , 

-1 

Further, note that 
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"1 

-0 °], 
"Pi" • 

11 

12j 

Again, is unbiased* The variance V has been shown to be 

Var (g^) - e>2 d^U'XRVD^ 

- & (a" 2) 2 v*i ; 

implies 

N / -2 . -2* 
2 (*1 + a 2 } 

Me need go no further. The two designs are the same for this case. 

4.2 The Case k »2« d «2« with Interaction* a 6 Point Design 

The true quadratic relationship is 

1 " P 0 + "l Xl + P 2 X 2 + P l l X l 2 + *7Z*2* *12 X1 X2 + • » 

and the fitted model is 

9 « b Q + b 1 x 1 + b 2 x 2 . 

Proceeding exactly as in the previous example we obtain for X, y_#, and 

(X'Xr 1 
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V Hi 
2 

!L 
2 

2 
a 

" 2 4 4 
• r »n 

0 - a 0 •2 
0 

* 
y 2 

3 a 
2 2 

2 
a 
4 

,3. 2 

4 
* 

y 3 

3 a 
2 

a 
2 

2 
a 
4 

3 « 2 

4 
# 

0 a 0 2 
a 0 # l 

3 a 
L 2 

£ 
2 4 

2 
JU 
4 

3 , 2 

4 - i 
# 

(X'X) -1 3 8 0 0 0 0 " 

0 1 -2 
3 4 0 0 0 

0 0 2 a 

1 -4 
6 « 0 

0 0 1 " 4 

6 a 2 * 0 
4 - 4 

0 0 0 0 | a 

Part A. Least Squares Estimation. All-bias Design 

The variance and bias components of expected mean square error are 

2 

i-1 

2 M -2 
* 3 N a 

and 
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It should be noted that the above design is by no means the only 

six point all-bias design available to the experimenter in this situa­

tion. In fact, if he were interested only in an all-bias design, the 

experimenter would more likely choose the 2 design of the preceding sec­

tion with two center points added. But, as is pointed out in section 

4.3, that design would yield a singular X'X matrix. The design which is 

presented allows development of a minimum bias estimation, minimum 

variance design in the following paragraphs with simple numerical mani­

festations. 

Part B. Minimum Bias Estimation. Minimum Variance Design 

As in the previous example, 

ki « T'y* 

1 
a 6 U 6 6 0 6 

.1 .1 .1 
L 6 3 6 

1 
6 

1 
3 

1 
6 -

L YA J 
and 
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E(b x) - Rg. 

1 

LO 

0 0 0 0 

OJ 0 

FURTHER, VARCĜ  - D ^ ^ l X ' X ) " ^ ' ^ 
1 2 -2 5 * A 

implies 

L 

2 

^22 

U 2J 

V - | N , - 2 

4.3 Interpretation and Comments 

In both examples the bias component of expected mean square error 

was independent of design* In fact the estimates of slope at the center 

of the region of interest were unbiased* This result indicates that, 

in these cases of linear approximation to quadratic responses, the all-

bias design is equivalent to a minimum bias estimation design in that 

bias is independent of design. Further, as we would expect from the 

general result shown in section 3.2, i.e., that the all-bias design is 

a special case of minimum bias estimation, the value of the bias compo­

nent of the all bias design is minimal. 

The implications are that an all-bias design, which is rela­

tively easy to specify, may be used to minimize variance as well as bias* 

For example, in the case described in section 4,1 the variance component 
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of expected mean square error is V • j (a^ 2 + a * 2 ) . To minimize V, 

make a^ and a^ as large as possible, i.e.. *i " * 2 * Thi% assign­

ment of values to a^ and a^ has no effect on the bias component. 

N 2 2 
B - ~ + ^22^' s * n c e 1 8 independent of a^ and a^. 

Both examples are the same except for assumptions concerning 

interaction. In the second example interaction is permitted, adding 

the term 0^ to the vector ft. The number of terms in the whole vector 

ft has significance when a minimum bias estimation design is contemplated. 

The estimator for b^ involves (X*X)"*« If that inverse is to exist, then 

the rank of the full matrix, X, must be equal to the number of columns 

in X, that is, to the number of terms in the full vector ft. Thus, for 

the first example a design of at least four points is necessary. For the 

second example at least five design points are required. Further, adding 

A center point to the first design would not suffice to produce A design 

for the second example since that would only enlarge the X matrix but 

not change its rank. The conclusion is that the design to provide A lin­

ear approximation to a quadratic response must be carefully chosen con­

sidering the full quadratic equation. Otherwise, generating the minimum 

bias estimation design will require finding a generalized inverse. 

An examination of the matrices, A ^ and A ^ * f° r the case of lin­

ear approximation to a quadratic response in k variables shows that A ^ 

is always the identity matrix, I^xk' and A ^ i* always the null matrix, 

^ k x p . where p is the number of terms in ft^. Therefore, for this case, 

in general, the all-bias design is always orthogonal, the estimates of 

slope are unbiased, and the all-bias design is the same as the minimum 

bias estimation design. 
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Figure 1. Design for Example 4.1. 

Figure 2. Design for Example 4.2. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Results 

The investigation into minimum bias estimation of the slope 

of a response surface has led to a new. simple way of specifying an 

all-bias design for making that estimation. Further, the examination 

of two examples of linear approximation of a quadratic response indicates 

that, in this important case, the easily generated all bias design is 

the same as the more complicated minimum bias estimation design (for a 

spherical region of interest). In fact, this conclusion has been gen­

eralized to all examples of the case. 

All design conditions are in terms of the matrices which may 

be thought of as moment matrices of the region of interest for the slope 

of the x* vectors connected with the response. A simple method, well 

adapted to the use of computers, is demonstrated in Appendix B to cal­

culate the elements of these matrices for a spherical region of interest. 

The method is general for this region* Only minor extensions are required 

to calculate the required matrices for the case of protection fl against 

more than one level of bias. 

An approach to the problem of estimating a response which is a 

derivative of observed data has been outlined for the case where the 

variable of interest is the first derivative of the data. The pattern 

will require only slight modifications to extend it to consideration of 
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the case where the desired variable is a second or higher derivative of 

the data. 

5.2 Conclusions 

1. The all-bias design to estimate the slope of a response sur­

face has a minimal bias contribution to expected mean square error. 

Further, for the case of a linear approximation to a quadratic response, 

the bias is independent of design parameters. 

2. The region moment matrices of slope developed herein provide 

an excellent method for characterizing designs to estimate slope whether 

the designs use least squares or minimum bias estimation. 

3. Necessary and sufficient conditions for minimum bias esti­

mators of the 6lope of a response surface have been derived. 

5.3 Recommendations for Further Study 

1. The results of this study suggest a regular structure of the 

moment matrices of design for designs of a given order which estimate 

derivatives while protecting against specified levels of bias. The 

investigation of the structure of designs to estimate the k**1 (k l) 

derivative while protecting against I (t £ l) levels of bias seems a 

natural extension of this study. 

2. The designs developed here are specifically to estimate the 

slope at the center of the region of interest. A subject for further 

investigation is the effects of using the same designs to estimate slope 

at any point in the region of interest. 



A P P E N D I C E S 
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APPENDIX A 

NOTATION 

Notation conventions used throughout this thesis are those 

thought to be standard in the experimental design literature. They 

arei 

(1) Upper case letters denote matrices, e.g., X, M ^ , A ^ j 

(2) Lower case letters denote scalars or vectors as follows. 

(a) Scalars - a lower case letter, e.g., x, 0, etc.; 

(b) Column vector - an underlined lower case letter, e.g., 

x. & | 

(c) Row vector - transpose of a column vector denoted by 

a "prime," e.g., &\ 

(3) The above symbols are often subscripted with one or two 

indices. The meanings in such cases are clear by context. 

Departures from these conventions are defined in text. 
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APPENDIX B 

THE A MATRIX 
rs 

B.l Introduction 

The A matrix is defined in Chapter III as rs 

It 

where K~* • f dx and D. is a matrix the i**1 row of which is formed by 

partial differentiation of the row vector £j with respect to x^. The 

variable x^ is the i**1 component of the vector of independent variables, 

2L ™ (x^> • • • • • 

The terms of a subscripted row vector, say x 1, are the arguments k a\T 
of a polynomial. Each term is of the form n x , where 

u»l u 

k a a, ao a. 
H x u

u « (x ^ ( x 2 ) ... (x k
k) . 

u«l 

To uniquely designate each term of x^, subscript the exponents of the 

J**1 term. Thus 

k aul 
x. - n x n

U J (B.1.2) 
J u-1 u 

In (B.1.2) all the exponents are non-negative integers. The right hand 

side of (B.1,2) may be partially differentiated with respect to to 
th r obtain the ij term of D^, say d^. The superscript r denotes only 
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that d is an element of D y . So, 

a..-l k a . 
* a, .x. iJ n x U J 

lJ i j i j u-1 u 

Consider a second row vector x*s like jr̂ , r may or may not equal s, 

The components of x* remain the same. The D matrix associated with x* 

will have terms exactly like those of The two are differentiated 

in the following development by an asterisk, (*), on the exponents of 

elements of D • Thus s 

ij 
a.,-1 k a . # ij « uj 

The matrix product D & of (B.l.l) is now easily formed. 
th The m n t u element of D*D , say d r s, is the sum of the products 

r s ' mn 
of the corresponding terms in the m**1 column of D y and the n**1 column 

of D . i.e., 
s 

mn 
£ T (a, + -2) k (a +a * ) V « im in _ urn un' ) a. a. x. n x u im in i u 
i«l u-1 

u/i 

Since an integral of a matrix is the matrix of the integrals of the 

elements of that matrix, we write the inn*** element of A , say & r S» as 
rs' 7 mn 

r d r s d 
.L mn 

r k 

R H - i 

(a. +a* -2) * im in a, a. x, im in i 
k (a -hi* ) "1 
u-1 u J 
u>i 
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l f a i m a i n l [ x i 
i«l L R 

im in ] C n um un j I 
u«l 
u/i 

In one special, and important, case the bmn of (B.1.3) is quite easily 

evaluated. 

B.2 Spherical Region of Interest 

Let R in (B.1.3) be a unit hyper-sphere centered at the origin 
f 2 

of the x*s, i.e., R is such that ) < 1. Then the integral of 

(B.1.3) is of the type 

1*1 

r 1 P 1 P 1 , Pl P 2 pk 

where p. « a. +a* , p 0 « a. +a* , etc, rl lm In v2 2m 2n 

It is well-known that the value of an integral, say L, of this 

type is 

p, +1 p 0 + 1 p, +1 
r ( - V ~ ) r ( " V " ) - - - r 

+ i 
L * J 

r + i 
L * J 

(B.2.la) 

if all p u are even, and 

L « 0 (B.2.1b) 

if any P u is odd, 
,-1 The integral, K , may be written in the same form with all 

p u - 0. So, 
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since 

we have 

r c | + D 

r(p+l) - pT(p) and r(i) - ^ 1 / 2 

i f >k/2 

r ( k ± 2 ) 

Substituting for p y in (B.2.1a and B) we get for the value of an 

integral, L(m,n)^, 

L(m.n) 

a. +a.* -2+1 k- a +a * +1 
r(-^—£ ) n r ( u* " n ) 

* u«l * 
y & 

a. +a.* - 2 + 1 + V (a +a *+ l) im in L , urn un u«l 
u£i .. + 1 

(B.1.3a) 

if all sums a u m + a^f u * (l,2»*«*9k)» are even, and 

L(m,n) i « 0 (B.1.3b) 

if any sum a + a * is odd, ' um un 
Note that i e { u ) , because, if a

i m + a
i * i* even, so is a i m

+ a j * n " 2 » 

Substituting from (B.2.3a,b) into (B.1.3) yields 

6mn " K E £"i- ai» L ("» n )l3 
i«l 

(B.2.4) 
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Before doing an example, consider (B.2.3a) again. In the numerator 
a i m + a * -2 + 1 

there appears the expression. r( " 2 )• Conceivably the 

argument of that gamma function could be negative or zero since a ^ 

may equal zero or 1. Such an argument would violate the definition 
eo 

T(p) - r v p - 1 e " v dv | p > 0 

Resolution is simple. There are three possibilities! 

(2) a. or a? • 1 and the other is zero; im in 

The third cases results in a valid gamme function in (B.1.3a). The 

other two cases do not arise because to obtain the i^term of the sum that 

is fcrs the integral, L(m,n)., must be multiplied by a. a* (see (B.2.4)). mn 1 im in 

B.3 Calculation of for R a Unit Hypersphere 

Suppose f) as defined in Chapter III is a function of x where k » 2 

and the polynomial of degree • 2, i.e., 

t) « P 0 + P i x i + V 2 + P l l X l 2 + $22*2+ *12 xl x2 + e 

and 
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then 

1 ( \ « t 2 2 \ 
x x * ^ xi» x2^ I ̂ 2 " ^ xi » x 2 » x i x 2 ' 

or, in the form of (B.1.2), 

t / 1 0 0 lx 
-1 * ^ xl x 2 ' xl x 2 ' (B.3.1) 

and 

/ 2 0 0 2 1 Is 
1 X 2 ' Xl X 2 ' Xl x 2 ' 

Let and be the H D n matrices defined in section B.l corresponding 

to and ^ respectively. No further information is required to cal­

culate any of the A ^ matrices associated with this model. An algorithm 

for the calculation of A ^ is shown in tabular form at Table B.l. From 

column 10 of the table we construct. 

1.3.2) 



Table 1. Calculation of A.. for k*2, d * 2 

1 2 3 4 5 6 
<•!•>• 

7 
aim 

8 9 10 11 
a 
um 

12 13 14 15 
Kx 13 

m n i °im « 
ain K n > in a 

urn 
a* 
un 

+ a* 
un 

x 12 • b 
mn 

1 1 1 1 1 1 2 2 0 0 0 
[r(|)] 2 

r(2) - IT 1 

IT 1 1 

1 1 2 0 0 0 0 
X 

1 2 1 1 0 0 0 
o 0 

1 2 2 0 1 0 0 
0 

2 2 1 0 0 0 0 
1 

2 2 2 1 1 1 2 1 0 0 0 K-1 K A 
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