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SUMMARY

Spatio-temporal data have become increasingly prevalent and important for in many sci-

entific fields (e.g., climate, systems neuroscience, seismology) and enterprises (e.g., geo-

tagged tweets). Such data are typically embedded in an arbitrary grid. The grid cells,

however, do not correspond to functionally distinct units. One major task is to identify the

distinct semi-autonomous functional components of the system and to infer their intercon-

nections.

Common computational analysis methods for such data include standard time series analy-

sis, clustering, community detection, and multivariate statistical methods (e.g., PCA/ICA).

However, as we also demonstrate using synthetic data, each of these classes of methods

have important limitations in terms of accuracy and flexibility.

In this thesis, we propose two methods that first identify the functional components of

a spatio-temporal system as spatially contiguous sets of grid cells, homogeneous to the

underlying field. At a second step, an edge inference process identifies the possibly lagged

and weighted connections between the system’s components, applying a multiple-testing

process controlling for the rate of false positives. The inferred network is modeled as a

weighted and directed graph. The weight of an edge accounts for the magnitude of the

interaction between two components; the direction (and lag) associated with each edge

accounts for the temporal ordering of the interactions between the system’s components.

The first method, geo-Cluster, infers the spatial components as ”areas”. An area is a spa-

tially contiguous, non-overlapping, set of grid cells that satisfy a homogeneity constraint

in terms of their average pair-wise cross-correlation. However, in real physical systems the

underlying physical components might not have crisp boundaries (i.e., they might overlap).

To account for this we also propose δ-MAPS, a method that first identifies the epicenters

xvi



of activity of the functional components of the system and then creates domains - spatially

contiguous, possibly overlapping, sets of grid cells that satisfy the same homogeneity con-

straint.

The proposed framework is applied in climate science and neuroscience. In the context of

climate we show how such methods can be used to infer climate shifts, evaluate cutting

edge climate models and identify lagged relationships between different climate regions.

In the context of neuroscience, the method is applied to resting state fMRI data and suc-

cessfully identifies well-known ”resting state networks” as well as a few areas that are

strongly interconnected to each other, forming the backbone of the functional cortical net-

work.

xvii



Chapter I

INTRODUCTION

Many real world systems are modeled as an ensemble of distinct components that are as-

sociated via a complex set of connections. In some systems both the elements and their

connections are obvious (e.g., Internet routers as nodes, cables between routers as edges).

In others, the underlying mechanisms for remote connections are unknown a priori (e.g.,

social networks) and it is non-trivial to identify the distinct functional components of the

system (e.g., functional regions in the human brain). This is usually the case with systems

embedded in a spatio-temporal field.

In recent years, spatio-temporal data have become increasingly prevalent and important

for in many scientific fields (e.g., climate, systems neuroscience, seismology) and enter-

prises (e.g., geo-tagged tweets). Such data are typically embedded in an arbitrary grid. The

grid cells, however, do not correspond to functionally distinct units. One major task is to

identify the distinct semi-autonomous components of the system. A second is to infer the

strength of their (potentially lagged) interconnections.

A typical approach to study spatio-temporal systems is to model them as networks.

Typically, the grid cells are the nodes of the network and the edges of the network corre-

spond to statistically significant linear [153] or non-linear [53] relationships between the

grid cell time series. These networks are modeled either as binary [165] or weighted graphs

[68]. Such methods have been successfully employed to forecast El Niño events [105], un-

cover interesting global-scale patterns responsible for the transfer of energy throughout the

oceans [52], investigate changes in the network structure due to neurobiological disorders

[138] and many more. The main drawback of such an approach is that the size and number

of the nodes (i.e., grid cells) are arbitrarily determined by the measurement technique and
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do not correspond to functionally distinct units.

1.1 Dimensionality reduction methods for spatio-temporal data

To uncover the functional components of a spatio-temporal system, it is necessary to iden-

tify the dimensionality in the spatial domain. This can be accomplished through the use of

spatial dimensionality reduction techniques.

A common approach to reduce the dimensionality of a spatio temporal system is through

multivariate statistical methods. Examples of such methods include Principal Component

Analysis (PCA) [92], also known as Empirical Orthogonal Function (EOF) analysis [167],

and Independent Component Analysis (ICA) [89]. PCA (standard or rotated) aims to de-

compose the observed data into orthogonal vectors (i.e., the principal components) of high

energy content in terms of the variance of the signal. Known drawbacks of PCA include the

fact that lower variance components are masked by higher variance ones, and so the anal-

ysis is typically limited to the first one-two principal components, as long as they explain

most of the variance. Further, the orthogonality between PCA components complicates the

interpretation of the results making it difficult to identify the distinct functional compo-

nents and separate their effects [50]. ICA separates a mixed signal into independent, non-

Gaussian components. In contrast to PCA there is no orthogonality constraint imposed on

the identified components. However, one cannot determine the variance, sign, or the correct

ordering of the independent components. In other words, ICA does not provide a relative

significance for each component and the number of independent components should be

chosen based on some additional information about the underlying system. Finally, an in-

dependent/principal component does not represent a distinct functional component; it is the

mixture of many functional components.

Another broad family of spatio-temporal dimensionality reduction methods is based on

2



clustering [60, 90]. Examples of clustering algorithms include region growing [104], par-

titioning [139], hierarchical [24], spectral [160] and probabilistic [83] methods. The func-

tionality and scope of each method differs but they share some common characteristics.

For instance, every grid cell needs to belong to a cluster while the actual number of clusters

is often required as an input parameter. Further, the identified clusters are non-overlapping

and might not be spatially contiguous. In particular, the lack of spatial contiguity makes it

hard to distinguish between correlations due to spatial diffusion (or dispersion) phenomena

from correlations that are due to remote interactions between clusters. Relevant to clus-

tering are community detection techniques [8, 145], which are applied on the cell-level

network directly. In contrast to clusters, communities can be overlapping [4, 116], however

there is no spatial contiguity constraint. Further, community detection methods do not de-

couple the identification of the functional components, to the connections that these have

with each other. Two components in the same community might have different connectivity

patterns to the rest of the network.

1.2 A framework for the analysis of spatio-temporal systems

In this thesis, we propose a framework that first identifies the distinct semi-autonomous

components of a spatio-temporal system as spatially contiguous clusters of grid cells. At a

second step, the (possibly lagged) interactions between them are inferred and their magni-

tude is assessed.

1.2.1 geo-Cluster

In detail, we first propose geo-Cluster, a method that first infers the spatial components of

the underlying system as “areas”. An area is a spatially contiguous, non-overlapping, set of

(two or more) grid cells that satisfy a homogeneity constraint based on their average pair-

wise cross-correlation. For parsimony reasons the proposed method aims to maximize the

size of the identified areas. The method requires a single parameter which determines the

minimum degree of homogeneity of the grid cells in each area. Next, a complete weighted
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network between the identified areas is inferred, modeling the functional relationships be-

tween them. The weight of an edge corresponds to the covariance between the area time

series, accounting for the power of the signal of each area as well as the correlation between

the area time series.

The proposed method has been shown to be robust to noise, the resolution of the under-

lying grid, the parameter that determines the minimum degree of homogeneity in an area,

and the metric used to quantify the similarity between the grid cell time series. geo-Cluster

has been extensively applied to climate data to investigate climate shifts and to construct

interdependent networks [71] between different climate domains. Further, the method is

applied to evaluate cutting edge climate models assessing their ability to reproduce the cli-

mate in the past and investigating the model trajectories under a future climate warming

scenario.

1.2.2 δ-MAPS

In real physical systems the underlying spatial components might not have crisp boundaries

[63] and their interactions might not be instantaneous. To this end, we propose δ-MAPS; a

method that identifies spatially contiguous and possibly overlapping components referred

to as “domains”, and identifies the lagged functional relationships between them. Infor-

mally, a domain is a spatially contiguous region that somehow participates in the same

dynamic effect or function. The latter will result in highly correlated temporal activity be-

tween grid cells of the same domain. Thus, δ-MAPS first identifies the epicenters of activity

of a domain. Next, it identifies a domain as the maximum possible set of spatially contigu-

ous grid cells that include the detected epicenters and satisfy a homogeneity constraint

(based again on the average pair-wise correlation of the grid cells in the domain’s scope).

After identifying the domains, δ-MAPS infers a functional network between them. The

proposed network inference method examines the statistical significance of each lagged

correlation between two domains, applies a multiple-testing process to control the rate of
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false positives, infers a range of potential lag values for each edge, and assigns a weight

to each edge reflecting the magnitude of interaction between two domains. δ-MAPS is

related to clustering, multivariate statistical techniques and network community detection.

However, as we discuss and also show with synthetic data, it is also significantly different,

avoiding many of the known limitations of these methods.

We illustrate the application of δ-MAPS on data from two domains: climate science

and neuroscience. First, the sea-surface temperature (SST) climate network identifies some

well-known teleconnections (such as the lagged connection between the El Niño Southern

Oscillation and the Indian Ocean). Second, the analysis of resting state fMRI cortical data

confirms the presence of known functional resting state networks (default mode, occip-

ital, motor/somatosensory and auditory), and shows that the cortical network includes a

backbone of relatively few regions that are densely interconnected.

1.3 Organization

The thesis is organized as follows. In Chapter II we present related work on network infer-

ence and dimensionality reduction techniques for spatio-temporal data. Using a synthetic

data set, in which the functional components and their interconnections are known, we con-

trast such methods to the proposed framework and identify key differences and limitations

for each method. In Chapter III we propose geo-Cluster [66], provide robustness results

and show example applications in the field of climate science. In Chapter IV we provide an

extensive application of geo-Cluster to evaluate cutting edge climate models [67]. In Chap-

ter V, we propose δ-MAPS [65]. We compare δ-MAPS to the most common dimensionality

reduction methods and show its application on the fields of climate and neuroscience. Fi-

nally, Chapter VI provides the main conclusions from this thesis and an outlook for future

work.
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Chapter II

RELATED WORK

There exist several methods to analyze spatio-temporal data, from simple time series analy-

sis, to dimensionality reduction methods (e.g., PCA/clustering), to network based methods.

The proposed framework combines ideas from the latter two approaches. In the following,

we first introduce a synthetic data set in which both the functional components of the system

and their interactions are a priori known. We shall use this data set to illustrate limitations

of existing dimensionality reduction approaches. Next, we provide a brief overview of

the network based approach. We conclude by presenting various dimensionality reduction

techniques, contrasting them to the proposed approach, in terms of their ability to uncover

the functional components of a spatio-temporal system and their interactions.

2.1 Synthetic Data Generation

To better highlight the limitations and differences of various dimensionality reduction

methods, we first introduce an example in which we know both the dimensionality of the

spatio-temporal system as well as the interactions between the different components of the

system.

We construct five domains (modeled as spatially contiguous regions) on a 50×70 spatial

grid. Each domain i is associated with a “mother” time series yi(t), (i=1. . . 5). To make the

experiment more realistic in terms of autocorrelation structure and marginal distribution,

each yi(t) is a real fMRI time series with length T=1200 (see Section 5.6). The five mother

time series yi(t) are uncorrelated (absolute cross-correlation < 0.05 at all lags), and they

are normalized to zero-mean, unit-variance. To create correlations between domains (i.e.,

domain-level edges), we construct five new time series xi(t) based on linear combinations

of two or more mother time series. For instance, if we set xi(t) = (1−α)yi(t)+αyj(t+ τ)
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with 0 < α < 1 and xj(t) = yj(t), domains i and j become positively correlated at a lag

τ ; the correlation increases with α. The time series xi are again normalized to zero-mean,

unit-variance. We then scale the time series of domain i by a factor
√
si to control the

variance of each domain (Var[xi(t)] = si).

For simplicity, each domain is a circle with radius rp. A domain has a “core region”

with the same center and radius rc < rp; the core is supposed to be the epicenter of that

domain. Every point in the core has the same signal xi(t) (before we add random noise).

Outside the core, the signal attenuates at a distance d from the center of the domain as

follows:

xi(t) =
√

f(d)xi(t), f(d) =
rp − d

rp − rc
, rc ≤ d ≤ rp . (1)

The parameters of the five synthetic domains are shown in Table 1. The domains differ

in terms of size and power (variance). The spatial extent of the domains is shown in Fig.1-

A; domains 1 and 3 overlap with domain 2, while domains 4 and 5 also overlap to a smaller

extent. Further, there is a strong and lagged anti-correlation between domains 1 and 3,

a weaker positive correlation at zero-lag between domains 4 and 5, and an ever weaker

positive correlation at zero-lag between domains 3 and 5. The edges of the domain-level

network are also shown in Fig.1-A.

Table 1: Synthetic domain generation parameters.

ID rc rp si xi(t)
1 2 10 16 x1(t) = 2/3y1(t)− 1/3y3(t+ 15)
2 4 14 11 x2(t) = y2(t)
3 2 10 16 x3(t) = y3(t)
4 0.5 5 9 x4(t) = 3/4y4(t) + 1/4y5(t)
5 1 7 6 x5(t) = 4/5y5(t) + 1/5y3(t)

2.2 Network Based Methods

Spatio-temporal data are usually embedded in a two or three dimensional grid; each grid

cell contains time series of measurements for a given variable. Such a data set can be nat-

urally modeled as a network. The grid cells play the role of the nodes in the network. The

7



edges of the network are inferred based on statistically significant relationships between

the grid cell time series [52, 106, 117]. The network can be modeled either as a binary

[153] or weighted [68] graph.

All these methods require a statistical test to distinguish between significant and non-

significant edges. Naive approaches to the problem include using a fixed threshold [153] or

requiring the network to have a fixed density [142]. More sophisticated approaches such as

using surrogate time series also exist (see e.g., [100, 107, 127]). However, methods based

on surrogate time series are computationally expensive (compared to the naive approach)

and might not scale for finer-scale resolution data.

The network based approach has been successful in many fields. For example, complex

network approaches have been used to forecast El Niño events [105], map brain regions that

are most likely to be affected by pathological changes [45], identify structures responsible

for the transfer of energy in oceans [52], show how some diseases (such as Alzheimer’s)

can affect the functional structure of the brain network [147] and many more. The main

drawback of such an approach is that the size (and number) of the nodes are arbitrarily

determined by the measurement technique and do not correspond to functionally distinct

units. To counter this problem there has been an effort to identify modular networks. From

the network perspective, a module (or community) corresponds to a set of grid cells highly

interconnected to each other and less connected to the rest of the world. The identification

of communities in networks is a concept similar to clustering and will be discussed further

in Section 2.3.4.

2.3 Dimensionality Reduction methods

In this section we provide an overview of dimensionality reduction methods used to analyze

spatio-temporal data. For each family of methods we show their limitations, when the ob-

jective is to identify the functional components and their interconnections in our synthetic

data set.
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Figure 1: A: The five ground-truth domains. Adjacent domains have different colors,
overlapping regions shown in black, and the core of each domain is in blue. The three

constructed edges are shown in gray lines. B: The homogeneity field r̂K(i) at each cell.
The identified seeds are shown in blue. C: The inferred domains: adjacent domains have
different colors and overlaps are shown in black. D: The inferred domain-level network:

the color map refers to the edge correlation. The lag associated with each edge is also
shown. E,F,G: The first three EOF (PCA) components. The variance explained by each

component is shown at the top of each figure. H,I: The two ICA components. J,K:
K-means clustering. L: The second hierarchical level of community structure as identified

by OSLOM: each community has a distinct color and overlaps are shown in black.

9



2.3.1 Principal Component Analysis

Principal Component Analysis (PCA), also known as Empirical Orthogonal Function (EOF)

analysis, is one of the oldest techniques used to analyze spatio-temporal data. PCA aims to

decompose the original set of variables into a new set of (principal) components that cap-

ture most of the observed variance of the data through a linear combination of the original

variables. The identified components are orthogonal to each other and each component is

assigned a value equal to the total variance explained by it.

PCA assumes that the dominant patterns are orthogonal in space and time (which is

not necessarily true, see [132] for a case relevant to climate). To overcome this problem

alternative methods (e.g., rotated PCA) exist [164] but require more user defined parameters

and sometimes split a single pattern into two different ones [167]. An interesting analysis

on how PCA results can be misleading is presented in [50].

We apply PCA using Matlab’s PCA toolbox. Fig. 1-E,F,G show the first three principal

components, which collectively account for about 90% of the total variance. A first obser-

vation is that domains 4 and 5 are not even visible in these components – they only appear

in the next two components, which account for about 5% of the variance each. This is be-

cause domains 4 and 5 are smaller and have lower variance. This is a general limitation of

PCA: the variance of the analyzed field can be dominated by a small number of “modes of

variability”, completely masking smaller/weaker regions of interest and their connections.

Second, the first three components do not provide a consistent evidence that domains 1

and 3 are strongly anti-correlated; this is due to their lagged correlation, which is missed

by PCA. Third, the first component, which accounts for 40% of the total variance, can be

misinterpreted to imply that domain 2 is somehow positively correlated with domains 1 and

3, even though it is actually generated by an uncorrelated signal. This is due to the overlap

of domain 2 with domains 1 and 3.
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2.3.2 Independent Component Analysis

A method typically used by the neuroscience community is Independent Component Anal-

ysis (ICA) [89]. ICA defines a model for the observed data; in the model the data are

assumed to be linear mixtures of some unknown latent variables (the independent compo-

nents). The mixing system is also unknown. The unknown latent variables are assumed

to be non-Gaussian and mutually independent. In general, given the observed signals x,

the goal is to identify the mixing matrix A and the independent components s such that

x = As. In contrast to PCA there is no orthogonality constraint on the independent com-

ponents but there is no way to determine the number, the variance, the sign, or the correct

ordering of the independent components. Thus, one should rely on empirical knowledge to

identify independent components that correspond to specific functional modules.

We apply ICA on the synthetic data using Matlab’s FastICA toolbox. To help ICA

perform better, we actually specified the right number of independent components, which

is two (domains 1,3,4,5 are indirectly correlated – domain 2 is not correlated with any

other). The two independent components are shown in Fig. 1-H,I. Note that only a rough

“shadow” of each domain is visible. Domains 1 and 3 appear in different colors, providing

a hint that they are anti-correlated, while domains 3 and 5 appear in the same color because

they are positively correlated. Overall, however, the components are quite noisy and it

would be hard in practice to discover the functional structure of the underlying system if

we did not know the ground-truth. The results are even harder to interpret when we request

a larger number of components.

2.3.3 Clustering based methods

A broad family of dimensionality methods is based on clustering [13, 139, 152, 160]. None

of these methods though guarantee that the identified clusters are spatially contiguous.

As we show next, spatial contiguity is an attractive property since it will enable us to

differentiate network nodes from large scale networks of nodes [17].
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We apply the most well-known clustering method, k-means, on our synthetic data. As

commonly done with correlation-based clustering, the distance between two cells i and j is

determined by the maximum absolute correlation across all considered lags, as 1 − |r∗i,j|1.

Fig. 1-J,K shows the resulting clusters for k=5 (the number of synthetic domains) and

6, respectively. For k=5, domains 1 and 3 form a single cluster because of their strong

anti-correlation; the same happens with domains 4 and 5. Further, two of the five clusters

(green and brown) cover just noise. The situation changes completely when we request

k=6 clusters. In that case, the overlapping regions in domain 2 form a single cluster, while

domains 1 and 3 are separated in different clusters.

More similar to the proposed framework is the notion of spatially contiguous clustering.

Identifying spatially contiguous clusters is a problem that arises in many fields, from image

processing [69], to geographical sciences [55], to studying the Earth’s climate [66] and

the human brain [44]. In general there exist two approaches to find spatial clusters. The

first approach is a semi-supervised approach where after the initial clusters are identified

subsequent (supervised) changes are made to merge them into spatially contiguous regions

[55]. Our focus here are unsupervised approaches, where the spatial contiguity criterion is

incorporated into the clustering algorithm.

A typical approach to identify spatially contiguous clusters is agglomerative hierar-

chical clustering. In such an approach each grid cell forms its own cluster and clusters

are iteratively joined, according to some distance measure, if they are spatially adjacent.

Many distance measures have been proposed in the literature. For example, in [79] the au-

thors evaluate a family of three different distance measures (single, average and complete

linkage) to cluster U.S. presidential election data into different regions. Essentially this

1In detail, the Pearson correlation between grid cells i, j and lag τ is given by ri,j(τ) =∑T−τ
t=1 (xi(t)−µ̃i)(xj(t+τ)−µ̃j)

T σ̃iσ̃j
, T being the time series length andµ̃i, σ̃i their empirical meand and standard

deviation respectively. |r∗i,j | = argmaxτ={−τmax...τmax} |ri,j(τ)|, with τmax being the maximum lag.
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hierarchical clustering process constructs a dendogram; by “cutting” horizontally the den-

dogram at a level of our choice we obtain the resulting clusters. In the case of the human

brain, hierarchical clustering has been applied to provide a full brain parcellation [111] and

to test clusters (rather than voxels) for activation during task based experiments [81].

Another popular clustering method with applications in fMRI is NCUT [44, 131].

NCUT is a graph based clustering method; edges are removed iteratively until a pre-

specified number of clusters is reached. The edges are removed such as to maximize the

similarity between the elements in the same cluster while maximizing the dissimilarity be-

tween elements in different clusters. Finding the optimal edge to remove is NP-Complete

and the method relies on an approximate solution (found by solving a generalized eigen-

value problem). One of the drawbacks of NCUT is that it is biased to identify clusters of

similar size (for a detailed description of the limitations of spectral clustering methods we

refer the reader to [112]). In [150] the authors compare NCUT to an agglomerative hierar-

chical clustering that uses Ward’s distance [169]. They show that the latter performs better

both in terms of reproducibility (i.e., sensitivity to noise) as well as in terms of accuracy.

Another group of clustering methods is based on the concept of region growing [2].

Typically, region growing methods start with a number of pre-specified seed regions (a

seed region contains only one grid cell). These regions grow by including grid cells similar

to them, until a homogeneity criterion is reached. Similar to our approach region growing

methods are based on the intuition that neighboring grid cells should have similar values.

In contrast to the proposed method, there is no merging of regions while these are growing.

Selecting the location of seed regions will affect the outcome of the clustering algorithm

and a couple of different approaches exist. For example, in [104] the authors propose that

all grid cells form a seed region. Having identified a seed region for each cell in the grid

they iteratively remove (and keep) the largest regions up to the point that only regions of

size less than an arbitrary threshold remain. In [24] the authors use the concept of stability

maps to select the seed regions and at a second step they use a hierarchical agglomerative
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clustering to identify functional regions in the cortex.

In contrast to geo-Cluster, all these clustering methods need as an input the number

of clusters to identify. Moreover, such clustering methods identify spatially contiguous

regions even if the underlying field is composed of noise. Further, many of these methods

(e.g. NCUT) can be applied only when the distances between grid cells are positive. If

the distance between the grid cell time series is captured by a measure which also takes

negative values (e.g., Pearson correlation witch is the norm) then the similarity matrix has

to be thresholded to remove them. Similarly to geo-Cluster, the borders of the clusters are

crisp and no overlaps are allowed.

An alternative to clustering are edge detection or border detection methods. Border

detection techniques are based on the idea that “pixels” or grid cells representing the same

object should have a similar value yet distinct from pixels belonging to another area. In

[15] for example, the authors use a graph based border detection technique to extract ho-

mogeneous regions from raster data. In [38, 76, 170] the idea of border detection is applied

to fMRI data where the authors try to delineate the borders of functional areas. Border

detection techniques are known to be sensitive to localized patches of noise in the data.

2.3.4 Community Detection Methods

All of these clustering methods suppose that the identified clusters are independent in the

spatial domain with their boundaries well defined. In reality, the borders of the clusters

might not be clearly demarcated. Some grid cells belonging to one cluster can belong to

other clusters as well. For example, when we study the Earth’s climate we are interested

to identify functional domains (e.g. the El Niño Southern Oscillation). Such domains have

identifiable effects in the temperature anomaly field. One could not claim that strict bor-

ders exist in the gradients of the temperature as to allow the definition of “crisp” clusters. In

the field of neuroscience there is further evidence of the existence of overlapping clusters.
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Quoting Fornito et al.: “A model of neuronal architecture that allows for overlapping mod-

ules offers a more realistic brain-network organization (for instance, cortical association

areas are known to have a role in multiple networks)” [63]. Further, other studies suggest

that cognitive functions are organized into segregated and overlapping networks [54, 82].

To our knowledge, the only method that allows for overlapping partitions is community

detection. A community is a set of nodes that are highly interconnected to each other, while

having fewer connections to the rest of the network. There are numerous methods to iden-

tify communities, for a review we refer the reader to [64]. There are also many applications

of community detection in the fields of climate science and neuroscience. For example in

[145] the authors use community detection techniques to evaluate climate models while

in [143] the authors propose the use of communities as informative predictors in lieu of

climate indices. In [118] the authors apply a wide variety of community detection methods

in fMRI data. At a second step, using a map of task-based activations, they map these

communities to specific cognitive functions. Many authors [21, 176] have also suggested

that the community structure of the human brain deteriorates (i.e. becomes less modular)

as a person gets older. For a comprehensive review of applications of community detection

methods in neuroscience we refer the reader to [137].

Overlapping communities are a “natural” extension to the classic definition of a com-

munity. The main premise is that an individual can belong to more than one communities

(e.g. work, family etc.). There exist several approaches to identify overlapping communi-

ties (e.g. [4, 59, 116]). One of the first applications of overlapping community detection

in spatio-temporal data (and more specifically in resting state fMRI data) can be found in

[175]. The authors test the capability of the proposed methodology to uncover overlapping

communities in the resting state network. In [171] the authors investigate the overlapping

community structure in the structural brain network and show that the identified commu-

nities can be mapped to well-known brain systems. To the best of our knowledge none
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of these methods guarantees that the identified communities form spatially contiguous re-

gions.

We apply a state-of-the-art overlapping community detection method, referred to as

OSLOM [103], with the default parameter values. The input to OSLOM is a positively

weighted graph: each vertex is a grid cell and an edge between vertices i and j corresponds

to the maximum absolute cross-correlation |r∗i,j| across all lags of interest. Absolute corre-

lations less than 30% are considered insignificant and the corresponding edges are pruned.2

As most community detection methods, OSLOM does not distinguish between positive and

negative correlations. OSLOM provides a hierarchy of communities. When applied to our

synthetic data, the first level of hierarchy (not shown) simply groups together domains

1,2,3 in one community (even though domain 2 is uncorrelated with domains 1 and 3), and

domains 4,5 in another community. The connection between domains 3 and 5 is missed.

The second level of hierarchy is shown in Fig. 1-L. Overall, OSLOM does a better job

than PCA/ICA/clustering in detecting the spatial extent of each domain. A small overlap

between domains (1,2) and (2,3) is discovered but to a smaller extent than δ-MAPS (the

results of δ-MAPS are discussed in more detail in Section 5.4). However, a community in

OSLOM is not constrained to be spatially contiguous. This is the reason we see some black

dots in regions 4 and 5; these are non-contiguous overlaps between the communities that

correspond to these two domains. Thus, a community may group together two regions that

are, first, not spatially contiguous, and second, different in terms of how they are connected

to other regions.

2We have experimented with other pruning thresholds between 20%-50% and the results are very similar
at the first two hierarchy levels.
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Chapter III

GEO-CLUSTER: SPATIO-TEMPORAL NETWORK ANALYSIS

FOR STUDYING CLIMATE PATTERNS

3.1 Introduction

Network analysis refers to a set of metrics, modeling tools and algorithms commonly used

in the study of complex systems. It merges ideas from graph theory, statistical physics,

sociology and computer science, and its main premise is that the underlying topology or

network structure of a system has a strong impact on its dynamics and evolution [114]. As

such it constitutes a powerful tool to investigate local and non-local statistical interactions.

The progress made in this field has led to its broad application; many real world systems

are modeled as an ensemble of distinct elements that are associated via a complex set of

connections. In some systems, referred to as structural networks, the underlying network

structure is obvious (e.g. Internet routers as nodes, cables between routers as edges). In

others, the underlying mechanisms for remote connections between different subsystems

are unknown a priori (e.g. social networks, or the climate system); still, their effects can be

mapped into a functional network. An extensive bibliography for applications of network

analysis can be found in [113].

By quantifying statistical interactions, network analysis provides a powerful framework

to validate climate models and investigate teleconnections, assessing their strength, range,

and impact on the climate system. The intention is to uncover relations in the climate sys-

tem that are not (or not fully) captured by more traditional methodologies used in climate

science [49, 43, 1, 73, 72, 62, 10, 11], and to explain known climate phenomena in terms

of the underlying network’s structure and metrics.

Introductions to the application of network analysis in climate science are presented in
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[142] and [156]. We can classify the prior work in this area in three distinct approaches. A

first approach assigns known climate indices as the nodes of the network [154, 148, 168].

By studying the collective behavior of these nodes, it has been possible to investigate their

relative role over time and to interpret climate shifts in terms of changes in their relative

strength. This approach is obviously sensitive to the initial selection of network nodes, and

it cannot be used to discover new climate phenomena involving other regions.

A second, and more common, approach represents the nodes of the climate network

by grid cells in the given climate field. Specifically, each grid cell is represented by a

node, and edges between nodes correspond to statistically significant relations based on

linear or nonlinear correlation metrics [153, 53]. In this approach, it is common to prune

edges whose statistical significance is below a certain threshold, and to assume that all

remaining edges are equally “strong”, resulting in an unweighted network [157, 53, 142].

This approach has been used to study teleconnections, uncover interesting global-scale

patterns responsible for the transfer of energy throughout the oceans, and analyze relations

between different variables in the atmosphere [157, 155, 173, 52, 51]. A limitation of

this approach is that it results in a very large number of network nodes (all cells in a grid

map), and these nodes cannot be used to describe parsimoniously any identified climate

phenomena.

The third approach focuses on the community structure of the underlying network

[115]. A community is a collection of nodes that are highly interconnected, while hav-

ing much fewer interactions with the rest of the network. Communities can serve as in-

formative predictors in lieu of climate indices [158, 143, 117], while their evolution and

stability has also received some attention [142, 144]. Clustering techniques have also been

proposed to discover significant geographical regions in a given climate field (again, in

lieu of climate indices) [139], and to identify dipoles (i.e., two regions whose anomalies

are anti-correlated) and to evaluate their significance [95, 94]. These community-based or

clustering techniques, however, do not infer a network of teleconnections between different
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communities (clusters), and they do not quantify the intensity of teleconnections between

geographically separated regions within the same community (cluster).

In this work, we propose a new method to apply network analysis to climate science.

We first apply a novel network-based clustering method to group the initial set of grid cells

in “areas”, i.e., in geographical regions that are highly homogeneous in terms of the un-

derlying climate variable. These areas represent the nodes of the inferred network. Links

between areas (i.e., the edges of the network) represent non-local dependencies between

different regions over a certain time period. These inter-area links are weighted, and their

magnitude depends on both the cumulative anomaly of each area and the cross-correlation

between the two cumulative anomalies. The similarity of our method to previous commu-

nity/clustering techniques is that nodes are endogenously determined during the data analy-

sis process. The main differences are that each node corresponds to a distinct geographical

region, and these nodes form a weighted network based on the connection intensity that is

inferred for each pair of nodes. In other words, the proposed method decouples the iden-

tification of the geographical boundary of each network node from the estimation of the

connection intensity between different regions.

The proposed method requires a single parameter τ , which determines the minimum

degree of homogeneity between cells of the same area. The method is robust to addi-

tive noise, changes in the resolution of the given data set, the selection of the correlation

metric, and variations in τ . The resulting climate network can be applied, regionally or

globally, to identify and quantify relationships between climate areas (or teleconnections)

and their representation in models, and to investigate climate variability and shifts. Finally,

the proposed method can be extended to investigate interactions between different climate

variables.

The rest of this chapter is organized as follows: In Section 3.2 we introduce the data

sets analyzed in this work. We describe the climate network construction algorithm and the

network analysis metrics in Sections 3.3 and 3.4, respectively. The robustness of the climate
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network inference process is examined in Section 3.5. Applications of the proposed method

to a suite of reanalyses and model data sets are presented in Section 3.6. A discussion of

the main outcome of this work concludes the chapter.

3.2 Data sets

In this section we briefly describe the data sets that are used in the rest of this chapter.

For sea surface temperatures (SSTs), we construct and compare networks based on the

HadISST [121], the ERSST-V3 [134] and the NCEP/NCAR [93] reanalyses. For precip-

itation, we rely on CMAP merged data [172] and ERA-Interim reanalysis [46]. We also

analyze the SST fields generated by two coupled general circulation models chosen from

the CMIP5 archive: the NASA GISS-E2H [80] and the Hadley Center HadCM3 [75]. We

select randomly two runs of each model from the “historical run” ensembles [149].

Because the quality of the measurements contributing to the SST reanalyses deteriorates

as we move to higher latitudes, we only consider the latitudinal range of [60oN ; 60oS],

avoiding sea-ice covered regions. Also, we mostly focus on the period 1979-2005; in the

case of HadISST reanalysis, we contrast with the network characteristics during the 1950-

1976 interval. Due to space constraints, results are only shown for the boreal winter season

(December to February, DJF). When not specified otherwise, all SST data are interpolated

(using bilinear interpolation) to the minimum common spatial resolution across all data sets

(2o × 2.5o); for precipitation the resolution is 2.5o × 2.5o.

All climate networks are constructed from detrended anomalies derived from monthly

averages of the corresponding climate field. The detrending is done using linear regression

and the anomalies are computed after removing the annual cycle.

3.3 Climate network construction

The network construction process consists of three steps. First, we compute the “cell-level

network” from the detrended anomaly time series of each cell in the spatial grid. Second,
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we apply a novel area identification algorithm on the cell-level network to identify the

nodes of the final “area-level network”; an area here represents a geographic region that is

highly homogeneous in terms of the given climate field. Third, we compute the weight of

the edges between areas, roughly corresponding to teleconnections, based on the covari-

ance of the cumulative anomalies of the two corresponding areas. The following network

construction method requires a single parameter, τ , which determines the minimum degree

of homogeneity between cells of the same area. In the following we describe each step in

more detail.

3.3.1 Cell-level network

Consider a climate field x(t) defined on a finite number of cells in a given spatial grid.

The i’th vector of the climate field is a time series xi(t) of detrended anomalies in cell

i. The length of each time series is denoted by T . We first compute Pearson’s cross-

correlation r(xi, xj)
1 between the time series xi(t) and xj(t) for every pair of cells i and

j. We calculate the correlations at zero-lag, assuming that the physical processes linking

different cells result from atmospheric wave dynamics and are fast compared to the one-

month averaging time scale of the input time series. Considering time-lagged correlations

is beyond the scope of this chapter. Instead of using Pearson’s correlation, other correlation

metrics could be adopted; in Section 3.5.4 we examine the differences in the resulting

network using a rank-based correlation metric.

Most of prior work on climate network analysis applies a cutoff threshold on the correla-

tions r(xi, xj) to prune insignificant ones and construct a binary (i.e., unweighted) network

between cells; for a recent review see [141]. Fig. 2 shows correlation distributions for four

SST reanalysis data sets; note that there is no natural cutoff point to separate significant

correlations from noise. We have experimented with methods that first prune insignificant

correlations and then construct unweighted networks, and observed that the final area-level

1Unless specified otherwise, the term “correlation” will be used to denote Pearson’s cross-correlation
metric between two time series.

21



network is sensitive to the significance level at which correlations are pruned. Such sen-

sitivity complicates any attempt to make quantitative comparisons between networks con-

structed from different data sets (for example networks from observations versus models).

For this reason, in the following we present a method that considers all pair-wise cell

correlations, without any pruning. Thus, the cell-level network is a complete and weighted

graph, meaning that every pair of cells is connected but with weighted edges between -1

and 1. This cell-level network is the input to the area identification algorithm, described

next.

Figure 2: Empirical Cumulative Distribution Functions (CDF) of correlations for the
HadISST reanalysis during the 1950-1976 and 1979-2005 periods, and for ERSST-V3 and

NCEP data during the 1979-2005 period

3.3.2 Identification of climate areas

A central concept in the proposed method is that of a climate area, or simply area. Infor-

mally, an area A represents a geographic region that is highly homogeneous in terms of the

climate field x(t).

In more detail, we define as neighbors of a grid cell i the four adjacent cells of i, and as

path a sequence of cells such that each pair of successive cells are neighbors. An area A is

a set of cells satisfying three conditions:

1. A includes at least two cells.
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2. The cells in A form a connected geographic region, i.e., there is a path within A

connecting each cell of A to every other cell of that area.

3. The average correlation between all cells in A is greater than a given threshold τ ,∑
i ̸=j∈A r(xi, xj)

|A| × (|A| − 1)
> τ (2)

where |A| denotes the number of cells in area A.

The parameter τ determines the minimum degree of homogeneity that is required within

an area. A heuristic for the selection of τ is presented in Section 3.8; we use that heuristic

in the rest of this chapter.

For the climate network to convey information in the most parsimonious way, the num-

ber of identified climate areas should be minimized. To this end, an area is defined as a

maximum cardinality set of cells, that are spatially contiguous, and whose average pair-

wise correlation is larger than the threshold τ . In Sec. 5.8 we show that this computa-

tional problem is NP-Complete, meaning that there exists no efficient way to solve it in

practice. Consequently, we have designed an algorithm that aims to minimize the num-

ber of areas heuristically, based on a so called “greedy” approach [41]. The algorithm

consists of two parts. First, it identifies a set of areas; secondly it merges some of those

areas together as long as they satisfy the previous three area constraints. A pseudocode

describing the algorithm is given in Section 3.9, while the actual software is available at

http://www.cc.gatech.edu/~dovrolis/ClimateNets/. An example of the area identification

process applied to a synthetic grid is illustrated in Fig. 3.

The identification part of the algorithm produces areas that are geographically con-

nected by always expanding an area through neighboring cells. Additionally, the algorithm

attempts to identify the largest (in terms of number of cells) area in each iteration by select-

ing, in every expansion step, the neighboring cell that has the highest average correlation

with existing cells in that area. The expectation is that this greedy approach allows the area

to expand to as many cells as possible, subject to the constraint that the average correlation
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Figure 3: An example of the area identification algorithm. (a) 12-cell synthetic grid. (b)
The correlation matrix between cells (given as input). (c) The area expansion process for a
given τ=0.4. Cells shown in red are selected to join the area (denoted by Ak). Cells 1, 4, 9

and 12 will not join Ak since they do not satisfy the τ constraint in Eq.2

in the area should be more than τ . It is easy to show that an identified area satisfies the

condition given by Eq.2.

Within the set of areas V identified by the first part of the algorithm, it is possible to

find some areas that can be merged further, and still satisfy the previous three constraints.

Specifically, we say that two areas Ai and Aj can be merged into a new area Ak = Ai∪Aj if

Ai and Aj have at least one pair of geographically adjacent cells and the average correlation

of cells in Ak is greater than τ . The second part of the algorithm, therefore, attempts to

merge as many areas as possible (see Section 3.9).

Fig. 4 shows the identified areas before merging (i.e., after Part-1 in Section 3.9) and

after merging (i.e., after Part-2 in Section 3.9) for the HadISST reanalysis. Fig 4c shows

the distribution of area sizes (in number of cells) before and after merging. Area merging

decreases substantially the number of small areas (the percentage of areas with less than 10

cells in this example drops from 46% to 10%).

The identified areas represent the nodes of the inferred climate network. We refer to this

network as “area-level network” to distinguish it from the underlying cell-level network.

3.3.3 Links between areas

Links (or edges) between areas identify non-local relations and can be considered a proxy

for climate teleconnections. To quantify the weight of these links, we first compute for
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Figure 4: Identified areas in the HadISST 1979-2005 data set (τ=0.496). (a) The 176 areas
identified by Part-1 of the area identification algorithm. (b) The 74 “merged” areas after

the execution of Part-2. (c) The CDF of area sizes (in number of cells) before and after the
merging process

each area Ak the cumulative anomaly Xk(t) of the cells in that area,

Xk(t) =
∑
i∈Ak

xi(t) cos(ϕi) . (3)

The anomaly time series of a cell i is weighted by the cosine of the cell’s latitude (ϕi), to

account for the cell’s relative size. As a sum of zero-mean processes, a cumulative anomaly

is also zero-mean.

Fig. 5 quantifies the relation between the size of the areas (
∑

i∈Ak
cos(ϕi)) identified

earlier in the HadISST data set and the standard deviation of their cumulative anomaly.

Note that the relation is almost linear, at least excluding the largest 3-4 areas. Exact linearity

would be expected if all cells had the same size, their anomalies had the same variance, and

every pair of cells in the same area had the same correlation. Even though these conditions

are not true in practice, it is interesting that the standard deviation of an area’s cumulative

anomaly is roughly proportional to its size.2

2When comparing data sets with different spatial resolution, the anomaly of a cell should be normalized
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Figure 5: The relation between area size and standard deviation of the area’s cumulative
anomaly (R2 = 0.88) for the HadISST reanalysis during the 1979-2005 period; τ=0.496

The strength, or weight, of the link between two areas Ai and Aj is captured by the

covariance of the corresponding cumulative anomalies Xi(t) and Xj(t). Specifically, every

pair of areas Ai and Aj in the constructed network is connected with a link of weight

w(Ai, Aj),

w(Ai, Aj) , w(Xi, Xj) = cov(Xi, Xj) = s(Xi) s(Xj) r(Xi, Xj) (4)

where s(Xi) is the standard deviation of the cumulative anomaly Xi(t), while cov(Xi, Xj)

and r(Xi, Xj) are the covariance and correlation, respectively, of the cumulative anomalies

Xi(t) and Xj(t) that correspond to areas Ai and Aj . Note that the weight of the link be-

tween two areas does not depend only on their (normalized) correlation r(Xi, Xj), but also

on the “power” of the two areas, as captured by the standard deviation of the corresponding

cumulative anomalies. Also, recall from the previous paragraph that this standard devia-

tion is roughly proportional to the area’s size, implying that larger areas will tend to have

stronger connections. The link between two areas can be positive or negative, depending

on the sign of the correlation term. Fig. 6 presents the cumulative distribution function

(CDF) of the absolute correlation between the cumulative anomalies of areas for four SST

by the size of the cell in that resolution.
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networks. As with the correlations of the cell-level network, there is no clear cutoff3 sepa-

rating significant correlations from noise. For this reason we prefer to not prune the weaker

links between areas. Instead, every pair of areas Ai and Aj is connected through a weighted

link and the resulting graph is complete.

Figure 6: CDF of the absolute correlation between area cumulative anomalies for the
HadISST reanalysis during the 1950-1976 and 1979-2005 periods, and for ERSST-V3 and

NCEP during the 1979-2005 period

3.4 Network metrics

We now proceed to define a few network metrics that are used throughout the chapter. A

climate network N is defined by a set V of areas A1, . . . , A|V |, representing the nodes of

the network, and a set of link weights, given by Eq. 4. Because the network is a complete

weighted graph, basic graph theoretic metrics that do not account for link weights (such

as average degree, average path length, or clustering coefficient) are not relevant in this

context.

A first representation of the network can be obtained through link maps. The link map

of an area Ak shows the weight of the links between Ak and every other area in the net-

work. Link maps provide a direct visualization of the correlations, positive and negative,

between a given area and others in the system, often related to atmospheric teleconnection

3Imposing a threshold on the actual strength of the link (computed as the covariance between the cu-
mulative anomalies of two areas) would be incorrect. For example, multiplying low correlations with large
standard deviations can produce links of significant weight.
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patterns. For instance, Fig. 7 shows link maps for the two largest areas identified in the

HadISST network in the 1979-2005 period. The first area has a clear correspondence to the

El Niño Southern Oscillation (ENSO); indeed, the cumulative anomaly over that area and

most common indices that describe ENSO variability are highly correlated (the correlation

reaches 0.94 for the Niño-3.4 index). The links of this “ENSO” area depict known tele-

connections and their strength. The second largest area covers most of the tropical Indian

Ocean and represents the region that is most responsive to interannual variability in the Pa-

cific. It corresponds, broadly, to the region where significant warming is observed during

peak El Niño conditions [32].

(a)

(b)

Figure 7: Link maps for two areas related to (a) ENSO and (b) the equatorial Indian Ocean
in the HadISST 1979-2005 network (τ=0.496). The color scale represents the weight of

the link between the area shown in black and every other area in this SST network

Another metric is the strength of an area (also known as weighted degree), defined as

the sum of the absolute link weights of that area,

W (Ai) =
V∑
j ̸=i

|w(Ai, Aj)| = s(Xi)
V∑
j ̸=i

s(Xj)|r(Xi, Xj)| . (5)

Note that anti-correlations (negative weights) also contribute to an area’s strength. Fig. 8
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shows, for example, the strength maps for two HadISST networks covering the 1950-

1976 and 1979-2005 periods, respectively. Both the geographical extent of areas and their

strength display differences in the two time intervals, particularly in the North Pacific sector

and in the tropical Atlantic [110, 125].

(a)

(b)

Figure 8: Strength maps for two different time periods using the HadISST data set. (a)
1950-1976 network, strength of ENSO area: 20.1× 104; (b) 1979-2005 network, strength

of ENSO area: 18.8× 104

It is often useful to “peel” the nodes of a network in successive layers of increasing

network significance. For weighted networks, we can do so through an iterative process

referred to as s-core decomposition [161]. The areas of the network are first ordered in

terms of their strength. In iteration-1 of the algorithm, the area with the minimum strength,

say Wmin, is removed. Then we recompute the (reduced) strength of the remaining areas,

and if there is an area with lower strength than Wmin, it is removed as well. Iteration-1

continues in this manner until there is no area with strength less than Wmin. The areas

removed in this first iteration are placed in the same layer. The algorithm then proceeds

similarly with iteration-2, forming the second layer of areas. The algorithm terminates

when we have removed all areas, say after K iterations. Finally, the K layers are re-labeled
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as “cores” in inverse order, so that the first order core consists of the areas removed in the

last iteration (the strongest network layer), while the Kth order core consists of the areas

removed in the first iteration (the weakest layer). Fig. 9 shows the top five cores for two

HadISST networks, covering 1950-1976 and 1979-2005, respectively. Again, changes in

the relative role of areas are apparent in the North Pacific and in the tropical Atlantic.

(a)

(b)

Figure 9: Color maps depicting the top-5 order cores for the (a) HadISST 1950-1976, and
(b) HadISST 1979-2005 networks

Visual network comparisons provide insight but quantitative metrics that summarize

the distance between two networks into a single number would be useful. A challenge is

that the climate networks under comparison may have a different set of areas, and it is not

always possible to associate an area of one network with a unique area of another network.

We rely on two quantitative metrics: the Adjusted Rand Index (ARI), which focuses

on the similarity of two networks in terms of the identified areas, and the Area Strength

Distribution Distance, or simply Distance metric, which considers the magnitude of link

weights and thus area strengths.

The (non-adjusted) Rand Index is a metric that quantifies the similarity of two partitions

of the same set of elements into non-overlapping subsets or “clusters” [120]. Every pair
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of elements that belong to the same cluster in both partitions, or that belong to different

clusters in both partitions, contributes positively to the Rand Index. Every pair of elements

that belong to the same cluster in one partition but to different clusters in the other par-

tition, contributes negatively to the Rand Index. The metric varies between 0 (complete

disagreement between the two partitions) to 1 (complete agreement). A problem with the

Rand Index is that two random partitions would probably give a positive value because

some agreement between the two partitions may result by chance. The Adjusted Rand In-

dex (ARI) [86, 140] ensures that the expected value of ARI in the case of random partitions

is 0, while the maximum value is still 1. We refer the reader to the previous references for

the ARI mathematical formula.

In the context of our method, the common set of elements is the set of grid cells, while

a partition represents how cells are classified into areas (i.e., each area is a cluster of cells).

Cells that do not belong to any area are assigned to an artificial cluster that we create

just for computing the ARI metric. We use the ARI metric to evaluate the similarity of

two networks in terms of the identified areas. This metric, however, does not consider

cell anomalies and cell sizes, and so it cannot capture similarities or differences between

two networks in terms of link weights, and area strengths. Two networks may have some

differences in the number or spatial extent of their areas, but they can still be similar if

those “ambiguously clustered” cells do not have a significant anomaly compared to their

area’s anomaly. Also, two networks can have similar areas but the magnitude of their area

anomalies can differ significantly, causing significant differences in link weights and thus

area strengths. Further, the ARI metric cannot be used to compare data sets with different

resolution because the underlying set of cells in that case would be different between the

two networks.

For these reasons, together with the ARI, we rely on a distance metric that is based

on the area strength distribution of the two networks. The strength of an area, in effect,

summarizes the combined effect of the area’s spatial scope (which cells participate in that
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area), and of the anomaly and size of those cells.

Given two networks N and N ′ with V and V ′ ≤ V areas, respectively, we first add

V − V ′ “virtual” areas of zero strength in network N ′ so that the two networks have the

same number of nodes. Then, we rank the areas of each network in terms of strength,

with Ai being the i’th highest-strength area in network N . Fig. 10a shows the ranked

area strength distributions for the HadISST networks covering 1950-1976 and 1979-2005

periods. The distance dsd(N,N ′) quantifies the similarity between two networks in terms

of their ranked area strength distribution,

dsd(N,N ′) =
V∑
i=1

|W (Ai)−W (A′
i)| (6)

To normalize the previous metric, we introduce the relative distance Dsd(N,N ′). Specif-

ically, we construct an ensemble of randomized networks Nr with the same number of

areas and link weight distribution as network N , but with random assignment of links to

areas. The random variable dsd(N,Nr) represents the distance between N and a random

network Nr, while dsd(N,Nr) denotes the sample average of this distance across 100,000

such random networks. The relative distance Dsd(N,N ′) is then defined as

Dsd(N,N ′) =
dsd(N,N ′)

dsd(N,Nr)
. (7)

Note that Dsd(N,N ′) represents an ordered relation, from network N to N’. A relative dis-

tance close to 0 implies that N ′ is similar to N in terms of the allocation of link weights to

areas. As the relative distance approaches 1, N ′ may have a similar link weight distribution

with N , but the two networks differ significantly in the assignment of links to areas. The

relative distance can be larger than 1 when N ′’s link weight distribution is significantly

different than that of N .

Two networks may be similar in terms of the identified areas (high ARI) but with large

distance (high Dsd) if the strength of at least some areas is significantly different across

the two networks (perhaps due to the magnitude of the underlying cell anomalies). In

principle, it could also be that two networks have similar ranked area strength distributions
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(low Dsd) but significant differences in the number or spatial extent of the identified areas.

Consequently, the joint consideration of both metrics allows us to not only evaluate or rank

pairs of networks in terms of their similarity, but also to understand which aspects of those

pairs of networks are similar or different.

(a)

(b)

Figure 10: (a) Distribution of ranked area strengths for two networks constructed using the
HadISST data set over the periods 1950-1976 and 1979-2005, respectively. (b) Distance
Dsd(N,Nγ) and ARI(N,Nγ) between the HadISST 1979-2005 network and networks

constructed after the addition of white Gaussian noise in the same data set

We can also map a distance Dsd(N,N ′) to an amount of White Gaussian Noise (WGN)

that, if added to the climate field that produced N , will result in a network with equal
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distance from N . In more detail, let s2(xi) be the sample variance of the anomaly time

series xi(t) in the climate field under consideration. We construct a perturbed climate field

by adding WGN with variance γ s2(xi) to every xi(t), where γ is referred to as the noise-

to-signal ratio. Then, we construct the corresponding network Nγ , and Dsd(N,Nγ) is its

distance from N . A given distance Dsd(N,N ′) can be mapped to a noise-to-signal ratio γ

when Dsd(N,N ′) = Dsd(N,Nγ). Similarly, a given ARI value ARI(N,N ′) can be mapped

to noise-to-signal ratio γ such that ARI(N,N ′) = ARI(N,Nγ). Fig. 10b shows how γ

affects Dsd(N,Nγ) and ARI(N,Nγ) when the network N corresponds to the HadISST

1979-2005 reanalysis. As a reference point, note that a low noise magnitude, say γ=0.1,

corresponds to distance D ≈0.12 and ARI ≈0.68.

Finally, we emphasize that the ARI and Dsd metrics focus on the global scale. Even if

two networks are quite similar according to these two metrics, meaningful differences at

the local scale of individual areas may still exist. The study of regional climate effects may

require an adaptation of these metrics.

3.5 Robustness analysis

Analyzing climate data poses many challenges: measurements provide only partial geo-

graphical and temporal coverage, while the collected data are subject to instrumental biases

and errors both random and systematic. Greater uncertainties exist in general circulation

model outputs: climate simulations are dependent on modeling assumptions, complex pa-

rameterizations and implementation errors. An important question for any method that

identifies topological properties of climate fields is whether it is robust to small perturba-

tions in the input data, the method parameters, or in the assumptions the method is based on.

If so, the method can provide useful information on the climate system despite uncertain-

ties of various types. In this section, we examine the sensitivity of the inferred networks

to deviations in the input data, the parameter τ , and certain methodological choices. In

all cases we quantify sensitivity by computing the Dsd and ARI metrics from the original
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network to each of the perturbed networks.

3.5.1 Robustness to additive white Gaussian noise

As described in Section 3.4, a simple way to perturb the input data is to add white Gaussian

noise to the original climate field time series. The magnitude of the noise is controlled by

the noise-to-signal ratio γ. The distance Dsd and ARI from the original network N to the

“noisy” networks Nγ are shown in Fig. 10b for the HadISST reanalysis over 1979-2005.

To visually illustrate how noise affects the identified areas, and in particular their strength,

Fig. 11 presents strength maps for two values of γ; the area strengths should be compared

with Fig. 8b. Although some differences exist, the ENSO area strength is comparable to

that of the original network, and the hierarchy (in terms of strength) in the three basins is

conserved.

(a)

(b)

Figure 11: Strength maps for two perturbations of the HadISST 1979-2005 data set using
white Gaussian noise. (a) γ=0.05, strength of ENSO area: 18.0× 104. (b) γ=0.10,

strength of ENSO area: 19.1× 104
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3.5.2 Robustness to the resolution of the input data set

All data sets compared in this chapter have been spatially interpolated to the lowest com-

mon resolution. Here we investigate the robustness of the identified network to the resolu-

tion of the input data set. To do so, consider the HadISST reanalysis over the 1979-2005

period and compare the network discussed so far, constructed using data interpolated on

a 2olat × 2.5olon grid, with two networks based on a lower (4olat × 4olon) and a higher

(1olat× 2olon) resolution realization of the same reanalysis. Fig. 12 shows strength maps

for the two new networks. As we lower the resolution the total number of areas decreases,

and the areas immediately surrounding the ENSO-related area get weaker. Nonetheless,

the hierarchy of area strengths in the three basins is preserved, and differences are small,

as quantified by the distance metric. The distance from the default to the high resolution

network is Dsd(N,N ′)=0.10 (γ=0.07). The distance from the default to the low resolution

network is Dsd(N,N ′)=0.11 (γ=0.10). As previously mentioned, the ARI cannot be used

to compare data sets with different spatial resolution.

3.5.3 Robustness to the selection of τ

Recall that the parameter τ represents the threshold for the minimum average pair-wise

correlation between cells of the same area. Even though we provide a heuristic (see Section

3.8) for the selection of τ , which depends on the given data set, it is important to know

whether small deviations in τ have a major effect on the constructed networks.

Considering again the HadISST 1979-2005 reanalysis, Fig. 13 presents the relative dis-

tance and ARI from the original network N constructed using τ=0.496 (it corresponds to a

significance level α = .1%), to networks Nτ constructed using different τ values. We vary

τ by ±10%, in the range 0.45–0.55. This corresponds to a large change, roughly an order

of magnitude, in the underlying significance level α.

Fig. 14 visualizes strength maps for the two extreme values of τ in the previous range.

While some noticeable differences exist, the overall area structure appears robust to the
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choice of τ . By increasing τ , we increase the required degree of homogeneity within an

area, and therefore the resulting network will be more fragmented, with more areas of

smaller size and lower strength, and vice versa for decreasing τ .

3.5.4 Robustness to the selection of the correlation metric

The input to the network construction process is a matrix of correlation values between

all pairs of cells. So far, we have relied on Pearson’s correlation coefficient, which is a

linear dependence measure between two random variables. Any other correlation metric

could be used instead. To verify that the properties of the resulting network do not depend

strongly on the selected correlation metric, we use here the non-parametric Spearman’s

rank coefficient to compute cell-level correlations.

Fig. 15 shows the strength map for the HadISST 1979-2005 network using Spearman’s

correlation metric. Again, while small changes are apparent, the size and shape of the major

areas and their relative strength are unaltered. Dsd(N,N ′)=0.08 and ARI(N,N ′)=0.76,

where N is the network shown in Fig. 8b; both metrics correspond to γ=0.05.

We have performed similar robustness tests using precipitation data obtaining compa-

rable results.
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(a)

(b)

(c)

Figure 12: Strength maps for the HadISST 1979-2005 network at three different
resolutions. (a) Low resolution network, (4olat× 4olon), strength of ENSO area:

18.2× 104. (b) Default resolution network, (2olat× 2.5olon), strength of ENSO area:
18.8× 104. (c) High resolution network, (1olat× 2olon), strength of ENSO area:

18.2× 104
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(a)

(b)

Figure 13: (a) Distance Dsd and (b) ARI from the original HadISST 1979-2005 network
(marked with an asterisk in the x-axis, τ=0.496) to networks constructed with different

values of τ . The black horizontal lines correspond to the distance Dsd(N,Nγ) and
ARI(N,Nγ)
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(a)

(b)

Figure 14: Strength maps for the HadISST 1979-2005 network using two values of the
parameter τ . The “default” value is τ=0.496, corresponding to α=.1% (see Section 3.8).

(a) τ=0.45, strength of ENSO area: 18.7× 104. (b) τ=0.55, strength of ENSO area:
18.6× 104

Figure 15: Strength map for the HadISST 1979-2005 network using Spearman’s
correlation; strength of ENSO area: 18.5× 104
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3.6 Applications

We now apply the proposed method to the climate data sets described in Section 3.2 to

illustrate that network analysis can be successfully used to compare data sets and to vali-

date model representations of major climate areas and their connections. We proceed by

constructing networks for three different SST reanalyses and two precipitation data sets.

We then examine the relation between two different climate fields (SST and precipitation)

introducing a regression of networks technique. Finally, we analyze the network structure

of the SST fields from two models participating in CMIP5.

3.6.1 Comparison of SST networks

Here we investigate the network properties and metrics for three SST reanalyses focusing

on the 1979-2005 period. Two of them, HadISST and ERSST-V3, use statistical methods

to fill sparse SST observations; HadISST implements a reduced space optimal interpola-

tion (RSOI) technique, while ERSST-V3 adopts a method based on empirical orthogonal

function (EOF) projections. NCEP/NCAR uses the Global Sea Ice and Sea Surface Tem-

peratures (GISST2.2) from the U.K. Meteorological Office until late 1981 and the NCEP

Optimal Interpolation (OI) SST analysis from November 1981 onward. The GISST2.2 is

based on empirical orthogonal function (EOF) reconstructions [87]. The OI SST analysis

technique combines in situ and satellite-derived SST data [123]. To minimize the possibil-

ity of artificial trends, and the bias introduced by merging different data sets, GISST data

are modified to include an EOF expansion based on the IO analysis from January 1982 to

December 1993.

In Fig. 16, we quantify the differences between the three reanalyses showing correlation

maps between the detrended DJF SST anomaly time series for HadISST and ERSST-V3,

HadISST and NCEP, and ERSST-V3 and NCEP. The patterns that emerge in the all corre-

lation maps are similar. Correlations are generally higher than 0.9 in the equatorial Pacific,

due to the almost cloud free sky and to the in-situ coverage provided since the mid 80s’
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first by the Tropical Ocean Global Atmosphere (TOGA) program, and then by the Tropical

Atmosphere Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TAO/TRITON) program

[166]. Good agreement between reanalyses is also found in the north-east Pacific, in the

tropical Atlantic and in the Indian and Pacific Oceans between 10o S and 30o S. Correla-

tions decrease to approximately 0.7 in the equatorial Indian Ocean and around Indonesia,

where cloud coverage limits satellite retrievals, and reach values as small as 0.2-0.3 in the

Labrador Sea, close to the Bering Strait and south of 40o S, particularly in the Atlantic and

Indian sectors, due to persistent clouds and poor availability of in-situ data. North of 60oN

and south of 60oS the presence of inadequately sampled sea-ice and intense cloud coverage

reduce even further the correlations, that attain non-significant values almost everywhere.

At those latitudes any comparison between those reanalyses and their resulting networks is

meaningless given that it would not possible to identify a reference data set.

The strength maps constructed using these data sets show differences in all basins, and

suggest that the network analysis performed allows for capturing more subtle properties

than correlation maps (Fig. 17). To begin with the strongest area, corresponding to ENSO,

we notice that it has a similar shape in HadISST and NCEP, but it extends further to the

west in ERSST-V3. Its strength is about 10% higher in NCEP compared to the other two

reanalyses. In HadISST, the equatorial Indian Ocean appears as the second strongest area,

followed by areas surrounding the ENSO region in the tropical Pacific and by the tropical

Atlantic. In ERSST-V3 the area comprising the equatorial Indian Ocean has shape and

size analogous to HadISST, but 30% weaker, and it is closer in strength to the area cover-

ing the warm-pool in the western tropical Pacific. Also the areas comprising the tropical

Atlantic are slightly weaker than in the other two data sets. HadISST and ERSST-V3 dis-

play a similar strength hierarchy, with the Pacific Ocean being the basin with the strongest

(ENSO-like) area, followed by the Indian, and finally by the Atlantic Ocean. In NCEP all

tropical areas (except the area corresponding to the ENSO region) have similar strength and

the hierarchy between Indian and Atlantic Oceans is inverted. Also, the equatorial Indian
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(a)

(b)

(c)

Figure 16: Pearson correlation maps between the SST anomaly time series in all pairs of
three reanalyses data sets over the 1979-2005 period in boreal winter (DJF). Correlations

between (a) HadISST and ERSST-V3; (b) HadISST and NCEP; (c) NCEP and ERSST-V3

Ocean appears subdivided in several small areas.

Differences in strength maps are also reflected in the s-core decomposition (Fig. 18) and

in the links between the ENSO-related areas and other areas in the network (Fig. 19). In

HadISST and ERSST-V3, the first order core is located in the tropical and equatorial Pacific

and Indian Ocean, while in NCEP it is limited to the Pacific. As a consequence the strength

of the link between the ENSO-related area and the Indian Ocean is much stronger in the first

two reanalyses than in NCEP. In HadISST, the ENSO-related and Indian Ocean areas are
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(a)

(b)

(c)

Figure 17: Strength maps for networks constructed based on (a) HadISST (ENSO area
strength 18.8× 104); (b) ERSST-V3 (ENSO area strength 17.6× 104); (c) NCEP (ENSO

area strength 21.0× 104). In all networks the period considered is 1979-2005

separated by regions of higher order in the western Pacific, organized in the characteristic

“horse-shoe” pattern. In the other two reanalyses the first order core extends along the

whole Pacific equatorial band and includes the horse-shoe areas. In correspondence, the

links between the ENSO-like and the western Pacific areas are, in absolute value, weaker

than the link between ENSO and the Indian Ocean in HadISST, but comparable in ERSST-

V3. NCEP shows significantly weaker links overall, but the highest link weights are found

between ENSO and the western Pacific.
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(a)

(b)

(c)

Figure 18: Top-5 order cores in (a) HadISST; (b) ERSST-V3; (c) NCEP. The period
considered is 1979-2005 in all cases

To conclude the comparison of different SST reanalyses, we measure the distance and

ARI values from HadISST to the other two networks. The distance from HadISST to

ERSST-V3 is small, Dsd(N,N ′)=0.16, mapped to a noise-to-signal ratio γ=0.15. The

strongest areas show indeed a good correspondence in strength and size in the two data sets,

even if the shape of the ENSO-related areas differ. The distance from HadISST to NCEP,

Dsd(N,N ′)=0.29 with γ=0.35, is greater, as expected from the previous figures, given that

all areas except of the ENSO-related one appear significantly weaker, while the ENSO area

is stronger than in HadISST. NCEP is also penalized because of the differences, compared
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(a)

(b)

(c)

Figure 19: Links between the ENSO-like area shown in black and all other areas in the
three reanalyses. (a) HadISST, (b) ERSST-V3 and (c) NCEP networks

to HadISST, in the strength (and size) of areas over the Indian Ocean and in the horse-shoe

pattern. Recall that Dsd compares areas based on their strength ranking, independent on

their geographical location. In this respect, the two strongest areas represented by ENSO

and Indian Ocean in HadISST are replaced by ENSO and the North Pacific extension of

the horse-shoe region in NCEP. The ARI metric, on the other hand, ranks NCEP closer to

HadISST than ERSST-V3 (ARI=0.59 for NCEP and ARI=0.54 for ERSST-V3, mapped to

γ=0.35 and 0.45, respectively). The shape of the ENSO-related area and of areas in the

tropical Atlantic and south of 30o S are indeed in better agreement between HadISST and
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NCEP, despite having different strengths.

The previous discussion illustrates that Dsd and ARI should be considered jointly, as

they provide complementary information about the similarity and differences between two

networks.

3.6.2 Network changes over time

Network analysis can also be a powerful tool to detect and quantify climate shifts. The

insights that network analysis can offer, compared to more traditional time series analysis

methods, are related to the detection of changes in network metrics that are associated

with specific climate modes of variability, regional or global. Topological changes may

include addition or removal of areas, significant fluctuations in the weight of existing links

(strengthening and weakening of teleconnections), or variations in the relative significance

of different areas, quantified by the area strength distribution. For instance, Tsonis and

co-authors have built a network of four interacting nodes using the major climate indices,

the North Atlantic Oscillation (NAO), ENSO, the North Pacific Oscillation (NPO) and the

Pacific Decadal Oscillation (PDO), and suggested that those climate modes of variability

tend to synchronize with a certain coupling strength [154]. Climate shifts, including the

one recorded in the north Pacific around 1977 [110], could result from changes in such

coupling strength.

Here we compare the climate networks constructed on the HadISST data set over the

periods 1950-1976 and 1979-2005 to illustrate that the proposed methodology may also

provide insights into the detection of climate shifts. Instead of simply comparing different

periods, it is possible to use a sliding window in the network inference process to detect

significant changes or shifts without prior knowledge; we will explore this possibility in

future work.

Strength maps for the two networks were shown in Fig. 8, while the top-5 order cores
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were shown in Fig. 9. The links from the ENSO-related area and from the equatorial In-

dian Ocean during the 1950-1976 period are presented in Fig. 20, and they can be compared

with Fig. 7. When the 1979-2005 period is compared to the earlier period, we note a sub-

stantial strength decrease for the area covering the south tropical Atlantic and a significant

weaker link between this area and ENSO. This suggests an alteration in the Pacific-Atlantic

connection, which indeed has been recently pointed out by [125] and may be linked to the

Atlantic warming [102]. Additionally, there is a change in the sign of the link weight be-

tween the ENSO area and the area off the coast of Alaska in the north Pacific, which is

related to the change in sign of the PDO in 1976-1977 [110, 78].

Despite those differences, the distance from the 1979-2005 HadISST network to the

1950-1976 network is less than the distance from the former to any of the other reanalyses

investigated earlier: Dsd(N,N ′)=0.13 with noise γ=0.10. The ARI, on the other hand, is

0.55 (γ=0.40). The ARI value reflects, predominantly, the changes in shape and size of the

ENSO-related areas and of the areas over the North Atlantic and North Pacific.

3.6.3 Comparison of precipitation networks

One of the advantages of the proposed methodology is its applicability, without modifica-

tions, to any climate variable. As an example, in the following we focus on precipitation,

chosen for having statistical characteristics very different from SST due to its intermittency.

We investigate the network structure of the CPC Merged Analysis of Precipitation (CMAP)

[172] and ERA-Interim reanalysis [46]. Both data sets are available from 1979 onward.

CMAP provides gridded, monthly averaged precipitation rates obtained from satellite esti-

mates. ERA-Interim is the outcome of a state-of-the-art data assimilative model that assim-

ilates a broad set of observations, including satellite data, every 12 hours. As in the case

of SSTs, we present the precipitation networks focusing on boreal winter (December to

January) based on detrended anomalies from 1979 to 2005. Fig. 21 shows the map of area

strengths for both data sets, Fig. 22 presents the top-5 order cores, while Fig. 23 depicts
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(a)

(b)

Figure 20: Links for the HadISST network over 1950 - 1976 from the (a) ENSO-related
area, and (b) the equatorial Indian Ocean area (in black in the two panels)

links from the strongest area in the two networks.

The precipitation network is, not surprisingly, characterized by smaller areas, compared

to SSTs. Precipitation time series are indeed highly intermittent, resulting in weaker cor-

relations between grid cells. The areas with the highest strength are concentrated in the

tropics, where deep convection takes place. The strongest area is located in the equato-

rial Pacific in correspondence with the center of action of ENSO. In CMAP, this area is

linked with strong negative correlation to the area covering the warm-pool region, and to-

gether they represent the first order core of this network. The second order core covers

the eastern part of the Indian Ocean and eastern portion of the South Pacific Convergence

Zone (SPCZ). Both those regions are strongly affected by the shift in convection associ-

ated with ENSO events. In the reanalysis, the warm-pool area extends predominantly into

the northern hemisphere, and its strength and size, as well as the weight of its link with

the ENSO-related area, are reduced. Additionally, the Indian Ocean is subdivided in small
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(a)

(b)

Figure 21: Precipitation networks. Area strength map in (a) CMAP (equatorial Pacific
area strength 49.4× 104), and (b) ERA-Interim (equatorial area strength 41.0× 104)

(a)

(b)

Figure 22: Top-5 order cores in (a) CMAP, and (b) ERA-Interim
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areas all of negligible strength, similarly to what seen for NCEP SSTs, indicating that the

atmospheric teleconnection between ENSO and the eastern Indian Ocean that causes a shift

in convective activity over the Indian basin (see e.g. [98, 27]) is not correctly captured by

ERA-Interim. The s-core decomposition does not include in the second order core any

area in the Indian Ocean, but is limited to two areas to the north and to the south of the

ENSO-related one.

The distance from the CMAP network to the ERA-Interim network is Dsd(N,N ′)=0.21,

with γ=0.25, while the ARI value is 0.49, with γ=0.45. These values reflect larger differ-

ences compared to the SST networks we presented earlier, but precipitation is known to be

one of the most difficult fields to model, even when assimilating all available data, due to

biases associated with the cloud formation and convective parameterization schemes [3].

In particular Dsd is affected by the significant difference in the strength and size of the area

over the warm-pool, and of the one between the ENSO-related area and the warm-pool,

while the ARI is affected by the difference in the partitions over the warm-pool and most

of the Atlantic basin.

3.6.4 Regression between networks

So far we have shown applications of network analysis considering one climate variable at

a time. In climate science it is often useful to visualize the relations between two or more

variables to understand, for example, how changes in sea surface temperatures may impact

rainfall. A simple statistical tool that highlights such relations is provided by regression

analysis. Here we apply a similar approach using climate networks.

Consider two climate networks Nx and Ny, constructed using variables x(t) and y(t),

respectively. The relation between an area of Nx and the areas of Ny can be quantified

based on the cumulative anomaly of each area, using the earlier link weight definition (see

Eq. 4). Similarly, a link map for an area Ai ∈ Vx can be constructed based on the link

weights between the area Ai and all areas Aj ∈ Vy.
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(a)

(b)

Figure 23: Link maps from the strongest area (in black) for the two precipitation
reanalysis data sets. (a) CMAP; (b) ERA Interim

For instance, we construct a network linking the area that corresponds to ENSO in the

HadISST reanalysis to the areas of the CMAP precipitation network for the period 1979-

2005 in boreal winter. Both networks are dominated by the ENSO area and it is expected

that this exercise will portrait the ENSO teleconnection patterns. Results are shown in

Fig. 24. The regression of the rainfall network onto the ENSO-related area in the SST

reanalysis visualizes the well known shift of convective activity from the warm-pool into

the central and eastern equatorial Pacific during El Niño. For positive ENSO episodes,

negative precipitation anomalies concentrate in the warm-pool and extend to the SPCZ

and the eastern Indian Ocean. Weak, positive correlations between SST anomalies in the

equatorial Pacific and precipitation are seen over the western Indian Ocean and east Africa,

part of China, the Gulf of Alaska and the north-east USA. This approach is only moderately

useful on reanalysis or observational data, where known indices can be used to perform

regressions without the need of constructing a network. Its extension to model outputs,
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however, is advantageous compared to traditional methods, because it does not require any

ad-hoc index definition, but relays on areas objectively identified by the proposed network

algorithm.

Figure 24: Link maps from the ENSO-like area in HadISST data set to all areas in the
CMAP data set, considering the 1979-2005 period. Values greater than |1× 104| are

saturated

3.6.5 CMIP5 SST networks

We now compare the HadISST network with networks constructed using SST anomalies

from two coupled models participating in CMIP5. Our goal is to exemplify the informa-

tion that our methodology can provide when applied to model outputs. We do not aim at

providing an exhaustive evaluation of the model performances, which would be beyond the

scope of this chapter. We analyze the SST fields of two members of the CMIP5 historical

ensemble from the GISS-E2H and HadCM3 models over the period 1979-2005. Historical

runs aim at reproducing the observed climate from 1850 to 2005 including all forcings. We

show strength maps (Fig. 25), top-5 order cores (Fig. 26), and link maps for the area that is

related to ENSO (Fig. 27).

In all model integrations the ENSO-like area extends too far west into the warm-pool

region, and is too narrow in the simulated width, in agreement with the recent analysis by

[178]. The warm-pool is therefore not represented as an independent area anticorrelated to

the ENSO-like one. In the GISS-E2H model the strength of the ENSO area is underesti-

mated compared to the reanalyses (see Fig. 17a), but the overall size of the area is larger
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than observed. Both the extent and strength of the Indian Ocean area around the equa-

tor and of the areas forming the horse-shoe pattern are reduced with respect to HadISST.

Links in GISS-E2H are overall weaker than in the reanalysis (see Fig. 19a), the role of the

Atlantic is slightly overestimated, and the high negative correlations between the ENSO

region and the areas forming the horse-shoe patterns are not captured. In HadCM3, on

the other hand, the strength of the ENSO area is comparable or greater than in the obser-

vations. In this model, areas are more numerous and fragmented than in the reanalysis,

and in several cases confined within narrow latitudinal bands. This bias may result from

too weak meridional currents and/or weak trade wind across all latitudes, as suggested by

[179]. HadCM3 shows also erroneously strong links between the modeled ENSO area and

the Southern Ocean, particularly in the Pacific and Indian sectors, as evident in the s-core

decomposition and link maps. The link strengths in HadCM3 are closer to the observed,

but some areas in the southern hemisphere play a key role, unrealistically.

To conclude this comparison we present the distance from the HadISST reanalysis to

those two models, and the corresponding ARI values. Table 2 summarizes this comparison.

Dsd(N,N ′) from HadISST to the two GISS-E2H integrations is 0.29 and 0.37, with γ=0.35

and γ=0.45, respectively. Dsd(N,N ′) from HadISST to the two HadCM3 runs is 0.56 and

0.35, with γ=0.70 and γ=0.40. One of the GISS member networks displays a significantly

smaller distance from HadISST than both networks build on the HadCM3 runs. This is due

to the fact that in all networks considered the ENSO-like area overpowers all others in terms

of strength and, furthermore, there exist a few other strong areas (areas that are weaker than

the ENSO-related one by less than one order of magnitude). Focusing on the extent of the

areas in the GISS member with smaller Dsd we observe striking differences relative to the

base HadISST network: the GISS model is unable to reproduce the horse-shoe pattern, and

it splits the tropical Indian Ocean in two areas. However, it reproduces quite well the overall

size of most areas, and the strength of the largest two in the tropics, despite inverting the

relative strengths of the Indian Ocean and of the south tropical Atlantic. The south tropical
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(a)

(b)

(c)

(d)

Figure 25: Strength maps for two members of the GISS-E2H and HadCM3 “historical”
ensemble. (a) GISS-E2H run 1 (ENSO area strength 9.8× 104); (b) GISS-E2H run 2

(ENSO area strength 10.0× 104); (c) HadCM3 run 1 (ENSO area strength 23.3× 104) and
(d) HadCM3 run 2 (ENSO area strength 16.9× 104)

Atlantic area in GISS and the Indian Ocean one in HadISST have comparable size and

strength, and Dsd cannot account for their different location. The HadCM3 networks, on
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(a)

(b)

(c)

(d)

Figure 26: Top-5 order cores identified in the SST anomaly networks for (a-b) two
GISS-E2H ensemble members and (c-d) two HadCM3 integrations

the other hand, are too fragmented and are characterized by unrealistically strong areas in

the Southern Ocean, and are penalized by Dsd for not capturing properly the size of the

strongest areas. The ARI values are 0.46 and 0.48 for the two GISS members, and 0.43 and
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(a)

(b)

(c)

(d)

Figure 27: Link maps from the ENSO-like area in the (a-b) GISS-E2H and (c-d) HadCM3
models

0.45 for the two HadCM3 integrations. GISS again outperforms HadCM3 due to the better

representation of the shape of most areas.

As already mentioned, the relative distance and adjusted Rand index metrics, while
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Table 2: Dsd and ARI from HadISST (1979-2005) to reanalyses, GISS-E2H and
HadCM3, and corresponding noise-to-signal ratios γ

Data set Dsd γ ARI γ

HadISST 1950-1976 0.13 0.10 0.55 0.40
ERSST-V3 0.16 0.15 0.54 0.45
NCEP 0.29 0.35 0.59 0.35
GISS run 1 0.29 0.35 0.46 0.60
GISS run 2 0.37 0.45 0.48 0.55
HadCM3 run 1 0.56 0.70 0.43 0.70
HadCM3 run 2 0.35 0.40 0.45 0.60

alone unable to quantify all the differences and similarity between networks, can be used

successfully together to rank several networks with respect to a common reference. Two

networks are similar if both ARI is large and Dsd is small, where the first constrain, given

the analysis above, can be translated into ARI ≥ 0.5 and the second into Dsd ≤ 0.25. If any

of these two conditions is not met, an analysis of the other metrics introduced can provide

useful information on the topological differences between the data sets under consideration.

3.7 Discussion and Conclusions

We developed a novel method to analyze climate variables using complex network analysis.

The nodes of the network, or areas, are formed by clusters of grid cells that are highly

homogeneous to the underlying climate variable. These areas can often be mapped into

well known patterns of climate variability.

The network inference algorithm relies on a single parameter τ that determines the

degree of homogeneity between cells in an area. The requirement of only one parameter,

combined with the fact that no link pruning in the underlying cell-level network is imposed,

adds robustness to a network’s structure and makes the comparison of different networks

more reliable.
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The constructed climate networks are complete weighted graphs. In effect, our net-

work framework allows for investigating and visualizing the relative strength of node in-

teractions, which can be associated with teleconnection patterns. The inferred networks

are robust under random perturbations when adding noise to the anomaly time series of the

climate variable under investigation, to small changes in the selection of τ , to the choice of

the correlation metric used in the inference algorithm, and to the spatial resolution of the

input field.

In this chapter we constructed networks for a suite of SST and precipitation data sets,

and we analyzed them with a set of weighted metrics such as link maps, area strength and

s-core decomposition. Link maps enable us to visualize all statistical relationships between

areas, while strength maps highlight the relative importance of those relationships, identi-

fying major climate patterns. The s-core decomposition, on the other hand, identifies the

backbone structure of a network, clustering areas into layers of increasing significance. Fi-

nally, we quantified the degree of similarity between different networks using the Adjusted

Rand Index metric and a newly introduced ”distance metric”, based on the area strength

distribution.

After analyzing three SST reanalyses and two precipitation data sets, we investigated

the network structure of two CMIP5 outputs, GISS-E2H and HadCM3, focusing on SST

anomalies. We visualized model biases in the underlying network topology and in the

spatial expression of patterns, and we quantified the distance between model outputs and

reanalyses. We found significant differences between model and observational data sets in

the shape and relative strength of areas. The most striking biases common to both models

are the excessive longitudinal extension of the area corresponding to ENSO, and the inabil-

ity to represent the horse-shoe pattern in the western tropical Pacific. Links are generally

weaker than observed in the GISS-E2H model, but the relative strength, shape and size of

the main areas are in reasonable agreement with the reanalyses. The HadCM3 network,
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on the other hand, is closer to observations in the absolute strength of its areas, but the ar-

eas are too numerous in the tropics and unrealistically strong nodes are found in the South

Pacific. In the near future, we aim at providing a comprehensive comparison of CMIP5

outputs to the climate community by extending our analysis to a much larger number of

models.

In this work we limited our analysis to linear and zero-lag correlations. The method-

ology presented, however, could be generalized to include the analysis of nonlinear phe-

nomena and non-instantaneous links, by introducing nonlinear correlation metrics, such as

mutual information or the maximal information coefficient [122], and time-lags. Addition-

ally, the set of metrics proposed can be enhanced to capture more complex relationships in

the underlying network.

3.8 Selection of threshold τ

The threshold τ is the only parameter of the proposed network construction method. It

represents the minimum average pair-wise correlation between cells of the same area, as

shown in Eq.2. Intuitively, τ controls the minimum degree of homogeneity that the cli-

mate field should have within each area. The higher the threshold, the higher the required

homogeneity, and therefore the smaller the identified areas.

Throughout this chapter, we select τ based on the following heuristic. First, we apply

the one-sided t-test for Pearson correlations at level α and with T − 2 degrees of freedom

(recall that T is the length of the anomaly time series) to calculate the minimum corre-

lation value rα that is significant at that level [126]. For example, with α=1% and T=81

(corresponding to 27 years of SST monthly DJF averages), we get rα=0.34.

Instead of pruning any correlations r(xi, xj) that are below rα, we estimate the expected

value of only those correlations that are larger than rα,

r̄α , E[r(xi, xj), r(xi, xj) > rα] (A1)

For a set of k randomly chosen cells that have statistical significant correlations (at level
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α) between them, r̄α is approximately equal, for large k, to their average pair-wise corre-

lation. A climate area, however, is not a set of randomly chosen cells, but a geographically

connected region. So, we require that the average pair-wise correlation of cells that belong

to the same area should be higher than r̄α, i.e.,

τ = r̄α (A2)

Note that τ is independent of the size of an area, but it depends on both α and on the

distribution of pair-wise correlations r(xi, xj).

3.9 Pseudocode of area identification algorithm

Below we present the pseudocode for the area identification algorithm used in this chapter.
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Chapter IV

ENSO IN CMIP5 SIMULATIONS: NETWORK CONNECTIVITY

FROM THE RECENT PAST TO THE TWENTY-THIRD CENTURY

4.1 Introduction

Understanding how major modes of natural variability will respond to gradual mean state

changes associated with anthropogenic warming is crucial to climate science [43]. Cou-

pled general circulation models (CGCMs) are the most powerful and widely used tool to

address this problem, and therefore there is increasing interest in new approaches to evalu-

ate systematically CGCM performances and their sensitivities to increased greenhouse gas

(GHG) emissions. Here we present the first extensive application of a new methodology,

built upon complex network analysis, to assess model performances in reproducing the

recent past and their topological changes in future projections under varying GHG forcing.

In recent years complex network analysis [7] has been widely applied to the investi-

gation of complex dynamical systems, ranging from the Internet and its evolution [5] to

the human connectome [28]. Many of the complex systems studied by network analysis

are embedded in space [16] while their elements interact with each other forming complex

functional relationships. Climate is another complex system that can be represented as a

spatial network. Climate networks were first introduced by Tsonis and Roebber [153], who

applied ideas from graph theory to study the behavior of global geopotential height fields.

Since then, climate network analysis has contributed to the discovery of new dynamical

transitions and teleconnections in the climate system [94, 154, 173, 77], to the investiga-

tion of the monsoon [106, 25] and to the prediction of El Niño episodes [105]. Network

approaches have been used to identify high-energy oceanic flows representing the back-

bone of the climate system [52], to evaluate the collective behavior of different climate
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variables [51] (see also Section 3.6.4) and structural changes as climate evolves through

time [20, 142, 144, 119]. Attempts to investigate causal dependencies have been made in

[84] and [57].

Recently climate networks have been employed also to evaluate and compare climate

models. A community detection algorithm was used to rank the performance of several

CGCMs [145], and complex network analysis was adopted to evaluate the Statistical Ana-

logue Resampling Scheme (STARS) model against a dynamical model (COSMO-CLM) in

representing the climate of South America [61].

Here we analyze the network properties of model outputs from the Coupled Model In-

tercomparison Project - Phase 5 (CMIP5) spanning the 1956-2100 or 1956-2300 intervals

using the network methodology proposed in Section 3.3 of this thesis. First we identify ar-

eas - i.e. geographically connected regions homogeneous to the underlying climate variable

- that represent the nodes of the network, roughly corresponding to major climate modes.

Then we visualize, validate and compare those areas and their links or connections. Links

represent non-local dependencies between different areas. Therefore, in contrast to more

commonly used community detection techniques, our method decouples the identification

of climate nodes from the connections that those have with each other.

The methodology adopted yields several desirable properties compared to more tradi-

tional time series analysis [10, 1, 11, 43, 49, 62, 73]. It allows evaluating model perfor-

mances at both local and global scales, uncovers relations in the climate system that are not

fully captured by traditional methodologies, explains known climate phenomena in terms

of the underlying network’s structure and metrics, and is not locked into a particular set of

climate indices from the outset. Its scope is similar to empirical orthogonal functions (EOF)

in that it identifies the major modes of climate variability for a given variable. In contrast

with EOFs, however, our method does not impose any orthogonality constraints and does

not mask patterns (or climate modes) of weaker variance. Regional or global changes can

be quantified in terms of addition or removal of areas, fluctuations in the weight of existing
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links, or variations in the relative significance of different areas, providing sensitivity in-

formation. The proposed framework is fast and scalable, and has been developed to ensure

robust comparisons. Furthermore, it allows estimates of model trajectories over time and

of intra ensemble variability. The last can be objectively compared to contributions from

different forcings or mean states.

In this work we focus on global quantities, and analyze time intervals of fifty years.

The dominant mode of variability at those time and spatial scales is the El Niño Southern

Oscillation (ENSO). First we assess how CMIP5 models represent the network topology of

ENSO and its teleconnections in sea surface temperature and precipitation comparing them

to various reanalysis. Then we focus on model projections and on the stability of ENSO

and its links in the near and far future.

4.2 Climate Network Inference

The network inference is a three-step process. First we construct a “cell-level network”;

second we apply a clustering algorithm to identify the nodes or areas; third we compute

weighted links between areas to quantify their connections. All networks are inferred from

monthly averages of detrended seasonal anomalies of sea surface temperature (SST) and

precipitation but the procedure can be applied to any variable of interest. Trends are calcu-

lated with the Theil-Sen estimator [6] to reduce sensitivity to outliers and at least partially

account for the ENSO variability [135]. All datasets are interpolated to a minimum com-

mon resolution (2olat× 2.5olon for SST and 2.5olat× 2.5olon for precipitation) and only

the range [60oN − 60oS] is considered due to the large differences in reconstructions, re-

analyses and models at higher latitudes. We focus on boreal winter (December to February,

DJF), when ENSO is strongest. Calculations have been repeated for summer (June to Au-

gust) confirming all major outcomes.

The cell-level network is constructed computing the Pearson cross-correlation r(xi(t), xj(t))

between the anomaly time-series xi(t), xj(t) for all cell pairs i, j. All pair correlations are
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retained and the resulting cell-level network is a complete weighted graph (i.e. a link exists

between all pairs of grid cells). This characteristic differentiates this method from most

prior work on climate network analysis where a threshold to prune non-significant correla-

tions is applied [53, 174, 143, 155], and guarantees robust comparisons between networks

constructed on different datasets. The cell-level network is input to the clustering algorithm

and relies on a single parameter τ controlling the homogeneity of areas to the underlying

climate variable. Formally, an area Ak is a geographically connected cluster of two or more

cells satisfying ∑
i ̸=j r(xi(t), xj(t))

|Ak|(|Ak| − 1)
> τ , (8)

where |Ak| denotes the number of cells in the area. τ represents the minimum average

pair-wise correlation between cells of an area at a given significance level α (here α = 1%)

and is determined following the heuristic presented in Section 3.8. τ depends on α and on

the distribution of pair-wise correlations r(xi(t), xj(t)) in any given dataset.

The clustering algorithm aims also to minimize the number of areas identified; the

problem is NP-Complete, thus the algorithm relies on greedy heuristics. It identifies areas

iteratively by selecting the pair of geographically connected grid cells with the maximal

r(xi(t), xj(t)); An area is further expanded by adding the adjacent grid cell that maximizes

the average cross-correlation to the existing cells in the area. The area expansion stops

either if Eq.8 is violated or when all neighboring grid cells belong to other areas1. Since

the algorithm relies on greedy heuristics, the solution is suboptimal and areas with at least

one pair of geographically adjacent cells, and whose union satisfies Eq. 8, are further

merged together. The methodology ensures the robustness of the area-level structure for a

wide range of significance levels, as extensively tested (see Section 4.6 and Section 3.5.3).

Finally, links are computed from the area cumulative anomalies. For a given area Ak,

the cumulative anomaly is equal to Xk(t) =
∑

i∈Ak
xi(t)cos(ϕi), with ϕi being the latitude

1At the end of the area identification some grid cells may not belong to any area (if they violate the τ
criterion for each candidate area). Such grid cells are shown in white in all maps.
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of cell i (the anomaly time series of any given cell i are therefore weighted by the cell size).

The weighted link w(Ak, Am) between two areas Ak and Am is equal to the covariance

between the corresponding cumulative anomalies. Links can be positive or negative, and

are computed for all pairs of areas to obtain a complete weighted graph. Link maps allow

the visualization of the (weighted) connections between any given area and all others in the

network. Areas are also characterized by their weighted degree or strength, defined as the

sum of the absolute link weights W (Ak) =
∑V

k ̸=m |w(Ak, Am)| , where V is the set of the

areas A1 . . . AV inferred. Strongest areas correspond to major modes of climate variability.

Similarities and differences between two networks N and N ′, each of size n grid cells,

are quantified by two metrics, the Adjusted Rand Index (ARI) and a newly defined network

distance D. The ARI measures the spatial likeness of the areas in two networks [86, 140].

Any pair of cells that belong to the same area in N and N ′, or that belong to different areas

in both networks, contributes positively to the ARI; conversely, any pair of cells that belong

to the same area in one partition but to different areas in the other, contributes negatively.

The ARI ranges between 0 and 1, with 1 denoting perfect similarity, and ensures that the

distance between two random partitions is zero. The ARI, however, does not consider cell

anomalies and (actual) cell size.

To capture similarities or differences at the network level (i.e. in terms of link weights

and area strengths) we also define a distance D between two networks. For the calculation

of D we assign each grid cell a weight that is equal to the strength of the area the cell

belongs to. The distance D between two networks N and N ′ is then defined as

D(N,N ′) =

∑n
i=1 |WN(i)−WN ′(i)|∑n
i=1 |WN̂(i)−WN̂ ′(i)|

. (9)

n is the number of grid cells and it includes cells that do not belong to any area. WN(i)

is the weight assigned to grid cell i in network N ; similarly for WN ′(i). The network N̂ is

a randomized instance of N in which the cells of the latter have been randomly permuted

in the underlying grid, keeping the original weight that was assigned to them in N . The

numerator of D increases whenever a cell belongs to different areas, or, if two areas are
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identical, whenever they have different strengths. The denominator of D is expected to

be higher than the numerator because it is very unlikely that the same grid cell of the two

randomized networks belongs to the same area. In the pathological case that two networks

differ significantly in terms of their areas but all grid cells have roughly the same weight,

the distance D will still be high (close to one, given that the numerator and denominator

will be approximately equal). It is noted that D is different than the distance metric that

was introduced in Section 3.4; the metric of Eq. 9 considers not only the strength of each

area but also its spatial extent, while the distance metric of Section 3.4 only considers the

area strength distribution.

The joint consideration of both ARI and D offers more information than any of the two

metrics alone. Specifically, ARI focuses on the spatial extent of each area (the set of cells

that belong to an area) but it ignores the area strengths. The distance D depends both on

the spatial extent and the strength of each area but it does not separate the two. So, for

instance, when two pairs of networks both have D ∼ 0 but one of them has higher ARI, we

can conclude that the latter are more similar compared to the other pair, mostly due to the

spatial extent of their areas.

Finally, given two networks N and N ′ and their respective D(N,N ′) and ARI(N,N ′),

it is possible to map both metrics to the amount of white Gaussian noise (WGN) that added

to the original climate field will produce a network N ′′ such that D(N,N ′) ≈ D(N,N ′′)

and ARI(N,N ′) ≈ ARI(N,N ′′). Specifically, the anomaly time series x(t) of the original

climate field can be perturbed by adding WGN γ-times the variance of x(t). γ therefore

quantifies the noise-to-signal ratio between N and N ′.

Several different approaches have been proposed in the literature to represent the Earth’s

climate as a network. A common element in most of them is that the network nodes are grid

cells and edge pruning is performed to remove non-significant pairwise correlations. Our

methodology differs substantially, and in the following, we contrast it with the two most

relevant climate network methods developed to assess climate model outputs [61, 145]. In

69



[61] the authors evaluate the performance of two regional models representing the South

American climate. Their method represents the climate network as a binary graph. Nodes

correspond to grid cells, weighted proportionally to their geographical size. Non-significant

links are removed by enforcing a fixed graph density and only positive correlations are con-

sidered. In [145] the authors evaluate the performance of an ensemble of CMIP3 models.

The climate network is again represented as a binary graph. In contrast to [61], both pos-

itive and negative correlations between nodes are taken into account. Network nodes are

unweighted and non-significant edges between them are removed using a fixed threshold

approach. The climate network is then used as input to a community detection algorithm. A

community is a subset of nodes that are densely interconnected relative to their connections

with the rest of the network. The identified communities are groups of grid cells forming,

possibly disjoint, geographical regions. Model differences are captured using the ARI met-

ric, measuring the spatial similarity between the identified communities in each network.

Summarizing, in [61] models are evaluated based on their actual network structure, while

in [145] model outputs are evaluated based on their community structure.

Instead, the proposed methodology compares climate models based both on network

structure (distance metric) and on the spatial representation (ARI metric) of different cli-

mate modes of variability. Furthermore, the combination of the ARI and D metrics al-

lows also to quantify intra-ensemble variability, while modeling the climate network as a

weighted graph enable to evaluate the magnitude and relative importance of specific tele-

connections. By considering both positive and negative link weights, different functional

relationships between the elements of the climate system are considered. Similarly to com-

munity detection, grid cells are clustered into areas and this reduces the dimensionality of

the problem. However, communities may consist of geographically disjoint areas, and so

they will not show explicitly the teleconnections between these regions. In contrast, we

decouple the identification of areas from the connections they have with each other.
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4.3 Results
4.3.1 CMIP5 Models and Observational Datasets

The network analysis is performed on realizations from twelve models of the CMIP5 cata-

log (Table 3), chosen among those with ensembles of at least three members in the historical

period, and with one member or more continuing to 2100, and possibly to 2300, under the

scenario with the highest Representative and Extended Concentration Pathways (RCP8.5

and ECP8.5) relative to preindustrial levels [109]. The projections are forced with emis-

sions such that the radiative forcing induced by GHGs reaches 8.5 Wm-2 in 2100 [124].

This choice of scenario is dictated by the larger availability of modeling centers extending

their integrations to 2300. To evaluate the realism of CMIP5 CGCMs in simulating the

recent past, we consider historical ensembles over the period 1956 - 2005 [149], and we

contrast SST and precipitation model networks with the ones from the Hadley Center SST

reconstruction over the same period (HadISST) [121], and from the European Centre for

Medium-range Weather Forecasts Re-Analysis (ERA40+Interim). ERA40+Interim com-

bines ERA-40 [159], available from 1958, with ERA-Interim [46] after 1979. Furthermore,

networks constructed from the Extended Reconstructed Sea Surface Temperature version 3

(ERSST-V3) [134], surface temperatures provided by National Centers for Environmental

Prediction (NCEP) [93], and two SST realizations of the Simple Ocean Data Assimila-

tion reanalysis (SODA version 2.1.6 available from 1958 to 2005, and 2.2.8, covering the

1956-2005 interval) [31], are compared to HadISST to quantify the range of uncertainties

and spread in the SST observational proxies. For precipitation, networks from the NCEP

reanalysis, the CPC Merged Analysis of Precipitation (CMAP) [172] and ERA-Interim,

the last two available from 1979, are also compared to ERA40+Interim. We verified that

NCEP rainfall networks over the 1958-2005 or 1956-2005 periods are indistinguishable.

Networks are then computed for the model future projections, and for all integrations, past

and future networks are compared to quantify projected changes in climate modes (areas)

and their connections (links). Similarities and differences between HadISST and CMIP5
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historical SST networks, ERA and modeled precipitation networks, and between historical

and projected networks for the same model member, are summarized using the Adjusted

Rand Index and the distance D.

Climate networks are constructed using detrended time series of SST and precipitation.

One question we wish to answer is if the uncertainty in the representation of major tropical

teleconnections in CMIP5 models results in greater or lesser regional impacts than the

uncertainty in temperature and rainfall trends. Therefore a brief comparison of observed

and modeled trend for the historical period, and a description of future trends during the

projected intervals is added to each subsection, prior of the network analysis.

4.3.2 The Historical Experiments: 1956-2005

Historical global mean trends in winter are summarized in Table 3 for models and obser-

vational proxies. Several models overestimate the observed SST trend over the historical

period, due to their inability to simulate the ’pause’ or ’hiatus’ observed since 1998 [70].

In the majority of integrations SSTs are characterized by cooling (or lesser warming) south

of 50oS, that results from heat uptake by the deep ocean [97], and by the greatest warm-

ing over the Atlantic and Indian Oceans between 40oS and 50oS, in agreement with the

observational proxies (Fig. 30, left panels). Most models warm above the global mean in

the Equatorial Pacific and show negative trend anomalies in the East China Sea and along

the coasts of Japan. Conversely, the observational proxies display a cooling trend along

the equatorial Pacific, and the most intense cooling in the central North Pacific [99], and

in the subpolar gyre in the North Atlantic. Global mean precipitation trends are extremely

small for models, and uncertain in the reanalyses (Fig. 30, right panels). At a regional level,

however, NCEP and ERA (and CMAP over the available period) have slopes much steeper

than any CMIP5 output, and a complex spatial patchiness that varies greatly with the pe-

riod considered, indicating large interannual fluctuations not represented in the CGCMs. In

the tropics, all models but CSIRO and MIROC5 underestimate the local trends by two- or
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threefold. In the extratropics none of the runs captures the observed variability, underesti-

mating it by five times or more. 70% of models show an increase in rainfall in the tropical

Pacific centered around 5oS, in partial agreement with ERA.

Table 3: List of models analyzed and global mean trends in sea surface temperature and
rainfall over 1956-2005 and 2051-2100. The number of ensemble members considered
during the historical period (1956-2005) is indicated for each model. In parenthesis the

number of members with projections to 2100 under the RCP8.5 scenario. X indicates that
the model has one member continuing to 2300. Boreal winter (December to February)
global mean trends are averaged over all ensemble members (± denotes the maximum

deviation between ensemble members)

Model Ensemble # 1956-2005 SST
Co/year ×10−2

1956-2005
PREC
(mm/day)/yr
×10−4

2051-2100 SST
Co/year ×10−2

2051-2100
PREC
(mm/day)/yr
×10−4

BCC-CSM1.1 3(1) X 1.2 ± 0.3 9.5 ± 2.7 3.2 26.7
CanESM2 4(4) 1.2 ± 0.2 8.4 ± 2.2 4.0 ± 0.9 21.0 ± 2.8
CCSM4 4(4) X 1.4 ± 0.1 9.6 ± 2.6 3.5 ± 0.2 23.0 ± 3.4
CNRM-CM5 4(4) X 0.7 ± 0.4 1.1 ± 2.4 3.5 ± 0.1 25.0 ± 3.8
CSIRO-Mk3.6.0 4(4) 1.2 ± 0.1 -2.0 ± 2.6 4.1 ± 0.1 34.0 ± 3.7
GFDL CM3 4(1) 0.8 ± 0.2 2.2 ± 2.6 4.2 31.0
GISS-E2-H 4(4) X 0.6 ± 0.3 2.6 ± 3.7 2.4 14.0
HadGEM-ES 4(4) X 0.5 ± 0.3 1.4 ± 1.6 4.0 ± 0.3 21.0 ± 2.8
IPSL-CM5a-LR 4(4) X 1.4 ± 0.1 14.0 ± 1.6 4.4 ± 1.3 39.0 ± 7.5
MIROC5 4(3) 0.7 ± 0.1 2.6 ± 2.1 2.9 ± 0.1 17.0 ± 1.5
MPI-ESM-LR 3(3) X 1.0 ± 0.1 11.0 ± 1.0 3.3 ± 0.1 25.0 ± 3.2
MRI-CGM3 4(1) 0.6 ± 0.2 -0.1 ± 3.3 3.1 31.0

REANALYSIS 1956-2005
HadISST
Co/year ×10−2

1958-2005 ERA
(mm/day)/yr
×10−4

1958-2005
NCEP
(mm/day)/yr
×10−4

0.7 53.1 -3.1

Comparing the observational proxy networks in terms of their global metrics, the NCEP

surface temperature reanalysis is further apart from HadISST than any other observational

dataset, with γ > 1 (Fig. 31a). This was expected considering that we are comparing SST

with surface air temperature (masked over the ocean), and can be used as benchmark for

the model comparisons. In particular, the NCEP reanalysis overestimates the strength of

the areas covering the tropical Indian Ocean, and misrepresents the so-called horse-shoe

pattern in the Pacific (see strength maps in Section 4.5, Fig. 42).

Between the models, seven have at least one realization contained within the uncertainty

cloud of the reanalyses, as MIROC5, shown in Fig. 32b, that displays a network slightly
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Figure 30: Trend anomaly maps for boreal winter in the recent past and near future.
Anomalies are computed by removing the global mean trend calculated over the months
of December to February and indicated in Table 3 from each grid cell. + and • indicate
agreement in more than 90% and 70% of models in the sign of the trend anomaly slope.
(a) HadISST. (b) ERA40+Interim. (c) Sea surface temperature (SST) averaged across

models in the historical period (1956-2005). (d) As in (c) but for rainfall. The units are
Co/year for SST and (mm/day)/year for precipitation

stronger but overall very similar to the observed. Of the remaining BCC, GISS-E2H and

MRI underperform in both metrics due to an underestimation of size and strength of most

areas (see Fig. 42d for MRI and Fig. 42 for one sample map from each modeling center)

and very weak connectivity between nodes (e.g. Fig. 33d and Fig. 43). Furthermore, the

area corresponding to ENSO develops too narrowly around the Equator, extends into the

Warm Pool region, and has low strength, which is directly associated to a very low ENSO

variance. The extension of the ENSO node into the west Pacific is common to HadGEM2,

but strength and connectivity of major areas compare well to observations. GFDL CM3,

shown in Fig. 32c, and IPSL display a strong, broad area in the Southern Ocean (SO)

south of 45oS extending from the Atlantic to the Pacific. BCC, CanESM2 and CNRM

display an analogous node, but of lesser strength. In IPSL the SO area has comparable or

greater strength than ENSO. The correlation between the SO node and ENSO is zero or

moderately positive in IPSL, and generally very high and positive in GFDL CM3 (Fig. 33c
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and in Figs. 42 and 43 in Section 4.5).

The spread in ARI and D for members of the same ensemble is indicative of the model

intrinsic variability. In general, large intra-model differences are noticeable for CGCMs

further apart from HadISST and are related to the strength of the areas. D is strongly

affected by the connections that the ENSO-related node reproduces: Models with weak

ENSO areas (e.g. BCC, GISS-E2H, MRI) or for which ENSO is not the strongest mode of

variability (IPSL), are subject to greater spreads in their distance. One member may yield

nodes that are too weak, while representing correctly their relative strengths and links,

and another member may develop implausible relations between areas other than ENSO.

Coupled models capable of reproducing well the strength of the ENSO node, and for which

this node is dominant in the network, cluster their members closely together, even more so

that different observational proxies.

For precipitation, the two strongest areas observed in the tropical Pacific correspond

to ENSO and the Warm Pool (bottom rows in Fig. 32, and Fig. 44). In all reanalyses and

CMAP the node associated to ENSO extends along the equator from about 180oW to the

coast of the American continent. The spread in D between different rainfall reanalyses is

far larger than for SSTs, with NCEP displaying the least agreement with ERA40+Interim

(Fig. 31b). Additionally, the ARI is always smaller than 0.5, indicating profound differ-

ences in the node shapes and distributions also between datasets representing the observa-

tional truth. Precipitation is by nature an intermittent field in space and time; the inferred

networks have a much greater number of nodes than their SST counterpart, reducing the

chances of spatial and strength likeness. The quantification of the noise to signal ratio ac-

counts for this inherent difference between SST and rainfall metrics. The comparison of

Fig. 31a and 31b reveals that models with SST networks characterized by very large D and

small ARI perform poorly also in representing rainfall. BCC, GISS-E2H, IPSL and MRI

underestimate, once more, the strength of most tropical areas (see for example Fig. 32h).

Additionally, the strongest node in BCC and IPSL occupies the center of the Pacific Ocean

75



and does not penetrate eastward, in MRI extends from 180oW to the west, reaching New

Guinea, and in two of the GISS-E2H members fills the whole equatorial Pacific. A reli-

able representation of SST variability, however, does not guarantee a realistic simulation

of precipitation distribution and interannual modulation. CSIRO and MPI, in particular,

are penalized in the metrics due to the shift of their rainfall ENSO-related area westward,

over the center of the Pacific basin; furthermore, CSIRO underestimates the size of major

nodes. CNRM outperforms all other models (and partially NCEP) with both smallest D

and largest ARI, followed by MIROC5 (Fig. 32f). They both reproduce well the patterns as-

sociated to ENSO and the Warm Pool in the equatorial Pacific, in terms of shape, and more

so strength, and are capable of simulating major connections between nodes (Fig. 45). In

all other CGCMs the area corresponding to the Warm Pool is absent, as in HadGEM2, or

shifted to the west into the Indian Ocean, as in MPI. Finally, different ensemble members

appear clustered together more tightly than the reanalyses and CMAP, independently of

their ability to represent the observations. As a result, the wide range of strengths found in

SSTs for models with a weak ENSO node is not mirrored in precipitation.

4.3.3 The RCP8.5 Experiments: 2051-2100

Near future trends are projected to be analogous in patterns, but stronger in amplitude, to

those found during the 1956-2005 period in both SST and rainfall (Fig. 34).

Globally CGCMs warm by 3.5 × 10−2 Co/year on average, and get wetter (Table 3).

They agree in the main on the areas subject to above average warming (North Pacific sub-

polar gyre, equatorial Pacific, Arabian Sea, the band between 40oS and 50oS) and cooling

(south of 50oS, the eastern side of the South Pacific gyre, the eastern side of the North At-

lantic); or to more intense rainfall (north equatorial Indian Ocean, south equatorial Pacific

around 5oS, North Pacific gyre) and weaker precipitation (regions to the north and south of

the Pacific interconvergence zone).

Figure 35 summarizes the differences between SST and precipitation networks over
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Figure 31: Metric D versus ARI for climate networks during the historical period
1956-2005. (a) Sea surface temperature; reference network HadISST. (b) Precipitation;

reference network ERA40+Interim. Three levels of noise-to-signal ratios γ are also
indicated

2051-2100 from their historical counterparts. Focusing on SST, all models with more than

one integration available (i.e. all but BCC, MRI and GFDL CM3) have at least one member

whose projected areas into the 21st century closely resemble those found in the historical

period. An example from the CanESM2 model is shown in the left panels of Fig. 36 (see

also Fig. 46 for a sample map for each modeling center). For those projections D and

ARI from the corresponding 20th century realization are contained within the spread of the

reanalyses (i.e. D ≤ 10−4 and [ARI ≥ 0.5); The changes in topological properties and con-

nectivity (Fig. 47) are therefore insignificant, and the response to increased GHGs is simply

the superposition of the trends, with their regional patterns, onto their historical modes of
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Figure 32: Strength maps of sea surface temperature for HadISST and three sample
models (top rows), and of precipitation for ERA40+Interim and the same three models

(bottom rows) during the historical period 1956-2005. Models shown: MIROC5, GFDL
CM3 and MRI. For clarity, the strength of the ENSO-related area is saturated when

exceeding the colorscale and its value is indicated at the top of each panel, together with
D and ARI from HadISST or ERA40+Interim for each of the model networks

variability. Of the remaining, GFDL CM3 displays a significant change in spatial likeness

due to the disappearance of the Southern Ocean node. In eight out of twelve models the

members that differ in D display a decrease in strength of the ENSO area and its connec-

tivity by a third or more of the historical value, as for the member of CanESM2 shown to

the right in Fig. 36. The same eight models are characterized by a more prominent ten-

dency for eastward propagation of positive ENSO events, associated with a weakening of

the equatorial upper ocean currents, as noticed by [129]. The exceptions are MIROC5, MPI

and MRI, where the ENSO node strengthens, and IPSL, where the ENSO area weakens to
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Figure 33: Sea surface temperature link maps from the ENSO-related area in black for
HadISST and the three sample models during the historical period 1956-2005. Models

shown: MIROC5, GFDL CM3 and MRI

a small degree, and the Southern Ocean node becomes stronger and dominant. In those

four models moderate or no changes in propagation asymmetry have been found [129], but

the MIROC5 version analyzed differs from ours.

Precipitation networks for the RCP8.5 scenarios do not differ from their historical coun-

terparts more than the reanalyses and CMAP over the historical period, in both ARI and

D. Only MRI and one member of GISS-E2H stand out due to a large increase in strength

of the node associated to the ENSO anomalies in the equatorial Pacific and increased con-

nectivity (Fig. 48 and 49). In MRI the ENSO related area is five times stronger than in

the historical period, pointing to a considerable sensitivity of the model convective scheme

to SST changes, and in the GISS-E2H member is almost three times stronger, achieving a

value close to the reanalyses over the historical period.

4.3.4 The ECP8.5 Experiments: 2101 - 2300

For models simulating the climate system evolution under the highest of the Extended Con-

centration Pathways (ECP8.5) [109], the network analysis is extended to 2300. According

to the ECP, the aggregated GHG emissions rise until 2100, remain constant until 2150,

drop linearly to current levels by 2250 and continue as such to 2300. Correspondingly,
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Figure 34: Trend anomaly maps for boreal winter in the second half of the 21st century.
Anomalies are computed by removing the global mean trend calculated over the months
of December to February and indicated in Table 3 from each grid cell. + and • indicate
agreement in more than 90% and 70% of models in the sign of the trend anomaly slope.
(a) SST averaged across models over 2051-2100. (b) As in (a) but for rainfall. The units

are Co/year for SST and (mm/day)/year for precipitation

the warming trend decreases with time, especially in tropical regions (Figure 37 and Table

4). Seven of the twelve models have one member continuing to 2300. The networks are

constructed on four consecutive fifty-year windows.

Figure 38 presents D and ARI for SST and precipitation, again evaluated against their

historical counterpart. For clarity, the distance for the corresponding ensemble member

during 2051-2100 is repeated. The SST networks for BCC, CCSM4, CNRM, GISS-E2H,

and HadGEM2 depart significantly from the historical period, and they are characterized

by increasingly greater distances, exceeding γ > 1.5 by 2150 or 2200. The large distances

are due to a decrease in strength of the ENSO-related area and its links to half or a quarter

of their original value (Section 4.5, Fig. 50 and 51). None of these models recovers ENSO

and its teleleconnections once emissions are reduced. In fact the ENSO area in CCSM4 first

expands west into the Warm Pool region while retaining its strength and major links (2051-

2150), and then weakens dramatically and suddenly after 2150 (Fig. 39a,c), in HadGEM2

loses its strength after 2200, and in GISS-E2H it is not the dominant mode of variability

past 2250. A different trajectory is followed by IPSL with a reduction in strength in the

tropics that culminates in 2200 and is partially recovered by 2300. Through the whole inte-

gration IPSL produces a network with a strong SO area, which at times - from 2050 to 2200
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Figure 35: Metric D versus ARI for climate model networks during the period 2051-2100.
(a) Sea surface temperature. (b) Precipitation. All networks are referenced to the

corresponding integration over the historical period. Three levels of noise-to-signal ratios
γ are also indicated. D and ARI between HadISST and other sea surface temperature

proxies, and ERA40+Interim and other precipitation reanalyses are repeated to provide
context

- is stronger than the ENSO node. Finally, MPI responds to the warming by strengthening

the ENSO area and its links, particularly over the Indian Ocean and the tropical Atlantic

in the 21st century, and oscillating between a network stronger than, or comparable to, its

historical counterpart in the following periods. After 2200 the differences between histori-

cal and projected networks are negligible in strength (less or equal to differences between

observational proxies) and minor in area likeness (Fig. 39b,d), with the ENSO node no

longer extending into the Warm Pool. The differences in the evolution of the strength of

the ENSO area are reflected in its connectivity: links from the ENSO node are dramatically
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Figure 36: Sea surface temperature strength maps for two members of the CanESM2
model in the historical period (1956-2005) on top, and in the 21st century (2051-2100) at
the bottom. For clarity, the strength of the ENSO-related area is saturated when exceeding
the colorscale and indicated in each panel. In the future projections D and ARI from the

corresponding historical member are also specified

reduced in most models, while remain comparable to the recent past in MPI (Fig. 40a,b).

The time series of the cumulative anomaly over an area quantify the evolution of its

strength variance. For ENSO the variances in the historical period and during 2251-2300

in DJF are shown in Fig. 41, with the HadISST plotted as reference. All models but MPI

display a systematic, gradual reduction in mean variance, ranging from -33% in GISS-E2H

to -75% in CCSM4 by 2300. Large changes in ENSO variance (± 50%) have been found

also for millennial unforced simulations [48, 37], but without a preferred sign tendency,

while fossil corals suggest that a weaker ENSO than today dominated the last 10,000 years

[37, 30]. The ENSO variance in the historical period varies depending on the twenty-year

window used for the calculation, as indicated in Fig. 41. Such variability is twice as strong

as the observations in MPI and about half as observed in BCC and GISS-E2H, while is

consistent with the reanalysis in the remaining four models.

In the case of precipitation, the networks for BCC, CNRM, and HadGEM2 are unal-

tered in the projections, except for a mild weakening of most tropical areas in the first

two models (Fig. 52). GISS-E2H, after an initial strengthening, returns to conditions close
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to the historical period by 2300. CCSM4 exhibits a fivefold decrease in the strength of

the ENSO area over two hundred years, while the nodes covering the south Pacific con-

vergence zone and the south equatorial Indian Ocean become stronger (Fig. 39e,g). Those

areas eventually lose their connectivity with ENSO and evolve independently of it (Fig. 53).

In IPSL the strength of the ENSO node fluctuates, decreasing slowly at first and regaining

power in the last 50 years. The area also shifts position, translating eastward and occupying

first the western and central Pacific, then the central portion, and finally developing to the

east of 180oW after 2250. Finally, MPI after strengthening most nodes in the 21st century

by almost three folds, and shifting the strongest one eastward, maintains the new strengths

and intensifies the links between ENSO and all major areas, from the Warm Pool to the In-

dian Ocean, and the north and south Pacific (Fig. 39f,h and Fig. 40d). By 2300 the rainfall

network is much stronger and more complex than during the historical period, in spite of

the SST network resembling the 20th century one.

Table 4: Projected global mean trends in sea surface temperature and rainfall from 2101 to
2300. Trends are calculated over 50-year long consecutive intervals for the models with

one member extending to 2300 and for boreal winter (December to February).
Precipitation trends are in parenthesis

Model 2101-2150
SST [PREC]
Co/year
×10−2

[(mm/day)/yr
×10−4]

2151-2200
SST [PREC]
Co/year
×10−2

[(mm/day)/yr
×10−4]

2201-2250
SST [PREC]
Co/year
×10−2

[(mm/day)/yr
×10−4]

2251-23000
SST [PREC]
Co/year
×10−2

[(mm/day)/yr
×10−4]

BCC-CSM1.1 2.6 [21.0] 2.5 [19.0] 1.3 [9.1] 0.7 [5.6]
CCM4 3.0 [16.0] 2.5 [19.0] 1.4 [14.0] 0.8 [8.6]
CNRM-CM5 3.5 [23.0] 2.9 [20.0] 1.9 [12.0] 0.7 [9.9]
GISS-E2-H 1.6 [8.8] 1.1 [7.2] 0.7 [5.6] 0.4 [3.4]
HadGEM-ES 3.8 [17.0] 3.1 [16.0] 2.0 [9.0] 0.4 [1.6]
IPSL-CM5a-LR 3.8 [24.0] 3.3 [27.0] 2.6 [20.0] 1.3 [13.0]
MPI-ESM-LR 3.6 [27.0] 2.8 [16.0] 1.5 [8.3] 0.8 [11.0]
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Figure 37: Trend anomaly maps for boreal winter in the 22nd and 23rd centuries.
Anomalies are computed by removing the global mean trend calculated over the months
of December to February and indicated in Table 4 from each grid cell. + and • indicate
agreement in more than 90% and 70% of models in the sign of the trend anomaly slope.
(a) Sea surface temperature (SST) averaged across models over 2101-2150. (b) Rainfall

averaged across models over 2101-2150. (C) As in (a) but for 2151-2200. (d) As in (b) but
for 2151-2200. (e) As in (a) but for 2201-2250. (f) As in (b) but for 2201-2250. (g) As in
(a) but for 2251-2300. (h) As in (b) but for 2251-2300. The units are Co/year for SST and

(mm/day)/year for precipitation
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Figure 38: Metric D versus ARI for seven climate model networks from 2051 to 2300
over five consecutive 50-year periods, from 1 to 5. (a) Sea surface temperature. (b)
Precipitation. All networks are referenced to the corresponding integration over the

historical period. Three levels of noise-to-signal ratios γ are also indicated
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Figure 39: Sea surface temperature (a-d) and precipitation (e-h) strength maps for two
models (left column CCSM4, right column MPI) in the historical period (1956-2005) and

in the future (2251-2300). For each variable the first row corresponds to the historical
experiments. For clarity, the strength of the ENSO-related area is saturated when

exceeding the colorscale and indicated at the top of each panel. D and ARI metrics of the
future projections from the corresponding historical member are also included
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Figure 40: Link maps for sea surface temperature (a-b) and precipitation (c-d) from the
ENSO-related area in black for two models for which the ENSO projected strength

evolves in opposite ways. CCSM4 is shown on the left column and MPI on the right.
Maps are calculated over the 2251-2300 period

Figure 41: Variance of the cumulative anomalies of the ENSO area in DJF in the models
and HadISST over 1956-2005 in red, and in the models over 2251-2250 in blue. For

HadISST the time series is highly correlated (coefficient 0.94) with the Niño3.4 index
defined as the average of SST anomalies from 5oS to 5oN , and from 120o to 170oW .

Error bars around the mean variance over 50 years are determined using a 20-year sliding
window, and provide a measure of the decadal modulation of ENSO in the models over

the periods considered.

87



4.4 Discussion

In this work we have established the stability of the SST and precipitation networks for

twelve model ensembles in the CMIP5 catalog using a novel framework based on complex

network analysis. This fast, scalable and robust method provides considerable advantages

when comparing climate fields compared to more traditional approaches (e.g., predefined

climate indices or EOFs). The areas identified reduce the dimensionality of the climate

field and provide a compact and spatially embedded representation of the major modes of

climate variability. Their interdependencies are quantified using weighted links, enabling

us not only to detect their existence, but also to estimate their magnitude. With two metrics,

the Adjusted Rand Index and a network distance metric, the output of climate models can be

compactly validated against observations, intra-ensemble variability can be assessed, and

networks obtained from model outputs under different forcing conditions can be contrasted.

The applicability of the method is general and fits the objectives of any spatio-temporal data

analysis, discovering unknown functional components and their inter-dependencies.

An important distinction between earlier network-based approaches and our method is

that we construct networks that are complete and weighted graphs between homogeneous

spatial areas. The clustering of grid cells into areas, the lack of edge pruning as well as

the way in which we calculate the weights of the links between areas, makes the proposed

network inference method more robust with respect to the underlying threshold compared

to approaches that are based on (typically pruned) cell-level networks (as shown in Section

4.6).

The CMIP5 models have been validated against reanalyses over the second half of the

20th century, and compared for their projected responses under high GHG concentrations.

We focused on global quantities, and analyzed fifty years time intervals; the dominant mode

of variability at those time and spatial scales is ENSO, which induces the most severe global

impacts in surface temperatures and precipitation, among other variables. Despite decades

of research, ENSO sensitivity to changes in GHG concentrations remains undetermined in
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the last generation of climate models [18, 39, 129].

The results of our analysis can be summarized as follows:

• Within the CMIP5 inventory, several models reproduce closely the observed SST net-

work over the historical period (1956-2005), providing an accurate representation of

major modes of climate variability and their links, despite biases in the climatologies.

The spread in ARI and D between SST networks from members of the same ensem-

ble is broadly consistent with the spread between different observational datasets

or reanalyses. Precipitation networks, unsurprisingly, indicate that spatial likeness

and strength are still challenging for modelers. However, the limited agreement be-

tween reanalysis products, and the evaluation of the noise-to-signal ratio suggests

that the spatial and temporal intermittency of precipitation intrinsically limits the re-

producibility of its topology. For rainfall, the intra-model spread in network metrics

is generally very small; additionally, slope and patchiness of regional trends are de-

cidedly underestimated by models. Together those outcomes suggest that CGCMs

cannot yet capture the observed natural variability of rainfall. Models characterized

by large D and small ARI in their SST fields, are also inaccurate in the representation

of precipitation, but model performing the closest to the reanalysis in each of those

fields differs.

• Changes in the network properties between the second half of the 20th and 21st

centuries are generally modest and contained within the spread between different

observational proxies in the historical period, despite substantial trends. This is es-

pecially true for the models that reproduce accurately the recent past. For those

models uncertainties are greater in the projected trends than in the response of their

modes of variability. Differences are slightly more probable in strength than in the

spatial distributions of areas. Changes in distance D greater than 30% around the

historical value signals the model tendency towards strengthening or weakening of

major climate modes, and of ENSO, its variance, and its connectivity, even when
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limited to one ensemble member. Eight of the twelve models analyzed display sub-

stantially weaker tropical areas and connections in one or more members, implying

a decrease in ENSO strength and in potential predictability at seasonal and longer

scales in the future [47]. The weakening of the links from the ENSO area for the

majority of models analyzed is opposite to the conclusion presented in [29] and ob-

tained characterizing El Nio activity using equatorial indices. Only two models, MPI

and MIROC5, display a clear trend towards intensifying the strength of the ENSO

area and its links.

• After 2100, models forced by the concentration pathway of the scenario with the

highest greenhouse gas concentrations in CMIP5 reveal discernible changes in the

strength of all major areas. Five out of seven follow an irreversible trajectory towards

reducing dramatically the strength and size of the ENSO node, and towards weaken-

ing all ENSO links over the 23rd century. This behavior is mirrored in precipitation

to a lesser extent. IPSL weakens as well, but partially recovers by 2300 in both SST

and rainfall. MPI by the end of the integration has a virtually unaltered network in

SST, while strength and links of the ENSO area increase substantially for precipita-

tion. No obvious relation has been found between the trend patterns in the equatorial

tropical Pacific, indicative of mean state changes, or the global warming/wettening

trends, and the ENSO behavior in the networks [40], or between the response patterns

of clouds and precipitation to a uniform warming in an aquaplanet configuration for

three of the atmospheric components of the models analyzed [146], and their tropical

rainfall response in a coupled set up. On the other hand, an increased tendency for

eastward propagation of SST anomalies during positive ENSO events [129] in the

21st century, counterintuitively, may be symptomatic of an irreversible weakening of

ENSO in the next century and of a loss of potential predictability in the atmosphere.

Considering the global impacts of tropical teleconnections and the changes in tem-

perature and precipitation associated with El Niño and La Niña events (e.g., [9, 85]), we
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conclude that the uncertainty in the projected connectivity of the climate system after 2100

in many regions and for models performing well under current conditions exceeds the un-

certainty associated with the equilibrium temperature change.

For the question of robustness versus sensitivity of climate patterns under different forc-

ing scenarios, the lack of consistency between models highlights, once more, the complex-

ity associated with having multiple, nonlinear coupled processes. By adopting a perturbation-

based approach and focusing on models with networks in the recent past that compare

well to observations but diverge substantially in the future, it is possible to target more ef-

fectively efforts to understand the physical mechanisms and model parameterizations that

cause such divergences.

4.5 Supplementary strength and link maps

Strength maps for boreal winter SST and precipitation for one member of each model

considered are displayed below for the 1956-2005 historical period, the 2051-2100 RCP8.5

interval, and the ECP8.5 extension. Additionally, the corresponding link maps of the ENSO

area are provided for both fields.
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4.6 Advantages of using a complete weighted cell-level network

The network methodology adopted in this work differs from several others proposed in the

literature [143, 153] most importantly because no pruning is done to remove edges. Here

both the cell-level network and the area-level networks are modeled as complete weighted

graphs. Instead, the majority of earlier climate network inference methods construct un-

weighted graphs in which whenever the cross-correlation between two cells is less than a

threshold, the corresponding cells are not considered connected.

Our approach offers two substantial advantages. First, by modeling the climate network

as a weighted graph we can leverage information about the actual magnitude of the cell-

level correlations. The information captured by these weights can give us insights about the

strength of specific teleconnections between different nodes of the network (e.g. between

ENSO and areas forming the horseshoe pattern). Secondly, the proposed method is more

robust compared to methods that perform pruning. Robustness is an important property,

especially for the objectives of this chapter, since we compare different climate models and

the properties of the climate system they simulate over time.

In this section, we substantiate those points by showing that link pruning makes the

network inference process less robust, based on two comparisons. Our proposed inference

method relies on a single parameter, the level of significance α. The parameter τ , which

is used in the area detection algorithm, is calculated based on α, as described in Section

3.8. Let rα denote the minimum significant correlation for a given level of significance

α. In the first comparison the input to the area identification algorithm is an unweighted

network. All pair-wise grid cell correlations that are non-significant for the given level α

are set to 0. Correlations larger than rα are set to 1 and correlations lower than - rα are set

to -1. We refer to the corresponding cell-level network as the unweighted pruned network

(such networks have been studied in [61, 145]). The second comparison is a more relaxed

version of the first; we simply remove all pair-wise cell correlations that are non-significant

for a given level of significance α but maintain the actual magnitude of the significant
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correlations. We refer to this type of cell-level network as the weighted pruned network

(such networks have been studied in [143]). In both cases, the τ threshold is computed as

in the weighted complete network. Consequently, the area identification algorithm and the

threshold τ are the same for all three networks; the only difference is the input to the area

identification algorithm (i.e. the cell-level network).

In all comparisons our ”reference network” is constructed using the HadISST 1956-

2005 (DJF) anomaly time series for α = 1 × 10−3. The identified areas are presented in

Fig. 54. When the input is the unweighted pruned network the resulting areas cannot be

easily interpreted in a climate context. For example, the area corresponding to the Indian

Ocean extends to the North Pacific Ocean while the ENSO related area includes ample

extratropical regions in both hemispheres. The areas identified using a weighted pruned

network are closer to those identified using a complete weighted graph but, as we shall

prove next, the former is less robust. We cannot be certain that a certain set of areas is the

”right set”, since no ground truth exists for such an evaluation, but any network method-

ology used for model intercomparison should, at least, be robust to its input parameter (α

in our case) and should be insensitive (or have only small sensitivity) to changes in α. To

evaluate the robustness of the various methodologies we vary α around its standard value

and quantify the network changes in terms of the ARI metric (Fig. 55). The network in-

ference process is more robust when the cell-level network is modeled as a complete and

weighted graph. If we prune some edges (and keep the weight of the remaining links) the

robustness of the method decreases resulting in lower ARI values. Finally, the least robust

option is to model the cell-level network as an unweighted pruned network.
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Figure 54: Areas identified using three different cell-level networks. α was set to
1× 10−3. Data set: HadiSST 1956-2005

Figure 55: ARI between a reference network constructed using α = 1× 10−3 and
networks constructed using different α values
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Chapter V

δ-MAPS: FROM SPATIO-TEMPORAL DATA TO A WEIGHTED

AND LAGGED NETWORK BETWEEN FUNCTIONAL DOMAINS

5.1 Introduction

Spatio-temporal data become increasingly prevalent and important for both science (e.g.,

climate, systems neuroscience, seismology) and enterprises (e.g., the analysis of geotagged

social media activity). The spatial scale of the available data is often determined by an

arbitrary grid, which is typically larger than the true dimensionality of the underlying sys-

tem. One major task is to identify the distinct semi-autonomous components of this system

and to infer their (potentially lagged and weighted) interconnections from the available

spatio-temporal data. Traditional dimensionality reduction methods, such as PCA, ICA or

clustering, have been successfully used for many years but they have known limitations

when the objective is to infer the functional network between all spatial components of the

system.

We propose δ-MAPS, an inference method that first identifies these spatial compo-

nents, referred to as “domains”, and then the connections between them (§5.3). Informally,

a functional domain (or simply domain) is a spatially contiguous region that somehow

participates in the same dynamic effect or function. The exact mechanism that creates

this effect or function varies across application domains; however, the key idea is that the

functional relation between the grid cells of domain results in highly correlated temporal

activity. If we accept this premise, it follows that we should be able to identify the “epi-

center” or core of a domain as a point (or subregion) at which the local homogeneity is

maximum across the entire domain. Instead of searching for the discrete boundary of a

domain, which may not exist in reality, we compute a domain as the maximum possible set
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of spatially contiguous cells that include the detected core, and that satisfy a homogeneity

constraint, expressed in terms of the average pairwise cross-correlation across all cells in

the domain. Domains may be spatially overlapping. Also, some cells may not belong to

any domain.

After we identify all domains, δ-MAPS infers a functional network between them. Dif-

ferent domains may have correlated activity, potentially at a lag, because of direct or indi-

rect interactions. The proposed edge inference method examines the statistical significance

of each lagged cross-correlation between two domains, applies a multiple-testing process

to control the rate of false positives, infers a range of potential lag values for each edge, and

assigns a weight to each edge based on the covariance of the corresponding two domains.

δ-MAPS is related to clustering, parcellation (or regionalization), network community

detection, multivariate statistical methods for dimensionality reduction such as PCA and

ICA, as well as functional network and lag inference methods. However, as we discuss

in §5.2 and show with synthetic data experiments in §5.4, δ-MAPS is also significantly

different than all these methods. δ-MAPS does not require the number of domains as an

input parameter, the resulting domains are spatially contiguous and potentially overlapping,

and the inferred connections between domains can be lagged and positively or negatively

weighted. Further, the distinction between grid cells that are correlated within the same

domain and grid cells that are correlated across two distinct domains allows δ-MAPS to

separate between local diffusion (or dispersion) phenomena and remote interactions that

may be due to underlying structural connections (e.g., a white-matter fiber between two

brain regions).

We illustrate the application of δ-MAPS on data from two domains: climate science

(§5.5) and neuroscience (§5.6). First, the sea-surface temperature (SST) climate network

identifies some well-known climate “tele-connections” (such as the lagged connection be-

tween the El Niño Southern Oscillation and the Indian ocean). Second, the analysis of

resting-state fMRI cortical data confirms the presence of three well-known functional brain
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“networks” (default-mode, occipital, and motor/somatosensory), and shows that the corti-

cal network includes a backbone of relatively few regions that are densely interconnected.

5.2 Related Work

A common approach to reduce the dimensionality of spatio-temporal data is to apply PCA

(standard or rotated) or ICA techniques. For instance, in climate science, PCA (also known

as Empirical Orthogonal Function (EOF) analysis) has been used to identify teleconnec-

tions between distinct climate regions [167]. The orthogonality between PCA components

complicates the interpretation of the results making it difficult to identify the distinct un-

derlying modes of variability and to separate their effects, as clearly discussed in [50]. ICA

analysis is more common in the neuroscience literature, aiming to identify independent

rather than orthogonal components [88]. However, ICA does not provide a relative signif-

icance for each component, and the number of independent components should be chosen

based on some additional information about the underlying system.

Another broad family of spatio-temporal dimensionality reduction methods is based

on clustering [22, 60, 139, 177]. These algorithms can be grouped into region-growing

methods (e.g., [23, 104]), spectral (e.g., the NCUT method often applied in fMRI analysis

[44, 160] – but also see a discussion of their limitations [14]), hierarchical (e.g., [24, 150]),

and probabilistic (e.g., [14, 83]). These groups of algorithms are quite different but they

share some common characteristics: the resulting clusters may not be spatially contiguous,

they are typically non-overlapping, every grid cell needs to belong to a cluster (potentially

excluding only outliers), and the number of clusters is often required as an input parameter.

In particular, the lack of spatial contiguity makes it hard to distinguish between correlations

due to spatial diffusion (or dispersion) phenomena from correlations that are due to remote

(structural) interactions between distinct effects.

An approach of increasing popularity is to first construct a correlation-based network
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between individual grid cells, after pruning cross-correlations that are not statistically sig-

nificant – see [100]. Then, some of these methods analyze the (binary or weighted) cell-

level network directly based on various centrality metrics, k-core decomposition, spectral

analysis, etc. (e.g., [52, 161]) or they first apply a community detection algorithm (poten-

tially able to detect overlapping communities, e.g., [4, 103, 116]) on the cell-level network

and then analyze the resulting communities in terms of size, density, location, overlap, etc.

(e.g., [108, 118, 142, 143]). A community however may group together two regions that

are, first, not spatially contiguous, and second, different in terms of how they are connected

to other regions; an instance of this issue is illustrated in Fig. 58-C in the context of climate

data analysis.

5.3 δ-MAPS

The input data is generated from a spatial field X(t) sampled on an arbitrary grid G. This

grid can be modeled as a planar graph G(V,E), where each vertex in V is a grid cell

and each edge in E represents the spatial adjacency between two neighboring cells. A

set of cells A ⊆ V is spatially contiguous, denoted by IG(A)=1, if it forms a connected

component in G.

The K-neighborhood of a cell i, denoted by ΓK(i), includes i and the set of K nearest

neighbors to i according to an appropriate spatial distance metric (e.g., geodesic distance

for climate data, Euclidean distance for fMRI data). The K-neighborhood of a cell is

always spatially contiguous.

Each grid cell i is associated with a time series xi(t) of length T (t ∈ {1, . . . T}). We

assume that xi(t) is sampled from a stationary signal and denote by µ̃i and σ̃2
i its sample

mean and variance, respectively. The similarity between the activity of two cells i and j is

measured with Pearson’s cross-correlation at zero-lag,

ri,j =

∑T
t=1(xi(t)− µ̃i)(xj(t)− µ̃j)

T σ̃iσ̃j

. (10)

Other similarity metrics could be used instead.
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The local homogeneity at cell i is defined as the average pairwise cross-correlation

between the K + 1 cells in ΓK(i),

r̂K(i) =

∑
m̸=n∈ΓK(i) rm,n

K (K + 1)
. (11)

Similarly, we define the homogeneity of a set of cells A as the average pairwise cross-

correlation between all distinct cells in A,

r̂(A) =

∑
m̸=n∈A rm,n

|A| (|A| − 1)
. (12)

5.3.1 Functional domains

Intuitively, a domain A is a spatially contiguous set of cells that somehow participate in the

same dynamic effect or function. The exact mechanism that creates this effect or function

varies across application domains; however, the key premise is that the functional relation

between the cells of domain A results in highly correlated temporal activity (at zero-lag),

and thus high values of the homogeneity metric r̂(A). A given homogeneity threshold δ

examines if the homogeneity of A is sufficiently high, i.e., a domain A must have r̂(A) > δ.

(the selection of δ is discussed later in this section).

If we accept this premise, it follows that we should be able to identify the “epicenter”

or core of a domain A as a cell i ∈ A at which the local homogeneity r̂K(i) is maximum

across all cells in A (and certainly larger than δ). In general, the core of a domain may not

be a unique cell.

More formally now, suppose that we know that cell c is in the core of a domain. The

domain A rooted at c has to satisfy the following three properties: it should include cell c,

be spatially contiguous, and have higher homogeneity than δ:

c ∈ A, IG(A) = 1, r̂(A) > δ . (13)

A domain may not have sharp spatial boundaries; instead, it may gradually “fade” into

other domains or regions dominated by noise. So, instead of searching for the discrete
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boundary of a domain, it is more reasonable to compute a domain as the largest possible

set of cells that satisfies the previous three constraints.

Domain identification problem: Given the field X(t) on the spatial grid G, a core cell

c, and the threshold δ, the domain A(c) is a maximum-sized set of cells that satisfies

the three constraints of (13). In Section 5.8 we prove that the decision version of this

problem is NP-Hard.

A given spatial field X(t) may include several domains. The number of identified do-

mains, denoted by N , depends on the threshold δ. Domains may be spatially overlapping;

this is the case when the cells of a region are significantly correlated with two or more

distinct domain cores. Also, some cells of the grid may not belong to any domain, mean-

ing that their signal can be thought of as mostly noise (at least for the given value of δ).

Decreasing δ will typically result in a larger number of detected domain cores. Further,

as δ decreases, the spatial extent of each domain will typically increase, resulting in larger

overlaps between nearby domains.

δ can simply be a user-specified parameter for the minimum required average cross-

correlation within a domain. Another way is to calculate δ based on a statistical test for

the significance of the observed zero-lag cross-correlations. A summary of this method is

given next (described in more detail in Section 5.9). We start with a random sample of pairs

of grid cells. We then apply the statistical test described in §5.3.2 (see Equations 15 and

16) to examine if the zero-lag cross-correlation between each of these pairs passes a given

significance level α (set to 10−2 unless specified otherwise). δ is then set to the average

of the statistically significant cross-correlations in that sample. The rationale is that the

average pairwise cross-correlation among cells that belong to the same domain should be

higher than a sample average of statistically significant cross-correlations between cells

that can be anywhere on the grid.
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5.3.1.1 Algorithm for domain identification

Given the NP-Hardness of the previous problem, we propose a greedy algorithm that runs

in two phases. In the first phase, we identify a set of cells, referred to as seeds; each seed

is a candidate core for a domain. In the second phase, each seed is initially considered as

a distinct domain. Then, an iterative and greedy algorithm attempts to identify the largest

possible domains that satisfy the three constraints of (13) through a sequence of expansion

and merging operations. The two phases are described next, while the complete pseudocode

is presented in Section 5.10. The source code (including supporting documentation) will

be available on GitHub.

Seed selection Recall that the core of a domain is a cell of maximum local homogeneity

across all cells of that domain. So, one way to detect potential core cells, while the domains

are still unknown, is to identify points at which the homogeneity field r̂K(i) is locally

maximum. Specifically, cell i is a seed if r̂K(i) > δ and r̂K(i) ≥ r̂K(j) ∀j ∈ ΓK(i). Let S

be the set of all identified seeds.

In general, a single domain may produce more than one seed because the local homo-

geneity field can be noisy and so it may include multiple local maxima, greater than δ.

Further, additional seeds can appear in regions where domains overlap. Consequently, it is

necessary to include a merging operation in which two or more seeds are eventually merged

into the same domain.

Note that as K decreases, the local homogeneity field becomes more noisy and so we

may detect more seeds in the same domain. On the other hand, larger values of the neigh-

borhood size K can oversmooth the homogeneity field, removing seeds and potentially

hiding entire domains. The latter is more likely if the spatial extent of a domain is smaller

than K+1 cells. This observation implies that the spatial resolution of the given grid sets a

lower bound on the size of the functional domains that can be detected.
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Domain-merging operation Two candidate domains A and B can be merged if they

are spatially contiguous and if the homogeneity of their union is sufficiently high, i.e.,

r̂(A ∪ B) > δ. Whenever there is more than one pair of domains that can be merged, we

greedily choose the pair with the maximum union homogeneity; this greedy choice makes

the merged domain more likely to expand further.

The merging operation is performed initially on the set of seeds S. It is also performed

after each domain-expansion operation, whenever it is possible to do so.

Domain-expansion operation A domain A is expanded by considering all cells that are

adjacent to A, and selecting the cell i that maximizes r̂(A∪ {i}); again, this greedy choice

makes the expanded domain more likely to expand further.

The expansion operation is repeated in rounds. At the start of each round, domains are

sorted in decreasing order of homogeneity. Then, each domain is expanded by one cell at

a time, as previously described, in that order. After every expansion operation, we check

whether one or more merging operations are possible. A round is complete when we have

attempted to expand each domain once.

A domain can no longer expand if that would violate the homogeneity constraint δ

or if there are no other adjacent cells that can be added into the domain. The domain

identification algorithm terminates when no further expansion or merging operations are

possible.

5.3.2 The domain network

Given the N identified domains Vδ = {A1, . . . AN}, the next step is to construct a network

Gδ(Vδ, Eδ) between domains. Different domains may have correlated activity because of

direct or indirect interactions. We refer to Gδ as a functional network to emphasize that

the edges between domains are based on functional activity and correlations instead of

structural or physical connections (“structural network”) or causal interactions (“effective

network”).
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We associate a domain-level signal XA(t) with each domain A. The definition of this

signal depends on the specific application field. For instance, when we analyze climate

anomaly time series, the domain-level signal is defined as the cumulative anomaly across

all cells of that domain, where the contribution of each signal is weighted by the relative

size of that cell (it depends on the cell’s latitude). For fMRI data, the domain-level signal

is defined as the average BOLD signal across the cells of that domain.

Two different domains may be located at some distance, and so they may be correlated

at a non-zero lag τ . For this reason, we examine if there is a significant cross-correlation

between different domains over a range of lags (−τmax ≤ τ ≤ τmax). The sample cross-

correlation between domains A and B at a lag τ can be estimated as:

rA,B(τ) =

∑T−τ
t=1 (XA(t)− µ̃A)(XB(t+ τ)− µ̃B)

T σ̃Aσ̃B

, (14)

where µ̃A and σ̃A denote sample mean and standard deviation estimates, respectively. The

selection of τmax should be large enough to include the typical signal propagation delays in

the underlying system but at the same time it should be much lower than T . The 2τmax +1

cross-correlations for a pair of domains can be represented with a correlogram; an example

based on climate sea-surface temperature data (see §5.5) is shown in Fig. 56.

Figure 56: Correlogram between two climate time series for a lag range of ±12 months.
We show the significant correlations for a false discovery rate q = 10−3 with red. The

error bars correspond to ± one standard deviation, as estimated by Eq. (15).
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The next step is to examine the statistical significance of the measured cross-correlation

between two domains A and B. Two uncorrelated signals can still produce a considerable

sample cross-correlation if they have a strong auto-correlation structure. This is captured by

Bartlett’s formula [26], which is an estimator for the variance of rA,B(τ) (for a fixed value

of τ ). Under the null-hypothesis that the domain-level signals of A and B are uncorrelated,

Var[rA,B(τ)] =
1

T − τ

T∑
τk=−T

rA,A(τk) rB,B(τk) , (15)

where rA,A(τk) is the autocorrelation of the time series of domain A at lag τk.

Under the previous null-hypothesis, the expected value of rA,B(τ) is zero and the fol-

lowing statistic approximately follows the standard normal distribution N(0, 1):

zA,B(τ) =
rA,B(τ)√

Var[rA,B(τ)]
. (16)

The approximation is due to the fact that rA,B(τ) is bounded between [−1, 1]. So, we

can now perform hypothesis testing for every pair of domains, computing a corresponding

p-value based on z.

Given that there may be several domains in Gδ, we need to control the number of false

positive edges that may result from the multiple testing problem. We do so using the False

Discovery Rate (FDR) method of Benjamini and Hochberg [19]. Specifically, given N

domains, we need to perform M = N(N−1)
2

(2τmax + 1) tests (for each potential edge and

for each possible lag value), and compute the p-value for each test, based on (16). Given a

False Discovery Rate q (the expected value of the fraction of tests that are false positives),

the Benjamini-Hochberg procedure ranks the M p-values (pi becomes the i’th lowest p-

value) and only keeps the first m < M tests (edges), where pm is the highest p-value such

that pm < qm/M .

Lag inference and edge directionality We infer the domain-level network Gδ as follows.

Two domains A,B ∈ Vδ are connected if there is at least one lag value at which the cross-

correlation rA,B(τ) has passed the FDR test. The standard approach in lag inference is to
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consider the lag value τ ∗ that maximizes the absolute cross-correlation,

τ ∗A,B = argmaxτ=−τmax...τmax
{|rA,B(τ)|} . (17)

The corresponding correlation is denoted as r∗A,B. There are two problems with this ap-

proach. First, it is harder to examine the statistical significance of |r∗A,B| because it is the

maximum of a set of random variables.1 Second, it is often the case that there is a range

of lag values that produce “almost maximum” cross-correlations, say within one standard

deviation from each other. Focusing on τ ∗A,B and ignoring the rest of the statistically signif-

icant and almost equal cross-correlations is not well justified.

Instead, we follow a more robust approach in which an edge of the domain-level net-

work Gδ may be associated with a range of lag values.2 The lag range that we associate

with the edge between A and B, denoted as Rτ (A,B), is defined as the range of lags

that produce significant cross-correlations, within one standard deviation from |r∗A,B|. If

Rτ (A,B) includes τ=0, the edge is represented as undirected. If Rτ (A,B) includes only

positive lags, the edge is directed from A to B meaning that A’s signal precedes B’s by the

given lag range; otherwise, we associate the opposite direction with that edge. We empha-

size that the directionality of the edges does not imply causality; it only refers to temporal

ordering.

Edge weight and domain strength How to assign a weight to each domain-level edge

in Gδ? A common approach is to consider the (signed) magnitude of the cross-correlation

r∗A,B. This is reasonable if all domain signals have approximately the same signal power. In

addition, we propose a new edge weight that is based on the covariance of the two domains:

w(A,B) = cov[XA(t), XB(t)] = σ̃A σ̃B r∗A,B . (18)

1An analytic approach based on extreme-value statistics was proposed in [100] but it relies on several
approximations. Numerical approaches based on frequency-domain bootstrapping, on the other hand, are
computationally expensive [100, 107, 127].

2In principle, it may be a set of lag values. In practice though, significant correlations result for a contin-
uous range of lag values.
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The cross-correlation is computed at lag τ ∗A,B but we could use the average of all cross-

correlations in Rτ (A,B) instead. The weight of an edge can be positive or negative de-

pending on the sign of the corresponding cross-correlation.

Finally, the strength of a network node (domain) is defined as the sum of the absolute

weights of all edges of that node (ignoring edge directionality).

5.4 Illustration - Comparisons

In this section we validate δ-MAPS using the synthetic data set presented in section 2.1.

The parameters of δ-MAPS are set as follows: K=4 cells (up-down-left-right), and δ=0.55

(corresponds to significance level 10−2). In the edge inference step, the FDR threshold is

q=10% and τmax = 20.

Fig.1-B shows the local homogeneity field r̂K(i) as well as as the identified seeds (blue

dots), while Fig.1-C shows the five discovered domains. As expected, we often identify

more than one seed in the core of each domain due to noise; those seeds are eventually

merged into the same domain. The local homogeneity field is weaker in domains 4 and 5

(due to their lower variance) but a seed is still detected in those domains. Seeds also appear

at the two overlapping regions between (1,2) and (2,3) but those seeds gradually merge

with one of the domains in which they appear.

Each domain is a subset of the domain’s true expanse. The reason is that some cells

close to the periphery of each domain have very low signal-to-noise ratio (recall that the

signal decays to zero at the periphery and so the average correlation between those cells

with the rest of their domain does not exceed the δ threshold). More quantitatively, the

inferred domains include about 80%-90% of the ground-truth cells in each domain. In

non-overlapping regions this fraction is higher (85%-95% of the cells), while in overlap-

ping regions it drops to 45%-80%. The extent of overlapping regions is harder to cor-

rectly identify especially when a domain (e.g., domain 2) overlaps with a stronger domain
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(e.g., domains 1 or 3); the stronger domain effectively masks the signal of the weaker do-

main. The average pairwise cross-correlation of the cells in each domain varies between

55%-70% in the ground-truth data, while the inferred domains have slightly higher average

cross-correlation (65%-75%) due to their smaller expanse.

Finally, Fig. 1-C shows the inferred domain-level network. δ-MAPS identifies correctly

the three edges and their polarity (positive versus negative correlations). The lag ranges

always include the correct value (e.g., the edge between domains 1 and 3 has a lag range

[14,15]). Also, the three edges are correctly ordered in terms of absolute cross-correlation

magnitude: (1,3) followed by (4,5), followed by (3,5).

5.5 Application in Climate Science

We first apply δ-MAPS in the context of climate science. Climate scientists are interested in

teleconnections between different regions, and they often rely on EOF analysis to uncover

them [167]. Here, we analyze the monthly Sea-Surface Temperature (SST) field from the

HadISST dataset [121], covering 50 years (1956-2005) at a spatial resolution of 2.0o×2.5o,

and we focus on the latitudinal range of [60oS; 60oN ] to avoid sea-ice covered regions.

Following standard practice, we pre-process the time series to form anomalies, i.e., remove

the seasonal cycle, remove any long-term trend at each grid-point (using the Theil-Sen

estimator), and transform the signal to zero-mean at each grid point.

δ-MAPS is applied as follows. We set the local neighborhood to the K=4 nearest

cells so that we can identify the smallest possible domains at the given spatial resolution.

Second, the homogeneity threshold δ is set to 0.37 (corresponds to a significance level of

10−2). In the edge inference stage, the lag range is τmax=12 months (a reasonable value for

large-scale changes in atmospheric wave patterns), and the FDR threshold is set to q=3%

(we identify about 30 edges and so we expect no more than one false positive).

Fig. 57-A shows the identified domains (the color code will be explained shortly). The

spatial dimensionality has been reduced from about 6000 grid cells to 18 domains. 65%
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of the sea-covered cells belong to at least one domain; the overlapping regions are shown

in black and they cover 2% of the grid cells that belong to a domain. The largest domain

(domain E) corresponds to the El Niño Southern Oscillation (ENSO), which is also the

most important in terms of node strength (see Fig. 57-B). Other strong nodes are domain F

(part of the “horseshoe-pattern” surrounding ENSO), domain J (Indian ocean) and domain

Q (sub-tropical Atlantic). The strength of the edges associated with ENSO are shown in

Fig. 57-C. These observations are consistent with known facts in climate science regarding

ENSO and its positive correlation with the Indian ocean and north tropical Atlantic, and

negative correlations with the regions that surround it in the Pacific (horseshoe-pattern)

[98].

Fig. 57-D shows the inferred domain-level network. The color code represents the

(signed) cross-correlation for each edge. The lag range associated with each edge is shown

in Fig. 57-E; recall that some edges are not directed because their lag range includes τ=0.

The network consists of five weakly-connected components. If we analyze the largest

component (which includes ENSO) as a signed network (i.e., some edges are positive and

some negative) we see that it is structurally balanced [56]. A graph is structurally balanced

if it does not contain cycles with an odd number of negative edges.3 A structurally balanced

network can be partitioned in a “dipole”, so that positive edges only appear within each pole

and negative edges appear only between the two poles. In Fig. 57-A, the nodes of these

two poles are colored as blue and green (the smaller disconnected components are shown

in other colors).

Focusing on the lag range of each edge, domain Q seems to play a unique role, as it

temporally precedes all other domains in the inferred network. Specifically, its activity

precedes that of domains D, E and F by about 5-10 months. The lead of south tropical

Atlantic SSTs (domain Q) on ENSO has recently received significant attention in climate

science [125]. Our results suggest that SST anomalies in domain Q may impact a large

3For instance, if two friends are both enemies with a third person, they form a balanced social triangle.
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portion of the climate system.

Switching to lag inference, we say that a triangle is lag-consistent if there is at least

one value in the lag range associated with each edge that would place the three nodes in

a consistent temporal distance with respect to each other. For instance, in the case of the

first triangle of Fig. 57-F, the triangle is lag-consistent if the edge from Q to F has a lag

of 8 months and the edge between E and F has lag -2 months (meaning that the direction

would be from F to E); several other values would make this triangle lag-consistent. We

have verified the lag-consistency of every triangle in the climate network. One exception

is the triangle between domains (C,D,G), shown at the bottom of Fig. 57-F. However,

the large lag in the edge from C to G can be explained with the triangle between domains

(C,E,G), which is lag-consistent. We emphasize that the temporal ordering that results

from these lag relations should not be misinterpreted as causality; we expect that several

of the edges we identify are only due to indirect correlations, not associated with a causal

interaction between the corresponding two nodes.

Figure 57: (A) The identified domains. The color of each domain corresponds to the
connected component it belongs to (the blue and green nodes belong to two different poles

of the same component). (B) Color map for domain strength. The strength of ENSO
(domain E) is shown at the top. (C) Edges to and from ENSO (shown in black). (D) The
climate network. The color of each edge represents the corresponding cross-correlation.
(E) The lag range associated with each edge. (F) Examples of lag-consistent triangles.

For comparison purposes, Fig. 58 shows the results of EOF analysis, community de-

tection, and spatial clustering on the same dataset. The first EOF explains only about 19%
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of the variance, implying that the SST field is too complex to be understood with only

one spatial component. On the other hand, the joint interpretation of multiple EOF com-

ponents is problematic due to their orthogonal relation [50]. The anti-correlation between

ENSO and the horseshoe-pattern regions is well captured in the first component but several

other important connections, such as the negative and lagged relation between the south

subtropical Atlantic and ENSO (domains Q and E, respectively), are missed.

Figure 58: (A),(B) The first two components of EOF analysis. (C) Communities identified
by OSLOM. Each community has a unique number and color. (D) Areas identified by

spatial clustering.

Fig. 58-C shows the results of the overlapping community detection method OSLOM.

Following [142], the input to OSLOM is a correlation-based cell-level network. Correla-

tions less than 30% are ignored. The weight of each edge is set to the maximum absolute

correlation between the corresponding two cells, across all considered lags. OSLOM iden-

tifies 22 communities. Community 6 is not spatially contiguous; it covers ENSO, the Indian

ocean, a region in the north tropical Atlantic, and a region in south Pacific. This is a general

problem with community detection methods: they cannot distinguish high correlations due

to a remote connection from correlations due to spatial proximity. In the context of climate,

the former may be due to atmospheric waves or large-scale currents while the latter may be

due to local circulations.
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Finally, Fig. 58-D shows the results of a spatial clustering method [66], with the same

homogeneity threshold δ we use in δ-MAPS. That method ensures that every cluster (re-

ferred to as “area”) is spatially contiguous but it also requires that there is no overlap be-

tween areas and it attempts to assign each grid cell to an area. Consequently, it results in

more areas (compared to the number of domains), some of which are just artifacts of the

spatial parcellation process. Further, the spatial expanse of an area constrains the compu-

tation of subsequent areas because no overlaps are allowed.

5.6 Application in fMRI data

Functional magnetic resonance imaging (fMRI) measures fluctuations of the blood oxy-

genation level dependent (BOLD) signal in the brain. The dynamics of the BOLD signal in

gray matter are generally correlated with the level of neural activity. The resulting spatio-

temporal field is often analyzed using ICA, clustering or network-based methods to infer

brain functional networks [136].

Here, we illustrate δ-MAPS on cortical resting-state fMRI data from a single subject

(healthy young male adult, subject-ID: 122620) from the WU-Minn Human Connectome

Project (HCP) [163]. The data acquisition parameters are described in [133]. The spatial

resolution is 2mm in each voxel dimension. The pre-processing of fMRI data requires

several steps; we use the “fix-extended” HCP minimal processing pipeline that includes

head motion correction, registration to a structural image, masking on non-brain voxels,

etc; please see [74]. MELODIC ICA and FIX are used to remove non-neuronal artifacts

(e.g., physiological noise due to cardiac and respiratory cycles). We also perform bandpass

filtering in the range 0.01-0.08Hz, as commonly done in resting-state fMRI.

In this chapter, we analyze two scanning runs of the same subject (“scan-1” and “scan-

2”). Each scan lasts about 14 minutes and results in a time series of length T=1200 (repe-

tition time TR=720msec). We emphasize that major differences across different scanning

sessions of the same subject are common in fMRI; studies of functional brain networks
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often only report group-level averages. The entire cortical volume is projected to a surface

mesh (Conte69 32K) resulting in about 65K gray-ordinate points (as opposed to volumetric

voxels) [162]. Each point of this mesh is adjacent to six other points; for this reason we set

K=6. The homogeneity threshold is set to δ=0.37 (corresponds to significance level 10−2).

The maximum lag range τmax is set to ±3, i.e., 2.2 seconds, and the FDR threshold is set to

q=10−4 (i.e., we expect one out of 10K edges to be a false positive). The signal of a domain

is defined as the average across all voxels in that domain.

The application of δ-MAPS results in a network with about 850 domains in scan-1

(1120 domains in scan-2). 80% of the domains are smaller than 30-40 voxels (depending

on the scan) and 5% of the domains are larger than 250 voxels. The number of edges is

4285 in scan-1 (4200 in scan-2). The absolute value of the cross-correlation associated

with each edge is typically larger than 0.5. The fraction of negative edge correlations is

about 5% in scan-1 and 20% in scan-2 suggesting that the polarity of some network edges

may be time-varying. The lag τ ∗ that corresponds to the maximum cross-correlation is 0 in

70% of the edges and ±1 in almost all other cases. 13% of the edges are directed, meaning

that lag-0 does not produce a significant correlation for that pair of domains. There is a

positive correlation between the degree of a domain and its physical size (the correlation

coefficient between degree and log10(size) is 0.70 for scan-1 and 0.66 for scan-2). Further,

the network is assortative meaning that domains tend to connect to other domains of similar

degree (assortativity coefficient about 0.7 in both scans).

An important question is whether the δ-MAPS networks are consistent with what neu-

roscientists currently know about resting-state activity in the brain. During rest, certain

cortical regions that are collectively referred to as the Default-Mode Network (or DMN) are

persistently active across age and gender [176]. Other known resting-state networks are the

occipital (part of the visual system) and the motor/somatosensory (associated with planning

and execution of voluntary body motion). With the terminology of network theory, the pre-

vious “networks” would be referred to as communities within the larger functional brain
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Figure 59: Three domain-level network communities for each scan. The first corresponds
to the default-mode network, the second to the occipital network, and the third to the

motor/somatosensory network.

network. To identify communities in the δ-MAPS network, we applied OSLOM [103].

OSLOM identifies two hierarchical levels in both scans. The first level consists of highly

overlapping communities that cover almost the entire cortex. The second hierarchical level

is more interesting, resulting in eight communities for scan-1 (nine for scan-2). Fig. 59

shows the three communities (C.1, C.2, C.3) for each scan that have the highest resem-

blance to the three previously mentioned resting-state networks: C.1 corresponds to the

DMN, C.2 corresponds to the occipital resting-state network, and C.3 corresponds to the

motor/somatosensory network. C.1 is quite similar across the two scanning sessions and it

clearly captures the DMN. In C.2, the extent of the network is smaller in scan-2, which is

not too surprising giving the known inter-scan variability of resting-state fMRI. C.3 is also

quite similar across the two scans and consistent with the motor/somatosensory network.

To further investigate the structure of those higher degree (and typically larger) do-

mains, we perform k-core decomposition.4 The density of the remaining network, after

the extraction of k=14 cores from the scan-1 network (k=16 cores in scan-2) shows a

sudden increase by a factor of two. This suggests that the network includes a densely

inter-connected backbone, also known as “rich-club”. The size of this backbone is small

relative to the entire network: 130 domains in scan-1 (90 in scan-2). Similar observations

about the resting-state brain, but using voxel-level network analysis methods, have been

4A process that starts with the original network (k=0), and it removes iteratively all nodes of degree k or
less in each round so that after the extraction of the k’th core all remaining nodes have degree larger than k.
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previously reported [161]. Fig.60 shows the location of the backbone domains for each

hemisphere and for each scan. The regions that are usually associated with the DMN dom-

inate the backbone of both sessions. Interestingly though, scan-1 includes the regions of

the motor/somatosensory network, while the backbone of scan-2 is missing those regions.

One possible explanation for this discrepancy is that the subject was more relaxed during

scan-2, not exerting the mental effort to stay still.

Figure 60: The domains of the backbone network for each hemisphere and scan. The
color of each domain is randomly assigned (overlaps are shown in black).

5.7 Discussion

δ-MAPS results in a correlation-based functional network. A next step could be to infer

a causal, or effective network, leveraging the framework of probabilistic graphical models.

Instead of attempting to learn the graph structure from raw data, one could use the δ-

MAPS network as the underlying structure and then apply conditional independence tests

to remove non-causal edges (e.g., [58]). Another direction could be to combine the inferred

functional network with a structural network that shows the physical connectivity between

the identified domains. This is not hard in the case of communication networks but it also

becomes feasible for brain networks using diffusion-weighted MRI. The projection of the

observed dynamics on the underlying structure can help to characterize the actual function

and delay of each system component.
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5.8 Identifying the largest domain is NP-complete

We are given a spatio-temporal field X(t) on a grid G, a pairwise similarity metric between

pairs of grid cells and a threshold δ. Starting from a grid cell c, the goal is to find the largest

subset of grid cells that form a single spatially connected component, and whose average

similarity exceeds the threshold δ. The spatial grid can be represented as a planar graph

G(V,E) where each grid cell is a node and edges connect adjacent grid cells. Formally we

have the following graph optimization problem:

Definition 1. Rooted Largest Connected δ-Dense Subgraph Problem (rooted LCδDS).

Given a regular (grid) graph G(V,E), a weight function w : V ×V → R (where w(v, v) =

0 and symmetric), a threshold δ, and a node c ∈ V , find a maximum cardinality set of

nodes A ⊆ V such that c ∈ A, the induced subgraph is connected (IG(A) = 1) and∑
v,u∈A w(v,u)

|A|(|A|−1)
> δ (i.e., r̂(A) > δ).

To show that rooted LCδDS is NP-hard we first consider a variant of the problem in

which the induced subgraph A has to satisfy two conditions; it has to be a connected sub-

graph of G, and the average weight of the edges in A has to exceed δ. More formally:

Definition 2. Largest Connected δ-Dense Subgraph Problem (LCδDS). Given a reg-

ular (grid) graph G(V,E), a weight function w : V × V → R (where w(v, v) = 0 and

symmetric), and a threshold δ, find a maximum cardinality set of nodes A ⊆ V such that

IG(A) = 1 and r̂(A) > δ.

To show that LCδDS is NP-hard we use a reduction of the densest connected k subgraph

problem.

Definition 3. Densest Connected k-Subgraph Problem (DCkS). Decision version:

Given a graph G(V,E), and positive integers k and j, does there exist an induced sub-

graph on k vertices such that this subgraph has at least j edges and is connected?

DCkS (also referred to as the connected h-clustering problem) has been shown to be

NP-complete on general graphs [42], as well as on planar graphs [96]. DCkS is poly-

nomially time solvable for subclasses of planar graphs of bounded tree width [12]. Grid
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graphs, which are the type of graphs that arise in our application domains, are planar bipar-

tite graphs, with non-fixed tree width, and no positive results are known for this subclass

of planar graphs. The work on approximating densest/heaviest connected k-subgraphs is

relatively very limited (see recent theoretical result [36]). It is easy to show that the DCkS

problem can be easily reduced to an instance of the decision version of the LCδDS problem,

and hence it is also NP-complete even on planar graphs.

LEMMA 1. The decision version of the LCδDS problem is NP-complete on planar

graphs.

PROOF. This can be shown via a reduction from the DCkS. We reduce an instance <

G, k, j > of the DCkS to an LCδDS instance by using the same graph G, setting w(u, v) =

I(u, v) ∈ E (w(u, v) is 1 if and only if the pair of nodes is connected by an edge), and

δ = j/k(k − 1).

Now it is easy to show that rooted LCδDS is also NP-hard. If a poly-time algorithm

existed for the rooted LCδDS, then by calling it |V | times with each of the nodes of the

graph, we would obtain in poly-time a solution to the NP-hard LCδDS.

5.9 Heuristic for the selection of δ

The threshold δ intuitively determines the minimum degree of homogeneity that the under-

lying field must have within each domain. The higher the threshold, the higher the required

homogeneity and therefore, the smaller the size of the identified domains.

To select δ we propose the following heuristic. We start with a random sample of pairs

of grid cells and for each pair i, j we compute the Pearson correlation ri,j at zero lag. To

assess the significance of each correlation we use Bartlett’s formula [26]. Under the null

hypothesis of no coupling ri,j should have zero mean, and a reasonable estimate of its

variance is given by

V ar[ri,j] =
1

T

T∑
τk=−T

ri,i(τk)rj,j(τk) , (19)
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here ri,i(τk) is the autocorrelation of the time series of grid cell i at lag τk. The scaled

values zi,j =
ri,j√

V ar[ri,j ]
should approximately follow a standard normal distribution. To

assess the significance of each correlation we perform a one sided z-test for a given level

of significance α.

The threshold δ is set as the average of all significant correlations. A domain is a set

of spatially contiguous grid cells, thus we require that the mean pairwise correlation for

the cells belonging to the same domain to be higher than the mean pair-wise correlation

of randomly picked pairs of grid cells. δ depends on the choice of the significance level

α, on the autocorrelation structure of the underlying time series and on the correlation

distribution of the field.

5.10 δ-MAPS pseudocode
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Chapter VI

CONCLUSIONS & FUTURE WORK

6.1 Conclusions

In this thesis we propose a framework for the analysis of spatio-temporal systems based on

complex network analysis. The proposed framework consists of two methods geo-Cluster

and δ-MAPS, whose scope is to uncover the semi-autonomous functional components of a

spatio-temporal system and infer their interactions.

The first method, geo-Cluster, identifies the functional components of the system, re-

ferred to as “areas”, and models their interconnections as a complete and weighted net-

work. An area is a spatially contiguous, non-overlapping, set of grid cells that conform to

a homogeneity constraint. This homogeneity constraint requires that the average pairwise

correlation between the grid cells in an area’s scope to be larger than a pre-defined thresh-

old - the only parameter of the proposed algorithm. The requirement of only one parameter,

combined with the fact that no link pruning in the underlying cell-level network is imposed,

adds robustness to a network’s structure and makes the comparison of different networks

more reliable. At a second step, we infer a network between these areas. The network

is modeled as a complete and weighted graph. The weight of an edge, measured as the

covariance between the time series of the two corresponding areas, captures the magnitude

of the interaction between the functional components of the system.

The proposed method is robust to noise, the resolution of the spatio-temporal data set,

the measure that quantifies similarities between the grid cell time series, and to perturba-

tions of the homogeneity parameter.

The second method, δ-MAPS, allows for the functional components of the system (re-

ferred to as “domains”) to overlap and accounts for non-instantaneous interactions between
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them. δ-MAPS is based on the premise that the functional relation between the grid cells

of a domain results in highly correlated temporal activity. To this end it first identifies the

“epicenter” or “core” of a domain as a point (or set of points) where the local homogeneity

is maximum across the entire domain. Instead of searching for the discrete boundary of

a domain, which may not exist in reality, we compute a domain as the maximum possible

set of spatially contiguous cells that include the detected core, and that satisfy a homo-

geneity constraint, expressed in terms of the average pairwise cross-correlation across the

domain’s scope. At a second step, δ-MAPS infers a functional network. Different domains

may have correlated activity, potentially at a lag, because of direct or indirect interactions.

The proposed edge inference method examines the statistical significance of each lagged

cross-correlation between two domains, applies a multiple-testing process to control the

rate of false positives, infers a range of potential lag values for each edge, and assigns a

weight to each edge based on the covariance of the corresponding two domains.

δ-MAPS does not require the number of domains as an input parameter, the resulting

domains are spatially contiguous and potentially overlapping, and the inferred connections

between domains can be lagged and positively or negatively weighted. Further, the distinc-

tion between grid cells that are correlated within the same domain and grid cells that are

correlated across two distinct domains allows δ-MAPS to separate between local diffusion

(or dispersion) phenomena and remote interactions that may be due to underlying structural

connections (e.g., a white-matter fiber between two brain regions).

δ-MAPS is not just a generalization of geo-Cluster, allowing for overlapping functional

domains and accounting for lagged interactions between them. The greedy heuristics of

geo-Cluster force each grid cell to belong to an area. Further, after a grid cell is assigned

to an area it cannot belong to any other area, potentially limiting the scope of subsequent

areas. This leads to a stronger path dependency (thus less robustness) compared to the

approach taken by the δ-MAPS algorithm.
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The proposed framework has been applied in the fields of climate science and neu-

roscience. In the context of climate we present applications of geo-Cluster to identify

well known climate shifts and construct networks between different climate fields. Using

geo-Cluster we performed an extensive study analyzing twelve cutting edge climate model

ensembles from the CMIP5 output. Using two distance metrics, a network distance D and

the adjusted Rand index (ARI) we are able to rank the models in terms of their ability to

reproduce the climate of the past as well as quantify the variability between different mem-

bers of the same model ensemble. When investigating the model trajectories in the future,

under a global warming scenario, we found that the uncertainty in the model trajectories is

larger than the uncertainty in the superimposed trends.

Using δ-MAPS we analyzed the temporal relationships between different functional

components of the climate system in the sea surface temperature field. We found that the

proposed method successfully uncovered many well-known climate teleconnections and

the lag associated with them. In the context of neuroscience we performed a single subject

analysis focusing on resting state fMRI data. We found that the proposed method was

able to uncover many of the well-known resting state networks. We also show how the

method identifies a small number of strongly interconnected areas forming the backbone

of the resting state network. Using synthetic data we also show how δ-MAPS overcomes

limitations of traditional dimensionality reduction techniques such as PCA/ICA, clustering

and community detection.

6.2 Future Work

Climate Networks Over Time. The proposed method can be naturally extended to con-

struct networks over time (e.g., using a sliding window approach). To this end, we are

interested to observe the trajectories of the functional components of the system as ex-

pressed by their strength and size. Specifically, in the context of climate we are interested

to focus on the dynamics of ENSO and identify “tipping” points at which its dynamics
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change. Such tipping points can have a global impact on the climate system.

Climate Models and Controlled Perturbation Experiments. In the context of cli-

mate we are interested to use the network framework to evaluate how the perturbations

imposed on a model’s parameters propagate to the climate scale. We are interested to first

identify the regions that are the most (or the least) affected by the perturbations, the time

scale of the propagation, and the implications for teleconnections.

Effective Connectivity. In this thesis we have limited our analysis to functional net-

works. A next step could be to infer a causal, or effective [130] network, leveraging the

framework of probabilistic graphical models [57, 101, 128]. Instead of attempting to learn

the graph structure from raw data, one could use the identified spatial components as the

underlying structure and then apply conditional independence tests to remove non-causal

edges.

Dynamic Networks Using Contextual Time Series Detection. A problem that arises

with fMRI measurements is that they are sampled over an extended recording period. Most

fMRI studies require that the subject will remain at rest through this period (which cannot

be guaranteed in practice). When we measure cross-correlations throughout that extended

measurement period, abrupt changes in the signal might be averaged out [151]. A pro-

posed solution to this problem, to be able to identify these dynamic changes, is to construct

temporal networks using a sliding window approach [33]. However, the results are highly

dependent on the length of the window chosen. An alternative direction would be to auto-

matically detect changes between two time series [34, 35]. Such changes can be tracked at

the voxel level. However, due to the high amount of noise in fMRI data, a better approach

would be to track such changes at the functional domain level.

Structural-Functional Networks. Another direction could be to combine the inferred

functional network with a structural network that shows the physical connectivity between

the identified domains. This is not hard in the case of communication networks but it also

becomes feasible for brain networks using diffusion-weighted MRI. The projection of the
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observed dynamics on the underlying structure can help to characterize the actual function

and delay of each system component.

Extensions to Other Spatio-temporal Data. The applications of the proposed frame-

work are not only limited in the fields of climate science and neuroscience. To this end, we

propose to apply the proposed framework to data describing species migration patterns (see

e.g., [91]). By understanding the processes that drive such patterns we can mitigate risks

to populations due to climate change, urban expansion and many more factors. In such a

context, the functional components that we identify will correspond to migratory regions.

The edges between the identified regions can uncover pathways of population movement.
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[16] BARTHÉLEMY, M., “Spatial networks,” Physics Reports, vol. 499, no. 1, pp. 1–101,
2011.

[17] BELLEC, P., PERLBARG, V., JBABDI, S., PÉLÉGRINI-ISSAC, M., ANTON, J.-L.,
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[88] HYVÄRINEN, A., “Fast and robust fixed-point algorithms for independent compo-
nent analysis,” Neural Networks, IEEE Transactions on, vol. 10, no. 3, pp. 626–634,
1999.
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[164] VEJMELKA, M., POKORNÁ, L., HLINKA, J., HARTMAN, D., JAJCAY, N., and
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