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SUMMARY 

 

Computer technology has changed our life fundamentally and computer systems 

have become indispensable for the proper functionality of our society. On the other hand, 

the rapid increase of the society’s dependence on computer systems brings great interest 

to break in and attack those systems. Computer software determines the functionality of 

computer systems and is the primary target of attacks. With today’s pervasive presence of 

computer systems and network connections, securing critical software from attacks has 

become an extremely important problem and has never been as challenging. 

Critical software faces both software-based attacks and hardware-based attacks. 

Software-based attacks may come from other malicious software. For example, attacking 

software may read/write victim software’s address space through flaws in process 

isolation. Software-based attacks may also break software by exploiting all kinds of 

vulnerabilities in the victim software, such as notorious buffer overflow vulnerabilities. 

Hardware-based attacks break software by utilizing specialized hardware and attacking 

the system on which the software is running, such as snooping system buses during the 

execution of the software. Software attacks are more commonly known. However, 

combating hardware attacks has been an extremely important problem in secure 

embedded systems domain, such as smart cards, and is becoming more and more relevant 

in general purpose computing domains.  

In this dissertation, we propose RADAR – compileR and micro-Architecture 

supported intrusion prevention, Detection, Analysis and Recovery. RADAR is an 

infrastructure to help prevent, detect and even recover from attacks to critical software. 
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Instead of being a purely software-based approach or a purely hardware-based approach 

as in previous approaches, our approach emphasizes collaborations between compiler and 

micro-architecture to avoid the problems of purely software or hardware based 

approaches. Our infrastructure is based on micro-architecture level support and has its 

security rooted in hardware. At the same time, we call for compiler assist whenever it is 

necessary, such as to obtain expected software behavior, or whenever it is helpful to 

reduce the complexity of the micro-architecture support. With both micro-architecture 

and compiler support, our infrastructure can defend against both software and hardware 

attacks with superb security strength but reasonable hardware and performance cost. 

We believe that a purely software-based approach is not able to meet the security 

challenges faced by critical software. First, a purely software-based approach can be 

easily reverse-engineered and then cracked. In addition, a purely software-based 

approach cannot defend against hardware attacks thus is not applicable in situations 

where hardware attacks are real threats. More importantly, security operations 

implemented in software are much more expensive than the hardware implemented 

version. The potential performance penalty greatly limits the security strength that a 

software-based approach can achieve. Overall, a purely software-based approach may not 

be able to achieve a satisfying security guarantee for critical software. 

Thus, we believe that it is time to call for micro-architecture level support for 

software security. With hardware support for cryptographic operations, such as 

encryption, decryption and hashing, our infrastructure can achieve strong process 

isolation to prevent attacks from other processes and to prevent certain types of hardware 

attacks, such as using specialized hardware to read/tamper the system data bus traffic or 
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the external memory system directly to evade process isolation mechanism completely. 

Moreover, we show that an unprotected system address bus leaks critical control flow 

information of the protected software but has never been carefully addressed previously. 

The information leakage could facilitate an attack and bring significant damage to both 

code and data confidentiality. To enhance intrusion prevention capability of our 

infrastructure further, we present a scheme with both innovative hardware modification 

and extensive compiler support to eliminate most of the information leakage on system 

address bus.  

However, no security system is bullet-proof and is able to prevent all attacks. 

Although our hardware infrastructure is able to achieve strong process isolation and to 

prevent common hardware attacks, it does not prevent attacks exploiting software 

vulnerabilities such as buffer overflow attacks. In general, we have to assume that certain 

attacks will get through our intrusion prevention mechanisms. To protect software from 

those attacks, we build a second line of defense consisted of intrusion detection and 

intrusion recovery mechanisms.  

Our intrusion detection mechanisms are based on anomaly detection. In other 

words, we try to detect anomalous program behavior caused by attacks based on expected 

program behavior. Anomaly detection does not target to specific attacks and is able to 

detect novel or unknown attacks. In this dissertation, we propose three anomaly detection 

schemes. The first one is a training based scheme to detect anomalous dynamic program 

paths. The scheme monitors the software execution at a very fine granularity and is able 

to detect attacks with high precision and neglectable performance overhead. The major 

concern of the scheme is false positives. So we propose the second scheme based on 
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compiler branch correlation analysis to detect infeasible paths without any false positives. 

But the detection capability is not as good. Finally, we present a third scheme based on 

compiler data flow analysis to detect tampering to critical software data. The third 

scheme is able to achieve both zero false positives and strong detection strength, but the 

performance overhead is much higher. We demonstrate the effectiveness of our anomaly 

detection schemes thus the great potential of what compiler and micro-architecture can do 

for software security. 

After an intrusion is detected, most previous approaches simply shut down the 

attacked software to avoid any further damage. However, the ability to recover from an 

attack is very important for systems providing critical services. Thus, intrusion 

recoverability is an important goal of our infrastructure. To provide intrusion 

recoverability, two major tasks have to be done. First, we need to analyze the attack to 

identify exactly when and how the attack happens so that we can identify the tampered 

system state and gather useful information for later forensic analysis. Second, the 

tampered system state has to be recovered through certain mechanisms. We focus on 

memory state in this dissertation, since most attacks break into a system by memory 

tampering. Intrusion analysis is a difficult problem since there could be an arbitrarily 

large interval between the tampering to the system state and the detection of the 

tampering. We propose two schemes for intrusion analysis. The execution logging based 

scheme incurs little performance overhead but has higher demand for storage and 

memory bandwidth. The external input points tagging based scheme is much more space 

and memory bandwidth efficient, but leads to significant performance degradation. After 

intrusion analysis is done and tampered memory state is identified, tampered memory 
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state can be easily recovered through memory updates logging or memory state 

checkpointing.  

In summary, our RADAR infrastructure aims to protect critical software from 

both hardware attacks and software attacks with strong security guarantee. It integrates 

the abilities of intrusion prevention, intrusion detection, intrusion analysis and intrusion 

recovery, which are the major aspects of protecting software from malicious attacks. It 

emphasizes collaborations between compiler and micro-architecture to achieve those 

abilities. With micro-architecture level support and compiler assist, our RADAR 

infrastructure can achieve strong security guarantee for critical software with reasonable 

hardware cost and performance degradation.  

 



 

1 

1 INTRODUCTION 

 
In this dissertation, we propose an infrastructure called RADAR to help prevent, 

detect and even recover from attacks to critical software. Instead of being a pure 

software-based approach or a pure hardware-based approach, our approach emphasizes 

collaborations between compiler and micro-architecture to avoid the problems of pure 

software or hardware based approaches. Our infrastructure is based on micro-architecture 

level support and has its security rooted in hardware. At the same time, we call for 

compiler assist whenever it is necessary, such as to obtain expected software behavior, or 

whenever it is helpful to reduce the complexity of the micro-architecture support. With 

both micro-architecture and compiler support, our infrastructure can defend against both 

software and hardware attacks with superb security strength but reasonable hardware and 

performance cost. 

1.1 Motivation 

 Computer technology has changed our life fundamentally and computer systems 

have become indispensable for the proper functionality of our society. Numerous 

embedded systems form parts of critical systems in automobiles, aircrafts, satellites, 

robots, appliances, and medical devices to control their operations. At the same time, 

conventional computer systems are integral parts of critical infrastructures such as 

financial services, telecommunication, transportation, energy production and distribution 

networks. In the year 2000, 385 million microprocessors were produced for use in 

conventional computers, at the same time 6.4 billion microcontrollers were manufactured 

for use in embedded devices  [51].  
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 The increasing of the society’s dependence on computer systems brings great 

interest from criminals and terrorists to break in and tamper those systems. Although the 

vast majority of computer security incidents are not reported to public, we can still get a 

sense of the severity of the problem by those publicly available ones. For example, on 

Apr. 12 2001, VISA lost 20 million dollars due to extortion by hacker organizations. On 

Aug. 26 2002, systems of Daewoo Securities were hacked and $21.7 million stock was 

illegally sold  [112]. On Jun. 2005, CardSystems Solutions Inc, a third-party processor of 

payment-card data, was breached and as many as 40 million cards may have been 

exposed  [71]. The impact of incidents occurred in military or national security related 

areas will be far more significant but those incidents most likely will not be publicly 

reported. Figure 1 shows the number of Internet incidents reported to CERT  [15] in 

recent years. This graph merely shows the tip of the iceberg, but it can be easily seen that 

the situation gets worse quickly.  
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Figure 1. Number of incidents reported to CERT. 
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 Koopman showed the potential scale of the computer security problem in the 

future using thermostat as an example [58]. A household thermostat controls heating and 

cooling of the house. Most thermostats have an embedded computer and many of them 

will have internet connection in the future to allow remote control from the house owner 

or the utility company. Tampering of one thermostat may not be able to cause significant 

damage, but what if millions of them are controlled by an attacker? The situation is very 

realistic since those thermostats most likely will execute the same software thus can be 

hacked in the same way. Moreover, they are likely to be under center control of the utility 

company, which could also be broken by the attacker. With millions of thermostats under 

control, the attacker can do serious damages. He can set the target temperature to an 

extreme point and cause a black out of a power grid. Or he can bump the temperature a 

little bit to increase energy consumption and inflate energy bills in a subtle way. 

Obviously, tampering to more complicated computer systems having more 

responsibilities could lead to much more severe damages.  

 In summary, with more and more pervasive presence of computer systems and 

network connections in the future, securing critical computer systems from attacks has 

become an extremely important problem and has never been as challenging. Computer 

software determines the functionality of computer systems and is the primary target of 

attacks. In this dissertation, we will focus on the problem of protecting critical software 

from attacks.   

 Critical software faces both software-based attacks and hardware-based attacks. 

Software-based attacks may come from other software. For example, attacking software 

may read/write victim software’s address space through flaws in process isolation. 
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Software-based attacks may also break software by exploiting all kinds of vulnerabilities 

in the target software, such as notorious buffer overflows. Hardware attacks break 

software by utilizing specialized hardware and attacking the system on which the 

software is running, such as snooping system buses during the execution of the software. 

Software attacks are more commonly known. Preventing hardware attacks has been an 

extremely important problem in secure embedded system domain, such as smart cards, 

and is becoming more and more relevant in general purpose computing domains.  

 Protecting software from attacks has several aspects including intrusion 

prevention, intrusion detection and intrusion recovery. Measures can be taken to prevent 

certain attacks or make certain attacks computationally difficult. On the other hand, there 

is no perfect security so attacks or intrusions will occur thus we need mechanisms to 

detect those attacks. Finally, in certain situations it is critical that the software can recover 

from intrusions and continue its correct execution. 

1.2 Traditional Software-Based Approaches 

 Software protection is a traditional research topic. Traditional solutions are purely 

software-based and mostly focus on intrusion prevention and intrusion detection. We give 

several examples to show the problems of a purely software-based solution.  

 Software-based encryption is a classical mechanism to prevent attacks to software 

confidentiality. A part of the software may be encrypted by an activation key only known 

to the legitimate user. However, the scheme can be easily broken as long as the attacker 

has access to one legal copy. Although a part of the program binary is encrypted, without 

hardware support, the processor cannot execute encrypted code so that the encrypted 

code has to be decrypted first in memory. The attacker can debug/reverse-engineer 
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 [35] [112] the protected software during its execution and find out the whereabouts of the 

decrypted code and dump its content, then he has a decrypted version of the software.  

 Software-based self-checksumming is a popular technique to detect tampering to 

software due to attacks  [16] [45]. Checksumming code is spread through the software and 

the software code/data is verified against its previously computed checksum during 

execution. However, the attacker can still reverse-engineer and understand the 

implementation of checksumming technique. Then he can learn how to tamper the 

software data without triggering a checksum failure or attack the checksumming code 

directly to remove/bypass it. The amount of work is normally insignificant for an 

experience attacker and is trivial for a well-funded organization.  

 Software obfuscation  [5] [19] [20] [21] [70] [80] [65] has been proposed to make 

reverse-engineering more difficult by transforming the original program code. The 

techniques used include instructions shuffling, replacing, scrambling, dummy code 

insertion, branch function creation etc. However, software obfuscation cannot achieve 

any security guarantee but only increases the effort required to attack the software. 

Moreover, the research of deobfuscation is also active, which could help attackers greatly. 

As a good example, after an obfuscation technique to make static disassembly difficult is 

proposed in  [65], it is promptly broken in  [25]. More ironically, an extremely competent 

Java obfuscator has been subverted and used as a powerful deobfuscator  [74].  

 General intrusion detection techniques based on detecting anomalous program 

behavior are also proposed  [32] [115] [92] [31] [30] [59] [76] [37] [36]. The detection strength 

of those anomaly detection techniques largely depends on the granularity at which they 

monitor the target program. Since current approaches are implemented in software, they 
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are not able to monitor the target software at a very fine granularity due to the potential 

performance overhead. Currently, most of them monitor at system call level such as in 

 [32]. Due to the coarse monitoring granularity, certain attacks will be missed by those 

schemes.  

1.3 Existing Hardware-Based Approaches 

 Trusted Computing Group (TCG)  [107] is an industrial alliance promoting trusted 

computing, founded by Microsoft, Intel, IBM, HP and AMD. The goal of it is to develop 

specifications for a secure computing platform against software-based attacks to software 

confidentiality and integrity. The so-called trusted computing platform incorporates 

several security components. The most noteworthy one is a secure co-processor called 

trusted platform module (TPM). The security of the whole platform relies on the TPM, 

which can be used to protect data confidentiality by encrypting/decrypting and to verify 

the integrity of the software by hashing. Other security components include a processor 

having a strong process isolation feature (implemented in Intel’s LaGrande Technology 

 [48]), a secure operating system kernel and a secure kernel in each trusted computing 

application (both provided by Microsoft’s NGSCB infrastructure  [79]). There are already 

several implementations of the TPM specification and TPM compliant chips are already 

available in many desktops and laptops models  [105].  

 Recently, Lie et al.  [64] proposed the XOM secure architecture design based on 

hardware supported encryption/decryption. With hardware support, program code/data is 

encrypted and decrypted on the fly by the secure processor during program execution. 

The effect is that the processor is able to execute “encrypted” program now. Only the 

processor has access to the plaintext of the original program code and data but the 
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attacker does not. Thus, their scheme prevents attacks to software confidentiality 

effectively through encryption/decryption. Lie et al. also proposed a hashing based 

integrity checking scheme to detect tampering to the software thus achieving certain 

intrusion detection too. Later, Gassend et al.  [38] pointed out that the integrity checking 

scheme in  [64] is vulnerable to replay attacks. Gassend et al. further proposed a hash-tree 

based integrity checking scheme to fix the problem. Since then, there has been some 

follow up work to improve over the initial work  [124] [102] [101] [95] [67]. But the basic 

designs established in  [64] and  [38] are inherited.  

1.4 Our Approach 

 In general, software protection techniques purely based on software cannot 

achieve strong security guarantee. Since the protection scheme is purely implemented in 

software, it can be easily reverse-engineered and attacked. On the other hand, lack of 

hardware support makes security operations too expensive to be applied aggressively, 

further limiting the security strength that a software-based protection scheme can achieve. 

As a matter of fact, software piracy and digital media piracy cost industries billions of 

dollars each year  [12], which easily proves current software protection (in terms of 

confidentiality) schemes are ineffective. 

 Moreover, the development of computer technology and its applications has made 

securing critical software an extremely important and challenging problem. Although 

software and digital media piracy costs significant financial losses for 

software/entertainment industries, its damage is still limited. With computer software 

virtually controlling every critical service in modern society even including nuclear arms, 

how to secure critical software has become a problem of national priority. On the other 
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hand, the pervasive presence of network connections and the easy access to tremendous 

personal computing power make computer software face great threats and challenges 

never experienced before.  

 In particular, traditional software-based software protection approaches only 

tackle software-based attacks, in which attackers utilize software tools and methods to 

break in the software. Hardware attacks constitute another large category of attacks in 

which attackers utilize specialized hardware and manipulate the target system in an 

unintended way. Hardware attack techniques include probing, re-engineering, memory 

readout, bus snooping, side-channel information leakage exploitation etc.  [3]. Hardware 

attacks are mostly concerned in embedded systems domain previously, especially in 

designs of tamper-resistant devices such as smart cards. However, we believe that to 

achieve software security with strong guarantee, hardware attacks have become realistic 

and dangerous enough to be considered in general secure system designs. We should 

indeed learn our lessons from the case of Xbox hacking  [47], in which the carefully 

crafted security scheme was easily defeated by system bus snooping. The device utilized 

is commonly available in labs and can be readily purchased at a cheap price. Obviously a 

protection scheme purely based on software can do little to prevent hardware attacks. 

 In response to the ineffectiveness of traditional software protection schemes and 

the emerging new threats, we believe that it is time to call for micro-architecture level 

support for software security. With hardware support for security, the security of the 

system can be rooted in hardware and the system can achieve much better security 

guarantee than software-based ones. The reasons are two folded. First, hardware is very 

difficult to reverse-engineer and crack. Even an average programmer would be able to 
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disassemble, trace and study a software binary using numerous easily accessible tools, 

but reverse-engineering a hardware component is virtually impossible for common 

attackers. Second, hardware support can make previously infeasible security operations 

feasible and previously expensive security operations efficient, enabling a much stronger 

security strength. 

 We share the same view with both industry and academia. As discussed 

previously, there has been a strong drive to introduce micro-architecture level support for 

security in both industry and academia. However, the secure platform designed by TCG 

focuses on software-based attacks and does not concern about hardware attacks, so it will 

not help when hardware attacks are real threats. The protection strength of the TCG 

secure platform may be enough for common commercial applications such as digital 

rights management, but it is inadequate in areas in which the attacker is very powerful, 

well organized and well funded such as national security related areas. Thus, we believe 

to achieve a strong security guarantee, defending against common hardware attacks is 

necessary  

 The previous approaches taken by academia do have defending against hardware 

attacks as an important goal. The proposed secure architectures 

 [64] [38] [124] [102] [101] [95] are designed to achieve strong process isolation to prevent 

attacks from other processes and to prevent certain types of hardware attacks, such as 

using specialized hardware to read/write the external memory system directly to evade 

process isolation mechanism completely. However, those secure architecture designs are 

purely hardware-based and do not call for any software assist. The most significant 

problem is that they cannot defend against software attacks exploiting vulnerabilities of 
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the victim software. The reason is that without any software assist, the secure architecture 

cannot make any assumption about the expected software behavior. For example, it will 

not be able to tell whether a store instruction is writing inside a buffer or is overflowing 

the buffer. In addition, a purely hardware-based approach could introduce significant 

hardware cost and limit the applicability of the approach. 

 In this dissertation, we propose a security infrastructure called RADAR 

(compileR and micro-Architecture supported intrusion prevention, Detection, Analysis 

and Recovery) to help prevent, detect and even recover from attacks to critical software. 

Instead of being a pure software-based approach or a pure hardware-based approach, our 

approach emphasizes collaborations between compiler and micro-architecture to avoid 

the problems of pure software or hardware based approaches. Our infrastructure is based 

on micro-architecture level support and has its security rooted in hardware. At the same 

time, we call for compiler assist whenever it is necessary, such as to obtain expected 

software behavior, or whenever it is helpful to reduce the complexity of the micro-

architecture support. With both micro-architecture and compiler support, our 

infrastructure can defend against both software and hardware attacks with superb security 

strength but reasonable hardware and performance cost. 

 We implement the widely accepted machine model established in  [64] [38]. Our 

implementation achieves similar security guarantee as in  [64] [38], but with a much 

smaller performance overhead. The details of our implementation can be found in  [67]. In 

that way, our hardware infrastructure can achieve strong process isolation to prevent 

attacks from other processes and to prevent certain types of hardware attacks, such as 

using specialized hardware to read/tamper the system data bus traffic and the external 
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memory system directly. However, the machine model established in  [64] [38] has a 

serious flaw. It only protects confidentiality of the traffic going through system data bus. 

It cannot protect system address bus traffic, i.e., addresses of memory accesses. We show 

that unprotected memory access sequence acts as very dangerous side-channel and leaks 

critical control flow information of the protected software. The information leakage could 

facilitate an attack and bring significant damage to both code and data confidentiality. To 

our best knowledge, this flaw actually exists in all previous secure processor designs (in 

both industry and academia) and can be a very real threat. To enhance intrusion 

prevention capability of our hardware infrastructure, we present a scheme with both 

innovative hardware modification and extensive compiler support to eliminate most of 

the information leakage on system address bus with little performance overhead.  

 Our hardware infrastructure can prevent attacks to software confidentiality and 

detect attacks to software integrity from other malicious software running in the same 

machine (even including a malicious operating system) and hardware attacks. However, 

one important observation is that it cannot prevent attacks exploiting flaws/bugs in the 

protected software itself. The classical example of this kind of attack is buffer overflow 

attack  [82], which can be regarded as due to a programming error (missing bound 

checking). Other examples include format string attacks and return-to-libc attacks etc. 

The hardware infrastructure alone cannot prevent such attacks. As far as the secure 

processor concerns, the instructions to overflow the buffer are perfectly legal instructions. 

In fact, to maintain the original program semantics, the buffer should be overflowed. 

There are numerous software/hardware solutions to buffer overflow attacks, including 

 [23] [22] [108] [6] [50] [44] [89] [18] [111] [27] [33] [8] [83] [104] [43] [131]. However, even 
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buffer overflow attacks are completely prevented, there will be other new attacks 

emerging, for example format string attacks  [91]. In general, no security system is bullet-

proof and is able to prevent all attacks. There may be design/implementation flaws in the 

underlying protection scheme, or the attacker may exploit the flaws such as buffer 

overflows in the software to be protected. To be realistic, we have to assume that some 

attacks will be able to evade the protection scheme implemented. To protect software 

from those attacks, we build a second line of defense consisted of intrusion detection and 

intrusion recovery mechanisms, which is able to detect both known and unknown attacks 

and even recover from those attacks. Previous secure architecture designs are incomplete 

since such an intrusion detection and recovery scheme is missing.  

 Our intrusion detection mechanisms are based on anomaly detection. In other 

words, we try to detect anomalous program behavior caused by attacks based on expected 

program behavior. Anomaly detection does not target to specific attacks and is able to 

detect novel or unknown attacks. There have been extensive research on software-based 

anomaly detection systems, such as  [32] [115] [92] [31] [30] [59] [76] [37] [36] to name a few. 

However, it is impossible for software-based anomaly detection systems to monitor the 

software execution at a very fine granularity due to potential huge performance 

degradation. With micro-architecture level support, our intrusion detection mechanisms 

can achieve superb monitoring granularity and much stronger detection capability. 

In this dissertation, we propose three anomaly detection schemes. The first one is 

a training based scheme to detect anomalous dynamic program paths. The scheme 

monitors the software execution at a very fine granularity and is able to detect attacks 

with high precision and neglectable performance overhead. The major concern of the 
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scheme is false positives. So we propose the second scheme based on compiler branch 

correlation analysis to detect infeasible paths without any false positives. But the 

detection capability is not as good. Finally, we present a third scheme based on compiler 

data flow analysis to detect tampering to critical software data. The third scheme achieves 

both zero false positives and strong detection strength, but the performance overhead is 

significant. We thus devise several compiler optimizations to minimize performance 

impact due to additional security operations and carefully trade off between security and 

performance. We demonstrate the effectiveness of our anomaly detection schemes thus 

the great potential of what compiler and micro-architecture can do collaboratively for 

software security. 

 After an intrusion is detected, most previous approaches simply shut down the 

attacked software to avoid any further damage. However, security implies several 

important properties including confidentiality, integrity and availability  [3]. Availability 

is an equally important security property to be enforced but gets far less attention. In the 

sense of software security, availability means recoverability from attacks or intrusion 

recovery. Simply shutting down the attacked process is unacceptable for software 

providing critical services. A complete software protection scheme should have the 

ability to recover from a tampering whenever possible. Thus, intrusion recoverability is 

an important goal of our infrastructure.  

To provide intrusion recoverability, two major tasks have to be done. First, we 

need to analyze the attack to identify exactly when and how the attack happens so that we 

can identify the tampered system state and gather useful information for later forensic 

analysis. Second, the tampered system state has to be recovered through certain 



 14

mechanisms. We focus on memory state in this dissertation, since most attacks break into 

a system by memory tampering. Intrusion analysis is a difficult problem since there could 

be an arbitrarily large interval between the tampering to the system state and the detection 

of the tampering. We propose two schemes for intrusion analysis. The execution logging 

based scheme incurs little performance overhead but has higher demand for storage and 

memory bandwidth. The external input points tagging based scheme is much more space 

and memory bandwidth efficient, but leads to significant performance degradation. After 

intrusion analysis is done and tampered memory state is identified, tampered memory 

state can be easily recovered through memory updates logging or memory state 

checkpointing.  

In summary, our RADAR infrastructure aims to protect critical software from 

both hardware attacks and software attacks with strong security guarantee. It integrates 

the abilities of intrusion prevention, intrusion detection, intrusion analysis and intrusion 

recovery, which are the major aspects of protecting software from malicious attacks. It 

emphasizes collaborations between compiler and micro-architecture to achieve those 

abilities. With micro-architecture level support and compiler assist, our RADAR 

infrastructure can achieve strong security guarantee for critical software with reasonable 

hardware cost and performance degradation.  

1.5 Contribution Statement 

We have an ambitious goal to build an infrastructure to protect critical software 

from both hardware attacks and software attacks with strong security strength.  

We argue that purely software-based approaches cannot achieve strong security 

strength and hardware support for software protection is necessary. We further point out 
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that purely hardware-based approaches lack the ability of understanding software 

semantics. In other words, a semantic gap exists. In this thesis, we take a novel approach 

to bridge the semantic gap through compiler analysis and hardware runtime support. 

Compiler provides information about program behavior and attributes to the hardware. 

Hardware utilizes the information cleverly at runtime to fight against attacks. This 

approach is seldom explored before in software security area. Moreover, compiler 

optimizations are devised to minimize performance impact due to additional security 

operations when necessary. Through our work, we demonstrate the effectiveness and the 

potential of what compiler and micro-architecture can do in concert for achieving 

software security strengths and guarantees. 

Our infrastructure is a complete solution to the problem of software protection. It 

integrates the abilities of intrusion prevention, intrusion detection, intrusion analysis and 

intrusion recovery, which are the major aspects of protecting software from malicious 

attacks.  

We show that unprotected address bus traffic (memory access sequence) acts as 

very dangerous side-channel and leaks critical control flow information of the protected 

software. We present a scheme with both innovative hardware modification and extensive 

compiler support to eliminate most of the information leakage on system address bus 

with little performance overhead.  

We are the first to explore anomaly detection with both micro-architecture and 

compiler support. We propose three anomaly detection schemes. The first one is a 

training based scheme to detect anomalous dynamic program paths. The scheme monitors 

the software execution at a very fine granularity and is able to detect attacks with high 
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precision and neglectable performance overhead. The major concern of the scheme is 

false positives. So we propose the second scheme based on compiler branch correlation 

analysis to detect infeasible paths without any false positives. But the detection capability 

is not as good. Finally, we present a third scheme based on compiler data flow analysis to 

detect tampering to critical software data. The third scheme achieves both zero false 

positives and strong detection strength, but the performance overhead is higher.  

We are among the first to explore how to utilize micro-architecture support to 

analyze then recover program memory state after an attack. We propose two schemes for 

intrusion analysis. The execution logging based scheme incurs little performance 

overhead but has higher demand for storage and memory bandwidth. The external input 

points tagging based scheme is much more space and memory bandwidth efficient, but 

leads to significant performance degradation. After intrusion analysis is done and 

tampered memory state is identified, tampered memory state can be easily recovered 

through memory updates logging or memory state checkpointing. 

1.6 Dissertation Organization 

In this introduction, we introduce the problem of software protection and discuss 

why this problem will become more challenging and more critical in the future. We 

discuss previous solutions to this problem, show their limitations and talk about our 

approach in a high-level view. 

Chapter 2 will discuss the machine model and the attack model used in our work. 

Our basic machine model is adopted from previous research. We will explain how such a 

machine model achieves strong process isolation and prevents certain types of hardware 

attacks. 
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Chapter 3 will focus on the problem of address bus protection, which is largely 

ignored previously. We will show that unprotected address bus traffic acts as very 

dangerous side-channel and leaks critical control flow information of the protected 

software, then we will present a scheme with both innovative hardware modification and 

extensive compiler support to eliminate most of the information leakage on system 

address bus with little performance overhead.  

Chapter 4 will discuss our first anomaly detection scheme, which is a training 

based scheme to detect anomalous dynamic program paths. The scheme monitors the 

software execution at a very fine granularity and is able to detect attacks with high 

precision and negligible performance overhead. The major concern of the scheme is false 

positives.   

Chapter 5 will present our second anomaly detection scheme based on static 

compiler branch correlation analysis. The second scheme is able to detect dynamic 

infeasible paths without any false positives. The performance overhead is also negligible, 

but due to the limitation of static compiler analysis, the detection capability is not as good. 

Chapter 6 will elaborate our third anomaly detection scheme based on compiler 

data flow analysis. The third scheme aims to detect tampering to critical software data. It 

can tackle a large category of attacks left unhandled by control flow monitoring based 

schemes such as our anomalous path checking and infeasible path detection schemes. The 

third scheme is able to achieve both zero false positives and strong detection strength, but 

the performance overhead is much higher. 

Chapter 7 focuses on intrusion analysis and intrusion recovery after an attack is 

detected. We propose two schemes for intrusion analysis. The execution logging based 
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scheme incurs little performance overhead but has higher demand for storage and 

memory bandwidth. The external input points tagging based scheme is much more space 

and memory bandwidth efficient, but leads to significant performance degradation. After 

intrusion analysis is done and tampered memory state is identified, tampered memory 

state can be easily recovered through memory updates logging or memory state 

checkpointing. 

In chapter 8, we will summarize the main contributions of this dissertation, talk 

about broader impact of our work, and discuss possible areas for future work. 
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2 MACHINE MODEL AND ATTACK MODEL  

 Before we proceed to present our RADAR infrastructure, we first elaborate our 

basic machine model and attack model to facilitate the understanding of the work 

presented in this dissertation.  

2.1 Previous Work 

 Our hardware infrastructure implements a machine model widely accepted in 

secure architecture area. The machine model is established in  [64] [38]. It is designed to 

achieve strong process isolation to prevent attacks from other processes even including 

operating systems and to prevent certain types of hardware attacks, such as using 

specialized hardware to read/tamper the system data bus traffic and the external memory 

system directly to evade process isolation mechanism completely.  

 Lie et al. proposed the XOM secure architecture design in  [64]. XOM stands for 

“eXecute Only Memory”, which means that software in this special memory can only be 

executed but cannot be read or modified. The XOM secure architecture focuses on 

defending attacks to memory and assumes that on-chip storage is secure from hardware 

attacks but off-chip memory and disk are not secure. The XOM secure architecture is 

based on both cryptographic techniques and micro-architecture level support. From a 

high level point of view, access control tags are used to protect data inside the trusted 

hardware of the processor. On the other hand, cryptography is used to protected data that 

has to be stored off the processor.  

 XOM tries to implement the notion of compartment and runs the protected 

software inside the compartment to achieve strong process isolation and to prevent 

attackers from reading or modifying software code or data. Each compartment has a 
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XOM id. Each software process is assigned a XOM id which indicates what compartment 

it is running in. Data from the software operations is tagged with this XOM id. On-chip 

storage for data and tags are considered properly protected by the hardware from 

hardware attacks and cannot be attacked in their machine model. So the tags can be 

trusted and used to achieve access control and protect software code/data when the 

code/data resides in the on-chip storage. On the other hand, off-chip storage, such as the 

external memory and disk, is not trusted. Off-chip storage cannot be simply protected by 

tags since tags may be tampered by attacks. Instead, cryptographic ciphers and hashes are 

used to protected code/data in the off-chip storage. 

 

Figure 2. The XOM secure architecture. 

Figure 2 shows the XOM secure architecture. The processor possesses the private 

part of a public/private key pair. The private key is the secret only known to the processor 

and is the security foundation of the security system built upon the XOM architecture. 
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Based on this secret, the processor can generate a session key for each protected software 

process. The session key then becomes the root secret for each protected process and can 

be used in security operations such as symmetric encryption/decryption and hashing. 

Session keys for processes are stored in a key table. The key table is indexed by the XOM 

id associated with each protected process. All data residing in on-chip storage, including 

register file, L1 instruction cache, L1 data cache and L2 cache, is properly tagged with 

the XOM id of the data owner. In general, only the data owner has access to the piece of 

data. Data sharing is handled specially. As mentioned previously, in the XOM 

architecture, the secure processor is inside the security boundary, so the on-chip data tags 

are considered protected from attacks and can be securely used to enforce security. On 

the other hand, the external memory system is outside the security boundary. An owner 

tag associated with each piece of data is not enough to protect the data when it resides in 

the external memory since the tag itself can be tampered by the attacker. To protect off-

chip data, cryptographic mechanisms are used. To prevent reading attacks or protect 

confidentiality, data is encrypted when transferring from the secure processor to the 

external memory and decrypted when transferring from the external memory to the 

secure processor. The symmetric key used in encryption/decryption is the aforementioned 

session key for the process. The session key can be found in the key table in the processor 

using the XOM id associated with the data as index. To detect writing attacks or protect 

integrity, the XOM architecture calculates a hash for each piece of data when it is 

transferred to the external memory and verifies the hash when the data is fetched back 

from the external memory. The protection granularity is a cache block. The cryptographic 

operations are done by the crypto units inside the processor. 
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Under the XOM architecture, the general operating system is not trusted and is 

assumed possibly tampered. The software protection scheme is based on hardware. But to 

minimize the modification to current micro-architectures without security support, a 

secure kernel (XOM Virtual Machine Monitor in the XOM architecture) is introduced to 

implement necessary operations to avoid the complexity of the additional hardware. The 

secure kernel is a trusted, authorized and privileged program. The secure kernel runs at a 

privilege level higher than the operating system.  It can be implemented in either software 

or micro-code. Software implementations must be authenticated by a secure booting 

mechanism such as described in  [107] [4] [62] [109]. There are special hardware facilities 

only accessible to the secure kernel, such as the private key, process key table, secure on-

chip memory etc. The secure kernel supports encryption/decryption of software code/data 

when transferring across the security boundary. It also supports proper tagging of on-chip 

data, implements special instructions introduced for the security support and handles 

context switches and certain interrupts.  

The XOM architecture aims to prevent three major types of attacks, including 

spoofing, splicing and replay. In spoofing attacks, the attacker tries to substitute the 

original cipher text with a faked one to alter software behavior. With encryption, the 

faked cipher text will decrypt to junk but it will alter software behavior. To prevent 

spoofing attacks, an integrity hash is attached to the data block. Now if the attacker wants 

to launch a spoofing attack, in general he has to reverse the encryption and fake the 

integrity hash, which is very difficult. In splicing attacks, the attacker tries to replace one 

valid cipher text in one location with another valid cipher text from another location. This 

is prevented by position-dependent hash. In other words, virtual address of a data block is 
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involved in the computation of the integrity hash. In replay attacks, the attacker records 

previous valid values and try to reuse them later. The original XOM design only handles 

replay attacks using register values. 

 Later, Gassend et al.  [38] pointed out that the original XOM design  [64] is 

vulnerable to replay attacks using memory values. Gassend et al. further proposed a hash-

tree  [75] based integrity checking scheme to fix the problem. Since then, there has been a 

lot of follow up work to improve over the initial work  [124] [102] [101] [95] [67], primarily 

in terms of performance. But the basic designs established in  [64] and  [38] are inherited.  

2.2 Our Machine Model and Attack Model 

 In our work, we implement the machine model established in  [64] and  [38]. When 

the code and data of the protected software resides in on-chip storage, it is protected in 

the same way as in  [64]. However, when the code and data of the protected software 

resides off-chip, we design an efficient stream cipher based scheme to prevent attacks to 

software code/data confidentiality and an efficient MAC tree based scheme to detect 

attacks to software code/data integrity. Overall, our implementation achieves similar 

security guarantee as in  [64] [38], but with a much smaller performance overhead. The 

details of our implementation can be found in  [67].  

 In summary, our machine model assumes that the secure processor possesses a 

secret private key. This per-processor private key is the security root of the security 

system built upon the secure processor. Each software process is associated with a secret 

key derived from the per-processor key. The per-process key can then be used in 

cryptographic operations such as encryption/decryption/hashing. We also assume a 

trusted secure kernel residing in the processor, which is implemented in software and 
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provides basic services such as context switching and encryption/decryption. Other 

software (operating system included) is not trusted. Process contexts including registers 

are encrypted using the per-process key during context switches thus are protected.  The 

security boundary with respect to hardware attacks is drawn around the processor chip. 

That means: 1) any hardware component inside the processor chip is considered to be 

secure against hardware attacks; 2) anything else other than the processor itself and the 

process context is considered non-secure thus is susceptible to hardware attacks, 

including off-chip caches, system buses and external memory etc. When software 

code/data resides in off-chip storage, its confidentiality and integrity are properly 

protected against hardware attacks by cryptographic schemes.  

 We assume the attacker can launch both hardware attacks and software attacks to 

the protected software. In terms of hardware attacks, we assume that the attacker can 

read/write to the external memory directly without going through the secure processor, 

snoop over the system buses etc., but the secure processor chip is resistant to hardware 

attacks. The attacker can also launch software attacks. For example, he can create a 

malicious process to attack the victim software by exploiting the design/implementation 

flaws of process isolation, or attack through the bugs/flaws in the victim software using 

buffer overflows, format string attacks etc.  
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3 PREVENTING INFORMATION LEAKAGE ON ADDRESS BUS 

 Our hardware infrastructure implements the basic machine model established in 

 [64] [38]. However, the machine model established in  [64] [38] have a serious flaw. It only 

protects confidentiality of the traffic going through system data bus and ignores 

protection of system address bus traffic, i.e., addresses of memory accesses. In this 

chapter, we show that unprotected memory access sequence acts as very dangerous side-

channel and leaks critical control flow information of the protected software. The 

information leakage could facilitate an attack and bring significant damage to both code 

and data confidentiality. To our best knowledge, this flaw actually exists in all current 

secure processor designs (in both industry and academia) and can be a very real threat. To 

enhance intrusion prevention capability of our hardware infrastructure, we present a 

scheme with both innovative hardware modification and extensive compiler support to 

eliminate most of the information leakage on system address bus. We show that our 

solution is both efficient and effective. 

3.1 Introduction of the Problem 

Although the widely accepted XOM-based machine model is successful in 

protecting the off-chip code and data using cryptographic techniques, it fails to protect 

the memory access addresses transmitted on the system address bus. In other words, the 

memory address sequence generated by an application may be exposed under the XOM 

machine model. Thus, the following two questions are left unaddressed: 1) Even though 

off-chip memory contents are encrypted, can the exposed address sequence lead to 

security breaches? 2) If so, how should we prevent those at a reasonable cost? 
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Although the problem has been noticed in  [64] and  [101], they both leave it open. 

 [64] poses it as an open problem, and  [101] largely ignores it. In  [38] it is shown that the 

detection of loops through the information leakage on address bus can become a starting 

point for the replay attack. In this chapter, we point out that address bus protection is 

critical; otherwise control flow information might be exposed and severe security 

breaches might occur. 
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Figure 3.  Control flow snooping. 

In Figure 3, we illustrate how control flow can be snooped by the attacker through 

memory access sequence. Under the current XOM-based machine models, all fives 

blocks of instructions are stored in an encrypted form in memory. However, authentic 

addresses are readily available on the address bus. The attacker has no idea what the 

instructions are due to the encryption, however he can snoop on the address bus and 

obtain a sequence of memory access addresses (refer to Figure 3.b). From the address 

sequence, he can infer that the code is in a loop since addresses 100,101,103,104 appear 

repeatedly. He can also infer that there is a conditional branch at address 101 because 

sometimes the control goes to 103 directly but sometimes it goes to 103 via 102. 

Therefore, by identifying recurring (block) addresses, the attacker can construct a block 

level control flow graph (CFG) as shown in Figure 3.c. In fact, we found that the leakage 
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of the control flow can severely jeopardize the encryption of code (it may be possible to 

crack as much as 70% of the encrypted code through a well devised attack – refer to 

Section  3.2). Apart from this, address sequence on the bus may lead to exposure of the 

critical data (such as the secret key) as well.  

Regarding the second question about how to prevent the information leakage on 

the address bus, it may be noted that address bus protection is a much tougher problem 

than it might first appear. Both industry and academia are aware of the severity of the 

problem and have proposed solutions. DS5000 and DS5002FP are chips produced by 

Dallas Semiconductors  [26], which are among the most widely used security devices in 

credit-card terminals, pay-TVs access control systems etc. The processor incorporates 

bus-encryption (actually, fixed address reordering together with some random accesses) 

and was described as the most secure processor currently available for commercial users. 

However, such protection can be easily invalidated (refer to  [61] and related work). The 

only previous solution that completely avoids such information leakage is called 

Oblivious RAM (ORAM), which was proposed by Goldreich  [41] [40]. In his papers and 

patent, three schemes are proposed to ensure that the addresses shown on the address bus 

are independent of the addresses issued by the application. Unfortunately, all three 

schemes are infeasible on real machines due to either significant slowdown or resulting 

memory explosion. Therefore a practical solution for preventing information leakage on 

address bus is highly desirable and valuable to improve intrusion prevention capability 

against hardware attacks.  

 In this chapter, we propose such a solution with negligible performance overhead. 

We call our scheme as HIDE (Hardware-support for leakage-Immune Dynamic 
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Execution). Through hardware support and compiler optimizations, HIDE provides a 

very high level of security guarantee, which means that the information leakage via the 

address bus is largely prevented. Also, our scheme is highly flexible. It can easily 

incorporate programmers’ specifications of sensitive sections to be protected as well as 

some compiler optimizations. 

3.2 Attacks via Control Flow Snooping on Address Bus 

 We now illustrate two kinds of attacks that are possible through the control flow 

information leaked on the address bus to further motivate our work. Note that the 

example in Figure 3 assumes that there is no “noise” in the addresses seen on the bus (i.e., 

all the addresses are leaked). But in practice, branches within a block are hidden and a 

cache can hide many memory accesses. This might lead to less than full leakage but 

could still be quite damaging. We first assume that there is no noise, and in Section  3.2.3, 

we will address the noise issues. 

3.2.1 Reuse Code Identification  

 Due to the following two facts, leaking the CFG information can result in the 

complete exposure of reuse code and severely disrupt code encryption. 

 The first fact is software reuse and binary-level similarity. With the ever-

increasing amount of legacy code and time-to-market pressure, software development 

relies more and more on reusing existing modules or the pre-built libraries from other 

companies or from the public domain. For example, many classical algorithms have their 

standard and/or non-standard open-source implementations available online for reuse. 

Moreover, most compiler and development tool chains are provided by only a few 3rd 

party name-brand vendors that can lead to a binary-level similarity once the source code 
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is reused. In other words, due to reuse of source code and the existence of only a few 

compilers, the diversity of the generated code at binary level is diminished greatly. We 

measured the full set of SPEC 2000 integer program binaries targeted to Alpha to find out 

the percentage of code that is reused from the standard C library on Alpha target. As 

shown in Figure 4, the reuse percentage can be very high for some benchmarks like mcf 

(88%) and bzip2 (66%). On an average, 39% of the code at binary level is due to the 

libraries. A recent study  [72] shows that nowadays, up to 70% of the code in industrial 

software is the reuse code. Given such a high amount of reuse code, the question is: Can 

it be discovered? The answer is yes. Address bus information leakage allows building a 

CFG and the CFG serves as a unique fingerprint of the underlying code. The attacker 

can discover the reuse by matching the CFG observed that serves as a fingerprint of the 

reused code with a repository of well known implementations and thus know which 

implementation is actually reused. 
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Figure 4. Binary reuse percentage for SPEC2000 integer programs. 
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Figure 5. Isomorphic CFG pairs in the standard C library. 

In order to measure the uniqueness of CFGs, we did another study and found that 

they indeed serve as unique fingerprints due to the following intuitive arguments. CFGs 

are made of basic blocks. It is widely known that the average length of basic blocks is 

only 6 to 10 instructions for integer programs and a large number of instructions are 

branches (around 12%). Conceivably, as long as the code is reasonably complex, the 

chance of two different pieces of code forming the same CFG is slim since they would 

have a good number of basic blocks and quite a few potential control flow graphs are 

possible with a given number of basic blocks. As an experiment, we built the CFGs for 

various block cipher algorithms such as DES, MARS, Rijndael, RC6, and found out their 

CFGs are significantly different. In Figure 5, we investigate the similarity of CFGs for 

the procedures in the standard C library of the Alpha compiler. There are 1334 

procedures in the standard C library libc.a, with reasonable size (at least 5 basic blocks). 

We built the CFGs for all those procedures in which each basic block is abstracted as a 

node (which in fact increases the chances of two CFGs being similar). We run the famous 

graph isomorphism algorithm by Ullman  [110] (we reuse the graph matching library 

developed by Univ. of Naples  [113]) between all possible pairs of CFGs. In Figure 5, the 
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results show that only 5% of the comparisons find that the two graphs match. If we 

ignore the CFGs with less than 10 basic blocks, only 0.1% of them match. Finally, if we 

ignore the CFGs with less than 15 basic blocks, only 0.05% of them match. This study 

shows that each CFG can serve as a distinct fingerprint for a reasonably-sized piece of 

code. Therefore, if the programmer reuses a procedure in the library with ten or more 

basic blocks, the reuse is almost doomed to be found out by the attacker due to its 

distinctive fingerprint (assuming he can construct the CFG by exploiting address bus 

information leakage). Note that this estimation is conservative due to our abstraction of 

the CFGs that ignores sizes of individual basic blocks; otherwise the number of matches 

would decrease further. Even if some matches occur, the attacker can still narrow down 

his search to a few possible procedures that might be reused. 

Given sufficient amount of time to experiment with the code, most CFG edges 

could be exposed. Theoretically only dead CFG edges will not be executed and exposed. 

Even if only partial CFG can be identified with subgraph matching algorithms [110] [113], 

we can still roughly detect the reuses. It is easy to show that the number of possible CFG 

graphs grows exponentially with the number of basic blocks in the CFG; therefore hiding 

a large piece of reuse code is almost impossible. From the prior discussion, the CFG, as a 

matter of fact, can be regarded as an algorithm’s fingerprint. 

 Based on the two facts described above, it is quite possible that an attacker can 

identify the reuse components in a program given its CFG. He can collect the CFGs of all 

procedures in the standard libraries, or for publicly available source code, compile them 

with a name-brand 3rd party compiler and build the CFGs. By graph matching the 

program’s CFGs with his collection, the attacker can nail down the reuse parts. This not 
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only exposes the reuse code in its entirety, but also helps the attacker in other aspects: 1) 

A number of plaintext/ciphertext pairs for the reuse code are identified. If the hardware 

cannot afford integrity check due to its performance and memory space overhead  [38], 

the attacker might construct a program to read out other code such as in  [61]. 2) More 

critically, in some cases critical data could be leaked due to the discovery of re-use code. 

In the next subsection, we will show how critical data can be found out in some cases. 3) 

By watching the interactions between the reuse code and the programmer’s own code 

such as the calling sequence, parameters, the attacker can learn more about programmer's 

own code. 

3.2.2 Critical Data Leakage via Value-dependent Conditional Branches 

Besides the potential to break code confidentiality, CFG matching can also 

potentially compromise data confidentiality and leak sensitive data values. 

All conditional branches (around 80% among all branches) make comparison 

between two values and then decide which path to take. Therefore the control flow 

information can leak important information about the values being compared. The 

following example assumes that the algorithm used is known beforehand (most security 

systems assume that the cryptographic algorithms used are known to the attacker) or has 

been detected by CFG matching. It demonstrates how the critical data (secret key in this 

case) is revealed. 

Example 

Diffie-Hellman and RSA private-key operations consist of computing R = yx mod 

n, where the attacker's goal is to find x, the secret key. To show the problem easily, we 

assume that the implementation uses the simple modular exponentiation algorithm shown 
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in Figure 6.a, which computes R = yx mod n, where x is w bits long. The algorithm is 

widely used, therefore we can reasonably assume the attacker has identified it through 

CFG matching. 

 
Let S0 = 1. 
For k = 0 to w-1: 

If (bit k of x) is 1 then 
Let Rk = (Sk*y) 

mod n. 
Else 

Let Rk = Sk 
Let Sk+1 = R2

k mod n. 
EndFor. 
Return (Rw-1). 

Initialize 

Return 

Loop Entry 

Else-branch IF-branch 

Loop End 

B1

B2 B3 

B4

(a) (b)  

Figure 6. Modular exponentiation algorithm. 

The corresponding CFG for this small piece of code is shown in Figure 6.b. From 

Figure 6.a, we can easily find that inside the loop body if the current examined bit of x is 

1, IF-branch is executed, otherwise Else-branch is executed. We assume that IF-branch 

code resides at address B2 and Else-branch code resides at address B3 (B2 and B3 are 

different). The processor must behave as follows: if the current examined bit of x is 1, 

then fetch the IF-branch code at B2, otherwise, fetch the Else-branch code at B3. This 

results in a sequence of addresses of B2 or B3 showing up on the address bus 

correspondingly. By monitoring the address bus and capturing the addresses transmitted, 

the attacker can guess whether the respective bits of x are 0’s or 1’s and get the secret key 

x.  Even if he cannot distinguish between IF-branch and Else-branch, the information on 

the address bus leaves only two possible values of x to guess (the correct key or its 

complement). 

This example shows that if the conditional branch is known to the attacker, the 

direction of the branch can expose the outcome of the comparison which might be helpful 
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in determining or narrowing down the values involved. Such security sensitive 

conditional branches are widely seen in compression and encryption algorithms. The 

same piece of code shown in Figure 6 is also vulnerable to timing attack  [55], which is 

however more complicated. 

Note that missing several rounds of the for-loop can hide part of the secret key, 

but still help the attacker substantially narrow down his search space. It is well known 

that in the security domain, 64-bit encryption has much less strength than 128-bit 

encryption. If the attacker can capture half of the for loop, his search space will be cut 

from 2|x| to 2|x|/2, which is 2|x|/2 times smaller. 

 As a matter of fact, these kinds of attacks, i.e., circumventing the encryption 

scheme indirectly through information leakage are well-known in the security domain as 

side-channel attacks. In reality, there have been many successful stories  [55] [56] [34] [2] 

to obtain critical information from a secure chip such as a smartcard, by monitoring the 

timing  [55], power  [56] or electromagnetic differences  [34] from outside the chip.  

3.2.3 Other Issues: Blocking, Caching 

The attack described above is a classic side channel attack. Most side-channel 

attacks have to deal with noise that leads to inaccuracy: Timing attacks suffer from varied 

computation time of instructions, differential power attacks must count for the power 

consumption of other components inside the chip. However bus snooping is actually 

more accurate than other side-channel attacks. It is also very easy to setup  [47] [61], since 

the bus is typically exposed outside the processor chip and standard equipments (for 

testing purposes etc.) are readily available to snoop bus signals. Here we discuss different 
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types of “noises” that can affect control flow snooping and how the attacker may get 

around them. 

Blocking 

Cache accesses and misses are addressed at cache block boundaries; thus, the 

addresses on the address bus are block addresses. Actually, both attacks we discussed 

above only rely on the detection of branches. Given that each cache block contains only 

several instructions (8 on Alpha), it does not affect the attacks much. For reuse code 

identification, we tried to build block-level CFG, i.e., every block becomes a node and 

edges indicate possible execution paths between blocks. We found that typically block-

level CFGs contain about 25% lesser edges than the regular CFGs. Graph matching the 

block-level CFG shows results close to those in Figure 5 with negligible differences. To 

find out how block size affects CFG matching, we list in Table 1 the percentage of 

matched block level CFGs when the block size equals 32B, 64B and 128B. The results 

show that larger block size does not affect CFG matching much, especially if we ignore 

block level CFGs with less than 10 or 15 nodes.   

Table 1. Isomorphic block level CFGs with different block sizes. 

 32B 64B 128B
≥5 5% 4% 3.3%
≥10 0.1% 0.19% 0.1%
≥15 0.05% 0.04% 0.05%

 

Caches 

Modern processors typically consist of large on-chip caches which might lead to 

small miss rates and very few addresses exposed on the address bus. However, it does not 

help due to the following reasons. (1) Since the cache is a shared resource among all 
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processes running on the processor and our machine model assumes that the OS is not 

secure. It is very easy for the attacker to manipulate the OS so that the cache gets flushed 

upon a context switch; alternatively the attacker can ascertain that his own process 

occupies most cache space before switching to the process being attacked. In this manner, 

all memory accesses are directly exposed on the address bus due to compulsory misses. 

(2) Even if only one process is running, many processors have a unified L2 or L3 cache 

for both code and data. If the program’s working set can be affected by inputs, the 

attacker may intentionally increase the working set size causing more instruction misses. 

(3) Generally, caching is not predictable, especially in a multi-tasking environment. 

Different parts of the control flow can be leaked during different runs. It is possible that 

the attacker can finally get the whole picture after many runs. (4) For low-end systems, 

on-chip caches are typically small. (5) The cache may be disabled on some machines. (6) 

An interesting study  [84] was conducted by Shamir et. el on how to figure out important 

information (such as the secret key) leaked through cache misses. 

As an experiment, we tried to flush the cache at random moments, and collected 4 

block addresses immediately after the flush. After sufficient number of runs, we found 

that over 95% of edges on the block-level CFG were exposed. In addition, as mentioned 

before, even if the control flow can be partly masked, information still leaks to some 

extent since subgraph matching can match partial CFGs. Also, partial execution paths can 

still be used to prune the searching space for critical data. 

The two attacks we showed above are very simple compared to some of the other 

side-channel attacks that involve sophisticated mathematical and statistical analyses. This 

indicates address bus information leakage is relatively easier to exploit as well as more 
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damaging and is harder to prevent. With more advanced analyses, more information 

leakage could result. 

3.2.4 Data Address Protection 

 Finally, accesses to the data segment can expose control flows as well. For 

example, in Figure 6.a, if y is accessed, we will know that the If-branch is taken. 

Therefore, data address protection is equally important. However, this could induce a big 

overhead since the size of the data segment can be much bigger than the code size. 

3.3 Basic Concepts and Components of HIDE 

HIDE stands for Hardware-support for leakage-Immune Dynamic Execution. 

HIDE provides an infrastructure for preventing information leakage on the address bus 

involving both micro-architecture and compiler support. The basic idea behind HIDE is 

to “hide” the correlation between recurring memory addresses. This is achieved by 

permuting the address space and re-encrypting blocks at suitable intervals during the 

execution. 

In this section, we first introduce the background knowledge about what kind of 

address sequence should appear on the address bus to avoid information leakage. Then 

we talk about the basic concepts and components of HIDE such as the HIDE cache and 

the permutation unit. 

3.3.1 Fixed Address sequence 

To hide the address sequence on the bus, a naïve but completely secure approach 

is to establish a fixed address sequence that does not change throughout the execution. It 
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is a foolproof approach that can prevent the attacker from learning anything by 

monitoring the memory access sequence. This approach is based on the following claim: 

If the memory access sequence is always the same regardless of the program 

execution, no information will be leaked by monitoring the sequence. 

Obviously, a fixed address sequence would not tell the attacker anything. To 

achieve fixed or independent memory access sequence, a naïve way is to read the whole 

memory segment from the beginning to the end repeatedly. As shown in Figure 7.a, in 

each round, the whole memory segment is read from beginning to the end once. No 

matter what is going on inside the processor, the processor always reads memory blocks 

in this fixed sequence. Apparently, the only thing exposed is the memory segment size, 

which has been assumed to be insensitive information. However, the naïve approach can 

lead to a tremendous slowdown. When there is a miss during the fetch request from the 

cache, the request cannot be satisfied immediately from the memory, but has to wait till 

the block is read in through the fixed sequence. When the memory segment is large, the 

processor may have to stall for a long time. For example, in Figure 7.b, if the current 

reading block is block 70, and the pending miss fetch requests are block 100, 200 and 50, 

the processor has to wait for 30 reads to get block 100. Again, it has to wait for another 

100 reads to get block 200. To get block 50, it needs to wait till the access sequence 

reaches the end of the memory segment (finish this round of reading), and starts from the 

beginning again until block 50 is read in. This delay can be enormous given the memory 

space is big and one round of accesses can take tremendous amount of time. Conceivably, 

this naïve approach will cause an intolerable performance loss and is not viable at all. 
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 Code/data blocks in memory

Access sequence

Miss fetch requests: 100, 200, 50 
Current reading block

Read 100 

Read 200 

Read 50
(a) (b)

Round 1 
Round 2 

Round 1
Round 2

 

Figure 7. Independent instruction access sequence. 

3.3.2 Probabilistically Fixed Address sequence 

As introduced in  [40] we can alternatively construct an address sequence with 

addresses conforming to a fixed probabilistic distribution. In other words, although the 

addresses on the bus do not form a fixed sequence, they are random variables conforming 

to a fixed distribution. It still exposes no information about which addresses are actually 

accessed by the processor. Next, we define a few terms about address sequences. 

 

Original Address (Sequence): The address (sequence) issued by the processor. 

Actual Address (Sequence): The address (sequence) that actually appears on the address 

bus. 

Probabilistically Fixed Address Sequence: A kind of actual address sequence in which 

actual addresses follow a fixed probabilistic distribution. 

 

Thus, the actual address sequence must be different from the original addresses 

sequence issued by the processor. Note that the same code/data block must be fetched 

even if their addresses are different. Thus, changing the addresses means we need to 

relocate those blocks on the fly. Also, to prevent the attacker to correlate blocks from 

their ciphertext, blocks are always re-encrypted after relocation. Recent studies indicate 
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that counter-mode encryption/decryption  [124] [102] [95] [96] [123] can be applied to 

achieve low-overhead re-encryption. 

There could be many possibilities of constructing the probabilistically fixed 

address sequences. The following lemma gives one such example that will be used for 

HIDE.  

LEMMA 1: A memory space of size M is randomly permuted repeatedly; assume a block 

originally at address T is relocated to Pk(T) after the kth permutations. If between the kth 

and (k+1)th permutation, the processor issues the original addresses T1, T2,…Tn(k), and 

these addresses are all different, then the address sequence on the bus is probabilistically 

fixed. 

REMARK: Lemma 1 says that, between two permutations, all original addresses should be 

different, or we should randomly permute the memory space before the same original 

address is issued again. Note that since different blocks cannot be permuted to the same 

location (mapping is one-to-one), all actual addresses between two permutations are 

different too. 

PROOF: Lemma 1 is derived from  [40]. We can prove this lemma as follows. Since 

permutation Pk is completely random and one-to-one, for two different original addresses 

Ti and Tj , Pk(Ti) and Pk(Tj) are different (two different addresses cannot be permuted to 

the same place) and are independent random variables. Therefore the addresses in the 

sequence based on the same permutation Pk, i.e. Pk(T1), Pk(T2)… Pk(Tn(k)) are independent 

to each other. Similarly, since any two permutations Pk and Pl are random and 

independent, Pk(Ti) and Pl(Tj) are always independently distributed. Thus the addresses 

on the bus are all independently distributed variables. Note that between two 



 41

permutations, original addresses must be distinct; otherwise we will see the same actual 

address recurring on the bus (this is because the same permutation must permute the same 

original address to the same actual address). From control flow point of view as 

mentioned in Figure 3, recurring addresses help the attacker to identify loops and 

branches. For a better understanding of Lemma 1, we will give an example during the 

discussion of the HIDE cache.                                                        

3.3.3 HIDE cache 

To fulfill Lemma 1, intuitively we must “remember” the original addresses that 

have been issued by the processor after the previous permutation. Before an original 

address recurs, we need to permute the memory space again. In other words, we must 

remember the original address sequence to detect recurrence of an address.  It is clear that 

if we “remember” only a small number of original addresses, the memory space must be 

permuted more frequently. On the other hand, if we “remember” a lot of original 

addresses, extra space is required to store them and more latency is incurred to check if a 

new original address has been issued before. These overheads pose the barrier to the 

deployment of a solution based on Lemma 1 as discussed below.  

The square root algorithm in the ORAM paper  [40] stores all such original 

addresses in an off chip memory space called shelter buffer. The size of the shelter buffer 

is the square root of the memory space being protected. However, during each access, the 

processor must read the entire shelter buffer to check if the address has been accessed 

since last permutation. Since the shelter buffer is in the insecure memory, the processor 

must read the entire shelter buffer such that the attacker cannot tell whether or where the 

access has hit in the shelter buffer. 
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With large on-chip space available on modern processors, we may want to move 

the shelter buffer on-chip. However, it is still space inefficient to occupy a separate on-

chip area for this purpose. Given caches are readily available to store memory blocks 

accessed before, in this work we propose the HIDE cache; which adds address bus 

protection on top of a normal cache to achieve a low space and performance overhead 

solution. 

 

HIDE cache: A cache that is same as a normal cache except that blocks fetched after the 

previous permutation are all locked i.e. they cannot be replaced until the memory space 

they belong to is permuted again. Also, blocks that are dirty after the previous 

permutation must be held from the write back until the next permutation. 

 

How the HIDE cache Works 

In a HIDE cache, we intentionally lock all blocks that are fetched after the 

previous permutation. Therefore accesses to the same original address between two 

permutations always hit in the cache without going out to the external memory. Similarly, 

blocks that become dirty after the previous permutation are locked as well. If such dirty 

blocks are allowed to be written back, there could be read accesses to the same address 

later causing the same address to appear on the bus again; thus, such blocks must be 

locked as well. If a block is locked, it cannot be evicted. After the memory space is 

permuted again, all blocks belonging to that memory space are unlocked. 

Next we show an example in Figure 8, which helps to understand Lemma 1 and 

the HIDE cache. In Figure 8.a, we assume that the cache is 2-set 2-way. Figure 8.b shows 
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the original address sequence borrowed from Figure 3. The memory space contains 5 

blocks as shown in Figure 8.c. Note that all blocks are initially permuted randomly after 

they are loaded from the disk to the memory. The initial random permutation prevents the 

attacker from correlating information across different runs (since random permutations 

are done before code and data are initially loaded). We also assume all accesses are read 

accesses in this example. If blocks are not locked and permuted after the initial 

permutation, we will observe the cache contents and actual access sequence as illustrated 

in Figure 8.d. On the left side of Figure 8.d, we show the state of the cache after 4 fetches. 

All addresses shown inside the blocks are the original addresses. Since the four addresses 

are all different, they are loaded from memory due to compulsory misses. Also, since 

blocks are already permuted, the actual address sequence on the bus is 102,100,104,101 

instead of 100,101,102,103 for the 4 accesses. If the blocks were not locked (as in normal 

caches) we will see the address 102 (which corresponds to the original address 100) 

appearing again. This means that even if the block 100 is randomly permuted to address 

102, its recurrence can still be detected on the bus. Thus, a normal cache cannot hide such 

a recurrence. With the HIDE cache—as shown in Figure 8.e—the 2nd permutation is 

triggered before the 5th access, because all blocks in the set 0 are locked and we cannot 

evict a locked block. Note that if a locked block is evicted, we lose tracking of the block. 

It might be read in again causing the same address to appear on the bus; or if the block is 

locked because it is dirty, evicting the block will incur a writeback immediately causing 

re-appearance of its address on the bus. Thus, a permutation must be conducted to unlock 

blocks when all the blocks are locked in a set. From the address sequence at the lower 

right part of Figure 8.e, we can observe that after the 2nd permutation, the original address 
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100 is now 104. Since the two permutations are random and independent, the attacker 

only observes random numbers on the bus. Also, recurring original addresses become 

different random numbers after the 2nd permutation. By locking the blocks, we make sure 

that the same address does not appear again on the bus before another permutation. For 

example, if we were to access block 104 again, it is in the cache; therefore no access goes 

out on the bus due to a hit. This scheme not only meets the requirement of Lemma 1, but 

also preserves the functionality of a cache. 

Another observation in Figure 8.e is that in set 1, both blocks are unlocked after 

the second permutation. Now they behave like normal cache blocks and can be evicted if 

necessary. Since their mapping and addresses have been changed (their original address 

is now mapped to a different one) during the second permutation, they can be safely 

evicted. After the blocks are evicted, they will be locked the next time they are fetched in. 

Finally, for this example, we discuss the latency costs that might be incurred. When all 

blocks are locked in a set, we must permute to unlock at least one block before a new 

block can get in and replace the unlocked one. Since permutation takes a long time, it is 

not wise to permute at the last minute. We thus permute and unlock ahead of time – 

before all the entries in a set are locked (this issue will be addressed in detail shortly). 
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Figure 8. Example for Lemma 1 and HIDE cache. 

Implementation of the HIDE cache 

We list all HIDE cache operations in Table 2, assuming LRU is the original cache 

replacement policy. Blocks are still ordered and updated according to the LRU policy, 

except that when evicting a block, one should choose the least recently used block among 

the unlocked blocks. Note that the LRU block is not necessarily the last block that is 
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locked in a set, because a block could be brought in (thus locked) and used frequently, 

whereas other blocks might be in the set for a long time without being used. 

Table 2. HIDE cache operations. 

 
 

Read and hit Update LRU order of blocks  
Write and hit Set dirty bit and lock the block, update LRU order 

of blocks 
Cache miss, 
fetch a new 
block into 
the cache 

Picked the LRU block among all unlocked blocks 
in the same set. Fetch and lock the new block. Set 
dirty bit for write access. If all blocks are locked, 
put it to fetch buffer. 

A memory 
space is 
permutated 

All blocks belonging to that memory space in 
cache are unlocked 

 

In our implementation, we use a bitmap (separately stored) to record whether a 

block is locked or not, i.e. each bit represents one block. After the permutation, the whole 

bitmap is cleared. 

Latency Hiding via Fetch Buffer and Pre-permutation 

Prefetch buffer is an on-chip buffer used to store cache blocks temporarily. Since 

HIDE cache operations could render the cache unavailable in some cases for a short 

period, cache blocks can be first put in the prefetch buffer and used to serve the 

application requests and then moved to the HIDE cache once it can be accessed. There 

are two scenarios in which the fetch buffer is necessary. In one case, the missed block 

request comes before we find out which block should be replaced; the second case is 

related to the pre-permutation. Both will be discussed in details later.  

Note that locking blocks, i.e. setting the bits in the bitmap, is not on the critical 

path since it can be conducted after the cache access. Upon cache misses, for each block 

in the set we need to determine whether it is locked or not. This involves reading several 

bits in the bitmap. Fortunately it is not on the critical path either. The missed block can be 
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fetched in parallel when we access the bitmap. Even if the missed block is fetched faster 

than the bitmap accesses, we can simply put the block in the fetch buffer and let the cache 

access return first. Once we find out all unlocked blocks in the set and the LRU one 

among them, the block in the fetch buffer can then be moved into the cache to replace the 

LRU block. In this way, all the operations for the HIDE cache can have the same latency 

as a normal cache. 

However, the performance of a HIDE cache could still be worse than a normal 

cache because: 1) A locked block may otherwise be replaced when it becomes least 

recent used. 2) Once all the blocks in a set are locked, a new block cannot be fetched into 

the set unless we permute and unlock some of the blocks. Due to the long latency of 

permutation, it may happen that a set is fully locked before the permutation releases a 

locked block in the set, leading to stalls. 

We propose pre-permutation to solve the above two problems. Pre-permutation 

attempts to start permutation before all the blocks are locked. In our design, we start pre-

permutation when half of the blocks in a set are locked. Pre-permutation increases the 

chance that a block is unlocked before it becomes LRU, and greatly reduces the 

possibility that all the blocks in a set are locked when a new block needs to be fetched in. 

Even if the pre-permutation does not complete in time, we can put newly fetched blocks 

in the fetch buffer until the permutation completes and unlocks blocks for replacement. 

These latency hiding techniques successfully cut down the performance loss as shown in 

our experiments. 
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3.3.4 The Permutation Unit 

The permutation unit randomly permutes the memory space. It should avoid 

exposing the correlation between any block’s old and new locations. Therefore, blocks 

are always re-encrypted after relocation. Recent studies indicate that counter-mode 

encryption/decryption  [124] [102] [95] [96] [123] can be applied to achieve low-overhead 

re-encryption. We show the pseudo-code for the permutation unit in Figure 9. A memory 

space with M blocks is to be permuted using an on-chip space with P blocks called 

out_buffer. In addition, a permutation vector (pv) consisting of a random permutation of 

numbers from 1 to M is generated and stored on-chip. 

CASE I: If M is less than or equal to P, we only need to sequentially read the M 

blocks once. After reading in block number s, we put it to out_buffer[pv[s]]. Finally, 

out_buffer is written out sequentially to the original memory space. Since the attacker 

only sees one sequential read and one sequential write to all blocks and everything is re-

encrypted, he cannot build any correlation between blocks’ old and new locations.  

CASE II: If M is larger than P, without loss of generality, let M=k*P, where k is 

an integer larger than 1. We split the M block memory into k equal-sized partitions. 

During an iteration s, all blocks destined to partition s are permuted and put in the 

out_buffer. At the end of iteration s, the out_buffer is written out to a temporary memory 

space as a new partition s. Upon finishing all permutations, we overwrite the original 

memory space with blocks in the temporary memory space. Overall, the M blocks are 

read k+1 times and written 2 times. Alternatively, we can change the page table such that 

the temporary memory space is mapped to the original memory space, which saves 

copying from temp_mem to mem. 
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DATA STRUCTURE:
//memory space to be permuted 
block  mem[1..M] 
//temporary space in memory 
block  temp_mem[1..M] 
//permutation vector, on-chip 
Int      pv[1..M] 
//output buffer, on-chip 
block out_buffer[1..P] 

M≤P 
pv[1..M]⇐a random permutation of numbers from 1 to M; 
for s=1 to M do 
  out_buffer[pv[s]] ⇐mem[s] 
endfor 
mem[1..M] ⇐re-encrypt(out_buffer[1..M]) 

M=k*P 
pv[1..M] ⇐a random permutation of numbers from 1 to M; 
for s=0 to k-1 do 
  for t=1 to M do 
    read mem[t]; 
    if s*P<pv[t] ≤(s+1)*P then out_buffer[pv[t]-s*P] ⇐mem[t] 
  endfor 
  temp_mem[(s*P+1)..(s+1)*P] ⇐re-encrypt(out_buffer[1..P]) 
endfor 
mem[1..M] ⇐temp_mem[1..M] 

 

Figure 9. Pseudo-code for the permutation unit. 

Although the size of the out_buffer, i.e. P, cannot be very large, the permutation 

unit can permute a very large memory space, i.e. M can be large. In this algorithm, the 

size of pv still depends on M, however pv is actually very small because it only stores a 

small integer for each block (8 bits for 8K pages with 32B block). 

The pseudo-code in Figure 9 does not show the algorithm to generate a random 

permutation of numbers from 1 to M. We follow the shuffle algorithm in  [54], which 

requires M swaps to generate a complete random permutation as long as a hardware-

based true random number generator  [49] is available. Finally the time for random 

permutation generation can be completely masked when the permutation unit reads the 

memory space. 
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There might be pending accesses to the memory space being permuted. If the 

block has not been read-in, we can still issue the access to memory (Lemma 1 is still 

enforced, because we do not unlock until the permutation finishes). If the block is read in 

and in the out_buffer, it is fetched from the out_buffer immediately. If the block has been 

written out, we can fetch it from the memory, but need to mark that it will remain locked 

after the permutation. 

Overhead Analysis 

With pre-permutation, permutation is normally not on the critical path; critical 

reads by the processor are always given higher priority than the permutation traffic. Note 

that although permutation is the main source of bus traffic increase, such traffic is very 

regular and predictable and therefore can be easily pipelined. In addition, we can take 

advantage of memory banking and parallelizing memory accesses to different banks. If a 

normal access is going to access the chunk that is being permutated (this should rarely 

happen, since a chunk only takes a small portion of the address space), we can first try to 

locate it in the out_buffer if that block has been read into the permutation chip. To 

amortize the initial overhead for each bus transaction (which could take the majority of 

the access time if only a small number of bytes are transferred in each transaction), we 

read/write many consecutively located memory blocks during each transaction. Finally, 

we can completely offload the permutation traffic from the front-side bus with a separate 

permutation chip (or it can be combined with the memory controller). Communication 

occurs between the processor chip and the permutation chip, e.g. the processor chip 

should send/receive data to the permutation chip if the address falls in the chunk that is 

being permuted. Also the permutation chip returns the new mapping once a permutation 
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has finished. Obviously, such communication should be encrypted to be immune from 

bus tapping and the amount of bus traffic will be much smaller. Finally, as mentioned 

earlier, re-encrypting blocks is necessary to avoid block correlation based on block cipher 

texts. This overhead has become negligible with recent studies on counter-mode 

encryption/ decryption. 

We now show how we put together the HIDE cache and the permutation unit to 

offer chunk level protection. 

3.4 HIDE at Chunk-Level 

This section gives the hardware infrastructure of HIDE, which provides so-called 

chunk-level protection. The hardware interface is supplied as simple instructions. 

3.4.1 Chuck Level Protection and Transition Coverage 

A chunk is defined as one or more pages that are protected and permuted together. 

Protecting a large piece of memory is prohibitive due to the high permutation cost, 

especially. when the out_buffer cannot hold the entire piece of the memory space, we 

have to access the memory space multiple times. The goal of chunk level protection is to 

limit the size and the cost of the permutation. With chunk-level protection, the 

permutation unit only permutes blocks within a chunk. Once a chunk is permuted, all 

cache blocks in that chunk are unlocked. 

We can split an address sequence into a series of transitions from address to 

address, e.g. the address sequence in Figure 3 has transitions like: 100Æ101, 101Æ102, 

102Æ103…. If the transition is between two addresses in the same chunk, we call it 

intra-chunk transition, otherwise it is inter-chunk transition. Since all intra-chunk 

transitions are protected with chunk-level protection, the percentage of intra-chunk 
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transitions among all transitions is called transition coverage, which is a good indication 

of how well the address sequence is protected and the level of security guarantee we can 

provide. 

We found that chunk-level protection is powerful. As observed from our 

experiments, even with the smallest chunk size, i.e. a page, over 75% of the transitions 

are intra-chunk. Given that not all memory contents are security sensitive, protecting 

chunks of a reasonable size should suffice if we can slightly narrow down the protection 

domain with either compiler analyses or user specifications as shown in Section  3.5. 

Besides, chunk-level protection is flexible. Since our infrastructure supports chunks with 

different sizes, the user can choose to protect some memory space in big chunks and 

some in small chunks. Building chunks on top of pages facilitates the implementation, 

since pages are supported by both the hardware and OS. 

3.4.2 Hardware Components 

Controller Permution
Unit

Memory

Page Info
Caches

Fetch Buffer

L2 cache-hide cache

 

Figure 10. Hardware flowgraph. 

Figure 10 shows the hardware structure to provide chunk level protection. The 

hide cache is implemented at the L2 level (in other words, L2 is a HIDE cache). The 
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fetch buffer and the permutation unit were introduced in Sections  0 and  3.3.4. The 

controller coordinates all components. 

Before addressing the page info cache, we first describe the page info record in 

Figure 11, which contains 7 fields for each page. Page info records store extra 

information for the L2 cache so that it can function as a hide cache. As shown below, the 

if_hide field indicates whether the given page should be protected. Blocks in a protected 

page are permuted together with other pages in the same chunk and accesses must go 

through the address translation to reach the new locations. The second field is the page 

number in the virtual address space. The next two fields specify the chunk this page 

belongs to. Note that each chunk must take a contiguous piece of memory in the virtual 

address space – this is done to facilitate compiler optimization and user specification. In 

other words, a chunk must take several consecutive pages in the virtual (also physical) 

address space; begin_virtual_page# and chunk_size (number of pages in a chunk) 

uniquely define a chunk. 

Page Info Record:
boolean        if_hide; 
int                 virtual_page# 
int                 begin_virtual_page#; 
int                 chunk_size; 
int                 num_in_cache; 
boolean         lock_bitmap[num_blk]; 
blk_addr_t    translation_table[num_blk];

 

Figure 11. Data structure for page info record. 

num_in_cache counts the number of blocks of the chunk that are currently  locked 

in the hide cache. For chunks with multiple pages, only the first page’s page info record 

stores such information. This field is used for pre-permutation described in Section  3.3.3. 
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When half of the blocks in a set are locked, for each locked block we find out the 

percentage of locked blocks in their chunks. The one with the highest percentage is 

chosen to be permuted. The lock_bitmap field contains num_blk bits, where num_blk is 

the number of blocks in a page. Each bit indicates if the block is in the cache and is 

locked. Finally, the translation table translates each block to its new block address after a 

permutation. The translation table is updated by the permutation unit after each 

permutation. For chunks with multiple pages, the blk_addr_t includes a page_ID 

∈[0,chunk_size) to indicate which page in the chunk this block is permuted to i.e. 

begin_virtual_page# +page_ID. 

The size of the page info record is small compared with the size of a page. For 

8KB page size on Alpha, it only adds 3.5% memory space overhead. However, for big 

chunks, the translation table takes more space due to the bigger page_ID field. 

Page info records are stored separately in a reserved memory space so that they 

can be accessed only by the hardware. There is one page info record for each physical 

page. For each block, the hardware can find the corresponding page info record via its 

physical page number. To speed up the access to the page info records, we put a page 

info cache on chip. Due to the small size of the page info records, a cache of 8~16KB is 

typically enough to achieve a very high hit rate. However, since the page info records are 

stored in the external memory, accesses to it may leak information on the address bus too 

although the records are encrypted under our machine model. Conceivably, such 

information leakage is indirect and also very limited due to the small size of the page info 

records. For complete security, we can build several layers of protection, i.e., the first 

layer page info cache becomes a hide cache which protects the first layer page info 
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records for the pages used by the program. Since the first layer page info cache is a hide 

cache, we need second layer page info records for this hide cache and for the pages taken 

by the first layer page info records. Obviously, the sizes of the page info cache and page 

info records decrease exponentially. At layer 3, the page info records are typically small 

enough to be stored on-chip. 

3.4.3 Some Other Issues 

Since chunks are defined in the virtual space, actual accesses to the physical 

memory must go through the page table and TLB look up. Recall that the OS could be 

malicious, therefore both the page table and the TLB could be manipulated by the OS. In 

fact, this problem has been solved by integrity checking the application’s virtual address 

space. 

Moreover, TLB only provides page level translation, thus a malicious OS might 

be able to figure out intra-trunk page-level transitions by observing the virtual page 

addresses sent to the TLB (e.g. by flushing the TLB and trapping the TLB misses). One 

possible solution is to use large pages. Large pages are available on some platforms like 

IBM Power series. However, typically very few sizes are available. For chunk level 

protection, it is desirable that a variety of chunk sizes can be supported. To prevent 

information leakage through the TLB, we propose a simple approach without changing 

the existing TLB architecture. When a virtual page address needs to be converted, we 

always use the beginning virtual page address of the chunk that the page belongs to. 

Figure 12 illustrates how the translation is done. Each chunk takes a continuous memory 

space in the virtual and in the physical memory address space. To translate any page 
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inside a chunk, the page address of the first page in the chunk is sent to the TLB. After 

getting the physical address of the first page, the offset is added to get the final address.  

Virtual Address Space

Virtual  
Chunk 

Physical  
Chunk 

TLB 
Translation 

offset 

offset 

Physical Address Space 

{ } 

 

Figure 12. Virtual to physical address translation. 

The OS should guarantee that all pages for a chunk are stored continuously in the 

physical address space, otherwise it will fail the integrity checking and get detected. Also, 

all pages in a chunk should be permuted together, therefore it is better they are swapped 

in and out together, such that extra delay could be avoided. In our implementation, these 

suggestions are conveyed to the OS. Although the OS could be malicious and does not 

comply with these suggestions, it only leads to worse performance but no security 

breaches. 

Finally context switches should not affect the hide cache, since it works at the 

physical page level, i.e., page info records are designed for physical pages and are 

addressed with physical page numbers. It works in tandem with a L2 hide cache where all 

the addresses are physical addresses. 

3.4.4 Interface to the Application 

Chunks can be specified statically in the program code or at runtime with special 

instructions. In the former case, such information is inserted in the header of the program 
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binary telling which chunks should be created initially. Upon loading a chunk, the 

hardware initializes the fields in the page info record and performs an initial permutation 

before loading it into the memory. The initial permutation prevents the attacker from 

gaining information across different runs of the program. At run time, we can use three 

instructions to manage chunks; their syntax and operational semantics are as follows: 

♦hide_chunk (begin_virtual_page#, chunk_size) 

Operational semantics: For all pages in the chunk, set the if_hide and other fields 

accordingly. Get a new translation table from the permutation unit without performing 

real permutation and clear the lock bitmap. Later accesses to the chunk must go through 

the address translation. This instruction can be used when a new memory space is 

allocated. Since all old contents will be overwritten, no real permutation is needed. 

♦unhide_chunk (begin_virtual_page#) 

Operational semantics: Clear the if_hide fields of all pages in the chunk so that the later 

accesses will go to the external memory directly. The old contents are discarded. 

♦unlock_block (virtual_page#, start_block_num, num_block) 

Operational semantics: Clear num_block consecutive bits in the lock_bitmap of the 

virtual page, starting from start_block_num. 

Next we discuss some optimizations developed to boost the level of security 

guarantee offered as well as the performance. 

3.5 Optimizations 

As mentioned in Section  3.4, chunk-level protection still exposes inter-chunk 

transitions since permutations are confined to the blocks within a chunk. This section 

talks about compiler and runtime techniques to achieve a higher level of security 
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guarantee based on the hardware infrastructure and through the interface proposed earlier. 

Through compiler analyses, user specifications and runtime support, we can effectively 

improve transition coverage and reduce address bus leakage, especially for sensitive 

contents, with very small overhead. 

3.5.1 Compiler Layout Optimization 

Compiler layout optimization aims to properly layout code or data to chunks such 

that transitions are covered with small permutation cost. There are a number of issues we 

should consider during the compiler layout optimization. 

1) Intuitively, we should put functions that frequently call each other in the same chunk. 

Similarly, consecutive data accesses that are frequent should be put in the same chunk 

as well. 

2) Adding more functions or data to the same chunk tends to increase the chunk size. 

However a big chunk is expensive to permute. Therefore, we must factor in the 

tradeoff between transition coverage and the permutation cost. 

In our compiler optimization, we attempt to properly layout code and static data to 

minimize inter-chunk transitions. This approach is also applicable to heap space that is 

redistributed to the program – refer to Section  3.5.2. For static data, we assume that 

arrays and structures are laid out as a whole. For code, functions are laid out as a whole. 

Occasionally, we may encounter large functions 1  or arrays, which can cause big 

overheads if they have to be covered with large sized chunks. In such cases we hope that 

the compiler or the programmer is able to divide them into smaller pieces that are 
                                                 

 
 
1  In our benchmarks, we only observe several functions that exceed page size. 
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unlikely to transit frequently from one to another. Next we give definitions of Transition 

Graph and Permutation Cost. 

 

Transition Graph: undirected graph with weighted nodes and edges. 

P-Cost(m): Permutation Cost for a memory space of size m. It should monotonously 

increase with the size of the memory space. 
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Figure 13. Examples for transition graph. 

On the transition graph, each node represents a function. The weight of the node 

is the size of the function. Edge weights between nodes represent the call/return 

frequency between the two functions. If function A calls B or returns from B once, the 

weight of the edge between node A and B is increased by 1. For the example in Figure 

13.a, the transition graph tells us that the function foo1 calls or returns from foo2 10 

times, whereas foo1 calls or returns from foo3 6 times. The sizes of the 3 functions are 

100,200 and 100 respectively. For static data, each node represents a data unit, i.e. a 

scalar variable, a structure or an array, etc. The weight of the node is the size of the data 

unit. The weight of the edge is the number of times the two data units are accessed 

consecutively. For example, if we find a path on which data unit A is accessed 

immediately after data unit B, the edge weight between them is incremented by 1. An 

example is shown in Figure 13.b, 4 data units are loaded or stored as in the code segment. 
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The edge between A and B gets weight 2 because B is accessed right after A once and A 

is also accessed right after B once. Similarly, D is accessed immediately after A and 

followed by C. The sizes of these variables are all 8 bytes. The transition graph is a rough 

estimation of how frequently nodes transit from one to another, because some transitions 

can be hidden by the cache. 

For a node n, Let P_Cost(n) be the permutation cost of the memory with all 
data units in the node. 
P_Cost(n) ∝ size of the minimal chunk that can hold n. 
 
Let G(N,E) be the transition graph with node set N and edge set E. 
Let W be the total edge weights of the original graph (before node merging) 
 
LAYOUT ALGORITHM 
1. _ ( )

n N

C P Cost n
∈

= ∑  

2. while (total edge weight of G)/W>5% do  
3.     For any two nodes n1 and n2 find the minimal value of  (P_Cost(n1+ 
4.     n2) - P_Cost(n1)- P_Cost(n1))/(edge weight between n1 and n2). 
5.     merge n1 and n2. 
6. od 
7. return the transformed graph 

 

Figure 14. Algorithm to layout code and data. 

Figure 14 shows the code and data layout algorithm. We start with the transition 

graph assuming each node will be assigned to a separate chunk. Then we merge chunks 

into bigger one if it is beneficial. Our goal is to get minimal total chunk cost to cover 

most edge weights. At this point, we need to clarify two things: 1) The total chunk cost is 

the sum of the costs of all the chunks and a chunk’s cost is empirically calculated to be 

proportional to its size, since the time to permute grows with the chunk size. 2) If two 

nodes are in the same chunk, then the edge weight between them is covered. 

Initially, each node is assigned to a distinct chunk with minimal size, i.e. a single 

page. Empirically we loop until over 95% of edge weights are covered. During each 
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iteration, we find a pair of chunks to merge with minimal ratio increase (ratio is defined 

to be the total chunk cost divided by the covered edge weights). Note that if we merge 

two chunks, all nodes in the two chunks are now assigned to a new chunk that can hold 

all nodes and its size is minimal. 

3.5.2 Managing Stack and Heap 

Stack and heap are dynamically managed memory spaces that must be tackled at 

runtime. We now discuss several optimizations for protecting stack and heap accesses. 

Since stack size is typically small and most activities occur at the top of the stack, 

we should always try to put the top of the stack inside a chunk boundary. To avoid the 

exposure of accesses to the top of the stack, the application checks if the callee’s frame 

will cross chunk boundary. If so, it sets the frame pointer to the boundary of the next 

chunk. Figure 15 shows that when lesser space is available in a chunk than the stack 

frame size of the callee function, we allocate the callee’s stack frame at the start of the 

next chunk. In this way, we can avoid callee’s stack frame from crossing the chunk 

boundary which might lead to information leakage. Since the parameters have to be 

passed from the caller to the callee, there might still be some inter-chunk leakage. We 

suggest parameters are put into the callee’s chunk. Although this might still cause several 

inter-chunk transitions at the beginning of a function call, we believe that the amount of 

leakage introduced is minor. On the other hand, the accesses within a stack frame are 

more frequent and thus, we choose the above solution. In cases where there are accesses 

across stack frames (such as indirect references through a pointer to caller’s data etc.), we 

attempt to put those two functions’ stack frames in the same chunk. 
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Since the location and the size of the chunk as well as the end of the stack frame 

are all known at runtime, the compiler simply inserts comparison instructions at the 

function call site and advances the stack frame accordingly. The new chunk is protected 

with the hide_chunk instruction. Given that the stack frame size is typically small, space 

loss due to this is negligible compared with all memory space taken by a program. 
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callee’s stack frame

chunk 
boundary 

stack grows 
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Figure 15. Protecting stack space under HIDE. 

On the other hand, heaps can be large; therefore more specifications by the 

programmer are desirable. Next we give the unlock rule, which has been found very 

useful to reduce the number of locked blocks and save unnecessary permutations. 

 

Unlock Rule: If a block will not be referenced after a certain point and it is not dirty in 

the cache, we can directly unlock it. 

 

If a block will no longer be referenced and is not dirty, there is no need to lock it 

in cache, because its addresses will not appear on the address bus any more. The unlock 

rule suggests that data can be unlocked in the cache as soon as we are sure it will not be 

referenced later. Especially when only a few blocks in a chunk are locked in the cache, it 

will be inefficient to perform a permutation of the entire chunk. Thus, unlocking those 

blocks without incurring a permutation is most desired in this situation.  
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To unlock a set of blocks, we can use the unlock_block instruction. This 

instruction simply clears the lock bits for those blocks if they are not dirty. unlock_block 

instruction can be inserted by the compiler or the programmer after data values are 

determined to be dead through offline analysis. Some heap allocation schemes grab large 

pieces of memory from the heap then redistribute them to the application. Thus, 

techniques presented in Section  3.5.1 might be similarly applied to minimize inter-chunk 

transitions during the above heap allocations. 

3.5.3 Adaptive Chunking 

Chunks can also be formed adaptively. If transitions frequently happen between 

two adjacent chunks, it is probably better to merge them together. Although we pay more 

cost to permute them together, it achieves better coverage. On the other hand, if two 

adjacent chunks are rarely accessed consecutively, merging them is not beneficial at all. 

As mentioned earlier, for ease of implementation we require chunks to occupy a 

contiguous piece of memory in the address space. Thus, we only need to track the 

transitions between adjacent chunks. To facilitate adaptive chunking, we add transition 

counters for each chunk to keep track of the transitions between adjacent chunks. Those 

counters monitor the number of transitions for pairs of chunks that could potentially be 

merged. For each chunk, there is a transition counter which records the number of 

transitions from or to the next adjacent chunk in the virtual address space. Note that the 

counters keep increasing as time goes by. For a fair measurement, we also record the 

time-stamp when the counter was reset last time. Empirically if Trans_Counter/(TS_now-

TS_last) is above certain threshold merge_threshold, it means the two chunks should be 

merged. Periodically we reset the counters and update TS_last so that the counters keep 
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track of recent transition activities. To reduce overhead, we only check against the 

merge_threshold after TS_now-TS_last is large enough (more than 1 million cycles) and 

the transition counter is being updated. In other words, after we get enough statistics 

(from TS_last to TS_now), there is a check point to decide if a merger is needed. If not, 

both Trans_counter and TS_last are reset. The checking is done in a lazy manner. It is 

designed so because we do not want to eagerly merge chunks, which definitely leads to 

higher cost. Therefore, only in cases a really good candidate is identified, should we 

perform the merger. Once we decide a merger, the corresponding page info tables of the 

underlining pages are updated to reflect the change. 

chunk chunk

Trans. Cnt
Time Stamp

chunk

Trans. Cnt
Time Stamp

Trans. Cnt
Time Stamp

 

Figure 16. Illustration of adaptive chunking. 

As page info table, the transition counters and time stamps are put in a reserved 

memory space that can only be accessed by the hardware. The space overhead is 

considered very small, as the information is only maintained at chunk level. To update 

the counters, the hardware simply keeps track of the previous chunk that was accessed, if 

the current chunk is the same as the previous one, or the two chunks are not adjacent to 

each other, we do not need to do anything, otherwise the transition counter of the 

previous chunk is updated to reflect this transition. In other words, the updates only 

happen during some of the chunk level transitions, which actually happen rarely as most 

of the transitions are covered inside chunks (we will show this in the results section). 

Meanwhile, updating the counters can be done in parallel with chunk accesses and 

permutation, further reducing the overhead. When a merger is decided, extra latency is 
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incurred to update corresponding page info records. However chunk mergers do not 

happen frequently, especially when we do it lazily. In this manner, the runtime overhead 

for the involved operations is almost negligible. 

3.6 Other Considerations 

Information leakage prevention is a broad topic, whereas here we only tackle a 

particular problem. For instance, system calls can somewhat leak control flow 

information, however the interactions between the application and the operating system 

are unavoidable. This problem is actually left to the programmer to not to put system 

calls at sensitive sections of the code.  Also, execution time cannot be hidden due to its 

tight association with performance. It is normally unreasonable to require the program to 

run for the same amount of time regardless of inputs. Under our scheme, the attacker 

observing the address bus still gains some information, such as the moments when 

permutations take place, the number of accesses between two permutations, etc. However 

such leakage is much less than that from an unprotected address bus. So far we cannot 

conceive of any feasible attacks that might benefit from this type of information leakage. 

In a multi-processor system, one block may be present in the caches of other 

processors, therefore locking and permutation information must be shared and made 

consistent across multiple processors. However, the communications among processors 

are transmitted through the bus that is subject to attacks. Therefore our scheme cannot 

work without extensions. Currently, we regard address bus information leakage 

prevention in a multiprocessor environment as our future work. 

3.7 Evaluation 



 66

We evaluate our scheme on a processor model with default parameters shown in 

Table 3, in which all 8K chunks are protected. The entire SPEC2000 integer benchmark 

suite is used as representative applications. The standard reference input is used for each 

benchmark. Implementation is done with the Simplescalar toolset  [11] and experiments 

are based on SimPoint  [94]. Each benchmark is fast-forwarded according to SimPoint 

then simulated by 100M instructions. The 200M Memory bus is 8B wide and fully 

pipelined. The permutation latency of a chunk is not a constant number. It has three 

major components as discussed in section  3.3.4. The first component is the latency to 

sequentially read the blocks inside a chunk and the latency to decrypt the blocks. With a 

counter mode based encryption/decryption scheme, the decryption latency can be largely 

hidden. The second component is the latency to place the block read in to a proper 

location in the temporary output buffer according to the permutation vector. The latency 

of this step is small. The third component is the latency to re-encrypt and write out the 

output buffer. Again, the encryption latency can be largely hidden. 

Table 3. Default architectural parameters. 

Clock frequency 1 GHz Unified L2 4way, 32B block 
1M (12 cycles) 

Fetch queue 32 entries Memory latency 80(1st), 5(inter)
cycles 

Decode/issue/ 
commit width 

8/8/8 Chunk size 8 K, all chunks
protected 

RUU/LSQ size 128/64 Fetch buffer 
Page info caches 

8 blocks 
8K/1K 

TLB miss 30 cycle Permutator Outbuf 64K 
L1 I/D 8K DM 1 cycle

32B block 
Encryption 
Latency 

40 cycles 

Memory bus 200M, 8 Byte wide Encryption 
Throughput 

3.2GB/s 
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Figure 17. IPC results normalized to the baseline without address bus protection. 

As a summary, first we compare IPC, bandwidth usage and transition coverage 

(i.e. percentage of intra-chunk transitions—Section  3.4) for three models: 1) the one with 

shelter buffer in the ORAM paper  [41] [40]; 2) default model implemented as a HIDE 

cache with parameters as listed in Table 3, 8KB chunk, no layout optimizations; 3) a 

more secure model with 64KB chunk and compiler layout optimizations described in 

Section  3.5. Note that, the ORAM work was theoretical therefore no implementation 

details were provided. We directly implemented their scheme. Further improvements 

might be possible but should be accompanied by a careful study from the security aspects. 

Figure 17 shows performance results. For comparison, we normalize all IPC 

numbers to the baseline without address bus protection. We also list absolute values of 

the baseline IPC values. The ORAM model incurs significant slowdown (44.2%), 

although we only implemented it at the smallest chunk, i.e. single-page level with 8-block 

shelter buffer for a fair comparison with the default model. Both default model and the 

“64K chunk+layout” model shows little slowdown: 0.3% and 1.5% on average. 

Comparing with a normal cache, our HIDE cache has to permutate a memory chunk 

when necessary thus resulting a larger average L2 cache access latency and a lower 
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performance. Figure 18 shows the average L2 cache access latency under the baseline 

without address bus protection and the default model of our HIDE scheme. The hit 

latency of the L2 cache is 12 cycles. Without address bus protection, the average access 

latency of L2 cache over all benchmarks is 13.27 cycles. Under HIDE default model, the 

average access latency of L2 cache over all benchmarks is 15.43 cycles. 
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Figure 18. Average L2 cache access latency under the baseline and the HIDE default 

model. 

Next, we look at the bandwidth usage. We show the percentage of overall 

bandwidth (i.e. 1.6GB/s) being taken in Figure 19. ORAM uses over 60% of the 

bandwidth due to its scanning of the whole shelter buffer during each access, the default 

model and 64K chunk one only use 9% and 15% of the bandwidth. For most benchmarks 

in SPEC2K, the memory traffic is not a big issue since they take only about 5% of the 

bandwidth to begin with. To get an idea of the worst-case bandwidth consumption, we 

reduce the L2 cache size to 512KB and 256KB (due to the nature of SPEC benchmarks, 
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we cannot find one that experiences memory problem with 1MB L2). For 512KB L2, the 

bandwidth consumption increases by 130% from the default model, whereas 256KB L2 

leads to 529% memory traffic increase. As mentioned in earlier sections, the majority of 

the memory traffic comes from permutations and therefore can be properly pipelined and 

parallelized with memory banking. For memory-bound applications, it is recommended 

to use a separate permutation chip to offload the traffic from the front-side bus—Section 

 3.3.4.  
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Figure 19. Percentage of total memory bandwidth used. 
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Figure 20. Percentage of address transitions covered. 

Figure 20 gives transition coverage of the 3 models, which is an indication of the 

level of security guarantee that is achieved (Section  3.4). The first two models show the 
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same 75% transition coverage on average, because they both protect at 8K chunk level. 

With 64K chunk and layout optimization, 87% transition coverage is achieved. Notice 

that for some benchmarks such as crafty and vortex there is a significant increase in the 

transition coverage (and thus the security). This is due to the layout optimizations 

undertaken by the compiler. Some benchmarks do not benefit from layout optimizations 

due to the inherent nature of accesses esp. those resulting in gap due to the heap accesses. 

This also causes more permutations, since the number of blocks each permutation can 

unlock is lower. 

Thus, one can see that significantly higher transition coverage can be achieved in 

the 3rd model with almost insignificant performance degradation. The layout 

optimization provides around 95% transition coverage for code and static data, while it 

only causes negligible slowdown due to the small size of that part. The rest of the 

slowdown is due to large chunk-size and overall transition coverage is much higher with 

little performance penalty. 

It is important to understand if the user can provide specifications to exclude a 

small percentage of code and data as non-security-sensitive, our scheme will eliminate 

almost all the leakage on the address bus with negligible slowdown. For the default 

model, the user needs to identify roughly 25% such code and data, while under the “64K 

Chunk+Layout” model, he only needs to exclude about 5% of the code and static data 

(Figure 14) and 13% of the data on the heap, assuming stack is protected as in Section 

 3.5.2. This means the user specification can be very rough or in same cases, a nice 

compiler approach will probably do the work too, making our scheme practical to achieve 

a good level of security guarantee almost automatically.  
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Figure 21. Normalized IPC results for the ORAM scheme with different shelter sizes. 

Figure 21 shows IPC results for the ORAM scheme with different shelter sizes.  

Results are normalized to the baseline without address bus protection. In the experiment, 

only the size of the shelter buffer in the ORAM scheme is varied. The shelter buffer sizes 

used in the experiments are 4 blocks, 8 blocks, 16 blocks and 32 blocks respectively. The 

chunk size is 8KB. From the results, a larger shelter area generally leads to a better 

performance under the ORAM scheme. The reason is that with a larger shelter buffer, the 

chance of a miss cache block found in the shelter buffer is larger, thus the cache miss can 

be satisfied faster. On average, the performance degradation for a 4-block shelter buffer, 

an 8-block shelter buffer, a 16-block shelter area and a 32-block shelter area is 53.7%, 

44.2%, 35.6% and 30.6% respectively. Although a larger shelter buffer improves 

performance, the performance degradation is still significant and much larger than the 

proposed HIDE scheme. Moreover, each chunk requires its own shelter buffer, so the 

memory overhead is increased rapidly when the shelter buffer is enlarged. 
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Figure 22. Normalized IPC results for the ORAM scheme with different chunk sizes. 

Figure 22 shows IPC results for the ORAM scheme with different chunk sizes. 

Results are normalized to the baseline without address bus protection. The size of the 

shelter buffer is fixed at 8 cache blocks. From the results, it is very clear that with a larger 

chunk size, the performance under the ORAM scheme deteriorates quickly, showing that 

the ORAM scheme does not have a good scalability. When the chunk size is 8K, the 

average performance degradation is 44.2%; when the chunk size is 16K, the average 

performance degradation is 53.4%; when the chunk size is 32K, the average performance 

degradation becomes 61.7%. 

In addition to the heavy performance degradation, the ORAM scheme also 

consumes much more bandwidth than our proposed HIDE scheme, as shown briefly in 

Figure 19. Thus, the ORAM scheme is apparently inferior to our HIDE scheme. We will 

now focus on more evaluation of the HIDE scheme. 
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Figure 23. Performance degradation for the HIDE scheme with different L2 cache 

sizes. 

In Figure 23, we vary the size of the L2 cache under the default model of our 

HIDE scheme to see how performance degradation changes. From Figure 23, only some 

benchmarks have observable slowdown, typically those with relatively large working sets. 

Small cache leads to bigger slowdown due to more L2 misses causing more permutations. 

On average, the slowdown for 512K, 1M, 2M L2 is 1.5%, 0.3%, 0.03% respectively. Our 

experiments show that the slowdown is within 20% even for 64K caches, making it 

applicable to low-end systems with smaller caches where information leakage might be 

more severe. Figure 24 shows L2 cache miss rate for the HIDE scheme with 512KB, 

1MB and 2MB L2 cache sizes respectively. 
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Figure 24. L2 cache miss rate for the HIDE scheme with different L2 cache sizes. 
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Figure 25. Performance degradation for the HIDE scheme with different L2 cache 

ways. 

In Figure 25, we perform sensitivity study for the number of cache ways of the L2 

cache under the default model of our HIDE scheme. IPC results are normalized to the 

baseline without address bus protection. By default, our customized L2 cache has 4 ways. 

Intuitively, when the number of ways is increased, the chance that all ways in a set are 

locked is smaller, thus the number of forced permutations is smaller, leading to a better 
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performance. From our results, if the 1MB L2 cache has 4 ways, the average performance 

degradation is 0.3%. When the L2 cache has 8 ways, the average performance 

degradation is only 0.07%. When the L2 cache has 16 ways, the average degradation is 

near zero. Thus, increasing the number of ways of the L2 cache is effective to reduce the 

performance overhead further if the cost is affordable. 

Next, we do sensitivity study for chunk sizes under the default model. All 

comparisons are against the 8K-chunk default model and all numbers are normalized to 

the 8K-chunk default model. A better protection granularity leads to more slowdown and 

bandwidth consumption at the same time a better coverage rate. Figure 26 shows the 

performance degradation with a larger chunk size. On average, the slowdowns relative to 

the default model for 16K, 32K, 64K chunk are 0.13%, 0.55%, 1.05% respectively.  

Figure 27 shows the increase of bandwidth consumed. For 16K, 32K and 64K chunk, 

bandwidth increases are 18%, 40%, 73% respectively. Again, a permutation chip could 

offload this bandwidth increase from front-side bus. 
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Figure 26. Performance degradation with larger chunk sizes comparing with the 

default model. 
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Figure 27. Bandwidth consumption increase with larger chunk sizes comparing with 

the default model. 

Figure 28 shows the improvement of transition coverage rate with a larger chunk 

size. For 16K, 32K and 64K chunk size, transition coverage rate is improved over the 

default model by 1.6%, 4.3% and 5.9% respectively. From the results, without compiler 

optimizations, a larger chunk size improves coverage rate but not significantly. The major 

reason is that the misses from the L2 cache are already quite irregular and 64K chunk size 

is still not large enough to reduce inter-chunk transitions significantly. Thus, compiler 

layout optimization is critical to reduce inter-chunk transitions and improve coverage rate, 

which is shown in Figure 20. On the other hand, it is critical not to be confused by the 

small improvement brought by a larger chunk size. It does not show that a larger chunk 

size is very ineffective. A larger chunk size achieves better security guarantee, which is 

the main point of our HIDE scheme. All intra-chunk transitions can be protected. Thus, 

64K-chunk achieves much better security guarantee than 8K-chunk, regardless of the 

improvement over transition coverage rate. 
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Figure 28. Transition coverage rate improvement with larger chunk sizes 

comparing with the default model. 
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Figure 29. Effects of pre-permutation optimization under different pre-permutation 

strategies. 

Figure 29 shows the effects of pre-permutation optimization under different pre-

permutation strategies. In our default model, the L2 cache has 4 ways. We studied four 

cases: without pre-permutation, pre-permute when one way of a set is locked, pre-
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permutate when two ways of a set are locked, and pre-permutate when three ways of a set 

are locked. IPC numbers are normalized to the baseline without address bus protection. 

For many benchmarks, performance degradation is negligible even no pre-permutation is 

done. For those benchmarks having observable performance degradation, Figure 29 

shows that pre-permutation is effective to reduce runtime overhead. Without pre-

permutation, the average performance degradation is 1.2%; if we pre-permutate when one 

way of a set is locked, the average performance degradation is reduced to 0.33%; if we 

pre-permutate when two ways of a set are locked, the average performance degradation is 

0.3%; if we pre-permutate when three ways of a set are locked, the average performance 

degradation is 0.36%.  
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Figure 30. Effects of fetch buffer optimization with different buffer sizes. 

Figure 30 shows the effects of fetch buffer optimization. When all ways in a set 

are locked, the requested cache block can be put into the fetch buffer temporarily rather 

than waiting for the completion of a permutation. From the results, fetch buffer 

optimization is also very helpful to benchmarks having observable performance 
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degradation. Without fetch buffer optimization, the average performance degradation is 

0.75%; with a 4-entry fetch buffer, the average degradation is 0.37%; with an 8-entry 

fetch buffer, the average degradation is 0.3%, which is our default configuration; with a 

16-entry fetch buffer, the degradation is 0.27%; with a 32-entry fetch buffer, the 

degradation is 0.22%. Thus, a small fetch buffer is already enough to tolerate permutation 

latency. 
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Figure 31. Effects of adaptive chunking. 

Figure 31 shows the improvement of coverage rate due to adaptive chunking. 

Compiler layout optimization can also improve coverage rate, but compiler can only 

make static decisions and can normally do little about inter-chunk transitions caused by 

heap accesses. Adaptive chunking, on the other hand, can merge together chunks causing 

many inter-chunk transitions between each other at runtime. Moreover, adaptive 

chunking can handle heap accesses without problems. Thus, adaptive chunking is an 

effective supplement to compiler layout optimization. From the results, for those cases in 

which a good coverage rate cannot be achieved even with compiler layout optimization, 
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adaptive chunking helps significantly. On average, in the default model, the coverage rate 

is 75%; with compiler layout optimization, the coverage rate is improved to 87%; with 

adaptive chunking, the coverage rate is improved to 93%. We found that adaptive 

chunking helps data accesses more. It is more difficult for the compiler to determine data 

access patterns than to determine code access patterns, thus the compiler layout algorithm 

is more effective on code access. We also found that the performance and bandwidth 

overhead of adaptive chunking is always negligible and is not shown here. 

3.8 Related Work 

It is important to distinguish between “security guarantee” and “seemingly 

secure”. For the latter, there are many ways such as reordering the blocks at runtime, 

reading blocks to a buffer then writing out after some time to new places, obfuscating the 

code, issuing random accesses etc.; however all these approaches provide no guarantee 

on how much information can be leaked. A “seemingly secure” approach fails to achieve 

any security guarantee, which is a severe flaw because it is hard to fathom how powerful 

(smart) an attacker might be. Only security guarantees establish the security strength of a 

system without making assumptions about the attacker, which is the essence of this work. 

Code obfuscation techniques  [5] [19] [20] [21] [70] [80] [65] are only “seemingly 

secure”. Code obfuscation only makes reverse-engineering and cracking relatively harder. 

No security guarantee is provided as such. 

The DS5000 series processors support so-called address bus encryption, which is 

equivalent to the initial permutation in Figure 8.c. However, it does not permute the 

memory space repeatedly at runtime. Therefore the attacker can still construct the CFG in 

the same way as mentioned in Section  3.1. The DS5000 also issues random fetches in 
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order to confuse the attacker (seemingly secure). However, random fetches can be easily 

discerned from true accesses in loops, which repeat more frequently. Actually, 

DS5002FP has been completely cracked  [61]. 

Goldreich  [41] [40] proposed three approaches to guarantee no information 

leakage on the address bus, however all of them incur big overhead. For example, the 

“square-root solution” needs to read the entire shelter buffer before each access; the 

“hierarchical solution” takes O(t*log(t)*log(t)) memory space after t accesses, causing 

memory explosion. 

The leakage-proof program partitioning work done by us previously  [126] [125] 

tackles a similar problem. Our previous work focuses on combating control flow 

information leakage due to dynamic sequences of program partitions transmitted through 

network in a networked embedded system environment. On the other hand, this work 

focuses on eliminating the control flow information leakage due to code/data blocks 

transmitted through system address bus. Our previous work inspired our address bus 

protection work, but both the assumption and the solution of the leakage-proof program 

partitioning work are fundamentally different from this one. 

3.9 Summary 

In this chapter, we present a lightweight solution to prevent information leakage 

on the address bus due to external memory accesses and to boost intrusion prevention 

capability of our software protection infrastructure. We show that information leakage 

prevention is critical for a secure architecture to defend against important side-channel 

attacks to software code and data confidentiality. However, all known solutions with 
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enough security guarantee  [41] [40] suffer from large performance degradation and 

memory overhead. 

In this work, we propose the HIDE scheme including the hide cache with cache 

block locking and permutation mechanisms. HIDE provides chunk-level protection and 

interface for compiler optimizations and user specifications. Then we propose compiler 

optimizations for code and data layouts as well as other runtime optimizations to reduce 

overheads and improve the level of security guarantee.  

The main contributions of this work are 1) Cache locking mechanism to indicate 

the timing to permute the memory space. Since our lock cache is a simple extension to 

the common set-associative cache, we are able to reuse most of the resources to reduce 

hardware cost. 2) Chunk level protection to selectively protect important data and code in 

a lightweight way. 3) Compiler techniques including layout optimization and stack/heap 

management optimizations to improve the security guarantee. 4) Adaptive chunking to 

dynamically adjust chunk sizes and merge chunks with frequent transitions. 

 Our results show that with 64KB chunk level protection and the layout 

optimization, we can guarantee that 87% of the address sequence is protected, in which 

95% of the accesses to code and static data are hidden. Under the HIDE scheme, 

interfaces are provided for the compiler or user to further improve the level of security 

guarantee or to narrow down the protection domain to achieve almost complete 

protection. In that way, all security sensitive code/data could be identified and effectively 

protected in terms of the information leakage on the address bus. The protection strength 

can be further improved through adaptive chunking.  
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The performance overhead is at most 1.5% in our experiments for a general 

purpose processor. The increase of the bus traffic takes a very small part of the total 

bandwidth available for our benchmarks. The majority of the traffic increase is due to 

permutations. Such traffic is very regular therefore we can reduce its overhead in multiple 

ways as suggested in this chapter. Finally, most on-chip hardware components for HIDE 

are small. The largest component, i.e. the permutation unit with 64KB out_buffer can be 

shifted to the permutation chip as well. Due to the low overhead of the HIDE 

infrastructure, it is possible to apply it to low-end systems with smaller caches where 

leakage on the address bus might be more severe. 
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4 TRAINING-BASED ANOMALOUS PATH DETECTION  

 Our hardware infrastructure enhanced with address bus information leakage 

prevention can prevent attacks to software confidentiality and detect attacks to software 

integrity from other malicious software (even including a malicious operating system) 

and common hardware attacks. However, one important observation is that it cannot 

defend against attacks exploiting flaws/bugs in the protected software itself. The classical 

example of this kind of attack is buffer overflow attack  [82], which can be regarded as 

due to a programming error (missing bound checking). Other examples include format 

string attacks and return-to-libc attacks etc. The hardware architecture alone cannot 

prevent such attacks. As far as the secure processor concerns, the instructions to overflow 

the buffer are perfectly legal instructions. In fact, to maintain the original program 

semantics, the buffer should be overflowed.  

 There are numerous software/hardware solutions to buffer overflow attacks, 

including  [23] [22] [108] [6] [50] [44] [89] [18] [111] [27] [33] [8] [83] [104] [43] [77] [131]. 

However, even buffer overflow attacks are completely prevented, there will be other new 

attacks emerging, for example format string attacks  [91]. In general, it is impossible to 

build a bullet-proof secure system and no secure system is able to prevent all attacks. 

There may be design/implementation flaws in the underlying protection scheme, or the 

attacker may exploit the flaws such as buffer overflows in the software to be protected. 

To be realistic, we have to assume that some attacks will be able to evade the protection 

scheme implemented. To protect software from those attacks, we build a second line of 

defense consisted of intrusion detection and intrusion recovery mechanisms, which is 

able to detect both known and unknown attacks and even recover from attacks. Such an 
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intrusion detection and recovery scheme is missing from the existing secure architectures 

and is one of the major contributions of our work. 

 In this chapter, we give some background knowledge on intrusion detection and 

present a training-based intrusion detection scheme to detect anomalous dynamic 

program paths. The scheme monitors the software execution at a very fine granularity and 

is able to detect attacks tampering program control flows with high precision and 

negligible performance overhead. However, the major concern of the scheme is the 

requirement of training and possible false positives. 

4.1 Introduction 

 Intrusion detection is a critical component of an overall security solution. Due to 

the following reasons, intrusion detection has become an indispensable means to help 

secure a computer system. (1) A completely secure system is impossible to build. (2) 

Protecting software through cryptographic mechanisms, such as in the XOM  [64] 

machine model, cannot prevent software’s internal flaws (such as buffer overflows), 

which can be exploited by attackers. (3) Other operational mistakes, such as misuses, 

misconfigurations etc., may jeopardize the system as well.  

 Traditionally, intrusion detection can be classified into misuse detection and 

anomaly detection. Misuse detection tries to identify known patterns of intrusions and 

detect intrusions with pre-identified intrusion signatures. On the other hand, anomaly 

detection assumes that the nature of an intrusion is unknown, but will somehow deviate 

from the program’s normal behavior. Misuse detection could be more accurate, but 

suffers from its inability to identify novel attacks. Anomaly detection can be applied to a 

wide variety of unknown (new) attacks, however normal behavior and abnormal behavior 
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have to be properly distinguished to reduce the number of false positives (or false alarms). 

We will focus on anomaly detection in this dissertation since it is more general and 

powerful. 

 A number of anomaly detection techniques have been proposed. Most early 

anomaly detection approaches analyze audit records against profiles of normal user 

behavior. Forrest et al.  [32] discovered that a system call trace is a good way to depict a 

program’s normal behavior, and anomalous program execution tends to produce 

distinguishable system call traces. A number of papers  [59] [76] focus on representing 

system call sequence compactly with finite-state automata (FSA), but these schemes are 

easily evadable because they use very little information and monitor with coarse 

granularity. Recent advances  [115] [92] [31] propose including other program information 

to achieve faster and more accurate anomaly detection.  

 In general, approaches that monitor the program with finer granularity should be 

able to detect more subtle attacks. Both  [31] and  [30] expose important attacks that 

existing anomaly detection mechanisms are unable to detect. To detect such anomalies, a 

very fine monitoring granularity is necessary. However, software-based anomaly-

detection systems already suffer from huge performance degradation even when 

operating at system call level. Thus, refining the granularity further in a software-based 

solution could lead to severe performance loss and is thus not viable. Due to inability to 

work at finer granularities, software-based intrusion detection cannot offer strong 

detection strength. Moreover, the anomaly detection software itself can be attacked like 

any other software. 
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 In this chapter, we present a hardware-based scheme to detect anomalies by 

checking program execution paths dynamically. As far as we know, it is the first 

hardware-based intrusion detection scheme ever proposed. With hardware support, our 

anomalous path checking scheme offers multiple advantages over purely software-based 

solutions including near zero performance degradation, much stronger detection 

capability and fast reaction upon an anomaly.  

4.2 Previous Work and Their Limitations 

 First, we would like to clarify the difference between anomaly detection and 

buffer overflow detection. There has been a lot of work on using specialized software and 

hardware to detect buffer overflow attacks such as  [22] [103]. These techniques focus on 

attack mechanisms rather than symptoms and plug the hole so that the attacker cannot 

apply the particular exploit. However, due to many sources of vulnerabilities, it is 

possible to start an attack using other exploits and thus, a mechanism that detects an 

attack based on its symptoms rather than a particular exploit is always desirable. As 

against those schemes specialized to defend buffer overflow attacks, our scheme can be 

used to detect any kind of attack, as long as the attack changes normal program control 

flow somehow (and thus, our technique is a symptom-based technique as against targeted 

to a particular exploit). Buffer overflow is merely one exploit that can cause an anomaly. 

Other examples include format string attacks, Trojan horses and other code changes, 

maliciously crafted input, unexpected/invalid arguments/commands to divert control flow 

into buggy/rare paths etc. Our scheme can also detect viruses alternating normal behavior 

of other applications, like a WORD MARCO virus. Actually, many viruses cause other 

legal applications (WORD, Internet Explorer etc.) to behave illegally to cause damage 
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since the virus itself is very compact and has very limited code. Such altered behavior can 

be detected as an anomaly from the normal one.  In short, our scheme, as a general 

anomaly detection scheme, deals with a much broader problem than defending against 

buffer overflow attacks. Moreover, one big benefit of anomaly detection is its ability to 

detect future/new attacks besides countering existing attacks. It is certain that new attacks 

will be developed and it is obviously a bad strategy to research on countermeasures to 

them only after they have caused a huge damage. 

 Researchers have shown that a great number of attacks can be detected by 

analyzing program behavior during its execution. Such behavior could include system 

calls, function calls, control and data flows etc. We will first discuss basic system call 

based anomaly detection schemes, and then discuss improved solutions that provide finer 

monitoring granularity thus better detection capabilities. 

Anomaly Detection via System Call Monitoring 

 System calls are generated as the program interacts with the operating system 

kernel during its execution, examples of which are fopen(), fgets(), and fclose(). Forrest 

et al.  [32] argue that a system call trace appears to be a good starting point for anomaly 

detection. A system call trace can be considered as a distilled execution trace leaving 

many program structures out. Although a system call trace is a great simplification of the 

complete program activities, storing and checking against all normal system call traces is 

still a significant design effort. Exemplary approaches include  [59] [76]. 

 To motivate our solution, we first discuss Finite State Automata (FSA) based 

system call monitoring techniques. To construct the FSA for system call monitoring, each 

program statement invoking a system call becomes a state on the state machine diagram. 
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The transitions between states are triggered by system calls. Each transition edge in the 

FSA is labeled by the triggering system call and the target state is determined by the 

feasible control flow. The state machine can be easily constructed through static analysis 

of the program  [115]. One significant property of establishing the FSA based on static 

program analysis is that no false positives will be generated due to the conservative 

nature of static analysis. In that way, none of the normal executions will trigger alarms 

and if the state machine reaches the error state, there is a guarantee that something is 

anomalous. 

Towards Finer Granularity 

 

(a) 

(b) 

(c)

 

1. if(!superuser){ 
2. f(); 
3. return; 
4. } 
5. //become superuser 
6. execve(“/bin/sh”); 

1. S0; 
2. if(!superuser){ 
3.   f(); 
4.   return; 
5. } 
6. f(); 
7. S1; 
//function f() 
8.  overflows  
9.  S2; 

//function g() 

//function f() 
7.  no syscall  
    but overflows; 

//function g() 

1. char str[SIZE], user[SIZE]; 
2. ... 
3. if (strncmp (user, "admin", 5)) {
4.   ... 
5.   no syscall; 
6. } else { 
7.   ... 
8.   no syscall; 
9. } 
10. strcpy (str, someinput); 
11. if (strncmp (user, "admin", 5)) {
12.   ... 
13.   no syscall; 
14. } else { 
15.   ... 
16.   no syscall; 
17. } 

(d)

if

if

else

else

if

if else 

else

(e)  

Figure 32.    Attacks prompting detection at finer granularity. (From  [31] and  [30]). 

 Although the FSA-based approach in  [115] has a nice property of zero false 

positives, later work points out that simply checking the FSA for system calls is not 
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sufficient and may cause false negatives in some cases. For instance, Wagner et al. notice 

that impossible paths may result at call/return sites which the attacker can exploit  [115]. 

This can cause anomalous control flows along those paths being undetected. They 

propose a second model called abstract stack model, which records call stack information 

to solve the problem. In  [31], the authors find out that even the abstract stack model can 

miss important anomalies. In Figure 32.a, although the condition in line 2 is false (i.e. the 

person executing the program is not a super user), the attacker can cause a buffer 

overflow to return from f() to line 7 instead of line 4, which actually grants him super 

user privilege. Since the system call trace is unchanged, no alarm will be triggered. This 

serious drawback can leave attacks getting through. 

  [31] provides a makeup solution called vtPath to detect the case in Figure 32.a by 

considering more program information. By constructing two hash tables to store not only 

the possible return addresses but also the so-called virtual paths (i.e. the sequence of 

procedure entry/exit points and return addresses traversed between two system calls), the 

false negative can be avoided. However,  [31] also acknowledges that other anomalies 

may be left undetected. As shown in Figure 32.b, when there is no system call in function 

f(), a buffer overflow attack can easily grab undue privilege without being detected. This 

example shows that the granularity at system call level is not fine enough to detect many 

anomalies in reality, since an anomaly can very likely take place between system calls. 

  [60] proposes incorporating system call arguments into the detection model, 

which is also an example of  incorporating more information. However, the attack shown 

in Figure 32.b does not depend on system call arguments. Most recently,  [37] categorizes 

system call monitoring based anomaly detection systems into “black box”, “gray box” 
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and “white box” approaches. Systems relying on not only system call numbers but also 

extra information extracted from process memory fall into the “gray box” category.  [37] 

further systematically studies the design space of “gray box” approaches and 

acknowledges the importance of monitoring granularity to the accuracy of the system. 

Their follow up work  [36] proposes a new “gray box” anomaly detection technique called 

execution graph, which only accepts system call sequences consistent with the program 

control flow graph. However, similar to  [31], due to the limitation of monitoring 

granularity, execution graph is not able to detect the attack in Figure 32.b either.  

 One possible solution to the problem illustrated in Figure 32.b is to verify all 

jump instructions, which are instructions that can cause non-sequential execution, 

including all conditional/ unconditional branches, indirect jumps, function calls/returns, 

etc. Compiler can record whether each instruction in the original program binary should 

be a jump instruction and collect all valid target addresses for each jump instruction. It is 

straightforward for the compiler to obtain valid target addresses for conditional branches. 

For indirect jumps, the compiler could obtain a set of normal target addresses using 

profiling. Then at runtime the program execution can be monitored based on the 

information collected by the compiler. Function calls/returns are special and can be 

checked efficiently by a return address stack (RAS). RAS is simply a stack for 

pushing/popping return addresses. Each return address of a dynamic return instruction is 

compared against the return address popped up from the top of the RAS. If they do not 

match, an anomaly is detected. In summary, we can choose to check each jump 

instruction individually and achieve very fine-grained monitoring granularity. This kind 

of approach will be able to detect a portion of attacks occurred during two system calls. 
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For example, it easily detects the attack shown in Figure 32.b. since the attack is based on 

stack smashing and is detected by the RAS. The essentially same attack can also be done 

by tampering a function pointer target by buffer overflows. Most likely, the indirect 

function call will have an invalid target and will be detected by the indirect-jump 

checking in this approach that tries to check each jump instruction individually. 

4.3 Anomalous Path Checking 

4.3.1 Motivation 

 Unfortunately, checking jump instructions individually still faces difficulties in 

detecting certain anomalies. Figure 32.c illustrates the problem. In this example, we have 

two strings defined, namely str and user. If the string user equals admin, the application 

will be granted super-user privilege. The code consists of two if-else statements. Between 

the two if-else statements, there is a strcpy library function call to copy some inputs to 

string str. Under a normal execution, the user can be either admin or guest. Thus, if we 

focus only on individual branches, since each if-else is regarded as an independent jump 

and since both directions of the jumps are possible, a scenario where if branch is taken in 

the first conditional branch and else branch is taken in the second one will be regarded as 

a normal execution.  However, string user is not changed throughout this code segment, 

thus in fact either the two if branches are both taken or the two else branches are both 

taken in any legal execution, as shown in Figure 32.d. In other words, it is not possible to 

have one if-else statement taking if branch and the other taking else branch, as shown in 

Figure 32.e. Nevertheless, since the strcpy function may cause a buffer overflow and 

overwrite the string user, the attacker can change the contents in user after the first if-else 

statement, guiding the program into the two invalid paths shown in Figure 32.e.  
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 The key aspect of this attack is that the attacker is not tampering return addresses 

or function pointers. Instead, he tampers critical control decision data. Unfortunately, as 

pointed out in  [30], none of the existing techniques mentioned earlier can detect this type 

of anomalies. Even individually checking each jump instruction as mentioned earlier fails. 

Because such an approach is only aware that for the first if-else statement, both if and 

else branches might be taken in normal cases; and the same is true for the second if-else 

statement. Therefore, it will not trigger an alarm for the case shown in Figure 32.e. In 

other words, without correlating multiple jump instructions, anomalous execution paths 

cannot be discovered when each jump instruction jumps to a target that is considered 

normal. Therefore, in order to identify this kind of attacks, we should enhance anomaly 

detection with anomalous path checking, in which the program dynamic execution paths 

are checked against their normal behavior collected through profiling/training. A 

program’s dynamic execution path is determined by the jump instructions along the path 

and their target addresses.  

 As concluded in  [31], the detection ability of anomaly detection systems heavily 

relies on the granularity level it monitors. An anomaly detector solely relying on system 

call trace is crippled if an attack takes place between two system calls. It is easy to think 

about other examples that can foil the anomaly detector even if limited program control 

flow information is considered. Checking each jump instruction individually can lead to 

very fine-grained monitoring and anomaly detection with strong detection strength. With 

anomalous path checking, we further enhance detection capability, because multiple jump 

instructions on a path can be correlated to find path anomalies that will otherwise be left 

undetected. A simple example of such anomaly is shown above (Figure 32.c). In reality, 
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there could be many similar or even more subtle anomalies, requiring the strongest 

anomaly detection technique we can offer. 

4.3.2 N-jump Path Checking Motivation 

 Checking program execution paths is much more complicated than checking each 

jump instruction separately. Theoretically, the number of possible paths could be 

exponential to the number of jump instructions in the path. This is so since each jump 

instruction (if assumed a conditional branch) could have two possible directions, i.e. 

taken or not taken. In other words, checking the whole execution path can be very 

expensive and infeasible to be implemented for runtime monitoring. In this work, we 

propose to analyze the whole execution path using sliding windows, where each window 

is a segment (say, n jumps) of the execution path. The anomaly detector verifies whether 

these path segments follow the normal execution path. In our scheme, the jump target of 

each direct jump instruction is checked separately in individual jump instruction checking 

component (detailed later) and an unconditional branch has only one possible target. 

Thus, we only need to care about conditional branches and indirect jumps in anomalous 

path checking, which we call multi-target jump instructions. We further define an n-jump 

path as an execution path segment on which exactly n multi-target jump instructions are 

encountered. An n-jump path can be uniquely decided by the address of the starting jump 

instruction and the directions of the n multi-target jump instructions along the path. In our 

work, the direction of an indirect jump is represented by its target address. N-jump path 

checking involves collecting n-jump paths seen during training to build a normal n-jump 

path set and checking n-jump paths during detection against normal n-jump paths. If an 



 95

n-jump path never seen during training is detected during detection, we regard it as an 

anomaly.  

4.3.3 Training Phase 

 During training, we run the program to be monitored in a clean environment and 

use an existing technique  [130] to record whole program paths (WPPs) of it during its 

execution. A WPP records the entire program execution path under a specific program 

input. Each input will generate a WPP, which represents a normal execution of the 

program (without intrusions). From each dynamic multi-target jump instruction recorded 

in a WPP, an n-jump path for that jump instruction can be extracted. The n-jump path 

records directions of all the n multi-target jumps along the path starting from the current 

jump instruction. It is identified by the address of the current multi-target jump 

instruction and the directions of all the n multi-target jumps along the path. Essentially, a 

WPP is segmented into a collection of n-jump paths using a size n sliding window with 

sliding step 1. N-jump paths obtained from different WPPs are finally aggregated 

together. This means as long as an n-jump path is normal for any one of the inputs, then it 

is regarded as normal. The aggregated set is used to detect anomalous paths at runtime. 

 The length or amount of training is controlled by the user. The goal is to have 

adequate training so that the detector has reasonably low false positive rate. In our 

experiments, we will show training for our scheme is effective. 

4.3.4 Detection Phase 

 At runtime, the anomaly detector maintains a record of the latest n multi-target 

jumps and their directions, and creates a dynamic n-jump path based on these recorded n 

jumps. The dynamic n-jump path is identified using the address of the first jump 
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instruction (the oldest of the n jumps) and the directions of the following n jumps. The 

anomaly detector then checks whether this dynamic n-jump path exists in the set of n-

jump paths collected during training. If not, the detector reports an anomaly. We will 

show later that the detection process can be optimized using hardware at run-time. 

4.3.5 Detection Capability 

 As discussed in  [31], the detection capability of an anomaly detection system 

depends on its monitoring granularity. For anomaly detection systems operating at system 

call granularity, attacks between two system calls will not be detected. An example is 

shown in Figure 32.c. Ideally, we want to collect the dynamic instruction sequence of a 

program and check whether the sequence of instructions is a normal one. Anomalous path 

checking technique approaches this ideal case by monitoring dynamic program paths. A 

dynamic program path is determined by the jump instructions along the path and their 

target addresses. Thus, with anomalous path checking, although the attacker may be able 

to modify instructions between two jumps, he cannot create new jump instructions in his 

attack code. The control flow of his attack code has to be a straight line and the attack 

code cannot include any function call, which is extremely restrictive to the attacker. 

 Anomalous path checking actually subsumes system call trace monitoring based 

anomaly detection because each function call is a jump instruction itself and each system 

call is normally invoked through a wrapper function call in standard C library libc.a  [37]. 

Once the dynamic program path is known, the system call sequence along the path is 

determined too. The sequence of system calls made along a normal program path has to 

be a normal system call sequence, which means system call trace monitoring based 

schemes cannot detect any attack missed by anomalous path checking. On the other hand, 
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a normal system call trace does not guarantee a normal program path. The distribution of 

system calls in a program is sparse and irregular. There may be millions of jump 

instructions between two system calls and the program path between two system calls can 

be tampered without being detected under system call trace monitoring based scheme.  

 However, checking the whole program path imposes too much cost in terms of 

both storing normal paths and checking them at runtime. Thus, we choose to check n-

jump paths instead. Checking all n-jump paths cannot guarantee that the entire program 

execution path is normal due to the limited length of n-jump paths. It is necessary to 

understand the cases when path anomalies cannot be detected with n-jump path checking. 

Figure 33 illustrates one such case. Here, two normal paths (1) and (2) share at least n-1 

jump instructions in the middle. Path (3) is an anomalous path but it cannot be detected 

with n-jump path checking. When path (3) enters the shared part, the detector will think it 

is on path (1). When path (3) leaves the shared part, it is considered to be on path (2) with 

n-jump path checking. The reason is that n-jump path checking can only check a path 

traversing no more than n multi-target jump instructions. Fortunately, our experiments 

show that the scenario in Figure 33 rarely happens. 

 We do not try to design a general algorithm to decide the value of n for an 

arbitrary application, since it is highly application-dependent. We will show later that a 

larger n can help detect more attacks but also incurs more false positives and more 

performance overhead. The criterion to choose n is to select as big an n as possible given 

that both false positive rate and performance overhead are acceptable. Thus, the user can 

start with a large n then gradually reduces it until those two metrics are acceptable.  
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Figure 33. An anomaly path that cannot be detected. 

4.4 Hardware Implementation 

4.4.1 The Advantages 

Performance 

 Although it is obvious that finer granularity brings better detection capability, the 

performance overhead it introduces is formidable under software-based approaches, e.g., 

 [115] [92] [31]. Software-based anomaly detection systems suffer from large performance 

degradation even when operating at the system call granularity  [115]. With hardware 

support, performance degradation can be made very small since the monitor is entirely 

implemented in hardware and works in parallel with instruction execution. In comparison, 

in system call monitoring based software approaches, intercepting system call alone can 

incur 100% to 250% overhead  [92]. 

Anomaly Detector Tamper Resistance 

 Anomaly detection software, as any software, might itself be attacked. To 

alleviate this problem, software anomaly detectors are normally implemented as a 

separate software module. In that way, the detector is not affected by the vulnerabilities 

of the monitored program. For example, system call based monitoring normally depends 
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on special system tools such as strace to trace system calls rather than instrumenting the 

program binary directly. 

 However, such separation is not possible when we monitor the program at a very 

fine granularity. Normally there will be a dynamic jump instruction in every 10 

instructions. Imagine the performance degradation of the monitored program when there 

is a context switch after every 10 instructions. Thus, we have to transform the monitored 

binary to insert monitoring code into it, which means the anomaly detector faces potential 

attacks due to the vulnerabilities not only in the detector itself but also in the monitor 

program. It is possible that the monitoring code is tampered or bypassed due to 

vulnerabilities inside the monitored program. On the other hand, our hardware anomaly 

detector resides in a secure processor, achieving tamper resistance. 

4.4.2 Hardware Architecture Overview 

 

code data checking tables 

cache other units

process's virtual address space 
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secure processor chip
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Figure 34. Architectural overview. 
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Figure 35. Checking pipeline. 

 Figure 34 shows an overview of our hardware components for anomalous path 

checking. Our anomalous path checking mechanism is built into our secure hardware 

infrastructure described earlier. The hardware infrastructure guarantees the 

confidentiality and integrity of all code and data residing off-chip in the external memory. 

Hardware anomaly detector resides in the secure processor and is tamper-resistant. 

Checking tables record normal behavior of the program (including information for each 

individual jump instruction and normal n-jump paths) and are utilized by the checking 

pipeline. Upon a program start, checking tables are loaded into a reserved segment of the 

program virtual address space and are only accessible to the anomaly detector itself. The 

program itself has no access to checking tables. Attempts to read/write checking tables 

from programs will be detected and prevented by the secure processor. Moreover, 

hardware attacks to checking tables are detected by the integrity-checking scheme of the 

secure architecture. Thus, no software or hardware attack can tamper program normal 

behavior data. 

 The checking pipeline illustrated in Figure 35 checks committed jump instructions 

against the normal behavior recorded in the checking tables. The checking pipeline is 

designed to be isolated from the original execution pipeline to minimize implications to 
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the latter. There are data paths from the execution pipeline to the checking pipeline to 

transmit information required by anomaly detection including current operation code, 

current PC address and computed next PC address etc.  

 The internal of the checking pipeline is detailed in Figure 35. The pipeline stages 

at the top of the figure (marked by the dotted line) check individual jump instructions. 

Individual jump instruction checking is relatively simple, so we just briefly describe it 

here and focus on anomalous path checking later. The first stage in individual jump 

checking checks whether each instruction is and should be a jump instruction. The 

information is recorded in a bitmap indexed by the instruction address. If it is a valid 

jump instruction, the second stage further checks each direct jump instruction (a 

conditional or an unconditional branch) to make sure its jump target is valid. The 

information is stored in a specially optimized hash table. Whether an instruction should 

be a jump instruction and the valid targets of direct jumps can be easily collected by 

examining the original program binary. At runtime, dynamic instructions are checked 

against those tables. There are some space optimizations to reduce the size of checking 

tables used in individual jump instruction checking, but they are also used in anomalous 

path checking so we will describe them later in the context of anomalous path checking. 

More detailed description about individual jump checking can be found in  [129]. 

 Function call/return instructions are checked specially by a hardware managed 

return address stack (RAS). Return address stack is simply a stack for pushing/popping 

return addresses. As shown in Figure 35, function returns are isolated after the is_jump 

check stage. Return address of each return instruction is compared against the return 

address popped up from the top of the RAS. If they do not match, an anomaly is detected. 
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A function call is nothing but a direct or indirect jump instruction that sets return address. 

It is first checked as a normal jump instruction. After it passes the checking, the anomaly 

detector pushes the return address of the function to the RAS for later verification when 

the function returns. 

 The checking of indirect jumps is incorporated in the path checking stages shown 

at the bottom of Figure 35. Our path checking stages follow the first stage and consist of 

two stages, namely regular path checking and special path checking. Among the checking 

tables, the ones that are used for our anomalous path checking are called path checking 

tables, which record all normal n-jump paths. The details of the path checking stages will 

be discussed in the next section. 

4.4.3 Implementation Details 

 BB1

BB2

BB3

BB4

3-jump path vector 
starting from A 

jump instruction A 
at the end of BB1 

011 
jump instruction B 
at the end of BB2

jump instruction C 
at the end of BB3  

Figure 36. An example of n-jump path. 

 The goal of the anomalous path checking hardware is to efficiently check 

dynamic n-jump paths against normal n-jump paths collected during training. An n-jump 

path is a segment of the execution path with n multi-target jump instructions on it. For 

example, in Figure 36 the thick line shows a path starting from the end of BB1 going 

through three basic blocks. Three conditional branch instructions are encountered along 
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that path, i.e. the last instructions of BB1, BB2 and BB3. Obviously, we can uniquely 

identify an n-jump path by the address of its first jump instruction and the directions of 

the n multi-target jump instructions on the path. To indicate the directions of the n multi-

target jump instructions, we define n-jump path vector as follows. 

N-jump Path Vector: a vector marking the directions of the n multi-target jump 

instructions on the n-jump path. 

Thus, if we only consider conditional branches that have two target addresses, e.g. 

either fall-through or jump to a particular target address, an n-bit vector is enough to 

represent an n-jump path vector. For the example in Figure 36, the 3-jump path can be 

uniquely identified as starting at jump instruction A with 3-jump path vector 011. Here, 

we assume that left branch is marked as 0 and right branch is marked as 1. The most 

significant bit is the direction of the starting jump instruction. Therefore, an n-jump path 

can be represented succinctly because only the directions instead of the addresses of jump 

instructions are recorded except for the header of the path. For this example, the path 

checking table only records jump instruction A as the header and directions of the 3 jump 

instructions which are left-right-right, i.e. 0-1-1. This simplification is possible because 

the correct jump targets of each direct jump instruction (e.g. the left branch of instruction 

A should jump to the beginning of BB2 but not other places) are verified by other 

pipeline stages at the top of Figure 35 — refer to section  4.4.2. 

Therefore, n-jump paths can be grouped based on their headers. For example, in 

Figure 36, all 3-jump paths starting from instruction A can be grouped and stored 

together. We group and store all normal n-jump paths in the path checking tables (Figure 

34). There are two tables used in anomalous path checking. Regular path checking table 
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is used in regular path checking stage and special path checking table is used in special 

path checking stage.  

One difficulty on path checking table design is that the data in it cannot be 

entirely regular, since we have to consider indirect jumps that may reach more than two 

targets and whose directions are represented by their target addresses. Although indirect 

jumps are not easy to handle, the majority of dynamic jump instructions are direct jumps, 

either conditional or unconditional. Unconditional branches have only one possible target 

and are handled by other stages. Conditional branches have two jump targets that are 

known by examining program binary. For conditional branches, only 1 bit is needed to 

indicate whether the branch is taken or not taken. Moreover, a large portion of indirect 

jump instructions are actually return instructions, which are checked separately as 

mentioned in section  4.4.2 and are not considered in path checking. Normally, only less 

than 2% of dynamic jump instructions are non-return indirect jumps. In conclusion, the 

jump instructions requiring irregular path data (rather than a single bit) are rare, which 

inspired our two-stage path checking scheme. The regular path checking stage handles 

most n-jump paths consisting of only conditional branches (those causing collisions after 

hashing are not handled), while all other cases are left to the special path checking stage. 

Regular Path Checking 

This stage handles dynamic n-jump paths consisting of only conditional branches. 

Thus, each jump instruction in the path has two directions. The n-jump path vector 

becomes an n-bit vector. The data structure for regular path checking is called regular 

path checking table and is shown in Figure 37.  

 



 105

K
N groups

normal_path_checking_table[N][K]

N: num of groups  K: num of entries in each group
struct normal_path_entry {
  boolean        is_special,
  2^n_bit_int   all_path_vector
}

hash
group ID

group offset
(t bits)

2  +1 bitsn

 

Figure 37. Data structure for regular path checking. 

For each jump instruction, all normal n-jump paths starting from that jump 

instruction are stored together. Here, we use an all_path_vector to record all normal n-

jump paths for each jump instruction. In this case, each n-jump path vector is an n-bit 

number, and therefore corresponds to a unique number within the range of [0, 2n-1]. 

There are a total of 2n possible distinct paths. The all_path_vector contains 2n bits, in 

which each bit corresponds to an n-jump path. With a bit set in the all_path_vector, the 

corresponding n-jump path is indicated to be normal and vice versa. Essentially, 

all_path_vector is a bit vector recording which n-jump path is normal. The least 

significant bit represents path 0…0, the next bit presents path 0…1, and so on. It is 

noteworthy that we store the all_path_vector instead of all normal n-jump path vectors. 

This can be explained from two aspects. First, the all_path_vector is of fixed size, i.e. 2n 

bits, while the number of normal n-jump paths is not fixed. Fix-sized entries are much 

easier to manage with hardware, leading to smaller hardware cost and performance 

degradation. Secondly, the number n we are currently dealing with is small. We will 

show that a reasonably small n is good enough to achieve very low false negative rate. 
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For small n, the space taken by the all_path_vector is comparable to that taken by all the 

normal n-jump path vectors. For example, if n=5, the all_path_vector requires 25=32 bits, 

whereas each 5-jump path vector needs 5 bits. In other words, if there are more than 6 

normal 5-jump paths start with the same jump instruction, the all_path_vector will cost 

less space. 

Refer to Figure 37 again. The structure regular_path_entry consists of the 

all_path_vector and a Boolean variable called is_special, which if set indicates that the 

corresponding jump instruction should be handled by the special path checking stage. 

Entries in the regular path checking table have to be retrieved using the address of the 

starting jump instruction. Hash table is the natural way to organize the entries in the 

regular path checking table. To retrieve a regular_path_entry, we first calculate a hash 

value of its jump instruction address then use the hash value to index into the hash table. 

However, there are a couple of problems with such a simple hash table design. First, a 

simple hash table cannot exploit code locality. The hash table entries for two adjacent 

jump instructions could be far away. Moreover, the processor always fetches a cache 

block of data from the external memory. Thus, if one uses a simple hash table mechanism, 

among multiple regular_path_entry records in one cache block it is very possible that 

only one record in the fetched block is touched before the block’s eviction. This is very 

inefficient. Second, hashing can cause collisions. To avoid fetching the wrong 

information for a jump instruction, each hash entry has to be tagged which could waste 

space significantly. Due to the above reasons, our anomaly detection system abandons a 

simple hash table design and instead deploys a specially optimized data structure called 

groupwise hash table. 
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In Figure 37, the instruction address is divided into two parts: group ID and group 

offset. Assume that there are N groups and each group contains K entries, then the ith 

group starts at the address i*K. Inside each group, the group offset is first hashed then 

indexed into one of the entries in the group. The advantage of groupwise hashing is: 1) 

hashing saves space for non-uniformly distributed addresses of jump instructions; 2) 

hashing is only performed inside each group and each group has a number of sequentially 

stored entries. In this way, we can exploit spatial locality, because adjacent jump 

instructions are most likely located in the same group, thus their information will be 

stored close to each other. Some jump addresses may be hashed to the same location 

causing collisions though. As we observe, with a reasonable hashing function and a 

proper setup of N and K, collisions rarely happen. In the case of a collision, we indicate 

that the jump should be handled in the special path checking stage, which is done by 

setting the is_special bit in the corresponding entry for the jump instruction after hashing. 

Therefore, no tag is necessary to distinguish jumps hashed to the same entry since all the 

colliding jumps will be handled separately by the special path checking stage. With this 

customized hash table design, regular path checking table records all normal n-jump 

paths that are consisted of only conditional branches for non-colliding jumps. 

To decide the parameters for the hash table, assume that  the group offset is t bit 

long and the instructions are 4 bytes long, then 2t*¼ instruction addresses are hashed into 

K slots. The number of jump instructions is about 12% of all instructions, thus the actual 

number of jump instructions that will be hashed into a group is about 2t*¼*12%. Thus, 

we can select K to be 1.5*2t*¼*12%, which largely avoids conflicts and the space 

wastage is below 30%. We can choose a proper t, so that K entries only occupy a few 
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cache blocks, which improves locality among the entries of the same group. After K is 

decided from t, N should be M/2t, where M is the code size in bytes. 

As discussed above, a groupwise hash table not only improves cache performance, 

but also is an important optimization to reduce the memory requirement of checking 

tables. We also observe an important fact that there is no need to record the whole PC 

address to identify a branch target. We only need to record the base address of the code 

section and the offset to the base address to identify a branch target. In our scheme, we 

assume that the architecture is a 32-bit one and the code size is smaller than 222 bytes 

(4MB - a large number for most applications). Thus, we only need 22 bits to identify a 

branch target instead of 32 bits. This is another important technique to reduce sizes of 

checking tables. 

The above two space optimization techniques are also applied to checking tables 

for individual jump checking. Due to the group-wise hashing table optimization, there are 

also a normal jump checking stage and a special jump checking stage in individual jump 

checking. 

jump
directionlevel 0

level 1

level n-1

level n
(in memory) 0

0

0

0 path
anomaly
detected

2   bitsn
 

Figure 38. Regular path checking hardware diagram. 
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The path checking hardware for regular path checking is shown in Figure 38. The 

hardware maintains n bit vectors on chip. The n bit vectors are organized into n levels 

(level 0 to level n-1). The sizes of the bit vectors vary from 1 bit, 2 bits…to 2n-1 bits, 

where the level k bit vector contains 2k bits. Level n is assumed to be in the memory and 

it is the all_path_vector of the current jump instruction. Upon reaching a jump instruction, 

the all_path_vector of the jump instruction is fetched. Then the direction of the jump 

instruction (only two possibilities in regular path checking, left branch or right branch) is 

used to select half of the bits (either higher 2n-1 bits or lower 2n-1 bits) in the 

all_path_vector to be stored in the level n-1 bit vector. Meanwhile, at each level of the bit 

vectors, half of the bits are selected according to the direction of the current jump and 

moved one level up, i.e. half of the level k bit vector (either higher 2k-1 bits or lower 2k-1 

bits) is selected and moved to the k-1 level bit vector, where k∈[1,n-1]. Finally, if any bit 

vector becomes 0, a path anomaly is detected. A 0 bit in a bit vector means the 

corresponding n-jump path was never recorded in the normal runs during training. All 

bits in a bit vector being 0 means no path from this point is normal thus there is an 

anomaly. Thus, our hardware implementation of n-jump path checking detects the 

anomaly as soon as possible rather than waits for another n-1 jump instructions following 

the current jump and builds the n-jump path then checks whether the n-jump path is seen 

during training. For example, if the selected half bits of the all_path_vector of the current 

jump are all 0, then an anomaly is detected at once since the dynamic n-jump path 

starting from the current jump goes to an anomalous direction at the first step. 
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Figure 39. An example for regular path checking: checking anomalous path 

AÆBÆCÆDÆE. 

To explain the above scheme further, we give an example in Figure 39. There are 

three normal paths marked as thick lines. The actual execution follows AÆBÆCÆDÆE. 

Figure 39.b shows 3-jump path vector and all_path_vector for each jump instruction. As 

in Figure 36, left branch is marked as zero and right branch is marked as one. The most 

significant bit is the direction of the starting jump instruction. Figure 39.c shows the 

contents of the on-chip bit vectors after reaching each jump instruction. After instruction 

A is reached and we know its direction to be zero, i.e. left branch, the lower 4 bits of A’s 

all_path_vector are loaded into the level-2 bit vector. Since A goes to the left branch, no 

3-jump path vectors going towards the right branch are needed. At B, the bit vector in 

level two is moved to level 1 and further pruned based on the direction B takes, i.e. the 

upper 2 bits are moved to the level-1 bit vector. Upon reaching D, its left branch is taken, 

however both level 0 and level-1 bit vectors are 0 indicating a path anomaly. This is so 

because  no normal 3-jump path starting from B follows the actual execution path 

BÆCÆDÆE (causing level 0 to be 0), and no normal 2-jump path starting from C 

follows the actual execution path CÆDÆE (causing the level 1 bit vector to be 0). 
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Special Path Checking 

When the regular_path_entry loaded during regular path checking has is_special 

bit set (which indicates that the corresponding jump instruction leads to a collision during 

hashing), the n-jump path is sent to the special path checking stage. Also, an indirect 

jump instruction can cause all the current pending n-jump paths in regular path checking 

stage be sent to the special path checking stage including the n-jump path starting from 

the indirect jump instruction. The data structure in the special path checking stage is a 

hash table called special path checking table. It hashes the address of the starting jump 

instruction to index into the table and retrieves all the normal n-jump paths for the jump. 

The hash table is tagged and collisions are handled by a linked list. Special path checking 

table records all normal n-jump paths for colliding jumps and normal n-jump paths 

containing indirect jumps for non-colliding jumps. To support special path checking, the 

starting jump instruction corresponding to each level in regular path checking hardware is 

recorded and updated when the vector in the level is updated. In addition, when the 

special path checking stage is not idling, the direction of conditional branches and the 

target address of indirect jumps have to be sent to it. The former is used to check the 

conditional branches in an n-jump path and the latter is used to check indirect jumps.  

Since an indirect jump could have multiple targets, we use the target address to 

identify the direction of an indirect jump (as against 0/1 to specify the direction of a 

conditional branch with true or false outcome). The target of an indirect jump along a 

program path is collected during training. With the presence of indirect jumps, an n-jump 

path vector cannot be an n-bit vector any more. The actually length of n-jump vector 
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depends on the number of indirect jumps in the path. In addition, we have to record the 

positions of indirect jump target addresses in an n-jump path vector for proper processing. 

The irregularity of data structure complicates special jump checking stage and there is no 

interesting optimization opportunity. Thus, the latency in special path checking stage is 

longer. However, in most cases, only a small percentage of n-jump paths reach this stage, 

thus the performance impact is small. During our experimentation, we find that in most 

cases less than 20% of n-jump paths reach this stage. 

Our staged anomaly detection hardware is carefully designed to reduce 

performance overhead by pipelining the anomaly detection. Most requests are handled in 

the first and the fast stage. Only a small portion will enter the slower stage. Since our 

design can achieve very good performance without further architectural optimizations, 

the requirement of expensive hardware resources such as large on-chip buffers could be 

avoided. In addition, the checking tables are also particularly optimized to reduce the 

pressure on physical memory. 

4.4.4 Other Considerations 

A function call is just one type of jump instruction; therefore, paths across 

function boundaries are checked in the same manner. DLLs or dynamic libraries are 

shared by many processes and are loaded on demand. They can be checked in the same 

way as normal programs as long as checking tables are loaded together with the DLLs. 

The jump instruction addresses in the checking tables for a DLL should be relative to the 

beginning of the DLL, so that they are independent to the actual location the DLL is 

loaded into the program’s virtual address space. System calls such as fork and exec 

family can create copies of the running process or overwrite it completely. A copy of the 
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checking tables can be created if the process has been forked. In addition, new checking 

tables are loaded to the memory space if an exec family system call is executed. 

The setjmp()/longjmp() functions are used in exception and error handling. 

setjmp() saves the stack context and other machine state for later recovery by invoking 

longjmp(). Thus, after longjmp(), the program resumes as if the setjmp() just returned. To 

handle longjmp(), the anomaly detector has to be aware of the execution of setjmp() and 

saves the current state of the anomaly detector upon a setjmp() call. The anomaly detector 

state includes the state of the return address stack and the state of the path checking 

hardware, such as the n-1 on-chip bit vectors (Figure 38). After longjmp(), the state of 

path checking hardware is restored accordingly. 

4.5 Evaluation 

The evaluation of an anomaly detection system consists of two aspects: precision 

(detection capability) and performance. In this section, we show that our anomalous path 

checking scheme achieves both good precision and low performance overhead.  

Table 4. Daemon programs and vulnerabilities. 

Server 
Program 

total # of 
vulnerabilities

buffer 
overflow

format 
string

other 
bugs 

telnetd 2 1 0 1 
wu-ftpd 5 2 2 1 
xinetd 2 2 0 0 
crond 1 1 0 0 
syslogd 1 0 1 0 
atftpd 1 1 0 0 
httpd (CERN) 2 1 0 1 
sendmail 4 4 0 0 
sshd 2 1 0 1 
portmap 1 0 0 1  
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In our experiments, we choose 10 daemon programs as benchmarks, as listed in 

Table 4. Those daemon programs are very common in UNIX/LINUX based systems. 

They have well-known vulnerabilities so that we can evaluate our scheme in a standard 

way. These programs are important since they offer essential system services for 

networked systems. The same programs will be used in evaluation of all of our intrusion 

detection and intrusion recovery schemes. We intentionally choose old versions of these 

programs with well-known vulnerabilities. Those vulnerabilities will be used in false 

negative measurement. Table 4 also lists type and number of vulnerabilities in each of 

these daemon programs used. To make our results more convincing, we also provide 

results for SPEC 2000 integer benchmark programs in a couple of important experiments. 

To evaluate precision of our anomalous path checking scheme, we implement it in 

an open-source IA-32 system emulator Bochs  [9] with Linux installed. Good precision 

means both low false positive rate and low false negative rate. False positive is 

acknowledged as a very difficult problem in anomaly detection. False positives are 

generally inevitable for training-based anomaly detection systems. However, in our 

experiments, we show that training for our scheme is effective and as long as user 

performs reasonable amount of training, false positive rate is very small. 

To train our daemon programs, we used training scripts that generate commands 

to exercise the programs as in  [92] [31]. These scripts generate a random sequence of 

mostly valid commands, interspersed with some invalid commands. The distribution of 

these commands along with their parameters is set to mimic the distributions observed 

under normal operations. We keep exercising the daemon programs using training scripts 

until no new normal n-jump paths are discovered for a long time. Then we think training 
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is done and n-jump paths learnt during training are all normal n-jump paths of the 

program. Figure 40 shows convergence graph in terms of percentage of normal 9-jump 

paths learnt for three relatively big daemon programs (sshd, httpd and sendmail). The 

figures are plotted against the number of jump instructions executed in the program being 

learnt. The graph uses a linear scale on Y-axis (percentage learnt) and a logarithmic scale 

on X-axis (number of jump instructions processed). The curves are smoothed.  
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Figure 40. Convergence on selected benchmarks. 

Convergence speed is an important measurement since it governs the amount of 

training time required to achieve a certain level of false positive rate. Slower convergence 

speed means that the user has to spend more time to train the system. Figure 40 shows for 

all three big daemon programs, normal 9-jump paths converge after about a few hundred 

million jump instructions are encountered and processed at runtime. No new n-jump 

paths can be learnt even we train the system for a much longer time. Convergence on 

smaller daemon programs are not shown since they converge even faster.  
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Figure 41. Number of n-jump paths. 

The above results show that training for our anomalous path detection is very 

effective. One fundamental reason of the fast convergence rate is that although the 

number of potential n-jump paths is huge (the number of static branches multiplies 2n), 

the actual n-jump paths seen during program execution is very limited. Figure 41 shows 

the absolute numbers of n-jumps paths learnt after convergence. It is clear that most 

benchmarks have a very small number of n-jump paths even they are run by billions of 

instructions. The result is not surprising. A lot of work, for example  [42], has shown that 

a significant part of branches are highly biased and many of them are always taken or 

not-taken during the program execution. Another important reason is a well-known fact 

that most program execution time is spent on a small number of program hot paths, which 

can be easily learnt through training. 

In  [92] and  [31], the authors also estimated false positive rate of their systems. 

They modified the training scripts slightly in terms of commands distribution and other 

parameters, and then used the modified scripts to test against their anomaly detection 

system running in detection mode after training. We tried the same method in our 
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experiments. We found that even with modified training scripts, no false positives are 

observed for all daemon programs after sufficient amount of training (after convergence). 

We are aware that training scripts cannot capture normal user behavior completely. When 

applied in real world, it is very likely that our anomalous path checking scheme will incur 

false positives. However, we are confident that the false positive rate would be very low 

and our system does not require excessive human interferences.  

A good anomaly detection system has to achieve very low false negative rate too, 

i.e., very high anomaly detection rate. However, it is expected to be futile to measure 

detection rate of our anomaly detection system against traditional attacks (stack smashing 

etc.) as in the previous work, because those attacks should be easily prevented under our 

scheme. To prove that, we tested our scheme against our benchmarks with known 

vulnerabilities listed in Table 4. Most vulnerabilities examined are due to buffer 

overflows. Other vulnerabilities include format string attacks and unexpected program 

options etc. We found that our system successfully identified all the attacks because they 

cause anomalous paths. In addition, we tried the testbed of 20 different buffer overflow 

attacks developed by John Wilander  [118]. The authors claim that the combination covers 

all practically possible buffer overflow attacks in which attack targets are the return 

address, the old base pointer, function pointers or long jump buffers. In all cases, the 

attacks were detected.  
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Figure 42. Detection rate of randomly inserted anomalous paths (daemon programs). 

To further measure detection capability of our scheme, we choose to perform 

random fault injection experiments. Fault injection is a classical method for security 

analysis. A detailed discussion of it can be found in  [39]. During the execution of 

benchmark programs, we randomly pick up branches to inject faults to divert their 

directions. The total number of faults injected during the execution is huge. For each 

randomly chosen branch, we divert the branch from its correct direction/target. Such 

diversion may or may not create an anomalous path. If it does, we check whether our 

anomaly detection system is able to detect that anomalous path. If our anomaly detection 

system fails, that is a false negative. Note that each fault is isolated to others. For each 

fault (each branch direction diversion), we check whether our scheme can detect it. Thus, 

we achieve a similar effect of running the benchmark numerous times and in each 

execution injecting only one fault and detecting it using our scheme.  

We cannot find enough number of real attacks so we choose to use fault injection 

to evaluate our anomalous path checking scheme more rigorously. Although a fault is not 

a real attack, we believe that our fault injection model provides an extensive coverage to 
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the real attacks altering program control flows. Our fault injection model assumes that 

any dynamic branch direction/target can be tampered with any value. Thus it represents 

the worst case. For example, classical buffer overflow attacks overflow a buffer to tamper 

interesting control-deciding data, such as function return addresses, function pointers, 

exception handlers etc. The final effect that those attacks aim to achieve is to change the 

target address of an indirect branch instruction to a desired value, which is obviously 

covered by our fault injection model. Moreover, buffer overflow attacks normally are not 

able to tamper a specific memory location in an isolated way. They tend to tamper a 

continuous memory region. So buffer overflow attacks tend to lead to multiple 

anomalous branches under our anomalous path checking scheme, which makes detecting 

those attacks much easier actually. Another category of attacks including heap overflows, 

format string attacks and etc. enable the attacker to tamper any memory location in an 

isolated way. The effect achieved is that the attacker is able to modify specific control 

deciding data with a desired value at a certain program point. Such attacks are more 

accurate than buffer overflows but they are still covered in our fault injection model.  

Figure 42 shows the results of our random fault injection experiments. The 

detection capability of our system depends on the value n in n-jump path. As illustrated in 

section  4.3.5, a larger n leads to a higher detection rate. Our results show that when n=3, 

the average detection rate of randomly inserted anomalous paths is 94.1%; when n=5, the 

average detection rate is 97.4%; when n=7, the average detection rate is 98.9%; when 

n=9, the average detection rate is 99.5%. From the above results, our anomalous path 

checking scheme achieves very high detection rate and thus exhibits very low false 

negative rate. The fundamental reason is again that the number of normal n-jump paths is 
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very limited, as shown in Figure 41. Thus, the cases illustrated in Figure 33 are rare. The 

cases are even rarer with a larger n. False negatives are due to the reason explained in 

section  4.3.5. 

To enforce our results further, we also performed the same fault injection 

experiment on SPEC2000 integer programs. Normal profile for each program is collected 

using a single standard training input data set. We found that our scheme got very good 

detection rate again for such complicated programs and with such limited training. For 

example, with n=9, the average detection rate is 99.3%. 

Next, we evaluate the performance aspect of our anomalous path checking 

scheme. To measure performance accurately, we collect the instruction trace during 

program execution and feed the instruction trace into a cycle accurate processor simulator 

Simplescalar  [11] targeted to X86  [114]. All hardware modeling is done in Simplescalar. 

Each benchmark is simulated in a cycle accurate way by 2 billion instructions. The 

default parameters of our processor model are shown in Table 5. We select x86 based 

processor model primarily due to its popularity. Another important reason for using X86 

is that we could easily find a full system emulator for it.  

Table 5. Default Parameters of the processor simulated. 

Clock frequency 600MHZ L1 I-cache 32K, 32 way, 1cycle 
32B block 

Fetch queue 8 entries L1 D-cache 32K, 32 way, 1cycle 
32B block 

Decode width 1 L2 Cache none 
Issue width 2 Memory latency first chunk: 30 cycles, 

inter chunk: 1 cycles 
Commit width 2 
RUU size 8 

Branch predictor bimod 

LSQ size 8 TLB miss 30 cycles 
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There is no performance comparison with software-based approaches since no 

current software-based anomaly detection system is able to achieve the same security 

strength as our scheme. Moreover, even with weaker detection capability, software-based 

solutions already suffer from huge performance degradation, please refer to  [115] for 

detailed numbers. On the other hand, our design only degrades performance slightly.  
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Figure 43. Optimized Checking table sizes. 

Performance degradation under our scheme is mainly due to additional memory 

accesses to checking tables. Checking tables record a program’s normal behavior. 

Intuitively, larger checking tables lead to higher memory system pressure and larger 

performance degradation. Figure 43 shows optimized sizes (in bytes) of checking tables 

for each benchmark with different values of n. Checking tables become large with a 

larger n, since there are more n-jump paths to record and information for each n-jump 

path takes more space. Generally, the size of checking tables is in terms of tens of KB 

and is small. 
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Figure 44. Effects of optimizations to checking table sizes. 

Figure 44 shows the effects of our optimizations to reduce checking table sizes. 

Opt1 denotes the optimization that uses offsets to represent target addresses. Opt2 

denotes the groupwise hash table optimization. Checking table sizes are normalized to the 

naïve case without any optimization. From the results, by using the offset to the base 

address of the code section to represent a branch target address, we reduce checking table 

sizes by 10.1% on average. If both optimizations are enabled, we reduce checking table 

sizes by 50.7% on average. The results show that our optimizations, especially groupwise 

hash table optimization, are highly effective to reduce memory requirement of checking 

tables. 
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Figure 45. Performance results. 

Figure 45 shows performance results. Performance degradation under different 

values of n (the length of paths checked) is shown. The IPCs (instruction per cycle) are 

normalized to the baseline processor without anomalous path checking. With a larger n, 

detection strength is stronger, but the size of path checking tables will be larger, leading 

to degraded cache performance and overall performance. When n=9, the average 

performance degradation is 3.4%; when n=7, the average performance degradation is 

2.0%; when n=5, the average performance degradation is 1.0%; when n=3, the average 

performance degradation is 0.6%. It is clear that our hardware implementation keeps 

performance degradation minor even when n is large. Benchmark sendmail is a lot larger 

than other benchmarks used, thus it always has significantly larger performance 

degradation than the others. We also measured performance degradation for SPEC2000 

integer programs. As in the fault injection experiment, training is done using standard 

training input data sets. We found that the performance degradation is also minor for 

SPEC2000 integer programs. In particular, when n=9, the average performance 

degradation is only 2.7%. 
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Figure 46. Intervals between fault injection and fault detection when n=9. 

Finally, fast attack detection and response is another important advantage of a 

hardware-based anomaly detection scheme over software-based schemes. In our fault 

injection experiments, we also measured the time interval between fault injection and 

fault detection when n=9. Figure 46 shows the intervals in cycles in the average and 

worst cases. Cycle numbers are collected in the same way as in performance evaluation. 

We found that in most cases the simulate attack is detected immediately after the branch 

direction is tampered, so the average interval is only several cycles. In worst cases in 

which we can still detect the simulated attack, the attack is detected only after additional 

n-1 jumps are executed. The interval in worst cases can reach a couple of hundreds of 
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cycles. The intervals will be much larger for a software-based anomaly detection scheme 

due to its coarse monitoring granularity. For example, a buffer overflow attack will not be 

detected by a system call monitoring based scheme until the next system call is 

encountered, which may be millions of cycles away. 

4.6 Summary 

In this chapter, we show that a fine monitoring granularity is critical for an 

anomaly detection system to achieve a strong detection capability and it is infeasible for a 

purely software-based anomaly detection system to achieve a very fine monitoring 

granularity. Thus, we introduce micro-architecture level support for anomaly detection in 

this chapter and propose a training based scheme to detect anomalous program paths 

caused by attacks. Anomaly detection based on training is a classical approach. But with 

carefully designed hardware support, our approach offers multiple advantages over 

software-based solutions including negligible performance degradation; much stronger 

detection capability and fast reaction upon an anomaly thus much better security. 

We show that our anomalous path checking scheme can detect almost all of the 

simulated attacks (above 99%) as long as the attack tampers program control flows. 

Moreover, the performance degradation of our anomalous path checking scheme is very 

low mainly due to the efficient design of our staged checking pipeline. A second reason 

for low performance degradation is that checking for attacks is done in parallel with the 

instruction execution, causing almost no extra overheads. The hardware components 

introduced by our anomalous path checking scheme are lightweight and through 

optimizations, we are able to reduce the memory space overhead of checking tables 

recording normal program behavior by almost 50%.  
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Our hardware-based anomalous path checking scheme can be applied to both 

general-purpose computing systems and embedded systems due to its low performance 

cost and hardware cost. At the same time, we also acknowledge that the requirement of 

good training and potential false positives in this scheme would limit its applicability in 

reality. However, the fact is that most existing anomaly detection schemes are training-

based. Both training and false positives imply user involvement, thus increasing the 

overall cost of deploying such a system. When the target applications are easy to train or 

the user is willing to invest time on training, our anomalous path checking scheme could 

be an attractive choice to detect intrusions.  
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5 INFEASIBLE PATH DETECTION WITHOUT FALSE 

POSITIVES  

Training-based anomalous path checking scheme is the first hardware-based 

anomaly detection scheme we proposed. Although the anomalous path checking scheme 

achieves strong detection capability with minor performance degradation, it is based on 

training thus good training is required to reduce false positives. However, training brings 

great burden to user and user may not even know how to train the anomaly detection 

system properly. Even the detection system is trained in a proper way, it is infeasible to 

exercise every possible normal input to the protected program, especially for large and 

complicated programs, so false positives are inevitable. The problem of false positives 

will be even more severe when we monitor the program at a much finer granularity. Take 

the anomalous path checking scheme as an example. There will be a dynamic n-jump 

path roughly every 10 dynamic instructions. Even though the false positive rate is 

extremely low, the absolute number of false positives could be still significant.  

False positives have to be handled by human and will bring great burden to the 

management of the security system. False positive is the most important reason why 

current intrusion detection systems are still dominated by signature-checking based 

approaches. The potential false positives of the anomalous path checking scheme could 

limit its applicability significantly, which prompts us developing an anomaly detection 

scheme without false positives at all.  

Zero false positives means that every alarm raised indicates a real attack. Training 

based approaches can never guarantee zero false positives. To achieve zero false 

positives, the anomaly detection system has to be based on static program analysis. In this 
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chapter, we propose a novel anomaly detection scheme utilizing both compiler static 

analysis and hardware runtime support. We still focus on monitoring dynamic program 

control flows. However, instead of trying to differentiate normal dynamic control flows 

from anomalous ones, we identify invalid control flows caused by attacks. By invalid, we 

mean that the dynamic control flow is infeasible according to the original program 

semantics. Thus, whenever such an infeasible control flow occurs, there must be an attack. 

Our observation is that attacks tend to lead to invalid program control flows because the 

attacker’s goal is to manipulate the program state and lead the program to an execution 

state that it is not supposed to be.  

Thus, we propose another anomaly detection scheme called infeasible path 

detection. We systematically analyze how to utilize compiler analysis to construct the 

correlations between branches. The collected information is then made available to the 

runtime system and is used to detect dynamic infeasible program paths caused by attacks 

with additional runtime information. The infeasible path detection scheme works with 

low runtime overhead and all alarms reported guarantee that certain memory content 

must be corrupted thus an attack must happen. In other words, the scheme is able to avoid 

false positive completely which is one of the major limitations of current anomaly 

detection schemes.  

5.1 Background and Motivation 

Let us revisit the example we used to motivate our anomalous path checking 

scheme. In this attack, the attacker tampers certain program data through buffer 

overflows and manipulates dynamic program paths maliciously. Through training, the 

anomalous path checking scheme can learn that the manipulated dynamic path is never 
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seen during normal executions thus is able to detect the attack. However, a close 

examination reveals that we do not actually need training to figure out the paths shown in 

Figure 47.c are anomalous. According to the program code, variable user should not be 

modified between the two if statements, thus the two if statements should always give the 

same result. This is just a simple example of a common phenomenon called branch 

correlation, which has been extensively studied previously  [78] [10]. Branch correlation is 

the foundation for the branch predictor inside a modern processor to predict branch 

directions. Even without runtime information, a compiler can still derive a lot of branch 

correlation information statically, which is the foundation of our infeasible path detection 

scheme. 

(a)

 1. char str[SIZE], user[SIZE]; 
2. ... 
3. if (strncmp (user, "admin", 5)) { 
4.   ... 
5.   no syscall; 
6. } else { 
7.   ... 
8.   no syscall; 
9. } 
10. strcpy (str, someinput); 
11. if (strncmp (user, "admin", 5)) { 
12.   ... 
13.   no syscall; 
14. } else { 
15.   ... 
16.   no syscall; 
17. } 

(b)

if 

if 

else

else

if 

if else

else 

(c)  

Figure 47. Example attack revisited. 
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Our basic idea is to detect dynamic infeasible paths with compiler’s help at 

runtime, which could be caused by attacks tampering program state. Our basic 

assumption is that data should remain the same when it is fetched back from the memory 

after the previous access. The assumption is obvious. The compiler derives which paths 

are feasible or infeasible based on this assumption. We give a simple example in Figure 

48. In Figure 48, if the path goes from BB1, BB2 to BB4, then the backward branch must 

be taken at the end of BB4 looping back to BB1 because we know x<0 at the end of BB1, 

so it must be less than 10 as well. If we see a path goes from BB1, BB2 to BB4, but not 

from BB4 to BB1, the variable x must be corrupted when it is loaded back from the 

memory. Also, the execution must goes to BB2 in the second iteration, since we know x 

is not changed, therefore the branch at the end of BB1 should take the same direction. 

 
If x<0 

 
 

 
If x<10 

BB 1

BB 3BB 2

BB 4

N

NY

Y

entry

x=… 
 

 

Figure 48. An infeasible path caused by memory tampering. 

Note that in general program state or memory tampering may not necessarily lead 

to infeasible paths. However the attacker frequently needs to tamper critical variables and 

cause critical branches to deviate from its normal direction to achieve the desired 

(malicious) intent. Such deviations could manifest themselves through infeasible paths 

(as shown in the example in Figure 47). In the example, the attacker overwrites the 
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variable “user” by buffer overflows, so that it is different from its previous definition. 

However, the program is not aware of the tampering and still uses it to grant the 

privileged access. Thus, memory tampering caused by attacks could lead to dynamic 

program paths that are infeasible with respect to the program semantics. So the 

motivation is that if we can detect those infeasible paths, we can detect a range of attacks 

based on memory tampering, which is the most common starting point of attacks. 

Comparing with previous software-based anomaly detection schemes, our scheme 

monitors program execution at a very fine granularity (dynamic control flows vs. system 

call traces) thus our scheme is able to detect certain attacks missed by previous system 

call monitoring based approaches. Another significance of our scheme is that our scheme 

is able to achieve a zero false positive rate because it detects anomalies based on 

knowledge collected by compiler infeasible path analysis. False positives are major 

obstacles for the wide deployment of training-based anomaly detection systems. A zero 

false positive rate is especially important for server applications where service 

continuation is crucial. Zero false positive is a crucial advantage of infeasible path 

detection over anomalous path detection elaborated in the last chapter. 

5.2 Overview 

Our objective is to provide a practical solution to efficiently detect infeasible 

program paths caused by attacks at runtime. Those infeasible paths indicate that an attack 

must have happened. There are several important issues to be considered in the design of 

such a solution. First, we want to avoid false positives completely, which is our major 

motivation for this scheme. In other words, our scheme is designed to report an alarm 

only when we are completely sure that there is an attack. Another issue is the detection 
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rate or the false negative rate. The system has to be able to detect a sufficient number of 

memory tampering based attacks to justify its cost. However, static compiler analysis has 

to be conservative. Thus, if we rely on static information solely, we could miss a lot of 

infeasible paths and memory tampering attacks at runtime. Finally, the performance 

overhead of the system has to be reasonably small; otherwise it is not practical. However, 

the number of dynamic program paths is huge. How to verify such a large number of 

dynamic paths with only small performance cost is also a challenging problem. 

In this work, we propose to perform offline compiler analysis and then store the 

information collected compactly. The runtime system is armed with hardware support 

and detects infeasible program paths due to attacks by combining such static information 

collected by the compiler together with the runtime information collected during the 

program execution. By using dynamic information, we are able to detect dynamic 

infeasible paths more precisely and efficiently within the current execution context. In 

this manner, we not only improve the detection capability significantly (reduce false 

negatives) but also maintain good performance. 

5.3 Branch Correlations 

Each path consists of a number of branches and thus, branches provide the basic 

unit in path verification. In this section, we illustrate how branches affect each other with 

examples. It is well known that branches are not totally independent to each other but 

could be correlated. There are multiple ways how branches affect each other. Branch 

correlations have been extensively studied previously such as in  [78] [10]. We give an 

example in Figure 49. 
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If y<5 

 
If x>10 

x=w y=z 
 

 
If y<10 

BB 1

BB 2

BB 3 BB 4

BB 5

N

NY

Y 

NY

(a) (c)

If r1<10

 
LD r1y r1=r2

ST r1Æy 
If r1<5

BB 1 

BB 2
BB 3 

BB 4

If r1<10

LD r1y 
r1=r1-1 

r1=r3 
if r2>4 

ST r1Æy 
If r1<5

BB 1 

BB 2 BB 3 

BB 4

(b)

Y

Y

N

N

N Y

entry

 

Figure 49. An example of branch correlation. 

In Figure 49.a, we assume that all variables are memory resident and are not 

constants. The figure shows several interesting cases. If the branch in BB1 is taken and 

the path follows BB1ÆBB2ÆBB3, then BB5 should be taken as well, because y must be 

less than 5 if BB1 is taken, and along the path, y is not modified. Thus, the condition 

y<10 must be true. However, if the path follows BB1ÆBB2ÆBB4, then the direction of 

BB5 cannot be determined statically, since y is assigned a new value and normally we do 

not know whether this value is smaller than 10 or not. For variable x, it is used in BB2 in 

the conditional branch and is changed in BB3. Suppose the branch in BB2 is not taken for 

the first time, when the execution goes back to BB2 in the next loop iteration, we know 

this branch will not be taken, since variable x is loaded again without being changed from 

the last definition. If x is tampered in memory, it could lead to a different branch outcome 

and we should be able to detect that. However, if BB2 is taken in one iteration, x will be 

assigned a new value, which causes the branch outcome in BB2 to be unknown since 

normally we do not know whether the new value of x is larger than 10 or not. 
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From the above example, we can identify three scenarios in which branches affect 

each other. 1) The variables involved in a conditional branch are redefined somewhere 

before the branch is reached again. In such cases the outcome of the branch will normally 

become unknown. 2) The variables involved in the conditional branch are not redefined 

anywhere before the branch is reached again. In such cases the outcome of the branch 

should be the same as the last outcome. 3) A branch’s condition subsumes another 

branch’s. Here “subsume” is used  [78] to indicate that if a variable in one range, then it 

must be in the other range, e.g., range [0, 5] subsumes range [0, 10]. The branch in BB1 

subsumes the branch in BB5, because range y<5 subsumes range y<10. Note that 

scenario 2 can be regarded as a special case of scenario 3, in which one dynamic instance 

of a branch subsumes another instance (their ranges are same). 

Figure 49.b shows how a piece of real code may look like as another example. In 

BB1, variable y is stored in memory. If the branch in BB1 is taken, we know that the 

value of y is less than 5. We also know that the load of y in BB2 should get a value less 

than 5 and the branch in BB4 should be taken. However, if the dynamic program path is 

BB1ÆBB3ÆBB4, r1 is redefined in BB3 and generally we do not have information for 

the new value of r1. Thus, to be conservative, we have to regard both taken and not-taken 

outcomes of the branch in BB4 as possible. 

Finally, Figure 49.c shows that sometimes we are able to analyze more 

complicated cases. In Figure 49.b, after r1 is reloaded in BB2, there is no further 

redefinition to r1. However, in some cases, even after a variable is redefined, we can still 

have certain information about its new value, which is especially true if the new 

definition is done through simple arithmetic operations. In this example, r1 is decreased 
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by 1. After r1 is decreased, we still know that the branch in BB4 must be taken because y 

is known to be less than 5; after it is loaded and decreased, it should be still less than 5 

and thus less than 10 as well. 

Revisit the example in Figure 47, the second if-branch is subsumed by the first if-

branch. Once the first if-branch is taken or not taken, the second one should follow the 

same direction. If it does not, there must be a memory tampering attack. 

5.4 Implementation Details 

This section elaborates our infeasible path detection scheme. We first introduce 

the main data structures such as Branch Status Vector (BSV) and Branch Action Table 

(BAT) then discuss how they are constructed and updated. Finally we give details of our 

Infeasible Path Detection System (IPDS). 

5.4.1 Branch Status Vector and Branch Action Table 

The first task is to design proper data structures for the infeasible path detection 

scheme. In our scheme, we need to record the expected direction for each branch 

(obtained by combining both static information collected by the compiler and the runtime 

information), so that at runtime after the branch is executed and the actual direction is 

known, we can compare the actual direction with the expected direction detect anomalies. 

We introduce Branch Status Vector (BSV) for that purpose. Also, from the discussion of 

branch correlations, it is clear that whether a branch correlation exists at runtime heavily 

depends on whether certain variables get redefined and how they are redefined, which in 

turn depends on which dynamic path the program takes or the directions of dynamic 

branches. Thus, we need another data structure to record the interactions (correlations) 
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between branches. We introduce Branch Action Table (BAT) for that purpose, which is 

generated by the compiler through static analysis. 

Since the majority of branches are conditional branches with two possible 

outcomes, we first focus on them. Multi-target branches will be discussed later. For each 

conditional branch, we need to keep two bits to encode three possibilities, namely taken, 

not-taken and unknown. 

At runtime, after a branch instruction is executed, we first verify its actual 

direction with the expected direction. If they do not match, an infeasible path has been 

detected. If no mismatch is found, we update the branch status vectors (possibly 

including current branch’s branch status vector) properly according to the actual direction 

of the branch and the branch action table.  

 

 
If y<5 

 
If x>10 

x=w y=z 
 

 
If y<10 

BB 1

BB 2

BB 3 BB 4

BB 5

N

NY

Y 

NY

entry

 

Path BR1 BR2 BR5 
Init UN UN UN 

BB1 T UN T 
BB2 T UN T 
BB3 T UN T 
BB5 T UN T 
BB1 T UN T 
BB2 T NT UN 
BB4 UN NT UN 
BB5 UN NT NT 

 

 

Figure 50. An example on how to update the branch status vector. 

We give an example on how to update the branch status vector in Figure 50. The 

example is the same as the one in Figure 49.a. In the example, three branches, located at 
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the end of BB1, BB2 and BB5 are present. To facilitate our discussion, we name them 

BR1, BR2 and BR5 respectively. Their branch status vectors are tracked on the right side 

of the figure. Initially, all branch statuses are UN, i.e. unknown. Assume the first 

dynamic instance of BR1 is taken. After the execution of the branch, we first verify the 

branch. Since “unknown” matches any direction so no mismatch is found. Then we 

update the status vectors. The status vectors of BR1 and BR5 need to be updated since 

BR1 subsumes BR5 and of course BR1 subsumes itself. So we set status vectors of BR1 

and BR5 to “taken” as the current expected direction. Those expected directions are 

obviously optimistic. For example, BR1 will take the same direction when it is executed 

again only if y is not redefined in between. The basic idea here is that we first set 

expected directions optimistically (assuming that depending variables of branches will 

not be redefined), then we update the status vectors properly when we encounter 

redefinitions of those depending variables, which invalidate the previous expectations. 

Let us go back to the example. The program path goes to BB2 and BR2 is taken at 

runtime. The status vector of BR2 is then set to “unknown” instead of “taken”. The 

reason is that entering BB3 causes variable x to be redefined to an unknown value, which 

means, the direction of BB2 should become unknown now. Then the program path goes 

into BB5 and BR5 is taken. For the second execution of BR1, since there is no 

redefinition to its depending variable y, the branch is taken again and this matches the 

status vector. If BR1 is not taken at runtime, then an attack is detected. When BR2 is 

executed again, the status vector shows its direction to be unknown, therefore any 

direction is correct. This time, it goes to BB4, i.e. not-taken. This causes the status vector 
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of BR5 to be unknown, since variable y is redefined to some unknown value. The 

verification of BB5 is again correct since the status vector gives “unknown”. 

During the discussion of the above example, we talked about various actions to 

update status vectors after a dynamic branch is executed and its direction is known. 

Those actions encode correlations between branches. How to construct and store those 

actions is the major job of the compiler. The actions are stored in a data structure called 

Branch Action Table (BAT). It records which branches’ branch status vectors should be 

updated and how to update them after a dynamic branch is executed.  

In the simplest form (without concerns to the table size), we can store the BAT as 

a two dimensional array with br_num*br_num elements. Here br_num is the number of 

branches (we temporarily assume all branches are recorded, later we will talk about how 

to reduce that number). 

After a branch is executed, we find out which branches are affected by this branch. 

For each affected branch, there are four possible actions: SET_T, SET_NT, SET_UN, 

NC, which means: “set to taken”, “set to not-taken”, “set to unknown” and “no change” 

respectively. It is clear that these four represent all possibilities. The reader can find 

examples of these actions in the discussion of the example in Figure 50. The actually 

number of actions for each [current branch, affected branch] pair is doubled, since there 

are two possible outcomes for the current branch, i.e. taken or not-taken. Different 

outcomes lead to different actions. In addition, as previously mentioned, not all branches 

need to be checked. If the compiler cannot infer anything in terms of correlation about the 

branch outcome, the branch can be excluded from checking. Therefore, we set up a 
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vector called Branch Checking Vector (BCV). It only stores which branches should be 

checked. 

 

INPUT:  Program code in a function (CFG form),  
                 br_num: Num of Branches 
OUTPUT: BAT: The Branch Action Table 
                 BCV: Branch Check Vector 
 
enum br_action { SET_T, SET_NT, SET_UN,NC} 
BAT:= array [1..br_num][1..br_num][1..2] of br_action 
BCV:=array [1..br_num] of Boolean 
 
ALGORITHM: BAT_Construction 
1. Alias analysis and identify memory resident values. 
2.  
3. Assume each store is a definition of the memory variable, construct 

the reaching definition information. 
4.  
5. Foreach load l do 
6.   Foreach branch bl whose outcome is inferrable from l’s range do 
7.     Foreach store s, whose definition reaches l do 
8.       foreach branch bs whose outcome can infer s’s range and s’s 

range subsumes bl’s range do 
9.         set the action in BAT for bs to bl; mark bl in BCV; 
10.       od 
11.     od 
12.     Foreach load lp, whose use immediately precedes l do 
13.       foreach branch blp whose outcome can infer lp’s range and lp’s 

range subsumes l’s range do 
14.         set the action in BAT for bs to blp; mark blp in BCV; 
15.       od 
16.     od 
17.   od 
18. od 
19.  
20. Foreach branch br marked in BCV do 
21.     Find all branches with definitions (other than the correlated 

loads) to the register used in br. Or other stores(other than the 
correlated ones) to the variable. Mark the action to br as UN in the 
corresponding entries in BAT. 

22. od 
23. return BAT, BCV  

 

Figure 51. Algorithm to construct BAT and BCV. 

The algorithm to construct the BAT and the BCV is shown in Figure 51. Note that 

the algorithm works on functions rather than on the whole program. It starts with alias 

analysis to identify all possible memory resident variables that are accessed by each 

load/store instruction. We first focus on those uniquely aliased variables. Multiple-aliased 

ones will be addressed later. Next, we perform reaching definition analysis for all store 
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instructions after alias analysis. Here, we regard each store as a definition of the variable 

in the particular memory location.  

The main component of the algorithm is a nested loop. The first half of the loop 

handles correlation between one store and one load. We first need to clarify the 

relationship between a load/store and a conditional branch. Here we examine each branch 

whose outcome is inferable from a load’s range, which means the branch direction is 

determinable if the loaded value is in a certain range. For example, for a code sequence 

like {… ld r1, x; … ble r1, 100; …}, if x is less than 100 and is not redefined between the 

load and the branch, then the branch must be taken. For the example in Figure 49.b, the 

outcome of branch at the end of BB1 is clear if we know whether y is less than 5 or not. 

Thus, we first obtain a collection of branch-load correlations. For each of them, the 

branch outcome depends on the value range of the loaded variable. 

For each load, we find the stores that define the same variable and whose 

definitions reach this load. We then find branches that are related to the store. We want to 

identify branches whose outcomes infer a value range of the same variable and the range 

(of the store) subsumes the range of the load. To put it in a simple form, our goal is to 

discover the follow relationship: 

branch bs’s directionÎstore st’s range;  

store st’s range subsumes load ld’s range; 

load ld’s rangeÎ branch bl’s direction; 

In other words, such a relationship indicates that from branch instruction bs’s 

direction we can know bl’s direction exactly. Revisit the example shown in Figure 49.c. 

If the branch in BB1 is taken, it infers y<5. y<5 subsumes y<11. For the load in BB2, we 
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then know that y is less than 11. This infers that the branch in BB4 is taken, since r1=y-

1<10. Thus, this formulation is also able to take the following case into consideration: 

after a variable is loaded into a register, the register participates in further calculations 

before it is used in a conditional branch. 

The second half of the loop handles correlation between two consecutive loads. 

The two loads must access the same variable, and after the first load the variable must 

keep alive between the two loads. The reasoning here is similar to the one discovering 

correlation between one store and one load. The goal is to discover the following 

relationship: 

branch blp’directionÎload lp’s range;  

load lp’s range subsumes load l’s range; 

load l’s rangeÎ branch bl’s direction; 

In the example in Figure 49.a, if the path follows BB1ÆBB2ÆBB3ÆBB5, 

variable y is encountered again. The fact that the branch in BB1 (blp) is taken infers 

range y<5 (lp’s range). y<5 subsumes y<10 (l’s range). And y<10 infers that the branch 

at BB5 (bl) should be taken. 

Note that the branch blp could be the same as bl. For example, in Figure 49.a, if 

the path follows BB2ÆBB4ÆBB5ÆBB1ÆBB2, variable x is encountered again. The 

variable’s range is not changed. Therefore the direction of the branch at the end of BB2 

should not change. 

These two schemes basically follow our fundamental assumption that variables 

residing in the memory between either two loads or between one store and one load 

should not change. If the change happens due to tampering in memory caused by attacks 
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(such as by buffer overflows), it might lead to infeasible paths that will be detected by the 

above schemes.  

Note that we also mark branches that should be checked in the branch check 

vector (BCV). We only mark branches for which the compiler can infer knowledge. In 

this way, the runtime system does not need to check every branch, which helps reduce 

overhead. 

The last part of the algorithm checks all the definitions other than the correlated 

loads to the registers used in the branches that are marked in BCV. That is because if 

there are other paths coming to the branch and the register that is involved in the branch 

is changed along one of those paths, we must take proper actions accordingly, otherwise 

the checking mechanism will fail. We mark the branch direction as unknown if such as 

path is taken since either the compiler fails to derive a range for the redefined value or the 

range is not related to memory resident variables, which is not interesting in our case. 

This step also checks if there are other stores to the same variable depended by the branch, 

for which the compiler cannot establish their relationship with the branch. In such cases, 

we also mark the branch direction as unknown.  

An example is shown in Figure 49.c. If the path follows BB3ÆBB4, we should 

mark the branch in BB4 as unknown, since r1 is defined in BB3. So when the branch in 

BB1 is not taken, we should immediately mark BB4’s branch as unknown. 

The complexity of the algorithm can be analyzed as follows. The main 

computation is in the nested loop with a depth of 4. It can be roughly estimated as 

O((#branches)2*(#loads)*MAX(#loads, #stores)). It is a polynomial-time algorithm. The 

execution time of the algorithm is normally small as measured in our experiments. 
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Till now, we have only considered variables that are not multiple aliased. 

However, sometimes the branch predicates are constructed out of pointer dereferences 

that could point to multiple memory locations. In such cases, our scheme must be 

conservative in order to avoid false positives. If the memory access instruction is a load, 

we simply remove it from further analysis. In this way, no branch will be incorrectly 

checked, since we do not infer anything from the loaded value. It might be possible that a 

load comes after this one is now (live range) connected to a load or store before it. It is 

still fine because the load (use of the variable) will not change the variable. If the 

memory access instruction is a store, we have to assume all aliases of the stored variable 

might be defined. Therefore all incoming definitions to those aliases from previous stores 

must end here. Also, loads that are reached by this store should not be considered to infer 

anything from this store, because we do not know which memory location the store 

actually modifies. 

5.4.2 Storing BSV, BCV and BAT Information Efficiently 

In last sub-section, we discussed what kind of information should be stored in 

BSV, BCV and BAT and how to collect the information. Next we need to find an 

efficient binary representation for those tables. We want to make the tables as small as 

possible to reduce the space overhead and other associative cost. In this sub-section, we 

discuss several ways to reduce the table sizes. 

Using Proper Data Structures 

The information stored in the tables is with respect to branches identified by PC 

addresses. Branches are non-uniformly distributed in the code and there could be an 

arbitrary interval between two adjacent branches. So the natural way to store the 
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information for branches is a hash table. The PC address of a branch is hashed then used 

as an index into the hash table. However we have to be careful when using hash tables. A 

common hash table requires tags to handle collisions. If we assume the function contains 

1K instructions, the tag will have 10 bits. In other words, the size of the tag could be 

much larger than the information to be store in BSV and BCV.  

To solve the problem, the compiler always finds out a hash function that leads to 

no collisions for the current function. The compiler achieves this by a trial-and-error 

method. It utilizes a parameterizable hash function with only shift and XOR operations. 

The hash function of course is the same one implemented by the runtime system. It first 

tries different hash function parameters to hash the branches into the optimally sized hash 

space. If that fails after several tries, the compiler enlarges the hash space and tries again. 

Obviously the hashing result should depend on the size of the hash space. The hash 

function has a lower probability to produce collision with a larger space. Since the 

number of branches in a function is normally not large, in most cases, the compiler can 

find a proper combination of hash function and hash space quickly. In that way, no tags 

are required in the hash tables since there is no collision at all. Note that the hash function 

parameter chosen by the compiler needs to be passed to the runtime system as a part of 

the information associated with a function. 

Storing BAT information is more complicated since for each branch there are 

multiple and unfixed number of actions to be stored. We can use a large array to store 

actions for each branch but it is obviously inefficient, especially when there are a large 

number of branches in a function. Intuitively, each branch could only take action on a 

small number of other branches. Therefore, we chose a link list representation to avoid 
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space overhead for non-existing actions between two branches. The link list is 

implemented in an array. Each link list element is tagged by the branch index and stores 

the index of the next link list element. The collision free hash table for BAT contains the 

index of the first link list element for a branch.  

Remove Unrelated Branches 

Unrelated branches are those neither being checked nor acting on any other 

branches. Those are the branches that have nothing to do with our scheme. We can 

simple remove them from the BAT, BCV and BSV. 

Reduce Branches Actions  

 

If r1<10 

LD r1y  

… 
BB 1

BB 5

BB 2

BB 6

r1=r2 

… 

BB 3

BB 4

 

Figure 52. Reduce branch actions. 

We found that in some cases actions for branches can be reduced. We show an 

example in Figure 52. We initially put an action in the BAT entries for both branches in 

BB1 and BB2, since whenever their path to BB3 is taken we should set the branch in 

BB6 as unknown. However we can instead put the action on the branch in BB3 and 

remove the original actions for the branches in BB1 and BB2. Note by doing that we do 

not degrade the detection capability because the status vector of the branch in BB6 is 
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only used when that branch is executed. On the other hand, we reduce the total number of 

actions, which could be helpful when the BAT is implemented as a linked list. 

5.4.3 Handling Function Calls 

Our BAT construction algorithm works on functions. We have not talked about 

how to handle function calls in the function processed. When there are function calls in 

the function processed, it becomes a bit more complicated, since variables might be 

modified inside the callee function. Therefore the function call site can act like a store to 

variables and in some cases statically we cannot know exactly which variables are 

modified by the callee function.  

We choose to handle function calls in a simple and conservative way. First, we try 

to prove that the callee function only modifies non-local memory state through its pointer 

parameters, which should be true for most functions under good programming styles. 

Local memory state modified by the callee function will be discarded after the function 

returns thus does not matter. All standard C library function calls are specially handled 

since we know the exact semantics of those functions. For example, we know strcmp() 

will not change any non-local memory state and scanf() will only modify dereferenced 

objects of the second parameter and following. We try to prove the property for user-

defined functions by examining the function bodies individually without relying on a full-

fledged inter-procedural analysis. If the function modifies non-local memory state 

through global variables and/or pointer dereferences, to avoid the requirement of an 

advanced inter-procedural analysis, we can simply act conservatively and assume the call 

site can modify any variable. Of course it would be easy to optimize over this extreme 

conservativeness for the cases in which the function only modifies non-local memory 



 147

state by directly accessing global variables. After the above analysis, we can convert the 

function call into a list of pseudo store instructions for the purpose of our correlation 

analysis. For functions that do not modify non-local memory state, the list is empty. For 

functions that modify non-local memory state through pointer parameters, we create a 

pseudo store instruction for each dereferenced actual pointer parameter. For other 

functions, we create a store that could modify any variable. In that way, we convert the 

function calls into a list of (possibly multiple aliased) store instructions and how to 

handle (aliased) store instructions has been covered in section  5.4.1. 

5.4.4 Other Considerations 

Multi-target branches, typically indirect jumps, must be specially handled. The 

major difficulty is that multi-target branches can have an arbitrary number of targets. The 

BSV and BAT data structures for conditional branches are generally not usable by multi-

target branches. Moreover, it is difficult to design special data structures for multi-target 

branches since to guarantee zero false positives, the data structures have to be able to 

accommodate an arbitrarily large number of targets. We believe that the additional 

detection capability does not justify the additional cost and complexity. First, the number 

of multi-target branches is relatively small. Second, many multi-target branches actually 

have only one or two possible targets, which could be identified by our pointer analysis 

pass. For example, in many cases function pointers are not mandatory but are merely 

used to achieve a flexible programming style. Thus, in our scheme we choose to only 

handle multi-target branches having at most two targets identified by the pointer analysis, 

and ignore other multi-target branches. In that way, multi-target branches handled can 

reuse the data structures for conditional branches. We only need to add a small table to 
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map one direction of the multi-target branch to “not-taken” and the other direction to 

“taken”. We also need to know when we should perform such mapping. Fortunately, for 

conditional branches, the 2 bits for each branch status vector are only used to represent 3 

states: taken, not-taken and unknown. We can use the available fourth state to indicate 

that the branch is a multi-target one. Of course, to avoid the above additional overheads, 

the user can choose to ignore all multi-target branches. According to our experience, the 

degradation of detection capability is insignificant.  

We assume that there is a pass to properly identify memory resident variables. 

This includes all scalar global/local variables, plus strings. We consider arrays on an 

aggregate basis (which is sufficient to tackle strings) but we do not undertake element by 

element analysis of arrays.  Note that attacks seldom go through array elements. Instead, 

they change strings (aggregates) and important variables that make critical decisions such 

as indicating the user level etc. (see the previous examples in Section  5.1). Moreover, 

array comparison through strcmp(), strncmp() etc. are specially handled as well. 

5.4.5 IPDS 

Upon this point, we have introduced the basic components in our infeasible path 

detection scheme. Putting them together, the entire framework is called IPDS (Infeasible 

Path Detection System) and is shown in Figure 53. 

The infeasible path detection works at the function level. BSVs, BCVs and BATs 

are constructed on a function basis. They are attached to the program binary by the 

compiler and mapped into a reserved memory space of the program once the program is 

loaded. The compiler conveys basic information for each function to the runtime system 
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through a function information table. The information includes entry addresses of BSV, 

BCV and BAT, the entry address of the function, hash function parameters etc. 

branch

Type    ID   Dir

branch 
status 
vector 
stack

verify

branch 
action 
table 
stack

branch 
checking 

vector
stack

request 
queue

BSV 
update

s

 

Figure 53. IPDS framework. 

At runtime, each committed branch is sent to the IPDS. The IPDS first checks 

whether this branch is marked in the BCV. If it is, the IPDS queues a request to verify if 

the actual direction of the branch matches the expected direction in the BSV. The IPDS 

queues a request to update the BSV according to the current branch and the BAT table no 

matter whether the branch is marked in the BCV. 

The sizes of BSV, BCV and BAT tables for each function are not fixed. The 

tables naturally form a stack at runtime. When we enter a new function, its corresponding 

BSV, BCV and BAT tables are push into the top of BSV, BCV and BAT stacks 

respectively. When the function returns, its BSV, BCV and BAT tables are popped up 

from the stacks then we can continue the checking based on the caller’s BSV, BCV and 

BAT tables. To save on-chip space, we only keep the top of the stack on-chip but spill the 

non-active tables to their home location, which is similar to Itanium’s register stack 
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engine. The spilled BSV, BCV and BAT tables require proper protection from tampering. 

The protection can be easily achieved by mapping them to a reserved space. Since only 

the IPDS is supposed to access those tables and the program is never supposed to access 

them, any attempted access from the program will be detected and prevented by the 

processor. 

All requests are put in a request queue according to the order in which they are 

issued. One important observation is that as long as the requests are properly ordered, we 

can guarantee that the checking is correct. Even if the process of requests gets delayed 

due to long latency operations such as loading the spilled tables, we can allow the 

program execution to continue without any delay but queue all the requests in their 

originally order. Also, it is shown in our experiments that the average checking speed is 

normally higher than the program execution. In other words, our scheme normally will 

not slow down the program execution. 

The hardware overhead of IPDS includes additional infeasible path detection 

logic and small on-chip buffers holding BCVs, BSVs and BATs. We believe the 

hardware overhead is reasonable as the advance of IC technology allows packing millions 

of transistors on a single chip. There will be plenty of hardware resources available to 

implement IPDS in a single chip. Moreover, chip multiprocessors become more and more 

popular and it is possible to program one of the cores to implement security 

functionalities. 

5.5 Evaluation 

All compiler implementations are done in SUIF  [100] and MachSUIF  [68] 

research compiler infrastructure. SUIF and MachSUIF provide extensive compiler 
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optimizations and analyses that are convenient to use. In particular, there is a publicly 

available pointer analysis pass for SUIF, which is based on the algorithm proposed in 

 [119]. It is both context-sensitive and flow-sensitive. We found that the pointer analysis 

pass gives very accurate points-to information especially for non-heap data accesses, 

which is greatly helpful to our work. The compiler infrastructure also provides flexible 

frameworks to develop new analyses and optimizations. The compilation time of the 

algorithm in Figure 51 is up to a few seconds on a Pentium 4 2GHZ machine. 

The evaluation of the IPDS system consists of two aspects: precision and 

performance. In this section, we show that the IPDS system achieves both good precision 

and low performance overhead. 

Good precision means both low false positive rate and low false negative rate. 

The IPDS achieves a zero false positive rate since it always acts conservatively and only 

raises an alarm when it is completely sure that an attack is ongoing. 

Good precision also means low false negative rate, i.e. high detection rate of 

dynamic infeasible paths due to attacks. Besides showing that IPDS can detect exemplary 

attacks illustrated in Figure 47, we want to measure the ability of IPDS more 

systematically. It would be ideal if we can evaluate our system against real-world attacks. 

Unfortunately most publicly available attacks are traditional code injection attacks 

through buffer overflows, format string attacks etc. Those code injection attacks have 

been extensively studied and numerous solutions have been proposed, such as our 

anomalous path checking scheme and  [108] [23]  [33] [63] [73] to only name a few. Those 

code injection attacks are not the focus of our work. We expect them become less 

important when protection mechanisms against them are widely deployed. We are 
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interested in the type of attacks in which attackers tamper critical data such as decision 

making data, user IDs etc. rather than return addresses or function pointers. This kind of 

attacks does not involve code injection and are much harder to detect. Chen et al. 

presented an experimental study of this kind of attacks and shows that they are very 

realistic  [17]. There are fives examples in Chen et al.’s work, which are the only real 

examples we can find. But after code injection attacks become less effective, we expect 

that attackers will focus more on devising this new kind of attacks. Among the five 

examples given in  [17], four of them involves tampering data that does not change 

dynamic program control flow, for which our scheme is not designed to detect. For the 

attack leading to program control flow changes (integer overflow attack against decision-

making data in  [17]), our scheme is able to detect the attack successfully.  

To measure the detection rate further, we choose to simulate real attacks that 

tamper memory state by exploiting program vulnerabilities. We then check whether our 

scheme is able to detect the simulated attacks. In our experiments, we implement our 

IPDS system in an open-source IA-32 system emulator Bochs  [9] with Linux installed. 

We choose 10 server programs having well-known vulnerabilities as benchmarks to 

perform simulated attack experiments. The server programs and their original well-

known vulnerabilities are telnetd(buffer overflow), wu-ftpd(format string), xinetd (buffer 

overflow), crond(buffer overflow), sysklogd(format string), atftpd(buffer overflow), 

httpd(buffer overflow), sendmail(buffer overflow), sshd(buffer overflow) and 

portmap(buffer overflow).  

Format string vulnerability allows us tamper an arbitrary memory location, so we 

can launch as many attacks as we want to the vulnerable program and tamper a different 
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memory location in each attack. But buffer overflow attacks normally tamper a 

continuous block of memory and only allow us tamper local stack data. Moreover, each 

of the above server programs only contains a few buffer overflow vulnerabilities. To be 

able to perform enough number of attacks to measure the detection rate accurately, we 

manually introduce more buffer overflow vulnerabilities into the server programs 

originally only having a few buffer overflow vulnerabilities. We further devise our attack 

to tamper only a specific local stack location rather than a continuous memory block. 

Otherwise, we would not be able to make attacks and results independent to each other in 

the buffer overflow cases. Buffer overflowing a specific location is possible in reality if 

the attacker knows the original local stack state, for example, by running the same 

program in his own machine. In the cases in which the attacker is not able to only tamper 

a specific local stack location, he will tamper multiple stack locations at the same time. 

Each tampered location can be used to detect the attack. Thus, our results for buffer 

overflow attacks represent the worst case. We make each of our attacks independent to 

each other to get a better feeling of the detection capability of our system. 

Each server program is attacked 1000 times independently as explained above. 

The caused memory tampering may or may not change program control flow. If it does, 

we check whether the IPDS is able to detect that infeasible path. If it fails, that is a false 

negative. Our scheme is not designed to handle the cases in which the memory tampering 

does not change program control flow. 
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Figure 54. Detection Rate for Simulated Attacks.  

Figure 54 shows the results of our simulated attack experiments to measure the 

detection capability of our system quantitatively. Our work is the first one to provide a 

quantitative view of detection capability and our results shown represent worst cases. 

None of the previous work quantifies the percentage of false negatives as we do. We 

show two results for each benchmark: the percentage of memory tamperings caused by 

attacks that actually change program control flow and the percentage of memory 

tamperings caused by attacks that are detected by our scheme. Intuitively, some memory 

tamperings do not have an effect on the program control flow. Our scheme is not 

designed to handle those cases. Actually, any scheme focuses on program control flow 

property will fail to detect those cases. How to detect memory tamperings that do not 

change program control flow is an open and tough problem  [17]. From the results, on 

average 49.4% of memory tamperings cause changes in the program control flow and the 

IPDS can detect 29.3% of memory tamperings overall. Thus, the IPDS system is able to 

detect 59.3% of those memory tamperings that change program control flow. The 



 155

detection rate is very good, considering the IPDS is conservative and achieves a zero 

false positive rate. The high detection rate shows that strong correlation exits among 

branches. Especially, in many cases, IPDS knows dynamically the outcome of a branch 

should be the same as its previous outcome since the depended values should not be 

changed in between. However, after the tampering one depended value may be modified, 

then the branch may have a different outcome thus the tampering is detected. 

Although the IPDS cannot prevent all memory tampering attacks, it detects a 

good percentage of memory tampering attacks that change program control flow. 

Moreover, the IPDS achieves a zero false positive rate, which is a critical property that 

makes the IPDS practical. False positive is the primary obstacle for the wide deployment 

of anomaly detection systems. That is why currently most commercial products still use 

signature based misuse detection rather than executing monitoring based anomaly 

detection. An anomaly detection system with a very high detection rate is meaningless if 

the user does not want to deploy it due to its frequent false positives. Also note that none 

of anomaly detection systems can detect all the anomalies. Our system is designed to 

combat a type of attacks largely ignored previously, which means it acts as a very good 

complement to the current anomaly detection systems. We also believe that since our 

system works on a much finer granularity, its detection capability is generally superior to 

the previously proposed system call monitoring based systems – we have in fact shown 

some attacks in the motivation section that are missed by those systems. Overall, we 

believe that our work provides a useful anomaly detection component to build the 

complete security system. 
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Figure 55. Average sizes (in bits) of BSV, BCV and BAT tables. 

 Figure 55 shows the average sizes of BSV, BCV and BAT tables in bits for 

functions inside each benchmark. Remember that BSV, BCV and BAT are constructed 

on a function basis. The graph is shown in log-scale. As discussed in section  5.4.2, the 

binary representation of the tables is carefully design to avoid the huge tag space 

overhead associated with normal hash tables. The average number of branches inside a 

function is normally smaller than 15. Each branch in a function only needs two bits for 

BSV information and one bit for BCV information. Although we cannot achieve optimal 

sizes in some cases, the sizes of BSV and BCV are very small. The average size of the 

BSV table for a function is 34 bits and the average size of the BCV table is 17 bits. 

Normally they can be packed into a couple of machine words. Now the advantage of our 

special hash table design should be clear. On the other hand, the size of BAT is much 

larger due to more complicated data structures. The average size of the BAT for a 

function is 393 bits. On average, 45% of the bits in BCV are marked. That is, the 

dynamic instances of those 45% of static branches will be checked at runtime.  
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Table 6. Default Parameters of the processor simulated. 

Clock frequency 1 GHz L1 I/D 64K, 2 way, 2 cycle 
32B block 

Fetch queue 32 entries Unified L2 512K, 4way, 32B block 
Latency 10 cycles 

Decode width 8 Memory bus 200M, 8 Byte wide 
Issue width 8 Memory latency first chunk: 80 cycles, 

inter chunk: 5 cycles 
Commit width 8 TLB miss 30 cycles 
RUU size 128 BSV stack 2K bits 
LSQ size 64 BCV stack 1K bits 
Branch predictor 2 Level BAT stack 32K bits 

 

Next, we focus on the performance aspect of the IPDS. To measure performance 

of the IPDS, we run the benchmarks in the Simplescalar toolset  [11], which a cycle-

accurate processor simulator. Each benchmark is simulated in a cycle accurate way by 2 

billion instructions. The default parameters for the simulated processor are shown in 

Table 6. The IPDS hardware is also modeled in Simplescalar. We simulate a wide-issue 

high-performance processor to stress the IPDS. The on-chip buffers for BSV, BCV and 

BAT stacks are 2K bits, 1K bits and 32K bits respectively. We make the on-chip buffers 

large enough that in most cases they are enough to contain the information for branches 

in the active call chain, even for large server applications. For example, a BCV stack with 

1K bits can record information for 1K branches. Assume there is one branch in every 

eight program instructions and each instruction is 4 bytes. Then the 1K BCV stack can 

cover 32KB code. The performance cost due to spilling of the stacks is minor. The total 

on-chip buffer space is only 35K bits, which is very small considering the on-chip cache 

size has reached several MB in modern superscalar processors. The access latency to the 

tables is one cycle. Note that we may need to access the BAT table (which implements a 

link list) several times to handle a BSV update request. 
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Figure 56. Normalized Performance. 

In Figure 56, we show the performance for all benchmarks normalized to the 

baseline case without infeasible path detection. The average performance degradation is 

only 0.79%. In most cases, the performance degradation is negligible. The fundamental 

reason is that checking of infeasible paths normally does not need to block the original 

program execution. We design a request queue to handle the burst of requests. The 

normal program execution is only blocked when the request queue is full. Whether the 

queue becomes full highly depends on the speed of processing each request. Each branch 

check request only needs a read of the expected branch and a comparison. Each BSV 

update request needs a small number of reads from the BAT and writes to BSV. The 

request for a branch normally can be completed with a very short latency before next 

branch is processed. Note that we pay additional overhead during function calls/returns 

and multi-target branches. Finally, tables used in anomaly detection are treated as a part 

of process context thus we pay additional overhead during context switches. Context 

switches overhead is also modeled in our experiments. Because context switches are rare 
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events and the size of the additional process context is only around 4KB, we found that 

the performance overhead due to additional process context is minor. 
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Figure 57. Queue Occupancy 
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Figure 58. Detection Response time. 

Next, we look at the occupancy of the request queue, which is important to 

understand the performance characteristics of our system.  Figure 57 shows the average 

queue occupancy across benchmarks. It is about 1.47, which means at most of the time, 
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there are few requests being queued because normally the requests for a branch can be 

completed within a short latency before next branch has to be processed. 

Finally, in Figure 58, we give the average response time in cycles, i.e. the time 

from a committed branch instruction is sent to the IPDS to the time the infeasible path is 

detected. On average, the response time is 11.7 cycles. In other words, the IPDS can 

quickly detect an infeasible path before it causes severe damage. This is an important 

feature especially for systems that would offer some intrusion-recovery mechanisms – if 

an attack is not detected quickly enough it would be too late to recover from. We 

perceive this is another important dimension of our solution – an ability to detect the 

attack in near real time. 

5.6 Summary 

Although our anomalous path checking scheme achieves strong detection 

capability and negligible performance degradation, it is based on training and potential 

false positive is a big concern that will limit its applicability in reality. In response to the 

concern of false positives, in this chapter we develop an infeasible path detection scheme 

to detect attacks based on static compiler branch correlation analysis and hardware 

runtime support. Our observation is that most attacks start from memory tampering and 

memory tampering could lead to infeasible dynamic program paths in terms of program 

semantics. In this scheme, the compiler analyzes correlations between branches and then 

the collected information is conveyed to the runtime system. The runtime system detects 

dynamic infeasible program paths by combining the compiler collected information and 

the runtime information. 
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 The infeasible path detection scheme achieves a zero false positive rate which 

improves its applicability greatly. All alarms reported are guaranteed to indicate that 

certain memory content is corrupted and an attack has happened. We show that a good 

percentage of memory tampering (around 60%) can be detected as long as the tampering 

actually causes a change in the control flow. Moreover, the infeasible path detection 

scheme requires only a modest amount of hardware resources and the performance 

penalty of it is almost negligible. Overall, we believe that the infeasible path detection 

scheme can be a very practical intrusion detection solution, especially when low-cost and 

zero false positives are required at the same time. On the other hand, in this chapter we 

intentionally show that a large percentage of random memory tamperings (around 50%) 

actually do not alternate program control flows at all. Any control flow monitoring based 

anomaly detection scheme is completely helpless in detecting those memory tamperings. 

This problem prompts us to rethink the problem and seek a more complete solution. 
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6 DATA TAMPERING DETECTION THROUGH DYNAMIC 

ACCESS CONTROL  

Most of the previous anomaly detection schemes, including our anomalous path 

checking scheme and infeasible path detection scheme, focus on control flow monitoring. 

They try to detect attacks by detecting anomalous dynamic control flows. However, the 

root cause of anomalous control flows is due to tampering to critical program data. In 

essence, anomaly detection schemes based on control flow monitoring try to infer data 

tampering by monitoring anomalous control flows caused by data tampering. However, 

in last chapter, we showed that a large percentage (about 50%) of random data 

tamperings do not alter program control flows at all. Recently Chen et al.  [17] also 

discovered that a large category of attacks tamper program data but do not alter program 

control flows. Those attacks are not only realistic, but are also as important as classical 

attacks tampering control flows. Anomaly detection schemes based on control flow 

monitoring cannot detect those attacks at all. Detecting these attacks is a critical issue but 

has received little attention so far.  

In this chapter, we propose an intrusion detection scheme with both compiler and 

micro-architecture support that detects data tamperings directly. The basic idea is that the 

compiler identifies program regions in which the data should not be modified according 

to the program semantics. The compiler performs analyses to determine modifications of 

data in different program regions and conveys this information to the hardware and the 

hardware checks the data accesses based on the information. If the compiler asserts that 

the data should not be modified but there is an attempt to do so at runtime, an attack is 

detected. The compiler starts with a basic scheme achieving maximum data protection 
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but such a scheme also suffers from significant performance overhead. We then attempt 

to reduce the performance overhead through different compiler optimization techniques. 

The optimization techniques include lazy protection points hoisting, protection points 

selecting, and protection operations aggregation. Our experiments show that this scheme 

achieves zero false positive rate, strong memory protection, and tight control over the 

performance degradation.  

6.1 Background and Motivation 

Most of the previous anomaly detection work  [32] [115] [92] [31] [59] [76] [37] 

 [36] [60] [128] focuses on monitoring program control flows and program paths. Thus, 

one important question is whether monitoring program control flow is good enough to 

detect the incidence of an attack. First of all, memory tampering or data tampering is the 

primary starting point of attacks. Most if not all attacks start from memory tampering, 

such as buffer overflow attacks, format string attacks etc. In effect, most previous 

anomaly detection work tries to detect memory tampering by detecting anomalous 

program paths caused by the memory tampering. We checked the relationship between 

memory tamperings and control flow modifications. During our experiments, we found 

that around half of the memory tamperings do not alter program control flows. For those 

memory tamperings, monitoring control flows as in system call trace monitoring and 

anomalous path checking does not help at all. In  [17], Chen et al. showed a large category 

of real attacks without any control flow tamperings. One real example is shown in Figure 

59.  
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 FILE * getdatasock( … ) { 
... 
seteuid(0); 
setsockopt( ... ); 
... 
seteuid(pw->pw_uid); 
... 

}  
 

Figure 59. Attacks without control flow tampering. 

Wu-ftpd version 2.6 contains format string vulnerability. Format string 

vulnerability allows an attacker modify any memory location. Figure 59 shows a piece of 

innocent code from the Wu-ftpd source code. In normal situations, this piece of code will 

temporarily escalate the privilege using seteuid(0) to perform the setsockopt operation. 

Then it will restore the original user privilege after the setsockopt operation. But consider 

a scenario in which pwÆpw_uid is tampered and is set to 0 through a format string attack.  

In this case, the second seteuid operation will always seteuid to 0 again, although it is 

supposed to restore the original user’s privilege. So the attacker is able to retain root 

privilege and do all the damage subsequently. Note that there is no control flow 

tampering involved in this attack. 

In  [17], Chen et al. showed that this type of attacks is very realistic and should be 

given a serious attention. Generally, tamperings to various security-critical data could 

lead to such attacks. Security-critical data includes configuration data, user input, user 

identification data, decision making data and etc. In many cases, tamperings to the first 

three categories of critical data does not alter program control flows. So the important 

point is that we have to detect tamperings to the critical data directly rather than trying 

to infer the data tamperings from control flow tamperings. 
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ptr = NULL; 
… … 
if ( user_input1 ) { 
 ptr = & obj1; 
} 
else if (user_input2) { 
 ptr = & obj2; 
} 
… … 
*ptr = …  // deref_inst 
… … 

 

Figure 60. Potential security holes in the AccMon approach. 

 
The research on combating memory tampering attacks has been very limited. 

AccMon  [131] is a software debugging tool with hardware support to detect software 

bugs leading to memory corruptions. The scheme is based on the observation that a 

memory location is typically only accessed by a few instructions. It works at the data 

object level. First, some data objects are selected to be monitored. Next they use profiling 

to build up a PC-based invariants table, recording the set of instructions that normally 

access a given data object. At runtime, the program execution is monitored through the 

compiler inserted monitoring operations. If a data object is accessed by an instruction not 

observed during training, an alarm is raised. Although AccMon is designed for software 

debugging, it can also be used in combating memory corruption attacks. The scheme 

relies on profiling/training, so it will have false alarms. Moreover, since it is based on 

profiling, an instruction will be regarded legal to access a data object when it does that 

during any normal program execution, even though under a specific execution, it may be 

illegal for that instruction to access the data object. This leaves potential holes to be 
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exploited by the attacker. Figure 60 shows a simple example. Assume that the simple 

program shown can accept two kinds of user inputs. If the user input is user_input1, the 

pointer ptr will point to obj1; if the user input is user_input2, the pointer ptr will point to 

obj2. Later, the pointer is dereferenced at deref_inst and the object pointed by the pointer 

is modified. Under the AccMon scheme, during profiling, both kinds of user inputs will 

be exercised and the deref_inst will be regarded as legal to access both obj1 and obj2. But 

during a specific execution of the program, the pointer can only either point to obj1 or 

obj2 but never point to both obj1 and obj2. So if the user input is user_input1, ptr is 

illegal to access obj2 but AccMon will regard it is legal. The attacker could tamper the 

value of ptr to the address of obj2 and gain illegal access to it without being detected by 

AccMon. Likewise, if the user input is user_input2, ptr is illegal to access obj1 but 

AccMon will regard it is legal.  

Xu et al. propose a technique to detect memory corruptions attacks in  [121]. Their 

basic assumption is that a randomized program usually crashes upon a memory 

corruption attack. They utilize the crash information to automatically identify the faulty 

instructions. In other words, they cannot detect attacks that do not result in a process 

crash. An example of such attacks is shown in Figure 59. So the protection strength of 

their scheme is limited. 

Mondrian memory protection system  [120] is a micro-architectural framework 

that enables fine-grained memory protection supporting multiple protection domains with 

acceptable performance degradation. It uses a single, shared address space with access 

permissions possibly at the granularity of per word defined in a permission table. At 

runtime, the value in the address register is used to lookup the permission table to see if 
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the domain has appropriate access permissions. The access permissions are preset by the 

user. Mondrian memory protection system provides an important reference in design of 

the micro-architecture component of our scheme. 

In our scheme, we aim to tackle the root cause of memory corruption attacks by 

detecting corruptions to data directly. Our scheme achieves this by providing very fine-

grained data access protection. Different from the Mondrian Memory Protection system, 

the access permissions are generated by the compiler automatically and access 

permission for a data object is managed and changed properly at runtime as per the 

program semantics.  

Our basic idea is as follows. The compiler first identifies program regions in 

which certain critical data should remain unmodified performing a data flow analysis. 

Then the compiler sets the data as read-only in those regions through special operations 

with hardware support. Any attempt to modify the data marked as read-only triggers an 

alarm. This leads to superior attack detection strength. Moreover, since it is based on 

static data flow analysis, there are no false positives. Zero false positive rate greatly 

improves the applicability of the scheme. In the extreme case, we can always set the data 

as read-only right after each write to it and set the data as writable just before each write 

to it. This should provide best security but at the cost of performance degradation. There 

are many implementation issues and optimization opportunities, which will be detailed in 

the next section. 

6.2 Compiler Analysis and Optimizations 

Before we present the details of our scheme, we first introduce some important 

definitions. 
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Definition 1: A memory object is a data object defined in a program and resides in 

the memory. Memory objects include local stack data objects, static global data objects 

and dynamically allocated heap data objects. Common memory objects are scalar 

variables, arrays and aggregated structures etc. 

Definition 2: An access permission level of a memory object is either writable, or 

read-only. 

Definition 3: A protection point is a program point where the access permission 

levels of some memory objects are changed by setting the corresponding access bits for 

those memory objects.  

Definition 4: A protection operation at a protection point is denoted as the action 

of changing the access permission levels of some memory objects at this point. Generally, 

there are two types of protection operations – changing from writable to read-only and 

changing from read-only to writable. 

Baseline Scheme 

First, we discuss a most basic implementation of our idea. In such a baseline 

scheme, every memory object has a corresponding access bit containing the access 

permission level for it. There are two types of protection points – just before a store 

instruction and right after a store instruction. Assume that a memory object “O” is written 

by the store instruction.  The access permission level for O is changed to writable before 

the store instruction and is changed back to read-only after the store instruction. Initially, 

the access permission of all memory objects is set to be read-only. During the execution 

of the program, whenever a store instruction is to be executed, the hardware checks the 

access bit table to see whether this instruction violates the memory access permission, i.e. 
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writing to a memory object with access permission as read-only. If there is a violation, it 

alerts the attempted attack. Note that the memory corruption has to be done by some store 

instructions in a software-based attack. This store instruction could be some existing 

instruction in the program but writing to a memory object that it is not supposed to. A 

second possibility is that this store instruction could be injected by an attacker. In either 

case the tampering is detected by our scheme. 

The baseline scheme can prevent memory corruption attacks completely. In other 

words, all memory objects can be protected from being attacked. But it is infeasible to 

realize this complete protection mechanism due to the very large overhead of setting and 

checking access permissions. Thus, we propose three compiler optimizations to reduce 

the performance overhead in a significant way while maintaining the memory protection 

strength at a fine-granularity level. We empirically show how strong protection can be 

achieved for typical attack models with minimized performance degradation.  

Compiler Framework Overview 

The compiler’s task is to analyze the program, optimize the baseline scheme, 

collect the information about how to set up access permissions for memory objects 

properly and convey the information to the runtime component.  
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Identify initial protection points 

Identify write ranges 

Hoist and delay protection points 

Select protection points 

Group protection operations 

Build points-to table and action table 

Pointer analysis 

Insert special instructions  

Figure 61. Compiler framework overview. 

Figure 61 depicts our compiler framework. There are eight steps. First, the pointer 

analysis is performed trying to statically find out which memory objects a pointer is 

pointed to. Second, all store instructions are identified by the compiler. All program 

points right before/after store instructions are treated as initial protection points as we 

stated in the baseline. Third, all write range information is collected to facilitate further 

optimizations (we will talk about write ranges later). Forth, the hot protection points are 

hoisted/delayed to cold basic blocks. Then given some performance degradation 

constraints, the least beneficial protection points are removed. Next, remaining protection 

operations are grouped together whenever such opportunities exist to reduce performance 

overhead further. Next, an action table recording protection points and the corresponding 

protection operations is created. So is a pointed-to table used to assist the handling of 

pointer dereferences. Finally special instructions are inserted into the code to inform the 

processor when to look up the action table. Details about the above steps follow. 
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6.2.1 Write Ranges Identification 

A write range is similar to the live range of a variable, except that the starting 

point of a write range is a store instruction on a memory object, and the ending point is 

the next closest store instructions on the same memory object. A write range is used to 

identify protection pairs – given a “set to writable” protection operation, what are its 

corresponding “set to read-only” protection operations, or on the other hand, what are the 

related “set to writable” protection operations for a “set to read-only” protection 

operation. The information is collected to assist the later optimization phases. 

 B1 B2 
str r1 v 

… 
str r2 v 

… 

str r3 v 

… 
str r4 v 

… 
str r5 v 

B3

B4 
B5 

WR2 

WR3 

WR1 

 
Figure 62. Write range example. 

Figure 62 gives an example to show the write ranges of a variable v. There are 

five store instructions in five basic blocks, resulting in three write ranges – WR1, WR2 

and WR3. One from “str r1 v” to “str r3 v”, one from “str r2 v” to “str r3 v”, and another 

from “str r3 v” to “str r4 v” and “str r5 v”. Note that the three write ranges do not include 

the store instructions themselves. In other words, a write range starts at the point right 

after a store instruction and ends just before the nearest next store instruction for the same 

variable.  

We utilize the standard framework of webs to identify write ranges. The starting 

and ending points of a write range are program points where protection operations should 
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be performed initially. In the above example, the access permission level for v should be 

set to read-only at the start of WR1, and it should be changed back to writable at the end 

of WR1. It is the same for WR2 and WR3. Thus, protection points are the boundaries of 

write ranges. 

6.2.2 Protection Points Hoisting and Delaying 

The large overhead of complete memory protection by setting access permissions 

at all protection points is mainly due to that some store instructions are executed many 

times. For example, in some multimedia encoding applications, the encoding process is 

done in a major loop executed a very large number of times; while other code outside the 

loop body is seldom touched. Hoisting/delaying a protection point out of the loop body 

would afford us more efficient protection mechanisms. This observation motivates us to 

come up with an optimization to move the protection operations from a hot basic block to 

a cold basic block whenever possible.  
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 Func:      HoistPP 
Input:      PP – Protection point set of a variable 

CFG – control flow graph of the program 
Profile – Hot/cold basic block information in the CFG 
Threshold – a threshold to make cost-benefit tradeoff 

Output:    Optimized protection point set 
 
For each variable v 

For each P∈PP[v] in a basic block B 
If B is hot 

For each preprocessor BP of B 
_push (BP, S)  

EndFor 
HoistSet = ProcStack 
//BP∈HoistSet 
Hoist_benefit = B.freq – ∑ BP.freq     
Hoist_cost = ∑ dynamic stores from BP to B 
If (Hoist_benefit/Hoist_cost > threshold) 

PP[v] = PP[v] – {B} 
PP[v] = PP[v] ∪HoistSet 

EndIf 
EndIf 

EndFor 
EndFor 
 
Func:      ProcStack 
Input:      PP – Protection point set of a variable 

CFG – control flow graph of the program 
Profile – Hot/cold basic block information in the CFG 
S – Stack for processing 

Output:    HoistSet – Set of protection points that the original 
protection point is going to be hoisted to 

 
HoistSet = Null 
While (B = pop(S) != NULL ) 

B.visit = true; 
If B is hot  

If (∃ P∈PP[v]) && (P is in B) 
return Null 

Else 
For each preprocessor BP of B 

If B.visit = false 
_push(BP, S) 

EndIf 
EndFor 

EndIf 
Else 

HoistSet = HoistSet∪ {B} 
EndIf 

EndWhile 
return HoistSet  

Figure 63. Algorithm for hoisting protection points. 
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Figure 63 gives the pseudo code for our hoisting algorithm. Starting from a hot 

basic block containing a protection point, we go back along the edges in the control flow 

graph. Its predecessor basic blocks are pushed onto a stack for further processing.  

ProcStack is an auxiliary function to explore the algorithm along backwards edges. 

It first examines the block on the top of the stack to see if it is also hot. A basic block is 

said to be hot if its execution frequency exceeds some preset threshold. If it is cold, then 

we get one desired location to insert the protection operation. Otherwise, we should 

check whether we have reached a boundary – a basic block that contains another 

protection point for the same memory object. In other words, the algorithm determines if 

we have reached a program point where the object’s access permission level is just 

changed from writable to read-only, so we have to stop here and leave the hot protection 

point for further optimizations. If the current basic block that is being processed is hot 

and it does not include any protection operation on the same memory object, we continue 

pushing its predecessor basic blocks onto the stack. A control flow graph may include 

loops, so we use a flag to indicate whether a basic block has been visited before. 

After obtaining the potential locations for hoisting a protection point, we 

determine whether to actually move the protection point out of the hot basic block based 

on a cost/benefit analysis. The benefit is denoted as the saving in executing protection 

operations dynamically. The cost is defined in terms of the security degradation. Hoisting 

a protection point to a predecessor point means that the object could be corrupted 

between the two points. So it is not protected in that region. If the ratio of benefit/cost is 

bigger than a threshold, then the protection point is hoisted. Currently the threshold is 
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determined by the system manually, which can be optimized using some heuristic 

solutions. 

… 
str r1 v B2 

B3 B4 

B5 

…

B1 

B6 

str r2 v

…

B8

B7 

 

Figure 64. An example of hoisting protection points. 

Figure 64 gives a sub control flow graph to show how the hoisting algorithm 

works. There are two store instructions in blocks B2 and B8, generating four protection 

points, right before and after the two stores. Assume all blocks in the loop body are hot. It 

is easy to see that the protection point before the store in B2 can be taken out of the loop 

to the block B1. That means we can set the access permission level for v1 to writable at 

the end of B1 instead of in B2. Similarly, if B6 is cold, the protection point can also be 

lifted from B8 to B6. On the other hand, if B6 is also hot, the hoisting algorithm has to 

proceed by processing blocks B5, B4, B3 and B2 until it meets another store for v in B2. 

Thus there are two possibilities for moving protection points from hot blocks to cold 

blocks in this example. 

The benefit also comes with penalty – the degradation in security. If a write is 

only permitted just before the instruction “str r1 v”, the variable v is well protected. If the 

variable v is set to be writable at the end of B1, the attacker can possibly corrupt variable 

v during the program’s execution between the end of B1 and the store instruction. So a 
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tradeoff must be made to balance the benefit and the cost. On the other hand, if there is 

no other store instruction between the end of B1 to the store instruction to variable v1, the 

protection remains intact or does not degrade at all. This is because the attacker has to 

execute a store instruction to corrupt a memory object. Thus, some motions of protection 

points actually do not result in security degradation if they don’t move the protection 

point past another store (which could be malignant).   

The similar algorithm is applied to delay the protection operation of changing the 

access permission from writable to read-only from a hot basic block to a cold one. Look 

at the example in Figure 64 again. Initially, variable v is set to be read-only right after 

“str r1 v” in B2. It could involve great overhead since B2 is hot. So if B6 is cold, we 

could delay this protection to B6. However, there is a relatively long path from B2 to B6. 

So the protection to variable v may be degraded significantly. In this case, the compiler 

determines whether it should be delayed or not after considering both the benefit and the 

cost similar to that of hoisting a protection operation (i.e. if benefit/cost is bigger than the 

threshold, it is decided to be delayed).  

6.2.3 Protection Points Selection 

Due to the big overhead, completely protecting all memory objects may not be 

feasible. So how to determine where and which memory object should be protected are 

the key issues addressed in this section.  

We build a cost/benefit analysis model to select protection points based on the 

profile data. The analysis unit is the set of protection points of a write range. All protection 

points for a write range have to be analyzed together since they are related operations. In 

other words, if a “set to read-only” operation for a memory object is removed, the 
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corresponding “set to writable” operations are not necessary any more. On the other hand, 

if only the “set to writable” operation is deleted, its corresponding writes are not checked. 

Otherwise, the corresponding writes will be regarded as illegal and there will be false 

alarms.  

Func:      SelectPP 
Input:     AllWR – write ranges set 

Threshold – performance degradation constraint  
Output:  Optimized write ranges set 
 
CompCostBenefit 
// WR∈AllWR 
performance_degradation = ∑ WR.cost 
While (performance_degradation > threshold) 

WR∈AllWR with minimum weight 
AllWR = AllWR – {WR} 
Performance_degradation -= WR.cost 

EndWhile 
 
Func:      CompCostBenefit 
Input:      AllWR – write ranges set 

Profile – Hot/cold basic blocks information in the CFG 
Output:   Weight of each write range 
 
For each variable v 

For each WR∈AllWR[v] 
WR.benefit = ∑ (dynamic stores within WR) 

WR.cost =  ∑ (instruction at protection point in WR) 
WR.weight = tradeoff(WR.beneft, WR.cost) 

EndFor 
EndFor 

 

Figure 65. Algorithm for selecting protection points. 

The benefit of removing a write range is denoted as the sum of the dynamically 

executed store instructions within the write range. In other words, the benefit corresponds 

to the protection offered to the number of stores in a given range and is therefore 

proportional to the number of stores. The cost of a write range is defined as the sum of 
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the dynamic execution times of all protection points in this write range. The cost is equal 

to the sum of the frequencies of basic blocks where the protection points are located. 

Figure 65 shows the pseudo code for the algorithm to choose the most profitable 

memory objects to be protected.  The algorithm first analyzes the cost/benefit for all write 

ranges. The weight of a write range is based on the cost/benefit tradeoff which indicates 

its priority in terms of protection. The weight is equal to WR.benefit/WR.cost. If WR.cost 

is zero, WR.weight is set to be infinity. Then, driven by the performance degradation 

constraint, the algorithm repeats removing write ranges until the degradation requirement 

is satisfied. 

As an example, consider the control flow graph in Figure 64. If the “set to read-

only” operation cannot be delayed from B2, we re-evaluate its benefit and cost in this 

compiler pass to determine if such a protection point should be deleted. 

6.2.4 Grouping Protection Operations  

In this section, we introduce a compiler technique called protection operations 

grouping. Normally, each protection point corresponds to one protection operation that 

incurs certain runtime overhead. However, interesting optimization opportunities exist 

when multiple protection points performing the same type of operations are clustered 

together and the memory objects they protect are adjacent in the memory. In these cases, 

instead of incurring one protection operation for each protected memory object, the 

protection operations can be grouped together as one protection operation for all memory 

objects at the clustering point. Figure 66 shows a simple example. Assume variables v1 

and v2 are adjacent to each other. The start address of v1 is addr1 and the size of it is 

size1. The start address of v2 is addr1+size1 and the size of it is size2. Instead of setting 
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access permission levels of v1 and v2 separately, we can group the operations and set the 

access permission level of the memory region with start address as addr1 and with size as 

size1+size2. The grouped protection operation achieves better performance since it 

reduces the number of dynamic protection operations and the associated runtime 

overhead. 

 

… 
set v1 to writable 
str r1, v1 
set v1 to read-only 
set v2 to writable 
str r1, v2 
set v2 to read-only 
… 

… 
str r1, v1 
str r1, v2 
… 

without protection baseline scheme

… 
set v1and v2 to writable      clustering point P1 
str r1, v1 
str r1, v2 
set v1 and v2 to read-only  clustering point P2 
… 

after protection grouping 

 

Figure 66. An example of protection operations grouping. 

Such optimization opportunities occur when there are multiple protection 

operations clustered together and when the memory objects protected at the clustering 

point are adjacent to each other. We can easily create clustered protection operations 

when there are multiple adjacent store instructions as shown in Figure 66. In our scheme, 

the compiler tries to move store instructions together as long as their dependencies are 

still satisfied. Also, after the protection point hoisting/delaying algorithm is performed, 

many protection operations tend to be grouped at the same program point, such as the 

beginning/ending of a cold basic block.  
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After clustered protection operations are identified, we need to lay out the 

memory objects involved properly to exploit the optimization opportunities. Note that the 

layout of the memory objects is a global decision rather than a local decision with respect 

to a given protection point. Different memory layouts may be required to completely 

exploit protection operation grouping opportunities at different clustering points, but 

there could be only one memory layout for the program. Our goal is to find a layout of 

memory objects that can exploit the opportunities of protection operations grouping 

maximally.  

… 
set v1, v2, v3 and v4 to read-only  clustering point P1 
… 
set v5, v6 and v7 to read-only   clustering point P2 
… 
set v8, v9 and v10 to read-only   clustering point P3 
… 
set v1, v2, v5, v6, v8, v9 to read-only  clustering point P4 

(a) clustering points

(b) Data layout 1

  v1  v10   v6    v4    v8    v5   v9    v3    v7    v2

  v3   v4    v1     v2    v5   v6    v7    v8    v9   v10

(c) Data layout 2 
 

Figure 67.Data layout and protection operations grouping. 

Figure 67 gives an example showing how the data layout impacts the protection 

operations grouping.  There are nine variables and four clustering points in this example. 

Figure 67 (b) and (c) show two possible data layouts of these variables in the virtual 

memory. Data layout 1 only allows us to perform the protections on v5, v8 and v9 

together at P4 since only these variables are adjacent and there are protection operations 

on them at the same clustering point (i.e. P4). On the other hand, data layout 2 allows us 
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to protect v1, v2, v3 and v4 together at P1; to protect v5, v6 and v7 together at P2; to 

protect v8, v9 and v10 together at P3; to protection v1, v2, v5 and v6 together at P4; and 

to protect v8 and v9 together at P4. The two data layouts show substantial difference in 

grouping protection operations, so our goal is to find out the best way to layout the data 

so that protection operations can be grouped maximally. 

The pseudo code of our algorithm to determine memory object layout is shown in 

Figure 68. First, a variable group at a clustering point is identified. All objects with the 

same type, whose access permissions are changed in the same way at a clustering point 

form the variable group for the clustering point. Types of an object include initialized 

global object, un-initialized global object, heap object, and stack object. So there are at 

most four variable groups at a clustering point. Access permissions can be changed either 

from read-only to writable or from writable to read-only. The weight of a variable group 

is defined as the saving of dynamic protection operations if the protection operations for 

all of the variables in the variable group are grouped together at the given point. Then the 

algorithm starts from the variable group (say CurrVG) with the maximum weight. Note 

that we only deal with variable groups whose size is bigger than one since one element 

group does not provide any opportunity for optimization. Let ProcessedVG be the set of 

variable groups that have been processed. It is initialized to be null. CommonVG includes 

variable groups that have common variables with CurrVG. The motivation behind 

identifying the set of common variables is to maximize linearization of the variables in 

the group greedily so that more protection operations can be removed.  We illustrate 

these concepts below through an example.  

 

 



 182

 Func:  GroupVar 
Input:  AllVG – set of all variable groups 
Output: Optimized variable groups 
 
ProcessedVG = null 
While AllVG != null 

CurrVG = SelectMaxWeightVG 
AllVG = AllVG – {CurrVG} 
If (CurrVG.size > 1) 

CommonVG = {VG’ | (VG’∈AllVG} & (VG’∩ CurrVG != null)} 
ProcessedVG = ProcessedVG – CommonVG 
If (CommonVG != null) 

ProcessedVG = ProcessedVG∪ArrangeData  
Else 

ProcessedVG = ProcessedVG ∪ {CurrVG} 
EndIf 

EndIf  
EndWhile 
 
Func: ArrangeData 
Input: CommonVG – variable groups having common element with CurrVG 
Output: Arranged variable group 
 
ListGroup = null 
For each VG’ in CommonVG 

CommonVar = VG’∩ CurrVG 
For each v in CommonVar 

CurrVG = CurrVG – {v} 
ListGroup = ListGroup –VG’ 
VG’ = VG’ – {v} 
NewListGroup = CreateListGroup(v, VG’) 
ListGroup = CombineListGroup(ListGroup, NewListGroup) 

EndFor 
EndFor 

 

Figure 68. Pseudo code for the grouping algorithm. 

We use the example in Figure 69 to explain our algorithm step by step. In this 

example, there are four groups VG1, VG2, VG3 and VG4 corresponding to the example 

in Figure 67.  Their weights are decreasing.  That means VG1 should be dealt with first, 

then VG2, VG3 and VG4. In processing VG1, both ProcessedVG and CommonVG are 

null, so VG1 is included in ProcessedVG. In processing VG2, since Processed VG only 

contains VG1 and there is no common variable for VG1 and VG2, CommonVG is also 

empty. VG2 is inserted into VG. Similarly, VG3 is also included in VG. Now VG 
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contains VG1, VG2 and VG3. The last variable group is VG4, which has common 

variables with VG1, VG2 and VG3, so CommonVG includes VG1, VG2 and VG3. 

(f) Processing v9 

v1
v2
v3
v4

v1
v3
v4v2

(a) Processing v1         (b) Processing v2 

v3
v4v5 v1 v2

v6 
v7 

v3 
v4 v5 v1 v2v6v7

(c) Processing v5  (d) Processing v6 

v5 v1 v2v6 v7 
v3
v4 v8

v9
v10

v5 v1 v2v6 v7 
v3
v4 v8 v9 v1

v1 
v2 
v3 
v4

v5
v6
v7

v8
v9

v10

v1 v2
v5 v6
v8 v9

   GV1      GV2       GV3              GV4

          (e) Processing v8 

 

Figure 69. An example of protection operations grouping algorithm. 

Next we show how to use the common variables to clarify the spatial relationship 

of variables.  For each variable group VG’ in CommonVG, let CommonVar be the set of 

common variables of CurrVG and VG’. For each variable v in CommonVar, it is taken 

out of the variable group first. The remaining variables in the variable group form a new 
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variable group. Next v is connected to the new variable group to create NewListGroup 

that is in a special form – listgroup. Listgroup is a special structure containing both lists 

and groups. A group means that variables in it could be grouped together, but it does not 

tell us the exact layout of the variables, i.e. which variable should be adjacent to which 

variable in the virtual memory. So the variable can be linearized in many ways. But 

considering all variable groups, a variable should be preferred to be the neighbor of 

another variable to optimize overall protection operations. So a list is designed to 

represent the linear data layout of the variables.  Finally NewListGroup is combined with 

original ListGroup to build current ListGroup. 

To make it more clear, look at the example in Figure 69 again. VG1 is taken from 

CommonVG first. CommonVar includes v1 and v2. Initially ListGroup is set to be empty. 

v1 is first removed out of VG1. Note that although the variable group has priority based 

on their weights, variables in the same group have the same priority. That means it does 

not matter if we deal with v1 or v2 first. Now the new VG1 only has v2, v3 and v4. 

NewListGroup is created containing two elements, v1 and the new VG1. Then 

NewListGroup is combined with ListGroup. Since the original ListGroup is empty, 

current ListGroup is the same as NewListGroup as shown in Figure 69 (a). v1 is taken 

out as a special element connecting to the new VG1 since VG4 indicates that it is 

preferable for v1 to be grouped with other variables later, such as v2, v5 to reduce 

protection operations.  

The next variable in Common to be processed is v2. In this case, VG1 is picked 

from ListGroup. Currently VG1 is the set of v2, v3 and v4, so ListGroup only has v1. 

Then v2 is taken out of VG1 connecting to the new VG1 creating NewListGroup. Next 
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NewListGroup and ListGroup are combined as follows. In CombineListGroup, if both 

NewListGroup and ListGroup have ending variables (such as v2 in NewListGroup and v1 

in ListGroup) and they are both in P, then the ending variables are connected by an edge. 

An ending variable is a variable in a listgroup that has only one neighbor and not in a 

group. Thus, by connecting v1 and v2, we get the final ListGroup as shown in Figure 69 

(b). 

It works similarly in dealing with VG2. Note that if a variable group has only one 

variable, it becomes a variable automatically. For example, in Figure 69 (d), after taking 

v6 from VG2, new VG2 only has v7, so new VG2 degenerates to a variable, thus there is 

no group circle around v7. Now the layout of v1, v2, v5, v6 and v7 are quite clear. If we 

keep the variables layout as shown in ListGroup in Figure 69 (d), all variables in 

VG1/VG2 can be protected together at the clustering point P1/P2. Only one protection 

operation is needed for v1, v2, v5 and v6 at P4. On the other hand, assume the data layout 

is like v3–v1–v4–v2–v5–v7–v6, any two of v1, v2, v5 and v6 cannot be protected 

together at P4 since the grouped protection operations only works for adjacent memory 

objects as discussed earlier.  

It is the same for VG3. But in processing v8, ListGroup and NewListGroup are 

not connected though they both have ending variables (v7 and v8) since v7 and v8 are not 

both in VG4. That means VG4 does not suggest that v7 and v8 should be protected 

together. We choose to leave two listgroups instead of combing them into one because 

more listgroups have more ending variables that could provide more opportunities for 

further listgroup combination. Now how to proceed further is very clear, so we do not list 

all the intermediate data structures in Figure 69 (e) and (f). The final ListGroup is shown 
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in Figure 69 (f). There is still one variable group in the final ListGroup. Either v3 or v4 

can be put next to v2. So the final data layout is v7–v6–v5–v1–v2–v3–v4, v8–v9–v10 or 

v7–v6–v5–v1–v2–v4–v3, v8–v9–v10.  

Besides scalar variables, we can also group array accesses. For example, if an 

array is written/read in a stride of 2, e.g., it accesses elements 1, 3, 5, 7, 9, 11…, we may 

group array elements 1, 3, 5 as a group and array elements 7,9,11 as a group. Array 

access analysis is an important topic in compiler optimizations especially for loop 

parallelization. It has been extensively studied in  [13] [24] [88] [106] [85] . With array 

access information, array accesses can be grouped using standard techniques. For array 

accesses with a stride of 1, the problem is very similar to loop vectorization. For array 

accesses with a stride greater than 1, loop scatter-gather can be done first to create a loop 

accessing the same data with a stride of 1. Of course any transformation cannot violate 

the original program dependencies. All the techniques involved are elaborated in  1 [53]  . 

Being able to handle arrays is important to reduce security cost for the whole program 

since a large percentage of dynamic memory accesses go to aggregated data structures, 

most of them being arrays. 

6.2.5 Points-to Table 

Dealing with pointer dereferences is a difficult problem. Static compiler pointer 

analysis has a lot of limitations and in some cases cannot determine an accurate points-to 

set for a pointer dereference. If the points-to set of a pointer dereferencing store 

instruction contains multiple possible memory objects, then before the pointer 

dereferencing store instruction, the access permission levels of all possible pointed-to 

memory objects have to be set to writable. Also, after the pointer dereferencing store 
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instruction, the access permission levels of all possible pointed-to memory objects have 

to be set to read-only. This could increase the protection overhead significantly. 

Moreover, in some cases, the points-to set can be very big, even including all possible 

memory objects, which means the compiler cannot derive any useful points-to 

information for this dereference. If we choose not to handle such cases; then we have to 

give up protecting the dereferencing store instructions and a large number of locations 

would remain unprotected which sacrifices security. 

In our scheme, we propose a profile-driven solution to the above problem. Our 

observation is that due to the limitation of static analysis, although a pointer 

dereferencing store instruction could possibly access a large set of memory objects 

according to static compiler analysis, at runtime the number of memory objects actually 

accessed by a pointer dereferencing store instruction is very limited. The same 

observation is made in  [131]. Thus, we use profiling to identify the most likely accessed 

memory object by a pointer dereferencing store instruction. Based on this information, a 

points-to table is created. The points-to table is basically a hash table indexed by the PC 

addresses of pointer dereferencing store instructions for which the compiler computed 

points-to set is large. Normally there are only tens of such entries in the hash table, so we 

can easily create a collision free hash table by tweaking the hashing function parameters 

to avoid the overhead to maintain a spilled list.  

When handling these pointer dereferencing store instructions, all the compiler 

algorithms proceed as if the compiler knows the store instruction will access that most 

likely accessed memory object. Thus, the most likely accessed memory object will be 

properly protected. At runtime, the hardware component checks whether the pointer 
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actually points to the expected memory object by looking up in the points-to table. If the 

pointer happens to point to a different memory object, the hardware component will 

avoid checking access permissions for this pointer dereference to avoid potential false 

alarms. In this way, we are able to handle most dynamic instances of pointer 

dereferencing store instructions at the same time maintain a zero false positive rate.  

From our results, the average size of the points-to set for each pointer dereferencing 

store instruction is 1.58. The average miss prediction rate of the dynamically accessed 

memory object for those specially handled pointer dereferencing instructions is only 5%. 

This shows our profiling based scheme is highly effective and does not degrade protection 

significantly. 

6.2.6 Action Table and Special Instruction 

We now describe in detail how the compiler actually inserts protection operations 

to be executed at runtime by the hardware component. The central data structure involved 

is an action table. The action table records which action should be performed at a given 

program point on a given memory object at runtime. An example of an action table is 

shown as Table 7. The action table is a hash table that uses the PC address of an 

instruction as its key. We always create a hash table without collisions to avoid the 

overhead of maintaining a spill list. Each entry of the table has three fields – action, 

memory object starting address, and memory object size. The action field has only one bit 

– bit value 1 denotes the action of changing the corresponding access permission level for 

the memory object from read-only to writable; bit value 0 denotes the action of changing 

the access permission level for the memory object from writable to read-only. The 

memory object is identified by its starting address and its size.  
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A special instruction is inserted at every protection point to inform the processor 

that some protection operation needs to be done at the given program point. Whenever 

the processor encounters such a special instruction, it uses its PC address to index into the 

action table and to execute the desired action.  

Table 7. Action table. 

Action Starting address Size 

0 Addr1 4 
1 Addr2 8 
0 Addr3 30 
 …  

Another possibility is to insert instructions to implement the intended protection 

operations directly instead of recording them in a separate action table. However, the 

action would require several instructions to implement, which indicates more changes to 

the standard ISA of the processor and more code space overhead. Using a separate action 

table plus one special instruction appears to be a better solution to us. 

The action table requires the start address and the size of the modified memory 

object for each action. The important problem is that the information may not be available 

during compilation time. In general, during compilation, we do not know the address of the 

local stack objects and the heap objects. For some heap objects, we may not even know 

their sizes. To solve this problem, the action table has to be made writable and the compiler 

has to insert instructions to fix the action table for stack and heap objects. Such 

modifications of the action table occur after each dynamic memory allocation and each 

function entry point. The inserted code will update the action table with dynamic obtained 

address and size information when necessary. 
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Making the action table writable brings some security complications. Ideally, the 

action table should be put into a reserved address space and made read-only to the user 

program, so that it can only be written by the hardware component of our protection 

scheme to avoid malicious corruptions from the user program. Now how to protect the 

action table becomes an issue. Our solution is to apply the protection mechanism in a 

hierarchical way. That is, we use the same method to protect the action table residing in 

the memory. But in this case, the scale of the problem is much smaller and the problem is 

much simpler. We know the action table should only be modified by those fix-up 

instructions inserted by the compiler. We can regard the action table as one single 

memory object and its address is predetermined. Thus, the additional action table for 

protecting the original action table can be easily constructed. It can be put into a reserved 

address space, thus is not accessible to the user program but only accessible to the 

hardware component. So it cannot be corrupted by the attacker. Then the original action 

table can be protected properly. 

6.3 Architectural Support 

Figure 70 illustrates the necessary architecture support for our work. There are 

three major data structures. Action table and points-to table are simple small hash tables 

as explained previously. They are easy to manage due to their sizes and accesses to them 

are cached as data in data caches. The access bit table records the access permission level 

for each memory object. It is allocated into a reserved space and can only be accessed by 

the hardware component of our protection scheme, thus is protected from tampering by 

the user program. Access bit table is large and accessed frequently. It has to be carefully 

managed to avoid significant space and performance overhead. A very similar problem 
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exists in the Mondrian Memory Protection system work  [120] and it provides an 

excellent reference on how to manage this large access permission table. We largely 

follow their design, regarding each memory object as a memory segment in their work. 

We deploy multi-level permission table with mini-SST entries that are elaborated in  [120]. 

To improve performance, a protection lookaside buffer and sidecar registers are also 

deployed. Utilizing the design in  [120] greatly reduces the space and performance 

overhead of our access bit table.  

Access bit 

instruction CPU 

Action Table 
Protection 
instruction

set access bits 
fetch 

Alarm 

violation 
Points-to table

Non-Pointer 
dereferencing 

store 

Object matches

Pointer 
dereferencing 
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Figure 70. Architecture support overview 

There are two kinds of operations performed by the hardware component. Upon 

fetching a protection instruction, the processor uses the PC address of the protection 

instruction as the key to index the corresponding entry in the action table.  Then the 

access bits for the memory object will be set according to the starting address and the size 

information. Another case is when a store instruction is fetched. The processor first 

checks whether this store instruction is one of the specially handled pointer dereferencing 

instruction by looking up in the points-to table. If the instruction is in the points-to table, 

then it is specially handled. If the memory object dynamically pointed by the pointer does 

not match with the object recorded in the points-to table, then the processor will skip the 
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access permission checking for this store instruction to avoid any false alarm. Otherwise, 

the access bit table is looked up to find out whether the memory location is allowed to be 

written. If the instruction violates the access permission, then an alarm is raised 

indicating the program is under attack. 

6.4 Evaluation 

All compiler implementations are done in the Machine SUIF compiler 

infrastructure  [68], a research compiler infrastructure for profile-driven and machine-

specific optimizations. Machine SUIF can be used to instrument programs for profiling 

and carry out various code transformations and optimizations.  

Our experiments are based on x86 Pentium architecture. In our experiments, we 

first train our benchmarks to gather the basic block profile which is fed back to compiler 

passes for memory protection. After the compiler passes are performed, the generated 

binaries are evaluated by input data sets different from the ones used in training runs as 

the test run. The benchmarks used are the same daemon programs used in the evaluation 

of the anomalous path checking scheme and the infeasible path detection scheme. 
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Figure 71.  Effects of compiler optimizations. 

Figure 71 shows the effects of our compiler optimizations. Three compiler 

optimizations, including protection point hoisting/delaying, protection point selecting and 

protection operations grouping, are proposed to reduce the number of dynamically 

executed protection points. On average, protection point hoisting/delaying reduces the 

number of dynamic protection points by 27.1%; protection point selecting reduces the 

number of dynamic protection points by 46.1%; protection operations grouping reduces 

the number of protection points by 10.1%. Overall, those optimizations reduce the 

number of dynamic protection points by 83.3% on average. The reduction results in 

significant savings in performance overhead. 



 194

wu-ftp
d

xin
etd

cro
nd

sys
klo

gd
atftp

d
httpd

sendmail
ssh

d

portm
ap

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2
baseline
after optimization

 

Figure 72. Performance degradation. 

Figure 72 shows the performance degradation under our scheme. All hardware 

support modeling is done inside SimpleScalar  [11] targeted to x86  [114]. The parameters 

for the processor modeled are shown in Table 8. The performance under the baseline 

protection scheme and the performance after our optimizations are shown in the figure. 

Performance numbers are normalized to the original program binary without protection. 

From the results, the average performance degradation under the baseline protection 

scheme is 41.4%. The performance degradation mainly comes from the overhead to 

access the access bit table. Other sources of performance degradation include accessing 

the action table and the points-to table, and executing the compiler inserted instructions to 

fix up the action table. The average performance degradation after optimizations is 13.0%. 

So our optimizations are able to reduce the performance degradation due to data 

protection significantly because optimizations are designed to reduce the number of 

dynamic protection points greatly. 
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Table 8. Parameters of processor simulated. 

Clock frequency 1 GHz Branch predictor 2 Level 
Fetch queue 16 entries BTB 512 entries, 4 -way 
Decode width 4 PLB  128 entries 
Issue width 4 L1 I/D DM, 32K, 1 cycle 

32B block 
Commit width 4 Unified L2 8way, 32B block 

1M (16 cycles)  
RUU size 64 Memory bus 200M, 8 Byte wide 
LSQ size 32 Memory latency first chunk: 120 cycles, 

inter chunk: 10 cycles 
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Figure 73. Security measurement. 

Figure 73 shows the security measurement. Under our baseline protection scheme, 

the access permission level for a memory object is set to writable just before a store 

instruction writing to it and set to read-only right after the store. Thus the baseline 

protection scheme can detect all memory corruption attacks exploiting the flaws in the 

program such as buffer overflows and format string vulnerabilities, since an attack needs 

a store instruction to do the tampering and that attacking store instruction has to be 
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between the pair of “set to writable” and “set to read-only” operations. The baseline 

scheme corresponds to the 100% protection shown in Figure 73. Due to the motion and 

removal of protection points caused by compiler optimizations, some memory locations 

could be left unprotected. The reason is that another store instruction str2 may be 

between the “set to writable” operation and the “set to read-only” operation for str1 now, 

and str2 could be the attacking store instruction and could possibly tamper the memory 

object to be written by str1. Also, if a pointer points to an unexpected memory object at 

runtime, the write will not be checked against the access permission table, thus there 

could be false negatives too. We count the number of dynamic store instructions like str2 

and the number of dynamic pointer dereferencing store instructions with an unexpected 

target memory object, then subtracted those from the total dynamic store instructions to 

measure the protection strength after optimizations. As per this calculation, a higher 

number of dynamic store instructions after subtraction means a higher protection strength.  

The results in Figure 73 indicate that the compiler optimizations do not lead to 

much security degradation. On average, protection points hoisting/delaying degrades the 

protection strength by 3.6%; protection points selection degrades the protection strength 

by 7.8%; protection points grouping degrades the protection strength by 0.7%. Overall, 

after optimizations we achieve an average of 87.8% protection over the baseline scheme, 

ranging from 80.2% to 92.9%. So our scheme achieves a good memory protection with 

reasonable performance degradation. It should also be noted that the above method to 

measure protection strength represents the worst case. The above method assumes that 

every store instruction moved into a pair of “set to writable” and “set to read only” 

operations could be an attacking store instruction or an attacking point. In reality, 
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normally a program only has a few possible attacking instructions. For example, for a 

buffer overflow attack exploiting the strcpy function, the store instruction in the strcpy 

function implementation is the possible attacking instruction. As long as our 

optimizations do not move that possible attacking instruction into a pair of “set to 

writable” and “set to read only” operations (which is very unlikely), the security will not 

be harmed at all. Thus, our scheme should have much stronger detection strength against 

real-world attacks than represented by the above worst case. 
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Figure 74. Detected simulated attacks (extreme condition). 

We also performed simulated attack experiments to further evaluate our data 

tampering detection scheme. We run the benchmarks in the simulator and then randomly 

tamper a memory location by making a dynamic store instruction write to a different 

memory object to see whether our scheme is able to detect the tampering. For each 

benchmark, we perform such simulated attacks by tampering at 1000 different memory 

locations.  
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Although such a fault injected is not a real attack, we believe that our fault 

injection model provides an extensive coverage of real world attacks and should represent 

the worst case. Our fault injection model makes no assumptions about the attack behavior 

and assumes that any memory object can be tampered by any dynamic store instruction. 

The ability of real-world attacks is much more limited than this. For example, the 

classical stack buffer overflow attacks cannot tamper arbitrary memory locations and can 

only tamper memory locations following the unchecked and overflowed buffer. 

Moreover, such stack buffer overflows normally tamper a continuous region of memory 

instead of a specific memory location, making the detection of those attacks much easier. 

Some attacks, such as format string attacks and heap overflow attacks, actually enable the 

attacker to tamper arbitrary memory locations. However, the tampering is done by a 

specific attacking store instruction. Only when that instruction is executed, could possibly 

memory tampering be done. Which store instructions could be attacking instructions are 

attack dependent. So to do a limit study of our scheme, in this experiment, we again 

assume that every store instruction could be an attacking instruction and our results 

represent the worst case. Figure 74 shows the percentage of attacks detected. On average 

92.7% of the randomly injected memory tamperings are detected, which shows that our 

scheme is very effective to protect memory tampering attacks even under the worst case. 

We also tested our scheme against several real attacks discussed in  [17], including 

format string attacks against user identification data, heap corruption attacks against 

configuration data, stack buffer overflow attacks against user input data and integer 

overflow attacks against decision-making data. In all of those attacks, there are some 

attacking store instructions used to corrupt memory state and they achieve the memory 
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corruption by writing to a memory object that should not be modified by those 

instructions at all. In the baseline scheme, such memory corruptions by illegally 

tampering a memory object are easily detected since a memory object is only marked as 

writable during the span of the execution of a legal store instruction to the memory object. 

After our optimizations, as previously discussed, as long as the attacking store instruction 

of an attack does not result in a pair of “set to writable” and “set to read-only” operations 

for the target memory object, the attack will detected. The miss detection is a rare event 

since normally there are only a few possible attacking store instructions inside a program 

and for the attack to succeed, some specific memory object has to be tampered rather than 

any memory object. We found that even after optimizations, our scheme can detect all of 

these exemplary attacks shown in  [17].  
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Figure 75. Detected simulated attacks (more realistic condition). 

To further get a sense of how our data tampering detection scheme performs 

under a more realistic condition rather than under the extreme condition assuming that 

every store instruction could be an attacking instruction, we tried to limit the possible 
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attacking store instructions. Instead of considering every store instruction as a possible 

attacking store instruction, we first tried to regard only store instructions depending on 

external inputs as possible attacking instructions. Those store instructions can be affected 

by the attacker and are thus dangerous. However, we found that actually most store 

instructions depend on external inputs directly or indirectly so this method does not really 

give different results. Then we tried to survey existing vulnerabilities and got a list of 

well-known dangerous standard library functions, such as strcpy, free, printf and a lot of 

others, and then got the attacking store instructions in those functions. We performed a 

similar simulated attack experiment but this time regarded only those store instructions as 

possible attacking store instructions. Since the number of possible attacking store 

instructions is greatly reduced, we got much better results as shown in Figure 75. On 

average, 98.9% of simulated attacks are detected. This experiment is more realistic than 

the limit study. However, it is optimistic in that it only considers existing popular 

vulnerabilities in standard libraries. On the other hand, it is also very pessimistic since it 

assumes that tampering any memory object would be useful to the attacker. In reality, 

some very specific memory object has to be tampered for the attacker to launch a 

successful attack. However, which memory objects are interesting is highly application 

dependent. 

The space cost is shown in Table 9. There are four fields in this table. The first 

three fields represent the sizes of the action table, the access bit table, and the points-to 

table. The last field shows the total code size increase of the program due the insertion of 

protection operations. The additional action table to protect the original action table only 

requires a little space, so we do not show its size here. We use a multi-level permission 
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table as in  [120]. The average sizes of the action table, the access bit table, the points-to 

table, and the code increase are 12361 bytes, 319 KB, 776 bytes and 7721 bytes 

respectively. The access permissions for one object are compacted using the Mini-SST 

 [120] technique, which could save a lot of space. The results show that the space cost of 

our protection technique is at most several hundred kilo bytes, which is very acceptable 

for modern computers. 

Table 9. Space cost measurement. 

Benchmark Action table 
(byte) 

Access bit table
(KB) 

Points-to table 
(byte) 

Code size increase 
 (byte) 

Telnetd 1580 193 388 1216 
wu-ftpd 5972 376 700 3980 
xinetd 3084 151 652 2204 
crond 588 263 304 492 

sysklogd 1728 124 312 1232 
atftpd 508 231 336 364 
httpd 41384 847 1920 25864 

sendmail 57784 524 1268 33992 
sshd 10804 360 1624 7716 

portmap 176 122 260 148 
 

6.5 Summary 

A large category of realistic memory tampering attacks do not alter program 

control flows at all, which makes control flow monitoring based anomaly detection 

schemes completely helpless when combating with those attacks. In this chapter, we 

propose a compiler and micro-architecture collaboration framework to perform memory 

protection and to detect memory tamperings directly instead of trying to infer memory 

tamperings from anomalous control flows. Three optimizations involving hoisting, 

selecting and grouping of memory protection operations are designed to reduce the 

performance degradation of the baseline scheme. By carefully crafting these 
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optimizations, our empirical study shows that the security of the scheme is not reduced 

much whereas the performance degradation is reduced significantly. Our experiments 

prove that our scheme achieves strong memory protection with tight control over the 

performance degradation. 

Comparing with the anomalous path checking scheme and the infeasible path 

detection scheme, the data tampering detection scheme presented in this chapter is able to 

detect attacks not altering program control flows, while those two schemes based on 

control flow monitoring cannot. The data tampering detection scheme also achieves zero 

false positive rate since it is based on static compiler data flow analysis. Thus, the 

security strength of the data tampering detection scheme is superior to the previous two 

schemes we discussed. However, the hardware support required for the data tampering 

detection scheme is more complicated thus introducing more hardware cost. More 

importantly, the performance degradation (13% on average) is much more significant 

than the previous two schemes. Thus, the data tampering detection scheme should be 

applied in situations in which the maximum security strength is the first priority or the 

performance degradation incurred is affordable. Finally, in the next chapter we will show 

that the data tampering detection scheme has significant advantage in terms of intrusion 

recovery. The reason is that  both the anomalous path checking scheme and the infeasible 

path detection scheme try to infer data tampering from anomalous control flows, thus it is 

impossible for them to detect the data tampering until the tampered data is used by the 

program. In other words, there could be an arbitrarily long interval between memory 

tampering and attack detection, making intrusion recovery a very difficult problem. Such 

a problem does not exist in the data tampering detection scheme. Detailed discussions 
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regarding this issue can be found in the next chapter.  Thus, the data tampering detection 

scheme should be given a higher priority if intrusion recovery is highly desired.  

So far we have proposed three anomaly detection schemes. Each of them has its 

advantages and disadvantages. It is necessary to give some guidance on how user should 

decide to choose which anomaly detection scheme. In general, due to its security 

advantage, the data tampering detection scheme should be given the highest priority as 

long as the performance overhead incurred is acceptable. If the performance overhead is 

not affordable, the anomalous path checking scheme and the infeasible path detection 

scheme should be then considered since they incur only minor performance degradation. 

Then the user needs to evaluate the cost of deploying the anomalous path checking 

system. The system has to be properly trained, bringing significant initial installation cost. 

Also there will be false positives and managing a possibly large number of false positives 

is also an important concern. The installation and maintenance cost generally depends on 

the complexity of the protected software. If the cost is acceptable, then the anomalous 

path checking scheme should be chosen due to its better detection strength. Otherwise, 

the infeasible path checking scheme should be chosen since it does not have false 

positives at all. As a summary, the pseudo code to decide an anomaly detection scheme is 

shown in Figure 76. 

 IF estimated performance overhead (through simulation) of the data 
tampering detection scheme is affordable THEN 

 Choose data tampering detection scheme; 
ELSE IF the initial installation cost and the maintenance cost of the 

anomalous path checking scheme is affordable THEN 
 Choose anomalous path checking scheme; 
ELSE 
 Choose infeasible path detection scheme; 

 

Figure 76. How to decide an anomaly detection scheme. 
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7 INTRUSION ANALYSIS AND INTRUSION RECOVERY  

After spending significant efforts on devising intrusion detection schemes, we 

change our focus into another important aspect of software protection – intrusion 

recovery – in this chapter. No security system is bullet-proof and is able to prevent all 

attacks. To be realistic, we have to assume that some attacks will be able to evade the 

intrusion prevention mechanisms implemented. To protect software from those attacks, 

we build a second line of defense consisted of intrusion detection, intrusion analysis and 

intrusion recovery mechanisms. We have discussed several efficient intrusion detection 

schemes in previous chapters. In this chapter, we focus on intrusion analysis and 

intrusion recovery. 

After an intrusion is detected, most previous approaches simply shut down the 

attacked process to avoid any further damage. However, security implies several 

important properties including confidentiality, integrity and availability  [3]. Availability 

is an equally important security property to be enforced but gets far less attention. In the 

sense of software security, availability means recoverability from attacks or intrusion 

recovery. Simply shutting down the attacked process is unacceptable for software 

providing critical services. A complete software protection scheme should have the 

ability to analyze an attack and recover from the attack whenever possible. Thus, 

intrusion analysis and intrusion recovery is an important goal of our secure infrastructure.  

7.1 Background and Motivation 

Intrusion recovery is critical since no software system can be made perfect. There 

are always software bugs, configurations errors etc. to be exploited by the attacker. Upon 

detection of an attack, the simplest response is fail-stop, i.e., shutting down the system to 
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avoid further damage. However, shutting down the system completely leads to 

inconvenience for the users and denial of services. For systems providing critical services, 

it may cause huge financial losses. In areas such as aircraft control, battlefield control, it 

could be disastrous.  

Intrusion recovery enables software to recover from attacks and continue correct 

software execution even when tampering occurs. Intrusion analysis is an indispensable 

step for intrusion recovery. We can recover from an attack only after we understand the 

attack. Unfortunately, although failure recovery is often the most important aspect of 

security engineering, it has not been carefully addressed. Most of the computer security 

research has dealt with confidentiality and most of the rest with authenticity and integrity. 

However, the actual expenditure of systems providing critical services may go the other 

way around  [3].  

Availability is a traditional research topic in fault tolerant computing. Traditional 

solutions to provide availability in fault tolerance area are replication  [81] [90] [66] [69] [14] 

and checking-pointing/roll back  [57] [116] [29] [86] [99]. Those solutions cannot be simply 

copied to security area. Replication is very effective to combat random faults since the 

chances that multiple replicated systems experience random faults at the same time are 

extremely low. However, it is very likely that multiple replicated systems are attacked 

coordinately at the same time since attacks can be well organized. Software versioning  [7] 

could be used to mitigate the problem. Overall, replication is a very expensive way to 

provide availability since the system cost with n-replication is order of n times larger. 

Checkpointing backs up the program state for later recovery. The size of the program 

state could be large. If done in software, checkpointing could incur significant overhead. 
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For example, in  [116], the checkpointing interval is 30 minutes and each checkpointing 

costs up to several minutes with program state size up to tens of megabytes. The resulting 

overhead could prevent fine-grained checkpointing. To reduce performance overhead, 

checkpointing can be done incrementally through logging of changes of in program state. 

Although fault tolerance is a traditional research area, there has been limited 

research on intrusion recovery for secure software. DIRA  [98] is a GCC compiler 

extension to combat buffer overflow attacks. Instead of merely detecting buffer overflow 

attacks, DIRA unifies the functionality of attack detection, attack identification (intrusion 

analysis) and attack repair. DIRA achieves attack identification and repair by a memory 

updates logging based scheme. DIRA is among the first to make an effort to analyze and 

recover from attacks, but it has many limitations. It only handles a limit set of buffer 

overflow attacks targeting to tamper return addresses and function pointers. As we have 

shown previously, those attacks are only the most basic ones and real attacks can be 

much more sophisticated. The memory updates logging algorithm of DIRA is designed 

for simplicity with little compiler analysis and frequently sacrifices security strength. It 

only logs updates to global variables and ignores local variables. It is not clear that 

whether the scheme is able to handle heap objects. Moreover, the current DIRA compiler 

only tracks data dependencies carried by simple assignment operations such as A=B and 

proxied functions, it cannot identify dependencies that involve any arithmetic expressions, 

e.g., B=A+C. This means that DIRA’s recovery scheme will not be able to trace a 

corrupted data structure back to the attack point as long as the data structure is computed 

through some form of transformation other than assignment operations. Even if DIRA is 

enhanced with powerful compiler analysis, the limitation of static compiler analysis is 
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well understood, especially when dealing with aliased data. The performance degradation 

of the scheme is up to 60% with an average of 25% for the benchmarks tested even it 

only deals with return addresses and function pointers in a limited way. As shown in  [17], 

a lot of other software data is critical to security. If all security critical data is handled in 

this scheme, the performance overhead will be unacceptable.  
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Figure 77. Data replication/scattering based on secret sharing. 

We are also among the first to introduce intrusion recoverability into secure 

software. Our previous work  [127] proposed applying secret sharing  [93] in the process 

memory space to achieve confidentiality, integrity and availability at the same time for 

critical data. It can be regarded as one example of data replication/scattering technique. 

Data replication/scattering creates and distributes data replicas in the software process 

memory space. The goal is to achieve recoverability with redundancy. To recover from 

an attack, all replicas are gathered and the value given by the majority is regarded as the 

original value. The basic idea of our secret sharing scheme is illustrated in Figure 77. The 

data to be protected is first secret shared and multiple shares for the data are obtained. 

Then the shares are distributed to random locations in the memory space only known to 
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the process to which the data belongs. If the number of shares tampered is below a 

threshold and other shares are intact, the scheme is able to recover the tampered data. 

During our secret sharing work, we were able to understand the data 

replication/scattering technique better. We realized that the technique has several 

important limitations. First, the recoverability is not as good as checkpointing and 

memory updates logging, since the replicas reside in a limited buffer space. The attacker 

can wipe out all replicas in the extreme case and the data replication/scattering technique 

has no way to recover from that. Second, the recoverability strength largely depends on 

the size of the buffer space in which the replicas are randomly distributed. A stronger 

recoverability requires a larger memory space to defend brute-force guessing, which 

could introduce significant memory cost. Finally, the technique can recover from 

hardware attacks and attacks from other malicious processes, but it has difficulty to 

recover from attacks exploiting software flaws like buffer overflows. If the attacker can 

tamper some software data by impersonating the software, all the replicas for the data 

would be automatically tampered.  

For data replication/scattering technique to defend against attacks exploiting 

software flaws, the data protected by replication/scattering has to be treated differently 

from the data without protection. One possibility is to introduce a new pair of scattering 

load/store instructions. The new scattering load/store instructions can be implemented 

either by software or by hardware with instruction set architecture (ISA) support. The 

user first decides what to be protected then the compiler generates proper instructions. 

Protected data is accessed with scattering loads/stores and unprotected data is accessed 

with normal loads/stores. Then, we can sandwich protected data with unprotected data to 
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defend against attacks exploiting software flaws. How this could help is illustrated in 

Figure 78. 
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Figure 78. How data replications/scattering defends against buffer overflows. 

As shown in the example, by providing an oversized input, the attacker can still 

overflow the buffer. However, the buffer is written using normal stores. Thus, by 

overflowing, the attacker tries to tamper the protected data using normal stores, which is 

futile since to access the protected data correctly, scattering loads/stores have to be used. 

This above idea helps data replication/scattering technique combat buffer overflow type 

of attacks. However, the above tweak is not a clean solution and in general data 

replication/scattering is vulnerable to attacks exploiting software flaws. 

Although the protection strength of a data replication/scattering scheme is not 

satisfying, it can recover tampered data in real-time. The latency of recovering data by 

program state checkpointing or memory updates logging could be in terms of 

milliseconds or even seconds, but data replication/scattering technique can recover data 

in tens of or hundreds of cycles as shown in our previous work. Real-time intrusion 

recovery is an important property which may be critical to real-time applications. Thus, 

data replication/scattering scheme could be an option desired in certain circumstances. 
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But in this dissertation work, we focus on developing a more general intrusion analysis 

and intrusion recovery scheme with strong recovery strength thus will not explore more 

into data replication/scattering schemes.  

Recently, Shi et al. proposed a system design using a chip multi-processor to 

provide intrusion tolerance and self-recovery for server applications  [97]. They use a 

checkpointing based approach to recover server applications under attack. Their scheme 

takes a snapshot of the application context and memory state before the server application 

handles the next request. If the request turns out to be malicious, the system can discard 

the malicious request and rollback the application's state to a known good one through 

checkpointing. Their scheme essentially is a checkpointing based approach with 

architecture support to achieve low performance overhead.  

However, their strategy of checkpointing is overly simplistic. In their scheme, the 

server takes a snapshot of its process context and incremental memory state upon receipt 

of a new network request. The request is then handled by the application. If later, an 

intrusion is detected by the intrusion detection software, the application's memory state is 

rolled back to a state before the malicious request was handled. The problem is that there 

could be an arbitrarily long interval between the damage to the process state and the 

detection of the attack. For example, an attacking packet exploiting a buffer overflow 

vulnerability can tamper a memory location, but under current intrusion detection 

schemes the tampering most likely will not be detected until the tampered memory 

location is used by the software. After all, if such a tampering can be detected 

immediately, attack recovery would be a much simpler problem. Thus, it is not clear 

when it is safe to conclude that a packet is not malicious. Before the detection of the 
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attack caused by a malicious packet, hundreds of innocent packets may have arrived and 

it is likely that the proposed scheme will identify an innocent packet as the malicious one 

and roll back the process state to a corrupted one. Moreover, it is not clear how to define 

a request to the server. Assuming one packet is a request is overly simplistic. An attack 

can be easily launched by multiple network packets.  

In this dissertation work, we aim to build an intrusion analysis and intrusion 

recovery mechanism with strong recovery strength and small performance degradation by 

utilizing micro-architecture level support. In our work, we assume that the attacker 

exploits the software flaws through its interfaces to the outside world, for example, 

program arguments, program input files, keyboard inputs, incoming packets, external 

events etc. In other words, if the software has absolutely no interactions with the outside 

world, it is impossible to attack the software by exploiting its flaws. We believe this 

assumption is very realistic. If the software tampers itself even without any interaction 

with the outside world, it probably should be regarded as a software bug rather than an 

attack.  

We believe that to recover from an attack after its detection, two major tasks have 

to be done. First, we need to analyze the attack to identify exactly when and how the 

attack happens so that we can identify the tampered system state and gather useful 

information for later forensic analysis. We call this step intrusion analysis. Proper 

intrusion analysis is the basis for later recovery and cannot be arbitrarily done as in  [97]. 

Otherwise, we could roll back the program into a tampered state. Second, the tampered 

system state has to be recovered through certain mechanisms such as checkpointing. We 

focus on the attacks tampering memory state and recovery of memory state in our work. 
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Memory state tampering is the most common starting point of an attack and we can limit 

our problem scope greatly by focusing on it. 

It is very easy to identify memory state tampered by hardware attacks and attacks 

from other malicious processes in the presented hardware infrastructure. In the hardware 

infrastructure, data residing in the untrusted external memory is protected 

cryptographically with a process specific key and is always verified before used by the 

secure processor. If the data is tampered by hardware attacks or other malicious processes, 

it will be detected by the hardware integrity checking scheme immediately. Also, the 

hardware integrity checking scheme knows exactly which memory block is tampered. 

Thus, the possible tampering by hardware attacks or other malicious processes is very 

limited.  

 
     D =  * p 
     E  =  *q 
     B  =  D + E 
     C  =  F + G 
     A  =  B + C 
     Branch A > 0 anomalous 

 

Figure 79. Difficulty of identifying tampered data. 

However, the hardware integrity checking scheme does not help against attacks 

exploiting flaws in the protected software itself, such as buffer overflows. Our anomaly 

detection schemes can monitor the software execution and detect attacks exploiting 

software flaws by detecting anomalous program paths, infeasible program paths or data 

access anomalies. Once an anomaly is detected, which individual instruction caused the 

anomaly is identified. The anomaly detection scheme can provide such information. Then 

we need to identify which data is possibly tampered and which external inputs cause the 
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anomalous instruction. That is a difficult problem as illustrated in Figure 79. The figure 

shows a piece of pseudo code, in which branch A>0 has been identified as a jump 

instruction causing an anomaly. The branch instruction directly depends on the value of 

A. But can we simply assume that A is tampered by the attacker? Unfortunately we 

cannot. From the pseudo code, the value of A depends on the values of B and C. The 

value of B depends on the values of D and E, and so on. For example, the anomalous 

branch can be caused by a tampering to D instead of A. Such a dependency chain can be 

arbitrarily long and tampering to any data on the dependency chain could be the cause of 

the anomalous path. 

Before we elaborate the details of our intrusion analysis schemes, we would like 

to point out the advantage of our data tampering detection scheme in terms of intrusion 

recovery. In general, there are three phases from the initiation of an attack to the 

detection of the attack. During the first phase, the attacker injects certain malicious input 

into the program to initiate the attack. Such malicious input may or may not cause 

tampering to the memory state immediately. For example, the malicious input can be 

copied several times and only one of the temporary buffers does not have enough space 

to hold the input. In that case, tampering to memory state will not happen until the 

malicious input is copied into the vulnerable buffer. During the second phase, tampering 

to the memory state is actually done. During the third phase, the tampered memory state 

is used by the victim program then the attacker is able to take control of the program or 

cause other damages.  

Since most intrusion detection schemes including our anomalous path detection 

and infeasible path detection are based on control flow monitoring, they are not able to 
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detect the attack until the tampered memory state is used by the program and leads to 

some anomalous program behavior. There could be an arbitrarily long interval between 

the tampering of the memory state and the use of the tampered memory state, which 

brings difficulty during intrusion analysis and intrusion recovery. On the other hand, our 

data tampering detection scheme detects memory tampering directly instead of trying to 

infer memory tampering from control flow tampering. It can detect the attack in the 

second phase of the attack. In many cases, the malicious input causes memory tampering 

immediately. In those cases, our data tampering detection scheme can detect the attack 

immediately thus has significant advantage in terms of intrusion analysis and intrusion 

recovery. 

7.2 Intrusion Analysis Based on Logging 

Intrusion analysis and tampered memory state identification can be done through 

dependency backtracking of the anomalous instruction. As shown in Figure 79, there are 

two major issues in such a scheme. First, we need a mechanism to enable dependency 

backtracking and identify which memory values the anomalous instruction depends on. 

Second, we need to be able to stop backtracking dependencies as early as possible but 

safely. Otherwise, it is very likely that all memory state has to be regarded tampered and 

to recover from the attack, the program has to restart. Compiler can help on dependency 

tracking, but it has important limitations. First, it can only track dependencies statically, 

thus it will not be as efficient and precise as dynamic tracking. Second and more 

important, compiler analysis has difficulty to handle pointer dereferences. An example is 

shown in Figure 79. The value of D depends on the value pointed by the pointer p. In 

many cases, compiler cannot figure out which data pointer p is actually pointing to. In 



 215

those cases, we have to regard the value of D possibly depending on any data, which 

means all data is suspicious and could have been tampered. Thus, we believe that a 

hardware based dynamic dependency backtracking mechanism is necessary since at 

runtime we could know the exact target of a pointer. 

To enable dependency backtracking from any program point, we devise a logging 

based scheme. The logging scheme records two kinds of dynamic program information. 

The first is dynamic control flow trace. The second is memory reference trace. With these 

two kinds of information, we can know the complete dynamic program path followed by 

the execution thus we know how to backtrack the execution. At each memory reference 

point, we also know exactly which memory address is referenced.  

To stop tracking dependency safely, we need to make certain assumptions on the 

attacks. As mentioned earlier, in our work, we assume that the attacker exploits the 

software flaws through its interfaces to the outside world, for example, program 

arguments, program input files, keyboard inputs, incoming packets, external events etc. 

Under this assumption, the dependency backtracking can stop when 1) the data value 

does not depend on the external inputs at all, for example, the data value is a constant; 2) 

the data value is directly defined by the external input. The second case happens when the 

program interacts with the outside world, for example, the values of the program 

arguments (argv in the C language). We know the data values are defined by some 

external input and that input is suspicious, but in our work we limit our backtracking 

inside the victim process and we will not backtrack the external input further. 

We elaborate our logging scheme below. To record dynamic program paths, the 

hardware logs all dynamic jump instructions changing the program PC in a non-
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sequential way. For each such dynamic jump instruction, we record the PC address of the 

jump instruction and its target address. Also, for each dynamic memory reference, we 

record the memory address referenced and the type of memory operations. Obviously, 

types of memory operations should include memory reads and memory writes. In our 

scheme, for the purpose of dependency backtracking, we also introduce a special type of 

memory operation – external input. External input is a special type of memory writes in 

which the memory location is indicated to be directly defined by some external input, 

through I/O operations, system calls etc. In our work, we assume that I/O port operations 

are done through a memory-mapped I/O scheme. External input logs facilitate the 

backtracking to stop when the memory location is defined by some external input directly, 

as discussed previously. External input logs are generated by special system support 

when the program receives outside inputs. Also note that for memory reference records, 

we do not need to log the PC address for the reference as long as we create a record for 

every dynamic memory reference. Since we have complete dynamic program path, the 

memory reference records can be easily mapped to the memory references of the program 

code. We will illustrate that by an example. The data structure of a log record under our 

logging scheme is shown in Figure 80. 
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enum  log_type_t { PATH, MEM}; 
enum  mem_type_t  {READ, WRITE, EXT_INPUT}; 
struct log_t { 
        log_type_t log_type; 
        union { 
                struct  { 
  addr_t    pc; 
  addr_t    target; 
     } path_info; 
     struct  { 

mem_type_t mem_type; 
addr_t     address; 

} mem_info; 
        } log_info; 
}; 

 

Figure 80. Data structure of a log record. 

Based on the information logged, we can derive the dependency backtracking 

algorithm. The algorithm is formalized in Figure 81. The algorithm assumes a RISC 

instruction set architecture. 
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Input: The anomalous instruction and the log of program execution
Output: A set of suspicious external data input points 
 
set W = ∅               // working set of registers/memory addresses 
set REG_DEF (inst) = defined register of the instruction 
set REG_USE (inst) = used register of the instruction 
set INST(pc) = instruction at instruction address pc 
set cur_inst = INST(cur_pc) 
 
Algorithm: Dependency backtracking 
1. cur_pc = anomalous_pc  
2. W = W ∪ USE( cur_inst ) 
3. While (W<>∅) do 
4.     switch cur_inst->type 
5.     case LOAD/STORE:  
6.         if (cur_log->log_type <> MEM) 
7.             ERROR(“no corresponding log record for the memory reference”); 
8.         endif 
9.         if (cur_inst is LOAD) 
10.             Assert(cur_log->mem_info.mem_type == READ) 
11.             if (REG_DEF(cur_inst) ∈ W) 
12.                 W = W – REG_DEF(cur_inst); W = W ∪ cur_log->mem_info.address; 
13.            endif 
14.         else  // STORE 
15.            Assert(cur_log->mem_info.mem_type == WRITE) 
16.            if (cur_log->mem_info.address ∈ W) 
17.                 W = W – cur_log->mem_info.address; W = W ∪ REG_USE(cur_inst); 
18.            endif 
19.         endif 
20.         cur_log = PREV(cur_log) 
21.     case OTHER: 
22.         if (REG_DEF(cur_inst) ∈ W) 
23.             W = W – REG_DEF(cur_inst); W = W ∪ REG_USE(cur_inst); 
24.         endif 
25.     end switch 
26.     if (cur_log->log_type == MEM) && (cur_log->mem_info.mem_type == EXT_INPUT) 
27.         W = W – cur_log->mem_info.address 
28.        add program point corresponding to cur_log into suspicious_set 
29.        cur_log = PREV (cur_log); 
30.     endif 
31.     if (cur_log->log_type == PATH) && (cur_log->path_info.target == cur_pc) 
32.         cur_pc = cur_log->path_info.pc      
33.     else 
34.         cur_pc = cur_pc – 4 ;   
35.     endif 
36. endw 
37. return suspicious_set 

 

Figure 81. Dependency backtracking algorithm. 

Assume the size of one instruction is four bytes. The dependency backtracking 

algorithm takes the anomalous instruction as input and finds out a set of suspicious 

dynamic external input points, which possibly cause the anomalous instruction. The 

algorithm examines the program instructions in the reverse order of the dynamic control 
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flow. If the current instruction is a load instruction, the algorithm removes the defined 

register from the working set and puts the accessed memory address into the working set. 

The accessed memory is obtained from the memory reference logs. If the current 

instruction is a store instruction, the algorithm removes the accessed address from the 

working set and puts the register used to define the memory location into the working set. 

For other instructions, the defined registers are removed from the working set and the 

used ones are put into the working set. Note that other instructions mentioned above 

include jump instructions to incorporate control dependence. Also note that there are 

instructions for which the used register set is empty, such as load constant, load address 

etc. The working set could be reduced after processing of those instructions. The 

algorithm also checks the existence of path logs and external input memory logs. For 

external input memory logs, the algorithm removes the memory address directly defined 

by some external input from the working set and stops backtracking for that memory 

address. Then the dynamic external input point is added to the set of suspicious external 

input points. The algorithm also checks whether the target address of the current path log 

record is same as current PC. If it is same, it changes current PC to the PC of the jump 

instruction; else it just subtracts four (the size of one instruction) from the current PC 

since the control flow was sequential. 
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… … 
// to call getchar and receive an external char 
// to B 
0x100:    soft_interrupt     // W={E} 
… … 
0x104:     ld  r0, [B]           // W={B, E} 
0x108:     ble r0, L1           // W={r0, E} 
… … 
0x10C:     ld r1, [C]            // not executed 
0x110:    ld r2,  [D]           // not executed 
0x114:     add r1, r1, r2       // not executed 
0x118:     st r1,  [A]           // not executed 
 … …   
L1:  
… … 
0x11C:     ld r1, [E]            // W={E} 
0x120:    ldc r2,  100         // W={r1} 
0x124:    sub r1, r1, r2        // W={r1, r2} 
0x128:     st r1, [A]            // W={r1} 
… … 
0x12C:     ld r1, [A]            // W={A} 
0x130:     ble r1, L2           // W={r1} 

… … 
B = getchar() 
… …  
If ( B > 0)  
… …  
    A = C + D 
… … 
Else 
… …  
    A = E  - 100 
… … 
If (A>0)  
 …… anomalous 

external input 
B 

mem 

0x108 
0x11C 

path 

read 
E 

mem 

write 
A 

mem 

Execution Logs Pseudo Code  Machine Code 

traverse 
anomalous 
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Figure 82. An example of dependency backtracking. 

Figure 82 shows a simple example of dependency backtracking. In the figure, a 

piece of pseudo code, the corresponding simplified machine code and the program 

execution logs are shown. The branch instruction at address 0x130 causes an anomalous 

path. The dependency backtracking algorithm traverses the program backward from the 

anomaly detection point, and processes the execution logs along the way. The working 

set at each program point during backtracking is shown besides the machine code. After 

processing the instruction at 0x100, the external input to define B is identified as 

suspicious and the backtracking continues to trace dependencies for E, which is still in 

the working set. 
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7.3 Intrusion Analysis Based on External Input points Tagging 

The major concern of the logging based scheme is that the storage required by 

logging could be huge and is generally unbounded, since the program can execute for an 

arbitrarily long time and generate an arbitrarily long execution trace. We could of course 

set an upper limit to the storage used in logging and discard old execution traces, but the 

storage limitation will certainly limit the ability of backtracking. The backtracking 

process may not be able to determine the point of tampering based on the limited 

information and the program may have to restart from the beginning. This concern 

prompts us to seek for an alternative scheme that possibly requires less storage. One 

important observation regarding the logging based scheme is that many entries in the 

execution trace become useless during the program execution, which is illustrated by a 

simplified example shown in Figure 83.  

 
while input_available { 
    iterations ++ ; 
    … … 

cur_input = get_input(); 
… … 
if (cur_input > REF ) { 
} 
… … 

} 

anomalous after 
10000 iterations

 

Figure 83. The problem of the logging based scheme. 

In the simplified example, the variable cur_input is redefined in every loop 

iteration. Assume the home location of the variable is in memory, a memory-write log 

and a memory-read log will be generated for the variable during each loop iteration. 

Assume an anomaly occurs after 10,000 iterations. At that time, the execution trace 
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already has 10,000 memory-read logs and 10,000 memory-write logs for the variable but 

they are completely useless in this case, because the anomalous instruction only depends 

on the value defined in the current loop iteration. The vast amount of useless logs leads to 

great space inefficiency in the execution trace. Moreover, there is no good way to delete 

those useless logs from the execution trace.  

Thus, we want to develop a scheme to avoid the huge space inefficiency and 

reduce the storage requirement imposed by the execution trace. One critical point is that 

if we aim to keep an execution trace of the program, the storage requirement will 

inevitably be huge since the program can execute for an arbitrarily long time and at a 

very high speed in modern processors. We can perform all kinds of optimizations to 

reduce the events to be logged and the size of the log, but the storage requirement would 

still increase largely linearly with the instructions executed. So we probably have to 

examine the problem from a different perspective. 

Let us revisit our goal. Our final goal is to identify a set of suspicious external 

input points that possibly cause the anomalous instruction identified. In other words, we 

want to find out what external data the anomalous instruction depends on. One way to do 

that is to keep a dynamic execution trace then backtrack the trace when an anomalous 

instruction is identified, as discussed previously. The important observation is that 

another way to achieve the goal is to dynamically update the depended external input data 

for every register and every memory location. In that way, the information is computed 

along the program execution. When an anomalous instruction is identified, we know 

which set of external input data it depends on immediately. The advantage of this scheme 

is possibly less storage requirement. The number of registers is fixed and very small. The 
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number of memory locations could be huge but normally the memory space used by the 

program is much smaller than the virtual address space limit. Moreover, the growth rate 

of the used memory space is magnitudes smaller than the growth rate of the instructions 

executed.  

We know the number of registers and memory locations is bounded. The 

important question remaining is that how much storage space is required for each register 

or memory location. For each register or memory location, we need to record its 

depended external input data point. There are two important points here. First, the 

number of static external data input points is very limited. External data is normally 

received through system calls and sometimes through I/O port operations. Both system 

calls and I/O port operations are relatively rare events in the program. Second, we have to 

track dynamic instances of static external input points. Essentially we want to find out a 

time point from which we can recover the tampered program safely. So we have to 

identify each dynamic instance of external input points.  

To identify dynamic external input points, we could use a global counter 

initialized to zero. The global counter is increased by one after each dynamic external 

input point and is used to identify the current dynamic external input point. During 

execution, the hardware updates the depended external input points for registers and 

memory locations properly along the program execution. The algorithm is shown in 

Figure 84. For clarity, the algorithm assumes a RISC instruction set architecture. 
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Input: The dynamic instruction stream 
Output: For each register or memory location, a set of external input points 

depended by it 
 
set REG_DEF (inst) = defined register of the instruction 
set REG_USE (inst) = used registers of the instruction 
set MEM_DEF(inst) = defined memory location 
set MEM_USE(inst) = used memory location 
set global_counter = 0 
 
Algorithm: External input points tagging 
1. While program_executing do 
2.     switch cur_inst->type 
3.     case EXT_INPUT: 
4.          for each register reg defined directly by the external input 
5.             cur_rec = fetch_ext_points_record(reg) 
6.             *cur_rec = {global_counter}; 
7.          end for 
8.          for each memory address mem defined directly by the external input 
9.             cur_rec = fetch_ext_points_record(mem) 
10.             *cur_rec = {global_counter}; 
11.          end for 
12.          global_counter ++  
13.     case LOAD: 
14.          mem_rec = fetch_ext_points_record(MEM_USE(cur_inst) 
15.          reg_rec = fetch_ext_points_record(REG_DEF(cur_inst) 
16.          *reg_rec = *mem_rec 
17.     case STORE:  
18.          reg_rec = fetch_ext_points_record(REG_USE(cur_inst) 
19.          mem_rec = fetch_ext_points_record(MEM_DEF(cur_inst) 
20.          *mem_rec = *reg_rec 
21.     case OTHER: 
22.          def_rec = fetch_ext_points_record(REG_DEF(cur_inst) 
23.          *def_rec = ∅ 
24.          for each reg in REG_USE(cur_inst) 
25.              use_rec = fetch_ext_points_record(reg) 
26.              *def_rec = *def_rec ∪ *use_rec 
27.          end for 
28.     end switch 
29. endw 

 

Figure 84. External input points tagging algorithm. 

During program execution, the external input points tagging algorithm processes 

each committed instruction. For each register or memory location, it maintains a set of 

external input points depended by the register or the memory location. If the instruction 

receives external inputs, for example, a system call reading keyboard inputs, the memory 

locations or the registers defined are tagged by the ID of the external input point. At such 
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an external input point, a block of memory locations may be defined and all memory 

locations defined are tagged. For a load instruction, the algorithm copies the external 

input points set of the referenced memory location to the set of the register. For a store 

instruction, the algorithm copies the external input points set of the referenced register to 

the set of the memory location. For other instructions, the external input point sets of the 

referenced registers are merged then copied into the set of the defined register.   

The algorithm is straightforward. Conceivably the algorithm could reduce the 

storage requirement of the logging based scheme since the number of memory locations 

and registers is much smaller comparing with the number of dynamic instructions. 

However, as always, the benefit comes with a cost. In the logging scheme, we only need 

to append newly generated logs to the execution trace. This no longer holds for external 

input points tagging scheme. Under the scheme, each memory location or register has a 

corresponding set of external input points. This set is manipulated frequently during 

tagging, which brings challenges to the design of the data structure. Moreover, although 

the number of memory locations and registers are bounded, the number of dynamic 

external input points possibly tagged for each memory location or register is not bounded. 

The problem is shown in Figure 85. In this simplified example, the memory location of 

the variable result will be tagged with all dynamic external input points generated during 

get_input. This number can be arbitrarily large. Although this kind of situation should be 

rare in reality, the fact that there is no upper bound of the number of elements in the set 

adds to the difficulty of the data structure design. 
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while input_available { 
    iterations ++ ; 
    … … 

cur_input = get_input(); // external input 
… … 
result = result + cur_input; 
… … 

} 
 

Figure 85. The difficulty of external input points tagging. 

Next, we discuss the data structure design of the external input points set. We 

only discuss the handling of memory locations. Registers are very limited and can be 

modeled as a tiny piece of data memory and handled in the same way. We assume that 

there is a segment of process memory space reserved to the external input points set. This 

reserved memory space cannot be accessed through machine instructions and can only be 

accessed by the hardware directly thus is protected. First, we want to be able to locate an 

EIP set by the memory location easily. In other words, the memory location can be 

transformed into its corresponding EIP set address through simple operations. To achieve 

that, the general principle is that we lay out the EIP sets by the same order as their 

corresponding memory locations. That is, the EIP set of the first memory location is laid 

out first in the EIP address space. Then the EIP set of the second memory location 

follows. The non-continuous data address space brings extra complications. Normally the 

program data space is divided into static data space, heap space and stack space. Figure 

86 shows a common layout. Static data space is easy to handle since its size is fixed. 

Stack space and heap space grow at runtime and have no fixed size. The best we can do is 

to pre-allocate the amount of memory corresponding to the expected upper limit of the 
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stack and heap space, then allocate more memory and repair the data structure if at 

runtime this upper limit is broken.  

code 

static data 

stack 
 

… … 
 

heap estimated  
bound 

estimated   
bound 

 
EIP sets for static data

(fixed size) 

reserved EIP 
space 

 
EIP sets for stack 
(estimated size) 

 
EIP sets for heap 
(estimated size) 

 
spill area 

first segment
linked list 
headers 

second segment
other linked list 

elements 

process memory space 

 

Figure 86. A typical process space layout. 

EIP_base = base address of EIP space 
static_base = base address of static data space 
 
EIP_address of static_address =  

    sizeunitEIP
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___
)__(_ ∗

−
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Figure 87. Finding the corresponding EIP address for static memory address. 

Figure 87 shows how we compute the corresponding EIP set address for a static 

memory address. The handling of stack and heap addresses is similar. The EIP tagging 

unit is normally a machine word, but we could choose a larger tagging unit to reduce the 

memory requirement of the EIP tagging scheme. To locate the corresponding EIP set 

quickly as shown in the equation, we need to make each EIP set record fix-sized. At the 



 228

same time, we have to be able to handle EIP sets containing an arbitrarily large number 

of elements. To achieve that, we design a linked-list based data structure. Each EIP set is 

effectively a linked list. Each linked list element contains a fixed number of EIP IDs and 

a pointer to the next linked list element if there is one. We divide the EIP space into two 

segments. The first segment only contains headers of the linked lists representing EIP sets. 

The headers are laid out by the same order of the corresponding memory locations thus 

the header of the linked list representing the EIP set for a memory location can be easily 

located. The second segment is the spill area. Only when one linked list element is not 

enough to record all EIP Ids, is the spill area utilized. When one header element is not 

enough, the tagging scheme finds out an unallocated space in the spill area and creates an 

additional linked list element, then appends the new element to the end of the list. There 

are no layout constraints for spilled linked list elements. They are allocated wherever a 

free space is found. Figure 86 shows what the EIP space looks like. 

struct link_list_elm { 
    id_t  EIP_ids[MAX_ID_PER_ELM]; 
    addr_t next; 
}; 
 
struct EIP_space_t { 

struct link_list_elm header_space[MAX_HEADER_ELMS]; 
struct link_list_elm spill_area[MAX_SPILL_ELMS]; 

} EIP_space; 
 

Figure 88. EIP space data structures. 

For further clarification, Figure 88 shows the pseudo code for our data structure 

design. Initially, the EIP space is cleared. A zero EIP id in a linked list element means 

that slot is unused. If the first EIP id in a linked list element in the spill area is zero, that 

means an unused linked list element space. The pseudo code to add an EIP id to the EIP 
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set of a memory location is shown in Figure 89. Note that both header space and spill 

area space can become too small at runtime. To expand spill area is straight forward since 

it is at the end of the EIP space. We can simply allocate more memory to the EIP space. 

To expand header space will invalidate all pointers to the spill area, thus the data 

structures have to be repaired. The pseudo code to clear an EIP set or to delete the linked 

list representing the EIP set is not shown but is also easy to implement. 

unsigned int spill_area_ptr = 0; 
 
void init() { 
    mem_zero(&EIP_space, sizeof(EIP_space)); 
} 
 
void add_EIP_id ( addr_t mem_addr, id_t id) { 
 
    addr_t EIP_addr = get_EIP_set_addr( mem_addr ); 
    struct link_list_elm * list_header = (struct link_list_elm*) EIP_addr; 
    struct link_list_elm * cur_list_elm = list_header; 
 
    while (cur_list_elm) { 
        for(int i=0; i<MAX_ID_PER_ELM; i++) { 
            // zero id means unused 
            if(!cur_list_elmÆEIP_ids[i]) { 
     cur_list_elmÆEIP_ids[i] = id; 
                return; 
            } 
        } 
        cur_list_elm = (struct link_list_elm*) cur_list_elmÆnext; 
    } 
    // have to create a new linked list element 
    // first find an unused slot 
    saved_spill_ptr = spill_area_ptr; 
    while ( EIP_space.spill_area[spill_area_ptr].EIP_ids[0]) { 
        spill_area_ptr = (spill_area_ptr + 1) % MAX_SPILL_ELMS; 
        if(spill_area_ptr == saved_spill_ptr)  
             PANIC(“spill area full”) 
     } 
     // found an empty slot 
     EIP_space.spill_area[spill_area_ptr].EIP_ids[0] = id;    
}  

Figure 89. Algorithm to add an EIP id into the proper EIP set. 
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7.4 Intrusion Recovery 

After intrusion analysis is properly done and tampered memory state is identified, 

intrusion recovery for the memory state becomes a simple problem.  

If intrusion analysis is done by the execution trace logging based algorithm, to 

enable intrusion recovery, we can simply record the overwritten value for each memory 

write operation. There will be an additional field for saving the old value of the memory 

location. The modified data structure for the execution trace log is shown in Figure 90. 

The difference is marked as bold.  

 
enum  log_type_t { PATH, MEM}; 
enum  mem_type_t  {READ, WRITE, EXT_INPUT}; 
struct log_t { 
        log_type_t log_type; 
        union { 
                struct  { 
  addr_t    pc; 
  addr_t    target; 
     } path_info; 
     struct  { 

mem_type_t mem_type; 
addr_t     address; 
data_t     old_val; 

} mem_info; 
        } log_info; 
}; 

 

Figure 90. Modified data structure of a log record. 

To recover from tampered memory state, during dependency backtracking, when 

a memory write log record is processed, the value of the memory location is set to the old 

value recorded in the memory write log record. When the backtracking process is 

finished, the memory state will be recovered to a safe one. The relevant modification to 

the backtracking algorithm is shown in Figure 91.  
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14.         else  // STORE 
15.            Assert(cur_log->mem_info.mem_type == WRITE) 
16.            if (cur_log->mem_info.address ∈ W) 
17.                 W = W – cur_log->mem_info.address; W = W ∪ REG_USE(cur_inst); 
18.            endif 
                 // recover possibly tampted memory state 
19.             MEM[cur_log->mem_info.address] = cur_log->mem_info.address.old_val; 
20.         endif 

 

Figure 91. Modified backtracking algorithm. 

If intrusion analysis is based on external input points tagging, intrusion recovery 

can be done by a checkpointing based scheme. The memory state can be checkpointed 

incrementally at a certain interval, such as one millisecond. Each checkpoint does not 

need to save the whole memory state. It just records the memory writes in between the 

previous checkpoint and the current checkpoint. Each checkpoint has a timestamp, which 

is just the value of the global counter counting the number of dynamic external input 

points. With the set of identified suspicious dynamic external input points, the recovery 

algorithm is straightforward. Each dynamic external input point is identified by the value 

of the global counter when the external input happens. Assume the smallest ID in the set 

of suspicious dynamic external input points is MIN, to recover tampered memory state, 

we just need to process the checkpoints until its timestamp is smaller than MIN.  

7.5 Experiments and Results 

To evaluate the recovery strength of the proposed logging and tagging based 

intrusion recovery schemes, we implement them in an open-source IA-32 system 

emulator Bochs  [9] with Linux installed. Then we perform simulated attacks to our 

daemon programs. We run each benchmark in the emulator for a long period of 10 billion 

instructions. During its execution, we tamper its memory state by corrupting a random 

memory location at a random external input point, even though originally the external 
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input point is innocuous. If the memory corruption is detected, we then check whether 

our intrusion analysis and intrusion recovery scheme is able to identify the malicious 

external input point and recover the tampered memory state. Each server program is 

attacked 10000 times independently. 

We have discussed three intrusion detection schemes in this dissertation, 

including anomalous path detection, infeasible path detection and data tampering 

detection. The introduced memory tampering may or may not be detected by our 

intrusion detection schemes. If our data tampering detection scheme is able to detect the 

memory corruption, it will detect it immediately. In other words, if the data tampering 

detection scheme is deployed, the malicious external input point can be identified 

immediately and the tampered memory state can be recover easily. Thus, we will not 

show the intrusion recovery results for the data tampering scheme. For anomalous path 

detection and infeasible path detection schemes, they are based on control flow 

monitoring and they try to infer memory tampering from control flow tampering. Thus, 

they will not be able to detect the attack until the tampered memory state is used. There 

could be an arbitrarily long interval between the memory tampering and the reference of 

the tampered memory state, which brings great difficulty to the intrusion analysis and 

intrusion recovery schemes. After the tampered state is used, both anomalous path 

detection and infeasible path detection schemes can detect the attack within a very small 

interval if they can detect it at all. For the anomalous path detection scheme, the attack 

will be detected with n dynamic branches if the scheme can detect the attack. For the 

infeasible path detection scheme, the interval between the tampered memory state 

reference and the attack detection is also very small generally since it is very hard for the 
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compiler to detect a branch correlation between two branches far away from each other. 

Thus, the anomalous path detection scheme and the infeasible path detection scheme 

behave very similarly in terms of intrusion recovery, since the interval between the 

memory tampering and the reference of the tampered memory state is the dominating 

factor. Thus, we will only show the results for the anomalous path detection scheme. The 

infeasible path detection scheme achieves almost identical results.  

For the logging based scheme, the storage space required for a complete logging 

of the program execution is linear to the number of dynamic instructions executed. Thus, 

a complete logging of the program execution is generally not possible. We have to set an 

upper limit of the storage space reserved for logging. If the time interval between the 

memory tampering and the attack detection is too large, the space reserved for logging 

may not be enough to record all the necessary information to identify the attack and 

recover the memory state completely. In general, the more space reserved for logging, the 

better intrusion identification and recovery strength.  

Figure 92 shows the results of intrusion identification under the logging based 

scheme. In this experiment, we assume only intrusion identification is required but not 

intrusion recovery. The intrusion identification rate of our simulated attacks under the 

logging scheme is shown in the figure. We show the results under a 10MB reserved space, 

a 100MB reserved space and a 1GB reserved space respectively. To merely identify the 

cause of an attack, we do not need to save the old value of a memory location, thus the 

storage requirement is smaller. By identifying an attack, we mean to find out the exact 

malicious external input points causing the attack. From the results, with a 10MB 

reserved space for logging, on average we can successfully identify 72.9% of attacks. 
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With a 100MB reserved space for logging, on average we can identify 84.6% of attacks. 

With a 1GB reserved space for logging, on average we can identify 94.3% of attack. We 

can see that a small reserved space such as 10MB can achieve a good intrusion 

identification rate, since if the tampered memory value is going to be referenced, it is 

more likely to be reference sooner than later. Also, the intrusion identification rate 

increases with the reserved space for logging.  
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Figure 92. Intrusion identification under the logging based scheme. 
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Figure 93. Intrusion recovery rate under the logging based scheme. 

To both identify and recover from an attack, the execution log has to save the old 

value of a memory location if there is a write to the memory location. Thus, the size of a 

record in the execution log is increased, so is the space overhead for logging. Figure 93 

shows the intrusion recovery rate of the simulated attacks under the logging scheme. We 

show the results under a 10MB reserved space, a 100MB reserved space and a 1GB 

reserved space respectively. With a 10MB reserved space for logging, on average we can 

successfully identify and recover 71.7% of attacks. With a 100MB reserved space for 

logging, on average we can identify and recover 83.8% of attacks. With a 1GB reserved 

space for logging, on average we can identify and recover 93.1% of attack. From the 

results, given the same reserved space for logging, enabling recovery increases space 

overhead but only slightly. The fundamental reason is that the interval between memory 

tampering and attack detection for a large part of attacks is small enough so that the 

reserved space is enough for both intrusion identification and intrusion recovery. 
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The external input points tagging scheme works in a different way. The space 

requirement of the EIP tagging scheme does not increase linearly with the number of 

dynamically executed instructions. Instead, the space requirement is related to the amount 

of data memory used by the program since each memory location could possibly be 

tagged. The data memory used by the program is generally very limited. The size of it 

will become stable and will not increase forever as the number of dynamically executed 

instructions. Also, we found that most memory locations depend on zero or only one 

external input point at runtime. Thus, the EIP tagging scheme has a better space 

efficiency than the logging based scheme.  
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Figure 94. EIP tagging space requirement. 

Figure 94 shows the space requirement of the EIP tagging scheme under three 

different tagging units. The unit of tagging has a great impact on the space requirement. 

Our finest tagging granularity is one machine word. In other words, each machine word 

will be tagged separately with the depended external input points. We also show the 
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results for the tagging units of two machine words and four machine words. With the 

tagging unit of two machine words, two adjacent machine words share one tag. The tag 

will record depended external input points for both words. As long as those two machine 

words share some depended external input points, we have space savings. The tagging 

unit of four machine words works in a similar way. The space requirement under the 

tagging unit of one machine word is 8.26MB on average, ranging from 3.24MB to 

17.65MB. The space requirement under the tagging unit of two machine words is 

4.37MB on average, ranging from 1.64MB to 9.46MB. The space requirement under the 

tagging unit of four machine words is 2.30MB on average, ranging from 0.84MB to 

5.05MB. Doubling the tagging unit can roughly cut the space requirement to half, 

showing that many memory locations share the same depended external input points. It is 

expected since normally an external input set the values for a block of memory at the 

same time instead of a single machine word.  

A larger tagging unit brings adverse effects to intrusion identification. Assume the 

attacker always tampers at least a machine word, the tagging unit of one machine word 

can identify an attack immediately and accurately, and the EIP tagging scheme can 

achieve 100% of intrusion identification rate. With a tagging unit greater than one 

machine word, we will not know whether one tagged external input point is depended by 

the memory location investigated or by other locations in the same tagging unit. We have 

to be conservative, which leads to inaccuracy in intrusion identification.  
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Figure 95. Intrusion identification rate of EIP tagging scheme. 

Figure 95 shows intrusion identification of the EIP tagging scheme under 

different tagging units. If we assume the attacker always tampers at least a machine word, 

the tagging unit of one machine word brings us 100% intrusion identification rate. 

Moreover, the EIP tagging scheme can identify the attack immediately without 

processing a large amount of logging data as in the logging scheme, since all suspicious 

external input points have been tagged properly. With a tagging unit of two machine 

words, the intrusion identification rate is 98.3% on average. With a tagging unit of four 

machine words, the intrusion identification rate is 95.4% on average. 

To enable intrusion recovery, the EIP tagging scheme has to checkpoint memory 

state so that the memory state can be recovered after the attack point is identified. 

Memory checkpointing can be incrementally done by logging memory writes and 

recording the old values of the memory location. Figure 96 shows the intrusion recovery 

rate of the EIP tagging scheme under a certain space limitation for checkpointing. We 
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show the results under a 10MB reserved space, a 100MB reserved space and a 1GB 

reserved space respectively. With a 10MB reserved space for checkpointing, on average 

we can recover 76.7% of attacks. With a 100MB reserved space for checkpointing, on 

average we can recover 86.7% of attacks. With a 1GB reserved space for checkpointing, 

on average we can recover 95.1% of attacks. The EIP tagging scheme is more space 

efficient than the logging based scheme. Under a certain space limitation, the EIP tagging 

scheme can achieve better intrusion recovery rate. The improvement is attack and 

application-dependent and is seen to be up to 24% in our experiments. 
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Figure 96. Intrusion recovery rate of EIP tagging scheme. 

Next we discuss the performance aspect of our intrusion identification and 

intrusion recovery scheme. For the logging based scheme, there is no computation 

involved during logging. As long as there is enough bandwidth to transfer the log data, 

there will be no performance degradation. For the external input points tagging scheme, 

the tag for each memory location has to be computed at runtime. The computation is very 
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simple as shown previously, especially most memory locations are tagged by no more 

than one external input point. But we assume that the tag data will share cache with the 

program data, thus accessing the tags for memory locations increase cache pressure and 

degrades performance. Also, the external input points tagging scheme needs to 

checkpoint memory state to recover tampered state later, thus it also requires certain 

memory bandwidth for the checkpointing. 
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Figure 97. Bandwidth requirement. 

Figure 97 shows the bandwidth requirement for the logging based schema and the 

EIP tagging scheme. Under the EIP tagging scheme, we only need to record memory 

writes. Under the logging scheme, we have to record both memory reads and memory 

write, plus control flow transfers. Since the number of memory writes is normally only a 

fraction of memory reads, the EIP tagging scheme requires much smaller bandwidth. On 

average, the logging scheme requires a memory bandwidth of 7.8GB/s and the EIP 

tagging scheme requires a memory bandwidth of 673MB/s. We can see that due to its 
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space efficiency, the EIP tagging scheme requires much smaller bandwidth. A memory 

bandwidth of about 8GB/s is quite realistic in the future. In fact, Xbox 360 game console 

has 278.4GB/s of memory system bandwidth  [87] and the IBM CELL architecture has a 

theoretic 204.8GB/s peak memory bandwidth  [117]. 

 To measure the performance degradation of the external input points 

tagging scheme, we model the tagging hardware using SimpleScalar  [11] tool set. The 

parameters for the processor modeled are shown in Table 10.  

Table 10. Parameters of processor simulated. 

Clock frequency 1 GHz Branch predictor 2 Level 
Fetch queue 16 entries BTB 512 entries, 4 -way 
Decode width 4 PLB  128 entries 
Issue width 4 L1 I/D DM, 32K, 1 cycle 

32B block 
Commit width 4 Unified L2 8way, 32B block 

1M (16 cycles)  
RUU size 64 Memory bus 200M, 8 Byte wide 
LSQ size 32 Memory latency first chunk: 120 cycles, 

inter chunk: 10 cycles 
 

Figure 98 shows the performance results for the EIP tagging scheme normalized 

to the baseline without tagging enabled. The results under three different tagging units are 

shown. Tagging with finer granularity requires more tagging data space and incurs more 

cache pressure, thus leading to worse performance. With 1-word tagging unit, the average 

performance degradation is 20.8%. With 2-word tagging unit, the average performance 

degradation is 15.1%. With 4-word tagging unit, the average performance degradation is 

10.9%. We can always choose a larger tagging unit in exchange for a better performance 

and a worse intrusion identification rate. 
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Figure 98. Performance degradation of the EIP tagging scheme. 

7.6 Summary 

In this chapter, we focus on intrusion analysis to identify the cause of an attack 

and the tampered memory state and intrusion recovery to recover the tampered memory 

state. Intrusion analysis and intrusion recovery is generally a difficult problem because 

there could be an arbitrarily long interval between the tampering of the memory state and 

the detection of the attack, depending on the underlying intrusion detection mechanism.  

We propose two intrusion analysis and intrusion recovery schemes in this chapter. 

The first is based on execution trace logging. The second is based on external input points 

tagging. The logging based scheme requires a high memory bandwidth, is less space 

efficient but has little performance degradation. The tagging based scheme is more space 

and bandwidth efficient, but brings significant performance degradation. Given enough 

storage space, both schemes can achieve a satisfying intrusion identification and intrusion 

recovery rate. User can choose a scheme to deploy according to the properties of the 

schemes. Overall, our study on compiler and micro-architecture supported intrusion 
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analysis and intrusion recovery is still preliminary. Both schemes proposed have their 

drawbacks and how to make them more space or performance efficient is the future work. 
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8 CONCLUSIONS AND FUTURE WORK  

8.1 Conclusions 

Computer systems virtually control every aspect of our modern society. The rapid 

increase of the society’s dependence on computer systems brings great interest to break 

in and attack those systems. Computer software determines the functionality of computer 

systems and is the primary target of attacks. With today’s pervasive presence of computer 

systems and network connections, securing critical software from attacks has become an 

extremely important problem and has never been as challenging.  

In this dissertation, we build a software protection infrastructure by utilizing both 

compiler and micro-architecture support. We name our infrastructure RADAR – 

compileR and micro-Architecture supported intrusion prevention, Detection, Analysis 

and Recovery. Our infrastructure aims to achieve a complete solution to software 

protection. It is designed to defend against both common hardware attacks and common 

software attacks and tackles all three major aspects in software protection – intrusion 

prevention, intrusion detection and intrusion recovery. Our infrastructure emphasizes 

collaborations between compiler and micro-architecture. It is based on micro-architecture 

level support and has its security rooted in hardware. At the same time, it calls for 

compiler assist whenever it is necessary, such as to obtain expected software behavior, or 

whenever it is helpful to reduce the complexity of the micro-architecture support. With 

both micro-architecture and compiler support, our infrastructure can defend against both 

software and hardware attacks with superb security strength but reasonable hardware and 

performance cost. 
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Traditional software protection approaches are purely based on software. The 

protection strength provided by a purely software-based approach is far from enough 

considering the ever increasing importance of critical software protection and the 

constantly emerging new threats faced by critical software, especially realistic hardware 

attacks.  

Introducing hardware support for software protection has been shown is the future 

direction to go. There has been active research on micro-architecture level support for 

software protection. But up until now, the previous secure architecture research mainly 

focuses on using cryptographic mechanisms to protect software confidentiality and 

software integrity from hardware attacks and attacks from other malicious software 

processes. The solutions proposed are purely hardware based.  

In this dissertation, we first show that even though the problem scope of the 

previous secure architecture research is quite limited, the solution proposed to the 

problem is not complete and has a serious flaw. Previous secure architectures only protect 

confidentiality of the traffic going through system data bus. They do not protect system 

address bus traffic, i.e., addresses of memory accesses. However, unprotected memory 

access sequence acts as very dangerous side-channel and leaks critical control flow 

information of the protected software. We show that the information leakage could bring 

significant damage to both code and data confidentiality. Thus, we propose an improved 

hardware infrastructure enhanced with address bus information leakage prevention. Our 

address bus protection scheme relies on both innovative hardware modification and 

extensive compiler support to eliminate most of the information leakage on system 
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address bus with little performance overhead. Our scheme is the first practical scheme to 

prevent information leakage on the system address bus. 

 In general, no security system is bullet-proof and is able to prevent all attacks. 

Even our enhanced hardware infrastructure cannot prevent attacks exploiting flaws/bugs 

in the protected software itself, such as buffer overflow attacks. To protect software from 

attacks missed by the intrusion prevent mechanism, we build a second line of defense 

consisted of intrusion detection and intrusion recovery mechanisms, which is able to 

detect both known and unknown attacks and even recover from those attacks.  

 Intrusion detection with both compiler and micro-architecture support is another 

major contribution of this thesis work. We show that intrusion detection based on 

compiler and micro-architecture collaboration can achieve a much finer monitoring 

granularity than software-based intrusion detection schemes thus much stronger detection 

strength but only with small hardware and performance cost. We have done extensive 

research on this area. We have greatly developed our understanding to the problem 

during our research and devised three intrusion detection schemes accordingly.  

We first propose a training based scheme to detect anomalous program paths 

caused by attacks. Anomaly detection based on training is a classical approach. But with 

carefully designed hardware support, our approach is able to achieve both strong 

detection capability and negligible performance degradation.  

 The requirement of good training and potential false positives in the anomalous 

path checking scheme would limit its applicability in reality, which prompts us to devise 

a scheme with zero false positives. Thus, we develop an infeasible path detection scheme 

to detect attacks based on static compiler branch correlation analysis and hardware 
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runtime support. The scheme achieves zero false positives and only incurs small 

hardware and performance cost, which boosts its applicability in the real world. But this 

scheme is still based on control flow monitoring and the detection strength is 

significantly worse than the anomalous path checking scheme due to the limitation of 

static compiler analysis. 

Both anomalous path checking and infeasible path detection are based on control 

flow monitoring. They cannot detect attacks tampering memory but not altering control 

flows at all. However, such attacks have been shown to be very realistic. This problem 

prompts us to work on the root cause of attacks – memory tampering. We thus devise a 

compiler and micro-architecture collaboration framework to detect memory tamperings 

directly instead of trying to infer memory tamperings from anomalous control flows. The 

data tampering detection scheme is based on compiler data flow analysis thus achieves 

zero false positives too. Moreover, it attacks the root cause of intrusions thus has a very 

strong detection strength. However, the performance overhead is significant even after 

extensive compiler optimizations. 

As a conclusion, among three properties of detection strength, zero false positives 

and performance, anomalous path checking prioritizes detection strength and 

performance; infeasible path detection prioritizes zero false positives and performance; 

finally data tampering detection prioritizes detection strength and zero false positives. All 

three schemes should find their applications in reality according to the different user 

requirements under different scenarios.  

Finally, a complete software protection scheme should have the ability to analyze 

an attack and recover from the attack whenever possible. Thus, intrusion analysis and 
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intrusion recovery is an important goal of our software protection infrastructure. We 

propose two intrusion analysis and intrusion recovery schemes in this dissertation. The 

first is based on execution trace logging. The second is based on external input points 

tagging. The logging based scheme requires a high memory bandwidth, is less space 

efficient but has little performance degradation. The tagging based scheme is more space 

and bandwidth efficient, but brings performance degradation. Given enough storage 

space, both schemes can achieve a satisfying intrusion identification and intrusion 

recovery rate. Our research on intrusion analysis and intrusion recovery is still in the 

beginning stage and future work should be done to improve the efficiency of our current 

intrusion analysis and intrusion recovery schemes. 

We draw the following higher level conclusions. Compiler analysis is able to 

provide information about program behavior and generate attributes that could be verified 

at runtime by the hardware. On the other hand, clever hardware techniques allow 

tractable management of large amounts of information at runtime to track and synthesize 

essential security attributes that must be verified. Semantic gap between software 

behaviors that get exploited and hardware support that provides security substrate can be 

thus effectively bridged for a variety of attacks based on side channel information, 

memory tampering that may or may not alter control flow, and etc. This compiler and 

micro-architecture collaboration approach leads to better security guarantees and 

strengths. 

8.2 Future Work 

Regarding to compiler and micro-architecture supported intrusion detection, we 

believe that more work should be done on the data tampering detection scheme due to its 
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multiple advantages. First of all, the scheme works on the root cause of attacks directly 

and can achieve very strong detection strength and detect memory tampering attacks not 

altering program control flows at all, which will be missed by control flow monitoring 

based schemes. Second of all, the scheme is able to achieve zero false positives, which is 

critical to the applicability of an anomaly detection scheme. Finally, the scheme also has 

significant advantages in terms of intrusion recovery as discussed in the last chapter. The 

current bottleneck of the deployment of the scheme is primarily its performance cost. 

More compiler and micro-architecture optimizations could be investigated to reduce the 

performance overhead thus making the scheme generally affordable. We also need to 

investigate the impact of multithreading to the scheme. Multithreading could lead to false 

positives if multiple threads share the same access permission information. The most 

naïve way to tackle this problem is to make each thread have its own access permission 

information, but it is obviously too expensive and inefficient. 

Our research on intrusion analysis and intrusion recovery is still on its preliminary 

stage. Neither the execution trace logging based scheme nor the external input points 

tagging base scheme is a satisfying solution to the problem of intrusion analysis and 

intrusion recovery yet. The execution trace logging based scheme requires a high 

memory bandwidth. On the other hand, the external input points tagging base scheme 

incurs significant runtime overhead. Optimizations to both schemes should be explored in 

the future work. A more efficient solution is yet to be devised. 
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