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SUMMARY 

 

This work is focused on characterizing the impact of material based disorder on the 

properties of graphene based vertical tunneling heterostructures. The motivation and 

challenges for replacing silicon for low power digital electronics has been presented. The 

status of the research on graphene based digital electronics is critically reviewed. 

Scalable methods for synthesizing large area two dimensional materials including 

graphene, molybdenum disulfide, and hexagonal boron nitride are integrated into a 

complex CMOS fabrication process to investigate the impact of disorder on the properties 

of vertical graphene based heterostructures for low power digital electronics.  

The foci for this study were 1) reducing the disorder in the form of contaminants and 

defect generation in the graphene structure introduced during the CMOS fabrication 

process 2) elucidating the impact of disorder on vertical tunneling in a graphene based 

vertical heterostructure 3) investigating the impact of sequential two dimensional material 

synthesis on the disorder and electrical performance of the fabricated heterostructures. 

The major findings of this work can be summarized by the following:  

 The CMOS fabrication process was found to introduce contaminants in the 

form of polymeric residues that reduced the lateral conduction of the 

graphene. Thermal decomposition of the residues resulted in the introduction 

of defects in the graphene. A chemical etching method utilizing a sacrificial 

titanium layer removed via HF etching effectively removed the contaminants 

without damaging the graphene.  

 Dielectric tunneling barriers were deposited by atomic layer deposition 

(ALD). The tunneling mechanism of the deposited barriers was found to be 
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defect mediated tunneling which is undesirable for the graphene based 

heterostructures. By reducing the thickness of the tunneling barriers, direct 

tunneling became the dominant tunneling mechanism. By altering the 

tunneling barrier, the possibility of barrier engineering to tailor the electrical 

characteristics of the graphene heterostructure device was experimentally 

shown. Despite direct tunneling being the dominant tunneling mechanism for 

thin dielectric barriers, the electrical properties with ALD deposited dielectrics 

was found to be inadequate. Graphene of various domain sizes was used to 

assess the impact of disorder induced by the graphene on the heterostructure 

electrical properties. No change in the electrical properties was observed 

indicating the underlying substrate and interlayer dielectric are the limiting 

sources of disorder suppressing the heterostructure electrical properties.  

 Following recent reports utilizing exfoliated materials, two dimensional 

materials (molybdenum disulfide and hexagonal boron nitride) complimentary 

to graphene were utilized as tunneling dielectrics to further improve the 

device performance over conventional dielectric materials. The direct 

synthesis of complimentary two dimensional materials on graphene was 

shown to introduce defects into the graphene structure and to suppress the 

electrical properties of the graphene. Trapping of electrons due to the large 

number of trap states in the as synthesized molybdenum disulfide was shown 

to drastically suppress the tunneling current in the graphene vertical 

heterostructure compared to exfoliated materials.  



xxii 

 

 Hexagonal boron nitride was used as a buffer layer between the graphene 

electrode and underlying SiO2 substrate to determine the impact of the 

substrate on the graphene heterostructure performance. A large area 

synthesized hexagonal boron nitride buffer layer was shown to improve the 

lateral conduction of the graphene. Contrary to reports of exfoliated materials, 

the introduction of a hexagonal boron nitride tunneling barrier was shown to 

reduce the mobility of the graphene due to increased scattering as a result of 

defects in the hexagonal boron nitride as well as contamination introduced 

during the transfer process. The lateral conductance of the graphene was 

shown to be improved in the graphene vertical heterostructure with a 

hexagonal boron nitride buffer layer, but was insufficient to improve the 

vertical tunneling of the heterostructure. Improved synthesis methods to 

reduce the intrinsic defects in the as synthesized hexagonal boron nitride is 

necessary to further improve the graphene heterostructure performance.  

Overall, the research presented here provides important insights into the use of 

graphene based heterostructures for digital electronic applications. We provided 

methodology for integrating graphene into a CMOS fabrication process, suggest potential 

pathways for tailoring the device characteristics through barrier engineering, and 

demonstrate the current limitations of two dimensional heterostructures. We find the 

limiting factor to be the materials used in support of graphene.  
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CHAPTER 1: INTRODUCTION 1 

1.1 Moving Beyond Si 2 

The 1956 Nobel Prize in physics was awarded for the discovery of transistor action in 3 

germanium. Discovered in 1948
[1-3]

, the transistor soon began replacing vacuum tubes in 4 

a wide variety of applications due to its small size and high reliability of operation.  5 

Germanium remained the material of choice for semiconductors until ~1960, when 6 

silicon began to dominate as the semiconducting material of choice.
[4]

 7 

Silicon overtook germanium as the material of choice for several main reasons. First, 8 

germanium has a band gap of 0.67 eV, diminishing the reliability of germanium based 9 

transistors at elevated temperatures. The 1.1 eV bandgap of silicon allows for reliable 10 

operation at typical operating temperatures of up to 100°C.
[5]

 Second, processing 11 

breakthroughs in silicon purification and diffusional doping at Bell Labs in the 1950s 12 

drastically improved the yield and ease of fabrication for silicon based transistors.
[4]

 13 

Third, silicon oxide forms a high quality interface with silicon with a low concentration 14 

of interfacial traps and serves as an excellent electrical insulator.
[6]

 Fourth, silicon is 15 

extremely abundant in the Earth’s surface allowing for cheaper acquisition of the 16 

material. Fifth, the development of the integrated circuit in 1960 allowed manufacturing 17 

of many interconnected devices on a single surface of silicon paving the way for the 18 

modern computer chip.
[7]

 19 

The advent of silicon as the semiconducting material of choice and the integrated 20 

circuit gave rise to an ever increasing demand for increased computing power. This 21 

demand for more computing power requires manufacturers to continually increase the 22 

number of transistors on a single silicon chip. The need to produce silicon chips at lower 23 
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prices further pushes manufacturers to reduce the size of the transistor, allowing for more 1 

transistors per unit area. This drive for reducing the size of the transistor gave rise to what 2 

has become known as Moore’s Law. 3 

In 1965, a cofounder of Intel, Gordon Moore, observed that in response to this 4 

demand the silicon electronics industry doubled the number of devices per chip every 18 5 

months.
[8]

 The doubling of devices per chip was managed by scaling devices, increasing 6 

the chip size, and ever more inventive chip designs to utilize space more efficiently. 7 

Gordon Moore’s observation has since become prophetic as the semiconductor industry 8 

has maintained this steady pace of innovation for the last 50 years as shown in Figure 1. 9 

 10 

 11 

Figure 1 Evolution of the gate length of commercial MOSFETs (filled red circles) and 12 

projected targets (open red circles). As a result of reduced size, the transistor count per 13 

chip (blue stars) has increased. Reprinted by permission from Macmillan Publishers Ltd: 14 

Nature Nanotechnology 5, 487-496 (2010).
[9]

 15 

 16 

 17 
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Maintaining Moore’s law has not come without challenges. In the 1970’s, Moore’s 1 

law was said to be reaching its end due to the limitations imposed by contact lithography 2 

and the wavelength of visible light.
[10]

 In response, Perkin-Elmer developed the 3 

projection scanner in 1973.
[11]

 Rather than relying on direct contact to achieve the 4 

patterning, a lens is used to project an image of the pattern. Initial designs projected a 1:1 5 

scale image of the pattern. Five years later with the introduction of the stepper, 6 

photolithography was able to be performed on sections of the wafer by projecting a mask 7 

image on one area then moving to the next as opposed to the entire wafer at once. The 8 

combination of the stepper and projection lithography allowed the semiconductor 9 

industry to project mask patterns at much higher resolutions enabling projected patterns 10 

to be smaller than the physical mask used to create them. The limitations of using visible 11 

light for patterning were overcome in 1982, with the development of photoresists 12 

sensitive to ultra-violet light at IBM.
[12]

 The development of new photoresists and a 13 

switch from mercury lamps to ultra violet excimer lasers allowed the semiconductor 14 

industry to continue downscaling.  15 

In the mid 80’s, 500 nm was proclaimed the ultimate scaling limit as source/drain 16 

resistance increased to non-feasible values. In response, the semiconductor industry 17 

developed silicides with the first silicide made out of tungsten reducing the resistivity by 18 

an order of magnitude.
[13]

 The introduction of silicides marked the first limitation 19 

overcome by a change in material used for the transistor. A decade later and 100 nm is 20 

proclaimed as the ultimate scaling limit due to reduced mobilities in the silicon with 21 

scaling and reduced performance of the aluminum interconnects. This limitation was 22 

overcome by the introduction of germanium in the silicon channel and the replacement of 23 
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aluminum interconnects with copper.
[14, 15]

 The introduction of germanium strains the 1 

silicon, increasing the mobility by up to 25% while using copper resulted in a reduction 2 

in the resistivity of the interconnect by half.  3 

By 2004 the industry had yet again reached a fundamental limit on the technology 4 

used to pattern devices leading to the development of immersion lithography which 5 

allows patterning up to an order of magnitude smaller than the wavelength of light 6 

used.
[16]

 Yet another limitation was reached by 2007 at the 50 nm scale with the inability 7 

of the silicon dioxide to prevent gate tunneling at the dimensions needed. In response, 8 

Intel announced the use of hafnium oxide as the gate dielectric. The higher dielectric 9 

constant of hafnium allows thicker gate dielectrics while maintaining the same electric 10 

field in the channel. The thicker gate drastically reduced the gate leakage current 11 

allowing the continuation of downscaling of silicon based devices we see today.
[17]

  12 

The semiconductor industry is facing another challenge in the continued downscaling 13 

of transistors and adherence to Moore’s law. With transistors approaching dimensions of 14 

sub 10 nm, short channel effects and gate leakage can no longer be overcome with the 15 

material systems in use today.
[18-20]

 The continued scaling of devices has resulted in 16 

leakage from tunneling currents through the oxide no longer being negligible,
[21-24]

 17 

reduced device reliability due to short channel effects,
[25-30]

 and a substantial increase in 18 

power dissipation.
[31, 32]

  19 

As the MOSFET is scaled to smaller dimensions, the magnitude of the electric field 20 

applied between the source and drain approaches the magnitude of the electric field 21 

applied at the gate causing short channel effects. This results in the gate no longer 22 

controlling the transistor behavior. This is further exacerbated by variability in the device 23 
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processing. As the device dimensions begin to approach single nanometers in size, a 1 

change of 1 nm in the device dimensions can significantly alter the device behavior.  2 

Figure 2 shows threshold voltage as a function of gate length for a NMOSFET with a 3 

VT = 0.65 V, doping concentration of 1x10
18

 cm
-3

, 2 nm oxide thickness, and at 1 µm 4 

channel length as the NMOSFET approaches single nanometer channel lengths. The 5 

change in threshold voltage is calculated from equation 1.
[33]

  6 

 𝑉𝑇𝑛𝑒𝑤 = 𝑉𝑇 −
𝑞𝑁𝑎𝑊𝑑𝑚 𝑟𝑗

𝐶𝑜𝑥𝐿
(√1 + 2

𝑊𝑑𝑚

𝑟𝑗
− 1) (1) 7 

Where VTnew is the reduced threshold voltage, VT is the threshold voltage for an 8 

equivalent long channel device, q is the charge of an electron, Na is the dopant 9 

concentration, Wdm is the depletion width which is a function of Cox and Na, and rj is the 10 

implantation depth of the source and drain wells (20 nm as shown).  11 

 12 

 13 

Figure 2 Threshold voltage of a MOSFET as a function of channel length.  14 

 15 
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Short channel effects currently limit the scalability of the Si MOSFET.
[18, 19, 34]

 Short 1 

channel effects limit the scalability of the silicon transistor by making the methods used 2 

to reduce the impact of short channel effects prohibitively expensive to continue as the 3 

device scales.
[19]

 These effects arise in the traditional MOSFET from the increasing 4 

electric field in the device channel as the device becomes smaller. Traditional methods 5 

for combating short channel effects include scaling of the oxide thickness, increasing the 6 

substrate donor concentration, and halo implanting.
[18-20, 24, 34-36]

 Combating short channel 7 

effects becomes more difficult and expensive as scaling continues. 8 

Despite significant efforts, solutions addressing the difficulties of continuing 9 

traditional scaling of the MOSFET have not been found. Even if solutions are found to 10 

address random dopant fluctuations and reduce device variations in patterning, the 11 

subthreshold swing of the traditional MOSFET cannot be scaled below 60 mV/decade at 12 

room temperature.
[33, 37]

 Alternative methods for achieving a performance increase for 13 

digital logic applications are required. Two of the most promising methods currently 14 

being developed are high mobility channels and alternative transistor designs.
[38-45]

 15 

Graphene is a promising material for both methods of moving past the traditional Si 16 

based MOSFET.
[46-50]

   17 

1.2 Physics of Graphene 18 

Graphene is a two-dimensional material comprised of carbon atoms arranged in a 19 

honeycomb lattice.  Theoretically discussed as early as 1947
[51-53]

, with attempts to isolate 20 

a single layer of graphite in the form of ultra-thin graphite carried out as early as 1966
[54]

, 21 

graphene is a promising material for future electronic applications.  With the isolation of 22 

a single atomic layer of graphite using the “scotch tape method” in 2004
[55]

, research into 23 
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the unique electrical properties of graphene and its future use in electronics has been 1 

researched heavily over the past decade.   2 

Large efforts into graphene growth on the wafer scale have been carried out due to 3 

graphene’s promise as a material for future electronics due to a number of unique 4 

qualities arising from the electronic structure and 2D nature of graphene.  These qualities 5 

include mobilities as high as 10,000 cm
2
 V

-1
s

-1
 reported on SiO2

[56]
, mobilities in excess 6 

of  200,000 cm
2
V

-1
s

-1
 for suspended graphene

[57]
, and observations of the quantum hall 7 

effect near room temperature
[56, 58]

. Due to the unique properties of graphene, graphene is 8 

being researched for applications in a variety of fields including spintronics due to long 9 

spin injection lifetimes in graphene
[59]

, gas sensors able to detect single gas molecules
[60]

, 10 

nanoribbon interconnects with resistivity comparable to copper
[61]

, ballistic transport 11 

devices due to large mean free paths and relativistic charge carriers
[62]

, and RF 12 

applications due to the high mobility of graphene resulting in large cutoff frequencies.
[63]

    13 

A two-dimensional allotrope of carbon with a bond distance of 1.42 Å, graphene is 14 

composed of two trigonal sub lattices, labelled A and B, which results in graphene having 15 

two atoms per unit cell, as seen in Figure 3.
[64]

  16 

 17 

 18 
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 1 

Figure 3 Graphene lattice showing the A and B sub lattice (blue and red respectively). 2 

Reprinted from Materials Today, Vol  10, M.I. Katsnelson, Graphene: Carbon in Two 3 

Dimensions, Pages 20-27, Copyright (2007), with permission from Elsevier .
[64]

 4 

 5 

 6 

 7 

Graphene is comprised of  sp
2
 hybridized carbon atoms arranged in a hexagonal 8 

lattice formed by a σ bond from the hybridization of the 2s
2
 orbital and the 2px and 2py 9 

orbitals forming the in plane bonds.  The out of plane 2pz orbital is the only orbital 10 

involved in conduction within graphene, forming a π band with the neighboring carbon 11 

atoms.
[65]

 The electronic structure of graphene arising from the hybridization of the 12 

orbitals and symmetry of the sub lattices can be described by a tight-binding 13 

approximation and gives two points in which band crossing occurs in the Brillouin zone, 14 

labelled K and K’, around which the dispersion relation is linear, as seen in Figure 4.
[64]

  15 

 16 

 17 
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 1 

Figure 4 Graphene Brillouin zone showing the Dirac points at the K and K' points.  The 2 

linear dispersion and touching of the valence and conduction band can be seen at the K 3 

points. Reprinted from Materials Today, Vol  10, M.I. Katsnelson, Graphene: Carbon in 4 

Two Dimensions, Pages 20-27, Copyright (2007), with permission from Elsevier .
[64]

 5 

 6 

 7 

 8 
The dispersion relation is given by 9 

 𝐸(𝑘) = ±𝑡√3 + ℎ𝑜(𝑘⃗ ) (2) 10 

 ℎ𝑜(𝑘⃗ ) = 2 cos(√3𝑘𝑦𝑎) + 4 cos (
√3

2
𝑘𝑦𝑎) cos (

3

2
𝑘𝑥𝑎) (3) 11 

Where t is the nearest neighbor interaction energy and a is the interatomic bond 12 

length with magnitudes of 2.9 eV and 1.42 Å respectively. The positive sign in the 13 

dispersion relation corresponds to the conduction band and the negative sign corresponds 14 

to the valence band.
[64]

 Setting 𝐸(𝑘⃗ ) to zero in the 𝐸(𝑘) dispersion relation results in six 15 

points in which the bands coincide on the Brillouin zone (K and K’ points).  The six 16 

points can be sub divided into two sets of three points separated by reciprocal lattice 17 

vectors as shown in Figure 5.   18 
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 1 

Figure 5 Graphene Brillouin zone depicting equivalent K and K' positions.  Equivalent 2 

points are connected by reciprocal lattice vectors. 3 

 4 

 5 

 6 

The lattice vectors for these points, also known as the Dirac points, are given by 7 

 𝐾⃗⃗ = (
2𝜋

3𝑎
,

2𝜋

3√3𝑎
) (4) 8 

 𝐾′⃗⃗⃗⃗ = (
2𝜋

3𝑎
, −

2𝜋

3√3𝑎
) (5) 9 

Around the Dirac points(𝑤𝑖𝑡ℎ𝑖𝑛 ~ ± 1 𝑒𝑉), the dispersion relation can be 10 

represented in a simpler form as given by 11 

 𝐸 = ℎ𝑣𝑓|𝑘⃗ | (6) 12 

 𝑣𝑓 =
1

ℏ
(
3𝑎𝑡

2
) (7) 13 

Where 𝑣𝑓 is the Fermi velocity, a is the atomic spacing of 1.42 Å, t is the nearest 14 

neighbor interaction energy of 2.9 eV.  The density of states is given by 15 

 𝐷𝑂𝑆 =
𝐸

2𝜋ℏ2𝑣𝑓
2 (8) 16 

The linear dispersion relation results in unique properties such as the vanishing of the 17 

density of states at the Dirac point and charge carriers behaving as massless Dirac 18 

fermions traveling at a Fermi velocity of 10
6
 m/s.

,[66]
 The electric field effect can be used 19 

to induce charges into the graphene channel as well.
[67]

  Depending on the applied field, 20 
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the Fermi level can be moved into the conduction or valence band, resulting in an 1 

ambipolar graphene channel.  Under ideal circumstances, graphene would have a Fermi 2 

energy and density of states of zero (𝐸 = 0 in the DOS equation).  Under real 3 

circumstances, graphene exhibits induced charge carriers from the underlying substrate, 4 

impurity charges introduced from the atmosphere or device processing, as well as 5 

thermally generated carriers. These induced charge carriers present without an electric 6 

field effectively result in graphene based devices which are always on.  With a typical 7 

Ion/Ioff ratio, the ratio of the measurable current in a device in the on state and off state 8 

respectively, of 5-10 (typically orders of magnitude larger for a silicon based transistor), 9 

novel device architectures are required for graphene to find an application in digital 10 

electronics.   11 

1.3 Graphene Synthesis 12 

1.3.1 Exfoliation 13 

The exfoliation of a single layer of graphene was first reported by Novoselov and 14 

Geim in 2004
[55]

 and resulted in the awarding of the Nobel Prize in 2010. Using what has 15 

become known as the scotch tape method, crystals of graphite are repeatedly peeled apart 16 

in order to thin the crystal and yield monolayer to few layer graphene. There are several 17 

sources of graphite used for the exfoliation method including highly oriented pyrolytic 18 

graphite (HOPG), Kish graphite, and natural graphite. HOPG and Kish graphite are 19 

synthetically formed graphite with typical domain sizes of ~10μm while naturally 20 

occurring graphite can have domains of several millimeters.  21 

A single layer of graphene absorbs 2.3% of incident light. This makes a single layer 22 

of graphene unobservable by the naked eye. Exfoliated flakes of graphene are identified 23 
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using optical interference and Raman spectroscopy.
[68, 69]

 A 300 nm thermal SiO2 has a 1 

violet-blue coloration. The addition of a graphene layer introduces interference of the 2 

light which shifts the coloration to a true blue. This shifting of color allows the 3 

identification of single to few layer graphene based off of the contrast.
[68]

 Raman 4 

spectroscopy also allows the identification of single to few layer graphene due to the 5 

presence of unique Raman features of the graphene.
[69]

   6 

While easy to produce and yielding exceptional quality graphene, exfoliated flakes 7 

are often too small for TEM, XPS, etc. The small size of the flakes and the random 8 

distribution disallows large scale fabrication of exfoliated devices.
[70]

 Individual 9 

patterning of each flake is required which results in a large time commitment for 10 

fabricating exfoliated devices. For this reason, exfoliated graphene is commonly used for 11 

proof of concept and physics experiments where “perfect” graphene is a necessity. The 12 

stochastic nature of the exfoliated flakes makes exfoliated graphene unsuitable for 13 

manufacturing purposes. 14 

1.3.2 Epitaxial Growth 15 

An alternative method for graphene synthesis is the epitaxial growth of graphene on 16 

SiC. First reported in 2004
[71]

, the epitaxial growth of graphene on SiC is formed by 17 

sublimating the Si out of 6H-SiC at ~1300 °C.
[72, 73]

 An indeterminate number of 18 

graphene layers (controlled by time) are formed on the C face of the 6H-SiC while a self- 19 

limiting formation of graphene occurs on the Si face. While multiple layers form on the C 20 

face, the layers have been reported to be decoupled from each other and behave as 21 

individual layers of graphene. 
[74, 75]

 22 
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Epitaxial growth of graphene results in large single crystalline sheets of graphene. 1 

Epitaxial growth of graphene can result in exceptional quality graphene with mobilities 2 

greater than 100,000 cm
2
/Vs being reported.

[76]
 While epitaxial growth from SiC does 3 

allow for large scale synthesis of graphene devices, the use of SiC for graphene growth 4 

would require a full paradigm shift in the electronics industry making SiC based 5 

graphene economically prohibitive for use in digital electronics. 6 

1.3.3 Reduced Graphene Oxide 7 

The third common method for producing graphene is reduced graphene oxide. 8 

Graphene oxide is an oxidized graphene product capable of being dispersed in an 9 

aqueous environment.
[77-79]

 This dispersal into an aqueous environment allows graphene 10 

oxide to be cast onto a surface at ease by methods such as spin coating. After dispersing 11 

the graphene oxide flakes across the surface, the graphene oxide can be reduced to yield a 12 

conductive continuous film.
[80-82]

  13 

Chemical reduction of graphene oxide is a common means of producing reduced 14 

graphene oxide. Hydrazine monohydrate is one of the most common reductants used due 15 

to a lack of side reactions with solvents typically used for graphene oxide dispersal.
[83]

 16 

The reduction from chemical methods is often incomplete as shown by the C 1s XPS 17 

spectra shown in Figure 6 which shows the presence of C-N, C-O, C=O, and C(O)O 18 

groups still present after chemical reduction.
[84]

 These residual chemical groups attached 19 

to the graphene drastically change the electrical performance of the graphene. Currently, 20 

no simple pathway exists for the removal of these groups which reduces the usability of 21 

chemical reduction for the production of pristine graphene from graphene oxide. 22 
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 1 

Figure 6 (A) C 1s XPS spectrum of graphene oxide. (B) C 1s XPS spectra after chemical 2 

reduction. Reprinted with permission from G. Sobon, et al. Optics Express, 20 (17), 3 

19463-19473 (2012). Copyright (2012) The Optical Society.
[84]

  4 

 5 

 6 

 7 

Thermal reduction is another common method for the reduction of graphene oxide. 8 

Graphene oxide heated to 1050 °C will produce carbon oxide species which leave the 9 

graphene oxide as carbon dioxide gas.
[85]

 The gas generates pressure between the stacked 10 

layers aiding in the exfoliation of the layers.
[86]

 One result of the thermal reduction of 11 

graphene oxide is a high degree of structural damage to the graphene. Up to 30% of the 12 

graphene oxide mass is lost during thermal reduction resulting in a porous graphene 13 

network.
[87, 88]

 The increased defect density results in increased scattering centers and 14 

reduced conductivity of the reduced films compared to pristine graphene.  15 

The final commonly used method for the reduction of graphene oxide is 16 

electrochemical reduction.
[81]

 Graphene oxide is dispersed between two electrodes and 17 

linear sweep voltammetry in a buffer solution is used to reduce the film. The resultant 18 

films have conductivities comparable to pristine graphene and show negligible defect 19 

generation in the graphene films.
[89-91]

 While effective at producing high quality graphene 20 

films, the reduction of graphene oxide by electrochemical reduction has not been shown 21 
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on a large scale. The lack of scalability for the electrochemical method precludes its use 1 

for high performance electronics.   2 

1.3.4 Chemical Vapor Deposition 3 

The most common method for large scale high quality graphene synthesis is chemical 4 

vapor deposition.
[92-94]

 In this method, a metallic substrate is heated to ~1050 °C before 5 

introducing a carbon source. The s carbon source, in most cases methane, is cracked at 6 

the hot metal surface providing a source of activated carbon.
[95]

 The growth method of 7 

the graphene is dependent upon the metal substrate used. For example, Cu and Ir 8 

substrates result in nucleation and growth of graphene while Ni, Co, and Ru substrates 9 

result in an absorption and precipitation process.
[95-103]

 Cu is the most prevalent choice of 10 

substrate as it results in a self-limiting reaction at the surface of the Cu allowing for 11 

highly uniform large area monolayers of graphene.
[104-109]

  12 

The transition metal synthesis substrate acts as a catalyst. Either the partially filled d- 13 

orbitals or the formation of intermediate compounds provide a pathway for the formation 14 

of graphene. Co, Ni, and Cu have progressively filled 3d shells suggesting progressively 15 

less reactive configurations.
[110]

 Co and Ni provide intermediate compounds in the form 16 

of metastable carbide phases at high temperature while Cu forms only soft bonds by 17 

transferring charge from the π electrons in the sp
2
 hybridized carbon to the empty 4s shell 18 

of the Cu. In a typical synthesis process,
[111]

 Co and Ni result in multilayer graphene 19 

formation while Cu is limited to a monolayer of graphene on the surface.
[111-113]

  20 

The Ni-C phase diagram is shown in Figure 7. At typical graphene growth 21 

temperatures of 800-1000°C, carbon forms a metastable solid solution with Ni. As the 22 

temperature decreases, the carbon solubility in the Ni decreases. This results in carbon 23 
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segregating out of the metastable Ni3C phase to form Ni metal and graphene/graphite.
[114]

 1 

The carbon preferentially diffuses at the Ni grain boundaries leading to an increased 2 

graphene growth rate. This causes polycrystalline Ni to exhibit a large variance in the 3 

number of graphene layers grown across the Ni substrate.
[111, 115]

 Control over the number 4 

of formed layers can be achieved by using a single crystalline synthesis substrate such 5 

that the diffusion rate of the carbon is homogeneous across the entire substrate.
[116]

 The 6 

large lattice mismatch between graphene and Ni results in polycrystalline graphene 7 

formation. For substrates such as Co with a small lattice mismatch with the graphene, the 8 

synthesized graphene is in registry with the underlying substrate allowing for single 9 

crystalline graphene synthesis.
[117]

 The growth process for Co and Fe is similar to the Ni 10 

growth process as predicted by the similarities in the metal-carbon phase diagrams. 11 

 12 

 13 

Figure 7 Ni-C (graphite) and metastable Ni-Ni3C phase diagram. Reproduced from 14 

Bulletin of Alloy Phase Diagrams, The C-Ni (Carbon-Nickel) System, volume 10, 1989, 15 

pages 121-126, M. Singleton and P. Nash with permission of Springer.
[114]

 16 
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In contrast, the low solubility of carbon in Cu of 0.008% by weight and lack of 1 

carbide formation leads to a surface mediated growth of graphene on copper. Typically, 2 

methane gas is introduced over a heated copper substrate (~1000°C).
[110, 113]

 The carbon 3 

precursor cracks upon contact with the catalytic substrate. Carbon diffuses across the 4 

surface of the copper and forms graphene islands at high energy sites (Cu grain 5 

boundaries, impurity atoms, defect sites, etc.) on the copper surface.
[95, 118, 119]

 A 6 

schematic representation of the growth process is shown in Figure 8. As additional 7 

carbon is added, it either diffuses across the copper surface and attaches to a pre-existing 8 

graphene island or forms a new nucleation site and the hydrogen is desorbed. Eventually, 9 

the graphene islands coalesce into a single patchwork of graphene domains.
[118-121]

 The 10 

growth of graphene stops after the Cu surface is completely covered. This results in 11 

predominantly single layer graphene (~95%) growth on copper.
[122]

 The domain size of 12 

graphene on Cu can be controlled primarily by controlling the high energy states on the 13 

Cu surface, changing the pressure of the reactor, and changing the temperature of the 14 

reactor.  15 

 16 

 17 

Figure 8 Schematic illustrating the three main stages of graphene growth on copper by 18 

CVD: (A) copper foil with native oxide; (B) the exposure of the copper foil to CH4/H2 19 

atmosphere at 1000 C leading to the nucleation of graphene islands; (C) enlargement of 20 

the graphene flakes with different lattice orientations Reproduced from C. Mattevi et al. 21 

J. Mater. Chem. 21, 3324-3334 (2011) with permission of The Royal Society of 22 

Chemistry.
[110]

 23 

 24 
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The system background pressure and temperature play a critical role in determining 1 

the domain size of the synthesized graphene on copper.
[112, 113, 123]

 The synthesis 2 

temperature and pressure impact the copper catalyst annealing, carbon diffusion on the 3 

copper surface, formation of stable graphene nuclei, and the graphene crystal growth. 4 

Figure 9 shows the impact of temperature on the graphene nucleation density/domain size 5 

at atmospheric pressure. As seen, the nucleation density is strongly influenced by the 6 

synthesis temperature. The nucleation density of graphene changes by 5 orders of 7 

magnitude across a temperature span of 130°C corresponding to an activation energy of ~ 8 

-9eV as shown in Figure 9C. The dependence of the graphene domain size on 9 

temperature is shown in Figure 9D. The activation energy for graphene crystal growth is 10 

found to be ~5 eV.
[123]

  11 

 12 

 13 

 14 
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 1 

Figure 9 Temperature dependence of the nucleation density and graphene domain sizes 2 

for atmospheric pressure CVD: PH2/PCH4 = 1800 (A) SEM images of graphene grains 3 

grown at different temperatures for constant partial pressures of H2 (19 Torr) and CH4 4 

(10.5 mTorr). (B) Same as in A at different magnification. (C) Arrhenius plot for the 5 

nucleation density. Blue point shows nucleation density at 950°C for sample annealed at 6 

1080°C. (D) Arrhenius plot for the grain size. Reprinted with permission from I. 7 

Vlassiouk et al. The Journal of Physical Chemistry C. 117, 18919-18926 (2013). 8 

Copyright (2013) American Chemical Society.
[123]

 9 

 10 

 11 

  12 

Similar temperature trends are seen for low pressure (less than 500 mTorr) CVD 13 

synthesis of graphene. A strong temperature dependence with an activation energy of ~ -4 14 

eV is found for low pressure CVD.
[123]

 The nucleation density and grain size is found to 15 

be strongly dependent on the methane partial pressure. The graphene nucleation process 16 

is dependent on gas precursor adsorption, dehydrogenation of the carbon, diffusion of 17 

carbon on the surface, and formation of graphene nuclei which is in competition with the 18 

carbon desorption process.
[110, 112, 123]

 19 
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 1 

Figure 10 Schematic representation of the graphene synthesis process on Cu. Reprinted 2 

with permission from S. Bhaviripudi et al. Nano Letters. 10, 4128-4133 (2010) Copyright 3 

(2010) American Chemical Society.
[112]

 4 

 5 

 6 

 7 

As shown in Figure 10, the gas flow in a graphene CVD process creates a boundary 8 

layer above the surface of the catalytic substrate. The carbon precursor introduced in the 9 

main gas flow must diffuse across the boundary layer, attach to the surface of the copper, 10 

diffuse across the surface of the copper, and attach/form a graphene nucleation site.
[110, 

11 

112, 123, 124]
 After the activated carbon attaches to the graphene lattice, the hydrogen must 12 

desorb from the surface and diffuse back through the boundary layer. Hydrogen which 13 

does not diffuse back across the boundary layer (or diffuses to the substrate surface 14 

again) can react with carbon species on the surface to reform Volatile CxHy gas species. 15 

This synthesis process of graphene can ultimately be controlled by (i) the flux across the 16 

boundary layer or (ii) the flux across the surface of the catalytic substrate. The equations 17 

describing these fluxes are shown in equation 9 and 10.
[112]

  18 

 𝐹𝑚𝑠 =
𝐷𝑔

𝛿
(𝐶𝑔 − 𝐶𝑠) (9) 19 
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 𝐹𝑠𝑟 = 𝐾𝑠𝐶𝑠 (10) 1 

Where Fms is the flux across the boundary layer, Fsr is the flux at the substrate surface, 2 

Dg is the gas diffusion coefficient, δ is the thickness of the boundary layer, Ks is the 3 

surface reaction constant, Cg is the concentration of the carbon source in the gas flow, 4 

and Cs is the concentration of active carbon at the substrate surface. At steady state, the 5 

mass transport across the boundary layer is equal to the consumption of active carbon at 6 

the substrate surface. Setting equation 9 equal to equation 10 and eliminating Cs gives 7 

equation 11 where Ftot is the steady state total flux.  8 

 𝐹𝑡𝑜𝑡 = [
𝐾𝑠𝐷𝑔

𝛿(𝐾𝑠+
𝐷𝑔

𝛿
)
] 𝐶𝑔 (11) 9 

From this equation it can be seen that there are three possible synthesis regimes for 10 

graphene. The first regime, Dg/δ >> Ks results in a surface controlled reaction.
[110, 112, 113, 

11 

123, 125]
 When Dg/δ<<Ks, mass transport through the boundary layer is limiting and 12 

multiple graphene layers can form.
[126, 127]

 When Dg/δ~Ks a mixed regime occurs. For 13 

typically graphene synthesis at atmospheric, Dg/δ<<Ks resulting in a mass transport 14 

limited synthesis process. In this regime, the geometric effects of the gas flow and 15 

chamber design strongly influence the graphene synthesis process.
[112]

 A variation in the 16 

thickness of the boundary layer results in a reduction in the active carbon species 17 

concentration at the surface. As gas transport through the boundary layer is more difficult 18 

in this regime, it is also more difficult for hydrogen species to leave the substrate surface 19 

after carbon adsorption. The hydrogen concentration at the substrate surface will reattach 20 

to the carbon species effectively etching the formed graphene. The reduced concentration 21 

of active carbon and increased hydrogen etching result in a smaller critical nuclei size. 22 
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This results in an increase in nucleation density and reduction in grain size for graphene 1 

growth at atmospheric pressure.  2 

Early reports of graphene on copper showed reduced electrical performance 3 

compared to exfoliated graphene.
[95, 119, 128]

 The reduced electrical performance was due 4 

to smaller domain sizes, wrinkles, contamination, etc. More recent reports of graphene 5 

growth show that the domain size can be controlled by controlling the nucleation density 6 

on the copper foil.
[104-106, 129]

 Step edges created in the copper rolling process, 7 

contamination, and defect sites provide high energy sites for the nucleation of graphene. 8 

By treating the copper foil in acetic acid prior to growth, step edges can be reduced and 9 

surface contaminants removed. Introducing hydrogen annealing of the copper foil prior to 10 

growth removes step edges and defects by restructuring the surface of the copper foil. 11 

Introducing oxygen prior to the growth binds oxygen to the defect sites and reduces the 12 

nucleation density of the graphene. By incorporating these various methods, high quality 13 

graphene of variable grain size can be synthesized.
[104-106]

  14 

Low pressure CVD growth of graphene on copper foils is the growth method used for 15 

the synthesis of graphene used in this study. A complex processing and integration 16 

scheme utilizing standard CMOS processes is used in fabricating the graphene based 17 

devices and only large-area synthesized materials are used.  18 

1.4 Current status and limitations 19 

1.4.1 Single Layer Graphene 20 

Significant efforts have been made in creating FETs to replace Si utilizing single 21 

layer graphene. Research efforts into graphene FETs has been motivated by the 22 
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scalability of graphene to nanometer sizes, potential for ballistic transport, linear current- 1 

voltage characteristics, and high current densities.
[55]

  2 

In order to be a viable replacement for the Si MOSFET in digital electronics, future 3 

replacement technologies need to offer switching ratios between 10
4
 and 10

7
, n- and p- 4 

channel FETs with symmetrical threshold voltages, and low static power dissipation.
[9, 18, 

5 

130, 131]
 Graphene is a gapless semimetal which means devices with channels made of 6 

graphene cannot be turned off. The switching ratio of a single layer graphene transistor is 7 

~10.
[46, 119, 128, 132-134]

 This is well below the minimum switching ratio of 10
4
 needed to 8 

compete with Si based MOSFETs.  9 

Significant efforts have been made to introduce a bandgap into graphene in order to 10 

increase the switching ratio. These efforts can be classified into three categories: (i) 11 

graphene nanoribbons 
[135, 136]

 (ii) functionalization 
[137-140]

 (iii) strain engineering.
[141-145]

 12 

The most promising method is currently the fabrication of graphene nanoribbons. 13 

As a graphene channel is reduced to widths below 20 nm, a bandgap greater than 200 14 

meV is formed that is inversely proportional to the width of the ribbon. Nanoribbons with 15 

widths down to 2 nm have been reported with a switching ratio of 10
6
.
[146, 147]

  While 16 

promising, real devices will have some degree of rough edges and widths which will 17 

cause the bandgap to change along the length of the device.
[148]

 The edge roughness 18 

further impacts the variability in graphene nanoribbons as graphene nanoribbons of 19 

similar design but slightly different edge states can have significant differences in 20 

electronic behavior.
[9, 149]

 21 

In order for graphene single layers to be a viable replacement for Si, very narrow 22 

nanoribbons with atomically smooth edges will be needed. Reducing the edge roughness 23 



24 

 

of the graphene nanoribbon will be a significant challenge for modern semiconductor 1 

fabrication processes. A perfect edge state of the graphene nanoribbon may not work 2 

either. The valence and conduction band of the graphene becomes more parabolic as the 3 

bandgap increases. The effective mass of the carriers increases as the bands become more 4 

parabolic and the mobility is reduced. By opening a bandgap in the graphene, the material 5 

properties that make graphene promising (ultra-high mobility and massless carriers) 6 

begin to diminish or disappear. If a bandgap of 1.1 eV similar to Si were introduced into 7 

graphene, the graphene mobility would be lower than the mobility of Si.
[150]

 While the 8 

scalability of graphene nanoribbons has been shown to be superior to traditional 9 

MOSFETs, it has not be determined if the improved scalability will offset the reduced 10 

mobilities of the graphene nanoribbon. 11 

1.4.2 Bilayer Graphene 12 

A bandgap can be introduced by application of an electric field when two graphene 13 

layers have a Bernal stacking arrangement.
[151]

 In the Bernal stacking arrangement, the 14 

second graphene layer is offset from the first layer such that half of the carbon atoms are 15 

located above the atoms of the first layer and the other half lie in the center of the 16 

hexagon of the first layer.
[152]

 The electrostatic control of a bilayer graphene FET has 17 

been reported. By using a dual gated structure, the Fermi level can be controlled 18 

electrostatically and a non-zero bandgap can be opened.
[153]

 19 

Bilayer graphene in its natural state is a gapless semiconductor as seen in Figure 11D. 20 

By using a dual gated structure as shown in Figure 10A-B, two electrostatic effects can 21 

be induced which are dependent on the two induced electric fields shown in Figure 10C. 22 

The difference between the top and bottom electrical displacement fields leads to a 23 
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shifting of the Fermi energy. The average of the two fields breaks the inversion symmetry 1 

and opens a bandgap as shown in Figure 11D. By applying voltages to the top and bottom 2 

gate such that the net difference in the fields is 0, the bandgap of the bilayer graphene 3 

FET can be varied up to 250 meV without changing the Fermi level of the graphene.
[153]

 4 

 5 

 6 
Figure 11 (A) Optical microscopy image of the bilayer device (top view). (B) Illustration 7 

of a cross-sectional side view of the gated device. (C) Sketch showing how gating of the 8 

bilayer induces top (Dt) and bottom (Db) electrical displacement fields. (D) Left, the 9 

electronic structure of a pristine bilayer has zero bandgap. (k denotes the wave vector.) 10 

Right, upon gating, the displacement fields induce a non-zero bandgap and a shift of the 11 

Fermi energy EF. (E) Graphene electrical resistance as a function of top gate 12 

voltage Vt at different fixed bottom gate voltages Vb. The traces are taken with 20 V 13 

steps in Vb from 60 V to -100 V and at Vb = -130 V. The resistance peak in each curve 14 

corresponds to the CNP ( D = 0) for a given Vb. (F) The linear relation between top and 15 

bottom gate voltages that results in bilayer CNPs. Reprinted by permission from 16 

Macmillan Publishers Ltd: Y.Zhang et al. Nature. 459, 820-823 (2009) copyright 17 

(2009).
[153]

 18 

 19 

 20 

 21 
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The report for the dual gated control of the bilayer graphene bandgap was reported in 1 

2009. Since then, no significant advancements have been made. The largest switching 2 

ratios achieved for bilayer FETs are only ~100, much lower than the 10
4
 minimum of 3 

conventional MOSFETs. This limits the viability of bilayer graphene for digital logic 4 

applications. Furthermore, bilayer graphene structures have been predominantly 5 

fabricated from exfoliated graphene. While some reports of Bernal stacked graphene have 6 

been reported by CVD growth, a reliable scalable synthesis method for Bernal stacked 7 

graphene remains elusive.
[154, 155]

   8 

1.4.3 Vertical Heterostructures for Tunneling Devices 9 

One subset of graphene devices proposed for digital logic applications are the 10 

tunneling field effect transistors (TFETs). TFETs can either be fabricated in a lateral 11 

planar geometry as in a traditional MOSFET or in a vertically stacked structure as shown 12 

in Figure 12.
[156]

 Previous reports of lateral TFETs have shown to be incapable of 13 

providing large enough on currents.
[157, 158]

 The current in a TFET is proportional to the 14 

active tunneling area in the device. For a scaled lateral TFET, the cross sectional area of 15 

the device limits the maximum current. As the length of the active area is larger than the 16 

thickness, a vertical geometry provides a relatively larger tunneling current compared to a 17 

lateral geometry due to the increased tunneling area.
[159]

  Graphene based vertical TFETs 18 

incorporate a graphene/insulator/graphene junction where a potential is applied across the 19 

junction resulting in charge carriers from one graphene sheet tunneling across the 20 

insulating layer to the other graphene sheet.  Due to the electronic structure of graphene, 21 

the TFETs using graphene layers as the source of the charge carriers can exhibit unique 22 
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electronic characteristics.  Several vertical tunneling based devices have been proposed to 1 

take advantage of the electronic structure of graphene.  2 

 3 

 4 

Figure 12 Two approaches for n TFETs. The upper row shows (A) single-gate lateral and 5 

(B) double-gate vertical structures in which the gate field originates from the surface, 6 

perpendicular to the orientation of the tunnel junction internal field. The lower row n 7 

TFETs have an n+ pocket under the gate in a (C) lateral and (D) vertical geometry. The 8 

pocket acts to increase the area of the tunnel junction and aligns the tunnel junction 9 

internal field with the gate field to lower the subthreshold swing. Copyright (2010) IEEE. 10 

Reprinted, with permission, from A.C. Seabaugh, Q. Zhang, Low-Voltage Tunnel 11 

Transistors for Beyond CMOS Logic, Proceedings of the IEEE, Dec. 2010.
[156]

 12 

 13 

 14 

 15 

One such device proposed is the bilayer pseudospin field effect transistor (BiSFET) 16 

shown in Figure 13.   17 
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 1 

Figure 13 BisFET structure.  Decoupled graphene layers oppositely doped (n and p type) 2 

by the source and drain contacts can generate a Bose-Einstein condensate when close 3 

enough and properly biased. Reproduced with permission from ECS Transactions, 45, (4) 4 

3-14 (2012). Copyright 2012, The Electrochemical Society
[160]

 5 

 6 

 7 

 8 

The BiSFET is based off of the formation of a Bose-Einstein condensate, a state of 9 

matter predicted by Einstein and Bose in which the wave functions of all particles in the 10 

system (behaving as bosons) collapse into a single quantum state with overlapping wave 11 

functions.
[160]

 The Bose-Einstein condensate has been experimentally shown to exist in 12 

other systems in temperatures ranging from µK to nK.
[161, 162]

    In graphene, the Bose- 13 

Einstein condensate has been theoretically predicted in temperatures approaching 14 

300K.
[163]

 The BiSFET is made from two independently contacted graphene monolayers 15 

separated by a thin dielectric.  The top and bottom gates allow for one graphene sheet to 16 

be n type doped while the other is p type doped.  By applying an external field via the 17 

control gate, the opposite charge carriers in the two graphene sheets can form a 18 

condensate, greatly reducing the tunneling resistance between the two layers.  This results 19 
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in a switch like behavior in which all of the charge carriers in the graphene sheets can be 1 

moved from one sheet to the other with the application of an external field.
[163]

 2 

 3 

 4 

Figure 14 Process flow and final device structure for the fabrication of the SymFET 5 

architecture.  First a graphene monolayer is transferred to the substrate of choice and 6 

patterned.  Metal contacts for the first layer are deposited followed by the deposition of 7 

the tunneling barrier.  The second graphene layer is deposited, patterned, and 8 

independently contacted.  9 

 10 

 11 

 12 

Another proposed device for digital logic application is the SymFET shown in Figure 13 

14 and 15A.  The SymFET is a tunneling field effect transistor utilizing single-particle 14 

direct tunneling as a means for operation.
[50]

 Using two independently contacted graphene 15 

layers separated by a dielectric, one graphene layer can be n type doped while the other is 16 

p type doped.  The tunneling current between the two graphene sheets can be modulated 17 

using an external electrical field.  Due to the linear dispersion relation in graphene, when 18 

the Dirac point of the graphene layers is not aligned, only a small number of carriers 19 
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satisfy momentum conservation and can tunnel from one sheet to the next.  Shown in 1 

figure 6b-d, there is a large peak in the current resulting in negative differential resistance 2 

in the SymFET structure when the Dirac points of the two graphene sheets align allowing 3 

for a large number of carriers to satisfy momentum conservation and tunnel through the 4 

tunneling barrier.
[164]

 5 

 6 

 7 

 8 

Figure 15 (A) SymFET device architecture and operation.  Two graphene sheets (blue) 9 

separated by an interlayer dielectric with a potential placed between the sheets.  The 10 

dopant level of the sheets is modulated by their respective gates and the potential between 11 

the sheets aligns the Dirac point.  (B) When the potential applied is less than the energy 12 

difference between the graphene Fermi levels, only a small number of carriers can 13 

conserve momentum and tunnel through the barrier.  (C) When the potential applied is 14 

greater than the energy difference. Only a small number of carriers can satisfy 15 

momentum conservation. (D) When the potential equals the energy difference every 16 

carrier in the energy states between the Fermi levels of the two graphene sheets can obey 17 

momentum conservation and tunnel through the barrier. Copyright (2013) IEEE. 18 

Reprinted, with permission, from P. Zhao, R.M. Feenstra, G. Gu, D. Jena, SymFET: A 19 

Proposed Symmetric Graphene Tunneling Field-Effect Transistor, IEEE Transactions on 20 

Electron Devices, March . 2013.
[50] 

21 

 22 

 23 

 24 
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This negative differential resistance (NDR) and device operation has been 1 

experimentally shown using exfoliated graphene sheets separated by a hexagonal boron 2 

nitride (hBN) layer as seen in Figure 16A and 16B.
[165]

  3 

 4 

 5 

Figure 16 (A) Device structure exhibiting negative differential resistance. Two 6 

independently contacted graphene sheets separated by an hBN tunneling barrier. The 7 

substrate acts as a gate to modulate the Fermi level of the bottom graphene sheet. (B) Id- 8 

Vd curve at various back gate voltages showing the NDR of these devices.  NDR was 9 

shown at temperatures of 6K to 300K. Reproduced with permission from L. Britnell et al. 10 

Nature Communications. 4, 1794 (2013). 
[165]

 11 

 12 

  13 

 14 

The presence of NDR using exfoliated graphene and hBN serves as a proof of 15 

concept for the device architecture.  Future work will need to be done utilizing scalable 16 

processes such as CVD grown graphene/hBN.   17 

One common trait between the two presented structures for digital logic is their 18 

reliance on well-ordered materials.  For both the BiSFET and SymFET, the device 19 

operation is greatly influenced by the presence of disorder in the system.  In the case of 20 

the BiSFET, disorder quenches the formation of the Bose-Einstein condensate.
[166]

 In the 21 
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case of the SymFET, disorder can result in reduced tunneling currents and an 1 

unobservable negative differential resistance.
[50]

 For both structures, disorder can arise 2 

from the materials used in the system. 3 

1.5 Sources of materials disorder 4 

1.5.1 Processing Induced Disorder 5 

The most obvious source of disorder in the graphene films arises from the processing 6 

of the graphene films to be used in these devices.  During the processing of devices, 7 

graphene is typically exposed to a variety of chemicals which have been shown to be 8 

difficult to remove, such as poly (methyl methacrylate) (PMMA) and the photoresists 9 

used in standard photolithography processes.
[167-169]

  A wide variety of techniques have 10 

been developed for removal of these residues with varying degrees of success. The most 11 

common method used in the removal of residues is thermal decomposition of the 12 

contaminants.
[132, 170, 171]

  Thermal decomposition has been studied in ultra-high vacuum, 13 

atmospheric conditions, forming gas conditions, and under an inert atmosphere.  14 

Atmospheric, forming gas, and inert atmosphere conditions have been shown to be 15 

ineffective at completely removing residues from the graphene channel while ultra-high 16 

vacuum annealing has been shown to return graphene to its intrinsic state.
[132, 172]

  17 

Recently, concerns on the effects of thermal decomposition have been raised.  Reports of 18 

thermal decomposition resulting in a closer bond between graphene and the underlying 19 

substrate have been presented.
[172, 173]

  The shortened bond distance results in increased 20 

phonon scattering from the underlying substrate, resulting in more disorder introduced 21 

into the system.  Further concerns with thermal decomposition involve scission of the 22 
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polymers used during processing and the reactivity of the radicals formed from polymer 1 

scission reacting with the defect sites of the graphene.
[172, 173]

  2 

 Electric current annealing of fabricated devices is another common method of 3 

residue removal.  Effective at the individual device level, electric current annealing is 4 

inadequate for wafer scale cleaning.
[174]

  While systematic studies of these cleaning 5 

methods as they effect individual graphene layers has been performed, little information 6 

is available to describe how these cleaning methods impact the remainder of the device 7 

architecture. Alternative cleaning methods that do not degrade the graphene performance 8 

are required.  9 

1.5.2 Physical Structure Induced Disorder 10 

Another source of disorder arising from the graphene grown utilizing CVD processes 11 

are the grain boundaries formed due to the nucleation and growth process of the graphene 12 

domains.
[92, 95, 122, 128, 175, 176]

  Transport across the grain boundaries is slightly reduced 13 

within the graphene layer.
[177-181]

  The varying size of the graphene domains also has an 14 

additional effect beyond the introduction of the grain boundaries themselves.  For two 15 

polycrystalline sheets of graphene, there will be a random distribution of orientations 16 

between the two layers for operation in the SymFET and BiSFET.  This random 17 

distribution of orientations will result in varying degrees of interaction between the two 18 

layers for the BiSFET and will result in greater dispersion in the negative differential 19 

peak position of the SymFET as well as reduce the overall tunneling current of the 20 

device.
[160]

   21 

A wafer scale method for the mapping of the orientation on a wafer scale has been 22 

proposed in which Raman spectroscopy is used in the determination of the orientation 23 
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between layers.
[182]

  Raman spectroscopy is a technique in which a photon is absorbed by 1 

the specimen of interest, promoting an electron.
[69]

  The electron can then undergo a 2 

variety of pathways to relax back into the unexcited state, emitting a photon in the 3 

process.  The energy of the emitted photon is dependent on the relaxation pathway 4 

followed, which is in turn dependent on the electronic structure being probed. By 5 

measuring the energy of the emitted photon, detailed information pertaining to the 6 

electronic structure of the specimen can be derived.  In the case of graphene, three 7 

dominant phonon modes are typically used for characterization.  The first of these 8 

phonon modes is the D peak. The D peak can be a double resonance or single resonance 9 

process, where the resonance refers to the number of phonon interactions in the pathway.  10 

Another aspect of the D peak is the requirement of a defect in order for the transition to 11 

occur. In intrinsic graphene, the D peak occurs at ~1350 cm
-1

.
[69, 183, 184]

  The second peak 12 

in the graphene Raman spectrum is the G peak.  The G peak is a single resonance process 13 

and results from the excitation and relaxation of an electron in which only a single point 14 

in K-space is involved. The G peak occurs at ~1580 cm
-1

.
[69, 183, 184]

 The Third peak in the 15 

graphene Raman spectrum is the 2D peak. The 2D peak is a double resonance process in 16 

which two opposite wave vectors are involved.  The 2D peak is the overtone of the D 17 

peak, but due to the involvement of two opposite wave vectors, no defects are required 18 

for the presence of the 2D peak. The 2D peak occurs at ~2700 cm
-1

.
[69, 183, 184]

 A 19 

schematic of the relaxation pathways associated with each Raman peak can be seen in 20 

Figure 17.  21 
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 1 

Figure 17 Raman modes of graphene. The prominent peaks in graphene are the G, D, and 2 

2D peaks generated by Raman modes a, d, e, f, i, j, k, and l. Gold labels represent 3 

minimal contributions to the Raman signal.  The D’, 2D’, and D’’ peaks are low intensity 4 

Raman peaks which are not typically used in characterizing graphene via Raman 5 

spectroscopy. Reprinted by permission from Macmillan Publishers Ltd: Nature 6 

Nanotechnology Vol 8, Issue 4, Pages 235-246, copyright (2013).
[183]

 7 

 8 

 9 

 10 

A detailed analysis of the 2D peak position, Full width half max (FWHM), and 11 

relative intensity to a single layer of graphene can be used to determine the distribution of 12 

orientations, Figure 18 depicts a “misoriented” bilayer within graphene devices.   13 

 14 

 15 

 16 
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 1 

Figure 18 Two graphene sheets depicted by their Brillouin zones.  An oriented graphene 2 

layer would fall directly on top of the previous layer.  The misorientation angle as 3 

measured by Raman is the rotation of the Dirac points from the center position. Reprinted 4 

with permission K. Kim et al, Physical Review Letters, Volume 108, 246103 (2012). 5 

Copyright (2012) by the American Physical Society.
[182]

 6 

 7 

 8 

 9 

As can be seen in Figure 19D, the area of the 2D peak for a graphene bilayer can be 10 

compared to the 2D peak area of a single layer allowing for orientations between 10 and 11 

20 degrees to be mapped. The 2D area can also be used to determine an orientation less 12 

than 10 degrees or more than 20 degrees. Orientations less than 10 degrees can then be 13 

determined by analyzing the FWHM and blue shift of the 2D peak as seen in Figure 19B 14 

and 19C.
[182]

  15 

 16 
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  1 

Figure 19 Rotational-angle dependence of Raman 2D peak. (a) Graphene 2D peak for 2 

rotated double-layer and single-layer graphene. The vertical dashed line represents the 3 

center of single-layer 2D peak. (b) Rotated double-layer graphene 2D peak FWHM. We 4 

have fitted the 2D peaks with a single Lorentzian peak for simplicity. The black squares 5 

and red circles are the experimental and theoretical calculation values. The blue 6 

horizontal area represents the experimental value from single-layer graphene. The grey 7 

(experiment) and red (calculation) areas are guides to the eye. (c) Rotated double-layer 8 

graphene 2D peak blue-shift in respective to the value from single-layer graphene. 9 

(d) Integral intensity of 2D peak. Experimental and calculation values were normalized to 10 

the single-layer value. Reprinted with permission K. Kim et al, Physical Review Letters, 11 

Volume 108, 246103 (2012). Copyright (2012) by the American Physical Society.
[182]

  12 

 13 

 14 

 15 

Raman spectroscopy can also be used to determine the number of graphene layers, 16 

doping concentrations in the graphene, strain, edge states, and defect concentration in the 17 

graphene layer using the position and FWHM of the 2D, G, and D peaks together.
[183]

  18 

The effect of the orientation on the electrical properties of bilayer devices, and more 19 

specifically the SymFET/BiSFET, has not been experimentally determined.   20 
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1.5.3 Disorder at the Interfaces 1 

Graphene is a one atom thick layer of carbon.  The electrical properties of the 2 

graphene are highly influenced by the interaction of the graphene surface with any 3 

adjacent materials.
[132, 185-187]

 In the case of graphene on SiO2, the electrical properties of 4 

the graphene can become limited due to the scattering of carriers in the graphene by 5 

charged impurities and surface phonons.
[188, 189]

 For this reason, the mobility of graphene 6 

on SiO2 is reduced by several orders of magnitude compared to suspended graphene.
[189]

 7 

The silanol groups at the surface of the SiO2 also degrade the performance of the 8 

graphene FET by causing unintentional p-doping and hysteresis in the graphene FET.
[190]

 9 

This makes the development of buffer layers which can be integrated into a CMOS 10 

fabrication process necessary for graphene electronics.  11 

The opposing side of the graphene is equally as important as the substrate side. The 12 

conventional method for depositing dielectrics is atomic layer deposition. In the case of 13 

graphene, direct deposition using atomic layer deposition has been an issue. The basal 14 

plane of graphene is free of dangling bonds and does not provide nucleation sites.
[191, 192]

 15 

Methods commonly employed for depositing dielectrics on graphene include (i) metal 16 

oxidized at ambient seeding layers
[193]

 (ii) functionalization of the graphene by ozone 17 

treatment
[194]

 (iii) and plasma assisted deposition
[195]

. The deposition of dielectrics on 18 

graphene using ozone and plasma assisted deposition techniques have been shown to 19 

degrade the graphene characteristics. The degradation has been attributed to damage to 20 

the graphene, increased phonon scattering from the dielectric, and trapped charges either 21 

in the dielectric or at the graphene/dielectric interface. Whether or not conventional ALD 22 

dielectrics and the required seeding layer to deposit them are of high enough quality to 23 
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make graphene FETs viable has yet to be determined. Furthermore, the necessity for a 1 

seeding layer limits the scalability of the oxide thickness. Graphene based two 2 

dimensional heterostructures have been studied to overcome the limitations of traditional 3 

insulating substrates/dielectric barriers. 4 

Two dimensional heterostructures have been predominantly created by mechanical 5 

exfoliation.
[49, 196-199]

 Single layers of the constituent materials are exfoliated from a bulk 6 

crystal source and mechanically stacked to form the vertical heterostructure. Hexagonal 7 

boron nitride is a commonly used two dimensional material for graphene based two 8 

dimensional heterostructures. The mechanical layering of graphene on hBN has been 9 

shown to drastically improve the electrical properties of graphene.
[200-203]

 This 10 

improvement has been attributed to the strong in-plane ionic bonding which leaves the 11 

hBN surface free of dangling bonds and surface traps, the atomically planar surface 12 

which suppresses rippling in the graphene, and the relatively high energy phonon modes 13 

of hBN compared to SiO2 which result in reduced scattering compared to the SiO2.
[204]

  14 

One potential problem in the use of hBN with graphene arises due to the similarity in 15 

the hBN and graphene structure.
[205]

 When graphene is in contact with hBN, the relatively 16 

small lattice mismatch (1.8%) results in the formation of a moiré pattern. The moiré 17 

pattern formed is dependent on the lattice mismatch and rotation angle between the layers 18 

as shown in Figure 20.  19 

 20 



40 

 

 1 

Figure 20 (A) Schematic of the measurement set-up showing the STM tip and an optical 2 

microscope image of one of the measured samples. (B) Superlattice wavelength (black) 3 

and rotation (red) as a function of the angle between the graphene and hBN lattices. (C-E) 4 

STM topography images showing (C) 2.4 nm (D) 6.0 nm (E) 11.5 nm moiré patterns. 5 

Typical imaging parameters were sample voltages between 0.3 V and 0.5 V and tunnel 6 

currents between 100 pA and 150 pA. The scale bars in all images are 5 nm. Reprinted by 7 

permission from Macmillan Publishers Ltd: Nature Physics. M. Yankowitz et al. Volume 8 

8, Issue 5, Pages 382-386 copyright (2012)
[205]

 9 

 10 

 11 

 12 

The moiré pattern can be characterized by the wavelength of the periodic structure 13 

defined by equation 12.  14 

 𝜆 =
(1+𝛿)𝛼

√2(1+𝛿)(1−cos𝜙)+𝛿2 
 (12) 15 

Where δ is the lattice mismatch, α is the graphene lattice constant, and ϕ is the rotation 16 

angle. For hBN, when ϕ = 0 the moiré wavelength reaches a value of 13.4 nm. This 17 

degree of order between the hBN and graphene gives rise to a periodic potential which 18 
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alters the band structure of the graphene as shown in Figure 21.
[205]

 The periodic potential 1 

gives rise to superlattice Dirac points in the graphene which can effectively open a 2 

bandgap. The impact on the graphene band structure is dependent on the moiré pattern 3 

wavelength. Shorter wavelengths do not impact the graphene band structure.
[206]

 For this 4 

reason, two dimensional materials with larger lattice mismatch are of interest for 5 

graphene heterostructures. 6 

 7 

 8 

Figure 21 Band structures of monolayer graphene/hBN system with θ = 0° calculated by 9 

(a) the tight-binding model and (b) the effective continuum model. (c) Three-dimensional 10 

plot of the first and second electron and hole bands of K-valley, calculated by the 11 

continuum model. Reprinted with permission from P. Moon, M. Koshino. Physical 12 

Review B. 90, 155406 2014. Copyright (2014) by the American Physical Society.
[207]

 13 

 14 

 15 

 16 

The transition metal dichalcogenides (TMDs) have been of particular interest for 17 

graphene based heterostructures.
[206, 208, 209]

 The TMDs are expected to improve the 18 

electronic properties of graphene due to the lack of dangling bonds, atomically smooth 19 

surface, and reduced phonon scattering similar to hBN. Naturally occurring TMD crystals 20 
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have a higher inherent defect concentration compared to hBN.
[206]

 Due to this, the TMDs 1 

have not shown the similar predicted improvements to the graphene electrical properties 2 

as seen for hBN.
[210, 211]

 The large defect concentrations have been experimentally shown 3 

to result in significant charge trapping and reduced electron mobilities in graphene/MoS2 4 

heterostructures.
[206, 210]

 The observed reduction in electron mobilities is due to charge 5 

fluctuations which arise from the line and point defects within the TMD structure. The 6 

impact of these defects for a vertical tunneling heterostructure has not been explored. 7 

Initial reports of the direct synthesis of complimentary two dimensional materials on 8 

graphene have shown degradation of the underlying graphene or nanocrystalline domain 9 

sizes of the synthesized material.
[212-215]

 The use of CVD synthesized hBN and graphene 10 

has shown to have less improvement of the graphene in-plane electrical transport 11 

compared to exfoliated materials as a result.
[214]

 Initial reports of MoS2 synthesized on 12 

graphene by molecular beam epitaxy has shown similar results.
[215]

 The impact of the 13 

increased disorder due to the direct synthesis of the complimentary two dimensional 14 

materials on the vertical transport in a graphene based heterostructure has not been 15 

determined. 16 

1.6 Other applications of graphene  17 

In any application using graphene, graphene will be placed on and ultimately be 18 

placed on by other materials. Methodologies for synthesizing and fabricating graphene 19 

devices will be required to make graphene viable in any application space. Understanding 20 

the impact of adjacent materials and how to minimize any negative effects will be 21 

necessary. The work presented in this dissertation analyzes how material based disorder 22 

impacts the electrical behavior of a graphene tunneling field effect transistor, but the 23 
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derived knowledge pertaining to synthesizing graphene, depositing materials on 1 

graphene, cleaning contamination, and processing of graphene in general can be applied 2 

to an arbitrarily large application space which utilizes graphene. A few selections of 3 

alternative applications of graphene in which this work can be applied are briefly 4 

discussed.  5 

1.6.1 Photodetectors 6 

Graphene is a gapless semimetal making it an ideal candidate for deep IR 7 

photodetectors.
[216-218]

 The lack of a bandgap allows graphene to absorb any wavelength 8 

of light making graphene an ideal broad spectrum photon detector. While thermal 9 

fluctuations will still introduce noise into graphene detectors, novel device architectures 10 

taking advantage of the two dimensional nature of graphene have been developed to 11 

overcome this limitation.
[219, 220]

   12 

One design for a photon based detector is shown in Figure 22. Two graphene sheets 13 

are separated by a thin dielectric as shown in Figure 22A. The bottom graphene sheet acts 14 

as a FET with a deposited source and drain contacts. As light is incident on the top layer 15 

of graphene, an electron hole pair is generated. The electron can then tunnel through the 16 

dielectric barrier separating the electron hole pair before recombination as shown in 17 

Figure 22C.
[220]

 This generates a net positive charge on the top graphene layer. This 18 

charge produces a gating effect on the bottom graphene layer allowing photo detection 19 

through a change in the current of the bottom layer. This device architecture allows 20 

tunability in the detected wavelength of light by adding an additional gate below the 21 

bottom graphene layer. By changing the Fermi level of the bottom graphene sheet, the 22 

detectable wavelengths of light can be tuned.
[220]

 23 
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 1 

  2 

Figure 22 (A) Schematic of device structure. (B) Black (right and top axes): transfer 3 

curve for bottom graphene layer using a silicon back gate (Vgb). Red (left and bottom 4 

axes): transfer curve for top graphene layer using the bottom graphene as the gate (Vgm). 5 

From these transport curves, we calculate the Fermi energies of the top and bottom 6 

graphene layers to be 4.756 eV and 4.655 eV, respectively. Inset: False-color scanning 7 

electron microscopy (SEM) image of the device. The gold areas indicate the metal 8 

electrodes and the purple and red areas the bottom and top graphene layers, respectively. 9 

Scale bar, 1 µm. (C) Schematic of band diagram and photo excited hot carrier transport 10 

under light illumination. Electrons and holes are represented by grey and red spheres, 11 

respectively. Vertical arrows represent photoexcitation, and lateral arrows represent 12 

tunneling of hot electron (grey) and hole (red). (D) Vertical tunneling current as a 13 

function of bias voltage applied across two graphene layers. The bottom layer is 14 

grounded, and bias voltage is applied to the top layer. Inset: Schematic band diagrams 15 

under forward and reverse bias. Red dashed lines indicate the Fermi levels of the 16 

graphene layers. Reprinted by permission from Macmillan Publishers Ltd: Nature 17 

Nanotechnology C.H. Liu et al. Volume 9, Issue 4 Page 273-278, copyright (2014)
[220]

 18 

 19 

 20 

 21 

Graphene photodetectors based off thermal detection have also been experimental 22 

shown. One such graphene photodetector utilizes the photo thermoelectric effect when 23 

graphene is contacted by two dissimilar metals.
[219]

 When the light is incident upon the 24 
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graphene, the electrons become heated. Due to the dissimilar metals in contact with the 1 

graphene, a potential gradient forms across the metal/graphene/metal junction.  A 2 

thermoelectric current is generated due to the potential gradient which serves as the 3 

detection mechanism. The fabricated thermoelectric graphene photodetector performance 4 

was comparable to current state of the art room temperature detectors for THz detection.  5 

1.6.2 Interconnects 6 

Graphene is a promising candidate for future interconnect technologies due to the 7 

large mean free path of electrons in graphene as well as the high current densities 8 

achievable.
[221-225]

 Graphene interconnects used to connect graphene based transistors 9 

would additionally reduce contact resistances further improving circuit performance.
[226]

 10 

Graphene interconnects have been shown to offer improvements over Cu interconnects 11 

for future interconnect scaling.  12 

Figure 23 shows the potential improvement in delay over copper interconnects at 13 

various interconnect lengths when the interconnect width is 14 nm. A ~10% 14 

improvement at short interconnect lengths and ~45% improvement in circuit delay at 15 

long interconnect lengths can be achieved with high quality graphene (suspended 16 

graphene meets these conditions) interconnects free of extrinsic scattering sources. As the 17 

quality of the graphene interconnect diminishes, a small improvement can still be seen for 18 

short interconnect lengths, but low quality graphene (CVD graphene on SiO2) is worse 19 

than an equivalent copper interconnect at long interconnect lengths.
[227]

 20 

 21 
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 1 

Figure 23  Optimal delay improvement versus block pitch for various MFP values at low 2 

supply voltage Vdd = 0.5 V with (A) normal threshold voltage and (B) high threshold 3 

voltage devices. © [2015] IEEE. Reprinted, with permission, from C. Pan et al, 4 

Technology/Circuit/System Co-Optimization and Benchmarking for Multilayer Graphene 5 

Interconnects at Sub-10-nm Technology Node. IEEE Transactions on Electron Devices, 6 

May 2015. 7 

 8 

 9 

1.6.3 Diffusion Barrier 10 

Graphene can also be introduced as the diffusion barrier for copper interconnects as 11 

seen in Figure 24.
[228-233]

 As a diffusional barrier, graphene promotes higher current 12 

densities, higher breakdown voltages, and lower resistivity of the copper interconnects in 13 

addition to preventing the Cu from diffusing into the underlying Si/SiO2.
[231-233]

 Similar 14 

to the direct use of graphene as an interconnect, the performance of a graphene/Cu stack 15 

as the interconnect is dependent on the quality of the graphene. Higher quality graphene 16 

serves as a better diffusional barrier and graphene which exhibits reduced scattering from 17 

edge states, impurities, and other extrinsic scattering factors results in higher current 18 

densities and reduced resistivity of the interconnect structure.
[231, 233]

    19 

 20 
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 1 

Figure 24 Effective resistivity of Cu-graphene heterogeneous interconnects versus 2 

interconnect length. (A) pgr = 0; (B) pgr = 0.8. © [2015] IEEE. Reprinted, with 3 

permission, from W.S. Zhao et al, Electrical Modeling of On-Chip Cu-Graphene 4 

Heterogeneous Interconnects. IEEE Electron Device Letters, May 2015.
[233]

 5 

 6 

 7 

1.6.3 Chemical Sensors 8 

Graphene sensors have been shown to be capable of detecting a single gas molecule 9 

on the graphene surface.
[234]

 The adsorption of a gas molecule on the graphene surface 10 

results in a charge transfer between the graphene and adsorbed gas molecule, similar to 11 

other solid-state sensors. 
[235]

Graphene has been explored as an ideal candidate for 12 

biosensing, gas/vapor sensing, and electrochemical sensors. Graphene is the ideal 13 

candidate for these applications due to its two dimensional structure, room temperature 14 

stability, and high mobility.
[236-238]

 The two dimensional structure of graphene allows 15 
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graphene to be minimally invasive. The high mobility results in reduced signal distortion. 1 

The stability of graphene allows the fabrication of graphene chemical sensors that do not 2 

require auxiliary heating, which reduces the complexity of graphene based sensors.
[239, 

3 

240]
 All of these properties of graphene make it the ideal candidate for many sensing 4 

applications. 5 

6 
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CHAPTER 2: GOALS AND ORGANIZATION 1 

2.1 Goals 2 

While significant work has been conducted on proving the viability of the graphene 3 

based electronics, very little work has been conducted on understanding how graphene 4 

can be integrated into a traditional CMOS fabrication process and what the impact of the 5 

fabrication process will be on the graphene. The goals of the work presented in this 6 

dissertation are (i) to develop a materials processing and integration scheme for large- 7 

area two dimensional materials (ii) determine the impact of contamination and disorder 8 

on vertical and horizontal electrical transport in graphene based vertical heterostructures 9 

(iii) elucidate the role of material synthesis/processing on the introduction of disorder in 10 

the vertical heterostructure and how this disorder impacts electrical transport. These goals 11 

will be achieved by fabricating and studying a large number of SymFET structures with a 12 

variety of tunneling barriers, graphene domain sizes, and processing conditions.  13 

2.2 Organization 14 

Chapter 3 discusses the experimental techniques used in the dissertation. It includes 15 

the synthesis of the 2D materials used in the dissertation, the transfer process of the 2D 16 

materials, and discussion on the techniques used for sample fabrication including e-beam 17 

evaporation, atomic layer deposition, spin coating, and photolithography. The physical 18 

characterization techniques used in the dissertation are presented as well as the electrical 19 

characterization methods. This chapter serves as a general overview of how these 20 

characterization techniques are used. The specific process parameters and experimental 21 

details are provided in the subsequent chapters.  22 
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Chapter 4 presents the development of a cleaning process to remove contaminants 1 

arising from the processing of graphene. Thermal decomposition of the contaminants and 2 

its impact on the graphene electrical properties are presented and discussed. A thermal 3 

decomposition in a hydrogen containing atmosphere is shown to significantly reduce 4 

process contaminants while thermal decomposition in an inert atmosphere is ineffective. 5 

Thermal processes of removing contamination are further shown to result in damage to 6 

the graphene structure. A wet chemistry cleaning process utilizing a sacrificial Ti layer 7 

etched by a dilute HF solution is introduced. The electrical results following the 8 

sacrificial Ti layer are compared to the graphene without any additional cleaning and 9 

exposure to HF without the sacrificial Ti layer. The deposition and removal of the Ti 10 

layer is shown to be the most effective methodology for removing processing 11 

contaminants from the graphene and results in the best electrical performance of all 12 

cleaning methods studied. The sacrificial Ti cleaning method is utilized to remove 13 

processing contaminants in all subsequent studies.  14 

Chapter 5 discusses the fabrication and electrical characterization of graphene 15 

tunneling junctions with atomic layer deposited dielectric barriers. A variety of tunneling 16 

barriers are deposited and the tunneling current is shown to be dependent on the tunneling 17 

barrier deposited. Furthermore, engineering of the desired tunneling characteristics is 18 

shown to be possible by engineering the tunneling barrier to give the desired 19 

characteristics. For tunneling barriers thicker than ~ 3 nm, the tunneling is shown to be 20 

dominated by trap assisted tunneling. By scaling the thickness of the tunneling barrier, 21 

direct tunneling is shown to be the dominant tunneling mechanism. While direct 22 

tunneling as the dominant tunneling mechanism is necessary for the observance of NDR, 23 
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no NDR is observed for any of the fabricated devices. The graphene grain boundaries are 1 

investigated as the source of disorder limiting the observance of NDR and are found to 2 

have a negligible impact on the tunneling current.  3 

Chapter 6 reports on the use of a two dimensional material, MoS2, as the dielectric 4 

barrier for the graphene tunneling structure. MoS2 is directly synthesized on graphene at 5 

two different temperatures. While the direct synthesis of MoS2 is shown to be detrimental 6 

to the underlying graphene, significantly less sulfur is shown to be incorporated into the 7 

graphene at reduced synthesis temperatures. It is suggested that the presence of Mo acts 8 

as a catalyst to incorporating sulfur into the graphene. The impact of the graphene on the 9 

MoS2 synthesis process is investigated and any impact is found to be negligible. An e- 10 

beam deposited Mo layer of 1 nm thickness is found to form a highly uniform trilayer of 11 

MoS2 regardless of whether the MoS2 is synthesized on SiO2 or graphene. The electrical 12 

properties of the individual graphene layers as well as the tunneling characteristics of the 13 

devices are presented. The direct synthesis of MoS2 on graphene is shown to greatly 14 

degrade the graphene electrical properties. Graphene tunneling junctions with directly 15 

synthesized MoS2 cannot be modulated. Graphene tunneling junctions with a transferred 16 

MoS2 tunneling barrier are compared to the directly grown samples showing that the 17 

impact on the graphene is a result of the synthesis process and not inherent in a 18 

graphene/MoS2/graphene junction. The tunneling current of the transferred MoS2 devices 19 

is presented and compared to theory.  20 

Chapter 7 expands upon chapter 6 using a hBN two dimensional material as the 21 

tunneling dielectric. In addition, an hBN buffer layer is placed between the graphene and 22 

SiO2 in order to reduce the scattering caused by the SiO2 phonon modes. The electrical 23 
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performance of the graphene with and without the hBN buffer layer is compared. The 1 

hBN buffer layer is shown to significantly increase the mobility of the graphene. The 2 

mean free path of the graphene is calculated from the mobility measurements and shown 3 

not to be limiting the coherence length of the tunneling structure. The tunneling 4 

characteristics of the fabricated devices are measured and no NDR is observed. This 5 

suggests component of the graphene TFET is the coherence within the tunneling barrier. 6 

Chapter 8 presents suggestions for further improvement of the work including 7 

improvements to the synthesis processes for the complimentary two dimensional 8 

materials to graphene,  using other two dimensional materials as electrodes instead of 9 

graphene, directly synthesizing the two dimensional materials on the target substrate, and 10 

suggested process improvements to the current fabrication process.  11 

Chapter 9 presents a summary and general discussion of the dissertation work.  12 

13 
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CHAPTER 3: EXPERIMENTAL METHODS 1 

3.1 Materials Synthesis 2 

3.1.1 Graphene Synthesis 3 

Graphene was synthesized on 99.8% copper foils of 25 μm thickness (Alfa Aesar 4 

13382) in a CVD FirstNano EasyTube 3000 advanced CVD system.  The copper foil was 5 

placed in glacial acetic acid for one minute and rinsed with DI water prior to being placed 6 

in the furnace load lock. After placing the copper foil in the load lock, the load lock was 7 

purged by pumping the load lock down to 20 mTorr then backfilling with argon. After 8 

purging in the load lock, the copper foil was loaded into the CVD chamber. The chamber 9 

was then purged under a constant argon flow of two liters per minute for eight minutes 10 

before being pumped to a base pressure of 8x10
-7

 Torr. After reaching base pressure, the 11 

chamber was heated to 1000°C at a rate of 180°C per minute under a constant Ar/H2 flow 12 

of 200 sccm and 15 sccm respectively at a pressure of 250 mTorr. After reaching 1000°C 13 

the copper foil was annealed under a constant Ar/H2 flow of 200 sccm and 15 sccm 14 

respectively for 10 minutes. After annealing, the Ar flow was shut off and CH4 was 15 

introduced to the chamber at a flow rate of 45 sccm as a carbon precursor for a total gas 16 

flow of 45 sccm CH4 and 15 sccm H2 at 250 mTorr for 6 hours. The graphene was 17 

synthesized during this time. After the 6 hour synthesis step, CH4 and H2 flows were shut 18 

off and the chamber was flushed with Ar at a flow rate of 2 lpm. The furnace was cooled 19 

under a constant Ar flow of 2 lpm at a pressure of 2 Torr at the natural cooling rate of the 20 

system (initial cooling rate of ~200°C per minute with a total cooling time of 1.5 hours to 21 
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reach room temperature) to room temperature. After reaching room temperature the Ar 1 

flow was shut off and the graphene was removed from the furnace.  2 

3.1.2 Molybdenum Disulfide Synthesis 3 

Molybdenum disulfide was synthesized either on a SiO2/Si substrate (300 nm oxide 4 

formed by dry oxidation at 1000°C) or on graphene transferred to a SiO2/Si substrate. 5 

Prior to synthesis, a 1 nm film of Mo metal was deposited on the substrate of choice by e- 6 

beam evaporation in a Denton Explorer e-beam evaporation system at 0.3 Å/s. The 7 

synthesis substrate was then placed into a furnace equipped with a vacuum pump and 8 

pumped down to base pressure (~5x10
-6

 Torr). After evacuating the chamber, the 9 

synthesis substrate was annealed for 30 minutes at 300°C in a 4:1 Ar/H2 atmosphere to 10 

reduce the natural oxide formed on the Mo upon exposure to atmosphere after e-beam 11 

deposition. During the annealing step, a separate sulfur container was heated to 160°C to 12 

generate sulfur vapors. After annealing, the chamber was cooled and pumped to base 13 

pressure. The vacuum valve was then closed creating a static environment in the furnace. 14 

Sulfur vapors were introduced to the static chamber raising the pressure to ~20 mTorr. 15 

After sulfur introduction, the static chamber was backfilled to 5 Torr with Ar. The 16 

chamber was then heated to the synthesis temperature of either 820°C or 1020°C and left 17 

for 1 hour. The chamber was then purged with Ar at process temperature followed by 18 

cooling to room temperature under a constant Ar flow. The thickness of the synthesized 19 

MoS2 was controlled by the initial Mo deposition thickness. The deposited thickness of 1 20 

nm resulted in the synthesis of a trilayer MoS2 film.   21 

3.1.3 Hexagonal Boron Nitride Synthesis 22 
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The hexagonal boron nitride used in this study was supplied by Professor Gong Gu of 1 

the University of Tennessee Knoxville. The hexagonal boron nitride was grown on Ni 2 

using an atmospheric CVD process in a hot wall furnace. Nickel foils (25 μm thick, 3 

99.5% Ni, Alfa Aesar) were used as the synthesis substrate. Ammonia borane (BH3-HN) 4 

was sublimed at 120°C and delivered to the CVD chamber by a Ar:H2 carrier gas. The 5 

synthesis time for the hBN formation is ~10 minutes followed by rapid cooling of the 6 

substrate. The growth process on Ni results in 3-7 layers of hBN as identified by TEM 7 

cross-sectional characterization.  8 

3.2 Sample Fabrication 9 

3.2.1 Transfer of 2D materials 10 

3.2.1.1 Graphene 11 

A wet transfer process was used to transfer the graphene from the copper growth 12 

substrate to the substrate of interest for each study. First, poly methyl(methacrylate) 13 

(PMMA 996k Sigma Aldrich 182265) was dissolved in chlorobenzene at a concentration 14 

of 46 mg/mL. The PMMA was coated onto one side of the graphene coated copper by 15 

spin coating at a rate of 3000 rpm for 60 seconds and allowed to dry overnight. As 16 

graphene forms on both sides of the copper foil during synthesis, the reverse side of the 17 

foil not protected by PMMA was etched in an Oxford Endpoint RIE to remove the 18 

graphene on the backside of the foil. The etch was done at a pressure of 100 mTorr with a 19 

25 watt O2/Ar plasma (25 sccm O2 and 5 sccm Ar flow) for 30 seconds. The 20 

Cu/Gr/PMMA stack was then floated Cu side down in two consecutive nitric acid baths 21 

(3:1 H2O:HNO3) for 60 seconds each to begin the copper etching process. Following the 22 
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nitric acid etch, the Cu/Gr/PMMA stack was transferred to an ammonium persulfate 1 

(0.5M) (APS) bath for two hours (floating copper side down). During this two hour etch, 2 

the Cu/Gr/PMMA stack becomes completely transparent. The stack is then transferred to 3 

a second APS bath for ~18 hours to remove any residual Cu that may remain. The now 4 

Gr/PMMA stack is rinsed with deionized water (DI), transferred to an isopropyl alcohol 5 

(IPA) bath to remove residual water, and fished out of IPA to the substrate of interest. 6 

After drying under a constant low pressure N2 flow, the Gr/PMMA stack on the desired 7 

substrate is heated to 220°C at a rate of 20°C/min on a hot plate and baked at 220°C for 5 8 

minutes. The sample is then soaked in acetone for 2.5 hours to remove the PMMA 9 

coating.  10 

3.2.1.2 MoS2 11 

MoS2 synthesized on 300 nm SiO2 was transferred to the target sample using a wet 12 

transfer process similar to the graphene wet transfer process. PMMA was spun onto the 13 

MoS2 at 3000 rpm for 60 seconds and allowed to dry overnight. The 14 

Si/SiO2/MoS2/PMMA stack was submerged in buffered oxide etch (BOE) for several 15 

hours until the MoS2/PMMA stack was released from the surface (typically overnight). 16 

The MoS2/PMMA stack was transferred to 3 consecutive DI water baths for 60 seconds 17 

each to remove any residual BOE contamination. The MoS2/PMMA stack was fished out 18 

of the last DI water bath to the target substrate and dried under a constant low pressure N2 19 

flow. The sample was heated to 220°C at a rate of 20°C/min on a hot plate and baked at 20 

220°C for 5 minutes. The sample is then soaked in acetone for 2.5 hours to remove the 21 

PMMA coating.  22 

 23 
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3.2.1.3 hBN 1 

Hexagonal boron nitride films synthesized on Ni foils were transferred to the target 2 

substrate by a modified wet transfer process. The Ni/hBN films were coated with PMMA 3 

by spin coating at 3000 rpm for 60 seconds and allowed to dry overnight. The sample 4 

was floated uncoated side down in Copper Etchant 100 (FeCl3 and HCl solution) 5 

overnight. The hBN/PMMA stack was rinsed in a DI water bath for 60 seconds, 6 

transferred to an IPA bath to remove residual water, and fished onto the target substrate 7 

from the IPA. After drying under a constant low pressure N2 flow, the sample was heated 8 

to 220°C at a rate of 20°C/min and baked at 220°C for 5 minutes. The sample was then 9 

soaked in acetone for 2.5 hours to remove the PMMA coating. 10 

3.2.2 Spin Coating 11 

Spin coating was performed using a BLE Delta 20 spin coater. Samples were 12 

mounted to a 4” Si carrier wafer using Kapton tape for spin coating. PMMA used for 13 

transferring of the 2D films was dispersed at 1000 rpm (1000 rpm/s acceleration) for 15 14 

seconds before accelerating to 3000 rpm at a rate of 1000 rpm/s and spinning at 3000 rpm 15 

for 60 seconds. The thickness of the PMMA film was measured to be ~50 nm by 16 

ellipsometry.  17 

SC 1813 positive photoresist was used for the optical lithography definition of the 18 

samples in this study. SC 1813 photoresist was manually dispensed to the stationary 19 

wafer followed by a dispersion step at 1000 rpm for 15 seconds. The sample was 20 

accelerated at a rate of 1500 rpm/s to 4500 rpm and spun for 60 seconds. A soft bake 21 

prior to lithographic exposure was performed at 115°C for 60 seconds. The thickness of 22 

the SC 1813 after spin coating was ~1.2 μm. 23 
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3.2.3 Photolithography 1 

Contact lithography was used to define the structure of the fabricated devices in a 2 

Karl Suss TSA MA-6 mask aligner. SC 1813 positive photoresist of 1.2 μm thickness 3 

was used for all patterning. The photoresist was exposed to 435 nm light for a total 4 

dosage of 120 mJ/cm
2
 while in hard contact with a fused silica/chromium photomask. 5 

Following exposure, the substrate was submerged in MF 319 developer for 60 seconds 6 

then rinsed under flowing DI water. A multilevel mask set (up to 8 levels) was used in the 7 

fabrication of the devices fabricated in this study.  8 

3.2.4 Metal Deposition 9 

Metal deposition was performed in either a Denton Explorer e-beam evaporator or 10 

CHA Mark 40 e-beam evaporation system. The e-beam chamber was pumped to a base 11 

pressure of at least 2x10
-6

 Torr before depositing material. Metals of thickness less than 12 

10 nm were deposited at a rate of 0.3 Å/s. Thicknesses above 10 nm were deposited at a 13 

rate of 1 Å/s. The thickness of the deposited film was measured in situ using a quartz 14 

crystal resonant sensor. Metal patterns were defined using a lift-off process in which the 15 

definition of the metal contacts was patterned in SC 1813 photoresist using contact 16 

lithography. The metal was deposited using e-beam evaporation to fill the contact shaped 17 

holes in the resist layer. The resist layer was removed by soaking in acetone which in turn 18 

lifted off the unwanted metal leaving behind only the metal deposited in the contact 19 

regions.  20 

3.2.5 Dielectric Deposition 21 

Dielectrics were deposited by atomic layer deposition (ALD) in a Cambridge 22 

Nanotech Plasma ALD system. All depositions were performed at 250°C. Trimethyl 23 
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aluminum (TMA) was used as the Al precursor. Tetrakis(dimethylamido)hafnium 1 

(TDMAH) was used for the Hf precursor. Tetrakis(dimethylamido)titanium (TDMAT) 2 

was used for the Ti precursor. Water was the oxygen precursor for all depositions. The 3 

dielectrics were deposited at a rate of ~1 Å/cycle and thicknesses were confirmed by 4 

ellipsometry.  5 

Due to the inert basal plane of the graphene, a seeding layer was necessary to nucleate 6 

the deposition of ALD dielectrics on graphene. For this purpose, a Ti metal layer of 1-2 7 

nm thickness was deposited by e-beam evaporation and allowed to naturally oxidize in 8 

air. The formed TiOx layer served as the seeding layer for subsequent dielectric 9 

deposition in the ALD system.  10 

Dielectric regions were defined using a wet etch process. The dielectric layer was 11 

uniformly deposited across the entire surface of the sample. SC 1813 photoresist was 12 

spun onto the dielectric surface and patterned using contact lithography. The dielectric 13 

areas of interest were protected by the resist layer and the unwanted dielectric layers were 14 

exposed. The samples were placed in a 100:1 HF:DI solution and etched at a rate of 1 nm 15 

per 45 seconds of etch time.  16 

3.3 Characterization 17 

3.3.1 Ellipsometry 18 

Ellipsometry was performed with a Woolam M-2000 spectroscopic variable angle 19 

ellipsometer. All ellipsometry measurements were performed at angles from 65 to 75 20 

degrees with a 5 degree step. The acquisition time at each step was five seconds. Cauchy 21 

models were used to fit the experimental data in order to determine the measured 22 

thicknesses. 23 
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3.3.2 Atomic Force Microscopy (AFM) 1 

Atomic force microscopy was performed with a Veeco Dimension 3100 scanning 2 

probe microscope. Silicon cantilevers coated with Al on the reflex side with a pyramidal 3 

silicon tip of 1-2 nm radius and a spring constant of 37 N/m were used for imaging. All 4 

topographic images were acquired in tapping mode with a tip velocity less than 15 μm/s. 5 

AFM scan data was analyzed using Gwyddion analysis software. RMS roughness values 6 

were calculated from the entire scan area unless otherwise noted.  7 

3.3.3 Scanning Kelvin Probe Microscopy (SKPM) 8 

Scanning Kelvin Probe Microscopy measurements were performed using a Veeco 9 

Dimension 3100 scanning probe microscope. Pt/Ir coated silicon cantilevers with a 10 

pyramidal tip of radius 30 nm and a spring constant of 3 N/m were used for SKPM 11 

measurements. The topography of the sample was measured in tapping mode on the trace 12 

and retrace scan. The SKPM measurement was performed during the interleave scan at a 13 

constant height of 5 nm.  14 

3.3.4 Raman Spectroscopy 15 

Raman Spectroscopy was performed in a Thermo Nicolet Almega XR Dispersive 16 

Raman Spectrometer with a 488 nm laser at a spot size of 0.7 μm. All measurements 17 

were conducted in ambient conditions.  All Raman spectra were collected by exposures 18 

of 2 seconds and 10 integrations.  19 

3.3.5 X-ray Photoelectron Spectroscopy (XPS) 20 

X-ray photoelectron spectroscopy was performed in a Thermo Scientific K-Alpha 21 

XPS system with a monochromatic Al Kα X-ray source and a hemispherical analyzer in 22 



61 

 

Constant Analyzer Energy (CAE) mode (50 eV pass energy, 0.1 eV step size). The X-ray 1 

spot size was varied from 400 μm to 30 μm dependent on the size of the feature of 2 

interest. High resolution elemental scans were performed with 10 integrations and 15 3 

seconds per scan.  4 

3.3.6 Electrical Measurements 5 

Electrical measurements were conducted using a Keithley 4200-SCS semiconductor 6 

parameter analyzer. A lakeshore TTPX cryogenic probe station was used for all vacuum 7 

and low temperature measurements. Liquid nitrogen was used to cool the probe station to 8 

as low as 77 K. Electrical measurements were also conducted using a Cascade summit 9 

12000 semi-automatic probe station. Electrical measurements conducted in the Cascade 10 

probe station were conducted under a constant flow of nitrogen at room temperature and 11 

ambient pressure. Measurements conducted in vacuum were annealed at 80°C for ~18 12 

hours to remove residual contamination from the environment prior to taking 13 

measurements. 14 

The electrical properties of the individual graphene layers were extracted using a 15 

constant mobility model developed by Kim et al. A two point probe measurement setup 16 

is used. The resistance of the graphene at a fixed drain bias is measured as a function of 17 

the applied back gate voltage. The measured resistance is modelled using equation 13. 18 

 𝑅𝑡𝑜𝑡 = 𝑅𝑐𝑜𝑛 +
𝑁𝑠𝑞

√𝑛𝑜
2+𝑛𝑖𝑛𝑑

2 𝑒𝜇

 (13) 19 

Where Rtot is the total resistance, Rcontact is the contact resistance, Nsq is the number of 20 

squares, no is the intrinsic carrier concentration, nind is the induced carrier concentration 21 

from the back gate, e is the charge of an electron, and μ is the mobility. The induced 22 
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carrier concentration is determined as a function of the Dirac point of the graphene as 1 

shown in equation 14.  2 

 𝑛𝑖𝑛𝑑 =
[𝑉𝐷𝑖𝑟𝑎𝑐−𝑉𝐵𝐺]𝐶𝑜𝑥

𝑞
 (14) 3 

Where VDirac is the Dirac point of the graphene, VBG is the applied back gate voltage, 4 

Cox is the capacitance of the back gate oxide, and q is the charge of an electron. The total 5 

resistance is modelled using Rcontact, no, μ, and the Dirac point of the graphene as fitting 6 

parameters and compared to the measured resistance of the graphene channel. A least 7 

squares approach is used to minimize the error between the modelled resistance and the 8 

experimental resistance. 9 

10 
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CHAPTER 4: CLEANING GRAPHENE 1 

4.1 Introduction 2 

One key issue preventing graphene from being fully integrated into conventional 3 

complementary metal oxide semiconductor (CMOS) processing is the sensitivity of 4 

graphene to processing conditions.
[60, 241-243]

  The transfer of CVD grown graphene and 5 

the conventional photolithography processes used in the fabrication of graphene devices 6 

have been shown to leave behind residue negatively impacting device performance.
[244]

  7 

To date, several techniques for the cleaning of graphene such as electrical current 8 

annealing,
[174]

 plasma cleaning,
[245]

 and chloroform treatments
[170]

 have been used with 9 

varying degrees of success.  Electrical current annealing has been shown to be an 10 

effective means for cleaning individual graphene devices, but has shown limited success 11 

in removing residues from large graphene areas.
 
 Plasma cleaning processes reported in 12 

the literature involve highly reactive oxygen and hydrogen species as well as ion 13 

bombardment which results in defect generation in the graphene sheets.
[246, 247]

  14 

Chloroform cleaning treatments are not desirable due to its toxicity.  Therefore, other 15 

methods for the removal of residues introduced during processing are needed in order to 16 

fully incorporate graphene into traditional CMOS processing.   17 

4.2 Thermal Cleaning 18 

Thermal decomposition of the contaminants is one potential method for cleaning 19 

graphene. The main contaminant species after processing the graphene, PMMA, 20 

thermally decomposes at temperatures approaching 300 °C.
[248]

 By heating the fabricated 21 

devices to 300 °C, the polymeric contaminants will decompose and be removed from the 22 
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surface. In this study, back gated graphene FETs fabricated from the same copper foil 1 

(i.e. graphene grown during the same growth run) and transferred to a substrate cleaved 2 

from the same Si/SiO2 wafer were used to reduce run-to-run variations. The devices were 3 

fabricated using conventional photolithography for patterning and e-beam deposition to 4 

deposit Ni/Au capped contacts. The first set of devices, labelled “as-is”, were soaked in 5 

acetone for 2 hours after device fabrication. The second set of devices, labelled 6 

“nitrogen”, were heated to 300 °C in a nitrogen environment at atmospheric pressure for 7 

3 hours followed by a 2 hour soak in acetone. The third set of devices, labelled “forming 8 

gas”, were heated to 300 °C for 3 hours in a 10% H2/90% N2 environment at atmospheric 9 

pressure followed by a 2 hour soak in acetone. For both the nitrogen and forming gas 10 

samples the applied heating rate was 10 °C per minute. 15-20 devices of each set were 11 

fabricated and measured.  12 

XPS was used in order to assess the effectiveness of the cleaning procedures at 13 

removing the PMMA contaminants. The C 1s XPS spectrum was used to monitor the 14 

presence of PMMA before and after cleaning. Lorentzian peak shapes of fixed position 15 

and width were used to fit the graphene C 1s component peaks. Gaussian-Lorentzian 16 

cross product peak shapes of fixed position, width, and constrained area ratios were used 17 

to fit the PMMA component peaks. Positions, widths, and area ratios for the PMMA 18 

spectrum were taken from Lhoest et al.
[249]

 A Shirley background correction was used in 19 

all spectra. Shown in Figure 25A, the graphene C 1s XPS spectrum has a primary peak at 20 

284.4 eV corresponding to the sp
2
 C-C bonds (pink) which makeup the structure of the 21 

graphene. The secondary peak accounts for the inherent asymmetry of the sp
2
 C-C peak 22 

(dark green). The linear combination of all component peaks forms the overall shape of 23 
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the C 1s spectrum (orange). The graphene with PMMA C 1s spectrum, shown in Figure 1 

25B, contains the sp
2
 C-C peak from the graphene located at 284.4 eV, the sp

3
 C-C peak 2 

from the PMMA located at 284.8 eV (red), the C-C(O)-O peak located at 285.6 eV 3 

(green), the C-O peak located at 286.7 eV (blue), and the C=O peak located at 288.9 eV 4 

(light blue). Figure 25C shows the C 1s spectrum after heating the sample in a nitrogen 5 

environment. The C 1s spectrum contains sp
2
 C-C contributions from the graphene, sp

3
 6 

C-C contributions, C-C(O)-O contributions, C=O contributions, and C-O contributions 7 

suggesting the sample is still heavily contaminated. Figure 25D shows the C 1s spectrum 8 

of the forming gas sample. The C 1s spectrum shows contributions from the graphene as 9 

well as the PMMA component peaks.  10 

 11 

 12 

Figure 25 (A) C 1s spectra for intrinsic graphene. (B) Deconvolution of the C 1s 13 

spectrum for graphene before cleaning (C) Deconvolution of the C1s spectrum for 14 

graphene after exposure to forming gas at 300°C for 3 hours. (D) Deconvolution of the C 15 

1s spectrum for graphene after exposure to nitrogen at 300°C for 3 hours. 16 
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The area ratio of the graphene C 1s component to the overall C 1s area is used to 1 

determine the percentage of the C 1s spectrum that is derived from the graphene. As the 2 

PMMA is removed, a greater amount of the C 1s spectrum will be derived from the 3 

graphene components. The effectiveness of the cleaning procedure is determined by the 4 

percentage of the C 1s spectrum derived from the graphene component compared to the 5 

graphene before cleaning. Heating under nitrogen results in a slight increase of 6% in the 6 

sp
2
 contribution percentage indicating heating under a nitrogen environment is a poor 7 

method of removing contamination from the surface. Heating under forming gas shows a 8 

significant increase of 25% in the sp
2
 contribution percentage indicating a significant 9 

reduction in contamination.  10 

The area ratios of the PMMA component peaks can be used to determine whether the 11 

contamination present after heating remains PMMA or is a redeposited decomposition 12 

product. The peak area percentages shown in Table 2 show a reduction in the C=O and 13 

C-O component areas indicative that the bulk of the contamination on the sample heated 14 

under nitrogen is no longer PMMA. This indicates decomposition of PMMA without 15 

removing the polymeric decomposition products from the surface. The increase in the 16 

relative sp
2
 contribution percentage indicates a marginal decrease in the total amount of 17 

contamination after heating under nitrogen with the bulk of the decomposition products 18 

redepositing on the graphene. When heating in a forming gas environment, the area ratios 19 

of the PMMA component peaks are consistent with PMMA as shown in Table 1. This 20 

suggests partial decomposition of the PMMA into volatile species which leave the 21 

surface of the graphene. Contamination that remains on the sample is still structurally 22 

PMMA. Full decomposition of the PMMA may be possible with additional heating time. 23 
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Table 1 Peak area ratios (referenced to peak at 284.8 eV) from the XPS fittings shown in 1 

Figure 25. 2 

Sample 284.8 eV 285.6 eV 286.7 eV 288.9 eV 284.4 eV 

Before 

Cleaning 

1 0.5 0.5 0.5 .60 

Nitrogen 1 0.51 0.49 0.14 .73 

Forming Gas 1 0.5 0.5 0.5 3 

PMMA 1 0.5 0.5 0.5 0 

 3 

  4 

 5 

The effectiveness of the cleaning methods was further quantified by atomic force 6 

microscopy (AFM). An AFM topography image of the as-is graphene is shown in Figure 7 

26. The topography shows a dense covering of contamination. The contamination is a 8 

near continuous film of 2-5 nm in height as shown in the extracted height profile. The 9 

overall roughness of the as-is graphene sample was found to be 3.3±0.8 nm.  10 

 11 

 12 

Figure 26 AFM topology of graphene after processing without any additional cleaning 13 

procedures. The height profile is taken from the line scan outlined in red.  14 

 15 

 16 

 17 
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Heating the graphene in a nitrogen environment results in the contamination 1 

migrating to form clusters as shown in Figure 27. The clusters of contamination measure 2 

~7 nm in height and cover the majority of the graphene surface. The graphene in between 3 

the clusters shows sub nanometer roughness values of the same magnitude as the 4 

underlying substrate roughness of 0.4±0.2 nm. The clusters of contamination cover 5 

55.62% of the surface of the nitrogen sample.  6 

 7 

 8 

Figure 27 AFM topography image of graphene after exposure to a nitrogen environment 9 

at 300°C for 3 hours. Height profile is taken from the line scan shown in red.  10 

 11 

 12 

 13 

In comparison, heating the graphene sample in a forming gas environment results in 14 

an overall surface roughness of 0.92±0.3 nm. Similar to heating under nitrogen, the 15 

forming gas sample shows clustering of the contaminants after heating as shown in 16 

Figure 28. The clusters have an approximate height of 7 nm and a surface coverage of 17 

14.65%.  18 

 19 
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 1 

Figure 28 AFM topography of graphene after exposure to a forming gas environment at 2 

300°C for 3 hours. The height profile is taken from the line scan shown in red.  3 

 4 

 5 

 6 

Structural analysis of the graphene before and after cleaning is performed by using 7 

Raman spectroscopy. The Raman spectra for each cleaning condition are shown in Figure 8 

29A. The typical graphene 2D peak is visible around 2700 cm
-1

 and represents a double 9 

resonance process in which an electron is scattered from a K point in the graphene band 10 

structure to a K’ point then back to a K point. The G peak visible at 1580 cm
-1

 11 

corresponds to the optical vibration mode between two adjacent carbon atoms in a 12 

graphene layer. The third peak which commonly appears in the graphene Raman spectra 13 

is the D peak located at 1350 cm
-1

. The D peak is a disorder induced band which is only 14 

present in defected areas of the graphene. The 2D:G ratio combined with the FWHM of 15 

the 2D peak can be used to assess the number of graphene layers. The observed spectrum 16 

for the as-is sample shown in Figure 29B shows a 2D:G ratio of >2:1 and a FWHM of 30 17 

cm
-1

 indicating single layer graphene. The absence of the D peak at 1350 cm
-1

 is a clear 18 

indication that the graphene is of high quality. By observing the evolution of the 19 
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graphene Raman spectra with each cleaning process, the impact of the cleaning process 1 

on the graphene is determined.  2 

 3 

 4 

Figure 29 (A) Raman spectra of graphene before and after each cleaning condition. (B- 5 

D) Raman spectrum before cleaning, after nitrogen cleaning, and after forming gas 6 

cleaning respectively. Lorentzian peak fittings for the D, G, and 2D are superimposed.  7 

 8 

 9 

 10 

The nitrogen sample Raman spectrum shows a marginal increase in the D peak at 11 

1350 cm
-1

 as shown in Figure 29C indicating the heating process introduces a small 12 

amount of defects into the graphene structure. 2D peak shifts to 2707 cm
-1

while the G 13 

peak shifts to 1582 cm
-1

 indicative of p doping from the cleaning process. The increased 14 

D peak and the shifting of the 2D and G indicate that nitrogen cleaning is not an 15 

acceptable cleaning method. 16 
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The forming gas sample Raman spectrum shown in Figure 29D shows a slight 1 

increase in the D peak intensity. The D peak intensity is 25% larger than the D peak 2 

introduced by heating under nitrogen suggesting the hydrogen can react with the 3 

graphene to create additional defects. The 2D peak and G peak are shifted to 2707 cm
-1

 4 

and 1582 cm
-1

 respectively. The similar peak shifting observed between the forming gas 5 

and nitrogen annealing suggests the doping is most likely coming from an increased 6 

interaction with the substrate or ambient environment as a result of the heating as 7 

opposed to the environment the sample was heated in. Overall, the forming gas and 8 

nitrogen processes have a marginal impact on the graphene physical and electronic 9 

structure as observed by Raman spectroscopy. 10 

The electronic properties of the graphene are further assessed by fabricating back 11 

gated FETs and performing ID-VG measurements (transfer measurements) of the 12 

graphene. Graphene intrinsically has equal conductance of electrons and holes. This is 13 

shown in the transfer curve by symmetry around the point of minimum conductance 14 

(Dirac point; VDirac) which is intrinsically at 0 V. The transfer curve of the as-is samples 15 

shows a shifting in the Dirac point to 18 V and a slight asymmetry in the hole and 16 

electron conductance. The method developed by Kim et al is used to extract the mobility, 17 

carrier concentration, and total contact resistance from the transfer curve in order to 18 

assess the impact of the cleaning procedures on the electrical performance of graphene 19 

FETs.
[193]

 Shown in Figure 30B, the average Dirac point of the graphene shifts from 18 V 20 

to 14.4 V after heating in either forming gas or nitrogen. The reduced shifting of the 21 

Dirac point is indicative of a reduction in accidental doping of the graphene. The Dirac 22 

point is similar for the forming gas and nitrogen samples despite the disparity in polymer 23 
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contaminants on the graphene as evidenced by XPS and AFM. This suggests the doping 1 

of the graphene is either coming from the substrate or adsorbates from the environment 2 

and not the remaining polymer contaminant. The intrinsic carrier concentration, n0, is a 3 

measure of the free carrier concentration at the Dirac point. The free carrier concentration 4 

of graphene is intrinsically 0 cm
-2

. An increase in n0 is indicative of an increase in charge 5 

at the graphene interfaces. As shown in Figure 30A, the as-is sample shows an average n0 6 

of 9x10
11

 cm
-2

 with a standard deviation of 4x10
11

 cm
-2

. The forming gas sample shows 7 

an average n0 of 1.05x10
12

 cm
-2

 with a standard deviation of 2x10
11

 cm
-2

. The change in 8 

n0 between the as-is sample and the forming gas sample falls within the error of the as-is 9 

sample indicating only a marginal change in n0 when heating in an inert environment. 10 

The nitrogen sample shows an average n0 of 1.2x10
12

 cm
-2

 with a standard deviation of 11 

1x10
11

 cm
-2

. The change of 3x10
11

 cm
-2 

of the nitrogen sample is indicative of a 12 

significant increase. The increase in n0 is a result of more intimate contact between the 13 

substrate and graphene as a result of the heating. While this effect is also present in the 14 

forming gas sample, the hydrogen present during heating in forming gas passivates the 15 

silicon surface. A similar n0 is measured between the as-is sample and the forming gas 16 

sample due to the offsetting of increased substrate influence due to a more intimate 17 

contact by a reduction in the surface charge due to hydrogen passivation at the 18 

SiO2/graphene interface.  As shown in Figure 30 C, a slight increase in contact resistance 19 

is seen for both heat treatments. Both heat treatments result in an increased mobility 20 

while forming gas treatment results in a slightly higher mobility as shown in Figure 30D. 21 
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 1 

Figure 30 (A) Induced carrier concentration (n0) before and after cleaning. (B) Dirac 2 

point of the graphene before and after cleaning. (C) Total contact resistance before and 3 

after cleaning. (D) Mobility before and after cleaning. 4 

 5 

4.3 Titanium Cleaning 6 

Back gated field effect transistors (FETs) were fabricated using conventional 7 

photolithography and e-beam evaporation for the deposition of Ni contacts capped with 8 

Au.  Three sets of devices (15 devices per set) were fabricated using graphene from the 9 

same copper foil (i.e. graphene grown during the same run) and transferred to a substrate 10 

cleaved from the same Si/SiO2 wafer to prevent run-to-run variations in the data.  The 11 

first set of devices, labeled “as-is”, did not receive any post fabrication treatments 12 

following device fabrication.  The second set of devices, labeled “HF-cleaned”, was 13 
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treated with a 200:1 DI:HF solution for thirty seconds.  The third set of devices, labeled 1 

“Ti-cleaned”, had 2 nm of Ti deposited via e-beam evaporation at a rate of 1 Å/s and was 2 

subsequently etched using a 200:1 DI:HF solution until the Ti was completely removed 3 

as evidenced by x-ray photoelectron spectroscopy (XPS).  The thickness of 2 nm was 4 

chosen as the thickness was sufficient to provide complete coverage of the graphene and 5 

did not require a significant etch time to remove.  Thicker depositions are not expected to 6 

impact the cleaning procedure other than increasing the etch time required to fully 7 

remove the Ti layer.  The deposition rate was chosen due to system calibration settings 8 

and is not expected to significantly impact the cleaning procedure.  All electrical 9 

measurements were carried out in a Lakeshore cryogenic probe station under vacuum 10 

(5x10
-6

 Torr) following an overnight 80 °C in situ anneal in order to remove 11 

environmental adsorbates from the graphene channel.
[132] 

12 

Figure 31 shows a summary of the electrical characterization of the prepared devices.  13 

The mobility, intrinsic or impurity carrier concentration, and minimum conductance point 14 

were extracted from the Id-Vg curves using a method outlined elsewhere.
[134, 250]

 The 15 

mobility, impurity carrier concentration, and minimum conductance point can give a 16 

clear indication in the amount of contamination on the graphene channel.  Contamination 17 

on the graphene channel acts as scattering centers for the charge carriers, decreasing the 18 

mobility due to increased scattering.  Contamination on the surface can also act as 19 

dopants, injecting additional charge carriers into the graphene channel resulting in a rise 20 

of the impurity carrier concentration.  The minimum conductance point of the graphene 21 

can be impacted by the introduction of charge inhomogeneity from the contamination in 22 

the form of electron/hole puddles or charged contamination species.    23 
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Figure 31A shows the mobility of the devices.  The as-is devices have an average 1 

mobility of 1142 cm
2
 V

-1
s

-1
.  The HF-cleaned devices saw an increase in average 2 

mobility up to 1806 cm
2
V

-1
s

-1
 suggesting partial removal of the contamination while the 3 

Ti-cleaned devices showed the largest average mobility of 2235 cm
2
V

-1
s

-1
.  From Figure 4 

31B, the impurity carrier concentration is slightly reduced following the HF cleaning, but 5 

is not as effective as the Ti removal process which reduces the impurity carrier 6 

concentration from 9.41x10
11

 cm
-2

 to 4.98x10
11

cm
-2

.  Figure 31C shows the minimum 7 

conductance point of the graphene devices.  The as-is samples have an average minimum 8 

conductance point of 7.09 V.  The HF cleaned samples show an increase in the minimum 9 

conductance point to 14.4 V, suggesting an increase in charge inhomogeneity on the 10 

graphene surface possibly due to the addition of fluorine or hydrogen to the graphene or 11 

due to changes in the underlying substrate resulting from HF exposure. The Ti cleaning 12 

procedure results in the minimum conductance point moving to 2.48 V, closer to the 13 

intrinsic minimum conductance point of 0 V for graphene indicating a removal of 14 

contamination from the channel. Figure 31D shows the contact resistance showing a 15 

slight increase in contact resistance after the Ti cleaning procedure.  16 
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 1 

Figure 31 (A) Mobility measurements of the as-is, HF-cleaned, and Ti-cleaned devices.  2 

Ti cleaning results in the highest mobility. (B) Intrinsic or impurity carrier concentration 3 

measurements.  The Ti cleaning results in a significant improvement. (C) Minimum 4 

conductance point measurements. The Ti-Clean devices shift towards the intrinsic point 5 

of graphene while the HF cleaning shifts away from the intrinsic point of 0 V. (D) 6 

Contact resistance measurements. A slight increase in contact resistance is only observed 7 

after the Ti cleaning procedure. 8 

 9 

 10 

 11 

The impact of the cleaning procedures on the graphene was characterized using 12 

Raman spectroscopy.  The Raman characterization was performed in a Thermo Scientific 13 

Nicolet Almega XR using an excitation wavelength of 488 nm.  As can be seen in Figure 14 

32A, the D-band is similar for graphene from all three processes, signifying that the e- 15 
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beam evaporation of Ti and the chemical etching process do not damage the graphene.  1 

The G band position shifts from 1582 cm
-1

 to 1572 cm
-1

 after Ti deposition as seen in 2 

Figure 32B, suggesting that the metal deposition causes doping in the channel.
[183]

 Figure 3 

32B also shows that following the removal of Ti from the channel, the G band position 4 

shifts to a value of 1580 cm
-1

.
[251]

 This indicates that the dopants associated with the Ti 5 

deposition do not remain after Ti removal and that Raman can be used as a simple and 6 

effective means to determine if all Ti has been removed.  Interestingly, the Raman 7 

spectrum of the HF cleaned sample shows significant doping as seen in Figure 32B, and 8 

further indicates that HF alone is not an effective means to clean graphene as it 9 

introduces doping into the channel.  This is not present in the Ti-cleaned sample despite 10 

over etching to ensure all Ti is removed.   11 

 12 

 13 

Figure 32 (A) The Raman spectra for the as-is, HF-cleaned, and Ti-Cleaned samples 14 

(Both before and after Ti removal).  For all samples, the 2D/G ratio is greater than 2:1 15 

indicating monolayer samples.  The D peak is negligible in all four spectrums indicating 16 

no damage occurs to the graphene during the processing of the devices or during the 17 

cleaning procedure. The 2D, G, and D peak positions are labeled with their respective 18 

letter designations.  (B) The G peak of the as-is, HF-cleaned, and Ti-cleaned samples.  19 

Shifting in the spectrum signifies doping, with Ti-cleaning being the closest to the 20 

intrinsic position of 1580 cm
-1

.  21 

 22 
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Following the Raman and electrical characterization, the HF cleaning procedure was 1 

deemed to be inferior to the Ti cleaning process due to the apparent doping associated 2 

with the process and non-ideal electrical characterization.  To further characterize the 3 

effectiveness of the Ti cleaning procedure, an XPS analysis was performed on the as-is 4 

and Ti-cleaned samples.  The C1s XPS spectrum of PMMA has peaks at 289.03, 286.90, 5 

285.68, 285.00 eV in a 1:1:1:2 ratio corresponding to the carbon-oxygen double bond, 6 

carbon-oxygen single bond, quaternary carbon bonds, and secondary/tertiary carbon 7 

bonds, respectively.
[252]

 As can be seen in Figure 33, the as-is sample has an easily 8 

distinguishable peak located at 289 eV. This peak was used as a signature of the presence 9 

of PMMA due to the absence of such a peak in pristine graphene spectrums and because 10 

the peak is easily distinguishable from the main carbon peak at 285 eV.
[167]

 The Ti 11 

deposited spectrum clearly shows a peak at 289 eV, indicating the PMMA is still present 12 

following the Ti deposition.  Following the Ti removal, the peak at 289 eV is completely 13 

removed, indicating the complete removal of PMMA residues from the graphene 14 

channel.  The Ti deposition results in Ti bonding with the oxygen sites in the oxygen rich 15 

PMMA residue as evidenced by the Ti 2p spectra (not shown) containing peaks at 458 16 

and 464 eV, consistent with complete oxidation of the Ti layer, as well as the absence of 17 

the Ti-C peak at 282.7 eV in the C1s spectra.  This bonding with the oxygen species in 18 

the PMMA assists in the breakdown of the PMMA residue, allowing the residues to be 19 

easily removed via HF removal of the Ti layer.   20 

 21 
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 1 

Figure 33 The C1s XPS spectra of the as-is, Ti-On, and Ti-removed samples (triangles, 2 

diamonds, and circles respectively).  The C=O peak located at 289 eV is completely 3 

removed following the Ti etching indicating complete removal of the PMMA. 4 

 5 

 6 

4.4 Conclusion 7 

A variety of thermal and wet cleaning procedures were assessed for the removal of 8 

process contaminants following graphene device fabrication. The effectiveness of thermal 9 

cleaning was found to be dependent on the environment during heating. Heating an in 10 

inert environment was shown to result in the decomposition of PMMA, but not in the 11 

removal of the decomposition products from the surface. Heating under similar 12 

conditions in a hydrogen containing environment showed a drastic reduction in surface 13 

contaminants. The surface contaminants that remained following heating in a hydrogen 14 

environment were shown to be PMMA. While the complete removal of PMMA may be 15 

possible by increasing the length of the thermal exposure, Raman spectroscopy showed 16 

that both thermal procedures studied introduced defects into the graphene. Electrical 17 

characterization following the thermal procedures indicated an increased 18 

substrate/graphene interaction and only marginal improvements in impurity carrier 19 

concentration and Dirac point. 20 
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A wet chemical etching of a sacrificial Ti layer was shown to be a more effective 1 

cleaning procedure to the studied thermal cleaning procedures. The Ti process resulted in 2 

complete removal of the PMMA from the graphene surface and electrical properties 3 

consistent with intrinsic graphene. Additionally, the Raman spectrum of Ti cleaned 4 

graphene showed no D peak indicating no introduction of defects from the cleaning 5 

procedure. In comparison, direct exposure of the graphene to HF showed only marginal 6 

changes in the impurity carrier concentration and mobility as well as a large increase in 7 

the observed Dirac point.  8 

9 
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CHAPTER 5: ALD BASED TUNNELING HETEROSTRUCTURES 1 

5.1 Introduction 2 

Tunnel FETs (TFET) are attractive for potentially replacing the traditional MOSFET 3 

for low power digital electronics due to the potential of reaching subthreshold swing 4 

values below the limit of 60 mV/decade for the conventional MOSFET.
[156]

 The use of 5 

two-dimensional materials in tunneling based architectures is attractive due to the low 6 

effective mass and small quantum capacitance.
[9]

 The graphene SymFET has been 7 

theoretically shown to exhibit negative differential resistance (NDR) in the tunneling 8 

characteristics due to resonance in tunneling when the Dirac points of the graphene layers 9 

are aligned.
[50]

 Recently, gate-controlled tunneling in exfoliated graphene-hexagonal 10 

boron nitride (hBN)-graphene heterostructures have been experimentally 11 

demonstrated.
[198]

 The observance of NDR has been theoretical predicted to be highly 12 

dependent on the disorder in the system. While an exfoliated structure allows for the 13 

observation of NDR, the scalability of such devices is limited. In this work, an integrated 14 

fabrication process utilizing large-area graphene synthesized by chemical vapor 15 

deposition and dielectrics deposited by atomic layer deposition are used in a CMOS 16 

compatible fabrication process.  17 

5.2 Band Engineering 18 

The traditional MOSFET utilizes thermionic current which limits the subthreshold 19 

swing of a traditional MOSFET to 60 mV/decade. The current in a TFET relies on band- 20 

to-band tunneling (BTBT) allowing the TFET to exhibit subthreshold swings of sub 60 21 
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mV/decade. The current through a graphene based TFET device can be modelled by an 1 

energy space formulation of the Bardeen Transfer Hamiltonian shown by equation 15.
[253]

 2 

 𝐽𝑡𝑜𝑡 =
𝑒|𝑀𝐵0|2

ℏ
∫ 𝑔𝐵(𝐸)𝑔𝑇(𝐸)(𝑓𝐵 − 𝑓𝑇)𝑇(𝐸)𝑑𝐸
𝐸

 (15) 3 

Where e is the electron charge, ħ is the reduced Planck’s constant, |MB0| is a prefactor 4 

utilized as a fitting parameter, T(E) represents the overall transmission coefficient which 5 

accounts for direct tunneling, thermal emission, and Fowler Nordheim tunneling using 6 

the WKB approximation,
[254]

 gB and gT are the density of states for the bottom and top 7 

graphene electrode respectively, and fB and fT are the Fermi levels for the bottom and top 8 

graphene electrode respectively.  9 

The subthreshold swing, total device current, and on/off ratio of the TFET is 10 

ultimately determined by the barrier imposed by the dielectric tunnel barrier layer. The 11 

device behavior can therefore be controlled by engineering the tunneling barrier to give 12 

the desired current profile. In this study, band engineering for the graphene based TFET 13 

is experimentally shown using CVD synthesized graphene and various dielectric layers 14 

deposited by atomic layer deposition.  15 

Graphene TFETs were fabricated on 7 nm thick SiO2 grown by thermal oxidation on 16 

Si. CVD graphene was transferred onto the SiO2/Si substrate using the wet transfer 17 

process. A 1-2 nm Ti metal layer was deposited by e-beam evaporation on the graphene 18 

and allowed to naturally oxidize under ambient conditions. The deposited TiOx layer 19 

served as a seeding layer for the deposition of a variety of high-k tunneling barriers by 20 

atomic layer deposition at 250 °C. Four tunneling barriers were fabricated including (i) 21 

TiOx (2 nm)/HfO2 (5 nm) (ii) TiOx (2 nm)/ Al2O3 (5 nm) (iii) TiOx (2 nm)/TiO2 (5 nm) 22 

and (iv) TiOx (1 nm)/Al2O3 (1 nm)/TiO2 (1 nm). Following the deposition of the 23 
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dielectric tunneling barrier, a second graphene layer was transferred on top of the stack 1 

by the wet transfer process. The graphene layers were each independently contacted by 2 

two Ni/Au contacts deposited by e-beam evaporation. Figure 34 shows a cross sectional 3 

schematic of the fabricated device.  4 

 5 

 6 

Figure 34 Cross sectional schematic of the fabricated graphene SymFET structure.  7 

Reprinted from Microelectronic Engineering, 109, T. Roy et al, Barrier Engineering for 8 

Double Layer CVD Graphene Tunnel FETs, 117-119, Copyright (2013), with permission 9 

from Elsevier. 10 

 11 

 12 

The electrical characteristics of the fabricated devices were measured as a function of 13 

the applied gate bias as well as the applied drain bias. The devices were baked at 80 °C 14 

overnight at a pressure of ~5 x 10
-6

 Torr. The tunneling characteristics of the fabricated 15 

devices are shown in Figure 35. The subthreshold swing is calculated from the linear 16 

portion of the ID-VGS curve and ranges from 70 mV/decade for the TiOx/TiO2 stack to 17 

120 mV/decade for the TiOx/Al2O3 dielectric stack. The subthreshold swing of the 18 
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fabricated devices is limited by the capacitance of the gate oxide. Optimizing the design 1 

of the graphene TFET should allow for subthreshold swings less than 60 mV/decade.  2 

 3 

 4 

Figure 35 Tunneling current density of the fabricated graphene SymFET structures with 5 

a variety of tunneling barrier materials. Microelectronic Engineering, 109, T. Roy et al, 6 

Barrier Engineering for Double Layer CVD Graphene Tunnel FETs, 117-119, Copyright 7 

(2013), with permission from Elsevier. 8 

 9 

 10 

 11 

The symmetry of the tunneling curve is another aspect of the graphene TFET that can 12 

be designed. As seen in Figure 35, the tunneling current is dependent on the thickness as 13 

well as the composition of the tunneling barrier. For a barrier consisting of TiOx (2 14 

nm)/Al2O3 (5 nm) the tunneling current is asymmetric due to the asymmetric barrier. The 15 

band diagram of the TiOx/Al2O3 barrier is depicted in Figure 36. The electron affinity of 16 

the graphene is 4.57 eV. The electron affinity of the Al2O3 is 2.58 eV giving a conduction 17 

band offset of 1.99 eV. Al2O3 has a bandgap of 8.8 eV giving a valence band offset of 18 

6.81 eV.
[255]

 The electron affinity and bandgap of the TiOx is 4.33 and 3.2 eV 19 

respectively.
[256]

 The current due to the electron tunneling is inversely proportional to the 20 

area of the barrier above the pathway of the electron. When a positive bias is applied to 21 

the graphene electrode on the TiOx side of the barrier, the electron sees the TiOx and 22 
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Al2O3 barrier as shown. When applying a negative bias to the same electrode, the electron 1 

tunnels from the Al2O3 side of the barrier. The pathway from the Al2O3 side of the barrier 2 

sees a reduced section of the Al2O3 barrier compared to the electron tunneling from the 3 

TiOx side of the barrier. The reduced effective tunneling barrier results in an increased 4 

current for negative bias voltages as seen in Figure 35.  5 

 6 

 7 

Figure 36 Energy band diagram of the TiOx (1 nm)/Al2O3 (5 nm) tunneling barrier. 8 

Energy loss due to traps is not drawn to scale. Microelectronic Engineering, 109, T. Roy 9 

et al, Barrier Engineering for Double Layer CVD Graphene Tunnel FETs, 117-119, 10 

Copyright (2013), with permission from Elsevier. 11 

 12 

 13 

 14 

At sufficiently large bias voltages, the electron will tunnel directly into the 15 

conduction band of the dielectric barrier as shown in Figure 37 for the TiOx (2nm)/HfO2 16 

(5 nm) barrier. The direct tunneling into the conduction band of the barrier through the 17 

reduced effective barrier is known as Fowler-Nordheim (F-N) tunneling. The onset of F- 18 

N tunneling can be seen for the TiOx (2 nm)/HfO2 (5 nm) barrier at sufficiently large 19 

negative biases as shown in Figure 38. 20 
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 1 

Figure 37 Energy band diagram of the TiOx (2 nm)/HfO2 (5 nm) barrier. At significantly 2 

large bias voltages, Fowler Nordheim tunneling is induced. Energy loss due to traps is not 3 

drawn to scale. Microelectronic Engineering, 109, T. Roy et al, Barrier Engineering for 4 

Double Layer CVD Graphene Tunnel FETs, 117-119, Copyright (2013), with permission 5 

from Elsevier. 6 

 7 

 8 

 9 

The temperature dependence of the tunneling current was measured to determine 10 

whether the fabricated devices were dominated by trap assisted tunneling or direct 11 

tunneling. In the case of direct tunneling, the tunneling current is independent of the 12 

temperature while trap assisted tunneling is a thermally activated process. As shown in 13 

Figure 35 and Figure 38, the fabricated devices show a reduction in tunneling current as 14 

the temperature is decreased indicating trap assisted tunneling is the dominant 15 

mechanism. The trapping process could be indicative of traps at the graphene/dielectric 16 

interface, seeding layer/dielectric interface, or within the bulk of the dielectric. Oxygen 17 

vacancies have been previously shown to assist in trap-assisted tunneling for HfO2 based 18 

barriers. 19 
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 1 
Figure 38 Tunneling current density for the TiOx (2nm)/Al2O3 (5 nm) tunneling barrier 2 

and the TiOx (2 nm)/HfO2 (5 nm) tunneling barrier. At high negative drain bias voltages 3 

the tunneling currents converge for all temperatures as Fowler Nordheim tunneling 4 

becomes dominant over trap assisted tunneling. Microelectronic Engineering, 109, T. 5 

Roy et al, Barrier Engineering for Double Layer CVD Graphene Tunnel FETs, 117-119, 6 

Copyright (2013), with permission from Elsevier. 7 

 8 

 9 

5.3 Thickness Dependence 10 

While the tunneling current can be controlled through band engineering in the 11 

previously fabricated tunneling barriers, the achieved current density and dominance of 12 

trap assisted tunneling are inadequate to make graphene TFETs a viable technology. 13 

Further scaling of the dielectric thickness to increase the overall current and achieve 14 

negative differential resistance is needed for this to be a viable technology. Negative 15 

differential resistance requires energy and momentum conservative tunneling. When the 16 

tunneling current is dominated by trap assisted tunneling the momentum conservative 17 

criteria cannot be met. The first criteria to achieve momentum conservative tunneling is 18 

for direct tunneling to be the dominant mechanism.   As the dielectric barrier gets thinner, 19 

direct tunneling becomes more dominant.  20 
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In order to show that direct tunneling can be the dominant tunneling mechanism for a 1 

graphene TFET, graphene TFETs were fabricated with ultra-thin tunneling dielectrics. 2 

Two ultra-thin tunneling barriers were fabricated (i) a 1 nm Ti metal layer was deposited 3 

by e-beam evaporation and allowed to naturally oxidize and (ii) a TiOx (1 nm)/Al2O3 (1 4 

nm)/TiO2 (1 nm) tunneling barrier. As shown in Figure 39, the temperature dependence 5 

of the tunneling current was measured from 77 K to 355 K with no measurable 6 

dependence on temperature for either sample set. The overall tunneling current is shown 7 

to be dependent on the dielectric barrier with a Ti seeding layer allowed to naturally 8 

oxidize being shown to be a sufficient tunneling barrier for a direct tunneling dominant 9 

graphene TFET.  10 

 11 

 12 

Figure 39 Tunneling current density for the TiOx (1 nm) and TiOx (1 nm)/Al2O3 (1 13 

nm)/TiO2 (1 nm) tunneling barriers. The temperature independent tunneling current 14 

indicates direct tunneling is the dominant tunneling mechanism. 15 

 16 

 17 

 18 
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While thinning the dielectric barrier results in direct tunneling being the dominant 1 

tunneling mechanism and a higher current density, further improvements are necessary to 2 

achieve NDR.  3 

5.4 Grain Size Dependence 4 

One potential source of disorder preventing negative differential resistance is the 5 

graphene. The main source of scattering in the graphene is the grain boundaries. In order 6 

to determine if the graphene itself is limiting the tunneling current in the graphene TFET, 7 

devices were fabricated with a 10 μm grain size and 200 µm grain size. The dimensions 8 

of the fabricated devices are 100 µm by 13 µm. The devices fabricated using the 200 µm 9 

grain size should have a minimal if any number of grain boundaries within the device.  10 

The 10 µm grain size graphene was synthesized on copper foil by the standard CVD 11 

process. For the growth, no pre-treatments for the copper foil were done and a 10 minute 12 

anneal at 1000 °C was performed. Graphene from the same growth run used to fabricate 13 

devices was transferred to a silicon wafer and cleaned using a Ti sacrificial process. After 14 

cleaning, 2 nm of Al2O3 was deposited on the graphene using atomic layer deposition. 15 

The inert basal plane of the graphene does not react with the precursors while the grain 16 

boundaries and defect sites do. The preferential growth of the Al2O3 at the grain 17 

boundaries and defects allows measurement of the grain boundaries using atomic force 18 

microscopy. 19 

Atomic force microscopy of the graphene sample after ALD is shown in Figure 40. 20 

The Al2O3 grows on the grain boundaries resulting in a height increase detectable by 21 

AFM. As seen in Figure 40, the grain size of the graphene measured by atomic force 22 

microscopy is ~10 µm. Several grain boundaries are highlighted in blue as a guide to the 23 
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eye. The larger grain size graphene was supplied by Professor Ruoff of UTA. Detailed 1 

characterization of the large grain size graphene and the synthesis process are discussed 2 

in detail elsewhere.
[104]

  3 

 4 

 5 

Figure 40 Atomic force microscopy image after deposition of Al2O3 on the graphene 6 

grain boundaries. Several graphene domains are outlined in blue as an aid to the eye. The 7 

graphene domains are of ~10 µm in size.  8 

 9 

 10 

 11 

Graphene TFETs were fabricated from the two graphene samples with a TiOx (1 12 

nm)/Al2O3 (1 nm)/TiO2 (1 nm) tunneling barrier. The tunneling characteristics of the 13 

graphene TFETs were measured under vacuum at ambient temperature after an 80 °C 14 

bake overnight to remove environmental adsorbates. The tunneling characteristics of the 15 

devices showed negligible dependence on the grain size of the graphene. Figure 41 shows 16 

the tunneling characteristics of the measured large grain and small grain graphene devices 17 

with the highest and lowest current density of their respective device set. As seen, the 18 

maximum current density is not dependent on the grain size of the graphene. 19 
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Furthermore, NDR is not present in any of the measured devices suggesting that the 1 

graphene is not the limiting mechanism for the graphene TFET operation.  2 

 3 

 4 

Figure 41 Tunneling current density of the large and small grain graphene. No significant 5 

difference in the maximum observed tunneling current is seen. The selected devices 6 

represent the highest and lowest observed tunneling current density in each device set. 7 

 8 

 9 

5.5 Conclusion 10 

Graphene TFETs based off of a variety of ALD dielectrics were fabricated and 11 

characterized. It was shown that the tunneling current of the graphene TFET can be 12 

engineered by engineering the tunneling barrier dielectric as demonstrated by the 13 

dependency of the symmetry of the tunneling current on the symmetry of the tunneling 14 

barrier. Thick tunneling barriers (> ~3 nm) result in trap assisted tunneling being the 15 

primary tunneling method for the graphene TFETs as evidenced by the temperature 16 

dependence of the tunneling current. By scaling the dielectric tunneling barrier thickness, 17 
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direct tunneling becomes the dominant tunneling mechanism for the graphene TFET. 1 

Despite direct tunneling being the dominant tunneling mechanism, NDR is not observed 2 

in the fabricated graphene TFETs. In order to determine if the graphene was limiting the 3 

tunneling current, graphene of small and large domain sizes (10 µm and 200 µm 4 

respectively) was used to fabricate the devices. No dependence on the graphene grain size 5 

was seen in the tunneling current suggesting the graphene is not limiting the tunneling 6 

characteristics. The substrate and dielectric barrier remain as two likely sources of 7 

disorder limiting the graphene TFET.  8 

9 
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CHAPTER 6: GRAPHENE – MOLYBDENUM DISULFIDE – 1 

GRAPHENE HETEROJUNCTIONS 2 

6.1 Introduction 3 

Graphene grown by chemical vapor deposition (CVD) is a promising candidate for 4 

large-scale fabrication of a variety of electronic devices. However, the performance of 5 

graphene field effect transistors is limited by the high conductivity at the Dirac point 6 

(VDirac), which results in switching ratios less than ten at room temperature.
[9, 257, 258]

  7 

While a low switching ratio does not preclude the use of graphene-based electronics in 8 

high frequency and analog applications, applications such as logic require a higher 9 

switching ratio. Methods for achieving higher switching ratios by inducing a band gap in 10 

graphene have been demonstrated, such as the use of bilayer graphene, nanoribbons, and 11 

functionalization of the graphene.
[147, 259, 260]

 An alternative approach to increasing the 12 

switching ratio of graphene-based devices is to utilize a tunneling based device 13 

architecture.
[198]

 14 

2D heterostructures composed of graphene electrodes separated by a 2D tunneling 15 

barrier, such as hBN or MoS2, have been recently reported.
[198, 199, 261]

 The device is based 16 

off of the tunability of the density of states (DOS) in the graphene. A cross sectional view 17 

of the physical structure of the device is shown in Figure 42A. The device consists of two 18 

graphene sheets separated by a MoS2 trilayer on a 300 nm thermal oxide grown on Si. 19 

The MoS2 trilayer serves as a tunneling barrier and the SiO2/Si substrate serves as the 20 

back gate. Applying a voltage between the top and bottom sheet (VDS drives the current 21 

(Id). The Si/SiO2 serves as the back gate and a voltage applied to the Si (Vbg) modulates 22 

the Fermi level of the bottom layer graphene.  23 
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The operation of the device is depicted in the band diagram illustrated in Figure 42B. 1 

Applying a voltage to the back gate (Vbg) modulates the Fermi level of the bottom layer 2 

graphene due to the induced electric field (eVBOX) across the bottom oxide. Applying a 3 

bias between the source and drain (VDS) offsets the Fermi levels of the bottom and top 4 

graphene layer and induces an electric field across the interlayer (eVInt). This opens a 5 

tunneling window due to the presence of available energy states in the opposing graphene 6 

sheet. The potential between the top and bottom graphene sheet drives the tunneling 7 

current. The magnitude of the current is controlled by the overlapping density of filled 8 

and available states in the bottom and top graphene layer respectively.  9 

The barrier height between the graphene and tunneling barrier also influences the 10 

magnitude of the current and the switching ratio. The intrinsic barrier height for electrons 11 

(holes) can be calculated as the difference between the conduction (valence) band edge 12 

and the electron affinity (ΧGr) of the graphene. The intrinsic electron barrier height (Δ) 13 

for a graphene/MoS2 system has been previously reported to be in the range of 0.29 eV to 14 

0.44 eV dependent on the MoS2 thickness.
[262]

 Increasing the Fermi level of the graphene 15 

by application of a gate voltage will decrease (increase) the effective electron (hole) 16 

barrier height and vice versa. Increasing the Fermi level to levels approaching the 17 

conduction (valence) band edge can result in Fowler Nordheim tunneling and/or 18 

thermionic emission of electrons (holes) rather than direct tunneling as shown. The 19 

switching ratio for few layer h-BN (Δ≈1.5 eV) has been shown to be ~50 while switching 20 

ratios as high as ~10
4
 have been reported for few layer MoS2.

[198]
  21 



95 

 

 1 
Figure 42 (A) Cross section of the Physical structure and circuit diagram of the tunneling 2 

heterostructure (not to scale). Current flows from one graphene sheet to the other across 3 

the MoS2 tunneling barrier. The SiO2/Si substrate serves as the back gate by applying a 4 

bias (VBG) to the Si. (B) Band diagram depicting direct tunneling operation of the device. 5 

Depicted by the blue arrow, this results in tunneling from the bottom graphene layer to 6 

the top graphene layer. ΦMB represents the work function of the Si back gate.  7 

 8 

 9 

Most of the studies so far have focused on using exfoliated flakes for the graphene 10 

electrodes and 2D tunneling barrier 
[198, 199, 263]

. For manufacturable electronics, it is 11 

required to have large-area materials that are compatible with photolithographic 12 

processes.  While significant effort has been made on large-area synthesis of these 13 

materials 
[104, 264-267]

, there have been limited studies on the use of material synthesis 14 

techniques in an integrated heterostructure device fabrication process.  15 

In addition to the possibility of a large on/off ratio for graphene based devices, recent 16 

reports for exfoliated vertical heterostructures have shown novel device properties 17 

including negative differential resistance (NDR).
[268, 269]

 Theoretical models for these 18 

devices have shown the observance of NDR to be highly dependent on disorder within 19 

the system.
[50, 253, 270, 271]

 Disorder can be induced by many factors including the quality of 20 

the materials, orientation of the layers, and contamination at the interfaces. The purpose 21 
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of this study is to understand the limitations of synthesized materials to achieving these 1 

device structures and associated tunneling characteristics.  2 

Graphene-MoS2-graphene vertical tunneling structures are fabricated using large-area 3 

synthesis techniques for all 2D materials. The MoS2 tunneling barrier is either 4 

synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or 5 

synthesized directly on CVD graphene. The impact of these fabrication processes on 6 

material structure is characterized using XPS and Raman. The transport properties of the 7 

individual graphene electrodes as well as the tunneling characteristics of the 8 

heterostructure are correlated to the physical measurements.  9 

6.2 Materials Characterization 10 

The device fabrication process is shown in Figure 43A-E; additional details are given 11 

in the Experimental section. Highly doped silicon wafers with 300 nm oxide formed by 12 

dry oxidation at 1000 °C were used as the device substrates.  A monolayer of graphene 13 

grown by CVD on a copper foil was transferred to the Si/SiO2 and subsequently patterned 14 

as the bottom electrode of the 2D heterostructure tunneling device shown in Figure 42A. 15 

Metal contacts were deposited onto the bottom layer graphene by e-beam evaporation and 16 

a lift-off process. The MoS2 tunneling barrier was then either directly synthesized on the 17 

graphene bottom layer or transferred to the graphene bottom layer from a sacrificial 18 

growth substrate. To synthesize MoS2, a Mo layer of 1 nm thickness was e-beam 19 

deposited onto the growth substrate and subsequently sulfurized resulting in trilayer 20 

MoS2.
[264, 272, 273]

 The direct synthesis of MoS2 on graphene was performed at two 21 

different temperatures, 800 °C (low temp) and 1020 °C (high temp), to assess the impact 22 

of the synthesis temperature on the bottom layer graphene and MoS2 quality. A second 23 
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layer of CVD grown graphene was transferred and subsequently patterned onto the 1 

tunneling barrier as the counter electrode of the tunneling structure and metal contacts 2 

were deposited onto the top layer graphene by e-beam evaporation and a lift-off process. 3 

 4 

  5 

 6 

Figure 43 The fabrication sequence of the graphene-MoS2-graphene devices (not to 7 

scale). (A) First a 300 nm thermal oxide is grown on Si. (B) Graphene is transferred to 8 

the SiO2/Si substrate. (C) The graphene is patterned and metal contacts are deposited. (D) 9 

The MoS2 interlayer is synthesized or transferred onto the graphene and patterned. (E) 10 

The second layer of graphene is transferred onto the interlayer, patterned, and metal 11 

contacts for the second layer are deposited. 12 

 13 

 14 

In order to elucidate the impact of the direct synthesis of the tunneling barrier, XPS was 15 

used to assess the stoichiometry of the heterostructures, and Raman spectroscopy was 16 

used to evaluate the presence of defects in the bottom graphene layer. Figure 44A shows 17 

the Mo 3d and S 2s peaks and Figure 44B shows the S 2p peaks of the photoelectron 18 

spectra for MoS2 synthesized on graphene at both low (Low Temp; black) and high (High 19 

Temp; red) temperatures as well as MoS2 synthesized on SiO2 and transferred to 20 

graphene. The S:Mo ratio was calculated using the normalized areas of the Mo 3d and S 21 
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2p peaks and found to be 2.06±0.02 for synthesis at 800 °C, 2.23±0.04 for synthesis at 1 

1020 °C, and 1.98±0.04 for MoS2 synthesized on SiO2 and transferred to graphene. The 2 

stoichiometry of the transferred MoS2 is consistent with previous studies on synthetic 3 

MoS2 grown on SiO2.
[264, 274]

 The peak areas were normalized using an empirical 4 

sensitivity factor of 2.75 for the Mo 3d peak and 0.54 for the S 2p peak.
[275]

 The Mo 3d 5 

peaks, S 2s, and S 2p peaks are consistent with the MoS2 peak positions from the 6 

literature (Mo 3d 5/2 at 229.4 eV, Mo 3d 3/2 at 232.6 eV, S 2s at 226.6 eV, S 2p 3/2 at 7 

162 eV, and S 2p 1/2 at 163.3 eV).
[264]

  The larger ratio for MoS2 synthesized on 8 

graphene could be due to either a higher sulfur content of the MoS2 itself due to, for 9 

example, sulfur interstitials, or due to incorporation of sulfur into the underlying 10 

graphene.  11 

The C 1s spectrum was analyzed to determine the cause of the increased S content. 12 

Figure 44C shows the C 1s spectra for intrinsic graphene before processing (Intrinsic; 13 

green), after synthesis of MoS2 at low temperature (Low Temp; black), and high 14 

temperature (High Temp; red). Significant broadening of the C 1s spectrum is observed 15 

only in the high temperature synthesis of MoS2. The C 1s spectrum for the bottom layer 16 

graphene after synthesis of MoS2 at high temperature, shown in Figure 44D, shows clear 17 

broadening of the C 1s to the higher binding energy side of the C-C peak at 284.7 eV (C- 18 

C; red) when fit with Lorentzian line shapes of fixed position and a Shirley background. 19 

This is explained by the molybdenum metal acting as a catalyst to incorporate sulfur into 20 

the graphene giving rise to a C-S peak at 285.6 eV
[276]

  21 

The C-S peak at 285.6 eV of the high temperature synthesis sample (Figure 44D) 22 

makes up 13% of the overall C 1s area and corresponds to a sulfur concentration of 23 
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4.98x10
14

 cm
-2

. This amount of sulfur incorporated into the graphene would account for 1 

the excess sulfur observed in the S:Mo stoichiometry. Based on a hexagonal lattice with a 2 

lattice constant of 3.12 Å 
[277]

, perfectly stoichiometric monolayer MoS2 has a sulfur 3 

concentration of 1.58x10
15 

cm
-2

 (2 sulfur atoms per unit cell), meaning that stoichiometric 4 

trilayer MoS2 would have a sulfur concentration of 4.74x10
15

 cm
-2

. The calculated sulfur 5 

concentration from the C 1s spectrum is added to the expected sulfur concentration from 6 

a MoS2 trilayer resulting in a total sulfur concentration of 5.24x10
15

 cm
-2

. A calculated 7 

S:Mo ratio of 2.21:1 consistent with the S:Mo ratio of 2.23:1 calculated from the Mo 3d 8 

and S 2p XPS spectra is obtained. In summary, these results suggest that MoS2 9 

synthesized on graphene at 1020 °C has a stoichiometry ratio consistent with that 10 

synthesized on SiO2 but with excess sulfur incorporated in the graphene. The C 1s spectra 11 

of the bottom layer graphene with MoS2 synthesized at 800 °C (Figure 44C Low Temp; 12 

black) sample is comparable to bare (Figure 44C Intrinsic; green) graphene. This implies 13 

that any sulfur incorporation into the graphene at the reduced process temperature is 14 

below the detection limit of the XPS.  15 
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 1 

Figure 44 (A) The Mo 3d XPS spectra normalized to an empirical sensitivity factor of 2 

2.75. (B) S 2p XPS spectra normalized to an empirical sensitivity factor of 0.54. The high 3 

temperature synthesis (High Temp; red) shows increased sulfur content.(C) The C 1s 4 

spectra normalized to the C 1s peak height. The C 1s spectrum of the high temperature 5 

sulfurization (High Temp; red) shows broadening on the high energy side of the C 1s 6 

spectra. (D) Deconvolution of the high temperature synthesis C 1s spectrum corrected 7 

with a Shirley background. The spectrum is consistent with a C-C component (red) at 8 

284.7 eV and a C-S component (green) at 285.6 eV. 9 

 10 

 11 

The MoS2 Raman spectra for 3 different samples are shown in Figure 45A: the direct 12 

synthesis of MoS2 on graphene, as synthesized on SiO2, and transferred to graphene 13 

samples. The MoS2 is extremely uniform and of similar quality for all conditions. The 14 

peak separation of the A1g and E
1

2g peak is an ideal metric for determining the number of 15 

layers in the MoS2.
[278, 279]

 As more MoS2 layers are added, the A1g undergoes a blue-shift 16 

as result of suppressed atomic vibrations due to interlayer Van der Waals forces while the 17 
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E
1

2g undergoes a red-shift as a result of stacking induced structure changes or long-range 1 

Coulombic interlayer interactions.
[278, 279]

 The combined shifting of the A1g and E
1

2g peaks 2 

result in the peak separation of a monolayer of MoS2 of 18.1 cm
-1

 increasing to a peak 3 

separation of 22.2 cm
-1

 and 23.3 cm
-1

 for bilayer and trilayer MoS2 respectively.
[278, 279]

 4 

The as synthesized on SiO2 spectra (Figure 45A On SiO2; purple) shows a peak 5 

separation of 23.53 cm
-1

,
 
consistent with trilayer MoS2.

[264]
 After transferring the MoS2 6 

from the sacrificial SiO2 substrate to the graphene (Figure 45A Transferred; blue), the 7 

peak separation increases to 25.67 cm
-1

. The direct synthesis of MoS2 on graphene 8 

(Figure 45A High Temp; black) shows a peak separation of 25.67 cm
-1 

as well, consistent 9 

with the transferred trilayer MoS2 on graphene. The increased peak separation is caused 10 

by a suppression of the out of plane lattice vibrations due to the Van der Waal’s 11 

interactions of the layers as well as strain introduced from the lattice mismatch of the 12 

graphene/MoS2.
[280]

 The similar peak separation of the transferred MoS2 as well as the 13 

directly synthesized MoS2 indicates no covalent bonding between the graphene and MoS2 14 

for both the transferred and synthesized MoS2 conditions, consistent with the similar C 1s 15 

XPS spectra for the low temperature synthesis of MoS2 and pristine graphene.  16 

Figure 45B shows that the MoS2 films in all cases are highly uniform, as measured by 17 

the Raman peak separation taken at 10 μm steps across a device channel from the 18 

transferred, high temperature, low temperature, and on SiO2 samples. The average peak 19 

separation across all samples is 25.67±0.3 cm
-1 

when on graphene and 23.53 cm
-1

 when 20 

on SiO2. A fluctuation of 1 monolayer of MoS2 would result in a change of ~1 cm
-1

 in the 21 

peak separation suggesting the thickness uniformity of the MoS2 is 3±0.3 layers across 22 
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the device channel. Assuming each monolayer to be ~0.66 nm, a conservative estimate of 1 

the thickness fluctuation of the MoS2 is predicted to be ±0.22 nm. 2 

 3 

 4 

Figure 45 (A) Raman spectra of the A1g and E
1

2g peaks of MoS2 for each MoS2 synthesis 5 

condition. The Raman spectra of the MoS2 show a distinct shift in peak position of the 6 

A1g and E
1
2g peaks when MoS2 is on graphene. (B) Linear mapping of the MoS2 at 10 μm 7 

steps. The MoS2 is extremely uniform for all synthesis conditions as shown by the 8 

consistency in peak separation. (C) Graphene Raman spectra before and after each MoS2 9 

synthesis condition. The Raman spectra show high quality single layer graphene before 10 

processing. The graphene becomes more defective after MoS2 synthesis. (D) The 11 

graphene 2D:G ratio for each condition in (C). The 2D:G ratio is greater than 2 before 12 

processing indicating single layer graphene. The reduced 2D:G ratio after MoS2 synthesis 13 

indicates an increase in defect density.
[281]

 14 

 15 

 16 
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The graphene Raman spectra at selected process steps is shown in Figure 45C. For 1 

intrinsic graphene on SiO2, the 2D:G peak ratio, shown in Figure 45D, is greater than 2:1 2 

and no D peak at 1350 cm
-1

 is observed indicating high quality graphene prior to MoS2 3 

synthesis. After the sulfurization process, the graphene spectrum exhibits increased D 4 

peak intensity for both the low temperature and high temperature synthesis samples as 5 

well as a suppression of the 2D:G ratio which can be a result of large defect 6 

concentrations in the graphene.
[281]

 A Van der Waal’s interaction between the graphene 7 

and MoS2 which suppresses the 2D:G ratio is also expected.
[280]

 To account for this 8 

interaction, the Raman spectrum of MoS2 transferred to graphene is used as a reference 9 

(Figure 45C-D Transferred MoS2; green) and shows a 2D:G ratio of 1.51:1. The low 10 

temperature sulfurization (Figure 45C Low Temp; red) results in a 2D:G ratio of 11 

1.44±0.3, with a value slightly suppressed compared to the transferred case, while the 12 

high temperature sulfurization (Figure 45C High Temp; black) results in a much smaller 13 

2D:G ratio of 0.68±0.4. The larger suppression of the 2D:G ratio from the high 14 

temperature sulfurization is indicative of the introduction of a substantial defect 15 

concentration. The higher graphene defect concentration seen in the high temperature 16 

sulfurization is caused by the incorporation of excess sulfur into the graphene structure.  17 

6.3 Electrical Performance 18 

Electrical measurements were used to assess the quality of the individual graphene 19 

layers as well as the tunneling current of the fabricated tunneling junctions. The samples 20 

were baked within a vacuum probe station at 80 °C overnight to remove adsorbates from 21 

the atmosphere prior to measurement. Figure 46A shows the transfer curve of the 22 

individual graphene layers (drain current vs back gate voltage) at a fixed drain voltage of 23 
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0.02 V. The transfer curves were modelled using the constant mobility model developed 1 

by Kim et al.
[193, 282]

  2 

Prior to the transfer/synthesis of the MoS2 tunneling barrier, the graphene performance 3 

as determined by the extracted mobility (average of 2634±336 cm
2
/V-s across 15 4 

devices) is comparable to literature values for a single layer graphene field effect 5 

transistor on SiO2 (GFET).
[132, 193, 282, 283]

 The direct synthesis of MoS2 on the graphene 6 

channel results in the Dirac point shifting to values well beyond the breakdown voltage of 7 

the device. The transfer of MoS2 onto the graphene channel results in the Dirac point 8 

shifting to ~22 V, most likely caused by defects in the MoS2 tunneling barrier.
[284]

 The 9 

larger shifting of the Dirac point for devices with MoS2 synthesized on graphene is most 10 

likely caused by additional defects associated with sulfur incorporation and catalytic 11 

etching of the graphene during the sulfurization process. The introduction of MoS2 causes 12 

a reduction of the electron/hole mobility in the graphene. The current-voltage 13 

characteristic of the transferred MoS2 shows a reduction in the hole mobility by a factor 14 

of 2 (average of 1215±127 cm
2
/V-s across 15 devices) and electron transport is nearly 15 

entirely suppressed. The large suppression of the electron conductance in the graphene 16 

channel is consistent with previous reports of MoS2 on graphene in which sulfur 17 

vacancies resulted in increased trapping of electrons.
[285]

  18 

The devices with MoS2 directly synthesized on graphene did not exhibit tunneling 19 

behavior (not shown) as a result of the large defect concentration and large shift of the 20 

Dirac point. The analysis here-in focuses on transferred MoS2 interlayer devices which 21 

exhibit tunneling based behavior. A total of eight transferred devices exhibiting tunneling 22 

behavior were characterized. The following analysis is representative of the eight 23 
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devices. Figure 46B shows the exponential nature of the transfer curve on a linear scale, 1 

an indication that the current is tunneling based. Figure 46C shows the tunneling 2 

characteristic between the graphene layers at various back gate voltages. The current is 3 

observed to decrease with increasingly positive applied back gate voltages with a 4 

relatively weak (linear) dependence. 5 

The tunneling behavior was modeled using an energy space formulation for the current 6 

density derived from the Bardeen Transfer Hamiltonian, the details of which were 7 

published previously.
[253, 270]

 A p-type doping concentration of 1.6x10
12

 cm
-2

 and 8 

3.6x10
12

 cm
-2

 for the top and bottom graphene sheets, respectively, was used to match the 9 

Dirac point observed in the single layer transfer characteristics. A MoS2 interlayer 10 

thickness of 1.8 nm was used, consistent with three layers of MoS2, resulting in an 11 

interlayer capacitance of 1.97x10
-6

 F/cm
2
. The electron affinity of the MoS2 was set to 12 

4.2 with a tunneling effective mass of 0.4 for holes and electrons in the tunneling 13 

barrier.
[262]

 The graphene layers were modeled with an electron affinity of 4.5.
[262]

  The 14 

valence band offset of the MoS2 and graphene was varied from 1 eV to 1.7 eV with the 15 

best fit occurring for an offset of 1.5 eV. A coherence length of 1 nm was used for the 16 

best fitting results.  17 

The tunneling model does not directly take into account an additional density of states 18 

due to defects. The lateral transport measurements show that the electron conductance is 19 

highly suppressed due to defects. The best fit of the experimental results requires 20 

suppression of tunneling from the conduction bands of the top and bottom layer. The 21 

validity of the fit is determined by comparing the value of the prefactor of the tunneling 22 

equation, shown in the experimental section, to experimental values for similar structures. 23 
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Including the conduction band tunneling results in the prefactor of the model, MB0, to be 1 

a non-physical value (1x10
-6

). Suppressing the conduction band current results in a MB0 2 

value (0.001) similar to experimental values from the literature, indicating a valid fit.
[271]

 3 

Similar to the suppressed lateral transport of electrons in the device structure seen in the 4 

transfer curve (Figure 46A Trans. MoS2; black), the increased trapping of electrons due 5 

to sulfur vacancies results in a suppression of electrons tunneling from the conduction 6 

band. Furthermore, as depicted schematically in figure 42A and 43E, the device structure 7 

relies on lateral transport in the bottom graphene layer before reaching the active 8 

tunneling area of the device. The reduced electron mobility limits the lateral transport 9 

which further impedes electrons tunneling from the conduction band.     10 

Figure 46D shows the tunneling behavior of the graphene-MoS2-graphene 11 

heterojunctions and the theoretical fitting using the above parameters. As the applied 12 

back-gate voltage is swept to more positive values, the conduction band in the bottom 13 

graphene sheet becomes more populated. Due to the reduced electron conductance in the 14 

graphene channel, the tunneling of electrons from the conduction band of the bottom 15 

layer is suppressed. The more positive gate bias pushes the tunneling window further into 16 

the conduction band of the graphene sheets resulting in a lower current density due to the 17 

suppression of electron tunneling from the conduction band. A relatively weak 18 

dependence (linear) on the back gate is observed with a more positive gate bias resulting 19 

in reduced current densities. A maximum switching ratio of ~100 was observed between 20 

an applied gate bias of -30 V (on state) and 30 V (off state) at a fixed VDS = 0.2 V. This 21 

result is much smaller than the observed switching ratio of ~10
4
 for exfoliated structures 22 

using MoS2 as the tunneling barrier.
[198]

 The reduced switching ratio is most likely a 23 
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result of the high defect density in the graphene and increased defects in the MoS2 layer. 1 

The theoretical simulations with the conduction band current suppressed agree well with 2 

the experimental results. 3 

 4 

 5 

Figure 46 (A) Transfer characteristics of the bottom layer graphene at a constant drain 6 

bias (VDS) of 0.02 V. The inset depicts a cross sectional view of the device and the 7 

measurement circuit. (B) The tunneling characteristics of a graphene-MoS2-graphene 8 

device with an applied back gate voltage of -20 V on the linear scale. The inset depicts a 9 

cross sectional view of the device and the measurement circuit. (C) Experimental results 10 

for a device made from an MoS2 interlayer transferred to graphene with an applied back 11 

gate of -20 V (top curve) to 20 V (bottom curve) in 10 V steps.  (D) Simulations (solid 12 

lines) and experiment results (dotted lines) of an applied back gate voltage of -20 V 13 

(black) and 0 V (green). The theoretical results agree well with the shape and general 14 

behavior of the experimental results.  15 

 16 

 17 

 18 

 19 
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6.4 Conclusion 1 

In conclusion, graphene-MoS2-graphene tunneling junctions were fabricated using only 2 

large-area synthesized 2D materials. The MoS2 tunneling barrier was shown to be a 3 

highly uniform trilayer (thickness of 1.8±0.22 nm) across the entire device area based off 4 

of the uniformity of the Raman compared to a known trilayer sample transferred to 5 

graphene. This indicates the graphene had no impact on the synthesis of MoS2. The direct 6 

synthesis of MoS2 on graphene at 1020 °C resulted in the incorporation of ~5x10
14

 S 7 

atoms-cm
-2

 into the graphene lattice as evidenced by XPS. Raman spectroscopy was used 8 

to evaluate the relative disorder in the graphene structure and showed that MoS2 synthesis 9 

at reduced temperatures was less detrimental to the underlying graphene. The presence of 10 

Mo on graphene increased the sulfur incorporation compared to bare graphene exposed to 11 

sulfur.  12 

The conductance of the tunneling junctions based on transferred large-area MoS2 was 13 

found to decrease as a more positive gate bias was applied reaching a maximum 14 

switching ratio of ~100. This value is much lower than the switching ratio of ~10
4
 15 

observed in exfoliated structures, but an order of magnitude greater than single layer 16 

graphene structures. The reduced tunneling current compared to exfoliated structures is a 17 

result of suppressed tunneling of electrons from the conduction band of the graphene 18 

sheets, as confirmed by theoretical simulations based on the Bardeen transfer 19 

Hamiltonian.
[253, 270]

 The suppressed electron tunneling is a result of the reduced lateral 20 

electron transport of the graphene caused by trapping due to sulfur vacancies in the 21 

MoS2. The direct formation of MoS2 was also shown to negatively impact the underlying 22 

SiO2
 
substrate as shown by the shifting of the graphene Dirac point to beyond the 23 
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breakdown voltage of the device as a result of defect formation due to the incorporation 1 

of sulfur. We have shown that the impact of the MoS2 synthesis on the underlying 2 

graphene can be reduced by decreasing the synthesis temperature of the MoS2, but further 3 

process improvements are required to fully eliminate the introduction of defects into the 4 

underlying device structure.  5 

6 
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CHAPTER 7: HEXAGONAL BORON NITRIDE – GRAPHENE – 1 

HEXAGONAL BORON NITRIDE – GRAPHENE 2 

HETEROJUNCTIONS 3 

7.1 Introduction 4 

The carrier mobility of graphene is heavily dependent on the materials in contact with 5 

the graphene. The mobility of graphene can be limited by scattering introduced from 6 

charged surface states, impurities, substrate roughness, and phonon modes of the 7 

contacting materials.
[132, 189]

 Charged impurities at the graphene-substrate interface can 8 

also induce doping of the graphene and cause a significant shift in the charge neutrality 9 

point of the graphene. Recently, the use of hexagonal boron nitride (hBN) has been 10 

shown to be an ideal substrate for improving the carrier mobility of graphene.
[286]

  11 

 An isomorph of graphene, hBN has a boron atom occupying the A sub lattice while a 12 

nitrogen atom occupies the B sub lattice of the graphene Bernal structure. With a large 13 

bandgap of 5.97 eV and a lattice mismatch of only 1.7% with graphene, hBN is an ideal 14 

insulating substrate for graphene.
[287]

 The 2D nature of hBN further results in an inert 15 

surface free of dangling bonds, surface charge traps, and an atomically smooth surface 16 

which suppresses the rippling in graphene. With a permittivity of 4.2 and a breakdown 17 

voltage of 0.7 V nm
-1

, hBN is comparable in dielectric quality to that of SiO2. 18 

Furthermore, the large energy of hBN phonon modes results in less scattering in the 19 

graphene.
[286, 287]

  20 

 21 

 22 
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7.2 Physical Characterization of Materials 1 

The fabricated devices were made from large area materials synthesis techniques and 2 

fabrication processes. Graphene monolayers were grown using a CVD synthesis process 3 

on a copper foil. The hBN multilayers were grown on a separate copper foil using a CVD 4 

synthesis process. The hBN multilayers were transferred to a thermally grown SiO2/Si 5 

wafer (270 nm oxide thickness) to act as a buffer layer between the graphene and 6 

underlying SiO2 substrate using the previously described wet transfer process. The 7 

underlying SiO2/Si substrate serves as the back gate of the device. A graphene monolayer 8 

was transferred onto the hBN using the same wet transfer process. The graphene was 9 

patterned and Ni/Au (20/50 nm) contacts were deposited onto the graphene. A second 10 

hBN multilayer synthesized by CVD on copper foil was transferred using the wet transfer 11 

process on top of the graphene. The second hBN multilayer serves as the interlayer 12 

dielectric for the fabricated tunneling structures. A second graphene monolayer was 13 

transferred to the hBN/Gr/hBN stack to serve as the top electrode. Ni/Au (20/50 nm) 14 

contacts were deposited on to the second layer of graphene. A device similar to the 15 

device depicted in Figure 39A was fabricated with similar operating principles. 16 

After transferring the hBN to the SiO2/Si substrate, XPS was used to determine the 17 

quality of the CVD grown hBN. Shown in Figure 47, the synthesized hBN shows a B 1s 18 

peak at 191.6 eV and a N 1s peak at 398.2 eV.
[288]

 The peak locations are consistent with 19 

reports of the hBN XPS spectra from the literature. The stoichiometry of the synthesized 20 

hBN was calculated from the normalized peak area ratios of the B 1s and N 1s peaks. The 21 

peaks were normalized with empirical sensitivity factors of 0.13 and 0.42 for the B 1s 22 

and N 1s peak respectively.
[275]

 The calculated stoichiometry is 1.09±.02. The 23 
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stoichiometry was also calculated from Scofield relative sensitivity factors of .49 and 1.8 1 

for the B 1s and N 1s respectively giving a stoichiometry of 0.96±.02.
[289]

 The average 2 

stoichiometry from the two sets of sensitivity factors is 1.02±0.07. The near ideal 3 

stoichiometry of the hBN indicates high quality hBN with minimal interstitials or 4 

vacancies. 5 

 6 

  7 

Figure 47 (A) XPS B 1s spectrum of the CVD hBN. (B) XPS N 1s spectrum of the CVD 8 

hBN 9 

 10 

 11 

 12 

SKPM was used to compare the surface charge fluctuations of the hBN in comparison 13 

to the surface charge fluctuations of the underlying SiO2 as shown in Figure 48. The 14 

surface charge fluctuations of the hBN (41 mVrms) are reduced by a factor of ~3 15 

compared to the surface charge fluctuations of the SiO2 (144 mVrms). The coherence 16 

length associated with the surface charge fluctuations is determined using the height to 17 

height correlation function.
[290]

 The coherence length of the hBN is found to be 60 nm 18 

while the coherence length on the SiO2 is determined to be 20 nm. This indicates that in 19 

the case of the surface charge fluctuation being the dominant scattering mechanism, the 20 

coherence length of the device will be limited by the substrate to either ~60 nm in the 21 
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case of hBN or ~20 nm in the case of SiO2. Both substrates limit the coherence below the 1 

desired value of 100 nm. While CVD hBN is currently a drastic improvement over a SiO2 2 

substrate, improvements to the hBN quality are required for further device improvements.  3 

 4 

 5 

Figure 48 (A) SKPM measurement of the hBN surface. The VRMS is 41 mV. The local 6 

VRMS in the blue outlined region is 31 mV (B) SKPM measurement of the SiO2 surface. 7 

The VRMS is 144 mV. 8 

 9 

 10 

 11 

The surface topography of the transferred hBN as measured by AFM is shown in 12 

Figure 49. The measured topography shows local fluctuations of 2-3 layers in the hBN 13 

thickness which correspond to the surface charge fluctuations of the hBN. This indicates 14 

the coherence length of the surface charge potential can be increased by improving the 15 

uniformity of the grown hBN. The surface charge fluctuations of the locally thicker hBN 16 

is 31 mVRMS compared to the fluctuation of 41 mVRMS indicating a thicker and more 17 

uniform hBN would provide a better buffer layer for graphene. In comparison, the 18 

surface of the SiO2 is highly uniform indicating the measured surface charge potential of 19 

the SiO2 is intrinsic to the dielectric and improvements to the processing conditions are 20 

unlikely to result in the SiO2 being a suitable substrate to achieve NDR. 21 
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 1 

Figure 49 AFM topography image of the hexagonal boron nitride surface. Local 2 

fluctuations of ~2-3 layers are observed and correspond to the large charge fluctuations 3 

observed in the SKPM measurement.  4 

 5 

 6 

7.3 Graphene on hexagonal boron nitride 7 

Electrical measurements of the graphene were performed to assess the evolution of 8 

the graphene performance at each processing step. After transferring the graphene onto 9 

the hBN substrate, a maximum mobility of 7680 cm
2
V

-1
s

-1
 was achieved.  This is a 10 

significant improvement over the typical mobility of ~2000-3000 on SiO2. The improved 11 

mobility is a direct result of the reduced scattering due to the higher energy phonon 12 

modes of the hBN and reduced surface potential fluctuation.  13 

While an overall improvement is seen, fluctuations in the thickness of the hBN buffer 14 

layer are seen to greatly impact the device performance. Thickness fluctuations of up to 15 

12 layers (~4 nm) are observed on the macroscopic scale for the transferred hBN. 16 

Graphene devices can either straddle multiple patches of hBN as shown in Figure 50A or 17 

fall within a single hBN patch shown in Figure 50B. The Raman spectra of the devices 18 

shown in Figure 48A-B are shown in Figure 50C. The Raman spectrum of the device 19 

straddling multiple hBN patches exhibits 2D and G peak widths of 46 and 36 cm
-1

 and 20 

peak positions of 2705 and 1590 cm
-1

 respectively. In comparison, the graphene device 21 
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which falls in a single hBN patch has peak widths of 33 and 16 cm
-1

 with positions of 1 

2704 and 1593 cm
-1

 for the 2D and G peak respectively. The increased peak widths for 2 

the device straddling multiple hBN patches is an indication of increased strain in the 3 

graphene layer.
[291]

  4 

 5 

 6 

Figure 50 (A) Fabricated device which straddles multiple hBN patches. (B) Fabricated 7 

device which is in a single hBN patch. (C) Raman spectrum of A (Multiple Patch) and B 8 

(Single Patch).  9 

 10 

 11 

 12 

A comparison of the electrical performance of these two devices is shown in Figure 13 

51A. The graphene device which falls within a single hBN patch has a mobility of 7680 14 

cm
2
 V

-1
s

-1
 while the graphene device which straddles multiple patches has a mobility of 15 

1764 cm
2
 V

-1
s

-1
. As shown in Figure 51B, a device which straddles two hBN patches has 16 

a mobility of 3676 cm
2
 V

-1
s

-1
. The mobility of 10 measured devices is shown in Figure 17 

51C. The mobility of these 10 devices as a function of the number of hBN patches 18 

straddled by the device is shown in Figure 51D. The devices which straddle a single hBN 19 

patch are shown to have significantly higher mobilities of 5663±1804 cm
2
/Vs. Devices 20 

which straddle two hBN patches have reduced mobilities of 3918±575 cm
2
/Vs compared 21 

to the single patch devices. Devices which straddle three or more patches show negligible 22 
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improvement over devices on SiO2 with mobilities of 2353±832 cm
2
/Vs compared to 1 

2235±336 cm
2
/Vs for graphene devices on SiO2.   2 

 3 

 4 

Figure 51 (A) Transfer curve comparison between a graphene device on a single patch of 5 

hBN to a device that straddles three separate patches. (B) Transfer curve comparison 6 

between a graphene device on a single patch of hBN to a device that straddles two 7 

patches. (C) Mobility of 10 measured graphene on hBN devices compared to graphene on 8 

SiO2. (D) Mobility comparison between graphene on a single patch of hBN (single 9 

patch), graphene straddling two patches (double patch), and graphene straddling three or 10 

more patches (multiple patch). 11 

 12 

 13 

 14 

After the addition of the hBN interlayer on top of the graphene, the mobility of the 15 

graphene is reduced. In the case of the device shown in Figure 7.3.1, the mobility is 16 
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reduced to 4200 cm
2
 V

-1
s

-1
 from 7680 cm

2
 V

-1
s

-1
. The reduction in mobility is caused by 1 

the additional disorder introduced by the hBN interlayer. The local thickness fluctuations 2 

as well as the surface charge fluctuations of the hBN interlayer impact the graphene 3 

similar to the impact seen from the hBN buffer layer under the graphene. 4 

After characterizing the bottom layer of graphene, a second layer of graphene was 5 

transferred to the device stack and tunneling measurements were performed. The 6 

tunneling performance of the devices is shown in Figure 52. The tunneling performance 7 

of the devices with an hBN buffer layer is compared to similar devices directly on SiO2. 8 

No significant change in the tunneling characteristics of the devices is seen suggesting 9 

the quality of the hBN is insufficient to noticeably impact the tunneling characteristics of 10 

the device. Also plotted in Figure 52 are the current-voltage characteristics of exfoliated 11 

Gr-hBN-Gr devices from the literature.
[198]

 The results show gate-controlled tunneling 12 

comparable to previously reported exfoliated structures in the limit of no momentum 13 

conservation.   14 

 15 

 16 

Figure 52 Tunneling current density on the log scale for the fabricated tunneling 17 

junctions compared to similar literature tunneling junctions utilizing exfoliated 18 

materials.
[198]

  19 

 20 
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7.4 Conclusions 1 

Graphene tunneling junctions with an hBN buffer layer were fabricated and compared 2 

to results from the literature. XPS showed B 1s and N 1s peaks to be consistent with hBN 3 

from the literature. The normalized area ratio of the B 1s and N 1s peaks was used to 4 

show the hBN buffer layer was stoichiometric. The hBN buffer layer was shown to 5 

reduce the surface potential fluctuations compared to the traditional SiO2 substrate by 6 

SKPM. The use of the CVD synthesized hBN buffer layer was shown to significantly 7 

increase the mobility of the graphene layers when the underlying hBN buffer layer was 8 

uniform. Thickness fluctuations of the hBN buffer layer were shown to lower the 9 

mobility of the graphene layers and in the extreme case diminish the mobility below that 10 

of graphene on SiO2. Despite the improved transport within the graphene layer, the 11 

tunneling characteristics of the fabricated tunneling junctions were found to be 12 

comparable to literature values at the limit of no momentum conservation. Further 13 

improvements to the hBN synthesis process to reduce thickness fluctuations will be 14 

necessary to further improve the graphene tunneling junction’s performance.  15 

16 
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CHAPTER 8: FUTURE WORK 1 

The major focus of this work was the development of an integrated materials 2 

synthesis and fabrication process for fabricating graphene SymFET structures. The 3 

impact of the fabrication process and materials based disorder on the performance of the 4 

graphene SymFET was investigated. Future work to further improve the performance of 5 

the graphene SymFET could include the following: 6 

 CVD Graphene rivaling the performance of exfoliated graphene has been 7 

synthesized. CVD synthesized hBN was shown to have significant thickness 8 

fluctuations which negatively impact the graphene performance. The quality 9 

of CVD synthesized graphene is sufficient. The complimentary materials to 10 

the graphene are currently limiting the SymFET performance. The 11 

development of complimentary materials to graphene (hBN, MoS2, WSe2, 12 

etc.) are necessary to further improve the SymFET device performance.  13 

 14 

 The wet transfer process of the tunneling barrier and top graphene layer 15 

introduce contamination to the device structure. Water trapped between the 16 

layers due to the wet transfer process is one potential source of disorder which 17 

was not investigated in this study. To eliminate this potential source of 18 

disorder, the development of an in situ synthesis technique of the interlayer 19 

dielectric and top graphene layer directly onto the bottom graphene layer 20 

would be ideal. One pathway for the direct synthesis of MoS2 on graphene has 21 

been explored and the development of a lower processing temperature for 22 
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MoS2 synthesis with increased grain sizes may allow MoS2 to be a viable 1 

tunneling barrier for the SymFET structure.  2 

 3 

 4 

 5 

 The orientation between the graphene layers has been theoretically and 6 

experimentally shown to impact the tunneling characteristics of the SymFET 7 

structure. A method using Raman spectroscopy to determine the 8 

misorientation between two graphene layers has been proposed. An evaluation 9 

of whether or not the misorientation of two graphene layers separated by a 10 

thin dielectric can be determined by Raman spectroscopy is needed.  11 

12 
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CHAPTER 9: CONCLUSIONS 1 

The goals of the work presented in this dissertation were (i) to develop a materials 2 

processing and integration scheme for large-area two dimensional materials (ii) determine 3 

the impact of contamination and disorder on vertical and horizontal electrical transport in 4 

graphene based vertical heterostructures (iii) elucidate the role of material 5 

synthesis/processing on the introduction of disorder in the vertical heterostructure and 6 

how this disorder impacts electrical transport.  7 

Process flows for fabricating the graphene SymFET structure from large scale highly 8 

uniform 2D materials were developed. The developed processes include patterning 9 

techniques, metal depositions, dielectric depositions, wet etches, plasma etches, and 10 

process contamination removal techniques. The developed fabrication process was used 11 

to fabricate the SymFET structure and the materials based disorder in the structure was 12 

investigated. 13 

Graphene SymFET structures with ALD based tunneling barriers were fabricated and 14 

the tunneling characteristics were characterized. The tunneling current of the fabricated 15 

structures was shown to be controlled by the designed band structure of the interlayer 16 

dielectric. Trap assisted tunneling was found to dominate the tunneling characteristics at 17 

large tunneling barriers while direct tunneling was shown to be dominant for dielectric 18 

barriers below 3 nm in thickness. Despite the dominance of direct tunneling, NDR was 19 

not observed and the graphene was investigated as a potential limiting source. No 20 

dependence of the tunneling characteristics on the graphene grain size was observed 21 

suggesting the limiting factor was likely to be the dielectric or substrate. 22 
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ALD based dielectrics suffer from the need of seeding layers for deposition on 1 

graphene and are a potential source for increased disorder in the SymFET structure. MoS2 2 

was investigated as a potential replacement for the ALD based dielectrics. The direct 3 

synthesis of MoS2 on graphene was shown to be highly detrimental to the graphene. The 4 

graphene was shown to have no impact on the synthesis of the MoS2. Temperature 5 

dependence was found on the disorder introduced by the MoS2 synthesis process 6 

suggesting a reduced temperature synthesis process for MoS2 is needed. The tunneling 7 

characteristics of a MoS2 interlayer transferred to the graphene SymFET structure were 8 

investigated. The transferred MoS2 film was shown to introduce significant charge 9 

trapping to the structure which reduced the tunneling current density. The most likely 10 

source of defects attributing to the trapping is the grain boundaries of the MoS2. Larger 11 

domain size MoS2 should be synthesized for future studies.  12 

The impact of the substrate on the SymFET structure was investigated by introducing 13 

an hBN buffer layer between the bottom graphene sheet and the underlying SiO2 14 

substrate. The hBN buffer layer was shown to improve the graphene electrical 15 

characteristics in more uniform hBN areas. The improved characteristics are due to the 16 

reduced potential fluctuations on the surface of the hBN compared to the surface of the 17 

SiO2 and the higher energy phonon modes of the hBN not introducing as much scattering 18 

as the lower energy SiO2 phonon modes. When large thickness fluctuations were present 19 

under the graphene film, the graphene electrical characteristics were shown to be similar 20 

and in some cases inferior to graphene on SiO2. An hBN tunneling barrier was then 21 

transferred to the graphene and the SymFET structure was fabricated. The hBN was 22 

shown to be of insufficient quality to realize NDR. The tunneling current densities of the 23 
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large-area material fabricated structures were shown to be of comparable quality to 1 

exfoliated materials in the limit of no momentum conservation. The quality of the 2 

materials complimentary to the graphene was found to be the limiting variable of the 3 

SymFET performance.  4 

5 
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