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NOMENCLATURE 

2 

A surface area, ft 
/ • ' ° ' ' • • • • - ' ' C specific heat, Btu/lbm R. 

P . . . . - ' • • • . • . 

f coefficient of heat transfer by convection, Btu/hr ft F 

h specific enthalpy of air, Btu/lbm 

k thermal conductivity of the matrix, Btu/hr ft F 

L length of the matrix, ft ' 

m mass rate flow, lbm/hr 

N number of elements of matrix 

NTU number of heat transfer units 

NTUo , modified number of heat: transfer units = 

. L(l/hA) + C L(l/hA) + (1/hA) J 
m m c ri 

P pressure, lbf/ft2 

p free flow area ratio of the matrix = 

free flow cross-sectional area 
total cross-sectional area 

Q heat transfer rate, Btu/hr 

RHE, rotary heat exchanger 

r radial coordinate in the cylindrical frame of reference 

T temperature, F 

v specific volume, ft3/lbm 

V velocity, ft/hr 

W specific humidity, lbm of water/lbm dry air 
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N0MENCLATURJ5 (Goncluded) 

z axial coordinate in the cylindrical frame of reference 

x hot or cold 

GREEK LETTERS , 

0 angular velocity, rad/hr 

a. surface area density, ratio of total surface area of the matrix 
to the volume of the meitrix, 1/fl: 

<b circumferential coordinate in the cylindrical frame of reference 

p . density, lbm/ft3 

SUBSCRIPTS 

a • air 

avg average 

c cold 

d conduction 

e external 

h hot 

i internal 

r rotor or matrix 

rw effective average over rotor and condensed heater ; 

s at the surface of the matrix 

t total 

v convection 

w water 

<x> free stream condition 



SUMMARY 

This thesis concerns the application of a numerical technique 

to study the performance characteristics of a periodic-flow heat 

exchanger, with at least one fluid haying sufficiently high relative 

humidity to cause condensation. , ,s , 

Suitable analytical and numerical models are presented to 

describe the heat exchange between the fluids and the exchanger. 

Distribution of temperatures within the matrix of the heat exchanger 

and thermodynamic properties of the fluids (air) flowing through the 

exchanger are discussed. 



CHAPTER I 

INTRODUCTION 

Rotary Regenerator Heat Exchanger 

A commonly accepted classification of heat exchangers is, made on 

the basis of whether they employ heat storage or not. Commonly termed a 

regenerator, the former operates by means of a storing material which 

runs through two heat exchanging media, absorbing heat: from the hotter 

medium and transferring heat to the cooler one, through which it flows. 

On the other hand, a recuperator is a heat exchanger which does not 

employ heat storage. It operates by direct heat transmission through a 

separating wall between two fluids exchanging heat or by two direct heat 

transfer units, coupled with a transfer fluid circulating in cycles be­

tween the hot exchanger unit where the thermal energy is received and 

the cold exchanger unit where the thermal energy is delivered. Such an 

exchanger necessitates a simultaneous flow of both the fluids engaged in 

the mutual heat transfer process. 

During the past three or four decades several designs incorpor­

ating a rotary matrix for the flow of material through which, in turn, 

flow two'streams of fluids at different temperatures, have been con- * 

sidered. In the past, a primary motiyation for heat exchangers of such 

a design, suitably termed as rotary regenerators, has been their use in 

gas turbine power systems. 



A further classification of rotary regenerators or rotary heat 

exchangers (RHE) can be made on the* basis of whether the flow is axial 

or radial. Figure 1 depicts schematic representations of the two types 

of RHE; ' ,'/.'".'•' 

A common feature of both of these RHE involves the rotation of a 

porous matrix from a cold fluid stream into a hot fluid stream in a regu­

lar periodic, fashion., During the part of the cycle that the metal matrix 

interacts with the cold stream, the matrix loses part of its internal 

energy due to the heat transferred from the metal to the cold fluid 

stream. On a subsequent part of the cycle, when due to its rotation the 

matrix interacts with the hot fluid stream, the metal regains the internal 

energy via the heat transferred from the fluid to the matrix. For a 

given speed of rotation of the matrix, together with the proper mass 

fluxes of cold and hot streams, it is possible to achieve a steady state 

periodicity of temperature, distribution within the matrix. In other 

words, at the end of a given cycle, the whole matrix attains the same 

state as it possessed at the end of the previous cycle. The net effect 

of such a cycle of operation is the exchange of heat between the hot and 

the coldfluid streams. In principle, this facilitates the cooling of a 

warm stream or the heating of a cold one, whichever serves the purpose in 

a particular application. 

A perspective view of a typical matrix arrangement in the axial 

flow type of RHE is shown in Figure 2. Two advantageous features of such 

a design concern its compactness and the tendency of self cleaning. The 

> • ' • ' • ' . • I • . . . • • ' 

heat transfer area per unit volume or the surface area density in such an 
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Figure 1. Rotary Heat Exchanger 
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Hot air in 

Figure 2„ Matrix of a Rotary Heat Exchanger 



exchanger is higher than that in a conventional exchanger, thus requiring 

less volume for a given heat transfer area; this is related to the struc­

ture of the porous matrix. Since the axial direction of flow through a 

particular sector of the matrix is reversed during each cycle, such a 

geometry provides the self-cleaning feature. 

A Brief Survey of Pertinent Literature 

Well through the 1930's, two procedures were employed to predict 

the performance of regenerators (1). One of these procedures was to use 

empirical data to set up approximate equations by means of which the 

performance of the regenerator could be predicted. However, because of 

the nature of the empirical analysis, these equations were only fair 

approximations for those cases similar to the ones for which the empiri­

cal data were obtained. Naturally, they could not be used for other 

specific cases. The other procedure was based upon analytically or 

numerically derived solutions of the problem. This last method proved 

to be very successful and it is being adopted even at present. 

Hausen (2) analyzed the problem of RHE by the so-called heat-pole 

method. He considered the thermal conductivity of the metal of a cylin^ 

drical shaped matrix negligible in the direction of air flow (axis of 

cylinder) and to be infinite in the radial direction* He also considered 

the heat capacity rate (product of mass flow rate and specific heat) of 

the hot air flowing through?thfe" RHE to be the same as that for the cold 

matrix itself. He further assumed,a unity value for the ratio of the 

heat conductance of the cold side to the heat conductance of the hot side. 

By considering the matrix to be divided into an equal number of strips, 



he obtained the dimensionless temperature distribution, as well as the 

total heat transfer rate and the regenerator efficiency. He found that 

the solution converged very quickly with an increase in the number of 

strips, namely 0.1 percent deviation between calculated efficiencies for 

nine and for ten strips. 

In the 1940 rs the fiircraft industry showed a great interest in 

the rotary regenerator as a direct application to improving the perform­

ance of gas turbines. Substantial attention was focused on the effect 

of leakage on regenerator effectiveness, and a consequent development of 

satisfactory seals to minimize leakage, and on the role played by such 

parameters as the matrix dimensions, as well as the velocities and heat 

transfer coefficients associated with the problem. 

Harper and Rohsenow (3) showed that, in gas turbine applications 

of the RHE, most of the leakage occurred not by carry-over of the matrix 

but through the seals of the matrix from the high pressure stream to the 

low pressure one. In their paper the change of efficiency of the regen­

erator was evaluated, by considering a relative change of temperature of 

the discharging stream due to leakage as compared with that for the case 

of no leakage; This change of efficiency was shown to be rather small, 

about 1.3 percent corresponding to a 10 percent leakage. They also 

showed that the effectiveness of the regenerator appeared to increase to 

a maximum with an increase in thickness of the matrix, beyond which the 

thermodynamic efficiency of the gas turbine cycle was observed to drop 

due to an increase in loss of pressure. 

The influence of gas stream velocities and mass flow rates on the 



heat transfer characteristics of the matrix was determined by Tong and 

London (4) for various matrix structures. Their work was primarily of 

an empirical nature, with the results expressed as plots of four dimen-

sionless parameters, namely, the drag coefficient, the friction factor, 

the Reynolds.number, and the Prandtl number. 

The ,,search for analytical means to predict the performance of the 

periodic flow regenerator was continued by Coppage and London (5).in a 

paper where they first made a survey of the different available solutions 

for the design of regenerators, and then developed a closed form approxi­

mate solution of their own. which incorporated the work of previous in­

vestigators. 

Dusinberre (5),, in his discussion of the paper by Coppage and 

London, suggested that, by dividing the matrix of a regenerator into a 

number of small elements, each element being treated as a cross flow heat 

exchanger, the efficiency of the regenerator could be calculated for a 

given set of physically meaningful parameters. Indeed, this was a very 

useful and powerful suggestion. Lambertson (6) executed Dusinberre's 

suggestion and developed a finite difference numerical technique, thus 

contributing significantly toward the solution of the problem, which had 

eluded many previous investigators. His; solutions were useful for a 

variety of gas turbine applications. 

Lambertson1s work forms a commonly accepted basis for design data 

,(§• ' • • • • • ' . . ' • ' " ' ' ' ' • ' " ' . ' 

for the periodic flow type of heat exchanger and has been incorporated by 

Kays and London (7) in their textbook on compact heat exchangers. It is 

worth noting that the influence of axial conduction had not been included 



in Lambertson's work. It was generally accepted that' axial conduction of 

heat might be a significant consideration for high performance regener­

ators. 

Bahnke and Howard (8) carried out Dusinberre's suggestion in a 

fashion similar to that by Lambertson, but they included the effect of 

longitudinal heat conduction in the heat exchanger. It was shown in their 

paper that, for a regenerator effectiveness lower than 90 percent, axial 

conduction did not play a significant role in the overall heat transfer 

mechanism. However, they showed that, for effectiveness higher than 90 

percent, the influence of axial heat conduction was progressively im­

portant in the computation of effectiveness and heat transfer units. 

Recent years have seen a considerable increase of interest in 

utilizing the rotary regenerators beyond the classical gas turbine appli­

cations. Drying and air conditioning systems are but two of the more 

prominent cases where the use of rotary regenerators may show consider­

able promise. In such applications., the hot and cold streams of air, 

owing to their thermodynamic states., involve condensation of the water 

vapor flowing with the air. In an attempt to establish the applicability 

of a rotary regenerator to a clothes drying process, Mercure (9) per­

formed simple thermodynamic computations to evaluate its performance. In 

such an application, room air sucked through a sector of the regenerator 

matrix and passed through an electric heater is supplied, to the drum of 

the clothes dryer. After absorbing moisture from a wet load of clothes, 

the hot, humid air is passed through another sector of the matrix, and is 

subsequently exhausted into the ambient. The rotary matrix absorbs heat 



from the hot stream, stores the energy, and returns it to the incoming 

cold stream in a periodic fashion. In the process, a certain amount of 

condensate is undesirably carried over from the hot sector to the cold 

one. Due to its simplistic nature, Mercure's computational procedure did 

not allow a prediction of regenerator effectiveness based on simultaneous 

condensation and connective heat transfer. No other references to the 

analyses of a rotary heat exchanger in the presence, of condensing water 

vapor on the matrix are available in the literature at: present. 

Statement of the. Proposed Problem 

The object of this study is to investigate the application of a 

finite difference numerical technique to the performance analysis of an 

RHE with humid air flowing through it. The approach adopted for this 

investigation consists of developing a technique to predict the variable 

humid air properties leaving the regenerator for a given state of enter­

ing air, with the results coupled to an effectiveness analysis capable 

of predicting the performance of the rotary regenerator. 



CHAPTER II 

DEVELOPMENT OF THE ANALYTICAL MODEL 

Selection of the Coordinate System and the Differential 

Control Volume 

The physical geometry of the domain of interest in this analysis, 

namely a cylindrical matrix of a rotary heat exchanger, suggests the use 

of a cylindrical coordinate frame. The origin is, taken at the center of 

the top of the matrix. The positive z direction is measured downward 

along the axis of syimnetry. The variable r is measured outward along 

the radius of the cylinder, and 0 is measured positive in the counter­

clockwise direction. With reference to such a coordinate frame, the 

domain of the matrix can be defined as: 

r. ̂  r :2 r , • (2-1) 
1 e 

0 ^ 0 =s 2TT , 

••• 0- 'S z =1' L ._•'•• • 

A differential control volume fixed in space and referred to the 

cylindrical coordinate frame is shown in Figure 3. 

As the matrix rotates, its elements may be considered to enter 

and leave the differential control volume in a periodic fashion. The 

control volume is considered to be interacting with its surroundings in 

the following fashion: 



Air in 

Direction of Matrix I 
Flow 

Direction 
of Condensed 
Water Flow 

Hi,, 
Air out 

Figure 3. Differential Volume Element of the Matrix 
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Matrix and water enter and leave the control volume along the 0 direction 

at constant velocity, thus resulting in transport of heat and mass across 

the control surface. Humid, hot air enters through the top and leaves 

through the bottom of the control volume along the positive z direction 

at constant flow rate, with mass and energy transport taking place, as 

explained above. Heat transfer by conduction enters the three positive 

faces and leaves through the three opposite faces of the control surface. 

Governing Equations and Boundary Conditions 

A steady state heat: balance over the control volume may be ex­

pressed, in words, as 

(Net conduction heat transfer into the C.V.) + (Net (2-2) 

heat transfer in, due to the matrix and water mass 

entering and leaving the C.V.) 4- (Net heat transfer 

due to the air entering the top and leaving through 

the bottom of the C.V.) = 0 . 

This same equation, written on a per unit volume basis in terms 

of symbols, gives 

LVlsr2" +T-57/ +'P"-aiF'+'k 
z dz2_ (1 - P) - (2-3) 

A (p p •• C- ' . -0T) + p p V -5— = 0 . d0 rw pry a a oz 
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Following Stoecker (10), the differential heat transfer from the humid 

air to the C.V. is 

dQa - -̂ --.'(h, - hs) dA , (2-4) 
pm 

and 
. - •' d h c o 

dQ = p p V ~ rd0drdz . (2-5) 
xa . ra a dz 

The differential surface area available for convective heat trans­

fer is 

dA = ax0drdz , (2-6) 

where a is the surface area density, or the ratio of total surface area 

of the matrix to the volume of the matrix. 

When equations (2-4), (2-5), and (2-6) are combined, one obtains 

-T~ (h - h ) dA = p p V ^ — . (2-7) 
C c° s v Ka a -3z • a K •. ' 
pm 

The boundary condition for enthalpy may be specified as 

0 ̂  0 ̂  0 ' 
h 

z = 0 
h(r,0) = constant . (2-8) 

/;•':,-. Thê^ interval of existenice of 0 in equation (2r8) specifies the hot 

sector side of the matrix. 

In a similar fashion^ for the cold side of the matrix, the boundary 



condition may be written as 
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0, ^ 0 ̂  2TT 
h 

z = L 
> h(r,0,L) = constant (2-9) 

In these equations, 

T = T(r,0,z), h^ = h^(T,Pa), and.pa =.pa(T,Pa) . 
CO CO 

(2-10) 

It may be pointed put that the summation of partial pressures of air and 

water yields the constant value of the total pressure, P̂.« 

Equations (2-3) together with the differential energy balances 

stated in equations (2-4) and (2-5) as well as the boundary conditions 

expressed by equations (2-8) and (2-9) represent an analytical model of 

the problem. 

•" "Simplification of the Analytical Model 

A closed form analytical solution of the preceding system of 

equations proves to be a formidable task„ It is recognized that enthalpy 

and density are not known a priori as a function of spatial location; 

moreover, if spatial location is not: involved, these properties are 

nonlinear functions of temperature amd pressure. 

These equations are elliptic-type partial differential equations. 

Classical mathematical techniques have been often employed with special 

treatment of this type of equation. However, general solutions for ellip­

tic-type partial differential equations are not available. 



It is fortunate that some reasonable idealizations that do not 

significantly affect the.engineering applicability of the equations can 

be made to simplify the problem. Following such simplifications, it is 

feasible to develop a finite difference model of the equations, which 

can be solved by using numerical solution techniques. 

Consider the following idealizations with subsequent justifications 

of the same: ,•;.-/ 

1) The two fluid streams through the matrix represent a counter-

flow energy exchange system. 

2) The thermodynamic properties of the entering fluids are uni­

form over the flow inlet cross sections and these properties remain 

constant with time. 

3) The convection heat transfer coefficients are constant along 

a flow line. 

4) The thermal properties of the matrix are invariant with changes 

of temperature and time. 

5) No mixing of the hot and cold fluid streams occurs, either as 

a result of direct leakage or due to carry over. 

6) Regular periodicity exists for all properties within the ma­

trix elements, yielding quasi-steady conditions. 

7) The matrix rotates at a constant angular velocity. 

8) The water condensed at a particular station within the matrix 

remains there until reevaporated and the temperature of the condensed 

water is assumed to be equal to the temperature of the matrix in which 

the water rests. 
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9) The thermal conductivity of the porous matrix is negligibly 

small in the circumferential direction and extremely large in the radial 

direction. Thus, heat by conduction in the circumferential direction may 

be neglected, and the temperature along a radius may be assumed constant. 

Since the first three assumptions are very commonly used and jus­

tified in the literature on the subject, it is not necessary to elaborate 

on those any further. 

The fourth assumption implies that the density, specific heat, and 

other thermal properties of the metal matrix are indepiendent of tempera­

ture. This is reasonable to accept for the range of temperatures in 

such applications as drying and air conditioning processes considered 

in this investigation. 

The fifth assumption is well approximated, when the width of the 

matrix is small, as is usually encountered in RHE to minimize pressure 

losses; or if the air velocity is high compared with the velocity of ro­

tation of the matrix, the approximation represents the physical picture 

reasonably well. For example, with an air velocity of 700 ft/min 

through a one inch thick matrix turning at 15 rpm, the dead angle is 

around 0.64 degrees, which approximately equals 0.4 percent of one turn 

of rotation. Moreover, it must be recognized that, in a drying process, 

both flow streams have about the same total pressure, rendering a low 

driving potential for leakage flow. This, of course, is not the case in 

gas turbine applications, where the pressure ratio is quite high. 

The sixth assumption corresponds toi the quasi-steady state of the 

system. The transient state at the start of operation tends to reach a 
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quasi-steady state as the number of cycles of operation increases. In 

other words, after a certain number of cycles, the system, from an 

engineering point of view, becomes one in steady state, provided, that 

there is no storage of water condensed from the hot fluid stream on the 

matrix. For the case with condensation, the following sequence of 

operation results in a reevaporation of the condensate: Water collected 

on the matrix is carried along by the matrix to a region where the tem­

perature is higher. The specific, humidity of air in contact with the 

condensate in this region is higher than the specific humidity of free 

stream air in the region. As a result, a mechanism similar to the evapo­

ration of water from the wick around a wet bulb occurs causing the evapo­

ration. If the condensed water does not reevaporate during one complete 

turn, there will be successive accumulations of condensed water during 

each turn, still allowing an eventual steady state system with water in 

the liquid phase being carried over beyond the matrix by the air stream. 

Such an amount of condensation need not be anticipated for the case 

under study. 

- The ninth idealization is based on the relatively small order of 

magnitude of circumferential temperature gradient compared with that in 

the axial .direction. The thermal conductivity is assumed to be very-

large in the radial direction, since with all the otherftidealizations,' 

the matrix elements along a particular radius have the same governing 

equations, the same boundary conditions, and the same time of exposure to 

both hot and cold streams. This results in a constant temperature along 

a radius. The matrix thus behaves as if the thermal conductivity along a 
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radius were infinite. 

A Note on the Qualitative Temperature Distribution 

Within the Matrix 

During the hot cycle a sector of the matrix raises its temperature 

at a faster rate initially, and at: a slower rate toward the end, the 

latter caused by a diminishing temperature differential between the ma­

trix and the hot stream of fluid. In a similar fashion during the cold 

cycle the matrix lowers its teriiperature at a faster rate initially and 

at a slower rate toward the end. 

The temperature distribution within the matrix at the beginning 

of the hot cycle is the same as that at the end of the cold cycle, since 

the spatial positions of the matrix for the two cases are identical. 

This is usually referred to as the reversal condition. Finally, the mean 

temperature of the matrix lies somewhere between the mean entering tem­

peratures of the hot and cold streams. 

Simplified-Analytical Model 

With the idealizations that have been made, the following simpli­

fications are possible. 

Idealization nine, namely that the thermal conductivity of the 

matrix in the circumferential direction is negligibly small, implies that 

the heat transfer by conduction is: negligible and that 

i2!r * 
: 2 • * & ' • " e • 

(2-11) 
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Similarly, if the temperature along a radius may be assumed ,to be 

constant, One obtains 

T 0 2T . / 'o2T l . d T \ n , 0 1 0 N 

- = —̂ g- = k 7 2 .+ - H = 0 . (2-12) 
r or r var r Or/ 

ST 02T 
o 

From idealization number seven one obtains a constant angular 

velocity of the matrix, i.e., 0 == constant. 

When these assumptions are incorporated into equation (2-3), the 

resulting equation becomes 

B S T a • • • • ' • • S h o o : 

M l - P) f 4 " ^ (P P™ Cnrw 0 T ) + P P A T ~ = ° •'•• ( 2 " 1 3 ) 

Z Oz 00 r w P 3 ^ a a oz 

The boundary conditions for enthalpy expressed by equations (2-8) 

and (2-9) remain unchanged. Thus, the analytical formulation of the 

transport of mass and heat in a rotary regenerator with condensing vapor 

is represented by equations (2-7) and (2-13), together with the boundary 

conditions expressed by equations (2-8) and (2-9). 



CHAPTER III 

DEVELOPMENT? OF THE NUMERICAL MODEL 

The Grid System 

For the purpose of developing a scheme of difference equations, 

the matrix is divided into N axial planes and (N, ••'••+ N ) radial planes 
r h c 

around the circumference of the matrix. A total number of N (N, + N ) 
r h c 

elements, each element resembling the differential control volume dis­

cussed in Chapter II, are thus formed. It may be pointed out that, by 

distinguishing between the hot and cold sides of the matrix and by 

opening or developing the circular geometry onto a plane, the numerical 

analysis procedure can be carried out in the classical manner. The 

overall grid configuration bears a resemblance to a layered cake, as 

shown in Figure 4. The developed view of the grid system is shown in 

Figure 5. 

The temperatures oh the left and on the right sides of each ele­

ment of the matrix are defined by a row-column system, the generic sub­

scripts, being i for rows and j ! for coliimns. The same generic system of 

description is used for the properties and states of the humid air at 

the top and bottom of each element. In other words, the generic sub­

script i implies a row and the generic subscript j implies a column. 

This scheme avoids any confusion and is simple because any reference to 

temperatures implies the left-right sides of the element, whereas all 

air states and properties refer to the top-bottom sides of the element. 
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Figure 4. Matrix Divided into Elements 
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Finite Difference Approximation of the Analytical Model 

It was pointed out in Chapter II that even the simplified analyti­

cal model leads to a system of differential equations for which a closed 

form solution is not available. A finite difference approximation of the 

model is therefore deemed necessary. 

To proceed along these lines, equation (2-13) is first multiplied 

by the differential volume rd0drdz to yield 

k (1 - p) | 4 rdjfldrdz - ~ (p p T̂ C T 0T) rdtfdrdz - (3-1) 
z dz d0 rw prw 

dh 
00 

p p V -^— rd0drdz = 0 . r a a oz 

It was pointed out that (1 - p) rd0dr is the area of the differen­

tial element available for conduction, which is denoted by dA,. The fac­

tor (1 - p) is included to account for the porosity of the material of 

the matrix, pdrdz is the area through which water and matrix enter the 

differential volume. prd0dr is the area through which air enters the 

differential volume. 

The mass flow rate for air is given by 

ma = paVa A = paVa p r 4 0 d r ' (3"2) 

and the mass flow rate of the matrix: element is given by 

m = p V A = p V pdrdz , 
r rr r . r r r ' 
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where V = r0 . (3-4) 
• .'. " •• r • • 

A combination of equations (3-3) and (3-4) gives 

m = p r\t pdrdz . (3-5) 

The first term of equation (3*1)9 k .-—g- [(1-p) rd0dr] dz , may 
z dz 

''dsT be replaced by its equivalent k ^-3- dA, dz , or 

k. ̂ f(l-p) rd0dr] = k |-J dA. 4z . (3-6) 
z dz z dz a 

Contributions from water flow rate and matrix flow rate to the 

second term of equation (3-1) may be: isolated to result in 

-s . . -vm d(m T) 
r̂ r [p C 0T] prd0drdz = m C ~± d0 + C — T T — <*0 ' (3-7) £0 Krw prw - r pr d0 pw d0 

It may be noted that the mass flow rate of water depends on an 

increase or decrease in the rate of condensation or evaporation. On the 

other hand, the mass flow rate of rotor is a constant quantity. 

The third term of equation (3-1) may be expressed with the use of 

equation (3-2) as 

• ; : ' ' ~ . . • ' ' ; " • ' d h * • : : ; . S l l o o ' • ' ' • • • ' " • ' : , *•-•• ' " 

pyp V v ~ ^ r ( j 0 d r d z = m ^ — dz . (3-8) 
• , r; r a a d z ' • • a d z -'• '.'••• 

• - . . ' • . '' ' '.. * . \ ' f ' ' l ' • ' • . ' " • . . • • ' . • ' . . , • 

Incorporation of identities (3-6), (3-7), and (3-8) into equation 

(3-̂ 1) gives --' • *| '• ,',-.' • 
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T ^ T ' • • ' • . JVT 9 ( m w T > 

k ^-4 dAJ dz - m C ~ d0 - C -r. d0 - (3-9) 
z d z

2 d r pr £0 pw 90 

oh 
m -=•— <fe = P . a, dz 

In a similar fashion equation (2-10) may be expressed in the form 

oh : ' " . ' • 

K "of dz = ~ (Kco " h
s>
 dAv V (3-10) 

pm 

where the surface area density is again taken into account to obtain the 

available area for convection. 

The boundary conditions for enthalpy remain the same as those 

given by equations (2-8) and (2-9). 

To transform equations (3-9) and (3-10) into finite difference 

forms, the differentials may be substituted by finite increments by re­

ferring to the grid system developed earlier. 

The amounts of air entering the hot and cold sides of an element 

• . ' • • ' • • . ' • ' . ' • • ' • 

of matrix are, respectively, m.,/N, and m /N . 
a n n ac c 

The convection area for each element: equals the total area for 

convection of one side of the matrix divided by the total number of ele­

ments on that size, viz., 

(3-11) 

(3-12) 

A*'
 A V h 

^ V . U H. r h 

Av 
A*'

 A V h 

^ V . U H. r h 
and ̂  AAv 

c 
c 

•N N 
r c 

Adh 
dh N 

G 

and 
"dc 

A* dc 
" N ..# 

c 
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The length of each element: is the total length of the matrix divided by 

the number of rows of the matrix, or 

z = L/Nr , (3-13) 

and it is the same for each side of the matrix. 

Figure 6 represents an enlarged view of a portion of the overall 

grid system, and indicates the assigned values of temperatures and en­

thalpies . 

It is recognized that 

j2 

(3-14) 
d~T _ _d_ r lim T(z) - T(z - Az) 
dz2 dz U ^ 0 Az • 

lim ±_TT(z + Az) - T(z) _ T(z) - T(z - Az)l 
Az-»0 Az L Az . •" Az J 

When equation (3-14) is applied to the dashed element of Figure 7 

one obtains 

d2T 
J 2 
dz 

= lim r / T ^ ^ j ) _ . , + T ( i z ] ? j + 1 ) _ T ( l , j ) + T(l,.1+i)N l" ( 3 y 1 5 ) 

/ T ( i , , j ) + T ( i , j + 1 ) 1(1+1, .j) + T ( i+ l , , i+ l ) 
\ 2 " 2 

1 
A Z 2 " ; 

By similar logic the circumferential temperature gradient may be 

expressed by 

d? = l i m T j i ^ + 1 ) - T ( i , J l n - 1 6 ) 
60 A0-O A0 * l J i b j 
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h ( i - l , j ) 
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: 

Figure 6. Enlarged View of a Segment of Developed Matrix 
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The circumferential gradient: of the quantity (m T) may also be 
• w , ... 

expressed, with a few algebraic manipulations, as 

d(m T) 
w 

. m (<fo-A0) T(0+A0) - m (0) T(0) 
lim w w d0 A0-O A0 

(3-17) 

lim F™w
(i'j+1) T<i'J+1) " ™w

(i'j) T'U.J)1 

$->o L " - ~~" A0 

Likewise, 

dh 

dz Az-0 

n . /h (i+1,j) - h (i, j) 
1 lm j 00 J 03 N * J 

ẑ-0 \"~ ~~ Az 
(3-18) 

Incorporation of equations (3^12) through (3-18) into equations 

(3-9) arid (3-10) yields 

N k A 
N 1 Zl/ [(TU-l-.J) + T(i-l,jHrl) - 2(T(i,j)(+ T(i,j+1)+ (3-19) 

m C r — i . i " . v ^ i — • 

(T(i+l,j) -f T(i+lJ+ixJ^..-^-££.|_T(i,j+l) - T(i,j) 

m ,--•, 

c
P w l ^ ( i ' j + 1 ) T ( i ' j + 1 ) ; " V : i j j ) T ( i ' j ) l ' 5r ,Ehoo<i+1'J?> h..ftvJ)] 

= o . 

A further s implif icat ion is 

•N, = N = N = N-h c r (3-20) 
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Incorporation of equation (3-20) and a rearrangement yields 

m C r 2£JV(i,j+l) - T(i,j)j + [mw(i,j+l) C p w T(i,j+1) - (3-21) 
N 

m (i,j) C T(i,j) 
wv .'J pw \ ,. 

m r- v 
•:':.5T-K'(1'J) •: h0D(i+i,J)j + 

X 
2L 

[(T(i-l,j) Hr T(i-l,j+l))i -• 2(T(i,j) -f T(i,j+1»;4-

ni 

(T(i+l,j) + T(i+l,j+l)) 0 . 

Similar manipulations of equation (3-10) yield 

• v [ v i + i .J) ••- V ^ > ] > T^T •[• 
h ( i , j ) + h , ( i+ i , j ) 

C N 
]Dm x 

(3-22) 

savg. 

Equations (3-21) and (3-22) can be readily applied to any specific 

element in the matrix.. If all the entering conditions of an element are 

assumed, the problem resolves to detiermining the unknown exit conditions. 

In order for this system of equations to be compatible and determinate, 

four more equations are needed. These are: 

a) Conservation of mass equations 

m 

N 
x 

[w(i,j) -W(i+X,j)] = ̂ w(i,j-HL) - mw(i,j) (3-23) 
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and 

ma [W(i;j) - W(i+l,j)] = ^..[m^MifLJl , WgavJ . (3.24, 
pm r 

b) Psychrometric equations 

h = h(T,P) , (3-25) 
and 

W = W(T,P) . (3-26) 

Equations (3-21) through (3-26) may be applied to the cold side 

or to the hot side of the matrix by appropriate replacement of subscript 

x by c or h, respectively. 

This set of equations is further simplified (see Appendix I) to 

yield 

hJt+1,3) s»;hfl0(i,j) - HC81 [W(i,j) - Wgavg(i,j)] Cpw T(i,j) (3-27) 

[HC82 mw(i,j) Cpw + HC83][T(:L,j+l) - T(i,j)] -

HC84 [(T(i-l3(j) + T(i=l,j+1)) - 2(T(i,j)> T(i,j+1> + (T(i+l,j). + ; 

T(iHrl,j+l))] , 

and 

hoo(i+l,j) = h j i j ) + HC81 Chsavg(i,j), - h(i,j)] .; (3-28) 

In equations (3-27) and (3-28) 

H C 8 1 = r ^ . , .(3-29) 
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N HC82 = ~ , 
m„ 

(3-30) 

m C 
HC83 = --3-rE. 

lfla 
(3-31) 

and 

B = 
fAv 

2 A a Cpm 

HC84 .-
k A 

2 nioL 

(3-32) 

(3-33) 

A Note on Uniqueness and Stability of the Solution 

: Equations (3-27) and (3-28) have two unknowns, h (i+l,j) and 

T(i+l,j). It may be seen that, in equation (3-27), h (i+l,-j) diminishes 

when T(i,j+1) increases, and, in equation (3-28), h (i+l,j) increases when 

T(i,j4*l) increases. This implies that there is only one solution which 

is uniquej provided that the factor |l - j in equation (A-7) in 

.: , ! • • • • . ' ; . ' • ' 

Appendix I is greater than one. A negative value of this factor corres­

ponds to an unrealistic physical conclusion of both the hot air and the 

matrix losing heat ssimultaneously. Therefore, a greater value than one 

of the factor" is a valid criterion for a stable solution. In other words, 

the number of elements into which, the matrix is subdivided has to be such 

that ( 1 - , .pj is greater than one, or N > B^. A similar argument for 
the cold region leads to the condition N > B . 

... ..... ..,..-.,. c 
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CHAPTER IV 

PROCEDURAL CONSIDERATIONS FOR NUMERICAL SOLUTIONS 

Selection of Numerical Values of Input Parameters 

Prior to providing an explanation of the numerical procedure 

adopted to solve the equations developed in the preceding chapter, it 

is appropriate to discuss the choice of numerical values assigned to 

several parameters in this investigation. 

The previously stated purpose of this study was to demonstrate 

the validity of the present, numerical technique to analyze the RHE 

rather than obtain design data for a specific application. It may be 

pointed out that the adaptability of "the present technique is not re­

stricted to a unique set of numerical values assigned to various design 

parameters. 

The states of the entering hot and cold streams depend on the 

specific applications, of the RHE. . The numerical values selected for the 

O • .- ' • • • 

states of entering hot and cold air (hot air at 100 F, 60 percent rela-
• ' • o • " 

tive humidity; cold air at 80 F, 50 percent relative humidity), to illus­

trate the procedure of integration, are within the general range normally 

found in such applications of the RHE as an air conditioning system and 

a cloth drying machine. An immediate consequence of the preceding choice 

of states of entering streams is the specification of their respective 

enthalpies, specific heats, and specific humidities. 
The practical convenience of having approximately the same mass 
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flow rate for dry streams of hot and cold air, together with the ease of 

comparing trends of the results of this investigation with those reported 

by Kays and London (7), dictate the choice of the numerical value for the 

ratio of minimum to maximum heat capacity rates, C . /C , as 0.7. To 
- ' m m max' 

ascertain its influence, a value of 0.9 for this parameter was also ex­

amined. The mass flow rates for each of the fluid streams consistent 

with these considerations is approximately 1500 lbm/hr. 
Two values for the ratio of the heat capacity rate of the matrix 

to the minimum heat capacity rate of air, C /C . , are considered suf.fi-
- r mm' 

cient to examine the influence of this parameter on the effectiveness of 

the RHE. These values were selected as two and five, following Kays and 

London (7). 

Use of Psychrometric Equations 

Before the numerical technique can be applied to the set of equa­

tions derived in Chapter III, it is necessary to have the properties of 

interest defined by equations of such forms as represented by equations 

(3-25) and (3-26). Information from steam tables (11) and psychrometric 

tables (.12) can be conveniently used for these formulations. The water 

vapor properties of interest are the enthalpy and the specific volume,as 

functions of pressure arid temperature. Also needed is the saturated water 

vapor pressure as a function of temperature. The steam tables list all 

of these properties in a convenient form to adapt into the scheme of 

computation. It may be noted that the total pressure Used in a psychro­

metric equation is standard atmospheric pressure, or 14.696 lbf/in .." 

It has been assumed that air behaves as an ideal gas yielding the 

suf.fi-
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enthalpy 

h•= h(T) . (4-1) 

Although water vapor deviates from ideal gas behavior, fortunately, the 

air-water vapor mixture can be still treated as an ideal mixture, with 

the provision that both air and water vapor occupy the same total volume 

at the same time. Nevertheless, for the purpose of calculating the dew 

point temperature, it is reasonable to assume an ideal gas behavior for 

water vapor. The specific humidity is then given by 

V a • •• • T 
W = - = C 1 7T ~ • = f(T,P ) . (4-2) 

V 1 (P - P ) V ' W 
W . W W 

In equation (4-2),C. is a constant with its numerical value determined 

by the choice of units, P is the total pressure of the mixture, and P is 
V w 

the partial pressure of the water vapor. Equation (4-2) indicates that 

the specific humidity is a function of temperature and partial pressure 
. ' • • • • • • ' • • • ' ' • .' r 

of water only. 

The enthalpy of the air-water vapor mixture can be expressed as 

h = h + whw•.» g(T,Pw) , ;.• (4-3) 
a w w 

which, again", indicates that the enthalpy of the mixture is a function of 

temperature and partial pressure of waterrvapor.r The datum temperature 

for enthalpies can be taken at the standard value of 32 F. Finally, the 

dew point temperature of the mixture, as a function of temperature and 

specific humidity, can be determined by knowing the correspondingly par­

tial pressure of water vapor and by employing the rel'a'fion 
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w = C w 
2 (P - P ) ' 

w 

(4-4) 

where C« is a constant with a value dependent on the particular choice of 

units. The dew point temperature can be evaluated by identifying the 

saturation temperature from the steam tables corresponding to the known 

partial pressure of water vapor. 

Numerical Integration Procedure 

In order to proceed with the solution of the problem, it is neces­

sary to determine the exit thermodynamic properties of the air streams 

through the matrix. The first step is to obtain the exit conditions for 

a single matrix element* A .step procedure to obtain this may be out­

lined as ••••.', 

a) Assume the matrix temperature at the exit of an element 

T(i,j+1) = T(i,j). V 

b) Evaluate the average surface temperature of the given element. 

c) The ̂ average humidity ratio at the surface of the element is 

evaluated, according to equation (4-2) if the average surface temperature 

is below the dew point temperature of the entering air; if that is not 

the case, the average humidity ratio is identical to the humidity ratio 

of the entering air. In a similar manner, the average enthalpy of the 

air at the surface of the element •••is evaluated. 

d) Substitution of the above values in equations (3-27) and (3-28) 

yields two values for the enthalpy, h = h (i+1,j). 

e) If the two enthalpies are not identical, within .04 percent, a 

new T(i,j-fl) is substituted and the process is repeated until, both equa-
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tions-yield.the'same value of enthalpy, within the acceptable error. 

Having obtained T(i,j+1) and h (i+l,j), the rest of the exit prop­

erties of the element may be calculated with-the help of equations (3-23) 

through (3-26). 

The next step is to assume a distribution of temperatures at the 

left edge of the hot side of the matrix; i.e., an assignment of the 

temperatures T(l,l), T(2,1) .......T(N , 1) (see Figure 5). Since the 

entrance conditions of the hot air for the element (1., 1) have been ob­

tained, assuming the temperature T(l,l) above and the initial entering 

condition of the hot-air in the matrix, the procedure to obtain the exit 

conditions for the element (1,1) is similar to the one outlined in the 

preceding. Obviously, the exit condition of enthalpy for element (1,1) 

becomes the entering condition of the hot air for element (2,1). The 

procedure can be repeated to obtain the distribution of enthalpies along 

the first column of elements and the distribution of matrix temperatures 

for the right side of the same column of elements. In a similar fashion, 

the remaining columns of the hot side of the matrix are solved. 

To solve for the cold sector side of the matrix, one needs only 

to adopt the procedure used for the hot sector side, noting that the 

temperature distribution on the left cold side of the matrix must equal 

the temperature distribution on the right hot side of the matrix, and 

that the first element to be calculated is the one at the left bottom of 

the cold side, where the entrance conditions are known. When the cold 

side of the matrix is solved, the reiversal condition must be satisfied 

within 0.01 percent. This condition demands that 
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Tc(Nr + 1 - i, Nc + 1) = Th(i,l) ; i + 1,2,3 . \ . . IT . (4-5) 

In the event that equation (4-5) is not satisfied, the temperature dis­

tribution originally assigned to the left edge of the hot side of the 

matrix is replaced by the calculated temperature distribution at the 

right edge of the cold side of the matrix. The procedure is repeated to 

eventually satisfy the reversal condition. 



CHAPTER V 

PRESENTATION AND DISCUS'S ION OF RESULTS 

A Note on the Presentation of Results 

To help attain a physical understanding of the results, all steady 

state property distributions are presented in matrix form, the latter 

being identical to the developed matrix of the rotary regenerator. Dis­

tributions for the hot and cold sides are represented in separate tables, 

each of which represents approximately one half of the developed matrix. 

Among the property distributions presented in the results are the tem­

perature of the matrix, the enthalpy of air, the humidity ratio of air, 

and the mass rate of condensed water, as well as the states of entering 
" ' ' » ( i ' • ' - ' ' • . , , • • • • • • •• • ' ' • • . • ' 

and leaving hot and cold streams. Specific, cases are examined for two 

air flow heat capacity rates, two matrix heat capacity rates, and two 

heat conductance ratios, the results being examined with respect to the 

number of heat transfer units of the rotary heat exchanger and heat ex­

changer effectiveness. A particular set of numerical information to 

illustrate the results 6f this study is shown in Table t. 

Property Distributions within the Matrix 

Tables 2 and 3, respectively., show the distribution of enthalpies 

of the hot and cold air streams within the matrix. The top row of Table 

2 and the bottom row of Table 3 represent the constant enthalpies of hot 

and cold air entering the matrix. As the hot stream passed down the 
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Table 1. Illustrative Set of Numerical Values 

Input Parameters and Properties „ 

Number of rows;, into which the matrix is divided: 10 

C . /C = 0.7 . 
m m max , 
C /C . = 2 
r m m . . / . , • ; <•' 

' ." N T U o = 8 • -• : ''":" 

Relative humidity of hot entering air = 60% 

' O 

Temperature of hot entering air = 100 F 

Enthalpy of hot entering air = 44.07 Btu/lbm 
Relative humidity of cold entering air = 50% 

• - • • • . • - . . • 0 

Temperature of cold entering air = 80 F 

Enthalpy of cold entering air ==23.48 Btu/lbm 

Output Properties 

Enthalpy of hot leaving air = 39.76 Btu/lbm 

Enthalpy of cold leaving air = 28.06 Btu/lbm 

Computer Time = 4.51 minutes 



Table 2. Enthalpy of Air in the Hot Part of the Developed Matrix 

44.07 44.07 44.07 44.07 44.07 44.07 44.07 44.07 44.07 44.07 

43.44 43.56 43.72 43.77 43.79 43.85 43.94 43.97 43.97 43.97 

43.OB 43.13 43.31 43.36 43.46 43.53 43.60 43.72 43.76 43.78 

42.65 42.76 42.85 43.00 43.10 43.19 43.27 43.37 43.44 43.48 

42.21 42.39 42.43 42.60 42.67 42.82 42.91 43.02 43.10 43.16 

41.79 41,90 42.00 42.19 42.25 42.36 42.53 42.59 42.73 42.82 

41.33 41.44 41.56 41.70 41.81 41.91 42.05 42.15 42.26 42.38 

40.77 40.89 41.07 41.15 41.32 41.45 41.57 41.69 41.81 41*92 

40.08 40.61 40.39 40.58 40.74 40.88 41.01 41.14 41.32 41.39 

38.09 39.61 40.17 40.42 40.62 40.79 40.94 40.44 40.62 40*81 

36.41 38.13 39.32 39.98 40.36 40.61 40.80 40.68 40.62 40*74 

NOTES: a) Hot air enters at top left. 

b) Columns indicate angular positions along the matrix circumference at an interval of 
on «<>nU 
*-v Kabila 

c) Rows indicate axial positions along the matrix length. 



Table 3. Enthalpy of Air in the Cold Part of the Developed Matrix 

30.11941 28.09440 28.03082 27.98095 27.B9512 27.88261 27.77042 27.65736 27.64417 27.50429 

29.92846 27.88260 27.77961 27.75253 27.60788 27.54742 27.45385 27.33955 27.30299 27.14836 

29.59091 27.58000 27.47357 27.39103 27.25121 27.21777 27.08543 27.01155 26.93201 26.77775 

29.25540 27.22675 27.08247 27.03956 26,90486 26.83170 26.74611 26.58013 26.50386 26.40&30 

28.89594 26.85779 26.72359 26.65156 26.56113 26.39365 26.30797 26.19351 26.07412 25.946m 

28.51390 26.47197 26.38500 26.21412 26.11530 26.00741 25.85912 25.70920 25.59135 25.44549 

26.13339 26.07680 25.93262 25.B1934 25.64B61 25.54083 25.32017 25.17512 25.02545 24.83532 

27.98904 25.70717 25.56681 25.32165 25.07463 24.89963 24.68665 24.48729 24.34230 24.249«»9 

28.71479 25.25908 24.84513 24,47966 24,24?73 24*01622 23.90554 23.73759 23.66657 23.63707 

33.30295 22.61549 22.74968 22*9293? 22*99918 23.1C912 23.13496 25.21664 25.26458 23.29309 

23.48267 23.48267 23.4B267 23.48267 23.48267 23.48267 23.48267 23.48267 23.48267 23.48267 

NOTES: a) Cold air enters at lower left. 

b) Columns indicate angular positions along the matrix circumference at an interval of 
20 each.. 

c) Rows indicate axial positions along the matrix length. 



passages in the matrix it delivers energy to the metal matrix elements, 

a process indicated by a decrease in enthalpy. In a similar;fashion 

the cold stream entering at a lower level of enthalpy at the bottom of 

the cold part of the matrix primarily receives energy from the hotter 

metal matrix, this process resulting in an increase of enthalpy of the 

cold stream as it moves tip through the matrix. The bottom row of Table 2 

and the top row of Table 3, respectively, represent the enthalpies of the 

hot and cold streams leaving the matrix. Average values of these exit 

enthalpies are shown in Table 1. 

Tables 4 and 5, respectively, show the distribution of temperature 

within the hot and cold sides of the matrix. The same information, for 

selected rows of the entire matrix, .is shown graphically in Figure 7. 

The predominant variation of temperature is seen to be along the rows in 

these two tables, since these correspond to the rotation of the matrix 

about its axis. The last column of Table 4 also represents the first 

column of Table 5, since it represents the state of the matrix column 

leaving the hot domain and entering the cold domain. The trend, pre­

viously explained in,connection with the discussion on enthalpy distri­

bution, is visible in the temperature distribution as well; viz, a rise 

in matrix temperature due; to^energy received from the hot air stream, 

with a subsequent decrease in matrix temperature due to energy trans­

ferred to the cold stream. The last column of Table 5 is the input in­

formation for iteration of the property distributions. Ideally, this ; 

column should be identical to the first column of Table 4, the actual 

difference being the allowed truncation error in satisfying the so-called 

reversal condition. 



Table 4. Temperature of the Hot Part of the Developed Matrix 

96.52 97.20 97.71 98.12 98.11 98.75 98.98 99.12 99.23 99.33 99*13 

95.22 95.62 96.08 96.52 96.95 97.31 97.66 98.02 98.28 98*50 98.71 

93.63 94.09 91.17 94.97 95.35 95.73 96.10 96.17 96.81 97*19 97.50 

91.98 92.15 92.87 93.32 93.75 91.21 91.61 91.99 95.37 95*73 96.07 

90.15 90.60 91.12 91.58 92.02 92.18 92.97 93.39 93»85 91*21 91.60 

88.16 88.66 89.15 89,63 90.16 90.63 91.12 91.63 , 92.10 92*60 93*08 

85.81 86. 11 87.01 87.56 88.11 88.66 89.15 89.65 90.11 90*63 91.12 

83.20 83.93 81.26 81.98 85.60 86.23 86*81 87.11 88.03 88*56 89*12 

80.55 82.58 . 83.62 83.86 81 .05 . 81.21 61*35 81*18 85.23 85*97 86*59 

79.25 60.95 82.16 83.32 83.76 81.02 61*21 81.36 81.11 81*18 81.30 

NOTES: a) Hot air enters at top left. 

b) Columns indicate angular positions along the matrix circumference at an int 
20° each. 

c) Rows indicate axial positions along the matrix length. 



Table 5. Temperature of the Cold Part of the Developed Matrix 

9 9 . 4 3 9 9 . 2 4 9 9 . 0 2 9 8 . 7 6 9 8 . 5 3 9 8 . 2 3 97.89 97.57 97.24 96.89 96.53 

9 8 . 7 1 9 8 . 3 6 9 8 . 0 6 97 .74 9 7 . 3 7 9 7 . 0 2 96.68 96.31 95.97 95.59 95.22 

9 7 . 5 0 9 7 . 1 6 9 b . 8 0 96 .40 9 6 . 0 4 9 5 . 7 0 95.30 94.96 94.52 94.08 93.70 

9 6 . 0 7 9 5 . 7 0 _ 9 5 . 3 2 9 4 . 9 6 9 4 , 5 7 9 4 . 2 2 93-77 93.32 92.93 92*49 92.02 

9 1 . 6 0 9 4 . 2 1 9 3 . 8 2 9 3 . 4 7 9 3 . 0 3 9 2 . 5 7 92.18 91.72 91.22 90.73 90.22 

9 3 . 0 8 9 2 . 6 9 9 2 . 2 9 9 1 . 8 3 9 1 . 4 3 9 0 . 9 5 90.48 89.93 89.38 88*81 88.19 

9 1 . 1 2 9 0 . 9 7 9 0 . 6 0 90 .22 8 9 . 7 2 8 9 . 1 3 88.48 87.84 87.14 86*45 85.85 

8 9 . 1 2 8 9 . 8 6 8 9 . 4 0 8 8 . 6 7 8 7 . 8 1 8 6 . 9 7 86.08 85.29 84.53 83*85 83.23 

8 6 . 5 9 9 1 . 2 3 8 8 . 5 5 8 6 . 4 3 8 4 , 8 6 8 3 . 6 0 82.68 81.90 81.38 80*97 80*62 

8 4 . 3 0 ' , . 7 5 . 1 5 76 = 05 ? 6 t ? 7 7 7 4 2 2 
> 1 . M . J ... I O » £ l 73.56 75*83 79*05 79.25 

NOTES: a) Cold air enters at lower left. 

b) Columns indicate angular positions along the matrix circumference at an int 
20° each. 

c) Rows indicate axial positions along the matrix length. 
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The distribution of humidity ratio of the hot and cold air is, 

respectively, shown in Tables 6 and 7. It is seen from Table 6 that, 

except for the bottom three rows, the humidity ratio is constant through 

the hot domain. This implies that condensation of water in the hot do­

main occurs only within the bottom three rows. The actual amount of 

condensation can be interpreted in terms of the decrease in humidity 

ratio of hot air along the three rows. On the other hand, only the first 

column of Table 7 indicates any change in the humidity ratio. In fact, 

this occurs only on the bottom element of the first column of Table 7. 

An account of this behavior might: be provided by the carry-over of 

condensed water from the hot side to the cold side, a subsequent transfer 

of energy from this water to the relatively cooler entering air, and an 

eventual evaporation of all the carried water owing to heat absorbed from 

the matrix. There1 is no further increase in specific humidity of the 

first column of the cold side. 

A iqualitative verification of the explanation regarding carry-over 

can be sought by examining Tables 8 and 9, which respectively represent 

the distribution of the rate of condensed water within the hot and cold 

sides of the matrix. It is clearly seen from Table 8 that condensation 

does occur within the bottom three rows and also that the rate of conden­

sation increases to a maximum along the rows, followed by a reevaporation 

of a portion of the condensate, resulting in an apparent display of a 

reduced condensation. The portion of condensate that does not get re-

evaporated on the hot side is carried over to the cold side as explained 

previously. 



Table 6. Specific Humidity of the Hot Part of the Developed Matrix 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .025n 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .025U 

.02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02510 .02513 .02511 .02511 .02511 .02511 .02511 .02511 .02511 .02511 

.02377 .02<+78 .02522 .02536 .025U8 .02559 .02557 .02511 .02511 .02511 

.02260 .02380 .02<+66 .02512 .02539 .02556 .02568 .02557 .02551 .02556 

NOTES: a) Hot air enters at top left. 

b) Columns indicate angular positions along the matrix circumference at an interval of 
20 each. 

c) Rows indicate axial positions along the matrix length. 



Table 7. Specific Humidity of the Cold Part of the Developed Matrix 

.01270 .01092 __ .01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 

.01270 .. .01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 

.01270 .01092 .01092 . .01092 .01092 .01092 .01092 .01092 .01092 .01092 

.01270 .Qjngo ..01092 .... •01092 ..01092 .01092 .01092 .01092 .01092 .01092 

.01270 ...01092..., .01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 

.01270 . .01092 ,. .01092 - .01092 .01092 .01092 •01092 .01092 .01092 .01092 

.01270.... .01092 _. ..01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 

.01270 .01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 .01092 

.01270 .01092... ...01092... . .01092 . .01092 .01092 .01092 .01092 .01092 .01092 

• &127C . .01092 •01092 . .01092 .01092. .01092 .01092 .01092 .01092 .01092 

• 01092. ..•01092..... .01092.. •01092. .01092, .01092 . ..01092 .01092 .01092 .01092 

NOTES: a) Cold air enters at lower left. 

b) Columns indicate angular positions along the matrix circumference at an interval of 
20° each. 

c) Rows indicate axial positions along the matrix length. 



Table 8. Mass Rate of Condensed Water on Hot P a r t of the Developed Matr ix 

•ooooo 

. 00000 

.ooooo 

.ooooo 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

•ooooo 

.00000 

sQGQQQ 

•ooooo 

•ooooo 

•ooooo 

•00239 

o19879 

•ooooo 

.00000 

.00000 

. nnnnn 

•00000 

.00000 

.00000 

•ooooo 

.25049 

.00000 

.00000 

.00000 

.OOuuO 

•OOOOO 

•OOOOO 

.60000 

.00000 

.231*80 

.40681 

.00000 

.00000 

.00000 

.00000 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

•19701 

•44266 

.00000 

.OOOOO 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

•14096 

.45721 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.06940 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

.46106 .44533 .37684 

•ooooo 

.00000 

•ooooo 

.00000 

.00000 

•ooooo 

•ooooo 

•ooooo 

•ooooo 

.31768 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.00000 

.25023 

NOTES: a) Hot air enters at top left. 

b) Columns indicate angular positions along the matrix circumference 
20 each. 

c) Rows indicate axial positions along the matrix length. 

at an interval of 

•p* 
vo 



Table 9. Mass Rate of Condensed Water on Cold Part of the Developed Matrix 

.00000 .00000 .00000 .000.00 .00000 •00000 .00000 .00000 .00000 .00000 .00000 

.00000 .00000 .00000 .00000 .00000 .oonoo .00000 .00000 .00000 .00000 .ooooo 

.00000 .00000 .00000 .00000 .00000 .00000 .ooono .00000 .ooono .00000 .00000 

.00000 .00000 . .00000 .00000 .00000 .00000 .00000 .00000 .00000 sOQOOO sOOOOO 

.00000 .00000 .00000 .00000 •00000 .00000 .00000 .00000 .ooono .00000 .00000 

.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 

.00000 .00000 .00000 .00000 .00000 •00000 .00000 .00000 .00000 .00000 .00000 

.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 •ooooo .ooooo 

.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 sOOOOO «00000 

.25023 .00000 ... .00000.. .00000 .00000. .00000 sQQOQQ . fiftftrtn nnnnn fS ft ft * > V 

• i/wwuu .CCGGG 

NOTES: a) Cold air enters at lower left. 

b) Columns indicate angular positions along the matrix circumference at an interval of 
20 each. 

ws indicate axial positions along the matrix length. 



51 

Parametric Considerations of the Regenerator Performance 

Figures 8 through 11 show the performance curves of the rotary 

regenerator under the influence of several parameters. Each of these 

curves was obtained by a careful examination of the data from several 

sets of eight tables similar to those discussed previously. The rotary 

regenerator effectiveness and the. number of transfer units (NTUo) are the 

basic variables in these curves, plotted for two values of the ratio of 

minimum to maximum heat capacity rates, C . /C , two values of the 
J . . m m max 

ratio of rotor heat capacity rate to the minimum heat capacity rate of 

air, C /C . , and two values of the ratio of effective conductance (hA)*. 
• * r mm' 

It is recognized that the number of transfer units, NTU, expresses 

the "heat transfer size" of a heat exchanger configuration. As such, it 

is to be expected that the higher value of NTUo should correspond to a 

greater heat transfer rate, both from the hot air to the matrix as well 

as from the matrix to the cold air. Such a trend is seen in Figure 8. 

Further, an examination of Tables 10 and 11, respectively representing 

the enthalpy distribution for the hot domain for NTUo = 5 and NTUo == 8, 

and an examination of Tables 12 and 13, respectively representing the 

cold domain enthalpy distribution for NTUo = 5 and NTUo - 8, confirm 

the expectation regarding the hot and cold domain heat transfer rates. 

Moreover, an examination of the distribution, of condensing rates for 

NTUo = 5 and NTUo = 8, respectively shown in Tables 14 and 15, indicates 

a higher condensation rate for the higher NTUo case, an observation con­

sistent with the greater heat transfer rate mentioned earlier. Similar 

observations regarding the influence of NTUo can be made from Figures 9, 

1 0 , a n d 1 1 . ; • " \/ "'• V'.••'•••• '••.;'." '; ̂'•••••"- ,' -': •'•'•'•'. : 
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Figure 8. Effectiveness versus NTUo for C /C 
' . C /C . = 2, (hA)* = 0.7 m i n m a x 

r' mm ' x J 

= 0.7, 
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Figure 9. Effectiveness versus NTUo for C . /C =0.7, 
n -in e • /i_- A\ J. r\ -7 m m max 
C /C . = 5, (hA)^=0.7 r m m 
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Figure 10. Effectiveness versus'NTUo for C . /C 
C /C . = 2 , (hA)*=0.7 m l n m a x 

r mm , 

= 0.9, 
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Figure 11. Effectiveness versus NTUo for C . /c =0.7, 
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Table 10. Enthalpy of Air in the Hot Part of the Developed Matrix 

4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 4«t.07 4 4 . 07 . 4U.07 44 .07 4 4 . 0 7 4 4 . 0 7 4 4 , 0 7 4 4 . 0 7 
43*60 4 3 . 6 6 4 3 . 7 0 43 .74 4 3 . 7 8 43,fiO 4 3 . 8 4 43.R6 4 3 . 6 7 4 3 . 9 1 4 3 . 9 4 

.> 
4 3 . 1 8 43 .28 4 3 . 3 5 43 .41 4 3 . 4 6 4 3 . 5 3 4 3 . 5 5 4 3 . 6 1 43 .64 4 3 , 6 9 4 3 . 7 2 
42 .80 4 2 . 9 1 43 .00 43.Q7 4 3 . 1 3 M.tn 4 3 . 2 7 43 .31 4 3 . 3 8 4 3 . 4 5 4 3 . 4 9 
4 2 . 4 3 42.t>5 4 2 . 6 4 42 .72 4 2 . 7 9 42,fi6 T w l . U t 43 .09 4 3 . 1 6 4 3 . 2 3 
42 .08 4 2 . 1 9 4 2 . 2 9 42 .3a 42.1*5 4 2 , 5 3 4 2 . 6 3 4 2 . 6 8 4 2 . 7 7 4 2 , 8 6 4 2 . 9 2 
41 .70 4 1 . 8 2 4 1 . 9 3 42 .02 42 .10 4 3 , 1 8 42.P8 4 2 , 3 4 4 2 . 4 3 42 .^1 4 2 . 5 8 
4 1 . 3 1 4 1 . 4 4 4 1 . 5 2 41 .64 4 1 . 7 4 **l.ff3 4 1 . 9 2 42 ,00 4 2 . 0 8 4 2 . 1 7 4 2 . 2 4 
4 0 . 9 2 4 1 . 0 2 4 1 . 1 4 . 41 .27 41 .34 4 1 . 4 5 *U,55 4 1 , 6 4 4 1 . 7 3 4 1 , 6 2 4 1 . 9 0 
40 .27 (+0.61 4 0 . 8 6 4U.&0 4 0 . 8 9 41 ,04 4 1 , 1 3 4 1 , 2 3 4 1 . 3 3 4 l , 4 4 4 1 . 32 
3 9 . 0 8 39 .77 4 0 . 2 8 4U.I+B U n . < A tin >a 

*•* . ow -*» . 81 4 i«14 H I . 2 6 4 0 . 9 8 4 1 . 0 7 
3 7 . 7 6 3 8 . 7 1 _ - 3 9 . 4 6 ... 

irs at t 

- 3V.92 

OD left-

40.28. . . . 

U 

^0.58 _ 40 .80 4Q.98 . 4 1 . 1 3 4 1 , 0 1 4 1 . 0 7 

M n T P O . „ \ T I . . . i . ._ 

i.ivyj.uu. txj noc a i r ente 

- 3 9 . 4 6 ... 

irs at t 

- 3V.92 

OD left-

40.28. . . . 

U 

^0.58 _ 40 .80 4Q.98 . 4 1 . 1 3 4 1 , 0 1 

e) 

_, Columns indicate angular positions along the ma­
trix circumference at an interval of 20° each. c) Rows indicate axial positions 
along the matrix length. d) NTUo = 5 . 
C . 
m TI 

0.7 . 
mm 

max 

f) = 2 

mm 

Ln 
ON 



Table 11. Enthalpy of Air in the Hot Part of the Developed Matrix 

4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 . 4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 4 4 . 0 7 
4 3 . 5 5 4 3 . 6 3 4 3 . 6 7 - 43 .74 4 3 . 7 7 4 3 . 8 3 4 3 . 8 6 4 3 . 9 0 4 3 . 9 2 4 3 . 9 5 4 3 . 9 7 
4 3 . 1 5 4 3 . 2 1 4 3 . 3 1 43 .40 4 3 . 4 5 4 3 . 5 1 4 3 . 6 0 4 3 . 6 6 4 3 . 7 0 4 3 . 7 3 4 3 . 7 6 
4 2 . 7 3 42.au 4 2 . 9 5 _. 43 ,04 4 3 . 1 2 4 3 . 1 8 4 3 . 2 6 4 3 . 3 3 4 3 . 4 3 4 3 . 4 5 4 3 . 5 2 
4 2 . 3 3 4 2 . 4 6 4 2 . 5A 42«69 i i i t ^ 

" » 6 « f f 4 2 . 8 4 4 2 . 9 2 4 3 . 0 0 4 3 . 0 8 4 3 . 1 3 4 3 . 2 4 
4 1 . 9 5 - 4 2 . 0 9 . . . . • •2 .21 ... 4 2 . 2 7 4 2 . 3 9 4 2 . 4 9 4 2 . 5 8 . 4 2 . 6 6 4 2 . 7 4 42*80 42»89 
4 1 . 5 4 ... . 4 1 . 6 9 4 1 . 7 8 4 1 . 9 0 4 1 . 9 7 4 2 . 1 0 - 4 2 . 2 1 4 2 . 2 6 4 2 . 3 7 4 2 . 4 6 4 2 * 5 5 
4 1 . 1 0 4 1 . 2 3 .. . 4 1 . 3 3 . 4 1 . 4 9 4 1 . 5 5 4 1 . 6 8 4 1 . 8 0 4 1 . 9 0 4 1 . 9 5 4 2 * 0 8 4 2 . 1 9 
4 0 . 5 8 . 4 0 . 7 4 •,.._• 4 0 . 8 4 4 0 . 9 7 4 1 . 0 8 4 1 . 2 2 4 1 . 3 4 4 1 . 4 4 4 1 . 5 2 41*68 4 1 . 7 6 
3 9 . 3 4 ... .... 4 0 . 0 9 ._ . . 4 0 . 5 0 4 0 . 7 7 ;.. - 4 0 . 9 6 .... - 4 0 . 6 6 4 0 . 7 8 4 0 . 9 4 4 1 . 0 1 4 1 * 1 9 4 1 . 3 0 
3 7 . 7 1 * A . Q « ; • * 0 . 7 7 4o .31 _ 4 0 . 6 7 . 4 0 . 6 7 4 0 . 7 5 4 0 . 8 7 4 0 . 9 7 4 1 * 1 1 4 1 . 2 4 
3 6 . 6 5 . 3 7 . 8 6 38*87 3 9 . 6 4 4 0 . 1 9 . 4 0 . 4 5 4 0 * 6 2 4 0 . 7 6 4 0 . 8 8 4 1 * 0 2 4 1 . 1 5 

Hot air enters at top left. b) Columns indicate angular positions along the ma­
trix circumference at an interval of 20° each. c) Rows indicate axial positions 
along the matrix length. d) NTUo = 8 . 

JN-0.7. 
max 
G 
r - 2 , 

C . 
mm 

42.au


Table 12. Enthalpy of Air in the Cold Part of the Developed Matrix 

29.45825 27.86223 27.7o954 27.66749. 27.592ol 27.52?95 27.U3368 27.4077b 27.32129 27.22036 27.11858 

29.18750 27.58033 27,4/554 27,37006 27.32560 27.26**1 27,14886 27.06038 27.03666 26.91B04 26.81646 

28.9Q315 27.280'7 27,16470 27,06533 27.02324 26.94499 26.82769 26.77459 26.69361 26.59lb6 26.bl288 

28.59305 26.96096 26.84051 26.75352 26.724s7 26.60pil 26.50301 26.45880 26.34737 26.28732 26.16237 

28.25006 26.62528 26.50947 26.48834 26.36159 26.26391 26.20673 26.08468 26.02*98 25.88553 25,*23l9 

27.89745 26.29531 26,10672 26.14549 26.02368 25.96477 25.81399 25.74557 25.63904 25.52634 25,41951 

27.60787 25.99359 25,87276 25.77500 25.689f)6 25.56475 2S.44H7 25.33888 25.24558 25.13036 24.95646 

27.39280 25.68124 25.54342 25.47196 25.259J4 25.149n8 25.02887 24.8B877 24.78294 24.65372 24.54195 

27.45120 25.40597 25,2U073 25.04272 24.8l2i9 24.66945 24.52936 24.36809 24.30284 24.15949 24.06117 

28,49370 24,85164 24,5«596 24,34849 24.15263 23.98628 23.B4920 23.80877 23.73311 23.62923 23.59491 

32*68224 22.84928 22.91016 23.01166 2-3*07344 23,174^7 23.23777 23.2722b 23.29504 23,30728 23.37800 

23.48267 23,48267, 23,48267 23,48267 23.48267 23.48267 23.48267 23,48267 23,48267 23,48267 23.48267 

NOTES: a) Cold air enters at lower left. b) Columns indicate angular positions along the 
matrix circumference at an interval of 20° each, c) Rows indicate axial posi­
tions along the matrix length. d) NTUo = 0.7. 

e) J2in.= oV7 . 
'max 

C ' 
. f ) ^ = 2 • 

mm 



NOTES 

Table 13. Enthalpy of Air in the Cold Part of the Developed Matrix 

30.*5182 28.11539 28.0361*1 27.95771 27.87398 27.79877 27.7391*0 27*6585* 27.61307 27.5*977 ?7.*287* 

30.20107 27.83*80 27.7652* 27.68866 27.59093 27.55092 27.*8971 27.36777 27.30365 27.21263 P7.0977* 

29.88108 27.52278 27.52500 27.39582 27.29329 27.26770 27.13625 27.05*63 26.96916 26.83*08 26.80135 

29.55663 27.20852 27.18998 27.05239 27.01559 26.86822 26.8272* 26.671** 26.62865 26.*7755 ?6.*3355 

29.28877 26.88091 26.8*182 26.69012 26.6*802 26.*96*3 26.**832 26.29*94 26,2*8*1 26.10553 26.05517 

28.88581 26.52*01 26.*6705 26.31705 26.27287 26.11565 26.06696 25.9176* 25.85878 25.76*12 ?5.6*125 

28o50*B2 26.11310 26.08371 25.9*612 25.89**8 25.73226 25.6706* 25*56*66 25.*2Q86 25.29278 25.13601 

28.09*80 25.7887* 25.7006* 25.60915 25.*7011 25.3615* 25.2*33* 25.06767 2*.91656 2*.78236 2*.565*2 

27.70017 25.51615 25.*1119 25.323*9 25.05936 2*.8*907 2*.63279 2*.37675 2*.22173 2*.12121 23.9*906 

28.07**6 25.68039 25.01629 2*.5*70* 2*.15609 23.87365 23.70330 23.5916* 23,57637 23.51112 23.*1061 

3*.69885 22.29870 22.5296* 22.72*35 22.A6099 23.00829 23.086*1 23=20763 23*26562 23.29726 23.31057 

23**8267 23.48267 23.*8267 23**8267 23**8267 23**8267 23.48267 23**8267 23**8267 23**8267 23**8267 

Gold air enters at lower left. b) Columns indicate angular positions along the 
matrix circumference at an interval of 20° each. c) Rows indicate axial posi­
tions along the matrix length. d) NTUo = 8 . 

e) 
C • . •• 

min _ „ 
n "' 0.7 . 
max 
C 

f) cf " 2 
min 



Table 14. Mass Rate of Condensed Water on the Hot Part of the Developed Matrix 

.00000 .00000 ,00000 .ouooo .ooooo •OOOOO ,00000 .ooooo .ooooo .ooooo ,UOUOO •ooouo 

.00000 .ooooo ,00000 .ouooo •ooono .00000 •ooooo .ooooo •ooooo .ooooo .oouoo •ououo 

•ooooo . .ooooo _ ...ocooo . .ouooo •ooooo •00003 •ooooo .ooooo •OOOOO •ooooo .oouuo •OUUUO 

•00000 •ooooo .ouooo .ouooo •ooooo • ooooo. •ooooo .ooooo •ooooo •ooooo .ooooo •ououo 

.ooooo •ooooo ..00000 •ouooo . O O O Q O •oonno •ooooo •onooo •ooooo •ooooo .oouoo •ooouo 

.00000 •ooooo . .00000 •ouuoo •OOOoO •ooooo •ooooo •ooono •Oonoo •OOOUO Ououuo .00000 

•ooooo .00000 .00000 •ouooo •ooooo •OOoOO •OOOQO •ooooo •ooooo • O O O U Q -OOUOO •ooooo 

•ocooo •ooooo ,00000 •OUOOO • OOOfiO • oorioo •OOOOO •onooo •ooooo •ooooo .uouoo •ooooo 

•ooooo .02285 ,01868 .. .. .ouooo •OOOoO . •ooooo •ooooo •ooooo •ooooo •ooooo •ooooo •oouuo 

•ooooo .09221 ,14799 .1/blO .12121 •I52fl2 .12368 .086lb .04169 .ooooo ,00000 •ouooo 

•ooooo • u«m ,20180 .20362 .29757 •313AU •31677 .30953 .29482 .27097 #22&8«* • 1»00«» 

NOTES: a) Hot air enters at top left. b) Columns indicate angular positions along the ma­
trix circumference at an interval of 20 each. 
along the matrix length. d) NTUo =5. 

c) Rows indicate axial positions 

e) 

f) 

min 

"max 
C 
r 

i 

'min 

= 0.7 

= 2 



Table 15. Mass Rate of Condensed Water on the Hot Part of the Developed Matrix 

.00000.. .....00000 _ „.00000 . .00000 •ooooo .00000 .00000 .00000 .00000 .00000 .00000 

.00000 : .ooooo ..'. .ooooo- .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 

.00000 •00000 . .00000 .00000 .00000 .00000 .ooooo .00000 .00000 .00000 .00000 

.00000 _.00000. ....ooooo .00000 .00000 .00000 .00000 •ooooo •ooooo .00000 .00000 

.00000 .00000 .00000 .00000 .00000 .00000 .00000 •ooooo .00000 .00000 .00000 

.00000 _. .00000 ... .00000 •00000 sOOOOO .00000 .00000 •ooooo .00000 .ooooo .00000 

.00000 .00000. .:_ .ooooo.. •ooooo .00000 .00000 .00000 •0G000 .00000 .00000 .00000 

•00000 ....00000 ;.00000 •ooooo •ooooo .00000 .00000 •ooooo .00000 .00000 .00000 

.00000 ... .08322. .....10053 . .081*9 .0*122 ...ooooo .00000 •ooooo .00000 .ooooo .00000 

•00000 ...14235 .23367 .2833»* .30393 .29742 .25*53 •20891 .15749 ,09930 .03388 

.00000 __..09666 ....•1.9*31 .27310 .32872.. ..36100 . .36540 •35842 .34565 .32913 .30933 

NOTES: a) Hot air enters at top left. b) Columns indicate angular positions along the ma­
trix circumference at an interval of 20° each. c) Rows indicate axial positions 
along the matrix length. d) NTUo = 8 . 

e) 

f) 

C . 
m m 
max 
C 
r 

"min 

- 0.7 . 

- 2 . 
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A very interesting observation regarding the influence of conden­

sation on the rotary heat exchanger effectiveness can be made on the basis 

of the preceding discussion on the role played by NTUo in the heat trans­

fer process. It appears-that the start of cold air humidifieation, which 

might prove to be a critical design condition in applying the RHE to such 

systems where it is to be avoided, can be identified as a point on each 

of the, NTUo - Effectiveness curves for:a given set 6| such parameters as 

C . /C , C /C . , and (hA)*. In other words, although the effeetive-min max r mm -

ness shows an apparent increase due to the cold air humidification, the 

need to avoid the latter puts an upper limit on the former. Figure 12 

shows qualitatively how such design information might appear on the 

Effectiveness versus NTUo curve for prescribed states of entering air 

streams. That such information was not obtained in this investigation 

due to its previously stated limited scope, does not preclude a further 

exploration of the numerical model developed herein just to obtain such 

data. 

Figure 13 shows the influence of the parameter C . /C on the 
m m max 

RHE effectiveness * It is seen that, for the case of a higher value of 

the heat capacity rate ratio, the effectiveness is higher, both for 

NTUo = 5 and for NTUo = 8. A possible explanation for such a trend can 
be provided by first observing that a higher value of C . /C amounts 

r J o . . . - ' • ' m m max 
to a higher flow rate of cold air in this investigation. As a result, 

the average temperature distribution within the matrix is at a lower 

level than that for the case of C . /C =0.7. The consequence of this 
m m max 

is that, for the hig;her average temperature distribution, all the condensate 
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100 
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Figure 12. Qualitative Sketch of the Influence of Humidity 
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Figure 13. Influence of the Parameter C . /C •••••: on the RHE 
• • „ , - • ' min max 

Performance. 
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in the hot domain is reeVaporated prior to reaching the cold side. Such 

is not the case for the lower average temperature distribution; rather, 

there is a carry-over of condensate to the cold side. This condensate 

being at a higher temperature than the temperature of the incoming cold 

air allows a greater heat transfer to the latter. Although this influence 

is. limited to only the first column of elements on the cold side (due to 

immediate reevaporation of condensate due to heat transfer from the ma­

trix), the end result is a slight increase in regenerator effectiveness. 

Figure 14 shows the influence of C /C . on the regenerator per­

formance. It is seen that, at a higher value of this parameter, the 

effectiveness improves. This trend has been previously observed by other 

investigators and has been explained on the basis that, at a higher heat 

capacity rate of the matrix, its performance approaches that of a non-

rotating conventional counterflow exchanger. 

The influence of (hA)*', although reported by other investigators 

to be negligible for the range of variation considered in this study, 

seems to be slightly in variance with other studies, as shown in Figure 

15, It is likely that this is more a consequence of computational errors 

involved with the present model and the resultant truncation error than 

it is an indication of a physical mechanism. 

Figure 16 shows the influence of increasing thei number of matrix 

elements on the effectiveness of the regenerator. That this influence is 

extremely small is a proper justification for extrapolating the,results 

to the case of a very large numter of elements. 
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Figure 14. Influence of the Parameter C/C . on the RHE 
& _ " ' . r min 

Performance 
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Figure 15. Influence of the; Parameter (hA)* on the RHE 
Performance 
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Figure 16. Influence of the Number of Elements on the RHE 
Performance 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The research reported in this investigation has demonstrated that 

i) It is feasible to examine rotary heat exchanger performance, with 

at least one condensing fluid stream through it, by the numerical tech­

nique developed in this work. 

ii) Although an apparent increase in the rotary heat exchanger effec­

tiveness occurs as a result of cold air humidification caused by a 

carry-over of condensate from the hot domain of the rotor matrix, the 

need to avoid humidification of cold air in certain applications puts an 

upper limit on the effectiveness of the heat exchanger. 

For future investigations on the subject, it is suggested that 

i) Emphasis be placed on examining in more detail the influence of 

both the heat capacity rate parameters considered in this investigation, 

with particular reference to the quantitative definition of the conden­

sate carry-over conditions; 

ii) For wider applicatipn of the numerical: technique developed in 

this work, efforts be made to examine the influence of different enter­

ing gas stream states. 

iii) A significantly large number of elements of the matrix be con­

sidered with truncation errors of computation limited to an order of 

magnitude smaller than those utilized in this work. 
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APPENDIX I 

DERIVATION OF EQUATIONS (3-27) AND (3-28) 

a) Derivation of Equation (3-27) 

From Equation (3-23) and equation (3-20), we have 

m- r .-, 
mw(i,j+l) « r| |_W(i,j) - W(i-kL,j)_ + m (i,j) w (A-l) 

m p 
Let Q = ̂  [hro(:L,j) - hm(i+lj) (A-2) 

Incorporating Equations (A-l) and (A-2) into Equation (3-21) yields 

m r - • " " ' • ••••;'• '•"• ' H '"• ' | - . 

Q = f \y(x,z) 4.wu+i.jyj^ T(i,j+i);+ [^(i.jf cpw +. <A-3) 

m 

ifc! 

N pr, 

kA 
|~T(i, j + l ? - T ( i , j ) j - ' - ^ [ ( | ( i - l , j ) ' V T ( i - 1 , j+1) ) -

2 ( T ( i , j ) ••+ T ( i , j + 1 ) ) + ( T ( i + l , j ) + T ( i + l , j + l » 

From Equation (3-24) 

W( i+ l , j ) ' . « 
m -

fAv 
a 2C N 

Pm 

m. .+. 
fAv 

a 2C N pm 

W ( i , j ) + 

fA 
2C N 

pm 
V , i'fAv 

ma + 2 C ~ N 
Pm ^ 

(A-4) 

2 W ( i , j ) . 
savg , J 



For simplification let 

fA B NTU 
2m C N N 2N 

a pm 

Equation (A-4) can now be rewritten as 

,W(i+l,j) = | f | W(i,j) + ~~ W (i,j) . 
N-f-B ,J N-fB savg ' J / 

Incorporation of Equation (A-6) into Equation (A-3) yields 

m r / 

-f[( 
- N-B\ tT/. . ' 2B TT /.• . ' 
1 - — - ) W(i,j) - rr—• W__(i,j) 

N+B N+B s a v g J pw 
C „ T(i,j+1) + 

m C 

Evi'j>-Sw + "V7lT<i'j+i> - T ( I ^ ) ] -

m aHC84 [(T(i-l,j).'.+ T(i-l,j+l)> . 2(T(i,j) + T(i,j+1)) 

(T(i+l,j) + T(i+l,j+l)) , 

where HC84 = >r* 
kA 

2m L * 
a 

Finally combining Equations (A-7) and (A-8), one obtains 

hro(i+i,j) - h . a . j ) - '^ . [w-ci . j ) - W C T(i.j+1) 
savgj pw 

(Continued) 
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rm (i,j) C m 'C''-ij- -, r 

[_ W m
 ?W + ~^j_T(i,j+l) » T(i,j)J - HC84 N j_(T(i-l,j) + 
a 
N 

T(i-l,j+l)) - 2(T(i,j) + T(i,j44)) -f (T(i+l,j) -f T(i+l,j+l))] . 

If we incorporate Equations (3-29), (3-30), and (3-31) into Equation 

(A-9), we will have the resulting Equation (3-27). 

b) Derivation of Equation (3-28) 

From Equation (3-22) we have . •'. 

"*'' N R - 9R 

V t + i y ) ."' sit h»(1 'J) + 'W h s a v g ( i > » > '• •• . <A-10> 

"'" '"' 2 B ' ' '•'"''•' 

Adding arid subtracting — - hOT(i,j);, 

•"^•(ifl.j) = h r o ( i , ^ (A-ll) 

which is the same as Equation (3-28). 
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APPENDIX II 

COMPUTER FLOW DIAGRAM 

3L 
SET; NUMBER OF ELEMENT NN INTO WHICH THE 
MATRIX IS DIVIDED 

JL 
SET THE FOLLOWING VALUES OF THE HOT 
ENTERING HOT AND COLD AIR 
TEMPERATURE AND REIATIVE HUMIDITY 
B ACCORDING TO EQUATION (3-32) 
HC84 ACCORDING TO EQUATION (3-33) 
Cr 

>/ 

SET MAGNITUDE OF ALLOWED ERROR IN REVERSAL CONDITION. 
ENTHALPY AND HEIAT BALANCE 

O 
\f 

SET MAXIMUM NUMBER OF PASSES 
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CALL SUBROUTINE NUMBER 

XL 
WRITE TABLES OF RESULTS ACCORDING TO TABLES 
2 THROUGH 9 

INCREASE THE NUMBER OF ELEMENTS OF THE MATRIX 
AND REPEAT THE WHOLE THING UP TO HERE ,' 

CALCULATE 

C - C 
N m i n r ,TrT1TT 

a ) -——•,:,.. —— r , NTUo 
max min ; 

b) EXTRAPOLATE 7) TO INFINITE NUMBER OF ELEMENTS 

WRITE EVERY VALUE OF THIS BOX 



I 
fh? 
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SUBROUTINE NUMBER 

V • 

WHAT THIS SUBROUTINE DOES HAS ALREADY BEEN 
EXPLAINED IN SECTION (4-3) 

\ f 

RETURN 
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