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SUMMARY

The objects of study in this dissertation are programs and algorithms that reason about

programs using their syntactic structure. Such algorithms, referred to as program verifica-

tion algorithms in the literature, are designed to find proofs of propositions about program

behavior.

This dissertation adopts the perspective that programs operate in environments that can

be modeled statistically. In other words, program inputs are samples drawn from a genera-

tive statistical model. This statistical perspective has two main advantages. First, it allows

us to reason about programs that are not expected to exhibit the desired behavior on all pro-

gram inputs, such as neural networks that are learnt from data, by formulating and proving

probabilistic propositions about program behavior. Second, it enables us to simplify the

search for proofs of non-probabilistic propositions about program behavior by designing

program verification algorithms that are capable of inferring “likely” hypotheses about the

program environment.

The first contribution of this dissertation is a pair of program verification algorithms

for finding proofs of probabilistic robustness of neural networks. A trained neural network

f is probabilistically robust if, for a pair of inputs that is randomly generated as per the

environment statistical model, f is likely to demonstrate k-Lipschitzness, i.e., the distance

between the outputs computed by f is upper-bounded by the kth multiple of the distance

between the pair of inputs. A proof of probabilistic robustness guarantees that the neural

network is unlikely to exhibit divergent behaviors on similar inputs.

The second contribution of this dissertation is a generic algorithmic framework, re-

ferred to as observational abstract interpreters, for designing algorithms that compute hy-

pothetical semantic program invariants. Semantic invariants are logical predicates about

program behavior and are used in program proofs as lemmas. The well-studied algorithmic

framework of abstract interpretation provides a standard recipe for constructing algorithms

xii



that compute semantic program invariants. Observational abstract interpreters extend this

framework to allow for computing hypothetical invariants that are valid only under specific

hypotheses about program environments. These hypotheses are inferred from observations

of program behavior and are embedded as dynamic/run-time checks in the program to en-

sure the validity of program proofs that use hypothetical invariants.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Computer software is an essential component of modern infrastructure. With the increasing

complexity of software, there is a pressing need to develop techniques for understanding

the behavior of deployed programs to ensure their reliability and correctness. An empiri-

cal approach for understanding and reasoning about a program is to run the program and

draw conclusions based on the observed program behaviors. Though this approach, re-

ferred to as program testing, is widely used and successful, it is typically computationally

infeasible to observe all program behaviors using this approach. A different approach is

to construct a mathematical model of a program and algorithmically prove theorems about

the mathematical model in order to establish correctness of the program. Construction of

such mathematical models relies on the mathematical definition of the semantics of the

programming language used to express the program. This approach for reasoning about

programs, referred to as program verification, is the subject of our study.

In particular, we focus on the verification of open programs, as opposed to closed pro-

grams. An open program interacts with its environment and the program behavior depends

on this interaction. Formally, an open program consists of free variables and the envi-

ronment (or context) provides the values of these variables.1 Reasoning about an open

program, therefore, requires reasoning about program behavior with respect to arbitrary

environments. In order to model the interaction with the environment, the standard prac-

tice in program testing and verification literature is to formally specify the structure of the

values or data generated by the environment via specification of the datatypes of the free

1We do not consider reactive programs that repeatedly interact with the environment in this dissertation.
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variables.

In this dissertation, we investigate the design of program verification algorithms under

the assumption that the environment in which an open program operates can be modeled

statistically. In other words, we assume that the values assigned by the environment to the

free variables of an open program are generated in accordance with a known or unknown

statistical model. We note that the statistical modeling of the environment in this disserta-

tion is restricted to free variables with a first-order datatype. Our statistical perspective on

program environments is driven by the observation that inputs to programs are generated

by natural and social processes, and the use of statistical models is ubiquitous for modeling

such processes. While existing program verification algorithms do not take the statistical

nature of program environments into account, in this dissertation we show how the sta-

tistical perspective can be fruitfully employed for reasoning about program behavior. In

particular, we study two program verification problems where the statistical perspective on

program environments allows us to go beyond the standard program verification literature.

First, we study the problem of verifying programs that are not expected nor required

to exhibit correct behavior in all environments. Traditionally, such programs would be

deemed incorrect and discarded. However, there is a growing usage of algorithms that

learn programs from data. Learning programs that are correct in all environments is often

computationally infeasible. Consequently, one frequently encounters programs that are

not expected to exhibit the correct behavior in all possible environments. Probabilistic

notions of program correctness become essential for certifying these programs as correct.

Statistical modeling of program environments allows us to formulate such probabilistic

statements of program correctness. In this dissertation, we restrict ourselves to verifying

probabilistic correctness of learned neural networks. Notice that this notion of probabilistic

correctness maybe viewed as analogous, in spirit, to the notion of average-case complexity

from complexity theory [1]. Instead of fixating on the worst case behaviors of a program,

we instead try to establish correctness in the common case.
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Second, we study the standard verification problem of checking if programs satisfy

non-probabilistic notions of correctness using new verification algorithms that fruitfully

exploit the statistical perspective on program environments. Typically, program verification

algorithms make no assumptions about the program under analysis or about the program

environment, except for the assumptions already provided by the programmer, for instance,

type annotations or logical preconditions on free variables. However, decision problems

addressed by program verification are well-known to be undecidable [2], so verification

algorithms are not always guaranteed to find a proof of program correctness, even if such

a proof exists. One approach to addressing this problem is to allow verification algorithms

to make any required assumptions, about the environment and about the program under

analysis, that can help construct a proof, and to embed these assumptions as run time checks

in the program. Well-studied program verification approaches like gradual typing [3, 4]

and hybrid typing [5, 6] already employ this strategy. However, these techniques can have

excessive run time overheads [7]. Worse, the assumptions about the environment and the

program can be too strong and lead to frequent run time violations. However, modeling

the program environment statistically enables the design of verification algorithms that

can estimate the probability of an assumption being valid with respect the environment

statistical model, and therefore, enable the choice of assumptions that are unlikely to be

violated at run time.

Employing the statistical perspective on program environments, we make two contribu-

tions in this dissertation. The first contribution is an application of the idea of probabilistic

program correctness to neural network verification. As we have already described, prob-

abilistic notions of program correctness are particularly suited in the context of certifying

the correctness of neural networks, but such ideas have been under-explored in the liter-

ature. In this dissertation, we formulate a new notion of correctness for neural networks

(referred to as probabilistic robustness or probabilistic Lipschitzness) and present verifi-

cation algorithms for the same. The second contribution of this dissertation is a generic
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algorithmic framework that extends the well-studied framework of abstract interpretation

[8, 9] to enable construction of algorithms (i.e., abstract interpreters) that can exploit the

statistical model of program environment for computing hypothetical semantic invariants

of the program, such that the hypotheses are unlikely to be violated at run time. We refer

to such abstract interpreters as observational abstract interpreters.

We note that the notion of program verification with statistically modeled program en-

vironments is not new [10, 11], but applications of this perspective have been lacking.

However, with the advances in deep learning and computational statistics in recent years,

algorithmically learning statistical models of program environments is more feasible than

ever. In particular, the advances in neural network based generative modeling of data gen-

eration process [12, 13] have made it possible to learn very accurate and complicated sta-

tistical models of program environments/inputs with almost no human intervention.

1.2 Probabilistic Robustness of Neural Networks

A neural network f is probabilistically robust if, for a randomly generated pair of inputs,

f is likely to demonstrate k-Lipschitzness, i.e., the distance between the outputs computed

by f is upper-bounded by the kth multiple of the distance between the pair of inputs. We

name this property, probabilistic Lipschitzness. Proving neural networks robust has been an

open and urgent problem since Szegedy et al. [14] first noticed that state-of-the-art neural

networks learned to perform the task of image recognition were unstable - small changes

to the inputs caused the learned neural networks to produce large, unexpected, and unde-

sirable changes in the outputs. In other words, small changes to the images, imperceptible

to humans, caused the neural networks to produce very different image labels. Though var-

ious notions of neural network robustness have been discussed in the literature, a majority

of the existing literature has focused on local notions of robustness. Informally, a neural

network is locally robust at a specific input, x0, if it behaves robustly in a bounded, local

region of the input Euclidean space centered at x0. We are however interested in the global
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notion of probabilistic Lipschitzness that, while providing a stronger correctness guaran-

tee, also allows the flexibility of neural networks behaving non-robustly at unlikely inputs.

Our formulation of probabilistic Lipschitzness assumes it feasible to construct a statistical

model of the process generating the inputs of a neural network. We find this a reasonable

assumption given the rapid advances in algorithms for learning generative statistical models

represented via neural networks

We present two verification algorithms for proving probabilistic robustness of neural

networks. While our first algorithm is too expensive to be useful in practice, our second

algorithm is practically feasible. This algorithm requires that we model the statistical pro-

gram environment and the neural network under analysis, together, as a program in a sim-

ple, first-order, imperative, probabilistic programming language, pcat. Inspired by a large

body of existing literature, we define a denotational semantics for this language. Then we

develop a sound local Lipschitzness analysis for cat, a non-probabilistic sublanguage of

pcat. This analysis can compute an upper bound of the Lipschitzness of a neural network

in a bounded region of the input set. We next present a provably correct algorithm, PROLIP,

that analyzes the behavior of a neural network in a user-specified box-shaped input region

and computes, (i) lower bounds on the probabilistic mass of such a region with respect to

the generative model, and (ii) upper bounds on the Lipschitz constant of the neural net-

work in this region, with the help of the local Lipschitzness analysis. Finally, we present

a sketch of a proof-search algorithm that uses PROLIP as a primitive for finding proofs of

probabilistic Lipschitzness. Verification of probabilistic robustness of neural networks is

described in detail in chapter 2.

1.3 Observational Abstract Interpreters

A common strategy used by program verification algorithms in the search for proofs of

program correctness is to compute semantic program invariants that serve as lemmas in the

proofs. A semantic invariant is a simplified representation of the meaning of a program.
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Practically, semantic invariants should be efficiently computable even when the program

under analysis is non-terminating. The well-studied algorithmic framework of abstract in-

terpretation provides a standard recipe for constructing algorithms that compute semantic

program invariants. In this dissertation, we present observational abstract interpreters, a

new algorithmic framework for designing algorithms that compute semantic program in-

variants in statistically modeled program environments. The invariants computed by obser-

vational abstract interpreters are permitted to be hypothetical, i.e. valid only under specific

hypotheses about the program environment. These hypotheses are inferred from observed

behaviors of the program. Observational abstract interpreters do not require the statistical

model of the environment to be known, but do assume that the observations of program

behavior are generated by drawing independent samples from an environment statistical

model and running the program where the free variables are substituted with the sampled

values. This assumption allows us one to infer hypotheses from the observations that are

likely to be valid with respect to the environment statistical model. In order to ensure

that the proofs of program correctness computed using hypothetical semantic invariants are

valid, we embed the hypotheses as run time/dynamic checks in the program.

We formalize our ideas in the context of a simple higher-order language (λS) with

integers. We develop a generic observational abstract interpreter for λS , drawing inspi-

ration from the abstracting abstract machines (AAM) recipe of Van Horn and Might [15]

for abstract interpreter construction. Observational abstract interpreters are structured as

monadic abstract interpreters [16, 17, 18], have a monadic structure, and are capable of

making hypotheses based on program observations during the computation of semantic

program invariants. We present an instantiation of the generic observational abstract inter-

preter for λS , yielding an observational variant of interval analysis for λS . Observational

abstract interpreters are presented in detail in chapter 3.
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CHAPTER 2

PROBABILISTIC LIPSCHITZ ANALYSIS OF NEURAL NETWORKS

2.1 Introduction

Neural networks (NNs) are useful for modeling a variety of computational tasks that are be-

yond the reach of manually written programs. We like to think of NNs as programs in a first-

order programming language specialized to operate over vectors from high-dimensional

Euclidean spaces. However, NNs are algorithmically learned from observational data about

the task being modeled. These tasks typically represent natural processes for which we

have large amounts of data but limited mathematical understanding. For example, NNs

have been successful at image recognition [19] - assigning descriptive labels to images. In

this case, the underlying natural process that we want to mimic computationally is image

recognition as it happens in the human brain. However, insufficient mathematical theory

about this task makes it hard to develop a hand-crafted algorithm.

Given that NNs are discovered algorithmically, it is important to ensure that a learned

NN actually models the computational task of interest. With the perspective of NNs as

programs, this reduces to proving that the NN behaves in accordance with the formal speci-

fication of the task at hand. Unfortunately, limited mathematical understanding of the tasks

implies that, in general, we are unable to even state the formal specification. In fact, it is

precisely in situations where we are neither able to manually design an algorithm nor able

to provide formal specifications in which NNs tend to be deployed. This inability to verify

or make sense of the computation represented by a NN is one of the primary challenges to

the widespread adoption of NNs, particularly for safety critical applications. In practice,

NNs are tested on a limited number of manually provided tests (referred to as test data)

before deploying. However, a natural question is, what formal correctness guarantees, if
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any, can we provide about NNs?

A hint towards a useful notion of correctness comes from an important observation

about the behavior of NNs, first made by [14]. They noticed that state-of-the-art NNs that

had been learned to perform the image recognition task were unstable - small changes in

the inputs caused the learned NNs to produce large, unexpected, and undesirable changes

in the outputs. In the context of the image recognition task, this meant that small changes

to the images, imperceptible to humans, caused the NN to produce very different labels.

The same phenomenon has been observed by others, and in the context of very different

tasks, like natural language processing [20, 21] and speech recognition [22, 23, 24]. This

phenomenon, commonly referred to as lack of robustness, is widespread and undesirable.

This has motivated a large body of work (see [25, 26, 27] for broad but non-exhaustive

surveys) on algorithmically proving NNs robust. These approaches differ not only in the

algorithms employed but also in the formal notions of robustness that they prove.

An majority of the existing literature has focused on local notions of robustness. Infor-

mally, a NN is locally robust at a specific input, x0, if it behaves robustly in a bounded, local

region of the input Euclidean space centered at x0. There are multiple ways of formalizing

this seemingly intuitive property. A common approach is to formalize this property as,

@x.p‖x´ x0‖ ď rq Ñ φppfxq, pfx0qq, where f is the NN to be proven locally robust at x0,

pfxq represents the result of applying the NN f on input x, φppfxq, pfx0qq represents a set of

linear constraints imposed on pfxq, and ‖¨‖ represents the norm or distance metric used for

measuring distances in the input and output Euclidean spaces (typically, an lp norm is used

with p P t1, 2,8u). An alternate, less popular, formulation of local robustness, referred

to as local Lipschitzness at a point, requires that @x, x1.p‖x´ x0‖ ď rq ^ p‖x1 ´ x0‖ ď

rq Ñ p‖fx´ fx1‖ ď k ˚ ‖x´ x1‖q. Local Lipschitzness ensures that in a ball of radius r

centered at x0, changes in the input only lead to bounded changes in the output. One can

derive other forms of local robustness from local Lipschitzness. (see Theorem 3.2 in [28]).

We also find local Lipschitzness to be an aesthetically more pleasing and natural property
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of a function. But, local Lipschitzness is a relational property [29, 30]/hyperproperty [31]

unlike the first formulation, which is a safety property [32]. Algorithms for proving safety

properties of programs have been more widely studied and there are a number of mature

approaches to build upon, which may explain the prevalence of techniques for proving the

former notion of local robustness. For instance, [33, 34] are based on variants of polyhedral

abstract interpretation [35], [36, 37, 38] encode the local robustness verification problem

as an SMT constraint.

Local robustness (including local Lipschitzness) is a useful but limited guarantee. For

inputs where the NN has not been proven to be locally robust, no guarantees can be given.

Consequently, a global notion of robustness is desirable. Local Lipschitzness can be ex-

tended to a global property - a NN f is globally Lipschitz or k-Lipschitz if, @x, x1.p‖fx´ fx1‖ ď

k ˚ ‖x´ x1‖q. Algorithms have been proposed in programming languages and machine

learning literature for computing Lipschitz constant upper bounds. Global robustness is

guaranteed if the computed upper bound is ď k.

Given the desirability of global robustness over local robustness, the focus on local ro-

bustness in the existing literature may seem surprising. There are two orthogonal reasons

that, we believe, explain this state of affairs - (i) proving global Lipschitzness, particularly

with a tight upper bound on the Lipschitz constant, is more technically and computationally

challenging than proving local Lipschitzness, which is itself hard to prove due its relational

nature; (ii) requiring NNs to be globally Lipschitz with some low constant k can be an

excessively stringent specification, unlikely to be met by most NNs in practice. NNs, un-

like typical programs, are algorithmically learnt from data. Unless the learning algorithm

enforces the global robustness constraint, it is unlikely for a learned NN to exhibit this

“strong” property. Unfortunately, learning algorithms are ill-suited for imposing such log-

ical constraints. These algorithms search over a set of NNs (referred to as the hypothesis

class) for the NN minimizing a cost function (referred to as loss function) that measures

the “goodness” of a NN for modeling the computational task at hand. These algorithms are

9



greedy and iterative, following the gradient of the loss function. Modifying the loss func-

tion in order to impose the desired logical constraints significantly complicates the function

structure and makes the gradient-based, greedy learning algorithms ineffective.1

Consequently, in this work, we focus on a probabilistic notion of global robustness.

This formulation, adopted from [40], introduces a new mathematical object to the NN veri-

fication story, namely, a probability measure over the inputs to the NN under analysis. One

assumes it feasible to construct a statistical model of the process generating the inputs of a

NN. We find this a reasonable assumption given the rapid advances in algorithms for learn-

ing generative models of data [13, 12]. Such a statistical model yields a distribution D over

the inputs of the NN. Given distribution D and a NN f , this notion of robustness, that we

refer to as probabilistic Lipschitzness, is formally stated as,

Pr
x,x1„D

p‖fx´ fx1‖ ď k ˚ ‖x´ x1‖
ˇ

ˇ ‖x´ x1‖ ď rq ě 1´ ε

This says that if we randomly draw two samples, x and x1 from the distribution D, then,

under the condition that x and x1 are r-close, there is a high probability (ě p1 ´ εq) that

NN f behaves stably for these inputs. If the parameter ε “ 0 and r “ 8, then we recover

the standard notion of k-Lipschitzness. Conditioning on the event of x and x1 being r-close

reflects the fact that we are primarily concerned with the behavior of the NN on pairs of

inputs that are close.

To algorithmically search for proofs of probabilistic Lipschitzness, we model generative

models and NNs together as programs in a simple, first-order, imperative, probabilistic pro-

gramming language, pcat. First-order probabilistic programming languages with a sample

construct, like pcat, have been well-studied.2 Programs in pcat denote transformers from

Euclidean spaces to probability measures over Euclidean spaces. pcat, inspired by the non-

probabilistic language cat [34], is explicitly designed to model NNs, with vectors in Rn as

1Recent work has tried to combine loss functions with logical constraints [39].
2pcat has no observe or score construct and cannot be used for Bayesian reasoning.
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the basic datatype. The suitability of pcat for representing generative models stems from

the fact that popular classes of generative models (for instance, the generative network of

generative adversarial networks [12] and the decoder network of variational autoencoders

[13]) are represented by NNs. Samples from the input distribution D are obtained by draw-

ing a sample from a standard distribution (typically a normal distribution) and running this

sample through generative or decoder networks. In pcat, this can be represented as the

program, z ø Np0, 1q; g, where the first statement represents the sampling operation

(referred to as sampling from the latent space, with z as the latent variable) and g is the

generative or decoder NN. If the NN to be analyzed is f , then we can construct the program,

z ø Np0, 1q; g; f , in pcat, and subject it to our analysis.

Adapting a language-theoretic perspective allows us to study the problem in a princi-

pled, general manner and utilize existing program analysis and verification literature. In

particular, we are interested in sound algorithms that can verify properties of probabilis-

tic programs without needing manual intervention. Thus approaches based on interactive

proofs [41, 42], requiring manually-provided annotations and complex side-conditions [43,

44, 45] or only providing statistical guarantees [46, 47] are precluded. Frameworks based

on abstract interpretation [48, 49] are helpful for thinking about analysis of probabilistic

programs but we focus on a class of completely automated proof-search algorithms [10,

50, 51] that only consider probabilistic programs where all randomness introducing state-

ments (i.e., sample statements) are independent of program inputs, i.e. samples are drawn

from fixed, standard probability distributions, similar to our setting. These algorithms an-

alyze the program to generate symbolic constraints (i.e., sentences in first-order logic with

theories supported by SMT solvers) and then compute the probability mass or “volume”,

with respect to a fixed probability measure, of the set of values satisfying these constraints.

These algorithms are unsuitable for parametric probability measures but suffice for our

problem. Both generating symbolic constraints and computing volumes can be computa-

tionally expensive (and even intractable for large programs), so a typical strategy is to break
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down the task into simpler sub-goals. This is usually achieved by defining the notion of

“program path” and analyzing each path separately. This “per path” strategy is unsuitable

for NNs, with their highly-branched program structure. We propose partitioning the pro-

gram input space (i.e., the latent space in our case) into box-shaped regions, and analyzing

the program behavior separately on each box. The box partitioning strategy offers two im-

portant advantages - (i) by not relying explicitly on program structure to guide partitioning

strategy, we have more flexibility to balance analysis efficiency and precision; (ii) comput-

ing the volume of boxes is easier than computing the same for sets with arbitrary or even

convex structure.

For the class of probabilistic programs we are interested in (with structure, z ø

Np0, 1q; g; f ), the box-partitioning strategy implies repeatedly analyzing the program g; f

while restricting z to from box shaped regions. In every run, the analysis of g; f involves

computing a box-shaped overapproximation, xB, of the outputs computed by g when z is

restricted to some specific box zB and computing an upper bound on the local Lipschitz

constant of f in the box-shaped region xB. We package these computations, performed in

each iteration of the proof-search algorithm, in an algorithmic primitive, PROLIP.

For computing upper bounds on local Lipschitz constants, we draw inspiration from ex-

isting literature on Lipschitz analysis of programs [52] and NNs [14, 53, 54, 55, 56, 57, 58,

59, 60]. In particular, we build on the algorithms presented in [57, 58]. We translate these

algorithms in to our language-theoretic setting and present the local Lipschitzness analysis

in the form of an abstract semantics for the cat language, which is a non-probabilistic sub-

language of pcat. In the process, we also simplify and generalize the original algorithms.

To summarize, our primary contributions in this work are - (i) we present a provably

sound algorithmic primitive PROLIP and a sketch of a proof-search algorithm for proba-

bilistic Lipschitzness of NNs, (ii) we develop a simplified and generalized version of the

local Lipschitzness analysis in [57], capable of computing an upper bound on the local Lip-

schitz constant of box-shaped input regions for any program in the cat language, (iii) we
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(variables) x, y PV
(naturals) m,n PN
(weights) w P

Ť

m,nPNRmˆn

(biases) β P
Ť

nPN Rn

s ::“ skip | y Ð w ¨ x` β | y ø Np0, 1q | s; s | if b then s else s
s´ ::“ skip | y Ð w ¨ x` β | s´; s´ | if b then s´ else s´

b ::“ πpx,mq ě πpy, nq | πpx, nq ě 0 | πpx, nq ă 0 | b^ b |  b
e ::“ πpx, nq | w ¨ x` β

Figure 2.1: pcat syntax

develop a strategy for computing proofs of probabilistic programs that limits probabilistic

reasoning to volume computation of regularly shaped sets with respect to standard distribu-

tions, (iv) we implement the PROLIP algorithm, and evaluate its computational complexity.

2.2 Language Definition

2.2.1 Language Syntax

pcat (probabilistic conditional affine transformations) is a first-order, imperative proba-

bilistic programming language, inspired by the cat language [34]. pcat describes always

terminating computations on data with a base type of vectors over the field of reals (i.e., of

type
Ť

nPN Rn). pcat is not meant to be a practical language for programming, but serves

as a simple, analyzable, toy language that captures the essence of programs structured like

NNs. We emphasize that pcat does not capture the learning component of NNs. We think

of pcat programs as objects learnt by a learning algorithm (commonly stochastic gradient

descent with symbolic gradient computation). We want to analyze these learned programs

and prove that they satisfy the probabilistic Lipschitzness property.

pcat can express a variety of popular NN architectures and generative models. For in-

stance, pcat can express ReLU, convolution, maxpool, batchnorm, transposed convolution,

and other structures that form the building blocks of popular NN architectures. We describe

the encodings of these structures in subsection 2.2.3. The probabilistic nature of pcat fur-
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ther allows us to express a variety of generative models, including different generative

adversarial networks (GANs) [12] and variational autoencoders (VAEs) [13].

pcat syntax is defined in Figure 2.1. pcat variable names are drawn from a set V and

refer to vector of reals. Constant matrices and vectors appear frequently in pcat programs,

playing the role of learned weights and biases of NNs, and are typically represented by w

and β, respectively. Programs in pcat are composed of basic statements for performing

linear transformations of vectors (y Ð w ¨ x` β) and sampling vectors from normal distri-

butions (y ø Np0, 1q). Sampling from parametric distributions is not allowed. Programs

can be composed sequentially (s; s) or conditionally (if b then s else s). pcat does not

have a loop construct, acceptable as many NN architectures do not contain loops. pcat

provides a projection operator πpx, nq that reads the nth element of the vector referred by

x. For pcat programs to be well-formed, all the matrix and vector dimensions need to fit

together. Static analyses [61, 62] can ensure correct dimensions. In the rest of the paper,

we assume that the programs are well-formed.
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2.2.2 Language Semantics

Σ fiV Ñ
Ť

nPNRn

JeK : Σ Ñ
Ť

nPN Rn

Jπpx, nqKpσq “ σpxqn

Jw ¨ x` βKpσq “w ¨ σpxq ` β

JbK : Σ Ñ ttt,ffu

Jπpx,mq ě πpy, nqKpσq “ if pJπpx,mqKpσq ě Jπpy, nqKpσqq then tt else ff

Jπpx,mq ě 0Kpσq “ if pJπpx,mq ě 0Kpσqq then tt else ff

Jπpx,mq ă 0Kpσq “ if pJπpx,mqKpσq ă 0q then ttelse ff

Jb1 ^ b2Kpσq “ Jb1Kpσq ^ Jb2Kpσq

J bKpσq “ if pJbK “ ttq then ff else tt

JsK : Σ Ñ P pΣq

JskipKpσq “ δσ

Jy Ð w ¨ x` βKpσq “ δσry ÞÑJw¨x`βKpσqs

Jy ø Np0, 1qKpσq “Ea„Np0,1qrλν.δσry ÞÑνss

Js1; s2Kpσq “Eσ̃„Js1KpσqrJs2Ks

Jif b then s1 else s2Kpσq “ if pJbKpσqq then Js1Kpσq else Js2Kpσq

xJsK : P pΣq Ñ P pΣq

xJsKpµq “Eσ„µrJsKs

}Js´K : Σ Ñ Σ

­JskipKpσq “ σ

­Jy Ð w ¨ x` βKpσq “ σry ÞÑ Jw ¨ x` βKpσqs

­Js1; s2Kpσq “}Js2Kp}Js1Kpσqq

­Jif b then s1 else s2Kpσq “ if pJbKpσqq then }Js1Kpσq else }Js2Kpσq

Figure 2.2: pcat denotational semantics
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We define the denotational semantics of pcat in Figure 3.2, closely following those pre-

sented in [41]. We present definitions required to understand these semantics.

Definition 1. A σ´algebra on a set X is a set Σ of subsets of X such that it contains X , is

closed under complements and countable unions. A set with a σ´algebra is a measurable

space and the subsets in Σ are measurable.

A measure on a measurable space pX,Σq is a function µ : Σ Ñ r0,8s such that

µpHq “ 0 and µp
Ť

iPNBiq “
ř

iPN µpBiq such that Bi is a countable family of disjoint

measurable sets. A probability measure or probability distribution is a measure µ with

µpXq “ 1.

Given setX , we use P pXq to denote the set of all probability measures overX . A Dirac

distribution centered on x, written δx, maps x to 1 and all other elements of the underlying

set to 0. Note that when giving semantics to probabilistic programming languages, it is

typical to consider sub-distributions (measures such that µpXq ď 1 for a measurable space

pX,Σq), as all programs in pcat terminate, we do not describe the semantics in terms of sub-

distributions. Next, following [41], we give a monadic structure to probability distributions.

Definition 2. Let µ P P pAq and f : A Ñ P pBq. Then, Ea„µrf s P P pBq is defined as,

Ea„µrf s fi λν.
ş

A
fpaqpνq dµpaq

Note that in the rest of the paper, we write expressions of the form
ş

A
fpaq dµpaq as

ş

aPA
µpaq ¨ fpaq for notational convenience. The metalanguage used in Figure 3.2 and

the rest of the paper is standard first-order logic with ZFC set theory, but we borrow no-

tation from a variety of sources including languages like C and ML as well as standard

set-theoretic notation. As needed, we provide notational clarification.

We define the semantics of pcat with respect to the set Σ of states. A state σ is a map

from variables V to vectors of reals of any finite dimension. The choice of real vectors

as the basic type of values is motivated by the goal of pcat to model NN computations.

16



The set P pΣq is the set of probability measures over Σ. A pcat statement transforms a

distribution over Σ to a new distribution over the same set. JeK and JbK denote the semantics

of expressions and conditional checks, respectively. Expressions map states to vectors of

reals while conditional checks map states to boolean values.

The semantics of statements are defined in two steps. We first define the standard

semantics JsK where statements map incoming states to probability distributions. Next,

the lifted semantics, xJsK, transform a probability distribution over the states, say µ, to a

new probability distribution. The lifted semantics (xJsK) are obtained from the standard

semantics (JsK) using the monadic construction of Definition 2. Finally, we also defined a

lowered semantics ( }Js´K) for the cat sublanguage of pcat. As per these lowered semantics,

statements are maps from states to states. Moreover, the lowered semantics of cat programs

is tightly related to their standard semantics, as described by the following lemma.

Lemma 3. (Equivalence of semantics)

@p P s´, σ P Σ. JpKpσq “ δ
|JpKpσq

Proof. We prove this by induction on the structure of statements in s´.

We first consider the base cases:

(i) skip

By definition, for any state σ,

JskipKpσq “ δσ “ δ
­JskipKpσq

(ii) y Ð w ¨ x` β

Again, by definition, for any state σ,

Jy Ð w ¨ x` βKpσq “ δσry ÞÑJw¨x`βKpσqs “ δ
­JyÐw¨x`βKpσq

Next, we consider the inductive cases:
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(iii) s´1 ; s´2

Js´1 ; s´2 Kpσq “ Eσ̃„Js´1 KpσqrJs
´
2 Ks

“ λν.
ş

σ̃PΣ
Js´1 Kpσqpσ̃q ¨ Js´2 Kpσ̃qpνq

“ λν.
ş

σ̃PΣ
δ
~Js´1 Kpσq

pσ̃q ¨ δ
~Js´2 Kpσ̃q

pνq (using inductive hypothesis)

“ λν.δ
~Js´2 Kp~Js´1 Kpσqq

pνq

“ δ
~Js´2 Kp~Js´1 Kpσqq

“ δ
­Js´1 ;s´2 Kpσq

(iv) if b then s´1 else s´2

Jif b then s´1 else s´2 Kpσq “ if pJbKpσqq then Js´1 Kpσq else Js´2 Kpσq

“ if pJbKpσqq then δ
~Js´1 Kpσq

else δ
~Js´2 Kpσq

(using inductive hypothesis)

“ δ
if pJbKpσqq then ~Js´1 Kpσq else ~Js´2 Kpσq

“ δ
­Jif pJbKpσqq then s´1 else s´2 Kpσq

�

The lemma states that one can obtain the standard probabilistic semantics for a program

p in cat, given an initial state σ, by a Dirac delta distribution centered at |JpKpσq. Using this

lemma, one can prove the following useful corollary.

Corollary 4. @p P s´, σ P Σ, µ P P pΣq. xJpKpµqp|JpKpσqq ě µpσq

Proof. By definition,

xJpKpµq “ Eσ„µrJpKs

“ λν.
ş

σPΣ
µpσq ¨ JpKpσqpνq

“ λν.
ş

σPΣ
µpσq ¨ δ

|JpKpσqpνq (using previous lemma)
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Now suppose, ν “ |JpKpσ̃q. Then, continuing from above,

xJpKpµqp|JpKpσ̃qq “
ş

σPΣ
µpσq ¨ δ

|JpKpσqp
|JpKpσ̃qq

ě µpσ̃q

�

2.2.3 Translating Neural Networks Into pcat

NNs are often described as a sequential composition of “layers”, with each layer describing

the computation to be performed on an incoming vector. Many commonly used layers can

be expressed in the pcat language. For instance, [34] describes the translation of maxpool,

convolution, ReLU, and fully connected layers into the cat language. Here, we describe

the translation of two other common layers, namely, the batchnorm layer [63] and the

transposed convolution layer (also referred to as the deconvolution layer) [64].

Batchnorm layer. A batchnorm layer typically typically expects an input x P RCˆHˆW

which we flatten, using a row-major form in to x1 P RC¨H¨W where, historically, C denotes

the number of channels in the input, H denotes the height, and W denotes the width. For

instance, given an RGB image of dimensions 28ˆ 28 pixels,H “ 28,W “ 28, andC “ 3.

A batchnorm layer is associated with vectors m and v such that dimpmq “ dimpvq “

C where dimp¨q returns the dimension of a vector. m and v represent the running-mean

and running-variance of the values in each channel observed during the training time of

the NN. A batchnorm layer is also associated with a scaling vector s1 and a shift vector s2,

both also of dimension c. For a particular element xi,j,k in the input, the corresponding

output element is s1
i ¨ p

xi,j,k´mi?
vi`ε

q ` s2
i where ε is a constant that is added for numerical

stability (commonly set to 1e´5). Note that the batchnorm operation produces an output

of the same dimensions as the input. We can represent the batchnorm operation by the

statement, y Ð w ¨x1`β, where x1 is the flattened input, w is a weight matrix of dimension

C ¨H ¨W ˆ C ¨H ¨W and β is a bias vector of dimension C ¨H ¨W , such that,
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w “ I ¨ r
s1

ti{H¨W u?
vti{H¨W u`ε

| i P t1, ..., C ¨H ¨W us

β “ r´
s1

ti{H¨W u
¨mti{H¨W u

?
vti{H¨W u`ε

` s2
ti{H¨W u

| i P t1, ..., C ¨H ¨W us

where I is the identity matrix with dimension pC ¨H ¨W,C ¨H ¨W q, t¨u is the floor operation

that rounds down to an integer, and r | s is the list builder/comprehension notation.

Transposed convolution layer. A convolution layer applies a kernel or a filter on the

input vector and typically, compresses this vector so that the output vector is of a smaller

dimension. A deconvolution or transposed convolution layer does the opposite - it applies

the kernel in a manner that produces a larger output vector. A transposed convolution layer

expects an input x P RCinˆHinˆWin and applies a kernel k P RCoutˆCinˆKhˆKw using a stride

S. For simplicity of presentation, we assume that Kh “ Kw “ K and Win “ Hin. In pcat,

the transposed convolution layer can be expressed by the statement, y Ð w ¨ x1, where x1

is the flattened version of input x, w is a weight matrix that we derive from the parameters

associated with the transposed convolution layer, and the bias vector, β, is a zero vector in

this case. To compute the dimensions of the weight matrix, we first calculate the height

(Hout) and width (Wout) of each channel in the output using formulae, Hout “ Hin ¨S`K,

and Wout “ Win ¨ S ` K. Since we assume Win “ Hin, we have Wout “ Hout here.

Then, the dimension of w is Cout ¨Hout ¨Wout ˆ Cin ¨Hin ¨Win, and the definition of w is

as follows,

w “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

let inx “ ri{Couts in

let iny “ rj{Cins in

let inh “ 1` tppi mod Coutq ´ ptppj mod Cinq ´ 1q{Hinu¨

Hout ¨ S ` 1` pppj mod Cinq ´ 1q mod Hinq ¨ Sqq{Houtu in

let inw “ 1` ppi mod Coutq ´ ptppj mod Cinq ´ 1q{Hinu¨

Hout ¨ S ` 1` pppj mod Cinq ´ 1q mod Hinq ¨ Sqq mod Hout in

if h,w P t1...Ku then kx,y,h,w else 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i P I,

j P J

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where I “ t1, ..., Cout ¨Hout ¨Woutu and J “ t1, ..., Cin ¨Hin ¨Winu
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2.3 Lipschitz Analysis

A function f is locally Lipschitz in a bounded set S if, @x, x1 P S.‖fx´ fx1‖ ď k ¨

‖x´ x1‖, where ‖¨‖ can be any lp norm. Quickly computing tight upper bounds on the

local Lipschitzness constant (k) is an important requirement of our proof-search algorithm

for probabilistic Lipschitzness of pcat programs. However, as mentioned previously, local

Lipschitzness is a relational property (hyperproperty) and computing upper bounds on k

can get expensive.

The problem can be made tractable by exploiting a known relationship between Lip-

schitz constants and directional directives of a function. Let f be a function of type

Rm Ñ Rn, and let S Ă Rm be a convex bounded set. From [28] we know that the lo-

cal Lipschitz constant of f in the region S can be upper bounded by the maximum value of

the norm of the directional directives of f in S, where the directional directive, informally,

is the derivative of f in the direction of some vector v. Since f is a vector-valued function

(i.e., mapping vectors to vectors), the derivative (including directional derivative) of f ap-

pears as a matrix of the form, J “

»

—

—

—

—

–

By1
Bx1

... By1
Bxm

... ...

Byn
Bx1

... Byn
Bxm

fi

ffi

ffi

ffi

ffi

fl

, referred to as the Jacobian matrix of

f (with x and y referring to the input and output of f ). Moreover, to compute the norm of

J, i.e. ‖J‖, we use the operator norm, ‖J‖ “ inftc ě 0 | ‖Jv‖ ď c‖v‖ for all v P Rmu.

Intuitively, thinking of a matrixM as a linear operator mapping between two vector spaces,

the operator norm of M measures the maximum amount by which a vector gets “stretched”

when mapped using M .

For piecewise linear functions with a finite number of “pieces”(i.e., the type of functions

that can be computed by cat), using lemma 3.3 from [28], we can compute an upper bound

on the Lipschitz constant by computing the operator norm of the Jacobian of each linear

piece, and picking the maximum value. Since each piece of the function is linear, comput-

ing the Jacobian for a piece is straightforward. But the number of pieces in piecewise linear
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functions represented by NNs (or cat programs) can be exponential in the number of layers

in the NN, even in a bounded region S. Instead of computing the Jacobian for each piece,

we instead define a static analysis inspired by the Fast-Lip algorithm presented in [57] that

computes lower and upper bounds of each element (i.e., each partial derivative) appearing

in the Jacobian. Since our analysis is sound, such an interval includes all the possible val-

ues of the partial derivative in a given convex region S. We describe this Jacobian analysis

in the rest of the section.
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2.3.1 Instrumented cat Semantics

ΣD fiΣˆ pV Ñ pp
Ť

m,nPNpRqmˆnq ˆ V q

JeK
δ

: ΣD Ñ
Ť

nPN Rn ˆ pV Ñ pp
Ť

m,nPNpRqmˆnq

Jw ¨ x` βK
δ
pσDq “ let l “ dimpwq1 in

let m “ dimpwq2 in

let n “ dimpσD2 pxq1q2 in

let a “ Jw ¨ x` βKpσD1 q in

let b “
„

m
ř

i“1

wj,i ¨ pppσD2 pxqq1qi,kq

ˇ

ˇ

ˇ

ˇ

j P t1, .., lu, k P t1, ..., nu



in

pa, bq

JbK
δ

: ΣD Ñ ttt,ffu

JbK
δ
pσDq “ JbKpσD1 q

Js´K
δ

: ΣD Ñ ΣD

JskipK
δ
pσDq “ σD

Jy Ð w ¨ x` βK
δ
pσDq “ pσD1 ry ÞÑ pJw ¨ x` βK

δ
pσDqq1s, σD2 ry ÞÑ ppJw ¨ x` βK

δ
pσDqq2, σD2 pxq2qsq

Js1; s2K
δ
pσDq “ Js2K

δ
pJs1K

δ
pσDqq

Jif b then s1 else s2K
δ
pσDq “ if pJbK

δ
pσDq “ ttq then Js1K

δ
pσDq else Js2K

δ
pσDq

Figure 2.3: cat denotational semantics instrumented with Jacobians

We define an instrumented denotational semantics for cat (the non-probabilistic sublan-

guage of pcat) in Figure 2.3 that computes Jacobians for a particular program path, in

addition to the standard meaning of the program (as defined in Figure 3.2). The semantics

are notated by J¨K
δ

(notice the subscript D). Program states, ΣD , are pairs of maps such

that the first element of each pair belongs to the previously defined set Σ of states, while

the second element of each pair is a map that records the Jacobians. The second map is
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of type V Ñ pp
Ť

m,nPNpRqmˆnq ˆ V q, mapping each variable in V to a pair of values,

namely, a Jacobian which is matrix of reals, and a variable in V . A cat program can map

multiple input vectors to multiple output vectors, so one can compute a Jacobian of the cat

program for each output vector with respect to each input vector. This explains the type of

the second map in ΣD - for each variable, the map records the corresponding Jacobian of

the cat program computed with respect to the input variable that forms the second element

of the pair.

Before explaining the semantics in Figure 2.3, we clarify the notation used in the figure.

We use subscript indices, starting from 1, to refer to elements in a pair or a tuple. For

instance, we can read ppσD2 pxqq1qi,k in the definition of Jw ¨ x` βK
δ

as follows - σD2 refers

to the second map of the σD pair, σD2 pxq1 extracts the first element (i.e., the Jacobian matrix)

of the pair mapped to variable x, and then finally, we extract the element at location pi, kq

in the Jacobian matrix. Also, we use let expressions in a manner similar to ML, and list

comprehensions similar to Haskell (though we extend the notation to handle matrices).

dim is polymorphic and returns the dimensions of vectors and matrices.

The only interesting semantic definitions are the ones associated with the expression

w ¨ x ` β and the statement y Ð w ¨ x ` β. The value associated with any variable in a

cat program is always of the form, wnpwn´1p...pw2pw1 ¨ x` β1q ` β2q...q ` βn´1q ` βn “

wn ¨ wn´1 ¨ ... ¨ w2 ¨ w1 ¨ x ` wn ¨ wn´1 ¨ ... ¨ w2 ¨ β1 ` wn ¨ wn´1 ¨ ... ¨ w3 ¨ β2 ` ... ` βn.

The derivative (the Jacobian) of this term with respect to x is wn ¨wn´1 ¨ ... ¨w2 ¨w1. Thus,

calculating the Jacobian of a cat program for a particular output variable with respect to

a particular input variable only requires multiplying the relevant weight matrices together

and the bias terms can be ignored. This is exactly how we define the semantics of w ¨x`β.

2.3.2 Jacobian Analysis

The abstract version of the instrumented denotational semantics of cat is defined in Fig-

ure 2.4. The semantics are notated by J¨K
L

(notice the subscript L). The analysis computes
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ΣB fiV Ñ
Ť

nPNpRˆ Rqn
ΣL fiΣB ˆ pV Ñ pp

Ť

m,nPNpRˆ Rqmˆnq ˆ pV Y tK,Juqq
JeK

L
: ΣL Ñ pp

Ť

nPNpRˆ Rqnq ˆ p
Ť

m,nPNpRˆ Rqmˆnqq
Jw ¨ x` βK

L
pσLq “ let l “ dimpwq1 in

let m “ dimpwq2 in
let n “ dimpσL2pxq1q2 in
let a “ Jw ¨ x` βK

B
pσL1q in

let b “
»

—

—

—

—

—

—

—

—

—

—

–

pp
m
ř

i“1^wj,iě0

wj,i ¨ pppσL2pxqq1qi,kq1`

m
ř

i“1^wj,iă0

wj,i ¨ pppσL2pxqq1qi,kq2q

p
m
ř

i“1^wj,iě0

wj,i ¨ pppσL2pxqq1qi,kq2`

m
ř

i“1^wj,iă0

wj,i ¨ pppσL2pxqq1qi,kq1qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j P t1, .., lu, k P t1, ..., nu

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

in

pa, bq

Ů

L : ΣL ˆ ΣL Ñ ΣL

σL
Ů

L σ̃
L “ ppσL1

Ů

B σ
L
2q,

pλv. let pm,nq “ dimpσL2pvqq in
if pσL2pvq2 “ σ̃L2pvq2q then
prpmintpσL2pvq1qi,j, pσ̃

L
2pvq1qi,ju,maxtpσL2pvq1qi,j, pσ̃

L
2pvq1qi,juq |

i P t1, ...,mu, j P t1, ..., nus, σL2pvq2q
else prp´8,8q | i P t1, ...,mu, j P t1, ..., nus,Jq

JbK
L

: ΣL Ñ ttt,ff ,Ju
JbK

L
pσLq “ JbK

B
pσL1q

Js´K
L

: ΣL Ñ ΣL

JskipK
L
pσLq “ σL

Jassert bK
L
pσLq “ ppJassert bK

B
pσL1qq, σ

L
2q

Jy Ð w ¨ x` βK
L
pσLq “ pσL1 ry ÞÑ pJw ¨ x` βK

L
pσLqq1s, σL2 ry ÞÑ ppJw ¨ x` βK

L
pσLqq2, σL2pxq2qsq

Js1; s2K
L
pσLq “ Js2K

L
pJs1K

L
pσLqq

Jif b then s1 else s2K
L
pσLq “ if pJbK

L
pσLq “ ttq then Js1K

L
pσLq

else if pJbK
L
pσLq “ ffq then Js2K

L
pσLq

else Js1K
L
pJassert bK

L
pσLqq

Ů

L Js2K
L
pJassert  bK

L
pσLqq

Figure 2.4: cat abstract semantics for Jacobian analysis
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box-shaped overapproximations of all the possible outcomes of a cat program when exe-

cuted on inputs from a box-shaped bounded set. This is similar to standard interval analysis

except that cat operates on data of base type of real vectors. The analysis maintains bounds

on real vectors by computing intervals for every element of a vector. In addition, this analy-

sis also computes an overapproximation of all the possible Jacobian matrices. Note that the

Jacobian matrices computed by the instrumented semantics of cat only depend on the path

through the program, i.e. the entries in the computed Jacobian are control-dependent on the

program inputs but not data-dependent. Consequently, for precision, it is essential that our

analysis exhibit some notion of path-sensitivity. We achieve this by evaluating the branch

conditions using the computed intervals and abstractly interpreting both the branches of an

if then else statement only if the branch direction cannot be resolved.

An abstract program state, σL P ΣL , is a pair of maps. The first map in an abstract

state maps variables in V to abstract vectors representing a box-shaped set of vectors. Each

element of an abstract vector is pair of reals representing a lower bound and an upper bound

on the possible values (first element of the pair is the lower bound and second element is the

upper bound). The second map in an abstract state maps variables in V to pairs of abstract

Jacobian matrices and elements in V extended with a top and a bottom element. Like

abstract vectors, each element of an abstract Jacobian matrix is a pair of reals representing

lower and upper bounds of the corresponding partial derivative.

The definition of the abstract semantics is straightforward but we describe the abstract

semantics for affine expressions and for conditional statements. First, we discuss affine

expressions. As a quick reminder of the notation, a term of the form pppσL2pxqq1qi,kq1 rep-

resents the lower bound of the element at location pi, kq in the abstract Jacobian associated

with variable x. Now, recall that the instrumented semantics computes Jacobians simply

by multiplying the weight matrices. In the abstract semantics, we multiply abstract Jaco-

bians such that the bounds on each abstract element in the output abstract Jacobian reflect

the minimum and maximum possible values that the element could take given the input
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abstract Jacobians. The abstract vectors for the first map are computed using the abstract

box semantics (notated by J¨K
B

), defined in subsection 2.3.3.For conditional statements, as

mentioned previously, we first evaluate the branch condition using the abstract state. If

this evaluation returns J, meaning that the analysis was unable to discern the branch to be

taken, we abstractly interpret both the branches and then join the computed abstract states.

Note that before abstractly interpreting both branches, we update the abstract state to reflect

that the branch condition should hold before executing s1 and should not hold before exe-

cuting s2. However, the assert b statement is not a part of the cat language, and only used

for defining the abstract semantics. The join operation (
Ť

L) is as expected, except for one

detail that we want to highlight - in case the Jacobians along different branches are com-

puted with respect to different input variables we make the most conservative choice when

joining the abstract Jacobians, bounding each element with p´8,8q as well as recording

J for the input variable.

Next, we define the concretization function (γL) for the abstract program states that

maps elements in ΣL to sets of elements in ΣD and then state the soundness theorem for our

analysis.

Definition 5. (Concretization function for Jacobian analysis)

γLpσLq “ tσD | p
Ź

vPV .σ
L
1pvq1 ď σD1 pvq ď σL1pvq2q ^ p

Ź

vPV .pσ
L
2pvq1q1 ď σD2 pvq1 ď

pσL2pvq1q2q ^ σ
D
2 pvq2 P γV pσ

L
2pvq2qu where γV pvq “ v and γV pJq “ V

Theorem 6. (Soundness of Jacobian analysis)

@p P s´, σL P ΣL . tJpK
δ
pσDq | σD P γLpσLqu Ď γLpJpK

L
pσLqq

We first prove a lemma needed for the proof.

Lemma 7. (Soundness of abstract conditional checks)

@c P b, σL P ΣL . tJcK
δ
pσDq | σD P γLpσLqu Ď γCpJcK

L
pσLqq where

γCpttq “ tttu, γCpffq “ tffu, γCpJq “ ttt,ffu
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Proof. We prove this by induction on the structure of the boolean expressions in b.

We first consider the base cases:

(i) πpx,mq ě πpy, nq

By definition, Jπpx,mq ě πpy, nqK
L
pσLq “ Jπpx,mq ě πpy, nqK

B
pσL1q

Consider the case where, Jπpx,mq ě πpy, nqK
B
pσL1q “ tt, then, by the semantics

described in Figure 2.5, we know that,

σL1pxqmq1 ě pσ
L
1pyqnq2q (2.1)

By the definition of γL (Definition 5), we also know that,

@σD P γL. pσL1pxq1 ď σD1 pxq ď σL1pxq2q ^ pσ
L
1pyq1 ď σD1 pyq ď σL1pyq2q (2.2)

where the comparisons are performed pointwise for every element in the vector.

From Equation 2.1 and Equation 2.2, we can conclude that,

@σD P γLpσLq. σD1 pyqn ď pσ
L
1pyqnq2 ď pσ

L
1pxqmq1 ď σD1 pxqm (2.3)

Now,

Jπpx,mq ě πpy, nqK
δ
pσDq “ Jπpx,mq ě πpy, nqKpσD1 q “

if σD1 pxqm ě σD1 pyqn then tt else ff

(2.4)

From Equation 2.3 and Equation 2.4, we can conclude that,

@σD P γLpσLq. Jπpx,mq ě πpy, nqK
δ
pσDq “ tt, or in other words,

tJπpx,mq ě πpy, nqK
δ
pσDq | σD P γLpσLqu Ď γCpJπpx,mq ě πpy, nqK

L
pσLqq when

the analysis returns tt.
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We can similarly prove the case when the analysis returns ff . In case, the analysis

returns J, the required subset containment is trivially true since γCpJq “ ttt,ffu.

(ii) πpx,mq ě 0

The proof is very similar to the first case, and we skip the details.

(iii) πpx,mq ă 0

The proof is very similar to the first case, and we skip the details.

We next consider the inductive cases:

(iv) b1 ^ b2

By the inductive hypothesis, we know that,

tJb1K
δ
pσDq | σD P γLpσLqu Ď γCpJb1K

L
pσLqq

tJb2K
δ
pσDq | σD P γLpσLqu Ď γCpJb2K

L
pσLqq

If Jb1K
L
pσLq “ J_Jb2K

L
pσLq “ J, then, as per the semantics in Figure 2.5, Jb1 ^ b2K

L
pσLq “

J, and the desired property trivially holds.

However, if Jb1K
L
pσLq ‰ J ^ Jb2K

L
pσLq ‰ J, then using the inductive hypotheses,

we know that for all σD P γLpσLq, Jb1K
δ
pσDq evaluates to the same boolean value

as Jb1K
L
pσLq. We can make the same deduction for b2. So, evaluating Jb1 ^ b2K

δ

also yields the same boolean value for all σD P γLpσLq, and this value is equal to

Jb1 ^ b2K
L
pσLq.

(v)  b

By the inductive hypothesis, we know that,

tJbK
δ
pσDq | σD P γLpσLqu Ď γCpJbK

L
pσLqq

If JbK
L
pσLq “ tt, then @σD P γLpσLq. JbK

δ
pσDq “ tt.

So, @σD P γLpσLq. J bK
δ
pσDq “ ff , and we can conclude that,

tJ bK
δ
pσDq | σD P γLpσLqu Ď γCpJ bK

L
pσLqq “ tffu.
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We can similarly argue about the case when JbK
L
pσLq “ ff , and as stated previously,

the case with, JbK
L
pσLq “ J trivially holds.

�

Theorem 6. (Soundness of Jacobian analysis)

@p P s´, σL P ΣL . tJpK
δ
pσDq | σD P γLpσLqu Ď γLpJpK

L
pσLqq

Proof. We prove this by induction on the structure of statements in s´.

We first consider the base cases:

(i) skip

By definition, for any state σL ,

JskipK
L
pσLq “ σL (2.5)

tJskipK
δ
pσDq | σD P γLpσLqu “ tσD | σD P γLpσLqu “ γLpσLq (2.6)

From Equations Equation 2.5 and Equation 2.6,

tJskipK
δ
pσDq | σD P γLpσLqu Ď γLpJskipK

L
pσLqq (2.7)

(ii) y Ð w ¨ x` β

We first observe that when multiplying an interval pl, uq with a constant c, if c ě 0,

then the result is simply given by the interval pc ¨ l, c ¨ uq. But if c ă 0, then the

result is in the interval pc ¨ u, c ¨ lq, i.e., the use of the lower bounds and upper bounds

gets flipped. Similarly, when computing the dot product of an abstract vector v with a
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constant vector w, for each multiplication operation vi ¨wi, we use the same reasoning

as above. Then, the lower bound and upper bound of the dot product result are given

by,

p
n
ř

i“1^wiě0

wi ¨ pviq1 `
n
ř

i“1^wiă0

wi ¨ pviq2,
n
ř

i“1^wiě0

wi ¨ pviq2 `
n
ř

i“1^wiă0

wi ¨ pviq1q

where pviq1 represents the lower bound of the ith element of v and pviq2 represents

the lower bound of the ith element of v, and we assume dimpwq “ dimpvq “ n.

We do not provide the rest of the formal proof for this case since it just involves using

the definitions.

Next, we consider the inductive cases:

(iii) s´1 ; s´2

From the inductive hypothesis, we know,

L1 “ tJs´1 K
δ
pσDq | σD P γLpσLqu Ď γLpJs´1 K

L
pσLqq (2.8)

L2 “ tJs´2 K
δ
pσDq | σD P γLpJs´1 K

L
pσLqqu Ď γLpJs´2 K

L
pJs´1 K

L
pσLqqq (2.9)

From Equations Equation 2.8 and Equation 2.9, we conclude,

tJs´2 K
δ
pσDq | σD P L1u Ď L2 Ď γLpJs´2 K

L
pJs´1 K

L
pσLqqq (2.10)

Rewriting, we get,

tJs´2 K
δ
pJs´1 K

δ
pσDqq | σD P γLpσLqu Ď γLpJs´2 K

L
pJs´1 K

L
pσLqqq (2.11)

and this can be simplified further as,

tJs´1 ; s´2 K
δ
pσDq | σD P γLpσLqu Ď γLpJs´1 ; s´2 K

L
pσLqq (2.12)
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(iv) if b then s´1 else s´2

From the inductive hypothesis, we know,

tJs´1 K
δ
pσDq | σD P γLpσLqu Ď γLpJs´1 K

L
pσLqq (2.13)

tJs´2 K
δ
pσDq | σD P γLpσLqu Ď γLpJs´2 K

L
pσLqq (2.14)

The conditional check can result in three different outcomes while performing the

analysis - tt, ff , or J. From Lemma 7, we know that the abstract boolean checks are

sound. We analyze each of the three cases separately.

(a) tt

Since we only consider the true case, we can write,

Jif b then s´1 else s´2 K
L
pσLq “ Js´1 K

L
pσLq (2.15)

Also, from Lemma 7,

tJif b then s´1 else s´2 K
δ
pσDq | σD P γLpσLqu “ tJs´1 K

δ
pσDq | σD P γLpσLqu (2.16)

From Equation 2.13, Equation 2.15, and Equation 2.16,

tJif b then s´1 else s´2 K
δ
pσDq | σD P γLpσLqu Ď γLpJif b then s´1 else s´2 K

L
pσLqq (2.17)

(b) ff

Similar to the tt case, for the ff case, we can show,

tJif b then s´1 else s´2 K
δ
pσDq | σD P γLpσLqu Ď γLpJif b then s´1 else s´2 K

L
pσLqq (2.18)

32



(c) J

We first prove the following about the join (
Ů

L) operation,

γLpσLq Y γLpσ̃Lq Ď γLpσL \L σ̃Lq (2.19)

By definition of γL,

γLpσLq “ tσD | p
ľ

vPV

.σL1pvq1 ď σD1 pvq ď σL1pvq2q^

p
ľ

vPV

.pσL2pvq1q1 ď σD2 pvq1 ď pσ
L
2pvq1q2q^

σD2 pvq2 P γV pσ
L
2pvq2qu

(2.20)

γLpσ̃Lq can be defined similarly.

The join operation combines corresponding intervals in the abstract states by tak-

ing the smaller of the two lower bounds and larger of the two upper bounds. We

do not prove the following formally, but from the definition of γL and
Ů

L, one

can see that the intended property holds.

Next, we consider the assert statements that appear in the abstract denotational

semantics for the J case.

Let us call, σL1 “ Jassert bK
L
pσLq and σL2 “ Jassert  bK

L
pσLq.

From inductive hypothesis (Equation 2.13 and Equation 2.14) we know,

L1 “ tJs´1 K
δ
pσDq | σD P γLpσL1qu Ď γLpJs´1 K

L
pσL1qq (2.21)

L2 “ tJs´2 K
δ
pσDq | σD P γLpσL2qu Ď γLpJs´2 K

L
pσL2qq (2.22)
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From Equation 2.19,Equation 2.21, and Equation 2.22,

L1YL2 Ď γLpJs´1 K
L
pσL1qqYγLpJs

´
2 K

L
pσL2qq Ď γLpJs´1 K

L
pσL1q\Js´2 K

L
pσL2qq (2.23)

Then, if we can show that,

tσD | σD P γLpσLq ^ JbKpσDq “ ttu Ď γLpσL1q (2.24)

tσD | σD P γLpσLq ^ JbKpσDq “ ffu Ď γLpσL2q (2.25)

then, from Equation 2.21, Equation 2.22,Equation 2.23,Equation 2.24,Equation 2.25,

and the semantics of if b then s´1 else s´2 , we can say,

tJif b then s´1 else s´2 K
δ
pσDq | σD P γLpσLqu Ď γLpJif b then s´1 else s´2 K

L
pσLqq (2.26)

Now, we need to show that Equation 2.24 and Equation 2.25 are true. The assert

statements either behave as identity or produce a modified abstract state (see Fig-

ure 2.5). When assert behaves as identity, Equation 2.24 and Equation 2.25 are

obviously true. We skip the proof of the case when assert produces a modified

abstract state.

�

We next define the notion of operator norm of an abstract Jacobian. This definition is

useful for stating Corollary 9. Given an abstract Jacobian, we construct a matrix J such

every element of J is the maximum of the absolute values of the corresponding lower and

upper bound in the abstract Jacobian.

Definition 8. (Operator norm of abstract Jacobian)
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If J “ σL2pvq1 for some σL and v, and pm,nq “ dimpJq then ‖J‖
L

is defined as, ‖J‖
L
“

‖rmaxt|pJk,lq1|, |pJk,lq2|u | k P t1, ...,mu, l P t1, ..., nus‖

Corollary 9 shows that the operator norm of the abstract Jacobian computed by the

analysis for some variable v is an upper bound of the operator norms of the all the Jacobians

possible for v when a program p is executed on the set of inputs represented by γLpσLq, for

any program p and any abstract state σL .

Corollary 9. (Upper bound of Jacobian operator norm)

@p P s´, σL P ΣL , v P V.

maxt
∥∥ppJpK

δ
pσDqq2qpvq1

∥∥ | σD P γLpσLqu ď ‖ppJpK
L
pσLqq2pvqq1‖

L

Proof. From Theorem 6, we know that for any p P s´, σL P ΣL ,

tJpK
δ
pσDq | σD P γLpσLqu Ď γLpJpK

L
pσLqq (2.27)

Let us define, DV “ tppJpK
δ
pσDqq2pvqq1 | σD P γLpσLqu. This is the set of all Jacobian

matrices associated with the variable v after executing p on the set of input states, γLpσLq.

Note that the set DV does not distinguish the Jacobians on the basis of the input that we are

differentiating with respect to.

Let DL
V “ tpσ̃

D
2 pvqq1 | σ̃

D P γLpJpK
L
pσLqqu, and J “ ppJpK

L
pσLqq2pvqq1.

Using Definition 5 of γL, we can show,

@d P DL
V . J1 ď d ď J2 (2.28)

whereď is defined pointwise on the matrices, and J1(J2) refers to the matrix of lower(upper)

bounds.

Then, from Equation 2.27 and definitions of DV and DL
V , we can deduce that,

DV Ď DL
V (2.29)
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From Equation 2.28 and Equation 2.29,

@d P DV . J1 ď d ď J2 (2.30)

Let J 1 “ rmaxt|pJk,lq1|, |pJk,lq2|u | k P t1, ...,mu, l P t1, ..., nus. Then,

@d P DV . |d| ď J 1 (2.31)

where |¨| applies pointwise on matrices d.

Using definition of operator norm, one can show that,

M1 ďM2 ùñ ‖M1‖ ď ‖M2‖ (2.32)

where M1 and M2 are matrices with ď applied pointwise.

Finally, from Equation 2.31 and Equation 2.32, we conclude,

@d P DV . ‖d‖ ď ‖J 1‖ “ ‖J‖ (2.33)

Unrolling the definitions,

maxt
∥∥ppJpK

δ
pσDqq2qpvq1

∥∥ | σD P γpσLqu ď ‖ppJpK
L
pσLqq2pvqq1‖

L
(2.34)

�
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2.3.3 Box Analysis

ΣB fiV Ñ
Ť

nPNpRˆ Rqn

JeK
B

: ΣB Ñ
Ť

nPNpRˆ Rqn

Jπpx, nqK
B
pσBq “ σBpxqn

Jw ¨ x` βK
B
pσBq “ let m “ dimpwq1 in

let n “ dimpσBpxqq in

rpp
n
ř

j“1^wi,jě0

wi,j ¨ pσBpxqiq1`

n
ř

j“1^wi,jă0

wi,j ¨ pσBpxqiq2 ` βiq,

p
n
ř

j“1^wi,jě0

wi,j ¨ pσBpxqiq2`

n
ř

j“1^wi,jă0

wi,j ¨ pσBpxqiq1 ` βiqq | i P t1, ...,mus

JbK
B

: ΣB Ñ ttt,ff ,Ju

Jπpx,mq ě πpy, nqK
B
pσBq “ if ppσBpxqmq1 ě pσBpyqnq2q then tt

else if ppσBpxqmq2 ă pσBpyqnq1q then ff

else J

Jπpx,mq ě 0K
B
pσBq “ if ppσBpxqmq1 ě 0q then tt

else if ppσBpxqmq2 ă 0q then ff

else J

Jπpx,mq ă 0K
B
pσBq “ if ppσBpxqmq2 ă 0q then tt

else if ppσBpxqmq1 ě 0q then ff

else J

Jb1 ^ b2K
B
pσBq “ if pJb1K

B
pσBq “ J _ Jb2K

B
pσBq “ Jq then J

else Jb1K
B
pσBq ^ Jb2K

B
pσBq

J bK
B
pσBq “ if pJbK

B
pσBq “ ttq then ff

else if pJbK
B
pσBq “ ffq then tt

else J

Ů

B : ΣB ˆ ΣB Ñ ΣB

σB
Ů

B σ̃
B “ λv. rpmintpσBpvqiq1, pσ̃Bpvqiq1u,maxtpσBpvqiq2, pσ̃Bpvqiq2uq |

i P t1, ...,dimpσBpvqqus

Js´K
B

: ΣB Ñ ΣB

JskipK
B
pσBq “ σB

Jassert πpx,mq ě 0K
B
pσBq “ σB rxm ÞÑ p0,maxtpσBpxqmq2, 0uqs

Jassert πpx,mq ă 0K
B
pσBq “ σB rxm ÞÑ pmintpσBpxqmq1, 0u, 0qs

Jassert  pπpx,mq ě 0qK
B
pσBq “ Jassert πpx,mq ă 0K

B
pσBq

Jassert  pπpx,mq ă 0qK
B
pσBq “ Jassert πpx,mq ě 0K

B
pσBq

Jassert b̂K
B
pσBq “ σBpwhere b̂ refers to all other boolean expressionsq

Jy Ð w ¨ x` βK
B
pσBq “ σB ry ÞÑ Jw ¨ x` βK

B
pσBqs

Js1; s2K
B
pσBq “ Js2K

B
pJs1K

B
pσBqq

Jif b then s1 else s2K
B
pσBq “ if pJbK

B
pσBq “ ttq then Js1K

B
pσBq

else if pJbK
B
pσBq “ ffq then Js2K

B
pσBq

else Js1K
B
pJassert bK

B
pσBqq

Ů

B Js2K
B
pJassert  bK

B
pσBqq

Figure 2.5: cat abstract semantics for box analysis
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The box analysis abstracts the lowered cat semantics instead of the instrumented semantics.

Given a box-shaped set of input states, it computes box-shaped overapproximations of the

program output in a manner similar to the Jacobian analysis. In fact, the box analysis only

differs from the Jacobian analysis in not computing abstract Jacobians. We define a separate

box analysis to avoid computing abstract Jacobians when not needed. The concretization

function (γB) for the box analysis and the soundness theorem are stated below. However,

we do not provide a separate proof of soundness for the box analysis since such a proof is

straightforward given the soundness proof for the Jacobian analysis.

Definition 10. (Concretization function for box analysis)

γBpσBq “ tσ |
Ź

vPV .σ
Bpvq1 ď σpvq ď σBpvq2u

Theorem 11. (Soundness of box analysis)

@p P s´, σB P ΣB . t|JpKpσq|σ P γBpσBqu Ď γBpJpK
B
pσBqq

2.4 Algorithms

We now describe our proof-search algorithms for probabilistic Lipschitzness of NNs. First,

in subsection 2.4.1, we present the sketch of a randomized proof-search algorithm that

is prohibitively expensive for practical use and can only provide statistical guarantees of

probabilistic robustness. Next, we describe the PROLIP algorithm (subsection 2.4.2), an

algorithmic primitive that can be used by a proof-search algorithm for probabilistic Lips-

chitzness. Finally, we provide the sketch of a proof-search algorithm that uses PROLIP in

subsection 2.4.3.

2.4.1 A Randomized Algorithm

Using algorithm 1, we sketch a procedure for checking the probabilistic robustness of a

neural network NN. NN is input to the algorithm and is expressed in the form of a cat

function. The other inputs to the algorithm are the probabilistic bound ε, the Lipschitz
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Algorithm 1: Randomized verification algorithm.
Input: NN: Neural network as a cat function.

D: Input distribution.
ε: Probabilistic error bound.
k: Lipschitz constant.

Output: tT,Fu
1 pf := ConstructProductpNNq;
2 φ :=  p‖fx1 ´ fx‖ ď k ˚ ‖x1 ´ x‖qq;
3 poly := AbstractInterpretppf, φq;
4 err := 0;
5 foreach p P poly do
6 e := samplepp, pf, φ,Dq;
7 err := err ` e;
8 end foreach
9 if err ą ε then

10 return F;
11 else
12 return T;

constant k, and the input distribution D. D can either be represented as a closed form

function or as a pcat program but we leave this unspecified here. The algorithm outputs T

(true) if NN satisfies probabilistic robustness, and F (false) otherwise.

Our algorithm frames the problem of checking the probabilistic robustness of a neural

network as a relational program verification problem [65]. Relational verification is defined

as checking program properties or specifications that are expressed over pairs of program

traces. For instance, probabilistic robustness requires comparing the outputs (‖fx1 ´ fx‖)

generated by a neural network for pairs of inputs (‖x1 ´ x‖). Such two-trace properties are

also called hyperproperties [66].

A majority of program verification and analysis techniques are only applicable to single-

trace properties. To be able to use such techniques for checking hyperproperties, a standard

trick used in program verification is to construct a product program [67]. For a program P ,

a product program is constructed by creating a copy P 1 of P , where all the variables are

renamed, and composing P and P 1 together to get program P ;P 1. A hyperproperty of the

original program then corresponds to a single-trace property of the product program.
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The first step of our algorithm is to construct a “product” neural network pf (line 1) by

encoding two copies of the original network NN side by side. Assume that the input and

the output of the original neural network NN are notated as x̄ and ȳ, respectively. Then,

intuitively, the product neural network (1) accepts the input px̄, x̄1q, (2) independently pro-

cesses x̄ and x̄1, and (3) produces the output pȳ, ȳ1q, such that ȳ“NNpx̄q and ȳ1“NNpx̄1q.

This product construction enables us to use standard abstract interpretation techniques for

checking a hyperproperty such as robustness. Note that, as we just discussed, any input

for the product neural network represents a pair of inputs for the original neural network.

In the rest of this subsection, we therefore use the term input to refer to a product neural

network input.

In line 2, the algorithm assigns the temporary name φ to the property to be checked, i.e.,

the negation of the Lipschitz property. The backwards abstract interpreter AbstractInterpret

produces the set poly (line 3) as an overapproximation of the set of inputs that satisfy φ.

Since φ is the negation of the Lipschitz property, all the inputs NOT in poly satisfy the

Lipschitz property. We assume that the set poly denotes a set of disjoint polyhedra in the

high-dimensional input space. Accordingly, AbstractInterpret is based on the power-

set polyhedra abstract domain [68, 69], using sets of disjoint polyhedra to approximate sets

of real-valued vectors. Computing poly requires encoding φ as an element of the powerset

polyhedra domain. The encoded representation φ needs an exponential (in the size of the

input/output dimensions) number of polyhedra to denote the same set of real-valued vectors

as φ. This exponential blow-up causes the algorithm to be too expensive for practical use.

Next, for each input polyhedron p in poly, the algorithm computes the probability e that

a randomly sampled input is within p and satisfies φ (membership in p does not imply φ

since p is an over-approximation of the region of inputs satisfying φ). This probability can

be upper-bounded by computing the volume of p weighted by the probability distribution

D. However, approximately computing the volume of a polyhedron weighted by a simple

Gaussian distribution is already expensive [70]. Consequently, in the randomized algo-
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rithm presented here, we instead use a sampling procedure to estimate this probability (line

6). Note that, estimating the probability instead of computing it exactly implies that algo-

rithm 1 can only provide a statistical guarantee about the probabilistic robustness of a neural

network. In other words, the algorithm is only capable of proving statements of the form,

“with a high probability, the neural network is probabilistically robust” or “with a high

probability, the neural network is not probabilistically robust”. The sampling procedure is

based on the importance sampling technique [71]. First, samples are drawn uniformly from

the region p. For each sample, the sampling procedure checks if the distance between the

two elements comprising the sample input is more than r. If so, the sample is rejected.

Otherwise, the sample is accepted. For each accepted sample, the sampling procedure next

checks if the sample satisfies φ. The probability estimate e is the sum of the likelihood

ratios (or weights) of the samples satisfying φ divided by the number of samples drawn.

The likelihood ratio depends on the Euclidean volume of p and on the density function of

the input distribution D.

Finally, after processing all polyhedra, the algorithm checks the value of err, which is

the total probability of satisfying φ. If err is greater than ε, the probability of violating the

Lipschitz property is greater than ε, neural network NN is not probabilistically robust, and

the algorithm returns F (lines 9–10). Otherwise, NN satisfies the property, and the algorithm

returns T (lines 11–12).

This algorithm is impractical and undesirable for the following reasons: (1) exponen-

tial (in the number of dimensions) blow-up in the abstract representation of φ, causing the

backwards abstract interpreter to be exponentially expensive; (2) the complexity of the sam-

pling procedure; (3) the inability to provide non-statistical guarantees about probabilistic

robustness of a neural network.
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2.4.2 PROLIP Algorithmic Primitive

The PROLIP algorithm expects a pcat program p of the form z ø Np0, 1q; g; f as input,

where g and f are cat programs. z ø Np0, 1q; g represents the generative model and f

represents the NN under analysis. Other inputs expected by PROLIP are a box-shaped region

zB in z and the input variable as well as the output variable of f (in and out respectively).

Typically, NNs consume a single input and produce a single output. The outputs produced

by PROLIP are (i) kU , an upper bound on the local Lipschitzness constant of f in a box-

shaped region of in (say inB) that overapproximates the set of in values in the image of zB

under g, (ii) d, the maximum distance between in values in inB, (iii) vol, the probabilistic

volume of the region zB ˆ zB with respect to the distribution Np0, 1q ˆNp0, 1q.

PROLIP starts by constructing an initial abstract program state (σB ) suitable for the box

analysis (line 1). σB maps every variable in V to abstract vectors with elements in the

interval p´8,8q. We assume that for the variables accessed in p, the length of the abstract

vectors is known, and for the remaining variables we just assume vectors of length one

in this initial state. Next, the initial entry in σB for z is replaced by zB, and this updated

abstract state is used to perform box analysis of g, producing σ̃B as the result (line 2).

Next, σ̃B is used to create the initial abstract state σL for the Jacobian analysis of f (line 3).
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Algorithm 2: PROLIP algorithmic primitive
Input:

p: pcat program.

zB: Box in z.

in: Input variable of f .

out: Output variable of f .

Output:

kU : Lipschitz constant.

d: Max in distance.

vol: Mass of zB ˆ zB.

1 σB := λv.p´8,8q;

2 σ̃B := JgK
B
pσB rz ÞÑ zBsq;

3 σL := pσ̃B , λv.pI, vqq;

4 σ̃L := JfK
L
pσLq;

5 if pσ̃L2poutq2 “ inq then

6 J := σ̃L2poutq1;

7 kU := ‖J‖
L

;

8 else

9 kU :=8;

10 d := DIAG LENpσ̃Bpinqq;

11 vol := VOLpN ˆN, zB ˆ zBq;

12 return pkU , d, volq;

Initially, every variable is mapped to an identity matrix as the Jacobian and itself as the

variable with respect to which the Jacobian is computed. The initial Jacobian is a square

matrix with side length same as that of the abstract vector associated with the variable being

mapped. Next, we use σL to perform Jacobian analysis of f producing σ̃L as the result (line

4). If the abstract Jacobian mapped to out in σ̃L is computed with respect to in (line 5),
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we proceed down the true branch else we assume that nothing is known about the required

Jacobian and set kU to 8 (line 9). In the true branch, we first extract the abstract Jacobian

and store it in J (line 6). Next, we compute the operator norm of the abstract Jacobian

J using Definition 8, giving us the required upper bound on the Lipschitz constant (line

7). We then compute the maximum distance between in values in the box described by

σ̃Bpinq using the procedure DIAG LEN that just computes the length of the diagonal of the

hyperrectangle represented by σ̃Bpinq (line 10). We also compute the probabilistic mass of

region zB ˆ zB with respect to the distribution Np0, 1q ˆNp0, 1q (line 11). This is an easy

computation since we can form an analytical expression and just plug in the boundaries of

zB. Finally, we return the tuple pkU , d, volq (line 12). This PROLIP algorithm is correct as

stated by the following theorem.

Theorem 12. (Soundness of PROLIP)

Let p “ z ø Np0, 1q; g; f where g, f P s´, pkU , d, volq “ PROLIPpp, zBq, z R outvpgq, z R

outvpfq, x P invpfq, and y P outvpfq then, @σ0 P Σ.

Pr
σ,σ1„JpKpσ0q

pp‖σpyq ´ σ1pyq‖ ď kU ¨ ‖σpxq ´ σ1pxq‖q ^ pσpzq, σ1pzq P γpzBqqq ě vol

Proof. We prove this theorem in two parts.

First, let us define set ΣP as, ΣP “ tσ | σ P γBpJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1qu

In words, ΣP is the concretization of the abstract box produced by abstractly “interpret-

ing” g; f on the input box zB. Assuming that z is not written to by g or f , it is easy

to see from the definitions of the abstract semantics in Figure 2.5 and Figure 2.4 that,

pJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1pzq “ zB, i.e., the final abstract value of z is the same as

the initial value zB. Moreover, from Corollary 9, we know that the operator norm of

the abstract Jacobian matrix, ‖J‖
L

upper bounds the operator norm of every Jacobian of

f for variable y with respect to x (since x P invpfq, y P outvpfq) for every input in

γBpJgK
B
pσB rz ÞÑ zBsqq, which itself is an upper bound on the local Lipschitz constant in

the same region.
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In other words, we can say that,

@σ, σ1 P ΣP . σpzq, σ
1pzq P γpzBq ^ ‖σpyq ´ σ1pyq‖ ď kU ¨ ‖σpxq ´ σ1pxq‖.

To complete the proof, we need to show that, Pr
σ,σ1„JpKpσ0q

pσ, σ1 P ΣP q ě vol. We show this

in the second part of this proof.

Using the semantic definition of pcat (Figure 3.2), we know that,

JpKpσ0q “
xJfKpxJgKpJz ø Np0, 1qKpσ0qqq

We first analyze Jz ø Np0, 1qKpσ0q. Again using the semantic definition of pcat, we

write,

Jz ø Np0, 1qKpσ0q “ Ez„Np0,1qrλν.δσ0rz ÞÑνss

“ λν 1.
ş

a
Npaq ¨ δσ0rz ÞÑaspν

1q

“ λν 1.1ν1“σ0rz ÞÑas ¨Npaq

(2.35)

We are interested in the volume of the set Σz, defined as, Σz “ tσ | σpzq P zBu. Us-

ing the expression for Jz ø Np0, 1qKpσ0q from above, we can now compute the required

probability as follows,

Pr
σ„JzøNp0,1qKpσ0q

pσ P Σzq “
ş

σPΣ
pJz ø Np0, 1qKpσ0qqpσq ¨ 1σPΣz

“
ş

σPΣ
p1σ“σ0rz ÞÑas ¨Npaqq ¨ 1σPΣz

“
ş

σPΣz
p1σ“σ0rz ÞÑas ¨Npaqq

“
ş

aPzB
Npaq (by uniqueness of σ0rz ÞÑ as)

“ vol1

(2.36)

This shows that starting from any σ0 P Σ, after executing the first statement of p, the

probability that the value stored at z lies in the box zB is vol1.

Next, we analyze Jz ø Np0, 1qKpσ0q. In particular, we are interested in the volume of the
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set, |JgKpΣzq (which is notational abuse for the set t|JgKpσq | σ P Σzu). We can lower bound

this volume as follows,

Pr
σ„xJgKpJzøNp0,1qKpσ0qq

pσ P |JgKpΣzqq “
ş

σPΣ
pxJgKpJz ø Np0, 1qKpσ0qqpσq ¨ 1σP|JgKpΣzq

“
ş

σP|JgKpΣzq
xJgKpJz ø Np0, 1qKpσ0qqpσq

ě
ş

σPΣz
Jz ø Np0, 1qKpσ0qqpσq (from Corollary 4)

“ vol1 (from Equation 2.36)
(2.37)

We can similarly show that,

Pr
σ„yJfKpxJgKpJzøNp0,1qKpσ0qqq

pσ P |JfKp|JgKpΣzqqq ě vol1 (2.38)

Now, σB rz ÞÑ zBs defined on line 2 of algorithm 2 is such that

γpσB rz ÞÑ zBsq “ Σz. From Theorem 11, we can conclude that,

|JgKpΣzq Ď γpJgK
B
pσB rz ÞÑ zBsqq (2.39)

Similarly, from Theorem 6, we can conclude that,

|JfKp|JgKpΣzqq Ď γpJfK
L
pJgK

B
pσB rz ÞÑ zBsqq1q (2.40)

From Equation 2.38 and Equation 2.40, we conclude that,

Pr
σ„JpKpσ0q

pσ P γpJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1q ě vol1 (2.41)

Consequently,

Pr
σ,σ1„JpKpσ0q

pσ, σ1 P γpJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1q ě vol1 ˆ vol1 “ vol (2.42)
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since each act of sampling is independent. �

This theorem is applicable for any program p in the required form, such that g and f

are cat programs, variable z is not written to by g and f (outvp¨q gives the set of variables

that a program writes to, invp¨q gives the set of live variables at the start of a program).

It states that the result pkU , d, volq of invoking PROLIP on p with box zB is safe, i.e., with

probability at least vol, any pair of program states (σ, σ1), randomly sampled from the

distribution denoted by JpKpσ0q, where σ0 is any initial state, satisfies the Lipschitzness

property (with constant kU ) and has z variables mapped to vectors in the box zB.
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2.4.3 Sketch of Proof-Search Algorithm

Algorithm 3: Checking Probabilistic Robustness.
Input:

p: pcat program.

r: Input closeness bound.

ε: Probabilistic bound.

k: Lipschitz constant.

gas: Iteration bound.

Output: ttt, ?u

1 prl := 0; prr := 0; prf := 0;

2 α := INIT AGENTpdimpzq, r, ε, kq;

3 while pprl ă p1´ εqq ^ pgas ‰ 0q do

4 gas := gas´ 1;

5 zB := CHOOSEpαq;

6 pkU , d, volq := PROLIPpp, zB, x, yq;

7 UPDATE AGENTpα, kU , d, volq;

8 if d ď r then

9 prr := prr ` vol;

10 if kU ď k then

11 prl := prl ` vol;

12 prf := prf{prr;

13 end while

14 if gas “ 0 then

15 return ? ;

16 else

17 return tt ;

We give a sketch of a proof-search algorithm that uses the PROLIP algorithm as a prim-
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itive. The inputs to such an algorithm are a pcat program p in the appropriate form, the

constants r, ε, and k that appear in the formulation of probabilistic Lipschitzness, and

a resource bound gas that limits the number of times PROLIP is invoked. This algo-

rithm either finds a proof or runs out of gas. Before describing the algorithm, we re-

call the property we are trying to prove, stated as follows, Pr
σ,σ1„JpKpσ0q

p‖σpyq ´ σ1pyq‖ ď

k ˚ ‖σpxq ´ σ1pxq‖
ˇ

ˇ ‖σpxq ´ σ1pxq‖ ď rq ě 1 ´ ε The conditional nature of this proba-

bilistic property complicates the design of the proof-search algorithm, and we use the fact

that PrpA | Bq “ PrpA ^ Bq{PrpBq for computing conditional probabilities. Accord-

ingly, the algorithm maintains three different probability counters, namely, prl, prr, and

prf , which are all initialized to zero as the first step (line 1). prl records the probabil-

ity that a randomly sampled pair of program states (σ, σ1) satisfies the Lipschitzness and

closeness property (i.e., p‖σpyq ´ σ1pyq‖ ď k ˚ ‖σpxq ´ σ1pxq‖q ^ p‖σpxq ´ σ1pxq‖ ď rq).

prr records the probability that a randomly sampled pair of program states satisfies the

closeness property (i.e., ‖σpxq ´ σ1pxq‖ ď r). prf tracks the conditional probability which

is equal to prl{prr. After initializing the probability counters, the algorithm initializes an

“agent” (line 2), which we think of as black-box capable of deciding which box-shaped

regions in z should be explored. Ideally, we want to pick a box such that - (i) it has a high

probability mass, (ii) it satisfies, both, Lipschitzness and closeness. Of course, we do not

know a priori if Lipschitzness and closeness will hold for a particular box in z, the crux

of the challenge in designing a proof-search algorithm. Here, we leave the algorithm driv-

ing the agent’s decisions unspecified (and hence, refer to the proof-search algorithm as a

sketch). After initializing the agent, the algorithm enters a loop (lines 3 - 13) that continues

till we have no gas left or we have found a proof. Notice that if pprl ě p1 ´ εqq, the prob-

abilistic Lipschitzness property is certainly true, but this is an overly strong condition that

maybe false even when probabilistic Lipschitzness holds. For instance, if ε was 0.1 and the

ground-truth value of prr for the program p was 0.2, then prl could never be ě 0.9, even

if probabilistic Lipschitzness holds. However, continuing with our algorithm description,
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after decrementing gas (line 4), the algorithm queries the agent for a box in z (line 5),

and runs PROLIP with this box, assuming x as the input variable of f and y as the output

(line 6). Next, the agent is updated with the result of calling PROLIP, allowing the agent to

update it’s internal state (line 7). Next, we check if for the currently considered box (zB),

the maximum distance between the inputs to f is less than r (line 8), and if so, we update

the closeness probability counter prr (line 9). We also check if the upper bound of the local

Lipschitzness constant returned by PROLIP is less than k (line 10), and if so, update prl

(line 11) and prf (line 12). Finally, if we have exhausted the gas, we were unable to prove

the property, otherwise we have a proof of probabilistic Lipschitzness.

2.4.4 Discussion

Informally, we can think of the Jacobian analysis as computing two different kinds of “in-

formation” about a neural network: (i) an overapproximation of the outputs, given a set of

inputs σB , using the box analysis; (ii) an upper bound on the local Lipschitz constant of the

neural network for inputs in σB . The results of the box analysis are used to overapproximate

the set of “program paths” in the neural network exercised by inputs in σB , safely allowing

the Jacobian computation to be restricted to this set of paths. Consequently, it is possible

to replace the use of box domain in (i) with other abstract domains like zonotopes [72] or

DeepPoly [33] for greater precision in overapproximating the set of paths. In contrast, one

needs to be very careful with the abstract domain used for the analysis of the generative

model g in algorithm 2, since the choice of the abstract domain has a dramatic effect on the

complexity of the volume computation algorithm VOL invoked by the PROLIP algorithm.

While Gaussian volume computation of boxes is easy, it is hard for general convex bodies

[73, 74, 75] unless one uses randomized algorithms for volume computation [76, 70]. Fi-

nally, note that the design of a suitable agent for iteratively selecting the input regions to

analyze in algorithm 3 remains an open problem.
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2.5 Empirical Evaluation

We aim to empirically evaluate the computational complexity of PROLIP. We ask the fol-

lowing questions: (RQ1) Given a program, is the run time of PROLIP affected by the size

and location of the box in z? (RQ2) What is the run time of PROLIP on popular generative

models and NNs?

2.5.1 Experimental Setup

We implement PROLIP in Python, using Pytorch, Numpy, and SciPy for the core func-

tionalities, and Numba for program optimization and parallelization. We run PROLIP on

three pcat programs corresponding to two datasets: the MNIST dataset and the CIFAR-10

dataset. Each program has a generator network g and a classifier network f . The g net-

works in each program consist of five convolution transpose layers, four batch norm layers,

four ReLU layers, and a tanh layer. The full generator architectures and parameter weights

can be seen in [77]. The f network for the MNIST program consists of three fully con-

nected layers and two ReLU layers. For the CIFAR-10 dataset, we create two different pcat

programs: one with a large classifier architecture and one with a small classifier architec-

ture. The f network for the large CIFAR-10 program consists of seven convolution layers,

seven batch norm layers, seven ReLU layers, four maxpool layers, and one fully connected

layer. The f network for the small CIFAR-10 program consists of two convolution layers,

two maxpool layers, two ReLU layers, and three fully connected layers. The full classifier

architectures and parameter weights for the MNIST and large CIFAR-10 program can be

seen in [78].

In our experiments, each generative model has a latent space dimension of 100, meaning

that the model samples a vector of length 100 from a multi-dimensional normal distribution,

which is then used by the generator network. We create five random vectors of length 100

by randomly sampling each element of the vectors from a normal distribution. For each
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(a) (b) (c)

Figure 2.6: PROLIP run times
vector, we create three different sized square boxes by adding and subtracting a constant

from each element in the vector. This forms an upper and lower bound for the randomly-

centered box. The constants we chose to form these boxes are 0.00001, 0.001, and 0.1. In

total, 15 different data points are collected for each program. We ran these experiments on

a Linux machine with 32 vCPU’s, 204 GB of RAM, and no GPU.

2.5.2 Results

RQ1. As seen in Figure 2.6a and Figure 2.6b, there is a positive correlation between box

size and run time of PROLIP on the MNIST and small CIFAR-10 programs. This is likely

because as the z input box size increases, more branches in the program stay unresolved,

forcing the analysis to reason about more of the program. However, z box size does not

seem to impact PROLIP run time on the large CIFAR-10 program (Figure 2.6c) as the time

spent in analyzing convolution layers completely dominates any effect on run time of the

increase in z box size.

RQ2. There is a significant increase in the run time of PROLIP for the large CIFAR-

10 program compared to the MNIST and small CIFAR-10 programs, and this is due to

the architectures of their classifiers. When calculating the abstract Jacobian matrix for an

affine assignment statement (y Ð w ¨ x ` β), we multiply the weight matrix with the

incoming abstract Jacobian matrix. The dimensions of a weight matrix for a fully con-

nected layer is Nin ˆ Nout where Nin is the number of input neurons and Nout is the

number of output neurons. The dimensions of a weight matrix for a convolution layer are

Cout ¨ Hout ¨ Wout ˆ Cin ¨ Hin ¨ Win where Cin, Hin, and Win are the input’s channel,
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height, and width dimensions and Cout, Hout, and Wout are the output’s channel, height,

and width dimensions. For our MNIST and small CIFAR-10 classifiers, the largest weight

matrices formed had dimensions of 784 ˆ 256 and 4704 ˆ 3072 respectively. In compari-

son, the largest weight matrix calculated in the large CIFAR-10 classifier had a dimension

of 131072 ˆ 131072. Propagating the Jacobian matrix for the large CIFAR-10 program

requires first creating a weight matrix of that size, which is memory intensive, and second,

multiplying the matrix with the incoming abstract Jacobian matrix, which is computation-

ally expensive. The increase in run time of the PROLIP algorithm can be attributed to the

massive size blow-up in the weight matrices computed for convolution layers.

Other Results. Table Table 2.1 shows the upper bounds on local Lipschitz constant

computed by the PROLIP algorithm for every combination of box size and pcat program

considered in our experiments. The computed upper bounds are comparable to those com-

puted by the Fast-Lip algorithm from [57] as well as other state-of-the-art approaches for

computing Lipschitz constants of neural networks. A phenomenon observed in our experi-

ments is the convergence of local Lipschitz constants to an upper bound, as the z box size

increases. This occurs because beyond a certain z box size, for every box in z, the output

bounds of g represent the entire input space for f . Therefore any increase in the z box size,

past the tipping point, results in computing an upper bound on the global Lipschitz constant

of f .

The run time of the PROLIP algorithm can be improved by utilizing a GPU for matrix

multiplication. The multiplication of massive matrices computed in the Jacobian propaga-

tion of convolution layers or large fully connected layers accounts for a significant portion

of the run time of PROLIP, and the run time can benefit from GPU-based parallelization

of matrix multiplication. Another factor that slows down our current implementation of

PROLIP algorithm is the creation of the weight matrix for a convolution layer. These weight

matrices are quite sparse, and constructing sparse matrices that hold ’0’ values implicitly

can be much faster than explicitly constructing the entire matrix in memory, which is what
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Table 2.1: Local Lipschitz constants discovered by PROLIP

Box Size MNIST Large CIFAR Small CIFAR
Lip Constant Lip Constant Lip Constant

1e-05 1.683e1 5.885e14 3.252e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.072e1 5.331e14 1.814e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.460e1 6.740e14 2.719e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.754e1 6.571e14 2.868e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.312e1 5.647e14 2.884e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

our current implementation does.

2.6 Related Work

Our work draws from different bodies of literature, particularly literature on verification of

NNs, Lipschitz analysis of programs and NNs, and semantics and verification of probabilis-

tic programs. These connections and influences have been described in detail in section 3.1.

Here, we focus on describing connections with existing work on proving probabilistic/sta-

tistical properties of NNs.

[40] is the source of the probabilistic Lipschitzness property that we consider. They

propose a proof-search algorithm that (i) constructs a product program [79], (ii) uses an

abstract interpreter with a powerset polyhedral domain to compute input pre-conditions

that guarantee the satisfaction of the Lipschitzness property, (iii) computes approximate

volumes of these input regions via sampling. They do not implement this algorithm. If one
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encodes the Lipschitzness property as disjunction of polyhedra, the number of disjuncts is

exponential in the number of dimensions of the output vector. There is a further blow-up

in the number of disjuncts as we propagate the abstract state backwards.

Other works on probabilistic properties of NNs [80, 81] focus on local robustness.

Given an input x0, and an input distribution, they compute the probability that a random

sample x1 drawn from a ball centered at x0 causes non-robust behavior of the NN at x1

compared with x0. [80] computes these probabilities via sampling while [81] constructs

analytical expressions for computing upper and lower bounds of such probabilities. Fi-

nally, [82] presents a model-counting based approach for proving quantitative properties

of NNs. They translate the NN as well as the property of interest into SAT constraints,

and then invoke an approximate model-counting algorithm to estimate the number of sat-

isfying solutions. We believe that their framework may be general enough to encode our

problem but the scalability of such an approach remains to be explored. We also note that

the guarantees produced by [82] are statistical, so one is unable to claim with certainty if

probabilistic Lipschitzness is satisfied or violated.

2.7 Conclusion

We study the problem of algorithmically proving probabilistic Lipschitzness of NNs with

respect to generative models representing input distributions. We employ a language-

theoretic lens, thinking of the generative model and NN, together, as programs of the form

z ø Np0, 1q; g; f in a first-order, imperative, probabilistic programming language pcat.

We develop a sound local Lipschitzness analysis for cat, a non-probabilistic sublanguage

of pcat that performs a Jacobian analysis under the hood. We then present PROLIP, a prov-

ably correct algorithmic primitive that takes in a box-shaped region in the latent space of

the generative model as an input, and returns a lower bound on the volume of this region

as well as an upper bound on a local Lipschitz constant of f . Finally, we sketch a proof-

search algorithm that uses PROLIP and avoids expensive volume computation operations in
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the process of proving theorems about probabilistic programs. Empirical evaluation of the

computational complexity of PROLIP suggests its feasibility as an algorithmic primitive,

although convolution-style operations can be expensive and warrant further investigation.
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CHAPTER 3

OBSERVATIONAL ABSTRACT INTERPRETERS

3.1 Introduction

Program verification, as used colloquially, refers to the practice of algorithmically find-

ing program proofs, i.e., proofs of program judgments. These program judgments come

in many forms, common forms are either type-theoretic judgments like Γ $ e : t saying

that in context Γ program e has type t, or program logic judgments of the form, tP uetQu,

particularly when e is from an effectful language, where P is a pre-condition and Q is a

post-condition of e.1 Irrespective of the form of the judgment, a common step in the proof

strategy employed by proof search algorithms is to compute semantic invariants of e which

are then further used to construct the proofs of program judgments. The use of semantic in-

variants is particularly common when the programs or terms e are only partially annotated

or are completely unannotated (à la Curry where programs are thought to be terms from

an untyped language and the type system is extrinsic [83]). Informally, a semantic invari-

ant is a simplified representation of the meaning of a program and practically, one wants

these representations to be efficiently computed even when the program under analysis is

non-terminating. A unifying perspective on algorithms for computing such invariants is

provided by the theory of abstract interpretation [8, 9].

In general, the decision problems addressed by program verification are undecidable

[2]. Even in the instances where the problems are decidable, the ability of an invariant-

based proof search algorithm to find a proof (or a counterexample) crucially depends on

the computed invariants. Invariants computed by abstract interpreters, in turn, depend on

the abstract semantic domain and the abstract semantic function used to construct the ab-
1There are many connections between these two judgment forms that we do not elaborate here.
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stract interpreter. The theory of abstract interpretation defines language semantics as a

pair of a concrete semantic domain and a semantic function. The theory also defines the

manner in which the concrete semantics should relate to an abstract semantics so that the

invariants computed using the abstract semantics can be soundly used in the background

type theory/program logic for constructing a program proof. However, defining an abstract

semantics that leads to efficient computation of useful invariants requires creativity and

theoretical expertise.

Many ideas have been presented in the literature for making the process of designing

abstract semantics “easier” - [15] present a systematic approach for constructing an ab-

stract interpreter starting from abstract machine semantics of higher-order languages and

a number of follow-on works extend these ideas [16, 17, 18, 84, 85]; calculational ab-

stract interpretation yields the abstract semantic function automatically given the concrete

semantics and the abstract semantic domain [86, 87, 88, 89]; in the counterexample-guided

abstraction refinement (CEGAR) style of abstract interpretation [90], the designer defines

a set (finite or infinite) of “correct” abstract semantics and, given a specific program judg-

ment, the CEGAR algorithm searches through this set for an abstract semantics that can

efficiently yield a proof (or a counterexample) of the judgment. While all these ideas have

helped make the design of effective abstract interpreters easier, the design process still

involves much human ingenuity.

A different, increasingly common, proof strategy employed by proof search algorithms

is to modify the program under study and embed it with run time or dynamic checks.

This allows making hypotheses about program behavior such that a proof of the required

program judgment can be constructed. This type of reasoning has been popularized by

the gradual typing [3, 4] and hybrid typing [5, 6] philosophy as well as the work on using

logical abduction for program reasoning [91, 92]. Ideally, we want to compute the weakest

hypotheses that allow the construction of a program proof but inferring such hypotheses is

not trivial.
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We are interested in the design of proof search algorithms that combine the use of

semantic invariants and dynamic checks. Apart from recent work on gradual liquid type in-

ference [93] and gradual program verification [94], such a combination has been relatively

under explored formally. In this work, we present the design of a new class of abstract

interpreters that compute semantic invariants while making hypotheses about program be-

havior, embedded as dynamic checks in the program. These hypotheses help the abstract

interpreter compute potentially stronger semantic invariants, at the cost of the overheads of

dynamic run time checks. A key challenge in such hypothesis-based reasoning is automati-

cally computing the appropriate hypothesis. Typically, the computation of these hypotheses

is guided by the proof goal. In our abstract interpreter design, we instead rely on observa-

tions about the program behavior to infer the hypotheses. Intuitively, the idea is to make

hypotheses that are consistent with the observed behavior of the program. This observa-

tional style of reasoning motivates our use of the term, observational abstract interpreters,

to refer to the class of abstract interpreters that we propose.

The benefit of an observational reasoning style, particularly in combination with the

hypotheses-based reasoning, is that we no longer need to derive custom proof goal guided

algorithms, specific to the type theory or program logic we are working with, for com-

puting the appropriate hypotheses. More interestingly, such observational, hypothetical

proofs, can be used to make judgments about the program behavior in the “commonly”

observed ways of using the program, even if the same judgment cannot be proven for the

program in general. On the other hand, an obvious drawback of using program observa-

tions (instead of the proof goal) for computing hypotheses is that the computed hypotheses

are not guaranteed to be strong enough to allow the construction of a program proof. In any

case, we believe that this combination of invariant-based reasoning with hypotheses-based

reasoning, where the hypotheses are inferred from program observations is an interesting

point worth further exploration.

We formalize our ideas in the context of a simple higher-order language (λS). In partic-
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i P Z x P V ar l P Lbl
a P Atom ::“ i | x | λpxq.e | abort
‘ P IOp ::“ ` | ´

d P Op ::“ ‘ | @

e P Exp ::“ paql | ped eql | pif0peqteuteuql

Figure 3.1: λS(λSA ) language syntax

ular, starting from an abstract machine semantics of λS , we demonstrate the construction of

a generic observational abstract interpreter for λS , and in the process, we formally define

the notion of program observations as well as the notion of correctness or soundness for

an observational abstract interpreter. Our formal development is heavily inspired by the

abstracting abstract machines (AAM) [15] style of abstract interpreter construction. Ob-

servational abstract interpreters are structured as monadic abstract interpreters [16, 17, 18]

that reify the notion of an AAM-style interpreter. We believe that the recipe we present

here for constructing observational abstract interpreters of λS can also be applied to other

languages.

Our main contributions are as follows - (i) we propose observational abstract inter-

preters, a synthesis of invariant-based reasoning about programs with hypothesis-based

reasoning and observational program reasoning, (ii) we formally construct a generic obser-

vational abstract interpreter for λS , a higher-order language, (iii) we present an instantiation

of the generic observational abstract interpreter for λS , yielding an observational interval

analysis for programs in λS .

3.2 Language Definition

We present our ideas with the help of λS , a higher-order language with built-in integers and

conditionals. The language is fairly standard, and we adopt the syntax and semantics from

[17]. λS syntax is defined in Figure 3.1. Note that function application is explicitly repre-

sented using the @ operator. Figure 3.1 also describes the syntax of λSA, which additionally

allows programs with abort expressions (the gray background color is intended to high-
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light that abort expressions are only allowed in λSA programs, but not in λS programs).

These abort expressions enable dynamic checks to be embedded in the programs. We

distinguish between λS and λSA for ease of formal presentation. We design observational

abstract interpreters that are capable of analyzing λS programs to produce hypothetical se-

mantics invariants. These hypotheses are then embedded in the original λS program with

the help of abort expressions, producing a λSA program. Note that every expression in

a λS (λSA) is associated with a unique label, drawn from an infinitely large set of labels

(Lbl). To avoid notational clutter, we do not show the labels in the rest of the paper, but

assume that such a label always exists. Moreover, we assume the existence of a function

get-Label that accepts an expression and returns the label associated with the expression.

The semantics of λS (and λSA) are presented in Figure 3.2. We define the language

semantics using the formalism of abstract machines. Before describing the semantics, we

make a note on the metalanguage used in Figure 3.2 and the rest of the paper. Our metalan-

guage notation resembles Haskell syntax, though we freely use other syntactic constructs.

Function application is notated as fpeq, where f is the function applied to e. Pairs and

tuples are notated by x¨y. We reserve “ to explicitly notate equality, with :“ used to no-

tate definitions, and ::“ notates datatype definitions. Wherever necessary, we explain the

notation that we use.

The abstract machine semantics of λS (and λSA) is defined as a transition relation (ù)

on the set Σ of abstract machine states. An abstract machine state is a 6-tuple consisting

of a program/expression, an environment (Env), a store for values (Store), a store for

continuations (KStore) that are linked together (similar to a call stack), the address of

the next continuation (KAddr), and a time component (Time). The abstract machine

semantics presented here is similar to the CESK machine [95], except that the continuations

are threaded through the store, and the time component is used to compute a new address

for allocation in the value or continuation store. As mentioned earlier, the abstract machine

design presented here follows the design by Darais, Might, and Van Horn, which is itself
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t P Time :“ Exp˚

a P Addr :“ V ar ˆ Time
ρ P Env :“ V ar á Addr
s P Store :“ Addr á V al

kf P KFrame :“ Frameˆ Env
ka P KAddr :“ Time
ks P KStore :“ KAddr á KFrameˆKAddr

c P Clo ::“ xλpxq.e, ρy
v P V al ::“ i | c | abort

fr P Frame ::“ ˝d e | v d ˝ | if0p˝qteuteu
σ P Σ ::“ xe, ρ, s, ka, ks, ty

(a) Type definitions
J¨K

A
: AtomÑ pEnv ˆ Storeá V alq

JiK
A
pxρ, syq :“ i

JxK
A
pxρ, syq :“ spρpxqq

Jλpxq.eK
A
pxρ, syq :“ xλpxq.e, ρy

J¨K
δ

: IOpÑ pZˆ ZÑ Zq
J`K

δ
pxi1, i2yq :“ i1 ` i2

J´K
δ
pxi1, i2yq :“ i1 ´ i2

(b) Denotational semantics of atomic expressions
¨ù ¨ : P pΣˆ Σq

xe1 d e2, ρ, s, ka, ks, ty ù xe1, ρ, s, ka, ks
1, t1y where

t1 :“ pe1 d e2q :: t
ks1 :“ ksrt1 ÞÑ xx˝d e2, ρy, kays

xif0pe1qte2ute3u, ρ, s, ka, ks, ty ù xe1, ρ, s, ka, ks
1, t1y where

t1 :“ pif0pe1qte2ute3uq :: t
ks1 :“ ksrt1 ÞÑ xxif0p˝qte2ute3u, ρy, kays

xabort, ρ, s, ka, ks, ty ù xabort, ρ, s, t, ks, ty

xa, ρ, s, ka, ks, ty ù xe, ρ1, s, t, ks1, t1y where
t1 :“ a :: t

xx˝d e, ρ1y, ka1y :“ kspkaq
ks1 :“ ksrt1 ÞÑ xxJaK

A
pxρ, syq d ˝, ρy, ka1ys

xa, ρ, s, ka, ks, ty ù xe, ρ2, s1, ka1, ks, t1y where
t1 :“ a :: t

xxxλpxq.e, ρ1y@˝, ρ1y, ka1y :“ kspkaq
ρ2 :“ ρ1rx ÞÑ xx, t1ys
s1 :“ srxx, t1y ÞÑ JaK

A
pxρ, syqs

xi2, ρ, s, ka, ks, ty ù xi, ρ, s, ka1, ks, t1y where
t1 :“ i2 :: t

xxi1 ‘ ˝, ρ1y, ka1y :“ kspkaq
i :“ J‘K

δ
pxi1, i2yq

xi, ρ, s, ka, ks, ty ù xe, ρ1, s, ka1, ks, t1y where
t1 :“ i :: t

xxif0p˝qte1ute2u, ρ
1y, ka1y :“ kspkaq

e :“ if i “ 0 then e1 else e2

(c) Abstract machine semantics

Figure 3.2: λS(λSA ) concrete semantics in the form of an abstract machine
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init-States : Exp´ Ñ PpΣq
init-Statespeq :“ let ρ :“ txx, xx, εyy | x P FV pequ in

let init-Store :“ ttxxx, εy, vxy | x P FV pequ |
Ź

xPFV peq vx P Zu in

txe, ρ, s, ε,K, εy | s P init-Storeu

J¨K
Cl

: Exp´ Ñ PpΣq
JeK

Cl
:“ lfp λpxq. xY init-Statespeq Y tσ2 | σ1 P x^ σ1 ù σ2u

Figure 3.3: λS(λSA ) collecting semantics

based on work by Van Horn and Might [15]. Since values and continuations are both

allocated in their respective stores, by restricting the number of distinct locations/addresses

in the store, one can easily abstract the abstract machine, yielding an abstract interpreter

for the language, an observation that first appeared in [15].

Figure 3.2a defines the different components of an abstract machine state. We would

like to draw notice to the definition of Time and Addr. Time is defined as a sequence

of expressions, while an address is a pair of a variable name and time. We assume that

each of the type (or set) defined here has the structure of a lattice. The semantics of atomic

expressions and primitive operations are defined denotationally (Figure 3.2b), and the ab-

stract machine semantics for compound expressions are defined by a relation (Figure 3.2c).

Note that if the abstract machine encounters an abort expression while executing a λSA

program, it steps to an unmodified state.

Following all these definitions, we are finally ready to define the notion of “meaning” of

a program, also referred to as collecting semantics in the abstract interpretation literature.

Figure 3.3 defines the collecting semantics of λS(λSA). Note that the collecting semantics

are not defined for all the expressions (Exp) in our language. Instead, we only consider

programs where the free variables are of type Z, and name this set of expressions, Exp´.

The meaning of a program/expression in Exp´ is described in terms of abstract machine

states. Intuitively, the meaning of a program is the set of all abstract machines states that are

“reachable” from a set of “initial” states. Let us unpack this definition. Given a program

e, the definition of initial states (init-States) in Figure 3.3 states that, if a program e has

no free variables, then the set of initial states is just the singleton set, txe,K,K, ε,K, εyu.
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For programs with free variables of type Z (set of free variables is represented by FV ),

the set of initial states is defined such that all possibles ways of ”closing” the program,

i.e., assigning values to the free variables, are represented in the set. In Figure 3.3, this

is captured by the definition of init-Store, which uses the set-builder notation in a nested

manner. Given a free variable x, we assume that the initial value assigned to x is stored at

address xx, εy in the store s. Then, the collecting semantics, notated by J¨K
Cl

, is defined as

the least fixed point of a function of type PpΣq Ñ PpΣq. This function uses the definitions

of init-States and the transition relation ù describing our abstract machine semantics.

Defining a collecting semantics for expressions with free variables of function type is a

problem of independent interest, and by only considering programs from Exp´, we avoid

dealing with that issue in this paper.

3.3 Monadic Interpreters: Concrete and Abstract

The Van Horn-Might [15] style of abstract machine semantics for higher-order languages

makes it easy to refactor the abstract machine such that designing an abstract interpreter

simply becomes a matter of redefining some interfaces (expressible as type classes in

Haskell or modules in ML). The authors of [16] first noticed that the Van Horn-Might

abstract machine can be refactored using monads. That interpreters for higher-order lan-

guages can be modularized and structured monadically has been known for a while [96,

97], but using the monadic structure to ease the design of abstract interpreters and simplify

their proofs of correctness has only been recently investigated [16, 17, 18, 84, 85]. These

recent advances play an important role in our design of observational abstract interpreters.

In this section, we describe how the abstract machine semantics for λS can be modularized

and expressed monadically, closely following [17]. We also show the manner in which the

resulting monad can be instantiated to yield semantics equivalent to the collecting seman-

tics defined in Figure 3.3, as well as an abstract interpreter for an interval analysis of λS

programs.
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˝

Time

tick : Exp´ ˆ
˝

TimeÑ
˝

Time

˝

V al

int-I : ZÑ
˝

V al

if0-E :
˝

V al Ñ PpBoolq
clo-I :

˝

CloÑ
˝

V al

clo-E :
˝

V al Ñ Pp
˝

Cloq

J‘K
mδ

:
˝

V al ˆ
˝

V al Ñ
˝

V al

˝

Addr :“ V ar ˆ
˝

Time
˝

Env :“ V ar á
˝

Addr
˝

Clo ::“ xλpxq.e, ρy
˝

Store :“
˝

Addr á
˝

V al
˝

KFrame :“ Frameˆ
˝

Env
˝

KAddr :“
˝

Time
˝

KStore :“
˝

KAddr á Pp
˝

KFrameˆ
˝

KAddrq

˝

Σ

init-States : Exp´ Ñ
˝

Σ

˝
m
return : @A.AÑ

˝
mpAq

bind : @A,B.
˝
mpAq Ñ pAÑ

˝
mpBqq Ñ

˝
mpBq

get-Env :
˝
mpEnvq

put-Env :
˝

Env Ñ
˝
mp1q

get-Store :
˝
mp

˝

Storeq

put-Store :
˝

StoreÑ
˝
mp1q

get-KAddr :
˝
mp

˝

KAddrq

put-KAddr :
˝

KAddr Ñ
˝
mp1q

get-KStore :
˝
mp

˝

KStoreq

put-KStore :
˝

KStoreÑ
˝
mp1q

get-Time :
˝
mp

˝

Timeq

put-Time :
˝

TimeÑ
˝
mp1q

mzero : @A.
˝
mpAq

¨x`y¨ : @A.
˝
mpAq ˆ

˝
mpAq Ñ

˝
mpAq

α
˝

ΣØ
˝
m : p

˝

Σ Ñ
˝

Σq Ñ pExp´ Ñ
˝
mpExp´qq

γ
˝

ΣØ
˝
m : pExp´ Ñ

˝
mpExp´qq Ñ p

˝

Σ Ñ
˝

Σq

(a) Type definitions

Figure 3.4: λS monadic interpreter
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stepm : Exp´ Ñ
˝
mpExp´q

stepmpeq :“ do
ρÐ get-Env
e2 Ð case e of
e1 d e2 Ñ tickm

peq; pushpx˝d e2, ρyq; returnpe1q

if0pe1qte2ute3u Ñ do
tickm

peq; pushpxif0p˝qte2ute3u, ρyq; returnpe1q

aÑ do
v Ð JaK

mA
; fr Ð pop

case fr of
x˝d e1, ρ1y Ñ do

tickm
peq; put-Envpρ1q; pushpxv d ˝, ρyq; returnpe1q

xv1@˝, ρ1y Ñ do
tickm

peq; tÐ get-Time; sÐ get-Store
xλpxq.e1, ρ2y Ð Òppclo-Epv1qq
put-Envpρ2rx ÞÑ xx, tysq
put-Storeps\ rxx, ty ÞÑ vsq; returnpe1q

xv1 ‘ ˝, ρ1y Ñ tickm
peq; returnpJ‘K

mδ
pxv1, vyqq

xif0p˝qte1ute2u, ρ
1y Ñ do

tickm
peq; put-Envpρ1q; bÐ Òppif0-Epvqq; refinepxa, byq

ifpbq then returnpe1q else returnpe2q

K Ñ returnpeq
returnpe2q

(b) Step function
J¨K

mA
: AtomÑ

˝
mp

˝

V alq
JiK

mA
:“ returnpint-Ipiqq

JxK
mA

:“ do
ρÐ get-Env; sÐ get-Store
ifpx P ρq then returnpspρpxqqq else returnpKq

Jλpxq.eK
mA

:“ ρÐ get-Env; returnpclo-Ipxλpxq.e, ρyqq

push :
˝

KFrameÑ
˝
mp1q

pushpfrq :“ do
kaÐ get-KAddr; ksÐ get-KStore; ka1 Ð get-Time
put-KStorepks\ rka1 ÞÑ xfr, kaysq; put-KAddrpka1q

pop :
˝
mp

˝

KFrameq
pop :“ do
kaÐ get-KAddr; ksÐ get-KStore;
ifpka R ksq then returnpKq
elsexfr, ka1y Ð Òppkspkaqq; put-KAddrpka1q; returnpfrq

Òp : @A.PpAq Ñ ˝
mpAq

Òppta1, ..., anuq :“ returnpa1qx`y...x`yreturnpanq

refine : AtomˆBool Ñ
˝
mp1q

refinepxi, byq :“ returnp1q
refinepxx, byq :“ do
ρÐ get-Env; sÐ get-Store
ifpbq then put-Storepsrρpxq ÞÑ int-Ip0qsq else returnp1q

tickm : Exp´ Ñ
˝
mp1q

tickm
peq :“ do

tÐ get-Time
put-Timeptickpxe, tyqq

(c) Helper functions

J¨K
m

: Exp´ Ñ
˝

Σ

JeK
m

:“ lfp λpxq. x\ init-Statespeq \ pγ
˝

ΣØ
˝
mpstepmqqpxq

(d) Collecting semantics

Figure 3.4: λS monadic interpreter
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Figure 3.4 describes the design of a generic monadic interpreter for programs in λS

with free variables of type Z. The design of the monadic interpreter is based on the in-

tuition that the computation performed by the interpreter (or the abstract machine) pri-

marily depends on the structure of the expression being interpreted, and the interaction

with the other components of the abstract machine state, like the environment and the

store, can be hidden behind a monadic interface. This monadic interface in defined in

Figure 3.4a. Our metalanguage supports Haskell-like typeclasses [98], and we define a

typeclass ˝
m that includes standard monadic operations like bind and return. In addition,

the monad is required to support a number of get and put operations for interacting with

the abstract machine state components. Additionally, the monad is also required to sup-

port non-deterministic choice operation x`y. Besides the monad typeclass, the monadic

interpreter design also requires abstracting other types that the interpreter interacts with

via corresponding typeclasses. In our notation, we distinguish typeclass names from type

names by using a small circle ( ˝
name) over the typeclass names. The typeclass

˝

Time has an

associated operation, tick. The typeclass
˝

V al has a number of operations associated with

it that map from values of type Z and closures to elements of types instantiating
˝

V al, and

vice versa. More details about these operations can be read in section 4.2 of [17]. Finally,

we expect
˝

Time,
˝

V al,
˝

Addr,
˝

Env,
˝

Store,
˝

KFrame,
˝

KAddr,
˝

KStore, and
˝

Σ to all have

a lattice structure, i.e., they support the lattice operations \, [, and Ď, as well as define

lattice elements J and K.

Figure 3.4b defines the stepm function describing a single step of the monadic inter-

preter. First, a comment on notation - we use the do notation from Haskell as well as ; for

sequencing monadic operations. So x Ð s1; s2 is syntactic sugar for bindps1qpλpxq. s2q,

while
do

xÐ s1

s2
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is syntactic sugar for bindps1qpλpxq. s2q. Moreover, we allow combining these notations.

The stepm function uses a number of helper functions, defined in Figure 3.4c. A further

comment on notation - in order to check if a partial may, say ρ, is defined for a certain key,

say x, we use the notational shortcut x P ρ. The structure of the stepm function closely

resembles the abstract machine transition relation defined in Figure 3.2c. The helper func-

tion Òp helps hide the non-determinism behind the monadic interface. While the concrete

interpreter for λS does not exhibit any non-determinism, we will soon see that the abstract

interpreter is non-deterministic. Similarly, the function refine helps the abstract interpreter

compute more precise results, particularly in cases where the branch taken by the condi-

tional cannot be resolved.

Finally, Figure 3.4d defines the collecting semantics of a λS program in Exp´ using

the monadic stepm function. Note that the type signature of stepm (Exp´ Ñ
˝

Exp´) is

incompatible with least-fixed point computation needed for computing the meaning of a

program. As in [17], this problem is solved by defining a function γ
˝

ΣØ
˝
m that maps the

monadic stepm function, to a transition function of type
˝

Σ Ñ
˝

Σ, that can be iteratively

invoked to compute the required least fixed point. The function α
˝

ΣØ
˝
m does the opposite,

with α
˝

ΣØ
˝
m and γ

˝

ΣØ
˝
m representing a Galois connection between Exp´ Ñ ˝

mpExp´q and
˝

Σ Ñ
˝

Σ.

3.3.1 Concrete Monadic Interpreter

The monadic concrete interpreter for λS is derived by instantiating the typeclasses defined

in Figure 3.4. These typeclass instantiations are described in Figure 3.5. We make sure that

the monadic interpreter is instantiated such that the resulting “concrete” monadic collect-

ing semantics (notated by J¨K
m

) is equivalent to the collecting semantics (J¨K
Cl

) defined in

Figure 3.3. Notationally, concrete typeclass instantiations are indicated by a horizontal line

over the typeclass names (for instance, Time).

Note that Time, V al, Clo, Addr, Env, Store, andKAddr reuse the corresponding def-
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initions from Figure 3.2a for the standard abstract machine semantics of λS . However,

KStore, i.e., the continuation store, is defined such that every address is mapped to a set

of continuations. However, these sets are always singleton in the concrete semantics. The

meanings of programs are elements of set Σ, defined as the powerset of the set of abstract

machine states. The lattice operations for Σ, defined in Figure 3.5b, are straightforward. In

the collecting semantics, we reuse the definition of init-States from Figure 3.3 (ignoring the

difference in the definitions of KStore and KStore since it does not have any discernible

effect on the definition of init-States).

The correctness of the monadic concrete collecting semantics with respect to the stan-

dard collecting semantics of λS is formally stated by the following proposition.

Proposition 13. (Equivalence of J¨K
Cl

and J¨K
m

)

@e P Exp´. JeK
Cl
“ JeK

m

A proof of this equivalence can be found in prior works ([17]), and since our definitions

of the standard collecting semantics and the monadic semantics presented here closely

follows that of Darais, Might, and Van Horn, we do not present the proof here.

3.3.2 Abstract Monadic Interpreter

The flexibility and modularity afforded by the monadic design of the λS interpreter can be

appreciated as one sets out to design an abstract interpreter for the language. We present

a monadic abstract interpreter for λS that is capable of performing interval analysis of

λS programs. As with the monadic concrete interpreter, we only need to instantiate the

typeclasses in order to yield the abstract interpreter. We notate typeclass instances for the

abstract interpreter with a hat over the typeclass name (for instance, {Time).

Figure 3.6a includes all the typeclass definitions, except the monad definition. For Van

Horn-Might abstract machines, the notion of time plays a key role in dictating the abstract

machine behavior. In particular, the set of addresses available in the value and continuation

stores depends on the definition of time. For the abstract interpreter, we want to finitize the
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t P Time :“ Time
tickpxe, tyq :“ e :: t

v P V al :“ V al
int-Ipiq :“ i
if0-Epvq :“ ifpv “ 0q then tttu else tffu
clo-Ipcq :“ c
clo-Epvq :“ tvu

J`K
mδ
pxv, v1yq :“ v ` v1

J´K
mδ
pxv, v1yq :“ v ´ v1

a P Addr :“ Addr
ρ P Env :“ Env
s P Store :“ Store
kf P KFrame :“ KFrame

ka P KAddr :“ KAddr

ks P KStore :“ KAddr á PpKFrameˆKAddrq
c P Clo :“ Clo

ψ P Ψ :“ Env ˆ StoreˆKAddr ˆKStoreˆ Time
σ P Σ “ PpExp´ ˆΨq

αΣØm : pΣ Ñ Σq Ñ pExp´ Ñ mpExp´qq

αΣØmpfqpeqpψq :“ fptxe, ψyuq

γΣØm : pExp´ Ñ mpExp´qq Ñ pΣ Ñ Σq

γΣØmpfqpσq :“
Ť

xe,ψyPσ fpeqpψq

(a) Type definitions

Ď: Σˆ Σ Ñ Bool
σ Ď σ1 :“ ifpσ Ď σ1q then tt else ff

\ : Σˆ Σ Ñ Σ
σ \ σ1 :“ σ Y σ1

K : Σ :“ H
J : Σ :“ Exp´ ˆΨ

(b) Lattice operations for Σ

Figure 3.5: λS monadic concrete interpreter
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mpAq :“ Ψ Ñ PpAˆΨq

returnpxqpψq :“ txx, ψyu

bindpXqpfqpψq :“
Ť

xx,ψ1yPXpψq fpxqpψ
1q

get-Envpxρ, s, ka, ks, tyq :“ txρ, xρ, s, ka, ks, tyyu

put-Envpρ1qpxρ, s, ka, ks, tyq :“ tpx1, xρ1, s, ka, ks, tyyu

get-Storepxρ, s, ka, ks, tyq :“ txs, xρ, s, ka, ks, tyyu

put-Storeps1qpxρ, s, ka, ks, tyq :“ tx1, xρ, s1, ka, ks, tyyu

get-KAddrpxρ, s, ka, ks, tyq :“ txka, xρ, s, ka, ks, tyyu

put-KAddrpka1qpxρ, s, ka, ks, tyq :“ tx1, xρ, s, ka1, ks, tyyu

get-KStorepxρ, s, ka, ks, tyq :“ txks, xρ, s, ka, ks, tyyu

put-KStorepks1qpxρ, s, ka, ks, tyq :“ tx1, xρ, s, ka, ks1, tyyu

get-Timepxρ, s, ka, ks, tyq :“ txt, xρ, s, ka, ks, tyyu

put-Timept1qpxρ, s, ka, ks, tyq :“ tx1, xρ1, s, ka, ks, t1yyu

mzeropψq :“ tu

pX1x`yX2qpψq :“ X1pψq \X2pψq

(c) Monad definition

J¨K
m

: Exp´ Ñ Σ

JeK
m

:“ lfp λpxq. x\ init-Statespeq

\ pγΣØmpstepmqqpxq

(d) Collecting semantics

Figure 3.5: λS monadic concrete interpreter
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t P{Time :“ Exp˚k

tickpxe, tyq :“ te :: tuk

Z8 :“ ZY t´8,8u
v P yV al :“ PpyCloq ˆ ppZ8 ˆ Z8q Y tKuq
int-Ipiq :“ txH, xi, iyyu
if0-Epvq :“ ttt | v.2 ‰ K^ pv.2q.1 ď 0 ď pv.2q.2u

Ytff | v.2 “ K_ pv.2q.1 ‰ 0_ pv.2q.2 ‰ 0qu
clo-Ipcq :“ txc,Kyu
clo-Epvq :“ tc | c P v.1u
yJ`K

mδ
pxv, v1yq :“ xv.1Y v1.1, xv.2.1` v1.2.1, v.2.2` v1.2.2yy

yJ´K
mδ
pxv, v1yq :“ xv.1Y v1.1, xv.2.1´ v1.2.2, v.2.2´ v1.2.1yy

a P zAddr :“ V ar ˆ{Time

ρ P yEnv :“ V ar á zAddr

s P{Store :“ zAddr á yV al

kf P {KFrame :“ Frameˆ yEnv

ka P {KAddr :“{Time

ks P {KStore :“ {KAddr á Pp {KFrameˆ {KAddrq

c P yClo ::“ xλpxq.e, ρy

ψ P pΨ :“ yEnv ˆ{Storeˆ {KAddr ˆ {KStoreˆ{Time

σ P pΣ :“ PpExp´ ˆ pΨq
{init-Statespeq :“ αpinit-Statespeqq

α
pΣØ pm : ppΣ Ñ pΣq Ñ pExp´ Ñ pmpExp´qq

α
pΣØ pmpfqpeqpψq :“ fptxe, ψyuq

γ
pΣØ pm : pExp´ Ñ pmpExp´qq Ñ ppΣ Ñ pΣq

γ
pΣØ pmpfqppσq :“

Ť

xe,ψyPpσ fpeqpψq

(a) Type definitions

Ď: pΣˆ pΣ Ñ Bool

pσ Ď pσ1 :“

ifp@σ P pσ.Dσ1 P pσ1. σ Ď̃ σ1q then tt else ff

Ď̃ : pExp´ ˆ pΨq ˆ pExp´ ˆ pΨq Ñ Bool
xe, ρ, s, ka, ks, ty Ď̃ xe1, ρ1, s1, ka1, ks1, t1y :“

if

¨

˝

e “ e1 ^ ka “ ka1 ^ t “ t1 ^ ρ “ ρ1

^ p@a P s.spaq Ď s1paqq
^ p@ka P ks.kspkaq Ď ks1pkaqq

˛

‚

then tt else ff

\ : pΣˆ pΣ Ñ pΣ

pσ \ pσ1 :“ pσ Y pσ1

K : pΣ :“ H

J : pΣ :“ J

(b) Lattice operations for pΣ

Figure 3.6: λS monadic abstract interpreter for interval analysis
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pmpAq :“ pΨ Ñ PpAˆ pΨq

returnpxqpψq :“ txx, ψyu

bindpXqpfqpψq :“
Ť

xx,ψ1yPXpψq fpxqpψ
1q

get-Envpxρ, s, ka, ks, tyq :“ txρ, xρ, s, ka, ks, tyyu

put-Envpρ1qpxρ, s, ka, ks, tyq :“ tx1, xρ1, s, ka, ks, tyyu

get-Storepxρ, s, ka, ks, tyq :“ txs, xρ, s, ka, ks, tyyu

put-Storeps1qpxρ, s, ka, ks, tyq :“ tx1, xρ, s1, ka, ks, tyyu

get-KAddrpxρ, s, ka, ks, tyq :“ txka, xρ, s, ka, ks, tyyu

put-KAddrpka1qpxρ, s, ka, ks, tyq :“ tx1, xρ, s, ka1, ks, tyyu

get-KStorepxρ, s, ka, ks, tyq :“ txks, xρ, s, ka, ks, tyyu

put-KStorepks1qpxρ, s, ka, ks, tyq :“ tx1, xρ, s, ka, ks1, tyyu

get-Timepxρ, s, ka, ks, tyq :“ txt, xρ, s, ka, ks, tyyu

put-Timept1qpxρ, s, ka, ks, tyq :“ tx1, xρ1, s, ka, ks, t1yyu

mzeropψq :“ tu

pX1x`yX2qpψq :“ X1pψq \X2pψq

(c) Monad definition

α : Σ Ñ pΣ
αpσq :“ tαpσq | σ P σu

α : Exp´ ˆΨ Ñ Exp´ ˆ pΨ
αpxe, ρ, s, ka, ks, tyq :“ xe, αpρq, αpsq, αpkaq, αpksq, αptqy

α : Env Ñ yEnv
αpρq :“ txx, xx, tρpxq.2ukyy | x P ρu

α : StoreÑ{Store
αpsq :“ λppaq.

Ů

αpaq“pa^aPs αpspaqq

α : KAddr Ñ {KAddr
αpkaq :“ tkauk

α : KStoreÑ {KStore

αpksq :“ λpxkaq.
Ť

αpkaq“xka^kaPks αpkspkaqq

α : TimeÑ{Time
αptq :“ ttuk

(d) Abstraction map α from Σ to pΣ

xJ¨K
m

: Exp´ Ñ pΣ
xJeK

m
:“ lfp λpxq. x\ {init-Statespeq

\ pγ
pΣØ pmpzstepmqqpxq

(e) Abstract semantics

Figure 3.6: λS monadic abstract interpreter for interval analysis
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set of available addresses, and this is achieved by restricting {Time to sequences of upto

k expressions (with the set of syntactic expressions contained in a program being finite),

as opposed to sequences of unbounded length for concrete interpreters. The notation tluk

refers to the first k elements of the list l. Values (yV al) are defined as a pair of a set of

closures and an integer interval. Note that we extend the set of integers Z to Z8 that

includes t´8,8u. The top element of the set of intervals is defined as x´8,8y while

bottom is defined by a special elementK. The reason for defining values as pairs of closures

and intervals is that, due to the finite number of addresses available in the store, it is possible

for a particular location to be mapped to values of both these types. The operations defined

for yV al are self-explanatory though we make a quick comment on notation - the projection

of the ith element of a tuple t is written as t.i, with indices starting from 1. All the other

definitions in Figure 3.6a are straightforward. Note that the abstract version of init-States

( {init-States) applies the abstraction map α, defined in Figure 3.6d to set of initial states

constructed by init-States. In the abstract setting, this set of initial states only contains a

single element, irrespective of whether the expression is closed, or if it has free variables

of type Z.

Figure 3.6b defines the lattice operations for pΣ. An element pσ of pΣ is itself a set of

abstract states. The lattice order operation (Ď) is defined such that pσ is “less than” pσ1 if

for every element σ P pσ, there exists at least one element σ1 P pσ1 such that σ Ď̃ σ1. Ď̃

is itself defined such that σ is “less than” σ1 if and only if σ and σ1 the expression, the

environment, the address of the next continuation, and the time components are the same,

and for every address in σ’s store s that is mapped to a value v, the same address in store

s1 in σ1 is mapped to a value v1 that is at least as large as v, and similarly, for every address

in σ’s continuation store ks that is mapped to a set X of continuations, the same address in

store ks1 in σ1 is mapped to a set X 1 that is equal to X or a superset of X . A comment on

the notation - we do not use distinct symbols to represent the lattice operations for different

lattices, but the lattice being considered should be clear from the context. The bottom of pΣ

74



lattice is just the empty set while the top is defined by the special element J.

Figure 3.6c defines the monad for the abstract interpreter and Figure 3.6d defines the

abstraction map from Σ to pΣ. The abstract version of an element σ P Σ is obtained by

abstracting each element σ P σ. In the same way that we do not notationally distinguish

between lattice operations for different lattices, we do not notationally distinguish between

the different abstraction operations, but the types involved should be clear from the context.

As one would expect, abstracting a concrete abstract machine state involves abstracting ev-

ery element of the state tuple. Environment abstraction requires abstracting the addresses

that variables are mapped to. These addresses are pairs of variable names and times, and

an abstract version of time t requires truncating the sequence of expressions to the latest k

expressions. A value store is abstracted by first abstracting the addresses in the store, and

then joining all the values that map to the same address. Similarly, continuation stores are

abstracted by abstracting the addresses, and then taking a union of all the sets of continua-

tions that map to the same address. Finally, the abstract semantics of a program in λS are

defined as the least fixed point of a function that uses the abstract versions of the init-States

and the stepm functions, i.e., {init-States and zstepm.

We next state two propositions relating the λS monadic abstract interpreter to the monadic

concrete interpreter. As is typical in the theory of abstract interpretation, we would like to

state that the abstract interpreter is sound with respect to the concrete interpreter.

Proposition 14. (Soundness of zstepm with respect to stepm)

@σ P Σ. αppγΣØmpstepmqqpσqq Ď pγ
pΣØ pmpzstepmqqpαpσqq

Proposition 14 relates the concrete stepm function to the abstract zstepm function. In

particular, for every element σ P Σ, we want the abstraction of the result of applying stepm

to σ to be “less than” the result of applying zstepm to αpσq. This proposition does not

directly relate the concrete and abstract semantics of λS (which involve computing least

fixed points), but it can help us prove the soundness of xJ¨K
m

with respect to J¨K
m

. We can

prove this result by performing a case analysis on the structure of λS expressions, where
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the cases are the same as that considered by stepm. We do not present the proof here.

Proposition 15 states the soundness relationship between the abstract and the concrete

semantics. In particular, for every λS program e P Exp´, it states that the result of abstract-

ing the meaning of the program, as defined by the concrete semantics JeK
m

, is less than the

meaning defined by the abstract semantics xJeK
m

. In other words, the program semantic

invariant computed using xJ¨K
m

can be safely used in proofs of program correctness.

Proposition 15. (Soundness of xJ¨K
m

with respect to J¨K
m

)

@e P Exp´. αpJeK
m
q Ď xJeK

m

Proof. We only present an informal proof sketch. From a proof of proposition Proposi-

tion 14, a proof of this proposition can be constructed in standard manner using the fixed

point transfer theorem from [99]. In particular, the monotonicity of the functions λpxq. x\

{init-Statespeq\pγ
pΣØ pmpzstepmqqpxq and λpxq. x\ init-Statespeq\pγΣØmpstepmqqpxq, com-

bined with proposition Proposition 14 and the Knaster–Tarski theorem fixed point theorem

yields the required result.

�

3.4 Observational Abstract Interpreters

In the previous sections, we have defined the language λS(λSAq, and have discussed the

construction of a monadically-structured interpreter for λS . This monadic interpreter is pa-

rameterized, i.e., the types of data accessed by the interpreter are defined using typeclass-

like constructions. By suitably instantiating these typeclasses, one can recover the con-

crete semantics of the language. Additionally, one can also instantiate these typeclasses to

yield an abstract interpreter (in our case, an abstract interpreter capable of interval analy-

sis). From the perspective of proofs about program judgments, the monadic interpreter is

a meta-theoretic construction for computing semantic program invariants. The abstract se-

mantics or abstract meaning of a program, computed with a monadic abstract interpreter, is
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˝

Obs

˝
mo

return : @A.AÑ
˝
mopAq

bind : @A,B.
˝
mopAq Ñ pAÑ

˝
mopBqq Ñ

˝
mopBq

get-Env :
˝
mopEnvq

put-Env : Env Ñ
˝
mop1q

get-Store :
˝
mop

˝

Storeq

put-Store :
˝

StoreÑ
˝
mop1q

get-KAddr :
˝
mop

˝

KAddrq

put-KAddr :
˝

KAddr Ñ
˝
mop1q

get-KStore :
˝
mop

˝

KStoreq

put-KStore :
˝

KStoreÑ
˝
mop1q

get-Time :
˝
mop

˝

Timeq

put-Time :
˝

TimeÑ
˝
mop1q

mzero : @A.
˝
mopAq

¨x`y¨ : @A.
˝
mopAq ˆ

˝
mopAq Ñ

˝
mopAq

obs-Store : Exp´ ˆ V ar ˆ
˝

V al ˆ
˝

ObsÑ
˝
mop

˝

V alq

α
˝

ΣØ
˝
mo : p

˝

ObsÑ p
˝

Σ Ñ
˝

Σqq Ñ p
˝

ObsÑ pExp´ Ñ
˝
mpExp´qqq

γ
˝

ΣØ
˝
mo : p

˝

ObsÑ pExp´ Ñ
˝
mpExp´qqq Ñ p

˝

ObsÑ p
˝

Σ Ñ
˝

Σqq

(a) Type definitions
stepm

O
: Exp´ ˆObsÑ

˝
mopExp

´q

stepm
O
peq :“ do

ρÐ get-Env
e2 Ð case e of
e1 d e2 Ñ tickm

peq; pushpx˝d e2, ρyq; returnpe1q

if0pe1qte2ute3u Ñ do
tickm

peq; pushpxif0p˝qte2ute3u, ρyq; returnpe1q

aÑ do
v Ð JaK

mA
; fr Ð pop

case fr of
x˝d e1, ρ1y Ñ do

tickm
peq; put-Envpρ1q; pushpxv d ˝, ρyq; returnpe1q

xv1@˝, ρ1y Ñ do
tickm

peq; tÐ get-Time; sÐ get-Store
xλpxq.e1, ρ2y Ð Òppclo-Epv1qq
put-Envpρ2rx ÞÑ xx, tysq
v1 Ð obs-Storepxe1, x, v, oyq
put-Storeps\ rxx, ty ÞÑ v1sq; returnpe1q

xv1 ‘ ˝, ρ1y Ñ tickm
peq; returnpJ‘K

mδ
pxv1, vyqq

xif0p˝qte1ute2u, ρ
1y Ñ do

tickm
peq; put-Envpρ1q; bÐ Òppif0-Epvqq; refinepxa, byq

ifpbq then returnpe1q else returnpe2q

K Ñ returnpeq
returnpe2q

(b) Step function

J¨K
mO

: Exp´ ˆObsÑ
˝

Σo

JeK
mO
poq :“ lfp λpxq. x\ init-Statespeq \ pγ

˝

ΣØ
˝
mopstepm

O
qqpxqpoq

(c) Collecting semantics

Figure 3.7: λS observational interpreter
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a semantic invariant of the program and a simplified representation (informally, containing

lesser information) of the concrete program meaning.

We want to combine semantic invariant based reasoning, with reasoning hypothetically

about program via run time/dynamic checks. Moreover, we want to use observations about

program behavior for inferring the hypotheses. We achieve this by extending the monadic

interpreter design, proposing a new meta-theoretic construction for reasoning about pro-

grams, that we refer to as observational abstract interpreters. There are two main reasons

motivating our construction of observational abstract interpreters: (i) past work has in-

vestigated various combinations of invariant-based reasoning, hypothetical reasoning, and

observational reasoning about programs, but there has been an absence of formal inves-

tigation of approaches combining these three reasoning styles. A precise formulation of

a combined approach can bring greater clarity about the design space of algorithms for

finding proofs of program judgments. (ii) hypothetical reasoning about programs using

observations about their behavior can help us focus the program proof effort towards the

observed or common program behaviors, potentially making the the search for program

proofs cheaper, at the cost of dynamic/run time checks.

In Figure 3.7, we present an observational abstract interpreter for λS . This interpreter

is monadically structured, and designed such that while the semantic invariant, i.e., the

program semantics, is being computed, the interpreter can read data representing observa-

tions about program behavior, use these observations to make hypotheses about program

behavior, and accordingly update the state of the interpreter. Moreover, the validity of these

hypotheses is not checked statically, and instead, we embed dynamic checks in to the λS

programs, producing λSA programs. In the process of designing an observational abstract

interpreters, following are the main questions that we were forced to address:

• What is the form of the observational data about programs? What aspects of program

behavior does it capture?

• How do we infer the hypotheses using the observational data? Moreover, how do we
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avoid inferring too many hypotheses/dynamic checks, and how do we ensure that the

inferred hypotheses are not overly restrictive, such that the program fails to satisfy

the dynamic checks in most cases?

• How do we translate the hypotheses in to dynamic checks embedded in the program?

For the first question, the observational abstract interpreter design in Figure 3.7 assumes

that the observational data is drawn from the collecting semantics, i.e., the set of reachable

abstract machine states, of a λS program. However, the exact form of the observations

is left unspecified ( we give a specific definition for the observational interval analysis

defined in Figure 3.8). Using observations about program inputs in order to infer program

pre-conditions is not uncommon [100], but our design allows observations at any program

point, and about any component of the abstract machine. In Figure 3.7, the typeclass
˝

Obs,

with no constraints, represent the types of observations. We use the blue background to

highlight parts of the observational interpreter design that are unique. We do not show any

type definitions besides the monad typeclasses and elide the helper functions because these

are similarly to the definitions in Figure 3.4.

To address the second question, we extend the monad typeclass with the operation

obs-Store as shown in Figure 3.7a. This operation requires that a 4-tuple comprising of the

current expression being evaluated, a variable name, the value associated with the variable,

and the observational data is passed as an argument. We also modify stepm such that

whenever the term in the argument position of a function application is evaluated to a

value and the next step of the evaluation is to actually apply the function to this value,

the observational interpreter first invokes the obs-Store operation with the name of the

argument (say x) and it’s evaluated value (say v). Next, instead of substituting x with v

in the function, we substitute it with the value (say v1) returned by obs-Store (say v1). The

hypothesis that the value of x is v1 instead of v is the only form of hypothesis that the

observational interpreter is allowed to make. The mechanism for computing v1 is hidden

behind the monadic interface. Notice that the observational data is passed as an argument
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to the stepm
O

function. This is also forces us to change the type definitions of α
˝

ΣØ
˝
mo and

γ
˝

ΣØ
˝
mo (Figure 3.7a) that map between the monadic step function and transition function

of type
˝

Σ Ñ
˝

Σ. Moreover, the observational collecting semantics (J¨K
mO

) are also modified

to accept observations as an argument.

We address the third question in the specific context of an observational abstract inter-

preter for an interval analysis of λS programs in the next section.

3.4.1 Observational Interval Analysis for λS

We instantiate the generic observational interpreter for λS so as to yield an observational

abstract interpreter for interval analysis of λS programs as described in Figure 3.8. The

type definitions are presented in Figure 3.8a. Notice that observations (Obs) are defined as

a partial map from labels to partial maps from variables names to sets of values. We assume

that program observations are recorded at the granularity of syntactic program expressions,

explicitly identified by their labels. Moreover, for each expression we can record a set of

observed values for any variable in scope. We also assume that only the values of type Z

are recorded. Extending this approach to with observations of higher-order values is an

interesting direction for future work. The observational abstract interpreter computes an

element pσo P pΣo, where each element pσo is a pair of a set of abstract machine states and

the hypotheses map. A hypotheses map h is a partial map from labels to partial maps from

variables names to abstract values. Intuitively, the interpreter can make hypotheses at the

granularity of syntactic program expressions. At each program expressions, hypotheses can

made about the abstract values of the variables in scope. Though the type of hypotheses

maps (Lbl á V ar á yV al) allows assumptions about higher-order values, the observa-

tional abstract interpreter defined here only makes assumptions on Z values. Initially, the

hypotheses map is assumed to be K, as the definition of {init-Stateso shows.

Figure 3.8b defines the lattice operations for the lattice pΣo. We draw notice to the

definitions of the lattice operations for the hypotheses map. A hypotheses map h is “less
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o P Obs :“ Lbl á pV ar á PpZqq
h P Hyp :“ Lbl á pV ar á yV alq

ψ P pΨ :“ yEnv ˆ{Storeˆ {KAddr ˆ {KStoreˆ{Time

pσo P pΣo :“ PpExp´ ˆ pΨq ˆHyp
{init-Statesopeq :“ xαpinit-Statespeqq,Ky

α
pΣØ pmo : pObsÑ ppΣo Ñ pΣoqq Ñ pObsÑ pExp´ Ñ pmopExp

´qqq

α
pΣØ pmopfqpoqpeqpxψ, hyq :“ fpoqpxtxe, ψyu, hyq

γ
pΣØ pmo : pObsÑ pExp´ Ñ pmopExp

´qqq Ñ pObsÑ ppΣo Ñ pΣoqq

γ
pΣØ pmopfqpoqppσoq :“ let xX, hy :“ pσo in
x
Ť

xe,ψyPX fpoqpeqpxψ, hyq.1,
Ů

xe,ψyPX fpoqpeqpxψ, hyq.2y

(a) Type definitions

Ď: pΣo ˆ pΣo Ñ Bool

pσo Ď pσ1o :“

ifpp@σ P pσo.1.Dσ
1 P pσ1o.1. σ Ď̃o σ

1q ^ ppσo.2 Ď pσ1o.2qq
then tt else ff

Ď̃o : pExp´ ˆ pΨq ˆ pExp´ ˆ pΨq Ñ Bool
Ď̃o :“ Ď̃

Ď: HypˆHypÑ Bool
h Ď h1 :“ ifp@l P h.@x P hplq.hplqpxq Ě h1plqpxqq

then tt else ff

\ : pΣo ˆ pΣo Ñ pΣo

pσo \ pσ1o :“ xpσo.1Y pσ1o.1, pσo.2\ pσ1o.2y

\ : HypˆHypÑ Hyp
h\ h1 :“
let f :“ pλpxq. ifpx P hplq ^ x P h1plqq

then ifphplqpxq “ h1plqpxqq then hplqpxq else K
else ifpx P hplqq then hplqpxq else h1plqpxqq in

let g “ pλpxq. ifpl P h^ x P hplqq
then hplqpxq else ifpl P h1 ^ x P h1plqq then h1plqpxqq in

tf | l P h^ l P h1u Y tg | l P h xor l P h1u

K : pΣo :“ xH,Ky

J : pΣo :“ xJ,Jy

(b) Lattice operations for pΣo

Figure 3.8: λS observational abstract interpreter for interval analysis
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pmopAq :“ pΨˆHypÑ PpAˆ pΨq ˆHyp

obs-Store : Exp´ ˆ V ar ˆyV al ˆObsÑ pmop
yV alq

obs-Storepxe, x, v, oyqpxψ, hyq :“
ifpget-Labelpeq P h^ x P hpget-Labelpeqqq then t
xtxxv.1, phpget-Labelpeqqpxqq.2y, ψyu, hy

u else ifppget-Labelpeq P oq ^ px P opget-Labelpeqqqq thent
let vO :“ αpopget-Labelpeqqpxqq in
let distance :“ dpv.2, vOq in
ifpdistance ě ω ^ vO Ď v.2q thent
xtxxv.1, vOy, ψyu, h\ rget-Labelpeq ÞÑ rx ÞÑ xH, vOyssy

u else xtxv, ψyu, hy
u else xtxv, ψyu, hy

returnpxqpxψ, hyq :“ xtxx, ψyu, hy

bindpXqpfqpxψ, hyq :“ let xY, h1y :“ Xpxψ, hyq in
Ť

xx,ψ1yPY fpxqpxψ
1, h1yq

get-Envpxxρ, s, ka, ks, ty, hyq :“ xtxρ, xρ, s, ka, ks, tyyu, hy

put-Envpρ1qpxxρ, s, ka, ks, ty, hyq :“ xtx1, xρ1, s, ka, ks, tyyu, hy

get-Storepxxρ, s, ka, ks, ty, hyq :“ xtxs, xρ, s, ka, ks, tyyu, hy

put-Storeps1qpxxρ, s, ka, ks, ty, hyq :“ xtx1, xρ, s1, ka, ks, tyyu, hy

get-KAddrpxxρ, s, ka, ks, ty, hyq :“ xtxka, xρ, s, ka, ks, tyyu, hy

put-KAddrpka1qpxxρ, s, ka, ks, ty, hyq :“ xtx1, xρ, s, ka1, ks, tyyu, hy

get-KStorepxxρ, s, ka, ks, ty, hyq :“ xtxks, xρ, s, ka, ks, tyyu, hy

put-KStorepks1qpxxρ, s, ka, ks, ty, hyq :“ xtx1, xρ, s, ka, ks1, tyyu, hy

get-Timepxxρ, s, ka, ks, ty, hyq :“ xtxt, xρ, s, ka, ks, tyyu, hy

put-Timept1qpxxρ, s, ka, ks, ty, hyq :“ xtx1, xρ1, s, ka, ks, t1yyu, hy

mzeropxψ, hyq :“ xtu, hy

pX1x`yX2qpxψ, hyq :“ X1pxψ, hyq YX2pxψ, hyq

(c) Monad definition

α : Σ Ñ pΣo

αpσq :“ xtαpσq | σ P σu,Ky

(d) Abstraction map α from Σ to
pΣo

xJ¨K
mO

: Exp´ ˆObsÑ pΣo

xJeK
mO
poq :“ lfp λpxq. x\ {init-Statesopeq

\ pγ
pΣØ pmpzstepm

O
qqpxqpoq

(e) Abstract semantics

Figure 3.8: λS observational abstract interpreter for interval analysis
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i P Intrvl : Z8 ˆ Z8
d : Intrvl ˆ Intrvl Ñ RY t´8,8u

dpxi, i1yq :“ let X :“ t´8,8u in
ifpi.1 P X _ i.2 P X _ i “ K_ i1.1 P X _ i1.2 P X _ i1 “ Kq
then 8
else max px|i.1´ i1.1|, |i.2´ i1.2|yq

Figure 3.9: Metric structure on intervals

embedt : Exp´λS ˆ pLbl ˆ V ar ˆ
yV alq Ñ Exp´λSA

embedtpxe, xl, x, vyyq :“ let v1 :“ v.2 in
let e1 :“ if0pαpxq Ď v1qteutabortu in
ifpget-Labelpeq “ lq then e1 else e

Figure 3.10: Translation of λS programs in to λSA programs with embedded dynamic
checks (assuming that Ď returns 1 for tt and 0 for ff )

than” a hypotheses map h1 if for every label and variable for which h includes a hypothesis,

h1 has a stricter hypotheses, i.e., assumes a narrower interval of Z. The join operation for

hypotheses maps h and h1 looks messy but the intuition is simple - whenever a hypothesis

is defined for one map but not the other, we defer to the map with the definition, but in case

both the maps have hypotheses defined for a particular combination of label and variable,

then we require the two hypotheses be equal, or the join produces the bottom element of

the yV al lattice as the joined hypothesis. The bottom element of the Hyp lattice makes no

hypotheses whereas the top element of the Hyp lattice makes the strictest possible possible

hypothesis for every label and variable.

Figure 3.8c defines the monad pmo for observational abstract interpreters. The only inter-

esting definition is that of obs-Store. The other monad operations are similar to the defini-

tion of the monad operations for the monadic abstract interpreter in Figure 3.6e. obs-Store

expects a 4-tuple of expression, variable name, value, and the observations (xe, x, v, oy). It

extracts the label of the expression e using the get-Label function, and checks if a hypothe-

sis has been already made for variable x at label t, and if so, it replaces the second element
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of v (recall that an abstract value is a pair of a set of closures and an interval) with the

hypothesis. In case there is no preexisting hypothesis, and if the observations map includes

a set of observed values of x at label t, then the set of observed Z values is first abstracted

to an interval pvo (assumed here to be tightest possible interval abstraction of the set of ob-

served values, though other choices are possible). Next, the distance between the intervals

pv and v.2 is computed. Such a distance computation is possible because we give a metric

structure to the set of intervals (defined in Figure 3.9). Finally, if the distance is greater

than a fixed constant ω (we expect value of ω to be empirically derived), and if pvo Ď v.2,

then we replace v.2 with pvo, and update the hypotheses map accordingly.

Figure 3.8d defines the abstraction map α from Σ to pΣo. The abstraction map reuses the

definition of the abstraction map from Figure 3.6d for the set of abstract machines states,

but the hypotheses map is always assumed to be K. Finally, the observational abstract

semantics, defined in Figure 3.8e take the standard least fixed point form, except that the

observations map is expected as an input.

The metric structure on the set of intervals in defined in Figure 3.9. A set X has a

metric structure for all elements x, y, z in X , if a function dp¨, ¨q producing a value of type

R is defined for X , such that the following conditions hold true,

• dpx, yq “ 0 ðñ x “ y

• dpx, yq “ dpy, xq

• dpx, zq ď dpx, yq ` dpy, zq

Finally, Figure 3.10 describes the manner in which a hypothesis can be embedded in a

λS program. For ease of presentation, we define a function embedt that given a program e

from the set Exp´λS of λS programs with free variables of type Z, and a triple of a label,

variable name, and an abstract value (xl, x, vy), produces a λSA program e1 with the original

expression e wrapped in a dynamic check. We assume here that the abstraction map α and

the lattice operation Ď are computable functions that can be expressed in λSA. αpxq is
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written assuming that, whenever the labels match, variable x is in the scope of the object

program e and a normalized value is bound to x in the environment. The design of λSA and

the definition of embedt should be viewed in the same spirit as the design of a cast calculus

and the definition of a compiler of programs from a gradually typed surface language to the

cast calculus in the gradual typing literature.

Proposition 16 is a formal statement of the notion of soundness for our observational

abstract interpreter, relating the observational abstract semantics (xJ¨K
mO

) of a λS program in

Exp´ with the monadic concrete semantics (J¨K
m

) of the same. Intuitively, the proposition

states that for any expression e P Exp´ and for any observations map o, if we compute

the observational abstract semantics of e, producing the pair xpσ, hy, then the λSA program

e1 obtained by embedding the hypotheses map h in e is such that an abstraction of the

computed collecting semantics of e1 is less than or equal to pσ extended with an abort

abstract machine state. Note that J¨K
m

here denotes the monadic collecting semantics of λSA

which is exactly the same as for λS (in Figure 3.5) except for the abort operation. Also,

the statement here uses embed while Figure 3.10 defines embedt. embedpe, hq invokes

embedt on every subexpression of e, with every triple of a label, variable name, and an

abstract value (xl, x, vy) from h. We skip presenting the formal definition of embed.

Proposition 16. (Soundness of xJ¨K
mO

with respect to J¨K
m

)

@e P Exp´, o P Obs.

If xpσ, hy :“ xJeK
mO
poq, then, αpJembedpe, hqK

m
q Ď ppσ Y txabort,J,J,J,J,Jyuq

We do not present a proof of proposition Proposition 16 in this paper, though we be-

lieve that the observational abstract interpreter in Figure 3.8 is sound with respect to the

monadic concrete semantics of λS . The proof is challenging primarily because the func-

tion γ pΣØ pmopstepm
O
q of type pΣo Ñ pΣo is not monotonic.
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3.4.2 Discussion

Why do we expect program observations to help construct program proofs? The effec-

tiveness of program observations in helping construct program proofs can be explained if

the following three assumptions hold true: (i) Program environments have statistical infor-

mation. For instance, consider a program with a free variable of integer type, and imagine

that this program is “deployed” as a component of some system. There is some statistical

model describing how these integer inputs to the program are generated. (ii) Statistical

models of real-world phenomena rarely yield uniform distributions. It is much more com-

mon for the probabilistic mass of the distributions to be concentrated in small regions. (iii)

We may not know the statistical model describing the program environment but can collect

data about this model, i.e., we can observe independent and identically distributed (i.i.d.)

samples generated by the model. These i.i.d. samples or observations are either in the form

of program inputs, or in the form of subsequent abstract machine states.

If the above assumptions are valid, it is conceivable to make hypotheses, either about

program inputs or subsequent abstract machine states, that are true with a high probability

with respect to the input statistical model and to compute stronger program invariants under

these hypotheses. Since these hypotheses likely to be true, they are unlikely to trigger run

time aborts. We do not actually expect to know the input statistical model, but we use the

samples or observations from this distribution, in the form of program inputs or subsequent

abstract machine states, to infer likely hypotheses.

Comparison against strawmen approaches. We compare the style of program reason-

ing adopted by observational abstract interpreters with two other strawmen approaches:

(i) Most existing abstract interpreters can easily handle hypothetical reasoning by refining

the program environment based on observations of program inputs. However, observa-

tional abstract interpreters enable a strictly more general style of program reasoning. Since

observations can either be in the form of program inputs or in the form of subsequently

reachable abstract machine states, the refinements or hypotheses allowed by observational
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abstract interpreters can also either be about the program environment or about subsequent

reachable abstract machine states. This generality of observational abstract interpreters

is useful because it avoids the strong requirement that the program inputs be observable.

Instead, partial observability of abstract machine states suffices.

(ii) Instead of designing a sophisticated observational abstract interpreter with the “hy-

pothesis” mechanism, one could just use the embedding mechanism to generate a program

with dynamic checks and then run an off-the-shelf abstract interpreter on this program. In

other words, this second proposed strawman approach “separates” the process of inferring

dynamic checks and the process of computing invariants via an abstract interpreter. In

contrast, observational abstract interpreters allow fine-grained intermingling of these two

processes, with the information computed by the abstract interpreter guiding the choice of

dynamic checks, which in turn affects the invariants computed by the abstract interpreter.

This fine-grained intermingling of invariant computation with hypotheses inference allows

designing strategies for embedding dynamic checks in the program that can balance the

benefits of stronger invariants with the cost of dynamic checks.

Proofs of soundness and termination. Proving Proposition 16 as well proving that obser-

vational abstract interpreters terminate is a next step for this work. One of the challenges

in these proofs is that replacing computed abstract values with observed abstract values

leads to a non-monotonic abstract transformer. We believe that there are conditions that

can be imposed on the use of observations that would us allow to bypass the absence of

monotonicity and complete these proofs.

3.5 Related Work

There are many threads of work related to the ideas presented in this chapter, and we

described some of these connections in section 3.1. In this section, we further elaborate

on the use of data (or observations) for constructing program proofs and on embedding

dynamic checks in the programs to help construct program proofs.
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The program verification community has been exploring ways of combining the stan-

dard deductive/symbolic approaches in verification algorithms with ”data-driven” reason-

ing techniques. Observational abstract interpreters also fall in this bucket. In this section,

we briefly survey the space of ”data-driven” verification algorithms, organize this space,

and then positioning observational abstract interpreters within this organization.

Say that we are verifying a program p. Then the space of data-driven verification algo-

rithms can be divided into two classes: (i) algorithms that use observations or data about p

for constructing program proofs, (ii) algorithms that use data about programs other than p,

i.e. use “big code” in the form of repositories of existing programs and associated metadata,

for reasoning aboout programs and constructing program proofs. Observational abstract in-

terpreters belong to the first class of algorithms.

Using program observations for program proofs. There is a long history of using ob-

servations to make hypotheses about program behavior, and computing semantic invariants

under these hypotheses [101, 102, 103, 104, 105, 106, 107, 108, 109]. Our work on ob-

servational abstract interpreters formalizes this style of reasoning. A different line of work

uses program observations to guide CEGAR algorithms in their search for an appropriate

abstract semantics [110, 111, 112]. More recently, with the advances in statistical learning

algorithms, a number of techniques have been proposed that eschew the use of abstract

interpreters and instead use the observational data to iteratively infer (or learn) candidate

invariants that, if confirmed to be invariants (typically using an SMT-like decision proce-

dure), are used to help in the construction of program proofs [113, 114, 115, 116, 117, 118,

119, 120, 121, 122, 123, 124, 125]. Program observations have also been used to compute

candidate specifications [126, 127, 100, 128] or types of program modules [129, 130].

Using“big code” for program proofs. Using “big code”, i.e., a dataset of programs

and corresponding program metadata (like test cases, bug reports, program analysis results,

etc.), one can construct statistical models about the nature of programs that humans write,

and use these models to help reason about programs. With the rapid advances in compu-
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tational statistical modeling and machine learning in recent years, this style of reasoning

has become increasingly feasible. We give a small sampling here of the literature on using

statistical models for reasoning about programs. Statistical models have been used to, (i)

help in the computation of program invariants by aiding CEGAR algorithms in their search

for abstract semantics [131], as well as help tune abstract interpreter heuristics [132, 133,

134, 135, 136, 137, 138, 139], (ii) directly compute candidate program invariants or speci-

fications [140, 141, 142, 122], (iii) rank the list of bugs reported by a program analysis tool,

in order of the probability of the bug being a true program bug (as opposed to being a false

positive) [143, 144, 145] and to allow the use of developer provided feedback in order to

update the list of reported bugs [146, 143], (iv) guide the tactics to be used by proof search

algorithms [147, 148, 149, 150, 151, 152, 153], (v) infer the likely types or annotations of

a program [154, 155, 156, 157], or predict program behaviors [158, 159, 160].

Using dynamic checks for program proofs. The use of dynamic checks as a mecha-

nism to help with static reasoning about programs has been a topic of intense investigation

in recent years, particularly in the context of gradual typing [3, 4]. Gradual typing aims

to reason about programs written in a mixture of typing disciplines, and employs dynamic

checks, wherever necessary, to translate between the different typing discplines. However,

the idea of dynamic checks as an aid for type-based reasoning [161, 162, 163, 164, 5, 6,

129] and for computing more precise invariants [165, 166, 109, 167] has been repeatedly

used over the last thirty years. In the opposite direction, starting from programs already

embedded with dynamic checks or constracts, static reasoning has been used to remove the

dynamic checks, if possible and reduce the run time overhead [168, 169, 170, 171, 172,

173, 174, 175, 176, 177].

3.6 Conclusion

We study the proof strategies employed by algorithms that search for proofs of program

judgments. We are particularly interested in three broad strategies, namely, computing se-
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mantic program invariants, reasoning hypothetically about programs by embedding them

with dynamic/run time checks, and using data representing observations about program

behavior to help reason about a program. We present a meta-theoretic construction, re-

ferred as observational abstract interpreter, that combines these three reasoning strategies.

An observational abstract interpreter uses program observations to infer hypotheses about

program behavior, and computes hypothetical semantic invariants of the program. These

hypotheses are embedded in the program as dynamic checks. Our design of observational

abstract interpreters is heavily inspired by the abstracting abstract machines methodology

of Van Horn and Might for constructing concrete and abstract interpreters of higher-order

languages, and the monadically refactored design of these interpreters. We formalize our

ideas in the context of a simple higher-order language (λS) with built-in integers. We con-

struct an observational interpreter for interval analysis of λS programs.
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CHAPTER 4

FUTURE DIRECTIONS

The ideas presented in this dissertation, focused on algorithms for reasoning about pro-

grams in statistically modeled environments, can be extended in a number of ways as will

be described in this chapter. Additionally, inspired by the broader theme of combining

ideas from programming languages theory and from theoretical statistics, we sketch two

possible threads of future investigation, namely, algorithmic verification of probabilistic

programs and proving generalization guarantees for statistical learning algorithms using

tools from programming languages theory.

4.1 Neural Network Verification

We describe some possible extensions to our work on verification of neural networks.

1. Strategies for exploring the latent space: In algorithm 3, we do not describe the man-

ner in which the latent space should be explored. The design of this exploration strat-

egy is a key component controlling the performance of the algorithm. To tackle this

problem, one may use reinforcement learning for learning an agent with an explo-

ration strategy. Alternatively, one may analyze the generative model and the neural

network under analysis to unearth more information such that an effective strategy

maybe designed. However, what additional information might be useful remains an

open question.

2. Extending pcat language with loops: The pcat language is unable to express neural

network architectures like recurrent neural networks with looping constructions. Ex-

tending the languages with a looping construct is easy but verification of programs

in such a language becomes challenging with the need to compute loop invariants.
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3. Probabilistic robustness with respect to a family of input distributions: Our algorithm

for verifying probabilistic robustness of neural networks assumes that the input distri-

bution stays fixed. In other words, we certify a neural network to be probabilistically

robust with respect to a specific distribution. In practice, however, a trained neu-

ral network might get deployed in settings where the environments are similar but

not exactly the same, implying that the input distributions are not the same. Con-

sequently, it can be beneficial to certify probabilistic robustness of a neural network

with respect to a family of input distributions. Designing a verification algorithm for

this more challenging setting is an interesting direction for future research.

4.2 Observational Abstract Interpreters

Our work on observational abstract interpreters can be extended in a number of ways and

some of these are described below.

1. Languages with more features: We have formalized our ideas about observational

abstract interpreters in the context of a simple higher-order programming language

λS . In order to study and construct observational abstract interpreters for widely-

used languages, we need to extend our formalization to higher-order languages with

realistic features. Moreover, in present work, we only consider programs with first-

order inputs and only allow dynamic checks on first-order values. To extend our work

to programs with higher-order inputs, one can build on approaches for higher-order

abstract interpretation [178, 179]. To allow higher-order dynamic checks, a starting

point is to consider the work on higher-order contracts [180].

2. Statistical guarantees about probability of failure: Dynamic checks (or hypotheses)

are inferred by observational abstract interpreters using the observed program behav-

ior. The inferred dynamic checks should have a low probability of being violated

at run time. Though our hypothesis inference strategy is designed with this goal, at
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present, our framework provides no guarantees about the probability of failure of the

dynamic checks. We would like extend our work to provide upper bounds on failure

probabilities or estimates of the failure probability along with confidence intervals

3. Observational type inference: There is a close relationship between type inference

and abstract interpretation [181, 182]. We believe that it would be very interesting

to apply the notions of dynamic checks inferred from observations and hypothetical

invariants in the setting of type inference. This would additionally make the relation-

ship between our work and gradual type systems explicit.

4.3 Verification of Probabilistic Programs

We would like to construct fully automated algorithms capable of efficiently finding proofs

or violations of correctness specifications of probabilistic programs. Previous work in this

area has not provided an approach that is fully automatic and scales to large, realistic pro-

grams. Existing approaches are either based on interactive proofs [41, 42, 183], require

manually-provided program annotations and complex side-conditions on program structure

[44, 45], or are only capable of providing statistical guarantees of correctness of probabilis-

tic programs [46, 47]. On the other hand, existing fully automated proof-search algorithms

capable of exact guarantees [10, 50] do not scale to large programs. A more geometric

perspective maybe beneficial in designing new verification algorithms for this task and is

deserving of more investigation.

4.4 Generalization Guarantees for Learning Algorithms

Statistical learning theory is the standard framework for reasoning about the generalization

guarantees of learning algorithms. 1 In this framework, the learning algorithm is described

as searching over a set of hypotheses or functions or programs. The cardinality of this set

1Consider reading [184] for a concise introduction
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can be finite or infinite. Assuming access to a finite number of samples, one would like

to give upper bounds on the error in the models learnt by a learning algorithm. From the

programming languages perspective, the learning algorithm is a program (usually, a proba-

bilistic program) that consumes samples and produces a model from the set of hypotheses

(or a program in a programming language). Further, we would like to prove that this proba-

bilistic program representing the learning algorithm satisfies a specification expressing the

required generalization guarantees. Generalization proofs crucially rely on the structure of

the set being explored by the learning algorithm. By expressing this set as a programming

language, can we simplify generalization proofs? Can we use this perspective to design

new learning algorithms that only search over a restricted the set of programs (for instance,

programs satisfying some logical specification) and prove stronger generalization guaran-

tees for these algorithms? There have been some investigations into such questions [185,

186, 187] but much exploration remains to be done.

94



REFERENCES

[1] L. A. Levin, “Average Case Complete Problems,” SIAM Journal on Computing,
vol. 15, no. 1, pp. 285–286, Feb. 1986.

[2] H. G. Rice, “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems,” Transactions of the American Mathematical Society, vol. 74, no. 2, pp. 358–
366, 1953.

[3] J. G. Siek and W. Taha, “Gradual typing for functional languages,” in In Scheme
and Functional Programming Workshop, 2006.

[4] S. Tobin-Hochstadt and M. Felleisen, “Interlanguage migration: From scripts to
programs,” in Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications, ser. OOPSLA ’06, Portland,
Oregon, USA: Association for Computing Machinery, Oct. 2006, pp. 964–974,
ISBN: 978-1-59593-491-8.

[5] C. Flanagan, “Hybrid type checking,” in Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL
’06, Charleston, South Carolina, USA: Association for Computing Machinery, Jan.
2006, pp. 245–256, ISBN: 978-1-59593-027-9.

[6] K. Knowles and C. Flanagan, “Hybrid type checking,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 32, no. 2, 6:1–6:34, Feb. 2010.

[7] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and M. Felleisen, “Is
sound gradual typing dead?” In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL ’16,
2016.

[8] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’77, Los Angeles, California: Association for Computing
Machinery, Jan. 1977, pp. 238–252, ISBN: 978-1-4503-7350-0.

[9] ——, “Abstract Interpretation Frameworks,” Journal of Logic and Computation,
vol. 2, no. 4, pp. 511–547, Aug. 1992.

[10] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic symbolic execution,” in
Proceedings of the 2012 International Symposium on Software Testing and Analy-
sis, ser. ISSTA 2012, Minneapolis, MN, USA: Association for Computing Machin-
ery, Jul. 2012, pp. 166–176, ISBN: 978-1-4503-1454-1.

95



[11] M. B. Dwyer, A. Filieri, J. Geldenhuys, M. Gerrard, C. S. Păsăreanu, and W. Visser,
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