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SUMMARY

Technology improvements to monolithically integrate CMOS sensors, analog-to-
digital conversion circuitry, and digital processing offer the potential for a highly
efficient imaging system for 1nu1timedia processing. . However, this ‘réquires an
understanding of the connections among applications, architecture, and technology. This
dissertation presents a study of system-level désign issues to develop monolithic focal
plane architectures. Research céntributions include workload characterization of key
front-end imaging applications to deiemﬁne hardware design constraints for the
architecture, development of modéls to predict performance and efficiency of system
components (photodetectors, analog-to-digital converters, data storage, and digital
processing), and evaluation of design tradeoffs to improve overall system performance.

The additional hardware in the focal plane architecture expands application versatility

compared to current pixel-level processors. Analysis shows the focal plane architecture
can deliver up to 130x the performance ofa traditional DSP architecture for key fronf-end
applications. In addition, impleméntétions of the focal plane architecture achieve up to
81x higher area efficiency and up to 11x higher energy efficiency. These benefits are
significant because front-end aﬁplications can consume over half of the required
brocessing time, allowing that workload to be offloaded to the more efficient focal plane
architecture. Further development; in computer architecture, microelectronics, and signal

processing will enable low-cost, portable imaging systems.
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CHAPTER ]

INTRODUCTION

1.1 Motivation
The demand for mobile productivity with image and video applications has

sparked the development of highly integrated processing systems. Low-cost, embedded
image processing chips appear in numerous portable products, including cellular phones,
video and still cameras, and portable data assisténts. These systems must deliver high
performance with efficient use of resources such as area and energy. The development of
these systems can leverage the abundant data parallelism in the application domain as
well as improved fabrication techniques for Both image sensors and integrated circuits.
Key issues for fhture portable imaging devices include:

o Designing a suitable architecture for an imaging system

e Integrating the system components monolithically

e Utilizing the limited sy$teh1 resources to maintain portability

1.1.1 Architecture design

Numerous architectures have been developed for image processing systems using
both analog and digital techniques [1-3]. Efficient handling of the two-dimensional image
data is a common issue among these designs. Because of the high spatial locality of

image processing applications, the Single-Instruction Multipie-Data (SIMD) [4] construct



provides a method to increase performance through data parallelism in both general-
purpose processors [5] and ﬁne#grain 'péralle] processing arrays' [6, 7]. However, new
architectures must account for the increased impact of interconnect as the limiting factor

in the design [8].

1.1.2 System integration

The monolithic integration of CMOS sensors with additional functionality can
provide a system-on-a-chip solution for imaging systems [9]. The recent trend is away
from the historical use of analog processing circuitry and towards digital pixels [IO].
With smaller technology feature sizes, more digital circuitry can be incorporated at the
sensor site for analog-to-digital conversion, data storage, and digital processing.
However, technology scaling presents a challenge to CMOS imagers, and enhancements
to the standard CMOS process are required to maintain image sensing [11, 12]. These

modifications hold the promise to increase CMOS image sensor performance [13].

'1.1.3 Resource utilization

Higher efficiency ratings (pérfonhance per resource) are desired for portable
image processing systems becauée of t:ech}nology limitations such as interconnect wiring
density and heat extraction. Portability limits system resources such as area and power,
and overall system performance is affected by design tradeoffs. Silicon area allocation is
a significant issue because in single-level VLSI, the photodiode, the émalog signal
conditioning, the analog-to-digital converter, the memory, and the digital processing core

compete for silicon area. Power consumption is also vital because the architecture must



provide a meaningful battery life. Area and energy (power) efficiency are important

figures of merit in this design space [14].

1.2 Problem Statement

Incorporating analog and digital components to process pixels at the detection site
requires an understanding of the connections among applications, architecture, and
technology. The imaging application suite is a rich opportunity to design a targeted
architecture that leverages the abundant data parallelism. Improvements in technology
dramatically inipad architecture design and implementation. The challenge is not

maximum performance, but sufficiency with minimal resource cost.

1.3 Related work

An imaging system includes both data acquisition and data processing.
Traditional architectures focus on the data processing functionality. Focal plane
architectures integrate data acquisition and data processing functionality to utilize the

data parallelism inherent within the image applications.

1.3.1 Traditional architectures

The abundant data parallelism inherent in image applications has motivated the
development of multimedia extensions for general-purpose prbcessors to improve
performance on these applications. Using the Single-Instruction Multiple-Data (SIMD)
processing model described by Flynn [4], these extensions supply the processor’s

functional units with subword data in parallel. General-purpose architectures utilizing



multimedia extensions include Intel’s MMX™ [15] and SSE™ [16], Hewlett-Packard’s
MAX2™ for the PA-RISC™ architecture [17], Sun Miérosystems’ VIS™ for the
SPARC [18], MIPS’s MDMX™ [19], the Alpha’s MVI™ [20], and Motorola’s
ALTIVEC™ for the PowerPC™ [21]. Alternatively, digital signal processors (DSPs)
such as the TI TMS320C80 or TMS320C6000 families follow a more specialized
approach [22]. However, both microprocessors and DSPs require high overhead in both
area and power to execute image processing applications. In addition, the most severe
limits of these architectures will not be imposed by transistors performing computing
functions but by interconnection networks that perform signal communication, clock

distribution, and power distribution functions [23].

1.3.2 Focal plane architectures

A logical approach for focal plane processing incorporates analog computational
ability into the sensor device. Analog design methods, such as the Silicon Retina, have
been presented to implement focal plane arrays [24]. This has led to the development of
neuromorphic vision sensors for early image processing [25]. However, the advantages of
analog techniques, such as low power and small area, break down as CMOS technology
scales [26]. In addition, analog architectures are typically non-programmable, requiring
multiple designs to implement different functionality.

Several digital architectures, such as the Near Sensor Image Processing (NSIP)
[27], the Programmable and Versatile Large Size Artificial Retina (PVLSAR)‘ [28], and
the Simple and Smart Sensory Processing Elements (S°PE) [29], follow the pixel-level

model to perform early image processing in the focal plane. However, these architectures



utilize bit-serial processing techniques with limited memory, which can either restrict
processing to binary images or require multiple cycles to perform a single instruction on
data words. This may prevent the implementation of some early image processingA

~algorithms.

1.4 Research approach
The research presented in this dissertation addreéses system-level design issues to'

monolithically integrate photodetectors, analoé-to-digita] converters,: data storage, and
digital processing into focal plane architecturgs. These components are combined into a
single processing element that is tiled to form a SIMD focal plane processor array with
nearest-neighbor communication, capable of exécuting front-end image applications. The
outline of the approach is as follows:

e Characterize and evaluate front-end image procesfsin;g appiicationé

e Develop compdnent models relating performance and resource usage

e Assess technology scaling for focal plane architecture implementation

e Quantify design tradeoffs in focal plane architectures

An important characteristic ofw the architecture is the processing granularity, also

known as the number of pixels pér pr;(;)cessing element (PPE). Key performance and cost

' Ll . . .
metrics for focal plane architectures. include execution time, system throughput, chip

area, power consumption, area-time efficiency, area efficiency, and energy efficiency.

o

The main task for the systéni iével study of integrated focal plane architectures is
v T ‘

developing the framework for interrelationships among components. Although design



expertise exists for data acquisition [30], analog-to-digital conversion [31], data storage
[32], and digital architecture [33], the impact ‘of design choices on other components is
not as clear. Modeling and simulation can project the behavior éf focal plane architecture
implementations across technology generations.

Results will show the performance and efﬁéiency beneﬁt.ls gained by integrating
digital processing with data acquisition and will identify feasible design conﬁgurations

and technology for implementation.

1.4.1 Performance analysis of front-end image processing applications

Pixel—levelA image processing architectures can leverage the abundant data
parallelism to provide high performance embedded systems. However, sufficient
hardware complexity and data storage must be available to broaden the suite of image
applications.

A focal plane architectural simulator is used to determine performance metrics for
convolution, discrete cosine transform (DCT), edge detection, and median ﬁlteﬁng.
Sustained throughput, measured in billion operations per second, is determined for the
target system while varying the number of pixels per processing element (PPE).

The applications also have a direct impact on the physical implementation. The
hardware must satisfy both the data storage and the data precision constraints to execute
the applications. Also, the hardware must support the required instruction set to execute
each application.

Results show the sustained throughput of the focal plane architecture exceeds the

reported specification of the TI DSP chips up to 130x for 1 PPE. The execution time is



also reduced. The 1 PPE implemehtation operating at 10MHz executes an imaging
sequence 4x faster than the TI TMSS2.0C6411 chip operating at 300MHz. In addition,
execution times from TI DSP bell¢hmarks are dependent oﬁ the image size. Therefore
they increase with larger resolutions, while the execution time of the focal plane
architecture is independent of the image size. This makes the focal plane architecture an

excellent candidate for an embedded processor for front-end imaging tasks.

1.4.2 Efficiency analysis of focal plane architectures

Future portable imaging products will benefit from the monolithic integration of
photodetectors, ahalog-to-digital converters, digital processing, and data storage.:
However, the goal is not strictly building the system with the highest performance, but
delivering the system with the required performance at the lowest cost.

" Software tools provide a means to evaluate potential architectural cénﬁgurations
to determine bounds for system feasibility as well as good candidates for implementation.
A focal plane architectural simulator [34] is used to determine performance metrics for
median filtering, convolution, and inside edge detection, which corresponds to an
imaging sequence of: (1) noise removal, (2) smoothing, and (3) segmentation. Different
architecture implementations vary the number of pixels per processing element (PPE).
Component area models based upon physical layout are developed to project gi]icon area
for the architecture using different fabricatioh technologies. A Technology Scenario
Analyzer (TeSA) [35] projects power consumption using different fabrication
technologies, incorporating parameters from The International Technology Roadmap for

Semiconductors [36, 37].



Results show that, despite a significant difference in clock frequency,
implementations of the focal plane architecture perform well compared to a traditional
DSP architecture while demonstrating higher ratings in area and energy efficiency across |
fabrication technologies. Performance is increased by 130x when using a focal plane
architecture with 1 PPE. In addition, this implementation achieves 81x higher area
efficiency and 11x higher energy efficiency when compared to traditional TI DSP chips.’
However, more aggressive technology shows diminishing returns for area and power
usage, indicating that less expensive technologies can be used to implement the system.
Because data acquisition and data storage have the highest cost in terms of silicon area,

the architecture must address those components to be effective.

1.4.3 S.tatistical experimental design for photodetector modeling

Imaging chips are being developed that convert the image to the digital domain
and process the spatially parallel data within the image plane. However, with monolithic
integration, the photodetector, the analog-to-digital coﬁverter (ADC), the digital
processing core, and the memory compete for silicon area. Modeling the integrated
optoelectronics can provide insight for design choices.

‘A regression model was developed from the theoretical physical implementation
of a photodiode. Key input parameters selected for designing the photodiode included the
area, integration time, acceptor density, donor density, temperature, and reverse bias. A
2% full-factorial experimental design was used to explore the broad design space.

Results show that the regression model accurately depicts the behavior of the

SNR response as a function of the input parameters. The two most significant factors,



photodiode area and integration time, provide a helpful design tradeoff in the context of
the digital pixel. A 1ms increase in the integration time reduces the photodiode area by
212;1m2 while maintaining SNR. This relationship significantly impacts the design of a

focal plane processor by trading time for limited silicon resources.

1.5 Contribution Summary
The contributions of this dissertation relate to the study of system-level design
issues to monolithically integrate photodetectors, analog-to-digital converters, data
storage, and digital processing into focal plane architectures. The contributions are
outlined in three categories.
Performance analysis of front-end image processing applications
e Workload characterization of image processing sequence
» Implemented front-end image processing application suite
» Determined data storage requirements to execute applications
» Evaluated functional units for digital pixel
e Key results from analysis
» Determined required number of register to execute selected applications equals
[(2 « PPE) + 7] with a 12-bit datapath
» Data parallelism in the selected applications ehables utilization exceeding 78%
» Communication cost for nearest-neighbor applications (3 x 3 window) is less than
8% while communication cost for larger windows (8 x 8) exceeds 12%
* 1 PPE implementation operating at 10MHz executes an imaging sequence 4x

faster than the TI TMS320C6411 chip operating at 300MHz.



Efficiency analysis of focal plane architectures

e Evaluation of focal plane architectures with 1 PPE, 4 PPE, and 16 PPE

Developed component models for area projections

Developed framework for system analysis of component models

Projected power consumption for different technology generations

Evaluated area-time efficiency, area efficiency, and energy efficiency of focal
plane architectures
e Key results from analysis
* Sustained throughput is increased up to 130x versus TI Benchmarks using a focal
plane architecture
* Focal plane architectures have up to 81x higher area efficiency and up to 11x
higher energy efficiency compared to TI DSP chips
= Area and power constraints for portability are feasible using 180nm fabrication

technologies and beyond to implement a focal plane architecture

Statistical experimental design for photodetector modeling
e Analysis of CMOS photodi(;de signal-to-noise rzitio (SNR)
* Developed photodiode SNR performance model based upon physical
implementation
= Performed statistical experimental design to create regression model

® Validated regression model using analysis of variance (ANOVA)
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e Key results from analysis
» Regression model reduces complexity for determining photodiode SNR
» Significant parameters, in order of importance, are diode area, integration time,
: dono'r density, reverse bias, and then the combination of reverse bias and donor

density

= Photodiode area and integration time are the most dominant parameters, with a
correlation to SNR of 0.794 and 0.587 respectively

» -Each Ims increase in integration time reduces photodiode area by 212um? while

maintaining constant SNR

1.6 Dissertation Outline

Chapter II presents a characterization of the image application suite for focal
plane architectures. A background of image processing applications and architectures is
presented. The targeted application suite and the evaluation methodology are described.
Performance results are provided with a comparison versus TI DSP benchmarks.

Chapter III presents the analysis of efficiency metrics for focal plane
architectures. A background of image processing architectures is presented. Performance,
area, and power are projected for focal plane architecture implementations. Efficiency
comparisons versus TI DSP chips are provided.

Chapter IV presents the statistical experimental design for photodetector
modéling to use within a mixed-signal processing element. A background of the digital

pixel and image acquisition is presented. The development and validation of the model is
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described. The model is analyzed and applied to the design of a photodiode to meet -
system constraints

Chapter V presents a summary of the dissertation with a list of contributions and
key results. Future.research directions are also provided.

Appendix A provides a detailéd description of the focal plane architectural
simulator used to evaluate front-end imagé applications, including software features and
available metrics.

Appendix B provides a détaiied desbﬁption of the Ti DSP chips used for

compariéon, including reported chip specifications and application benchmarks.
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CHAPTER 11

PERFORMANCE ANALYSIS OF FRONT-END
IMAGE PROCESSING APPLICATIONS

Summary

Pixel-level image processing architectures can leverage the abundant data
parallelism to provide high -performance embedded systems. Previous pixel-level fo;:al
plane processors Werre limited to a small set of applications for binary images. However,
the addition of sufficient data storage and key functional units, made possible with
current technological improvements, expand the application functionality to operate on
image formats with higher resolution. This chapter presents performance analysis of an
integrated focal plane architecture for common front-end imaging applications. The focal
plane architecture combines data acquisition, analog-to-digital conversion, and image
proceésing. Using fine-grain processing of 16 pixels per processing element (PPE) or
less, this system achieves performance that exceeds comparable DSP architectures on key
front-end imaging applications such as convolution, DCT, edge detection, and median
'ﬁltering. The 1 PPE implementation operétingat 10MHz exe;:utes an imaging sequence
4x faster than the TI TMS320C6411 chip operaﬁng at SOOMHZ. These bélSiC tasks can
consume over half of the execution time of a typical imaging sequence. That workload

can be partitioned to the focal plane architecture, leaving more complex tasks for the

DSP.
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2.1 Introduction

Recent emphasis has been placed upon multimedia processing to creaté a
ubiquitous computing environment. In addition, our mobile society demands this
multimedia processing be incorporated in portable devices, sparking the further
development of embedded systems for real-time applications. A wide range of products,
such as video and still cameras, laptop computers, and portable data assistants (PDAs),
deliver multimedia processing by including inexpensive imaging chips. However, this
processing creates a challenging design problem [38] and requires a change in paradigm
to accommodate processing requirements [39]. Next-generation portable imaging
products will benefit from the monolithic integration of photodetectors, analog-to-digital
converters, digital processing,‘ and data storage to improve their performance, efficiency,
and cost. A typical system-on-a-chip digital signal processing (DSP) architecture, shown
in Figure 13(a), assigns an entire image to a siﬁg]e processing core. This architecture is
designed to span all stages of imagfa processing. However, the DSP architecture uses a
significant amount of processing to perform basic image enhancement and image analysis
applications. For example, the digital image signal multiprocessor [40] reports 53% of its
execution time for preprocessing and 47% for feature extraction. i’reprocessing includes
common tasks, such as noise reduction, smoothing, and segmentation, which are
characterized by high spatial locality. Processing in the focal plane can more efficiently
handle these basic tasks, leaving the more complex applications to the DSP architecture. .
A focal plane architecture, shown in Figure 13(b), can be built by integrating analog-to-
digital. conversion (ADC) and digital processing at each detector .site in the focal plane

array.

14



"',:':‘"f T, 'f.‘-':‘-' z.l‘l =
_é*’?ﬁ";}“ (L4 ;‘1
WA AT

(a) Modular DSP (b) Focal Plane Processing
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Incorporating analog and digital components to process pixels at the detection site
create new design challenges [9, 41, 42], including the choice of image tasks to perform
on the focal plane. Each application requires various computation, communication, and

storage costs when mapped to a focal plane processor. These costs are determined by the

image processing granularity, where a finer grain size translates to more pixel values
external to the processing element (PE). Also, the hardware design of the processing
element directly impacts the image workload. Using simple binary prdcessing elements at
each pixel severely limit the scope of the application suite and do not provide the
required front-end processing capability. However, supporting an extensive Instruction
Set Architecture (ISA) with infrequently used hardware may prove costly in terms of
silicon area. Understanding the targeted application suite can aid architectural design

choices.
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This chapter presents a characterization of the image application suite for use in
-~ embedded focal plane processing systems. A Single-Instruction Multiple-Data (SIMD)
focal plane architectural simulator provides dynan;ic workload statistics for the image
application suite. A key design parameter‘ is the number of pixels assigned to each
processing element. The number of Pixels-per-Processing Elemeht (PPE) is adjusted to
determine the effect of processing granularity on the computation, communication, and
storage costs for these app]icétions.

The workload for an application suite of median ﬁlt¢ﬁ11g, convolution, inside
edge detection, and the discrete cosine transform has been characterized. This application
suite requires a 12-bit datapath to retain computational precision. In addition, the
application suite requires at least [(2 « PPE) + 7] words of data storage to account for the
original image, the final image, and processing overhead. Utilization of processing
elements within the focal plane architecture ranges from 78% for the discrete cosine
transform to 100% for convolution.

For the sequence of median filtering, convolution, and inside edge detection, the

execution time with the focal plane architecture is reduced when compared to the

conventional DSP architecture despite a 30x difference in clock frequency (10MHz for
focal plane architecture, 300MHz for TMS320C6411 DSP). This beneﬁt is for front-end
applications that can consume over half of the processing time of an imaging sequence.
For a Quad-CIF resolution, the focal plane architecture requires 52.5us using 1 PPE and
195.2pus using 4 PPE. The DSP architecture requires 210.9us. Howe?er, the DSP
execution time is dependent on the image size and would increase for larger resolutions.

The execution time of the focal plane architecture is independent of the image resolution.
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Because of its specialized nature, this architecture would not replace a conventional DSP
chip but could be used in combination as an embedded preprocessing system to perform
early image applications faster and more efficiently. This would enable the DSP chip to
focus on subsequent, more complex tasks of the image processing sequence. Future work
includes translating the workload statistics into hardware projections using models for the
analog and digital components of the pixel. These'component models will quantify the
silicon area tradeoffs to make the best use of available resources for overall system
performance.

The organization of this chapter is as follows. Section 2.2 provides the
background for applications and architectures used by image processing systems. Section
2.3 describes the application suite targeted for implementation with a focal plane
processor. Section 2.4 describes the technique to characteriz¢ image application
performance on a focal plane architecture. Section 2.5 presents analysis fo.r integrating
image processing in the focal plane. Section 2.6 presents performance results and
compares the performance to a traditional DSP architecture. Finally, Section 2.7
concludes the discussion on workload characterization for embedded image processing

applications.

2.2 Background

An imaging system includes both data acquisition and data processing. Image data
enters the system where processing techniques convert the data into a useful format.
Pro.cessing functions include image enhancement, image analysis, " and imdge

transformation. Image enhancement improves the quality of the image data. Image
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analysis provides interpretation of image data. Image transformations are conversion
operations applied to the image data. Each algorithm within a category requires different
computation, communication, and storage costs to process each pixel of data.

Numerous architectures have been developed for imagﬁ processing systems [2, 3].
Efficient handling of the two-dimensional image data is a common issue among these
designs. A natural solution to this issue is to process the spatially parallel data within the
image plane [43]. Both analog and digital techniques have been investigated to
implement image processing functions. A monolithic system-on-a-chip with pixel-level
processing is a potential solution to next-generation portable image products.

This section discusses the image application suite and presents both the traditional
architectural approaches used to implement the required functionality as well as the focal
plane processing approach. As an alternative, processing images in the focal plane can

utilize the data parallelism inherent within the image application domain.

2.2.1 Characterization of the image application suite

Image processing applications are categorized into (1) point operations, (2) local
operations, and (3) global operations [44]. A point operation such as thresholding occurs
at the individual pixel level. A local operation such as smoothing requires knowledge of
an individual pixel and its immediate neighbors. A global operation such as
histogramming uses all pixel data from the image. These operations form the basis of
applications found in ifnaging systems. To illqstrate the processing sequence required for
a typical imaging system of (N x N) pixels, Figure 17(a) describes the processing tasks,

Figuré 17(b) gives example applications at each stage, and Figure 17(c) quantifies the
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amount of data required for processing [45]. In Figure 17(c), the variable b represents the
number of bits per pixel and N represents the image resolution on side for a square image.
Point operations are the first stage, and local operations include the first three stages. The
fourth and fifth stages are global feature-measuring operations [46]. The first three stages
_represent a significant proportion of the computational workload. For example, the digital
image signal multiprocessor [40] reports 53% of its execution time for preprocessing,
which includes tasks from the first three stages such as noise reduction, smoothing, and

segmentation.

Image Noise . Feature i
(a) Acquisition }’ Reduction %Segmentatlon][} Extraction %Classmcat:on%

Answering the

(b) Light collecting Lowpass filtering, Edge Quantitative question:
and sensing  Median Filtering, etc. Detection measurements “What is it?"
(c) b« N2 b« N2 N2 N 1

Figure 2: Typical image processing sequence (a) processing tasks (b) ammples and
(c) amount of data

2.2.2 Traditional architectural af)pfoaches

Image applications within the ﬁrSt three stages of the processing sequence exhibit
high spatial locality because of | the: éimilarity in data volume. The abundant data
parallelism inherent in these applicatiéns l;as motivated the development of multimedia

extensions for general-purpose processors to improve performance on image applications.

Using the Single-Instruction Multiple-Data (SIMD) processing model described by Flynn
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[4], these extensions supply the processor’s functional units with subword data in
parallel. General-purpose architectures utilizing -mﬁltimedia extensions include Intel’s
MMX™ [15] and SSE™ [16], Hewlett-Packard’s MAX2™ for the PA-RISC™
architecture [17], Sun Microsystems’ VIS™ for the SPARC [18], MIPS’s MDMX™
[19], the Alpha’s MVI™ [20], and Motorola’s ALTIVEC™ for the PowerPC™ [21].
Alternatively, digital signal proéessors (DSPs) such as the TI TMS320C80 or
TMS320C6000 families fo]low a more specialized approach [22]. However, both
microprocessors and DSPs lack the computational power required to execute most media
applications in real-time. In addition, the most severe limits of these architectures will not
be imposed by transistors performing computing functions but by interconnection
networks that perform signal communication, clock‘distribution, and power distribution
functions [23]. Processing the image data in the focal plane can potentially address the

issues of computational throughput and signal (data) communication.

2.2.3 Focal plane processing approach

Data acquisition occurs through an analog process using techniques such aé
charge-coupled devices (CCD) or active p‘ixel sensors (APS) [47]. A logical approach for
focal plane processing incorporates analog computational ability‘into the sensor device.
Analog design methods, such as the:,jS;‘iylic.on Retina, have been presented to implement

e
focal plane arrays [24]. This has led to thje development of neuromorphic vision sensors
for early image processing [25]. Hovjszeji%ér, the advantages of analog techniques, such as

low power and small area, break down zi;s CMOS technology scales [26]. In addition,

analog architectures are typically non-programmable, requiring multiple designs to
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implement different functionality. Although analog architectures remain a viable
candidate for certain fo;:al plane processing applications, research efforts are also
exploring the digital architecture design space. These programmable systems can utilize
the advantages of future improvements in device fabrication.

The Single-Instruction Multiple—Data (SIMD) processing model described by
Flynn [4] forms the foundation of the data paralleli approéch to programmable fdcal plane
processing. Early architectures such as the Massively Parallel Processor (MPP) [48] and
the Cellular Logic array Image Processor (CLIP) [49] applied this paradigm to the tasks
of image processing and pattern recognition. More recently, SIMD architectures like the
Connection Machine models CM-1 [50] and CM-Z [51], the MasPar [52] ahd the GAPP
[53] have been successfully used for image processing applications. However, these
designs were targéied to-a more genefal set of applications and achieve performance with
high cost, poor data bandwidth, and lack of portability. MGAP [54] and ABACUS [7] are
examples of fine grain parallel proéessing architectures that address portability issues.
However, the 1/0 to individual processing elements limits conventional SIMD arrays. To

alleviate this problem, processing elements within the SIMD array are mapped directly to
subsets of the image detector array. The granularity of data mapping ranges from column-
level [42] to pixel-l;avel [71.

| Advances in device fabrication [36] and image sensors [47] enable the
devélopment of a system-on-a-chip with pixel-level early image processing. A
programmable digital pixel is formed by monolithically incorporating the sensor device,
analog-to-digital conversion (ADC) circuitry, digital processing circuitry, and data

storage within a processing element (PE). A block diagram of an integrated pixel-
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processing tile [26] is shown in Figure 14. This tile element is replicated to form a focal
plane array imager with integrated analog-to-digital conversion and SIMD processing.
Research at Stanford [55, 56] has demonstrated the feasibility of pixel level ADC.
Several architectures, such as the Near Sensor Image Processing (NSIP) [27], the
Programmable and Versatile Large Size Artificial Retina (PVLSAR) [28], and the Simple
and Smart Sensory Processing Eleﬁqents (S’PE) [29], féllow the pixél-level model to
perform early image processing in the focal plane. However, these architectures utilize
bit-serial processing techniques with limited memory, which éan either restrict processing
to binary images or require multiple cycles to perform a Single instruction on data words.
This may prevent the implementation of some early image processing algorithms.
However, the integration of more data storage and functional units at the pixel level

enables the versatility to execute a broader set of applications.
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Figure 3: Programmable digital pixel
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2.3 Application suite

The grayscale (8-bit) front-end applications, shown in Table 12, provide workload

characteristics for image enhancement, image analysis, and image transformation in order

to design the focal plane processor. The enhancement and analysis applications of median

filtering, convolution, and morphological processing represent the typical early image

processing sequence of: (1) noise removal, (2) smoothing, and (3) segmentation. The

discrete cosine transform is a fundamental component of image compression standards

such as JPEG. The workload characteristics for these applications are used to make

efficient architectural choices for processing in the focal plane. This section briefly

discusses each application and the algorithm implementation for a focal plane processor.

Table 1: Selected early image processing applications

Applications

Description

Image Enhancement
Median Filtering

Convolution

e Removes impulse noise from an image while
preserving spatial resolution.

e Performs different filtering operations, such as
shadowing, smoothing, and edge-detection.

Image Analysis
Morphological
Processing

e Performs feature extraction and segmentation
of binary or grayscale images such as inside
edge detection.

Image Transformation
Discrete Cosine
Transform

| Exploits the spatial redundancy inherent in

image data and is a fundamental component of
image compression standards
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2.3.1 Median filtering

Median filtering (MED) is useful to remove impulse noise from an image while
preserving spatial resolution. The algorithm is a rank-order filter [57] that replaces each
pixel in the image with the median value in the window. Generally, a window size is
selected to generate a rank-order filter with odd length. A larger window size increases
the severity of the median filtering effect [58]. The implemented algorithm performs a 2-

D nonseparable rank and selects the median value for a 3 x 3 window.

2.3.2 Convolution

Convolution-based filtering (CONV) has been implemented to perform different
filtering operations, such as shadowiﬁg, smoothing, and edge detection [58]. The filter
mask elements are broadcast one at a time to every processing element. All calculations

requiring the mask element are performed before the next element is broadcast. Each PE

multiplies the mask element by the corresponding pixel value from the original image

and accumulates the result. Values are accumulated in a spiral pattern that places the final
result in the center pixel of the filter mask. The implemented algorithm uses a 3 x 3 filter

" mask for the smoothing operation.

2.3.3 Morphological processing
Morphological image processing refers to the study of the topology or structure of
objects from their 2D spatial representation [59]. Binary or grayscale images are "

morphologically transformed by passing a structuring element over the image in a
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process similar to convolution. At each pixel position, a specified logical function is
performed- between the structuring element and the underlying image. For grayscale
images, erosion is the minimum pixel value in the structuring element, and dilation is the
maximum pixel value in the structuring element [58]. Depending upon the size and
content of the structuring element, different effects such as inside edge detection (IED)
can be produced from erosion and dilation operations. The implemented algorithm uses a

3 x 3 structuring element to perform the morphological operations.

2.3.4 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a transform based on the cosine kernel
with resulting values mapped into the real number domain [58]. The importance of this
application is particularly evident in real-timgvideo coinpreésion and decompression,
where DCT operations account for 25%-50% of CPU time without dedicated hardware
support. An 8 x 8 2D-DCT has been impIeménted using the roW-colulﬁn method, in
which a one-dimensional DCT is applied to the rows and thenr columns. T‘he implemented
algorithm maps to an integer architecture using the liﬁi_ng scheme for a_multiplierless

transform [60].

2.3.5 Algorithm implementatioﬁ

Fine-grain processing wijth ;a;:SIMD focal plane array requires each algorithm to
be implemented in a parallel mé;nner. Convolution and inside edge detection both
compute a Qalue for a pixel using a3 x 3 window. A spiral communication pattern was

utilized to efficiently implement these algorithms using a single pixel per processing
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element (Figure 4). For convolution, the spiral pattern represented the multiply-
accumulate chain for computing the center pixel value. Corresponding weights were
broadcast for each multiply operation, and the accumulated value was transferred to the
next pixel in the spiral. For inside edge detection, the spiral pattern represented the
computation of the maximum or minimum value within the window. Each processor
compares its pixel value to the transferred pixel value. The minimum is transferred for
erosion, or the maximum value is transferred for dilation. For multiple pixels per
processing element, the spiral communication was used only for pixels external to the

processing element.

Figure 4: Spiral communication pattern for applications using 3 x 3 window

For the 3 x 3 median filtering algorithm, a novel strategy is employed. Instead of
a single-pass sorting algorithm for the nine pixel values in the window, the algorithm
uses a two-pass sorting routine with seven values. Any group of seven values can be

sorted from minimum to maximum. Next, the remaining two values selectively replace
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the second and sixth values from the sorted pixels. After the second sorting pass, the
median value from the new group of seven is also the median value for the original 3 x 3 -
window. This implementation requires two fewer registers than the single pass sort at the
cost of increased processing time. However, in the focal plane architecture design, data
storage is a significant cost, while percessing lhroughput is in abundance due to the
inherent data parallelism of the applicafion. This method also provides the minimum and
maximum pixel values of the original 3 x 3 window.

The 8 x 8 discrete cosine transform is a challenge for fine-grain processing
because most of the data is external to the processing element. However, the SIMD
processing array can be mapped to a forward transform structure, like the multiplierless
DCT approximation shown in Figure 5 [61]. Processing elements are grouped to form 8 x
8 pixel blocks. The transform is first performed for the rows. The data is then properly

reordered before performing the transform on the columns.
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Figure 5: Forward transform of the all-lifting binDCT-C
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2.4 Analysis

This section describes the technique to characterize image application -
performance. A focal plane architectural simulator is used to implement the application
suite. A methodblogy is described that provides dynamic workload statistics from each

application. The system performance is calculated using these statistics.

24.1 Focal Plane Architectural Simulator

Applications for focal plane architectures can be programmed using the SIMD
Pixel Processor (SIMPil) Simulator [34]. This software tool is a windows-based
* instruction levebl simulator, running on a PC platform. The SIMPil Simulator allows
editing, assembling, executing, and debugging parallel image applications in a single
integrated workbench.b This tool has been used extensively to evaluate focal plane
processing of multimedia applications [62]. The current version of the SIMPil Simulator
is available on the download page. An extended description of the focal plane

architectural simulator can be found in Appendix A.

2.4.2 Methodology

The block diagram in Figﬁre 6i }ililustrates the methodology for characterizing the

l !

image processing application sulte Image data is sampled by the focal plane architectural

simulator based upon the preset number of pixels per processing element (PPE). The PPE
)

is set to 1, 4 or 16. In the 4 PPE case, the pixels are arranged in a 2 X 2 pattern. In the 16

PPE case, the pixels are arranged in a 4 x 4 pattern. Each application is then executed to
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determine the dynamic workload statistics. Key measurements include the cycle count,
the dynamic instruction count, and the utilization. The cycle count is based upon a single
instruction issued per cycle. The dynamic instruction count is the total number of parallel
instructions issued to the PE array. The utilization is the avéfage number of active
processing elements. The dynamic instructions are classified by functional units to
determine the relative usage of each unit within the application. The storage requirement

is based upon the number of register words and the operand resolution used during

execution.
Focal Plane Architectural Simulator
Image Data R T e -
: R Image
RREels) Processing -
| perPE Applicati
; pplications [}

~ Dynamic
- Instruction
Co‘unt

i\

Figure 6: Methodology for application characterization
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2.4.3 System performance calculation

Performance is calculated for a target system using grayscale (8-bit) Quad-CIF
(QCIF = 176 pixels x 144 pixels). The Quad-CIF resolution is one specification of the
H.261 and H.263 video codec standards of the I‘nternationa] Telecommunications Union
(ITU) [63]. Using the simulator for the target system, execution time 7., is computed as

follows:
ta\'cc - [S] ( 1 ),

where C is the cycle count for a given application and f is the clock frequency. The
execution time is determined with reference to a 10 MHz target platform This clock
frequency addresses both the speed of analog components in each processing element and
power density limitations for the high utilization factor of PEs in the array. Using the
execution time, the sustained throughput Throughputs,, measured in billion operations

per second, is determined for the target system as follows:

Throughput ,, = w [

exee

Gops] @

S

where IC is number of parallel instructions issued to the PE array during the application
(i.e., the dynamic instruction count which includes both computation and
communication). The system utilizgtion U is calculated as the avérage number of active
processing elements determined from the ésimulator’s concurrency meter. Npg is the
number of processing elements in the PE array and is determined from the following
formula:

system_resolution ‘ ’
N,. = 3
e PPE G)
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where PPE is the number of pixels in each processing element (1, 4, or 16). For PPE > 1,
pixels are arranged in a square (i.e. 2 x 2 or 4 x 4). The target éystem resolution is QCIF

(176 x 144 pixels). The values for Npg are shown in Table 14.

Table 2: Focal plane processor array characteristics for QCIF resolution

' PE Array Dimensions Total
PPE Number of
X Y PEs
1 176 144 25344
4 88 72 6336
16 44 36 1584

2.5 Focal plane processing integration

Processing in the focal plane represents a challenging design problem to integrate
the data acquisition circuitry with digital processing functionality. Characterizing the
targeted application workload leads to reasonable design choices fo.r register file size,

datapath width, and functional units to efficiently utilize silicon area. The hardware must

satisfy both the data storage and the data precision constraints to execute the algorithms.
Functional unit usage depends upon the neighborhood window size for selected

applications (e.g. 3 x 3, 8 x 8).

2.5.1 Application constraints for hardware implementation
Table 16 shows the architectural design parameters for each processing element
determined by the application suite. Register requirements are derived from the code for

the implemented algorithm and include twice the PPE (to store the input and output
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images) plus overhead for intermediate calculations. Datapath requirements are
determined from the measured operand resolutions for each instruction during simulation.
With an overhead of 2 registers, convolution required the fewest total registers, .[(2 .
PPE) + 2], but the widest datapath (12 bits) to accommodate the successive multiply-
accumulates of pixel values with the corresponding 3 x 3 mask values. The discrete
cosine transform also required a 12-bit datapath because of its lifting scheme with
arithmetic shifts. The other appiications only required the original grayscale resolution of
8 bits. Median filtering required [(2 * PPE) + 7] registers to store and sort the pixels in the
3 x 3 window. A sufficient architecture capable of executing all four applications would
require [(2 * PPE) + 7] registers with a 12-bit datapath_. These values are used to select the

sizes of both the ALU datapath and the register file in each processing element.

Table 3: Application constraints for focal plane processor implementation

. ~ Registers Datapath

Application required required
Median Filtering (2+PPE)+7 8 bits
Convolution (2-PPE)+2 12 bits
Inside Edge Detection - (2+PPE)+3 8 bits
Discrete Cosine Transform (2+PPE)+5 12 bits
Full Application Suite (2 PPE)+7 12 bits

The relationship for required registers impacts the feasibility of processing
integration in the focal plane. The data storage competes with other components for
silicon area within the processing tile (Figure 14). In addition, the PPE should allow

grouping into standard 8 x 8 blocks for processing (i.e. PPE = 2%" wheren =0, 1, 2, etc).
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For PPE > 16, the data storage requirement becomes a prohibitive cost in terms of silicon

area within the pixel tile.

2.5.2 Functional unit usage percentages

The usage percentages are key for determining which functional units are cost-
eﬂ'eétive to include in the hardware implementation. The dynamic instruction count for
the applications in Table 12 has been categorized based upon the required functional
| units: arithmetic logic; uni.t' (ALU), multiplier (MULT), shifter (SHIFT), PE activity
control unit (MASK), communication (COMM), and image loading (PIXEL). The ALU,
MULT, and SHIFT units are respbnsible for the computation for an application. The
MASK and COMM units are required for synchronization and'data distribution among
the processing elements.of the SIMD array. The processing granularity (PPE = 1, 4, or
16) combined with the application window size (3 x 3, 8 x 8) affects the distribution of

workload among the functional units.

2.5.2.1 Processing for 3 x 3 window

The utilization of the fuhctional units for 1 PPE, 4 PPE, and 16 PPE
implementations are shown in Figure 7, Figure 8, and Figure 9 respectively for the
applications that use a 3 x 3 window (MED, CONV, IED). As the PPE increases, the
communication requirement decreases because more neighborhood image data is already
contained within the processing element. However, each processing element is required

to compute the final values for multiple pixels, thereby increasing the percentage of ALU
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instructions issued. The MASK instructions represent a significant percentage (30% -

35%) to handle the control flow in the SIMD array.

7.9% 2.0%

i ALU
52.9%

Mask §
33.9%

03% 3.0%

Figure 7: Utilization of functional units for 3 x 3 window applications using 1 PPE
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Figure 8: Utilization of functional units for 3 x 3 window applications using 4 PPE
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Figure 9: Utilization of functional units for 3 x 3 window applications using 16 PPE
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2.5.2.2 Processing for 8 x 8 window

Applications that extend beyond neighborhood processing will challenge a fine-
grain processing architecture. For an 8 x 8 2-D discrete cosine transform, using 1 PPE
represents that extreme case. The MASK and COMM units dominate the execution
workload utilizatioﬁ (Figure 10). Because the algorithm operates on a single row in an 8 x
8 block, the MASK unit is utilized often to deactivate and activate PEs in the SIMD
array. In addition, data values must be transferred along each row or column to
implement the separable transform. The 4 PPE case reduces some of the COMM usage,
but has similar MASK proportions as the 1 PPE case (Figure 11). However, the 16 PPE
case, which uses a 4 x 4 pattern, maps well to the DCT algorithm in Figﬁre 5. Because
the processing occurs mostly in two 4 x 1 blocks, both the COMM and the MASK

proportions are reduced (Figure 12).

Figure 10: Utilization of functional units for 8 x § window application using 1 PPE
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Figure 11: Utilization of functional units for 8 x 8 window application using 4 PPE

Pixel

Comm 2.1%

12.0%

Figure 12: Utilization of functional units for 8 x 8 window application using 16 PPE
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. 2.6 Performance analysis

Previous pixel-level processing architectures, such as the Programmable and
Versatile Large Size Artificial Retina (PVLSAR) [28], and the Simple and Smart Sensory
Processing Elements (S’PE) [29], have restricted application suites operating on binary
images. However, the focal plane architecture provides a programmable environment that
enables high performance on common imaging applications. The workload
characterization shows that the number of pixels per processing element impacts the
sustained throughput of the architecture. Yet, the architecture exceeds the reported
throughput of comparable TI DSP chips. A comparison with TI DSP chips is also

presented using the execution time of an imaging sequence.

2.6.1' Workload characterization

Using the focal plane architectural simulatdr, the dynamic workload has been
determined for median filtering (Table 15), convolution (Table 5), inside edge detection
(Table 6), and the discrete cqsine fransfoﬂn (Table 7) for 8-bit Quad-CIf images. The
maximum number of PE instructions executed equals (/JC * Npg). Utilizations above 90%

for both convolution and inside edge detection result from local area calculations at each
processing pixel. The algorithms for those two applications require little or no
deactivation of PE’s during processing. In contrast, median filtering and the discrete
co;ine transform have utilizations of approximately 80%. The median filtering algorithm
involves data-dependent sorting. The discrete cosine transform algorithm requires a

sequential calculation of butterfly operations within the 8 x 8 block.
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The sustained throughput has been calculated using equations (1), (2), and (3)
from Section 0. The sustained throughput achieved by the focal plane architecture
impiementations (1 PPE, 4 PPE, 16 PPE) exceeds the values achieved by a traditional
DSP architecture despite a significant difference in clock frequency. For example, the
throughput specification of the TI TMS320C6211B DSP chip running at 150 MHz is 1.2
Gops/s, and the throughput speciﬁcaﬁon of the TI TMS320C6411 DSP chip running at

300 MHz is 2.4 Gops/s [22].

Table 4: Application characterization for median filtering using a 10 MHz clock with

Quad-CIF resolution
ppg | ExecutionTime |\ ation Til:)t;;;it
(us) ‘ (Gopsl/s)
1 38.5 81.50% 146
4 153.1 81.47% 37
16 1353.1 86.73% 11

Table 5: Application characterization for convolution using a 10 MHz clock with

Quad-CIF resolution
ppg | BrecutionTime | . ation Til:f)?;;;it
(bs) (Gops/s)
1 5.6 100.00% 204
4 18.3 100.00% 50
16 82.6 100.00% 13
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Table 6: Application characterization for inside edge detection using a 10 MHz c[ocl\
with Quad-CIF resolution
. . Sustained
ppg | DXecutionTime |y tion | Throughput

(1s) (Gops/s)

1 8.4 93.26% 166

4 23.8 94.41% 42

16 97.9 94.54% 11

Table 7: Application characterization for discrete cosine transform using a 10 MHz clock

with Quad-CIF resolution

Execution Time Sustained
PPE (s Utilization Throughput
Ks) (Gops/s)
1 39.6 78.16% 198
4 72.1 78.62% 50
16 112.1 78.59% 12

2.6.2 Comparison with traditional DSP architecture

Execution time on imaging applications is an important constraint for developing

portable, real-time devices. The execution time for an imaging sequence of: (1) noise
removal, (2) smoothing, and (3) segmentatlon was used to compare the focal plane
architecture implementations (Table 8) to} TI DSP chips (Table 10). The focal plane
architecture implementations have the capal?lllty to acquire the image while operating at a
slower clock frequency. The execution tim;a comparison uses C62x™ DSP Benchmarks
[22] and C64x™ DSP Benchmarks [22]: for: (1) 3 x 3 Median Filfer 2) 3 x3
Convolution, ahd (3) Sobel Edge Detection. An extensive description of these

benchmarks can be found in Appendix B.
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The 1 PPE and the 4 PPE implementations compare favorably in execution time
to the TMS320C6411 considering the 30x difference in clock frequency. The
implementation using 16 PPE compares favorably to the TMS320C6211B despite the
15x difference in clock frequency. However,v the execution time from the DSP
benchmarks depend upon the image resolution. For larger images (e.g. CIF), the
execution time increases as a function of both row width and column width. The focal
plane architecture is independent of the image dimension due to the parallel data
processing. This does not suggest that the architecture replaces a DSP but can handle
certain common image enhancement and image analysis tasks more efficiently through
specializati_on. These operations can represent a significant portion of the total operations
within an image processing sequence. A combinedb system could partition the front-end
processing to the embedded'focal plane architecture, leaving more complex tasks for the

DSP.

Table 8: Execution time for imaging sequence using focal plane architectures

Focal Plane Architectures
‘Data Acquisition 1 PPE 4 PPE 16 PPE
Clock Frequency 10 MHz 10 MHz 10 MHz
Resolution QCIF QCIF QCIF
Total Execution Time 52.5us 195.2ps 1533.6ps
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Table 9: Execution time for imaging sequence using DSP architectures

TMS320C6211B | TMS320C6411
Data Acquisition NA N/A
Clock Frequency 150 MHz 300 MHz
Resolution QCIF QCIF
Total Execution Time 1102.0ps 210.9us

2.7 Conclusion

The demand for portable image products will continue; to saturate the available
computation, communication, and storage capabilities of conventional imaging systems.
Technological advances in device fabrication and integration are enabling the
development of focal plane architectures to meet both the bandwidth and the
computational requirements of image processing systems. Processiﬁg on the focal plane
addresses the potential architectural»constraints by exploiting data-parallel processing
naturally found in image applications. Focal plane architectures have eponﬁous potential
in performance and efﬁcienc_y for a monplithically integrated system embedded within
portable devices.

This chapter presents a chaf;ic:tcrization of the image appiication suite for use in
embedded focal plane processing systems. Understanding the targeted application suite
can aid architectural design choices. The algorithms chosen for the application- suite of
median filtering, convolution, inside edge detection, and the discrete cbsine transform
| require a 12-bit datapath with at least [(2 « PPE) + 7] words of data storage. High

utilization of processing elements (greater than 78%) is achieved for the SIMD focal

42



plane architecture. An embedded focal plane architecture delivers high performance with
high resource efficiency for tasks requiring local neighborhood processing. Using a
combination of an embedded focal plane architecture with a traditional DSP architecture,
the image processing workload can be partitioned to allow the focal plane architecture to

execute front-end applications while the DSP architecture handles complex, global tasks.
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CHAPTER 111

EFFICIENCY ANALYSIS OF FOCAL PLANE ARCHITECTURES

Summary

Monolithic integra'tion of photodetectors, analog-to-digital converters, data
storage, and digital processing can improve both the performance and the efficiency of
future portable image products. However, digitizing and processing a pixel at the
detection site presents the design challenge to deliver a system with the required
performance at the lowest cdst, not just a system with the highest performance. This
chapter analyzes the area-ti.me efficiency, the area efficiency, and the energy efficiency of
a mixed-signal, SIMD focal plane processing architecture that executes front-end image
applications with neighborhood processing. ﬁnplementations of the focal plane

architecture achieve up to 81x higher area efficiency and up to 11x higher energy

efficiency when compared to traditional TI DSP chips. Higher efficiency ratings are
required to maintain portability while addressing technology limitations such as
interconnect wiring densit}{, heat extraction, and battery life. Systems can be
implemented witﬁ a less expensive fabrication technology by increasing the number of

pixels per processing element (PPE).
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3.1 Introduction

The demand for mobile productivity has led to incorporating embedded systems

into handheld devices for real-time applications. A wide range of products, such as
cellular phones, video and still cameras, and portable data assistants (PDAs), deliver
multimedia processing by including inexpensive imaging chips. However, this processing
creates a challenging design problem [38] and requires a change in paradigm to
accommodate processing requirements [39]. Future portable imaging products will
benefit from the monolithic integration of photodetectors, analog-to-digital converters,
digital processing, and data storage to improve their performance, efficiency, and cost. A
typical system-on-a-chip digital signal processing (DSP) architecture, shown in Figure
13(a), assigns an entire image to a single processing core. This architecture is designed to
span all stages of image processing. However, the DSP architecture uses a significant
amount of area and energy resources to perform basic image enhancement and image‘
analysis applications. For example, the digital image signal multiprocessor [40] reports
"53% of its execution time for preprocessing and 47% for feature extraction.
Preprocessing includes common tasks, such as noise reduction, smoothing, and
segmentation, which are characterizéd by high spatial locality. Processing in the focal
plane can more efficiently handle these basic tasks, leaving the more complex
applications to the DSP architecture. A focal ’plane‘varc‘hitecturle, shown in Figure 13(b),
can be built by integrating analog-to-digital conversion (ADC) and digital processing at

each detector site in the focal plane array.
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Figure 13: Architectural paradigms for image processing

Incorporating analog and digital éomponents to process pi;(els at the detection site
creates a challenging .design problem [9, 41, 42]. The goal is not strictly building the
system with the highest performance, but delivering the system with the required
performance at the lowest cost. The architecture must consider key performance and cost

metrics, such as execution time, system throughput, chip area, power consumption, and

area-time efficiency. However, in the system-on-a-chip design, two figures of merit are
also important, namely area efficiency and energy efficiency [14]. Characterizing the
targeted application workload leads to reasonable design choices for register file size,
datapath width, and functional units to efficiently utilize silicon area and power
consumption. In addition, higher ratings in area efficiency (system throughput per unit
area) and energy efﬁciency (system throughput per unit power) are required because of

technology limitations such as interconnect wiring density and heat extraction. The
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choice of both fabrication technology and pixels per processing element impact the
system design.

This ‘chapter presents the area-time efficiency, the area efficiency, and the energy
efficiency from analyzing a mixed-signal focal plane processing architecture. Different
implementations are used that vary the number of pixels per processing element (PPE). A
focal plane architectural simulator provides the execution time and sustained throughput
for the application suite. Component area models project the chip size for the design. A
Technology Scenario Analyzer (TeSA) projects power consumption using different
fabrication technologies. Because excessive die sizes would limit the realization of these
systems, guidelines for affordable manufactﬁring are used from ITRS specifications [36,
37]. Battery life is another vital cdnécm. Therefore, maximum power for each technology
is constrained to ITRS speciﬁéations fof poﬁable béﬁery operation, which is generally
less than 3 Watts [36, 37]. Area-time efficiency, area efficiency, and energy efficiency
are calculated using the appropriate projected values.

Despite a significant difference in clock frequency, implementations of the focal
plane architecture perform well compéred to a traditional DSP architecture. The sustained
throughput achieved by the focal plane architecture implementations operating at 10
MHz exceeds the values reported in TI DSP chip specifications (Table 10). For area-time
efficiency, the 16 PPE implementation is comparable to the TI TMS320C6211B chip,
while the 1 PPE and the 4 PPE implementatioﬁs show some improvement versus the TI

TMS320C6411 chip.
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Table 10: Increase in sustained throughput using focal plane architecture
implementations

TMS320C6211B TMS320C6411
(150 MHz) (300 MHz)
1 PPE 130x 65x
4 PPE 32x 16x
16 PPE 10x 5x

Implementations of the focal plane architecture have higher energy efficiency and
area efficiency when compared to traditional TI DSP chips.AEnergy efficiency increases
by an average factor of 11x compared to the TMS320C6211B and by an average factor of
2.9x compared to the TMS320C6411. The energy efficiency demonstrates the potential
for extended battery life in a portable device. The area efficiency is dramatically
improved as well using the focal plane architecture (Table 11). The area efficiency for the
focal plane architecture implementations includes the data acquisition and analog-to-

digital conversion circuitry, which is not available with the DSP chips. Although the 1

PPE implementation provides the most efficient architecture, it generally exceeds the
constraints for chip size and power consumed. A 4 PPE or 16 PPE with a less aggressive
technology may provide a more cost-effective solution. In addition, detector area
dominates as feature size shrinks. Therefore, denser detector technology could

substantially reduce chip area.

48



Table 11: Increase in area efficiency using focal plane architecture implementations

TMS320C6211B TMS320C6411
(180nm technology) | (120nm technology) |
1 PPE 81x s6x |
4 PPE 47x 27x
16 PPE 20x 10x

The organization of this chapter is as follows. Section 3.2 provides the
_background for architectures used by image processing systems. Section 3.3 describes the
~ technique to analyze the performance of the focal plane processor array on the targeted
application suite. Section 3.4 discusses the area models for the processing element
components and presents the projected area for the focal plane processor array. Section
3.5 presents the projected power cénsumption for the focal plane processor array. Section
3.6 presents the analysis of resource efficiency for design implementations and provides a
comparison to a traditional DSP architecture. Finally, Section 3.7 concludes the

discussion on efficiency analysis for a mixed-signal focal plane architecture.

3.2 Background

Numerous architectures have been developed for image processing systems [2, 3].
Efficient handling of the two-dimensional image data is a common issue among these
designs. A natural solution to this issue is to process the spatially parallel data within the
image plane [43]. Processing capability can be integrated directly into the focal plane.

A programmable digital pixel is formed by monolithically incorporating the data'

acquisition device, analog-to-digital conversion (ADC) circuitry, data storage, and digital
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processing circuitry within a processing element (PE). A block diagram of this processing
tile [26] is shown in Figure 14. This tile element is replicated to form a focal plane array
imager with integrated analog-to-digital conversion, nearest-neighbor communication,
and SIMD processing. This section discusses the functionality of data acquisition,

analog-to-digital conversion, data storage, and digital processing.
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Figure 14: Programmable digital pixel

3.2.1 Data acquisition

The first stage performed by the digital pixel is the acquisition of the analog light
intensity of an image. The relative response of the human eye correlates to the major
color bands of the visible spectrum, which span. from approximately 0.4pm to 0.7um
[64]. Therefore, photodetector devices used in the digital pixel should provide reasonable
performance across these wavelengths. Photodetectors absor‘b photons with energy

greater than the material bandgap to generate a current proportional to the number of
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optically generated electron-hole pairs [30]. The quantum efficiency of the detector is the
number of electron-hole pairs generated per incidenf photon for a given wavelength [30].
The spectral response, or respdnsivity, is the quantum efficiency over a range of light
wavelengths [65]. Photodetectors made from silicon can detect ]ighf wavelengths up to
approximately 1.1um due to its bandgap energy of 1.12eV and provide reasonable

performance over the visible spectrum (Figure 15).
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Figure 15: Spectral response of a typical silicon photodetector

Implementing photodetectors in a standard CMOS process enables the integrafion
of other procéssing components at the detection site. Research efforts have been made to
develop and evaluate these CMOS image sensors [12, 66, 67]. A noted developmént is
the active pixel sensor (APS) [68], which has been implemented into a digital camera on

a chip with the functionality of analog-to-digital conversion [69].
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3.2.2 Analog-to-digital conversion

The next stage is to convert the acquired image signal into a digital value. The
interface between analog signals and their digital representation requires three tasks: (1)
anti-alias filtering, (2) sampling, and (3) quantization [31]. These tasks can be
implemented using an oversampling technique. Oversampling methods use sampling
rates far above the Nyquist rate, which is the minimum rate for reconstructing a signal
without aliasing [70]. Figure 16 shows a block diagram for analog-to-digital conversion
[31]. The oversampled analog signal is passed through one or more integrators,
represented by transfer function block H(z), before quantization. Using a feedback loop,
the quantization noise is transformed (or shapéd) into a high-pass response. The signal is
then sent to a decimator, which combiﬁes the ]ow-pass‘ﬁltering operation and rate
reduction. This removes the high-pass quantAization noise and other .si-gna] information

above the maximum input frequency of interest.

(Rate DF,) (Rate F,)
x(n) u(n) v(n) S y(n) .
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Input N Bits '
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Figure 16: Generic noise-shaping feedback loop

A candidate implementation of analog-to-digital conversion with noise shaping is

the delta-sigma (or sigma-delta) converter [71]. These converters have become popular
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because they avoid some of the difficulties of conventional A/D conversion, such as the
need for high-precision analog circuitry and vulnerability to noise or interference [71].
The performance of these circuits has been studied with standard CMOS implementation
[72-74]. Sigma-delta convéﬂers have been successfully integrated with CMOS image

sensors [75-77].

3.2.3 Data storage

Data storage implementation, the most transistor-consuming function for a pixel-
level processing element, affects most other aspects of the design [28]. The architecture
must provide the storage capacity that would normally be found in a frame buffer for
conventional store-and-process systems. Each application executed on the architecture
has a minimum data storage threshold, typically consisting of the input image, the output
image, and processing overhead. The data storage is also constrained by the minimum
bit-precision required for accuracy. The architecture can utilize the six-transistor SRAM
cell as the foundation of memory in the processing element. The instruction set
architecture of the focal plane array imager requires a three-ported register file

organization [32, 78]. In addition, models have been developed to predict silicon area

usage for register file configurations [79, 80].

3.2.4 Digital processing
Once the pixel information is represented and stored digitally, the programmable
processing core can implement various image applications. Image processing applications

are categorized into (1) point operations, (2) local operations, and (3) global operations
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[44]. A point operation such as thresholding occurs at the individual pixel level. A local
operation such as smoothing requires knowledge of an individual pixel and its immediate
neighbors. A global Qperation such as histogramming uses all pixel data from the image.
These operations ‘form the basis of applications found in imaging systems. Tc; illustrate
the processing sequence required for a typical imaging system of (V x N) pixels, Figure
17(a) describes the processing tasks, Figure 17(5) gives example applications at each
stage, and Figure 17(c) quantifies the amount of data required for processing [45]. In
Figure 17(c), the variable b represents the number of bits per pixel and N represents the
image resolution on side for a square image. Point operations are the first stage, and local
operations include the first three stages. The fourth and fifth stages are global feature-
measuring operations [46]. The first three stages represent a significant proportion of the
computational workload. For example, the digital image signal multiprocessor [40]
reports 53% of its execution time for preprocessing, which includes tasks from the first
three stages such as noise reduction, smoothing, and segmentation. These stages are

candidates for processing at the pixel level.
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Figure 17: Typical image processing sequence (a) processing tasks (b) examples and
(c) amount of data
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Several architectures, such as the Near Sensor Image Processing (NSIP) [27], the
Programmable and Versatile Large Size Artificial Retina (PVLSAR) [28], and the Simple
and Smart Sensory Processing Elemehté (S’PE) [29], foilow the pixel-level model to
perform earlsl image processing in the focal plane. However, these architectures utilize
bit-serial proceséing techniques with limited memory, which can either restrict processing
to binary images or require multiple cycles to perform a single instruction on data words.
This may prevent the implementation of some early image processing algorithms.
However, the integration of additioﬁal functional units at the pixel level enables the

versatility to execute a broader set of applications.

3.3 Application suite analysis

This section describes the technique to characterize the performanée of the focal
plane architecture on an image application suite. A focal plane architectural simulator is
used to implement the various algorithms. A descripfion is given for each application.
The ﬁerformance is calculated and hardware constraints are determined for the

application suite.

3.3.1 Focal plane architectural simulator

Applications for the focal plane architecture can bé programmed using the SIMD
Pixel Processor (SIMPil) Simulator [34]. This software tool is a windows-based
instruction level simulator, running on a PCvplatform. The SIMPil Simulator allows

editing, assembling, executing, and debugging parallel image applications in a single
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integrated workbench. The current version of the SIMPil Simulator is available on the
download page.

An image processing. application is executed on the architectural simulator to
provide a dynamic workload. Each application is implemented using an instruction set
architecture (ISA) that corresponds to the available functional units within the digital
pixel. The number of pixels per processing element is assigned in the application. The
simulator is instrumented to measure the operand resolution for each instruction, the
distribution for instructions issued in parallel, the concurrency level of the processing
elements, and the number of processor cycles required for execution. An extended

description of the focal plane architectural simulator can be found in Appendix A.

3.3.2 Description of applications

The grayscale (8-bit) front-end applications, shpwn in Table 12, provide workload
characteristics for image enhancement and image analysis. The enhancement and analysis
applications of median filtering, convolution, and morphological processing represent the

typical early image processing sequence of: (1) noise removal, (2) smoothing, and (3)

segmentation. The workload characteristics for these applications are used to make
efficient architectural choices for processing in the focal plane. This section briefly

discusses each application.
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Table 12: Selected early image processing applications

| Applications Description

Image Enhancement
Median Filtering e Removes impulse noise from an image while
preserving spatial resolution.

Convolution e Performs different filtering operatiohs, such
as shadowing, smoothing, and edge-detection.

Image Analysis _
Morphological e Performs feature extraction and segmentation
Processing of binary or grayscale images such as inside

edge detection.

3.3.2.1 Median filtering

Median filtering (MED) is useful to reﬁove impulse noise from an image while
preserving spatial resolution. The algorithm is a rank-order filter [57] that replaces each
pixel in the image with the median value in the window. Generally, a window size is
selected to geherate a rank-érder filter with odd length. A larger window size increases
the severity of the median ﬁlteriﬁg effect [58]. This implementation performs a 2-D

nonseparable rank and selects the median value for a 3 x 3 window.

3.3.2.2 Convolution
Convolution-based filtering (CONV) has been impiemented to perform different
filtering operations, such as shadowing, smoothing, and edge detection [58]. The filter

mask elements are broadcast one at a time to every PE. All calculations requiring the
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mask element are performed before the next element is broadcast. Each PE multiplies the
mask element by the corresponding pixel value from the original image and accumulates
the result. Values are accumulated in a spiral.pattem that places the final result in the

center pixel of the filter mask. A 3 x 3 filter mask is used for this implementation.

3.3.2.3 Morphological processing

Morphological image processing refers to the study of the topology or structure of
objects- from ‘their 2D spatial representation [59]. Binary or grayscale images are
morphologically transformed by passing a structuring element over the image in a
process similayr to convolution. At each pixel position, a specified logical function is
performed between the structuring element and the underlying image. For grayscale
images, erosion is the minimum pixel value in the structuring element, and dilation is the
maximum pixel value in the structuring element [58]. Depending upon the size and
content of the structuring element, different effects such as inside edge detection (IED)
can be produced from erosion and dilation operations. A 3 X 3 structuring element has

been used to implement the morphological operations.

3.3.3 Application performance

The execution time was calculated for application suite described in Section 3.3.2.
The execution time is determined with reference to a 10 MHz target platform This clock
frequency addresses both the speed of analog components in each processing element and
power density limitations for the high utilization factor of PEs in the array. Simulations

were run with a'system resolution equal to Quad-CIF (176 pixels x 144 pixels). This
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resolution is one specification of the H.261 and H.263 video codec standards of the
International Telecommunications Union (ITU) [63]. However, the execution time of the
focal plane architecture is independent of the image dimension due to the parallel data
- processing.

In Table 13, the total execution times of the early image processing sequence
generally follow the increase of fhe PPE factor with a baseline of the 1 PPE case. Median
filtering is the dominant component of the processing sequence. The median filtering
application for 16 PPE is not as efficient as the versions for 1 PPE and 4 PPE; therefore it
does not follow the trend of the PPE factor. The total execution time for each PPE is

within real-time constraints of 30 frames/sec (33.3ms per frame).

Table 13: Total execution time for Quad-CIF focal plane architecture implementations
using a 10 MHz clock

PPE Application Execution Cycles Total Execution Time
MED | CONV | IED | Total (us)
1 385 56 84 525 52.5
4 1531 183 238 1952 195.2
16 13531 826 979 15336 1533.6

Using the execution time, the §ustained throughput Throughputy,s, measured in

billion operations per second, is determined for the focal plane architecture as follows:

M

Throughput _,;, =
s

|
sust
|

- IC-U-N,, [Gopsjl

! exec

where IC is number of parallel instructions issued to the PE array during the application.

The system utilization U is calculated as the average number of active processing
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elements determined from the simulator’s concurrency meter. Npg is the number of

processing elements in the PE array and is determined from the following formula:

NPE—

_ system_resolution

PPE

@

where PPE is the number of pixels in each processing element (1, 4, or 16). For PPE > 1,

pixels are arranged in a square (i.e. 2 x 2 or 4 x 4). The target system resolution is QCIF

(176 x 144 pixels). The values for Npr are shown in Table 14.

Table 14: Focal plane proéessor array characteristics for QCIF resolution

PE Array Dimensions Total
PPE Number of
— X _ Y PEs
1 176 144 25344
4 88 72 6336
16 44 36 1584

The sustained throughput has been calculated for focal plane architecture with 1

PPE, 4 PPE, and 16 PPE implementations (Table 15). The maximum number 6f PE

instructions executed equals (JC ¢ Npg). The utilization is derived from the weighted

average of executing each application. The sustained throughput achieved by the focal

plane architecture implementations exceeds the values achieved by a traditional DSP

architecture despite a significant difference in clock frequency. For example, the

- throughput specification of the TI TMS320C6211B DSP c.hip running at 150 MHz is 1.2

Gops/s, and the throughput specification of the TI TMS320C6411 DSP chip running at

300 MHz is 2.4 Gops/s [22]. Although operating at 10 MHz, the focal plan"e' architecture

60



implementations for 1 PPE, 4 PPE, and 16 PPE increase sustained throughput by factors

of 65x, 16x, and 5x respectively compared to the TI TMS320C6411 chip. These factors

are doubled when comparing against the TI TMS320C6211B chip.

Table 15: Application characterization for focal plane architecture implementations
using a 10 MHz clock with Quad-CIF resolution

Execution Time Maximum PE Sustained
PPE Instructions Utilization Throughput
(us) Executed (Gops/s)
1 52.5 9,529,344 85.56% 155
4 195.2 8,838,720 84.95% 38
16 1533.6 19,209,168 87.91% 11

3.3.4 Application hardware constraints

The hardware must satisfy both the data storage and the data precision constraints
to execute the algorithms. Table 16 shows the architectural design parameters for each
processing element determined by the app]icaﬁon suite. Register reQuirements are
derived from the code for the implemented algorithm and include twice the PPE (to store
the input and output images) plus overhead for intermediate caiculations. Datapath
requirements are determined from the measured bperand resolutions for each instruction
during simulation. With an overhead of 2 registers, convolution required the fewest total
registers, [(2 « PPE) + 2], but the widest datapath (12 bits) to accommodate the successive
multiply-accumulates of pixel values with the corresponding 3 x 3 mask values. The
other applications only required the original grayscale resolution of 8 bits. Median
filtering required [(2 * PPE) + 7] registers to store and sort the pixels in the 3 x 3 window.

A sufficient architecture capable of executing all four applications would require [(2
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PPE) + 7] registers with a 12-bit datapath. These values are used to select the sizes of

both the ALU and the register file in each processing element.

Table 16: Application constraints for focal plane processor implementation

. Registers Datapath

Application required required
Median Filtering ' (2+PPE)+7 8 bits
Convolution (2« PPE) +2 12 bits
Inside Edge Detection (2+PPE)+3 8 bits
Full Application Suite (2<PPE)+7 12 bits

3.4 Projected area

Because of limited chip resources in a focal plane architecture, silicon area usage
within an integrated digital pixel is a critical design factor. A pixel design tool provides a
common context for component area models within an intégrated pixel processing array
[81]. Area models based upon implementations of detector array cirpuitry and CMOS
functional units are used to projeét silicon area for thé architect;Jre using different

fabrication technologies.

3.4.1 Component area models

Area models are developed from fabricated analog and digital components. Area
projections of the photodiode and analog-to-digital conversion are based upon the CMOS
focal plane array [41]. This 8 x 8 array of Si CMOS detectors, fabricated in 0.8 pum
technology, incorporates a current input first-order sigma-delta analog-to-digital

converter at each pixel. The transistor circuitry is scaled to feature sizes ranging from
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250nm to 100nm. Area projections for memory and digital ciréuitry are based upon the
SAIMPi116 focal plane architecture [82] that maps 16 pixels to each procéssing element.
SIMPil16 is a 16-bit implementation fabricated on MOSIS HP 0.8 um (1.0 um drawn)
- CMOS technology. -Selected functional units of a SIMPil16 PE used by the pixel-level
processing architecture include: (1) ALU, (2) register file, (3) decoder, (4) bus driver, (5)
~ sleep unit, and (6) communication unit. The original areas for these functional units are
scaled to feature sizes ranging from 250nm to 100nm for area projections of the focal
plane processor. Bit slicing is used to adjust both the ALU area and the register file area
for a reduced datapath width. In addition, the register file area is adjusted to correspond

to the number of words in the design.

3.4.2 Processing element area

Silicon area allocation is a significant issue because in single-level VLSI, the
photodiode, the analog signal conditioning, the analog-to-digital converter, the memory,
and the digital processing core compete for silicon area in a small replicated processing
element (Figure 14). A P-N photodiode is used in the CMOS focal plane array [41]. The
analog signal conditioning is the sémpling capacitor. The ADC is a first-order sigma-
delta circuit. Memory is a register file with the number or registers based upon the
formula required to execute the full application suite (Table 16). The digital processor
contains the functional units mentioned in the previous section.

Processing element area has been projected using various fabrication technologies
for 1 PPE (Table 17), 4 PPE (Table 18), and 16 PPE (Table 19). By observing the

component area trends for 1 PPE (Figure 18), 4 PPE (Figure 19), and 16 PPE (Figure 20),
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the digital components (digital processor, memory, ADC) benefit from technology
scalihg. However, the analog components (photodiode and analog signal conditioning) do
not see the same benefit [11, 12]. The photodiode has a fixed area requirement to ensure
acquisitioﬁ of light. The analog signal conditioning (sampling capacitor) also has a fixed
area cost. As the PPE increases, a larger percentage of the silicon area within the

processing element is used for data acquisition and data storage.
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Table 17: Area of a single processing element using 1 PPE

Components
- — Total
Technology | photodiode | 272102 51803l | 1y | Memory | PI8I! [ Area
(mm?) Conditioning mm?) | (mm?) Processor | (mm?)

(mm?) (mm’)

250nm 0.0046 0.0024 '0.0008 | 0.0287 0.0453 0.082
180nm 0.0046 0.0024 0.0004 | 0.0149 0.0235 0.046
150nm 0.0046 0.0024 -0.0003 | 0.0103 0.0163 0.034
130nm 0.0046 0.0024 0.0002 | 0.0078 0.0122 0.027
120nm 0.0046 |  0.0024 0.0002 [ 0.0066 0.0104 0.024
100nm - 0.0046 0.0024 0.0001 | 0.0046 0.0073 0.019

0.09
0.08 -h
0.07
0.06 L
Lo B Digital Processor
E 0.05 OMemory
< OADC
@ 0.04 B Analog Signal Conditioning
< Photodiode |
0.03
0.02
0014 .

Ol 'y : SEET |
250nm  180nm  150nm  130nm  120nm  100nm

Technology

Figure 18: Component area trend for 1 PPE with decreasing feature size
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Table 18: Area of a single processing element using 4 PPE

Components
- — Total
Technology | photodiode | AM108 S18nal |\ | pemory | Digital | Area
(mm?) Conditioning (mm?) | (mm?) Processor | (mm?)

(mm’) (mm’)

250nm 0.0185 0.0096 0.0030 | 0.0478 0.0453 0.124
180nm 0.0185 0.0096 0.0016 | 0.0248 0.0235 0.078
150nm 0.0185 0.0096 0.0011 [ 0.0172 0.0163 0.063
130nm 0.0185 0.0096 0.0008 [ 0.0129 0.0122 | 0.054
120nm 0.0185 0.0096 0.0007 | 0.0110 0.0104 0.050
100nm 0.0185 0.0096 0.0005 | 0.0077 0.0072 0.043

0.14

0.12 4

0.1
o & Digital Processor
E 0.08 OMemory
g OADC ,
£ 0.06 - B Analog Signal Conditioning
< BPhotodiode
0.04 -
0.02 -
0 | T 'n

250nm 180nm 150nm 130nm 120nm 100nm .
Technology

Figure 19: Component area trend for 4 PPE with decreasing feature size
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Table 19: Area of a single processing element using 16 PPE

Components

_ - — Total

Technology | photodiode | AM21°8 Sigal | 1y | Memory | Digifal | Area

(mm?) Conditioning (mm?) | (mm?) Processor | (mm?)

(mm’) (mm’)

250nm 0.0739 0.0384 0.0121 | 0.1244 0.0453 0.294

180nm 0.0739 0.0384 0.0063 | 0.0645 0.0235 0.207

150nm - 0.0739 0.0384 0.0044 [ 0.0448 0.0163 0.178

130nm 0.0739 0.0384 0.0033 | 0.0336 0.0122 0.161

120nm 0.0739 0.0384 0.0028 | 0.0287 0.0104 0.154

100nm 0.0739 0.0384 0.0019 | 0.0199 0.0072 0.141

0.35

0.3+

0.25

o
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Figure 20: Component area trend for 16 PPE with decreasing feature size



3.4.3 Focal plane processor array area

Portable devices with an embedded focal plane architecture must reduce their
silicon area cost for a compact design. Excessive die sizes would limit the realization of
these systems. The chip area is tightly coupléd to the system reso]utioﬁ because of the
integrated functionality within each processing element. For this analysis, the desired
image resolution for processing is grayscaie (8-bit) Quad-CIF (176 pixels x 144 pixels).
The Quad-CIF resolution is one specification of the H.261 and H.263 video codec
standards of the International Telecommunications Union (ITU) [63]. The ITRS provides
guidelines for affordable chip sizes for each technology [36, 37].

Using the array dilhensions for different PPE values (Table 14) and the processing
element areas (Table 17, Table 18, Table 19), the focal plane processor array area has
been projected for various technologies (Figure 21). Using the ITRS guideline for
manufacturing affordability, the 1 PPE implementation does not project to the die size
target. The 4 PPE implementation exceeds the guideline by appfoximately 20% starting
with the 150nm technology and reaches the ITRS guideline using 100nm technology. The
16 PPE imp]emenfation meets the guideline for all the selected technologies except
250nm, allowing it to be implémented using a less aggressive and less expensive
fabrication technology. Because detector area dominates as feature size shrinks, denser
detector technology could .substantially reduce chip area, making the chip more

affordable.
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Figure 21: Projected area for a QCIF processor array implementation

3.5 Projected power

Portable devices with an embedded focal plane architecture must provide a

meaningful battery life. Setting the minimum time between battery charges (MTBC) to a

desired value translates into a limit for maximum power consumed during operation for a
fixed battery energy. Typical double barrel, NiCd AA sized batteries (3.6 V at 700 mA «
hours) have an energy capacity of about 10 Watt * hours. Therefore for MTBC = 3 hours,
the power should not excged 3 Watts.

A Teéhnology Scenario Analyzer (TeSA) was developed to project the power
consumption of the digital comjnonents within the focal plane architecture using different
fabrication technologies [35]. The power consumption has been projected for fabrication

technologies ranging from 250nm to 100nm using a 10 MHz clock (Figure 22). The
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maximum power limit for each technology is used from ITRS specifications for portable
battery operation [36, 37]. The 1 PPE implementation consumes the most power because
of the large number of processing elements required to provide QCIF resolution (176 x
144 = 25344). It requires technology generations of 130nm or smaller to satisfy the ITRS
power constraint. However, it may be too close to the limit to account for the analog
components. The 4 PPE imple.mentation satisfies the constraint for all technologies
except 250nm and 180nm by reducing the required number of processing elements (88 x
72 = 6336). The power consumed is reduced by a factor of 3.9 (i.e. 74%) when compared
to the 1 PPE implemenfation. The 16 PPE implementation, which uses the least number
of processing elements (44 x 36 = 1584), consumes the least power and satisfies the
constraint for all the chosen technologies. The overall reduction factor is 18 (i.e. 94%)

when compared to the 1 PPE implementation.
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Figure 22: Projected power for a QCIF processor array implementation using a
10 MHz clock

3.6 Resource efficiency analysis

Higher ratings in areé-time efficiency, area efficiency, and energy efficiency
metrics are .desirec_l for image processing systems because of technology limitations such
as interconnect wiring density and heat extraction [62]. This secﬁon examines the area-
time efficiency, area efficiency, and energy efficiency of the focal plane architecture
implementations. Comparisons for TI DSP chips are based upon application benchmarks

and chip specifications described in Appendix B.
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3.6.1 Area-time efficiency

The area-time efficiency is defined as:

| I I
= 3
Ta-r Area Xt L -mm? } ®

exee

where the reciprocal is taken for the product of the area for each system and the execution
time for the imag-ing’ processing sequence (Table 13). Because a system should execute in
the shortest time. using the smallest area, the optimal solution is determined by
quimizing ‘the reciprocal product.

The (A*T)" efficiency of focal plane architecture implementations using 1 PPE, 4
PPE, and 16 PPE, has been calculated for different fabrication technologies (Figure 23).
The area includes the data acquisition and analog-to-digital conversion circuitry. Two TI
DSP chips, the TMS320C6211B and TMS320C641 1, are shown for comparison. The 16
PPE implementation is comparable to the TMS320C6211B operating 150 MHz. The 1
PPE and the 4 PPE implementations provide a 3.5% and 1.8x factor increase respectively
when compared to the TMS320C6411 operating at 300 MHz. This demonstrates that a
focal plane architecture can be utilized as an embedded component to deliver efficient
processing for common image applications. These applications can consume over half of

the processing for an image.
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Figure 23: Comparison of (area * time)™ efficiency for image processing architectures

3.6.2 Area efficiency

Area efficiency is defined as the number of operations executed per second per

unit area:

A

Throughput ,, Mops
_ : 0)
Area s-mm

Area efficiency has been established as an important figure of merit for system-on-a-chip
architecture design [14]. Because of limited chip resources in a focal plane architecture,
silicon area usage within an integrated digital pixel is a critical design factor. Higher area
efficiency implies better component utilization within the architecture.

The area efficiency of focal plane architecture for implementations using 1 PPE, 4

PPE, and 16 PPE, has been calculated using different fabrication technologies (Figure
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24). Generally, an increase in PPE decreases the area efficiency of the focal plane
architecture. However, there is a significant gain when compared to a DSP architecture in
the same fabrication technology. For the TMS320C621 1B, which uses 180nm
technology, the area efﬁciency increases by factors of 81x, 47x, and 20x for 1 PPE, 4
PPE, and 16 PPE respectively. For the TMS320C6411, which uses 120nm technology,
the increase factors are 56x, 27x, and 10x for 1 PPE, 4 PPE, and 16 PPE respectively.
This result is significant because the gain in efficiency is for common image
enhancement and image analysis tasks that can represent a significant portion of the total
operations within an image processing sequence. In addition, the area efficiency for
implementations of the focal plane architecture includes the data acquisition and analog-
to-digital conversion circuitry, which is not available with the DSP architecture. This
does not suggest that the architecture replaces a DSP but can handle certain common

image enhancement and image analysis tasks more efficiently through specialization.
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Figure 24: Comparison of area efficiency for image processing architectures

3.6.3 Energy efficiency

Energy efficiency is defined as the number of operations executed per unit

energy:

E

- Throughput Mops )
Power Joule

Previous work [83, 84] has illustrated the validity of energy efficiency for fixed
throughput computation in uﬁiprocessor systems. The validity is extended to massively
parallel embedded-focal plane architectures by introducing system utilization in (1) for
calculating the throughput. Increasing energy efficiency implies énhancing the
sustainable battery life in portable devices. Minimizing power dissipation translates into

minimizing energy per operation.
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The energy efficiency of a focal plane architecture using 1 PPE, 4 PPE, and 16
PPE, has been calculated for the digital components using different fabrication
technologies (Figure 25). The 16 PPE implementation delivers the highest energy
efficiency. The 4 PPE implementation is slightly lower than the 1 PPE implementation.
This may indicate that the application suite optimizes slightly better for using a single
pixel in a processing element. Two TI DSP chips, the TMS320C6211B and
TMS320C6411, are also shown for comparison. For the TMS320C6211B with 180nm
technology, the energy efficiency increases by an average factor of 11x when using
implementations of the focal plane architecture. For the TMS320C6411 with 120nm
technology, the average increase is 2.9x. This demonstrates the potential to extend battery

life in portable devices.
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Figure 25: Comparison of energy efficiency for image processing architectures
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3.7 Conclusion

Recentiy, a new dynamic has emerged with users desiring mobile productivity,
where image processing functionality is encapsulated within portable devices containing
embedded hardware. Portable im‘aging products will benefit from the monolithic
integration of photodetectors, analog-to-digital converters, digital processing, and data
- storage to perform image acquisition and computation. Pfocessing on the focal plane
utilizes data-parallelism naturally found in image applications. Technological advances in
device fabrication and integration are enabling the development of these monolithic focal
plane architectures with the potential for improved performance, efficiency, and cost
versus traditional imaging architectures.

This chapter presents the analysis of a mixed-signal focal plane processing
architecture. Key performance and cost metrics for focal plane architectures include
execution time, system throughput, chip area, power consumption, area-time efficiency,
area efficiency, and energy efficiency. Although the area-time efficiency has been
~ traditionally used, it does not provide guidance for addressing energy consumption. Area
efficiency and energy efficiency are important figures of merit when evaluating a focal
plane architecture. The choice of both fébn'cation technology and pixels per processing
element impact the system design, bpart‘icularly for portable devices. Die size for
manufacturing cost and power consumption for Battery life should follow ITRS
guidelines. In addition, higher ratings in area efficiency and energy efficiency are
required because of technology limitations such as interconnect wiring density and heat

extraction.
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The performance, area, and power were projected for focal plane architecture
implementations using 1 PPE, 4 PPE, and .16 PPE. This architecture is more area and
energy efficient when compared to traditional TI DSP chips. However, the design
problem is not strictly building the system with the highest performance, but delivering
the reqﬁireci performance with the lowest cost. Therefore, a 4 PPE or 16 PPE with a less

aggressive technology may provide a better implementation solution.
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CHAPTERI1V .

STATISTICAL EXPERIMENTAL DESIGN
"FOR PHOTODETECTOR MODELING

Summary

An embedded imaging system can be created by the monolithic integration of
Image acquisition with image processing. The most significant issue is silicon area
allocation, since in single-level VLSI, the photodetector, the analog-to-digital converter
(ADC), the digital processing core, and the memory compete for silicon area in a small
replicated tile. This chapter presents the statistical experimental design of a photodetector
for use within a mixed-signal processing element. The device performance, measured by
the signal-to-noise ratio (SNR), was aeﬂved based upon the physical implementation of
the photodiode. Key input parameters selected for designing the photodiode included the
area, integration time, acceptor density, donor density, temperature, and reverse bias. A
regression model was developed using a 2° full-factorial experimental design and was
validated using analysis of variance (ANOVA). Using the model, a relationship between
phdtodiode area and integration time was determined enabling area reduction of 212pum?
for every Ims increase in the integration time while maintaining SNR. This relationship
significantly impacts the design of a focal plane processor by trading time for limited

silicon resources.
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4.1 Introduction

Inexpensive imaging chips are being incorporated into a wide range of devices
such as video and still cameras, laptops, portable data assistants (PDAs), and even
children’s toys. One technique is the use of smart pixels [85] to create an embedded
imaging systerﬁ. A processing element (PE) tile is replicated to form a focal plane array
imager with integrated analog to digital conversion and Single-Instruction Multiple-Data
(SIMD) processing. This moves the computétion closer to the data acquisition to reduce
the storage requiremehts of the system. Data parallel processing on the focal plane offers
superior performance and efficiency for front-end image processing applications.

However, digitizing and processing a pixel at the detection site presents new
design challenges [9, 41, 42]. The most significant issue is silicon area allocation, since in
single-level VLSI, the phofodetector, the analog-to-digital converter (ADC), the digital
processing core, and the memory compete for silicon area in a small replicated tile. The
wide range of design techniques and metrics for these components leads to a complicated
- design problem, particularly for the integrated optoelectronics. Steady advances in both

semiconductor technology [36] and detector design [47] support increasingly complex

systems, but offer a moving target to design efforts. The photodetector must retain
sufficient area to satisfy system requirements. Narrowing the design space requires an
effective measure of merit relating silicon area to performance.

This chapter presents the statistical experimental design (SED) of a photodetector
for use within a mixed-signal processing element. The signal-to-noise ratio (SNR) was
derived for a photodetector based upon equations that describe the physical

implementation. Key input parameters selected for designing the photodiode included
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area (Agioqc), integration time (t;,,), acceptor density (N,), donor ‘density (Na), temperature
(7), and reverse bias (V). A regression model was developed using a 2% full-factorial
experimeqtal design. The model was validated using analysis of variance (ANOVA).

The regregsion model can be used to accurately describe the SNR behavior for the
photodiode a function of the input parameters. The model reduces‘ the equation
-complexity for determining photodiode SNR. The significant parameters, in order of
importance, are diode area, integration time, donor density, reverse bias, and then the
combination of feverse bias and donor density. By using the two most significant
parameters, photodiode area and integration time, a tradeoff is established where
increased integration time reduces the rec_iui'red area to meet SNR constraints for bit
precision. This relationship significantly impacts the design of a focal plane processor by
trading time for limited silicon resources.

The organization of this chapter is as follows. Section 4.2 provides tﬁe
background for monolithic integration of a mixed-signal processing element. Section 4.3
descfibes the technique to model the physical response of a photodiode. Section 4.4

analyzes the models to determine candidate photodiodes for a mixed-signal processing

element. Finally, Section 4.5 concludes the discussion on statistical experimental design

of a mixed-signal processing element.

4.2 Background
Numerous architectures have been developed for image processing systems [2, 3].
Efficient handling of the two-dimensional image data is a common issue among these

designs. A natural solution to this issue is to convert the image to the digital domain and
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process the spatially parallel data within the image plane [43]. This section describes the
programmable digital pixel and the data acquisition component required for an imaging

device.

4.2.1 Programmable digital pixel

A programmable digital pixel is formed by monolithically ir;corporating the data
acquisition device, analog-to-digital conversion (ADC) circuitry, data storage, and dvigital
processing circuitry within a processing element (PE). A block diagram of this processing
tile [26] 1s shown in Figure 14. This tile element is replicated to form a focal plane array
imager with integrated analog-to-digital conversion, nearest-neighbor communication,
and SIMD processing. Several architectures, such as the Near Sensor Image Processing
(NéIP) [27], the Programmable and Versatile Large Size Artificial Retina (PVLSAR)
[28], and the Simple and Smart Sensory Processing Elements (S°PE) [29], follow the

pixel-level model to perform early image processing in the focal plane.
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Figure 26: Programmable digital pixel

4.2.2 Data acquisition

The first stage performed by the digital pixel is the acquisition of the analog light
intensity of an image. The relative response of the human eye correlates to the major
color bands of the visible spectrum, whicH span from approximately 400nm to 700nm

[64] and peaks at 555nm (yellow-green). Therefore, photodetector devices used in the

digital pixel should provide reasonable performance across these wavelengths.
Photodetectors absorb photons with energy greater than the material bandgap to generate
a current proportional to the number of optically generated electron-hole pairs [30]. The
quantum efficiency of the detector is the number -of electron-hole pairs generated per
incident photon for a given wavelength [30]. The spectral response, or responsivity, is the
quantum efficiency over a range of light wavelengths [65]. Photodetectors made from
silicon can detect light wavelengths up to approximately 1.1um due to its bandgap energy

of 1.12eV and provide reasonable performance over the visible spectrum (Figure 15).
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Figure 27: Spectral response of a typical silicon photodetector

Implementing photodetectors in a standard CMOS process enables the integration
of other processing components at the detection site. Research efforts have been made to
develop and evaluate these CMOS image sensors [12, 66, 67]. A noted development is
the active pixel sensor (APS) [68], which has been implemented into a digital camera on

a chip with the functionality of analog-to-digital conversion [69].

4.3 Model development

The signal-to-noise ratio for a P-N photodiode was derived using theoretical
physical properties of silicon for 555nm wavelength under room light conditions [64].
Key input parameters selected for designing the photodiode included area (Agjioqde),
integration time (%), acceptor density (N,), donor density (N;), temperature (7), and

reverse bias (Vpi,s). However, the breadth of the design space creates a challenging design
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problem to integrate into a digital pixel. Therefore, a 2 full-factorial experimental design
using the factors in Table 20 was impleménted to éﬁ(plore the full design space [86]. The
regression model in equation (1) was developed from the SNR(dB) responses. The model

consists of a constant with weighted values for each of the six inputs.

- Table 20: Parameter ranges for statistical experimental design

Minimum Maximum
Adiode (cm?) 2.5x 107 2.5x107
tint (M) 1 30
Na (em™) 1x 10" 1x 10"
Ng (cm™) 1x 107 1x 10"
T (K) 255 310
Vias (V) -3 0

Aoge —1.2625x107°
SNR(dB)=48.188792+10.018069x[ aiode —1:2625X10 J

1.2375x107°
06919 __lm
1.45%10
17
+0.180578 x| e =2:005%10
4995><1o17
(1)
17
—1338731x| Na=3005x10
995><10”
b
—0.012122%( L= 2825x110
75%10
—0.568397x (V’""S”SJ

Analysis of variance (ANOVA) is a mathematical technique used to evaluate the

statistical significance of the photodiode input parameters. The regression model
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accurately depicts the béhavior of the SNR(dB) response as a function of the input
parameters and reduces the complexity for determining photodiode performance. The p-
values from ANOVA (Table 21) show that diode area (Agoq.), integration time (),
donor density (N;), and reverse bias (V) are significant factors (values near zero). Also,
the combination of reverse bias and donor density (Ny * Vpias) has a relationship that
impacts the SNR. Using the F-ratio, the order of significance is area, integration time,

donor density, reverse bias, and then the combination of reverse bias and donor density.
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Table 21: Analysis of variance (ANOVA ) for photodiode parameters

Seurce Sié‘:ig:z:)c ¢ F-Ratio

Adiode 0.0000 2700.00

tine 0.0000 1476.00
N, 0.3542 0.88
Na 0.0000 48.22
T 0.9502 0.00
Vias 0.0051 8.69
Agiode * tint 0.9314 0.01
Adioge *Na | 0.9927 0.00
Adiode * Na 0.9696 0.00
Adioge * T 0.9919 0.00
: Adgiode * Vbias 0.9999 0.00
tine * Ny 0.9899 0.00
tint * Na 0.9880 0.00
tie* T 0.9907 0.00
tint * Vbias 0.9832 0.00
N, * Ng 0.1332 2.34
Na * Ng 0.9842 0.00
Na*T 0.6496 0.21
NgT 0.9589 0.00
Na * Vbias 0.0099 7.28
T * Viias 0.9433 - 0.01

4.4 Analysis
This section presents the analysis and application of the regression model
developed in the previous section. The system requirements provide the constraints for

the photodiode. The two most significant factors, photodiode area and integration time,
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provide a tradeoff for selecting an appropriate device for the mixed-signal processing

element.

4.4.1 Photodiode requirements

Silicon area allocation is a significant issue for a digital pixel because in single-
level VLSI, the photodiode, the analog signal conditioning, the anélog-to-digital
converter, the memory, and the digital processing core compete for silicon area. Each
component must satisfy minimum system requirements with the remaining area allocated
for optimal performance. The photodiode must provide enough bits of resolution for the
analog-to-digital conversion (ADC-). Using the following equation:

SNR(dB) =6.02B +1.76 2)

the required SNR (dB) has been determined for different bit precisions (Table 22).

Table 22: SNR requirements for ADC

Number of Bits SNR(dB)
8 49.92
9 55.94
10 61.96

4.4.2 Diode area versus integration time

Although ANOVA identified several significant parameters, it is helpful to
explore the design space from the two most significant parameters, photodiode area and
integration time. The correlation matrix demonstrates that SNR-(dB) increases as either

Agiode OF tiy increase, with area as the most dominant factor (Table 23). By selecting
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typical values for the remaining parameters (N, = 1 x 10" cm'3, Ny=1x 10'8 cm'3, T=
300K, Vyigs = -2V), a tradeoff is shown between photodiode area and integration time
(Figure 2.8). By increasing the integration time, the photodiode area can be reduced. This
flexibility helps to reduce the silicon area cost for the digital pixel wﬁile satisfying the
ADC constraints (i:igure 29). Thg black region represents combinations of photodiode

area and integration time that do not satisfy 8-bit precision.

Table 23: Correlation matrix for photodiode parameters

Adiode tint N. | Na T Vbias || SNR(dB)

Adiode 1.000 0.000 0.000 0.000 0.000 0.000 0.794
tint 0.000 1.000 0.000 0.000 0.000 0.000 0.587

Na 0.000 0.000 1.000 0.000 0.000 0.000 0.014

Na 0.000 0.000 0.000 1.000 0.000 0.000 -0.106

T 0.000 0.000 0.000 0.000 1.000 0.000 -0.001
Vhias 0.000 0.000 0.000 0.000 0.000 1.000 -0.045
SNR(@dB) | 0.794 0.587 0.014 -0.106 -0.001 -0.045 1.000
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Figure 29: Tradeoff between area and integration time for different bit precisions

90



The regression model can be solved for (Table 24). Entries with “N/A” mean that
the calculated value exceeded the photodiode area range of the statistical experimental
design. The regression model has not been stafistically validated for values outside the
ranges in Table 20 and should not be used to predict those inputs. By selecting an
integration time of 30ms, the photodiode area can be reduced to 7.27 x 10" cm? (27um x |
27um) whi]le satisfying an 8-bit re;olution. This would enable 256-level grayscale digital
processing for the embedded imaging system. The smaller photodiode area also allows

more devices to be incorporated monolithically, thereby increasing the image resolution.

Table 24: Candidate photodiode areas for different integration times

Num!)er of . SNR(dB) Photodiode Area Required (cmz)
Bits tine =5 ms tine =15 ms tint =30 ms
8 49.92 230x10° | 1.67x10° | 7.27x10°
9 55.94 N/A 242x10° | 147x10°
10 61.96 N/A N/A 221x10°

4.5 Conclusion

A system-on-a-chip, created .by a tiled monolithic array of digital pixels, can
utilfze the anticipated technological improvements in fabrication. However, the limited
silicon resources require fundamental tradeoffs among the functional areas within the
digital pixel. The large design space of the photodetector creates a cofnplex challenge for
determining a sufficient device within the imaging system.

This chapter presents the statistical experimental design (SED) of a photodetector

for use within a mixed-signal processing element. A regression model was developed
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using a 2° full-factorial experimental design and was validated using analysis of variance
(ANOVA). The regression model reduces complexity for determining photodiode SNR.
Integration time can be increased to reduce photodiode area. This helps reduce the silicon

area cost for integrating optoelectronics into an imaging system.
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CHAPTER V

CONCLUSION AND FUTURE WORK

This dissertation investigates system-level désign issues to integrate
photodetectors, analog-to-digital converters, data storage, and digital processing into a
monolithic imaging solution. Unique deéign challenges occur from processing pixels at
the detection site. This research addresses those challenges by using both modeling and
simulation techﬁiéues to d.eiermine the impact of both the application workload and the
technology implementation on focal plane architecture design. Performance models for
each component have been developed based upon physical implementations. These
models are combined to characterize key design choices such as processing granularity
and fabﬁcation technology. Simulation of imaging applications determines the feasibility
and benefit of procgssing in the focal plane. Statistical analysis of optoelectronics

demonstrates the capability to further improve the focal plane architecture design.

5.1 Contributions

The contributions of this dissertation relate to the study of system-level design
issues to monolithically integrate photodetectors, analog-to-digital converters, data
storage, and. digital processing into focal plane architectures. The contributions are

outlined in three categories.

93



Performance analysis of front-end image processihg applications

Workload characterization of image processing sequence

* Implemented front-end image processing application suite

» Determined data storage requirements to execute applications

» Evaluated functional units for digital pixel

Key results from analysis

= Determined required number of register to execute selected applications equals
[(2 « PPE) + 7] with a 12-bit datapath

= Data parallelism in the selected applications enables utilization exceeding 78%

» Communication cosf for nearest-neighbor applications (3 x 3 Window) is less than
8% while communication cost for larger windows (8 x 8) exceeds 12%

* 1 PPE implementation operating at 10MHz executes an imaging sequence 4x

faster than the TI TMS320C6411 chip operating at 300MHz.

Efficiency analysis of focal plane architectures

Evaluation of focal plane architectures with 1 PPE, 4 PPE, and 16 PPE

» Developed component models for area projections

» Developed framework for system analysis of component models

* Projected power consumption for different technology generations

= Evaluated area-time efficiency, area efficiency, and energy efficiency of focal

plane architectures
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o Key results from analysis
» Sustained throughput is increased up to 130); versus TI Benchmarks using a focal
. plane architecture
» Focal plane architectures have up to 81x higher area efficiency and up to 1 lx‘
higher energy efficiency compared to ”fI DSP ch}ips
* Area and power constraints for portability are feasible using 180nm fabrication

technologies and beyond to implement a focal 'f)lane architecture

Statistical experimental design for photodétector modeling
¢ Analysis of CMOS photodiode signal-to-noise ratio (SNR)
. Deveioped photodiode SNR performance model based upon physical
implementation
" Performed statistical experimental design to create regression model
* Validated regression model using analysis of variance (ANOVA)
e Key results from analysis
= Regression model reduces complexity for determining photodiode SNR
= Significant parameters, in order of importance, are diode area, integration time,
donor density, reverse bias, and then the combination of reverse bias and donor
denéity
* Photodiode area and integration time are the most dominant parameters, with a
correlation to SNR-0f 0.794 and 0.587 respectively
» Each 1ms increase in integration time reduces photodiode area by 212um? ‘while

maintaining constant SNR
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5.2 Summary of Results
Incorporating analog and digital cdmponents to process pixels at the detection site
requires an understanding of the connections among applications, architecture, and

technology. The results of this dissertation are summarized in the following sections.

5.2.1 Performance analysis of front-end image processing applications

The demand for portable image products will continue to saturate the available
computation, communication, and storage capabilities of conventional imaging systems.
Processing on the focal plane addresses the poteﬁtial architectural constraints by
exploiting data-parallel processing naturally found in image applications to improve
performance on key front-end imaging applications.

Understanding the itargeted application suite can aid architectural design choices.
The workload has been characterized for an application .suite comprised of median
filtering, convolution, inside edge detection, and the discrete cosine transform. The
algorithms used require an architecture with a 12-bit datapath and a minimum of [(2 *
PPE) + 7] words of data storage.

Results show an improvemént in the performance metrics of sustained throughput
and execution timé. The sustained throughput of the focal plane architecture exceeds the
reported speciﬁcation of the TI DSP chips. Also, the execution time for these applications
is reduced compared to TI DSP benchmarks. This benefit is for front-end applications

that can consume-over half of the processing time of an imaging sequence.
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5.2.2 Efficiency analysis of focal plane architectures

Portable imaging products will benefit from the monolithic integration of
photodetectors, analog-to-digital converters, digital processing, and data storage to
perfor.m image acquisition and computation. Technological advances in device
fabrication and integration are enabling the development of these monolithic focal plane
architectures to improve performance, efficiency, and cost versus traditional imaging
architectures.

A focal plane architécture with implementations of 1 PPE, 4 PPE, and 16 PPE has
been modeled and evaluated to determine area-time efficiency, area efficiency, and
energy efficiency of the design. Area-time efficiency has been traditionally used to
evaluate architecture designs. In addition, area efficiency and energy efficiency are
important figures of merit when evaluating a focal plane architecture. |

Results show that implementations -of the focal plane architecture perform well
compared to a traditional DSP architecture while demonstrating higher ratings in all three
efficiency metrics across fabrication technologies. Although the 1 PPE implementation
provides the most efficient architecture, it generally exceeds the constraints for both a
cost-effective chip size and po'vs}er constrainté for portability. Selecting a higher PPE or a

denser detector technology can improve feasibility.

5.2.3 Statistical experimental design for photodetector modeling
A system-on-a-chip, created by a tiled monolithic array of digital pixels, can
utilize the anticipated technological improvements in fabrication. However, the limited

silicon resources require fundamental tradeoffs among the functional areas within the
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digital pixel. The wide range of design techniques and metrics for these components leads
to a complicated design problem, particularly for the integrated optoelectronics.

A regression model was developed for a photodiode using a 2° full-factorial
experimental design and was validated using analysis of variance (ANOVA). This model
characterizes the physical behavior of photodiode response based upon the parameters of
area, integration time, acceptor density, donor density, temperature, and reverse bias.

Results show that the regression model accurately depicts the behavior of the
SNR .response as a function of the input parameters. The two most significant factors,
photodiode area and integration time, provide a helpful design tradeoff in the context of
the digital pixel. This relationship significantly impacts the design of a focal plane

processor by trading time for limited silicon resources.

5.3 Future Research
Future directions for research based on the results presented in this dissertation
can be characterized into two categories: architecture modeling and architecture

implementation.

There is a wide array of choices available to designers of focal plane
architectures. Having a full complement of component models would enable high-level
architectural choices within the design space to be made without costly fabrication. To
extend focal plane architecture modeling:

e Perform analysis of power consumption of analog circuitry to establish the

power budget of a focal plane architecture.
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e Develop models for other types of CMOS sensors (APS, p-i-n photodiode,

etc.) to evaluate other candidate solutions for focal plane architecture
integration
Develop models for various ADC circuits to evaluate other candidate

solutions for focal plane architecture integration

Co-locating analog and digital components on a chip creates a challenge to

implement a functional imaging system. The architecture needs versatility for additional

application development. In addition, testing must be done to insure proper integration of

the various components. To extend focal plane architecture implementation:

Develop additional applications for the focal plane architecture

Investigate alternatives to improve analog circuitry |

Investigate alternatives to improve data storage and data communication
because both are tightly coupled in a focal plane architecture implementation.

Create VLSI layout of both analog and digital circuitry for analysis of

extracted parameters

Fabricate and test a prototype chip for the focal plane architecture
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APPENDIX A

FOCAL PLANE ARCHITECTURAL SIMULATOR

Applications for focal plane architectures can be programmed using the SIMD
'Pixel Processor (SIMPil) Simulator [34]. Ti1is software tool is a windows-based
instruction level simulator, running on a PC platfon‘n.vThe SIMPil Simulator allows
editing, assembling, executing, and debugg_ing parallel image applications in a single
integrated workbench (Figure 30). The current version of the SIMPil Simulator is
available on the download page.

Two instruction sets, one for scalar operations and oné for vector operations
compose the assembly language. Scalar instructions are executed in the system controller,
while vector instructions are broadcasted to each processing element to execute in a
lockstep fashion. Constants are used to define some architectural parameters, such as the
size of the local memory for eéch:PE, the size of the processor array, and the type of
network topology (standard NEWS or Torus-NEWS network). A help menu option is
available to access information on instruction formats, system architecture, and simulator

functionality.
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Figure 30: A screenshot .of the SIMPil Simulator during execution of the DCT application

The state of each system processor (registers, memory, and detector values) is
displayed in the processor monitor window. A similar window is available to inspect the
state of the system controller. Three different program execution modes are available to
ease the debugging process, and breakpoints can be set to stop execution at any point in
the program. The simulator is also instrumented to allow for measuring the concurrency
level and the instruction distribution during the execution of the application. In addition,
simulator directives can be inserted into the program for tasks such as displaying the
output image produced by the system or outputting the content of a specified memory

location into a file.
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APPENDIX B

TIDSP ARCHITECTURE

Architectural comparisons are based upon the TI TMS320C6211B chip and the TI
TMS320C6411 chip (Table 25) [22]. The calculations for cyc]é count use C62x™ DSP
Benchmarks and C64x™ DSP Benchmarks for: (1) 3 x 3 Median Filter (2) 3 x 3
Convolution, and (3) Sobel Edge Detection. This represents the typical early image
processing sequence of: (1) noise removal, (2) smoothing, and (3) segmentation. The
cycle count (and corresﬁonding execution time) from the DSP benchmarks depends upon
the image resolution. The calculated cycle count for each application is provided for tlie
C62x™ DSP architect_ure (Table 26) and the C64x™ DSP architecture (Table 27). The
cycle count ié converted to execution time using the appropriate cycle time for the TI
DSP chip. For example, the cycle times for the TMS320C6211B and\ the TMS320C6411
are 6.7ns and 3.3ns respectively. For larger images (e.g. CIF), the cycle count (and
corresponding execution time) increases as a function of both row width and column

width.
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Table 25: TI DSP chip specifications

TMS320C6211B TMS320C6411
Technology 0.18um 0.12um
Clock frequency 150 MHz 300 MHz
Maximum 1200 MIPS 2400 MIPS
throughput
Area 27mm X 27mm 23mm x 23mm
Power 049 W 0.09W

Table 26: C62x™ DSP Benchmarks for cycle count

QCIF cycles
Application Description Benchmark rows = 144
Formula
cols =176
Performs 3x3 median
. filtering. Operates on . .
3 X 3 Median three lines of input data (9 = cols +49) 78384
Filter . (rows / 3)
where each line is cols
pixels wide.
Performs a 3x3
3x3 convolution on three (9e+cols/8+33) 11088
‘Convolution | rows of cols input (rows/ 3)
pixels.
Sobel Edge Performs Sobel edge 3 e cols * (rows - 2) + 75010
Detection detection. 34
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Table 27: C64x™ DSP Benchmarks for cycle count

QCIF cycles

Application Description B;nchmark rows =144
ormula
cols =176
Performs 3x3 median
. filtering. Operates on - . .
3 X 3 Median three lines of input data (2« cols +32) 18432
Filter L (rows / 3)
where each line is cols
pixels wide.
Performs a 3x3-
3x3 convolution on three (9+cols/8+33) 11088
Convolution | rows of cols input (rows / 3)
pixels.
Sobel Edge Performs Sobel edge 11 « cols * (rows - 2) 34387
Detection detection. /8+23

104




REFERENCES

[1] C. Koch and H. Li, Vision chips : implementing vision algorithms with analog
VLSI circuits. Los Alamitos, Calif.: IEEE Computer Society Press, 1995.

[2] P. Pirsch and H.-J. Stolberg, "VLSI implementations of image and video
multimedia processing systems," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 8, pp. 878-891, 1998.

[31 A. Moini, Vision chips. Boston: Kluwer Academic, 2000.

[4] M. J. Flynn, "Very High Speed Computing Systems," Pr: oceea’m gs of the IEEE,
vol. 54, pp. 1901-1909, 1966.

[5] A. Peleg and U. Weiser, "MMX Technology Extension to the Intel Architecture,"”
IEEE Micro, vol. 16, pp. 42-50, 1996.

[6] K. Acken, E. Gayles, T. Kelliher, R. M. Owens, and M. J. Irwin, "The MGAP
family of processor arrays," in Seventh Great Lakes Symposium on VLSI, 1997, pp. 105-
110.

[7] M. Bolotski, T. Simon, C. Vieri, R. Amirtharajah, and T. F. Knight, Jr., "Abacus:
a 1024 processor 8 ns SIMD array," in Conference on Advanced Research in VLSI, W. J.
Dally, J. W. Poulton, and A. T. Ishii, Eds. Chapel Hill, NC, USA: IEEE Computer
Society, 1995, pp- 28-40. :

[8] M. T. Bohr, "Interconnect scaling-the real limiter to high performance ULSL"
Solid State Technology, vol. 39, pp. 105-106, 109, 111, 1996.

[91 E.R. Fossum, "CMOS image sensors: electronic camera-on-a-chip," /IEEE
Transactions on Electron Devices, vol. 44, pp. 1689-1698, 1997.

[10] J. G. Harris, "The changing roles of analog and digital signal processing in CMOS
image sensors," in IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4. Orlando, FL, USA: IEEE, 2002, pp. IV3976-3979.

[11] H.-S. Wong, "Technology and device scaling considerations for CMOS imagers,"
IEEFE Transactions on Electron Devices, vol. 43, pp. 2131-2142, 1996.

105



[12] T. Lule, S. Benthien, H. Keller, F. Mutze, P. Rieve, K. Seibel, and M. Sommer,
"Sensitivity of CMOS based imagers and scaling perspectives," IEEE Transactions on
Electron Devices, vol. 47, pp. 2110-2122, 2000.

[13] A. El Gamal, "Trends in CMOS image sensor technology and design," in
International Electron Devices Meeting, 2002, pp. 805-808.

[14] - R. W. Brodersen, "Why We Need a Custom Chip-in-a-Day Design
Methodology," http://www.mseconference.org/Talks/mse01_brodersen.pdf, International
Conference on Microelectronic Systems Education, Mixed Signal & Fabrication Services
Keynote Address, 2001.

[15] A.Peleg, S. Wilkie, and U. Weiser, "Intel MMX for multimedia PCs,"
Communications of the ACM, vol. 40, pp. 25-38, 1997.

[16] S.K.Raman, V. Pentkovski, and J. Keshava, "Implementing Streaming SIMD
Extensions on the Pentium III Processor," IEEE Micro, vol. 20, pp. 28-39, 2000.

[17] R.B. Lee, "Subword parallelism with MAX-2," IEEE Micro, vol. 16, pp. 51-59,
1996.

[18] M. Tremblay, J. M. O'Connor, V. Narayanan, and L. He, "VIS speeds new media
processing," IEEE Micro, vol. 16, pp. 10-20, 1996.

[19] "MIPS extension for digital media with 3D," http://www.mips.com/, Technical
Report, MIPS Technologies, Inc., 1997.

[20] R. L. Sites and Alpha Architecture Committee, Alpha architecture reference
manual, 3rd / ed. Boston: Digital Press, 1998.

[21] H.Nguyen and L. K. John, "Exploiting SIMD parallelism in DSP and fnultimedia
algorithms using the AltiVec™ technology," in 13th Association for Computer
Machinery International Conference on Supercomputing. Rhodes, Greece: ACM, 1999,
pp. 11-20.

[22] Texas Instruments Incorporated, http://dspvillage.ti.com/.
[23] J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee,
K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meind]l, "Interconnect Limits on Gigascale

Integration (GSI) in the 21st Century," Proceedings of the IEEE, vol. 89, pp. 305-324,
2001.

- [24] C. Mead, Analog VLSI and neural systems. Reading, Mass.: Addison-Wesley,
1989.

106



[25] J.Kramer and G. Indiveri, "Neuromorphic vision sensors and preprocessors in
system applications," in Advanced Focal Plane Arrays and Electronic Cameras I, vol.
3410. Zurich, Switzerland: SPIE - The International Society for Optical Engineering,
1998, pp. 134-146.

[26] A.ElGamal, D. Yang, and B. Fowler, "Pixel level processing - why, what, and
how?" in Sensors, Cameras, and Applications for Digital Photography, vol. 3650. San
Jose, CA, USA: SPIE - The International Society for Optical Engineering, 1999, pp. 2-
13.

[27] J.-E. Eklund, C. Svensson, and A. Astrom, "VLSI implementation of a focal plane
image processor-a realization of the near-sensor image processing concept," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 4, pp. 322-335, 1996.

[28] F. Paillet, D. Mercier, and T. M. Bernard, "Making the most of 15 k lambda’
silicon area for a digital retina PE," in Advanced Focal Plane Arrays and Electronic
Cameras II, vol. 3410. Zurich, Switzerland: SPIE - The International Society for Optical
Engineering, 1998, pp. 158-167.

[29] T.Komuro, I. Ishii, and M. Ishikawa, "General-purpose vision chip architecture
for real-time machine vision," Advanced Robotics, vol. 12, pp. 619-627, 1999.

[30] M. L. Riaziat, Introduction to high-speed electronics and optoelectronics. New
York: Wiley, 1996.

[31] M. W. Hauser, "Principles of oversampling A/D conversion," Journal of the
Audio Engineering Society, vol. 39, pp. 3-26, 1991.

[32] R.L.Franch,J.Ji, and C. L. Chen, "A 640-ps, 0.25- mu m CMOS, 16*64-b three-
port register file," JEEE Journal of Solid-State Circuits, vol. 32, pp. 1288-1292, 1997.

[33] D. A. Patterson, J. L. Hennessy, and D. Goldberg, Computer architecture : a
quantitative approach, 2nd ed. San Francisco: Morgan Kaufmann Publishers, 1996.

[34] SIMPil Programming Environment,
http://www.ece.gatech.edu/research/pica/simpil/sim/simulator.html.

[35] S.M. Chai, A. Gentile, and D. S. Wills, "Impact Of Power Density Limitation In
Gigascale Integration For The SIMD Pixel Processor," in 20th Anniversary Conference
on Advanced Research in VLSI. Atlanta, GA, USA: IEEE Computer Society, 1999, pp.
57-71.

[36] Semiconductor Industry Association, The Infer; nanonal Technology Roadmap for
Semiconductors 1999 Edition, 1999.

107



[37] Semiconductor Industry Association, The International Technology Roadmap for
Semiconductors 2002 Update, 2002,

[38] R.B.Leeand M. D. Smith, "Media processing: a new design target," /EEE
Micro, vol. 16, pp. 6-9, 1996.

[39] K. Diefendorff and P. K. Dubey, "How multimedia workloads will change
processor design," Computer, vol. 30, pp. 43-45, 1997.

[40] M. Maruyama, H. Nakahira, T. Araki, S. Sakiyama, Y. Kitao, K. Aono, and H.
Yamada, "An image signal multiprocessor on a single chip," IEEE Journal of Solid-State
Circuits, vol. 25, pp. 1476-1483, 1990.

[41] Y.lJoo,J. Park, M. Thomas, K. S. Chung, M. A. Brooke, N. M. Jokerst, and D. S.
Wills, "Smart CMOS focal plane arrays: a Si CMOS detector array and sigma-delta
analog-to-digital converter imaging system," IEEE Journal of Selected Topics in
Quantum Electronics, vol. 5, pp. 296-305, 1999.

[42] T.Morris, E. Fletcher, C. Afghahi, S. Issa, K. Connolly, and J.-C. Korta, "A
column-based processing array for high-speed digital image processing," in Conference
on Advanced Research in VLSI. Atlanta, GA, USA: IEEE Computer Soc1ety, 1999, pp.
42-56.

[43] E.-S. Eid and E. R. Fossum, "Real-time focal-plane array image processor," in
Automated Inspection and High-Speed Vision Architectures III, vol. 1197. Philadelphia,
PA, USA: SPIE - The International Society for Optical Engineering, 1989, pp. 2-12.

[44] R.S.Bajwa, R. M. Owens, and M. J. Irwin, "Image processing with the MGAP: a
cost effective solution," in International Parallel Processing Symposium. Newport, CA,
USA, 1993, pp. 439-443.

"

[45] R.Forchheimer and A. Astrom, "Near-sensor image processing: a new paradigm,
IEEE Transactions on Image Processing, vol. 3, pp. 736-746, 1994,

[46] A. Astrom, J.-E. Eklund, and R. Forchheimer, "Near-sensor image processing -
theory and practice," in Advanced Focal Plane Arrays and Electronic Cameras, vol.
2950. Berlin, Germany: SPIE - The International Society for Optical Engmeenng, 1996,
pp. 242-253.

[47] E.R.Fossum, "Active pixel sensors: are CCD's dinosaurs?" in Charged-Coupled
Devices and Solid State Optical Sensors 111, vol. 1900. San Jose, CA, USA: SPIE - The
International Society for Optical Engineering, 1993, pp. 2-14.

[48] K. E. Batcher, "Design of a massively parallel processor," IEEE Transactions on
Computers, vol. c-29, pp. 836-840, 1980.

108



[49] M. J.B. Duff and D. M. Watson, "The cellular logic array image processor,"
Computer Journal, vol. 20, pp. 68-72, 1977.

[50] L. W. Tucker and G. G. Robertson, "Architecture and applications of the
connection machine," IEEE Computer, vol. 21, pp. 26-38, 1988.

[51] "Connection machine model CM-2 technical summary," Technical Report,
Thinking Machines Corporation, 1989.

[52] "MasPar (MP-2) System Data Sheet," MasPar Corporation, 1993.

[53] W.F.Wongand K. T. Lua, "A preliminary evaluation of a massively parallel
processor: GAPP," Microprocessing & Microprogramming, vol. 29, pp. 53-62, 1990.

[54] M.J.Irwin and R. M. Owens, "A two-dimensional, distributed logic processor for
machine vision," JEEE Transactions on Computers, vol. 40, pp. 1094-1101, 1991.

[55] B.Fowler, "CMOS Area Image Sensors with Pixel Level A/D Conversion," in
Electrical Engineering. Palo Alto, CA: Stanford University, 1995, pp. 161.

[56] D. Yang, H. Tian, B. Fowler, X. Liu, and A. El Gamal, "Characterization of
CMOS image sensors with Nyquist rate pixel level ADC," in Sensors, Cameras, and
Applications for Digital Photography, vol. 3650. San Jose, CA, USA: SPIE - The
International Society for Optical Engineering, 1999, pp. 52-62.

[571 G. Heygster, "Rank filters in digital image processing," Computer Graphics and
Image Processing, vol. 19, pp. 148-164, 1982.

[58] M. J.T. Smith and A. Docef, 4 study guide for digital image processing, Early
release ed. Riverdale, GA: Scientific Publishers, 1997.

[59] R.M. Haralick, S. R. Sternberg, and X. Zhuang, "Image Analysis Uéing
Mathematical Morphology," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 9, pp. 532-550, 1987.

[60] J.Liangand T. D. Tran, "Fast multiplierless approximations of the DCT with the
lifting scheme," IEEE Transactions on Signal Processing, vol. 49, pp. 3032-3044, 2001.

[61] T.D. Tran, "Fast multiplierless approximation of the DCT," in 33rd Annual
Conference on Information Science and Systems. Baltimore, MD, USA, 1999, pp. 933-
938. '

[62] A. Gentile, "Portable multimedia supercomputers: system architecture design and

evaluation," in Electrical and Computer Engineering. Atlanta, GA: Georgia Institute of
Technology, 2000, pp. 170.

109



- [63] International Telecommunications Union, http://www.itu.int/home/index.html.

[64] R.F. Pierret, Semiconductor device findamentals. Reading, Mass.: Addison-
Wesley, 1996.

[65] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed. Upper Saddle
River, NJ: Prentice Hall, 1997.

[66] A. Dupret, E. Belhaire, and J.-C. Rodier, "A high current large bandwidth
photosensor on standard CMOS processes," in Advanced Focal Plane Arrays and
Electronic Cameras, vol. 2950. Berlin, Germany: SPIE, 1996, pp. 36-44.

-[67] M. L. Simpson, M. N. Ericson, G. E. Jellison, Jr., W. B. Dress, A. L. Wintenberg,
and M. Bobrek, "Application specific spectral response with CMOS compatible
photodiodes," IEEE Transactions on Electron Devices, vol. 46, pp. 905-913, 1999.

[68] S.K.Mendis, S. E. Kemeny, R. C. Gee, B. Pain, C. O. Staller, Q. Kim, and E. R.
Fossum, "CMOS active pixel image sensors for highly integrated imaging systems,"
IEEE Journal of Solid-State Circuits, vol. 32, pp. 187-197, 1997.

[69] E.R. Fossum, "Digital camera system on a chip," IEEE Micro, vol. 18, pp. 8-15,
1998.

[70] J. G. Proakis, Digital communications, 3rd ed. New York: McGraw-Hill, 1995.

[71] J.C. Candy, G. C. Temes, Institute of Electrical and Electronics Engineers, and
IEEE Circuits and Systems Society, Oversampling delta-sigma data converters: theory,
design, and simulation. Piscataway, NJ: IEEE Press, 1992.

[72] M. W. Hauser and R. W. Brodersen, "Circuit and technology considerations for

MOS delta-sigma A/D converters," in International Symposium on Circuits and Systens,
vol. 3. San Jose, CA, USA: IEEE, 1986, pp. 1310-1315.

[73] M. W. Hauser and R. W. Brodersen, "Monolithic decimation filtering for custom
delta-sigma A/D converters," in International Conference on Acoustics, Speech, and
Signal Processing, vol. 4. New York, NY, USA: ICASSP, 1988, pp. 2005-2008.

[74] M. W. Hauser, "Technology scaling and performance limitations in delta-sigma
analog-digital converters," in International Symposium on Circuits and Systems, vol. 1.
New Orleans, LA, USA: IEEE, 1990, pp. 356-359.

[75] . J. Nakamura, B. Pain, T. Nomoto, T. Nakamura, and E. R. Fossum, "On-focal-

plane signal processing for current-mode active pixel sensors," IEEE Transactions on
Electron Devices, vol. 44, pp. 1747-1758, 1997.

110



[76] L. G. Mcllrath, "A low-power low-noise ultrawide-dynamic-range CMOS imager
with pixel-parallel A/D conversion," IEEE Journal of Solid-State Circuits, vol. 36, pp.
846 - 853, 2001.

[77] Y. Perelman and R. Ginosar, "A low-light-level sensor for medical diagnostic
applications," IEEE Journal of Solid-State Circuits, vol. 36, pp. 1553-1558, 2001.

[78] M. Nomura, M. Yamashina, K. Suzuki, M. Izumikawa, H. Igura, H. Abiko, K.
Okabe, A. Ono, T. Nakayama, and H. Yamada, "A 500-MHz, 0.4- mu m CMOS, 32-
word by 32-bit 3-port register file," in IEEE 1995 Custom Integrated Circuits
Conference. Santa Clara, CA, USA: IEEE, 1995, pp. 151-154.

[79] J. M. Mulder, N. T. Quach, and M. J. Flynn, "An area model for on-chip
memories and its application," JEEE Journal of Solid-State Circuits, vol. 26, pp. 98-106,
1991.

[80] S.Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens,
"Register organization for media processing," in Sixth International Symposium on High-
Performance Computer Architecture. Touluse, France, 2000, pp. 375-386.

[81] W. H. Robinson, G. E. Triplett, and D. S. Wills, "Component modeling for an
integrated digital pixel," in 15th Annual Meeting IEEE Lasers and Electro-Optics Society
(LEOS), vol. 1. Glasgow, Scotland: IEEE, 2002, pp. 37-38.

[82] A. Gentile, A. Lopez-Lagunas, S. M. Chai, H. H. Cat, K. S. Chung, L. Codrescu,
M. Deb, S. J. Ryu, M. F. Wolff, J. C. Eble, W. H. Robinson, T. Taha, D. S. Wills, M.
Viera-Vera, W. E. Lugo-Beauchamp, L. Bustelo, R. Olivieri, J. Figueroa, and J. L. Cruz-
Rivera, "Portable Multimedia Supercomputing," submitted to IEEE Transactions on
Computers, vol. TC 114531, pp. 43 pages, July 2001.

[83] A.P. Chandrakasaﬁ, S. Sheng, and R. W. Brodersen, "Low-power CMOS Digital
Design," IEEE Journal of Solid-State Circuits, vol. 27, pp. 473-484, 1992.

[84] T.D.Burd and R. W. Brodersen, "Energy Efficient CMOS Microprocessor
Design," in Twenty-Eighth Annual Hawaii International Conference on System Sciences,

vol. 1. Wailea, HI, USA, 1995, pp. 288-297.

[85] P. Seitz, "Smart pixels," in 2001 International Symposium on Electron Devices
for Microwave and Optoelectronic Applications. Vienna, Austria, 2001, pp. 229-234.

[86] G.Box, W. Hunter, and J. Hunter, Statistics for Experimenters. New York: Wiley,
1978. .

111



VITA

William Hugh Robinson, III was born on July 13, 1973, in Wauchula, Florida. In
1996, he recei\}ed his Bachelor of Science in electrical engineering from Florida
Agricultural and Mechanical University in Tallahassee, Florida. He subsequently entered
the Ph.D. program in Electrical and Computer Engineering at the Georgia Institute of
Technology in Atlanta, Georgia, where he joined the Portable Image Computation
Architectures (PICA) Research Group led by Dr. D. Scott Wills. His research explores
the system-level integration of computer architecture to understand fhe impact of
technology on architecture design. Topics of interest include VLSI design, parallel
computer architectures, and image processing. In 1998, he received a Master of Science
in electrical engineering. Under the direction of Dr. Wills, William received his Ph.D. |
degree in Electrical and Computer Engineering in August 2003. During his time at
Georgia Tech, William was awarded several graduate fellowships, including a National
Science Foundation Minority Graduate Fellowship in 1996, a Facilitating Academic
Careers in Engineering and Science (FACES) Fellowship in 2001, and a Ford Foundation
Dissertation Fellowship for Minorities in 2002. In IEEE, he is a member of both the
Computer Society and the Lasers and Electro-Optics Society. Other professional
memberships include the Association for Computing Machinery (ACM), the American
Society of Engineering Educators (ASEE), the National Seciety of Black Engineers

(NSBE), and SPIE — The International Society for Optical Engineering.

112



