
RADAR: COMPILER AND ARCHITECTURE SUPPORTED

INTRUSION PREVENTION, DETECTION, ANALYSIS AND

RECOVERY

A Thesis
Presented to

The Academic Faculty

by

Tao Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2006

RADAR: COMPILER AND ARCHITECTURE SUPPORTED

INTRUSION PREVENTION, DETECTION, ANALYSIS AND

RECOVERY

Approved by:

Dr. Santosh Pande, Advisor
College of Computing
Georgia Institute of Technology

 Dr. Karsten Schwan
College of Computing
Georgia Institute of Technology

Dr. Mustaque Ahamad
College of Computing
Georgia Institute of Technology

 Dr. Jun Yang
School of Electrical and Computer
Engineering
University of Pittsburgh

Dr. Wenke Lee
College of Computing
Georgia Institute of Technology

 Date Approved: [Aug 18, 2006]

iii

ACKNOWLEDGEMENTS

 First and foremost, I thank my parents. Victims of Culture Revolution in China,

they were deprived of the opportunities of higher education and spent their prime time in

a remote and unknown village. They put their hope on me and did everything within their

power to support my growth. Mom, Dad: I hope what I achieved so far makes you proud.

 Many thanks to Santosh Pande. As my advisor, he gave me guidance, wisdom and

encouragement throughout my Ph.D. study. Without his help, there is no way for me to

finish this broad thesis topic. He is also a good friend in life and always supported me

whenever he can.

 Special thanks to Xiaotong Zhuang. It is fortunate to have him as my most

important colleague. He is very smart and it is always enlightening to discuss research

problems with him. He contributed a lot to my thesis work.

 Thanks to my committee members for providing critical comments to my

dissertation and helping me make it a quality one. In addition to my advisor, the

committee consisted of Mustaque Ahamad, Wenke Lee, Karsten Schwan and Jun Yang.

Thanks are also due to other professors and students who helped me along the way.

 Finally, I thank all my friends in and out of Atlanta who made my life in the past

several years a memorable experience.

Tao Zhang, August 2006.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

SUMMARY xi

CHAPTER

1 INTRODUCTION 1

1.1 Motivation 1
1.2 Traditional Software-Based Approaches 4
1.3 Existing Hardware-Based Approaches 6
1.4 Our Approach 7
1.5 Contribution Statement 14
1.6 Dissertation Organization 16

2 MACHINE MODEL AND ATTACK MODEL 19

2.1 Previous Work 19
2.2 Our Machine Model and Attack Model 23

3 PREVENTING INFORMATION LEAKAGE ON ADDRESS BUS 25

3.1 Introduction of the Problem 25
3.2 Attacks via Control Flow Snooping on Address Bus 28

3.2.1 Reuse Code Identification 28
3.2.2 Critical Data Leakage via Value-dependent Conditional Branches 32
3.2.3 Other Issues: Blocking, Caching 34
3.2.4 Data Address Protection 37

3.3 Basic Concepts and Components of HIDE 37
3.3.1 Fixed Address sequence 37
3.3.2 Probabilistically Fixed Address sequence 39
3.3.3 HIDE cache 41
3.3.4 The Permutation Unit 48

3.4 HIDE at Chunk-Level 51
3.4.1 Chuck Level Protection and Transition Coverage 51
3.4.2 Hardware Components 52
3.4.3 Some Other Issues 55
3.4.4 Interface to the Application 56

3.5 Optimizations 57

 v

3.5.1 Compiler Layout Optimization 58
3.5.2 Managing Stack and Heap 61
3.5.3 Adaptive Chunking 63

3.6 Other Considerations 65
3.7 Evaluation 65
3.8 Related Work 80
3.9 Summary 81

4 TRAINING-BASED ANOMALOUS PATH DETECTION 84

4.1 Introduction 85
4.2 Previous Work and Their Limitations 87
4.3 Anomalous Path Checking 92

4.3.1 Motivation 92
4.3.2 N-jump Path Checking Motivation 94
4.3.3 Training Phase 95
4.3.4 Detection Phase 95
4.3.5 Detection Capability 96

4.4 Hardware Implementation 98
4.4.1 The Advantages 98
4.4.2 Hardware Architecture Overview 99
4.4.3 Implementation Details 102
4.4.4 Other Considerations 112

4.5 Evaluation 113
4.6 Summary 125

5 INFEASIBLE PATH DETECTION WITHOUT FALSE POSITIVES 127

5.1 Background and Motivation 128
5.2 Overview 131
5.3 Branch Correlations 132
5.4 Implementation Details 135

5.4.1 Branch Status Vector and Branch Action Table 135
5.4.2 Storing BSV, BCV and BAT Information Efficiently 143
5.4.3 Handling Function Calls 146
5.4.4 Other Considerations 147
5.4.5 IPDS 148

5.5 Evaluation 150
5.6 Summary 160

6 DATA TAMPERING DETECTION THROUGH DYNAMIC ACCESS
CONTROL 162

6.1 Background and Motivation 163
6.2 Compiler Analysis and Optimizations 167

6.2.1 Write Ranges Identification 171
6.2.2 Protection Points Hoisting and Delaying 172
6.2.3 Protection Points Selection 176
6.2.4 Grouping Protection Operations 178

 vi

6.2.5 Points-to Table 186
6.2.6 Action Table and Special Instruction 188

6.3 Architectural Support 190
6.4 Evaluation 192
6.5 Summary 201

7 INTRUSION ANALYSIS AND INTRUSION RECOVERY 204

7.1 Background and Motivation 204
7.2 Intrusion Analysis Based on Logging 214
7.3 Intrusion Analysis Based on External Input points Tagging 221
7.4 Intrusion Recovery 230
7.5 Experiments and Results 231
7.6 Summary 242

8 CONCLUSIONS AND FUTURE WORK 244

8.1 Conclusions 244
8.2 Future Work 248

REFERENCES 250

 vii

LIST OF TABLES

Table 1. Isomorphic block level CFGs with different block sizes.................................... 35
Table 2. HIDE cache operations. .. 46
Table 3. Default architectural parameters... 66
Table 4. Daemon programs and vulnerabilities. ... 113
Table 5. Default Parameters of the processor simulated... 120
Table 6. Default Parameters of the processor simulated... 157
Table 7. Action table... 189
Table 8. Parameters of processor simulated. .. 195
Table 9. Space cost measurement. .. 201
Table 10. Parameters of processor simulated. .. 241

 viii

LIST OF FIGURES

Figure 1. Number of incidents reported to CERT... 2
Figure 2. The XOM secure architecture. .. 20
Figure 3. Control flow snooping.. 26
Figure 4. Binary reuse percentage for SPEC2000 integer programs. 29
Figure 5. Isomorphic CFG pairs in the standard C library. .. 30
Figure 6. Modular exponentiation algorithm. ... 33
Figure 7. Independent instruction access sequence. ... 39
Figure 8. Example for Lemma 1 and HIDE cache.. 45
Figure 9. Pseudo-code for the permutation unit.. 49
Figure 10. Hardware flowgraph.. 52
Figure 11. Data structure for page info record.. 53
Figure 12. Virtual to physical address translation. ... 56
Figure 13. Examples for transition graph. .. 59
Figure 14. Algorithm to layout code and data. ... 60
Figure 15. Protecting stack space under HIDE... 62
Figure 16. Illustration of adaptive chunking... 64
Figure 17. IPC results normalized to the baseline without address bus protection. 67
Figure 18. Average L2 cache access latency under the baseline and the HIDE default
model... 68
Figure 19. Percentage of total memory bandwidth used... 69
Figure 20. Percentage of address transitions covered... 69
Figure 21. Normalized IPC results for the ORAM scheme with different shelter sizes... 71
Figure 22. Normalized IPC results for the ORAM scheme with different chunk sizes.... 72
Figure 23. Performance degradation for the HIDE scheme with different L2 cache sizes.
... 73
Figure 24. L2 cache miss rate for the HIDE scheme with different L2 cache sizes. 74
Figure 25. Performance degradation for the HIDE scheme with different L2 cache ways.
... 74
Figure 26. Performance degradation with larger chunk sizes comparing with the default
model... 75
Figure 27. Bandwidth consumption increase with larger chunk sizes comparing with the
default model. ... 76
Figure 28. Transition coverage rate improvement with larger chunk sizes comparing with
the default model... 77
Figure 29. Effects of pre-permutation optimization under different pre-permutation
strategies. .. 77
Figure 30. Effects of fetch buffer optimization with different buffer sizes. 78
Figure 31. Effects of adaptive chunking. .. 79
Figure 32. Attacks prompting detection at finer granularity. (From [31] and [30]). 89
Figure 33. An anomaly path that cannot be detected.. 98
Figure 34. Architectural overview. ... 99
Figure 35. Checking pipeline.. 100
Figure 36. An example of n-jump path... 102
Figure 37. Data structure for regular path checking. .. 105

 ix

Figure 38. Regular path checking hardware diagram. .. 108
Figure 39. An example for regular path checking: checking anomalous path
AÆBÆCÆDÆE. .. 110
Figure 40. Convergence on selected benchmarks... 115
Figure 41. Number of n-jump paths.. 116
Figure 42. Detection rate of randomly inserted anomalous paths (daemon programs). . 118
Figure 43. Optimized Checking table sizes. ... 121
Figure 44. Effects of optimizations to checking table sizes.. 122
Figure 45. Performance results. .. 123
Figure 46. Intervals between fault injection and fault detection when n=9.................... 124
Figure 47. Example attack revisited.. 129
Figure 48. An infeasible path caused by memory tampering. .. 130
Figure 49. An example of branch correlation. .. 133
Figure 50. An example on how to update the branch status vector. 136
Figure 51. Algorithm to construct BAT and BCV.. 139
Figure 52. Reduce branch actions... 145
Figure 53. IPDS framework.. 149
Figure 54. Detection Rate for Simulated Attacks. .. 154
Figure 55. Average sizes (in bits) of BSV, BCV and BAT tables.................................. 156
Figure 56. Normalized Performance... 158
Figure 57. Queue Occupancy.. 159
Figure 58. Detection Response time. .. 159
Figure 59. Attacks without control flow tampering.. 164
Figure 60. Potential security holes in the AccMon approach. .. 165
Figure 61. Compiler framework overview.. 170
Figure 62. Write range example.. 171
Figure 63. Algorithm for hoisting protection points... 173
Figure 64. An example of hoisting protection points. .. 175
Figure 65. Algorithm for selecting protection points.. 177
Figure 66. An example of protection operations grouping. .. 179
Figure 67.Data layout and protection operations grouping. ... 180
Figure 68. Pseudo code for the grouping algorithm. .. 182
Figure 69. An example of protection operations grouping algorithm. 183
Figure 70. Architecture support overview .. 191
Figure 71. Effects of compiler optimizations. ... 193
Figure 72. Performance degradation... 194
Figure 73. Security measurement. .. 195
Figure 74. Detected simulated attacks (extreme condition).. 197
Figure 75. Detected simulated attacks (more realistic condition)................................... 199
Figure 76. How to decide an anomaly detection scheme.. 203
Figure 77. Data replication/scattering based on secret sharing....................................... 207
Figure 78. How data replications/scattering defends against buffer overflows.............. 209
Figure 79. Difficulty of identifying tampered data. .. 212
Figure 80. Data structure of a log record. ... 217
Figure 81. Dependency backtracking algorithm... 218
Figure 82. An example of dependency backtracking.. 220

 x

Figure 83. The problem of the logging based scheme. ... 221
Figure 84. External input points tagging algorithm. ... 224
Figure 85. The difficulty of external input points tagging.. 226
Figure 86. A typical process space layout. ... 227
Figure 87. Finding the corresponding EIP address for static memory address. 227
Figure 88. EIP space data structures. .. 228
Figure 89. Algorithm to add an EIP id into the proper EIP set....................................... 229
Figure 90. Modified data structure of a log record. .. 230
Figure 91. Modified backtracking algorithm. ... 231
Figure 92. Intrusion identification under the logging based scheme. 234
Figure 93. Intrusion recovery rate under the logging based scheme. 235
Figure 94. EIP tagging space requirement.. 236
Figure 95. Intrusion identification rate of EIP tagging scheme. 238
Figure 96. Intrusion recovery rate of EIP tagging scheme. .. 239
Figure 97. Bandwidth requirement. .. 240
Figure 98. Performance degradation of the EIP tagging scheme.................................... 242

 xi

SUMMARY

Computer technology has changed our life fundamentally and computer systems

have become indispensable for the proper functionality of our society. On the other hand,

the rapid increase of the society’s dependence on computer systems brings great interest

to break in and attack those systems. Computer software determines the functionality of

computer systems and is the primary target of attacks. With today’s pervasive presence of

computer systems and network connections, securing critical software from attacks has

become an extremely important problem and has never been as challenging.

Critical software faces both software-based attacks and hardware-based attacks.

Software-based attacks may come from other malicious software. For example, attacking

software may read/write victim software’s address space through flaws in process

isolation. Software-based attacks may also break software by exploiting all kinds of

vulnerabilities in the victim software, such as notorious buffer overflow vulnerabilities.

Hardware-based attacks break software by utilizing specialized hardware and attacking

the system on which the software is running, such as snooping system buses during the

execution of the software. Software attacks are more commonly known. However,

combating hardware attacks has been an extremely important problem in secure

embedded systems domain, such as smart cards, and is becoming more and more relevant

in general purpose computing domains.

In this dissertation, we propose RADAR – compileR and micro-Architecture

supported intrusion prevention, Detection, Analysis and Recovery. RADAR is an

infrastructure to help prevent, detect and even recover from attacks to critical software.

 xii

Instead of being a purely software-based approach or a purely hardware-based approach

as in previous approaches, our approach emphasizes collaborations between compiler and

micro-architecture to avoid the problems of purely software or hardware based

approaches. Our infrastructure is based on micro-architecture level support and has its

security rooted in hardware. At the same time, we call for compiler assist whenever it is

necessary, such as to obtain expected software behavior, or whenever it is helpful to

reduce the complexity of the micro-architecture support. With both micro-architecture

and compiler support, our infrastructure can defend against both software and hardware

attacks with superb security strength but reasonable hardware and performance cost.

We believe that a purely software-based approach is not able to meet the security

challenges faced by critical software. First, a purely software-based approach can be

easily reverse-engineered and then cracked. In addition, a purely software-based

approach cannot defend against hardware attacks thus is not applicable in situations

where hardware attacks are real threats. More importantly, security operations

implemented in software are much more expensive than the hardware implemented

version. The potential performance penalty greatly limits the security strength that a

software-based approach can achieve. Overall, a purely software-based approach may not

be able to achieve a satisfying security guarantee for critical software.

Thus, we believe that it is time to call for micro-architecture level support for

software security. With hardware support for cryptographic operations, such as

encryption, decryption and hashing, our infrastructure can achieve strong process

isolation to prevent attacks from other processes and to prevent certain types of hardware

attacks, such as using specialized hardware to read/tamper the system data bus traffic or

 xiii

the external memory system directly to evade process isolation mechanism completely.

Moreover, we show that an unprotected system address bus leaks critical control flow

information of the protected software but has never been carefully addressed previously.

The information leakage could facilitate an attack and bring significant damage to both

code and data confidentiality. To enhance intrusion prevention capability of our

infrastructure further, we present a scheme with both innovative hardware modification

and extensive compiler support to eliminate most of the information leakage on system

address bus.

However, no security system is bullet-proof and is able to prevent all attacks.

Although our hardware infrastructure is able to achieve strong process isolation and to

prevent common hardware attacks, it does not prevent attacks exploiting software

vulnerabilities such as buffer overflow attacks. In general, we have to assume that certain

attacks will get through our intrusion prevention mechanisms. To protect software from

those attacks, we build a second line of defense consisted of intrusion detection and

intrusion recovery mechanisms.

Our intrusion detection mechanisms are based on anomaly detection. In other

words, we try to detect anomalous program behavior caused by attacks based on expected

program behavior. Anomaly detection does not target to specific attacks and is able to

detect novel or unknown attacks. In this dissertation, we propose three anomaly detection

schemes. The first one is a training based scheme to detect anomalous dynamic program

paths. The scheme monitors the software execution at a very fine granularity and is able

to detect attacks with high precision and neglectable performance overhead. The major

concern of the scheme is false positives. So we propose the second scheme based on

 xiv

compiler branch correlation analysis to detect infeasible paths without any false positives.

But the detection capability is not as good. Finally, we present a third scheme based on

compiler data flow analysis to detect tampering to critical software data. The third

scheme is able to achieve both zero false positives and strong detection strength, but the

performance overhead is much higher. We demonstrate the effectiveness of our anomaly

detection schemes thus the great potential of what compiler and micro-architecture can do

for software security.

After an intrusion is detected, most previous approaches simply shut down the

attacked software to avoid any further damage. However, the ability to recover from an

attack is very important for systems providing critical services. Thus, intrusion

recoverability is an important goal of our infrastructure. To provide intrusion

recoverability, two major tasks have to be done. First, we need to analyze the attack to

identify exactly when and how the attack happens so that we can identify the tampered

system state and gather useful information for later forensic analysis. Second, the

tampered system state has to be recovered through certain mechanisms. We focus on

memory state in this dissertation, since most attacks break into a system by memory

tampering. Intrusion analysis is a difficult problem since there could be an arbitrarily

large interval between the tampering to the system state and the detection of the

tampering. We propose two schemes for intrusion analysis. The execution logging based

scheme incurs little performance overhead but has higher demand for storage and

memory bandwidth. The external input points tagging based scheme is much more space

and memory bandwidth efficient, but leads to significant performance degradation. After

intrusion analysis is done and tampered memory state is identified, tampered memory

 xv

state can be easily recovered through memory updates logging or memory state

checkpointing.

In summary, our RADAR infrastructure aims to protect critical software from

both hardware attacks and software attacks with strong security guarantee. It integrates

the abilities of intrusion prevention, intrusion detection, intrusion analysis and intrusion

recovery, which are the major aspects of protecting software from malicious attacks. It

emphasizes collaborations between compiler and micro-architecture to achieve those

abilities. With micro-architecture level support and compiler assist, our RADAR

infrastructure can achieve strong security guarantee for critical software with reasonable

hardware cost and performance degradation.

1

1 INTRODUCTION

In this dissertation, we propose an infrastructure called RADAR to help prevent,

detect and even recover from attacks to critical software. Instead of being a pure

software-based approach or a pure hardware-based approach, our approach emphasizes

collaborations between compiler and micro-architecture to avoid the problems of pure

software or hardware based approaches. Our infrastructure is based on micro-architecture

level support and has its security rooted in hardware. At the same time, we call for

compiler assist whenever it is necessary, such as to obtain expected software behavior, or

whenever it is helpful to reduce the complexity of the micro-architecture support. With

both micro-architecture and compiler support, our infrastructure can defend against both

software and hardware attacks with superb security strength but reasonable hardware and

performance cost.

1.1 Motivation

 Computer technology has changed our life fundamentally and computer systems

have become indispensable for the proper functionality of our society. Numerous

embedded systems form parts of critical systems in automobiles, aircrafts, satellites,

robots, appliances, and medical devices to control their operations. At the same time,

conventional computer systems are integral parts of critical infrastructures such as

financial services, telecommunication, transportation, energy production and distribution

networks. In the year 2000, 385 million microprocessors were produced for use in

conventional computers, at the same time 6.4 billion microcontrollers were manufactured

for use in embedded devices [51].

 2

 The increasing of the society’s dependence on computer systems brings great

interest from criminals and terrorists to break in and tamper those systems. Although the

vast majority of computer security incidents are not reported to public, we can still get a

sense of the severity of the problem by those publicly available ones. For example, on

Apr. 12 2001, VISA lost 20 million dollars due to extortion by hacker organizations. On

Aug. 26 2002, systems of Daewoo Securities were hacked and $21.7 million stock was

illegally sold [112]. On Jun. 2005, CardSystems Solutions Inc, a third-party processor of

payment-card data, was breached and as many as 40 million cards may have been

exposed [71]. The impact of incidents occurred in military or national security related

areas will be far more significant but those incidents most likely will not be publicly

reported. Figure 1 shows the number of Internet incidents reported to CERT [15] in

recent years. This graph merely shows the tip of the iceberg, but it can be easily seen that

the situation gets worse quickly.

1994 1996 1998 2000 2002 2004

of

 In
ci

de
nt

s
R

ep
or

te
d

0.0

2.0e+4

4.0e+4

6.0e+4

8.0e+4

1.0e+5

1.2e+5

1.4e+5

1.6e+5

Figure 1. Number of incidents reported to CERT.

 3

 Koopman showed the potential scale of the computer security problem in the

future using thermostat as an example [58]. A household thermostat controls heating and

cooling of the house. Most thermostats have an embedded computer and many of them

will have internet connection in the future to allow remote control from the house owner

or the utility company. Tampering of one thermostat may not be able to cause significant

damage, but what if millions of them are controlled by an attacker? The situation is very

realistic since those thermostats most likely will execute the same software thus can be

hacked in the same way. Moreover, they are likely to be under center control of the utility

company, which could also be broken by the attacker. With millions of thermostats under

control, the attacker can do serious damages. He can set the target temperature to an

extreme point and cause a black out of a power grid. Or he can bump the temperature a

little bit to increase energy consumption and inflate energy bills in a subtle way.

Obviously, tampering to more complicated computer systems having more

responsibilities could lead to much more severe damages.

 In summary, with more and more pervasive presence of computer systems and

network connections in the future, securing critical computer systems from attacks has

become an extremely important problem and has never been as challenging. Computer

software determines the functionality of computer systems and is the primary target of

attacks. In this dissertation, we will focus on the problem of protecting critical software

from attacks.

 Critical software faces both software-based attacks and hardware-based attacks.

Software-based attacks may come from other software. For example, attacking software

may read/write victim software’s address space through flaws in process isolation.

 4

Software-based attacks may also break software by exploiting all kinds of vulnerabilities

in the target software, such as notorious buffer overflows. Hardware attacks break

software by utilizing specialized hardware and attacking the system on which the

software is running, such as snooping system buses during the execution of the software.

Software attacks are more commonly known. Preventing hardware attacks has been an

extremely important problem in secure embedded system domain, such as smart cards,

and is becoming more and more relevant in general purpose computing domains.

 Protecting software from attacks has several aspects including intrusion

prevention, intrusion detection and intrusion recovery. Measures can be taken to prevent

certain attacks or make certain attacks computationally difficult. On the other hand, there

is no perfect security so attacks or intrusions will occur thus we need mechanisms to

detect those attacks. Finally, in certain situations it is critical that the software can recover

from intrusions and continue its correct execution.

1.2 Traditional Software-Based Approaches

 Software protection is a traditional research topic. Traditional solutions are purely

software-based and mostly focus on intrusion prevention and intrusion detection. We give

several examples to show the problems of a purely software-based solution.

 Software-based encryption is a classical mechanism to prevent attacks to software

confidentiality. A part of the software may be encrypted by an activation key only known

to the legitimate user. However, the scheme can be easily broken as long as the attacker

has access to one legal copy. Although a part of the program binary is encrypted, without

hardware support, the processor cannot execute encrypted code so that the encrypted

code has to be decrypted first in memory. The attacker can debug/reverse-engineer

 5

 [35] [112] the protected software during its execution and find out the whereabouts of the

decrypted code and dump its content, then he has a decrypted version of the software.

 Software-based self-checksumming is a popular technique to detect tampering to

software due to attacks [16] [45]. Checksumming code is spread through the software and

the software code/data is verified against its previously computed checksum during

execution. However, the attacker can still reverse-engineer and understand the

implementation of checksumming technique. Then he can learn how to tamper the

software data without triggering a checksum failure or attack the checksumming code

directly to remove/bypass it. The amount of work is normally insignificant for an

experience attacker and is trivial for a well-funded organization.

 Software obfuscation [5] [19] [20] [21] [70] [80] [65] has been proposed to make

reverse-engineering more difficult by transforming the original program code. The

techniques used include instructions shuffling, replacing, scrambling, dummy code

insertion, branch function creation etc. However, software obfuscation cannot achieve

any security guarantee but only increases the effort required to attack the software.

Moreover, the research of deobfuscation is also active, which could help attackers greatly.

As a good example, after an obfuscation technique to make static disassembly difficult is

proposed in [65], it is promptly broken in [25]. More ironically, an extremely competent

Java obfuscator has been subverted and used as a powerful deobfuscator [74].

 General intrusion detection techniques based on detecting anomalous program

behavior are also proposed [32] [115] [92] [31] [30] [59] [76] [37] [36]. The detection strength

of those anomaly detection techniques largely depends on the granularity at which they

monitor the target program. Since current approaches are implemented in software, they

 6

are not able to monitor the target software at a very fine granularity due to the potential

performance overhead. Currently, most of them monitor at system call level such as in

 [32]. Due to the coarse monitoring granularity, certain attacks will be missed by those

schemes.

1.3 Existing Hardware-Based Approaches

 Trusted Computing Group (TCG) [107] is an industrial alliance promoting trusted

computing, founded by Microsoft, Intel, IBM, HP and AMD. The goal of it is to develop

specifications for a secure computing platform against software-based attacks to software

confidentiality and integrity. The so-called trusted computing platform incorporates

several security components. The most noteworthy one is a secure co-processor called

trusted platform module (TPM). The security of the whole platform relies on the TPM,

which can be used to protect data confidentiality by encrypting/decrypting and to verify

the integrity of the software by hashing. Other security components include a processor

having a strong process isolation feature (implemented in Intel’s LaGrande Technology

 [48]), a secure operating system kernel and a secure kernel in each trusted computing

application (both provided by Microsoft’s NGSCB infrastructure [79]). There are already

several implementations of the TPM specification and TPM compliant chips are already

available in many desktops and laptops models [105].

 Recently, Lie et al. [64] proposed the XOM secure architecture design based on

hardware supported encryption/decryption. With hardware support, program code/data is

encrypted and decrypted on the fly by the secure processor during program execution.

The effect is that the processor is able to execute “encrypted” program now. Only the

processor has access to the plaintext of the original program code and data but the

 7

attacker does not. Thus, their scheme prevents attacks to software confidentiality

effectively through encryption/decryption. Lie et al. also proposed a hashing based

integrity checking scheme to detect tampering to the software thus achieving certain

intrusion detection too. Later, Gassend et al. [38] pointed out that the integrity checking

scheme in [64] is vulnerable to replay attacks. Gassend et al. further proposed a hash-tree

based integrity checking scheme to fix the problem. Since then, there has been some

follow up work to improve over the initial work [124] [102] [101] [95] [67]. But the basic

designs established in [64] and [38] are inherited.

1.4 Our Approach

 In general, software protection techniques purely based on software cannot

achieve strong security guarantee. Since the protection scheme is purely implemented in

software, it can be easily reverse-engineered and attacked. On the other hand, lack of

hardware support makes security operations too expensive to be applied aggressively,

further limiting the security strength that a software-based protection scheme can achieve.

As a matter of fact, software piracy and digital media piracy cost industries billions of

dollars each year [12], which easily proves current software protection (in terms of

confidentiality) schemes are ineffective.

 Moreover, the development of computer technology and its applications has made

securing critical software an extremely important and challenging problem. Although

software and digital media piracy costs significant financial losses for

software/entertainment industries, its damage is still limited. With computer software

virtually controlling every critical service in modern society even including nuclear arms,

how to secure critical software has become a problem of national priority. On the other

 8

hand, the pervasive presence of network connections and the easy access to tremendous

personal computing power make computer software face great threats and challenges

never experienced before.

 In particular, traditional software-based software protection approaches only

tackle software-based attacks, in which attackers utilize software tools and methods to

break in the software. Hardware attacks constitute another large category of attacks in

which attackers utilize specialized hardware and manipulate the target system in an

unintended way. Hardware attack techniques include probing, re-engineering, memory

readout, bus snooping, side-channel information leakage exploitation etc. [3]. Hardware

attacks are mostly concerned in embedded systems domain previously, especially in

designs of tamper-resistant devices such as smart cards. However, we believe that to

achieve software security with strong guarantee, hardware attacks have become realistic

and dangerous enough to be considered in general secure system designs. We should

indeed learn our lessons from the case of Xbox hacking [47], in which the carefully

crafted security scheme was easily defeated by system bus snooping. The device utilized

is commonly available in labs and can be readily purchased at a cheap price. Obviously a

protection scheme purely based on software can do little to prevent hardware attacks.

 In response to the ineffectiveness of traditional software protection schemes and

the emerging new threats, we believe that it is time to call for micro-architecture level

support for software security. With hardware support for security, the security of the

system can be rooted in hardware and the system can achieve much better security

guarantee than software-based ones. The reasons are two folded. First, hardware is very

difficult to reverse-engineer and crack. Even an average programmer would be able to

 9

disassemble, trace and study a software binary using numerous easily accessible tools,

but reverse-engineering a hardware component is virtually impossible for common

attackers. Second, hardware support can make previously infeasible security operations

feasible and previously expensive security operations efficient, enabling a much stronger

security strength.

 We share the same view with both industry and academia. As discussed

previously, there has been a strong drive to introduce micro-architecture level support for

security in both industry and academia. However, the secure platform designed by TCG

focuses on software-based attacks and does not concern about hardware attacks, so it will

not help when hardware attacks are real threats. The protection strength of the TCG

secure platform may be enough for common commercial applications such as digital

rights management, but it is inadequate in areas in which the attacker is very powerful,

well organized and well funded such as national security related areas. Thus, we believe

to achieve a strong security guarantee, defending against common hardware attacks is

necessary

 The previous approaches taken by academia do have defending against hardware

attacks as an important goal. The proposed secure architectures

 [64] [38] [124] [102] [101] [95] are designed to achieve strong process isolation to prevent

attacks from other processes and to prevent certain types of hardware attacks, such as

using specialized hardware to read/write the external memory system directly to evade

process isolation mechanism completely. However, those secure architecture designs are

purely hardware-based and do not call for any software assist. The most significant

problem is that they cannot defend against software attacks exploiting vulnerabilities of

 10

the victim software. The reason is that without any software assist, the secure architecture

cannot make any assumption about the expected software behavior. For example, it will

not be able to tell whether a store instruction is writing inside a buffer or is overflowing

the buffer. In addition, a purely hardware-based approach could introduce significant

hardware cost and limit the applicability of the approach.

 In this dissertation, we propose a security infrastructure called RADAR

(compileR and micro-Architecture supported intrusion prevention, Detection, Analysis

and Recovery) to help prevent, detect and even recover from attacks to critical software.

Instead of being a pure software-based approach or a pure hardware-based approach, our

approach emphasizes collaborations between compiler and micro-architecture to avoid

the problems of pure software or hardware based approaches. Our infrastructure is based

on micro-architecture level support and has its security rooted in hardware. At the same

time, we call for compiler assist whenever it is necessary, such as to obtain expected

software behavior, or whenever it is helpful to reduce the complexity of the micro-

architecture support. With both micro-architecture and compiler support, our

infrastructure can defend against both software and hardware attacks with superb security

strength but reasonable hardware and performance cost.

 We implement the widely accepted machine model established in [64] [38]. Our

implementation achieves similar security guarantee as in [64] [38], but with a much

smaller performance overhead. The details of our implementation can be found in [67]. In

that way, our hardware infrastructure can achieve strong process isolation to prevent

attacks from other processes and to prevent certain types of hardware attacks, such as

using specialized hardware to read/tamper the system data bus traffic and the external

 11

memory system directly. However, the machine model established in [64] [38] has a

serious flaw. It only protects confidentiality of the traffic going through system data bus.

It cannot protect system address bus traffic, i.e., addresses of memory accesses. We show

that unprotected memory access sequence acts as very dangerous side-channel and leaks

critical control flow information of the protected software. The information leakage could

facilitate an attack and bring significant damage to both code and data confidentiality. To

our best knowledge, this flaw actually exists in all previous secure processor designs (in

both industry and academia) and can be a very real threat. To enhance intrusion

prevention capability of our hardware infrastructure, we present a scheme with both

innovative hardware modification and extensive compiler support to eliminate most of

the information leakage on system address bus with little performance overhead.

 Our hardware infrastructure can prevent attacks to software confidentiality and

detect attacks to software integrity from other malicious software running in the same

machine (even including a malicious operating system) and hardware attacks. However,

one important observation is that it cannot prevent attacks exploiting flaws/bugs in the

protected software itself. The classical example of this kind of attack is buffer overflow

attack [82], which can be regarded as due to a programming error (missing bound

checking). Other examples include format string attacks and return-to-libc attacks etc.

The hardware infrastructure alone cannot prevent such attacks. As far as the secure

processor concerns, the instructions to overflow the buffer are perfectly legal instructions.

In fact, to maintain the original program semantics, the buffer should be overflowed.

There are numerous software/hardware solutions to buffer overflow attacks, including

 [23] [22] [108] [6] [50] [44] [89] [18] [111] [27] [33] [8] [83] [104] [43] [131]. However, even

 12

buffer overflow attacks are completely prevented, there will be other new attacks

emerging, for example format string attacks [91]. In general, no security system is bullet-

proof and is able to prevent all attacks. There may be design/implementation flaws in the

underlying protection scheme, or the attacker may exploit the flaws such as buffer

overflows in the software to be protected. To be realistic, we have to assume that some

attacks will be able to evade the protection scheme implemented. To protect software

from those attacks, we build a second line of defense consisted of intrusion detection and

intrusion recovery mechanisms, which is able to detect both known and unknown attacks

and even recover from those attacks. Previous secure architecture designs are incomplete

since such an intrusion detection and recovery scheme is missing.

 Our intrusion detection mechanisms are based on anomaly detection. In other

words, we try to detect anomalous program behavior caused by attacks based on expected

program behavior. Anomaly detection does not target to specific attacks and is able to

detect novel or unknown attacks. There have been extensive research on software-based

anomaly detection systems, such as [32] [115] [92] [31] [30] [59] [76] [37] [36] to name a few.

However, it is impossible for software-based anomaly detection systems to monitor the

software execution at a very fine granularity due to potential huge performance

degradation. With micro-architecture level support, our intrusion detection mechanisms

can achieve superb monitoring granularity and much stronger detection capability.

In this dissertation, we propose three anomaly detection schemes. The first one is

a training based scheme to detect anomalous dynamic program paths. The scheme

monitors the software execution at a very fine granularity and is able to detect attacks

with high precision and neglectable performance overhead. The major concern of the

 13

scheme is false positives. So we propose the second scheme based on compiler branch

correlation analysis to detect infeasible paths without any false positives. But the

detection capability is not as good. Finally, we present a third scheme based on compiler

data flow analysis to detect tampering to critical software data. The third scheme achieves

both zero false positives and strong detection strength, but the performance overhead is

significant. We thus devise several compiler optimizations to minimize performance

impact due to additional security operations and carefully trade off between security and

performance. We demonstrate the effectiveness of our anomaly detection schemes thus

the great potential of what compiler and micro-architecture can do collaboratively for

software security.

 After an intrusion is detected, most previous approaches simply shut down the

attacked software to avoid any further damage. However, security implies several

important properties including confidentiality, integrity and availability [3]. Availability

is an equally important security property to be enforced but gets far less attention. In the

sense of software security, availability means recoverability from attacks or intrusion

recovery. Simply shutting down the attacked process is unacceptable for software

providing critical services. A complete software protection scheme should have the

ability to recover from a tampering whenever possible. Thus, intrusion recoverability is

an important goal of our infrastructure.

To provide intrusion recoverability, two major tasks have to be done. First, we

need to analyze the attack to identify exactly when and how the attack happens so that we

can identify the tampered system state and gather useful information for later forensic

analysis. Second, the tampered system state has to be recovered through certain

 14

mechanisms. We focus on memory state in this dissertation, since most attacks break into

a system by memory tampering. Intrusion analysis is a difficult problem since there could

be an arbitrarily large interval between the tampering to the system state and the detection

of the tampering. We propose two schemes for intrusion analysis. The execution logging

based scheme incurs little performance overhead but has higher demand for storage and

memory bandwidth. The external input points tagging based scheme is much more space

and memory bandwidth efficient, but leads to significant performance degradation. After

intrusion analysis is done and tampered memory state is identified, tampered memory

state can be easily recovered through memory updates logging or memory state

checkpointing.

In summary, our RADAR infrastructure aims to protect critical software from

both hardware attacks and software attacks with strong security guarantee. It integrates

the abilities of intrusion prevention, intrusion detection, intrusion analysis and intrusion

recovery, which are the major aspects of protecting software from malicious attacks. It

emphasizes collaborations between compiler and micro-architecture to achieve those

abilities. With micro-architecture level support and compiler assist, our RADAR

infrastructure can achieve strong security guarantee for critical software with reasonable

hardware cost and performance degradation.

1.5 Contribution Statement

We have an ambitious goal to build an infrastructure to protect critical software

from both hardware attacks and software attacks with strong security strength.

We argue that purely software-based approaches cannot achieve strong security

strength and hardware support for software protection is necessary. We further point out

 15

that purely hardware-based approaches lack the ability of understanding software

semantics. In other words, a semantic gap exists. In this thesis, we take a novel approach

to bridge the semantic gap through compiler analysis and hardware runtime support.

Compiler provides information about program behavior and attributes to the hardware.

Hardware utilizes the information cleverly at runtime to fight against attacks. This

approach is seldom explored before in software security area. Moreover, compiler

optimizations are devised to minimize performance impact due to additional security

operations when necessary. Through our work, we demonstrate the effectiveness and the

potential of what compiler and micro-architecture can do in concert for achieving

software security strengths and guarantees.

Our infrastructure is a complete solution to the problem of software protection. It

integrates the abilities of intrusion prevention, intrusion detection, intrusion analysis and

intrusion recovery, which are the major aspects of protecting software from malicious

attacks.

We show that unprotected address bus traffic (memory access sequence) acts as

very dangerous side-channel and leaks critical control flow information of the protected

software. We present a scheme with both innovative hardware modification and extensive

compiler support to eliminate most of the information leakage on system address bus

with little performance overhead.

We are the first to explore anomaly detection with both micro-architecture and

compiler support. We propose three anomaly detection schemes. The first one is a

training based scheme to detect anomalous dynamic program paths. The scheme monitors

the software execution at a very fine granularity and is able to detect attacks with high

 16

precision and neglectable performance overhead. The major concern of the scheme is

false positives. So we propose the second scheme based on compiler branch correlation

analysis to detect infeasible paths without any false positives. But the detection capability

is not as good. Finally, we present a third scheme based on compiler data flow analysis to

detect tampering to critical software data. The third scheme achieves both zero false

positives and strong detection strength, but the performance overhead is higher.

We are among the first to explore how to utilize micro-architecture support to

analyze then recover program memory state after an attack. We propose two schemes for

intrusion analysis. The execution logging based scheme incurs little performance

overhead but has higher demand for storage and memory bandwidth. The external input

points tagging based scheme is much more space and memory bandwidth efficient, but

leads to significant performance degradation. After intrusion analysis is done and

tampered memory state is identified, tampered memory state can be easily recovered

through memory updates logging or memory state checkpointing.

1.6 Dissertation Organization

In this introduction, we introduce the problem of software protection and discuss

why this problem will become more challenging and more critical in the future. We

discuss previous solutions to this problem, show their limitations and talk about our

approach in a high-level view.

Chapter 2 will discuss the machine model and the attack model used in our work.

Our basic machine model is adopted from previous research. We will explain how such a

machine model achieves strong process isolation and prevents certain types of hardware

attacks.

 17

Chapter 3 will focus on the problem of address bus protection, which is largely

ignored previously. We will show that unprotected address bus traffic acts as very

dangerous side-channel and leaks critical control flow information of the protected

software, then we will present a scheme with both innovative hardware modification and

extensive compiler support to eliminate most of the information leakage on system

address bus with little performance overhead.

Chapter 4 will discuss our first anomaly detection scheme, which is a training

based scheme to detect anomalous dynamic program paths. The scheme monitors the

software execution at a very fine granularity and is able to detect attacks with high

precision and negligible performance overhead. The major concern of the scheme is false

positives.

Chapter 5 will present our second anomaly detection scheme based on static

compiler branch correlation analysis. The second scheme is able to detect dynamic

infeasible paths without any false positives. The performance overhead is also negligible,

but due to the limitation of static compiler analysis, the detection capability is not as good.

Chapter 6 will elaborate our third anomaly detection scheme based on compiler

data flow analysis. The third scheme aims to detect tampering to critical software data. It

can tackle a large category of attacks left unhandled by control flow monitoring based

schemes such as our anomalous path checking and infeasible path detection schemes. The

third scheme is able to achieve both zero false positives and strong detection strength, but

the performance overhead is much higher.

Chapter 7 focuses on intrusion analysis and intrusion recovery after an attack is

detected. We propose two schemes for intrusion analysis. The execution logging based

 18

scheme incurs little performance overhead but has higher demand for storage and

memory bandwidth. The external input points tagging based scheme is much more space

and memory bandwidth efficient, but leads to significant performance degradation. After

intrusion analysis is done and tampered memory state is identified, tampered memory

state can be easily recovered through memory updates logging or memory state

checkpointing.

In chapter 8, we will summarize the main contributions of this dissertation, talk

about broader impact of our work, and discuss possible areas for future work.

 19

2 MACHINE MODEL AND ATTACK MODEL

 Before we proceed to present our RADAR infrastructure, we first elaborate our

basic machine model and attack model to facilitate the understanding of the work

presented in this dissertation.

2.1 Previous Work

 Our hardware infrastructure implements a machine model widely accepted in

secure architecture area. The machine model is established in [64] [38]. It is designed to

achieve strong process isolation to prevent attacks from other processes even including

operating systems and to prevent certain types of hardware attacks, such as using

specialized hardware to read/tamper the system data bus traffic and the external memory

system directly to evade process isolation mechanism completely.

 Lie et al. proposed the XOM secure architecture design in [64]. XOM stands for

“eXecute Only Memory”, which means that software in this special memory can only be

executed but cannot be read or modified. The XOM secure architecture focuses on

defending attacks to memory and assumes that on-chip storage is secure from hardware

attacks but off-chip memory and disk are not secure. The XOM secure architecture is

based on both cryptographic techniques and micro-architecture level support. From a

high level point of view, access control tags are used to protect data inside the trusted

hardware of the processor. On the other hand, cryptography is used to protected data that

has to be stored off the processor.

 XOM tries to implement the notion of compartment and runs the protected

software inside the compartment to achieve strong process isolation and to prevent

attackers from reading or modifying software code or data. Each compartment has a

 20

XOM id. Each software process is assigned a XOM id which indicates what compartment

it is running in. Data from the software operations is tagged with this XOM id. On-chip

storage for data and tags are considered properly protected by the hardware from

hardware attacks and cannot be attacked in their machine model. So the tags can be

trusted and used to achieve access control and protect software code/data when the

code/data resides in the on-chip storage. On the other hand, off-chip storage, such as the

external memory and disk, is not trusted. Off-chip storage cannot be simply protected by

tags since tags may be tampered by attacks. Instead, cryptographic ciphers and hashes are

used to protected code/data in the off-chip storage.

Figure 2. The XOM secure architecture.

Figure 2 shows the XOM secure architecture. The processor possesses the private

part of a public/private key pair. The private key is the secret only known to the processor

and is the security foundation of the security system built upon the XOM architecture.

L2 Cache

L1
Instructio
n Cache

L1 Data
Cache

Register
File

Secure
Kernel

Fetch and
Decode

Key Table

Private Key

XOM
Tags

XOM
Tags

XOM
Tags

XOM
Tags

Crypto Units Plain Text in
Processor

Processor
Core

Off-chip
Storage Encrypted Text in Memory

Security Boundary

 21

Based on this secret, the processor can generate a session key for each protected software

process. The session key then becomes the root secret for each protected process and can

be used in security operations such as symmetric encryption/decryption and hashing.

Session keys for processes are stored in a key table. The key table is indexed by the XOM

id associated with each protected process. All data residing in on-chip storage, including

register file, L1 instruction cache, L1 data cache and L2 cache, is properly tagged with

the XOM id of the data owner. In general, only the data owner has access to the piece of

data. Data sharing is handled specially. As mentioned previously, in the XOM

architecture, the secure processor is inside the security boundary, so the on-chip data tags

are considered protected from attacks and can be securely used to enforce security. On

the other hand, the external memory system is outside the security boundary. An owner

tag associated with each piece of data is not enough to protect the data when it resides in

the external memory since the tag itself can be tampered by the attacker. To protect off-

chip data, cryptographic mechanisms are used. To prevent reading attacks or protect

confidentiality, data is encrypted when transferring from the secure processor to the

external memory and decrypted when transferring from the external memory to the

secure processor. The symmetric key used in encryption/decryption is the aforementioned

session key for the process. The session key can be found in the key table in the processor

using the XOM id associated with the data as index. To detect writing attacks or protect

integrity, the XOM architecture calculates a hash for each piece of data when it is

transferred to the external memory and verifies the hash when the data is fetched back

from the external memory. The protection granularity is a cache block. The cryptographic

operations are done by the crypto units inside the processor.

 22

Under the XOM architecture, the general operating system is not trusted and is

assumed possibly tampered. The software protection scheme is based on hardware. But to

minimize the modification to current micro-architectures without security support, a

secure kernel (XOM Virtual Machine Monitor in the XOM architecture) is introduced to

implement necessary operations to avoid the complexity of the additional hardware. The

secure kernel is a trusted, authorized and privileged program. The secure kernel runs at a

privilege level higher than the operating system. It can be implemented in either software

or micro-code. Software implementations must be authenticated by a secure booting

mechanism such as described in [107] [4] [62] [109]. There are special hardware facilities

only accessible to the secure kernel, such as the private key, process key table, secure on-

chip memory etc. The secure kernel supports encryption/decryption of software code/data

when transferring across the security boundary. It also supports proper tagging of on-chip

data, implements special instructions introduced for the security support and handles

context switches and certain interrupts.

The XOM architecture aims to prevent three major types of attacks, including

spoofing, splicing and replay. In spoofing attacks, the attacker tries to substitute the

original cipher text with a faked one to alter software behavior. With encryption, the

faked cipher text will decrypt to junk but it will alter software behavior. To prevent

spoofing attacks, an integrity hash is attached to the data block. Now if the attacker wants

to launch a spoofing attack, in general he has to reverse the encryption and fake the

integrity hash, which is very difficult. In splicing attacks, the attacker tries to replace one

valid cipher text in one location with another valid cipher text from another location. This

is prevented by position-dependent hash. In other words, virtual address of a data block is

 23

involved in the computation of the integrity hash. In replay attacks, the attacker records

previous valid values and try to reuse them later. The original XOM design only handles

replay attacks using register values.

 Later, Gassend et al. [38] pointed out that the original XOM design [64] is

vulnerable to replay attacks using memory values. Gassend et al. further proposed a hash-

tree [75] based integrity checking scheme to fix the problem. Since then, there has been a

lot of follow up work to improve over the initial work [124] [102] [101] [95] [67], primarily

in terms of performance. But the basic designs established in [64] and [38] are inherited.

2.2 Our Machine Model and Attack Model

 In our work, we implement the machine model established in [64] and [38]. When

the code and data of the protected software resides in on-chip storage, it is protected in

the same way as in [64]. However, when the code and data of the protected software

resides off-chip, we design an efficient stream cipher based scheme to prevent attacks to

software code/data confidentiality and an efficient MAC tree based scheme to detect

attacks to software code/data integrity. Overall, our implementation achieves similar

security guarantee as in [64] [38], but with a much smaller performance overhead. The

details of our implementation can be found in [67].

 In summary, our machine model assumes that the secure processor possesses a

secret private key. This per-processor private key is the security root of the security

system built upon the secure processor. Each software process is associated with a secret

key derived from the per-processor key. The per-process key can then be used in

cryptographic operations such as encryption/decryption/hashing. We also assume a

trusted secure kernel residing in the processor, which is implemented in software and

 24

provides basic services such as context switching and encryption/decryption. Other

software (operating system included) is not trusted. Process contexts including registers

are encrypted using the per-process key during context switches thus are protected. The

security boundary with respect to hardware attacks is drawn around the processor chip.

That means: 1) any hardware component inside the processor chip is considered to be

secure against hardware attacks; 2) anything else other than the processor itself and the

process context is considered non-secure thus is susceptible to hardware attacks,

including off-chip caches, system buses and external memory etc. When software

code/data resides in off-chip storage, its confidentiality and integrity are properly

protected against hardware attacks by cryptographic schemes.

 We assume the attacker can launch both hardware attacks and software attacks to

the protected software. In terms of hardware attacks, we assume that the attacker can

read/write to the external memory directly without going through the secure processor,

snoop over the system buses etc., but the secure processor chip is resistant to hardware

attacks. The attacker can also launch software attacks. For example, he can create a

malicious process to attack the victim software by exploiting the design/implementation

flaws of process isolation, or attack through the bugs/flaws in the victim software using

buffer overflows, format string attacks etc.

 25

3 PREVENTING INFORMATION LEAKAGE ON ADDRESS BUS

 Our hardware infrastructure implements the basic machine model established in

 [64] [38]. However, the machine model established in [64] [38] have a serious flaw. It only

protects confidentiality of the traffic going through system data bus and ignores

protection of system address bus traffic, i.e., addresses of memory accesses. In this

chapter, we show that unprotected memory access sequence acts as very dangerous side-

channel and leaks critical control flow information of the protected software. The

information leakage could facilitate an attack and bring significant damage to both code

and data confidentiality. To our best knowledge, this flaw actually exists in all current

secure processor designs (in both industry and academia) and can be a very real threat. To

enhance intrusion prevention capability of our hardware infrastructure, we present a

scheme with both innovative hardware modification and extensive compiler support to

eliminate most of the information leakage on system address bus. We show that our

solution is both efficient and effective.

3.1 Introduction of the Problem

Although the widely accepted XOM-based machine model is successful in

protecting the off-chip code and data using cryptographic techniques, it fails to protect

the memory access addresses transmitted on the system address bus. In other words, the

memory address sequence generated by an application may be exposed under the XOM

machine model. Thus, the following two questions are left unaddressed: 1) Even though

off-chip memory contents are encrypted, can the exposed address sequence lead to

security breaches? 2) If so, how should we prevent those at a reasonable cost?

 26

Although the problem has been noticed in [64] and [101], they both leave it open.

 [64] poses it as an open problem, and [101] largely ignores it. In [38] it is shown that the

detection of loops through the information leakage on address bus can become a starting

point for the replay attack. In this chapter, we point out that address bus protection is

critical; otherwise control flow information might be exposed and severe security

breaches might occur.

100,101,102,103,104,100,101,103,104,100…

Ekey(Inst. A)
100

100

(a)

(c)

Ekey(cbr 103)
Ekey(Inst. B)

Address

101
102

Ekey(Inst. C)
Ekey(br 100)

103
104

Memory Contents

101

102

104
103

BB1

BB3

BB2

(b)

Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…

Figure 3. Control flow snooping.

In Figure 3, we illustrate how control flow can be snooped by the attacker through

memory access sequence. Under the current XOM-based machine models, all fives

blocks of instructions are stored in an encrypted form in memory. However, authentic

addresses are readily available on the address bus. The attacker has no idea what the

instructions are due to the encryption, however he can snoop on the address bus and

obtain a sequence of memory access addresses (refer to Figure 3.b). From the address

sequence, he can infer that the code is in a loop since addresses 100,101,103,104 appear

repeatedly. He can also infer that there is a conditional branch at address 101 because

sometimes the control goes to 103 directly but sometimes it goes to 103 via 102.

Therefore, by identifying recurring (block) addresses, the attacker can construct a block

level control flow graph (CFG) as shown in Figure 3.c. In fact, we found that the leakage

 27

of the control flow can severely jeopardize the encryption of code (it may be possible to

crack as much as 70% of the encrypted code through a well devised attack – refer to

Section 3.2). Apart from this, address sequence on the bus may lead to exposure of the

critical data (such as the secret key) as well.

Regarding the second question about how to prevent the information leakage on

the address bus, it may be noted that address bus protection is a much tougher problem

than it might first appear. Both industry and academia are aware of the severity of the

problem and have proposed solutions. DS5000 and DS5002FP are chips produced by

Dallas Semiconductors [26], which are among the most widely used security devices in

credit-card terminals, pay-TVs access control systems etc. The processor incorporates

bus-encryption (actually, fixed address reordering together with some random accesses)

and was described as the most secure processor currently available for commercial users.

However, such protection can be easily invalidated (refer to [61] and related work). The

only previous solution that completely avoids such information leakage is called

Oblivious RAM (ORAM), which was proposed by Goldreich [41] [40]. In his papers and

patent, three schemes are proposed to ensure that the addresses shown on the address bus

are independent of the addresses issued by the application. Unfortunately, all three

schemes are infeasible on real machines due to either significant slowdown or resulting

memory explosion. Therefore a practical solution for preventing information leakage on

address bus is highly desirable and valuable to improve intrusion prevention capability

against hardware attacks.

 In this chapter, we propose such a solution with negligible performance overhead.

We call our scheme as HIDE (Hardware-support for leakage-Immune Dynamic

 28

Execution). Through hardware support and compiler optimizations, HIDE provides a

very high level of security guarantee, which means that the information leakage via the

address bus is largely prevented. Also, our scheme is highly flexible. It can easily

incorporate programmers’ specifications of sensitive sections to be protected as well as

some compiler optimizations.

3.2 Attacks via Control Flow Snooping on Address Bus

 We now illustrate two kinds of attacks that are possible through the control flow

information leaked on the address bus to further motivate our work. Note that the

example in Figure 3 assumes that there is no “noise” in the addresses seen on the bus (i.e.,

all the addresses are leaked). But in practice, branches within a block are hidden and a

cache can hide many memory accesses. This might lead to less than full leakage but

could still be quite damaging. We first assume that there is no noise, and in Section 3.2.3,

we will address the noise issues.

3.2.1 Reuse Code Identification

 Due to the following two facts, leaking the CFG information can result in the

complete exposure of reuse code and severely disrupt code encryption.

 The first fact is software reuse and binary-level similarity. With the ever-

increasing amount of legacy code and time-to-market pressure, software development

relies more and more on reusing existing modules or the pre-built libraries from other

companies or from the public domain. For example, many classical algorithms have their

standard and/or non-standard open-source implementations available online for reuse.

Moreover, most compiler and development tool chains are provided by only a few 3rd

party name-brand vendors that can lead to a binary-level similarity once the source code

 29

is reused. In other words, due to reuse of source code and the existence of only a few

compilers, the diversity of the generated code at binary level is diminished greatly. We

measured the full set of SPEC 2000 integer program binaries targeted to Alpha to find out

the percentage of code that is reused from the standard C library on Alpha target. As

shown in Figure 4, the reuse percentage can be very high for some benchmarks like mcf

(88%) and bzip2 (66%). On an average, 39% of the code at binary level is due to the

libraries. A recent study [72] shows that nowadays, up to 70% of the code in industrial

software is the reuse code. Given such a high amount of reuse code, the question is: Can

it be discovered? The answer is yes. Address bus information leakage allows building a

CFG and the CFG serves as a unique fingerprint of the underlying code. The attacker

can discover the reuse by matching the CFG observed that serves as a fingerprint of the

reused code with a repository of well known implementations and thus know which

implementation is actually reused.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

av
era

geB
in

ar
y

R
eu

se
 P

er
ce

nt
ag

e Reused non-reused

Figure 4. Binary reuse percentage for SPEC2000 integer programs.

 30

10

100

1000

10000

100000

1000000

>=5 >=10 >=15
of Basic Blocks on CFG

of comparisons # of matches

0.1%

5%

0.05%

Figure 5. Isomorphic CFG pairs in the standard C library.

In order to measure the uniqueness of CFGs, we did another study and found that

they indeed serve as unique fingerprints due to the following intuitive arguments. CFGs

are made of basic blocks. It is widely known that the average length of basic blocks is

only 6 to 10 instructions for integer programs and a large number of instructions are

branches (around 12%). Conceivably, as long as the code is reasonably complex, the

chance of two different pieces of code forming the same CFG is slim since they would

have a good number of basic blocks and quite a few potential control flow graphs are

possible with a given number of basic blocks. As an experiment, we built the CFGs for

various block cipher algorithms such as DES, MARS, Rijndael, RC6, and found out their

CFGs are significantly different. In Figure 5, we investigate the similarity of CFGs for

the procedures in the standard C library of the Alpha compiler. There are 1334

procedures in the standard C library libc.a, with reasonable size (at least 5 basic blocks).

We built the CFGs for all those procedures in which each basic block is abstracted as a

node (which in fact increases the chances of two CFGs being similar). We run the famous

graph isomorphism algorithm by Ullman [110] (we reuse the graph matching library

developed by Univ. of Naples [113]) between all possible pairs of CFGs. In Figure 5, the

 31

results show that only 5% of the comparisons find that the two graphs match. If we

ignore the CFGs with less than 10 basic blocks, only 0.1% of them match. Finally, if we

ignore the CFGs with less than 15 basic blocks, only 0.05% of them match. This study

shows that each CFG can serve as a distinct fingerprint for a reasonably-sized piece of

code. Therefore, if the programmer reuses a procedure in the library with ten or more

basic blocks, the reuse is almost doomed to be found out by the attacker due to its

distinctive fingerprint (assuming he can construct the CFG by exploiting address bus

information leakage). Note that this estimation is conservative due to our abstraction of

the CFGs that ignores sizes of individual basic blocks; otherwise the number of matches

would decrease further. Even if some matches occur, the attacker can still narrow down

his search to a few possible procedures that might be reused.

Given sufficient amount of time to experiment with the code, most CFG edges

could be exposed. Theoretically only dead CFG edges will not be executed and exposed.

Even if only partial CFG can be identified with subgraph matching algorithms [110] [113],

we can still roughly detect the reuses. It is easy to show that the number of possible CFG

graphs grows exponentially with the number of basic blocks in the CFG; therefore hiding

a large piece of reuse code is almost impossible. From the prior discussion, the CFG, as a

matter of fact, can be regarded as an algorithm’s fingerprint.

 Based on the two facts described above, it is quite possible that an attacker can

identify the reuse components in a program given its CFG. He can collect the CFGs of all

procedures in the standard libraries, or for publicly available source code, compile them

with a name-brand 3rd party compiler and build the CFGs. By graph matching the

program’s CFGs with his collection, the attacker can nail down the reuse parts. This not

 32

only exposes the reuse code in its entirety, but also helps the attacker in other aspects: 1)

A number of plaintext/ciphertext pairs for the reuse code are identified. If the hardware

cannot afford integrity check due to its performance and memory space overhead [38],

the attacker might construct a program to read out other code such as in [61]. 2) More

critically, in some cases critical data could be leaked due to the discovery of re-use code.

In the next subsection, we will show how critical data can be found out in some cases. 3)

By watching the interactions between the reuse code and the programmer’s own code

such as the calling sequence, parameters, the attacker can learn more about programmer's

own code.

3.2.2 Critical Data Leakage via Value-dependent Conditional Branches

Besides the potential to break code confidentiality, CFG matching can also

potentially compromise data confidentiality and leak sensitive data values.

All conditional branches (around 80% among all branches) make comparison

between two values and then decide which path to take. Therefore the control flow

information can leak important information about the values being compared. The

following example assumes that the algorithm used is known beforehand (most security

systems assume that the cryptographic algorithms used are known to the attacker) or has

been detected by CFG matching. It demonstrates how the critical data (secret key in this

case) is revealed.

Example

Diffie-Hellman and RSA private-key operations consist of computing R = yx mod

n, where the attacker's goal is to find x, the secret key. To show the problem easily, we

assume that the implementation uses the simple modular exponentiation algorithm shown

 33

in Figure 6.a, which computes R = yx mod n, where x is w bits long. The algorithm is

widely used, therefore we can reasonably assume the attacker has identified it through

CFG matching.

Let S0 = 1.
For k = 0 to w-1:

If (bit k of x) is 1 then
Let Rk = (Sk*y)

mod n.
Else

Let Rk = Sk
Let Sk+1 = R2

k mod n.
EndFor.
Return (Rw-1).

Initialize

Return

Loop Entry

Else-branch IF-branch

Loop End

B1

B2 B3

B4

(a) (b)

Figure 6. Modular exponentiation algorithm.

The corresponding CFG for this small piece of code is shown in Figure 6.b. From

Figure 6.a, we can easily find that inside the loop body if the current examined bit of x is

1, IF-branch is executed, otherwise Else-branch is executed. We assume that IF-branch

code resides at address B2 and Else-branch code resides at address B3 (B2 and B3 are

different). The processor must behave as follows: if the current examined bit of x is 1,

then fetch the IF-branch code at B2, otherwise, fetch the Else-branch code at B3. This

results in a sequence of addresses of B2 or B3 showing up on the address bus

correspondingly. By monitoring the address bus and capturing the addresses transmitted,

the attacker can guess whether the respective bits of x are 0’s or 1’s and get the secret key

x. Even if he cannot distinguish between IF-branch and Else-branch, the information on

the address bus leaves only two possible values of x to guess (the correct key or its

complement).

This example shows that if the conditional branch is known to the attacker, the

direction of the branch can expose the outcome of the comparison which might be helpful

 34

in determining or narrowing down the values involved. Such security sensitive

conditional branches are widely seen in compression and encryption algorithms. The

same piece of code shown in Figure 6 is also vulnerable to timing attack [55], which is

however more complicated.

Note that missing several rounds of the for-loop can hide part of the secret key,

but still help the attacker substantially narrow down his search space. It is well known

that in the security domain, 64-bit encryption has much less strength than 128-bit

encryption. If the attacker can capture half of the for loop, his search space will be cut

from 2|x| to 2|x|/2, which is 2|x|/2 times smaller.

 As a matter of fact, these kinds of attacks, i.e., circumventing the encryption

scheme indirectly through information leakage are well-known in the security domain as

side-channel attacks. In reality, there have been many successful stories [55] [56] [34] [2]

to obtain critical information from a secure chip such as a smartcard, by monitoring the

timing [55], power [56] or electromagnetic differences [34] from outside the chip.

3.2.3 Other Issues: Blocking, Caching

The attack described above is a classic side channel attack. Most side-channel

attacks have to deal with noise that leads to inaccuracy: Timing attacks suffer from varied

computation time of instructions, differential power attacks must count for the power

consumption of other components inside the chip. However bus snooping is actually

more accurate than other side-channel attacks. It is also very easy to setup [47] [61], since

the bus is typically exposed outside the processor chip and standard equipments (for

testing purposes etc.) are readily available to snoop bus signals. Here we discuss different

 35

types of “noises” that can affect control flow snooping and how the attacker may get

around them.

Blocking

Cache accesses and misses are addressed at cache block boundaries; thus, the

addresses on the address bus are block addresses. Actually, both attacks we discussed

above only rely on the detection of branches. Given that each cache block contains only

several instructions (8 on Alpha), it does not affect the attacks much. For reuse code

identification, we tried to build block-level CFG, i.e., every block becomes a node and

edges indicate possible execution paths between blocks. We found that typically block-

level CFGs contain about 25% lesser edges than the regular CFGs. Graph matching the

block-level CFG shows results close to those in Figure 5 with negligible differences. To

find out how block size affects CFG matching, we list in Table 1 the percentage of

matched block level CFGs when the block size equals 32B, 64B and 128B. The results

show that larger block size does not affect CFG matching much, especially if we ignore

block level CFGs with less than 10 or 15 nodes.

Table 1. Isomorphic block level CFGs with different block sizes.

 32B 64B 128B
≥5 5% 4% 3.3%
≥10 0.1% 0.19% 0.1%
≥15 0.05% 0.04% 0.05%

Caches

Modern processors typically consist of large on-chip caches which might lead to

small miss rates and very few addresses exposed on the address bus. However, it does not

help due to the following reasons. (1) Since the cache is a shared resource among all

 36

processes running on the processor and our machine model assumes that the OS is not

secure. It is very easy for the attacker to manipulate the OS so that the cache gets flushed

upon a context switch; alternatively the attacker can ascertain that his own process

occupies most cache space before switching to the process being attacked. In this manner,

all memory accesses are directly exposed on the address bus due to compulsory misses.

(2) Even if only one process is running, many processors have a unified L2 or L3 cache

for both code and data. If the program’s working set can be affected by inputs, the

attacker may intentionally increase the working set size causing more instruction misses.

(3) Generally, caching is not predictable, especially in a multi-tasking environment.

Different parts of the control flow can be leaked during different runs. It is possible that

the attacker can finally get the whole picture after many runs. (4) For low-end systems,

on-chip caches are typically small. (5) The cache may be disabled on some machines. (6)

An interesting study [84] was conducted by Shamir et. el on how to figure out important

information (such as the secret key) leaked through cache misses.

As an experiment, we tried to flush the cache at random moments, and collected 4

block addresses immediately after the flush. After sufficient number of runs, we found

that over 95% of edges on the block-level CFG were exposed. In addition, as mentioned

before, even if the control flow can be partly masked, information still leaks to some

extent since subgraph matching can match partial CFGs. Also, partial execution paths can

still be used to prune the searching space for critical data.

The two attacks we showed above are very simple compared to some of the other

side-channel attacks that involve sophisticated mathematical and statistical analyses. This

indicates address bus information leakage is relatively easier to exploit as well as more

 37

damaging and is harder to prevent. With more advanced analyses, more information

leakage could result.

3.2.4 Data Address Protection

 Finally, accesses to the data segment can expose control flows as well. For

example, in Figure 6.a, if y is accessed, we will know that the If-branch is taken.

Therefore, data address protection is equally important. However, this could induce a big

overhead since the size of the data segment can be much bigger than the code size.

3.3 Basic Concepts and Components of HIDE

HIDE stands for Hardware-support for leakage-Immune Dynamic Execution.

HIDE provides an infrastructure for preventing information leakage on the address bus

involving both micro-architecture and compiler support. The basic idea behind HIDE is

to “hide” the correlation between recurring memory addresses. This is achieved by

permuting the address space and re-encrypting blocks at suitable intervals during the

execution.

In this section, we first introduce the background knowledge about what kind of

address sequence should appear on the address bus to avoid information leakage. Then

we talk about the basic concepts and components of HIDE such as the HIDE cache and

the permutation unit.

3.3.1 Fixed Address sequence

To hide the address sequence on the bus, a naïve but completely secure approach

is to establish a fixed address sequence that does not change throughout the execution. It

 38

is a foolproof approach that can prevent the attacker from learning anything by

monitoring the memory access sequence. This approach is based on the following claim:

If the memory access sequence is always the same regardless of the program

execution, no information will be leaked by monitoring the sequence.

Obviously, a fixed address sequence would not tell the attacker anything. To

achieve fixed or independent memory access sequence, a naïve way is to read the whole

memory segment from the beginning to the end repeatedly. As shown in Figure 7.a, in

each round, the whole memory segment is read from beginning to the end once. No

matter what is going on inside the processor, the processor always reads memory blocks

in this fixed sequence. Apparently, the only thing exposed is the memory segment size,

which has been assumed to be insensitive information. However, the naïve approach can

lead to a tremendous slowdown. When there is a miss during the fetch request from the

cache, the request cannot be satisfied immediately from the memory, but has to wait till

the block is read in through the fixed sequence. When the memory segment is large, the

processor may have to stall for a long time. For example, in Figure 7.b, if the current

reading block is block 70, and the pending miss fetch requests are block 100, 200 and 50,

the processor has to wait for 30 reads to get block 100. Again, it has to wait for another

100 reads to get block 200. To get block 50, it needs to wait till the access sequence

reaches the end of the memory segment (finish this round of reading), and starts from the

beginning again until block 50 is read in. This delay can be enormous given the memory

space is big and one round of accesses can take tremendous amount of time. Conceivably,

this naïve approach will cause an intolerable performance loss and is not viable at all.

 39

 Code/data blocks in memory

Access sequence

Miss fetch requests: 100, 200, 50
Current reading block

Read 100

Read 200

Read 50
(a) (b)

Round 1
Round 2

Round 1
Round 2

Figure 7. Independent instruction access sequence.

3.3.2 Probabilistically Fixed Address sequence

As introduced in [40] we can alternatively construct an address sequence with

addresses conforming to a fixed probabilistic distribution. In other words, although the

addresses on the bus do not form a fixed sequence, they are random variables conforming

to a fixed distribution. It still exposes no information about which addresses are actually

accessed by the processor. Next, we define a few terms about address sequences.

Original Address (Sequence): The address (sequence) issued by the processor.

Actual Address (Sequence): The address (sequence) that actually appears on the address

bus.

Probabilistically Fixed Address Sequence: A kind of actual address sequence in which

actual addresses follow a fixed probabilistic distribution.

Thus, the actual address sequence must be different from the original addresses

sequence issued by the processor. Note that the same code/data block must be fetched

even if their addresses are different. Thus, changing the addresses means we need to

relocate those blocks on the fly. Also, to prevent the attacker to correlate blocks from

their ciphertext, blocks are always re-encrypted after relocation. Recent studies indicate

 40

that counter-mode encryption/decryption [124] [102] [95] [96] [123] can be applied to

achieve low-overhead re-encryption.

There could be many possibilities of constructing the probabilistically fixed

address sequences. The following lemma gives one such example that will be used for

HIDE.

LEMMA 1: A memory space of size M is randomly permuted repeatedly; assume a block

originally at address T is relocated to Pk(T) after the kth permutations. If between the kth

and (k+1)th permutation, the processor issues the original addresses T1, T2,…Tn(k), and

these addresses are all different, then the address sequence on the bus is probabilistically

fixed.

REMARK: Lemma 1 says that, between two permutations, all original addresses should be

different, or we should randomly permute the memory space before the same original

address is issued again. Note that since different blocks cannot be permuted to the same

location (mapping is one-to-one), all actual addresses between two permutations are

different too.

PROOF: Lemma 1 is derived from [40]. We can prove this lemma as follows. Since

permutation Pk is completely random and one-to-one, for two different original addresses

Ti and Tj , Pk(Ti) and Pk(Tj) are different (two different addresses cannot be permuted to

the same place) and are independent random variables. Therefore the addresses in the

sequence based on the same permutation Pk, i.e. Pk(T1), Pk(T2)… Pk(Tn(k)) are independent

to each other. Similarly, since any two permutations Pk and Pl are random and

independent, Pk(Ti) and Pl(Tj) are always independently distributed. Thus the addresses

on the bus are all independently distributed variables. Note that between two

 41

permutations, original addresses must be distinct; otherwise we will see the same actual

address recurring on the bus (this is because the same permutation must permute the same

original address to the same actual address). From control flow point of view as

mentioned in Figure 3, recurring addresses help the attacker to identify loops and

branches. For a better understanding of Lemma 1, we will give an example during the

discussion of the HIDE cache. 

3.3.3 HIDE cache

To fulfill Lemma 1, intuitively we must “remember” the original addresses that

have been issued by the processor after the previous permutation. Before an original

address recurs, we need to permute the memory space again. In other words, we must

remember the original address sequence to detect recurrence of an address. It is clear that

if we “remember” only a small number of original addresses, the memory space must be

permuted more frequently. On the other hand, if we “remember” a lot of original

addresses, extra space is required to store them and more latency is incurred to check if a

new original address has been issued before. These overheads pose the barrier to the

deployment of a solution based on Lemma 1 as discussed below.

The square root algorithm in the ORAM paper [40] stores all such original

addresses in an off chip memory space called shelter buffer. The size of the shelter buffer

is the square root of the memory space being protected. However, during each access, the

processor must read the entire shelter buffer to check if the address has been accessed

since last permutation. Since the shelter buffer is in the insecure memory, the processor

must read the entire shelter buffer such that the attacker cannot tell whether or where the

access has hit in the shelter buffer.

 42

With large on-chip space available on modern processors, we may want to move

the shelter buffer on-chip. However, it is still space inefficient to occupy a separate on-

chip area for this purpose. Given caches are readily available to store memory blocks

accessed before, in this work we propose the HIDE cache; which adds address bus

protection on top of a normal cache to achieve a low space and performance overhead

solution.

HIDE cache: A cache that is same as a normal cache except that blocks fetched after the

previous permutation are all locked i.e. they cannot be replaced until the memory space

they belong to is permuted again. Also, blocks that are dirty after the previous

permutation must be held from the write back until the next permutation.

How the HIDE cache Works

In a HIDE cache, we intentionally lock all blocks that are fetched after the

previous permutation. Therefore accesses to the same original address between two

permutations always hit in the cache without going out to the external memory. Similarly,

blocks that become dirty after the previous permutation are locked as well. If such dirty

blocks are allowed to be written back, there could be read accesses to the same address

later causing the same address to appear on the bus again; thus, such blocks must be

locked as well. If a block is locked, it cannot be evicted. After the memory space is

permuted again, all blocks belonging to that memory space are unlocked.

Next we show an example in Figure 8, which helps to understand Lemma 1 and

the HIDE cache. In Figure 8.a, we assume that the cache is 2-set 2-way. Figure 8.b shows

 43

the original address sequence borrowed from Figure 3. The memory space contains 5

blocks as shown in Figure 8.c. Note that all blocks are initially permuted randomly after

they are loaded from the disk to the memory. The initial random permutation prevents the

attacker from correlating information across different runs (since random permutations

are done before code and data are initially loaded). We also assume all accesses are read

accesses in this example. If blocks are not locked and permuted after the initial

permutation, we will observe the cache contents and actual access sequence as illustrated

in Figure 8.d. On the left side of Figure 8.d, we show the state of the cache after 4 fetches.

All addresses shown inside the blocks are the original addresses. Since the four addresses

are all different, they are loaded from memory due to compulsory misses. Also, since

blocks are already permuted, the actual address sequence on the bus is 102,100,104,101

instead of 100,101,102,103 for the 4 accesses. If the blocks were not locked (as in normal

caches) we will see the address 102 (which corresponds to the original address 100)

appearing again. This means that even if the block 100 is randomly permuted to address

102, its recurrence can still be detected on the bus. Thus, a normal cache cannot hide such

a recurrence. With the HIDE cache—as shown in Figure 8.e—the 2nd permutation is

triggered before the 5th access, because all blocks in the set 0 are locked and we cannot

evict a locked block. Note that if a locked block is evicted, we lose tracking of the block.

It might be read in again causing the same address to appear on the bus; or if the block is

locked because it is dirty, evicting the block will incur a writeback immediately causing

re-appearance of its address on the bus. Thus, a permutation must be conducted to unlock

blocks when all the blocks are locked in a set. From the address sequence at the lower

right part of Figure 8.e, we can observe that after the 2nd permutation, the original address

 44

100 is now 104. Since the two permutations are random and independent, the attacker

only observes random numbers on the bus. Also, recurring original addresses become

different random numbers after the 2nd permutation. By locking the blocks, we make sure

that the same address does not appear again on the bus before another permutation. For

example, if we were to access block 104 again, it is in the cache; therefore no access goes

out on the bus due to a hit. This scheme not only meets the requirement of Lemma 1, but

also preserves the functionality of a cache.

Another observation in Figure 8.e is that in set 1, both blocks are unlocked after

the second permutation. Now they behave like normal cache blocks and can be evicted if

necessary. Since their mapping and addresses have been changed (their original address

is now mapped to a different one) during the second permutation, they can be safely

evicted. After the blocks are evicted, they will be locked the next time they are fetched in.

Finally, for this example, we discuss the latency costs that might be incurred. When all

blocks are locked in a set, we must permute to unlock at least one block before a new

block can get in and replace the unlocked one. Since permutation takes a long time, it is

not wise to permute at the last minute. We thus permute and unlock ahead of time –

before all the entries in a set are locked (this issue will be addressed in detail shortly).

 45

100

2-set
2-way
cache

101
103
100
104
102

102
101

104
103

Set 0

Set 1

most recent
used

least recent
used

100,101,102,103,104,100,101

after initial permutation

102
100

103
101

100 102
104
101
103
100

102
101

104
103

after 2nd permutation

102,100,104,101,perm,101,104

102,100,104,101,103,102

100
104

101
103

(a) (b)

original
addresses (c)

(d)

After 4 accesses
without locking and 2nd permutation

original access sequence

After 7 accesses

actual access sequence on the bus:

102
100

103
101

L

L
L

L

After 4 accesses
100
104

101
103

After 7 accesses
L
L

actual access sequence on the bus:
(e)

with locking and 2nd permutation

Figure 8. Example for Lemma 1 and HIDE cache.

Implementation of the HIDE cache

We list all HIDE cache operations in Table 2, assuming LRU is the original cache

replacement policy. Blocks are still ordered and updated according to the LRU policy,

except that when evicting a block, one should choose the least recently used block among

the unlocked blocks. Note that the LRU block is not necessarily the last block that is

 46

locked in a set, because a block could be brought in (thus locked) and used frequently,

whereas other blocks might be in the set for a long time without being used.

Table 2. HIDE cache operations.

Read and hit Update LRU order of blocks
Write and hit Set dirty bit and lock the block, update LRU order

of blocks
Cache miss,
fetch a new
block into
the cache

Picked the LRU block among all unlocked blocks
in the same set. Fetch and lock the new block. Set
dirty bit for write access. If all blocks are locked,
put it to fetch buffer.

A memory
space is
permutated

All blocks belonging to that memory space in
cache are unlocked

In our implementation, we use a bitmap (separately stored) to record whether a

block is locked or not, i.e. each bit represents one block. After the permutation, the whole

bitmap is cleared.

Latency Hiding via Fetch Buffer and Pre-permutation

Prefetch buffer is an on-chip buffer used to store cache blocks temporarily. Since

HIDE cache operations could render the cache unavailable in some cases for a short

period, cache blocks can be first put in the prefetch buffer and used to serve the

application requests and then moved to the HIDE cache once it can be accessed. There

are two scenarios in which the fetch buffer is necessary. In one case, the missed block

request comes before we find out which block should be replaced; the second case is

related to the pre-permutation. Both will be discussed in details later.

Note that locking blocks, i.e. setting the bits in the bitmap, is not on the critical

path since it can be conducted after the cache access. Upon cache misses, for each block

in the set we need to determine whether it is locked or not. This involves reading several

bits in the bitmap. Fortunately it is not on the critical path either. The missed block can be

 47

fetched in parallel when we access the bitmap. Even if the missed block is fetched faster

than the bitmap accesses, we can simply put the block in the fetch buffer and let the cache

access return first. Once we find out all unlocked blocks in the set and the LRU one

among them, the block in the fetch buffer can then be moved into the cache to replace the

LRU block. In this way, all the operations for the HIDE cache can have the same latency

as a normal cache.

However, the performance of a HIDE cache could still be worse than a normal

cache because: 1) A locked block may otherwise be replaced when it becomes least

recent used. 2) Once all the blocks in a set are locked, a new block cannot be fetched into

the set unless we permute and unlock some of the blocks. Due to the long latency of

permutation, it may happen that a set is fully locked before the permutation releases a

locked block in the set, leading to stalls.

We propose pre-permutation to solve the above two problems. Pre-permutation

attempts to start permutation before all the blocks are locked. In our design, we start pre-

permutation when half of the blocks in a set are locked. Pre-permutation increases the

chance that a block is unlocked before it becomes LRU, and greatly reduces the

possibility that all the blocks in a set are locked when a new block needs to be fetched in.

Even if the pre-permutation does not complete in time, we can put newly fetched blocks

in the fetch buffer until the permutation completes and unlocks blocks for replacement.

These latency hiding techniques successfully cut down the performance loss as shown in

our experiments.

 48

3.3.4 The Permutation Unit

The permutation unit randomly permutes the memory space. It should avoid

exposing the correlation between any block’s old and new locations. Therefore, blocks

are always re-encrypted after relocation. Recent studies indicate that counter-mode

encryption/decryption [124] [102] [95] [96] [123] can be applied to achieve low-overhead

re-encryption. We show the pseudo-code for the permutation unit in Figure 9. A memory

space with M blocks is to be permuted using an on-chip space with P blocks called

out_buffer. In addition, a permutation vector (pv) consisting of a random permutation of

numbers from 1 to M is generated and stored on-chip.

CASE I: If M is less than or equal to P, we only need to sequentially read the M

blocks once. After reading in block number s, we put it to out_buffer[pv[s]]. Finally,

out_buffer is written out sequentially to the original memory space. Since the attacker

only sees one sequential read and one sequential write to all blocks and everything is re-

encrypted, he cannot build any correlation between blocks’ old and new locations.

CASE II: If M is larger than P, without loss of generality, let M=k*P, where k is

an integer larger than 1. We split the M block memory into k equal-sized partitions.

During an iteration s, all blocks destined to partition s are permuted and put in the

out_buffer. At the end of iteration s, the out_buffer is written out to a temporary memory

space as a new partition s. Upon finishing all permutations, we overwrite the original

memory space with blocks in the temporary memory space. Overall, the M blocks are

read k+1 times and written 2 times. Alternatively, we can change the page table such that

the temporary memory space is mapped to the original memory space, which saves

copying from temp_mem to mem.

 49

DATA STRUCTURE:
//memory space to be permuted
block mem[1..M]
//temporary space in memory
block temp_mem[1..M]
//permutation vector, on-chip
Int pv[1..M]
//output buffer, on-chip
block out_buffer[1..P]

M≤P
pv[1..M]⇐a random permutation of numbers from 1 to M;
for s=1 to M do
 out_buffer[pv[s]] ⇐mem[s]
endfor
mem[1..M] ⇐re-encrypt(out_buffer[1..M])

M=k*P
pv[1..M] ⇐a random permutation of numbers from 1 to M;
for s=0 to k-1 do
 for t=1 to M do
 read mem[t];
 if s*P<pv[t] ≤(s+1)*P then out_buffer[pv[t]-s*P] ⇐mem[t]
 endfor
 temp_mem[(s*P+1)..(s+1)*P] ⇐re-encrypt(out_buffer[1..P])
endfor
mem[1..M] ⇐temp_mem[1..M]

Figure 9. Pseudo-code for the permutation unit.

Although the size of the out_buffer, i.e. P, cannot be very large, the permutation

unit can permute a very large memory space, i.e. M can be large. In this algorithm, the

size of pv still depends on M, however pv is actually very small because it only stores a

small integer for each block (8 bits for 8K pages with 32B block).

The pseudo-code in Figure 9 does not show the algorithm to generate a random

permutation of numbers from 1 to M. We follow the shuffle algorithm in [54], which

requires M swaps to generate a complete random permutation as long as a hardware-

based true random number generator [49] is available. Finally the time for random

permutation generation can be completely masked when the permutation unit reads the

memory space.

 50

There might be pending accesses to the memory space being permuted. If the

block has not been read-in, we can still issue the access to memory (Lemma 1 is still

enforced, because we do not unlock until the permutation finishes). If the block is read in

and in the out_buffer, it is fetched from the out_buffer immediately. If the block has been

written out, we can fetch it from the memory, but need to mark that it will remain locked

after the permutation.

Overhead Analysis

With pre-permutation, permutation is normally not on the critical path; critical

reads by the processor are always given higher priority than the permutation traffic. Note

that although permutation is the main source of bus traffic increase, such traffic is very

regular and predictable and therefore can be easily pipelined. In addition, we can take

advantage of memory banking and parallelizing memory accesses to different banks. If a

normal access is going to access the chunk that is being permutated (this should rarely

happen, since a chunk only takes a small portion of the address space), we can first try to

locate it in the out_buffer if that block has been read into the permutation chip. To

amortize the initial overhead for each bus transaction (which could take the majority of

the access time if only a small number of bytes are transferred in each transaction), we

read/write many consecutively located memory blocks during each transaction. Finally,

we can completely offload the permutation traffic from the front-side bus with a separate

permutation chip (or it can be combined with the memory controller). Communication

occurs between the processor chip and the permutation chip, e.g. the processor chip

should send/receive data to the permutation chip if the address falls in the chunk that is

being permuted. Also the permutation chip returns the new mapping once a permutation

 51

has finished. Obviously, such communication should be encrypted to be immune from

bus tapping and the amount of bus traffic will be much smaller. Finally, as mentioned

earlier, re-encrypting blocks is necessary to avoid block correlation based on block cipher

texts. This overhead has become negligible with recent studies on counter-mode

encryption/ decryption.

We now show how we put together the HIDE cache and the permutation unit to

offer chunk level protection.

3.4 HIDE at Chunk-Level

This section gives the hardware infrastructure of HIDE, which provides so-called

chunk-level protection. The hardware interface is supplied as simple instructions.

3.4.1 Chuck Level Protection and Transition Coverage

A chunk is defined as one or more pages that are protected and permuted together.

Protecting a large piece of memory is prohibitive due to the high permutation cost,

especially. when the out_buffer cannot hold the entire piece of the memory space, we

have to access the memory space multiple times. The goal of chunk level protection is to

limit the size and the cost of the permutation. With chunk-level protection, the

permutation unit only permutes blocks within a chunk. Once a chunk is permuted, all

cache blocks in that chunk are unlocked.

We can split an address sequence into a series of transitions from address to

address, e.g. the address sequence in Figure 3 has transitions like: 100Æ101, 101Æ102,

102Æ103…. If the transition is between two addresses in the same chunk, we call it

intra-chunk transition, otherwise it is inter-chunk transition. Since all intra-chunk

transitions are protected with chunk-level protection, the percentage of intra-chunk

 52

transitions among all transitions is called transition coverage, which is a good indication

of how well the address sequence is protected and the level of security guarantee we can

provide.

We found that chunk-level protection is powerful. As observed from our

experiments, even with the smallest chunk size, i.e. a page, over 75% of the transitions

are intra-chunk. Given that not all memory contents are security sensitive, protecting

chunks of a reasonable size should suffice if we can slightly narrow down the protection

domain with either compiler analyses or user specifications as shown in Section 3.5.

Besides, chunk-level protection is flexible. Since our infrastructure supports chunks with

different sizes, the user can choose to protect some memory space in big chunks and

some in small chunks. Building chunks on top of pages facilitates the implementation,

since pages are supported by both the hardware and OS.

3.4.2 Hardware Components

Controller Permution
Unit

Memory

Page Info
Caches

Fetch Buffer

L2 cache-hide cache

Figure 10. Hardware flowgraph.

Figure 10 shows the hardware structure to provide chunk level protection. The

hide cache is implemented at the L2 level (in other words, L2 is a HIDE cache). The

 53

fetch buffer and the permutation unit were introduced in Sections 0 and 3.3.4. The

controller coordinates all components.

Before addressing the page info cache, we first describe the page info record in

Figure 11, which contains 7 fields for each page. Page info records store extra

information for the L2 cache so that it can function as a hide cache. As shown below, the

if_hide field indicates whether the given page should be protected. Blocks in a protected

page are permuted together with other pages in the same chunk and accesses must go

through the address translation to reach the new locations. The second field is the page

number in the virtual address space. The next two fields specify the chunk this page

belongs to. Note that each chunk must take a contiguous piece of memory in the virtual

address space – this is done to facilitate compiler optimization and user specification. In

other words, a chunk must take several consecutive pages in the virtual (also physical)

address space; begin_virtual_page# and chunk_size (number of pages in a chunk)

uniquely define a chunk.

Page Info Record:
boolean if_hide;
int virtual_page#
int begin_virtual_page#;
int chunk_size;
int num_in_cache;
boolean lock_bitmap[num_blk];
blk_addr_t translation_table[num_blk];

Figure 11. Data structure for page info record.

num_in_cache counts the number of blocks of the chunk that are currently locked

in the hide cache. For chunks with multiple pages, only the first page’s page info record

stores such information. This field is used for pre-permutation described in Section 3.3.3.

 54

When half of the blocks in a set are locked, for each locked block we find out the

percentage of locked blocks in their chunks. The one with the highest percentage is

chosen to be permuted. The lock_bitmap field contains num_blk bits, where num_blk is

the number of blocks in a page. Each bit indicates if the block is in the cache and is

locked. Finally, the translation table translates each block to its new block address after a

permutation. The translation table is updated by the permutation unit after each

permutation. For chunks with multiple pages, the blk_addr_t includes a page_ID

∈[0,chunk_size) to indicate which page in the chunk this block is permuted to i.e.

begin_virtual_page# +page_ID.

The size of the page info record is small compared with the size of a page. For

8KB page size on Alpha, it only adds 3.5% memory space overhead. However, for big

chunks, the translation table takes more space due to the bigger page_ID field.

Page info records are stored separately in a reserved memory space so that they

can be accessed only by the hardware. There is one page info record for each physical

page. For each block, the hardware can find the corresponding page info record via its

physical page number. To speed up the access to the page info records, we put a page

info cache on chip. Due to the small size of the page info records, a cache of 8~16KB is

typically enough to achieve a very high hit rate. However, since the page info records are

stored in the external memory, accesses to it may leak information on the address bus too

although the records are encrypted under our machine model. Conceivably, such

information leakage is indirect and also very limited due to the small size of the page info

records. For complete security, we can build several layers of protection, i.e., the first

layer page info cache becomes a hide cache which protects the first layer page info

 55

records for the pages used by the program. Since the first layer page info cache is a hide

cache, we need second layer page info records for this hide cache and for the pages taken

by the first layer page info records. Obviously, the sizes of the page info cache and page

info records decrease exponentially. At layer 3, the page info records are typically small

enough to be stored on-chip.

3.4.3 Some Other Issues

Since chunks are defined in the virtual space, actual accesses to the physical

memory must go through the page table and TLB look up. Recall that the OS could be

malicious, therefore both the page table and the TLB could be manipulated by the OS. In

fact, this problem has been solved by integrity checking the application’s virtual address

space.

Moreover, TLB only provides page level translation, thus a malicious OS might

be able to figure out intra-trunk page-level transitions by observing the virtual page

addresses sent to the TLB (e.g. by flushing the TLB and trapping the TLB misses). One

possible solution is to use large pages. Large pages are available on some platforms like

IBM Power series. However, typically very few sizes are available. For chunk level

protection, it is desirable that a variety of chunk sizes can be supported. To prevent

information leakage through the TLB, we propose a simple approach without changing

the existing TLB architecture. When a virtual page address needs to be converted, we

always use the beginning virtual page address of the chunk that the page belongs to.

Figure 12 illustrates how the translation is done. Each chunk takes a continuous memory

space in the virtual and in the physical memory address space. To translate any page

 56

inside a chunk, the page address of the first page in the chunk is sent to the TLB. After

getting the physical address of the first page, the offset is added to get the final address.

Virtual Address Space

Virtual
Chunk

Physical
Chunk

TLB
Translation

offset

offset

Physical Address Space

{ }

Figure 12. Virtual to physical address translation.

The OS should guarantee that all pages for a chunk are stored continuously in the

physical address space, otherwise it will fail the integrity checking and get detected. Also,

all pages in a chunk should be permuted together, therefore it is better they are swapped

in and out together, such that extra delay could be avoided. In our implementation, these

suggestions are conveyed to the OS. Although the OS could be malicious and does not

comply with these suggestions, it only leads to worse performance but no security

breaches.

Finally context switches should not affect the hide cache, since it works at the

physical page level, i.e., page info records are designed for physical pages and are

addressed with physical page numbers. It works in tandem with a L2 hide cache where all

the addresses are physical addresses.

3.4.4 Interface to the Application

Chunks can be specified statically in the program code or at runtime with special

instructions. In the former case, such information is inserted in the header of the program

 57

binary telling which chunks should be created initially. Upon loading a chunk, the

hardware initializes the fields in the page info record and performs an initial permutation

before loading it into the memory. The initial permutation prevents the attacker from

gaining information across different runs of the program. At run time, we can use three

instructions to manage chunks; their syntax and operational semantics are as follows:

♦hide_chunk (begin_virtual_page#, chunk_size)

Operational semantics: For all pages in the chunk, set the if_hide and other fields

accordingly. Get a new translation table from the permutation unit without performing

real permutation and clear the lock bitmap. Later accesses to the chunk must go through

the address translation. This instruction can be used when a new memory space is

allocated. Since all old contents will be overwritten, no real permutation is needed.

♦unhide_chunk (begin_virtual_page#)

Operational semantics: Clear the if_hide fields of all pages in the chunk so that the later

accesses will go to the external memory directly. The old contents are discarded.

♦unlock_block (virtual_page#, start_block_num, num_block)

Operational semantics: Clear num_block consecutive bits in the lock_bitmap of the

virtual page, starting from start_block_num.

Next we discuss some optimizations developed to boost the level of security

guarantee offered as well as the performance.

3.5 Optimizations

As mentioned in Section 3.4, chunk-level protection still exposes inter-chunk

transitions since permutations are confined to the blocks within a chunk. This section

talks about compiler and runtime techniques to achieve a higher level of security

 58

guarantee based on the hardware infrastructure and through the interface proposed earlier.

Through compiler analyses, user specifications and runtime support, we can effectively

improve transition coverage and reduce address bus leakage, especially for sensitive

contents, with very small overhead.

3.5.1 Compiler Layout Optimization

Compiler layout optimization aims to properly layout code or data to chunks such

that transitions are covered with small permutation cost. There are a number of issues we

should consider during the compiler layout optimization.

1) Intuitively, we should put functions that frequently call each other in the same chunk.

Similarly, consecutive data accesses that are frequent should be put in the same chunk

as well.

2) Adding more functions or data to the same chunk tends to increase the chunk size.

However a big chunk is expensive to permute. Therefore, we must factor in the

tradeoff between transition coverage and the permutation cost.

In our compiler optimization, we attempt to properly layout code and static data to

minimize inter-chunk transitions. This approach is also applicable to heap space that is

redistributed to the program – refer to Section 3.5.2. For static data, we assume that

arrays and structures are laid out as a whole. For code, functions are laid out as a whole.

Occasionally, we may encounter large functions 1 or arrays, which can cause big

overheads if they have to be covered with large sized chunks. In such cases we hope that

the compiler or the programmer is able to divide them into smaller pieces that are

1 In our benchmarks, we only observe several functions that exceed page size.

 59

unlikely to transit frequently from one to another. Next we give definitions of Transition

Graph and Permutation Cost.

Transition Graph: undirected graph with weighted nodes and edges.

P-Cost(m): Permutation Cost for a memory space of size m. It should monotonously

increase with the size of the memory space.

10

foo1:
100

foo2:
200

foo3:
100

6

(a)

1. Load A
2. Store B
3. Store A
4. Load D
5. Load C

(b)

A:8 B:8

C:8 D:8

2

1

1

Figure 13. Examples for transition graph.

On the transition graph, each node represents a function. The weight of the node

is the size of the function. Edge weights between nodes represent the call/return

frequency between the two functions. If function A calls B or returns from B once, the

weight of the edge between node A and B is increased by 1. For the example in Figure

13.a, the transition graph tells us that the function foo1 calls or returns from foo2 10

times, whereas foo1 calls or returns from foo3 6 times. The sizes of the 3 functions are

100,200 and 100 respectively. For static data, each node represents a data unit, i.e. a

scalar variable, a structure or an array, etc. The weight of the node is the size of the data

unit. The weight of the edge is the number of times the two data units are accessed

consecutively. For example, if we find a path on which data unit A is accessed

immediately after data unit B, the edge weight between them is incremented by 1. An

example is shown in Figure 13.b, 4 data units are loaded or stored as in the code segment.

 60

The edge between A and B gets weight 2 because B is accessed right after A once and A

is also accessed right after B once. Similarly, D is accessed immediately after A and

followed by C. The sizes of these variables are all 8 bytes. The transition graph is a rough

estimation of how frequently nodes transit from one to another, because some transitions

can be hidden by the cache.

For a node n, Let P_Cost(n) be the permutation cost of the memory with all
data units in the node.
P_Cost(n) ∝ size of the minimal chunk that can hold n.

Let G(N,E) be the transition graph with node set N and edge set E.
Let W be the total edge weights of the original graph (before node merging)

LAYOUT ALGORITHM
1. _ ()

n N

C P Cost n
∈

= ∑

2. while (total edge weight of G)/W>5% do
3. For any two nodes n1 and n2 find the minimal value of (P_Cost(n1+
4. n2) - P_Cost(n1)- P_Cost(n1))/(edge weight between n1 and n2).
5. merge n1 and n2.
6. od
7. return the transformed graph

Figure 14. Algorithm to layout code and data.

Figure 14 shows the code and data layout algorithm. We start with the transition

graph assuming each node will be assigned to a separate chunk. Then we merge chunks

into bigger one if it is beneficial. Our goal is to get minimal total chunk cost to cover

most edge weights. At this point, we need to clarify two things: 1) The total chunk cost is

the sum of the costs of all the chunks and a chunk’s cost is empirically calculated to be

proportional to its size, since the time to permute grows with the chunk size. 2) If two

nodes are in the same chunk, then the edge weight between them is covered.

Initially, each node is assigned to a distinct chunk with minimal size, i.e. a single

page. Empirically we loop until over 95% of edge weights are covered. During each

 61

iteration, we find a pair of chunks to merge with minimal ratio increase (ratio is defined

to be the total chunk cost divided by the covered edge weights). Note that if we merge

two chunks, all nodes in the two chunks are now assigned to a new chunk that can hold

all nodes and its size is minimal.

3.5.2 Managing Stack and Heap

Stack and heap are dynamically managed memory spaces that must be tackled at

runtime. We now discuss several optimizations for protecting stack and heap accesses.

Since stack size is typically small and most activities occur at the top of the stack,

we should always try to put the top of the stack inside a chunk boundary. To avoid the

exposure of accesses to the top of the stack, the application checks if the callee’s frame

will cross chunk boundary. If so, it sets the frame pointer to the boundary of the next

chunk. Figure 15 shows that when lesser space is available in a chunk than the stack

frame size of the callee function, we allocate the callee’s stack frame at the start of the

next chunk. In this way, we can avoid callee’s stack frame from crossing the chunk

boundary which might lead to information leakage. Since the parameters have to be

passed from the caller to the callee, there might still be some inter-chunk leakage. We

suggest parameters are put into the callee’s chunk. Although this might still cause several

inter-chunk transitions at the beginning of a function call, we believe that the amount of

leakage introduced is minor. On the other hand, the accesses within a stack frame are

more frequent and thus, we choose the above solution. In cases where there are accesses

across stack frames (such as indirect references through a pointer to caller’s data etc.), we

attempt to put those two functions’ stack frames in the same chunk.

 62

Since the location and the size of the chunk as well as the end of the stack frame

are all known at runtime, the compiler simply inserts comparison instructions at the

function call site and advances the stack frame accordingly. The new chunk is protected

with the hide_chunk instruction. Given that the stack frame size is typically small, space

loss due to this is negligible compared with all memory space taken by a program.

end of last
stack frame

actual start of the
callee’s stack frame

chunk
boundary

stack grows
downwards

Figure 15. Protecting stack space under HIDE.

On the other hand, heaps can be large; therefore more specifications by the

programmer are desirable. Next we give the unlock rule, which has been found very

useful to reduce the number of locked blocks and save unnecessary permutations.

Unlock Rule: If a block will not be referenced after a certain point and it is not dirty in

the cache, we can directly unlock it.

If a block will no longer be referenced and is not dirty, there is no need to lock it

in cache, because its addresses will not appear on the address bus any more. The unlock

rule suggests that data can be unlocked in the cache as soon as we are sure it will not be

referenced later. Especially when only a few blocks in a chunk are locked in the cache, it

will be inefficient to perform a permutation of the entire chunk. Thus, unlocking those

blocks without incurring a permutation is most desired in this situation.

 63

To unlock a set of blocks, we can use the unlock_block instruction. This

instruction simply clears the lock bits for those blocks if they are not dirty. unlock_block

instruction can be inserted by the compiler or the programmer after data values are

determined to be dead through offline analysis. Some heap allocation schemes grab large

pieces of memory from the heap then redistribute them to the application. Thus,

techniques presented in Section 3.5.1 might be similarly applied to minimize inter-chunk

transitions during the above heap allocations.

3.5.3 Adaptive Chunking

Chunks can also be formed adaptively. If transitions frequently happen between

two adjacent chunks, it is probably better to merge them together. Although we pay more

cost to permute them together, it achieves better coverage. On the other hand, if two

adjacent chunks are rarely accessed consecutively, merging them is not beneficial at all.

As mentioned earlier, for ease of implementation we require chunks to occupy a

contiguous piece of memory in the address space. Thus, we only need to track the

transitions between adjacent chunks. To facilitate adaptive chunking, we add transition

counters for each chunk to keep track of the transitions between adjacent chunks. Those

counters monitor the number of transitions for pairs of chunks that could potentially be

merged. For each chunk, there is a transition counter which records the number of

transitions from or to the next adjacent chunk in the virtual address space. Note that the

counters keep increasing as time goes by. For a fair measurement, we also record the

time-stamp when the counter was reset last time. Empirically if Trans_Counter/(TS_now-

TS_last) is above certain threshold merge_threshold, it means the two chunks should be

merged. Periodically we reset the counters and update TS_last so that the counters keep

 64

track of recent transition activities. To reduce overhead, we only check against the

merge_threshold after TS_now-TS_last is large enough (more than 1 million cycles) and

the transition counter is being updated. In other words, after we get enough statistics

(from TS_last to TS_now), there is a check point to decide if a merger is needed. If not,

both Trans_counter and TS_last are reset. The checking is done in a lazy manner. It is

designed so because we do not want to eagerly merge chunks, which definitely leads to

higher cost. Therefore, only in cases a really good candidate is identified, should we

perform the merger. Once we decide a merger, the corresponding page info tables of the

underlining pages are updated to reflect the change.

chunk chunk

Trans. Cnt
Time Stamp

chunk

Trans. Cnt
Time Stamp

Trans. Cnt
Time Stamp

Figure 16. Illustration of adaptive chunking.

As page info table, the transition counters and time stamps are put in a reserved

memory space that can only be accessed by the hardware. The space overhead is

considered very small, as the information is only maintained at chunk level. To update

the counters, the hardware simply keeps track of the previous chunk that was accessed, if

the current chunk is the same as the previous one, or the two chunks are not adjacent to

each other, we do not need to do anything, otherwise the transition counter of the

previous chunk is updated to reflect this transition. In other words, the updates only

happen during some of the chunk level transitions, which actually happen rarely as most

of the transitions are covered inside chunks (we will show this in the results section).

Meanwhile, updating the counters can be done in parallel with chunk accesses and

permutation, further reducing the overhead. When a merger is decided, extra latency is

 65

incurred to update corresponding page info records. However chunk mergers do not

happen frequently, especially when we do it lazily. In this manner, the runtime overhead

for the involved operations is almost negligible.

3.6 Other Considerations

Information leakage prevention is a broad topic, whereas here we only tackle a

particular problem. For instance, system calls can somewhat leak control flow

information, however the interactions between the application and the operating system

are unavoidable. This problem is actually left to the programmer to not to put system

calls at sensitive sections of the code. Also, execution time cannot be hidden due to its

tight association with performance. It is normally unreasonable to require the program to

run for the same amount of time regardless of inputs. Under our scheme, the attacker

observing the address bus still gains some information, such as the moments when

permutations take place, the number of accesses between two permutations, etc. However

such leakage is much less than that from an unprotected address bus. So far we cannot

conceive of any feasible attacks that might benefit from this type of information leakage.

In a multi-processor system, one block may be present in the caches of other

processors, therefore locking and permutation information must be shared and made

consistent across multiple processors. However, the communications among processors

are transmitted through the bus that is subject to attacks. Therefore our scheme cannot

work without extensions. Currently, we regard address bus information leakage

prevention in a multiprocessor environment as our future work.

3.7 Evaluation

 66

We evaluate our scheme on a processor model with default parameters shown in

Table 3, in which all 8K chunks are protected. The entire SPEC2000 integer benchmark

suite is used as representative applications. The standard reference input is used for each

benchmark. Implementation is done with the Simplescalar toolset [11] and experiments

are based on SimPoint [94]. Each benchmark is fast-forwarded according to SimPoint

then simulated by 100M instructions. The 200M Memory bus is 8B wide and fully

pipelined. The permutation latency of a chunk is not a constant number. It has three

major components as discussed in section 3.3.4. The first component is the latency to

sequentially read the blocks inside a chunk and the latency to decrypt the blocks. With a

counter mode based encryption/decryption scheme, the decryption latency can be largely

hidden. The second component is the latency to place the block read in to a proper

location in the temporary output buffer according to the permutation vector. The latency

of this step is small. The third component is the latency to re-encrypt and write out the

output buffer. Again, the encryption latency can be largely hidden.

Table 3. Default architectural parameters.

Clock frequency 1 GHz Unified L2 4way, 32B block
1M (12 cycles)

Fetch queue 32 entries Memory latency 80(1st), 5(inter)
cycles

Decode/issue/
commit width

8/8/8 Chunk size 8 K, all chunks
protected

RUU/LSQ size 128/64 Fetch buffer
Page info caches

8 blocks
8K/1K

TLB miss 30 cycle Permutator Outbuf 64K
L1 I/D 8K DM 1 cycle

32B block
Encryption
Latency

40 cycles

Memory bus 200M, 8 Byte wide Encryption
Throughput

3.2GB/s

 67

bzip
2

cra
fty eon

gap
gcc

gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

N
or

m
al

iz
ed

 IP
C

0.0

0.2

0.4

0.6

0.8

1.0

1.2 8K Chunk ORAM default model 64K Chunk+Layout

2.94 0.87 1.14 2.26 0.77 3.89 1.28 2.81 0.97 1.34 0.91 2.32

Figure 17. IPC results normalized to the baseline without address bus protection.

As a summary, first we compare IPC, bandwidth usage and transition coverage

(i.e. percentage of intra-chunk transitions—Section 3.4) for three models: 1) the one with

shelter buffer in the ORAM paper [41] [40]; 2) default model implemented as a HIDE

cache with parameters as listed in Table 3, 8KB chunk, no layout optimizations; 3) a

more secure model with 64KB chunk and compiler layout optimizations described in

Section 3.5. Note that, the ORAM work was theoretical therefore no implementation

details were provided. We directly implemented their scheme. Further improvements

might be possible but should be accompanied by a careful study from the security aspects.

Figure 17 shows performance results. For comparison, we normalize all IPC

numbers to the baseline without address bus protection. We also list absolute values of

the baseline IPC values. The ORAM model incurs significant slowdown (44.2%),

although we only implemented it at the smallest chunk, i.e. single-page level with 8-block

shelter buffer for a fair comparison with the default model. Both default model and the

“64K chunk+layout” model shows little slowdown: 0.3% and 1.5% on average.

Comparing with a normal cache, our HIDE cache has to permutate a memory chunk

when necessary thus resulting a larger average L2 cache access latency and a lower

 68

performance. Figure 18 shows the average L2 cache access latency under the baseline

without address bus protection and the default model of our HIDE scheme. The hit

latency of the L2 cache is 12 cycles. Without address bus protection, the average access

latency of L2 cache over all benchmarks is 13.27 cycles. Under HIDE default model, the

average access latency of L2 cache over all benchmarks is 15.43 cycles.

bzip
2
cra

fty eon
gap

gcc gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

Av
er

ag
e

L2
 C

ac
he

 A
ce

ss
 L

at
en

cy
 (C

yc
le

s)

0

5

10

15

20

25

30
baseline
HIDE default model

Figure 18. Average L2 cache access latency under the baseline and the HIDE default

model.

Next, we look at the bandwidth usage. We show the percentage of overall

bandwidth (i.e. 1.6GB/s) being taken in Figure 19. ORAM uses over 60% of the

bandwidth due to its scanning of the whole shelter buffer during each access, the default

model and 64K chunk one only use 9% and 15% of the bandwidth. For most benchmarks

in SPEC2K, the memory traffic is not a big issue since they take only about 5% of the

bandwidth to begin with. To get an idea of the worst-case bandwidth consumption, we

reduce the L2 cache size to 512KB and 256KB (due to the nature of SPEC benchmarks,

 69

we cannot find one that experiences memory problem with 1MB L2). For 512KB L2, the

bandwidth consumption increases by 130% from the default model, whereas 256KB L2

leads to 529% memory traffic increase. As mentioned in earlier sections, the majority of

the memory traffic comes from permutations and therefore can be properly pipelined and

parallelized with memory banking. For memory-bound applications, it is recommended

to use a separate permutation chip to offload the traffic from the front-side bus—Section

 3.3.4.

bzip
2

cra
fty eon

gap
gcc gzip

mcf

parse
r

perlbmk
twolf

vortex vpr

Ba
nd

w
id

th
U

sa
ge

 (%
)

0

20

40

60

80

100
8K Chunk ORAM default model 64K Chunk+Layout

Figure 19. Percentage of total memory bandwidth used.

bzip
2

cra
fty eon

gap
gcc gzip

mcf

parse
r

perlbmk
twolf

vorte
x vpr

Tr
an

si
tio

n
C

ov
er

ag
e

(%
)

40

60

80

100
8K Chunk ORAM default model 64K Chunk+Layout

Figure 20. Percentage of address transitions covered.

Figure 20 gives transition coverage of the 3 models, which is an indication of the

level of security guarantee that is achieved (Section 3.4). The first two models show the

 70

same 75% transition coverage on average, because they both protect at 8K chunk level.

With 64K chunk and layout optimization, 87% transition coverage is achieved. Notice

that for some benchmarks such as crafty and vortex there is a significant increase in the

transition coverage (and thus the security). This is due to the layout optimizations

undertaken by the compiler. Some benchmarks do not benefit from layout optimizations

due to the inherent nature of accesses esp. those resulting in gap due to the heap accesses.

This also causes more permutations, since the number of blocks each permutation can

unlock is lower.

Thus, one can see that significantly higher transition coverage can be achieved in

the 3rd model with almost insignificant performance degradation. The layout

optimization provides around 95% transition coverage for code and static data, while it

only causes negligible slowdown due to the small size of that part. The rest of the

slowdown is due to large chunk-size and overall transition coverage is much higher with

little performance penalty.

It is important to understand if the user can provide specifications to exclude a

small percentage of code and data as non-security-sensitive, our scheme will eliminate

almost all the leakage on the address bus with negligible slowdown. For the default

model, the user needs to identify roughly 25% such code and data, while under the “64K

Chunk+Layout” model, he only needs to exclude about 5% of the code and static data

(Figure 14) and 13% of the data on the heap, assuming stack is protected as in Section

 3.5.2. This means the user specification can be very rough or in same cases, a nice

compiler approach will probably do the work too, making our scheme practical to achieve

a good level of security guarantee almost automatically.

 71

bzip2
crafty

eon
gap

gcc
gzip

mcf

parser

perlb
mk

twolf
vorte

x
vpr N

or
m

al
iz

ed
 IP

C
 fo

r O
R

AM
 w

ith
 d

iff
er

en
t s

he
lte

r s
iz

es

0.0

0.2

0.4

0.6

0.8

1.0
4
8
16
32

Figure 21. Normalized IPC results for the ORAM scheme with different shelter sizes.

Figure 21 shows IPC results for the ORAM scheme with different shelter sizes.

Results are normalized to the baseline without address bus protection. In the experiment,

only the size of the shelter buffer in the ORAM scheme is varied. The shelter buffer sizes

used in the experiments are 4 blocks, 8 blocks, 16 blocks and 32 blocks respectively. The

chunk size is 8KB. From the results, a larger shelter area generally leads to a better

performance under the ORAM scheme. The reason is that with a larger shelter buffer, the

chance of a miss cache block found in the shelter buffer is larger, thus the cache miss can

be satisfied faster. On average, the performance degradation for a 4-block shelter buffer,

an 8-block shelter buffer, a 16-block shelter area and a 32-block shelter area is 53.7%,

44.2%, 35.6% and 30.6% respectively. Although a larger shelter buffer improves

performance, the performance degradation is still significant and much larger than the

proposed HIDE scheme. Moreover, each chunk requires its own shelter buffer, so the

memory overhead is increased rapidly when the shelter buffer is enlarged.

 72

bzip2
crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk
twolf

vorte
x

vpr N
or

m
al

iz
ed

 IP
C

 fo
r O

R
A

M
 w

ith
 d

iff
er

en
t c

hu
nk

 s
iz

es

0.0

0.2

0.4

0.6

0.8

1.0
8K
16K
32k

Figure 22. Normalized IPC results for the ORAM scheme with different chunk sizes.

Figure 22 shows IPC results for the ORAM scheme with different chunk sizes.

Results are normalized to the baseline without address bus protection. The size of the

shelter buffer is fixed at 8 cache blocks. From the results, it is very clear that with a larger

chunk size, the performance under the ORAM scheme deteriorates quickly, showing that

the ORAM scheme does not have a good scalability. When the chunk size is 8K, the

average performance degradation is 44.2%; when the chunk size is 16K, the average

performance degradation is 53.4%; when the chunk size is 32K, the average performance

degradation becomes 61.7%.

In addition to the heavy performance degradation, the ORAM scheme also

consumes much more bandwidth than our proposed HIDE scheme, as shown briefly in

Figure 19. Thus, the ORAM scheme is apparently inferior to our HIDE scheme. We will

now focus on more evaluation of the HIDE scheme.

 73

bzip
2

cra
fty eon

gap
gcc gzip

mcf

parse
r

perlbmk
twolf

vorte
x vpr

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

of
 H

ID
E

 (%
)

0

1

2

3

4

5

6

7
512KB
1MB
2MB

Figure 23. Performance degradation for the HIDE scheme with different L2 cache

sizes.

In Figure 23, we vary the size of the L2 cache under the default model of our

HIDE scheme to see how performance degradation changes. From Figure 23, only some

benchmarks have observable slowdown, typically those with relatively large working sets.

Small cache leads to bigger slowdown due to more L2 misses causing more permutations.

On average, the slowdown for 512K, 1M, 2M L2 is 1.5%, 0.3%, 0.03% respectively. Our

experiments show that the slowdown is within 20% even for 64K caches, making it

applicable to low-end systems with smaller caches where information leakage might be

more severe. Figure 24 shows L2 cache miss rate for the HIDE scheme with 512KB,

1MB and 2MB L2 cache sizes respectively.

 74

bzip
2
cra

fty eon
gap

gcc gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

L2
 C

ac
he

 M
is

s
R

at
e

of
 H

ID
E

 S
ch

em
e

0.00

0.02

0.04

0.06

0.08
512KB
1MB
2MB

Figure 24. L2 cache miss rate for the HIDE scheme with different L2 cache sizes.

4 ways 8 ways 16 ways

bzip2
crafty

eon
gap

gcc
gzip

mcf

parser

perlb
mk

twolf
vorte

x
vpr

N
um

be
r o

f C
ac

he
 W

ay
s

Se
ns

iti
vi

ty
 S

tu
dy

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Figure 25. Performance degradation for the HIDE scheme with different L2 cache

ways.

In Figure 25, we perform sensitivity study for the number of cache ways of the L2

cache under the default model of our HIDE scheme. IPC results are normalized to the

baseline without address bus protection. By default, our customized L2 cache has 4 ways.

Intuitively, when the number of ways is increased, the chance that all ways in a set are

locked is smaller, thus the number of forced permutations is smaller, leading to a better

 75

performance. From our results, if the 1MB L2 cache has 4 ways, the average performance

degradation is 0.3%. When the L2 cache has 8 ways, the average performance

degradation is only 0.07%. When the L2 cache has 16 ways, the average degradation is

near zero. Thus, increasing the number of ways of the L2 cache is effective to reduce the

performance overhead further if the cost is affordable.

Next, we do sensitivity study for chunk sizes under the default model. All

comparisons are against the 8K-chunk default model and all numbers are normalized to

the 8K-chunk default model. A better protection granularity leads to more slowdown and

bandwidth consumption at the same time a better coverage rate. Figure 26 shows the

performance degradation with a larger chunk size. On average, the slowdowns relative to

the default model for 16K, 32K, 64K chunk are 0.13%, 0.55%, 1.05% respectively.

Figure 27 shows the increase of bandwidth consumed. For 16K, 32K and 64K chunk,

bandwidth increases are 18%, 40%, 73% respectively. Again, a permutation chip could

offload this bandwidth increase from front-side bus.

bzip
2
cra

fty eon
gap

gcc gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

IP
C

 d
eg

ra
da

tio
n

(%
)

0

1

2

3

4

5
16k
32k
64k

Figure 26. Performance degradation with larger chunk sizes comparing with the

default model.

 76

bzip
2
cra

fty eon
gap

gcc gzip

mcf
parse

r

perlbmk
twolf

vortex vpr

Ba
nd

w
id

th
 In

cr
ea

se
 (%

)

0

50

100

150

200
16K
32K
64K

Figure 27. Bandwidth consumption increase with larger chunk sizes comparing with

the default model.

Figure 28 shows the improvement of transition coverage rate with a larger chunk

size. For 16K, 32K and 64K chunk size, transition coverage rate is improved over the

default model by 1.6%, 4.3% and 5.9% respectively. From the results, without compiler

optimizations, a larger chunk size improves coverage rate but not significantly. The major

reason is that the misses from the L2 cache are already quite irregular and 64K chunk size

is still not large enough to reduce inter-chunk transitions significantly. Thus, compiler

layout optimization is critical to reduce inter-chunk transitions and improve coverage rate,

which is shown in Figure 20. On the other hand, it is critical not to be confused by the

small improvement brought by a larger chunk size. It does not show that a larger chunk

size is very ineffective. A larger chunk size achieves better security guarantee, which is

the main point of our HIDE scheme. All intra-chunk transitions can be protected. Thus,

64K-chunk achieves much better security guarantee than 8K-chunk, regardless of the

improvement over transition coverage rate.

 77

bzip2
crafty

eon
gap

gcc
gzip

mcf

parser

perlb
mk

twolf
vorte

x
vpr

C
ov

er
ag

e
R

at
e

Im
pr

ov
em

en
t (

%
)

0

10

20

30
16K
32K
64K

Figure 28. Transition coverage rate improvement with larger chunk sizes

comparing with the default model.

bzip2
crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk
twolf

vorte
x vpr

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.970

0.975

0.980

0.985

0.990

0.995

1.000

no pre-permutation threshold 1way

threshold 2way threshold 3way

Figure 29. Effects of pre-permutation optimization under different pre-permutation

strategies.

Figure 29 shows the effects of pre-permutation optimization under different pre-

permutation strategies. In our default model, the L2 cache has 4 ways. We studied four

cases: without pre-permutation, pre-permute when one way of a set is locked, pre-

 78

permutate when two ways of a set are locked, and pre-permutate when three ways of a set

are locked. IPC numbers are normalized to the baseline without address bus protection.

For many benchmarks, performance degradation is negligible even no pre-permutation is

done. For those benchmarks having observable performance degradation, Figure 29

shows that pre-permutation is effective to reduce runtime overhead. Without pre-

permutation, the average performance degradation is 1.2%; if we pre-permutate when one

way of a set is locked, the average performance degradation is reduced to 0.33%; if we

pre-permutate when two ways of a set are locked, the average performance degradation is

0.3%; if we pre-permutate when three ways of a set are locked, the average performance

degradation is 0.36%.

bzip
2
cra

fty eon
gap

gcc gzip

mcf
parse

r

perlbmk
twolf

vorte
x vpr

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.970

0.975

0.980

0.985

0.990

0.995

1.000
none 4 8 16 32

Figure 30. Effects of fetch buffer optimization with different buffer sizes.

Figure 30 shows the effects of fetch buffer optimization. When all ways in a set

are locked, the requested cache block can be put into the fetch buffer temporarily rather

than waiting for the completion of a permutation. From the results, fetch buffer

optimization is also very helpful to benchmarks having observable performance

 79

degradation. Without fetch buffer optimization, the average performance degradation is

0.75%; with a 4-entry fetch buffer, the average degradation is 0.37%; with an 8-entry

fetch buffer, the average degradation is 0.3%, which is our default configuration; with a

16-entry fetch buffer, the degradation is 0.27%; with a 32-entry fetch buffer, the

degradation is 0.22%. Thus, a small fetch buffer is already enough to tolerate permutation

latency.

bzip2
crafty

eon
gap

gcc
gzip

mcf

parser

perlb
mk

twolf
vorte

x
vpr

Tr
an

si
tio

n
C

ov
er

ag
e

R
at

e
(%

)

0

20

40

60

80

100
8K Default Layout Adaptive Chunking

Figure 31. Effects of adaptive chunking.

Figure 31 shows the improvement of coverage rate due to adaptive chunking.

Compiler layout optimization can also improve coverage rate, but compiler can only

make static decisions and can normally do little about inter-chunk transitions caused by

heap accesses. Adaptive chunking, on the other hand, can merge together chunks causing

many inter-chunk transitions between each other at runtime. Moreover, adaptive

chunking can handle heap accesses without problems. Thus, adaptive chunking is an

effective supplement to compiler layout optimization. From the results, for those cases in

which a good coverage rate cannot be achieved even with compiler layout optimization,

 80

adaptive chunking helps significantly. On average, in the default model, the coverage rate

is 75%; with compiler layout optimization, the coverage rate is improved to 87%; with

adaptive chunking, the coverage rate is improved to 93%. We found that adaptive

chunking helps data accesses more. It is more difficult for the compiler to determine data

access patterns than to determine code access patterns, thus the compiler layout algorithm

is more effective on code access. We also found that the performance and bandwidth

overhead of adaptive chunking is always negligible and is not shown here.

3.8 Related Work

It is important to distinguish between “security guarantee” and “seemingly

secure”. For the latter, there are many ways such as reordering the blocks at runtime,

reading blocks to a buffer then writing out after some time to new places, obfuscating the

code, issuing random accesses etc.; however all these approaches provide no guarantee

on how much information can be leaked. A “seemingly secure” approach fails to achieve

any security guarantee, which is a severe flaw because it is hard to fathom how powerful

(smart) an attacker might be. Only security guarantees establish the security strength of a

system without making assumptions about the attacker, which is the essence of this work.

Code obfuscation techniques [5] [19] [20] [21] [70] [80] [65] are only “seemingly

secure”. Code obfuscation only makes reverse-engineering and cracking relatively harder.

No security guarantee is provided as such.

The DS5000 series processors support so-called address bus encryption, which is

equivalent to the initial permutation in Figure 8.c. However, it does not permute the

memory space repeatedly at runtime. Therefore the attacker can still construct the CFG in

the same way as mentioned in Section 3.1. The DS5000 also issues random fetches in

 81

order to confuse the attacker (seemingly secure). However, random fetches can be easily

discerned from true accesses in loops, which repeat more frequently. Actually,

DS5002FP has been completely cracked [61].

Goldreich [41] [40] proposed three approaches to guarantee no information

leakage on the address bus, however all of them incur big overhead. For example, the

“square-root solution” needs to read the entire shelter buffer before each access; the

“hierarchical solution” takes O(t*log(t)*log(t)) memory space after t accesses, causing

memory explosion.

The leakage-proof program partitioning work done by us previously [126] [125]

tackles a similar problem. Our previous work focuses on combating control flow

information leakage due to dynamic sequences of program partitions transmitted through

network in a networked embedded system environment. On the other hand, this work

focuses on eliminating the control flow information leakage due to code/data blocks

transmitted through system address bus. Our previous work inspired our address bus

protection work, but both the assumption and the solution of the leakage-proof program

partitioning work are fundamentally different from this one.

3.9 Summary

In this chapter, we present a lightweight solution to prevent information leakage

on the address bus due to external memory accesses and to boost intrusion prevention

capability of our software protection infrastructure. We show that information leakage

prevention is critical for a secure architecture to defend against important side-channel

attacks to software code and data confidentiality. However, all known solutions with

 82

enough security guarantee [41] [40] suffer from large performance degradation and

memory overhead.

In this work, we propose the HIDE scheme including the hide cache with cache

block locking and permutation mechanisms. HIDE provides chunk-level protection and

interface for compiler optimizations and user specifications. Then we propose compiler

optimizations for code and data layouts as well as other runtime optimizations to reduce

overheads and improve the level of security guarantee.

The main contributions of this work are 1) Cache locking mechanism to indicate

the timing to permute the memory space. Since our lock cache is a simple extension to

the common set-associative cache, we are able to reuse most of the resources to reduce

hardware cost. 2) Chunk level protection to selectively protect important data and code in

a lightweight way. 3) Compiler techniques including layout optimization and stack/heap

management optimizations to improve the security guarantee. 4) Adaptive chunking to

dynamically adjust chunk sizes and merge chunks with frequent transitions.

 Our results show that with 64KB chunk level protection and the layout

optimization, we can guarantee that 87% of the address sequence is protected, in which

95% of the accesses to code and static data are hidden. Under the HIDE scheme,

interfaces are provided for the compiler or user to further improve the level of security

guarantee or to narrow down the protection domain to achieve almost complete

protection. In that way, all security sensitive code/data could be identified and effectively

protected in terms of the information leakage on the address bus. The protection strength

can be further improved through adaptive chunking.

 83

The performance overhead is at most 1.5% in our experiments for a general

purpose processor. The increase of the bus traffic takes a very small part of the total

bandwidth available for our benchmarks. The majority of the traffic increase is due to

permutations. Such traffic is very regular therefore we can reduce its overhead in multiple

ways as suggested in this chapter. Finally, most on-chip hardware components for HIDE

are small. The largest component, i.e. the permutation unit with 64KB out_buffer can be

shifted to the permutation chip as well. Due to the low overhead of the HIDE

infrastructure, it is possible to apply it to low-end systems with smaller caches where

leakage on the address bus might be more severe.

 84

4 TRAINING-BASED ANOMALOUS PATH DETECTION

 Our hardware infrastructure enhanced with address bus information leakage

prevention can prevent attacks to software confidentiality and detect attacks to software

integrity from other malicious software (even including a malicious operating system)

and common hardware attacks. However, one important observation is that it cannot

defend against attacks exploiting flaws/bugs in the protected software itself. The classical

example of this kind of attack is buffer overflow attack [82], which can be regarded as

due to a programming error (missing bound checking). Other examples include format

string attacks and return-to-libc attacks etc. The hardware architecture alone cannot

prevent such attacks. As far as the secure processor concerns, the instructions to overflow

the buffer are perfectly legal instructions. In fact, to maintain the original program

semantics, the buffer should be overflowed.

 There are numerous software/hardware solutions to buffer overflow attacks,

including [23] [22] [108] [6] [50] [44] [89] [18] [111] [27] [33] [8] [83] [104] [43] [77] [131].

However, even buffer overflow attacks are completely prevented, there will be other new

attacks emerging, for example format string attacks [91]. In general, it is impossible to

build a bullet-proof secure system and no secure system is able to prevent all attacks.

There may be design/implementation flaws in the underlying protection scheme, or the

attacker may exploit the flaws such as buffer overflows in the software to be protected.

To be realistic, we have to assume that some attacks will be able to evade the protection

scheme implemented. To protect software from those attacks, we build a second line of

defense consisted of intrusion detection and intrusion recovery mechanisms, which is

able to detect both known and unknown attacks and even recover from attacks. Such an

 85

intrusion detection and recovery scheme is missing from the existing secure architectures

and is one of the major contributions of our work.

 In this chapter, we give some background knowledge on intrusion detection and

present a training-based intrusion detection scheme to detect anomalous dynamic

program paths. The scheme monitors the software execution at a very fine granularity and

is able to detect attacks tampering program control flows with high precision and

negligible performance overhead. However, the major concern of the scheme is the

requirement of training and possible false positives.

4.1 Introduction

 Intrusion detection is a critical component of an overall security solution. Due to

the following reasons, intrusion detection has become an indispensable means to help

secure a computer system. (1) A completely secure system is impossible to build. (2)

Protecting software through cryptographic mechanisms, such as in the XOM [64]

machine model, cannot prevent software’s internal flaws (such as buffer overflows),

which can be exploited by attackers. (3) Other operational mistakes, such as misuses,

misconfigurations etc., may jeopardize the system as well.

 Traditionally, intrusion detection can be classified into misuse detection and

anomaly detection. Misuse detection tries to identify known patterns of intrusions and

detect intrusions with pre-identified intrusion signatures. On the other hand, anomaly

detection assumes that the nature of an intrusion is unknown, but will somehow deviate

from the program’s normal behavior. Misuse detection could be more accurate, but

suffers from its inability to identify novel attacks. Anomaly detection can be applied to a

wide variety of unknown (new) attacks, however normal behavior and abnormal behavior

 86

have to be properly distinguished to reduce the number of false positives (or false alarms).

We will focus on anomaly detection in this dissertation since it is more general and

powerful.

 A number of anomaly detection techniques have been proposed. Most early

anomaly detection approaches analyze audit records against profiles of normal user

behavior. Forrest et al. [32] discovered that a system call trace is a good way to depict a

program’s normal behavior, and anomalous program execution tends to produce

distinguishable system call traces. A number of papers [59] [76] focus on representing

system call sequence compactly with finite-state automata (FSA), but these schemes are

easily evadable because they use very little information and monitor with coarse

granularity. Recent advances [115] [92] [31] propose including other program information

to achieve faster and more accurate anomaly detection.

 In general, approaches that monitor the program with finer granularity should be

able to detect more subtle attacks. Both [31] and [30] expose important attacks that

existing anomaly detection mechanisms are unable to detect. To detect such anomalies, a

very fine monitoring granularity is necessary. However, software-based anomaly-

detection systems already suffer from huge performance degradation even when

operating at system call level. Thus, refining the granularity further in a software-based

solution could lead to severe performance loss and is thus not viable. Due to inability to

work at finer granularities, software-based intrusion detection cannot offer strong

detection strength. Moreover, the anomaly detection software itself can be attacked like

any other software.

 87

 In this chapter, we present a hardware-based scheme to detect anomalies by

checking program execution paths dynamically. As far as we know, it is the first

hardware-based intrusion detection scheme ever proposed. With hardware support, our

anomalous path checking scheme offers multiple advantages over purely software-based

solutions including near zero performance degradation, much stronger detection

capability and fast reaction upon an anomaly.

4.2 Previous Work and Their Limitations

 First, we would like to clarify the difference between anomaly detection and

buffer overflow detection. There has been a lot of work on using specialized software and

hardware to detect buffer overflow attacks such as [22] [103]. These techniques focus on

attack mechanisms rather than symptoms and plug the hole so that the attacker cannot

apply the particular exploit. However, due to many sources of vulnerabilities, it is

possible to start an attack using other exploits and thus, a mechanism that detects an

attack based on its symptoms rather than a particular exploit is always desirable. As

against those schemes specialized to defend buffer overflow attacks, our scheme can be

used to detect any kind of attack, as long as the attack changes normal program control

flow somehow (and thus, our technique is a symptom-based technique as against targeted

to a particular exploit). Buffer overflow is merely one exploit that can cause an anomaly.

Other examples include format string attacks, Trojan horses and other code changes,

maliciously crafted input, unexpected/invalid arguments/commands to divert control flow

into buggy/rare paths etc. Our scheme can also detect viruses alternating normal behavior

of other applications, like a WORD MARCO virus. Actually, many viruses cause other

legal applications (WORD, Internet Explorer etc.) to behave illegally to cause damage

 88

since the virus itself is very compact and has very limited code. Such altered behavior can

be detected as an anomaly from the normal one. In short, our scheme, as a general

anomaly detection scheme, deals with a much broader problem than defending against

buffer overflow attacks. Moreover, one big benefit of anomaly detection is its ability to

detect future/new attacks besides countering existing attacks. It is certain that new attacks

will be developed and it is obviously a bad strategy to research on countermeasures to

them only after they have caused a huge damage.

 Researchers have shown that a great number of attacks can be detected by

analyzing program behavior during its execution. Such behavior could include system

calls, function calls, control and data flows etc. We will first discuss basic system call

based anomaly detection schemes, and then discuss improved solutions that provide finer

monitoring granularity thus better detection capabilities.

Anomaly Detection via System Call Monitoring

 System calls are generated as the program interacts with the operating system

kernel during its execution, examples of which are fopen(), fgets(), and fclose(). Forrest

et al. [32] argue that a system call trace appears to be a good starting point for anomaly

detection. A system call trace can be considered as a distilled execution trace leaving

many program structures out. Although a system call trace is a great simplification of the

complete program activities, storing and checking against all normal system call traces is

still a significant design effort. Exemplary approaches include [59] [76].

 To motivate our solution, we first discuss Finite State Automata (FSA) based

system call monitoring techniques. To construct the FSA for system call monitoring, each

program statement invoking a system call becomes a state on the state machine diagram.

 89

The transitions between states are triggered by system calls. Each transition edge in the

FSA is labeled by the triggering system call and the target state is determined by the

feasible control flow. The state machine can be easily constructed through static analysis

of the program [115]. One significant property of establishing the FSA based on static

program analysis is that no false positives will be generated due to the conservative

nature of static analysis. In that way, none of the normal executions will trigger alarms

and if the state machine reaches the error state, there is a guarantee that something is

anomalous.

Towards Finer Granularity

(a)

(b)

(c)

1. if(!superuser){
2. f();
3. return;
4. }
5. //become superuser
6. execve(“/bin/sh”);

1. S0;
2. if(!superuser){
3. f();
4. return;
5. }
6. f();
7. S1;
//function f()
8. overflows
9. S2;

//function g()

//function f()
7. no syscall
 but overflows;

//function g()

1. char str[SIZE], user[SIZE];
2. ...
3. if (strncmp (user, "admin", 5)) {
4. ...
5. no syscall;
6. } else {
7. ...
8. no syscall;
9. }
10. strcpy (str, someinput);
11. if (strncmp (user, "admin", 5)) {
12. ...
13. no syscall;
14. } else {
15. ...
16. no syscall;
17. }

(d)

if

if

else

else

if

if else

else

(e)

Figure 32. Attacks prompting detection at finer granularity. (From [31] and [30]).

 Although the FSA-based approach in [115] has a nice property of zero false

positives, later work points out that simply checking the FSA for system calls is not

 90

sufficient and may cause false negatives in some cases. For instance, Wagner et al. notice

that impossible paths may result at call/return sites which the attacker can exploit [115].

This can cause anomalous control flows along those paths being undetected. They

propose a second model called abstract stack model, which records call stack information

to solve the problem. In [31], the authors find out that even the abstract stack model can

miss important anomalies. In Figure 32.a, although the condition in line 2 is false (i.e. the

person executing the program is not a super user), the attacker can cause a buffer

overflow to return from f() to line 7 instead of line 4, which actually grants him super

user privilege. Since the system call trace is unchanged, no alarm will be triggered. This

serious drawback can leave attacks getting through.

 [31] provides a makeup solution called vtPath to detect the case in Figure 32.a by

considering more program information. By constructing two hash tables to store not only

the possible return addresses but also the so-called virtual paths (i.e. the sequence of

procedure entry/exit points and return addresses traversed between two system calls), the

false negative can be avoided. However, [31] also acknowledges that other anomalies

may be left undetected. As shown in Figure 32.b, when there is no system call in function

f(), a buffer overflow attack can easily grab undue privilege without being detected. This

example shows that the granularity at system call level is not fine enough to detect many

anomalies in reality, since an anomaly can very likely take place between system calls.

 [60] proposes incorporating system call arguments into the detection model,

which is also an example of incorporating more information. However, the attack shown

in Figure 32.b does not depend on system call arguments. Most recently, [37] categorizes

system call monitoring based anomaly detection systems into “black box”, “gray box”

 91

and “white box” approaches. Systems relying on not only system call numbers but also

extra information extracted from process memory fall into the “gray box” category. [37]

further systematically studies the design space of “gray box” approaches and

acknowledges the importance of monitoring granularity to the accuracy of the system.

Their follow up work [36] proposes a new “gray box” anomaly detection technique called

execution graph, which only accepts system call sequences consistent with the program

control flow graph. However, similar to [31], due to the limitation of monitoring

granularity, execution graph is not able to detect the attack in Figure 32.b either.

 One possible solution to the problem illustrated in Figure 32.b is to verify all

jump instructions, which are instructions that can cause non-sequential execution,

including all conditional/ unconditional branches, indirect jumps, function calls/returns,

etc. Compiler can record whether each instruction in the original program binary should

be a jump instruction and collect all valid target addresses for each jump instruction. It is

straightforward for the compiler to obtain valid target addresses for conditional branches.

For indirect jumps, the compiler could obtain a set of normal target addresses using

profiling. Then at runtime the program execution can be monitored based on the

information collected by the compiler. Function calls/returns are special and can be

checked efficiently by a return address stack (RAS). RAS is simply a stack for

pushing/popping return addresses. Each return address of a dynamic return instruction is

compared against the return address popped up from the top of the RAS. If they do not

match, an anomaly is detected. In summary, we can choose to check each jump

instruction individually and achieve very fine-grained monitoring granularity. This kind

of approach will be able to detect a portion of attacks occurred during two system calls.

 92

For example, it easily detects the attack shown in Figure 32.b. since the attack is based on

stack smashing and is detected by the RAS. The essentially same attack can also be done

by tampering a function pointer target by buffer overflows. Most likely, the indirect

function call will have an invalid target and will be detected by the indirect-jump

checking in this approach that tries to check each jump instruction individually.

4.3 Anomalous Path Checking

4.3.1 Motivation

 Unfortunately, checking jump instructions individually still faces difficulties in

detecting certain anomalies. Figure 32.c illustrates the problem. In this example, we have

two strings defined, namely str and user. If the string user equals admin, the application

will be granted super-user privilege. The code consists of two if-else statements. Between

the two if-else statements, there is a strcpy library function call to copy some inputs to

string str. Under a normal execution, the user can be either admin or guest. Thus, if we

focus only on individual branches, since each if-else is regarded as an independent jump

and since both directions of the jumps are possible, a scenario where if branch is taken in

the first conditional branch and else branch is taken in the second one will be regarded as

a normal execution. However, string user is not changed throughout this code segment,

thus in fact either the two if branches are both taken or the two else branches are both

taken in any legal execution, as shown in Figure 32.d. In other words, it is not possible to

have one if-else statement taking if branch and the other taking else branch, as shown in

Figure 32.e. Nevertheless, since the strcpy function may cause a buffer overflow and

overwrite the string user, the attacker can change the contents in user after the first if-else

statement, guiding the program into the two invalid paths shown in Figure 32.e.

 93

 The key aspect of this attack is that the attacker is not tampering return addresses

or function pointers. Instead, he tampers critical control decision data. Unfortunately, as

pointed out in [30], none of the existing techniques mentioned earlier can detect this type

of anomalies. Even individually checking each jump instruction as mentioned earlier fails.

Because such an approach is only aware that for the first if-else statement, both if and

else branches might be taken in normal cases; and the same is true for the second if-else

statement. Therefore, it will not trigger an alarm for the case shown in Figure 32.e. In

other words, without correlating multiple jump instructions, anomalous execution paths

cannot be discovered when each jump instruction jumps to a target that is considered

normal. Therefore, in order to identify this kind of attacks, we should enhance anomaly

detection with anomalous path checking, in which the program dynamic execution paths

are checked against their normal behavior collected through profiling/training. A

program’s dynamic execution path is determined by the jump instructions along the path

and their target addresses.

 As concluded in [31], the detection ability of anomaly detection systems heavily

relies on the granularity level it monitors. An anomaly detector solely relying on system

call trace is crippled if an attack takes place between two system calls. It is easy to think

about other examples that can foil the anomaly detector even if limited program control

flow information is considered. Checking each jump instruction individually can lead to

very fine-grained monitoring and anomaly detection with strong detection strength. With

anomalous path checking, we further enhance detection capability, because multiple jump

instructions on a path can be correlated to find path anomalies that will otherwise be left

undetected. A simple example of such anomaly is shown above (Figure 32.c). In reality,

 94

there could be many similar or even more subtle anomalies, requiring the strongest

anomaly detection technique we can offer.

4.3.2 N-jump Path Checking Motivation

 Checking program execution paths is much more complicated than checking each

jump instruction separately. Theoretically, the number of possible paths could be

exponential to the number of jump instructions in the path. This is so since each jump

instruction (if assumed a conditional branch) could have two possible directions, i.e.

taken or not taken. In other words, checking the whole execution path can be very

expensive and infeasible to be implemented for runtime monitoring. In this work, we

propose to analyze the whole execution path using sliding windows, where each window

is a segment (say, n jumps) of the execution path. The anomaly detector verifies whether

these path segments follow the normal execution path. In our scheme, the jump target of

each direct jump instruction is checked separately in individual jump instruction checking

component (detailed later) and an unconditional branch has only one possible target.

Thus, we only need to care about conditional branches and indirect jumps in anomalous

path checking, which we call multi-target jump instructions. We further define an n-jump

path as an execution path segment on which exactly n multi-target jump instructions are

encountered. An n-jump path can be uniquely decided by the address of the starting jump

instruction and the directions of the n multi-target jump instructions along the path. In our

work, the direction of an indirect jump is represented by its target address. N-jump path

checking involves collecting n-jump paths seen during training to build a normal n-jump

path set and checking n-jump paths during detection against normal n-jump paths. If an

 95

n-jump path never seen during training is detected during detection, we regard it as an

anomaly.

4.3.3 Training Phase

 During training, we run the program to be monitored in a clean environment and

use an existing technique [130] to record whole program paths (WPPs) of it during its

execution. A WPP records the entire program execution path under a specific program

input. Each input will generate a WPP, which represents a normal execution of the

program (without intrusions). From each dynamic multi-target jump instruction recorded

in a WPP, an n-jump path for that jump instruction can be extracted. The n-jump path

records directions of all the n multi-target jumps along the path starting from the current

jump instruction. It is identified by the address of the current multi-target jump

instruction and the directions of all the n multi-target jumps along the path. Essentially, a

WPP is segmented into a collection of n-jump paths using a size n sliding window with

sliding step 1. N-jump paths obtained from different WPPs are finally aggregated

together. This means as long as an n-jump path is normal for any one of the inputs, then it

is regarded as normal. The aggregated set is used to detect anomalous paths at runtime.

 The length or amount of training is controlled by the user. The goal is to have

adequate training so that the detector has reasonably low false positive rate. In our

experiments, we will show training for our scheme is effective.

4.3.4 Detection Phase

 At runtime, the anomaly detector maintains a record of the latest n multi-target

jumps and their directions, and creates a dynamic n-jump path based on these recorded n

jumps. The dynamic n-jump path is identified using the address of the first jump

 96

instruction (the oldest of the n jumps) and the directions of the following n jumps. The

anomaly detector then checks whether this dynamic n-jump path exists in the set of n-

jump paths collected during training. If not, the detector reports an anomaly. We will

show later that the detection process can be optimized using hardware at run-time.

4.3.5 Detection Capability

 As discussed in [31], the detection capability of an anomaly detection system

depends on its monitoring granularity. For anomaly detection systems operating at system

call granularity, attacks between two system calls will not be detected. An example is

shown in Figure 32.c. Ideally, we want to collect the dynamic instruction sequence of a

program and check whether the sequence of instructions is a normal one. Anomalous path

checking technique approaches this ideal case by monitoring dynamic program paths. A

dynamic program path is determined by the jump instructions along the path and their

target addresses. Thus, with anomalous path checking, although the attacker may be able

to modify instructions between two jumps, he cannot create new jump instructions in his

attack code. The control flow of his attack code has to be a straight line and the attack

code cannot include any function call, which is extremely restrictive to the attacker.

 Anomalous path checking actually subsumes system call trace monitoring based

anomaly detection because each function call is a jump instruction itself and each system

call is normally invoked through a wrapper function call in standard C library libc.a [37].

Once the dynamic program path is known, the system call sequence along the path is

determined too. The sequence of system calls made along a normal program path has to

be a normal system call sequence, which means system call trace monitoring based

schemes cannot detect any attack missed by anomalous path checking. On the other hand,

 97

a normal system call trace does not guarantee a normal program path. The distribution of

system calls in a program is sparse and irregular. There may be millions of jump

instructions between two system calls and the program path between two system calls can

be tampered without being detected under system call trace monitoring based scheme.

 However, checking the whole program path imposes too much cost in terms of

both storing normal paths and checking them at runtime. Thus, we choose to check n-

jump paths instead. Checking all n-jump paths cannot guarantee that the entire program

execution path is normal due to the limited length of n-jump paths. It is necessary to

understand the cases when path anomalies cannot be detected with n-jump path checking.

Figure 33 illustrates one such case. Here, two normal paths (1) and (2) share at least n-1

jump instructions in the middle. Path (3) is an anomalous path but it cannot be detected

with n-jump path checking. When path (3) enters the shared part, the detector will think it

is on path (1). When path (3) leaves the shared part, it is considered to be on path (2) with

n-jump path checking. The reason is that n-jump path checking can only check a path

traversing no more than n multi-target jump instructions. Fortunately, our experiments

show that the scenario in Figure 33 rarely happens.

 We do not try to design a general algorithm to decide the value of n for an

arbitrary application, since it is highly application-dependent. We will show later that a

larger n can help detect more attacks but also incurs more false positives and more

performance overhead. The criterion to choose n is to select as big an n as possible given

that both false positive rate and performance overhead are acceptable. Thus, the user can

start with a large n then gradually reduces it until those two metrics are acceptable.

 98

1

2

3

at least n-1
jump

instructions

Figure 33. An anomaly path that cannot be detected.

4.4 Hardware Implementation

4.4.1 The Advantages

Performance

 Although it is obvious that finer granularity brings better detection capability, the

performance overhead it introduces is formidable under software-based approaches, e.g.,

 [115] [92] [31]. Software-based anomaly detection systems suffer from large performance

degradation even when operating at the system call granularity [115]. With hardware

support, performance degradation can be made very small since the monitor is entirely

implemented in hardware and works in parallel with instruction execution. In comparison,

in system call monitoring based software approaches, intercepting system call alone can

incur 100% to 250% overhead [92].

Anomaly Detector Tamper Resistance

 Anomaly detection software, as any software, might itself be attacked. To

alleviate this problem, software anomaly detectors are normally implemented as a

separate software module. In that way, the detector is not affected by the vulnerabilities

of the monitored program. For example, system call based monitoring normally depends

 99

on special system tools such as strace to trace system calls rather than instrumenting the

program binary directly.

 However, such separation is not possible when we monitor the program at a very

fine granularity. Normally there will be a dynamic jump instruction in every 10

instructions. Imagine the performance degradation of the monitored program when there

is a context switch after every 10 instructions. Thus, we have to transform the monitored

binary to insert monitoring code into it, which means the anomaly detector faces potential

attacks due to the vulnerabilities not only in the detector itself but also in the monitor

program. It is possible that the monitoring code is tampered or bypassed due to

vulnerabilities inside the monitored program. On the other hand, our hardware anomaly

detector resides in a secure processor, achieving tamper resistance.

4.4.2 Hardware Architecture Overview

code data checking tables

cache other units

process's virtual address space

pipeline

secure processor chip

reserved address space

anomaly detector

checking pipeline

Figure 34. Architectural overview.

 100

cur_PC
next_PC

type

regular path
checking

is_jump
check

special path
checking

return
check

normal jump
check

special jump
check

push call return
addr to RA stack

returns non-return
jumps

unhandled
jumps

calls

multi-target
jumps

unhandled

Figure 35. Checking pipeline.

 Figure 34 shows an overview of our hardware components for anomalous path

checking. Our anomalous path checking mechanism is built into our secure hardware

infrastructure described earlier. The hardware infrastructure guarantees the

confidentiality and integrity of all code and data residing off-chip in the external memory.

Hardware anomaly detector resides in the secure processor and is tamper-resistant.

Checking tables record normal behavior of the program (including information for each

individual jump instruction and normal n-jump paths) and are utilized by the checking

pipeline. Upon a program start, checking tables are loaded into a reserved segment of the

program virtual address space and are only accessible to the anomaly detector itself. The

program itself has no access to checking tables. Attempts to read/write checking tables

from programs will be detected and prevented by the secure processor. Moreover,

hardware attacks to checking tables are detected by the integrity-checking scheme of the

secure architecture. Thus, no software or hardware attack can tamper program normal

behavior data.

 The checking pipeline illustrated in Figure 35 checks committed jump instructions

against the normal behavior recorded in the checking tables. The checking pipeline is

designed to be isolated from the original execution pipeline to minimize implications to

 101

the latter. There are data paths from the execution pipeline to the checking pipeline to

transmit information required by anomaly detection including current operation code,

current PC address and computed next PC address etc.

 The internal of the checking pipeline is detailed in Figure 35. The pipeline stages

at the top of the figure (marked by the dotted line) check individual jump instructions.

Individual jump instruction checking is relatively simple, so we just briefly describe it

here and focus on anomalous path checking later. The first stage in individual jump

checking checks whether each instruction is and should be a jump instruction. The

information is recorded in a bitmap indexed by the instruction address. If it is a valid

jump instruction, the second stage further checks each direct jump instruction (a

conditional or an unconditional branch) to make sure its jump target is valid. The

information is stored in a specially optimized hash table. Whether an instruction should

be a jump instruction and the valid targets of direct jumps can be easily collected by

examining the original program binary. At runtime, dynamic instructions are checked

against those tables. There are some space optimizations to reduce the size of checking

tables used in individual jump instruction checking, but they are also used in anomalous

path checking so we will describe them later in the context of anomalous path checking.

More detailed description about individual jump checking can be found in [129].

 Function call/return instructions are checked specially by a hardware managed

return address stack (RAS). Return address stack is simply a stack for pushing/popping

return addresses. As shown in Figure 35, function returns are isolated after the is_jump

check stage. Return address of each return instruction is compared against the return

address popped up from the top of the RAS. If they do not match, an anomaly is detected.

 102

A function call is nothing but a direct or indirect jump instruction that sets return address.

It is first checked as a normal jump instruction. After it passes the checking, the anomaly

detector pushes the return address of the function to the RAS for later verification when

the function returns.

 The checking of indirect jumps is incorporated in the path checking stages shown

at the bottom of Figure 35. Our path checking stages follow the first stage and consist of

two stages, namely regular path checking and special path checking. Among the checking

tables, the ones that are used for our anomalous path checking are called path checking

tables, which record all normal n-jump paths. The details of the path checking stages will

be discussed in the next section.

4.4.3 Implementation Details

 BB1

BB2

BB3

BB4

3-jump path vector
starting from A

jump instruction A
at the end of BB1

011
jump instruction B
at the end of BB2

jump instruction C
at the end of BB3

Figure 36. An example of n-jump path.

 The goal of the anomalous path checking hardware is to efficiently check

dynamic n-jump paths against normal n-jump paths collected during training. An n-jump

path is a segment of the execution path with n multi-target jump instructions on it. For

example, in Figure 36 the thick line shows a path starting from the end of BB1 going

through three basic blocks. Three conditional branch instructions are encountered along

 103

that path, i.e. the last instructions of BB1, BB2 and BB3. Obviously, we can uniquely

identify an n-jump path by the address of its first jump instruction and the directions of

the n multi-target jump instructions on the path. To indicate the directions of the n multi-

target jump instructions, we define n-jump path vector as follows.

N-jump Path Vector: a vector marking the directions of the n multi-target jump

instructions on the n-jump path.

Thus, if we only consider conditional branches that have two target addresses, e.g.

either fall-through or jump to a particular target address, an n-bit vector is enough to

represent an n-jump path vector. For the example in Figure 36, the 3-jump path can be

uniquely identified as starting at jump instruction A with 3-jump path vector 011. Here,

we assume that left branch is marked as 0 and right branch is marked as 1. The most

significant bit is the direction of the starting jump instruction. Therefore, an n-jump path

can be represented succinctly because only the directions instead of the addresses of jump

instructions are recorded except for the header of the path. For this example, the path

checking table only records jump instruction A as the header and directions of the 3 jump

instructions which are left-right-right, i.e. 0-1-1. This simplification is possible because

the correct jump targets of each direct jump instruction (e.g. the left branch of instruction

A should jump to the beginning of BB2 but not other places) are verified by other

pipeline stages at the top of Figure 35 — refer to section 4.4.2.

Therefore, n-jump paths can be grouped based on their headers. For example, in

Figure 36, all 3-jump paths starting from instruction A can be grouped and stored

together. We group and store all normal n-jump paths in the path checking tables (Figure

34). There are two tables used in anomalous path checking. Regular path checking table

 104

is used in regular path checking stage and special path checking table is used in special

path checking stage.

One difficulty on path checking table design is that the data in it cannot be

entirely regular, since we have to consider indirect jumps that may reach more than two

targets and whose directions are represented by their target addresses. Although indirect

jumps are not easy to handle, the majority of dynamic jump instructions are direct jumps,

either conditional or unconditional. Unconditional branches have only one possible target

and are handled by other stages. Conditional branches have two jump targets that are

known by examining program binary. For conditional branches, only 1 bit is needed to

indicate whether the branch is taken or not taken. Moreover, a large portion of indirect

jump instructions are actually return instructions, which are checked separately as

mentioned in section 4.4.2 and are not considered in path checking. Normally, only less

than 2% of dynamic jump instructions are non-return indirect jumps. In conclusion, the

jump instructions requiring irregular path data (rather than a single bit) are rare, which

inspired our two-stage path checking scheme. The regular path checking stage handles

most n-jump paths consisting of only conditional branches (those causing collisions after

hashing are not handled), while all other cases are left to the special path checking stage.

Regular Path Checking

This stage handles dynamic n-jump paths consisting of only conditional branches.

Thus, each jump instruction in the path has two directions. The n-jump path vector

becomes an n-bit vector. The data structure for regular path checking is called regular

path checking table and is shown in Figure 37.

 105

K
N groups

normal_path_checking_table[N][K]

N: num of groups K: num of entries in each group
struct normal_path_entry {
 boolean is_special,
 2^n_bit_int all_path_vector
}

hash
group ID

group offset
(t bits)

2 +1 bitsn

Figure 37. Data structure for regular path checking.

For each jump instruction, all normal n-jump paths starting from that jump

instruction are stored together. Here, we use an all_path_vector to record all normal n-

jump paths for each jump instruction. In this case, each n-jump path vector is an n-bit

number, and therefore corresponds to a unique number within the range of [0, 2n-1].

There are a total of 2n possible distinct paths. The all_path_vector contains 2n bits, in

which each bit corresponds to an n-jump path. With a bit set in the all_path_vector, the

corresponding n-jump path is indicated to be normal and vice versa. Essentially,

all_path_vector is a bit vector recording which n-jump path is normal. The least

significant bit represents path 0…0, the next bit presents path 0…1, and so on. It is

noteworthy that we store the all_path_vector instead of all normal n-jump path vectors.

This can be explained from two aspects. First, the all_path_vector is of fixed size, i.e. 2n

bits, while the number of normal n-jump paths is not fixed. Fix-sized entries are much

easier to manage with hardware, leading to smaller hardware cost and performance

degradation. Secondly, the number n we are currently dealing with is small. We will

show that a reasonably small n is good enough to achieve very low false negative rate.

 106

For small n, the space taken by the all_path_vector is comparable to that taken by all the

normal n-jump path vectors. For example, if n=5, the all_path_vector requires 25=32 bits,

whereas each 5-jump path vector needs 5 bits. In other words, if there are more than 6

normal 5-jump paths start with the same jump instruction, the all_path_vector will cost

less space.

Refer to Figure 37 again. The structure regular_path_entry consists of the

all_path_vector and a Boolean variable called is_special, which if set indicates that the

corresponding jump instruction should be handled by the special path checking stage.

Entries in the regular path checking table have to be retrieved using the address of the

starting jump instruction. Hash table is the natural way to organize the entries in the

regular path checking table. To retrieve a regular_path_entry, we first calculate a hash

value of its jump instruction address then use the hash value to index into the hash table.

However, there are a couple of problems with such a simple hash table design. First, a

simple hash table cannot exploit code locality. The hash table entries for two adjacent

jump instructions could be far away. Moreover, the processor always fetches a cache

block of data from the external memory. Thus, if one uses a simple hash table mechanism,

among multiple regular_path_entry records in one cache block it is very possible that

only one record in the fetched block is touched before the block’s eviction. This is very

inefficient. Second, hashing can cause collisions. To avoid fetching the wrong

information for a jump instruction, each hash entry has to be tagged which could waste

space significantly. Due to the above reasons, our anomaly detection system abandons a

simple hash table design and instead deploys a specially optimized data structure called

groupwise hash table.

 107

In Figure 37, the instruction address is divided into two parts: group ID and group

offset. Assume that there are N groups and each group contains K entries, then the ith

group starts at the address i*K. Inside each group, the group offset is first hashed then

indexed into one of the entries in the group. The advantage of groupwise hashing is: 1)

hashing saves space for non-uniformly distributed addresses of jump instructions; 2)

hashing is only performed inside each group and each group has a number of sequentially

stored entries. In this way, we can exploit spatial locality, because adjacent jump

instructions are most likely located in the same group, thus their information will be

stored close to each other. Some jump addresses may be hashed to the same location

causing collisions though. As we observe, with a reasonable hashing function and a

proper setup of N and K, collisions rarely happen. In the case of a collision, we indicate

that the jump should be handled in the special path checking stage, which is done by

setting the is_special bit in the corresponding entry for the jump instruction after hashing.

Therefore, no tag is necessary to distinguish jumps hashed to the same entry since all the

colliding jumps will be handled separately by the special path checking stage. With this

customized hash table design, regular path checking table records all normal n-jump

paths that are consisted of only conditional branches for non-colliding jumps.

To decide the parameters for the hash table, assume that the group offset is t bit

long and the instructions are 4 bytes long, then 2t*¼ instruction addresses are hashed into

K slots. The number of jump instructions is about 12% of all instructions, thus the actual

number of jump instructions that will be hashed into a group is about 2t*¼*12%. Thus,

we can select K to be 1.5*2t*¼*12%, which largely avoids conflicts and the space

wastage is below 30%. We can choose a proper t, so that K entries only occupy a few

 108

cache blocks, which improves locality among the entries of the same group. After K is

decided from t, N should be M/2t, where M is the code size in bytes.

As discussed above, a groupwise hash table not only improves cache performance,

but also is an important optimization to reduce the memory requirement of checking

tables. We also observe an important fact that there is no need to record the whole PC

address to identify a branch target. We only need to record the base address of the code

section and the offset to the base address to identify a branch target. In our scheme, we

assume that the architecture is a 32-bit one and the code size is smaller than 222 bytes

(4MB - a large number for most applications). Thus, we only need 22 bits to identify a

branch target instead of 32 bits. This is another important technique to reduce sizes of

checking tables.

The above two space optimization techniques are also applied to checking tables

for individual jump checking. Due to the group-wise hashing table optimization, there are

also a normal jump checking stage and a special jump checking stage in individual jump

checking.

jump
directionlevel 0

level 1

level n-1

level n
(in memory) 0

0

0

0 path
anomaly
detected

2 bitsn

Figure 38. Regular path checking hardware diagram.

 109

The path checking hardware for regular path checking is shown in Figure 38. The

hardware maintains n bit vectors on chip. The n bit vectors are organized into n levels

(level 0 to level n-1). The sizes of the bit vectors vary from 1 bit, 2 bits…to 2n-1 bits,

where the level k bit vector contains 2k bits. Level n is assumed to be in the memory and

it is the all_path_vector of the current jump instruction. Upon reaching a jump instruction,

the all_path_vector of the jump instruction is fetched. Then the direction of the jump

instruction (only two possibilities in regular path checking, left branch or right branch) is

used to select half of the bits (either higher 2n-1 bits or lower 2n-1 bits) in the

all_path_vector to be stored in the level n-1 bit vector. Meanwhile, at each level of the bit

vectors, half of the bits are selected according to the direction of the current jump and

moved one level up, i.e. half of the level k bit vector (either higher 2k-1 bits or lower 2k-1

bits) is selected and moved to the k-1 level bit vector, where k∈[1,n-1]. Finally, if any bit

vector becomes 0, a path anomaly is detected. A 0 bit in a bit vector means the

corresponding n-jump path was never recorded in the normal runs during training. All

bits in a bit vector being 0 means no path from this point is normal thus there is an

anomaly. Thus, our hardware implementation of n-jump path checking detects the

anomaly as soon as possible rather than waits for another n-1 jump instructions following

the current jump and builds the n-jump path then checks whether the n-jump path is seen

during training. For example, if the selected half bits of the all_path_vector of the current

jump are all 0, then an anomaly is detected at once since the dynamic n-jump path

starting from the current jump goes to an anomalous direction at the first step.

 110

level 0
level 1
level 2

C
B

A

D x
xx

1100

x
11

1001

1
10

1000

E

(a)

A
B
C
D

010,011
100,111
000.111
111,000

3-jump path
vector all_path_vector

00001100
10010000
10000001
10000001

(b)

(c)

2
1

A B C
0
00

0001

D
3

1 2 3 normal paths

Figure 39. An example for regular path checking: checking anomalous path

AÆBÆCÆDÆE.

To explain the above scheme further, we give an example in Figure 39. There are

three normal paths marked as thick lines. The actual execution follows AÆBÆCÆDÆE.

Figure 39.b shows 3-jump path vector and all_path_vector for each jump instruction. As

in Figure 36, left branch is marked as zero and right branch is marked as one. The most

significant bit is the direction of the starting jump instruction. Figure 39.c shows the

contents of the on-chip bit vectors after reaching each jump instruction. After instruction

A is reached and we know its direction to be zero, i.e. left branch, the lower 4 bits of A’s

all_path_vector are loaded into the level-2 bit vector. Since A goes to the left branch, no

3-jump path vectors going towards the right branch are needed. At B, the bit vector in

level two is moved to level 1 and further pruned based on the direction B takes, i.e. the

upper 2 bits are moved to the level-1 bit vector. Upon reaching D, its left branch is taken,

however both level 0 and level-1 bit vectors are 0 indicating a path anomaly. This is so

because no normal 3-jump path starting from B follows the actual execution path

BÆCÆDÆE (causing level 0 to be 0), and no normal 2-jump path starting from C

follows the actual execution path CÆDÆE (causing the level 1 bit vector to be 0).

 111

Special Path Checking

When the regular_path_entry loaded during regular path checking has is_special

bit set (which indicates that the corresponding jump instruction leads to a collision during

hashing), the n-jump path is sent to the special path checking stage. Also, an indirect

jump instruction can cause all the current pending n-jump paths in regular path checking

stage be sent to the special path checking stage including the n-jump path starting from

the indirect jump instruction. The data structure in the special path checking stage is a

hash table called special path checking table. It hashes the address of the starting jump

instruction to index into the table and retrieves all the normal n-jump paths for the jump.

The hash table is tagged and collisions are handled by a linked list. Special path checking

table records all normal n-jump paths for colliding jumps and normal n-jump paths

containing indirect jumps for non-colliding jumps. To support special path checking, the

starting jump instruction corresponding to each level in regular path checking hardware is

recorded and updated when the vector in the level is updated. In addition, when the

special path checking stage is not idling, the direction of conditional branches and the

target address of indirect jumps have to be sent to it. The former is used to check the

conditional branches in an n-jump path and the latter is used to check indirect jumps.

Since an indirect jump could have multiple targets, we use the target address to

identify the direction of an indirect jump (as against 0/1 to specify the direction of a

conditional branch with true or false outcome). The target of an indirect jump along a

program path is collected during training. With the presence of indirect jumps, an n-jump

path vector cannot be an n-bit vector any more. The actually length of n-jump vector

 112

depends on the number of indirect jumps in the path. In addition, we have to record the

positions of indirect jump target addresses in an n-jump path vector for proper processing.

The irregularity of data structure complicates special jump checking stage and there is no

interesting optimization opportunity. Thus, the latency in special path checking stage is

longer. However, in most cases, only a small percentage of n-jump paths reach this stage,

thus the performance impact is small. During our experimentation, we find that in most

cases less than 20% of n-jump paths reach this stage.

Our staged anomaly detection hardware is carefully designed to reduce

performance overhead by pipelining the anomaly detection. Most requests are handled in

the first and the fast stage. Only a small portion will enter the slower stage. Since our

design can achieve very good performance without further architectural optimizations,

the requirement of expensive hardware resources such as large on-chip buffers could be

avoided. In addition, the checking tables are also particularly optimized to reduce the

pressure on physical memory.

4.4.4 Other Considerations

A function call is just one type of jump instruction; therefore, paths across

function boundaries are checked in the same manner. DLLs or dynamic libraries are

shared by many processes and are loaded on demand. They can be checked in the same

way as normal programs as long as checking tables are loaded together with the DLLs.

The jump instruction addresses in the checking tables for a DLL should be relative to the

beginning of the DLL, so that they are independent to the actual location the DLL is

loaded into the program’s virtual address space. System calls such as fork and exec

family can create copies of the running process or overwrite it completely. A copy of the

 113

checking tables can be created if the process has been forked. In addition, new checking

tables are loaded to the memory space if an exec family system call is executed.

The setjmp()/longjmp() functions are used in exception and error handling.

setjmp() saves the stack context and other machine state for later recovery by invoking

longjmp(). Thus, after longjmp(), the program resumes as if the setjmp() just returned. To

handle longjmp(), the anomaly detector has to be aware of the execution of setjmp() and

saves the current state of the anomaly detector upon a setjmp() call. The anomaly detector

state includes the state of the return address stack and the state of the path checking

hardware, such as the n-1 on-chip bit vectors (Figure 38). After longjmp(), the state of

path checking hardware is restored accordingly.

4.5 Evaluation

The evaluation of an anomaly detection system consists of two aspects: precision

(detection capability) and performance. In this section, we show that our anomalous path

checking scheme achieves both good precision and low performance overhead.

Table 4. Daemon programs and vulnerabilities.

Server
Program

total # of
vulnerabilities

buffer
overflow

format
string

other
bugs

telnetd 2 1 0 1
wu-ftpd 5 2 2 1
xinetd 2 2 0 0
crond 1 1 0 0
syslogd 1 0 1 0
atftpd 1 1 0 0
httpd (CERN) 2 1 0 1
sendmail 4 4 0 0
sshd 2 1 0 1
portmap 1 0 0 1

 114

In our experiments, we choose 10 daemon programs as benchmarks, as listed in

Table 4. Those daemon programs are very common in UNIX/LINUX based systems.

They have well-known vulnerabilities so that we can evaluate our scheme in a standard

way. These programs are important since they offer essential system services for

networked systems. The same programs will be used in evaluation of all of our intrusion

detection and intrusion recovery schemes. We intentionally choose old versions of these

programs with well-known vulnerabilities. Those vulnerabilities will be used in false

negative measurement. Table 4 also lists type and number of vulnerabilities in each of

these daemon programs used. To make our results more convincing, we also provide

results for SPEC 2000 integer benchmark programs in a couple of important experiments.

To evaluate precision of our anomalous path checking scheme, we implement it in

an open-source IA-32 system emulator Bochs [9] with Linux installed. Good precision

means both low false positive rate and low false negative rate. False positive is

acknowledged as a very difficult problem in anomaly detection. False positives are

generally inevitable for training-based anomaly detection systems. However, in our

experiments, we show that training for our scheme is effective and as long as user

performs reasonable amount of training, false positive rate is very small.

To train our daemon programs, we used training scripts that generate commands

to exercise the programs as in [92] [31]. These scripts generate a random sequence of

mostly valid commands, interspersed with some invalid commands. The distribution of

these commands along with their parameters is set to mimic the distributions observed

under normal operations. We keep exercising the daemon programs using training scripts

until no new normal n-jump paths are discovered for a long time. Then we think training

 115

is done and n-jump paths learnt during training are all normal n-jump paths of the

program. Figure 40 shows convergence graph in terms of percentage of normal 9-jump

paths learnt for three relatively big daemon programs (sshd, httpd and sendmail). The

figures are plotted against the number of jump instructions executed in the program being

learnt. The graph uses a linear scale on Y-axis (percentage learnt) and a logarithmic scale

on X-axis (number of jump instructions processed). The curves are smoothed.

1e+5 1e+6 1e+7 1e+8 1e+9 1e+10

P
er

ce
nt

 o
f N

or
m

al
 n

-ju
m

p
P

at
h

Le
ar

nt

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

sshd
httpd
sendmail

Figure 40. Convergence on selected benchmarks.

Convergence speed is an important measurement since it governs the amount of

training time required to achieve a certain level of false positive rate. Slower convergence

speed means that the user has to spend more time to train the system. Figure 40 shows for

all three big daemon programs, normal 9-jump paths converge after about a few hundred

million jump instructions are encountered and processed at runtime. No new n-jump

paths can be learnt even we train the system for a much longer time. Convergence on

smaller daemon programs are not shown since they converge even faster.

 116

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
um

be
r o

f N
or

m
al

 N
-ju

m
p

Pa
th

s

1e+2

1e+3

1e+4

1e+5
n=3
n=5
n=7
n=9

Figure 41. Number of n-jump paths.

The above results show that training for our anomalous path detection is very

effective. One fundamental reason of the fast convergence rate is that although the

number of potential n-jump paths is huge (the number of static branches multiplies 2n),

the actual n-jump paths seen during program execution is very limited. Figure 41 shows

the absolute numbers of n-jumps paths learnt after convergence. It is clear that most

benchmarks have a very small number of n-jump paths even they are run by billions of

instructions. The result is not surprising. A lot of work, for example [42], has shown that

a significant part of branches are highly biased and many of them are always taken or

not-taken during the program execution. Another important reason is a well-known fact

that most program execution time is spent on a small number of program hot paths, which

can be easily learnt through training.

In [92] and [31], the authors also estimated false positive rate of their systems.

They modified the training scripts slightly in terms of commands distribution and other

parameters, and then used the modified scripts to test against their anomaly detection

system running in detection mode after training. We tried the same method in our

 117

experiments. We found that even with modified training scripts, no false positives are

observed for all daemon programs after sufficient amount of training (after convergence).

We are aware that training scripts cannot capture normal user behavior completely. When

applied in real world, it is very likely that our anomalous path checking scheme will incur

false positives. However, we are confident that the false positive rate would be very low

and our system does not require excessive human interferences.

A good anomaly detection system has to achieve very low false negative rate too,

i.e., very high anomaly detection rate. However, it is expected to be futile to measure

detection rate of our anomaly detection system against traditional attacks (stack smashing

etc.) as in the previous work, because those attacks should be easily prevented under our

scheme. To prove that, we tested our scheme against our benchmarks with known

vulnerabilities listed in Table 4. Most vulnerabilities examined are due to buffer

overflows. Other vulnerabilities include format string attacks and unexpected program

options etc. We found that our system successfully identified all the attacks because they

cause anomalous paths. In addition, we tried the testbed of 20 different buffer overflow

attacks developed by John Wilander [118]. The authors claim that the combination covers

all practically possible buffer overflow attacks in which attack targets are the return

address, the old base pointer, function pointers or long jump buffers. In all cases, the

attacks were detected.

 118

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

D
et

ec
tio

n
R

at
e

0.7

0.8

0.9

1.0
n=3 n=5 n=7 n=9

Figure 42. Detection rate of randomly inserted anomalous paths (daemon programs).

To further measure detection capability of our scheme, we choose to perform

random fault injection experiments. Fault injection is a classical method for security

analysis. A detailed discussion of it can be found in [39]. During the execution of

benchmark programs, we randomly pick up branches to inject faults to divert their

directions. The total number of faults injected during the execution is huge. For each

randomly chosen branch, we divert the branch from its correct direction/target. Such

diversion may or may not create an anomalous path. If it does, we check whether our

anomaly detection system is able to detect that anomalous path. If our anomaly detection

system fails, that is a false negative. Note that each fault is isolated to others. For each

fault (each branch direction diversion), we check whether our scheme can detect it. Thus,

we achieve a similar effect of running the benchmark numerous times and in each

execution injecting only one fault and detecting it using our scheme.

We cannot find enough number of real attacks so we choose to use fault injection

to evaluate our anomalous path checking scheme more rigorously. Although a fault is not

a real attack, we believe that our fault injection model provides an extensive coverage to

 119

the real attacks altering program control flows. Our fault injection model assumes that

any dynamic branch direction/target can be tampered with any value. Thus it represents

the worst case. For example, classical buffer overflow attacks overflow a buffer to tamper

interesting control-deciding data, such as function return addresses, function pointers,

exception handlers etc. The final effect that those attacks aim to achieve is to change the

target address of an indirect branch instruction to a desired value, which is obviously

covered by our fault injection model. Moreover, buffer overflow attacks normally are not

able to tamper a specific memory location in an isolated way. They tend to tamper a

continuous memory region. So buffer overflow attacks tend to lead to multiple

anomalous branches under our anomalous path checking scheme, which makes detecting

those attacks much easier actually. Another category of attacks including heap overflows,

format string attacks and etc. enable the attacker to tamper any memory location in an

isolated way. The effect achieved is that the attacker is able to modify specific control

deciding data with a desired value at a certain program point. Such attacks are more

accurate than buffer overflows but they are still covered in our fault injection model.

Figure 42 shows the results of our random fault injection experiments. The

detection capability of our system depends on the value n in n-jump path. As illustrated in

section 4.3.5, a larger n leads to a higher detection rate. Our results show that when n=3,

the average detection rate of randomly inserted anomalous paths is 94.1%; when n=5, the

average detection rate is 97.4%; when n=7, the average detection rate is 98.9%; when

n=9, the average detection rate is 99.5%. From the above results, our anomalous path

checking scheme achieves very high detection rate and thus exhibits very low false

negative rate. The fundamental reason is again that the number of normal n-jump paths is

 120

very limited, as shown in Figure 41. Thus, the cases illustrated in Figure 33 are rare. The

cases are even rarer with a larger n. False negatives are due to the reason explained in

section 4.3.5.

To enforce our results further, we also performed the same fault injection

experiment on SPEC2000 integer programs. Normal profile for each program is collected

using a single standard training input data set. We found that our scheme got very good

detection rate again for such complicated programs and with such limited training. For

example, with n=9, the average detection rate is 99.3%.

Next, we evaluate the performance aspect of our anomalous path checking

scheme. To measure performance accurately, we collect the instruction trace during

program execution and feed the instruction trace into a cycle accurate processor simulator

Simplescalar [11] targeted to X86 [114]. All hardware modeling is done in Simplescalar.

Each benchmark is simulated in a cycle accurate way by 2 billion instructions. The

default parameters of our processor model are shown in Table 5. We select x86 based

processor model primarily due to its popularity. Another important reason for using X86

is that we could easily find a full system emulator for it.

Table 5. Default Parameters of the processor simulated.

Clock frequency 600MHZ L1 I-cache 32K, 32 way, 1cycle
32B block

Fetch queue 8 entries L1 D-cache 32K, 32 way, 1cycle
32B block

Decode width 1 L2 Cache none
Issue width 2 Memory latency first chunk: 30 cycles,

inter chunk: 1 cycles
Commit width 2
RUU size 8

Branch predictor bimod

LSQ size 8 TLB miss 30 cycles

 121

There is no performance comparison with software-based approaches since no

current software-based anomaly detection system is able to achieve the same security

strength as our scheme. Moreover, even with weaker detection capability, software-based

solutions already suffer from huge performance degradation, please refer to [115] for

detailed numbers. On the other hand, our design only degrades performance slightly.

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
sshd

portm
ap

C
he

ck
in

g
Ta

bl
e

Si
ze

s
in

 B
yt

es

1e+2

1e+3

1e+4

1e+5

1e+6
n=3
n=5
n=7
n=9

Figure 43. Optimized Checking table sizes.

Performance degradation under our scheme is mainly due to additional memory

accesses to checking tables. Checking tables record a program’s normal behavior.

Intuitively, larger checking tables lead to higher memory system pressure and larger

performance degradation. Figure 43 shows optimized sizes (in bytes) of checking tables

for each benchmark with different values of n. Checking tables become large with a

larger n, since there are more n-jump paths to record and information for each n-jump

path takes more space. Generally, the size of checking tables is in terms of tens of KB

and is small.

 122

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
or

m
al

iz
ed

 C
he

ck
in

g
Ta

bl
e

S
iz

es

0.0

0.2

0.4

0.6

0.8

1.0
Opt1 Opt1+ Opt2

Figure 44. Effects of optimizations to checking table sizes.

Figure 44 shows the effects of our optimizations to reduce checking table sizes.

Opt1 denotes the optimization that uses offsets to represent target addresses. Opt2

denotes the groupwise hash table optimization. Checking table sizes are normalized to the

naïve case without any optimization. From the results, by using the offset to the base

address of the code section to represent a branch target address, we reduce checking table

sizes by 10.1% on average. If both optimizations are enabled, we reduce checking table

sizes by 50.7% on average. The results show that our optimizations, especially groupwise

hash table optimization, are highly effective to reduce memory requirement of checking

tables.

 123

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.80

0.85

0.90

0.95

1.00

1.05
n=3 n=5n=7 n=9

Figure 45. Performance results.

Figure 45 shows performance results. Performance degradation under different

values of n (the length of paths checked) is shown. The IPCs (instruction per cycle) are

normalized to the baseline processor without anomalous path checking. With a larger n,

detection strength is stronger, but the size of path checking tables will be larger, leading

to degraded cache performance and overall performance. When n=9, the average

performance degradation is 3.4%; when n=7, the average performance degradation is

2.0%; when n=5, the average performance degradation is 1.0%; when n=3, the average

performance degradation is 0.6%. It is clear that our hardware implementation keeps

performance degradation minor even when n is large. Benchmark sendmail is a lot larger

than other benchmarks used, thus it always has significantly larger performance

degradation than the others. We also measured performance degradation for SPEC2000

integer programs. As in the fault injection experiment, training is done using standard

training input data sets. We found that the performance degradation is also minor for

SPEC2000 integer programs. In particular, when n=9, the average performance

degradation is only 2.7%.

 124

A
ve

ra
ge

 D
et

ec
tio

n
In

te
rv

al
 (

in
 c

yc
le

s)

0

2

4

6

8

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

W
or

st
 C

as
e

D
et

ec
tio

n
In

te
rv

al
 (

in
 c

yc
le

s)

0

50

100

150

200

250

300

350

Figure 46. Intervals between fault injection and fault detection when n=9.

Finally, fast attack detection and response is another important advantage of a

hardware-based anomaly detection scheme over software-based schemes. In our fault

injection experiments, we also measured the time interval between fault injection and

fault detection when n=9. Figure 46 shows the intervals in cycles in the average and

worst cases. Cycle numbers are collected in the same way as in performance evaluation.

We found that in most cases the simulate attack is detected immediately after the branch

direction is tampered, so the average interval is only several cycles. In worst cases in

which we can still detect the simulated attack, the attack is detected only after additional

n-1 jumps are executed. The interval in worst cases can reach a couple of hundreds of

 125

cycles. The intervals will be much larger for a software-based anomaly detection scheme

due to its coarse monitoring granularity. For example, a buffer overflow attack will not be

detected by a system call monitoring based scheme until the next system call is

encountered, which may be millions of cycles away.

4.6 Summary

In this chapter, we show that a fine monitoring granularity is critical for an

anomaly detection system to achieve a strong detection capability and it is infeasible for a

purely software-based anomaly detection system to achieve a very fine monitoring

granularity. Thus, we introduce micro-architecture level support for anomaly detection in

this chapter and propose a training based scheme to detect anomalous program paths

caused by attacks. Anomaly detection based on training is a classical approach. But with

carefully designed hardware support, our approach offers multiple advantages over

software-based solutions including negligible performance degradation; much stronger

detection capability and fast reaction upon an anomaly thus much better security.

We show that our anomalous path checking scheme can detect almost all of the

simulated attacks (above 99%) as long as the attack tampers program control flows.

Moreover, the performance degradation of our anomalous path checking scheme is very

low mainly due to the efficient design of our staged checking pipeline. A second reason

for low performance degradation is that checking for attacks is done in parallel with the

instruction execution, causing almost no extra overheads. The hardware components

introduced by our anomalous path checking scheme are lightweight and through

optimizations, we are able to reduce the memory space overhead of checking tables

recording normal program behavior by almost 50%.

 126

Our hardware-based anomalous path checking scheme can be applied to both

general-purpose computing systems and embedded systems due to its low performance

cost and hardware cost. At the same time, we also acknowledge that the requirement of

good training and potential false positives in this scheme would limit its applicability in

reality. However, the fact is that most existing anomaly detection schemes are training-

based. Both training and false positives imply user involvement, thus increasing the

overall cost of deploying such a system. When the target applications are easy to train or

the user is willing to invest time on training, our anomalous path checking scheme could

be an attractive choice to detect intrusions.

 127

5 INFEASIBLE PATH DETECTION WITHOUT FALSE

POSITIVES

Training-based anomalous path checking scheme is the first hardware-based

anomaly detection scheme we proposed. Although the anomalous path checking scheme

achieves strong detection capability with minor performance degradation, it is based on

training thus good training is required to reduce false positives. However, training brings

great burden to user and user may not even know how to train the anomaly detection

system properly. Even the detection system is trained in a proper way, it is infeasible to

exercise every possible normal input to the protected program, especially for large and

complicated programs, so false positives are inevitable. The problem of false positives

will be even more severe when we monitor the program at a much finer granularity. Take

the anomalous path checking scheme as an example. There will be a dynamic n-jump

path roughly every 10 dynamic instructions. Even though the false positive rate is

extremely low, the absolute number of false positives could be still significant.

False positives have to be handled by human and will bring great burden to the

management of the security system. False positive is the most important reason why

current intrusion detection systems are still dominated by signature-checking based

approaches. The potential false positives of the anomalous path checking scheme could

limit its applicability significantly, which prompts us developing an anomaly detection

scheme without false positives at all.

Zero false positives means that every alarm raised indicates a real attack. Training

based approaches can never guarantee zero false positives. To achieve zero false

positives, the anomaly detection system has to be based on static program analysis. In this

 128

chapter, we propose a novel anomaly detection scheme utilizing both compiler static

analysis and hardware runtime support. We still focus on monitoring dynamic program

control flows. However, instead of trying to differentiate normal dynamic control flows

from anomalous ones, we identify invalid control flows caused by attacks. By invalid, we

mean that the dynamic control flow is infeasible according to the original program

semantics. Thus, whenever such an infeasible control flow occurs, there must be an attack.

Our observation is that attacks tend to lead to invalid program control flows because the

attacker’s goal is to manipulate the program state and lead the program to an execution

state that it is not supposed to be.

Thus, we propose another anomaly detection scheme called infeasible path

detection. We systematically analyze how to utilize compiler analysis to construct the

correlations between branches. The collected information is then made available to the

runtime system and is used to detect dynamic infeasible program paths caused by attacks

with additional runtime information. The infeasible path detection scheme works with

low runtime overhead and all alarms reported guarantee that certain memory content

must be corrupted thus an attack must happen. In other words, the scheme is able to avoid

false positive completely which is one of the major limitations of current anomaly

detection schemes.

5.1 Background and Motivation

Let us revisit the example we used to motivate our anomalous path checking

scheme. In this attack, the attacker tampers certain program data through buffer

overflows and manipulates dynamic program paths maliciously. Through training, the

anomalous path checking scheme can learn that the manipulated dynamic path is never

 129

seen during normal executions thus is able to detect the attack. However, a close

examination reveals that we do not actually need training to figure out the paths shown in

Figure 47.c are anomalous. According to the program code, variable user should not be

modified between the two if statements, thus the two if statements should always give the

same result. This is just a simple example of a common phenomenon called branch

correlation, which has been extensively studied previously [78] [10]. Branch correlation is

the foundation for the branch predictor inside a modern processor to predict branch

directions. Even without runtime information, a compiler can still derive a lot of branch

correlation information statically, which is the foundation of our infeasible path detection

scheme.

(a)

 1. char str[SIZE], user[SIZE];
2. ...
3. if (strncmp (user, "admin", 5)) {
4. ...
5. no syscall;
6. } else {
7. ...
8. no syscall;
9. }
10. strcpy (str, someinput);
11. if (strncmp (user, "admin", 5)) {
12. ...
13. no syscall;
14. } else {
15. ...
16. no syscall;
17. }

(b)

if

if

else

else

if

if else

else

(c)

Figure 47. Example attack revisited.

 130

Our basic idea is to detect dynamic infeasible paths with compiler’s help at

runtime, which could be caused by attacks tampering program state. Our basic

assumption is that data should remain the same when it is fetched back from the memory

after the previous access. The assumption is obvious. The compiler derives which paths

are feasible or infeasible based on this assumption. We give a simple example in Figure

48. In Figure 48, if the path goes from BB1, BB2 to BB4, then the backward branch must

be taken at the end of BB4 looping back to BB1 because we know x<0 at the end of BB1,

so it must be less than 10 as well. If we see a path goes from BB1, BB2 to BB4, but not

from BB4 to BB1, the variable x must be corrupted when it is loaded back from the

memory. Also, the execution must goes to BB2 in the second iteration, since we know x

is not changed, therefore the branch at the end of BB1 should take the same direction.

If x<0

If x<10

BB 1

BB 3BB 2

BB 4

N

NY

Y

entry

x=…

Figure 48. An infeasible path caused by memory tampering.

Note that in general program state or memory tampering may not necessarily lead

to infeasible paths. However the attacker frequently needs to tamper critical variables and

cause critical branches to deviate from its normal direction to achieve the desired

(malicious) intent. Such deviations could manifest themselves through infeasible paths

(as shown in the example in Figure 47). In the example, the attacker overwrites the

 131

variable “user” by buffer overflows, so that it is different from its previous definition.

However, the program is not aware of the tampering and still uses it to grant the

privileged access. Thus, memory tampering caused by attacks could lead to dynamic

program paths that are infeasible with respect to the program semantics. So the

motivation is that if we can detect those infeasible paths, we can detect a range of attacks

based on memory tampering, which is the most common starting point of attacks.

Comparing with previous software-based anomaly detection schemes, our scheme

monitors program execution at a very fine granularity (dynamic control flows vs. system

call traces) thus our scheme is able to detect certain attacks missed by previous system

call monitoring based approaches. Another significance of our scheme is that our scheme

is able to achieve a zero false positive rate because it detects anomalies based on

knowledge collected by compiler infeasible path analysis. False positives are major

obstacles for the wide deployment of training-based anomaly detection systems. A zero

false positive rate is especially important for server applications where service

continuation is crucial. Zero false positive is a crucial advantage of infeasible path

detection over anomalous path detection elaborated in the last chapter.

5.2 Overview

Our objective is to provide a practical solution to efficiently detect infeasible

program paths caused by attacks at runtime. Those infeasible paths indicate that an attack

must have happened. There are several important issues to be considered in the design of

such a solution. First, we want to avoid false positives completely, which is our major

motivation for this scheme. In other words, our scheme is designed to report an alarm

only when we are completely sure that there is an attack. Another issue is the detection

 132

rate or the false negative rate. The system has to be able to detect a sufficient number of

memory tampering based attacks to justify its cost. However, static compiler analysis has

to be conservative. Thus, if we rely on static information solely, we could miss a lot of

infeasible paths and memory tampering attacks at runtime. Finally, the performance

overhead of the system has to be reasonably small; otherwise it is not practical. However,

the number of dynamic program paths is huge. How to verify such a large number of

dynamic paths with only small performance cost is also a challenging problem.

In this work, we propose to perform offline compiler analysis and then store the

information collected compactly. The runtime system is armed with hardware support

and detects infeasible program paths due to attacks by combining such static information

collected by the compiler together with the runtime information collected during the

program execution. By using dynamic information, we are able to detect dynamic

infeasible paths more precisely and efficiently within the current execution context. In

this manner, we not only improve the detection capability significantly (reduce false

negatives) but also maintain good performance.

5.3 Branch Correlations

Each path consists of a number of branches and thus, branches provide the basic

unit in path verification. In this section, we illustrate how branches affect each other with

examples. It is well known that branches are not totally independent to each other but

could be correlated. There are multiple ways how branches affect each other. Branch

correlations have been extensively studied previously such as in [78] [10]. We give an

example in Figure 49.

 133

If y<5

If x>10

x=w y=z

If y<10

BB 1

BB 2

BB 3 BB 4

BB 5

N

NY

Y

NY

(a) (c)

If r1<10

LD r1y r1=r2

ST r1Æy
If r1<5

BB 1

BB 2
BB 3

BB 4

If r1<10

LD r1y
r1=r1-1

r1=r3
if r2>4

ST r1Æy
If r1<5

BB 1

BB 2 BB 3

BB 4

(b)

Y

Y

N

N

N Y

entry

Figure 49. An example of branch correlation.

In Figure 49.a, we assume that all variables are memory resident and are not

constants. The figure shows several interesting cases. If the branch in BB1 is taken and

the path follows BB1ÆBB2ÆBB3, then BB5 should be taken as well, because y must be

less than 5 if BB1 is taken, and along the path, y is not modified. Thus, the condition

y<10 must be true. However, if the path follows BB1ÆBB2ÆBB4, then the direction of

BB5 cannot be determined statically, since y is assigned a new value and normally we do

not know whether this value is smaller than 10 or not. For variable x, it is used in BB2 in

the conditional branch and is changed in BB3. Suppose the branch in BB2 is not taken for

the first time, when the execution goes back to BB2 in the next loop iteration, we know

this branch will not be taken, since variable x is loaded again without being changed from

the last definition. If x is tampered in memory, it could lead to a different branch outcome

and we should be able to detect that. However, if BB2 is taken in one iteration, x will be

assigned a new value, which causes the branch outcome in BB2 to be unknown since

normally we do not know whether the new value of x is larger than 10 or not.

 134

From the above example, we can identify three scenarios in which branches affect

each other. 1) The variables involved in a conditional branch are redefined somewhere

before the branch is reached again. In such cases the outcome of the branch will normally

become unknown. 2) The variables involved in the conditional branch are not redefined

anywhere before the branch is reached again. In such cases the outcome of the branch

should be the same as the last outcome. 3) A branch’s condition subsumes another

branch’s. Here “subsume” is used [78] to indicate that if a variable in one range, then it

must be in the other range, e.g., range [0, 5] subsumes range [0, 10]. The branch in BB1

subsumes the branch in BB5, because range y<5 subsumes range y<10. Note that

scenario 2 can be regarded as a special case of scenario 3, in which one dynamic instance

of a branch subsumes another instance (their ranges are same).

Figure 49.b shows how a piece of real code may look like as another example. In

BB1, variable y is stored in memory. If the branch in BB1 is taken, we know that the

value of y is less than 5. We also know that the load of y in BB2 should get a value less

than 5 and the branch in BB4 should be taken. However, if the dynamic program path is

BB1ÆBB3ÆBB4, r1 is redefined in BB3 and generally we do not have information for

the new value of r1. Thus, to be conservative, we have to regard both taken and not-taken

outcomes of the branch in BB4 as possible.

Finally, Figure 49.c shows that sometimes we are able to analyze more

complicated cases. In Figure 49.b, after r1 is reloaded in BB2, there is no further

redefinition to r1. However, in some cases, even after a variable is redefined, we can still

have certain information about its new value, which is especially true if the new

definition is done through simple arithmetic operations. In this example, r1 is decreased

 135

by 1. After r1 is decreased, we still know that the branch in BB4 must be taken because y

is known to be less than 5; after it is loaded and decreased, it should be still less than 5

and thus less than 10 as well.

Revisit the example in Figure 47, the second if-branch is subsumed by the first if-

branch. Once the first if-branch is taken or not taken, the second one should follow the

same direction. If it does not, there must be a memory tampering attack.

5.4 Implementation Details

This section elaborates our infeasible path detection scheme. We first introduce

the main data structures such as Branch Status Vector (BSV) and Branch Action Table

(BAT) then discuss how they are constructed and updated. Finally we give details of our

Infeasible Path Detection System (IPDS).

5.4.1 Branch Status Vector and Branch Action Table

The first task is to design proper data structures for the infeasible path detection

scheme. In our scheme, we need to record the expected direction for each branch

(obtained by combining both static information collected by the compiler and the runtime

information), so that at runtime after the branch is executed and the actual direction is

known, we can compare the actual direction with the expected direction detect anomalies.

We introduce Branch Status Vector (BSV) for that purpose. Also, from the discussion of

branch correlations, it is clear that whether a branch correlation exists at runtime heavily

depends on whether certain variables get redefined and how they are redefined, which in

turn depends on which dynamic path the program takes or the directions of dynamic

branches. Thus, we need another data structure to record the interactions (correlations)

 136

between branches. We introduce Branch Action Table (BAT) for that purpose, which is

generated by the compiler through static analysis.

Since the majority of branches are conditional branches with two possible

outcomes, we first focus on them. Multi-target branches will be discussed later. For each

conditional branch, we need to keep two bits to encode three possibilities, namely taken,

not-taken and unknown.

At runtime, after a branch instruction is executed, we first verify its actual

direction with the expected direction. If they do not match, an infeasible path has been

detected. If no mismatch is found, we update the branch status vectors (possibly

including current branch’s branch status vector) properly according to the actual direction

of the branch and the branch action table.

If y<5

If x>10

x=w y=z

If y<10

BB 1

BB 2

BB 3 BB 4

BB 5

N

NY

Y

NY

entry

Path BR1 BR2 BR5
Init UN UN UN

BB1 T UN T
BB2 T UN T
BB3 T UN T
BB5 T UN T
BB1 T UN T
BB2 T NT UN
BB4 UN NT UN
BB5 UN NT NT

Figure 50. An example on how to update the branch status vector.

We give an example on how to update the branch status vector in Figure 50. The

example is the same as the one in Figure 49.a. In the example, three branches, located at

 137

the end of BB1, BB2 and BB5 are present. To facilitate our discussion, we name them

BR1, BR2 and BR5 respectively. Their branch status vectors are tracked on the right side

of the figure. Initially, all branch statuses are UN, i.e. unknown. Assume the first

dynamic instance of BR1 is taken. After the execution of the branch, we first verify the

branch. Since “unknown” matches any direction so no mismatch is found. Then we

update the status vectors. The status vectors of BR1 and BR5 need to be updated since

BR1 subsumes BR5 and of course BR1 subsumes itself. So we set status vectors of BR1

and BR5 to “taken” as the current expected direction. Those expected directions are

obviously optimistic. For example, BR1 will take the same direction when it is executed

again only if y is not redefined in between. The basic idea here is that we first set

expected directions optimistically (assuming that depending variables of branches will

not be redefined), then we update the status vectors properly when we encounter

redefinitions of those depending variables, which invalidate the previous expectations.

Let us go back to the example. The program path goes to BB2 and BR2 is taken at

runtime. The status vector of BR2 is then set to “unknown” instead of “taken”. The

reason is that entering BB3 causes variable x to be redefined to an unknown value, which

means, the direction of BB2 should become unknown now. Then the program path goes

into BB5 and BR5 is taken. For the second execution of BR1, since there is no

redefinition to its depending variable y, the branch is taken again and this matches the

status vector. If BR1 is not taken at runtime, then an attack is detected. When BR2 is

executed again, the status vector shows its direction to be unknown, therefore any

direction is correct. This time, it goes to BB4, i.e. not-taken. This causes the status vector

 138

of BR5 to be unknown, since variable y is redefined to some unknown value. The

verification of BB5 is again correct since the status vector gives “unknown”.

During the discussion of the above example, we talked about various actions to

update status vectors after a dynamic branch is executed and its direction is known.

Those actions encode correlations between branches. How to construct and store those

actions is the major job of the compiler. The actions are stored in a data structure called

Branch Action Table (BAT). It records which branches’ branch status vectors should be

updated and how to update them after a dynamic branch is executed.

In the simplest form (without concerns to the table size), we can store the BAT as

a two dimensional array with br_num*br_num elements. Here br_num is the number of

branches (we temporarily assume all branches are recorded, later we will talk about how

to reduce that number).

After a branch is executed, we find out which branches are affected by this branch.

For each affected branch, there are four possible actions: SET_T, SET_NT, SET_UN,

NC, which means: “set to taken”, “set to not-taken”, “set to unknown” and “no change”

respectively. It is clear that these four represent all possibilities. The reader can find

examples of these actions in the discussion of the example in Figure 50. The actually

number of actions for each [current branch, affected branch] pair is doubled, since there

are two possible outcomes for the current branch, i.e. taken or not-taken. Different

outcomes lead to different actions. In addition, as previously mentioned, not all branches

need to be checked. If the compiler cannot infer anything in terms of correlation about the

branch outcome, the branch can be excluded from checking. Therefore, we set up a

 139

vector called Branch Checking Vector (BCV). It only stores which branches should be

checked.

INPUT: Program code in a function (CFG form),
 br_num: Num of Branches
OUTPUT: BAT: The Branch Action Table
 BCV: Branch Check Vector

enum br_action { SET_T, SET_NT, SET_UN,NC}
BAT:= array [1..br_num][1..br_num][1..2] of br_action
BCV:=array [1..br_num] of Boolean

ALGORITHM: BAT_Construction
1. Alias analysis and identify memory resident values.
2.
3. Assume each store is a definition of the memory variable, construct

the reaching definition information.
4.
5. Foreach load l do
6. Foreach branch bl whose outcome is inferrable from l’s range do
7. Foreach store s, whose definition reaches l do
8. foreach branch bs whose outcome can infer s’s range and s’s

range subsumes bl’s range do
9. set the action in BAT for bs to bl; mark bl in BCV;
10. od
11. od
12. Foreach load lp, whose use immediately precedes l do
13. foreach branch blp whose outcome can infer lp’s range and lp’s

range subsumes l’s range do
14. set the action in BAT for bs to blp; mark blp in BCV;
15. od
16. od
17. od
18. od
19.
20. Foreach branch br marked in BCV do
21. Find all branches with definitions (other than the correlated

loads) to the register used in br. Or other stores(other than the
correlated ones) to the variable. Mark the action to br as UN in the
corresponding entries in BAT.

22. od
23. return BAT, BCV

Figure 51. Algorithm to construct BAT and BCV.

The algorithm to construct the BAT and the BCV is shown in Figure 51. Note that

the algorithm works on functions rather than on the whole program. It starts with alias

analysis to identify all possible memory resident variables that are accessed by each

load/store instruction. We first focus on those uniquely aliased variables. Multiple-aliased

ones will be addressed later. Next, we perform reaching definition analysis for all store

 140

instructions after alias analysis. Here, we regard each store as a definition of the variable

in the particular memory location.

The main component of the algorithm is a nested loop. The first half of the loop

handles correlation between one store and one load. We first need to clarify the

relationship between a load/store and a conditional branch. Here we examine each branch

whose outcome is inferable from a load’s range, which means the branch direction is

determinable if the loaded value is in a certain range. For example, for a code sequence

like {… ld r1, x; … ble r1, 100; …}, if x is less than 100 and is not redefined between the

load and the branch, then the branch must be taken. For the example in Figure 49.b, the

outcome of branch at the end of BB1 is clear if we know whether y is less than 5 or not.

Thus, we first obtain a collection of branch-load correlations. For each of them, the

branch outcome depends on the value range of the loaded variable.

For each load, we find the stores that define the same variable and whose

definitions reach this load. We then find branches that are related to the store. We want to

identify branches whose outcomes infer a value range of the same variable and the range

(of the store) subsumes the range of the load. To put it in a simple form, our goal is to

discover the follow relationship:

branch bs’s directionÎstore st’s range;

store st’s range subsumes load ld’s range;

load ld’s rangeÎ branch bl’s direction;

In other words, such a relationship indicates that from branch instruction bs’s

direction we can know bl’s direction exactly. Revisit the example shown in Figure 49.c.

If the branch in BB1 is taken, it infers y<5. y<5 subsumes y<11. For the load in BB2, we

 141

then know that y is less than 11. This infers that the branch in BB4 is taken, since r1=y-

1<10. Thus, this formulation is also able to take the following case into consideration:

after a variable is loaded into a register, the register participates in further calculations

before it is used in a conditional branch.

The second half of the loop handles correlation between two consecutive loads.

The two loads must access the same variable, and after the first load the variable must

keep alive between the two loads. The reasoning here is similar to the one discovering

correlation between one store and one load. The goal is to discover the following

relationship:

branch blp’directionÎload lp’s range;

load lp’s range subsumes load l’s range;

load l’s rangeÎ branch bl’s direction;

In the example in Figure 49.a, if the path follows BB1ÆBB2ÆBB3ÆBB5,

variable y is encountered again. The fact that the branch in BB1 (blp) is taken infers

range y<5 (lp’s range). y<5 subsumes y<10 (l’s range). And y<10 infers that the branch

at BB5 (bl) should be taken.

Note that the branch blp could be the same as bl. For example, in Figure 49.a, if

the path follows BB2ÆBB4ÆBB5ÆBB1ÆBB2, variable x is encountered again. The

variable’s range is not changed. Therefore the direction of the branch at the end of BB2

should not change.

These two schemes basically follow our fundamental assumption that variables

residing in the memory between either two loads or between one store and one load

should not change. If the change happens due to tampering in memory caused by attacks

 142

(such as by buffer overflows), it might lead to infeasible paths that will be detected by the

above schemes.

Note that we also mark branches that should be checked in the branch check

vector (BCV). We only mark branches for which the compiler can infer knowledge. In

this way, the runtime system does not need to check every branch, which helps reduce

overhead.

The last part of the algorithm checks all the definitions other than the correlated

loads to the registers used in the branches that are marked in BCV. That is because if

there are other paths coming to the branch and the register that is involved in the branch

is changed along one of those paths, we must take proper actions accordingly, otherwise

the checking mechanism will fail. We mark the branch direction as unknown if such as

path is taken since either the compiler fails to derive a range for the redefined value or the

range is not related to memory resident variables, which is not interesting in our case.

This step also checks if there are other stores to the same variable depended by the branch,

for which the compiler cannot establish their relationship with the branch. In such cases,

we also mark the branch direction as unknown.

An example is shown in Figure 49.c. If the path follows BB3ÆBB4, we should

mark the branch in BB4 as unknown, since r1 is defined in BB3. So when the branch in

BB1 is not taken, we should immediately mark BB4’s branch as unknown.

The complexity of the algorithm can be analyzed as follows. The main

computation is in the nested loop with a depth of 4. It can be roughly estimated as

O((#branches)2*(#loads)*MAX(#loads, #stores)). It is a polynomial-time algorithm. The

execution time of the algorithm is normally small as measured in our experiments.

 143

Till now, we have only considered variables that are not multiple aliased.

However, sometimes the branch predicates are constructed out of pointer dereferences

that could point to multiple memory locations. In such cases, our scheme must be

conservative in order to avoid false positives. If the memory access instruction is a load,

we simply remove it from further analysis. In this way, no branch will be incorrectly

checked, since we do not infer anything from the loaded value. It might be possible that a

load comes after this one is now (live range) connected to a load or store before it. It is

still fine because the load (use of the variable) will not change the variable. If the

memory access instruction is a store, we have to assume all aliases of the stored variable

might be defined. Therefore all incoming definitions to those aliases from previous stores

must end here. Also, loads that are reached by this store should not be considered to infer

anything from this store, because we do not know which memory location the store

actually modifies.

5.4.2 Storing BSV, BCV and BAT Information Efficiently

In last sub-section, we discussed what kind of information should be stored in

BSV, BCV and BAT and how to collect the information. Next we need to find an

efficient binary representation for those tables. We want to make the tables as small as

possible to reduce the space overhead and other associative cost. In this sub-section, we

discuss several ways to reduce the table sizes.

Using Proper Data Structures

The information stored in the tables is with respect to branches identified by PC

addresses. Branches are non-uniformly distributed in the code and there could be an

arbitrary interval between two adjacent branches. So the natural way to store the

 144

information for branches is a hash table. The PC address of a branch is hashed then used

as an index into the hash table. However we have to be careful when using hash tables. A

common hash table requires tags to handle collisions. If we assume the function contains

1K instructions, the tag will have 10 bits. In other words, the size of the tag could be

much larger than the information to be store in BSV and BCV.

To solve the problem, the compiler always finds out a hash function that leads to

no collisions for the current function. The compiler achieves this by a trial-and-error

method. It utilizes a parameterizable hash function with only shift and XOR operations.

The hash function of course is the same one implemented by the runtime system. It first

tries different hash function parameters to hash the branches into the optimally sized hash

space. If that fails after several tries, the compiler enlarges the hash space and tries again.

Obviously the hashing result should depend on the size of the hash space. The hash

function has a lower probability to produce collision with a larger space. Since the

number of branches in a function is normally not large, in most cases, the compiler can

find a proper combination of hash function and hash space quickly. In that way, no tags

are required in the hash tables since there is no collision at all. Note that the hash function

parameter chosen by the compiler needs to be passed to the runtime system as a part of

the information associated with a function.

Storing BAT information is more complicated since for each branch there are

multiple and unfixed number of actions to be stored. We can use a large array to store

actions for each branch but it is obviously inefficient, especially when there are a large

number of branches in a function. Intuitively, each branch could only take action on a

small number of other branches. Therefore, we chose a link list representation to avoid

 145

space overhead for non-existing actions between two branches. The link list is

implemented in an array. Each link list element is tagged by the branch index and stores

the index of the next link list element. The collision free hash table for BAT contains the

index of the first link list element for a branch.

Remove Unrelated Branches

Unrelated branches are those neither being checked nor acting on any other

branches. Those are the branches that have nothing to do with our scheme. We can

simple remove them from the BAT, BCV and BSV.

Reduce Branches Actions

If r1<10

LD r1y

…
BB 1

BB 5

BB 2

BB 6

r1=r2

…

BB 3

BB 4

Figure 52. Reduce branch actions.

We found that in some cases actions for branches can be reduced. We show an

example in Figure 52. We initially put an action in the BAT entries for both branches in

BB1 and BB2, since whenever their path to BB3 is taken we should set the branch in

BB6 as unknown. However we can instead put the action on the branch in BB3 and

remove the original actions for the branches in BB1 and BB2. Note by doing that we do

not degrade the detection capability because the status vector of the branch in BB6 is

 146

only used when that branch is executed. On the other hand, we reduce the total number of

actions, which could be helpful when the BAT is implemented as a linked list.

5.4.3 Handling Function Calls

Our BAT construction algorithm works on functions. We have not talked about

how to handle function calls in the function processed. When there are function calls in

the function processed, it becomes a bit more complicated, since variables might be

modified inside the callee function. Therefore the function call site can act like a store to

variables and in some cases statically we cannot know exactly which variables are

modified by the callee function.

We choose to handle function calls in a simple and conservative way. First, we try

to prove that the callee function only modifies non-local memory state through its pointer

parameters, which should be true for most functions under good programming styles.

Local memory state modified by the callee function will be discarded after the function

returns thus does not matter. All standard C library function calls are specially handled

since we know the exact semantics of those functions. For example, we know strcmp()

will not change any non-local memory state and scanf() will only modify dereferenced

objects of the second parameter and following. We try to prove the property for user-

defined functions by examining the function bodies individually without relying on a full-

fledged inter-procedural analysis. If the function modifies non-local memory state

through global variables and/or pointer dereferences, to avoid the requirement of an

advanced inter-procedural analysis, we can simply act conservatively and assume the call

site can modify any variable. Of course it would be easy to optimize over this extreme

conservativeness for the cases in which the function only modifies non-local memory

 147

state by directly accessing global variables. After the above analysis, we can convert the

function call into a list of pseudo store instructions for the purpose of our correlation

analysis. For functions that do not modify non-local memory state, the list is empty. For

functions that modify non-local memory state through pointer parameters, we create a

pseudo store instruction for each dereferenced actual pointer parameter. For other

functions, we create a store that could modify any variable. In that way, we convert the

function calls into a list of (possibly multiple aliased) store instructions and how to

handle (aliased) store instructions has been covered in section 5.4.1.

5.4.4 Other Considerations

Multi-target branches, typically indirect jumps, must be specially handled. The

major difficulty is that multi-target branches can have an arbitrary number of targets. The

BSV and BAT data structures for conditional branches are generally not usable by multi-

target branches. Moreover, it is difficult to design special data structures for multi-target

branches since to guarantee zero false positives, the data structures have to be able to

accommodate an arbitrarily large number of targets. We believe that the additional

detection capability does not justify the additional cost and complexity. First, the number

of multi-target branches is relatively small. Second, many multi-target branches actually

have only one or two possible targets, which could be identified by our pointer analysis

pass. For example, in many cases function pointers are not mandatory but are merely

used to achieve a flexible programming style. Thus, in our scheme we choose to only

handle multi-target branches having at most two targets identified by the pointer analysis,

and ignore other multi-target branches. In that way, multi-target branches handled can

reuse the data structures for conditional branches. We only need to add a small table to

 148

map one direction of the multi-target branch to “not-taken” and the other direction to

“taken”. We also need to know when we should perform such mapping. Fortunately, for

conditional branches, the 2 bits for each branch status vector are only used to represent 3

states: taken, not-taken and unknown. We can use the available fourth state to indicate

that the branch is a multi-target one. Of course, to avoid the above additional overheads,

the user can choose to ignore all multi-target branches. According to our experience, the

degradation of detection capability is insignificant.

We assume that there is a pass to properly identify memory resident variables.

This includes all scalar global/local variables, plus strings. We consider arrays on an

aggregate basis (which is sufficient to tackle strings) but we do not undertake element by

element analysis of arrays. Note that attacks seldom go through array elements. Instead,

they change strings (aggregates) and important variables that make critical decisions such

as indicating the user level etc. (see the previous examples in Section 5.1). Moreover,

array comparison through strcmp(), strncmp() etc. are specially handled as well.

5.4.5 IPDS

Upon this point, we have introduced the basic components in our infeasible path

detection scheme. Putting them together, the entire framework is called IPDS (Infeasible

Path Detection System) and is shown in Figure 53.

The infeasible path detection works at the function level. BSVs, BCVs and BATs

are constructed on a function basis. They are attached to the program binary by the

compiler and mapped into a reserved memory space of the program once the program is

loaded. The compiler conveys basic information for each function to the runtime system

 149

through a function information table. The information includes entry addresses of BSV,

BCV and BAT, the entry address of the function, hash function parameters etc.

branch

Type ID Dir

branch
status
vector
stack

verify

branch
action
table
stack

branch
checking

vector
stack

request
queue

BSV
update

s

Figure 53. IPDS framework.

At runtime, each committed branch is sent to the IPDS. The IPDS first checks

whether this branch is marked in the BCV. If it is, the IPDS queues a request to verify if

the actual direction of the branch matches the expected direction in the BSV. The IPDS

queues a request to update the BSV according to the current branch and the BAT table no

matter whether the branch is marked in the BCV.

The sizes of BSV, BCV and BAT tables for each function are not fixed. The

tables naturally form a stack at runtime. When we enter a new function, its corresponding

BSV, BCV and BAT tables are push into the top of BSV, BCV and BAT stacks

respectively. When the function returns, its BSV, BCV and BAT tables are popped up

from the stacks then we can continue the checking based on the caller’s BSV, BCV and

BAT tables. To save on-chip space, we only keep the top of the stack on-chip but spill the

non-active tables to their home location, which is similar to Itanium’s register stack

 150

engine. The spilled BSV, BCV and BAT tables require proper protection from tampering.

The protection can be easily achieved by mapping them to a reserved space. Since only

the IPDS is supposed to access those tables and the program is never supposed to access

them, any attempted access from the program will be detected and prevented by the

processor.

All requests are put in a request queue according to the order in which they are

issued. One important observation is that as long as the requests are properly ordered, we

can guarantee that the checking is correct. Even if the process of requests gets delayed

due to long latency operations such as loading the spilled tables, we can allow the

program execution to continue without any delay but queue all the requests in their

originally order. Also, it is shown in our experiments that the average checking speed is

normally higher than the program execution. In other words, our scheme normally will

not slow down the program execution.

The hardware overhead of IPDS includes additional infeasible path detection

logic and small on-chip buffers holding BCVs, BSVs and BATs. We believe the

hardware overhead is reasonable as the advance of IC technology allows packing millions

of transistors on a single chip. There will be plenty of hardware resources available to

implement IPDS in a single chip. Moreover, chip multiprocessors become more and more

popular and it is possible to program one of the cores to implement security

functionalities.

5.5 Evaluation

All compiler implementations are done in SUIF [100] and MachSUIF [68]

research compiler infrastructure. SUIF and MachSUIF provide extensive compiler

 151

optimizations and analyses that are convenient to use. In particular, there is a publicly

available pointer analysis pass for SUIF, which is based on the algorithm proposed in

 [119]. It is both context-sensitive and flow-sensitive. We found that the pointer analysis

pass gives very accurate points-to information especially for non-heap data accesses,

which is greatly helpful to our work. The compiler infrastructure also provides flexible

frameworks to develop new analyses and optimizations. The compilation time of the

algorithm in Figure 51 is up to a few seconds on a Pentium 4 2GHZ machine.

The evaluation of the IPDS system consists of two aspects: precision and

performance. In this section, we show that the IPDS system achieves both good precision

and low performance overhead.

Good precision means both low false positive rate and low false negative rate.

The IPDS achieves a zero false positive rate since it always acts conservatively and only

raises an alarm when it is completely sure that an attack is ongoing.

Good precision also means low false negative rate, i.e. high detection rate of

dynamic infeasible paths due to attacks. Besides showing that IPDS can detect exemplary

attacks illustrated in Figure 47, we want to measure the ability of IPDS more

systematically. It would be ideal if we can evaluate our system against real-world attacks.

Unfortunately most publicly available attacks are traditional code injection attacks

through buffer overflows, format string attacks etc. Those code injection attacks have

been extensively studied and numerous solutions have been proposed, such as our

anomalous path checking scheme and [108] [23] [33] [63] [73] to only name a few. Those

code injection attacks are not the focus of our work. We expect them become less

important when protection mechanisms against them are widely deployed. We are

 152

interested in the type of attacks in which attackers tamper critical data such as decision

making data, user IDs etc. rather than return addresses or function pointers. This kind of

attacks does not involve code injection and are much harder to detect. Chen et al.

presented an experimental study of this kind of attacks and shows that they are very

realistic [17]. There are fives examples in Chen et al.’s work, which are the only real

examples we can find. But after code injection attacks become less effective, we expect

that attackers will focus more on devising this new kind of attacks. Among the five

examples given in [17], four of them involves tampering data that does not change

dynamic program control flow, for which our scheme is not designed to detect. For the

attack leading to program control flow changes (integer overflow attack against decision-

making data in [17]), our scheme is able to detect the attack successfully.

To measure the detection rate further, we choose to simulate real attacks that

tamper memory state by exploiting program vulnerabilities. We then check whether our

scheme is able to detect the simulated attacks. In our experiments, we implement our

IPDS system in an open-source IA-32 system emulator Bochs [9] with Linux installed.

We choose 10 server programs having well-known vulnerabilities as benchmarks to

perform simulated attack experiments. The server programs and their original well-

known vulnerabilities are telnetd(buffer overflow), wu-ftpd(format string), xinetd (buffer

overflow), crond(buffer overflow), sysklogd(format string), atftpd(buffer overflow),

httpd(buffer overflow), sendmail(buffer overflow), sshd(buffer overflow) and

portmap(buffer overflow).

Format string vulnerability allows us tamper an arbitrary memory location, so we

can launch as many attacks as we want to the vulnerable program and tamper a different

 153

memory location in each attack. But buffer overflow attacks normally tamper a

continuous block of memory and only allow us tamper local stack data. Moreover, each

of the above server programs only contains a few buffer overflow vulnerabilities. To be

able to perform enough number of attacks to measure the detection rate accurately, we

manually introduce more buffer overflow vulnerabilities into the server programs

originally only having a few buffer overflow vulnerabilities. We further devise our attack

to tamper only a specific local stack location rather than a continuous memory block.

Otherwise, we would not be able to make attacks and results independent to each other in

the buffer overflow cases. Buffer overflowing a specific location is possible in reality if

the attacker knows the original local stack state, for example, by running the same

program in his own machine. In the cases in which the attacker is not able to only tamper

a specific local stack location, he will tamper multiple stack locations at the same time.

Each tampered location can be used to detect the attack. Thus, our results for buffer

overflow attacks represent the worst case. We make each of our attacks independent to

each other to get a better feeling of the detection capability of our system.

Each server program is attacked 1000 times independently as explained above.

The caused memory tampering may or may not change program control flow. If it does,

we check whether the IPDS is able to detect that infeasible path. If it fails, that is a false

negative. Our scheme is not designed to handle the cases in which the memory tampering

does not change program control flow.

 154

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

D
et

ec
tio

n
R

at
e

fo
r S

im
ul

at
ed

 A
tta

ck
s

0.0

0.2

0.4

0.6

0.8
% control flow tampered
% tamper detected

Figure 54. Detection Rate for Simulated Attacks.

Figure 54 shows the results of our simulated attack experiments to measure the

detection capability of our system quantitatively. Our work is the first one to provide a

quantitative view of detection capability and our results shown represent worst cases.

None of the previous work quantifies the percentage of false negatives as we do. We

show two results for each benchmark: the percentage of memory tamperings caused by

attacks that actually change program control flow and the percentage of memory

tamperings caused by attacks that are detected by our scheme. Intuitively, some memory

tamperings do not have an effect on the program control flow. Our scheme is not

designed to handle those cases. Actually, any scheme focuses on program control flow

property will fail to detect those cases. How to detect memory tamperings that do not

change program control flow is an open and tough problem [17]. From the results, on

average 49.4% of memory tamperings cause changes in the program control flow and the

IPDS can detect 29.3% of memory tamperings overall. Thus, the IPDS system is able to

detect 59.3% of those memory tamperings that change program control flow. The

 155

detection rate is very good, considering the IPDS is conservative and achieves a zero

false positive rate. The high detection rate shows that strong correlation exits among

branches. Especially, in many cases, IPDS knows dynamically the outcome of a branch

should be the same as its previous outcome since the depended values should not be

changed in between. However, after the tampering one depended value may be modified,

then the branch may have a different outcome thus the tampering is detected.

Although the IPDS cannot prevent all memory tampering attacks, it detects a

good percentage of memory tampering attacks that change program control flow.

Moreover, the IPDS achieves a zero false positive rate, which is a critical property that

makes the IPDS practical. False positive is the primary obstacle for the wide deployment

of anomaly detection systems. That is why currently most commercial products still use

signature based misuse detection rather than executing monitoring based anomaly

detection. An anomaly detection system with a very high detection rate is meaningless if

the user does not want to deploy it due to its frequent false positives. Also note that none

of anomaly detection systems can detect all the anomalies. Our system is designed to

combat a type of attacks largely ignored previously, which means it acts as a very good

complement to the current anomaly detection systems. We also believe that since our

system works on a much finer granularity, its detection capability is generally superior to

the previously proposed system call monitoring based systems – we have in fact shown

some attacks in the motivation section that are missed by those systems. Overall, we

believe that our work provides a useful anomaly detection component to build the

complete security system.

 156

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

Ta
bl

e
Si

ze
s

1

10

100

1000

BSV
BCV
BAT

Figure 55. Average sizes (in bits) of BSV, BCV and BAT tables.

 Figure 55 shows the average sizes of BSV, BCV and BAT tables in bits for

functions inside each benchmark. Remember that BSV, BCV and BAT are constructed

on a function basis. The graph is shown in log-scale. As discussed in section 5.4.2, the

binary representation of the tables is carefully design to avoid the huge tag space

overhead associated with normal hash tables. The average number of branches inside a

function is normally smaller than 15. Each branch in a function only needs two bits for

BSV information and one bit for BCV information. Although we cannot achieve optimal

sizes in some cases, the sizes of BSV and BCV are very small. The average size of the

BSV table for a function is 34 bits and the average size of the BCV table is 17 bits.

Normally they can be packed into a couple of machine words. Now the advantage of our

special hash table design should be clear. On the other hand, the size of BAT is much

larger due to more complicated data structures. The average size of the BAT for a

function is 393 bits. On average, 45% of the bits in BCV are marked. That is, the

dynamic instances of those 45% of static branches will be checked at runtime.

 157

Table 6. Default Parameters of the processor simulated.

Clock frequency 1 GHz L1 I/D 64K, 2 way, 2 cycle
32B block

Fetch queue 32 entries Unified L2 512K, 4way, 32B block
Latency 10 cycles

Decode width 8 Memory bus 200M, 8 Byte wide
Issue width 8 Memory latency first chunk: 80 cycles,

inter chunk: 5 cycles
Commit width 8 TLB miss 30 cycles
RUU size 128 BSV stack 2K bits
LSQ size 64 BCV stack 1K bits
Branch predictor 2 Level BAT stack 32K bits

Next, we focus on the performance aspect of the IPDS. To measure performance

of the IPDS, we run the benchmarks in the Simplescalar toolset [11], which a cycle-

accurate processor simulator. Each benchmark is simulated in a cycle accurate way by 2

billion instructions. The default parameters for the simulated processor are shown in

Table 6. The IPDS hardware is also modeled in Simplescalar. We simulate a wide-issue

high-performance processor to stress the IPDS. The on-chip buffers for BSV, BCV and

BAT stacks are 2K bits, 1K bits and 32K bits respectively. We make the on-chip buffers

large enough that in most cases they are enough to contain the information for branches

in the active call chain, even for large server applications. For example, a BCV stack with

1K bits can record information for 1K branches. Assume there is one branch in every

eight program instructions and each instruction is 4 bytes. Then the 1K BCV stack can

cover 32KB code. The performance cost due to spilling of the stacks is minor. The total

on-chip buffer space is only 35K bits, which is very small considering the on-chip cache

size has reached several MB in modern superscalar processors. The access latency to the

tables is one cycle. Note that we may need to access the BAT table (which implements a

link list) several times to handle a BSV update request.

 158

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Figure 56. Normalized Performance.

In Figure 56, we show the performance for all benchmarks normalized to the

baseline case without infeasible path detection. The average performance degradation is

only 0.79%. In most cases, the performance degradation is negligible. The fundamental

reason is that checking of infeasible paths normally does not need to block the original

program execution. We design a request queue to handle the burst of requests. The

normal program execution is only blocked when the request queue is full. Whether the

queue becomes full highly depends on the speed of processing each request. Each branch

check request only needs a read of the expected branch and a comparison. Each BSV

update request needs a small number of reads from the BAT and writes to BSV. The

request for a branch normally can be completed with a very short latency before next

branch is processed. Note that we pay additional overhead during function calls/returns

and multi-target branches. Finally, tables used in anomaly detection are treated as a part

of process context thus we pay additional overhead during context switches. Context

switches overhead is also modeled in our experiments. Because context switches are rare

 159

events and the size of the additional process context is only around 4KB, we found that

the performance overhead due to additional process context is minor.

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

Q
ue

ue
 O

cc
up

an
cy

0.0

0.5

1.0

1.5

2.0

Figure 57. Queue Occupancy

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

0

2

4

6

8

10

12

14

16

18

Figure 58. Detection Response time.

Next, we look at the occupancy of the request queue, which is important to

understand the performance characteristics of our system. Figure 57 shows the average

queue occupancy across benchmarks. It is about 1.47, which means at most of the time,

 160

there are few requests being queued because normally the requests for a branch can be

completed within a short latency before next branch has to be processed.

Finally, in Figure 58, we give the average response time in cycles, i.e. the time

from a committed branch instruction is sent to the IPDS to the time the infeasible path is

detected. On average, the response time is 11.7 cycles. In other words, the IPDS can

quickly detect an infeasible path before it causes severe damage. This is an important

feature especially for systems that would offer some intrusion-recovery mechanisms – if

an attack is not detected quickly enough it would be too late to recover from. We

perceive this is another important dimension of our solution – an ability to detect the

attack in near real time.

5.6 Summary

Although our anomalous path checking scheme achieves strong detection

capability and negligible performance degradation, it is based on training and potential

false positive is a big concern that will limit its applicability in reality. In response to the

concern of false positives, in this chapter we develop an infeasible path detection scheme

to detect attacks based on static compiler branch correlation analysis and hardware

runtime support. Our observation is that most attacks start from memory tampering and

memory tampering could lead to infeasible dynamic program paths in terms of program

semantics. In this scheme, the compiler analyzes correlations between branches and then

the collected information is conveyed to the runtime system. The runtime system detects

dynamic infeasible program paths by combining the compiler collected information and

the runtime information.

 161

 The infeasible path detection scheme achieves a zero false positive rate which

improves its applicability greatly. All alarms reported are guaranteed to indicate that

certain memory content is corrupted and an attack has happened. We show that a good

percentage of memory tampering (around 60%) can be detected as long as the tampering

actually causes a change in the control flow. Moreover, the infeasible path detection

scheme requires only a modest amount of hardware resources and the performance

penalty of it is almost negligible. Overall, we believe that the infeasible path detection

scheme can be a very practical intrusion detection solution, especially when low-cost and

zero false positives are required at the same time. On the other hand, in this chapter we

intentionally show that a large percentage of random memory tamperings (around 50%)

actually do not alternate program control flows at all. Any control flow monitoring based

anomaly detection scheme is completely helpless in detecting those memory tamperings.

This problem prompts us to rethink the problem and seek a more complete solution.

 162

6 DATA TAMPERING DETECTION THROUGH DYNAMIC

ACCESS CONTROL

Most of the previous anomaly detection schemes, including our anomalous path

checking scheme and infeasible path detection scheme, focus on control flow monitoring.

They try to detect attacks by detecting anomalous dynamic control flows. However, the

root cause of anomalous control flows is due to tampering to critical program data. In

essence, anomaly detection schemes based on control flow monitoring try to infer data

tampering by monitoring anomalous control flows caused by data tampering. However,

in last chapter, we showed that a large percentage (about 50%) of random data

tamperings do not alter program control flows at all. Recently Chen et al. [17] also

discovered that a large category of attacks tamper program data but do not alter program

control flows. Those attacks are not only realistic, but are also as important as classical

attacks tampering control flows. Anomaly detection schemes based on control flow

monitoring cannot detect those attacks at all. Detecting these attacks is a critical issue but

has received little attention so far.

In this chapter, we propose an intrusion detection scheme with both compiler and

micro-architecture support that detects data tamperings directly. The basic idea is that the

compiler identifies program regions in which the data should not be modified according

to the program semantics. The compiler performs analyses to determine modifications of

data in different program regions and conveys this information to the hardware and the

hardware checks the data accesses based on the information. If the compiler asserts that

the data should not be modified but there is an attempt to do so at runtime, an attack is

detected. The compiler starts with a basic scheme achieving maximum data protection

 163

but such a scheme also suffers from significant performance overhead. We then attempt

to reduce the performance overhead through different compiler optimization techniques.

The optimization techniques include lazy protection points hoisting, protection points

selecting, and protection operations aggregation. Our experiments show that this scheme

achieves zero false positive rate, strong memory protection, and tight control over the

performance degradation.

6.1 Background and Motivation

Most of the previous anomaly detection work [32] [115] [92] [31] [59] [76] [37]

 [36] [60] [128] focuses on monitoring program control flows and program paths. Thus,

one important question is whether monitoring program control flow is good enough to

detect the incidence of an attack. First of all, memory tampering or data tampering is the

primary starting point of attacks. Most if not all attacks start from memory tampering,

such as buffer overflow attacks, format string attacks etc. In effect, most previous

anomaly detection work tries to detect memory tampering by detecting anomalous

program paths caused by the memory tampering. We checked the relationship between

memory tamperings and control flow modifications. During our experiments, we found

that around half of the memory tamperings do not alter program control flows. For those

memory tamperings, monitoring control flows as in system call trace monitoring and

anomalous path checking does not help at all. In [17], Chen et al. showed a large category

of real attacks without any control flow tamperings. One real example is shown in Figure

59.

 164

 FILE * getdatasock(…) {
...
seteuid(0);
setsockopt(...);
...
seteuid(pw->pw_uid);
...

}

Figure 59. Attacks without control flow tampering.

Wu-ftpd version 2.6 contains format string vulnerability. Format string

vulnerability allows an attacker modify any memory location. Figure 59 shows a piece of

innocent code from the Wu-ftpd source code. In normal situations, this piece of code will

temporarily escalate the privilege using seteuid(0) to perform the setsockopt operation.

Then it will restore the original user privilege after the setsockopt operation. But consider

a scenario in which pwÆpw_uid is tampered and is set to 0 through a format string attack.

In this case, the second seteuid operation will always seteuid to 0 again, although it is

supposed to restore the original user’s privilege. So the attacker is able to retain root

privilege and do all the damage subsequently. Note that there is no control flow

tampering involved in this attack.

In [17], Chen et al. showed that this type of attacks is very realistic and should be

given a serious attention. Generally, tamperings to various security-critical data could

lead to such attacks. Security-critical data includes configuration data, user input, user

identification data, decision making data and etc. In many cases, tamperings to the first

three categories of critical data does not alter program control flows. So the important

point is that we have to detect tamperings to the critical data directly rather than trying

to infer the data tamperings from control flow tamperings.

 165

ptr = NULL;
… …
if (user_input1) {
 ptr = & obj1;
}
else if (user_input2) {
 ptr = & obj2;
}
… …
*ptr = … // deref_inst
… …

Figure 60. Potential security holes in the AccMon approach.

The research on combating memory tampering attacks has been very limited.

AccMon [131] is a software debugging tool with hardware support to detect software

bugs leading to memory corruptions. The scheme is based on the observation that a

memory location is typically only accessed by a few instructions. It works at the data

object level. First, some data objects are selected to be monitored. Next they use profiling

to build up a PC-based invariants table, recording the set of instructions that normally

access a given data object. At runtime, the program execution is monitored through the

compiler inserted monitoring operations. If a data object is accessed by an instruction not

observed during training, an alarm is raised. Although AccMon is designed for software

debugging, it can also be used in combating memory corruption attacks. The scheme

relies on profiling/training, so it will have false alarms. Moreover, since it is based on

profiling, an instruction will be regarded legal to access a data object when it does that

during any normal program execution, even though under a specific execution, it may be

illegal for that instruction to access the data object. This leaves potential holes to be

 166

exploited by the attacker. Figure 60 shows a simple example. Assume that the simple

program shown can accept two kinds of user inputs. If the user input is user_input1, the

pointer ptr will point to obj1; if the user input is user_input2, the pointer ptr will point to

obj2. Later, the pointer is dereferenced at deref_inst and the object pointed by the pointer

is modified. Under the AccMon scheme, during profiling, both kinds of user inputs will

be exercised and the deref_inst will be regarded as legal to access both obj1 and obj2. But

during a specific execution of the program, the pointer can only either point to obj1 or

obj2 but never point to both obj1 and obj2. So if the user input is user_input1, ptr is

illegal to access obj2 but AccMon will regard it is legal. The attacker could tamper the

value of ptr to the address of obj2 and gain illegal access to it without being detected by

AccMon. Likewise, if the user input is user_input2, ptr is illegal to access obj1 but

AccMon will regard it is legal.

Xu et al. propose a technique to detect memory corruptions attacks in [121]. Their

basic assumption is that a randomized program usually crashes upon a memory

corruption attack. They utilize the crash information to automatically identify the faulty

instructions. In other words, they cannot detect attacks that do not result in a process

crash. An example of such attacks is shown in Figure 59. So the protection strength of

their scheme is limited.

Mondrian memory protection system [120] is a micro-architectural framework

that enables fine-grained memory protection supporting multiple protection domains with

acceptable performance degradation. It uses a single, shared address space with access

permissions possibly at the granularity of per word defined in a permission table. At

runtime, the value in the address register is used to lookup the permission table to see if

 167

the domain has appropriate access permissions. The access permissions are preset by the

user. Mondrian memory protection system provides an important reference in design of

the micro-architecture component of our scheme.

In our scheme, we aim to tackle the root cause of memory corruption attacks by

detecting corruptions to data directly. Our scheme achieves this by providing very fine-

grained data access protection. Different from the Mondrian Memory Protection system,

the access permissions are generated by the compiler automatically and access

permission for a data object is managed and changed properly at runtime as per the

program semantics.

Our basic idea is as follows. The compiler first identifies program regions in

which certain critical data should remain unmodified performing a data flow analysis.

Then the compiler sets the data as read-only in those regions through special operations

with hardware support. Any attempt to modify the data marked as read-only triggers an

alarm. This leads to superior attack detection strength. Moreover, since it is based on

static data flow analysis, there are no false positives. Zero false positive rate greatly

improves the applicability of the scheme. In the extreme case, we can always set the data

as read-only right after each write to it and set the data as writable just before each write

to it. This should provide best security but at the cost of performance degradation. There

are many implementation issues and optimization opportunities, which will be detailed in

the next section.

6.2 Compiler Analysis and Optimizations

Before we present the details of our scheme, we first introduce some important

definitions.

 168

Definition 1: A memory object is a data object defined in a program and resides in

the memory. Memory objects include local stack data objects, static global data objects

and dynamically allocated heap data objects. Common memory objects are scalar

variables, arrays and aggregated structures etc.

Definition 2: An access permission level of a memory object is either writable, or

read-only.

Definition 3: A protection point is a program point where the access permission

levels of some memory objects are changed by setting the corresponding access bits for

those memory objects.

Definition 4: A protection operation at a protection point is denoted as the action

of changing the access permission levels of some memory objects at this point. Generally,

there are two types of protection operations – changing from writable to read-only and

changing from read-only to writable.

Baseline Scheme

First, we discuss a most basic implementation of our idea. In such a baseline

scheme, every memory object has a corresponding access bit containing the access

permission level for it. There are two types of protection points – just before a store

instruction and right after a store instruction. Assume that a memory object “O” is written

by the store instruction. The access permission level for O is changed to writable before

the store instruction and is changed back to read-only after the store instruction. Initially,

the access permission of all memory objects is set to be read-only. During the execution

of the program, whenever a store instruction is to be executed, the hardware checks the

access bit table to see whether this instruction violates the memory access permission, i.e.

 169

writing to a memory object with access permission as read-only. If there is a violation, it

alerts the attempted attack. Note that the memory corruption has to be done by some store

instructions in a software-based attack. This store instruction could be some existing

instruction in the program but writing to a memory object that it is not supposed to. A

second possibility is that this store instruction could be injected by an attacker. In either

case the tampering is detected by our scheme.

The baseline scheme can prevent memory corruption attacks completely. In other

words, all memory objects can be protected from being attacked. But it is infeasible to

realize this complete protection mechanism due to the very large overhead of setting and

checking access permissions. Thus, we propose three compiler optimizations to reduce

the performance overhead in a significant way while maintaining the memory protection

strength at a fine-granularity level. We empirically show how strong protection can be

achieved for typical attack models with minimized performance degradation.

Compiler Framework Overview

The compiler’s task is to analyze the program, optimize the baseline scheme,

collect the information about how to set up access permissions for memory objects

properly and convey the information to the runtime component.

 170

Identify initial protection points

Identify write ranges

Hoist and delay protection points

Select protection points

Group protection operations

Build points-to table and action table

Pointer analysis

Insert special instructions

Figure 61. Compiler framework overview.

Figure 61 depicts our compiler framework. There are eight steps. First, the pointer

analysis is performed trying to statically find out which memory objects a pointer is

pointed to. Second, all store instructions are identified by the compiler. All program

points right before/after store instructions are treated as initial protection points as we

stated in the baseline. Third, all write range information is collected to facilitate further

optimizations (we will talk about write ranges later). Forth, the hot protection points are

hoisted/delayed to cold basic blocks. Then given some performance degradation

constraints, the least beneficial protection points are removed. Next, remaining protection

operations are grouped together whenever such opportunities exist to reduce performance

overhead further. Next, an action table recording protection points and the corresponding

protection operations is created. So is a pointed-to table used to assist the handling of

pointer dereferences. Finally special instructions are inserted into the code to inform the

processor when to look up the action table. Details about the above steps follow.

 171

6.2.1 Write Ranges Identification

A write range is similar to the live range of a variable, except that the starting

point of a write range is a store instruction on a memory object, and the ending point is

the next closest store instructions on the same memory object. A write range is used to

identify protection pairs – given a “set to writable” protection operation, what are its

corresponding “set to read-only” protection operations, or on the other hand, what are the

related “set to writable” protection operations for a “set to read-only” protection

operation. The information is collected to assist the later optimization phases.

 B1 B2
str r1 v

…
str r2 v

…

str r3 v

…
str r4 v

…
str r5 v

B3

B4
B5

WR2

WR3

WR1

Figure 62. Write range example.

Figure 62 gives an example to show the write ranges of a variable v. There are

five store instructions in five basic blocks, resulting in three write ranges – WR1, WR2

and WR3. One from “str r1 v” to “str r3 v”, one from “str r2 v” to “str r3 v”, and another

from “str r3 v” to “str r4 v” and “str r5 v”. Note that the three write ranges do not include

the store instructions themselves. In other words, a write range starts at the point right

after a store instruction and ends just before the nearest next store instruction for the same

variable.

We utilize the standard framework of webs to identify write ranges. The starting

and ending points of a write range are program points where protection operations should

 172

be performed initially. In the above example, the access permission level for v should be

set to read-only at the start of WR1, and it should be changed back to writable at the end

of WR1. It is the same for WR2 and WR3. Thus, protection points are the boundaries of

write ranges.

6.2.2 Protection Points Hoisting and Delaying

The large overhead of complete memory protection by setting access permissions

at all protection points is mainly due to that some store instructions are executed many

times. For example, in some multimedia encoding applications, the encoding process is

done in a major loop executed a very large number of times; while other code outside the

loop body is seldom touched. Hoisting/delaying a protection point out of the loop body

would afford us more efficient protection mechanisms. This observation motivates us to

come up with an optimization to move the protection operations from a hot basic block to

a cold basic block whenever possible.

 173

 Func: HoistPP
Input: PP – Protection point set of a variable

CFG – control flow graph of the program
Profile – Hot/cold basic block information in the CFG
Threshold – a threshold to make cost-benefit tradeoff

Output: Optimized protection point set

For each variable v

For each P∈PP[v] in a basic block B
If B is hot

For each preprocessor BP of B
_push (BP, S)

EndFor
HoistSet = ProcStack
//BP∈HoistSet
Hoist_benefit = B.freq – ∑ BP.freq
Hoist_cost = ∑ dynamic stores from BP to B
If (Hoist_benefit/Hoist_cost > threshold)

PP[v] = PP[v] – {B}
PP[v] = PP[v] ∪HoistSet

EndIf
EndIf

EndFor
EndFor

Func: ProcStack
Input: PP – Protection point set of a variable

CFG – control flow graph of the program
Profile – Hot/cold basic block information in the CFG
S – Stack for processing

Output: HoistSet – Set of protection points that the original
protection point is going to be hoisted to

HoistSet = Null
While (B = pop(S) != NULL)

B.visit = true;
If B is hot

If (∃ P∈PP[v]) && (P is in B)
return Null

Else
For each preprocessor BP of B

If B.visit = false
_push(BP, S)

EndIf
EndFor

EndIf
Else

HoistSet = HoistSet∪ {B}
EndIf

EndWhile
return HoistSet

Figure 63. Algorithm for hoisting protection points.

 174

Figure 63 gives the pseudo code for our hoisting algorithm. Starting from a hot

basic block containing a protection point, we go back along the edges in the control flow

graph. Its predecessor basic blocks are pushed onto a stack for further processing.

ProcStack is an auxiliary function to explore the algorithm along backwards edges.

It first examines the block on the top of the stack to see if it is also hot. A basic block is

said to be hot if its execution frequency exceeds some preset threshold. If it is cold, then

we get one desired location to insert the protection operation. Otherwise, we should

check whether we have reached a boundary – a basic block that contains another

protection point for the same memory object. In other words, the algorithm determines if

we have reached a program point where the object’s access permission level is just

changed from writable to read-only, so we have to stop here and leave the hot protection

point for further optimizations. If the current basic block that is being processed is hot

and it does not include any protection operation on the same memory object, we continue

pushing its predecessor basic blocks onto the stack. A control flow graph may include

loops, so we use a flag to indicate whether a basic block has been visited before.

After obtaining the potential locations for hoisting a protection point, we

determine whether to actually move the protection point out of the hot basic block based

on a cost/benefit analysis. The benefit is denoted as the saving in executing protection

operations dynamically. The cost is defined in terms of the security degradation. Hoisting

a protection point to a predecessor point means that the object could be corrupted

between the two points. So it is not protected in that region. If the ratio of benefit/cost is

bigger than a threshold, then the protection point is hoisted. Currently the threshold is

 175

determined by the system manually, which can be optimized using some heuristic

solutions.

…
str r1 v B2

B3 B4

B5

…

B1

B6

str r2 v

…

B8

B7

Figure 64. An example of hoisting protection points.

Figure 64 gives a sub control flow graph to show how the hoisting algorithm

works. There are two store instructions in blocks B2 and B8, generating four protection

points, right before and after the two stores. Assume all blocks in the loop body are hot. It

is easy to see that the protection point before the store in B2 can be taken out of the loop

to the block B1. That means we can set the access permission level for v1 to writable at

the end of B1 instead of in B2. Similarly, if B6 is cold, the protection point can also be

lifted from B8 to B6. On the other hand, if B6 is also hot, the hoisting algorithm has to

proceed by processing blocks B5, B4, B3 and B2 until it meets another store for v in B2.

Thus there are two possibilities for moving protection points from hot blocks to cold

blocks in this example.

The benefit also comes with penalty – the degradation in security. If a write is

only permitted just before the instruction “str r1 v”, the variable v is well protected. If the

variable v is set to be writable at the end of B1, the attacker can possibly corrupt variable

v during the program’s execution between the end of B1 and the store instruction. So a

 176

tradeoff must be made to balance the benefit and the cost. On the other hand, if there is

no other store instruction between the end of B1 to the store instruction to variable v1, the

protection remains intact or does not degrade at all. This is because the attacker has to

execute a store instruction to corrupt a memory object. Thus, some motions of protection

points actually do not result in security degradation if they don’t move the protection

point past another store (which could be malignant).

The similar algorithm is applied to delay the protection operation of changing the

access permission from writable to read-only from a hot basic block to a cold one. Look

at the example in Figure 64 again. Initially, variable v is set to be read-only right after

“str r1 v” in B2. It could involve great overhead since B2 is hot. So if B6 is cold, we

could delay this protection to B6. However, there is a relatively long path from B2 to B6.

So the protection to variable v may be degraded significantly. In this case, the compiler

determines whether it should be delayed or not after considering both the benefit and the

cost similar to that of hoisting a protection operation (i.e. if benefit/cost is bigger than the

threshold, it is decided to be delayed).

6.2.3 Protection Points Selection

Due to the big overhead, completely protecting all memory objects may not be

feasible. So how to determine where and which memory object should be protected are

the key issues addressed in this section.

We build a cost/benefit analysis model to select protection points based on the

profile data. The analysis unit is the set of protection points of a write range. All protection

points for a write range have to be analyzed together since they are related operations. In

other words, if a “set to read-only” operation for a memory object is removed, the

 177

corresponding “set to writable” operations are not necessary any more. On the other hand,

if only the “set to writable” operation is deleted, its corresponding writes are not checked.

Otherwise, the corresponding writes will be regarded as illegal and there will be false

alarms.

Func: SelectPP
Input: AllWR – write ranges set

Threshold – performance degradation constraint
Output: Optimized write ranges set

CompCostBenefit
// WR∈AllWR
performance_degradation = ∑ WR.cost
While (performance_degradation > threshold)

WR∈AllWR with minimum weight
AllWR = AllWR – {WR}
Performance_degradation -= WR.cost

EndWhile

Func: CompCostBenefit
Input: AllWR – write ranges set

Profile – Hot/cold basic blocks information in the CFG
Output: Weight of each write range

For each variable v

For each WR∈AllWR[v]
WR.benefit = ∑ (dynamic stores within WR)

WR.cost = ∑ (instruction at protection point in WR)
WR.weight = tradeoff(WR.beneft, WR.cost)

EndFor
EndFor

Figure 65. Algorithm for selecting protection points.

The benefit of removing a write range is denoted as the sum of the dynamically

executed store instructions within the write range. In other words, the benefit corresponds

to the protection offered to the number of stores in a given range and is therefore

proportional to the number of stores. The cost of a write range is defined as the sum of

 178

the dynamic execution times of all protection points in this write range. The cost is equal

to the sum of the frequencies of basic blocks where the protection points are located.

Figure 65 shows the pseudo code for the algorithm to choose the most profitable

memory objects to be protected. The algorithm first analyzes the cost/benefit for all write

ranges. The weight of a write range is based on the cost/benefit tradeoff which indicates

its priority in terms of protection. The weight is equal to WR.benefit/WR.cost. If WR.cost

is zero, WR.weight is set to be infinity. Then, driven by the performance degradation

constraint, the algorithm repeats removing write ranges until the degradation requirement

is satisfied.

As an example, consider the control flow graph in Figure 64. If the “set to read-

only” operation cannot be delayed from B2, we re-evaluate its benefit and cost in this

compiler pass to determine if such a protection point should be deleted.

6.2.4 Grouping Protection Operations

In this section, we introduce a compiler technique called protection operations

grouping. Normally, each protection point corresponds to one protection operation that

incurs certain runtime overhead. However, interesting optimization opportunities exist

when multiple protection points performing the same type of operations are clustered

together and the memory objects they protect are adjacent in the memory. In these cases,

instead of incurring one protection operation for each protected memory object, the

protection operations can be grouped together as one protection operation for all memory

objects at the clustering point. Figure 66 shows a simple example. Assume variables v1

and v2 are adjacent to each other. The start address of v1 is addr1 and the size of it is

size1. The start address of v2 is addr1+size1 and the size of it is size2. Instead of setting

 179

access permission levels of v1 and v2 separately, we can group the operations and set the

access permission level of the memory region with start address as addr1 and with size as

size1+size2. The grouped protection operation achieves better performance since it

reduces the number of dynamic protection operations and the associated runtime

overhead.

…
set v1 to writable
str r1, v1
set v1 to read-only
set v2 to writable
str r1, v2
set v2 to read-only
…

…
str r1, v1
str r1, v2
…

without protection baseline scheme

…
set v1and v2 to writable clustering point P1
str r1, v1
str r1, v2
set v1 and v2 to read-only clustering point P2
…

after protection grouping

Figure 66. An example of protection operations grouping.

Such optimization opportunities occur when there are multiple protection

operations clustered together and when the memory objects protected at the clustering

point are adjacent to each other. We can easily create clustered protection operations

when there are multiple adjacent store instructions as shown in Figure 66. In our scheme,

the compiler tries to move store instructions together as long as their dependencies are

still satisfied. Also, after the protection point hoisting/delaying algorithm is performed,

many protection operations tend to be grouped at the same program point, such as the

beginning/ending of a cold basic block.

 180

After clustered protection operations are identified, we need to lay out the

memory objects involved properly to exploit the optimization opportunities. Note that the

layout of the memory objects is a global decision rather than a local decision with respect

to a given protection point. Different memory layouts may be required to completely

exploit protection operation grouping opportunities at different clustering points, but

there could be only one memory layout for the program. Our goal is to find a layout of

memory objects that can exploit the opportunities of protection operations grouping

maximally.

…
set v1, v2, v3 and v4 to read-only clustering point P1
…
set v5, v6 and v7 to read-only clustering point P2
…
set v8, v9 and v10 to read-only clustering point P3
…
set v1, v2, v5, v6, v8, v9 to read-only clustering point P4

(a) clustering points

(b) Data layout 1

 v1 v10 v6 v4 v8 v5 v9 v3 v7 v2

 v3 v4 v1 v2 v5 v6 v7 v8 v9 v10

(c) Data layout 2

Figure 67.Data layout and protection operations grouping.

Figure 67 gives an example showing how the data layout impacts the protection

operations grouping. There are nine variables and four clustering points in this example.

Figure 67 (b) and (c) show two possible data layouts of these variables in the virtual

memory. Data layout 1 only allows us to perform the protections on v5, v8 and v9

together at P4 since only these variables are adjacent and there are protection operations

on them at the same clustering point (i.e. P4). On the other hand, data layout 2 allows us

 181

to protect v1, v2, v3 and v4 together at P1; to protect v5, v6 and v7 together at P2; to

protect v8, v9 and v10 together at P3; to protection v1, v2, v5 and v6 together at P4; and

to protect v8 and v9 together at P4. The two data layouts show substantial difference in

grouping protection operations, so our goal is to find out the best way to layout the data

so that protection operations can be grouped maximally.

The pseudo code of our algorithm to determine memory object layout is shown in

Figure 68. First, a variable group at a clustering point is identified. All objects with the

same type, whose access permissions are changed in the same way at a clustering point

form the variable group for the clustering point. Types of an object include initialized

global object, un-initialized global object, heap object, and stack object. So there are at

most four variable groups at a clustering point. Access permissions can be changed either

from read-only to writable or from writable to read-only. The weight of a variable group

is defined as the saving of dynamic protection operations if the protection operations for

all of the variables in the variable group are grouped together at the given point. Then the

algorithm starts from the variable group (say CurrVG) with the maximum weight. Note

that we only deal with variable groups whose size is bigger than one since one element

group does not provide any opportunity for optimization. Let ProcessedVG be the set of

variable groups that have been processed. It is initialized to be null. CommonVG includes

variable groups that have common variables with CurrVG. The motivation behind

identifying the set of common variables is to maximize linearization of the variables in

the group greedily so that more protection operations can be removed. We illustrate

these concepts below through an example.

 182

 Func: GroupVar
Input: AllVG – set of all variable groups
Output: Optimized variable groups

ProcessedVG = null
While AllVG != null

CurrVG = SelectMaxWeightVG
AllVG = AllVG – {CurrVG}
If (CurrVG.size > 1)

CommonVG = {VG’ | (VG’∈AllVG} & (VG’∩ CurrVG != null)}
ProcessedVG = ProcessedVG – CommonVG
If (CommonVG != null)

ProcessedVG = ProcessedVG∪ArrangeData
Else

ProcessedVG = ProcessedVG ∪ {CurrVG}
EndIf

EndIf
EndWhile

Func: ArrangeData
Input: CommonVG – variable groups having common element with CurrVG
Output: Arranged variable group

ListGroup = null
For each VG’ in CommonVG

CommonVar = VG’∩ CurrVG
For each v in CommonVar

CurrVG = CurrVG – {v}
ListGroup = ListGroup –VG’
VG’ = VG’ – {v}
NewListGroup = CreateListGroup(v, VG’)
ListGroup = CombineListGroup(ListGroup, NewListGroup)

EndFor
EndFor

Figure 68. Pseudo code for the grouping algorithm.

We use the example in Figure 69 to explain our algorithm step by step. In this

example, there are four groups VG1, VG2, VG3 and VG4 corresponding to the example

in Figure 67. Their weights are decreasing. That means VG1 should be dealt with first,

then VG2, VG3 and VG4. In processing VG1, both ProcessedVG and CommonVG are

null, so VG1 is included in ProcessedVG. In processing VG2, since Processed VG only

contains VG1 and there is no common variable for VG1 and VG2, CommonVG is also

empty. VG2 is inserted into VG. Similarly, VG3 is also included in VG. Now VG

 183

contains VG1, VG2 and VG3. The last variable group is VG4, which has common

variables with VG1, VG2 and VG3, so CommonVG includes VG1, VG2 and VG3.

(f) Processing v9

v1
v2
v3
v4

v1
v3
v4v2

(a) Processing v1 (b) Processing v2

v3
v4v5 v1 v2

v6
v7

v3
v4 v5 v1 v2v6v7

(c) Processing v5 (d) Processing v6

v5 v1 v2v6 v7
v3
v4 v8

v9
v10

v5 v1 v2v6 v7
v3
v4 v8 v9 v1

v1
v2
v3
v4

v5
v6
v7

v8
v9

v10

v1 v2
v5 v6
v8 v9

 GV1 GV2 GV3 GV4

 (e) Processing v8

Figure 69. An example of protection operations grouping algorithm.

Next we show how to use the common variables to clarify the spatial relationship

of variables. For each variable group VG’ in CommonVG, let CommonVar be the set of

common variables of CurrVG and VG’. For each variable v in CommonVar, it is taken

out of the variable group first. The remaining variables in the variable group form a new

 184

variable group. Next v is connected to the new variable group to create NewListGroup

that is in a special form – listgroup. Listgroup is a special structure containing both lists

and groups. A group means that variables in it could be grouped together, but it does not

tell us the exact layout of the variables, i.e. which variable should be adjacent to which

variable in the virtual memory. So the variable can be linearized in many ways. But

considering all variable groups, a variable should be preferred to be the neighbor of

another variable to optimize overall protection operations. So a list is designed to

represent the linear data layout of the variables. Finally NewListGroup is combined with

original ListGroup to build current ListGroup.

To make it more clear, look at the example in Figure 69 again. VG1 is taken from

CommonVG first. CommonVar includes v1 and v2. Initially ListGroup is set to be empty.

v1 is first removed out of VG1. Note that although the variable group has priority based

on their weights, variables in the same group have the same priority. That means it does

not matter if we deal with v1 or v2 first. Now the new VG1 only has v2, v3 and v4.

NewListGroup is created containing two elements, v1 and the new VG1. Then

NewListGroup is combined with ListGroup. Since the original ListGroup is empty,

current ListGroup is the same as NewListGroup as shown in Figure 69 (a). v1 is taken

out as a special element connecting to the new VG1 since VG4 indicates that it is

preferable for v1 to be grouped with other variables later, such as v2, v5 to reduce

protection operations.

The next variable in Common to be processed is v2. In this case, VG1 is picked

from ListGroup. Currently VG1 is the set of v2, v3 and v4, so ListGroup only has v1.

Then v2 is taken out of VG1 connecting to the new VG1 creating NewListGroup. Next

 185

NewListGroup and ListGroup are combined as follows. In CombineListGroup, if both

NewListGroup and ListGroup have ending variables (such as v2 in NewListGroup and v1

in ListGroup) and they are both in P, then the ending variables are connected by an edge.

An ending variable is a variable in a listgroup that has only one neighbor and not in a

group. Thus, by connecting v1 and v2, we get the final ListGroup as shown in Figure 69

(b).

It works similarly in dealing with VG2. Note that if a variable group has only one

variable, it becomes a variable automatically. For example, in Figure 69 (d), after taking

v6 from VG2, new VG2 only has v7, so new VG2 degenerates to a variable, thus there is

no group circle around v7. Now the layout of v1, v2, v5, v6 and v7 are quite clear. If we

keep the variables layout as shown in ListGroup in Figure 69 (d), all variables in

VG1/VG2 can be protected together at the clustering point P1/P2. Only one protection

operation is needed for v1, v2, v5 and v6 at P4. On the other hand, assume the data layout

is like v3–v1–v4–v2–v5–v7–v6, any two of v1, v2, v5 and v6 cannot be protected

together at P4 since the grouped protection operations only works for adjacent memory

objects as discussed earlier.

It is the same for VG3. But in processing v8, ListGroup and NewListGroup are

not connected though they both have ending variables (v7 and v8) since v7 and v8 are not

both in VG4. That means VG4 does not suggest that v7 and v8 should be protected

together. We choose to leave two listgroups instead of combing them into one because

more listgroups have more ending variables that could provide more opportunities for

further listgroup combination. Now how to proceed further is very clear, so we do not list

all the intermediate data structures in Figure 69 (e) and (f). The final ListGroup is shown

 186

in Figure 69 (f). There is still one variable group in the final ListGroup. Either v3 or v4

can be put next to v2. So the final data layout is v7–v6–v5–v1–v2–v3–v4, v8–v9–v10 or

v7–v6–v5–v1–v2–v4–v3, v8–v9–v10.

Besides scalar variables, we can also group array accesses. For example, if an

array is written/read in a stride of 2, e.g., it accesses elements 1, 3, 5, 7, 9, 11…, we may

group array elements 1, 3, 5 as a group and array elements 7,9,11 as a group. Array

access analysis is an important topic in compiler optimizations especially for loop

parallelization. It has been extensively studied in [13] [24] [88] [106] [85] . With array

access information, array accesses can be grouped using standard techniques. For array

accesses with a stride of 1, the problem is very similar to loop vectorization. For array

accesses with a stride greater than 1, loop scatter-gather can be done first to create a loop

accessing the same data with a stride of 1. Of course any transformation cannot violate

the original program dependencies. All the techniques involved are elaborated in 1 [53] .

Being able to handle arrays is important to reduce security cost for the whole program

since a large percentage of dynamic memory accesses go to aggregated data structures,

most of them being arrays.

6.2.5 Points-to Table

Dealing with pointer dereferences is a difficult problem. Static compiler pointer

analysis has a lot of limitations and in some cases cannot determine an accurate points-to

set for a pointer dereference. If the points-to set of a pointer dereferencing store

instruction contains multiple possible memory objects, then before the pointer

dereferencing store instruction, the access permission levels of all possible pointed-to

memory objects have to be set to writable. Also, after the pointer dereferencing store

 187

instruction, the access permission levels of all possible pointed-to memory objects have

to be set to read-only. This could increase the protection overhead significantly.

Moreover, in some cases, the points-to set can be very big, even including all possible

memory objects, which means the compiler cannot derive any useful points-to

information for this dereference. If we choose not to handle such cases; then we have to

give up protecting the dereferencing store instructions and a large number of locations

would remain unprotected which sacrifices security.

In our scheme, we propose a profile-driven solution to the above problem. Our

observation is that due to the limitation of static analysis, although a pointer

dereferencing store instruction could possibly access a large set of memory objects

according to static compiler analysis, at runtime the number of memory objects actually

accessed by a pointer dereferencing store instruction is very limited. The same

observation is made in [131]. Thus, we use profiling to identify the most likely accessed

memory object by a pointer dereferencing store instruction. Based on this information, a

points-to table is created. The points-to table is basically a hash table indexed by the PC

addresses of pointer dereferencing store instructions for which the compiler computed

points-to set is large. Normally there are only tens of such entries in the hash table, so we

can easily create a collision free hash table by tweaking the hashing function parameters

to avoid the overhead to maintain a spilled list.

When handling these pointer dereferencing store instructions, all the compiler

algorithms proceed as if the compiler knows the store instruction will access that most

likely accessed memory object. Thus, the most likely accessed memory object will be

properly protected. At runtime, the hardware component checks whether the pointer

 188

actually points to the expected memory object by looking up in the points-to table. If the

pointer happens to point to a different memory object, the hardware component will

avoid checking access permissions for this pointer dereference to avoid potential false

alarms. In this way, we are able to handle most dynamic instances of pointer

dereferencing store instructions at the same time maintain a zero false positive rate.

From our results, the average size of the points-to set for each pointer dereferencing

store instruction is 1.58. The average miss prediction rate of the dynamically accessed

memory object for those specially handled pointer dereferencing instructions is only 5%.

This shows our profiling based scheme is highly effective and does not degrade protection

significantly.

6.2.6 Action Table and Special Instruction

We now describe in detail how the compiler actually inserts protection operations

to be executed at runtime by the hardware component. The central data structure involved

is an action table. The action table records which action should be performed at a given

program point on a given memory object at runtime. An example of an action table is

shown as Table 7. The action table is a hash table that uses the PC address of an

instruction as its key. We always create a hash table without collisions to avoid the

overhead of maintaining a spill list. Each entry of the table has three fields – action,

memory object starting address, and memory object size. The action field has only one bit

– bit value 1 denotes the action of changing the corresponding access permission level for

the memory object from read-only to writable; bit value 0 denotes the action of changing

the access permission level for the memory object from writable to read-only. The

memory object is identified by its starting address and its size.

 189

A special instruction is inserted at every protection point to inform the processor

that some protection operation needs to be done at the given program point. Whenever

the processor encounters such a special instruction, it uses its PC address to index into the

action table and to execute the desired action.

Table 7. Action table.

Action Starting address Size

0 Addr1 4
1 Addr2 8
0 Addr3 30
 …

Another possibility is to insert instructions to implement the intended protection

operations directly instead of recording them in a separate action table. However, the

action would require several instructions to implement, which indicates more changes to

the standard ISA of the processor and more code space overhead. Using a separate action

table plus one special instruction appears to be a better solution to us.

The action table requires the start address and the size of the modified memory

object for each action. The important problem is that the information may not be available

during compilation time. In general, during compilation, we do not know the address of the

local stack objects and the heap objects. For some heap objects, we may not even know

their sizes. To solve this problem, the action table has to be made writable and the compiler

has to insert instructions to fix the action table for stack and heap objects. Such

modifications of the action table occur after each dynamic memory allocation and each

function entry point. The inserted code will update the action table with dynamic obtained

address and size information when necessary.

 190

Making the action table writable brings some security complications. Ideally, the

action table should be put into a reserved address space and made read-only to the user

program, so that it can only be written by the hardware component of our protection

scheme to avoid malicious corruptions from the user program. Now how to protect the

action table becomes an issue. Our solution is to apply the protection mechanism in a

hierarchical way. That is, we use the same method to protect the action table residing in

the memory. But in this case, the scale of the problem is much smaller and the problem is

much simpler. We know the action table should only be modified by those fix-up

instructions inserted by the compiler. We can regard the action table as one single

memory object and its address is predetermined. Thus, the additional action table for

protecting the original action table can be easily constructed. It can be put into a reserved

address space, thus is not accessible to the user program but only accessible to the

hardware component. So it cannot be corrupted by the attacker. Then the original action

table can be protected properly.

6.3 Architectural Support

Figure 70 illustrates the necessary architecture support for our work. There are

three major data structures. Action table and points-to table are simple small hash tables

as explained previously. They are easy to manage due to their sizes and accesses to them

are cached as data in data caches. The access bit table records the access permission level

for each memory object. It is allocated into a reserved space and can only be accessed by

the hardware component of our protection scheme, thus is protected from tampering by

the user program. Access bit table is large and accessed frequently. It has to be carefully

managed to avoid significant space and performance overhead. A very similar problem

 191

exists in the Mondrian Memory Protection system work [120] and it provides an

excellent reference on how to manage this large access permission table. We largely

follow their design, regarding each memory object as a memory segment in their work.

We deploy multi-level permission table with mini-SST entries that are elaborated in [120].

To improve performance, a protection lookaside buffer and sidecar registers are also

deployed. Utilizing the design in [120] greatly reduces the space and performance

overhead of our access bit table.

Access bit

instruction CPU

Action Table
Protection
instruction

set access bits
fetch

Alarm

violation
Points-to table

Non-Pointer
dereferencing

store

Object matches

Pointer
dereferencing

store

Figure 70. Architecture support overview

There are two kinds of operations performed by the hardware component. Upon

fetching a protection instruction, the processor uses the PC address of the protection

instruction as the key to index the corresponding entry in the action table. Then the

access bits for the memory object will be set according to the starting address and the size

information. Another case is when a store instruction is fetched. The processor first

checks whether this store instruction is one of the specially handled pointer dereferencing

instruction by looking up in the points-to table. If the instruction is in the points-to table,

then it is specially handled. If the memory object dynamically pointed by the pointer does

not match with the object recorded in the points-to table, then the processor will skip the

 192

access permission checking for this store instruction to avoid any false alarm. Otherwise,

the access bit table is looked up to find out whether the memory location is allowed to be

written. If the instruction violates the access permission, then an alarm is raised

indicating the program is under attack.

6.4 Evaluation

All compiler implementations are done in the Machine SUIF compiler

infrastructure [68], a research compiler infrastructure for profile-driven and machine-

specific optimizations. Machine SUIF can be used to instrument programs for profiling

and carry out various code transformations and optimizations.

Our experiments are based on x86 Pentium architecture. In our experiments, we

first train our benchmarks to gather the basic block profile which is fed back to compiler

passes for memory protection. After the compiler passes are performed, the generated

binaries are evaluated by input data sets different from the ones used in training runs as

the test run. The benchmarks used are the same daemon programs used in the evaluation

of the anomalous path checking scheme and the infeasible path detection scheme.

 193

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

p
p

0.0

0.2

0.4

0.6

0.8

1.0

Remained
Removed by grouping
Removed by selecting
Removed by hoisting/delaying

Figure 71. Effects of compiler optimizations.

Figure 71 shows the effects of our compiler optimizations. Three compiler

optimizations, including protection point hoisting/delaying, protection point selecting and

protection operations grouping, are proposed to reduce the number of dynamically

executed protection points. On average, protection point hoisting/delaying reduces the

number of dynamic protection points by 27.1%; protection point selecting reduces the

number of dynamic protection points by 46.1%; protection operations grouping reduces

the number of protection points by 10.1%. Overall, those optimizations reduce the

number of dynamic protection points by 83.3% on average. The reduction results in

significant savings in performance overhead.

 194

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2
baseline
after optimization

Figure 72. Performance degradation.

Figure 72 shows the performance degradation under our scheme. All hardware

support modeling is done inside SimpleScalar [11] targeted to x86 [114]. The parameters

for the processor modeled are shown in Table 8. The performance under the baseline

protection scheme and the performance after our optimizations are shown in the figure.

Performance numbers are normalized to the original program binary without protection.

From the results, the average performance degradation under the baseline protection

scheme is 41.4%. The performance degradation mainly comes from the overhead to

access the access bit table. Other sources of performance degradation include accessing

the action table and the points-to table, and executing the compiler inserted instructions to

fix up the action table. The average performance degradation after optimizations is 13.0%.

So our optimizations are able to reduce the performance degradation due to data

protection significantly because optimizations are designed to reduce the number of

dynamic protection points greatly.

 195

Table 8. Parameters of processor simulated.

Clock frequency 1 GHz Branch predictor 2 Level
Fetch queue 16 entries BTB 512 entries, 4 -way
Decode width 4 PLB 128 entries
Issue width 4 L1 I/D DM, 32K, 1 cycle

32B block
Commit width 4 Unified L2 8way, 32B block

1M (16 cycles)
RUU size 64 Memory bus 200M, 8 Byte wide
LSQ size 32 Memory latency first chunk: 120 cycles,

inter chunk: 10 cycles

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

Se
cu

rit
y

M
ea

su
re

m
en

t

0.0

0.2

0.4

0.6

0.8

1.0

baseline
after hoisting/delaying
after selecting
after grouping

Figure 73. Security measurement.

Figure 73 shows the security measurement. Under our baseline protection scheme,

the access permission level for a memory object is set to writable just before a store

instruction writing to it and set to read-only right after the store. Thus the baseline

protection scheme can detect all memory corruption attacks exploiting the flaws in the

program such as buffer overflows and format string vulnerabilities, since an attack needs

a store instruction to do the tampering and that attacking store instruction has to be

 196

between the pair of “set to writable” and “set to read-only” operations. The baseline

scheme corresponds to the 100% protection shown in Figure 73. Due to the motion and

removal of protection points caused by compiler optimizations, some memory locations

could be left unprotected. The reason is that another store instruction str2 may be

between the “set to writable” operation and the “set to read-only” operation for str1 now,

and str2 could be the attacking store instruction and could possibly tamper the memory

object to be written by str1. Also, if a pointer points to an unexpected memory object at

runtime, the write will not be checked against the access permission table, thus there

could be false negatives too. We count the number of dynamic store instructions like str2

and the number of dynamic pointer dereferencing store instructions with an unexpected

target memory object, then subtracted those from the total dynamic store instructions to

measure the protection strength after optimizations. As per this calculation, a higher

number of dynamic store instructions after subtraction means a higher protection strength.

The results in Figure 73 indicate that the compiler optimizations do not lead to

much security degradation. On average, protection points hoisting/delaying degrades the

protection strength by 3.6%; protection points selection degrades the protection strength

by 7.8%; protection points grouping degrades the protection strength by 0.7%. Overall,

after optimizations we achieve an average of 87.8% protection over the baseline scheme,

ranging from 80.2% to 92.9%. So our scheme achieves a good memory protection with

reasonable performance degradation. It should also be noted that the above method to

measure protection strength represents the worst case. The above method assumes that

every store instruction moved into a pair of “set to writable” and “set to read only”

operations could be an attacking store instruction or an attacking point. In reality,

 197

normally a program only has a few possible attacking instructions. For example, for a

buffer overflow attack exploiting the strcpy function, the store instruction in the strcpy

function implementation is the possible attacking instruction. As long as our

optimizations do not move that possible attacking instruction into a pair of “set to

writable” and “set to read only” operations (which is very unlikely), the security will not

be harmed at all. Thus, our scheme should have much stronger detection strength against

real-world attacks than represented by the above worst case.

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

D
et

ec
tio

n
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 74. Detected simulated attacks (extreme condition).

We also performed simulated attack experiments to further evaluate our data

tampering detection scheme. We run the benchmarks in the simulator and then randomly

tamper a memory location by making a dynamic store instruction write to a different

memory object to see whether our scheme is able to detect the tampering. For each

benchmark, we perform such simulated attacks by tampering at 1000 different memory

locations.

 198

Although such a fault injected is not a real attack, we believe that our fault

injection model provides an extensive coverage of real world attacks and should represent

the worst case. Our fault injection model makes no assumptions about the attack behavior

and assumes that any memory object can be tampered by any dynamic store instruction.

The ability of real-world attacks is much more limited than this. For example, the

classical stack buffer overflow attacks cannot tamper arbitrary memory locations and can

only tamper memory locations following the unchecked and overflowed buffer.

Moreover, such stack buffer overflows normally tamper a continuous region of memory

instead of a specific memory location, making the detection of those attacks much easier.

Some attacks, such as format string attacks and heap overflow attacks, actually enable the

attacker to tamper arbitrary memory locations. However, the tampering is done by a

specific attacking store instruction. Only when that instruction is executed, could possibly

memory tampering be done. Which store instructions could be attacking instructions are

attack dependent. So to do a limit study of our scheme, in this experiment, we again

assume that every store instruction could be an attacking instruction and our results

represent the worst case. Figure 74 shows the percentage of attacks detected. On average

92.7% of the randomly injected memory tamperings are detected, which shows that our

scheme is very effective to protect memory tampering attacks even under the worst case.

We also tested our scheme against several real attacks discussed in [17], including

format string attacks against user identification data, heap corruption attacks against

configuration data, stack buffer overflow attacks against user input data and integer

overflow attacks against decision-making data. In all of those attacks, there are some

attacking store instructions used to corrupt memory state and they achieve the memory

 199

corruption by writing to a memory object that should not be modified by those

instructions at all. In the baseline scheme, such memory corruptions by illegally

tampering a memory object are easily detected since a memory object is only marked as

writable during the span of the execution of a legal store instruction to the memory object.

After our optimizations, as previously discussed, as long as the attacking store instruction

of an attack does not result in a pair of “set to writable” and “set to read-only” operations

for the target memory object, the attack will detected. The miss detection is a rare event

since normally there are only a few possible attacking store instructions inside a program

and for the attack to succeed, some specific memory object has to be tampered rather than

any memory object. We found that even after optimizations, our scheme can detect all of

these exemplary attacks shown in [17].

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

D
et

ec
tio

n
R

at
e

0.95

0.96

0.97

0.98

0.99

1.00

Figure 75. Detected simulated attacks (more realistic condition).

To further get a sense of how our data tampering detection scheme performs

under a more realistic condition rather than under the extreme condition assuming that

every store instruction could be an attacking instruction, we tried to limit the possible

 200

attacking store instructions. Instead of considering every store instruction as a possible

attacking store instruction, we first tried to regard only store instructions depending on

external inputs as possible attacking instructions. Those store instructions can be affected

by the attacker and are thus dangerous. However, we found that actually most store

instructions depend on external inputs directly or indirectly so this method does not really

give different results. Then we tried to survey existing vulnerabilities and got a list of

well-known dangerous standard library functions, such as strcpy, free, printf and a lot of

others, and then got the attacking store instructions in those functions. We performed a

similar simulated attack experiment but this time regarded only those store instructions as

possible attacking store instructions. Since the number of possible attacking store

instructions is greatly reduced, we got much better results as shown in Figure 75. On

average, 98.9% of simulated attacks are detected. This experiment is more realistic than

the limit study. However, it is optimistic in that it only considers existing popular

vulnerabilities in standard libraries. On the other hand, it is also very pessimistic since it

assumes that tampering any memory object would be useful to the attacker. In reality,

some very specific memory object has to be tampered for the attacker to launch a

successful attack. However, which memory objects are interesting is highly application

dependent.

The space cost is shown in Table 9. There are four fields in this table. The first

three fields represent the sizes of the action table, the access bit table, and the points-to

table. The last field shows the total code size increase of the program due the insertion of

protection operations. The additional action table to protect the original action table only

requires a little space, so we do not show its size here. We use a multi-level permission

 201

table as in [120]. The average sizes of the action table, the access bit table, the points-to

table, and the code increase are 12361 bytes, 319 KB, 776 bytes and 7721 bytes

respectively. The access permissions for one object are compacted using the Mini-SST

 [120] technique, which could save a lot of space. The results show that the space cost of

our protection technique is at most several hundred kilo bytes, which is very acceptable

for modern computers.

Table 9. Space cost measurement.

Benchmark Action table
(byte)

Access bit table
(KB)

Points-to table
(byte)

Code size increase
 (byte)

Telnetd 1580 193 388 1216
wu-ftpd 5972 376 700 3980
xinetd 3084 151 652 2204
crond 588 263 304 492

sysklogd 1728 124 312 1232
atftpd 508 231 336 364
httpd 41384 847 1920 25864

sendmail 57784 524 1268 33992
sshd 10804 360 1624 7716

portmap 176 122 260 148

6.5 Summary

A large category of realistic memory tampering attacks do not alter program

control flows at all, which makes control flow monitoring based anomaly detection

schemes completely helpless when combating with those attacks. In this chapter, we

propose a compiler and micro-architecture collaboration framework to perform memory

protection and to detect memory tamperings directly instead of trying to infer memory

tamperings from anomalous control flows. Three optimizations involving hoisting,

selecting and grouping of memory protection operations are designed to reduce the

performance degradation of the baseline scheme. By carefully crafting these

 202

optimizations, our empirical study shows that the security of the scheme is not reduced

much whereas the performance degradation is reduced significantly. Our experiments

prove that our scheme achieves strong memory protection with tight control over the

performance degradation.

Comparing with the anomalous path checking scheme and the infeasible path

detection scheme, the data tampering detection scheme presented in this chapter is able to

detect attacks not altering program control flows, while those two schemes based on

control flow monitoring cannot. The data tampering detection scheme also achieves zero

false positive rate since it is based on static compiler data flow analysis. Thus, the

security strength of the data tampering detection scheme is superior to the previous two

schemes we discussed. However, the hardware support required for the data tampering

detection scheme is more complicated thus introducing more hardware cost. More

importantly, the performance degradation (13% on average) is much more significant

than the previous two schemes. Thus, the data tampering detection scheme should be

applied in situations in which the maximum security strength is the first priority or the

performance degradation incurred is affordable. Finally, in the next chapter we will show

that the data tampering detection scheme has significant advantage in terms of intrusion

recovery. The reason is that both the anomalous path checking scheme and the infeasible

path detection scheme try to infer data tampering from anomalous control flows, thus it is

impossible for them to detect the data tampering until the tampered data is used by the

program. In other words, there could be an arbitrarily long interval between memory

tampering and attack detection, making intrusion recovery a very difficult problem. Such

a problem does not exist in the data tampering detection scheme. Detailed discussions

 203

regarding this issue can be found in the next chapter. Thus, the data tampering detection

scheme should be given a higher priority if intrusion recovery is highly desired.

So far we have proposed three anomaly detection schemes. Each of them has its

advantages and disadvantages. It is necessary to give some guidance on how user should

decide to choose which anomaly detection scheme. In general, due to its security

advantage, the data tampering detection scheme should be given the highest priority as

long as the performance overhead incurred is acceptable. If the performance overhead is

not affordable, the anomalous path checking scheme and the infeasible path detection

scheme should be then considered since they incur only minor performance degradation.

Then the user needs to evaluate the cost of deploying the anomalous path checking

system. The system has to be properly trained, bringing significant initial installation cost.

Also there will be false positives and managing a possibly large number of false positives

is also an important concern. The installation and maintenance cost generally depends on

the complexity of the protected software. If the cost is acceptable, then the anomalous

path checking scheme should be chosen due to its better detection strength. Otherwise,

the infeasible path checking scheme should be chosen since it does not have false

positives at all. As a summary, the pseudo code to decide an anomaly detection scheme is

shown in Figure 76.

 IF estimated performance overhead (through simulation) of the data
tampering detection scheme is affordable THEN

 Choose data tampering detection scheme;
ELSE IF the initial installation cost and the maintenance cost of the

anomalous path checking scheme is affordable THEN
 Choose anomalous path checking scheme;
ELSE
 Choose infeasible path detection scheme;

Figure 76. How to decide an anomaly detection scheme.

 204

7 INTRUSION ANALYSIS AND INTRUSION RECOVERY

After spending significant efforts on devising intrusion detection schemes, we

change our focus into another important aspect of software protection – intrusion

recovery – in this chapter. No security system is bullet-proof and is able to prevent all

attacks. To be realistic, we have to assume that some attacks will be able to evade the

intrusion prevention mechanisms implemented. To protect software from those attacks,

we build a second line of defense consisted of intrusion detection, intrusion analysis and

intrusion recovery mechanisms. We have discussed several efficient intrusion detection

schemes in previous chapters. In this chapter, we focus on intrusion analysis and

intrusion recovery.

After an intrusion is detected, most previous approaches simply shut down the

attacked process to avoid any further damage. However, security implies several

important properties including confidentiality, integrity and availability [3]. Availability

is an equally important security property to be enforced but gets far less attention. In the

sense of software security, availability means recoverability from attacks or intrusion

recovery. Simply shutting down the attacked process is unacceptable for software

providing critical services. A complete software protection scheme should have the

ability to analyze an attack and recover from the attack whenever possible. Thus,

intrusion analysis and intrusion recovery is an important goal of our secure infrastructure.

7.1 Background and Motivation

Intrusion recovery is critical since no software system can be made perfect. There

are always software bugs, configurations errors etc. to be exploited by the attacker. Upon

detection of an attack, the simplest response is fail-stop, i.e., shutting down the system to

 205

avoid further damage. However, shutting down the system completely leads to

inconvenience for the users and denial of services. For systems providing critical services,

it may cause huge financial losses. In areas such as aircraft control, battlefield control, it

could be disastrous.

Intrusion recovery enables software to recover from attacks and continue correct

software execution even when tampering occurs. Intrusion analysis is an indispensable

step for intrusion recovery. We can recover from an attack only after we understand the

attack. Unfortunately, although failure recovery is often the most important aspect of

security engineering, it has not been carefully addressed. Most of the computer security

research has dealt with confidentiality and most of the rest with authenticity and integrity.

However, the actual expenditure of systems providing critical services may go the other

way around [3].

Availability is a traditional research topic in fault tolerant computing. Traditional

solutions to provide availability in fault tolerance area are replication [81] [90] [66] [69] [14]

and checking-pointing/roll back [57] [116] [29] [86] [99]. Those solutions cannot be simply

copied to security area. Replication is very effective to combat random faults since the

chances that multiple replicated systems experience random faults at the same time are

extremely low. However, it is very likely that multiple replicated systems are attacked

coordinately at the same time since attacks can be well organized. Software versioning [7]

could be used to mitigate the problem. Overall, replication is a very expensive way to

provide availability since the system cost with n-replication is order of n times larger.

Checkpointing backs up the program state for later recovery. The size of the program

state could be large. If done in software, checkpointing could incur significant overhead.

 206

For example, in [116], the checkpointing interval is 30 minutes and each checkpointing

costs up to several minutes with program state size up to tens of megabytes. The resulting

overhead could prevent fine-grained checkpointing. To reduce performance overhead,

checkpointing can be done incrementally through logging of changes of in program state.

Although fault tolerance is a traditional research area, there has been limited

research on intrusion recovery for secure software. DIRA [98] is a GCC compiler

extension to combat buffer overflow attacks. Instead of merely detecting buffer overflow

attacks, DIRA unifies the functionality of attack detection, attack identification (intrusion

analysis) and attack repair. DIRA achieves attack identification and repair by a memory

updates logging based scheme. DIRA is among the first to make an effort to analyze and

recover from attacks, but it has many limitations. It only handles a limit set of buffer

overflow attacks targeting to tamper return addresses and function pointers. As we have

shown previously, those attacks are only the most basic ones and real attacks can be

much more sophisticated. The memory updates logging algorithm of DIRA is designed

for simplicity with little compiler analysis and frequently sacrifices security strength. It

only logs updates to global variables and ignores local variables. It is not clear that

whether the scheme is able to handle heap objects. Moreover, the current DIRA compiler

only tracks data dependencies carried by simple assignment operations such as A=B and

proxied functions, it cannot identify dependencies that involve any arithmetic expressions,

e.g., B=A+C. This means that DIRA’s recovery scheme will not be able to trace a

corrupted data structure back to the attack point as long as the data structure is computed

through some form of transformation other than assignment operations. Even if DIRA is

enhanced with powerful compiler analysis, the limitation of static compiler analysis is

 207

well understood, especially when dealing with aliased data. The performance degradation

of the scheme is up to 60% with an average of 25% for the benchmarks tested even it

only deals with return addresses and function pointers in a limited way. As shown in [17],

a lot of other software data is critical to security. If all security critical data is handled in

this scheme, the performance overhead will be unacceptable.

processor

secret
sharing secret

memory space

share

share

share

share

……

share

share

share

share

scattering

Figure 77. Data replication/scattering based on secret sharing.

We are also among the first to introduce intrusion recoverability into secure

software. Our previous work [127] proposed applying secret sharing [93] in the process

memory space to achieve confidentiality, integrity and availability at the same time for

critical data. It can be regarded as one example of data replication/scattering technique.

Data replication/scattering creates and distributes data replicas in the software process

memory space. The goal is to achieve recoverability with redundancy. To recover from

an attack, all replicas are gathered and the value given by the majority is regarded as the

original value. The basic idea of our secret sharing scheme is illustrated in Figure 77. The

data to be protected is first secret shared and multiple shares for the data are obtained.

Then the shares are distributed to random locations in the memory space only known to

 208

the process to which the data belongs. If the number of shares tampered is below a

threshold and other shares are intact, the scheme is able to recover the tampered data.

During our secret sharing work, we were able to understand the data

replication/scattering technique better. We realized that the technique has several

important limitations. First, the recoverability is not as good as checkpointing and

memory updates logging, since the replicas reside in a limited buffer space. The attacker

can wipe out all replicas in the extreme case and the data replication/scattering technique

has no way to recover from that. Second, the recoverability strength largely depends on

the size of the buffer space in which the replicas are randomly distributed. A stronger

recoverability requires a larger memory space to defend brute-force guessing, which

could introduce significant memory cost. Finally, the technique can recover from

hardware attacks and attacks from other malicious processes, but it has difficulty to

recover from attacks exploiting software flaws like buffer overflows. If the attacker can

tamper some software data by impersonating the software, all the replicas for the data

would be automatically tampered.

For data replication/scattering technique to defend against attacks exploiting

software flaws, the data protected by replication/scattering has to be treated differently

from the data without protection. One possibility is to introduce a new pair of scattering

load/store instructions. The new scattering load/store instructions can be implemented

either by software or by hardware with instruction set architecture (ISA) support. The

user first decides what to be protected then the compiler generates proper instructions.

Protected data is accessed with scattering loads/stores and unprotected data is accessed

with normal loads/stores. Then, we can sandwich protected data with unprotected data to

 209

defend against attacks exploiting software flaws. How this could help is illustrated in

Figure 78.

accessed using
normal loads/store

recoverable data

buffer

accessed using
scattering loads/store

overflows

Figure 78. How data replications/scattering defends against buffer overflows.

As shown in the example, by providing an oversized input, the attacker can still

overflow the buffer. However, the buffer is written using normal stores. Thus, by

overflowing, the attacker tries to tamper the protected data using normal stores, which is

futile since to access the protected data correctly, scattering loads/stores have to be used.

This above idea helps data replication/scattering technique combat buffer overflow type

of attacks. However, the above tweak is not a clean solution and in general data

replication/scattering is vulnerable to attacks exploiting software flaws.

Although the protection strength of a data replication/scattering scheme is not

satisfying, it can recover tampered data in real-time. The latency of recovering data by

program state checkpointing or memory updates logging could be in terms of

milliseconds or even seconds, but data replication/scattering technique can recover data

in tens of or hundreds of cycles as shown in our previous work. Real-time intrusion

recovery is an important property which may be critical to real-time applications. Thus,

data replication/scattering scheme could be an option desired in certain circumstances.

 210

But in this dissertation work, we focus on developing a more general intrusion analysis

and intrusion recovery scheme with strong recovery strength thus will not explore more

into data replication/scattering schemes.

Recently, Shi et al. proposed a system design using a chip multi-processor to

provide intrusion tolerance and self-recovery for server applications [97]. They use a

checkpointing based approach to recover server applications under attack. Their scheme

takes a snapshot of the application context and memory state before the server application

handles the next request. If the request turns out to be malicious, the system can discard

the malicious request and rollback the application's state to a known good one through

checkpointing. Their scheme essentially is a checkpointing based approach with

architecture support to achieve low performance overhead.

However, their strategy of checkpointing is overly simplistic. In their scheme, the

server takes a snapshot of its process context and incremental memory state upon receipt

of a new network request. The request is then handled by the application. If later, an

intrusion is detected by the intrusion detection software, the application's memory state is

rolled back to a state before the malicious request was handled. The problem is that there

could be an arbitrarily long interval between the damage to the process state and the

detection of the attack. For example, an attacking packet exploiting a buffer overflow

vulnerability can tamper a memory location, but under current intrusion detection

schemes the tampering most likely will not be detected until the tampered memory

location is used by the software. After all, if such a tampering can be detected

immediately, attack recovery would be a much simpler problem. Thus, it is not clear

when it is safe to conclude that a packet is not malicious. Before the detection of the

 211

attack caused by a malicious packet, hundreds of innocent packets may have arrived and

it is likely that the proposed scheme will identify an innocent packet as the malicious one

and roll back the process state to a corrupted one. Moreover, it is not clear how to define

a request to the server. Assuming one packet is a request is overly simplistic. An attack

can be easily launched by multiple network packets.

In this dissertation work, we aim to build an intrusion analysis and intrusion

recovery mechanism with strong recovery strength and small performance degradation by

utilizing micro-architecture level support. In our work, we assume that the attacker

exploits the software flaws through its interfaces to the outside world, for example,

program arguments, program input files, keyboard inputs, incoming packets, external

events etc. In other words, if the software has absolutely no interactions with the outside

world, it is impossible to attack the software by exploiting its flaws. We believe this

assumption is very realistic. If the software tampers itself even without any interaction

with the outside world, it probably should be regarded as a software bug rather than an

attack.

We believe that to recover from an attack after its detection, two major tasks have

to be done. First, we need to analyze the attack to identify exactly when and how the

attack happens so that we can identify the tampered system state and gather useful

information for later forensic analysis. We call this step intrusion analysis. Proper

intrusion analysis is the basis for later recovery and cannot be arbitrarily done as in [97].

Otherwise, we could roll back the program into a tampered state. Second, the tampered

system state has to be recovered through certain mechanisms such as checkpointing. We

focus on the attacks tampering memory state and recovery of memory state in our work.

 212

Memory state tampering is the most common starting point of an attack and we can limit

our problem scope greatly by focusing on it.

It is very easy to identify memory state tampered by hardware attacks and attacks

from other malicious processes in the presented hardware infrastructure. In the hardware

infrastructure, data residing in the untrusted external memory is protected

cryptographically with a process specific key and is always verified before used by the

secure processor. If the data is tampered by hardware attacks or other malicious processes,

it will be detected by the hardware integrity checking scheme immediately. Also, the

hardware integrity checking scheme knows exactly which memory block is tampered.

Thus, the possible tampering by hardware attacks or other malicious processes is very

limited.

 D = * p
 E = *q
 B = D + E
 C = F + G
 A = B + C
 Branch A > 0 anomalous

Figure 79. Difficulty of identifying tampered data.

However, the hardware integrity checking scheme does not help against attacks

exploiting flaws in the protected software itself, such as buffer overflows. Our anomaly

detection schemes can monitor the software execution and detect attacks exploiting

software flaws by detecting anomalous program paths, infeasible program paths or data

access anomalies. Once an anomaly is detected, which individual instruction caused the

anomaly is identified. The anomaly detection scheme can provide such information. Then

we need to identify which data is possibly tampered and which external inputs cause the

 213

anomalous instruction. That is a difficult problem as illustrated in Figure 79. The figure

shows a piece of pseudo code, in which branch A>0 has been identified as a jump

instruction causing an anomaly. The branch instruction directly depends on the value of

A. But can we simply assume that A is tampered by the attacker? Unfortunately we

cannot. From the pseudo code, the value of A depends on the values of B and C. The

value of B depends on the values of D and E, and so on. For example, the anomalous

branch can be caused by a tampering to D instead of A. Such a dependency chain can be

arbitrarily long and tampering to any data on the dependency chain could be the cause of

the anomalous path.

Before we elaborate the details of our intrusion analysis schemes, we would like

to point out the advantage of our data tampering detection scheme in terms of intrusion

recovery. In general, there are three phases from the initiation of an attack to the

detection of the attack. During the first phase, the attacker injects certain malicious input

into the program to initiate the attack. Such malicious input may or may not cause

tampering to the memory state immediately. For example, the malicious input can be

copied several times and only one of the temporary buffers does not have enough space

to hold the input. In that case, tampering to memory state will not happen until the

malicious input is copied into the vulnerable buffer. During the second phase, tampering

to the memory state is actually done. During the third phase, the tampered memory state

is used by the victim program then the attacker is able to take control of the program or

cause other damages.

Since most intrusion detection schemes including our anomalous path detection

and infeasible path detection are based on control flow monitoring, they are not able to

 214

detect the attack until the tampered memory state is used by the program and leads to

some anomalous program behavior. There could be an arbitrarily long interval between

the tampering of the memory state and the use of the tampered memory state, which

brings difficulty during intrusion analysis and intrusion recovery. On the other hand, our

data tampering detection scheme detects memory tampering directly instead of trying to

infer memory tampering from control flow tampering. It can detect the attack in the

second phase of the attack. In many cases, the malicious input causes memory tampering

immediately. In those cases, our data tampering detection scheme can detect the attack

immediately thus has significant advantage in terms of intrusion analysis and intrusion

recovery.

7.2 Intrusion Analysis Based on Logging

Intrusion analysis and tampered memory state identification can be done through

dependency backtracking of the anomalous instruction. As shown in Figure 79, there are

two major issues in such a scheme. First, we need a mechanism to enable dependency

backtracking and identify which memory values the anomalous instruction depends on.

Second, we need to be able to stop backtracking dependencies as early as possible but

safely. Otherwise, it is very likely that all memory state has to be regarded tampered and

to recover from the attack, the program has to restart. Compiler can help on dependency

tracking, but it has important limitations. First, it can only track dependencies statically,

thus it will not be as efficient and precise as dynamic tracking. Second and more

important, compiler analysis has difficulty to handle pointer dereferences. An example is

shown in Figure 79. The value of D depends on the value pointed by the pointer p. In

many cases, compiler cannot figure out which data pointer p is actually pointing to. In

 215

those cases, we have to regard the value of D possibly depending on any data, which

means all data is suspicious and could have been tampered. Thus, we believe that a

hardware based dynamic dependency backtracking mechanism is necessary since at

runtime we could know the exact target of a pointer.

To enable dependency backtracking from any program point, we devise a logging

based scheme. The logging scheme records two kinds of dynamic program information.

The first is dynamic control flow trace. The second is memory reference trace. With these

two kinds of information, we can know the complete dynamic program path followed by

the execution thus we know how to backtrack the execution. At each memory reference

point, we also know exactly which memory address is referenced.

To stop tracking dependency safely, we need to make certain assumptions on the

attacks. As mentioned earlier, in our work, we assume that the attacker exploits the

software flaws through its interfaces to the outside world, for example, program

arguments, program input files, keyboard inputs, incoming packets, external events etc.

Under this assumption, the dependency backtracking can stop when 1) the data value

does not depend on the external inputs at all, for example, the data value is a constant; 2)

the data value is directly defined by the external input. The second case happens when the

program interacts with the outside world, for example, the values of the program

arguments (argv in the C language). We know the data values are defined by some

external input and that input is suspicious, but in our work we limit our backtracking

inside the victim process and we will not backtrack the external input further.

We elaborate our logging scheme below. To record dynamic program paths, the

hardware logs all dynamic jump instructions changing the program PC in a non-

 216

sequential way. For each such dynamic jump instruction, we record the PC address of the

jump instruction and its target address. Also, for each dynamic memory reference, we

record the memory address referenced and the type of memory operations. Obviously,

types of memory operations should include memory reads and memory writes. In our

scheme, for the purpose of dependency backtracking, we also introduce a special type of

memory operation – external input. External input is a special type of memory writes in

which the memory location is indicated to be directly defined by some external input,

through I/O operations, system calls etc. In our work, we assume that I/O port operations

are done through a memory-mapped I/O scheme. External input logs facilitate the

backtracking to stop when the memory location is defined by some external input directly,

as discussed previously. External input logs are generated by special system support

when the program receives outside inputs. Also note that for memory reference records,

we do not need to log the PC address for the reference as long as we create a record for

every dynamic memory reference. Since we have complete dynamic program path, the

memory reference records can be easily mapped to the memory references of the program

code. We will illustrate that by an example. The data structure of a log record under our

logging scheme is shown in Figure 80.

 217

enum log_type_t { PATH, MEM};
enum mem_type_t {READ, WRITE, EXT_INPUT};
struct log_t {
 log_type_t log_type;
 union {
 struct {
 addr_t pc;
 addr_t target;
 } path_info;
 struct {

mem_type_t mem_type;
addr_t address;

} mem_info;
 } log_info;
};

Figure 80. Data structure of a log record.

Based on the information logged, we can derive the dependency backtracking

algorithm. The algorithm is formalized in Figure 81. The algorithm assumes a RISC

instruction set architecture.

 218

Input: The anomalous instruction and the log of program execution
Output: A set of suspicious external data input points

set W = ∅ // working set of registers/memory addresses
set REG_DEF (inst) = defined register of the instruction
set REG_USE (inst) = used register of the instruction
set INST(pc) = instruction at instruction address pc
set cur_inst = INST(cur_pc)

Algorithm: Dependency backtracking
1. cur_pc = anomalous_pc
2. W = W ∪ USE(cur_inst)
3. While (W<>∅) do
4. switch cur_inst->type
5. case LOAD/STORE:
6. if (cur_log->log_type <> MEM)
7. ERROR(“no corresponding log record for the memory reference”);
8. endif
9. if (cur_inst is LOAD)
10. Assert(cur_log->mem_info.mem_type == READ)
11. if (REG_DEF(cur_inst) ∈ W)
12. W = W – REG_DEF(cur_inst); W = W ∪ cur_log->mem_info.address;
13. endif
14. else // STORE
15. Assert(cur_log->mem_info.mem_type == WRITE)
16. if (cur_log->mem_info.address ∈ W)
17. W = W – cur_log->mem_info.address; W = W ∪ REG_USE(cur_inst);
18. endif
19. endif
20. cur_log = PREV(cur_log)
21. case OTHER:
22. if (REG_DEF(cur_inst) ∈ W)
23. W = W – REG_DEF(cur_inst); W = W ∪ REG_USE(cur_inst);
24. endif
25. end switch
26. if (cur_log->log_type == MEM) && (cur_log->mem_info.mem_type == EXT_INPUT)
27. W = W – cur_log->mem_info.address
28. add program point corresponding to cur_log into suspicious_set
29. cur_log = PREV (cur_log);
30. endif
31. if (cur_log->log_type == PATH) && (cur_log->path_info.target == cur_pc)
32. cur_pc = cur_log->path_info.pc
33. else
34. cur_pc = cur_pc – 4 ;
35. endif
36. endw
37. return suspicious_set

Figure 81. Dependency backtracking algorithm.

Assume the size of one instruction is four bytes. The dependency backtracking

algorithm takes the anomalous instruction as input and finds out a set of suspicious

dynamic external input points, which possibly cause the anomalous instruction. The

algorithm examines the program instructions in the reverse order of the dynamic control

 219

flow. If the current instruction is a load instruction, the algorithm removes the defined

register from the working set and puts the accessed memory address into the working set.

The accessed memory is obtained from the memory reference logs. If the current

instruction is a store instruction, the algorithm removes the accessed address from the

working set and puts the register used to define the memory location into the working set.

For other instructions, the defined registers are removed from the working set and the

used ones are put into the working set. Note that other instructions mentioned above

include jump instructions to incorporate control dependence. Also note that there are

instructions for which the used register set is empty, such as load constant, load address

etc. The working set could be reduced after processing of those instructions. The

algorithm also checks the existence of path logs and external input memory logs. For

external input memory logs, the algorithm removes the memory address directly defined

by some external input from the working set and stops backtracking for that memory

address. Then the dynamic external input point is added to the set of suspicious external

input points. The algorithm also checks whether the target address of the current path log

record is same as current PC. If it is same, it changes current PC to the PC of the jump

instruction; else it just subtracts four (the size of one instruction) from the current PC

since the control flow was sequential.

 220

… …
// to call getchar and receive an external char
// to B
0x100: soft_interrupt // W={E}
… …
0x104: ld r0, [B] // W={B, E}
0x108: ble r0, L1 // W={r0, E}
… …
0x10C: ld r1, [C] // not executed
0x110: ld r2, [D] // not executed
0x114: add r1, r1, r2 // not executed
0x118: st r1, [A] // not executed
 … …
L1:
… …
0x11C: ld r1, [E] // W={E}
0x120: ldc r2, 100 // W={r1}
0x124: sub r1, r1, r2 // W={r1, r2}
0x128: st r1, [A] // W={r1}
… …
0x12C: ld r1, [A] // W={A}
0x130: ble r1, L2 // W={r1}

… …
B = getchar()
… …
If (B > 0)
… …
 A = C + D
… …
Else
… …
 A = E - 100
… …
If (A>0)
 …… anomalous

external input
B

mem

0x108
0x11C

path

read
E

mem

write
A

mem

Execution Logs Pseudo Code Machine Code

traverse
anomalous

read
B

mem

Figure 82. An example of dependency backtracking.

Figure 82 shows a simple example of dependency backtracking. In the figure, a

piece of pseudo code, the corresponding simplified machine code and the program

execution logs are shown. The branch instruction at address 0x130 causes an anomalous

path. The dependency backtracking algorithm traverses the program backward from the

anomaly detection point, and processes the execution logs along the way. The working

set at each program point during backtracking is shown besides the machine code. After

processing the instruction at 0x100, the external input to define B is identified as

suspicious and the backtracking continues to trace dependencies for E, which is still in

the working set.

 221

7.3 Intrusion Analysis Based on External Input points Tagging

The major concern of the logging based scheme is that the storage required by

logging could be huge and is generally unbounded, since the program can execute for an

arbitrarily long time and generate an arbitrarily long execution trace. We could of course

set an upper limit to the storage used in logging and discard old execution traces, but the

storage limitation will certainly limit the ability of backtracking. The backtracking

process may not be able to determine the point of tampering based on the limited

information and the program may have to restart from the beginning. This concern

prompts us to seek for an alternative scheme that possibly requires less storage. One

important observation regarding the logging based scheme is that many entries in the

execution trace become useless during the program execution, which is illustrated by a

simplified example shown in Figure 83.

while input_available {
 iterations ++ ;
 … …

cur_input = get_input();
… …
if (cur_input > REF) {
}
… …

}

anomalous after
10000 iterations

Figure 83. The problem of the logging based scheme.

In the simplified example, the variable cur_input is redefined in every loop

iteration. Assume the home location of the variable is in memory, a memory-write log

and a memory-read log will be generated for the variable during each loop iteration.

Assume an anomaly occurs after 10,000 iterations. At that time, the execution trace

 222

already has 10,000 memory-read logs and 10,000 memory-write logs for the variable but

they are completely useless in this case, because the anomalous instruction only depends

on the value defined in the current loop iteration. The vast amount of useless logs leads to

great space inefficiency in the execution trace. Moreover, there is no good way to delete

those useless logs from the execution trace.

Thus, we want to develop a scheme to avoid the huge space inefficiency and

reduce the storage requirement imposed by the execution trace. One critical point is that

if we aim to keep an execution trace of the program, the storage requirement will

inevitably be huge since the program can execute for an arbitrarily long time and at a

very high speed in modern processors. We can perform all kinds of optimizations to

reduce the events to be logged and the size of the log, but the storage requirement would

still increase largely linearly with the instructions executed. So we probably have to

examine the problem from a different perspective.

Let us revisit our goal. Our final goal is to identify a set of suspicious external

input points that possibly cause the anomalous instruction identified. In other words, we

want to find out what external data the anomalous instruction depends on. One way to do

that is to keep a dynamic execution trace then backtrack the trace when an anomalous

instruction is identified, as discussed previously. The important observation is that

another way to achieve the goal is to dynamically update the depended external input data

for every register and every memory location. In that way, the information is computed

along the program execution. When an anomalous instruction is identified, we know

which set of external input data it depends on immediately. The advantage of this scheme

is possibly less storage requirement. The number of registers is fixed and very small. The

 223

number of memory locations could be huge but normally the memory space used by the

program is much smaller than the virtual address space limit. Moreover, the growth rate

of the used memory space is magnitudes smaller than the growth rate of the instructions

executed.

We know the number of registers and memory locations is bounded. The

important question remaining is that how much storage space is required for each register

or memory location. For each register or memory location, we need to record its

depended external input data point. There are two important points here. First, the

number of static external data input points is very limited. External data is normally

received through system calls and sometimes through I/O port operations. Both system

calls and I/O port operations are relatively rare events in the program. Second, we have to

track dynamic instances of static external input points. Essentially we want to find out a

time point from which we can recover the tampered program safely. So we have to

identify each dynamic instance of external input points.

To identify dynamic external input points, we could use a global counter

initialized to zero. The global counter is increased by one after each dynamic external

input point and is used to identify the current dynamic external input point. During

execution, the hardware updates the depended external input points for registers and

memory locations properly along the program execution. The algorithm is shown in

Figure 84. For clarity, the algorithm assumes a RISC instruction set architecture.

 224

Input: The dynamic instruction stream
Output: For each register or memory location, a set of external input points

depended by it

set REG_DEF (inst) = defined register of the instruction
set REG_USE (inst) = used registers of the instruction
set MEM_DEF(inst) = defined memory location
set MEM_USE(inst) = used memory location
set global_counter = 0

Algorithm: External input points tagging
1. While program_executing do
2. switch cur_inst->type
3. case EXT_INPUT:
4. for each register reg defined directly by the external input
5. cur_rec = fetch_ext_points_record(reg)
6. *cur_rec = {global_counter};
7. end for
8. for each memory address mem defined directly by the external input
9. cur_rec = fetch_ext_points_record(mem)
10. *cur_rec = {global_counter};
11. end for
12. global_counter ++
13. case LOAD:
14. mem_rec = fetch_ext_points_record(MEM_USE(cur_inst)
15. reg_rec = fetch_ext_points_record(REG_DEF(cur_inst)
16. *reg_rec = *mem_rec
17. case STORE:
18. reg_rec = fetch_ext_points_record(REG_USE(cur_inst)
19. mem_rec = fetch_ext_points_record(MEM_DEF(cur_inst)
20. *mem_rec = *reg_rec
21. case OTHER:
22. def_rec = fetch_ext_points_record(REG_DEF(cur_inst)
23. *def_rec = ∅
24. for each reg in REG_USE(cur_inst)
25. use_rec = fetch_ext_points_record(reg)
26. *def_rec = *def_rec ∪ *use_rec
27. end for
28. end switch
29. endw

Figure 84. External input points tagging algorithm.

During program execution, the external input points tagging algorithm processes

each committed instruction. For each register or memory location, it maintains a set of

external input points depended by the register or the memory location. If the instruction

receives external inputs, for example, a system call reading keyboard inputs, the memory

locations or the registers defined are tagged by the ID of the external input point. At such

 225

an external input point, a block of memory locations may be defined and all memory

locations defined are tagged. For a load instruction, the algorithm copies the external

input points set of the referenced memory location to the set of the register. For a store

instruction, the algorithm copies the external input points set of the referenced register to

the set of the memory location. For other instructions, the external input point sets of the

referenced registers are merged then copied into the set of the defined register.

The algorithm is straightforward. Conceivably the algorithm could reduce the

storage requirement of the logging based scheme since the number of memory locations

and registers is much smaller comparing with the number of dynamic instructions.

However, as always, the benefit comes with a cost. In the logging scheme, we only need

to append newly generated logs to the execution trace. This no longer holds for external

input points tagging scheme. Under the scheme, each memory location or register has a

corresponding set of external input points. This set is manipulated frequently during

tagging, which brings challenges to the design of the data structure. Moreover, although

the number of memory locations and registers are bounded, the number of dynamic

external input points possibly tagged for each memory location or register is not bounded.

The problem is shown in Figure 85. In this simplified example, the memory location of

the variable result will be tagged with all dynamic external input points generated during

get_input. This number can be arbitrarily large. Although this kind of situation should be

rare in reality, the fact that there is no upper bound of the number of elements in the set

adds to the difficulty of the data structure design.

 226

while input_available {
 iterations ++ ;
 … …

cur_input = get_input(); // external input
… …
result = result + cur_input;
… …

}

Figure 85. The difficulty of external input points tagging.

Next, we discuss the data structure design of the external input points set. We

only discuss the handling of memory locations. Registers are very limited and can be

modeled as a tiny piece of data memory and handled in the same way. We assume that

there is a segment of process memory space reserved to the external input points set. This

reserved memory space cannot be accessed through machine instructions and can only be

accessed by the hardware directly thus is protected. First, we want to be able to locate an

EIP set by the memory location easily. In other words, the memory location can be

transformed into its corresponding EIP set address through simple operations. To achieve

that, the general principle is that we lay out the EIP sets by the same order as their

corresponding memory locations. That is, the EIP set of the first memory location is laid

out first in the EIP address space. Then the EIP set of the second memory location

follows. The non-continuous data address space brings extra complications. Normally the

program data space is divided into static data space, heap space and stack space. Figure

86 shows a common layout. Static data space is easy to handle since its size is fixed.

Stack space and heap space grow at runtime and have no fixed size. The best we can do is

to pre-allocate the amount of memory corresponding to the expected upper limit of the

 227

stack and heap space, then allocate more memory and repair the data structure if at

runtime this upper limit is broken.

code

static data

stack

… …

heap estimated
bound

estimated
bound

EIP sets for static data

(fixed size)

reserved EIP
space

EIP sets for stack
(estimated size)

EIP sets for heap
(estimated size)

spill area

first segment
linked list
headers

second segment
other linked list

elements

process memory space

Figure 86. A typical process space layout.

EIP_base = base address of EIP space
static_base = base address of static data space

EIP_address of static_address =

 sizeunitEIP
sizeunittaggingmem
basestaticaddressstaticbaseEIP __

)__(_ ∗

−
+

Figure 87. Finding the corresponding EIP address for static memory address.

Figure 87 shows how we compute the corresponding EIP set address for a static

memory address. The handling of stack and heap addresses is similar. The EIP tagging

unit is normally a machine word, but we could choose a larger tagging unit to reduce the

memory requirement of the EIP tagging scheme. To locate the corresponding EIP set

quickly as shown in the equation, we need to make each EIP set record fix-sized. At the

 228

same time, we have to be able to handle EIP sets containing an arbitrarily large number

of elements. To achieve that, we design a linked-list based data structure. Each EIP set is

effectively a linked list. Each linked list element contains a fixed number of EIP IDs and

a pointer to the next linked list element if there is one. We divide the EIP space into two

segments. The first segment only contains headers of the linked lists representing EIP sets.

The headers are laid out by the same order of the corresponding memory locations thus

the header of the linked list representing the EIP set for a memory location can be easily

located. The second segment is the spill area. Only when one linked list element is not

enough to record all EIP Ids, is the spill area utilized. When one header element is not

enough, the tagging scheme finds out an unallocated space in the spill area and creates an

additional linked list element, then appends the new element to the end of the list. There

are no layout constraints for spilled linked list elements. They are allocated wherever a

free space is found. Figure 86 shows what the EIP space looks like.

struct link_list_elm {
 id_t EIP_ids[MAX_ID_PER_ELM];
 addr_t next;
};

struct EIP_space_t {

struct link_list_elm header_space[MAX_HEADER_ELMS];
struct link_list_elm spill_area[MAX_SPILL_ELMS];

} EIP_space;

Figure 88. EIP space data structures.

For further clarification, Figure 88 shows the pseudo code for our data structure

design. Initially, the EIP space is cleared. A zero EIP id in a linked list element means

that slot is unused. If the first EIP id in a linked list element in the spill area is zero, that

means an unused linked list element space. The pseudo code to add an EIP id to the EIP

 229

set of a memory location is shown in Figure 89. Note that both header space and spill

area space can become too small at runtime. To expand spill area is straight forward since

it is at the end of the EIP space. We can simply allocate more memory to the EIP space.

To expand header space will invalidate all pointers to the spill area, thus the data

structures have to be repaired. The pseudo code to clear an EIP set or to delete the linked

list representing the EIP set is not shown but is also easy to implement.

unsigned int spill_area_ptr = 0;

void init() {
 mem_zero(&EIP_space, sizeof(EIP_space));
}

void add_EIP_id (addr_t mem_addr, id_t id) {

 addr_t EIP_addr = get_EIP_set_addr(mem_addr);
 struct link_list_elm * list_header = (struct link_list_elm*) EIP_addr;
 struct link_list_elm * cur_list_elm = list_header;

 while (cur_list_elm) {
 for(int i=0; i<MAX_ID_PER_ELM; i++) {
 // zero id means unused
 if(!cur_list_elmÆEIP_ids[i]) {
 cur_list_elmÆEIP_ids[i] = id;
 return;
 }
 }
 cur_list_elm = (struct link_list_elm*) cur_list_elmÆnext;
 }
 // have to create a new linked list element
 // first find an unused slot
 saved_spill_ptr = spill_area_ptr;
 while (EIP_space.spill_area[spill_area_ptr].EIP_ids[0]) {
 spill_area_ptr = (spill_area_ptr + 1) % MAX_SPILL_ELMS;
 if(spill_area_ptr == saved_spill_ptr)
 PANIC(“spill area full”)
 }
 // found an empty slot
 EIP_space.spill_area[spill_area_ptr].EIP_ids[0] = id;
}

Figure 89. Algorithm to add an EIP id into the proper EIP set.

 230

7.4 Intrusion Recovery

After intrusion analysis is properly done and tampered memory state is identified,

intrusion recovery for the memory state becomes a simple problem.

If intrusion analysis is done by the execution trace logging based algorithm, to

enable intrusion recovery, we can simply record the overwritten value for each memory

write operation. There will be an additional field for saving the old value of the memory

location. The modified data structure for the execution trace log is shown in Figure 90.

The difference is marked as bold.

enum log_type_t { PATH, MEM};
enum mem_type_t {READ, WRITE, EXT_INPUT};
struct log_t {
 log_type_t log_type;
 union {
 struct {
 addr_t pc;
 addr_t target;
 } path_info;
 struct {

mem_type_t mem_type;
addr_t address;
data_t old_val;

} mem_info;
 } log_info;
};

Figure 90. Modified data structure of a log record.

To recover from tampered memory state, during dependency backtracking, when

a memory write log record is processed, the value of the memory location is set to the old

value recorded in the memory write log record. When the backtracking process is

finished, the memory state will be recovered to a safe one. The relevant modification to

the backtracking algorithm is shown in Figure 91.

 231

14. else // STORE
15. Assert(cur_log->mem_info.mem_type == WRITE)
16. if (cur_log->mem_info.address ∈ W)
17. W = W – cur_log->mem_info.address; W = W ∪ REG_USE(cur_inst);
18. endif
 // recover possibly tampted memory state
19. MEM[cur_log->mem_info.address] = cur_log->mem_info.address.old_val;
20. endif

Figure 91. Modified backtracking algorithm.

If intrusion analysis is based on external input points tagging, intrusion recovery

can be done by a checkpointing based scheme. The memory state can be checkpointed

incrementally at a certain interval, such as one millisecond. Each checkpoint does not

need to save the whole memory state. It just records the memory writes in between the

previous checkpoint and the current checkpoint. Each checkpoint has a timestamp, which

is just the value of the global counter counting the number of dynamic external input

points. With the set of identified suspicious dynamic external input points, the recovery

algorithm is straightforward. Each dynamic external input point is identified by the value

of the global counter when the external input happens. Assume the smallest ID in the set

of suspicious dynamic external input points is MIN, to recover tampered memory state,

we just need to process the checkpoints until its timestamp is smaller than MIN.

7.5 Experiments and Results

To evaluate the recovery strength of the proposed logging and tagging based

intrusion recovery schemes, we implement them in an open-source IA-32 system

emulator Bochs [9] with Linux installed. Then we perform simulated attacks to our

daemon programs. We run each benchmark in the emulator for a long period of 10 billion

instructions. During its execution, we tamper its memory state by corrupting a random

memory location at a random external input point, even though originally the external

 232

input point is innocuous. If the memory corruption is detected, we then check whether

our intrusion analysis and intrusion recovery scheme is able to identify the malicious

external input point and recover the tampered memory state. Each server program is

attacked 10000 times independently.

We have discussed three intrusion detection schemes in this dissertation,

including anomalous path detection, infeasible path detection and data tampering

detection. The introduced memory tampering may or may not be detected by our

intrusion detection schemes. If our data tampering detection scheme is able to detect the

memory corruption, it will detect it immediately. In other words, if the data tampering

detection scheme is deployed, the malicious external input point can be identified

immediately and the tampered memory state can be recover easily. Thus, we will not

show the intrusion recovery results for the data tampering scheme. For anomalous path

detection and infeasible path detection schemes, they are based on control flow

monitoring and they try to infer memory tampering from control flow tampering. Thus,

they will not be able to detect the attack until the tampered memory state is used. There

could be an arbitrarily long interval between the memory tampering and the reference of

the tampered memory state, which brings great difficulty to the intrusion analysis and

intrusion recovery schemes. After the tampered state is used, both anomalous path

detection and infeasible path detection schemes can detect the attack within a very small

interval if they can detect it at all. For the anomalous path detection scheme, the attack

will be detected with n dynamic branches if the scheme can detect the attack. For the

infeasible path detection scheme, the interval between the tampered memory state

reference and the attack detection is also very small generally since it is very hard for the

 233

compiler to detect a branch correlation between two branches far away from each other.

Thus, the anomalous path detection scheme and the infeasible path detection scheme

behave very similarly in terms of intrusion recovery, since the interval between the

memory tampering and the reference of the tampered memory state is the dominating

factor. Thus, we will only show the results for the anomalous path detection scheme. The

infeasible path detection scheme achieves almost identical results.

For the logging based scheme, the storage space required for a complete logging

of the program execution is linear to the number of dynamic instructions executed. Thus,

a complete logging of the program execution is generally not possible. We have to set an

upper limit of the storage space reserved for logging. If the time interval between the

memory tampering and the attack detection is too large, the space reserved for logging

may not be enough to record all the necessary information to identify the attack and

recover the memory state completely. In general, the more space reserved for logging, the

better intrusion identification and recovery strength.

Figure 92 shows the results of intrusion identification under the logging based

scheme. In this experiment, we assume only intrusion identification is required but not

intrusion recovery. The intrusion identification rate of our simulated attacks under the

logging scheme is shown in the figure. We show the results under a 10MB reserved space,

a 100MB reserved space and a 1GB reserved space respectively. To merely identify the

cause of an attack, we do not need to save the old value of a memory location, thus the

storage requirement is smaller. By identifying an attack, we mean to find out the exact

malicious external input points causing the attack. From the results, with a 10MB

reserved space for logging, on average we can successfully identify 72.9% of attacks.

 234

With a 100MB reserved space for logging, on average we can identify 84.6% of attacks.

With a 1GB reserved space for logging, on average we can identify 94.3% of attack. We

can see that a small reserved space such as 10MB can achieve a good intrusion

identification rate, since if the tampered memory value is going to be referenced, it is

more likely to be reference sooner than later. Also, the intrusion identification rate

increases with the reserved space for logging.

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

In
tru

si
on

 Id
en

tif
ic

at
io

n
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 10MB
100MB
1GB

Figure 92. Intrusion identification under the logging based scheme.

 235

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

In
tru

si
on

 R
ec

ov
er

y
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 10MB
100MB
1GB

Figure 93. Intrusion recovery rate under the logging based scheme.

To both identify and recover from an attack, the execution log has to save the old

value of a memory location if there is a write to the memory location. Thus, the size of a

record in the execution log is increased, so is the space overhead for logging. Figure 93

shows the intrusion recovery rate of the simulated attacks under the logging scheme. We

show the results under a 10MB reserved space, a 100MB reserved space and a 1GB

reserved space respectively. With a 10MB reserved space for logging, on average we can

successfully identify and recover 71.7% of attacks. With a 100MB reserved space for

logging, on average we can identify and recover 83.8% of attacks. With a 1GB reserved

space for logging, on average we can identify and recover 93.1% of attack. From the

results, given the same reserved space for logging, enabling recovery increases space

overhead but only slightly. The fundamental reason is that the interval between memory

tampering and attack detection for a large part of attacks is small enough so that the

reserved space is enough for both intrusion identification and intrusion recovery.

 236

The external input points tagging scheme works in a different way. The space

requirement of the EIP tagging scheme does not increase linearly with the number of

dynamically executed instructions. Instead, the space requirement is related to the amount

of data memory used by the program since each memory location could possibly be

tagged. The data memory used by the program is generally very limited. The size of it

will become stable and will not increase forever as the number of dynamically executed

instructions. Also, we found that most memory locations depend on zero or only one

external input point at runtime. Thus, the EIP tagging scheme has a better space

efficiency than the logging based scheme.

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

S
pa

ce
 R

eq
ui

re
d

fo
r T

ag
gi

ng

0

5

10

15

20
1-word tagging unit
2-word tagging unit
4-word tagging unit

Figure 94. EIP tagging space requirement.

Figure 94 shows the space requirement of the EIP tagging scheme under three

different tagging units. The unit of tagging has a great impact on the space requirement.

Our finest tagging granularity is one machine word. In other words, each machine word

will be tagged separately with the depended external input points. We also show the

 237

results for the tagging units of two machine words and four machine words. With the

tagging unit of two machine words, two adjacent machine words share one tag. The tag

will record depended external input points for both words. As long as those two machine

words share some depended external input points, we have space savings. The tagging

unit of four machine words works in a similar way. The space requirement under the

tagging unit of one machine word is 8.26MB on average, ranging from 3.24MB to

17.65MB. The space requirement under the tagging unit of two machine words is

4.37MB on average, ranging from 1.64MB to 9.46MB. The space requirement under the

tagging unit of four machine words is 2.30MB on average, ranging from 0.84MB to

5.05MB. Doubling the tagging unit can roughly cut the space requirement to half,

showing that many memory locations share the same depended external input points. It is

expected since normally an external input set the values for a block of memory at the

same time instead of a single machine word.

A larger tagging unit brings adverse effects to intrusion identification. Assume the

attacker always tampers at least a machine word, the tagging unit of one machine word

can identify an attack immediately and accurately, and the EIP tagging scheme can

achieve 100% of intrusion identification rate. With a tagging unit greater than one

machine word, we will not know whether one tagged external input point is depended by

the memory location investigated or by other locations in the same tagging unit. We have

to be conservative, which leads to inaccuracy in intrusion identification.

 238

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

In
tru

si
on

 Id
en

tif
ic

at
io

n
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 1-word tagging
2-word tagging
4-word tagging

Figure 95. Intrusion identification rate of EIP tagging scheme.

Figure 95 shows intrusion identification of the EIP tagging scheme under

different tagging units. If we assume the attacker always tampers at least a machine word,

the tagging unit of one machine word brings us 100% intrusion identification rate.

Moreover, the EIP tagging scheme can identify the attack immediately without

processing a large amount of logging data as in the logging scheme, since all suspicious

external input points have been tagged properly. With a tagging unit of two machine

words, the intrusion identification rate is 98.3% on average. With a tagging unit of four

machine words, the intrusion identification rate is 95.4% on average.

To enable intrusion recovery, the EIP tagging scheme has to checkpoint memory

state so that the memory state can be recovered after the attack point is identified.

Memory checkpointing can be incrementally done by logging memory writes and

recording the old values of the memory location. Figure 96 shows the intrusion recovery

rate of the EIP tagging scheme under a certain space limitation for checkpointing. We

 239

show the results under a 10MB reserved space, a 100MB reserved space and a 1GB

reserved space respectively. With a 10MB reserved space for checkpointing, on average

we can recover 76.7% of attacks. With a 100MB reserved space for checkpointing, on

average we can recover 86.7% of attacks. With a 1GB reserved space for checkpointing,

on average we can recover 95.1% of attacks. The EIP tagging scheme is more space

efficient than the logging based scheme. Under a certain space limitation, the EIP tagging

scheme can achieve better intrusion recovery rate. The improvement is attack and

application-dependent and is seen to be up to 24% in our experiments.

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

In
tru

si
on

 R
ec

ov
er

y
R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2 10MB
100MB
1GB

Figure 96. Intrusion recovery rate of EIP tagging scheme.

Next we discuss the performance aspect of our intrusion identification and

intrusion recovery scheme. For the logging based scheme, there is no computation

involved during logging. As long as there is enough bandwidth to transfer the log data,

there will be no performance degradation. For the external input points tagging scheme,

the tag for each memory location has to be computed at runtime. The computation is very

 240

simple as shown previously, especially most memory locations are tagged by no more

than one external input point. But we assume that the tag data will share cache with the

program data, thus accessing the tags for memory locations increase cache pressure and

degrades performance. Also, the external input points tagging scheme needs to

checkpoint memory state to recover tampered state later, thus it also requires certain

memory bandwidth for the checkpointing.

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

B
an

dw
id

th
 R

eq
ui

re
m

en
t (

G
B

/S
)

0

2

4

6

8

10
Logging
Tagging

Figure 97. Bandwidth requirement.

Figure 97 shows the bandwidth requirement for the logging based schema and the

EIP tagging scheme. Under the EIP tagging scheme, we only need to record memory

writes. Under the logging scheme, we have to record both memory reads and memory

write, plus control flow transfers. Since the number of memory writes is normally only a

fraction of memory reads, the EIP tagging scheme requires much smaller bandwidth. On

average, the logging scheme requires a memory bandwidth of 7.8GB/s and the EIP

tagging scheme requires a memory bandwidth of 673MB/s. We can see that due to its

 241

space efficiency, the EIP tagging scheme requires much smaller bandwidth. A memory

bandwidth of about 8GB/s is quite realistic in the future. In fact, Xbox 360 game console

has 278.4GB/s of memory system bandwidth [87] and the IBM CELL architecture has a

theoretic 204.8GB/s peak memory bandwidth [117].

 To measure the performance degradation of the external input points

tagging scheme, we model the tagging hardware using SimpleScalar [11] tool set. The

parameters for the processor modeled are shown in Table 10.

Table 10. Parameters of processor simulated.

Clock frequency 1 GHz Branch predictor 2 Level
Fetch queue 16 entries BTB 512 entries, 4 -way
Decode width 4 PLB 128 entries
Issue width 4 L1 I/D DM, 32K, 1 cycle

32B block
Commit width 4 Unified L2 8way, 32B block

1M (16 cycles)
RUU size 64 Memory bus 200M, 8 Byte wide
LSQ size 32 Memory latency first chunk: 120 cycles,

inter chunk: 10 cycles

Figure 98 shows the performance results for the EIP tagging scheme normalized

to the baseline without tagging enabled. The results under three different tagging units are

shown. Tagging with finer granularity requires more tagging data space and incurs more

cache pressure, thus leading to worse performance. With 1-word tagging unit, the average

performance degradation is 20.8%. With 2-word tagging unit, the average performance

degradation is 15.1%. With 4-word tagging unit, the average performance degradation is

10.9%. We can always choose a larger tagging unit in exchange for a better performance

and a worse intrusion identification rate.

 242

telnetd
wu-ftp

d
xin

etd
cro

nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2 1-word tagging unit
2-word tagging unit
4-word tagging unit

Figure 98. Performance degradation of the EIP tagging scheme.

7.6 Summary

In this chapter, we focus on intrusion analysis to identify the cause of an attack

and the tampered memory state and intrusion recovery to recover the tampered memory

state. Intrusion analysis and intrusion recovery is generally a difficult problem because

there could be an arbitrarily long interval between the tampering of the memory state and

the detection of the attack, depending on the underlying intrusion detection mechanism.

We propose two intrusion analysis and intrusion recovery schemes in this chapter.

The first is based on execution trace logging. The second is based on external input points

tagging. The logging based scheme requires a high memory bandwidth, is less space

efficient but has little performance degradation. The tagging based scheme is more space

and bandwidth efficient, but brings significant performance degradation. Given enough

storage space, both schemes can achieve a satisfying intrusion identification and intrusion

recovery rate. User can choose a scheme to deploy according to the properties of the

schemes. Overall, our study on compiler and micro-architecture supported intrusion

 243

analysis and intrusion recovery is still preliminary. Both schemes proposed have their

drawbacks and how to make them more space or performance efficient is the future work.

 244

8 CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Computer systems virtually control every aspect of our modern society. The rapid

increase of the society’s dependence on computer systems brings great interest to break

in and attack those systems. Computer software determines the functionality of computer

systems and is the primary target of attacks. With today’s pervasive presence of computer

systems and network connections, securing critical software from attacks has become an

extremely important problem and has never been as challenging.

In this dissertation, we build a software protection infrastructure by utilizing both

compiler and micro-architecture support. We name our infrastructure RADAR –

compileR and micro-Architecture supported intrusion prevention, Detection, Analysis

and Recovery. Our infrastructure aims to achieve a complete solution to software

protection. It is designed to defend against both common hardware attacks and common

software attacks and tackles all three major aspects in software protection – intrusion

prevention, intrusion detection and intrusion recovery. Our infrastructure emphasizes

collaborations between compiler and micro-architecture. It is based on micro-architecture

level support and has its security rooted in hardware. At the same time, it calls for

compiler assist whenever it is necessary, such as to obtain expected software behavior, or

whenever it is helpful to reduce the complexity of the micro-architecture support. With

both micro-architecture and compiler support, our infrastructure can defend against both

software and hardware attacks with superb security strength but reasonable hardware and

performance cost.

 245

Traditional software protection approaches are purely based on software. The

protection strength provided by a purely software-based approach is far from enough

considering the ever increasing importance of critical software protection and the

constantly emerging new threats faced by critical software, especially realistic hardware

attacks.

Introducing hardware support for software protection has been shown is the future

direction to go. There has been active research on micro-architecture level support for

software protection. But up until now, the previous secure architecture research mainly

focuses on using cryptographic mechanisms to protect software confidentiality and

software integrity from hardware attacks and attacks from other malicious software

processes. The solutions proposed are purely hardware based.

In this dissertation, we first show that even though the problem scope of the

previous secure architecture research is quite limited, the solution proposed to the

problem is not complete and has a serious flaw. Previous secure architectures only protect

confidentiality of the traffic going through system data bus. They do not protect system

address bus traffic, i.e., addresses of memory accesses. However, unprotected memory

access sequence acts as very dangerous side-channel and leaks critical control flow

information of the protected software. We show that the information leakage could bring

significant damage to both code and data confidentiality. Thus, we propose an improved

hardware infrastructure enhanced with address bus information leakage prevention. Our

address bus protection scheme relies on both innovative hardware modification and

extensive compiler support to eliminate most of the information leakage on system

 246

address bus with little performance overhead. Our scheme is the first practical scheme to

prevent information leakage on the system address bus.

 In general, no security system is bullet-proof and is able to prevent all attacks.

Even our enhanced hardware infrastructure cannot prevent attacks exploiting flaws/bugs

in the protected software itself, such as buffer overflow attacks. To protect software from

attacks missed by the intrusion prevent mechanism, we build a second line of defense

consisted of intrusion detection and intrusion recovery mechanisms, which is able to

detect both known and unknown attacks and even recover from those attacks.

 Intrusion detection with both compiler and micro-architecture support is another

major contribution of this thesis work. We show that intrusion detection based on

compiler and micro-architecture collaboration can achieve a much finer monitoring

granularity than software-based intrusion detection schemes thus much stronger detection

strength but only with small hardware and performance cost. We have done extensive

research on this area. We have greatly developed our understanding to the problem

during our research and devised three intrusion detection schemes accordingly.

We first propose a training based scheme to detect anomalous program paths

caused by attacks. Anomaly detection based on training is a classical approach. But with

carefully designed hardware support, our approach is able to achieve both strong

detection capability and negligible performance degradation.

 The requirement of good training and potential false positives in the anomalous

path checking scheme would limit its applicability in reality, which prompts us to devise

a scheme with zero false positives. Thus, we develop an infeasible path detection scheme

to detect attacks based on static compiler branch correlation analysis and hardware

 247

runtime support. The scheme achieves zero false positives and only incurs small

hardware and performance cost, which boosts its applicability in the real world. But this

scheme is still based on control flow monitoring and the detection strength is

significantly worse than the anomalous path checking scheme due to the limitation of

static compiler analysis.

Both anomalous path checking and infeasible path detection are based on control

flow monitoring. They cannot detect attacks tampering memory but not altering control

flows at all. However, such attacks have been shown to be very realistic. This problem

prompts us to work on the root cause of attacks – memory tampering. We thus devise a

compiler and micro-architecture collaboration framework to detect memory tamperings

directly instead of trying to infer memory tamperings from anomalous control flows. The

data tampering detection scheme is based on compiler data flow analysis thus achieves

zero false positives too. Moreover, it attacks the root cause of intrusions thus has a very

strong detection strength. However, the performance overhead is significant even after

extensive compiler optimizations.

As a conclusion, among three properties of detection strength, zero false positives

and performance, anomalous path checking prioritizes detection strength and

performance; infeasible path detection prioritizes zero false positives and performance;

finally data tampering detection prioritizes detection strength and zero false positives. All

three schemes should find their applications in reality according to the different user

requirements under different scenarios.

Finally, a complete software protection scheme should have the ability to analyze

an attack and recover from the attack whenever possible. Thus, intrusion analysis and

 248

intrusion recovery is an important goal of our software protection infrastructure. We

propose two intrusion analysis and intrusion recovery schemes in this dissertation. The

first is based on execution trace logging. The second is based on external input points

tagging. The logging based scheme requires a high memory bandwidth, is less space

efficient but has little performance degradation. The tagging based scheme is more space

and bandwidth efficient, but brings performance degradation. Given enough storage

space, both schemes can achieve a satisfying intrusion identification and intrusion

recovery rate. Our research on intrusion analysis and intrusion recovery is still in the

beginning stage and future work should be done to improve the efficiency of our current

intrusion analysis and intrusion recovery schemes.

We draw the following higher level conclusions. Compiler analysis is able to

provide information about program behavior and generate attributes that could be verified

at runtime by the hardware. On the other hand, clever hardware techniques allow

tractable management of large amounts of information at runtime to track and synthesize

essential security attributes that must be verified. Semantic gap between software

behaviors that get exploited and hardware support that provides security substrate can be

thus effectively bridged for a variety of attacks based on side channel information,

memory tampering that may or may not alter control flow, and etc. This compiler and

micro-architecture collaboration approach leads to better security guarantees and

strengths.

8.2 Future Work

Regarding to compiler and micro-architecture supported intrusion detection, we

believe that more work should be done on the data tampering detection scheme due to its

 249

multiple advantages. First of all, the scheme works on the root cause of attacks directly

and can achieve very strong detection strength and detect memory tampering attacks not

altering program control flows at all, which will be missed by control flow monitoring

based schemes. Second of all, the scheme is able to achieve zero false positives, which is

critical to the applicability of an anomaly detection scheme. Finally, the scheme also has

significant advantages in terms of intrusion recovery as discussed in the last chapter. The

current bottleneck of the deployment of the scheme is primarily its performance cost.

More compiler and micro-architecture optimizations could be investigated to reduce the

performance overhead thus making the scheme generally affordable. We also need to

investigate the impact of multithreading to the scheme. Multithreading could lead to false

positives if multiple threads share the same access permission information. The most

naïve way to tackle this problem is to make each thread have its own access permission

information, but it is obviously too expensive and inefficient.

Our research on intrusion analysis and intrusion recovery is still on its preliminary

stage. Neither the execution trace logging based scheme nor the external input points

tagging base scheme is a satisfying solution to the problem of intrusion analysis and

intrusion recovery yet. The execution trace logging based scheme requires a high

memory bandwidth. On the other hand, the external input points tagging base scheme

incurs significant runtime overhead. Optimizations to both schemes should be explored in

the future work. A more efficient solution is yet to be devised.

 250

REFERENCES

[1] Agrawal, H., DeMillo, R. A., and Spafford, E. H., “An execution-backtracking
approach to debugging”, In IEEE Software, May 1981.

[2] Anderson, R. J., and Kuhn, M., “Low Cost Attacks on Tamper Resistant Devices,”
Security Protocols Workshop, 1997.

[3] Anderson, R. J., “Security Engineering”, John Wiley and Sons publishers, February
2001.

[4] Arbaugh, W. A., Farber, D. J., and Smith, J. M., “A Secure and Reliable Bootstrap
Architecture”, in Proceedings 1997 IEEE Symposium on Security and Privacy ,
pp. 65-71, May 1997.

[5] Aucsmith, D., “Tamper Resistant Software: An Implementation”, Information
Hiding: 1st Int. Workshop (Lecture Notes in Computer Science), vol. 1174, R.J.
Anderson, Editor, Springer Verlag, 1996, Berlin, pp.317-333.

[6] Austin, T. M., Breach, S. E., and Sohi, G. S., “Efficient detection of all pointer and
array access errors”, ACM SIGPLAN Notices, 29(6), 1994.

[7] Avizienis, A., “The N-version approach to fault-tolerant software,” IEEE Trans.
Software Eng., Vol. SE-11, No. 12, pp. 1491–1501, Dec. 1985.

[8] Baratloo, A., Tsai, T., and Singh, N., “Transparent run-time defense against stack
smashing attacks”, In Proceedings of USENIX Annual Technical Conference, June
2000.

[9] Bochs. “Bochs: the Open Source IA-32 Emulation Project,”
http://bochs.sourceforge.net (Accessed July 18, 2006).

[10] Bodik, R., Gupta, R., and Soffa, M. L., “Interprocedural Conditional Branch
Elimination”, ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 146-158, Las Vegas, Nevada, June 1997.

[11] Burger, D., and Austin, T. M., “The SimpleScalar Tool Set Version 2.0,” TR. 1342,
Univ. of Wisconsin--Madison, May 1997.

 251

[12] Business Software Alliance, “Second Annual BSA and IDC Global Software Piracy
Study”, http://www.bsa.org/globalstudy/upload/2005-Global-Study-English.pdf
(Accessed July 18, 2006).

[13] Callahan, D., and Kennedy, K., “Analysis of Interprocedural Side Effects in a
Parallel Programming Environment,” Journal of Parallel and Distributed Computing,
5:517–550, 1988.

[14] Castro, M., and Liskov, B., “Practical Byzantine fault tolerance,” In Proceedings of
the 3rd USENIX Symposium on Operating Systems Design and Implementation,
February 1999.

[15] CERT. www.cert.org (Accessed July 17, 2006).

[16] Chang, H., and Atallah, M., “Protecting software code by guards”, In Proc. 1st ACM
Workshop on Digital Rights Management (DRM 2001), volume 2320 of Lecture
Notes in Computer Science, pages 160–175. Springer-Verlag, 2002.

[17] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K., “Non-Control-Data
Attacks Are Realistic Threats,” in Proc. USENIX Security Symposium, Baltimore,
MD, August 2005.

[18] Chiueh, T. C., and Hsu, F. H., “RAD: A compile-time solution to buffer overflow
attacks”, In Proc. of 21st Intl. Conf. on Distributed Computing Systems, 2001.

[19] Chow, S. T., Gu, Y., Johnson, H. J., and Zakharov, V. A., “An Approach to the
Obfuscation of Control-Flow of Sequential Computer Programs”, In the Proc. of
International Security Conference 2001, Malaga, Spain.

[20] Collberg, C., Thomborson, C., and Low, D., “A Taxonomy of Obfuscating
Transformations”, Technical Report Number 148, Dept. of Computer Science,
University of Auckland, New Zealand, July 1997.

[21] Collberg, C., Thomborson, C., and Low, D., “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs”, Dept. of Computer Science, University of Auckland,
New Zealand, 1998.

[22] Cowan, C., Beattie, S., Johansen, J., and Wagle, P., “Pointguard: Protecting pointers
from buffer overflow vulnerabilities”, In 12th USENIX Security Symposium,

 252

Washington DC, August 2003.

[23] Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier,
A., Wagle, P., and Zhang, Q., “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks”, In Proceedings of the 7th USENIX Security
Symposium, pages 63-78, January 1998.

[24] Creusillet, B., and Irigoin, F., “Exact vs. Approximate Array Region Analyses,” In
Lecture Notes in Computer Science. Springer Verlag, NY, August 1996.

[25] Cruegel, C., Robertson, W., Valeur, F., and Vigna, G., “Static Disassembly of
Obfuscated Binaries”, Proc. 13th. USENIX Security Symposium, August 2004, pp.
255-270.

[26] Dallas Semiconductor, “DS5002FP secure microprocessor chip data sheet”.

[27] Etoh, H., “GCC extensions for protecting applications from stack-smashing attacks”,
http://www.trl.ibm.com/projects/security/ssp (Accessed July 18, 2006).

[28] Federal Trade Commission, “Federal Trade Commission – Identity Theft Survey
Report”, September 2003.

[29] Feldman, S., and Brown, C., “Igor: A system for program debugging via reversible
execution”, In ACM SIGPLAN Notices, Workshop on Parallel and Distributed
Debugging, January 1989.

[30] Feng, H. H., Giffin, J. T., Huang, Y., Jha, S., Lee, W., and Miller, B. P.,
“Formalizing Sensitivity in Static Analysis for Intrusion Detection,” In Proceedings
of the 2004 IEEE Symposium on Security and Privacy, 2004.

[31] Feng, H. H., Kolesnikov, O. M., Fogla, P., Lee, W., and Gong, W., “Anomaly
Detection Using Call Stack Information,” IEEE Symposium on Security and Privacy,
May, 2003.

[32] Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff, T. A., “A Sense of Self for
Unix Processes,” In Proceedings of the 1996 IEEE Symposium on Security and
Privacy, 1996.

 253

[33] Frantzen, M., and Shuey, M., “StackGhost: Hardware facilitated stack protection”,
In Proceedings of the 10th USENIX Security Sumposium, August 2001.

[34] Gandolfi, K., Mourtel, C., and Olivier, F., “Electromagnetic Analysis: Concrete
Results,” In Workshop on Cryptographic hardware and Embedded Systems, 2001.

[35] Gannod, G. C., and Cheng, H. C., “Using Informal and Formal Techniques for
Reverse Engineering of C Programs”, Proc. of the 3 rd Working Conference on
Reverse Engineering, Monterey, California, Nov 8-10, pp. 249-258.

[36] Gao, D., Reiter, M. K., and Song, D., “Gray-Box Extraction of Execution Graphs for
Anomaly Detection”, the 11th ACM CCS conf., pages 318-329, October 2004.

[37] Gao, D., Reiter, M. K., and Song, D., “On Gray-Box Program Tracking for
Anomaly Detection”, 13th USENIX Security Symposium, pages 103-118, August
2004.

[38] Gassend, B., Suh, G. E., Clarke, D., v.Dijk, M., and Devadas, S., “Caches and Hash
Trees for Efficient Memory Integrity Verification”, International Symposium on
High Performance Computer Architecture, Feb. 2003.

[39] Ghosh, A. K., O'Connor, T., and McGraw, G., “An automated approach for
identifying potential vulnerabilities in software”, 1998 IEEE Symposium on
Security and Privacy, pp. 104-114.

[40] Goldreich, O., and Ostrovsky, R., “Software Protection and Simulation on Oblivious
RAMs,” Journal of the ACM, Vol.43, No.3, 1996.

[41] Goldreich, O., “Towards a Theory of Software Protection and Simulation by
Oblivious RAMs,” The 19th Annual ACM Symposium on Theory of Computing
(STOC), 1987.

[42] Grunwald, D., Lindsay, D., and Zorn, B., “Static methods in hybrid branch
prediction,” PACT 1998. Pages: 222 – 229.

[43] Hangal, S., and Lam, M. S., “Tracking down software bugs using automatic
anomaly detection”, In Proceedings of Int. Conf. Software Engineering, May 2002.

 254

[44] Hastings, R., and Joyce, B., “Purify: Fast detection of memory leaks and access
errors”, In Proceedings of the Winter USENIX Conference, 1992.

[45] Horne, B., Matheson, L., Sheehan, C., and Tarjan, R., “Dynamic self-checking
techniques for improved tamper resistance”, In Proc. 1st ACM Workshop on Digital
Rights Management (DRM 2001), volume 2320 of Lecture Notes in Computer
Science, pages 141–159. Springer-Verlag, 2002.

[46] Householder, A., Houle, K., and Dougherty, C., “Computer Attack Trends
Challenge Internet Security”, IEEE security and Privacy, Apr. 2002.

[47] Huang, A., “Keeping Secrets in Hardware: the Microsoft Xbox (TM) Case Study,”
MIT TR. AIM-2002-008, May 26, 2002.

[48] Intel LaGrande Technology, http://www.intel.com/technology/security/ (Accessed
July 18, 2006).

[49] Intel Corporation, “Intel Random Number Generator,” 1999.

[50] Jones R., and Kelly. P., “Bounds checking for C”, http://www-
ala.doc.ic.ac.uk/~phjk/BoundsChecking.html (Accessed July 18, 2006).

[51] Kanellos, M., “Intel's accidental revolution”, http://news.com.com/2009-1001-
275806.html (Accessed July 17, 2006).

[52] Kelsey, J., Schneier, B., Wagner, D., and Hall, C., “Side channel cryptanalysis of
product ciphers”, European Symposium on Research in Computer Security, Sep.
1998.

[53] Kennedy, K., and Allen, J. R., “Optimizing compilers for modern architectures: a
dependence-based approach,” Morgan Kaufmann Publishers Inc, 2002.

[54] Knuth, D. E., “Seminumerical Algorithms,” The Art of Computer Programming,
Vol. 3, Addison Wesley 1981.

[55] Kocher, P. C., “Timing attacks on implementations of Die-Hellman, RSA, DSS, and
other systems,” International Cryptology Conference, 1996.

 255

[56] Kocher, P., Jaffe J., and Jun, B., “Differential Power Analysis”, International
Cryptology Conference, 1999.

[57] Koo, R., and Toueg, S., “Checkpointing and rollback recovery for distributed
systems,” IEEE Trans. Software Eng., Vol. SE-13, No. 1, pp. 23–31, Jan. 1987.

[58] Koopman, P., "Embedded System Security," IEEE Computer, July 2004.

[59] Kosoresow, A., and Hofmeyr, S., “Intrusion Detection via System Call Traces,”
IEEE Software, vol. 14, pp. 24-42, 1997.

[60] Krügel, C., Mutz, D., Valeur, F., and Vigna, G., “On the Detection of Anomalous
System Call Arguments”, In Proceedings of ESORICS 2003, pages 326-343,
Norway, 2003.

[61] Kuhn, M. G., “Cipher Instruction Search Attack on the Bus-Encryption Security
Microcontroller DS5002FP,” IEEE Transaction on Computers, Vol.47, No.10,
pp.1153-1157, 1998.

[62] Lampson, B., Abadi, M., Burrows, M., and Wobber, E., “Authentication in
distributed systems: Theory and practice”, ACM Transactions on Computer Systems,
volume 10, issue 4, Nov. 1992, pp 265-310.

[63] Lee, R. B., Karig, D. K., McGregor, J. P., and Shi, Z., “Enlisting hardware
architecture to thwart malicious code injection,” In Proceedings of the International
Conference on Security in Pervasive Computing (SPC-2003), March 2003.

[64] Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., and
Horowitz, M., “Architectural Support for Copy and Tamper Resistant Software,”
International Conference on Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.

[65] Linn, C., and Debray, S., “Obfuscation of Executable Code to Improve Resistance to
Static Disassembly”, In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS), pages 290--299, October 2003.

[66] Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., and Shrira, L., “Replication in
the Harp File System,” In ACM Symposium on Operating System Principles, 1991.

 256

[67] Lu, C., Zhang, T., Shi, W., and Lee, H. S., " M-TREE:A High Efficiency Security
Architecture For Protecting Integrity and Privacy of Software", Journal of Parallel
and Distributed Computing for a special issue on Security in Grid and Distributed
Systems, 2006.

[68] Mach-SUIF Backend Compiler, “The Machine-SUIF 2.1 compiler documentation
set”, Harvard University, Sep. 2000,
http://ececs.harvard.edu/hube/research/machsuif.html (Accessed July 18, 2006).

[69] Malkhi, D., and Reiter, M., “Secure and Scalable Replication in Phalanx,” In IEEE
Symposium on Reliable Distributed Systems, 1998.

[70] Mambo, M., Murayama T., and Okamato, E., “A tentative approach to constructing
tamper-resistant software”, In Proceedings of the 1997 Workshop on New Security
Paradigms, Langdale, Cumbria, United Kingdom, September 23 - 26, 1997.

[71] Marlin, S., “Security Breach Exposes Data On Millions Of Payment Cards”,
Information Week, June 17, 2005.

[72] McClure, C., “Software Reuse Planning by Way of Domain Analysis”, Technical
Paper, Extended Intelligence Inc.

[73] McGregor, J. P., Karig, D. K., Shi, Z., and Lee, R. B., “A processor architecture
defense against buffer overflow attacks,” In Proceedings of IEEE International
Conference on Information Technology: Research and Education (ITRE 2003),
pages 243–250, August 2003.

[74] Melanson M., “Deobfuscating Obfuscated Code with Retroguard”, available at
http://www.multimedia.cx/pre/re-retroguard.html (Accessed July 18, 2006).

[75] Merkle, R. C, “Protocols for public key cryptography”, In IEEE Symposium. On
Security and Privacy, pages 122–134, 1980.

[76] Michael, C., and Ghosh, A., “Using Finite Automate to Mine Execution Data for
Intrusion Detection: A preliminary Report”, RAID 2000.

[77] Min, S. L., and Choi, J. D., “An efficient cache-based access anomaly detection
scheme”, In Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 1991.

 257

[78] Mueller, F., and Whalley, D. B., “Avoiding Unconditional Jumps by Code
Replication,” by in the Proceedings of the SIGPLAN '92 Conference on
Programming Language Design and Implementation, June 1992, pages 322-330.

[79] Next-Generation Secure Computing Base,
http://www.microsoft.com/resources/ngscb/default.mspx (Accessed July 18, 2006).

[80] Nickerson, J. R., Chow, S. T., and Johnson, H. J., “Tamper Resistant Software:
Extending Trust into a Hostile Environment”, Multimedia and Security Workshop at
ACM Multimedia 2001, Ottawa, October 5, 2001.

[81] Oki, B., and Liskov, B., “Viewstamped Replication: A New Primary Copy Method
to Support Highly-Available Distributed Systems”, In ACM Symposium on
Principles of Distributed Computing, 1988.

[82] One, A., "Smashing the Stack for Fun and Profit", Phrack volume 7, issue 49.

[83] Openwall project, http://www.openwall.com (Accessed July 18, 2006).

[84] Osvik, D. A., Shamir, A., and Tromer, E., “Cache Attacks and Countermeasures:
The Case of AES,” The Cryptographers' Track at the RSA Conference 2006,
February 13-17, 2006.

[85] Paek, Y., Hoeflinger, J., and Padua, D., “Efficient and Precise Array Access
Analysis”, ACM Transactions on Programming Languages and Systems (TOPLAS).
Vol. 24, Issue 1, pp. 65-109, January 2002.

[86] Pan, D. Z., and Linton, M. A., “Supporting reverse execution of parallel programs,”
In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, January 1989.

[87] Perry, D. C., “Microsoft's Xbox 360 vs. Sony's PlayStation 3”,
http://xbox360.ign.com/articles/617/617951p1.html (Accessed July 18, 2006).

[88] Pugh, W., “A Practical Algorithm for Exact Array Dependence Analysis,”
Communications of the ACM, 35(8), August 1992.

[89] Ruwase, O., and Lam, M. S., “A practical dynamic buffer overflow detector”, In

 258

Proceedings of the 11th Network and Distributed System Security Symposium,
February 2004.

[90] Schneider, F., “Implementing Fault-Tolerant Services Using The State Machine
Approach: A Tutorial,” ACM Computing Surveys, 22(4), 1990.

[91] Scut, “Exploiting format string vulnerabilities”. TESO Security Group, Sep. 2001.

[92] Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P., “A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors,” In Proceedings of the 2001
IEEE Symposium on Security and Privacy, 2001.

[93] Shamir, A., “How to Share a Secret”, Communications of the ACM, 22(11): 612-
613, November 1979.

[94] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B., “Automatically
Characterizing Large Scale Program Behavior,” International Conference on
Architectural Support for Programming Languages and Operating Systems Oct.
2002.

[95] Shi, W., Lee, H. S., Ghosh, M., Lu, C., and Boldyreva, A., "High Efficiency Counter
Mode Security Architecture via Prediction and Precomputation." In the Proceedings
of the 32nd International Symposium on Computer Architecture, pp.14-
24, Madison, Wisconsin, June 2005.

[96] Shi, W., Lee, H. S., Ghosh, M., and Lu, C., “Architectural Support for High Speed
Protection of Memory Integrity and Confidentiality in Multiprocessor Systems,” In
Proceedings of the International Conference on Parallel Architecture and
Compilation Techniques, pp.123-134, September 2004.

[97] Shi, W., Lee, H. S., Gu, G., Ghosh, M., Falk, L, and Mudge, T. N., “Intrusion
Tolerant and Self-Recoverable Network Service System Using Security Enhanced
Chip Multiprocessors,” In the Proceedings of the 2nd International Conference on
Autonomic Computing, pp.263-273, Seattle, Washington, June 2005.

[98] Smirnov, A., and Chiueh, T., “DIRA: Automatic Detection, Identification, and
Repair of Control-Hijacking Attacks,” In Proceedings of NDSS'05, San Diego, CA,
February 2005.

 259

[99] Srinivasan, S., Kandula, S., Andrews, C., and Zhou, Y., “Flashback: A lightweight
extension for rollback and deterministic replay for software debugging”, In
Proceedings of USENIX Annual Technical Conference, June 2000.

[100] Stanford SUIF Compiler Infrastructure, “The SUIF 2 compiler documentation
set”, Stanford University, Sep.2000. http://suif.stanford.edu/suif/index.html
(Accessed July 18, 2006).

[101] Suh, G. E., Clarke, D., Gassend, B., v.Dijk, M., and Devadas, S., “AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing,” International
Conference on Supercomputing, Jun. 2003.

[102] Suh, G. E., Clarke, D., Gassend, B., v.Dijk, M., and Devadas, S., "Efficient
Memory Integrity Verification and Encryption for Secure Processors", International
Symposium on Microarchitecture, Dec. 2003.

[103] Suh, G. E., Lee, W., and Devadas, S., “Secure Program Execution via Dynamic
Information Flow Tracking”, ASPLOS 2004.

[104] Team, P., “Non-executable pages design and implementation”,
http://pax.grsecurity.net/docs/noexec.txt (Accessed July 18, 2006).

[105] TPM vendors, http://www.tonymcfadden.net/tpmvendors.html (Accessed July 18,
2006).

[106] Triolet, R., Feautrier, P., and Irigoin, F., “Direct Parallelism of Call Statements,”
ACM SIGPLAN Symposium on Compiler Construction, pages 176–185, 1986.

[107] Trusted Computing Group, https://www.trustedcomputinggroup.org/home
(Accessed July 18, 2006).

[108] Tuck, N., Calder B., and Varghese, G., “Hardware and Binary Modification
Support for Code Pointer Protection from Buffer Overflow”, 37th International
Symposium on Microarchitecture, Dec. 2004.

[109] Tygar, J. D., and Yee B., “Dyad: A system for using physically secure
coprocessors”, Technical report, Carnegie Mellon University, May 1991. CMU-CS-
91-140R.

 260

[110] Ullman, J. R., “An Algorithm for subgraph Isomorphism,” Journal of the ACM,
Vol.23, pp.31-42, 1976.

[111] Vendicator, “StackShield GCC compiler patch”,
http://www.angelfire.com/sk/stackshield (Accessed July 18, 2006).

[112] Verton, D., “Hacking syndicates threaten banking”,
http://www.computerworld.com/securitytopics/security/cybercrime/story/0,10801,75
584,00.html (Accessed July 17, 2006).

[113] VFLib Graph Matching Library, http://amalfi.dis.unina.it/graph/db/vflib-
2.0/doc/vflib-1.html (Accessed July 18, 2006).

[114] Vlaovic, S., and Davidson, E. S., “TAXI: Trace Analysis for X86 Interpretation”,
In Proc. Of 2002 IEEE International Conference on Computer Design.

[115] Wagner, D., and Dean, D., “Intrusion Detection via Static Analysis,” In
Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001.

[116] Wang, Y. M., Huang, Y., Vo, K. P., Chung, P. Y., and Kintala, C.,
“Checkpointing and its applications,” In 25th International Symposium on Fault-
Tolerant Computing, pages 22--31, Pasadena, CA, June 1995.

[117] Wikipedia, “Bandwidth Assessment of CELL Processor”,
http://en.wikipedia.org/wiki/Cell_(microprocessor)#Bandwidth_Assessment
(Accessed July 18, 2006).

[118] Wilander, J., and Kamkar. M., “A comparison of publicly available tools for
dynamic buffer overflow prevention,” In 10th NDSSS, 2003.

[119] Wilson, R., and Lam, M., “Efficient context-sensitive pointer analysis for C
programs”, In Proceedings of the SIGPLAN '95 Conference on Program Language
Design and Implementation, La Jolla, CA, June 1995.

[120] Witchel, E., Cates, J., and Asanovic, K., “Mondrian Memory Protection,” Tenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X) , San Jose, CA, October 2002.

 261

[121] Xu, J., Ning, P., Kil, C., Zhai, Y., and Bookholt, C., “Automatic Diagnosis and
Response to Memory Corruption Vulnerabilities,” In Proceedings of 12th ACM
Conference on Computer and Communications Security (CCS), Nov 2005.

[122] Xu, M., Bodik, R., and Hill, M. D., “A "flight data recorder" for enabling full-
system multiprocessor deterministic replay,” In Proceedings of the 30th Annual
international Symposium on Computer Architecture, pp. 122-135, San Diego,
California, June 09 - 11, 2003.

[123] Yan, C., Englender, D., Prvulovic, M., Rogers, B., and Solihin, Y., “Improving
Cost, Performance, and Security of Memory Encryption and Authentication,”
Proceedings of the 33rd Annual International Symposium on Computer Architecture,
Jun. 2006.

[124] Yang, J., Zhang, Y., and Gao, L., “Fast Secure Processor for Inhibiting Software
Piracy and Tampering,” International Symposium on Microarchitecture, Dec. 2003.

[125] Zhang, T., Pande, S., and Valverde, A., “Tamper-resistant Whole Program
Partitioning”, International Conference on Languages, Compilers, and Tools for
Embedded Systems, Jun. 2003.

[126] Zhang, T., Pande, S., Santos, A. D., Bruecklmayer, F. J., “Leakage-proof Program
Partitioning,” International Conference on Compiler, Architecture and Synthesis for
Embedded Systems, Oct. 2002.

[127] Zhang, T., Zhuang, X., and Pande, S., “Building Intrusion-Tolerant Secure
Software”, In Proceedings of 3rd ACM/IEEE International Symposium on Code
Generation and Optimization (CGO 2005), San Francisco, CA, March, 2005, pp.
255-266.

[128] Zhang, T., Zhuang, X., Pande, S., and Lee, W., "Anomalous Path Detection with
Hardware Support", International Conference on Compilers, Architectures and
Synthesis for Embedded Processors (CASES), San Francisco, CA, Sep. 2005.

[129] Zhang, T., Zhuang, X., Pande, S., and Lee, W., “Hardware Supported Anomaly
Detection: down to the Control Flow Level,” Technical Report GIT-CERCS-04-11.

[130] Zhang, Y., and Gupta, R., “Timestamped Whole Program Path Representation
and its Applications”, PLDI 2001.

 262

[131] Zhou, P., Liu, W., Long, F., Lu, S., Qin, F., Zhou, Y., Midkiff, S., and Torrellas,
J., “AccMon: Automatically Detecting Memory-Related Bugs via Program Counter-
based Invariants,” The Proceedings of 37th Annual IEEE/ACM International
Symposium on Micro-architecture (Micro'04), December, 2004.

[132] Zhou, P., Qin, F., Liu, W., Zhou, Y., and Torrellas, J., “iWatcher: Efficient
architectural support for software debugging”, In Proceedings of the 31st Annual
International Symposium on Computer Architecture, 2004.

[133] Zhuang, X., Zhang, T., Pande, S., "HIDE: An Infrastructure for Efficiently
Protecting Information Leakage on the Address Bus", International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Boston, MA., Oct 2004.

