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Executive Summary 

This report details progress to date of this project from its inception in January 2007 to 
closing date of December, 2007. Section 4 provides the results of the requested 
simulations for the Pratt & Whitney component. The objectives on implementation of 
microstructure-sensitive model for IN 100 are fully met. Section 5 on Ti-6A1-4V 
describes progress in our efforts to develop a microstructure-sensitive-macroscopic ISV 
model for this alloy, including texture effects. 
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1. Material Point Simulator (MPS) and the User Material (UMAT) 

The subject at hand in this work is the implementation of the macroscale internal state 
variable (ISV) model with microstructure-sensitive parameters based on microstructure-
sensitive crystal plasticity models (see constitutive model in Appendix A for single 
crystal model of Ni-base superalloys). This involves using a Material Point Simulator 
(MPS) to integrate uniaxial relations from experiments and polycrystal plasticity 
simulations. The MPS evaluates the response of material points subjected to 
homogeneous imposed deformation histories, and employs the 1-D formulation of the 
ISV model, with the formulation given in Appendix B. The implementation of the MPS 
is given in Figure 1. 
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Figure 1. Flowchart of the MPS for uniaxial macroscale ISV relations. 

For polycrystal plasticity of Ni base superalloys, it is assumed that material point consists 
of a collection of crystals (grains) whose individual mechanical responses are linked to 
that of the material point using the extended Taylor hypothesis; a User Material 
Subroutine (UMAT) is called for each grain. This crystal plasticity UMAT implements 
an integration procedure for all possible slip systems in 3-D. For a--fl Ti alloys, it is 
necessary to conduct explicit finite element modeling of a set of grains comprising the 
polycrystal owing to the low symmetry of the HCP a phase. 
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Ultimately, a UMAT that implements the 3-D formulation of the ISV model (Walker-
type) is suitable for structural analysis using finite element codes such as ABAQUS and 
ANSYS. The implementation details are given in Appendix C. The UMAT can then be 
used in Finite Element Analysis (FEA) to compute the mechanical response of Ni-base 
superalloy (nominally IN100) structures with spatial variation of heat treatment and 
therefore precipitate distributions and grain sizes. It is first necessary to find the 
corresponding material parameters based on the underlying microstructures. A scheme 
has been developed to correlate the UMAT macroscale ISV model material parameters 
with the microstructure attributes; the relevant flowchart is given in Figure 2. An 
artificial neural network (ANN) has been trained with a sufficient number of experiments 
and polycrystal plasticity simulations over a range of microstructures to relate the ISV 
model parameters in the to the corresponding microstructure parameters. Once the ANN 
is trained, it can be used to predict the material parameters for the macroscopic ISV 
model for any given microstructure. The ANN is not computationally intensive. The 
parameter determination employs ISIGHT 9.0 optimization software. In short, the MPS 
material parameters can be obtained from any given microstructure within the range of 
those used for training (experiments and simulations) via ANN. Next, the MPS material 
parameters can be converted to the UMAT material parameters as outlined in Section 3. 

Macro. ISV 
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(Epogy) for Error 

Minimization 
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Optimized 
Parameters 

for ISV Model 

*MPS - Material Point Subroutine 

Parameter Set (A 	etc.) 

Figure 2. Flowchart for linking simulations from the polycrystal plasticity model and 
experiments for various IN100 microstructures to the macroscale ISV model (or 'Walker' 

model). 
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2. Artificial Neural Network (ANN) 

ANN Training of the Macroscale ISV Model Parameters 

The Matlab 7.0 Neural Network Toolbox was used to train the Artificial Neural Network 
with two sets of data. The first set contains the microstructure attributes, such as: volume 
fraction of primary 7' precipitates, f p  ; volume fraction of secondary 7' precipitates, 

fp2; secondary y' precipitate size, d2; volume fraction of tertiary y' precipitates, fp3; 

tertiary y' precipitate size, d3; and mean grain size, d gra in . The second set contains the 

corresponding ISV model parameters, such as: ratio of the hardening rate and the 
saturation limit of the first back stress component, A l /S2 11. ; the saturation limit of the 

first back stress component, S2 11,„, ;hardening rate of the second back stress component, 

; Elastic Modulus, E; threshold stress, ic ; the saturation limit of the isotropic 
hardening, Q,, ; and the contribution from the rate dependent term, 4,, . 

Important commands in the Matlab 7.0 Neural Network Toolbox 

PRESTD 	: Normalize data for zero mean and unity standard deviation 
PREPCA 	: Principal components analysis 
NEWFF 	: Initializes feed-forward networks 
TRAIN 	: Trains a network 
SIM 	 Simulates networks 
POSTSTD : Inverts PRESTD to convert network outputs to original units 
POSTREG : Linear regression between targets and trained network outputs 

Using the commands above, a feed-forward network is trained to perform a nonlinear 
regression between the microsructural properties and the corresponding macroscale ISV 
model parameters. The final network is analyzed to investigate the overall performance. 

In this example, we are going to find the correlation between the microstructure 
arrangements and their effects on the lc ; the saturation limit of the isotropic hardening, 
Qh . This is done through a file called "trial_Q.m". 

I. DEFINING THE PROBLEM 

The array "input_data.xls" contains the microstructural arrangements of the 150 
microstructures that have been previously fitted to obtain the 150 corresponding sets of 
the Macroscale ISV model parameters. The array "target_data.xls" contains the 150 sets 
of the Macroscale ISV model parameters. We first need to load in the data file, which is 
done through the following commands: 

A—xlsread('input data.xls'): 
p—transpose(A); 
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B—xlsread('target_data.xls'); 
Bt---transpose(B): 
t=-Bt(6,:) 

Here, Matlab is dealing with two sets of data, p and t. The first set, p, contains the 
microstructural arrangements of the 150 microstructures. The second set, t, contains the 
corresponding Q„ for those microstructures, which is located at the 6 th  entry in 

"target_data.xls". 

Next, we normalize the inputs and targets so that they have zero mean and unity variance. 

l_pri,meanp,stcip,tn.meant,stdfl = prestd(p,t): 

The command `prestd' preprocesses the network training set by normalizing the inputs 
and targets so that they have means of zero and standard deviations of 1. prestd(p,t) takes 
these inputs, 

p : R x Q matrix of input (column) vectors 
t : S x Q matrix of target vectors 

and returns 

pn 	R x Q matrix of normalized input vectors 
meanp 	R x I vector containing mean for each P 
stdp 	R x 1 vector containing standard deviations for each P 
to 	S x Q matrix of normalized target vectors 
meant 	S x 1 vector containing mean for each T 
stdt 	S x 1 vector containing standard deviations for each T 

Next, perform a principal component analysis and remove those components which 
account for less than 0.1% of the variation. 

l_ptrans,transMat .1 = prepca(pm,0 .0 0 1); 

The command `prepca' preprocesses the network input training set by applying a 
principal component analysis. This analysis transforms the input data so that the elements 
of the input vector set will be uncorrelated. In addition, the size of the input vectors may 
be reduced by retaining only those components which contribute more than a specified 
fraction (min_frac) of the total variation in the data set. prepca(P,min_frac) takes these 
inputs 

P 	: R x Q matrix of centered input (column) vectors 
min frac : Minimum fraction variance component to keep 

and returns 
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ptrans 	: Transformed data set 
transMat : Transformation matrix 

Next, we divide the data up into training, validation and test sets. The testing set will start 
with the second point and take every fourth point. The validation set will start with the 
fourth point and take every fourth point. The training set will take the remaining points. 

[R,Q] = size(ptrans); iitst — 2:4:Q; 
iival 4:4:Q; iitr :4:Q 3:4:Q]: 
vv.P = ptrans(:,iival): vv.T. 
vt.P == ptrans(:,iitst); vt.T tn(:,iitst); 
ptr = ptrans(:,iitr); ttr — ta(:,iitr); 

II. DEFINING THE NETWORK 

We are now ready to define the network. We create a feedforward network with 5 hidden 
neurons, 3 output neurons, TANSIG hidden neurons and linear output neurons. Here we 
assign the Levenberg-Marquardt training function - TRAINLM. You can replace 
TRAINLM with any training function you desire; this can be found in the Matlab 7.0 
ANN Toolbox. The NEWFF command will also initialize the weights in the network. 

net = newff(minmax(ptr),[3 1],{Ttansig"purelin'},Ltrainhn'); 

In Matlab 7.0, net = newff creates a new network with a dialog box; newff(PR,[S1 
S2...SN1],{TF1 TF2...TFNI},BTF,BLF,PF) takes 

PR 	R x 2 matrix of min and max values for R input elements 
Si 	Size of ith layer, for Ni layers 
TFi 	Transfer function of ith layer, default = 'tansig' 
BTF 	Backpropagation network training function, default = 'traingdx' 
BLF : Backpropagation weight/bias learning function, default = learrigdm' 
PF 	Performance function, default = 'mse' 

and returns an N layer feed-forward backpropagation network. The transfer functions TFi 
can be any differentiable transfer function such as tansig, logsig, or purelin. The training 
function BTF can be any of the back propagation training functions such as trainlm, 
trainbfg, trainrp, traingd, etc. Caution: trainlm is the training function we use because it is 
very fast, but it requires a lot of memory to run. 

III. TRAINING THE NETWORK 

If we do not wish to see the results while training, we can issue the command 

net.trainParam.show = NaN; 
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Next, we train the network. We use early stopping, so we are passing the validation data. 
We also want the errors computed on a test set, so we are passing the testing data. The 
validation and testing data are named vv and vt, respectively. 

rnet,tri—train(net,ptr,ttr,H,H,vv.vt); 

IV. TESTING THE NETWORK 

We can plot the training, validation and test errors via the commands: 

plot(tr.epoch,tr.perf,irt,tr.epoch,tr.vperf,':gl,tr.epoch,trAperf;-.b'); 
legend(lraining',,Nalidation','"Fese,-1); 
ylabel(Squared Error') 

Once the network has been trained, it can be simulated using the following command: 

an = sirruner,ptrans); 

Next, it is now necessary to convert the output of the network back into the original units 
of the targets. Since the targets were transformed using PRESTD so that the mean was 0 
and the standard deviation was 1, we need to use POSTSTD (the inverse of PRESTD) 
and the original mean and standard deviation to transform the network outputs back into 
the original units. 

a — poststd(an,meant,stdt): 

V. DISPLAY RESULTS 

We will now display plots showing regression analyses between the network outputs and 
the corresponding targets (in original units) by using the input: 

for i I :1 
figure(i+1) 
fm(i).,b(i),r( ).] = postregfai 

end 

In the first plot, it is desired that the training, validation, and test to lie on the same curve, 
which implies that ANN successfully correlates the input and output data. In the second 
plot, it is desired that the predicted values (A) match the target values (T) so as to form a 
perfect linear fit. The procedure of training ANN can be repeated several times until the 
desired condition is met and then saved into a Matlab data file. This method can be 
generalized to correlate the microstructural arrangements to other macroscale ISV model 
parameters. 

1. Interpolating values using ANN 
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In this example, the saved Matlab data file is named "matlab_Q.mat". To interpolate the 
ISV model parameters using the trained ANN, we must first define the microstructures 
that we are interested in. In this example, it is in the file called "Micros_of Interest.xls". 
It contains all the desired microstructural arrangements whose Macroscale ISV model 
parameters we need to find. 

Next, we double click the Matlab data file "matlab Q.mat" and notice that the trained 
ANN is loaded into Matlab. To find the ISV model parameters for the desired 
microstructures, we type 

p2p—xlsread(Micros_of_In erestxls') 
p2—transpose(p2p) 
[p2n] trastd(p2,meartp,stdp) 
tp2trans .I = trapca(p2n,transMat) 
an = sini(net,p2trans); 
[a21 = poststd(an,meant,stdt) 
a2t—transpose(a2) 
xiswrite(Micros_of Interest Predicted_Q.xis', alt) 

The command TRASTD preprocesses the network training set using the mean and 
standard deviation that were previously computed by PRESTD. This function needs to be 
used when a network has been trained using data normalized by PRESTD. All subsequent 
inputs to the network need to be transformed using the same normalization. The 
command TRAPCA preprocesses the network input training set by applying the principal 
component transformation that was previously computed by PREPCA. This function 
needs to be used when a network has been trained using data normalized by PREPCA. 
All subsequent inputs to the network need to be transformed using the same 
normalization. 

The corresponding macroscale ISV model parameters are then written into a file called 
"Micros_of Interest_Predicted_Q.xls". This method can be repeated for the other 
macroscale ISV model parameters. 

3. UMAT and Finite Element Analysis 

Parameter Conversion 

The macroscale ISV model parameters obtained from the ANN can now be used to 
predict the stress-strain behavior of a complex geometry with various IN 100 
microstructures. However, before we do that, we need to convert those material 
parameters into the form that are required by the UMAT. The Macroscale ISV model 
parameters from the ANN are still in the 1D (MPS) format since that was the formulation 
that was used to link the microstructures to the macroscale ISV model parameters, based 
on uniaxial cyclic loading experiments. The conversion can easily be performed 
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according to the conventions defined in Table 1. Other parameters with the same names 
are identical in both formulations. 

Table 1. Conversion from 1-D to 3-D Parameters 

3-D Parameters 
A, 

A 

B, 

B2 

 E, 

1-D Parameters 

A' 

A' 

A l  I qui, 
A 2 Q2  

bhQh 

bn  

Creating input file for the ANSYS UMAT 

Below is an example of a sample input file which calls the user material subroutine 
linked to the current compilation of ANSYS. For instructions on linking a user material 
subroutine to ANSYS see Linking the UMAT to ANSYS below. This file essentially 
contains various scripting commands inherent to ANSYS to set up the model, define the 
material properties, run the simulation, and then post process the data. 

!1********************************************************************* 

1! This is an input file that contains a block under uniaxial tension 
!! for ANSYS UMAT test 
!!********************************************************************* 

Finish 	 ! Exit all processors 

/Title, Walker block 

!1********************************************************************* 

/Prep7 	 1 To begin preprocessing (define the model) 

I! Create the geometry 
block, 0,1,0,1,0,1 
!! This creates a block with the first node at (0,0,0) at the second at 
!! 	(1,1,1) 

1! Name elements and materials 
ele1=185 
mat1=1 

!! Define the element type 
et,l,elel 	 ! Linear 8-Node Brick Element 

! Mesh the geometry 
mshkey,1 
lesize,a11,„1 

! Force a mapped mesh 
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!! Specify size control, put one element along each edge 
vmesh,all 	 ! Generate the mesh 

m********************************************************************* 

!I Define the material properties 
!! This input contains the material properties for linear isotropic 
!! materials and the parameters defined by the Walker Viscoplastic 
!! Model coded in the UserMat. Comment on/off the one that you want to 
!! use 

!! For linear isotropic material 
!mp,ex,1,22798174.31 
!! Material property, Young's Modulus = 22798174.31 psi 

Imp,nuxy,1,0.33 
!! Material property, Poisson's Ratio = 0.33 

!! For the material parameters to be used with the UserMat 
!! User Material Type = 3D/Axisymmetric Walker Viscoplastic Model 

tb,user,mat1,1,17 
!! Activate a data table for nonlinear material properties or special 
!! element input. This command states that this input file uses a user-
!! defined material model, with matl as the set of material properties, 

with 1 number of temperature provided, and 17 material constants 

tbtemp,1.0 
!! Define a temperature for the data table. It is set equal to 1, but 
!! really has no influence in the calculations 

!! Material Parameters for the Walker Viscoplastic Model are inserted 
!I below. Constants=17 (This is for Flange) (UNITS ARE IN ENGLISH) 

!! Input the material parameters 1-6 
!! Av, bv, expN, a_kappa, Al, Bl 
tbdata,1,0.00125,0.0,95.,82372.63297,31648045.69,1179.29 

!I Input the material parameters 7-12 
!! El, Fl, RO, D, Emod, Enu 
tbdata,7,68169.4189,6.5,0.0,36258.15809,22798174.31,0.33 

!! Input the material parameters 13-17 
!! A2, B2, Av2, Bv2, expN2 
tbdata,13,555545.0272,9.576,115611.52,0.0,7.0 

tb,state,mat1„31 
!! Define material = matl, that has 31 state variables 
!!********************************************************************* 

Finish 	 ! Exit all processors 

!!********************************************************************* 

/solu 	 ! Enter the solution preprocessor 

I! Define the boundary conditions 
asel,s,loc,y,0 	! Select area(s) on bottom of cube (i.e. at y = 0) 
da,a11,uy,0 
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!! Constraint the displacement in the y direction (uy=0) 
allsel 	 ! Reselect everything, back to the whole area 

asel,s,loc,x,0 	! Select area(s) on left face of cube (i.e. at x = 0) 
da,a11,ux,0 
!! Constraint the displacement in the x direction (ux=0) 
allsel 	 ! Reselect everything, back to the whole area 

asel,s,loc,z,0 	! Select area(s) on back of cube (i.e. at z = 0) 
da,a11,uz,0 
!! Constraint the displacement in the x direction (uz=0) 
allsel 	 ! Reselect everything, back to the whole area 

!! Define the loading condition 

nlgeom,on 
!! Include large-deflection effects in a static or full transient 
!I analysis. 

asel,s,loc,y,l 	 I Select the top face of the cube (y=1) 
antype,0 	 ! Specify the analysis type and restart status 
deltim,le-01,1e-03,2e-01 
11 Specify the time step sizes to be used for this load step 
!! Time step size for this step = 5e-02, Minimum time step = le-03 
1! Maximum time step = 2e-01 

da,a11,uy,0.1 
!! Set uy=0.1 on this selected area (i.e. engstrainyy = 0.1) 
time,10.0 
11 Sets the time for a load step. In this case, t=10.0 sec. 

allsel 	 ! Reselect everything, back to the whole area 

outres„all 
! Control the solution data written to the database. 
outpr,all,all 	 1 Controls the solution printout 

! Solve the problem 
/solu 
solve 	 ! Solve it 
!!********************************************************************* 

Finish 	 ! Exit all processors 

!!********************************************************************* 

!! Post-Processing 
/post26 	 ! Enter the time-history results postprocessor 

!! Specify element data to be stored from the results file 
eso1,2,1„s,x,SX 
eso1,3,1„s,y,SY 
eso1,4,1„s,z,SZ 
eso1,5,1„epel,x,EX 
eso1,6,1„epel,y,EY 
eso1,7,1„epel,z,EZ 
eso1,8,1„eppl,x,EX 
eso1,9,1„eppl,y,EY 
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eso1,10,1„eppl,z,EZ 

! List variables vs. time for frequency). 
prvar,2,3,4 
prvar,5,6,7 
prvar,8,9,10 

[ 1************* *************************** ************* **************** 

! Finish 	 ! Exit all processors 

11********* ***************** ******************** ***************** ****** 

1. Linking the UMAT to ANSYS 

Summary of Steps Needed to Compile and Link ANSYS User Material Subroutines 
(UserMat) 

Note: This has been implemented for ANSYS Release 10.0 on a system running 
Windows XP. Please reference the ANSYS supplied documentation entitle: "Guide to 
ANSYS User Programmable Features, ANSYS Release 10.0, Aug. 2006. 

1. Locate directory in C:\Program Files\Ansys 
Inc1v100\ansyskustom\user\<platform> (here <plateform> is a directory that 
uniquely identifies the hardware platform version.) 

2. Save a copy of this directory in the same user folder (C:\Program Files\Ansys 
Inc1v100\ansyskustom\user1) under any desired name. DO NOT MODIFY FILE 
IN ORIGINAL DIRECTORY! This is your backup. 

3. In the copied version of the <platform> folder delete any unnecessary C++ or 
Fortran supplied programmable features not necessary to the current desired 
compilation of Ansys. (i.e. in this case we just want usermat.f containing the 
desired material model and we can delete any other files ending in "I" or ".c") 

4. Save the desired version of usermat.f in the copied version of the <platform> 
folder. 

5. The required Fortran compiler for ANSYS Release 10.0 on Windows based 
systems is the current Visual Fortran Complier by Intel Release 8.0 coupled with 
Microsoft Visual Studio 2003 (MVS2003). It is highly recommended to use the 
Command Prompt window set up by the installation of Visual Fortran to compile 
the ANSYS code with user subroutines, otherwise an error will occur when the 
process initiates the linker. To open this prompt initiate the following sequence 
under the Windows XP start menu: Start-All programs—>Intel(R) Software 
Development Tools-+Intel(R) Fortran Compiler 8.x—>Build Environment for 
Fortran IA-32 applications. 

6. In the command prompt make sure the path is set to the copied version of the 
<platform> folder with the correct usermat.f file. 

7. Run anscust.bat. 
8. When asked: "Do you want to link with the small export list?" it is advised to 

answer no. 
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9. The complier will compile all the user supplied routines located in the directory 
ending in either ".f", ".for", ".c" or ".cpp" and linker will then create a custom 
executable called ANSYS.exe in your working directory. It is possible to rename 
the executable after creation. 

10. Bring up the ANSYS Interactive Launcher. 
11. Click the button with the ellipsis ("...") next to the option "Execute a customized 

ANSYS executable". Select the .exe you have just created. 
12. Start ANSYS. 

If your executable is running properly, ANSYS will print "This ANSYS version was 
linked by Licensee" in the output window. 

2. FEA Simulation in ANSYS using the UMAT 

To run the input file with calls the UMAT start the customized ANSYS executable using 
the ANSYS Interactive Launcher as described above in Linking the UMAT to ANSYS. On 
the main menu bar in ANSYS select File-*Read input from... and select the location of 
the text file containing the appropriate material definitions as defined by tbdata (see 
Creating of ANSYS input file for the UMAT above). 

4. Pratt and Whitney Microstructures 

The microstructure information supplied by Pratt and Whitney is given in Table 2 for 
several components. 

Table 2. PWA 1100 Microstructure Information. 

Sample 
Primary r ' 

Ave. Size 	V 
(tun) 	I 

Secondary y` 

Ave. Size 	V 
(nm) 	I' 

Tertiary 7' 

Ave. Size 	V 
(nm) 	t 

Grain 
Size (pm) 

"Rim" 
"Bore 

Center" 
"Flange" 

1 . 1 8 

1.24 

1.16 

0.20 

0.21 

0.219 

141.0 

195.0 

145.0 

N/A 

0.336 

0.33 

7.55 

8.61 

9.98 

N/A 

N/A 

N/A 

4.1 

4.1 

3.6 

The Artificial Neural Network (ANN) was trained and calibrated within the ranges of 
microstructure features given in Table 3. 
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Table 3. Ranges of microstructure features used to generate the database for 150 
microstructures. 

Microstructure Attribute Min Max 

Volume Fraction of Primary y' Precipitate, fpi  0.0 0.25 

Volume Fraction of Secondary 	Precipitate, fp2  0.29 0.46 

Secondary y? Precipitate size, d 2  (nm) 110 340 

Volume Fraction of Tertiary y' Precipitate, f p3  0.024 0.14 

Tertiary yi Precipitate size, d 3  (nm) 7.0 21.0 

Grain Size, dgrain  (microns) 4.0 34.0 

* The primary y' precipitate size, d 1 , was set to 1 p.m. 

The supplied microstructure "Rim" does not fall within the ranges of microstructure 
features used to train the ANN since it does not contain any secondary y' precipitate or 
its volume fraction is not known so at this point it has been ignored. The macroscopic 
model parameters from the trained ANN for "Bore Center" and "Flange" were obtained 
assuming that the volume fraction of the tertiary 2/ precipitates fell within the ranges 
given in Table 3. Making this assumption, the given microstructure features were then 
modified according to Table 4. 

Table 4. Modified PWA 1100 Microstructure features. 
Tertiary y' 	

Grain 
Ave. Size 	V 	Size (pin) 

(nm) 	
t. 

 

8.61 	0.024* 	4.1 

9.98 0.024* 3.6** 

The numbers labeled with * are the modified values. Note that the "Flange" grain size 
also does not fall within the ANN range; however, the value is within the vicinity of the 

lower bound. 

The macroscopic model parameters for "Bore Center" and "Flange" obtained using the 
trained ANN and are tabulated in Table 5, based on experiments and simulations at a 
temperature of 650°C. A set of parameters were assigned for the model for all 
microstructures, namely N= 95, N2 = 7, D = 250 MPa, A,, =1.25x10 -3 s-1  and Fi  = 6.5. 

Sample 
Primary y' 

Ave. Size 	V 
(l(µm) 	f 

Secondary 7' 

Ave. Size 	V 
(nm) 	f 

"Bore 
Center" 

"Flange" 

1.0* 

1.0* 

0.21 

0.219 

195.0 

145.0 

0.336 

0.33 
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0.00 0.02 	 0.04 

Strain (mm/mm) 

-0.02 0.06 0.08 

1500 

Bore Center 

1000 - 

500 - 

ca 

2 
0 - 

U) 
a) 

-65 
-500 - 

-1000 - ---- Parameters from ANN 
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Table 5. Macroscopic viscoplastic  model parameters obtained from ANN (650°C). 

Sample 	K (MPa) A , (GPa) B, E, (MPa) 

"Bore Center" 	525 

"Flange" 	568 

206 

218 

1182 

1179 

446 

470 

Microstructure 	Emod  (GPa) v A, (MPa) B, 4 '2  x 10-15  01) 

"Bore Center" 	157.2 

"Flange" 	157.2 

0.33 

0.33 

2887 

3830 

7.2 

9.6 

147191 

115612 

To check the validity of these parameters, Figures 3 and 4 show the comparison of the 
stress-strain curves under a random uniaxial strain history for a material point using the 
macroscale ISV model with parameters are obtained from ANN, and two other material 
point simulations with parameters obtained directly from fitting the macroscale ISV 
model to a polycrystal plasticity simulation for two microstructures (Bore Center and 
Flange) and the polycrystal plasticity model itself. The agreement is noteworthy. 

Figure 3. Stress-strain comparison for Bore Center. 
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- 
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0.010 
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Figure 4. Stress-strain comparison for Flange. 

The figures above show that ANN trained macroscale ISV model parameters give a good 
prediction (comparable to microstructure-sensitive polycrystal plasticity) of the complex 
cyclic stress-strain response for the microstructures considered. 

Task 1. Run a single node to 2% Strain at 1200 °F (650°C) 

Figure 5. The stress-strain response up to 2% strain at 1200 °F 
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The simulations were performed using both ABAQUS and ANSYS for comparison of the 
UMAT implementations in the two different codes. As can be seen in Figure 5, 
ABAQUS and ANSYS implementations give identical results. 

Task 2. Strain vs. Time plots (2% - 5% max) for 

• 1100 °F / 150 KSI, 160 KSI, 170 KSI 
• 1200 °F / 120 KSI, 130 KSI, 140 KSI, 150 KSI, 160 KSI 
• 1250 °F / 100 KSI, 120 KSI, 135 KSI 
• 1300 °F / 65 KSI, 80 KSI, 100 KSI, 110 KSI, 120 KSI 
• 1400 °F / 25 KSI, 40 KSI, 65 KSI 

The crystal plasticity model parameters were calibrated using the data obtained from 
P&W Phase I project. The experimental data were all performed at 1200 °F. Hence, only 
the strain vs. time plots at 1200 °F are reliable. Figure 6 shows the strain versus time 
responses for various loading conditions over a duration of 120 seconds. 

Time (Secs.) 

Figure 6. Strain vs time responses for various loading conditions in 120 seconds. 

Task 3. Stress vs. Time plots for 5% strain for a simple bar 

Initial component testing of the developed Macroscale ISV model for the specified 
microstructures was performed on a simple bar in 2D with axisymmetric symmetry. The 
mesh and geometry of the simple bar are given Figure 7. Figures 8 and 9 show the 
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stress versus time and stress-strain responses, respectively, for the simple bar under 
completely reversed loading subjected to a maximum strain of 5% which was cycled at 
10 cpm. 

Figure 7: Simple bar modeled by 2D axisymmetric elements in ANSYS. 
200 

150 -1 f 
iT  

100 

50 

5 

0 — Flange 

--- Bore Center  
to' 

-50 

-100 

-150 

-200 

0 20 	40 	60 	80 

Time (s) 

100 120 140 

Figure 8: Axial stress versus time for simple bar model with 2D axisymmetric elements 
for Flange and Bore Center microstructures. The component was cycled in strain control 
at 10 cpm under completely reversed loading with 5% strain amplitude. 
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Figure 9: Axial stress versus strain response for simple bar model with 2D axisymmetric 
elements for Flange and Bore Center microstructures. This component was subjected to 
20 cycles in strain control at 10 cpm under completely reversed loading with 5% strain 
amplitude. 

Task 4. Simulations using Pratt & Whitney component. 

The component supplied by Pratt & Whitney is shown in Figure 10 and hereafter will be 
referred to the PW part. This part is a section of a disk subjected to axisymmetric 
boundary conditions along both sides to simulate the response of a complete disk even 
though only a section of the disk is considered. The macroscale ISV model is exercised 
on the PW part using the material parameters for both the Flange and Bore Center 
microstructures given in Table 6 (in English units). In all cases the simulations are 
performed under stress control and at 10 cpm with stress amplitude of 21253 psi and a 
stress ratio of 0.05. The maximum stress in the component occurs at the base of the bolt 
hole. This point is selected as a reference point and is defined specifically as the node of 
maximum stress under elastic conditions. This reference point is selected by subjecting 
the PW part to pure linear elastic conditions with the same modulus as the Flange 
microstructure; in reality any modulus could be used. The Von Mises stress versus time 
history at the reference point is given in Figure 11. Figure 12 gives the Von Mises stress 
versus effective strain response at the reference point over 5 cycles. The stress history 
and stress strain response for the Flange and Bore Center microstructures at the reference 
point in the direction tangent to the base of the bolt hole for the macroscale ISV model 
are given in Figures 13 and 14. The Von Mises stress profile around the bolt hole in the 
PW part for the Flange microstructure are given in Figure 15. 
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Figure 10. Pratt & Whitney component. 

Table 6. Macroscopic viscoplastic model parameters obtained from ANN (650 °C) in 
English units. 

Sample 	rc (ksi) A, (ksi) B, E, (ksi) 

"Bore Center" 	76.2 

"Flange" 	82.4 

29933 

31648 

1182 

1179 

64.7 

68.2 

Microstructure 	Emod (ksi) v Az  (ksi) B 2 A 2  X10 -15 
(S

-1
) 

"Bore Center" 	22800 

"Flange" 	22798 

0.33 

0.33 

419 

556 

7.2 

9.6 

147191 

115612 

** A set of parameters were assigned for the model for all microstructures, namely N 
95, N2 = 7, D = 36.3 ksi, 	=1.25x10 -3 s1  and F = 6.5. 
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Figure 11. Von Mises stress vs. time response for Flange material under elastic analysis 
with stress amplitude = 21253 psi; stress ratio = 0.05. 
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Figure 12. Von Mises stress versus effective strain for Bore Center and Flange. 
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Figure 14. o-x  vs. Ex  for Bore Center and Flange. 
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Figure 15. Von Mises stress distribution for Flange microstructure subjected to cyclic 
elastic analysis with stress amplitude of 21253 psi and a stress ratio of 0.05. 

Task 5. Fatigue Indicator Parameters 

In polycrystalline materials under multiaxial loading conditions, it has been observed that 
cracks generally initiate on a critical plane on which the range of cyclic plastic shear 
strain is maximum under proportional loading (i.e., components of principal stress tensor 
vary in constant proportion to one another over the stress cycle) [1, 2]. Because of this 
observation, fatigue indicators have been established relative to the criteria that define 
these critical planes. An earlier parameter proposed by Smith, Watson and Topper (SWT) 
considered the coupled effects of stress and strain according to the relationship 

-Pspfir — Vamaxe,E 	 (I) 
where umax  is the maximum tensile stress and ca  is the strain amplitude and E is the 
modulus [3]. The SWT fatigue parameter is intended to capture mainly Stage II crack 
growth and/or related effects of mean stress for tensile stress-dominated materials, but is 
not able to account for cracking due to multiaxial loading in shear-dominated materials. 
Fatemi and Socie [4] (FS) proposed a parameter that accounts for the observation that 
fatigue cracks initiate on planes of maximum range of plastic shear strain with peak 
normal stress for a multiaxial cyclic plastic strain state, i.e., 

( 

Bp _ rp,. 
	 1+ k' 	 FS 2 

Y 

(2) 
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where Ayp,,,a„ is the maximum range of plastic shear strain and cr,,,„ ax  is the maximum 
normal stress acting on this plane. Inclusion of the normal stress, cr ,,max , accounts the 
effect of normal stress on promoting separation of crack surfaces and is weighted by the 
material constant k'. This term is normalized by the yield strength. Larger magnitudes of 
PFS indicate a higher driving force for fatigue damage (crack formation and 
microstructurally small crack growth). The Fatemi-Socie (FS) parameter has been used to 
correlate fatigue crack initiation over a large number of grains for a range of multiaxial 
loading conditions for materials with extended Stage I dominant regions such as 1045 
steel and IN718 [2, 5]. 

The SWT and FS fatigue indicator parameters are calculated for both microstructures at 
the reference point (i.e., point of maximum stress) in the PW part. Figure 16 shows the 
Smith-Watson-Topper parameter over different cycles while Figure 17 shows the 
Fatemi-Socie parameter over different cycles. It is expected during shakedown that the 
cyclic plastic strain amplitude will decrease significantly during the first several cycles as 
was observed in the decreasing trend of both the SWT and FS parameters. Both 
microstructures appear to have similar fatigue responses according to these parameters at 
the reference point. The SWT parameter is estimated to be lower for the Flange 
microstructure than the Bore Center microstructure; however, when normal stress effects 
are considered via the FS parameter the results for the two microstructures seem to be 
much closer. 

0 	 2 	 3 	 5 	 6 

Cycles 

Figure 16. Smith-Watson-Topper parameter over first several cycles. 
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Figure 17. Fatemi-Socie parameter over first several cycles. 

5. Development of Ti-6A1-4V Macroscale Model 

One strategy for developing a microstructure-sensitive model for Ti-6A1-4V that 
incorporates effects of crystallographic texture on slip is simply to inform a macroscopic 
ISV model for each component of texture (random, basal, transverse, basal-transverse) 
and then weight the multiple models according to the fractions of texture components 
present in combined textures. Alternatively ANN can be used to perform this task. The 
crystal plasticity model has been established and validated to serve this purpose. 

The challenge in establishing the macroscopic constitutive equations for Ti-6A1-4V lies 
principally in the fact that the yield surface phase evolves its shape with accumulated 
inelastic deformation via texture evolution of the low symmetry a phase. Traditional 
initially isotropic hardening laws cannot accurately model these phenomena. An accurate 
prediction of the mechanical behaviors of Ti-6A1-4V needs to account for the plastic 
anisotropy of each phase and must capture the influence of the evolving texture on the 
inelastic response. The difficulty in formulating the yield surface for textured HCP 
polycrystals can be attributed to the combination of the strength differential effect 
(tension vs. compression asymmetry) and the anisotropy (directional dependence of flow 
stress) due to the texture evolution during the loading process. A model by Cazacu et al. 
[6], with some enhancements and modifications, is being considered. This model 
attempts to formulate a macroscopic polycrystal yield surface to account for the strength 
differential effect associated with low symmetry HCP phase. The form of the yield 
criterion is given by 

f( ,.)= (15.11 - ks,) 7  (I s21 - ks, )° +03 1 - ks47 
	

(3) 
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where S,, i =1,...,3 are the principal values of the deviatoric stress tensor. The 

coefficient k adjusts the strength differential effect, and the integer a is the degree of 
homogeneity. This isotropic criterion was then extended to the symmetry class of 
orthotropy (e.g., general rolling texture) by using a linear transformation on the deviatoric 
stress tensor to give 

F 	I 1(11 	2 1 k2  )a 	kE 3  ; E=L:S 	 (4) 

The restrictions imposed on the fourth-order tensor L are: (i) to satisfy the major and 

minor symmetries, and (ii) to be invariant with respect to rotational transformations 
within the orthotropy group. 

Currently, four different textures are being considered in the development of the Ti-6A1-
4V macroscale model; they are random, basal, transverse, and basal/transverse textures. 
The basal plane pole figures of these Ti-6A1-4V textures are given in Figure 18. 

basal 
	

transverse 

f a nd 	 basellransverse 

Figure 18. Basal Pole Figures of the common Ti-6A1-4V textures [7]. 

For each of the texture above, several crystal simulations will be conducted to obtain the 
yield surface of the material based on the work by Mayeur and McDowell [7] and Zhang 
et al. [8]. The model equations are summarized in Table 7. 

Table 7. Equations of the crystal plasticity model for Ti-6A1-4V. 
Flow Rule with Back Stress e, Threshold Stress K. , and Drag Stress D' 

Y" —)20(' 
 Da 	

sgn(r -x°) 

Drag Stress D' of the primary a -phase is non-evolving, i.e., Da = 0 

For the HCP slip systems of secondary a+ /3 lamellar phase, the Drag Stresses are taken 

to be the same as their counterparts in the primary a-phase, i.e. 
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Dprism D p +ri ,3sm 	basal = Dlycz ial 

Drag stress for the BCC systems is taken to be slightly lower than that for the prismatic 
op i systems Da-1-13 o) = 0.9D'" 

Evolution Equation of the Back Stress: 

C = By'," — Cw (..e) 	)2'= B sgnVa 	,„
—B  22a 

1// (x 	
exp (rhx" ) for x" <0 

1.0 for xa > 0 

x" = sgn (-ra — 	p" , with pa =V. sgn (z-a — x° 

Evolution Equation of the Threshold Stress: 
• For the pyramidal slip systems of the primary a -phase and the hard slip system 

)-0.5 
of the a + ,8 colony, only one term is in effect, i.e. lc, = ky  (cl" 

• For the basal and prismatic slip systems of the primary a -phase, the evolution 
equation includes additional terms so as to give 

K  pa  rism,basal = 1Cla 4-  A ( r  Pyrl —  Pyr2)+ IC sa l prism ,basal 

prism,basal 	1 a cl pram,basal kall 	with  1C:1
prrsm,basal 

(0) = s  (0) 

• The Threshold stress for the soft slip systems of the a + p colony is given by 

Kraft = 	+ 
Ks soft 

<Lop = u  lc,a, lsoftfr a  
Ksa soft (0) = Ks  (0) 

Additional steps to achieve microstructure-sensitive macroscopic model for Ti-6A1-4V: 
• Conduct crystal plasticity runs of Ti-6A1-4V for key texture components. 
• Fit the yield surface to the form suggested by Cazacu or comparable form to fit 

crystal plasticity simulations. 
• Formulate the elements of viscoplastic constitutive model with texture 

representation (back stress 
• Conduct ANN to link the Ti-6A1-4V crystal plasticity model to the 

microstructure-sensitive macroscale viscoplastic model. 
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Appendix A. Crystal Plasticity Constitutive Equations 
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Appendix B. Walker — Type Constitutive Equations 



Uniaxial Walker Type UMAT (McDowell Form) 

Two-Term Flow Rule and Two Backstress Formulation 

Flow Rule 

D n = 
— —K soft — R)N — K — K so  ft — R) N +1  (o-v 

exp 

]

By (cry 

D 1  

(1) 

A  
-r102 

)N2 
CTv  

( D2 	exp 	[ B02 	 
( 0- V 

D2  
N2+1  

Hardening Evolution 

sgn (cf — Q) , o- V = lo-  — 

2 

	

mk  ax 	Qimax max IQ'.  Ksoft = >7, K1 exp 
i=1 	 1-21.irn 

R = Qh { 1  — exP ( — bhp)} p = f dt 

2 E 

i=1 

[ Az  (ctmei  ( g  
[Qi  lini 

m 

E.n 	 (icri ) 77,1 

Note: The uniaxial backstress Q is assumed to be deviatoric. KS°ft  term was neglected since 

there was no softening observed. This term had originally been placed in the denominator, 

but was then placed in the numerator. 



Appendix C. Walker — Type UMAT 



Walker Type UVIAT (McDowell Form) 

Two-Term Flow Rule and Two Backstress Formulation 

1 Constitutive Equations 
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Now, work on the second term of flow rule 
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Finally, for the second term of flow rule 
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1.2 Calculating the Jacobian 

The Jacobian, J, is given by 

B1a1 + B2 2)) + 32  (E1 FIR)) 

B 1 a1 + B2 012)) (3) 

aA0- 	a 	 a 

J 	a.A 
	 = 

a.AE 
[C : (D Dn) At] = 

aAs 
[(C : D) At - (C : DTh) At] 

E  

0  
0Ae [(C : AE) - (C : Apn)] , recall D = e, DnAt = Apn 

a Ay, 
= C : n aL PE )  = C (C : n) 	 

aAE 
(4) 

Since, 

C 	DI N  exP 
By 

 CSDIA+11} 

N2 

A„2 	SV2 
	

exp [B„ 
2 \ D j 

(S„)  
D 

Ap = Ay  1 I3AtF + Ay 2  -AtF2  



OR 
Bice]. + B2ce2) 7 aAP 

- F1  R) 

then, 

t  ( OF au'  OF as OAp  + 	0  OF OR (9A 7) 

cr' • aL\E ± act • 3,4 
0 
 oAe oRoAp a Ae 

[3-At  ( aF2 	aF2  as 36..p  
V 2 	ao-i aae as 06.1) ® o°E 

We already know that 

OF _ nF, 	OF oF 	-F, aF2 	nF,2 	aF2  
ao-,  	aocm, 	 as 

, -At 	 At 	 At 2 	 2 

We know that 

1 r 	 OAcr' aA0- 	a 
= - -3 akki = - KEkki   	(KAE kk I) 

aAE. 	aL\E oAs 

Assuming that K is a constant during deformation 

OAa' 3Ao- 8413  
K (I I) C (C : 	OAE K(I®I) 

DAE OAE 

a0
2  

(A 1  + A2 ) n 
3 p  

So now, 

        

At 

  

nF, 

  

C (C : n) aA
DA

s  K(I0 I)) 

     

   

t 

 

       

        

-nF,  
3 	

(
3 

(Ai + A2) n 
-At  

a,Ap B1a 1  + B2a21) ® aAE 

3A, 

At  2 

MI) 
E - FI R) 0 

  



-nF  
: (

2 
(Ai  + A2 ) n 

3 	
, 

\ Av2  V 2 dt /  

B l ee l  B2a2)) 	 
a,AE 

0,4 

      

      

AD2  -
3

,At 
2 

    

0.4  
: (C (C: n) ® ads  K(I®I)) 

    

  

3 

v2  U 2 

 

     

     

04  
(nF„,) : (C - (C : rt) K(r .1) 

DAE 

(nFu ) : 
3 

(Ai + A 2 ) n - 
aAp 

Bice' + B2a2)) 
Ode 

o^dp 

3 F„ 

Ft,  

- (nF„) 

(El 

: 

n: 

0,4 
- FiR) K (I 0 I)) 

FI R)1 
Ap 

OAE 
+ (nF„) 

(Ai ± A 2 ) n - 

, 
C : n + 	(A i  ± A2 ) n 

	

: (C 	(C : n) 
®aA6  

aAp 

	

B1a1 	B2 + 	2) 	0 aAE  ) 

B 1 c1 1  + B2a2)} +
3  

= 
OAE aAE 

{ 	
2 

n : C : n+-(Ai+i12)n- 
3 

Bi ct i  +B2a2)}1 0
3 
 +Fy n: [C - K 0 I)] 
AE 

aAp  
FV2 

+F„n : [C - K (I I)] 

(F„ + Fv2 ) n : [C K (.1 	= {1 + F +F2} al9AAP  



Hence, 
3Lp (F„ + F„) n [C -  K (I I)]  
0 Ae 	 1 +F + F2 

Finally, the Jacobian, J, is 

J = C - (C : 
(F, + F,2 ) n : [C- K (I  el. )] 

1+F, +F, (5) 

where 

F 1  

F2 

= 

= 

F, [n 

F„ 

2 
: { C : n + -

3 
(A i  + A2 ) n - 

-
2 

(Ai  + A2 ) n - n: 	C : n + 
3 

{ 

B2c12)} 

B1 a1 + B2a2)} -  

2 
-
3 
 (El - FI R) 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42

