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SUMMARY 

The subject of this dissertation lies in the area of space- and 

energy-dependent neutron noise analysis, which in turn falls within the 

field of reactor kinetics. The objective of this investigation has been 

fourfold: 

1. to indicate the interrelation between time- and frequency-

domain noise techniques, 

2. to demonstrate how modal approximations of the neutron noise 

follow from the manner in which the Green's function or transfer matrix 

is approximated, 

3. to derive an exact solution and several modal approximations 

of the coherence function in one-dimensional coupled core reactor models, 

and investigate their characteristics with changing core and detector 

conditions, 

4. to postulate and utilize methods by which some important dy

namic reactor parameters can be inferred from the measured coherence func

tion or modified coefficient of correlation in zero-power coupled core 

reactors. 

The interrelation between time- and frequency-domain noise tech

niques, which still retain the space- and energy-dependence, was shown in 

a direct manner by starting with the formulation of the covariance. The 

Green's function or transfer matrix was involved in each noise technique 

investigated. Modal formulations of the noise techniques were demonstrated 



to be dependent upon the manner in which the Green's function or transfer 

matrix was approximated. The point reactor noise approximation was shown 

to result when the fundamental prompt decay mode was dominant. 

A one-dimensional exact solution of the coherence function was de

rived to serve as a standard of comparison for the modal approximations 

and to investigate the nature of the coherence function as the core and 

detector conditions changed. It was found that the absolute value of the 

coherence function decreases as a reactor becomes more decoupled, and 

that the value of the coherence function "sink or "null" frequency is 

very sensitive to the degree of coupling and location of the detectors. 

It was demonstrated that the local thermal neutron lifetime could be in

ferred from plots of the coherence function phase angle only when the 

local neutron leakage was small. 

Modal approximations of the exact solution in one-dimensional 

geometry were derived. For detector locations external to the decoupling 

region, the two-mode expansion approximation was observed to compare well 

with the exact solution in loosely coupled reactor models. Using these 

two-mode approximations, methods were postulated by which the eigenvalue 

separation (a measure of the spatial coupling), neutron generation time, 

and the effective delayed neutron fraction could be inferred by interpre

tation of the measured zero-power reactor coherence function or modified 

coefficient of correlation. These methods were applied to extract the 

above parameters from frequency-domain noise measurements from the Solid 

Homogeneous Assembly at Knolls Atomic Power Laboratory and an Argonaut 

type reactor at the Karlsruhe Research Center. Results obtained using 
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these methods compared favorably with other experimental interpretations 

and with direct calculations. In general, the quality of the results de

creased as the reactors were made more tightly coupled. 
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CHAPTER I 

INTRODUCTION 

All phenomena in nature exhibit: random fluctuations about a. mean 

value. The neutron population density existing in a steady state nuclear 

reactor is no exception to this general rule. Since the neutron popula

tion density variation results from the sum of the effects of the various 

processes involved, a measurement of this quantity provides a means whereby 

some dynamic characteristics of a reactor may be inferred. 

Neutron detectors are used to measure the local neutron population 

density and their response rates also fluctuate about a mean value. 

These fluctuations are commonly referred to as "noise," and the interpre

tation of this "noise" is called noise analysis. The detector noise will 

vary with location in large heterogeneous reactor cores where the neutron 

population density variation and neutron energy spectrum changes with 

position. Any noise analysis method used to infer global dynamic charac

teristics of a reactor must take this spatial-spectral change into account. 

It is for this reason that it is important to study the space- and energy-

dependent noise in reactors which exhibit this dependence. Coupled core 

reactors, by definition, fall within this category. 

The terminology used in reactor noise analysis has borrowed heavily 

from the disciplines of communications and statistics. The very word 

"noise" itself originated from the electrical noise present in varying 
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amounts in communication channels. Although at first considered a 

nuisance, it was later realized that useful information could be found in 

the noise. Use has been found for noise analysis in other fields, such 

2 
as resolving binary star systems in astronomy, detection of the natural 

3 
frequencies found in the brain waves of humans and other animals, the 

4 
analysis of ocean waves in oceanography, and the detection of reflections 

in seismic records in the field of geology, to mention only a few. 

Although one of the aims of noise analysis in reactor technology 

is to extract useful information on reactor dynamics, this may often be 

done with more ease by other well known methods. Pulsed neutron, pile 

oscillator, and rod drop techniques all possess the ability to measure the 

dynamic parameters of a reactor. Easy interpretation of the resulting 

data is characteristic of these methods. However, they all have one 

common disadvantage, that of perturbing the reactor from its normal operat

ing conditions. The beauty of noise analysis lies in its non-perturbing 

character. Special procedures outside the normal operation routine need 

not be undertaken in the procurement of noise data. Other advantages 

offered by noise analysis are: 

1. existing instrumentation and equipment may normally be used, 

whereas in pulsed neutron and pile oscillator methods special equipment 

is needed, 

2. complex phenomena, such as the variance, in the number of neu

trons per fission, sometimes require noise analysis as one of their modes 

of investigation, and 

3. considerable precedent now exists in monitoring for reactor 



3 

stability by noise analysis. 

Much work has been devoted to the development of experimental 

techniques to measure reactor noise and many mathematical models have been 

presented to predict and interpret the observed noise. The noise signal 

is composed of fluctuations which are Poisson and non-Poisson in charac

ter. If the neutrons were born independently of one another, uncorrelated 

by location or time of birth, the detector noise would be entirely Poisson 

distributed. 

In fact, however, neutrons are born together, correlated as to 
location and time of birth, in fission events and in some other pro
cesses occurring in a reactor. This correlation in the neutron 
birth process leads to [detector] fluctuations which are non-
Poisson in character. Moreover, these [non-Poisson] fluctuations 
can be observed and they reveal important: properties of the mul
tiplication process. 

Historically, the first reactor dynamic parameter to be inferred 

by noise techniques was the prompt neutron decay constant, in work con

ducted at Los Alamos. Though this parameter, as well as others, can 

be easily obtained by other techniques, it was of interest in the develop

ment of noise analysis to demonstrate some practical applications. The 

variance in the number of neutrons per fission, sometimes called the 

11 8 
Diven parameter, was also measured during this time. The next param-

12 eters to be measured by noise analysis were the subcritical reactivity 

13 
and the absolute power level of low power reactors. Noise analysis has 

been applied to various different types of measuring devices in power 

14 

reactors. Attempts have been made to interpret the statistical correla

tions of several different types of detectors, such as gamma and 

18 
pressure detectors, in an effort to understand the dynamic character-
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19 isties of the entire system. Recently, Ackermann et al. have indicated 

a noise method by which the neutron lifetime may be determined independ

ently of the delayed neutron fraction. 

Very recently, work has been undertaken in an effort to describe 

and interpret the neutron noise in zero-power coupled core reactors, in 

20-29 
both the time- and frequency-domain. These investigations were 

carried out, for the most part, independently of each other and generally 

20 29 
for different reasons. In one case, ' the major objective was to 

develop analytical and experimental methods, in the time domain, by which 

the spatial coupling could be predicted. A spatial coupling parameter, 

called the eigenvalue separation, is important in predicting xenon oscilla-

30 

tions, flux tiltability of the reactor core when subjected to local re

activity perturbations, and nodal space-time kinetics coupling parameters. 

01 0 7 O Q 

Other noise analysis work in the frequency- and time-domain ' ' was 

undertaken as part of the fast reactor development program being under

taken by the United States and West Germany. The time-domain work of 
21 

Borgwaldt et al. was concerned with the study of the coupling effects 
27 ?8 

in moderator-reflected fast assemblies. Seifritz and Albrecht, ' on 

the other hand, studied coupling parameters in a thermal reactor using a 

simple frequency-domain model. Likewise, the group at Iowa State Univer-

op _ 9fi 
sity has proposed several simple to complicated frequency-domain 

models to describe some rather curious features of the space-dependent 

noise in a thermal coupled core reactor. 

As previously mentioned, the recent time and frequency domain work 

has developed more or less independently from each other, although the 
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results are closely related and the techniques complementary. The manner 

in which the space- and energy-dependence has been treated in both methods 

appears to be fragmented. Also, the curious and interesting features of 

each method have not been explained or related to the other method. 

Finally, it appears that the techniques to infer some reactor parameters 

from the measured time domain noise may be applied in the frequency domain 

with little modification and perhaps some improvement. 

To this end, the following four objectives have been undertaken in 

this dissertation work: 

1. to indicate the interrelation between the time- and frequency-

domain noise techniques, 

2. to demonstrate how modal approximations of the space- and 

energy-dependent noise follow from the manner in which the Green's func

tion or transfer matrix is approximated, 

3. to derive an exact solution and several modal approximations 

of the noise in one-dimensional coupled core reactor models and investi

gate their characteristics with changing core and detector conditions, 

and 

4. to postulate and utilize methods by which some important dy

namic reactor parameters can be inferred from the measured detector noise 

in zero-power coupled core reactors. 

The work described in this dissertation was undertaken for several 

reasons: Firstly, to date there exists no comprehensive space- and 

energy-dependent noise theory which shows the interrelation between time-

and frequency-domain methods. From the literature, it appears that 
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time- and frequency-domain noise methods have been developed independently 

from each other and that both schools have ignored the applicable work 

done in space-time (and energy) kinetics. Secondly, it is important to 

give future experimenters involved in coupled core work insight on how 

best to perform some experiments. Also, a clear understanding of some of 

the dynamic properties of coupled cores is gained when interpreted in 

light of the noise models. Lastly, some important reactor parameters 

which have not been measured yet are obtained by the methods presented 

herein. These parameters are the effective delayed neutron fraction (ft) 

and the neutron generation time (A0o)* ^n addition, the eigenvalue sep-

20 
aration obtained by the time-domain analysis of Rydin et al. is shown 

to be obtained also by a frequency-domain analysis. 

A comprehensive historical background discussion of zero-power 

reactor noise theories is presented in Chapter II. This is undertaken in 

an effort to put the rest of the dissertation in the proper perspective. 

Chapter III is concerned with the development: of several space- and energy-

dependent noise techniques (variances, correlation functions, and power 

spectra) starting with an expression for the covariance which was derived 

by Borgwaldt and Stegemann and Harris. This was undertaken in order to 

indicate the close interrelation of these various techniques. It is found 

that the Green's function or transfer matrix is used in each one of these 

methods. The modal approximation form of the above methods is found to 

follow from the manner in which the Green's function or transfer matrix 

is approximated. The common point reactor formulation of these methods 

results when the prompt neutron decay mode dominates. 
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A one-dimensional exact solution of the space- and energy-dependent 

noise is derived in Chapter IV to serve as a standard of comparison for 

the modal approximations and to provide a means to investigate the nature 

of the noise as the core and detector conditions change. Another type of 

solution of the space- and energy-dependent noise, called the modal approx

imation, is developed in Chapter V. Using the special case of the modal 

scheme, called the two-mode approximation, methods are developed by which 

reactor dynamic parameters may be extracted from noise measurements. The 

methods developed in Chapter V are applied with fairly good success in 

Chapter VI. 
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CHAPTER II 

HISTORICAL DEVELOPMENT OF NOISE THEORIES AND EXPERIMENTS 

FOR ZERO-POWER REACTORS 

Background and Definitions 

Many noise theories for zero-power reactors, both in the time- and 

frequency-domain have been developed rather independently from each other. 

It is the purpose of this chapter to present a brief review of these 

various theories and to classify them as to type. It has been observed 

32 
by Seifritz and Stegemann that all existing noise theories fall into 

four separate categories: 

1. differential methods, 

2. integral methods, 

3. noise equivalent: source method, and 

4. the quantum-Liouville method. 

33 Dragt, on the other hand, has condensed the above four groups into only 

two; the autonomous and the Green's function approaches. Likewise, 

34 

Uhrig has only two categories which he calls the microscopic and macro

scopic approaches. The microscopic and autonomous approaches are equiva

lent and include both the differential and quantum-Liouville methods 

listed above. Also, the macroscopic and Green's function techniques may 

be thought to be identical and they include the integral and noise equiv

alent source methods. 
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As mentioned earlier, very little interaction between the various 

theoretical developments has taken place. Theories within each category 

have started with simple, space- and energy-independent models and pro

gressed, with time, to take into account space- and energy-dependence. 

There are advantages and disadvantages with each of the different methods 

The integral and noise equivalent source methods tend to be easier to 

comprehend and are more directly applicable to the interpretation of ex

perimental results. However, these methods require a more intuitive feel 

for the problem and are not as rigorous as the differential and quantum-

Liouville approaches. For the most part, workers in the reactor noise 

field have applied their skills to the development of more elegant theo

ries, in attempts to describe the noise space- and energy-dependence, 

rather than trying to infer any dynamic reactor parameters from the mea

sured noise. Only recently has this situation changed, as evidenced by 

35 papers presented at the recent American Nuclear Society Meeting. 

In order to better understand the ensuing discussion in this chap

ter and the next, a number of terms and equations used in the discussions 

are defined or described in alphabetical order. 

Auto-Covariance--the time lag function which results when a detector's 

response rate is correlated with itself as a function of time displace

ment . 

Auto-Power-Spectral-Density (APSD)--the lag time Fourier transform of the 

auto-covariance. 

Chapman-Kolmogoroff Equation--an equation relating the neutron transition 

probabilities of Markoff processes from one state to another as an inte

gral product of two earlier transition probabilities. 



10 

Coherence Function--a type of normalized CPSD which is quite useful in 

coupled core noise analysis work. It is defined as the CPSD divided by 

the square root of the product of each detector's APSD. 

Covariance--the expected value of the product of the fluctuations of two 

different detector response rates. It is similar to the variance, but 

involves two detectors. 

Cross-Covariance--the time lag function which results when one detector's 

response rate is correlated with another as a function of time displace

ment. 

Cross-Power-Spectral-Density (CPSD)--the lag time Fourier transform of 

the cross-covariance. 

Eigenvalue Separation (A(l/Ki ))--a quantity which gives an indication of 

the degree of coupling within a reactor core. If ACl/K^) ̂  2% AK/lC, the 

core is termed loosely coupled, and if ACl/Kj) > 2% AK/K, the core is 

termed tightly coupled. 

Ergodic Processes — processes whose time averages are equal to their en

semble averages. 

Fokker-Planck Equation — the probability generating function form of the 

Kolmogoroff equation. The first order moment of this equation yields 

the transport equation or its approximations and the second order moment 

gives the correlation equations. 

Green's Function — the time, space, and energy dependent neutron density 

due to an impulse of source neutrons of some energy and spatial location 

that was introduced at some initial time. 
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Kolmogoroff Equation — the Chapman-Kolmogoroff equation for stationary 

processes. This equation may be subdivided into forward or backward 

parts depending on whether one is dealing with forward or backward 

Markoff processes. 

Langevin Equation—an integro-differential equation which describes the 

statistical nature of the neutron interactions. It may be thought of as 

the statistical version of the transport equation. 

Markoff Processes--short-memory processes in which the condition of a 

neutron is determined by the most recent past interaction. 

Modified Coefficient of Correlation (MCC)--the time-domain equivalent of 

the coherence function. It is defined as the ratio of the covariance 

divided by the product of each detector's standard deviation. 

Null Frequency—that frequency (if any) where the absolute value of the 

coherence function vanishes. 

Probability Generating Function--a particular type of mathematical trans

formation of the transition probabilities. 

Quantum-Liouville Equation--a statistical description of the neutron 

probability distributions. This equation is closely related to the 

Langevin equation. 

Rossi-Qf Method--a particular noise method by which the prompt neutron de

cay constant is obtained by observing the slope of the auto- or cross-

covariance. 

Schottky Formula--an equation originally developed to calculate the elec

tron noise in a temperature-limited electronic diode. In reactor noise 

analysis it is used to calculate the driving noise source called the noise 

equivalent source. 
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Sink Frequency--that frequency (if any) where the absolute value of the 

coherence function reaches a local minimum. 

Stationary Processes—processes whose statistics are not affected by a 

shift in the time origin. 

Variance--the expected value of the square of the fluctuations of a de

tector's response rate. It is the square of the standard deviation. 

Variance-to-Mean--a particular noise method by which the prompt neutron 

decay constant is obtained by observing the change in the ratio of the 

variance divided by the mean as the detector's gate time is increased. 

The nature of the neutron noise problem is to attempt a prediction 

of the statistical variation of the neutron population as indicated by a 

detector, sensitive to some neutron energy, at any position within a 

reactor. The adjunct problem, which is more difficult, is that, once an 

adequate prediction is in hand, can any reactor parameters be extracted 

from the measured noise? In light of this background information and 

the definitions, the various noise analysis approaches are outlined along 

32 
the lines presented by Seiiritz and Stegemann. 

Differential Methods 

The first differential reactor noise theory was proposed in 1946 
Of. 

by Courant and Wallace to estimate the neutron detector standard devia

tion observed in an operating reactor. They started with the forward 

Kolmogoroff equation to establish a set of differential equations for the 

conditional probability distributions of neutron counts. A point reactor 

model with delayed neutrons was used but the effect of detector insertion 

was not taken into account properly. Several years later Frisch and 
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37 
Littler, using the same Kolmogoroff equation formalism but treating 

37 only prompt neutrons, correctly treated the detector. This theory was 

constructed to account for the disturbing noise in a pile oscillator 

experiment. 

Up to then the space and energy effects had been neglected. In 

38 
1958, Raievski took a one-velocity homogeneous reactor model and 

divided the reactor volume into a number of cells. Starting from the dif

ferential equation for the probability generating function, where the 

transitions of neutrons from one space cell to another were taken into 

account, he derived corrections to the point reactor theory. Neutron 

slowing-down was included approximately in the statement that the thermal 

neutrons produced by fission spread out uniformly, within a sphere about 

the fission source, to a radius equal to the slowing-down length. 

39 40 
Matthes ' extended Raievski"s work by treating the space- and 

energy-dependence using a multigroup Green's function approach. By 

integrating corresponding products of Green's functions over the reactor 

volume he obtained correction factors with respect to the results of point 

41 
reactor theory. Later Matthes rederived his previous results starting 

from the Kolmogoroff equation, producing a very general formalism for 

42 
treating fluctuations in neutron fields. Matthes showed the close 

relation between the backward Kolmogoroff equation and the concept of 

42-47 
neutron importance. A general set: of theories was produced by Dalfes 

using the Fokker-Planck and. Langevin approaches, but he only took the de-

46 
tector into account in one of his papers. The Fokker-Planck and Schottky 

e i - • • - A u ni •" 4 8 " 5 0 u • - 5 1 A V . i 5 2 > 5 3 

formulation was incorporated by Blaquiere. Hurwitz and Kozik 
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used the binary or doublet neutron density in their developments. Finally, 

54 

using a forward Kolmogoroff equation approach, Stacey calculated space-

energy- and time-dependent variances, covariances, and correlation func

tions for low source start-up problem models. 

Integral Methods 

Reactor noise work first started at Los Alamos in 1944 when de Hoff-

9 10 
mann ' proposed the first integral method to describe the magnitude of 

the reactor fluctuations. The reactor was described by a point model 

which neglected delayed neutrons. The starting point in treating the 

neutron fluctuation was to pursue the events in a neutron's lifetime by 

means of the theory of branching processes and correlation measures which 

were borrowed from the theory of general stochastic processes. The re

sults of this treatment produced integral equations for the probability 

distributions of the neutron densities., In addition to de Hoffmann's 

8 12 

early work, two other papers were published ' in which the variance-to-

mean and the Rossi-a methods were postulated. These four publications 

formed the nucleus for many others that followed and that are particularly 

well suited for use by experimentalists. 

Pal presented a complex analytical theory based on essentially 

the backwards Kolmogoroff theory for branching processes. In a later 

paper, Pal used the generating function method to establish a probabil

ity distribution of neutron counts in a certain time interval that could 

be used in calculating the neutron variance. Starting with a modified 

Boltzmann equation, Borgwaldt and Sanitz attacked the space- and energy-

dependent problem and calculated binary densities of neutrons by taking 
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CO 

into account two detectors,, A similar technique was employed by Bell 

who published his results in 1965. 

31 
In 1965, Borgwaldt and Stegemann presented a unified noise theory 

based on the Green's function and branching processes approach. From a 

basic formula, which in principle contains the space-energy- and angular-

dependence, expressions for the variance and covariance were derived. 

Specializing to a point reactor model, relations between the variance-to-

mean, Rossi-a, and power-spectra techniques were shown. At the same time 

Harris and later Dragt calculated correction factors for the point 

59 reactor model. Harris et al. have recently retained the capabilities 

for treating the space- and energy-dependent time domain problems by using 

20 6 59 
natural modal expansions. Rydin et al„ have applied Harris's ' ' work 

to loosely coupled core reactors. 

Following the line of references 6 and 31, Borgwaldt, Murle}?-, and 

21 
Sanitz presented a theory which was applied to a Rossi-a experiment in 

a fast reflected reactor system. In 1967, Williams, following the pro

cedure suggested by Bell and Pal, started with the backward equation for 

the probability generating function to obtain a general formalism account

ing for slowing-down effects, delayed neutrons, and detector geometry. 

He evaluated simple working expressions for the variance, the correlation 

function in the time-domain,and the power-spectra in the frequency-domain. 

ft 1 
Recently Williams used the Fokker-Planck formalism to deduce the neutron 

density probability distribution with a random source excitation. At the 

62 

same time, Williams and Cassell derived expressions for the cross-power-

spectral-density in a uniform infinite medium using one-speed transport 

theory. 
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Starting with the probability balance equation written in terms 

of the probability generating function formalism and with the solutions 

satisfying the sourceless forward Kolmogoroff equation, Vaurio and 

Jauko developed a two-group model for reactor noise in an effort to 

evaluate slowing-down parameters. Another approach for evaluating the 

two-energy group diffusion parameters by correlating fast and thermal 

64 
neutron detectors has been provided by Bulavin. 

The complete distribution of neutron counts for a stationary sys

tem has been calculated by Zolotukhin and Mogil1 ner at first wrongly 

fif> 
and later correctly. Moments of higher order were considered later by 

f\l f\Pi f\Q 

Dragt, Furuhashi, and Borgwaldt, who evaluated third-order moments 

of neutron counts in a reactor due to threefold correlation of the de

tected neutrons. 
Recently Congdon and Albrecht treated theoretically the problem 

of the effective detector efficiency for the analysis of correlation ex-

71 
periments in large reactor systems. Zolotar used a Monte Carlo scheme 

to calculate the spatial corrections to the point reactor model. His 

results compared well with those calculated by using the one-mode Boltz-

58 
mann model of Bell. 

The Noise-Equivalent:-Source Method 

72 
This approach was first formulated by Cohn for a uniform reactor 

73 

and later for a reflected reactor. It starts with the familiar equa

tions for the point (or two point) reactor kinetic model but with the 

addition of a stochastic (noise-equivalent) source. This source is com-

74 
puted by means of the Schottky formula. The. resulting equation to be 
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solved is called the Langevin equation and has been extensively used in 

2 75 
the study of Brownian motion and in stellar dynamics. ' This approach 

has the advantage over the other methods in that it is applicable to power 

reactor work, if the noise-equivalent source can be specified. Moore ' 

showed that the correlated part of the noise spectrum is proportional to 

the square modulus of the zero-power reactor transfer function. Several 

78 
years later, Moore proposed a space-dependent theory where both the 

input and output correlation functions were expanded in spatial eigen-

functions. 
-J Q _ Q O 

Sheff and Albrecht ' extended Cohn's theory to space-dependent 

8 "\ 
problems using the method of images borrowed from the theory of heat 

conduction in solids. They looked at space effects in several different 

geometrically shaped reactor models and showed that the input noise source 

84 
is not white when delayed neutron effects are included. In 1969, Sheff 

extended his theory to include energy-dependence by casting the Langevin 

equation in matrix form. This technique has also been used by Ackermann 

19 et al. in their two-group point reactor noise theory. They have shown 

that the thermal neutron lifetime may be measured independently of the 

effective delayed neutron fraction by using the two-group approach. A 

22 
two point, one-group noise theory was adopted by Hendrickson and Murphy 

to describe the behavior of the cross-power-spectral-density. Akcasu and 

85 
Osborn have developed a general space- and energy-dependent noise theory 

using the Langevin technique and the eigenfunction expansion modes of the 

Boltzmann operator. They established the connection between the Langevin 

technique and the quantum-Liouville approach. Johnson, Macdonald, and 
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Cohn have calculated the space- and energy-dependent noise using a 

89 
standard static diffusion theory code. They could only treat problems 

at low frequencies due to convergence properties of the static algorithm. 

A further extension of Cohn's work has been achieved by Otsuka, 

90-93 
Saito, and Iijima who justified the Green's function approach. 

90 94 95 
Iijima, Ukai, and Furuhashi have presented space-dependent formulae 

for the Rossi-a experiments. They showed that some modification is 

necessary for the well known formula based on the point reactor model 

even if the system is sufficiently small. 

23 24 25 26 

Danofsky, ' Betancourt, and Nagy have formulated a one-

dimensional, space-dependent noise theory, based on modal expansions, in 

an attempt to describe the null or sink frequencies observed in the CPSD 
or coherence function experimental results. A nodal treatment along the 

22 
lines of Hendrickson's approach has been presented by Albrecht and 

27 28 
Seifritz ' to describe the observed sink or null frequencies in coupled 

core reactors. The nature of this particular problem may be seen in Fig

ure 1, which shows the magnitude of the coherence function for a typical 

coupled core reactor. As will be shown later, the shape of the coherence 

function is very dependent on the coupling characteristics of the core 

and the spatial location of the detectors. As the reactor becomes more 

loosely coupled, the value of the coherence function decreases at low 

frequencies. Also, the sink or null frequency decreases as the rea.ctor 

becomes more loosely coupled. It is because of the occurrence of a. sink 

or null frequency that one is enabled to extract some important reactor 

parameters. Detailed discussions of these points will be undertaken in 
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later chapters. 
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Figure 1. Typical Coherence Function Plot for a. Coupled Core Reactor 

The Quanturn-Liouvilie Method 

Lastly, a special technique for the treatment of stochastic neutron 

fluctuations has been developed which differs considerably from the pre

ceding theories. Osborn, Yip, Natelson, and Shure borrowed the 

Liouville equation from quantum mechanics to give a statistical descrip

tion of the probability distribution (or doublet density) of the a-

particles occurring in a detector when neutrons react with the filling 

gas. This technique is intimately related to corresponding ones used in 

the theory of plasmas. In a relatively simple way this method allows for 
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the effects of infinite and finite geometry reactor models, detector size, 

and delayed neutrons. The interrelation between this approach and the 

85 99 
Langevin technique has been established. ' 

Some new ideas, outside the scope of these classifications, for 

considering specific questions in reactor noise analysis have been pre-

101 sented by Albrecht and Seifritz. Fundamental concepts of information 

and communication theory (e.g., entropy, channel capacity, equivocation, 

prevarication, mutual information, etc.) have been introduced in order to 

show the applicability of these concepts to the analysis of the statisti

cal fluctuations in the neutron density in nuclear reactors. 
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CHAPTER III 

THEORETICAL DEVELOPMENT 

Of the four noise methods described in the previous chapter, only 

the Integral and Noise Equivalent Source methods are easily applied to 

the prediction and description of the measured noise. For this reason, 

their applications and interrelations are studied in this work. 

Little developmental interaction has taken place between the 

Integral Noise methods, which use the time-domain as their frame of ref

erence and the frequency-domain Noise Equivalent Source methods, even 

though they both involve the use of the Green's or transfer function. 

Also, within each method, the manner in which the space-dependence is 

approximated (nodal or modal) has developed independently. The task of 

this chapter is to show the interrelation of the time- and frequency-

domain noise methods and to indicate how the space- and energy-dependence 

approximations follow according to the manner in which the Green's or 

transfer function is approximated. The point reactor noise approximation, 

both in the frequency- and time-domain is shown to result from using a 

special case of the Green's or transfer function approximation. 

The groundwork for the next several chapters is presented within 

this chapter. The equation from which the one-dimensional (ID) exact or 

analytical solution of the space- and energy-dependent coherence function 

(SECF) is derived (Chapter IV) is presented here. Also covered is the 

basic methodology used in obtaining the ID modal expansion approximation 
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of the SECF (Chapter V), and the MCC, which in turn are used to extract 

reactor parameters from experimental data (Chapter VI). 

Fundamental Assumptions 

A number of necessarily restrictive assumptions must be stated 

before proceeding. It is assumed that the thermal reactor contains only 

one type of fissionable material and has the properties of stationarity 

and ergoticity. Also, it is assumed that the reactor is either critical 

at a low power or slightly subcritical with a source which emits uncor

rected Poisson distributed neutrons. Furthermore, it is implied that 

there are one or two noiseless, immediate-response absorption type (e.g., 

B ) detectors of arbitrary geometry to indicate the state of the reactor 

in their vicinity. Since in this analysis we are only interested in 

reactor time responses on the order of the prompt neutron decay half-

life, the time (but not the magnitude) effects of delayed neutrons are 

ignored. 

Time- and Frequency-Domain Relations 

Borgwaldt and Stegemann and Harris ' have derived an expression 

for the covariance (defined in Appendix A) between two neutron detectors. 

The result of these derivations is written as 

T T 
oa(pi,pj,T) = p- J dp^ J dpa' J dta J dta (3.1) 

reactor reactor 0 0 

X VW(t1,t2)D(pi,p1',t1-t0)S2(pi,p2')D(p ,p2',ta-t0) , 
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where 

and 

VWCti.tg) == d toVCta- t i ) + d t 0 W ( t 1 - t 3 ) , (3 .2) 

D(P i ,p' ,t) J dp £(p) g(p,p',t) , (3.3) 
detector-i detector-i 

A when § = 0 A when § > 0 
V « ) = {o when ? < 0 , W<5> = io when g S 0 . <3"4) 

The symbol (^(p.jp.jT) represents the covariance between the detec

tion rates of two neutron detectors which occupy phase space (position 

and velocity) p. and p.. T is the detection time interval, or also called 

the detector gate time. p^ and p8' represent the phase space of the sto

chastic source neutron and Sg^jpg) is the binary pair (correlated fis

sion neutrons) production rate. D(p.,p ,t) is the neutron detector re

sponse rate sensitive to p. phase space neutrons at time t after a 

source neutron of phase space p is introduced into the system at zero 

initial time. The detector response rate is closely tied to the Green's 

function as shown in equation (3.3). In this equation, g(p,p',t) is the 

p phase space neutron flux at time t after a p phase space neutron is 

introduced into the system at time zero. ) (p) is the detector response 

cross section. 

The variance follows directly from the expression for the covari

ance (see Appendix A) and may be represented as 
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D. 
^(p, ,P, ,T) = Y 1 + J 

1 I 
dpi dps 

r.T 

reactor reactor 

dt, 
0 0 

J dtl (3.5) 

X VW(t1,t2)D(pii,Pi,t1-t0)S2(p1',p3
,')D(pi,p2,t2-t0) . 

— t"Vi 

D. is the time averaged detection rate of the i detector. The first 

term on the right-hand side of the variance arises from the fact that 

each registered reaction releases a trivial synchronized response in a 

single detector. That is, every count is correlated with itself in a 

single neutron detector for a variance type measurement. 

Expressions for the cross- and auto-covariances (see Appendix A) 

follow directly from equations (3.1) and (3.5), respectively 

T T 
C(p. ,p.,T,T) = 4 f dpi f dp2' f dt8 f dtl VW(tljt2) (3.6) 

reactor reactor 0 0 

and 

X D(pi,p1',t1-t0+Yi(T))S2(pi,pa)D(p pg,ts-t0+Y3(T)) 

D T T 

C(Pi,Pi,T,T) = -± A(T,T) + ~- J dPl' J dpg J dt8 J dt2 (3.7) 
reactor reactor 0 0 

X VW(t1,ts)D(pi,p1',t1-t0+Yi(T))Sg(pi,p3)D(pi,Pa,ts-t0+Ys(T)) 

The functions y1 (T) and Y2(T) are the lead or lag times, respectively 
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/-1T | when T ̂  0 A when T ̂  0 

'*(T) = i o when T > 0 , Y*(T) » IT when T > 0 . (3'8) 

A function A(T,T) is proposed which represents the time overlap of the 

lag or lead of the time displacement 

"0 when I T I > T 

A(T,T) = U U| (3.9) 

when T s T . Izhl 
T 

This function arises because the trivial synchronized response in a single 

detector does not occur if the lag (or lead) time is greater than the gate 

time. 

The expression for the detector response rate D(p,p ,5+T) in equa

tions (3.6) and (3.7) may be represented in a different form 

D(p,p',S+T) = f(p,§)D(p,p',T) . (3.10) 

The function f(p,§) is a scaling factor which is equal to one when § 

equals zero, and less than one for £ greater than zero. 

Equations (3.6) and (3.7) may therefore be rewritten as 

C(p, ,p.,T,T) = U(p p T) f dp^ [ dpa' D(p ,Pl',Yi(T)) (3.11) 
l j I j 0 tj I 

reactor reactor 

X Ss(pi,pa)D(p ,pa,Ys(T)) , 
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D. A(T,T) p p 

C(Pi,p.,T,T) = - ^ +U(p.,p.,T) J dp^ J dp2 (3.12) 

reactor reactor 

X D(pi,Pi',Yi(T))S2(p1',ps)D(pi,P2,Y2(T)) , 

where U(p.,p.,T) is defined as 

T T 
U(p p T) = 4- | dt8 f dta VW(t1,ta)f(p ,t1-t0)f(p,,t2-t0) . (3.13) 

Fourier transforming equations (3.11) and (3.12) result in the 

following equations for the cross- and auto-power-spectral-density, 

respectively 

i(p p T,GD) = U(p p T) [ dp^ f dps D(p ,Pl', u>)* (3.14) 

reactor reactor 

X S 2 (p 1 ' , pg )D(p . , pg , (w) , 

and 

i (p i ,P i ,T ,u) ) = - ^ A(T,u)) + U(p 1 ,p 1 ,T) J dPl' J dpg (3.15) 

r e a c t o r r e a c t o r 

y 

X D ( P t , Pi', ou) S2 ( pi , ps ') D ( p i , p2',ou) , 

where A(T,ou) and D(p,p',ou) are the Fourier transforms of A(T,T) and 

D(p,p , T ) , respectively. 

Equations (3.1), (3.5), (3.6), and (3.7) are representative of the 

Integral Noise methods and equations (3.14) and (3.15) are representative 

of the Noise Equivalent Source method. Notice that in both methods the 
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space- and energy-dependence is retained explicitly through the flux 

response or Green's functions g(p,p',t), g(p,p',T), or g(p,p',cu). The 

particular manner in which the Green1s function is approximated (nodal 

or modal) will determine the spatial form of the noise analysis method. 

The Green*s function, g(p,p',t), is the solution to the inhomo-

geneous diffusion equation 

B(p,t)g(p,p',t) = 6(p-p')6(t) , (3.16) 

where B(p,t) is the diffusion operator and 6(p-p') and 6(t) are Dirac 

deltas. In general, the exact solution of equation (3.16) is not pos

sible, thereby necessitating some approximation. The usual procedure 

in time-dependent multigroup diffusion theory problems is to use the 

102 
method of weighted residuals, of which the modal expansion, synthesis, 

30 
nodal, and quasistatic methods are subsets. The same type of procedure 

may be undertaken to approximate the solution of equation (3.16). 

It was decided that time-s}mthesis modal expansions (see Appendix 

B for a description of the time-sjmthesis modal approximations applied to 

space-time kinetics problems) would be used to approximate the Green's 

function. This technique was used because of its potential for interpre

ting some of the dynamic characteristics of coupled core reactors. That 

is, when the Green1s function is approximated by some particular t3'pes of 

time-synthesis expansion modes, reactor dynamic information may be ex

tracted from noise measurements (both in the time- and frequency-domain). 

Two specific types of expansion modes were considered. One group of 

functions, called the lambda modes, are eigenfunctions of the static neu-
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tron diffusion balance operator. The other group of functions, called 

the modified omega modes, are eigenfunctions of the prompt neutron diffu

sion balance operator. These expansion modes were considered because of 

their ease of computation and applicability to the problem at hand. 

Another group of modal approximations, called the natural modes (eigen-

functions of the prompt and delayed neutron diffusion balance operator), 

also could have been used. They were not used because they are difficult 

to calculate. 

Presented in the next section is the derivation of the noise analy

sis expressions using the time-synthesis modal expansion approximation of 

the Green's function. It will be shown that the ordinary point reactor 

noise form results when only a one mode expansion is assumed to be suf-

31 
ficient. This was the procedure carried out by Borgwaldt and Stegemann. 

6 59 

Harris ' retained the higher harmonic modes in his theoretical deriva

tion of the variance and covariance, but in his expansions he used only 

the natural modes. 

Modal Expansion Approximation 

In order to obtain the modal approximation forms of the noise 

analysis expressions explicitly, it is necessary to assume some approxi

mation of the diffusion equation. For the rest of this section we will 

be working with the two-group prompt diffusion theory in three dimensional 

space. Spatial variables are designated as r. Two by two matrix opera

tors and functions are designated with a double arrow affixed above the 

quantity, and 2x1 column vector functions have single arrows over them. 

It is shown in Appendix C that the Green's function flux response 
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may be approximated by the following finite modal expansion 

oo t 
» e " Vrn/V') 

(r,r',t) 2= 2. " 
n=o "i^xi 

N = 0,1,2, (3.17) 

g(r,r',t) is the Green's function matrix 

g(r,r',t) = 

(i,i) g^x'(r,r',t) g^'2'(r,r',t) 

.(s>*)/„ 

(1,2) 

g^'"<r,r',t) g^'2'(r,r',t) 
(2 ,2) 

(3.18) 

(k,j£) th 
where g ' (r,r',t) is the k group flux response at point r, time t 

th * -* 
after one i group source neutron is introduced at point r . \|r (r) is 

th ~~*+T 
the n order expansion vector function (see Appendix B) and \lr (r ') is 

n 
the n order transpose of the adjoint expansion vector function. 00 is 

n 
f-Vi 

the n order prompt neutron decay constant or eigenvalue. The bracketed 

term in the denominator represents the scalar inner product 

< \ ^ \ > = J cIr^+T(r)?'1^n(r) , 

reactor 

(3.19) 

t* i where V is the diagonal matrix of inverse velocities 

r1 = 
l/v(l) 0 

l/v ( 2 ) 

(3.20) 

The superscript numbers indicate the energy groups. 
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It will be further assumed that only thermal fissions are occurring 

and that the fission neutrons are all born in the fast group. With these 

^ 31 
assumptions, the binary pair source rate (S2) is seen to be 

(a) 
^(ri.ra) = ̂  v2 b(r{^) £ " (r^ *<8) ( 0 (3.21) 

11 
where Xg is the Diven parameter, \J is the average number of prompt 

V (
2 ) 

neutrons per fission, ) is the thermal fission cross section, and 
f 

$ (r^) is the thermal flux distribution. 

Covariance 

The elements of the covariance matrix for the model at hand are 

found by making use of equations (3.1), (3.17), and (3.21) 

d><-k'*>{T±,Ti,T) =jr drn drc 

r e a c t o r r e a c t o r 

,J- p i 

dtj. d t a V W ( t 1 , t a ) ( 3 . 2 2 ) 
0 J 0 

, . , N n ( t l ~ t o ) . ( k ) , v , < i ) + , *v 

X dr ) ( r ) ) _ ^ _ 

d e t - i d e t - i n~° 'n n 

<=>> 
X X2V2 6(rx ' - r2 ' ) £ ( r ^ § ( s ) ( r ^ 

* J dr Z (r) 2. — 
d e t - j d e t - j m—o 

< i ,^'i:J > Tm Tm 
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The meaning of o2^ ' '(r.,r.,T) is the covariance of detector rates for 
i J 

th 
a detection time T between the i detector located ar r. sensitive to 

1 

the k group of neutrons and the j detector located at r. which is 

sensitive to the X group of neutrons. 

Equation (3.22) may be written in a more compact form as 

N N 

( ^ ^ ' ^ ( r . , r . , T ) = Y ) C D ( k ) ( r . ) D ( X ) ( r . ) G (T) , ( 3 . 2 3 ) 
l j L U nm n l m j nm 

where 

n=o m=:=o 

,(a) 
f . X ^ o L (rx)$(2)(^)^) + (r^)^l) + (r;) 

C = I drx' E-=f - 5L» 2 (3.24) 
n m reactor < 1L ̂ l >< 1»V"1 * > 

D n k ) ( r i ) ^ J d r ^ ( r>^n
(k)( r) > (3-25) 

det- i det- i 

D<X)(r.) = [ dr Y ( r ) ^ X ) ( r ) , (3.26) 
m j «J Z _ m 

d e t - j d e t - j 

ou T ou T 

) ^ 
m 

-u> T + l - e n ou T + l - e m 

+ ry (co T)* J 
Gnm<T ) S — ci) + c • < 3 ' 2 7 > 

n m 

The form of the covariance in equation (3.23) is identical with 

59 20 
that of Harris et al. and Rydin et al. except that they considered a 

correlated non-Poisson distributed spontaneous fission source. 
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V a r i a n c e 

The v a r i a n c e i s r e a d i l y o b t a i n e d u s i n g e q u a t i o n s ( 3 . 5 ) and ( 3 . 2 3 ) 

5 N N 

^ ^ ' ^ ( r . , r . ,T) = -=£ + Y Y C D ( k ) ( r . ) D ^ k ) ( r . ) G n T T i ( T ) . ( 3 . 2 8 ) 
1 1 i Z_ L~ nm n l m I nm 

n=o m=o 

Cross-Coyariance 

By combin ing e q u a t i o n s ( 3 . 6 ) and ( 3 . 2 3 ) , t h e c r o s s - c o v a r i a n c e i s 

o b t a i n e d 

r 
N N 

Y Y C D ( k ) ( r . ) D ( ^ ( r . ) G (T) 
L, L. nm n I m j nm 

00 T 

m 

C ( k ' * ) ( r i , r j , T , T ) = ^ 
n=o m=o 

N N 

when T ^ 0 ( 3 . 2 9 ) 

-UJ T 

Y T C D ( k ) ( r . ) D ( ^ ( r , ) G n m ( T ) e n , 
L L. nm n l m j nm 

n=o m=o 
when T ^ 0 . 

A u t o - C o v a r i a n c e 

In a s i m i l a r m a n n e r , combin ing e q u a t i o n s ( 3 . 7 ) and ( 3 . 2 8 ) , t h e 

a u t o - c o v a r i a n c e i s o b t a i n e d 

C ( k ' k ) ( r . , r . i , T , T ) = (3.30) 

rB N N 

7 M T , T ) + y y C D ( k ) ( r , ) D ( k ) ( r , ) G (T) 
1 L L- nm n l m I nm 

00 T 
m 

n=c m=o 

N N 

when T = 0 

-00 T 

Vs. 
4 A(T,T) + I y C D ( k ) ( r . ) D ( k ) ( r . ) G (T)e n , T >• » ' L L n m n l m I nm 

n=o m=o 
when T =i 0 . 
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Cross-Power-Spectral-Density 

Fourier transforming the cross-covariance results in the cross-

power- spectral -density expression 

N N 

i ( k ' ^ ( r . , r . , T , c u ) = Y Y C D ( k ) (r. )D(X) (r ,)G (T)H (UJ) (3.31) 
1 j L L nmn l m j n m n m 

n=o m=o 

where 
ou +ou 

H nm ( t 0 ) S r" " . (3.32) 
(ou -iiu) (ou +iou) 

m n 

and i is the imaginary number, V- 1 

Auto-Power-Spectral-Density 

Fourier transforming the auto-covariance results in an expression 

for the auto-power-spectral-density 

£ N N (3.33) 

$(k'k)(r r ,T,o)) =-^ A(T,«i)) + Y Y C D(k) (r )D^k) (r. )Gnm(T)H m(a)) . 1 1 i L~ L^ nm n I m I nm nm 
n=o m=o 

Point Reactor Approximation 

The one-group, point reactor expression for the neutron noise is 

usually derived starting with the point reactor kinetic equations. A 

slightly different approach is followed here in order to relate the gen

eral modal method to the point reactor case. 

Suppose that the time varying spatial neutron flux distribution 

can be well described by the fundamental mode eigenfunction (see Appendix 

B). In this event the modal approximation of the Green's function flux 

response has only one term (see Appendix C) 
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. ve ° \lfn ( r ) \lf0 (r ' ) 
g ( r , r ' , t ) E, 1° ^° (3.34) 

J dr'*0(r')*0(r') 
reactor 

which is just the scalar analogy of equation (3.17). When the expansion 

function \|r0 is the lambda eigenfunction, the following point reactor re

lation holds 

^ " ^ e f f P-S Keff<1-f)-1 

u>0 = T—— = £"* = ̂ S • (3-35) 

cu0 is the prompt decay constant, A Q O ̂
S the neutron generation time, & 

is the neutron lifetime, |3 is the effective delayed neutron fraction, and 

the other quantities have their usual definitions. 

The binary pair production rate for the model at hand is given by, 

(a) X2) Sa(ri,ra') = X ^ ) (r,)^ ' (ri) 6(ri -r8) . (3.36) 

Covariance 

The covariance is found by the proper modification of equation 

(3.22) 

^(r^r T) = C00D0(r.)D0(r..)G00(T) . (3.37) 

Performing all the integrations and mathematical operations shown in 

Appendix D, the covariance can be expressed as 

^v^-'fr^iP*^]-
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31 This is identical with the results of Borgwaldt and Stegemann. P is 

the reactor power level and e is the detector efficiency. There is no 

space-dependence in equation (3.38) because the reactor is assumed to 

respond as an entire unit. The variables r. and r. are therefore -just to 
i j 

indicate that there are two physically separate detectors in the reactor. 

Variance 

An expression for the variance may be obtained directly from the 

covariance with the addition of the trivial correlated component 

Cross-Covariance 

Introduction of a lag or lead time (T) into the covariance expres

sion yields the cross-covariance 

c^^-pA^iL**1--*1-i' J' ' ^ & I * <»o L (w T)3 J 
e ^ M . (3.40) 

Auto-Covariance 

The auto-covariance results with addition of the trivial correlated 

portion to the cross-covariance 

Cfr^.T.T) = £ — - ' " ^ - l T ^ l - e ^ .OV.IT Atf.T) + P ( ^ f X, ± [ffl^^!-l ^ 1 . ( 3 . 4 1 ) 

Cross-Power-Spectral-Density 

Fourier transformation of the cross-covariance gives the cross-

ov.It
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power-spectral-density 

• (r^.T, . ) = P ( ^ ) " X. [*&*=¥] H-j) • (3-42) 
i j \ I J L (OU0T)2 J \JU 0

2 -KD 2 / 

Auto-Power-Spectral-Density 

The auto-power-spectral-density arises from the Fourier transfor

mation of the auto-covariance 

pV 2 (1) T" 

kr^.T,.) = f A(I,») + P (_!«) xs [
m"T+1-e; ] (-^-j) .(3.43) 

l i , 1 \ JS / L ( O D 0 T ) 2 J \i> 0
2+U) 2 / 

Discussion 

It is apparent from equations (3.38) - (3.43) that the same type 

of reactor parameter information is available in the various point reac

tor noise analysis methods. The most common quantity which is extracted 

from point reactor noise measurements is the prompt neutron decay constant 

ou0, and, therefore, the subcritical reactivity. If the variance or co-

variance is plotted against detection time T, or if the cross-covariance 

or auto-covariance is plotted against lag time T, or if the CPSD or APSF 

is plotted against the frequency to, the prompt decay constant is deter

mined by interpretation of the various graphs in the light of the appro

priate equation. The subcritical reactivity is determined by use of the 

well known relationship 

• ,s\ •, / critical ,_ ... 
p($) = 1 - U)0/u>0 . (3.44) 
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The other quantities like the detector efficiency, absolute power level, 

and the Diven parameter can at least, in principle, be measured by apply

ing one or the other type of noise analysis formulations provided that 

enough other information about the reactor is known. In general, better 

accuracy is obtained in experiments using two separated detectors rather 

than a single detector. The reason for this is that detector related 

correlated events appear in single detector measurements (equations 

(3.39), (3.41), and (3.43)) but not in the two detector measurements ((3.38), 

(3.40), and (3.42)). It should also be mentioned that equations (3.38) -

(3.43) represent only the fluctuating portion of noise analysis measure

ments. In an actual noise measurement a term equal to (Pe)2 is present 

and must be subtracted to obtain the appropriate quantity of interest. 

As a consequence of this, it is usually desirable to perform measure

ments with detectors of high efficiency at very low power levels. 

Additional information, over and above the one-group, point reactor 

noise analysis methods may result if more energy groups and/or modal ex-

19 

pansions are retained. Ackermann et al. observed that, if the two-

group dependence is retained for the point reactor model, the neutron 

lifetime can be inferred from the CPSD independently of the delayed neu-

27 28 
tron fraction. Seifritz and Albrecht '' were able to obtain nodal 

reactivities and other coupling parameters when they interpreted coherence 

function measurements by a one-group, two node approximation. Rydin et 

20 
al. were able to find the eigenvalue separation in a loosely coupled 

core assuming a three-group, two-lambda mode expansion approximation of 

the MCC. 
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CHAPTER IV 

EXACT SOLUTION OF THE COHERENCE FUNCTION 

103 

An exact or analytical solution of the space- and energy-

dependent coherence function for one-dimensional representations of two 

coupled core reactors was undertaken for the following reasons: 

1. to serve as a standard of comparison with the modal approxi

mations of the coherence function (developed in Chapter V), 

2. to investigate how the shape of the coherence function changes 

with changing detector locations and core properties, and 

3. to give an indication as to what detector locations and core 

properties are necessary to produce a sink or null frequency in the co

herence function. 

Reactor Diagrams and Nuclear Constants 

104 
One-dimensional representations of the tightly coupled Argonaut 

28 
type reactor, called the ARK (for the Argonaut Reactor Karlsruhe), and 

20 
the loosely coupled SHA Core 35A' (for the Solid Homogeneous Assembly) 

were postulated for use in the exact solution of the coherence function. 

The SHA is a critical, assembly at Knolls Atomic Power Laboratory in 

Schenectady, New York of the type in which the core can be separated into 

two sections for loading and shut-down. Each section consists of an 

assembly of fuel-moderator blocks and reflector blocks stacked on a mov

able bed. A general description of the SHA facility is given in reference 
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105, while the physical properties of the SHA-I type fuel are given in 

reference 106. Since each core is quite long compared to its transverse 

dimensions, the kinetic behavior can be closely approximated by a one-

dimensional model. In order to make the reactor loosely coupled, a slab 

of polyethylene of varying thickness was introduced at the center verti

cal plane. 

A detailed schematic of a SHA core (SHA Core 35A') is shown in 

Figure 2. The B F detector banks used in the experiments were located 

at opposite ends of the core. 

The ARK is a research reactor at the Karlsruhe Nuclear Research 

Center in Karlsruhe, West Germany. The reactor is cylindrical in shape 

with graphite located in the center and outer annulus with fuel in 

between. Some of the fuel elements may be removed at symmetric locations 

28 

to form a slab configuration. Because each half-core in the slab con

figuration is rather long compared to its transverse dimensions, it can 

also be approximated by a one-dimensional model. The physical arrange

ment and type of material in the reactor produce a tightly coupled core. 

A detailed schematic of the two slab ARK core is shown in Figure 3. 

The Heq detectors, used in the experiments, were located near the outer 

diameter of the fuel in symmetric locations. 

The one-dimensional representations of the SHA Core 35A' and the 

ARK used in the exact computation of the coherence function are given in 

Figures 4 and 5, respectively. The appropriate macroscopic constants for 

the two reactor models were obtained in different ways. Constants used in 

the ARK coherence function calculations were taken directly from the work 
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Figure 4. One-Dimensional Representation of the SHA Core 35A1 

GRAPHITE 

105cm 

F 
U 
E 
L 

& 

GRAPHITE 

45 cm 

F 
U 
E 
L 

cm 

GRAPHITE 

10 5cm 

£ 

Figure 5. One-Dimensional Representation of the Two-Slab ARK 



43 

23 107 
of Danofsky or Kussmaul. " These nuclear constants are tabulated in 

Table 1. Using the given ARK nuclear constants in the statics neutron 

89 

diffusion theory computer routine EXTERMINATOR-II, the computed two-

group fluxes and k ff were in excellent agreement with those calculated 

23 
by Danofsky, as may be seen in Figure 6. 

Macroscopic nuclear constants for the SHA Core 35A' were computed 

using an iterative interchange between the fast cross section numerical 

code FORM, the thermal cross section code TEMPEST-II, and the 

89 statics diffusion theory routine EXTERMINATOR-II. The iterative strategy 

was initiated by inputing the fuel and poly atom number densities ' 

into FORM and TEMPEST-II. The light element moderation option was used 

in the TEMPEST-II calculations. Initial estimates of the transverse and 

regional longitudinal bucklings were used in both codes. Resulting macro

scopic cross sections were used in a II) version of EXTERMINATOR-II to 

calculate the fast and thermal fluxes. Regional longitudinal bucklings 

were recomputed from the computed flux shapes and used in the cross sec

tion codes to compute new macroscopic cross sections. The above procedure 

was repeated until no change in the flux shapes was observed from one 

iteration to the next. From this point on, the cross section routines 

were no longer utilized. 

The last stages of the iterative process consisted of varying the 

V^1 >2) 
macroscopic down-scattering cross section Q ) in the poly region and 

adjusting the overall transverse buckling (B2) to obtain the best possible 

agreement with the foil activation measurements and the experimental value 

118 
of k ,.,.. Final values of the nuclear constants used in the coherence 

ef f 
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Table 1. ARK Nuclear Constants 

Nuclear Constant Definition Graphite Fuel 

D(l) (cm) 

D(2) (cm) 

} (cm 1) 

v ( 1 ) 

I (cm x) 
I (cm x) 

r-OO 
v) (cm'1) 

BT (cm"
2) 

v (cm/sec) 
(2) / / \ 

v (cm/sec) 

F 

fast diffusion coef
ficient: 

thermal diffusion coef
ficient: 

fast scattering cross 
section 

fast absorption cross 
section 

thermal absorption cross 
section 

# neutrons per fission 
X fission cross section 

transverse buckling 

fast velocity 

thermal velocity 

effective delayed neu
tron fraction 

1.016 1.23 

0 . 8 4 0 0 . 1 8 9 

0 .00276 0 .0267 

0 . 0 0 0 . 0 0 

0 .00024 0..0908 

0 . 0 0 0 . 1 2 2 

0 .00216 0.. 00216 

4 . 3 6 x 108 4 .36 x 108 

2 . 2 x 105 2 . 2 x 10 5 

0 . 0 0 0 . 0 0 7 6 
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Figure 6. Calculated Fast and Thermal Fluxes in the Two-
Slab ARK 
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function calculations of the SHA Core 35A1 are listed in Table 2. A 

comparison of the computed fluxes and the appropriate foil activations and 

55 the values of k cr. are presented in Figure 7. The Mn foil activations eff r 

115 

were assumed to be proportional to the thermal flux and the In activa

tions proportional to the fast flux. The above assumptions are fairly 

good in the highly thermalized SHA Core 35A'. That is, the epithermal 

activation contribution to the Mn activity is small and the 1.5 eV 

resonance activation peak accounts for almost all of the In activity 

(assuming that the foils were Cd covered). To a good approximation, the 

flux spatial distribution at 1.5 eV is proportional to the fast flux in 

the SHA Core 35A'.153 

The above modeling procedure did not take into account the varia

tion of the transverse leateige from one part of the core to the other, 

20 
nor the transport and spectral effects as considered by Rydin et al. 

^ 0 ,2) 

The adjustment of quantities other than ) in the poly and the over

all B?, could have been undertaken with perhaps more physical justification. 

However, it was concluded that the SHA Core 35A1 model was adequate for 

this work because not only did the computed and experimental flux shapes 

and k ff agree well, but also the computed and experimentally determined 

value of eigenvalue separation compared favorably (see Chapter VI). The 

good agreement in the later value was the most difficult to attain in 

this work and the most crucial to compute accurately. 

Method of Solution and Results 

The exact solution of the one-dimensional, two-group coherence 

103 
function was constructed by combining the definition of the coherence 
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Table 2. SHA Core 35A' Nuclear Constants 

Nuclear Constant Definition Poly Fuel 

I 

(l) 
D (cm) fast diffusion coef

ficient: 
C3) 

D (cm) thermal diffusion coef
ficient 

d ,2) .. 
(cm ) fast scattering cross 

section 
fast absorption cross 

section 
thermal absorption cross 

section 

# neutrons per fission 
X fission cross section 

transverse buckling 

fast velocity 

thermal velocity 

effective delayed neu
tron fraction 

y(i) 
(cm"1) 

y(2) 
(cm"1) 

vco 
(cm"1) 

B^ (cm"2) 

v ( 1 ) (cm/sec) 

v<»> (cm/sec) 

P 

1.033 1.142 

0.135 0.354 

0.0572 0.0186 

0.0004 0.0025 

0.0185 0.0648 

0.00 0.1113 

0.0069 0.0069 

4.36 X 108 4 .36 X 108 

2.2 X 105 2 .2 x 105 

0.00 0.0078 
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function (Appendix A), the exact solution of the Green's response or trans

fer function (Appendix E) , and the forms of the auto- and cross-power-

spectral densities (equations (3.15) and (3.14)). By assuming that: the 

detectors subtend a very small region (point detector approximation) and 

that the product of the frequency and detection time is much less than 

one (cuT « 1) , the auto- and cross-power-spectral-density for the models 

at hand are, respectively 

X 

and 

i(k,k)(x.,x.,T,cu) = D°° + U(k'k)(x.,x.,T) (4.1) 
1 1 l 1 1 

J Z ( X i ) g ( Xi' X ' ̂ XgV? I (X )$V y(x ) 
reactor det-i f 

X ) <xi>§ ;(x.,x',0)) 

det-i 

i(k'A)(Xi,x ,T,0)) =U
(k'A)(Xi,x T) (4.2) 

X dx' ^ g * ' 1 ^ ! ^ ' , «)fxav^
(2)(x')$(2)(x') 

reactor det-i f 

r-̂ > to ^ 
\ / x (J6,l ) / ' N 

x 2 <xj)s ( x j ' x ,(u) * 
det-j 

U ' is a function which, in principle, may be evaluated; however, it 

cancels out when the coherence function is expressed 
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R ' (x. ,x. ,0)) = 
$ (x. ,x. ,0)) 

1 J 

(4.3) 

1 J \^iC^(x.,x.f»).D«][«^>(x.,x.f»).D<
i>^ 

I I J J 

(a) 
J dx gv /(xi,x , 0)) ^ (x )$v '(x )gv ' y(x.,x 

reactor 

(=>> 
{ J dx'jg^'^Cx x',»)| 8^ (X')S

(S>(x-) 

reactor 

dx'^*' 1' (x, , x » I2 Y 2 <*') i 0 0 (x')} U,i) 

reactor 

where g ' (x,x',U)) is the exact solution of the Green's function (see 

Appendix E). 

The integrals in equation (4.3) were computed using the trapezoidal 

rule on intervals of one centimeter and summing over the model dimensions. 

This process was repeated for several different detector pair locations 

and many frequencies. Results of these calculations are shown in Figures 

8-29. 

Absolute Magnitudes of the Exact Coherence Function 

Absolute magnitudes of the symmetrically located, two thermal 

detector coherence functions for the SHA Core 35A' and ARK models are 

given in Figures 8 and 9, respectively. For small detector separations, 

the coherence function is always positive for the frequency range of 

interest, but for large detector separations the coherence passes from 
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Figure 8. 
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positive at low frequencies to negative at higher frequencies. This tran-

27 

sition point is called the "null frequency" because the coherence func

tion passes through zero there. It should be noted that, for symmetric 

reactors and detector locations, the coherence function is real, but for 

asymmetric detector locations the coherence function is complex. The 

occurrence of the null frequency is usually ascribed to an interference 

22 26-28 
effect of traveling neutron waves from one core to the other. ' 

27 
This approach is usually taken in conjunction with the two-node model 

which has incorporated in it a neutron wave traveling time distribution 

function. It is generally very difficult to evaluate the distribution 

28 110 
function, and the wave propagation times tend to be in doubt. ' A 

22 23 
simpler approach is taken in this work to explain the null or sink ' 

frequencies by assuming an interference between the harmonic decay modes 

of the entire reactor (see Chapter V). 

It should be noted that the coherence function at low frequencies 

(below the null frequency) decreases with increasing detector separations. 

This seems entirely reasonable when viewed in terms of coupling of one 

detector with the other. The extent of coupling should depend on the dis

tance in mean free paths from one detector to the other. Viewed in this 

light and realizing that the mean free paths are much shorter in regions 

with higher scattering cross sections, the results of Figures 8 and 9 are 

A / (2) 

reasonable at low frequencies where the iou/v term (see Appendix E, 

equation (E.19)) is small in comparison with the absorption cross section. 

It has been suggested by Harris that the variation of the low frequency 
coherences might be used to infer the migration length. When the i(i)/v GO 
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term takes on values on the order of the absorption terms (mainly above 

the null frequency), the coherence function tends to be less for smaller 

detector separations than larger separations. The frequency dependent 

mean free path has to be investigated in this case. 

The null frequency tends to increase with decreasing detector 

separations. This phenomenon may be ascribed to the relative magnitudes 

of the fundamental to first harmonic values of the decay modes for the 

given detector placements. Reasoning of this sort is studied in detail 

in the next chapter. 

Finally, it is seen that the coherence function is always smaller 

in the SHA Core 35A' than in the ARK. This is consistent with the fact 

that the eigenvalue separation is smaller in the SHA Core 35A' than in the 

ARK. Again, the reason for this is given in the next chapter. 

Everything mentioned above for symmetric detector locations also 

holds for the asymmetric detector results as shown in Figures 10-17. The 

exception is that null frequencies are no longer observed but rather 

22 23 
sink ' frequencies, due to the fact that the coherence function is now 

complex, in general. The sink frequency is defined as the frequency where 

the absolute magnitude of the coherence function (or cross-power-spactral-

density) experiences a local minimum. The coherence function in Figures 

15 and 16 shows a second sink frequency. This is most likely due to the 

interference of the fundamental and second harmonic decay modes in the 

ARK. The SHA Core 35A' coherence function would probably show a similar 

behavior but the range between the first and second sink would be much 

greater because of the larger eigenvalue separation between the first and 

second harmonics. 
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Detector placement conditions needed to produce a sink or null 

in the coherence function are vividly demonstrated in Figures 18-21. In 

these figures, one detector is placed at a fixed location in the left 

part of the reactor and the other detector is swept across the core. The 

coherence function at several selected frequencies which bracket the sink 

frequency is plotted as a function of the second detector's location. 

The minimum detector pair separation distance to cause a sink and the 

approximate value of this sink frequency may be inferred from these 

figures. When one detector is moved from left to right, the first point 

where two isofrequency lines intersect is the minimum detector distance 

where a sink can occur. The value of the sink frequency will lie some

where between these two frequencies. As the detectors are moved further 

apart, the sink frequency tends to decrease to some asymptotic value. 

Depth of the sink increases up to the point of symmetry (where the sink 

becomes a null) and then decreases at lower sink frequencies. The first 

place where a sink is formed, when one detector is placed far to the left 

of the decoupling region, is located about 20 centimeters from the poly

ethylene in the SHA Core 35A' and about 5 centimeters from the decoupling 

graphite in the case of the ARK. 

The coherence functions R ' (x. ,X.,UJ), R ' (x. ,X.,UJ), and 

(2 1) 

R ' (x.,x.,(Jo) were also computed. It was found that the shapes of the 

absolute values of these various coherence functions were almost identi-
. ( 2 2 ) I 

cal to |R ' (x.,x.,0))|. The phase angles of these several coherence 

functions were quite different, as will be seen in the next section. 
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Phase Angles of the Exact Coherence Function 

The phase angle values of the CPSD and coherence function are 

identical because the denominator of equation (4.3) is a real function. 

Therefore, designating the phase of the coherence function by 0R ' 
A He i) 

(x.,x.,U)) and the phase of the CPSD by 6$v ' (x.,x.,cu) 
l j l j 

A (k I) 

-rk i) -i r I m $ '' (x ,x ,tu)-, ( £. 
"ft,^i»VB) = tan LiCk.i)/ ' J = ^ ^ ( V X j . C B ) • ^ 

J Re§v ' ' (x. ,x. ,to) J 

i J 

It is shown in Appendix H that the CPSD may be expressed as 

I(s)<v -ffi] w + w 

and 

. ( 1 ' 2 ) ( X . ; X 1 ) U ) ) = - * v - - - - ~ -_^_ t ( 4 > 5 ) 

0UV l 7 

• \ D ( x . , x . ) 

i ( a ' a ) ( x , , x . , m ) - J 8 , 1 V , (4.6) 
l 1 E ( x . , x . ) 

J (JDV 1 ' J 7 

A (x ) , B (x,), and D (x.,x.) are complicated functions of the local leak-
0 ) V i ' CO 1 ' (JDV 1 ' J 

age and the (fast) stochastic source spatial distribution. They are com

plex functions (real and imaginary components), in general, but the 

imaginary component is much smaller than the real portion for frequencies 

below $/Z. & is the thermal neutron lifetime. C (x.) is always a real 

function which is only weakly dependent on frequency below I and not 

-f-pendent on the local leakage. E (x.,x.) is either pure real or weakly 1 CD 1 J 

*+ complex for frequencies less than A and also not a function of the local 
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leakage. When the detectors are placed in regions of the same type (e.g., 

both in the graphite but not necessarily the same region), E (x.,x.) is 
\v J. j 

real. When the detectors are located in different types of regions, 

E (x.,x.) is weakly complex for frequencies below & 1. It should also 

be noted that, for contiguous or symmetric detector locations, the numer

ator in equation (4.6) is pure real and, therefore, the coherence function 

exhibits zero phase at all frequencies. 

The physical implications of Figures 22-29 may be understood by 

judicious use of equations (4.4) - (4.6). Combination of equations (4.4) 

and (4.5) lead to the expression 

r- (2 ) 
^ (1) 

Q (i a ) / I (*i>ImVxi> - ^F7 R e W + I m W (L 7, 
tan9Rv ' ; ( x . , x . , u u ) = ^ - r — z - ( 4 . 7 ) 

1 1 r-C2) I (V^W - Jh I mW+ R e W 

If the leakage (both fast and thermal) is small at a given location, 

equation (4.7) reduces to 

-tanBR^1 ,2)(x. ,X.,OD) = Wj&(x.) (4.8) 

(2) V ( 2 ) 

where X(x.) is the local thermal neutron lifetime (l/v ) (x.)) . 
1 Zj 1 

19 
Ackermann et al. obtained equation (4.8) by assuming a point reactor 

model, which by definition has no leakage. Equation (4.7) represents a 

generalization of the Ackermann method to the space-dependent case. 

According to equation (4c8), the slope of the coherence function 

phase ancrip ts equal to the local thermal neutron lifetime (in low leak

age regions). This relationship is well demonstrated in Ficures 22 and 23 
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and has been observed by Penland. The thermal neutron lifetime is 

longer in the polyethylene and graphite regions of low thermal absorption 

than in the fuel regions of high thermal neutron absorption. The local 

lifetimes change within any given material because the leakage (which is 

not zero in general) changes with position. 

At higher frequencies, the complex leakage terms in equation (4.5) 

become large and the slope of the phase becomes complicated. This is 

particularly evident in Figure 23. This abrupt change in slope has been 

experimentally observed by Penland and analytically predicted by 

1 1 2 A D v. H 3 Ackermann and Robinson. 

The numerator in equation (4.6) tends to dominate at all frequencies 

considered. As a consequence, the coherence function phase for two ther

mal neutron detectors is 

(? ^ rImDri/x-f > x ^ n 

eR(2'2)(x.,x.,w) a tan":L \ . J", X -\\ . (4.8) 
l i LReD (x.,x.)J v ' 

J oo I j 

At low frequencies, the imaginary part of D (x.,x.) is small and the 

phase is therefore also small, as indicated in Figures 24-27. It is ob

served that the phase angle tends to be smaller in the SHA Core 35A', at 

any given frequency, than in the ARK. The reason for this is not entirely 

clear. It may arise from the fact that the SHA Core 35A' is loosely 

coupled and the ARK is tightly coupled. It should also be noted that, 

for certain detector locations, the phase fluctuates widely near the sink 

frequencies. In this sense, the phase tends to be a more accurate measure 

of the sink frequency than the absolute magnitude of the coherence function. 
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Perhaps the reason for these large fluctuations is due to the interference 

effects of the fundamental and first harmonic leakage modes (second de

rivatives of the eigenfunctions). 

From Figures 28 and 29 it may be seen that, around the sink fre

quencies, the real part of equation (4.8) has a dominant role for all 

detector locations in the SHA Core 35A* but not in the ARK. This prob

ably stems from the previous observation that the phase is generally 

smaller in the SHA Core 35A*. When the two detectors are at symmetric 

positions, the imaginary part is zero, and the real part passes from 

positive to negative to form a null. 

Discussion 

It is apparent from the preceding presentation that the coherence 

function is a complicated function of the spatial coupling and stochastic 

source distribution. The spatial coupling, or the number of mean free 

paths between detectors, is a complex frequency-dependent function. This 

A , (2) 

complex nature arises from the presence of an imaginary (number) icu/v 

absorption cross section (see equations (H.1) and (H.2) in Appendix H) in 

addition to the normal static destruction operator (i.e., absorption 
A (2) 

cross section and leakage). At low frequencies, the iU)/v term is small 

in comparison with the static destruction operator. Consequently, in this 

case, the coherence function will assume values which reflect the static 

coupling. As the frequency is increased, the effective mean free path 

length decreases, resulting in a smaller spatial coupling. The net effect 

is a decrease in the coherence function for increasing frequency. However, 

for frequencies above the sink or null, it appears that the effect of the 
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A / (2) 
i(ju/v term is one of production rather than absorption. The frequency 

at which this can occur is very dependent on the static core coupling, 

detector separations, and stochastic source distribution. It is quite 

difficult to separate one effect from another. 
A / (2) 

The effects of the icu/v absorber are well reflected in the 

shape of the phase angle. Here the effect of this imaginary absorber is 

highly dependent on the relative magnitude of the local destruction 

operator. In this case as before, for frequencies above the sink or null, 
A / (2) 

the effect of the iou/v term is that of production. 

All the major conclusions of this chapter may be qualitatively 

explained by use of the. frequency dependent spatial coupling and stochas

tic source spatial distribution concepts. A more quantitative analysis 

follows in the next chapter. The major conclusions and explanations are 

listed below. 

1. Sink or null frequencies in \R 3 (x. ,x.,U))| occur for certain 

detector separations and placements and not for others. Sink or null 
A / (2) 

frequencies arise because the net effect of the iuyv term changes from 

that of an absorption to production cross section. It appears that., in 

principle, sink or null frequencies can appear for any detector separa

tion. However, for detectors located in the decoupling region, the sink 

or null frequency is most likely very high. 

2. For the symmetric reactor models investigated, symmetric ther

mal neutron detector locations produced real coherence functions and, 

consequently, null frequencies. Conversely, asymmetric detector locations 

produced complex coherence functions and, therefore, sink frequencies. 
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This comes about because the integrated value of one detector's Green's 

function is equal to the other (see equation (4.3)). Consequently, when 

the complex conjugate is taken, the CPSD is real and therefore so is the 

coherence function. 

i (2 2) 1 

3. |RV ' /(x.,x.,0))| tends to be smaller in the SHA Core 35A' 

than in the ARK, particularly at low frequencies. The number of frequency 

dependent mean free paths between detectors is the explanation for this 

phenomenon. 

4. The sink or null frequency increases with decreasing detector 

separation for a given reactor model. If it is assumed that the sink or 

null occurs when the two detectors are a certain number of frequency de

pendent mean free paths apart, then the above conclusion follows. That 

is, the closer the detectors are, the higher must be the effective de

struction probability per unit length of intervening material to produce 

the same number of mean free paths. This is accomplished by having a 

^ (2) 
higher iu)/v term in the destruction operator. 

I f 2, 2 ) .1 
Rv ' (x.,x.,0))| at any given frequency decreases 

with increasing detector separation for frequencies below the sink or null 

frequency, but increases with increasing detector separation for fre

quencies above the sink or null frequency. This may be explained by assum-

A / (2) 

ing that the iuyv term acts as an absorption cross section below the 

sink or null frequency and a production cross section above it. 

6. The relative magnitude of the imaginary to real component: of 

the coherence function (i.e., the phase angle) tends to be smaller in the 

SHA Core 35A' than in the ARK at low frequencies. This stems from the 
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/ l <3 1 

fact that the iu)/v term is relatively small, in comparison to the 

destruction operator in the SHA Core 35A' but not in the ARK. 
7. The local thermal neutron lifetime can be inferred from 

(l 2) 

6R ' (x. , x. ,CD) only when the local leakage is very small. 
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CHAPTER V 

MODAL APPROXIMATION OF THE COHERENCE FUNCTION 

Modal approximations of the space- and energy-dependent coherence 

function (SECF) for ID representations of two coupled core reactors were 

114 
undertaken to answer the following questions. 

1. How many expansion modes are needed to closely approximate the 

exact solution? 

2. What coupled core reactor characteristics and detector pair 

placements are necessary for the two-omega (2UJ) or the two-lambda (2X) 

mode expansion approximation of the exact solution to be valid? 

3. Can the measured coherence function null or sink frequency be 

interpreted using the 2UJ or 2\ mode approximation? 

4. Can a method be developed to extract reactor parameters from 

the measured coherence function when interpreted in the light of the 2UJ 

or 2\ mode approximation? 

20 59 
5. What is the relationship between the MCC ' (see Appendix A) 

and the coherence function in coupled cores? 

Modal and nodal expansion approximations of the space- and energy-

dependent noise are characterized as those procedures in which the Green's 

function or transfer matrix is approximated by a series expansion of trial 

functions. The type of trial functions chosen for this task is dependent 

on the nature of the problem under investigation. In this work, the objec-
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tives were to use those trial functions whereby some global reactor dynamic 

parameters could be inferred from the measured noise and to maintain the 

capability of extension to two-dimensional, multiregion systems. These 

22 27 particular objectives immediately ruled out the use of nodal expansions ' 

25 23 30 79 

and the natural, Green's function, Helmholtz, and image modal ex

pansion trial functions. However, the lambda and modified omega modal 
114 approximations were consistent with the objectives. 

Method of Solution and Results 

The same ID geometrical representations of the SHA Core 35A' and 

ARK, which were used in the last chapter, are used here (Figures 4 and 5, 

respectively). Also, the macroscopic constants are the same (SHA Core 

35A*, Table 1; ARK, Table 2). 

Modal approximations of the SECF for the particular two-group, one-

dimensional models at hand were arrived at by the use of the coherence 

function definition (Appendix A), the modal approximations of the Green's 

response function (Appendix C), the method to produce the eigenvalues and 

eigenvectors (Appendix F), and finally the form of the auto- and cross-

power-spectral-densities (equations (3,33) and (3,31)). Again assuming 

the point detector approximation, the APSD and CPSD for the models at 

hand are written, respectively 

i(k'k)(X.Jx.)T)1.)=Df
k) A i l ^ (5.!) 

N N 
+ Y Y C D(k)(x.)D(k)(x.)G (T)H (cu) 

L L nm n I m i nm nm n=o m=o 
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and 
N N 

$ ( k " ° ( x . ,x ,T,0)) = Y Y C D n
( k \ x J D y \ x . ) G n (T)H (UJ) , ( 5 . 2 ) 

1 j L L- nm n I m j nm nm 
n=o m=o 

where 

M ¥ ^ = w [ 1 - c o s W ] • (5-3) 

X̂ v2 Y (x l )^ a ) (x , ) / l ) + (x,)/l) + (x») 
» " p L f Tn Tm 

dx» : : -r ( 5 . 4 ) 
'3 ^ f 

C = 
< | ,f" ]-1 > < Ĵ j^"1"? > r e a c t o r , „ , , n , m . ,m 

Dn
(k)(x.) = y ( x . ) / k ) ( x ) , (5.5) 

n i z_ i n I 

d e t - i 

U) T UJ T 
,-UJ T+l-e 
i n 

G 

-UJ T + l - e n u) T + l - e m 

(T) H [ - 5 + _= l f o * •> ) "I ( 5 . 6 ) 
n m u (u) T ) a (a) T) 

n m 

(U) +U0 ) 
H (U)) = — - S - S — _ . ( 5 . 7 ) 

n m
 (UJ +io)) (UJ -iuj) 

n m 

I f i t i s a l s o assumed t h a t t h e d e t e c t i o n t ime i s s m a l l such t h a t jcuTJ « 1 

and |co T | « 1 f o r a l l n from 0 t o N, t hen t h e f o l l o w i n g a p p r o x i m a t i o n s 

h o l d 

and 

± £ - 2 U l , (5.8) 

G (T) 3= l / ( a i +<») . ( 5 . 9 ) 
nm m n 
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Using equations (5.1) - (5.9) and the definitions of the coherence 

function (Appendix A), the modal approximation of the SECF may be written 

R ( k ' X ) ( x . , x . , u O = ( 5 . 1 0 ) 

00,, . x . t(i) N N c tW( x . ) tW( x . ) 
\ > n m n

 I
 Tm y 

n = 0 m = 0 (0)n+ic«> (a)m-ic») 

i 
I N N C t0c) ( ) t (k) ( } N N c tU)(x.)tW(x.) 1 
T \ \ nmYn l Tm l \\ \ \ nmTn j Tm y I 

n=o m=o (oo +ioo) (oo -ioo) n = 0 m=̂ o (^„+i(") (oo -iou) J 
n m n m - ' 

The similarity between the CPSD portion of equation (5.10) and the form 

85 
derived by Akcazu and Osborn from the Langevin formulation should be 

noted. In the Langevin technique the source terms C are specified from 
° nm r 

85 
the noise equivalent source procedure which is valid even in power 

reactors as long as the proper noise equivalent source is specified. 

The modified omega and lambda thermal eigenfunctions (\|f (x) 

(2)X 

and \jf (x) , respectively), used in the modal approximation, were calcu

lated by the critical determinate method outlined in Appendix F. These 

modes are plotted in Figures 30-41 for the ID representations of the SHA 

Core 35Af and ARK. For each expansion index, they are normalized such 

that the maximum value is unity. It should be noted that the fundamental 

lambda and modified omega modes and the first harmonic lambda and modified 

omega modes have identical shapes in the SHA Core 35Af (Figures 30 and 31) 

but differ a fair amount in the case of the ARK (Figures 36 and 37). The 
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reason for this can be seen upon inspection of equations (B.24) and (B.28) 

in Appendix B. In reactors like the ARK, which have large moderator re

gions of low absorbing material, the 0) v 1 production operator is not 

small compared to the destruction operator. This is not the case for the 

SHA Core 35A', where the moderator region (which is also the fuel region), 

although large, has a relatively high absorption cross section. The shape 

difference between the lambda and modified omega modes is also demonstrated 

in the higher harmonics (Figures 32-35 and 38-41). In the SHA Core 35A* 

the higher harmonic shapes tend to have the same form, but there is com

plete lack of similarity in the case of the ARK. 

Shape differences are also reflected in the orthogonality proper

ties. Orthogonality properties for the modified omega and lambda modes 

in the SHA Core 35A' and ARK are presented in Tables 3-8. It is apparent 

from these tables that both modal types have the required biorthogonality 

30 
properties (see Appendix B), because the off-diagonal elements are small 

relative to the diagonal elements. It is also true that the modified 

omega modes have the property of finality ' " (see Appendix B). That 

is, there is the absence of modal coupling. The finality property was 

assumed in the derivation of lambda and modified omega approximation of 

the Green's function (see Appendix C, equations (C.7) and (C.ll)). How

ever, the lambda modes do not have the finality property, as indicated 

in Tables 5 and 8. The deviation from this property is fairly small for 

the SHA Core 35A' (at most 18% for the first six lambda expansion modes), 

but quite large for the ARK (up to 96%). The consequence of the above 

fact is that the lambda mode approximation of the exact coherence function 

will not be as good as the modified omega mode approximation. 
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Table 3. Results of a Biorthogonality Check on Some Modified 
Omega Modes of the SHA Core 35A* 

Normal i zed Va lues of < W 1 ? 
Tn Tm 

> 

n m - 0 1 2 3 4 5 

0 1 0 .0034 + _ + _ 
1 - 0 . 0 0 4 3 1 ... - + + 
2 0 .0108 0 . 0 0 5 2 1 0 .0028 - 0 . 0 0 3 4 0..0078 
3 0 .0088 0 .0078 - 0 . 0 0 2 8 1 - 0 . 0 0 9 5 0„0099 
4 - 0 . 0 0 1 8 - + + 1 -0. .0062 
5 - - + - - 0 . 0 0 1 1 1 

Note: + or - denotes that the absolute magnitude is less than 
0.001. 

Table 4. Results of a Biorthogonality Check on Some Lambda 
Modes of the SHA Core 35A' 

;x.a*x 
Normalized Values of < \lr ,Milr > 

n Tm 
n m -• 0 

0 1 0 . 0055 - - + + 
1 - 0 . 0 0 5 1 - - + + 
2 - + 1 0 .0029 - 0 . 0 0 1 2 -
3 + - 0 .0016 1 + -
4 0 . 0 0 2 2 - - 0 . 0 0 2 8 - 1 - 0 . 0 0 1 8 
5 - + - - + 1 

Note: + or - denotes that the absolute magnitude is less than 
0.001. 
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Table 5. Results of a. Finality Check on Some Lambda 
Modes of the SHA Core 35A' 

Normal ized Values of < *\f * Tn 
7*-
Tm 

> 

n m -* 0 1 2 3 4 5 

0 1 0.0053 -0.0233 _ 0 .0230 + 
1 -0.0056 1 - -0.0068 - 0 .0109 
2 -0.0872 + 1 0.0029 - 0 . 0 6 1 6 -
3 + -0.0256 0.0017 1 + - 0 . 0 2 1 6 
4 0.1846 + -0.1317 - 1 - 0 . 0 0 1 6 
5 - 0.0866 - -0.0449 + 1 

Note: + or - denotes that the absolute magnitude is less than 
0.001. 

Table 6. Results of a Biorthogonality Check on Some Modified 
Omega Modes of the ARK 

Normalized Values of < ill ,V x ilr > 
Tn Tm  

m - 0 1 2 3 4 .' 

0 1 - + - -
1 0.0018 1 -0.0035 0.0021 -
2 0.0011 + 1 0.0028 -
3 + + -0.0031 1 + 
4 -0.0011 + - + 1 
5 + - 0.0014 + -' 

Note: + or - denotes that the absolute magnitude is less than 
0.001. 
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Table 7. Results of a Biorthogonality Check on Some Lambda 
Modes of the ARK 

Normalized Values of < iSr. ,Mik > Tn Tm 

m - 0 1 2 3 

0 
1 
2 -0.0014 + 1 0.0031 -0.0015 + 
3 + -0.0015 -0.0026 1 - + 

0.0613 

1 + - + 0.0018 
+ 1 - - -

-0.0014 + 1 0.0031 -0.0015 
+ -0.0015 -0.0026 1 -

0.0092 + - -0.0017 1 
0.0035 - 0.0038 -0.0014 0.0362 

Note: + or - denotes that the absolute magnitude is less than 
0.001. 

Table 8. Results of a Finality Check on Some Lambda 
Modes of the ARK 

Normalized Values of < 
'n' 'm 
\ f ^ > 

m 

0 1 + -0.1097 - 0.5746 0.0268 
1 + 1 + -0.2842 0.0085 -0.4945 
2 -0.1517 - 1 0.0028 -0.0933 -0.0055 
3 + -0.2972 -0.0038 1 -0.0035 0.2519 
4 0.9596 -0.0074 -0.1121 0.0024 1 0.0561 
5 0.0747 -0.8267 -0.0050 0.3864 0.0602 1 

Note: + or - denotes that the absolute magnitude is less than 
0.001. 
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Various modal approximations of the absolute value of R ' (x. ,x.,U)) 
i J 

are presented in Figures 42-57. Graphs for the symmetric detector loca

tions are given in Figures 42-49. The 2\ and 2cu mode approximations for 

the SHA Core 35A' (Figures 42 and 43) tend to be in fairly good agreement 

not only with themselves, but also with the exact solution (Figure 8) for 

frequencies below and including the null frequency. The 2(1) mode approxima

tion for detector separations of 87 cm in the ARK (Figure 45) agrees well 

with the exact solution (Figure 9) below the null frequency. The 2). mode 

approximation in the ARK (Figure 44) led to a low estimate of the null 

frequency. High frequency structure is not possible with only a two mode 

expansion. It is necessary to run the expansion to higher orders to ob

tain this structure, as shown in Figures 46-49. The same low frequency 

shape is retained with the higher order expansion. No improvement in this 

frequency range is obtained with more expansion modes. In fact, the 

quality of the modified omega mode expansion tends to decrease as the 

modal number increases in the ARK model., This may possibly be explained 

by the fact that the first harmonic transverse mode eigenvalue falls 

between the second and third horizontal mode eigenvalues. 

For asymmetric detector locations (Figures 50-57) the same general 

conclusions as in the symmetric cases may be drawn. It takes more than a 

two-mode expansion to approximate the exact coherence function when one 

or both of the detectors are located near the reactor centerline. The 

reason for this may be understood when it is realized that the value of 

the first harmonic eigenfunction is small near the reactor's center. Con

sequently, it takes at least three expansion modes to approximate the be

havior in this region. 
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Agreement between the exact and modal approximations of the thermal' 

thermal and fast-thermal coherence function phase angles is very poor in 

both reactor models. The phase angles tend to be very small for all fre

quencies and detector locations. The reasons for these discrepancies are 

not known. 

Two-Mode Expansion Approximation 

In order to extract some reactor parameters from the measured 

coherence function, it is desirable to use the two-mode rather than the 

multi-mode approximation. This arises from the fact that the two-mode 

approximation adequately describes the coherence function below and in

cluding the null or sink frequency. The two-mode approximation is written 

R ^ ' ^ C x ^ X j . t t ) ) = (5.11) 

Coo^o00 ( x . H o U ) ( V C i i ^ i k ) <*i> i i U ) <*<> 

U)« -KU° (J01
2+0D2 

C00[fe(k)(x.)]2 q J ^ C x . ) ] ^ 
IL ... 2 , ,..2 ... 2 ....2 J (J0o

2+(JJ2 
UD-^+U}2 

*[ 
U) c 0 0 [ ^ ; ( x j ] 2 c i : L [ ^ J ( x . ) ] 2

T i U) 

0)0
2-KD2 UQ^+OJ2 

Cross-source terms C01 and C 1 O do not appear in equation (5.11) because 

the reactor models are symmetric about the centerline. As a result of 

this symmetry, the integrand in equation (5.4) is an odd function (for 
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n = 0, m = l o r n = 1, m = 0 ) thereby yielding zero upon integration. It 

should also be observed that the two-mode expansion approximation in equa

tion (5.11) produces real coherence functions even with asymmetric detector 

locations. Therefore, only null frequencies and not sink frequencies are 

predicted. 

As will be demonstrated later in this chapter, a necessary condi

tion for the extraction of some reactor parameters by the two-mode expan

sion approximation is that the measured coherence function exhibits a 

sink or null frequency. The detector pair placement and reactor charac

teristics which are necessary for the occurrence of this sink or null 

frequency have only been studied in a qualitative manner. Therefore, a 

quantitative description of the null frequency conditions is undertaken 

in order to establish criteria on core characteristics and detector pair 

placement which are necessary for the inference of the eigenvalue separa

tion, neutron generation time, and the effective delayed neutron fraction. 

Null Frequency Conditions 

In order to understand the physical significance of a null frequency 

it is informative to investigate the shape of the two-mode expansion 

approximation of the cross-covariance (equation (3.29)) for short detector 

gate times 

C ^ ' 2 ; ( X i , x . , T ) = 2 (x.) 2 (Xj) (5.12) 
de t - i de t - i 

r C o o 4 2 ) ( x . ) ^ ) ( x ) e ^ T C 1 1 ^ > ( x i ) ^ > ( x i ) e ^ T -
X [ J + J J , 

- 2 C D 0 - 2 u o x 

T ^ 0 . 
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From equation (5.12) it is seen that the cross-covariance is the sum of 

two exponentially varying terms. The first term on the right-hand side 

of equation (5.12) is always positive because C00 and the fundamental 

thermal group eigenfunctions are everywhere positive. The second term on 

the right-hand side may be positive or negative depending on the detector 

pair locations. This comes about because, even though CX1 is always posi

tive, the first harmonic thermal eigenfunction may be positive or nega

tive. In fact, if the two detectors are located on opposite sides of the 

core centerline, the second term will always be negative. 

Consider the case of symmetrically placed detectors where 

*o ( V = *o ;(x.) (5.13) 

and 

^(2)(x.) = -^(2)(x.) . (5.14) 

Equation (5.12) may therefore be written 

p a) v ( 2 ) V ( 2 ) 

C^ > ;(xi,-Xi,T) = I (X.) 2. < V <5-15) 
det-i det-j 

fCo0[to
( a )(x1)]^

T C11[^
2)(x,)]^e^T 

^ -2u)0 " - 2 ^ J ' 

The behavior of the cross-covariance for small lag times (T ~ 10 

ms) is of particular interest in reactors which have a relatively small 

eigenvalue separation (in this case, both the SHA Core 35A' and ARK). If 
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the detectors are located in appropriate symmetric places, the cross-

covariance will increase for very small lag times and then turn over and 

A * i i 20,110,116,117 T, ., . , _, _ _, 
decrease for larger lag times. If it is assumed that the 

slowing down time is very small, the reason for this behavior is that 

Cn[ti(a)(x.)]a C 0 0[^ 0
( 2 )(x)] 2 

- > - . (5.16) 
- 2 ^ - 2o)0 

If the condition of equation (5.16) holds for the particular reactor model 

and detector placements, the lag time where the slope of the cross-

covariance is zero (call it T 0 ) is seen to satisfy the condition 

± C C '2;(x.,-x.,T)j _ = 0 = ): (x.) 2 (Xj) (5.17) 
T = To det-i det-j 

^ t ^ O O P e " ^ C00tfc
<8)(x)]»eB,»To 

{ -2 - j } • T» = ° • 

Evaluating T0 from equation (5.17) yields 

In a(2)(x.) 
T0 = ; — , (5.18) 

where , v 
(2) ^ [ ^ ( x )P 

aK J(x) s — . (5.19) 
1 ^ [ ^ ( x . ) ] 2 

(2) 

From equation (5.18), it may be reasoned that, if a (x.) is less than 

one (making the logarithm negative), no increase in the cross-covariance 
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will be seen with small lag times. Also, it may be reasoned that, as the 

eigenvalue separation decreases, T 0 will increase. Generally speaking, 

in reactors with small eigenvalue separations the terms C00 and C1!L are 

(2) (2) 
about equal and, therefore, it depends on the ratio of ^ (x.) to TJIQ (X.) 

(2) 
in determining the sign of in a (x.). 

(2) 
av (x.) is plotted in Figures 58 and 59 for the SHA Core 35A* and 

ARK, respectively, using lambda and modified omega eigenfunction expan

sions. It is apparent from the figures that, for all symmetric detector 

locations outside the graphite decoupling region in the ARK and about 20 

cm outside the poly decoupling region in the SHA Core 35A', a T 0 exists 

(at least if the two-mode model is valid). T 0 for the SHA Core 35A', 

with detectors located near the edge, has a value of about 1.5 ms and for 

the ARK, with detectors just outside the fuel region, a value of about 2.3 

ms. 
/p \ /-a p \ 

Depending on the value of a (x.), the cross-covariance (C ' 

(2) 
(x.,-x.,T)) will have different values at T = 0. If a (x.) is equal to 

u)1 /(u0, the cross-covariance will have an initial value of zero, increase 

up to T0, and thereafter decrease for larger values of T. 

Looking at the null frequency condition of the two-mode coherence 

function approximation of equation (5.1.1), for symmetric detector loca

tions 

Rv ' ̂ (xi,-xi,o)) - 0 (5.20) 

CL*=U) 

null 

Coo^o(2)(x.)]2 ^ [ ^ ( x . ) ] 

U)0
2-KD2

 n 1 UU, 2 + ( J U 2 

0 n u l l x nu l l 
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From equation (5.20), the null frequency condition may be obtained 

d)! 2 - a ( 2 ) ( x . ) d ) 0
2 

"2null = — P r 7 7 - > < 5 ' 2 1 > 
a ' ( x . ) - 1 

1 

( 2 ) 
where a (x . ) i s r equ i red to f a l l wi th in the l i m i t s 

1 < a ( 2 ) ( x . ) =§ K / U J 0 ) 2 . (5.22) 

It is observed that, if a (x.) is less than one, only inflection points 

will be manifest in the coherence function curve. 

It is of interest to note the relationship between in and ou in. 
u null 

(2) 
The closer the spatial weighting term a (x.) is to unity, the smaller 

(2) 
Tr> and the larger u) nn become. The opposite is true as a (x.) increases u ° null 1 

(2) 

If a (x.) is kept constant, then as the reactor becomes more loosely 
coupled Tn increases and u) nn decreases. This was observed indirectly r ° null J 

26 
by Nagy and Danofsky as they varied the graphite decoupling region in 

an Argonaut type reactor at Iowa State University. 

For asymmetric detector locations, the two-mode approximation is 

similar to the symmetric situation but with a different relation for the 

spatial weighting term 

cî 3 - a(2)(x x )u)0
2 

"'null = —W, 7^— ' (5-23) 

aN (x. .x.) - 1 
1 J 

where 
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(2) - C u t J }(X ) ^ ( }(X ) 
a ' ( x x ) = /TV (2y -1 • (5.24) 

1 J C 0 0 ^ 2 ) ( x ) ^ 2 ) ( x ) 

( 2 ) 
The cond i t ions on a ( x . , x . ) a re 

1 .1 

1 < a(2)(xi9x ) * ((Di/tDo)
2 . (5.25) 

In these two-mode approximations, only null frequencies (zero co

herence) and not sink frequencies (minimum coherence) are generated for 

asymmetric detector locations. As seen in the exact solution, this is 

not the case in actual fact. However, the two-mode approximation will be 

fairly good when the phase angles are small (as in the SHA Core 35A' 

example, but not in the ARK model). 

Reactor Parameter Extraction Methods 

Methods by which the eigenvalue separation, effective delayed 

neutron fraction, and neutron generation time may be extracted from inter

pretation of the measured coherence function are developed in the next two 

sections. The relation between the methods using the coherence function 

and MCC is also demonstrated. As stated earlier, a necessary condition 

for these methods to be applicable is that the measured coherence function 

exhibit a sink or null frequency which can be associated with the inter

ference of the first two decay modes. 

Eigenvalue Separation. The first eigenvalue separation is defined 

as the difference between the reciprocal of the first and fundamental 

lambda eigenvalues 
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ACL/Ki) = (l/^ - lA 0) . (5.26) 

Assume that the relation 

i-p - i/x 
(Um = - , m = 0,l, (5.27) 

A mm 

f"L j. v. 

is valid, ou is the m order modified omega eigenvalue, X is the m 
m m 

order lambda eigenvalue, and A is a quantity related to the neutron 
iXmm 

generation time (see equation (C.IO)). How well the relation in equation 

(5.27) holds depends on the extent of departure of the lambda modes from 

the finality property, as mentioned earlier. Equation (5.27) will be a 

good approximation in the case of the SUA Core 35A', but not too good for 

the ARK. It should be noted that, for the point reactor case, equation 

(5.27) reduces to the familiar equation relating the prompt neutron decay 

constant (ci)0) to the effective multiplication constant 

Keff-1 

mo.lX^Aa.SLl! =
 Kef £

( 1f -1, (5.28) 
A°° A 0 0

 x 

where I is the thermal neutron lifetime. 

If the reactor is relatively loosely coupled and if the U)0V
 1 and 

u^V 1 operators are small relative to the absorption operator, then to a 

good approximation 

Aoo ^ A n • (5.29) 
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Once again the validity of the approximation in equation (5.29) depends 

on the finality properties of the lambda modes. 

The extent or lack of validity of the above assumptions is readily 

demonstrated in Tables 9 and 10. \ and ou are the calculated lambda and 
m m 

modified omega eigenvalues using the method of Appendix F. The assump

tions stated in equations (5.27) and (5.29) are excellent in the SHA Core 

35A', but only fair in the ARK. 

Using the above assumptions, a relation between the eigenvalue 

separation and the modified omega eigenvalues can be derived 

Ad/iq) = 1/Xi - l/X0 ^ (1-P - <%An) - (1-P - ou0 A 0 0) (5.30) 

* (wo-">i)Aoo = (<%-Wo) (P + ^ n " l) 

y - ¥^) (") - »-P> (") • 

For symmetrically located thermal neutron detectors located within 

a symmetric reactor, the low frequency asymptote of the two-mode expansion 

approximation of the coherence function (equation (5.11)) is 

(2, 2\ 
IT ' '(x. ,-x. ,u) nn) == (5.31) 

I l small v ' 

Mlp2 ~ UJi2 

cnnur j(Kj)]a
 + c „ [ ^ <»,)]» 

2 ,.. 2 U)0 (Di 
(continued) 
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(2) ((ifr/H,)* - a^ ;(x.) 

(^/GOQ)2 + a(2)(xj 
0) 
sma n << hoi < k l • 

Table 9. Calculated Terms for Some Expansion Modes 
of the SHA Core 35A* 

m ^efP 
e i 1 m 

J vmm 
cu (sec-1) 
m 

cu (sec ) 
m 

0 0.9998 69 -115 -116 

1 0.9938 68 -205 -206 

2 0.8426 85 -2172 -2289 

3 0.8270 83 -2601 -2614 

4 0.6577 111 -4237 -4759 

5 0.6391 107 -5173 -5350 

The following notations apply to the column headings in both Tables 

9 and 10. 

(k £.c) = ^ = c a l c u l a t e d lambda eigenvalue (Appendix F) 
6 1 1 TTI In 

A 
Tm T m 

v™ ' ^ , S ^ X < ilT,M C > m m 

CD = c a l c u l a t e d modified omega mode eigenvalue (Appendix F) 
m 

. 1-p - i/\ 
X __ m 

0) = 
m A, 

Lmm 



106 

Table 10. Calculated Terms for Some Expansion Modes 
of the ARK 

m 
(keff>m 

A^CM- 8) 
il,mm 

U) (sec 
m 

-1) U) (sec ) 
m 

0 1.0000 148 -42. 2 -54.1 

1 0.9573 113 -351 -466 

2 0.3624 663 -618 -2666 

3 0.3381 477 -724 -4120 

4 0.1127 1883 -977 -4185 

5 0.1066 1379 -1252 -6083 

Equation (5.31) may be rearranged to give the following expression 

OO (2,2) ra^(x.)[l + Rl"'^(x.,-x. ,U) „ ) ] 
l l i small 

«(2 .a) / s 
1 - Rv ' J (x. ,-x. ,U) __) 

l I small 

- 1 . (5.32) 

Combining equations (5.32) and (5.30), an expression for the eigenvalue 

separation is obtained 

Ml/^) = (P-P) {\ 
(2)(x.)[l + R(2,2)(x.,-x. ,(i) „)] 

l l l small' 

1 - R(2,2)(x. ,-x. ,0) n 1) I I small 

- 1 • (5.33) 

2n 
In a similar manner, Rydin et al. have derived an expression for ACl/l^) 

in terms of the MCC (see Appendix A) 
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( x . ) [ l + MCC(x.,-x. ,T . ^ ) ] > 

Aa/ K l >. (3-p) \\i ] \ M C C ( , „ x
i , T ; p l a e a u - 4 - ( 5 - 3 4 > 

i i plateau 

where T . is defined as the value of T when 
plateau 

(I) T , 
n n plateau 
1 - e r 

n plateau 
« 1 , n = 0,1 . (5.35) 

The equivalence between the coherence function and modified coefficient 

of correlation method of measuring the eigenvalue separation is observed 

in equations (5.33) and (5.34). It is apparent from equations (5.33) and 

20 
(5.34) and by the correlation function method of Rydin et al. that, by 

measuring the noise characteristics in reactors with small eigenvalue 

/ — (2) 
separations, A(l/K1) may be inferred if 3, p, and a (x.) are known. 

The same type of analysis may be carried out for asymmetrical detector 
/2\ /2\ 

locations by replacing a (x.) by a (x.,x.). The accuracy of this 

latter method will be reduced somewhat because the two-mode expansion 

approximation does not admit imaginary components of the coherence 

function. 

As mentioned in the previous paragraph, in order to obtain AQ/K-L) 

from noise measurements either in the time or frequency domain (equations 
(2) 

(5.34) and (5.33)), the values of P, p, and a. (x.) must be known. (It 

is assumed that R(x.,x.,ou n1) and MCC(x.,x.,T ) are measurable.) 
I j small I j plateau 

(3 is usually calculated using a static diffusion theory computer program 

and p is measured using the standard relationship 
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P = P 1 -
U)r 

critical 
U>, 

(5.36) 

where OD critical is the critical prompt neutron decay constant and ouC) is 

the subcritical prompt neutron decay constant. The prompt decay constants 

may be obtained in frequency domain noise measurements by locating one 

detector at the core center and observing the break frequency in the CPSD 

curve. A similar procedure may be carried out in the time domain to ob-

(2) 
tain the prompt decay constants. The spatial weighting term a (x.) may 

either be numerically calculated from its definition (equation (5.19)) or 

may be inferred from noise experiments from the following equations 

f2) 
a* ;(x.) = 

1 - 2(«, 0/ V l l)
a 

R(2'2)(x.,-x. ,o) „ ) x i' I small' 

1 - R(2,2)(x.,-x.,u; „ ) 
I l small' 

(5.37) 

derived using equations (5.21) and (5.31), or 

(2) 
1 + MCC(x. ,-x. ,T - _ )nrl - MCC(x. ,-x. ,T - _ ) _ v i* i' plateau | i* i* small' 

( xi ) " Ll - MCC( x.,-x.,T - . ) 
I l plateau 

1 + MCC(x.,-x.,T in)J l l small 
,(5.38) 

where T n1 implies that small 

T -.0) « 1 , n = 0 or 1 1 small n' 
(5.39) 

Equation (5.38) was obtained by observing that, in the two-mode approxima

tion 
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and 

K / ^ ) 2 - a ( 2 ) ( x ) 
MCC(x. , - x . ,T . ^ ) = j^r—— (5.40) 

1 l p l a t eau , / x s ( 2 ) / \ 
F (uJi/CDo)2 + a v ' ( x . ) 

(o,,L/(JU0) - a
(2)(x ) 

MCC(x -x T ) = ( . . (5.41) 
l l sma11 , / s (2) . . 

(%/UJo) + av (xi) 

(2) 

Using the experimentally inferred values of a (x.) is preferred when 

not very much is known about the system. 
Of course, if it is possible to extract u^ from the noise data, as 

r Burk 

mine A(l/K1) 

20 done by Burke at al.5 then equation (5.30) may be used directly to deter-

Ad/iq) = (p-p) (S^So.) . (5.42) 

However, it is not always possible to determine a^ with any great accuracy, 

Effective Delayed Neutron Fraction and Neutron Generation Time. 

Combining equations (5.33) with (5.36) and (5.34) with (5.36) yields the 

following relationships 

AU/K,) 

. „ . - , UK ; ( x . ) [ l + R l ' ' ( x . , - x . , u > . . . ) ] , / c r i t i c a l . ] \ / l i* l small7 . 
) { V -^^WW " • 

i i sma 11 

,(5.43) 

and 

A(l/K, ) 
P = , >2S = ^ , . (5.44) 

._. - r / a ^ ( x . ) [ l + MCC(x.,-x. ,T _ ^ ) ] . 
, / c r i t i c a l . f\/ I I l p la teau .1 
(u>o/u>0 )-! W - 1 ) 

LV 1 - MCC(x, , - x , ,T , „ ) J 
i ' i ' p l a teau 
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The eigenvalue separation in the numerator of equations (5.43) and (5.44) 

may be calculated using any static diffusion theory code (e.g., EXTERMI

NATOR) without prior knowledge of (3. However, it is difficult to calcu-

152 
late the eigenvalue separation accurately when this value is small. 

The denominators of equations (5.43) and (5.44) are entirely experimentally 

determined quantities. As a consequence of this, P may be determined in

dependently of A 0 0, the neutron generation time, using either equation 

(5.43) or (5.44). 

Once P has been determined, it is an easy matter to determine A 0 0 

by use of the equation 

A 0 0 = F/V) • (5.45) 

Therefore, |3 and A 0 0 may be determined independently of each other using 

a combination of analytical and experimental techniques. 

Discussion 

It was shown that, if the measured coherence function exhibits a 

null or sink frequency and if the two(u> or A) mode approximation can de

scribe well the overall shape of the measured coherence function, then 

much quantitative insight may be gained into the reactor dynamic charac

teristics. It has been assumed that the measured and exact solution of 

the coherence function demonstrates good agreement. This is a good as

sumption for the cores studied, as will be seen in the next chapter. The 

two-mode approximation was particularly well suited for the coupled cores 

studied. However, in general the two-mode method will not produce good 

results. The advantage of the two-mode method over the exact solution 
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lies in the observation that the insight does come in a quantitative 

rather than a qualitative sense. That is, in the two-mode method, 

relatively simple mathematical relations were developed which establish 

the reactor and detector conditions needed to describe the coherence func

tion and to extract the reactor parameters. 

i (2 2 ) 
The multi-mode expansion approximation of the exact |R ' (x.,x.,ou) 

was excellent for all detector pair locations and frequencies studied in 

the SHA Core 35A*, but only fair in the ARK. The same conclusion held 

for the two-mode approximations, but in this case the detector locations 

must be outside the decoupling regions and the frequency must be less than 

or equal to the sink or null frequency. The 2ou mode approximation was 

much better than the 2X mode in the ARK. Modal approximations of 

|R ' (x.,x.,u))| and R ' (x. ,x. ,ou) | , as in the exact solution, were 

(2 2^ 

very similar with the modal approximations of |R ' (x. ,x.,ou) . 

Multi-mode computations of the various phase angles were very poor. 

The reason for this is not understood. It may have to do with the fact 

that the phase angles are generally small, as seen in the last chapter, 

and therefore difficult to predict with modal approximations. If there is 

any appreciable error in the construction of the eigenfunctions, it is 

magnified in the phase calculations. This comes about because the pihase, 

in the modal approximation, results from a difference of terms rather 

than a sum. 

The two-mode approximations result in real rather than complex 

coherence functions for asymmetrically located detectors. Although this 

is certainly a deficiency of the method., it does not result in very large 

errors in estimating the exact |R ' (x.,x.,ou)| because the phase was 
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generally small up to and including the sink or null frequency. Because 

this method produced real coherence functions for all detector locations, 

only null and not sink frequencies were predicted. 

The shape of the exact |R ' (x.,x.,cu)| for various core and de

tector conditions was easily interpreted using a two-mode expansion ap

proximation. It was seen from equation (5.11) or (5.20) that sink or 

null frequencies may be pictured as resulting from the interference ef

fects of the fundamental and first harmonic prompt neutron decay modes. 

These decay modes are excited by the particular spatial distribution of 

the stochastic source and core coupling characteristics. The relative 

weight of each mode is a function of the locations of the detectors. The 

two-mode approximation of the coherence function absolute value for 

symmetrically placed detectors takes on the form 

iR^'^Cx^-x^aOl = 

0U1
s-KJU2 ( 2 ) 

^T^r - a (x.) 

GU,2 W 3 , ( 2 ) / . 
—i- + a N (x. ) 

2 . ...2 1 ou0 +0) 

(5.46) 

It was seen (equation (5.22)) that it was necessary that the spatial 

(2) 

weighting term, a (x.), have a value greater than one in order to pre

dict a null frequency. For the two coupled core reactor models studied, 

this requirement implied that the detectors could be placed anywhere ex

cept near or within the decoupling regions. Also, according to equation 
(2) 

(5.46), as a (x.) increased (for larger detector separations), OD , 

decreased. Finally, if A(l/K1) increased (CO-L /OU0 increased) so did Ui n 

for some given detector pair arrangement. All these quantitative observa-
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tions were entirely consistent with the qualitative conclusions using the 

exact solution. 

The reason why |R ' (x. ,-x. ,U)) | decreased with increasing detec

tor separation below cu nn and increased with increasing separation above 
null 

U) i may also be easily explained using the two-mode approximation. 

Suppose that x. > x.. The ratio of the coherence functions at these two 
J i 

detector separations is 

„ ( 2 , 2 ) , N Rv » J ( x . , - x . ,OD) 
1 1 

f2 2 \ 
R^ ' ' < x . , -x . , cu ) 

J J 

UJ^+UJ2 

(U 0
2+U) 2 

(2 } 
^ ; ( x ± ) 

(D^-KJU2 

2 . ...2" + * ( * , ) 
U)0 +U) 

0), 2 -Kl )2 

2 , 2 
(i)0 +0) 

a ( 2 ) ( X . ) U)i 2 + U ) 2 

p p 
(i)rt +U) 

(2) + a^ ; ( x . ) 

• (5.47) 

(2) (2) 
Remembering t h a t a (x . ) < a (x . ) for the r e a c t o r models s tudied and 

1 J 
that both spatial weighting terms are near unity, it is apparent that the 

ratio in equation (5.47) is greater than one below u) nn and less than one 
null 

above cu nn. These results are also consistent with the exact solution 
null 

observations. The same type of reasoning may be applied to asymmetrically 

located detectors. 

Methods have been developed, using the two-mode approximations, 

whereby the eigenvalue separation, effective delayed neutron fraction, 

and neutron generation time may be inferred by proper interpretation of 

the measured coherence function or modified coefficient of correlation. 

The accuracy in determining ACI/K-L) depends on how well the 2\ mode ap

proximation describes the measured coherence function. This accuracy 

tends to increase the more loosely coupled the core becomes. The accuracy 
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of the |3 and A 0 0 determinations appear to be poor for either very tightly 

or very loosely coupled cores. In other words, there appears to be an 

optimum eigenvalue separation with regard to the accuracy of the {3 and 

A 0 0 determinations. 
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CHAPTER VI 

INTERPRETATION OF THE NOISE EXPERIMENTS 

To verify the validity of the theoretical development and to 

provide measured coherence functions for the reactor parameter extraction, 

noise data from two separate nuclear laboratories were used. Frequency 

domain measurements of the coherence function for the tightly coupled ARK 

28 
reactor were carried out by Seifritz and Albrecht at the Institut fur 

Neutronenphysik und Reaktortechnik., Kernforschungszentrum Karlsruhe., West 

20 Germany. Time domain noise measurements were undertaken by Burke et: al. 

on several loosely coupled cores including the SHA Core 35A' at Knolls 

Atomic Power Laboratory (KAPL) in Schenectady, New York, as part of a 

, . . 29 
space-time kinetics program. 

Because time domain data were not available for the ARK reactor, 

it was necessary to Fourier transform the KAPL data to compare character

istics of the two reactors in the frequency domain. This chapter is con

cerned with the method used to Fourier transform the KAPL noise data, the 

results of this procedure, and the values of several reactor parameters 

which may be inferred from these noise measurements. 

Fast Fourier Transformation Procedure and Results 

The experimental arrangement used to take the. SHA Core 35A' noise 

data consisted of two boron triflouride detector banks located at opposite 

ends of the reactor which were connected to a multiscaler set in the time 
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mode. Conventional low-noise amplifier systems were used, with one JJLS 

double-delay-line pulse differentiation. Discriminator windows were ad

justed to detect approximately 95% of the pulse-height distribution with 

the lower level set about four times higher than the maximum observable 

system-noise pulses. 

Time histories for the two detectors were recorded by a 4096-channel 

multiscaler time analyzer (2048 channels for each detector) and written 

on magnetic tape. Pulses from both detectors were fed to 10 Mc scalers 

for a fixed detection time interval or gate time (T), which was varied 

from one ms to 100 ms. The storage time between gates was 40 p,s. Count 

losses were minimized (held to less than 1%) by maintaining the detector 

count rate below 2000 cps. Some 20 to 40 time histories were obtained 

for a given run and were identified on tape by a unique tag word. Sep

arate runs were usually made using 1, 3, 10, and 100 ms gate times at one 

stationary subcritical condition. Measurements were repeated for several 

slightly subcritical positions. 

Reactor noise data were obtained for four different cores, each 

bisected by a decoupling region consisting of a few inches of polyethylene. 

Core 38B was constructed with SHA-II type fuel ' and had a four inch 

polyethylene decoupling region. Cores 35A, 35A', and 39 were constructed 

with SHA-I type fuel ' and had 4, 5, and 3 inch decoupling regions, 

respectively. 

Data tapes generated by the analyzer were then stored in a different 

format by the KAPL CDC-6600 computer. The CDC-6600 has a 60 bit word 

length and writes on tape in physical records of 512 words each. The con-
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tents of the CDC tapes were copied onto separate tapes and sent to Georgia 

118 
Tech for frequency analysis. A FORTRAN IV program using UNIVAC-1108 

119 
NTRAN options was constructed to read the CDC data tape and convert to 

UNIVAC-1108 36 bit word form. The average detector count rate for each 

run was computed and subtracted from the raw data. This left only the 

fluctuating portion which was added channel for channel for all the data 

dumps within a run. The composite of 4096 channels of noise data were 

120 Fast Fourier Transformed (FFT) using a program written by J. M. Reynolds. 

121 
A detailed description of the FFT method presented by Reynolds is re
produced in Appendix G. 

The FFT routine produced detector averages, variances, APSD, CPSD, 

transfer function magnitude and phase, coherence function, and auto- and 

cross-covariances on all SHA core data (over 10 million data words) in 

about one hour of UNIVAC-1108 computing time. To obtain the correla

tion functions and spectral densities by conventional means would have 

34 
taken nearly 40 hours on the UNIVAC-1108. The relatively small FFT 

computation time strongly suggests the possibilities of on-line use. 

122 
This has already been undertaken by Kryter and recently applied to the 

determination of the void fraction in fuel salt in the Molten-Salt Reactor 

Experiment at Oak Ridge National Laboratory. ' 

Results of the KAPL data computations for the absolute value of the 

modified coherence function are given in Figure 60 for the four SHA cores. 

The modified coherence function is similar to the coherence function ex

cept the mean detector count rates have not been subtracted from the 

APSD's in the denominator. Detector gate times used in the FFT analysis 
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Figure 60, Measured |MR(x. , - X . ,CO) | for Several SHA Cores 
x, = -77 .5 cm L 1 
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were 3 ms. From Figure 60 it is seen that, for SHA cores with type-I 

fuel (cores 39, 35A, and 35A'), as the width of the polyethylene de

coupler is increased (eigenvalue separation decreased) the null frequency 

and low frequency coherence function decrease in accordance with equations 

(5.21) and (5.31), respectively. 

Reactor Parameter Extraction and Results 

To extract reactor parameters from the digital SHA noise results, 

it was necessary to investigate the two-mode expansion approximation of 

the modified coherence function for symmetrically located, point, thermal 

neutron detectors 

MRV ' ' (x. ,-x. ,T,(JU) = 
l l 

(6.1) 

(2) CO <W*o U.) ]2G00(T) C n [ £"' (x.) ]2G^ (T) 

a>0
2+uo2 

2 2 
U ^ +(JU 

- YNrt T n CooUo2)(^)]2Gc!)0(T) C^t^^Cx )12G'1(T) 
D.DFT J ^ - L L + + -
1 L 1 J ,„ 2 2 ... 2 , a 

where 

(JD0 -KJU (% +UT 

GA0(T) = 
= 2((DnT+l-e

("°T) 

(tu0T)
3 

(6.2) 

2(uj1T+l-e
U)lT) 

Gii(T) ~ (WlT)
3 

(6.3) 
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and DFT—^ ' '1 is the digital Fourier transform of the trivial detec

tor response correlation function rJ! (see equation (3.9)). DFT j 

34 has a value of one for frequencies below the Nyquist frequency. Using 

this fact and performing some algebraic manipulations, the modified co

herence function may be expressed in simpler form 

MR^2,2)(x. ,-x. ,T,u)) s= 
l I 

2 , ...2 
/ovf+ur\ (2) / 
MD« -KI>/ ! X 

J^) n&w + ifhlzsL) a<*> (x. , T ) 1 + (aiiis^ + a<
2> (x. >T) 

where NR, the trivial noise ratio, is defined as 

D, 
NR = 

^ , C00G^0(T)[^
2)(xi)]

2
 [ C^G^CTyE^

8)^)]^ 
i 

(6.5) 

U)r (U-i 

and the combination spatial and detector gate interval weighting function, 

(2) a (x. ,T) , is defined 

a(2)(x.,T) = a ( » ) ( x )
 Gii(T> _C11[»1(

8)(»,.)]aG,',(T) 
1 G ° ° ( T ) C00[fc

(2)(x.)]2Gi0(T) ' 
(6.6) 

The trivial noise ratio is evaluated by finding the high to low 

frequency asymptote ratio of the APSD, The APSD's for the four SHA cores 

are presented in Figure 61 together with the NR value for each. It should 

be noted that the modifie 1 coherence and the coherence functions would be 
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identical if the trivial noise ratio was zero and the detector gate times 

were small (i.e., |ou0TJ < I^TJ « 1) . The trivial noise ratio tends to 

have a degrading effect on the extent of coupling between the two detec

tors. 

Using the values of the modified coherence function at low fre

quencies and the conditions at the null frequency, expressions for 

(2) , 

a (x. ,T) and A(l/K1) may be obtained in a manner similar to that pre

sented in Chapter V 

(2) 1 
aK '(x ,T) = 7 2 ^ , (6.7) 

, 9,fl / v3r
 M R ( ' 'frl.-Xj^small) 

1 - 2K/«nuii> L STiT, 7 ul - NR - MRV ' ;(x. ,-x. ,T,(i) ..) 
' i' i' ' small' 

and 

/.(a)/„ ^ r , ™ ( 2 > 2 ) kK } (x ,T) [ 1-NR+MR^ ' ' (x , -x ,T,u> ) ] , 
Ad/K,) = (p-p) { / 1 - ^ — ^ ± 22*1^- .!| . (6.8) 

1 - NR - Mir2,2)(x. ,-x. ,T,u) in) l I small 

It should be noted that the method developed in the last chapter 

for extracting reactor parameters is directly applicable to the analog 

28 
ARK data, but must be modified as shown in equations (6.7) and (6.8) 

to be useful for the digital KAPL data. The reason for this is because, 

in the analog techniques, the detector response intervals (T) are in

herently small. Another way of saying this in the frequency domain is 

that the detector's response curve is flat up to high frequencies. In 

28 
addition, the manner in which the ARK data were presented accounted 

for the subtraction of D. (trivial detection rate) from the APSD. There-
l 

fore the normal coherence function can be used directly for the ARK cal-
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culations, but the modified coherence function must be used for the SHA 

calculations. 

Measured and exact solutions of the absolute value of the coherence 

function for two thermal neutron detectors symmetrically located in the 

graphite reflector near the edge of the core region for the ARK are pre

sented in Figure 62. Measured and exact values agree well with each 

other for frequencies below and including the null frequency, but not 

well above the null frequency. One possible reason for this higher fre

quency disagreement may be due to the inability of the one-dimensional 

exact solution to take into account higher order axial buckling of the 

axial flux shape. (Of course the same will be true of the modal approxi

mations. ) 

A similar graph for the SHA Core 35A' could not be undertaken be

cause of the inability of the exact solution to take into account the 

detection time intervals and the noise ratio needed for an exact and ex

perimental comparison. However, because of the good low frequency agree

ment between the exact solution and experimental results in the ARK, it 

is conjectured that the exact solution would be valid for the SHA noise 

data if they were taken by analog techniques. Once this reasoning is 

accepted, it is easily concluded that the two mode approximation is valid 

for the SHA digital noise results. 

A summary of the noise results, both calculational and experi

mental, for the four SHA cores and the ARK, is presented in Table 11. 

The descriptions and methods used in arriving at the results of Table 11a 

are given in Table lib. 
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Table 11. Summary of the Noise Results (Section a) 

SHA SUA SHA SHA ARK Comment 
Core Core Core Core # 
35 A' 35A 39 38 B 

p, % AK/K -0.043 -0.043 -0.043 -0.086 0.00 1 

MR V > '(x.,x.,T,u) ) 
°?a a^ X J S m a °'41 °- 5 6 °-75 0.66 0.942 2 
Rv ' ;(x.,x.,(ju .,) i' j small' 

ci)0 , sec
 1 -127 -112 -130 -330 -42 3 

u^, sec 1 -200 -250 -360 -850 -351 4 

((ju n ̂ calc, sec 1 
null 

450 610 660 1920 1000 5 

(cu n n )meas , sec
 1 

null 520 600 900 2500 730 6 

NR 0.088 0.100 0.092 0.174 0.013 7 
(2) (2>> 

aK '(x. ,T) or a V ;(x.) 
(JU 1 (JU 1 ' 

1.09 .... -- -- 2.00 8 

a^2)(x.,T) or a^2)(x.) 
A. 1 A. 1 

1.03 -- -- -- 2.00 9 

aK J (x. ,T) or av 7(x.) 
exp I exp I 

1.11 1.13 1.25 1.16 1.12 10 

A(l/K1)calc, % AK/K 0.59 -- -- -- 4.30 11 

A(l/K1)(ju, % AK/K 0.57 -- -- -- 4.60 12 

A(l/K1)?v, % AK/K 0.53 ... -- -- 4.60 13 

A(l/K1)exp, % AK/K 0.58 0.99 2.15 1.93 3.28 14 

A(I/K1)MCC, % AK/K 0.48 0.79 1.78 1.44 -- 15 

A(l/K1)meas, % AK/K 0.52 0.97 1.46 1.36 4.71 16 

(3 calc 0.0078 0.0078 0.0078 0.0078 0.0076 17 

j3 exp 0.0079 -- -- -- 0.0084 18 

A(J0, |iS 69 -- -- -- 156 19 

A X , (JLS 69 -- -- -- 148 20 

^exp, |is 62 -- -- -- 200 21 
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Table 11. Continued (Section b) 

17. Effective delayed neutron fractions for the SHA cores given in Ref
erence 20 and for the ARK in Reference 107. 

18. Inferred £ using equation (5.43) for the ARK and its equivalent for 
the SHA Core 35A1. 

19&20. Generation times, A 0 0, calculated using equation (CIO) for the 
modified omega and lambda modes, respectively. 

21. Experimentally inferred generation times using equation (5.45) with 
observed u)0s of comment #3. 

Some of the predicted conclusions of the previous chapters are 

clearly indicated in Table 11. As the eigenvalue separation increases 

(SHA Core 35A1 < 35A < 39) for a given type of core and detector separa

tion, so does the measured low frequency coherence function and null fre

quency. In addition, the accuracy in the ability to infer experimentally 

the eigenvalue separation, effective delayed neutron fraction, and genera

tion time decreases with increasing A(l/K1). 

The noise ratio (NR) is much smaller in the ARK than in any SHA 

core. This is most likely due to the good statistics and the inherently 

short equivalent gate times (T) which were involved in the analog measure

ments. However, analog measurements generally take much longer to perform 

than digital. It should again be mentioned that the NR was already taken 

into account in the presentation of the coherence function results of 

28 
Seifritz and Albrecht. 

Experimentally determined values of the spatial weighting term, 

a '(x.,T) or a (x.), agree well with the calculated values in the SHA 
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Core 35A', but not in the ARK. The calculated values for the ARK case 

are probably better than the experimentally determined values. The reason 

for this may be seen upon inspection of equation (5.37). When the low 

frequency coherence function is near unity (as in the ARK case), the ac-

(2) 

curacy in determining a (x.) experimentally therefore decreases. 

There tends to be good agreement btitween the several methods of 

determining A(l/K1) for eigenvalue separations be Low 1% AK/K. Above this 

value, agreement is not very good. Assuming that the correlation function 

method, A(l/K1)meas is the better method (since it is the most direct in 

using the physical observables, a>0 and co1), then it appears that the 

A(l/K1) method is better than any of the coherence function methods 

presented in this work when A(1/KL) is greater than about 1% AK/K. 

Discussion 

The methods which were developed for extracting reactor parameters 

from noise data have been applied in this chapter with general success. 

For analog noise data, the methods developed in the last chapter could 

be used directly. However, for the digital noise data, these methods had 

to be modified somewhat. 

Several of the observations about the nature of the coherence func

tion discussed in the previous chapters were confirmed by the measurements. 

Specifically, it was found that the null frequency and low frequency co

herence function increase as the eigenvalue separation increases. Also, 

the accuracy in inferring the eigenvalue separation, effective delayed 

neutron fraction, and neutron generation time from noise data decreases 

with increasing A(l/K1). Finally, it was observed that the phase was zero 
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for the symmetrically placed detectors used in the measurements. 

It was found that, in the digital coherence function noise methods, 

care must be exercised in keeping the spatial weighting term greater than 

one and the trivial noise ratio small. The trivial noise ratio is a 

measure of the trivial correlation to total correlation of a detector. 

The best way to satisfy the above two requirements is to keep the detec

tion time interval (T) short. The 1 ms data of the KAPL data were not 

useful, however, because of the low statistical accuracy. This could 

have been alleviated if more noise records were taken at this channel 

time width. 

The experimentally determined spatial weighting functions could 

be evaluated well only for loosely coupled cores. Otherwise it is more 

advantageous to calculate them directly from the definitions. There is, 

however, one exception to this rule. When the detectors are located in 

places where the fundamental and first harmonic eigenfunctions are small 

(i.e., near the core edges), the calculation of the spatial weighting 

function will be subject to rather large error. In these cases, the 

experimentally determined spatial weighting is best to use for the ex

traction of the reactor parameters. 

It appears that the best method to use to determine the eigenvalue 

separation from noise data is the correlation function approach of Ref

erence 20 (i.e., A(l/K-,) ). Using this method, the fundamental and 
me as 

first harmonic prompt decay constants (u)0 and u^) are inferred from the 

auto- and cross-covariances and used to calculate A(l/K1) directly from 

equation (5.30). However, it is not always very easy to determine oo1 
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from the noise data. The accuracy of this determination decreases as the 

eigenvalue separation increases. Nevertheless, with certain detector 

locations, it may be possible to accurately extract (i)1 from noise data 

even for tightly coupled cores. 

Assuming that the best value of the eigenvalue separation is given 

by A(l/Kn) , it appears that the MCC method of Reference 20 is superior x meas 

to the coherence function methods (i.e., A(l/K, ) . ACl/K,)., and ACI/K-, ) ) 
UJ A. X exp 

when ACl/K!) is greater than about 1% AK/K. The good agreement of the MCC 

method with A(l/Ki) in this range of eigenvalue separations may be 

fortuitous however. That is, there is no reason in principle why 

A(l/K1)e and A(l/K 1) m e a s should not be identical (within experimental 

error), because they both were obtained entirely from experimental ob-

servables. (It is noted that A(1/K 1) M C C S, A(1/K 1) U O, and A(l/K1), were 

obtained from a combination of experimental observables and computed 

quantities. In these cases, A(1/K1)M(-„C of Reference 20 was most likely 

152 153 
better because the reactor modeling was better. ' ) It would have 

been of interest to obtain A(l/K1) using the MCC method of equations 

(5.34) and (5.38) and compared it to the A ( l A i ) m e a s and A(l/K1)ex values. 

In this case, the three different methods would have been on an equal 

footing. 

In order to extract |3 and A 0 0 from noise measurements, it is 

necessary to numerically compute A(l/K1). This becomes more difficult 

as the eigenvalue separation becomes small. It should also be pointed 

out that, conversely, when the eigenvalue separation becomes large, 

though it is easy to compute A(l/K1), the accuracy of the |3 and A 0 0 
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determinations will be poor. This happens because the two-mode approxi

mation is not valid for large ACl/K^). 
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CHAPTER VII 

CONCLUSIONS 

The purpose of this work was to develop and apply methods through 

which some dynamic parameters of coupled core reactors could be inferred 

from noise measurements. In the process of the investigation, it was 

necessary to construct an exact, one-dimensional, two-group solution of 

the neutron noise coherence function. This exact solution was used to 

see how the shape of the coherence function changed with varying core and 

detector conditions when experimental results were not available. The 

exact solution agreed well with what data were available. A qualitative 

understanding of the nature of the coherence function was gained using 

this exact solution. 

Methods used to extract the reactor parameters were derived from 

the techniques of modal approximations. A. specific case of the modal 

method, called the two-mode approximation, was used in this work. The 

two-mode approximations of the coherence function agreed well with the 

exact solution. Criteria on detector and core conditions needed for accu

rate inference of the reactor parameters were established using the two-

mode method. In addition, the two-mode approximations yield some quan

titative insight into the nature of the coherence function for varying 

detector and core conditions. 

6 01 
Starting with a general 'formulation of the covariance, ' the 

interrelation between several common time and frequency domain noise 
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techniques was demonstrated. These techniques contained the space- and 

energy-dependence in a continuous form:, embodied in the Green's or trans

fer function. Modal approximations of the noise techniques were shown to 

arise from the particular modal form which the Green's or transfer func

tion was approximated. Since the objectives of this work were to develop 

methods to infer some global reactor parameters and to maintain the capa

bility of extension to two-dimensional, multiregion reactors, the lambda 

and modified omega eigenfunctions were used to approximate the space- and 

energy-dependence of the Green's function. The point reactor noise formu

lations result when only the first term in the modal expansion is retained. 

The same amount of information is contained in both the frequency and time 

domain noise techniques. 

An exact solution of the coherence function was constructed by 

solving for the two-group Green's function exactly in a one-dimensional 

system. It was observed that the shape of: the coherence function is a 

complicated function of the frequency dependent mean free path length 

between the two detectors and the spatial distribution of the stochastic 

source. The frequency dependence comes about through the Fourier transform 

of the time derivative in the neutron kinetics equations. This cu/v term 

acts as a frequency dependent l/v absorber added to the static destruction 

operator (i.e., the absorption and leakage operators) in the Green"s func

tion defining equations. This type of frequency dependence is also mani

fest in the modal approximations of the coherence function, although it 

is of a less obvious nature. In this case, the cu/v term affects the shape 

125 1 
of the expansion modes which Gozani refers to as the kinetic distortion. ' 
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A number of interesting characteristics of the coupled core co

herence function were explained using the exact solution and/or the modal 

approximations. The rather peculiar behavior of the absolute value of 

the coherence function at some frequencies called the sink or null fre

quencies, which are sometimes observed in coupled core measurements, 

was adequately explained using modal expansion approximations. Null fre

quencies are observed when detectors are symmetrically located and sinks 

come about for asymmetrically placed detectors. Sinks or nulls were seen 

to arise from the interference effects of the prompt neutron decay modes. 

These decay modes are excited by the stochastically time varying inherent 

neutron noise source. Their relative influence on the detectors are de

pendent on the spatial distribution of the source, the location of the 

detectors, and the degree of core coupling. The lowest frequency sink or 

null was ascribed to the interference of the fundamental and first harmonic 

prompt decay modes and the next lowest to the interference of the funda

mental and second harmonic, etc. When both detectors were placed in or 

close to the decoupling region of the coupled cores studied, low order 

sinks or nulls were no longer observed in the exact solution of the co

herence function. In addition, as the detector separation was increased, 

the low order sink or null frequency decreased asymptotically. These ob

servations were simply explained using the two-mode approximations of the 

coherence function. Also, it was noted that the time domain equivalent 

of a null frequency is a short rise in the cross-covariance for short lag 

times. 

Using qualitative arguments in conjunction with the exact solution, 
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the technique of determining the local thermal neutron lifetimes proposed 

19 
by Ackermann was demonstrated to be valid only when the local neutron 

leakage is small. Because the leakage is small in the center portion of 

large regions, the Ackermann method will be valid there. 

The coherence function phase angle., computed using the exact solu

tion, tends to be smaller at any given frequency in loosely coupled cores 

than in tightly coupled ones. The reason for this most likely resides in 

the fact that the magnitude of u)/v relative to the destruction operator 

is generally greater for tightly than for loosely coupled cores. It is 

the magnitude of u)/v relative to the destruction operator that determines 

the magnitude of the phase for a given frequency. 

It was observed in both the modal approximations and exact solution 

that the magnitude of the low frequency (below the sink or null frequency) 

coherence function decreases with decreasing eigenvalue separation. Also, 

it was seen that the magnitude of the low frequency coherence function 

decreased with increasing detector separations, and the magnitude increased 

with increasing detector separations at high frequencies (above the sink 

or null frequency). These effects can be explained by either the contri

bution of the U)/v absorption term or the relative contributions of the 

expansion modes. 

Methods were developed and applied, whereby the inference of the 

eigenvalue separation (A(l/K1)), effective delayed neutron fraction (P), 

and independently the neutron generation time (A 0 0) from noise data was 

possible subject to certain core and detector placement conditions. The 

overriding condition was that the measured coherence function exhibit a 
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sink or null frequency or the equivalent for time domain measurements. A 

(2) 

spatial weighting function, a (x.), was defined using the two-mode ap

proximation, whose purpose was to indicate what core and detector place

ment conditions were necessary for the extraction of the reactor param

eters. It was concluded theoretically that ACl/f^), p, andA00 can only 

be accurately inferred in loosely coupled cores for detectors located 

external to the decoupling region. However, it was also concluded that 

it would be difficult to infer P and A 0 0 if the reactor was too loosely 

coupled. 
The noise methods were applied to extract ACl/%), £, and A 0 0 

from coherence function measurements on coupled core, zero power reactors 

20 28 
at Knolls Atomic Power Laboratory" and the Karlsruhe Research Center. 

Results obtained using these methods compared favorably with time domain 

experimental interpretations and with direct calculations. From the ex

perimental results (see Table 11), it appears that the accuracy in deter

mining (3, ACI/K-L), and A 0 0 decreases with increasing eigenvalue separa

tion. The reason for this most likely stems from the fact that the two-

mode approximation of the coherence function (or the time domain equiva

lent) becomes worse for increasing eigenvalue separation. It was con

cluded from the results of the experiments and calculations that the best 

method to obtain reactor parameters by noise anal}?sis is by using the lag 

, , ^ « j. ,20 time correlation method of Rydin et al. 
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CHAPTER VIII 

RECOMMENDATIONS 

Since this work was only concerned with one-dimensional (ID) 

models, it would be of interest to extend the analysis to more realistic 

2D models. Investigations of this nature would shed light on the effect 

of the transverse dimension on the noise calculations. Although it is 

1 26 
difficult in general to generate the higher order 2D modes, it is 

relatively straightfoivard to calculate the fundamental and first harmonic 

lambda and modified omega modes using static diffusion theory codes 

89 
(e.g., EXTERMINATOR-II ) for symmetric coupled core reactors. The method 

of proceeding would be first to compute the 2D flux. This flux is the 2D 

fundamental lambda eigenfunction and k CJ. is the fundamental lambda eigen-
° eff ° 

value X0. The 2D fundamental modified omega mode would be obtained by 

reducing the production operator by a factor of (l-(3) and adding negative 

absorption in the form u)/v until the same k cc as the lambda calculation 
r ' eff 

is attained. Of course, for subcritical systems, k __ will be less than 
' J ' eff 

one. The first harmonic 2D modes (both \ and ou) would be calculated using 
152 

the same procedure as above, but only using a quarter of the reactor. 

That is, zero flux boundary conditions on all sides of the quarter section 

would be established. The computed flux shapes would be the first har

monic modes and the k ,,,. of this quarter section would be the first har-
eff 

monic lambda eigenvalue ^ . It should be noted that it may be possible 

to generate the higher ID or 2D modes for symmetric or asymmetric reactor 
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89 models using EXTERMINATOR-II because of the negative flux option in 
0£ O -I 

this code, which was used by Johnson and Macdonald. ' 

It would also be of interest to check the accuracy of the ID 

eigenvector and eigenvalue computations using schejmes other than the cri-

127 128 
tical determinate method ' presented in this work. The problem of 

round-off errors on the zero-crossing of the determinate could be avoided 

89 

by using a static diffusion theory code such as EXTERMINATOR-II (iterat

ing to find the zero crossings in both the symmetric and asymmetric reac-

129 130 
tor case), or by using a Wieland iteration scheme, ' or by use of 

1 Q /•* 1 Q 1 

the Stabilized March Technique. ' Using these schemes may also help 

in eliminating the poor phase angle calculations involved in modal ap

proximations. 

The methods presented in this work may be easily extended to asym

metric ID reactor models. Although no experimental noise data are yet 

available from asymmetric reactors, it would be appropriate to undertake 

some calculations for such reactor models in order to give the experi

mentalist a better idea of how to perform some experiments. Better phase 

information would be forthcoming from such asymmetric reactor experiments. 

Several interesting theoretical studies could be undertaken. In

stead of starting with the diffusion equation, one could proceed from the 
87 

one-group Telegrapher's equation, use a two-mode expansion approximation, 

and reduce to the two-node form. From an analysis along these lines, not 

only could the coupling coefficients but also the time distribution func-

-,, , -, -, J • • 27,28 tion could be calculated a priori. 

If the 2D modal approximation methods are undertaken, an appropriate 
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2D exact solution of the neutron noise should be constructed to serve as 

a standard of comparison. The ID exact solution presented in this work 

132 
cannot be easily extended to 2D systems. However, Danofsky has used 

133 

the space-time kinetics computer code WIGL2 to solve for the ID co

herence function exactly in a coupled core reactor. The same type of 

procedure could be used to solve for the 2D coherence function exactly 

134 
using the 2D space-time kinetics program TWIGL or some other standard 

2D space-time kinetics program. It would be interesting to see if these 

2D, exact, finite difference codes would predict the higher order sink 

or null frequencies. 

In the line of experimental work, both the GTRR and AGN 201 at 

Georgia Tech could be used to obtain useful noise data both in the fre

quency and time domains. It would be of particular interest to vary the 

split core configurations in the GTRR for various subcritical conditions. 

This could be accomplished on the GTRR (a CP-5 type reactor) because of 

the high photoneutron source which is fairly uniformly distributed and of 

high intensity even in the far subcritical region. Interpretation of the 

detector effects using the two-mode expansion techniques for various sub-

critical conditions may help to clarify some of the related problems being 

135 
encountered in the fast reactor work. Correlation between fast and 

thermal neutron detectors may yield additional information on the variation 

of neutron lifetime in different regions of the reactor. 

In the work presented here, it was shown how the effective delayed 

neutron fraction (f3) could be determined independently from the neutron 

generation time (A 0 0) with noise measurements. However, in this procedure 
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it was necessary to numerically calculate the eigenvalue separation 

(ACI/K-L)). It was demonstrated that the accuracy in the determination of 

(3 was optimum for a certain value of A Q / K - L ) , but decreased for larger 

and smaller values of ACl/l^) . The problem of calculating ACl/l^) in the 

— 19 

j3 determination could be avoided by using the Ackermann method of deter

mining the thermal neutron lifetime (i,) independently of p. In this case, 

I could be determined entirely by experimental means and (3 could be deter-

— ciriti_C9.1_ ciritic3.1 

mined from the expression (3 = j£u)0 , where U)0 is the experi

mentally observed critical prompt neutron decay constant. In this method, 

(3 could also be obtained entirely from experimental observables. This may 

be of some importance in determining the fraction of plutonium present in 

a breeder reactor. 

Finally, it may be possible to infer the value of the capture to 

fission ratio (a) from noise measurements by a modification of the Acker-

19 
mann method. Measurement of the global a in a fast breeder reactor 

would certainly be very desirable. 
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APPENDIX A 

BASIC RELATIONS OF RANDOM NOISE THEORY 

Average or Mean 

Suppose that one has an infinite number of identical reactors 

which are monitored by an infinite number of identical detectors. Desig-

nate the i detector response rate in the k reactor at time t by D., (t) 

The ensemble average of the detectors response rates at time t is 

^ " i k ^ 
< D i ( t » 5 N ^ ^ — • ( A -D 

For ergodic, stationary processes, the time average or mean can be sub

stituted for the ensemble average 

dt D.,(t) 

R is the record length of the measurement. 

Variance 

The var iance of the i d e t e c t o r response r a t e assuming erogodic , 

s t a t i o n a r y processes i s defined as 

rR 

J dtED^t) - D i ]
s _ 

O2 (D . ,D .) s Hm -2 = D2" - B2 . (A. 3) 
i ' l R-»°° R l i 



Covariance 

This function is defined in a manner similar to the variance, but 

with two rather than one detector 

rR 

J dt[D.(t) - Di][D (t) - D ] 

Ŵ H Hi — v = D ^ " D. D. . (A.4) 

The quantity D.D. is usually called the time averaged product density. 

Modified Coefficient of Correlation 

59 This is a quantity originally defined by Harris et al., which is 

in effect a rationalized covariance 

(^(D.jD.) 

MCC(D D ) s- _ : — - J _ = r • <A-5) 
J V[o3(Di,D1) - D^Cc^CD ,D ) - D ] 

The modified coefficient of correlation tends to measure the global or 

reactor wide departure from Poisson because the local variations are 

divided out. It is for this reason that it: is well suited for coupled 

core noise investigations. 

Auto-Covariance 

The auto-covariance and variance are closely related 

,R 

C(D,,D,,T) 

dt[D (t) - D.][D.(t+T) - D,] (A.6) 
lim "0 X X X 

i' i' ' R-*° R 

r-R 
J dt[Dt(t) Di(t+T)] 

lim _0_ ^3 
R-*» R i 

(continued) 



= Di(t) D1(t+T) - D! , T * 0 , 

C(Di,Di,T) = D1(t-T)D1(t) - Dl , T * 0 , 

where T is the detector lag (or lead) time. 

Cross-Covariance 

The cross-covariance is closely related to the covariance 

C(D D ,T) = D (t) D (t+T) - D D T ̂  0 , (A.7) 
•'•J *• J *• J 

C(D.,D.,T) S D.(t-T) D.(t) - D. D. , T ̂  0 . 
l' j l J ! J 

Auto-Correlation Function 

This function is just the auto-covariance with the square of the 

mean detector rate added to it 

0(Di,Di,T) = C(Di,Di,T) + D1 . (A.8) 

Cross-Correlation Function 

In a similar manner, the cross-correlation function is the cross-

covariance with the product of the mean rates added to it 

0(D.,D.,T) SC(D.,D.,T) + D. D. . (A.9) 

l j l j I J
 v y 



Auto-Power-Spectral-Density 

Fourier transformation of the auto-covariance yields the APSD 

^(Di,Di,U))s dT C(D.,D.,T) e"jU)T . (A.10) 
1 1 

Cross-Power-Spectral-Density 

Fourier transformation of the cross-covariance yields the CPSD 

$(D D ,u>) = dT C(D.,D.,T) e'JU)T . (A. 11) 
1 J ,J 1 J 

Coherence Function 

This function, originally defined in coupled core noise analysis 

27 
work by Albrecht and Seifritz, is a type of rationalized CPSD 

$(D ,D ,u>) 
R(D.,D.5U)) = J • (A. 12) 

y [($(Di,Di,u)) - D^t&Dj.D ,u>) - Dj] 

The coherence function serves the same purpose in the frequency domain as 

the modified coefficient of correlation does in the time domain. 
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APPENDIX B 

MODAL EXPANSION APPROXIMATIONS OF SPACE-ENERGY-TIME 

REACTOR KINETICS 

Many of the approximate solution methods used in space-energy-time 

reactor kinetics may be used to good advantage in space- and energy-

dependent noise work as is indicated in Chapter II. This appendix is 

concerned with a review of a particular special case of the more general 

method of weighted residuals; that of the modal expansion approximations 

to the space-energy-time reactor kinetics. This presentation follows 

along the lines of Chapter I in Reference 30. 

The time dependent neutron balance equation may be written (using 

, „ - N30 
standard notation) 

1 ?*F — » — » - • V" —» 
-2L (r,E,0,t) = - Q.vF(r,E,Q,t) - ) (r,E,t) F(r,E,Q,t) (B.l) 

^ _ X (E) p«> n̂ p _> _ 
+ Q(r,E,Q,t) + (1-0) - * T — dE'v) (r,E\t) I F(r,E\Q',t) dQ 

4TT J0 ^f J0' 

+ I dE' f doY (rjE'.n'-E.Sjt) F(r,E',Q',t) 
J0 JQ' Us 

M X(E) 
+ V X -y—- C (r,t) . 

] m 4rr m ' 
m=i 

—• 

F(r,E,Q,t) is the product of the neutron velocity and neutron distribution 

function. The term on the left-hand side of eqtiation (B.l) denotes the 
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time rate of change of the neutron distribution function in the differen

tial phase space drdEdQ. The terms on the right-hand side of equation 

(B.l) represent the leakage, removal, external source, fission,in-

scattering and delayed neutron rates in the differential phase space, 

respectively. 

Because the balance equation is extremely difficult to solve except 

for very simple reactor models, the time-dependent multi-group diffusion 

equation approximation is usually involved. This approximation may be 

30 written in matrix form 

[V-D(r,t)v - t ( r , t ) - R ( r , t ) 4- £ ( r , t ) + (l-P)XJ?T(r, t) ]1( r , t) (B.2) 

M 

+ 7 xSrr,cJr>V + Qfr.t) = ^"1 TT * ( r . t ) 
L-1 m m m ot 

m=i 

and 
6?(r,t)1(r,t) - X C (r,t) = ^ C ( r , t ) , m = 1,..., M (B.3) 
m m m ot m 

§(r,t) is the space- and time-dependent GXl (G is the number of energy 

groups) column vector of group fluxes, X and X- are column vectors of 

prompt fission and precursor decay neutron spectra, respectively, and 

~*T (g) Ce") -* 
F (r,t) is a row vector with elements v E f (r,t)., Q(r,t) is a vector 

of group sources. The G)^G matrices D(r,t), R (r,t), R (r,t), and V 1 are 
EL S 

diagonal with elements D ( s^(r,t), Z ( 8^(r,t), E ( g^(r,t), and l/v' 8\ re-
3. S 

spectively (g represents the particular energy group), while &(r,t) is 

(g'-«g) 
a GxG matrix with elements Z &(r,t) (representing the scattering cross 

section from group g1 to g ) . C (r,t) represents the delayed neutron 
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t"Vi 

concentration of the m delayed group. The remaining notation is 

standard. 

Modal Expansion Approximations 

Modal expansion techniques may be characterized as those procedures 

by which the number of independent variables in a problem is reduced by 

means of an expansion in known functions of one or more of the independent 

variables. The general theory of this technique has been discussed in 

, t .. 115,136-138 some detail. 

The time-synthesis modal approximation of the space-energy-time 

dependent neutron flux and precursor concentrations is constructed by as-

—» 
suming a finite expansion of known shape vectors ty (r), multiplied by 

unknown time dependent scalar expansion coefficients a (t). (This is 
n 

30 
called the group collapsed method. ) 

N 

1(r,t) = £ V 0 V r ) + ̂ (r't) ' <B-4> 
n=o 

R(r,t) is the residual vector which is the difference between the true 

flux and the modal approximation. The manner used to reduce the weighted 

1 3fi 
residual to zero will determine the method of approximation. Equation 

(B.4) is substituted into equations (B.2) and (B.3), the former is pre-

-•T -*T -» 
multiplied by a known weighting vector W.(r) and the latter by W.(r)v , 

and both integrated over the volume of the reactor. The Gxl vector trans-

~*T pose W.(r) is an arbitrary weighting vector. When the above procedure of 
Xl 

weighting and integrating is carried out, the following set of equations 

results from the requirement that the weighted residual is zero in an 



integral sense, for N different weighting functions W (r). 

N M 

N 

• I Tin^ an ( t> • A- 0,1...., H, 
n=o 

and 
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I t- Ain^ an ( t ) + ( 1 - p ) F M V t ) ] + I \nCm,4(t) + Q*(t) (B*5) 

n=o m=i 

N 
3 Y F , (t)a (t) - X C (t) = -£r C At) , (B.6) 
m Z_J m, Jin n m m, J6 dt m, J6 n=0 

m - 1,2,..., M; I == 0,1,..., N, 

where 

(B.7) 

AM(t) = J drW^(r) [v.Ĵ (r,t)v - Sfl(r,t) - tg(r,t) + t(r,t)]^(r) , 
reactor 'n 

Fto ( t ) 3 J dtW^(r)X F(r,t)\(r) , 
reactor 

(B.8) 

Fm,M(t) S 

reactor 

drW^(r)^nF(r,t)
Ttn(r) , (B.9) 

in 
J drW^(r) ^ ^ ( r ) , 

reactor 

(B.10) 

C (t) s I drWC(r)x C (r,t) , 
m, J6 J J& m m 

reactor 
(B.ll) 

QA(t) s J drW^(r)Q(r,t) . 
reactor 

(B.12) 
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Equations (B.5) and (B.6) are coupled ordinary differential equa

tions, which are solved for a and. C ... The neutron flux is constructed 

n m, Jo 

from equation (B.4). Although the residue R(r,t) is not zero at every 

point in space and time, its spatially weighted integral is zero. 

The choice of expansion and weighting vectors is an important 

aspect of the application of the modal expansion techniques. Several 

types of modes which have been used will be described. Only eigenvector 
type expansion and weighting vectors will be discussed here. It has been 

1 ^if\ 

observed that, when the expansion vectors are eigenvectors of the time-

dependent diffusion operator and the weighting vectors are the adjoint 

eigenvectors, the first order variation of the Lagrangian functional is 

zero. Before proceeding some operators are defined 

?(r) = - V-lt(r)v + t (r) + t (r) - ?(r) , (B.13) 

§(r) = X FT(r) . (B.14) 

Note that the time dependence of the material properties has been removed, 

Natural Modes 

The eigenvectors of the time-independent neutron and precursor 

balance operator (assuming an exp(a t) time dependence for the flux and 

precursors), referred to as the natural modes, satisfy 
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[(l-P)^(r) - L(r)] 

-»T 

PMF^r) 

Ml 

0 

" - N i 

Vr) 

Cl,n<r> 

CM,n<r> 

(B.15) 

0 0 

c* 
n 

Ci,n ( r ) 

CM > n
( r ) 

—*Ql 

where \|r (r) is a GXl column eivenvector of the group fluxes. Equation 

(B.15) may be written 

3(r)f (r) = «f? (r) 
n n n 

(B.16) 

The natural modes satisfy a useful biorthogonality property 

< §t> K > = ° >k' n̂ 

t 0 ; 

k / n 

k = n , 

(B.17) 

where the adjoint eigenvector satisfies the adjoint equation 

ff(r)|^(r) = c^^(r) , (B.18) 
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and H (r) is the Hermitian adjoint o 

Note that equations (B.2) and (B.3) may be rewritten in a compact 

form (considering time independent material properties but a time dependent 

source) 

3(r)Y(r,t) +Q'(r,t) = f ^Y(r,t) . (B.19) 

Because of the orthogonality property, the time-synthesis equations are 

decoupled 

d < ! n , Q'(r,t) > 
— a'(t) = a a'(t) + V _ A (B.20) 

dt nv n nv < it it > 

when £ (r) is taken as the weighting vector. Here a'(t) is a column vec-
n n 

tor of the a (t) and the C (t) of equations (B.5) and (B.6). The sig-
n m,n 

nificant feature of equation (B.20) is the absence of modal coupling. 

115 This property is referred to as finality. 

Omega Modes 

The eigenvectors of the neutron balance operator (assuming an 

exp(tio t) time dependence for the flux and ignoring delayed neutrons) 

which satisfy the equation 

[̂ (r) - SOOJTV) = u) i^Tir) , (B.21) 
n n 'n 

are known as the omega modes. These vectors are biorthogonal with respect 

to \|i (r) which satisfies the equation 
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[S(D - L(r)]"Tf(r) = cu ^ T V ) . (B.22) 
n 'n 

The biorthogonality relation 

< l^,^"1?" > = 0 ; k ̂  n (B.23) 
k n 

^ 0 ; k = n , 

leads to some simplification in equations (B.5) and (B.6) but does not 

decouple the different modal equations (i.e., does not lead to finality). 

Lambda Modes 

The eigenvectors of the static neutron balance operator are called 

the lambda modes 

L(r)^(r) =^-M(r)'^(r) , (B.24) 
n 

which have the biorthogonality property 

< ^ M l > = 0 ; k ̂  n (B.25) 

+ 0 ; k = n , 

-*X+ where ty, (r) satisfies the equation 
K. 

L*(r)l£+(r) = -'-MH"(r)^;+(r) . (B.26) 
k 

These vectors do not have the property of finality. 
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Discussion 

If the magnitude effects of the delayed neutrons are neglected 

(i.e., use prompt neutron flux behavior only), and it is assumed that the 

material properties of the reactor do not vary with time, equations (B.2) 

and (B.3) may be written as one equation 

[(l-P)S(r) - ?(r)]l(r,t) + Q(r,t) = f"1 ^ 1(r,t) (B.27) 

which is similar to equation (B.19), but without the delayed neutron com

ponents. The eigenvectors of the above neutron balance operator can be 

thought of as the prompt neutron natural modes or the modified omega 

modes of equation (B.21) 

[(l-p)M(r) - 2(r)]^(r) == ̂ " ^ ( r ) . (B.28) 

These modified omega modes have the biorthogonality and finality proper

ties. The significance of this fact is demonstrated in Appendix C where 

it is shown that the Green's response function may be approximated by a 

modal expansion using the modified omega modes. 
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is 

APPENDIX C 

MODAL EXPANSION APPROXIMATION OF THE GREEN'S FUNCTION 

The two-group, space-dependent Green's function used in this work 

21 139 
the solution to the following matrix boundary value problem ' 

[<1-P)8(r) - ?(r)]|(r,r't,) = v'1 ^|(r,r',t) (C.l) 

+ 6(t)?(r-r') , t 5 0 , 

g(boundaries,r',t) = 0 , (C.2) 

*(r,r',t) = 6" , g(r,r*,t) = 0 , t < 0 . (C.3) 

The double arrowed quantities represent 2x2 matrices with M, L, V x, 5, 

and g representing the production, destruction matrix operators and re

ciprocal velocity, Dirac delta and Green's function matrices, respec

tively. The Green's function (also called the impulse response function) 

is defined as the neutron flux at point r and time t resulting from 

one neutron introduced at point r' and time t = 0. 

It is assumed that the Green's function can be approximated by a 

^. . . 127,140 
finite series expansion 
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N 

g(r,r',t) = £ an(tHn(r)"£
T(r') +t(r,r',t) . (C.4) 

n=o 

The arrows represent vector quantities,, and the symbol +T indicates the 

adjoint transpose. The resi dual t(r,r', t) is the difference between the 

102 136 -* -H-T 
finite series expansion and the true solution. ' \|i (r) and ty (r') 

are known expansion and weighting vector functions, respectively, and 

a (t) is an unknown time dependent: scalar (group collapsing is used). 

In this work, two different types of expansion and weighting vector 

functions will be used, the modified omega (really the natural modes for 

equation (C.l)), and the lambda eigenvectors (see Appendix B ) . Using 

these two types of eigenvectors in equation (C.4), substituting into 

equation (C.l), and making use of the respective eigenvalue equations 

yields 

N 
\ a (t)uu V xik (r)̂ r (r') (C.5) 
/ n n Tn Tn / 

L-i 

n=o 

+ [(l-F)^(r) - ?(r) - t 1 ^]^(r,r',t) 

N 

-*"1 7 a»(t)?(r)tIffl(r') + 6(t)t(r-r') 
L-i n Tn n 
n=o 

N 

V * 
Z_, n n 'n 'n 
n=o 

(t) [1 - P - 1/X J^(r)"£TX(r») (C.6) 

+ [(l-p)3(r) - ?(r) - t 1 J^X(r,r',t) 

N 

= t 1 V aX(t)^(r)T,"TA(r») + 6(t)?(r-r») 
I-* n 'n Tn 
n=o 
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The method of weighted residuals consists of arbitrarily choosing a 

1 ̂ 6 
function and requiring the weighted integral of the residual to vanish. 

Multiplying equations (C.5) and (C.6) by the transpose adjoint eigenvec

tors (modified omega and lambda, respectively), integrating over the 

reactor volume and making use of the biorthogonality property, and employ

ing an inner product notation results in the following equations 

a!<t>tt,
m " *!

(t) = W<~iL> *~1C> > m = O ' 1 " - - N <c-7) 
m m m ' m m 

a\t) [i - p - i ] < "£, ̂  > T^TX(r') (C.8) 
m A. m m Tm 

m 
N 

= ) a (t) < \• , V to > to (r1) L-i n m n n 
n=o 

+ 6(t)"?"TX(r') , m = 0,1,..., N 
m 

It should be noted from equations (C.7) and (C.8) that, for the particu

lar neutron balance operator used in this presentation (i.e., neglecting 

delayed neutron time effects), the modified omega modes have the property 

of finality, but the lambda modes do not (see Appendix B). Because of 

this, equation (C.7) is of a simplier form than equation (C.8). Equation 

(C.8) may be cast into the following form 

N 
\ 
mv~' u~ ^ X 

m n=o 

( t ) Cl . p . il£TX(rl) . Y â (t) ^ C<r'> < C " 9 > 

+ 6(t)7^T?l(r1)/ < ~£, §& > , 
m m m 



where J\^ , a quantity analogous to the familiar neutron generation time 
Lmn 

is defined as 

A 
< to , v to > 

__ rm _n 
mn . ~fk rfh*\ . < ^ , Mto > m m 

(CIO) 

Upon some amount of reflection, it may be observed that, if the 

U) V 1 operator is small relative to the L(r) operator in the moderator 
n 

region and small relative to the M(r) - L(r) operator in the fuel region, 

then the lambda modes approximately have the finality property. Assuming 

that the above condition is satisfied, equation (C.9) becomes decoupled 

rl - p - 1/X -
(t) [-

~K m = 6(t)/< ̂ , v*"1^ > , (C.ll) 

mm 

m = 0,1,..., N . 

Equations (C.7) and (C.ll) have the same form and will consequently have 

similar solutions 

0) t 
a (t) = e /< to , V x* > , 
m m 'm 

(C12) 

a*(t) = e 
m 

1-P-l/X 
m 

A mm J < % rit > • 
Tm Tm 

(C.13) 
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APPENDIX D 

DERIVATION OF THE POINT REACTOR COVARIANCE 

Assuming point detectors, equation (3.22) may be rewritten 

T T 
(̂ (r ,r,,T) = 4r [ dr' | dt8 | dtxVW(tx,t8) (D.l) 

1 J T J ** n «J n 

,T r»T 
c 

reactor 0 0 

V" 

det-i 

X I (r.) 
^o(ti-to) 

drH0(r"H0(r') 
^ ( r ^ M r ' ) 

reactor 

_J2 ̂ ( S ) (3) 

X X2v~ £ (r')^ ;(r') 

r 
L 

det-j 
X ^ (r ) ve 

^(ts-to) 

d r ^ r " ) ^ ' ) J 
Jb(r.)*o(r') 

reactor 

Define the detector efficiency as the ratio of detection rate to fission 

rate 

e. = 

I (VWr,) 
det-i 

£ (r^lioCr.) 

det-i 

~^W)—r dr'T^Or-Hodr") >v_/ i dr'*0(r') 
f f 

reactor ^ *- reactor 

(D.2) 
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ST 

L "Vfecv 
e . = 

det-j 

J f^2) r 

I J dr^0(r') 
f reactor 

(D.3) 

where the average thermal neutron fission cross section is 

[ dr'Y(2)(r'H0(r') 
\ _. reactor  
Lf f dr^0(r') 

reactor 

(D.4) 

Next assume that the detector efficiencies are equal (e.=e.=e) , 

then substituting the above definitions into equation (D.l) and perform

ing the spatial integrations 

<?(r4,T.,T) = i 
i J 

d t a dt iVWCti. ta) 
0 0 

(D.5) 

^ ( 2 ) N 2 , 

X X ^ [v I Pl e » o ( t i - t 0 ) e « ) o ( t a - t o ) 

where P i s the r e a c t o r power l eve l 

v 0 O / s 
p s | d r ' ^ 0 ( r ' ) 2_ ( r ' ) ^ 2 ; ( r ' ) ^ 0 ( r ' ) 

r e a c t o r f 

d r ' ^ 0 ( r ' ) 
1 2 

r e a c t o r 

J dr'[^0(r')] : 

r e a c t o r 

•(D.6) 

Computing the time integrations in equation (D.5) 
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v v2 

rf* (r. ,r . ,T) = -8-2- P i J 

v2 

U ) 0 

I 
00 T 2 

V) (2 

W0T 
(JJnT + 1 - e^

0"1 (D.7) 

form 
34 

f fe ) 
The fission rate probability v) may be expressed in another 

Z.Jf 

V ( 2 ) Keff VL. = TT ' 
f p 

(D.8) 

Substitution of equation (D.8) into (D.7) leads to the final form of the 

covariance 

O s ( r . , r . , T ) = P — y ^ J Xjg -— ' e K e f f f „ 1 " ohT + 1 - e ^ ' 

(oo0T): 
(D.9) 
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APPENDIX E 

EXACT SOLUTION OF THE GREEN'S FUNCTION 

IN ONE-DIMENSIONAL REACTOR GEOMETRY 

The two-group, one-dimensional prompt Green's function is the 

solution to the matrix boundary value problem (see Appendix C) 

[(l-3)8(x) - f(x)] g(x,x',t) = 9'1 ^g(x,x»,t) + 6(t)?(x-x») (E.l) 

t ^ 0 , 

(boundaries, x',t) = 0 , 

;(x,x',t) = 0* , t < 0 

(E.2) 

(E.3) 

The matrix terms in equations (E.l) - (E.3) are the one-dimensional 

analogies of those in equations (C.l) - (C.3). 

Explicit forms of the above matrix operators for the model at hand 

are 

M(x) 

ip(2 ) 

v) (x) 
'"f 

0 
(E.4) 



L(x) = 

A D d ) ( x ) |_+ D(I)(X)BJ + ̂  
ox dx 

rC1,2) v<x> 
T . £ (x) + £ (x) 

^(1,2) 

(2) 

• 5 D ( 8 ) « S + D ( 8 ) « « ? + I (X) 

(E.5) 

^ -
1/v 

0 

(i) 

1/v (2) 
(E.6) 

?(x-x') = 
6(x-x') 0" 

(E.7) 

g(x,x',t) = 

g(ljl)(x,x',t) g(l'2)(x,x',t) 

g(2jl)(x,x',t) g(2'2)(x,x',t) 

(E.8) 

It is assumed that only thermal neutrons cause fissions and that the 

fission produces one or more fast neutrons (i.e., no thermal neutrons 

produced). The latter condition dictates the form of equation (E.7). 

Fourier transforming equations (E.l) - (E.3) results in two equa

tions 

[(l-P)M(x) - L(x) - i u) f"1] g<x,x',u>) - f(x-x') , (E.9) 

g (boundaries, x',u)) = 0 , (E.10) 
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together with the usual continuity of flux, and current at the region 

A 

interfaces. The imaginary number V-l is designated as i. 

An alternate form of equations (E.9) and (E.10), not involving the 

139 Dirac delta, which is more amenable to numerical computation is 

[(l-F)S(x) - L(x) - I cu \f_1] g(x,x\u>) = t , x ̂  x' , (E.ll) 

ê O [_8(xl+e>xl>u)) " g(x'-e,x',cu) = (J , (E.12) 

lim f d =*, , , N d =*, , , . 
e-O Lo7 g(x +e'X jU)) " to g(x "e'X '^ 

1/D(l)(x') 

, (E.13) 

e^O [g( x
i n t

+ e' x ,' u ) ) _ g(xint"e,X,s(JD)J = ̂  ' (E-14) 

^ P ( x i n t + e ) 5 ^ i n t + 6 ' x , ' B ) " ̂ (xint"e) £ S^int"8'*' >"»] = * • 

(E.15) 

g(boundaries,x',u)) = 0 , (E.16) 

where D is a diagonal matrix of group diffusion coefficients and x. 

represents the interface locations. Equations (E.ll) - (E.15) establish 

the conditions that the Green's response function flux and current are 

continuous everywhere except at the source location, where the current is 

discontinuous. 

Because no thermal source has been assumed (see equation (E.7)), it 

is necessary to compute only the left-half of the Green's function matrix 
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(equation (E.8)). As a consequence of this fact only the Green's function 

vector 

g(x,x',uj) = 

g(l,l)(x,x',U)) 

g(2':0(x,x',u>) 

(E.17) 

need be computed. With this simplification, equations (E.ll) - (E.16) 

become vector equations. 

The method of solution follows along the lines presented by No-

141 dean which in turn is a modification oi: the critical determinate method 

127 
for finding analytic solutions of the group fluxes. It should be 

noted that, if equations (E.ll) - (E.16) were cast into finite difference 

87 
form, they would be identical to the complex fluxes used by Macdonald 

in his space- and energy-dependent noise work. 

The Green's function response vector has an analytical solution of 

the form, 

^ a (iu)x ̂  
g(x,x',u>) = ^ e A (x1) , j = 1,2,..., NR+1 , (E.18) 

i=i 

where N„ is the number of material regions. a..(uj) is a known or calcu-R ijv 

lated complex (real and imaginary) constant which is dependent on the 

—» 
frequency (a)) and the material properties of the region. A. .(x1) is a 

complex coefficient vector which is dependent on the source location (x') 

and the material properties of the region. It is computed by a matrix 

inversion scheme described below. 

The four a..(uj) constants are the roots of the characteristic 
ij 



equation which result, when equation (E.18) is substituted into equation 

(E.ll) for each region 

D^D^C^C)]* - ft" (D<1>4 +£1" )+I (1 ) + ^ (E.19) 

D ^ [D< 
J L j 

(a)Ba , y ( 2 ) - i«> 
B T + A . + __<«). 

J v 
} [ a <<B)]S 

_ r - i ( s ) r - i ( l , 2 > 

- <x-p> l f . L = o > j = 1 , 2 , . . . , NR+1 . 

Parenthesis superscripts indicate the energy group and the subscripts 

indicate the region. Since equation (E.19) is fourth order, there are 

four independent values of a..(ou) for each region (j) and frequency (ou). 

Because the diffusion equation is coupled in energy, the coeffi

cient vector is partially redundant 

A. .(x1) = A. .(x1) 
ij iJ 

Klj(») 

(E.20) 

where K.. is a known energy coupling terra. 

Substitution of equation (E.18) into the boundary, source, and 

interface equations (E.12) - (E.16) results in a vector equation 

Z(u))A(xf) = 3 . (E.21) 

Z(ou) is a 4»N , block diagonal square matrix containing all the cal

culated interface, source, and boundary conditions (i.e., with elements 
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a. . (u))x. _̂  
like K. .(oo) e J ). A is a 4«N_,- long column vector with one 

IJ R+l 

element equal l/D (x'), arising from the source condition, and the rest 

—» 

of the elements equal to zero. The coefficient vector A(x') was calcu

lated by Gauss forward elimination, back substitution scheme. Special 

care was taken to avoid round off error in this type of procedure. In 

order to minimize this error, row and column pivoting was performed at 

each forward elimination step. With this process finished, all the terms 

necessary to calculate the Green's function response vector from equation 

(E.18) were specified. 
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APPENDIX F 

GENERATION OF THE EIGENVALUES AND EIGENVECTORS 

The two different types of expansion modes used in the modal 

approximation of the coherence function are the modified omega and lambda 

eigenvectors (see Appendix B). The modified omega eigenvectors for a two-

group, one-dimensional reactor model are solutions to the following 

eigenvalue equation with boundary and interface conditions 

[(1-F)9(x) - L(x) - ou^l^Cx) = 0 , (F.l) 

\\ (boundaries) = 0 , (F.2) 

UJ\ r ? ( x . „+«) - ? ( x . „ - s ) l - 0 , (F.3) 
e-O LYn i n t Yn i n t J ' v J 

^ ["Sex. +e) - f f (x. +e) - D*(x. -e) -f- f (x. - e ) l = 0 , (F.4) 
e-K) L i n t dx Tn i n t i n t dx Tn i n t J * v y 

n = 0 , 1 , 2 , . . . , 

where x. represents the interface locations. The matrix operators for 
int 

the model at hand are identical with those in Appendix E. 

The lambda eigenvectors for the same reactor model are solutions 

to the following eigenvalue equation with boundary and interface condi

tions 
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|_L(x) - T±- 3(x) 

n 

(x) = 0 , (F.5) 

•X (boundaries) •= 0 , (F.6) 

lim r-fX/ 
e-0 LVXi 

-*X n 

• «.+e) - ^ (x. -e) int Yn m t = 0 , (F.7) 

eio [*<V*+e> ̂  ?-<*<-+«> m t dx Tn int D(xint"e) dx VXint"e). 
0 , (F.8) 

n = 0,1,2,.. 

The marked similarity of equations (F.l) - (F.4) and (F.5) - (F.8) with 

equations (E.11) -(E.16) should be noted. Because of this similarity 

the method of solution follows along somewhat the same lines as that 

presented in Appendix E. Solution methodology is that of Betancourt. 

The eigenvectors have analytical solutions of the form 

128 

= Y 
/ 

t—> 

i = i 

(JJ 
a. . x 
ljn -»uo 

e A. . 
ijn 

(F.9) 

4 aX 

f(x) . V e^t). Tn L ljn 
i=i 

j = 1,2,..., NR , 

n = 0,1,... , 

(F.10) 

where N is the number of material regions and n is the modal expansion 
R 

number (i.e., n=0 is the fundamental, n=l is the first harmonic, etc.). 

a.. and a.. are known or calculated real or complex constants which 
ljn ljn 

are dependent on the eigenvalues and the material properties of the region, 
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A.. and A.. are unknown coefficient vectors which depend on the eigen-
ljn ljn r b 

values and material properties of the region also and are evaluated by a 

matrix inversion scheme. 

The four a. . and a'. . constants are roots of the characteristic 
ljn ljn 

equations which result when equations (F.9) and (F.10) are substituted 

into (F.l) and (F.5), respectively, for each region. 

D< w . ) « . rD<8>(D<i>B£+y(1,s>
 + y ( 1 )

 + 
J J i j n L J \ J T Z- L 

uu 

v<*> 
( F . l l ) 

/ \ / / \ r^(2 ) °° \"i r-<(2) r - ^ 1 ^ 2 ) 
Dl)WsVI. + - f t )KJn>" - a-?) vy I . - o . 

J J v v f j J 

D<I>D<8>^. >4 - w ^ v + y ( 1 , 8 )
 +y ( 1 )) 

J j i j n L j \ j T L L J 

^ ( 2 ) ^ ( 1 , 2 ) 

D<i>(D<8>B!i.+y(8>)V. >» - - ^ r 1 — = ° 
j \ j T L. )J i j n X 

( F . 1 2 ) 

j = 1 , 2 , 3 , . . . , NR , 

n = 0 , 1 , . . . . 

Superscripts in parentheses indicate the average group and subscripts 

indicate the region. Since equations (F.ll) and (F.12) are fourth order, 

there are four independent values of a„. and a.. for each region (i) 
i j n i j n b X J / 

and each e i g e n v a l u e (cu o r A. ) . 
n n 

Because the diffusion equation is coupled in energy, the coefficient 
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vectors are partially redundant 

K .00 

-•UJ 
AT. 
ijn 

= 
00 
A . 
ijn 

ijn 

1 

ijn 
= A*. 

ijn 

w 
ijn 

1 

(F.13) 

(F.14) 

where the constants K.. and K.. are known coupling terms. 
ijn ijn 

Substitution of equations (F.9) and (F.10) into the boundary and 

interface equations (F.2) - (F.4) and (F,6) - (F.8), respectively, results 

in the following vector equations 

f> -*» A = 0 , n n 

£ A* = o , 
n n 

n = 0,1,... . 

(F.15) 

(F.16) 

£ and Z are 4-N block diagonal square matrices containing all the 
n n K 

calculated interface and boundary conditions (i.e., with elements like 

(JO 
a x . , 

T,oo iin intv -il) , ̂ A . XT n n . _ «...._ 
K . e J ). A and A are 4«N long column vectors of coefficient 
ijn n n R 
elements A. . and A. . . Since equations (F.15) and (F.16) are homogene-

ljn ijn 
—-ton ~*\ 

ous, the only non-trival solutions for A and A result when the deter-
' n n 

mi nants of T and Z are zero 

1^1=°. 
tX | = 0 , n = 0 ,1,. .. . 

(F.17) 

(F.18) 
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In the standard example given in Lamarsh, K „,. = Xn is set 
eff u 

equal to unity and the reactor width is varied until the critical deter

minant is found (i.e., when equation (F.18) is satisfied for n = 0). By 

proceeding in this manner the critical, dimensions of the reactor are 

found. The approach in this work was different. Here, reactor dimensions 

and material were known, and it was desired to find the eigenvalues which 

produce the critical determinates of equations (F.17) and (F.18). The 

real eigenvalue spectra ((0o ,to1 ,. . . ; X0,Xi,«--) were calculated by varying 
ou and X from their initial values for each n until equations (F.17) 
n n 

and (F.18), respectively, were satisfied (e.g., the Regula False method 

142 
). Upon calculation of each eigenvalue, a Gauss forward elimination 

and back substitution process was carried out on equations (F.15) and 

(F.16) to find the coefficient vectors. Special care was taken to avoid 

round off error in this type of procedure. In order to minimize this 

error, row and column pivoting was performed at each forward elimination 

step, using Univac-1108 double precision. With this process completed, 

all the terms necessary to calculate the modified omega eigenvector (equa

tion (F.9))and the lambda eigenvector (equation (F.10)) were specified. 
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APPENDIX G 

FAST FOURIER TRANSFORM 

The Fast Fourier Transform (FFT) is a general name given to three 

143 144 
different, yet conceptually identical computation schemes. ' Anyone 

of them may be employed to quickly calculate the complex discrete Fourier 

transform (DFT) or its inverse (IDFT)., The choice of algorithm is depend

ent on several factors. However, from the standpoints of programming 

144 

ease, efficiency, and space required for calculations, the Sande ver

sion is probably the best selection. 

Application of the FFT to the computation of spectral densities, 

145-147 covariances, and related quantities has been widely discussed. 

Nevertheless, the method seems to have found only limited use among 

100 10/ 1/Q 

nuclear investigators. ' This may be attributed to the fact that 

articles on the subject are often generalized to the point of being am

biguous to an initiate of the subject. 

Discrete Time and Frequency Relationships 

The N-point discrete Fourier transform (DFT) is defined by 

N-l 

^ = N y Xj W" J K ' K = 0,1,..., N-l , (G.l) 

where x. is a sample of the process "x" at time t = jAt, At is a constant 

* 121 
A summary of a talk given by J. M. Reynolds. 
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-l 
2TT 

sampling interval, W = e , i = V^T, and a is the K Fourier coef-
K. 

ficient at frequency f = K/NAt. 

Denoting complex conjugation by "*", one can easily show that, if 

the x.'s are real, then 
J 

°k = °S-K K = 1,2,..., N/2-1 . (G.2) 

This is an indirect manifestation of Nyquist's theorem which states that 

information at frequencies higher than f == (N/2)/NAt = l/2At can never be 

resolved from regularly sampled data. If higher frequencies are present 

in the original data, these are folded or aliased back into the interval 

[0 = f < l/2At]. The effects of aliasing can never be extracted after 

sampling by digital filtration. Aliasing can only be removed by faster 

sampling rates or, where applicable, analog filtration of high frequencies 

before sampling (digitizations). 

The Fourier coefficients of equation (G.1) do not realize the 

fullest amount of information available from the N data points, x., If 
J 

(a) 
one forms a new 2N-point record, x. , which has N zeros appended to the 
original data, the following 2N-point DFT may be taken 

1 2N-1 _ jK 

A<a) = 2N Y x<a) W 2 I *? 
J=° 

K = 0,1,..., 2N-1 . (G.3) 

Once again, if the x.'s are real, one has 

A(a) - A(a)* 
*K " 2N-K ' K = 1,2,..., N-l . (G.4) 
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(a) 
As before, the new Fourier coefficients, A^ , contain unique information 

over the interval [o = f < l/2At]. However, they occur at frequencies 

f = K/2NAt which is half the frequency spacing of the QL.' S. 

147 
Singleton has shown that two real N-point records x. and y. 

J J 

(possibly sampled 'input and output" processes) can be transformed with a 

(a) 
single 2N-point DFT. A new complex data record z; is formed which has 
(a) (a) 

x; as its real part and y; as the complex part. The result of the 
(a) 

DFT is a set of Fourier coefficients C ' from which one may easily 
K. 

(a) (a) (a) 

separate the A^ ' and B^ (the Fourier coefficients for y; ) by utiliz

ing a symmetry of the type found in equations (G.2) or (G.4). The same 
(a) 

principle can be used to obtain the A.: from an N-point DFT if the even 
(a) 

points of x; are in the real part of the data vector and the odd points 
are in the imaginary part. Simple separation and synthesis formulas are 

(a) 
used after the DFT to reconstruct the AJL . 

The zero-appended cross-periodogram is defined by 

CP 
(a) _ A(a)* (a) 
K = A ^ K 

K = 0,1,..., 2N-1 , (G.5) 

If the x and y records had zero average, the forward reduced-bias cross-

covariance estimate is 

N-1-J& 

CC (f) N-J& 1 X j yj+Jfc ' 
I = 0,1,..., N-l . (G.6) 

=o 

and the reduced-bias reverse cross-covariance estimate is 
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N-1-J& 
fr-\ 1 

cc 
XJ JN-J6 

j=0 

P =WTi I W j • * = 0 , 1 , . . . , N - 1 . (G.7) 

Defining 

2N-1 j_& 
V „ (a) 2 

= I CP_ W 
CCi = Z CPK W ' 4 = 0 , 1 , . . . , 2 N - 1 , (G.8) 

145 i t can then be shown t h a t 

C C i f ) = £ i CCi> C C i r ) = i S c c 2N-i - * = 1 - 2 — N"X • <G'9> 

CC0
(f) = CC0

(r) = 2cc0 , ccN = 0 . 

Equation (G.8) is the inverse DFT (IDFT) of the zero-appended cross-

periodogram. Equations (G.6) - (G.9) then relate that the zero-appended 

cross-periodogram, and an arrangement of the forward and reverse reduced-

bias cross-covariances forms a DFT-pair relationship. This "arrangement" 

149 shows that the zero-appended cross-periodogram is actually the raw 

cross-power-spectral-density (CPSD) estimate as tempered by a Bartlett 

spectral window. 

For analysis of noise-like data, it is useful to smooth consecu

tive raw CPSD estimates so that averages over bands of frequencies can be 

formed. Statistical accuracy, and one's ability to observe qualitative 

effects are thereby enhanced. The smoothed estimate is defined by 

(h+l)g-l 
C^! g,h

=i I CPK ' h = 0,l,...,N/g-l . (G.10) 
K=hg 
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(a) 
The first subscript of CP^ , is the window type (1 for Bartlett), the 

second is the number of raw estimates in the smoothed band, and the last 

is the frequency index of the smoothed band. 

Windows other than the Bartlett can be achieved by forming certain 

linear combinations of Fourier coefficients before the multiplication in 

quadrature. This produces another type of raw CPSD estimate which is 

145 sometimes called a zero-appended, modified cross-periodogram. The more 

sophisticated windows are sharper than the Bartlett. That is, they con

tain less leakage energy from adjacent bands. However, when smoothing is 

conducted, sharper windows give preferential weighting to certain fre

quencies. The Bartlett suffers less from this problem. Also, the frac

tion of leakage energy to smoothed band energy becomes competitive with 

sharper windows when the number of raw estimates in a band is large. For 

the above reason and also for the sake of computational economy, it was 

decided to keep the Bartlett window. 

When a small assembly (not. ensemble) of data records from some 

stochastic process or processes is available, common sense dictates that 

it is desirable to use as much data as possible to enhance statistical 

accuracy. For an assembly of M pairs of N-point real data records, the 

121 assembly-averaged zero-appended cross-periodogram is 

M 

^ K 0 = M I CPg\K ' K=0,1,..., N-l , (G.ll) 
g=i 

where CP v is CP^ for the g pair of data records. Welch has 

shown equation (G.ll) to be a viable CPSD estimator. 
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The assembly-averaged forward cross-covariance is defined by 

121 
Reynolds as 

M 

^ l f ) = M I CCg\l ' i = 0,l,..., N-1 , (G.12) 
g=i 

where CC g is CC^ for the g pair of data records. A similar equation 

(r) 
also holds for CC^ '. 

Since the IDFT (or DFT) is independent of g summation indices, it 

is easily shown through equation (G.8) that 

2N-1 Ji 

cc^ = Y C P ^ W 2 ' A = 0,1, — , 2N-1 . (G.13) 
K=o 

Equation (G.9) can be used to obtain both CC^ and CC^ from equation 

—(a) 
(G.13). Since CP.; may be shown to be a good estimator, it is hypothe-

sized that assemblage-averaged covariances are of similar quality, due to 

the transform-pair relationship of equation (G.13). 

Zero-appended auto-periodograms are easily obtained by simply 

squaring Fourier coefficients from single data records in quadrature. 

IDFT's may be applied to these to produce auto-covariance estimates. 

Assembly-averaging and smoothing can be handled in exactly the same manner 

as is used for twin record analyses. 

After assembly averaging of the raw zero-appended auto- and cross-

periodograms, smoothing may be conducted to give auto-power-spectral-

density (APSD) and CPSD estimates. The results are employed in the calcu

lation of effective assembly-averaged coherence and transfer function gain 

and phase estimates. The usual formulas are applied here. 
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The assembly-averaged zero-appended auto- and cross-periodograms 

can finally be used for computation of assembly-averaged auto- and cross-

covariance estimates by application of two IDFT's. One IDFT is needed for 

the assembly-averaged cross-covariance result, the other for the two sets 

of assembly-averaged auto-covariance estimates. This latter fact is true 

because, by definition, zero-appended auto-periodograms and assembly-

averaged auto-covariance estimates are both real. Therefore, one zero-

appended auto-periodogram is inserted into the real portion of a complex 

data array, and the other is put in the imaginary part. A single IDFT is 

applied. The real result is the set of assembly-averaged auto-covariance 

estimates from one record while the imaginary result is the set of 

assembly-averaged auto-covariances from the other record. 

The best feature of all of this analysis is that it is the potential 

for great computational speed. Only M DFT's and two IDFT's are needed to 

compute so many time and frequency domain statistical estimators from the 

assembly of M pairs of data records. 

Digital Computations and the FFT 

There is little here to state concerning general analysis that has 

not already'been mentioned. Figure 63 is a flowchart encapsulation of the 

facts which have just been presented. However, one point has not been 

treated. This is that the average extraction of the first flowchart block 

is very important from two standpoints. The first is that the step must 

be taken because of the very definition of auto- or cross-covariances. 

The second reason is that a very strong zero frequency component would 

cause near-zero frequency distortion due to inescapable spectral window 
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(BEGIN) 

^ 

READ FIRST RECORD 
FROM DATA TAPE 7 

COMPUTE AND EXTRACT 
AVERAGES, APPEND 
ZEROES, SET UP FOR 
FFT 

FORWARD FFT 

I 

READ NEXT DATA TAPE 
RECORD IN PARALLEL 
WITH COMPUTATIONS, 

SEPERATE FOURIER COEFS., 
SQUARE AND CROSS-
MULTIPLY IN QUADRATURE, 
SUM THE RESULTS WITH 
THOSE ALREADY IN AN 
AVERAGING AREA 

TWO INVERSE FFTS TO 
RESULTS IN AVERAGING 
AREA TO OBTAIN 
COVARIANCE ESTIMATES 

I 
SMOOTH RESULTS IN AVER
AGING AREA TO OBTAIN 
APSD AND CPSD ESTIMATES, 
COMPUTE COHERENCE AND 
TRANSFER FUNCTIONS, GAIN 
AND PHASE ESTIMATES 

PRINT 
RESULTS 

Figure 63. Fast Fourier Transform Flowchart of the KAPL Data 
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leakage. The stripping of averages performs like a high-pass filter with 

infinitely sharp DC cut-off. 

143 144 
The Cooley-Tukey and Sande radix-two FFT's both require an 

operation which places the data in reverse binary order. This occurs 

after transformation for the latter and before transformation for the 

former algorithm. 

16C. + 8C_ + 4C. + 2C. + Cn - 16CA + 8C. + 4C. + 2C0 + C. (G.14) 
4 3 2 1 0 0 1 2 3 4 

Natural Binary Order Reverse Binary Order 

C = 0,1 , j = 0,1,..., 4 . 

Equation (G.14) demonstrates the connotation of reverse binary 

order. It simply means that the coefficient positions for any index are 

reversed from their natural positions., For example, consider reverse 

constructs for the numbers between zero and thirty-one. Equation (G.14) 

shows that the reverse construct of zero is zero, the reverse construct 

of twenty-four is three, etc. 

Conventionally, one forms reverse constructs by successively right 

shifting bits (C.) out of the natural index, multiplying these by in

creasing powers of two, and summing the results. The reverse construct 

is tested to find if it is less than or equal to the natural index to 

p 
prevent redundant data swapping. If N = 2 , P multiply-divide-add-

modulus operations are required per operation. This takes about 4.2 

seconds of Univac-1108 time for N = 214 == 16384 points. This is just 

about equal to the time required by the FFT. A better approach is con-

p/2 (P+l)/2 
struct a table of 2 ' reverse constructs when P is even or 2 ' 
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reverse constructs for P odd. For the even case, one looks up the reverse 

constructs for the right and left halves of the overall natural construct 

and interchanges the position of these values. This produces the overall 

reverse construct which, of course, is tested to prevent redundant data 

swapping. For the odd power case, consider that the right half of the 

overall natural construct is larger (contains (P+l)/2 bits). The right 

half reverse construct is found directly from the table and multiplied 

(P-D/2 
by 2V ' . The left (smaller) half natural construct is multiplied by 

two so that its reverse construct can be found in the table. This re

verse construct is found and added to the previous reverse construct 

product. The overall reverse construct then results and is tested to 

prevent redundant data swapping. Only one set of multiply-divide-add-

modulus operations is now required per reverse construct. 

Another economy can be gained by noting that all even values in 

the last N/2 natural constructs have reverse constructs which would pro

duce redundant data swaps. Observation of this and use of table-driven 

reverse construct generation speeds up data re-ordering by nearly a 

factor of ten for large powers of two. For example, re-ordering of 16384 

data values on the Univac-1108 by this method requires only about 0.5 

second. 

It should be noted that table-driven data re-ordering, "brute-

force" re-ordering, or any of the FFT algorithms can be programmed effi

ciently in a source language such as FORTRAN IV. However, it may be ad

visable to use an assembler in the event that the particular compiler is 

not well optimized. 
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APPENDIX H 

PHASE ANGLE INVESTIGATION 

The method of investigation presented in this appendix represents 

19 

an extension and modification of the work of Ackermann et al. The pur

pose of this appendix is to indicate why the Ackermann method (for infer

ring the thermal neutron lifetime from measurement of the fast-thermal 

phase angle) holds for point reactor models, but breaks down when space 

dependence is included. 

Using the same terminology as in Appendix E, equation (E.9) may be 

written 

(2 ) 

-[-ijy + L(l'1)(x)jg(l'l)(x,x',0)) + (1-0) V^ (x)g(2'l)(x,x',cu) (H. 1) 

= 6(x-x") , 

and 

£ 1 , a (x)g(l'l)(x,x',U)) - [-^y+ L(a'a)(x)]g(8'l)(x,x«,U)) (H.2) 

= o, 

with the appropriate boundary conditions,. Making use of the modal expan

sion approximation of the Green's function (see Appendix C) , the fast and 

thermal complex, frequency dependent, local leakages may be defined 
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Lk ( 1 ) (x , X ' ,U) ) = [ - ^ D ( 1 ) ( x ) 2. + D ( 1 ) ( x ) ^ ] g ( 1 ' 1 ) ( x > x ,
> < D ) (H.3) 

N + ( l ) + (x') 
= y —^_r__ r ± D(o(x) ± +(x)(x) 

n4 ( » > x l , M > L dx dx n n n 

+ D ( 1 )(x)B^!lin
( 1 )(x) N = 0 , 1 , 2 , . . . , 

Lk ( 2 ) (x ,x ' , u>) = [ - 2. D
( 2 ) ( x ) | ~ + D ( 2 ) ( x ) B 2 ] g ( 2 ' 1 ) ( x , x ' , U ) ) (H.4) 

N ^ ( 1 ) + (x«) 

= y is _ r ± D(2>(x) A ,oo ( x ) 
n = 0 (a)n-ia)) < f n , V 1 t n > 

+ D ( 2 ) ( x ) B ^ n
( 2 ) ( x ) ] , N = 0 , 1 , 2 , . . . . 

Both the fast and thermal local leakages may be computed when the appro

priate eigenfunctions are known. The leakages are complicated functions 

of the (fast) stochastic source distribution, local effects, and in gen

eral, are complex (real and imaginary parts). However, for frequencies 

U) < U)0 (low frequency region), the leakage functions will almost be com

pletely real. This fact becomes very important later in this appendix. 

Using the leakage functions in equations (H.1) and (H.2) 
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(1,2) ^(l) 

"["1TT+I ' (X) + I ' <x>]g(l,l)<x.x,.tt,> - Lk(l)(x,x',(D) (H.5) 

and 
0,2) 

- V ( 2 ) (2 1) 
+ (l-{3) v) (x)g^'i;(x,x',U)) = 6(x-x«) , ut 

,-(2) 
y ' (x)g(l'l)(x,x',u;) -[-^|-+y (x)]g(2'1)(x,x',u;) (H.6) 

- Lk^^xV.U)) == 0 . 

Assuming that u)/v is small relative to the other terms and solving 

for the Green's functions in equations (H.5) and (H.6) 

-00 
g ( l ' 1 } (x,x« ,w) = { 6 ( x - x » ) | J (x) + - ^ j (H.7) 

- v ( 2 ) n rv (2) ?«, ^ (^ 
+ ( l -P) v)_ ( x ) L k U ; ( x , x ' , ( D ) + [2 (x) + ^ | r - j L k ^ ; ( x , x ' , u ; ) 

f V 

frrC2) v
( 1 ) T i» V(2) 1 

and 

r ^ * 2 ) - v^2> i 
+ y (x)(i-p) v2 (x)}, 

(2i) r v ( 1 ' 2 ) v ( l j 2 ) M 
g^ ' i ; ( x , x , , t t ) ) = ^ ( x - x 1 ) y (x) + y ( x ) L k U ; ( x , x t , ( D ) (H.8) 

c2^ rv ( 1 '2 ) v ( 1 ) ~ i / rv ( l ' 2 ) v ( 1 ) 1 

Lk^2;(x,x',w)[2 w+L <x)Jj/ll2 ( x ) + 2 (x )J 
' (continued) 
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r iu) v ( 2 ) 1 v ( 1 , a ) - v ( 2 ) i 
V f 

Using the definition of the CPSD 

(2) 
i(k,X)(x4,x,,u>) = f dx'g^'^Cx. ,xf cuiy (x')§(2)(x') (H.9) 

1 , Z__p 1 J 
reactor 

X ga>1)(x.,x",a)) , 

and equations (H.7) and (H.8) 

• ( 3 ) 
ry (x.) - -T^TIA (X.) + B (X.) 
\_L i ( 2 ) J cu i 7 cov i 7 

and 

>(1 ' 2 ) (x . , x . ,cu) = r - ^ , (H. 10) 
1 x D E N U , 2 / ( x . , x . ) 

CJD V 1 ' X 

/ P ON 6 ( x . , x . ) C ( x . ) + D ( x . ) + E ( x . ) + F ( x . , x . ) 
(x x a)) = J p—— J J~ ( H . l l ) 

J D E N C 8 , 8 ; ( x . , x . ) 
co v i ' J 

6(x.,x.) is the Kronecker Delta, and C(x.) is a real function which is de

pendent on the thermal flux at x.. The functions A (x.), B (x.), D (x.), 

E (x.), and F (x.,x.) are complicated functions of the local leakage and 
mx j " ID i' j; r ° 

source distribution. They are complex in general, but the imaginary com

ponent is much smaller than the real portion for frequencies, cu < cu0. 

DEN ' (x.,x.) is always real and a weak function of frequency (for 

^ 2 ) (3) 

uo < > (x.)v ), but not a function of the local leakage. 
(2 2") 

DEN ' ;(x.,x.) is also not a function of the local leakage. It should 
co i' y 
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also be mentioned that, for contiguous or symmetric detector locations, 

the numerator in equation (H.ll) is pure real (at all frequencies) and, 

therefore, the CPSD will exhibit zero phase at all frequencies. 

19 For the point reactor model which Ackermann assumed (in which 

case local leakages are zero) A (x.) and B (x.) are pure real functions. & OD i a) I r 

In this case, Ackermann showed 

-tan [phase of l^1,2^(x. ,x. ,(u)J = (uX , (H.12) 

-1 (s)V(2) 

which is easily obtained from equation (H.10) for I = v ) , . , which 
i 

is the thermal neutron lifetime. 
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netics ," R£§Jltoĵ _Cen_txun̂  301 
(1968). 

65. V. G. Zolotukhin, A. Mogil' ner, "Distribution of the Counting of 
a Neutron Detector Placed in a Reactor," Atomnaya Energiya, 10, 
379 (1961). 

66. V. G. Zolotukhin, A. Mogil ner, "Distribution of the Number of 
Counts on a Neutron Detector Placed in a Reactor," Atomnaya Ener
giya, 15, 11 (1963). 

67. J. B. Dragt, "Threefold Correlations and Third Order Moments in 
Reactor Noise," Nukleonik, 1_0, 7 (1967). 

68. A. Furuhashi, "Analyzing Neutron Count Trios into Two- and Three-
Forked Components," Journal of Nuclear Science and Technology, 6̂  
156 (1969). 

69. H. Borgwaldt, "Einheitliche Theories der Korrelations-Experimente 
in Nulleistungsreaktoren," Karlsruhe Institute for Nuclear Research 
Report-4/66-5 (1966). 

70. M. E. Congdon and R. W. Albrecht, "An Adjoint-Weighting in Neutron 
Fluctuation Analysis with Emphasis on an Effective Detector Effi
ciency," Nucl. Sci. Eng., 39, 207 (1970). 



193 

71. B. F. Zolotar, "Monte Carlo Analysis of Nuclear Reactor Fluctuation 
Models," Nucl. Sci. Eng., 3jL_, 282 (1968). 

72. C. E. Cohn, "A Simplified Theory of Pile Noise," Nucl. Sci. Eng., 
2, 472 (1960). 

73. C. E. Cohn, "Reflected-Reactor Kinetics," Nucl. Sci. Eng., 13, 12 
(1962). 

74. W. B. Davenport and W. L. Root, An Introduction to the Theory of 
Random Signals and Noises, McGraw-Hill, New York, N. Y., 1958. 

75. J. L. Doob, "The Brownian Movement and Stochastic Equations," 
Annals of Mathematics, 43, 351 (1942). 

76. M. N. Moore, "The Determination of Reactor Transfer Functions from 
Measurements at Steady Operation," Nucl. Sci. Eng., 3̂  387 (1958) 
and Nucl. Sci. Eng., 4, 134 (1958). 

77. M. N. Moore, "The Power Noise Transfer Function of a Reactor," 
Nucl. Sci. Eng. , (5, 448 (1959). 

78. M. N. Moore, "Noise Field of a Reactor," in Noise Analysis in Nuclear 
Systems, R. Uhrig, Editor, Univ. of Fla. Press (1964). 

79. J. R. Sheff, The Cross Correlation, of the Neutron Density Fluctua
tions at Two Points in a Nuclear Reactor, Ph.D. Thesis, Univ. of 
Washington, 1965. 

80. J. R. Sheff and R. W. Albrecht, "Space Dependence of the Reactor-
Noise Spectral-Density Function," in Neutron Dynamics and Control, 
CONF-650413 (1966). 

81. J. R. Sheff, "Space-Dependent Cross Spectral Density in a Bare 
Cube," in Neutron Noise, Waves, and Pulse Propagation, CONF-660206, 
623 (1967). 

82. J. R.. Sheff and R. W. Albrecht, "The Space Dependence of Reactor 
Noise I and II," Nucl. Sci. Eng. , 24, 246 and 2.6, 207 (1966). 

83. H. S. Cars low and J. C. Jaeger, Conduction of Heat in Solids, Oxford 
Press, London, p. 373, 1959. 

84. J. R. Sheff, "Three-Energy-Group Space-Dependent Spectral Densi
ties," Trans. Am. Nucl. Soc., 12, 709 (1969). 

85. A. Z. Akcazu and R. K. Osborn, "Application of Langevin's Technique 
to Space- and Energy-Dependent Noise Analysis," Nucl. Sci. Eng., 
26, 13 (1966). 



194 

86. R. J. Johnson and R. N. Macdonald, "Calculation of Space-Dependent 
Effects in Pile-Oscillator and Reactor-Noise Measurements,1'1 in 
Neutron Noise, Waves, and Pulse Propagation, CONF-660206, 649 (1967). 

87. R. N. Macdonald, A Method for the Analysis of Modulated Neutron Ex
periments , Ph.D. Thesis, Georgia Institute of Technology, Atlanta 
(1966). 

88. C. E. Cohn, R. J. Johnson, and R. N. Macdonald, "Calculating Space-
Dependent Reactor Transfer Functions Using Static Techniques," 
Nucl. Sci. Eng., 26, 198 (1966). 

89. T. B. Fowler, M. L. Tobias, and D. R. Vondy, "EXTERMINATOR-II: A 
Fortran IV Code for Solving Multigroup Neutron Diffusion Equations 
in Two Dimensions," Oak Ridge National Lab.-4078 (1967). 

90. M. Otsuka and T. Iijima, "Space-Dependent Formula for Rossi-a 
Measurements," Nukleonik, 7_, 488 (1965). 

91. M. Otsuka and K. Saito, "Space-Time Correlations in Neutron Distri
butions in a Multiplying Medium," J. Nucl. Sci. Techno 1., 2., 191 
(1965). 

92. M. Otsuka and K. Saito, "Neutron Fluctuations in a Multi-Point Re-
actor," J. Nucl. Sci. Techno1., 2, 40 (1965). 

93. M. Otsuka and K. Saito, "Neutron Fluctuations in a Multiplying 
Medium," Nucl. Sci. Eng., 24, 412 (1966). 

94. S. Ukai, S. Takeda, and S. Yamada, "A Generalized Analysis of 
Rossi-q Experiment," J. Nucl. Sci. Techno!., 2̂» 355 (1965). 

95. A. Furuhashi and G. Inaba, "Eine Korrektur der Formel fur die 
Rossi-q Methode," J. Nucl. Sci.. Technol., 2> 3 0 5 (1966). 

96. R. K. Osborn and S. Yip, "Physical Theory of Neutron Noise in Re
actors and Reactorlike Systems," in Noise Analysis in Nuclear Sys
tems, R. Uhrig, Editor, Univ. of Fla. Press, 1 (1964). 

97. M. Natelson and R. K. Osborn, "Kinetic Equations for Neutron Dis
tributions ," J^NucJ^JSn^, Parts A/B, 1J9, 619 (1965). 

98. M. Natelson, R. K. Osborn, and F. Shure, "Recent Developments in 
the Analysis of Neutron-Noise Experiments," in Neutron Noise, Waves, 
and Pulse Propagation, CONF-660206, 669 (1967). 

99. R. K. Osborn and A. Z. Akcazu, "Some 'Theorems' on Neutron Fluctu
ations and Fluctuation Spectra," in Neutron Dynamics and Control, 
CONF-650413, 531 (1966). 



195 

100. M. Natelson, R. K. Osborn, and F. Shure, "Space and Energy Effects 
in Reactor Fluctuation Experiments.," J. Nuc 1. En. , Parts A/B, 20, 
557 (1966). 

101. R. W. Albrecht and W. Seifritz, "The Information of Neutron Fluc
tuations," Nucl. Sci. Eng., 41, 417 (1970). 

102. E. L. Fuller and D. A. Meneley, "Weighted-Residual Methods in 
Space-Dependent Reactor Dynamics," Nucl. Sci. Eng., 40, 206 (1970). 

103. D. D. Ebert and L. J. Gallaher, "An Analytic Solution of the Space-
Dependent Coherence Function," Trans. Am. Nucl. Soc, 14, 195 
(1971). 

104. D. H. Lennox, B. I. Spinrad, W. N„ Kelber, R. H. Armstrong, and 
W. L. Kolb, "The Argonaut Reactor:: A Generalized Reactor Facility 
for Nuclear Technology Training and Research," 2nd U. N. Intern, 
Conf. Peaceful Uses At. En., Kl, 265 (1958). 

105. D. R. Back, et al., "Comparison of Knolls Atomic Power Laboratory 
Clean Critical and Subcritical Experiments with Calculations," in 
Exponential and Critical Experiments, Vol. II, p. 391, IAEA, 
Vienna (1964). 

106. M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal 
Reactors," Nucl. Sci. Eng., 32., 319 (1968). 

107. G. Kussmaul, "Theoretishe und Experimentelle Untersuchungen zum 
Zweipunktreaktor," Institut fur Neutronenphysik und Reaktortechnik, 
Kernforschungszentrum Karlsruhe, Report INR-4/68-17 (Feb. 1968). 

108. D. J. McGoff, "FORM: A Fourier Transfered Fast Spectrum Code for 
the IBM-709," North American Aviation-SR-MEMO-5766 (1960). 

109. R. Shudde and J. Dyer, "TEMPEST-II," NAA-AMTD-111 (1961). 

110. F. N. McDonnell and M. J. Harris, "Pulsed-Source Experiments in a 
Reflected Coupled-Core Reactor," Trans. Am. Nucl. Soc, 14, 864 
(1971). 

111. J. R. Penland, N. J. Ackermann, Jr., and S. H. Hanauer, "Space-
and Energy-Dependent Reactor Noise Measurements," Trans. Am. Nucl. 
Soc, 14, 854 (1971). 

112. N. J. Ackermann, J. R. Penland, and S. H. Hanauer, "A Space- and 
Energy-Dependent, Four-Nodal Point Neutron Fluctuation Theory," 
Trans. Am. Nucl. Soc., 14, 854 (1971). 

113. J. C. Robinson and M. L. Alexander, "Calculation of Reactor Noise 
Spectra Using a Space-Energy-Dependent Model: Comparison with 
Experiment," Trans. Am. Nucl. Soc, 14, 856 (1971). 



196 

114. D. D. Ebert, J. D. Clement, and W. M. Stacey, Jr., "Coherence Func
tion Analysis in Coupled Cores Using Modal Expansions," Trans. Am. 
Nucl. Soc, 14, 858 (1971). 

115. S. Kaplan, "The Property of Finality and the Analysis of Problems 
in Reactor Space-Time Kinetics by Various Modal Expansions," Nucl. 
Sci. Eng., £, 357 (1961). 

116. R. A. Danofsky, "Cross Power Spectral Measurements in the Two-Core 
University Training Reactor-10," in Noise Analysis in Nuclear 
Systems, R. Uhrig, Editor, Univ. of Fla. Press, p. 229 (1964). 

117. C. D. Kylstra and R„ E. Uhrig, "Measurement of the Spatially De
pendent Transfer Function," in Noise Analysis in Nuclear Systems, 
R. Uhrig, Editor, Univ. of Fla. Press, p. 285 (1964). 

118. J. A. Burke, Personal Communications, Knolls Atomic Power Labora
tory, (Dec. 1970). 

119. Programmers Reference Manual for the UNIVAC1108-EXEC8 Executive 
System, Rich Electronic Computer Center, Georgia Institute of 
Technology, Atlanta, Ga. (April. 1., 1969). 

120. J. M. Reynolds, Personal Communications, Atlanta (Nov. 1970). 

121. J. M. Reynolds and J. D. Clement, "Efficient Digital Reactor Noise 
Analysis Through Averaging FFT-Computed Periodograms," Trans. Am. 
Nucl. Soc, 14, 192 (1971). 

122. R. C. Kryter, "On-Line Reactor Noise Spectrum Computation with a 
Fast Fourier Transform Algorithm," Trans. Am. Nucl. Soc, 12, 291 
(1969). 

123. J. C. Robinson, "Analytical Determination of the Neutron Flux-to-
Pressure Frequency Response: Application to the Molten-Salt Reactor 
Experiment," Nucl. Sci. Eng., 42, 382 (1970). 

124. J. C.-Robinson and D. N. Fry, '"Experimental Neutron Flux-to-Pressure 
Frequency Response for the Molten-Salt Reactor Experiment: Deter
mination of Void Fraction in Fuel Salt," Nucl. Sci. Eng., 42, 
397 (1970). 

125. T. Gozani, "The Concept of Reactivity and its Application to Ki
netic Measurements," Nukleonik, .5, 55 (1963). 

126. L. R. Foulke, A Modal Expansion Technique for Space-Time Reactor 
Kinetics, Ph.D. Thesis, MIT (1966), 

127. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, Addison-
Wesley, Reading, Mass., p. 554, 1966. 



197 

128. J. M. Betancourt, Analysis of Coupled Core Reactors Using the 
Natural Mode Approximation, Ph.D. Thesis, Iowa State Univ. (1968). 

129. E. L. Wachspress, Iterative Solution of Elliptic Systems, Prentice-
Hall, Inc., Englewood Cliffs, N. J., p. 20, 1966, 

130. R. L. Ewen, "MULE - A Fortran Program for the Calculation of Three 
Types of Overtone Modes," WAPD-TM-369, October 1963. 

131. D. R. Edwards and K. F. Hansen, "The Stabilized March Technique 
Applied to the Diffusion Equation," Nucl. Sci. Eng., 25, 58 (1966). 

132. R. A. Danofsky, "Observation of Coupled-Core Characteristics by 
Noise-Measurement Techniques," Trans. Am. Nucl. Soc, 14, 855 
(1971). 

133. A. F. Henery and A. V. Volta, "WIGL2 - A Program for the Solution 
of the One-Dimensional, Two-Group, Space-Time Diffusion Equations 
Accounting for Temperature, Xenon and Control Feedback," 
WAPD-TM-532 (Oct. 1965). 

134. J. B. Yasinsky, M. Natelson, and L„ A. Hageman, "TWIGL - A Program 
to Solve the Two-Dimensional, Two-Group, Space-Time Neutron Dif
fusion Equations with Temperature Feedback," WAPD-TM-743 (Feb. 
1968). 

135. N. J. Ackermann, Jr., A. R. Buhl, and R. C. Kryter, "An Analytical 
and Experimental.Evaluation of Subcriticality Measurements by the 
Polarity Spectral Coherence Method.," Trans. Am. Nucl. Soc, 14, 
44 (1971). 

136. W. M. Stacey, Jr., Modal Approximations; Theory and an Applica
tion to Reactor Physics, MIT Press,, Cambridge, Mass., 1967. Also, 
"A General Modal Expansion Method for Obtaining Approximate Equa
tions for Linear Systems," Nucl. Sci. Eng., 28, 438 (1967)0 

137. S. Kaplan, "Synthesis Methods in Reactor Analysis," Advances in 
Nuclear Science and Technology, 3_, 233 (1965). 

138. S. Kaplan, 0. J. Marlowe, and J. Bewick, "Application of Synthesis 
Techniques to Problems Involving Time Dependence," Nucl. Sci. Eng., 
18, 163 (1964). 

139. Ivar Stakgold, Boundary Value Problems of Mathematical Physics, 
MacMillan Co., New York, N. Y., p."65, 1967. 

140. G. Arfken, Mathematical Methods for Physicists, Academic Press, 
New York, N. Y., p. 595, 1966. 



198 

141. W. C. Nodean, The Response of a Coupled Core Reactor to a Localized 
Oscillation of the Absorption Cross Section, Ph.D. Thesis, Iowa 
State Univ. (1969). 

142. B. Carnahan, H. Luther, and J. Wilkes, Applied Numerical Methods, 
Wiley and Sons, Inc., New York, N. Y., p. 179, 1969. 

143. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine. Calcu
lation of Complex Fourier Series," Mathematics of Computations, 19, 
297 (1965). 

144. W. M. Gentleman and G. Sande, "Fast Fourier Transforms for Fun and 
Profit," Joint Computer Conf. AFIPS Proc., 29, 563 (1966). 

145. J. W. Cooley, "Applications of the Fast Fourier Transform Method," 
Proc. IBM Computing Symp. (1966). 

146. P. D. Welch, "The Use of Fast Fourier Transform for the Estimation 
of Power Spectra: A Method Based on Time Averaging Over Short, 
Modified Periodograms," IEE. Trans. Audio Eleetroacoustics, AU-15, 
70 (1967).. 

147. R. C. Singleton, "On Computing the Fast Fourier Transform," Commun. 
ACM, JLO, 647 (1967). 

148. David S. Gooden and T. F. Parkinson, "Regional-Dependent Reactor 
Kinetics," Nucl. Sci. Eng., 46, 169 (1971). 

149. R. H. Jones, "A Reappraisal of the Periodogram in Spectral Analysis," 
Technometries, 2» 5 3 1 (1965). 

150. D. D. Ebert, J. M. Reynolds, and J. D. Clement, "Coherence Function 
Measurements and Analyses in Tightly and Loosely Coupled Cores," 
Trans. Am. Nucl. Soc. , _U, l> 196 (1971). 

151. W. E. Schiesser, "Statistical Uncertainty of Frequency Response 
Determined from Random Signals," TM711-C-2, Weston Instruments, 
Inc., (1966). 

152. R. A. Rydin, Personal Communications, University of Virginia (Nov. 
1971). 

153. W. M. Stacey, Jr., Personal Communications, Argonne National Labor
atory (Dec. 1971). 

154. M. M. El-Zeftawy and L. Ruby, "Kinetic Distortion in a TRIGA Re
actor with an Asymmetric Reflector.," Nucl. Sci. Eng. , 45, 335 (1971). 



199 

VITA 

David Dean Ebert was born on August 9, 1940 in Watertown, Wisconsin. 

He attended Watertown High School and graduated in 1958. Mr. Ebert at

tended the University of Wisconsin where he received a Bachelor of Science 

degree in Applied Mathematics and Engineering Physics in January, 1963. 

In January, 1963 he was employed by the National Aeronautics and 

Space Administration in Cleveland, Ohio as an aerospace scientist. While 

at NASA, he worked on the core physics analysis of a tungsten-water nuclear 

rocket concept. 

Mr. Ebert left NASA to attend graduate school at the Georgia Insti

tute of Technology in September of 1963. He received a Master of Science 

degree in Nuclear Engineering from Georgia Tech in June, 1965. During 

the summer of 1964, he participated in the Engineering Practice School 

program at Argonne National Laboratory. 

In the fall of 1964, Mr. Ebert began work as an experimental reactor 

physicist at Knolls Atomic Power Laboratory in Schenectady, New York. He 

left KAPL in September, 1967 to work on a doctorate in Nuclear Engineering 

at Georgia Tech. This graduate study was supported by an Atomic Energy 

Commission Traineeship and a Graduate Research Assistantship. Mr. Ebert 

also taught a course in modern physics at Georgia State University and 

supervised a reactor physics laboratory class at Georgia Tech during this 

time. While pursuing his studies at Georgia Tech, Mr. Ebert worked on 

his dissertation at Argonne National Laboratory during the summers of 



200 

1970 and 1971 under the guidance of Dr. Weston M. Stacey, Jr. The work 

at ANL was supported in part by the Argonne Center for Educational 

Affairs. 

Mr. Ebert is a member of the American Nuclear Society and the 

Society of the Sigma Xi. 


