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SUMMARY

The main objective of this thesis is to design reliable clock-distribution networks and

power-delivery networks for three-dimensional integrated circuits (3D ICs) using through-

silicon vias (TSVs). This dissertation supports this goal by addressing six research topics.

The first four works focus on 3D clock tree synthesis for low power, pre-bond testability,

TSV-induced obstacle avoidance, and TSV utilization. The last two works develop modeling

approaches for reliability analysis on 3D power-delivery networks.

In the first work, a clock synthesis algorithm is developed for low-power and low-slew

3D clock network design. The impact of various design parameters on clock performance,

including the wirelength, clock power, clock slew, and skew, is investigated. These param-

eters cover the TSV count, TSV parasitics, the maximum loading capacitance of the clock

buffers, and the supply voltage.

In the second work, a clock synthesis algorithm is developed to construct 3D clock

networks for both pre-bond testability and post-bond operability. Pre-bond testing of 3D

stacked ICs involves testing each individual die before bonding. The overall yield of 3D

ICs improves with pre-bond testability because manufacturers can avoid stacking defective

dies with good ones. Two key techniques including TSV-buffer insertion and redundant

tree generation are implemented to minimize clock skew and ensure pre-bond testing. The

impact of TSV utilization and TSV parasitics on clock power is also investigated.

In the third work, an obstacle-aware clock tree synthesis method is presented for through-

silicon-via (TSV)-based 3D ICs. A unique aspect of this problem lies in the fact that various

types of TSVs become obstacles during 3D clock routing including signal, power/ground,

and clock TSVs. These TSVs may occupy silicon area or routing layers. The generated

clock tree does not sacrifice wirelength or clock power too much and avoids TSV-induced

obstacles.

In the fourth work, a decision-tree-based clock synthesis (DTCS) method is developed for

xviii



low-power 3D clock network design, where TSVs form a regular 2D array. This TSV array

style is shown to be more manufacturable and practical than layouts with TSVs located at

irregular spots. The DTCS method explores the entire solution space for the best TSV array

utilization in terms of low power. This method is applied for both gate-level chip-scale 3D

clock designs and block-level global clock designs. Close-to-optimal solutions can be found

for power efficiency with skew minimization in short runtime.

In the fifth work, current crowding and its impact on 3D power grid integrity is investi-

gated. Due to the geometry of TSVs and connections to the global power grid, significant

current crowding can occur. The current density distribution within a TSV and its connec-

tions to the global power grid is explored. A simple TSV model is implemented to obtain

current density distributions within a TSV and its local environment. These models are

checked for accuracy by comparing with identical models simulated using finite element

modeling methods. The simple TSV models are integrated with the global power wires for

detailed chip-scale power analysis.

In the sixth work, a comprehensive multi-physics modeling approach is developed to

analyze electromigration (EM) in TSV-based 3D connections. Since a TSV has regions

of high current density, grain boundaries play a significant role in EM dominating atomic

transport. The transient analysis is performed on atomic transport including grain and grain

boundary structures. The evolution of atomic depletion and accumulation is simulated due

to current crowding. And the TSV resistance change is modeled.

xix



CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Introduction

Three-dimensional integrated circuits (3D ICs) have gradually shown promising potentials of

low cost, further miniaturization, small area, low power, high bandwidth, and heterogeneous

stacking enabled [2–5]. In 3D ICs, the clock distribution network spreads over the entire

stack to distribute the clock signal to all the sequential elements. Clock skew, defined as

the maximum difference in the clock signal arrival times from the clock source to all sinks,

is required to be less than 3% or 4% of the clock period in an aggressive clock network

design according to the International Technology Roadmap for Semiconductors (ITRS)

projection [6]. Thus, clock skew control, which was well studied in 2D ICs [7], is still a

primary objective in the 3D clock network design.

The clock signal in 3D ICs is distributed not only along the X and Y directions, but

also along the Z direction using through-silicon vias (TSVs). The clock distribution network

drives large capacitive loads and switches at a high frequency, which leads to an increasingly

large proportion of the total power dissipated in the clock distribution network. In some

applications, the clock network itself is responsible for 25% [8] and even up to 50% [9] of

the total chip power consumption. Moreover, because a large clock slew may cause a setup

or hold time violation, the clock slew must also be taken into consideration when designing

a 3D clock network. Thus, low power, skew, and slew remain important design goals in 3D

clock networks.

For a reliable 3D clock network design, several challenging issues should be taken care.

First, in-depth investigations on the impact of TSV utilization on clock power and perfor-

mance is important. This study can help designers understand the policies of robust 3D

clock designs and apply efficient techniques accordingly. Second, the pre-bond testing [10],

which tests each individual die before bonding, is able to improve the overall yield of 3D
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ICs by avoiding stacking defective dies with good ones. 3D clock designs should ensure

both pre-bond testability and post-bond operability with minimum skew and low power

consumption. Third, TSVs may occupy silicon area or routing layers, which are the obsta-

cles during 3D clock routing. 3D clock trees should avoid overlapping with TSV-induced

obstacles and should not sacrifice wirelength or clock power too much. Fourth, the TSV

array style, where TSVs form a regular 2D array, is shown to be more manufacturable and

practical than layouts with TSVs located at irregular spots. The utilization of TSV arrays

for 3D clock synthesis significantly affects the clock power. An automatic and efficient ap-

proach, which can find an optimum solution of the low-power clock design, is required for

TSV array design style.

In addition, electromigration (EM) has been studied for many decades and is still an open

issue as an unavoidable source of degradation [11–13]. Voids in the conductive material can

grow over time and may result in an open-circuit failure. A few studies have been presented

on TSV EM modeling and analysis [14,15]. However, none of them investigated the detailed

current distribution inside TSVs and the resulting thermal and stress migrations, where

some of the corners may have the large current gradient and suffer EM reliability issues.

Furthermore, a comprehensive multi-physics modeling approach is essential for designers

to better understand the EM phenomenon and improve the EM lifetime in TSV-based 3D

connections.

The reliable power network design is also a critical factor for robust circuit performance.

The supply voltage scales slower than the scaling trend of transistors and interconnects. The

increased current density and temperature accelerate the transistor and wire degradation,

and shorten the lifetime of electronic devices [12]. Therefore, the 3D power integrity analysis

for EM reliability is important to reliable 3D integration.

1.1.1 Contributions

The contributions of this thesis are summarized as follows:

• A comprehensive clock synthesis algorithm for 3D ICs: A two-step approach

is developed, which includes (1) three-dimensional (3D) abstract tree generation based
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on the three-dimensional method of means and medians (3D-MMM) algorithm and

(2) buffering and embedding based on the slew-aware deferred-merge buffering and

embedding (sDMBE) algorithm. In addition, an extension of the 3D-MMM method

(3D-MMM-ext) is implemented to determine the optimal number of TSVs in the 3D

clock tree and to minimize the overall power consumption. This 3D-MMM-ext method

can find a close-to-optimal design point in the “TSV count vs. power consumption”

tradeoff curve very efficiently.

• An in-depth investigation on the impact of TSV utilization on 3D clock

performance: For the first time, an extensive investigation on the impact of the

TSV count and the TSV parasitics on clock power consumption and performance is

presented. Several techniques are introduced to reduce the clock power consumption

and clock slew of the 3D clock-distribution network. We analyze how these design

factors affect the overall wirelength, clock power, slew, and skew in the clock network

designs. Two important observations are made: (1) A 3D clock network that uses

multiple TSVs significantly reduces the clock power compared with the single-TSV

case; and (2) as the TSV capacitance increases, the power savings of a multiple-TSV

clock network decreases.

• The first clock design methodology for pre-bond testing in 3D ICs: For

the first time, a 3D clock synthesis methodology and algorithm for pre-bond testing

is developed and implemented. Two key techniques including TSV-buffer insertion

and redundant tree generation are implemented to minimize clock skew and ensure

pre-bond testing. The impact of TSV utilization and TSV parasitics on wirelength

and clock power is also investigated. Compared with the single-TSV solution, the

proposed method minimizes the overall wirelength, reduces clock power consumption,

and provides both pre-bond testability and post-bond operability with minimum skew

and constrained slew.

• The first clock synthesis algorithm for TSV-induced obstacle avoidance:

For the first time, a comprehensive analysis on TSV-induced obstacles is performed
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and a clock routing algorithm for TSV-induced obstacle avoidance is developed and

implemented. The traditional concept of merging segment is extended to represent

the clock TSV and clock buffer insertion. Two key techniques are developed to deter-

mine overlap-free merging segments including Expanded-Obstacle Cutting and Nine-

Region-Based Cutting techniques; two detour policies are presented to handle clock

routing in heavily crowded regions. This proposed method can generate 3D clock

trees that do not sacrifice wirelength or clock power too much and avoid overlapping

with TSV-induced obstacles.

• The first clock synthesis algorithm of TSV array utilization for low-power

3D clock design: For the first time, an efficient clock synthesis methodology for TSV

array design style is presented. A decision-tree-based clock synthesis (DTCS) method

is developed for low-power 3D clock network design, where TSVs from a regular 2D

array. The DTCS method explores the entire solution space for the best TSV array

utilization in terms of low power. This method is applied for both gate-level chip-scale

3D clock designs and block-level global clock designs. Close-to-optimal solutions can

be found for power efficiency with skew minimization in short runtime.

• A detail investigation on current density distribution in the TSV-to-wire

interface and a TSV model for chip-scale 3D power integrity analysis: The

current density distribution within a TSV and its connections to the global chip power

grid is explored, where a significant amount of current crowding is observed. Simple

TSV models are implemented to obtain current density distributions within a TSV

and its local environment. These models are checked for accuracy by comparing with

identical models simulated using finite element modeling methods. This simple TSV

models are integrated with the 3D global power-delivery networks for detailed chip-

scale power analysis.

• The first multi-physics modeling approach for transient analysis on Elec-

tromigration in TSV-based 3D connections: For the first time, a multi-physics
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modeling approach for electromigration analysis is presented for TSV-based three-

dimensional connections, where transient analysis is performed on atomic transport

and TSV effective resistance including grain and grain boundary structure. The evo-

lution of atomic depletion and accumulation is simulated due to current crowding.

The model is validated by exploring the impact of current, temperature, and various

grain sizes on the EM reliability. In addition, the TSV effective resistance evolution

is modeled. These results and discussions provide guidance for designers to better

understand and avoid EM reliability failures in 3D ICs.

1.1.2 Thesis Organization

This dissertation is organized as follows:

• Chapter 1 introduces the thesis of this dissertation, summarizes the contributions,

and explains the organization of this dissertation.

• Chapter 2 presents a clock synthesis algorithm for low-power 3D clock network designs

and investigates the TSV utilization on clock power reduction.

• Chapter 3 presents a clock synthesis algorithm of 3D clock network design for pre-bond

testability.

• Chapter 4 describes an obstacle-aware clock tree synthesis method for TSV-based 3D

clock networks.

• Chapter 5 provides a clock synthesis method of TSV-array utilization for low-power

3D clock network design.

• Chapter 6 investigates current crowding in TSV-to-wire interfaces and develops a

simple TSV model for chip-scale 3D power-integrity analysis.

• Chapter 7 presents a comprehensive multi-physics modeling approach to analyze elec-

tromigration in TSV-based 3D connections.

• Chapter 8 summarizes the research presented in this dissertation and provides con-

cluding remarks.
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1.2 Background

1.2.1 Traditional Clock Network Design

The clock distribution network plays an important role in a synchronous digital system.

Clock skew, defined as the maximum difference in the clock signal arrival times, can severely

limit the maximum performance of the entire system. The clock skew is required to be less

than 3% or 4% of the clock period in an aggressive clock network design according to ITRS

projection [6]. The clock distribution network travels the entire chip, drives large capacitive

loads, and operates at a high frequency [7, 8]. In some applications, the clock network can

consume 25% [8] and even up to 50% [9] of the total chip power. In addition, the clock

network is sensitive to the thermal gradients, process variations, and systematic variations.

The clock tree construction was first implemented as a H-tree [16, 17]. This symmet-

ric structure significantly reduces clock skew but generates large size of the clock network.

Jackson et al. [18] presented robust clock routing techniques for high-performance VLSI cir-

cuits. Their algorithm, called the method of means and medians (MMM), generates a clock

topology by recursively partitioning the sink set into two subsets and then connecting the

centers of these sets. Cong et al. [19] proposed a bottom-up matching approach to construct

clock trees and addressed clock skew minimization in the linear delay model. Tsay [20] con-

structed clock trees with exact zero skew under the Elmore delay model [21]. Chao et

al. [22] presented the deferred-merge embedding (DME) algorithm, which achieved shorter

wirelength than both the MMM algorithm [18] and the bottom-up matching algorithm [19].

Process variation is a critical aspect of semiconductor fabrication [23]. Several work

focused on analyzing the variation impact on clock networks [24–26]. Sauter et al. [24]

compared four clock topologies in the presence of die-to-die (D2D) and within-die (WID)

process variations, including a H-tree, a clock network with interleaved rings, a trunk tree,

and a clock grid. Narasimhan et al. [25] analyzed the process variation impact on a five-stage

2D H-tree in various technology nodes.

Many clock synthesis algorithms have been proposed to improve the variation robust-

ness in a clock network. Early in 1996, Neves and Friedman [27] proposed a clock design

methodology to tolerate process parameter variations. Padmanabhan et al. [28] developed
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a statistical centering-based clock routing technique for the DME algorithm. Lam and

Koh [29] integrated the clock scheduling and clock routing to tolerate process variations.

Venkataraman et al. [30] addressed the same issue in various stages of the clock synthesis,

including skew scheduling, abstract tree generation, and embedding. Rajaram et al. [31]

developed a non-tree clock network. They inserted crosslinks in a given clock tree and

analyzed the clock skew variation caused by crosslink insertion.

Several studies have been proposed to address low-power clock network design for

high-performance and reliable VLSI systems. Dynamic-programming-based buffer inser-

tion mainly focused on wirelength-driven, timing-driven, and maximum-slew-driven designs

with power or area minimization [32–37]. Wang et al. [38] formulated the wire and buffer

sizing problem as a sequential linear programming problem to minimize clock power under

the skew constraint. Guthaus et al. [39] solved the clock tree sizing problem with the con-

sideration of process variations. They minimized the process-variation-aware skew under

the given power budget. Cho et al. [40] constructed a clock tree to balance the clock skew

under two given static thermal profiles. Chakraborty et al. [41] extended the study [40] by

considering the bounded clock skew. Moreover, Yu et al. [42] constructed thermal-aware

clock trees by computing many bottom-up merging points based on the thermal sensitivity.

1.2.2 Clock Network Design in Three-Dimensional ICs

The history of clock network design for 3D stacked ICs is short. Pavlidis et al. [43] presented

measurement data from a fabricated 3D clock distribution network. Arunachalam and

Burleson [44] used a separate layer for the clock distribution network to reduce power.

Minz et al. [45] proposed the first work on the 3D clock synthesis and studied the clock

skew minimization with the impact of the thermal gradient. The clock topology consists

of a complete clock tree in one die and many subtrees in other dies. Their results showed

a significant wirelength reduction using many TSVs. Xu et al. [46] proposed a statistical

clock skew model for the 3D H-tree design.

Though 3D stacked ICs offer potential attractions, the success of 3D ICs is predicated

on the final post-bond yield. Lee and Chakrabarty [47] presented a comprehensive study
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on the challenges of testing 3D ICs. Marinissen and Zorian [48] provided an overview of

manufacturing processes in TSV-based 3D stacked ICs and discussed the test challenges.

To reduce the chance of bonding good dies to the defective ones, each die should be tested

prior to the bonding process. Lewis and Lee presented an architectural solution [10] to

the pre-bond testability problem for 3D die-stacked microprocessors. They discussed how

to perform testing for functional modules that are partitioned across multiple dies. They

also investigated new design and test methods [49] to address similar issues for 3D circuits.

Jiang et al. [50] presented a heuristic method to optimize the test time and routing cost for

both post-bond test and pre-bond wafer-level test. In addition, Jiang et al. [51] developed

a technique test-architecture design technique under a constrained pre-bond test pin count.

In TSV-based 3D ICs, TSVs create serious blockages for 3D clock routing. Before clock

tree synthesis, P/G TSVs and signal TSVs are inserted and occupy both silicon and metal

space. TSVs are significant layout obstacles due to their large size compared with logic gates

and local wires. Clock routing in 3D IC becomes challenging because these various types

of TSVs all become obstacles. In existing works on obstacle-aware clock routing, Kahng

and Tsao [52] proposed deferred merging and embedding (DME)-based obstacle expansion

rules to determine feasible embedding locations for the internal nodes. In [53], Kim and

Zhou presented a planar obstacle-aware routing scheme to clean up overlaps between clock

nets and obstacles. Huang et al. [54] proposed another DME-based clock routing method to

avoid obstacles with the help of a track graph. These works mainly focus on routing-obstacle

avoidance, i.e, to prevent clock nets from crossing over the given obstacles. In addition,

there are several works on avoiding insertion of clock buffers on the given blockages based

on either maze routing [55] [56] or breadth-first-search [57]. However, none of these work

can directly solve the TSV-obstacles in 3D clock tree construction problem.

1.2.3 Reliability Issues in TSVs

Through-silicon vias (TSVs) may cause reliability and cost issues that delay mainstream

acceptance [4,58]. TSVs can squeeze or stretch adjacent transistors and interconnects. This

material deformation may lead to mobility change and thus performance variation [4, 59].
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It also causes mechanical reliability issues, causing open hole, short, or even crack. TSV-

to-TSV and TSV-to-device coupling affects timing and signal integrity [60–62]. All these

TSV-related issues require extra design efforts.

The TSV array, defined as a group of TSVs placed in regular positions either in one-

dimensional or two-dimensional grid fashion, is shown to be more manufacturable and prac-

tical to address the TSV-related reliability issues. Recent studies show that placing TSVs

at any desired locations during placement [63] or routing [64] leads to shorter wirelength

and better timing results compared with the regular locations (TSV arrays). However, this

irregular placement may result in TSVs crowded in a certain region and cause problems in

coupling [61,65], timing variations [62,66], and mechanical reliability [59,67].

Electromigration (EM) decreases the reliability of integrated circuits (ICs). It may

eventually cause shorts or opens in circuits and interconnects which can reduce IC lifetimes,

or worst, cause field fails. EM is driven by multiple physical mechanisms, including electric

current, temperature gradient, stress gradient, and atomic concentration gradient. The

evolution of atomic concentration or the mean time to failure (MTTF) are two important

parameters to investigate the EM reliability. This analysis requires a transient analysis of

the atomic concentration. Atomic diffusion is significantly different within a metal grain

and along grain boundaries, each having different activation energies. Atomic transport is

dominated by grain boundary diffusion and must be included in any realistic EM simulation.

EM modeling and analysis for interconnects have been extensively studied for many

decades [68, 69]. However, the history of modeling on TSV reliability is very short. A

recent paper analyzed and modeled the DC current crowding inside the TSVs and at the

connections between TSVs and power wires [70]. This crowding increases the TSV effective

resistance and voltage drop in the power-delivery network of 3D ICs. Some papers modeled

the thermal-mechanical stress at the interface between TSVs and the substrate [67,71] and

its impact on device performance [62]. The impact of TSV stress on back end of line (BEOL)

interconnects and its EM lifetime was modeled and discussed [14,72]. A modeling approach

on TSV EM reliability was also proposed in [15]. However, none of these works present

transient analysis on atomic concentration for EM lifetime.
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In addition, few papers [73, 74] include grain and grain boundary simulation. However,

all of these works discussed one-dimensional wires where current density is fairly uniform,

not three-dimensional connections. TSVs, which typically have a high average current

density, can have much higher local current densities due to current crowding. These regions

of high local current density are much more susceptible to EM degradation. Moreover,

the large power density with high temperature or large thermal gradient inside 3D ICs

due to multi-tier stacking or joule heating can accelerate atomic migration. Therefore,

analyzing the evolution of atomic concentration and the EM lifetime for the 3D connection

is important.

1.2.4 3D Power Integrity Analysis for EM Reliability

Power-delivery network (PDN) design has become a challenging task in ICs as technology

scales. Since the supply voltage scales slower than transistors and interconnects, the current

density has been rapidly increasing. The increased current density, along with the high

temperature, accelerates transistor and wire degradation and shortens the lifetime of both

devices and wires. Today, the current density can reach to several hundred thousands of

amperes per square centimeter. At this current density magnitude, electromigration (EM)

becomes significant. PDN design needs to be accurately checked for excessive current density

to insure EM limits are not exceeded and voltage drops (IR) are within specifications before

releasing to manufacturing.

EM and IR drop problems are compounded for 3D ICs. Specifically, a 3D PDN provides

power supply to all devices in the entire 3D stack. The inter-die power-delivery intercon-

nects, formed by power/ground (P/G) through-silicon-vias (TSVs) or micro-bumps, are

unique components in 3D power grids. These vertical connections carry large amounts of

current and may suffer from EM degradation due to an excessive current density as well as

have large IR drops. Therefore, detailed and accurate analysis on the 3D PDN is important

to predict the performance and improve the power integrity as necessary.

Some recent papers discussed TSV EM modeling and analysis [14, 15] and TSV-based

3D PDN analysis [75]. However, none of these works investigates detailed current density
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distribution or current crowding inside P/G TSVs, where some of the edges may suffer

from a large current gradient and are subject to a potential EM reliability issue. Moreover,

prior works model TSVs and powers wire segments as single resistors, which are insufficient

to accurately analyze the detailed current density distribution inside P/G TSVs and 3D

PDNs.
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CHAPTER II

LOW-POWER CLOCK NETWORK DESIGN FOR 3D ICS

In three-dimensional integrated circuits (3D ICs), TSVs provide the vertical interconnec-

tions to deliver the clock signal to all dies in the 3D stack. The low-power 3D clock network

design requires a thorough investigation on how the TSV count and TSV parasitics affect

the clock performance. Existing work has demonstrated that the total wirelength of a 3D

clock network decreases significantly if more TSVs are used [45, 76–78]. According to the

observations made in [45], the die that contains the clock source includes a complete tree,

while other dies can have subtrees, as illustrated in Figure 1.

die-1

die-2

die-3

src

die-3

die-4

die-1

die-4

src

die-2

x

yz

(a) (b)

Figure 1: Four-die stack 3D clock networks with two different TSV counts. (a) uses single
TSV between adjacent dies; (b) uses ten TSVs. The overall wirelength is shorter in (b).

A 3D clock tree that utilizes multiple TSVs tends to reduce the overall wirelength as

more and more TSVs are used. However, the analysis of TSV RC parasitics on the clock

network has not been addressed in the literature. If a 3D clock tree utilizes many TSVs

that have large TSV RC parasitics, the clock delay and power consumption contributed by

the TSVs may increase significantly. Using more TSVs helps to reduce the wirelength and
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thus power consumption, but the TSV capacitance increases the clock power consumed at

the same time.

In this chapter, an in-depth investigation is performed on the impact of various design

parameters on the wirelength, clock power, slew, and skew of the 3D clock network. These

parameters include the total clock TSV count, the TSV parasitics, the maximum loading

capacitance of the clock buffers, and the supply voltage. The “TSV count vs. clock power”

tradeoff curves are generated for various TSV parasitic values. The TSV count and the

TSV capacitance effect on clock power is discussed. Using multiple TSVs helps to reduce

the maximum and average slew compared with the single-TSV case. An effective approach

to determine the optimal number of TSVs is presented for the 3D clock tree so that the

overall power consumption is minimized. This method predicts the impact of adding a

new TSV into the current clock topology on the overall power consumption during the top-

down abstract tree generation. This prediction helps to decide whether pairing of two clock

nodes in different dies and using a TSV for this pair is useful for power reduction or not. A

close-to-optimal design point can be determined in the TSV count vs. power consumption

tradeoff efficiently compared with a straightforward exhaustive search method.

2.1 Preliminaries

2.1.1 Electrical and Physical Model of 3D Clock Network

A 3D clock network is modeled as a distributed resistance and capacitance (RC) network.

The sink nodes that represent flip-flops and clock input pins of memory blocks are modeled

as capacitive loads. The wire segments and TSVs are represented as π models1, which

is a classical way to represent the parasitics of a clock network. Each buffer or driver

is constructed with two inverters. Note that prior works have focused on the electrical

modeling of TSVs [65, 79–81]. Our 3D clock routing algorithm is flexible to handle more

complicated TSV parasitic models than the lumped model.

The TSV bound is a constraint on the maximum TSV number for each die. The TSV

1In this work, wire segments denote the edges of the abstract tree and are not uniformly distributed.
Depending on the TSV insertion and buffer insertion on the abstract tree, a src-to-sink path usually contains
tens of wire segments, where each segment length varies from tens of micrometers to a few hundreds of
micrometers.
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bound is usually decided before clock synthesis. Different from the TSV bound, the TSV

count (#TSVs) is the total number of TSVs utilized in the 3D clock tree. For an n-die 3D

stack, #TSVs is usually less than or equal to (n-1) times the TSV bound.

A three-die clock interconnect using four TSVs is shown in Figure 2: The clock source

is located in die-3; sink a in die-1 connects to the source using two vertically aligned TSVs;

sink c in die-1 connects to the source by two TSVs; and sink b in die-2 uses one TSV.

(b)

RTSV

CTSV

2

CTSV

2

Rw

wire

buffer TSV

Cw

2
Cw

2

a
c

(a)

b

src
d

die-1

die-2

die-3

Figure 2: A sample clock tree and its electrical model. (a) A sample three-die clock
network using four TSVs. The clock source is in die-3. Sink a in die-1 uses two vertically
aligned TSVs. And Sink b in die-2 uses one TSV to connect to the clock source. (b)
Electrical models of the clock wire segments, TSVs, and buffers/drivers.

2.1.2 Problem Formulation

Given a set of sinks in all dies, a TSV bound, a pre-determined clock source location,

and the parasitics of wires, buffers, and TSVs, the 3D clock synthesis constructs a fully-

connected 3D clock network satisfying the following conditions: (1) Clock sinks in all dies

are connected by a single tree; (2) the TSV count in each die is under the TSV bound;

(3) the clock skew is minimized; (4) the clock slew is below the constraint; and (5) the

wirelength and clock power are minimized.

Clock skew is the maximum difference among the arrival times at the clock sinks. In

the existing clock synthesis tools, the Elmore delay model is widely used for RC delay and

skew calculation. The primary goal of our 3D clock synthesis is to construct a zero-Elmore-

skew clock network. The SPICE simulation is performed to achieve the accurate timing

information and to evaluate the clock synthesis performance. The simulated clock skew is

constrained to less than three percent of the clock period. The clock slew is defined as the
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transition time from 10% to 90% of the clock signal at each sink.

The TSV bound constraint plays an important role in achieving low-power 3D clock

networks. This constraint reflects the impact of the TSV usage on routing congestion,

capacitive coupling, and stress-induced manufacturing issues. By varying the TSV bounds,

we obtain different 3D clock networks. Note that the TSV bound is different to the actual

TSV usage in each die, because this bound only limits the maximum TSV usage for each

die.

2.2 3D Clock Tree Synthesis

2.2.1 Overview

The 3D clock synthesis algorithm consists of two major steps: (1) 3D abstract tree gener-

ation and (2) slew-aware buffering and embedding. A 3D abstract tree is generated based

on the 3D method of means and medians (3D-MMM) algorithm. The 3D-MMM algorithm

determines the connections of nodes (sink nodes or merging points) and uses TSVs if nec-

essary. Note that the 3D-MMM algorithm works in such a way that the sinks in one die are

connected by a single tree, whereas the sinks in other dies are connected by multiple trees.

The clock source is located in the die that contains the single tree.

Once a 3D abstract tree is obtained, we determine the routing topology and exact

geometric locations for all the nodes, TSVs, and buffers. Our slew-aware deferred-merge

buffering and embedding (sDMBE) method is a two-phase approach, which is based on the

classic deferred-merge and embedding (DME) algorithm [22] for clock routing. The sDMBE

method first visits each node in a bottom-up fashion, determines the merging type for a

pair of subtrees, inserts buffers if necessary, and calculates the merging distances based

on the zero-Elmore-skew equations. The outcomes after the first phase are the merging

segments, which store the feasible locations of the internal nodes in the 3D abstract tree. In

the second phase, the sDMBE method visits the whole abstract tree in a top-down manner

while deciding the exact merging locations for the internal nodes, buffers, TSVs, and exact

routing topology. All the sinks are connected in a single tree.
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2.2.2 3D Abstract Tree Generation

The first step of our 3D clock synthesis is the 3D abstract tree generation using the 3D-

MMM algorithm. A 3D abstract tree indicates the hierarchical connection information

among the sink nodes, internal nodes, TSVs, and the root node. The 3D abstract tree of

an n-die stack clock network is an n-colored binary tree that identifies the die indices for

all the nodes.

We develop the 3D-MMM algorithm to generate a 3D abstract tree for the given clock

sinks in a top-down manner, which is an extension of the method of means and medians

(MMM) algorithm [18]. The 3D abstract trees generated by the 3D-MMM algorithm with

various TSV bounds are shown in Figure 3. Note that a larger TSV bound moves TSVs

closer to the sink nodes and causes more vertical clock connections than horizontal connec-

tions. However, the overall wirelength is reduced because of the short horizontal connection

length.
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Figure 3: The 3D abstract trees generated by the 3D-MMM algorithm under various TSV
bounds. (a) 2D view, where thick lines denote TSV connection. (b) 3D view. (c) Binary
abstract trees, where the squares denote TSVs.

The basic idea of our 3D-MMM algorithm is to recursively divide the given sink set

into two subsets until each sink belongs to its own set. A TSV is used if we decide to

merge a pair of nodes in different dies. Our goal is to evenly distribute the TSVs across
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the die area under the given TSV bound. This even TSV distribution is shown to improve

manufacturability [62].

Let S = {s1, s2, .., sk} denote a set of sinks, where the locations of the sinks have been

decided before the 3D clock tree synthesis. We assume that the maximum TSV count for

each die in Set S is also given. Each si is a triplet of (xi, yi, zi), where zi is the die index

of si, and xi and yi are the X and Y coordinates of si. Let stack(S) denote the number of

dies that the sinks in Set S are located. In each recursive partitioning, we divide Set S into

two Subsets S1 and S2 based on the following two cases:

• Z-cut: if the TSV bound is one, the given Sink Set S is partitioned such that the sinks

from the same die belong to the same subset. The connection between S1 and S2 needs

one TSV between adjacent dies. Note that the 3D-MMM algorithm is a bi-partitioning

process. If the sinks in Set S belong to more-than-two dies (i.e., stack(S) > 2), we

need stack(S)− 1 iterations of Z-direction partitions to split the sink set into subsets

so that the sinks belonging to the same die are in the same subset. Furthermore, the

order of the Z-cut also depends on the source-die index.

• X/Y-cut: if the TSV bound is larger than one or the sinks in Set S belong to the

same die, Set S is partitioned geometrically by a horizontal line (X-cut or Y-cut) and

Z-dimension is ignored. If the subsets contain sinks from different dies, we potentially

need multiple TSVs to connect those sinks.

At the end of each partitioning, we propagate the TSV bound to the new subsets.

The 3D abstract tree generation using the 3D-MMM algorithm is shown in Figure 4.

The recursive method takes as inputs a set of 3D clock sinks and a TSV bound. If the

size of the given sink set (i.e., |S|) is one, then we reach the bottom level of the abstract

tree (Lines 3-4). If the TSV bound is one, Z-cut is applied to partition Sink Set S into two

Subsets S1 and S2 (Lines 6-7).
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3D Abstract Tree Generation (3D-MMM)
Input: clock sinks in 3D and a TSV bound
Output: a rooted 3D abstract tree

1: AbsTreeGen3D(SinkSet S, bound B)
2: S1 and S2 = subsets of S;
3: if (|S| = 1) then
4: return root(S);
5: else if (B = 1 and stack(S) > 1) then
6: Z-cut(S, S1, S2);
7: B1 = B2 = 1;
8: else
9: Geometrically divide S into S1, S2;
10: Find B1, B2 such that B1 + B2 = B;
11: root(S1) = AbsTreeGen3D(S1, B1);
12: root(S2) = AbsTreeGen3D(S2, B2);
13: leftChild(root(S)) = root(S1);
14: rightChild(root(S)) = root(S2);
15: return root(S);

Figure 4: Pseudo code of the 3D-MMM algorithm.

As previously discussed, once the TSV bound is one, our 3D-MMM algorithm performs

stack(S) − 1 times of Z-direction partitions. To guarantee that only one TSV is used

between adjacent dies, the order of die-wise Z-cut depends on the source-die index and the

die indices in Sink Set S. The detailed Z-cut procedure are shown in Figure 5. If the above

conditions are not satisfied, Set S is partitioned geometrically by a horizontal line (X-cut

or Y-cut), so called X/Y-cut (Line 9). And the Z-dimension of each sink is ignored. The

cut line is drawn at the median of the X or Y coordinates of the sinks. The TSV bound is

divided for the two subsets (Line 10).

The bound for each subset is calculated by estimating the number of TSVs required by

each subset and dividing the given Bound B according to the ratio of the estimated TSVs.

For each subset, we assume the minimum sink size in each die as the estimated TSV count.

This procedure is called recursively for each of Subsets S1 and S2 with different TSV bounds

(Lines 11-12). The roots of the subtrees are connected by the root of the higher-level tree

(Lines 13-15). The complexity of the algorithm is O(n · logn), where n is the number of
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nodes.

Z-cut(SinkSet S, Subset ST , Subset SB)
Input: Sink set S = {s1, · · · , sk}, source die index Zs

Output: Subsets ST and SB

1: Zmin = min(z1, .., zi, .., zk), si = (xi, yi, zi) ∈ S
2: Zmax = max(z1, .., zi, .., zk), si = (xi, yi, zi) ∈ S
3: if (Zs ≤ Zmin) then
4: ST = {s1, .., si, .., sk1}, zi ∈ [Zmin + 1, Zmax]
5: SB = {sk1+1 , .., sj , .., sk}, zj = Zmin

6: else if (Zs ≥ Zmax) then
7: ST = {s1, .., si, .., sk1}, zi = Zmax

8: SB = {sk1+1 , .., sj , .., sk}, zj ∈ [Zmin, Zmax − 1]
9: else
10: ST = {s1, .., si, .., sk1}, zi = Zs

11: SB = {sk1+1 , .., sj , .., sk}, zj 6= Zs

Figure 5: Pseudo code of the Z-cut procedure, which corresponds to Line 6 in the 3D-
MMM algorithm in Figure 4.

Corresponding to the n-die stack clock sinks, the 3D abstract tree is an n-colored binary

tree, where each node (i.e., sinks, internal nodes, and the root) is assigned a color to

represent the die the node belongs to. The dies are numbered bottom up from 1 to n. Let

c(p) be the color index of Node p, where c(p) ∈ {1, 2, .., n}. For example, c(p) = 1 means

that Node p is located in die-1. Let c(src) denote the source-die index. In the top-down

3D abstract tree generation, we color the nodes corresponding to the sink sets. Considering

Node p with Sink Set S, let Zmax and Zmin be the maximum and minimum die indices in

Set S. The color of p is determined as follows:

c(p) =





c(src), if p is the root;

Zmin, else if Zmin > c(src);

Zmax, else if Zmax < c(src);

c(src), otherwise.

(1)

Considering Edge e with two terminal Nodes n1 and n2, the following statements are

true: (1) If c(n1) = c(n2), Edge e will be routed in the same die as Nodes n1 and n2 and (2)
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if c(n1) 6= c(n2), then |c(n1)− c(n2)| TSVs will be inserted along Edge e. An illustration is

shown in Figure 6, where 3D abstract trees for Sink Set {a, b, c} are generated after applying

Z-cut twice.

c
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Z-cut
2

{a,b,c}:3
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{b}:2 {c}:1 
die-1
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Figure 6: Three-colored 3D abstract trees after applying Z-cut twice on the three-die-
stacked Sink Set {a, b, c}, if the clock source is located in (b) die-3, (c) die-2, and (d) die-1.
Each node in the abstract tree contains the corresponding sink set and a color index.

In Figures 6(b), (c), and (d), the clock source is located in die-3, die-2, and die-1,

respectively. Each node in the abstract tree contains the sink set and the color information.

The abstract tree in Figure 6(b) is obtained by Z-cut1 first and then Z-cut2. Whereas,

the sequence in Figure 6(d) is Z-cut2 first and then Z-cut1. In addition, the abstract tree

in Figure 6(c) is generated by first extracting the sinks of the clock-source die and then

applying a Z-cut. The primary goal of using different Z-cut sequences is to guarantee that

only one TSV is used between adjacent dies after stack(S)− 1 Z-cuts.

2.2.3 Slew-Aware Buffering and Embedding

The second step of the 3D clock tree synthesis is the slew-aware buffering and embedding.

Given a 3D abstract tree, the goal is to determine the exact geometric locations of all the

nodes, TSVs, and buffers. The following requirements are satisfied: (1) The wirelength

of the embedded-and-buffered clock tree is minimized; (2) the load capacitance of each

buffer does not exceed the pre-defined maximum value (CMAX); and (3) clock skew is zero

under the Elmore delay model. We develop the slew-aware deferred-merge buffering and

embedding (sDMBE) algorithm to geometrically embed and route the abstract tree.

The sDMBE algorithm consists of two steps and is based on the deferred-merge embed-

ding (DME) algorithm [22]: The first phase in the sDMBE algorithm is to determine the
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merging types and to construct the merging segments for each pair of subsets in a bottom-up

traversal. Different from the existing 2D synthesis [34,35,37], which focused on slew-aware

buffer insertion after clock routing, the sDMBE method performs buffer insertion in the

bottom-up procedure. The goal of slew-aware buffering is to locate buffers while merging

subsets so that the load capacitances of buffers are within the given bound (CMAX). The

impact of CMAX on the 3D clock slew is discussed in Section 2.4.5. Merging segments are

obtained based on the merging distances, which are computed under the zero-skew equa-

tions in the Elmore delay model and the wirelength minimization goals. The second phase

of the sDMBE algorithm is to decide the exact locations of internal nodes, buffers, and

TSVs in a top-down fashion and to determine the routing topology of the overall clock nets.

The complexity of our approach is O(n).

Two samples of merging segments for unbuffered and buffered 3D clock trees are shown

in Figure 7. When merging Child Nodes u and v to the Parent Node p, the sDMBE

algorithm first decides the merging type based on the given 3D abstract tree and the CMAX

constraint. Corresponding to the merging type among clock wires, buffers, and TSVs, we

obtain the merging distances of Nodes p and u and Nodes p and v in Figure 7(a) and the

merging distances between Node p and Buffer b, Buffer b and Node u, and Nodes p and v

in Figure 7(b).

u

v

p

u

v

MS(p)

p

TSV

u

v
p u

v

MS(p)

p

TSV
b

MS(b)

MS(p)

MS(p)

MS(b)

(a)

(b)

b

Figure 7: Samples of 3D merging segments for (a) an unbuffered tree and (b) a buffered
tree.

21



2.3 Extension of 3D-MMM Algorithm

Figure 8 provides a demonstration that higher usage of TSVs leads to shorter wirelength

than fewer TSVs. This raises an important question: what is the optimal number of TSVs

for a 3D clock tree that leads to the minimum possible power consumption? One obvious

way to answer this question is by trying all possible TSV counts and choosing the best

power result (an exhaustive search). This method, however, is very time consuming and

requires prohibitive runtime. Thus, our goal is to find this TSV count that leads to the

minimum (or close-to-minimum) power result in much shorter runtime. This calls for careful

attention to the impact of the TSV count not only on the overall wirelength but also the

total number of buffers and total TSV capacitance, as these factors equally affect the overall

power consumption.

#TSVs = 1, WL = 775 mm #TSVs = 78, WL = 676 mm #TSVs = 283, WL = 589 mm

Figure 8: 3D clock trees for the two-die stack r3 with varying TSV bounds. The black
dots are the TSV location candidates. And the bold and thin lines illustrate the clock nets
in die-1 and die-2, respectively.

We develop a new low-power 3D clock tree synthesis method, named 3D-MMM-ext, by

extending our 3D-MMM algorithm presented in Section 2.2.2. The goal of the 3D-MMM-

ext is to construct a low-power clock network by wisely assigning clock TSVs in the 3D

abstract tree generation. In each top-down partition, let S be the current sink set. Let

Z(S) denote the vertical distance Set S spans, which can be expressed as

Z(S) = Zmax − Zmin, (2)

where Zmax and Zmin are the maximum and minimum die indices of the sinks within Set S.
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Note that Z(S) also indicates the minimum number of TSVs required by the clock network

connecting all the sinks in S. Different from the 3D-MMM algorithm, which decides the

cut direction (Z-cut or X/Y-cut) based on the TSV bound (Lines 5 and 8 in Figure 4), the

key technique of the 3D-MMM-ext is to determine the cutting orientation of the current

iteration (i.e., Z-cut or X/Y-cut) by looking ahead to the next cutting iteration, while

estimating and comparing the costs of the following two cases:

• Case-1: apply Z-cut at the current iteration and then apply X/Y-cut on each die once

in the following iterations;

• Case-2: apply X/Y-cut at the current iteration and postpone Z-cut to the next itera-

tion.

Note that for the n-die stack case, Z-cut means applying die-wise partitions in multiple

iterations until the sinks having the same die index are partitioned into the same subset.

In Case-1 style partition, Sink Set S has stack(S) − 1 times Z-cuts and stack(S) times

X/Y-cuts. S in Case-2 has one X/Y-cut and 2 × (stack(S) − 1) Z-cuts. Let Sz
i and Sxy

i

represent the subsets after case-1 and case-2 style partitions, respectively. The sinks within

Set Sz
i (or Sxy

i ) are in the same die.

An example is depicted in Figure 9, which determines the current cut direction using

the 3D-MMM-ext on Sink Set S. Case-1 style partition is shown in Figure 9(a), where Z-cut

is applied in the current iteration and then X/Y-cut1 and X/Y-cut2 are applied on die-1

and die-2, respectively. Case-2 partition result is illustrated in Figure 9(b). We also show

a part of the 3D abstract tree corresponding to Case-1 and Case-2 partitions, respectively.

We have the following relation:

S =
4⋃

i=1

Sz
i =

4⋃

i=1

Sxy
i . (3)
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Figure 9: The 3D-MMM-ext algorithm performed on a two-die stack with Sink Set S.
We show the 3D abstract trees, cut orders, and the subsets from Case-1 and Case-2 style
partitions. (a) Case-1, where we apply Z-cut at the current iteration, and then X/Y-cut1

and X/Y-cut2 in die-1 and die-2, respectively. (b) Case-2, where we apply X/Y-cut at the
current iteration, and then Z-cut1 and Z-cut2. Pz and Pxy are the cost of merging Sz

i and
Sxy

i in (a) and in (b), respectively.

By comparing the cost of Case-1 (Pz) and the cost of Case-2 (Pxy), the cut direction of

the current iteration is determined as follows:

Current Cut =





X/Y-cut , if Pz > Pxy ;

Z-cut , otherwise.
(4)

This equation presents that if selecting Z-cut in the current iteration helps reduce power,

we choose Z-cut; otherwise, we choose X/Y-cut. Cost Pz is defined as follows:

Pz =
∑

i∈cond1

P (Sz
i ) +

∑

j,k∈cond2

P (Sz
j , Sz

k). (5)

Similarly,

Pxy =
∑

i∈cond1

P (Sxy
i ) +

∑

j,k∈cond2

P (Sxy
j , Sxy

k ). (6)

Let Si represent either Sxy
i or Sz

i . The first item P (Si) in the cost function is the cost of

Subset Si, where cond1 covers the final subsets after the look-ahead partitions. The second

item P (Sj , Sk) in the cost function is the cost of connecting Subsets Sj and Sk. P (Sj , Sk)
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mainly comes from TSVs, global wires, and buffers. Therefore, cond2 covers all pairs of

subtrees in the 3D abstract tree, where we merge those final subsets to their parent Sink

Set S in the bottom-up traversal.

Considering the two-die stack examples in Figure 9, Pz and Pxy can be expressed as

follows:

Pz =
4∑

i=1

P (Sz
i ) + P (Sz

1 , Sz
2) + P (Sz

3 , Sz
4) + P (Sz

1 ∪ Sz
2 , Sz

3 ∪ Sz
4), (7)

Pxy =
4∑

i=1

P (Sxy
i ) + P (Sxy

1 , Sxy
3 ) + P (Sxy

2 , Sxy
4 ) + P (Sxy

1 ∪ Sxy
3 , Sxy

2 ∪ Sxy
4 ). (8)

To estimate the cost for each sink set, we use the half-parameter wirelength model for

P (Sz
i ) and P (Sxy

i ). Then, P (Sj , Sk) is estimated according to the following two conditions.

• If no TSV is required to connect Sj and Sk,

P (Sj , Sk) ≈ CD(Sj , Sk), (9)

where CD(Sj , Sk) is the distance between the centers of Subsets Sj and Sk. In Figure 9,

P (Sz
1 , Sz

2), P (Sz
3 , Sz

4), and P (Sxy
1 ∪ Sxy

3 , Sxy
2 ∪ Sxy

4 ) belong to this case.

• If TSVs are needed to provide interdie connection between Sj and Sk,

P (Sj , Sk) ≈ CD(Sj , Sk) + α× CTSV/c, (10)

where CTSV is the TSV capacitance, c is the unit-length capacitance of the clock line,

and α is an estimator representing the cost of TSV insertion. The following empirical

equation is used to calculate α as

α = (2× |Z(Sj)− Z(Sk)|+ 3)× β, (11)

where β = 0.05, 0.05, and 0.1 if the TSV capacitance is 15 fF, 50 fF, and 100 fF,

respectively. In Figure 9, P (Sz
1 ∪ Sz

2 , Sz
3 ∪ Sz

4), P (Sxy
1 , Sxy

3 ), and P (Sxy
2 , Sxy

4 ) belong

to this case.
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2.4 Simulations and Discussions

We first examine a two-die stack to investigate the impact of the TSV count and TSV

parasitics on clock power consumption. Next, we show the efficiency of the 3D-MMM-ext

algorithm in finding the optimal number of TSVs to be used for minimum power consump-

tion. We then present the results of our clock slew control method. Lastly, we show the

impact of scaling the supply voltage on 3D clock power consumption. We validate our

claims with SPICE simulation results.

2.4.1 Simulation Settings

We construct zero-Elmore-skew 3D clock networks by using the proposed 3D clock tree

synthesis methods. We then extract the netlist of the entire 3D clock network for SPICE

simulation. After the simulation, we obtain highly accurate power consumption and timing

information of the entire clock network. Note that our 3D clock tree has zero skew under

the Elmore delay model, but may have nonzero clock skew from SPICE simulation. Thus,

we constrain the SPICE clock skew to be less than 3 % of the clock period at a frequency of

1 GHz. The slew is constrained within 10 % of the clock period. Clock power mainly comes

from the switching capacitance of the interconnect, sink nodes, TSVs, and clock buffers.

The technical parameters are based on the 45 nm Predictive Technology Model [82]: per

unit-length wire resistance is 0.1 Ω/um, and per unit-length wire capacitance is 0.2 fF/um.

The buffer parameters are: driving resistance is 122 Ω, input capacitance is 24 fF, and

intrinsic delay is 17 ps. The TSV resistance is 35 mΩ. In order to study the impact of the

TSV RC parasitics on the 3D clock network, we vary the linear oxide thickness and choose

three typical TSV capacitance values (i.e., 15 fF, 50 fF, 100 fF). The supply voltage is set

to 1.2 V unless otherwise specified. The maximum load capacitance of each clock buffer,

denoted CMAX, is set to 300 fF for slew control unless otherwise specified.

Our analysis focuses on two-die and six-die 3D clock networks. In the six-die case,

the clock source is located in the middle die (die-3) as suggested in [77], unless otherwise

specified. As a result, die-3 in a six-die clock network contains a complete tree. The IBM

benchmarks r1 to r5 [83] are used. Since r1 to r5 are originally designed for 2D ICs, we
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randomly distribute the sinks into two or six dies. We then scale the footprint area by
√

N

to reflect the area reduction in the 3D design.

2.4.2 Impact of TSV Count and Parasitic Capacitance

To investigate the impact of the TSVs on clock power consumption, we use a two-die

stack implementation of the biggest benchmark r5, which has 3101 sink nodes with input

capacitances varying from 30 fF to 80 fF. Three clock power trend curves are depicted in

Figure 10, where the TSV capacitance (CTSV) varies from 15 fF, 50 fF, to 100 fF. On

the x-axis, we show the total number of TSVs used in each entire 3D clock tree, which is

obtained by imposing a different TSV bound. Our baseline 3D clock network contains only

one TSV between adjacent dies.

Figure 10: Impact of the TSV capacitance and count on clock power for the two-die r5.
The TSV capacitance (CTSV) is set to 15 fF, 50 fF, and 100 fF. Our baseline is the clock
tree that uses one TSV between adjacent dies. For each CTSV, we show the 3D-MMM
results by sweeping the TSV count. We also highlight the 3D-MMM-ext results for each
CTSV, which are marked as stars near to the trends.

The clock power is affected by both the TSV count and the TSV capacitance as shown

in Figure 10. First, using 15 fF TSVs in the clock network construction, the clock power

decreases significantly when more TSVs are used. We are able to obtain a low-power clock

network design by relaxing the TSV bound. We can achieve up to 17.0 % power reduction
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compared with the single-TSV case. The power savings mostly comes from wirelength re-

duction, because the clock wire capacitance significantly affects the overall power consumed

by the clock network. When more TSVs are used, the number of local trees in the non-source

dies increases, while their size decreases. This phenomenon means that the multiple-TSV

case encourages local clock distribution in 3D designs while reducing the overall wirelength.

Second, if the TSV has a large capacitance (e.g., 50 fF, 100 fF), the contribution of

the TSV capacitance to the overall power consumption is non-negligible. As a result, when

the TSV count increases, the overall clock power reduction becomes slower. Particularly, if

the TSV capacitance is 100 fF, clock power does not decrease when the TSV count exceeds

a certain amount and eventually starts increasing. In this case, the clock power from the

TSV capacitance increases faster than the power decreases from wirelength reduction.

From this trend study, we conclude that given a TSV parasitic capacitance, there exists

an optimum number of TSVs that results in the minimum 3D clock power. This trend in

turn allows us to choose the right TSV bound for a given power budget. If a power savings

of 10 % is required for using the 15 fF TSVs, the TSV bound of 300 can be used based on

Point A in Figure 10.

2.4.3 Exhaustive Search Results

A straightforward way to find the “min-power TSV count”, i.e., the number of TSVs used

in a 3D clock tree that leads to the minimum overall clock power consumption, is to ex-

haustively sweep the TSV bound from 1 to infinity2, constructing and simulating the entire

3D clock network corresponding to each TSV bound. By plotting the TSV count vs. power

trend curve, we are then able to find the optimum solution. A clock power trend is depicted

in Figure 11, where 1137 3D clock trees are generated and simulated for the two-die stack

r5. We assume the TSV parasitic capacitance is 100 fF.

We observe that the lowest power comes from the clock network that uses 250 TSVs,

2Note that the TSV bound of infinity means that we do not impose any restriction on the maximum
number of TSVs used in each die. This usually results in a high usage of TSVs that mainly targets at
wirelength minimization.
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Figure 11: Clock power trends for the two-die stack r5 based on the exhaustive search
within the TSV count range [1, 1137]. The TSV capacitance is 100 fF. We also plot the
3D-MMM-ext algorithm result. The exhaustive search covers 1137 simulations on various
clock trees. The runtime for each simulation is around 200 seconds.

with 1.190 W clock power and 2, 004, 250 µm wirelength. In addition, we observe that the

exhaustive search result agrees with the TSV count vs. power trend we presented in the

previous section, although power fluctuates locally in a small range of the TSV count. If the

TSV count exceeds 600, the clock power is much more sensitive to the TSV count increase.

Using one more TSV may lead to the clock power increasing or decreasing by 1 %. This

phenomenon is because, when using a large amount of TSVs, the clock network has a large

number of smaller local trees, where the TSV capacitance itself is comparable to or even

larger than that of a single local clock tree. As a result, using a few more TSVs leads to a

large fluctuation in clock power.

The proposed exhaustive search method does allow us to find the min-power TSV count,

but it is too costly in terms of runtime. The smaller step size we use for the TSV count in

the search, the lower power of a 3D clock network we find, but more simulations as well as

runtime are required. Note that the typical SPICE simulation time of a two-die r5 clock

network is around 200 seconds. Repeating this 1137 times is prohibitive.
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2.4.4 3D-MMM-ext Algorithm Results

The comparisons between using a single TSV and using multiple TSVs (obtained with 3D-

MMM-ext algorithm) cases are summarized in Tables 1 and 2, where two-die and six-die

benchmark designs are implemented.

Table 1: Comparison of wirelength (um), power (mW), TSV count(#TSVs), buffer count
(#Bufs), simulation runtime (s), and skew (ps) between using single TSV and using multiple
TSVs (3D-MMM-ext) for the two-die stacks. The TSV capacitance is 15 fF, 50 fF, and
100 fF.

Single TSV Multiple TSVs (3D-MMM-ext)
CTSV Run Run Red.(%)

ckt WL #Bufs Power Skew time #TSVs WL #Bufs Power Skew time WL Power

r1 291421 327 0.149 10.5 17.6 93 221443 282 0.125 9.3 16.8 24.0 16.1
r2 602484 706 0.314 15.4 43.2 211 445647 588 0.255 14.2 32.5 26.0 18.8

15 r3 775194 930 0.410 17.4 55.2 297 583274 779 0.342 13.5 50.5 24.8 16.6
fF r4 1586630 1990 0.855 18.2 122.8 660 1165529 1594 0.698 16.8 107.1 26.5 18.4

r5 2341420 2897 1.283 17.0 188.0 1096 1737100 2509 1.065 19.8 187.7 25.8 17.0

r1 291498 327 0.149 12.4 18.1 85 221719 293 0.130 11.9 17.6 23.9 12.8
r2 602485 706 0.314 15.2 38.4 205 448195 618 0.271 13.6 36.5 25.6 13.7

50 r3 775056 930 0.410 17.2 53.2 288 589654 845 0.366 15.7 48.1 23.9 10.7
fF r4 1586880 1991 0.855 14.8 121.5 639 1165253 1727 0.745 15.0 114.6 26.6 12.9

r5 2341360 2897 1.283 16.8 220.1 1020 1749543 2684 1.151 17.8 186.3 25.3 10.3

r1 291421 328 0.149 9.9 17.5 45 238242 303 0.137 12.6 16.0 18.2 8.1
r2 601929 707 0.313 13.5 40.0 87 492966 661 0.287 13.0 33.5 18.1 8.3

100 r3 775029 930 0.410 17.3 54.2 112 645062 897 0.383 13.4 55.1 16.8 6.6
fF r4 1586630 1992 0.855 15.7 131.3 247 1286784 1891 0.787 18.2 125.2 18.9 8.0

r5 2341460 2897 1.283 17.1 187.6 328 1953453 2798 1.194 19.0 179.8 16.6 6.9

Table 2: Comparison of wirelength (um), power (mW), TSV count (#TSVs), buffer count
(#Bufs), simulation runtime (s), and skew (ps) between using single TSV and using multiple
TSVs (3D-MMM-ext) for the six-die stacks. The TSV capacitance is 15 fF, 50 fF, and
100 fF.

Single TSV Multiple TSVs (3D-MMM-ext, src in die-3)
TSV Run Run Red. (%)
Cap ckt WL #Bufs Power Skew time #TSVs WL #Bufs Power Skew time WL Power

r1 272109 332 0.144 19.4 19.0 297 138223 214 0.092 12.8 10.5 49.2 36.1
r2 566944 684 0.298 16.1 45.0 668 280901 445 0.191 18.2 29.7 50.5 35.9

15 r3 717479 887 0.388 15.0 57.0 965 376634 626 0.264 17.1 45.8 47.5 32.0
fF r4 1496180 1870 0.816 18.5 119.8 2195 752370 1316 0.551 17.6 84.0 49.7 32.5

r5 2299220 2935 1.265 19.6 205.3 3497 1133262 2070 0.854 21.4 154.0 50.7 32.5

r1 272849 332 0.144 17.4 17.7 275 143626 257 0.106 18.5 11.5 47.4 26.4
r2 567686 684 0.299 15.0 46.6 631 302068 562 0.230 20.3 35.2 46.8 23.1

50 r3 719610 891 0.389 14.3 66.1 918 403235 775 0.316 18.5 50.2 44.0 18.8
fF r4 1493990 1870 0.815 15.0 123.0 2045 810708 1680 0.670 27.0 95.1 45.7 17.8

r5 2299590 2935 1.266 19.3 217.8 3270 1250269 2644 1.051 23.4 189.8 45.6 17.0

r1 273951 332 0.145 16.6 16.8 30 234821 309 0.133 29.0 17.1 14.3 8.3
r2 566803 685 0.298 11.1 45.1 80 468805 638 0.271 28.9 41.2 17.3 9.1

100 r3 720705 893 0.390 14.2 61.6 75 651298 873 0.374 23.1 60.3 9.6 4.1
fF r4 1497240 1873 0.817 14.0 126.5 115 1333034 1804 0.769 23.8 118.8 11.0 5.9

r5 2300620 2935 1.266 19.2 183.6 180 2014167 2780 1.179 28.3 186.7 12.5 6.9
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First, the 3D-MMM-ext is able to find the low-power 3D clock trees. For the two-die

stacks in Table 1, the 3D-MMM-ext reduces the clock power by around 16.1 % to 18.8 %,

10.3 % to 13.7 %, and 6.6 % to 8.3 % as compared with the single-TSV cases and achieves

wirelength savings around 24.0 % to 26.5 %, 23.9 % to 26.6 %, and 16.6 % to 18.9 %, when

the TSV capacitance is 15 fF, 50 fF, and 100 fF, respectively. In the case of six-die stacks

shown in Table 2, our 3D-MMM-ext reduces power by up to 36.1 %, 26.4 %, and 9.1 %,

and reduces wirelength by up to 50.7 %, 47.4 %, and 17.3 %.

In most cases, the simulated clock skew is less than 20 ps, which is less than the 30 ps

constraint. In the case of the six-die 3D stack of r5, the spatial distribution of the propa-

gation delay is plotted in Figure 12, where the die contains the clock source.

Delay(ps)

Skew

17.5 ps

Figure 12: Spatial distribution of propagation delay (ps) and clock skew (ps) of the clock
source die for the six-die stack r5. The TSV count is 3497.

The TSV count is 3497. We observe that the clock skew among the six dies varies

within [17.5 ps, 21.4 ps]. The skew of the entire 3D clock network is 21.4 ps. Referring to

the TSV RC parasitics and the 300 fF CMAX constraint, the delay along each TSV is in

the order of 0.01 ps. Compared with the > 500 ps src-to-sink delay, the TSV contributes

a negligible portion of delay to the entire src-to-sink delay. Note that our 3D clock tree

synthesis algorithm builds a zero-skew tree under the Elmore delay model, which in practice

shows discrepancy between SPICE simulation results.
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2.4.5 Low-Slew 3D Clock Routing

The TSV count can also affect the clock slew distribution. The slew distributions of the six-

die 3D clock tree for r5 among all sinks are depicted in Figure 13. The clock slew constraint

is set to 100 ps, which is 10 % of the clock period. The slew distribution of the single-TSV

clock tree is shown in Figure 13(a), whereas Figure 13(b) is the slew distribution of the

multiple-TSV clock tree using the 3D-MMM-ext.

Figure 13: Slew distribution of six-die 3D clock network among all sinks. Slew constraint
is set to 10 % of the clock period, and CMAX is 300 fF. (a) Slew distribution in the
single-TSV clock tree, (b) in the multiple-TSV clock tree.

In the single-TSV clock tree, slew varies within [34.2 ps, 82.7 ps] with an average slew of

53.9 ps. The slew distribution of the multiple-TSV case is in the range of [29.1 ps, 80.3 ps]

with an average slew of 46.8 ps. Compared with the single-TSV case, the multiple-TSV

case reduces the maximum slew and average slew by 2.4 ps and 7.1 ps, respectively. The

main reason for the improved slew distribution of the multiple-TSV 3D tree is the shorter

wirelength, which in turn reduces the capacitive load. Thus, we conclude that multiple

TSVs are effective in improving the slew distribution.

The impact of the maximum clock buffer load capacitance (CMAX) on the slew vari-

ations (min, average, max) and power consumption in the single-TSV and multiple-TSV

clock trees is shown in Figure 14. First, CMAX remains as an efficient means to control the
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maximum slew in 3D clock network design. Both the single-TSV and multiple-TSV cases

have similar trends as CMAX varies from 300 fF to 175 fF: a smaller CMAX reduces

the maximum slew but increases the clock power. This phenomenon is because each buffer

stage is allowed to drive a smaller capacitance with smaller CMAX, which in turn requires

more buffers and thus consumes more power. Second, given a certain CMAX, multiple-TSV

clock trees always have reduced maximum slew and less average slew than the single-TSV

cases. Third, the multiple-TSV case always consumes less power than the single-TSV case.

Therefore, we conclude that the multiple-TSV case achieves both low power and better slew

results.

Figure 14: Slew variations and power comparisons between single-TSV and multiple-TSV
clock trees. CMAX varies from 175 fF to 300 fF.

2.5 Summary

In this chapter, we explored design optimization techniques for reliable low-power and low-

slew 3D clock network design. We thoroughly studied the impact of the TSV count and the

TSV capacitance on clock power trends. We observed that using more TSVs helps reduce

the wirelength and power consumption and shows better control over clock slew variations.

However, in the case of a large TSV parasitic capacitance, clock power could increase if too

many TSVs are used. We also observed that a smaller maximum loading capacitance on the

clock buffers efficiently lowers the 3D clock slew. Furthermore, we developed a low-power

33



3D clock tree synthesis algorithm called 3D-MMM-ext. Experimental results show that

our 3D-MMM-ext algorithm constructs low-power 3D clock designs that have comparable

power and reliability to an exhaustive search approach with a few orders of magnitude

shorter runtime.
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CHAPTER III

CLOCK NETWORK DESIGN FOR PRE-BOND TESTING OF

3D-STACKED ICS

Three-dimensional system integration has emerged as a key enabling technology to con-

tinue the scaling trajectory predicted by Moore’s Law for future IC generations. With 3D

integration technology, both the average and maximum distance between components can

be substantially reduced by placing them on different dies, which translates into significant

savings in delay, power, and area. Moreover, it enables the integration of heterogeneous

devices, making the entire system more compact and efficient. Nevertheless, the success of

3D stacked ICs is predicated on the final post-bond yield, i.e., minimizing the number of

good dies bonded to defective dies. Therefore, each die must be tested prior to the bonding

process.

In Chapter 2, we demonstrated that there exists a TSV vs. wirelength (and thus power)

tradeoff in 3D clock trees: the more TSVs used in the 3D clock tree, the shorter the total

wirelength. This discussion clearly motivates using more TSVs in a 3D clock tree. However,

the 3D clock trees containing multiple TSVs have an interesting property: only one die in

the stack contains a fully connected 2D clock tree; the other dies contain many small,

isolated subtrees. These trees take advantage of TSVs to shorten the total wirelength, but

such a design makes pre-bond testing next to impossible because each clock subtree requires

its own probe pad. The state-of-the-art testing equipment, e.g., from [84], has more than

± 100ps overall timing accuracy (OTA). This makes it very challenging to use multiple

clock probe pads to provide a low-skew clock signal. In addition, the cost of dedicating so

many probes to a single signal is significant.

This chapter presents the first work on 3D clock tree synthesis for pre-bond testing. The

pre-bond testable clock tree can be used for both pre-bond test and post-bond operation.

Two circuit elements are introduced specifically, a TSV-buffer and a redundant tree, to
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enable efficient pre-bond testing while minimizing the overall wirelength and clock power.

Furthermore, the impact of the parasitic TSV capacitance on pre-bond testable clock trees

in terms of wirelength, buffer count, and clock power is discussed. A large TSV capacitance

tends to increase the wirelength and the number of buffers required, thus increases the clock

power. Compared with the simple pre-bond testability solution of using a single TSV to

connect two complete 2D trees, the proposed approach significantly reduces the wirelength

and power consumption in both two-die and four-die 3D stacks.

3.1 Problem Formulation

The pre-bond testable 3D clock routing problem is defined as follows: given a set of clock

sinks distributed across N dies (where N > 1) and a TSV bound, construct a 3D clock tree

such that (1) during post-bond operation, the tree connects all the sinks with a minimum-

skew clock signal, and (2) during pre-bond test, a single 2D clock tree exists in each die that

provides a minimum-skew clock signal to the sinks in that die. The objective is to minimize

the wirelength and clock power given the TSV bound and the clock slew bound constraints.

The clock sinks may represent flip-flops, clock input pins for IP blocks, or memory blocks.

Our pre-bond testable clock routing algorithm can operate under any TSV bound greater

than zero, and it constructs a high quality 3D clock tree in terms of clock skew1, wirelength,

power consumption, and clock slew for both pre- and post-bond testing and operations.

3.2 Pre-Bond Testable Clock Routing

3.2.1 Overview

Without loss of generality, we first develop a pre-bond testable clock routing algorithm for

a two-die stack. We extend it to the stacks containing more-than-two dies in Section 3.2.5.

The input to our algorithm includes the location and capacitance of the sinks in each die

(die-0 and die-1), a TSV bound (> 0), and a slew constraint. Die-0 is assumed to contain

the clock source. Our algorithm consists of two main steps.

1In the pre-bond testable clock routing, our algorithm generates zero-skew clock trees based on the
Elmore delay model [21]. To obtain accurate clock-related metrics, we then extract the netlist, and report
the SPICE simulation results, including delay, skew, slew, and power consumption.
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• 3D tree construction: we generate a 3D clock tree (post-3d) connecting all the

sinks in both dies so that (1) the overall 3D tree is zero skew under the Elmore delay

model; (2) the total wirelength is minimized; and (3) die-0 contains a fully connected

2D tree (pre-die-0) with zero skew. In this case, the 3D tree is used during post-bond

test and operation, while the 2D tree in die-0 is used for the pre-bond test of die-0.

We utilize so called “TSV-buffers” to ensure that the 2D tree in die-0 maintains zero

skew in both pre-bond and post-bond configurations.

• Redundant tree routing: if multiple TSVs are used, the 3D tree construction step

generates a 3D tree, where die-1 contains several separate subtrees (sub-die-1). In this

case, we route a so-called “redundant tree” in die-1 (red-die-1) to connect the roots

of the subtrees in die-1, and form a single fully connected 2D tree (pre-die-1) with (1)

an estimated zero skew, and (2) a minimum total wirelength. This 2D tree is used for

the pre-bond test of die-1. Transmission gates (TGs) are inserted to disconnect the

redundant tree for post-bond operation.

3.2.2 TSV-Buffer Insertion

Testing die-0 pre-bond requires a fully connected clock tree in die-0 so that the clock signal

is delivered to all die-0 sinks using a single test probe. As mentioned earlier, if multiple

TSVs are used, the 3D tree construction step gives a 3D tree, where die-0 contains a single

fully-connected tree and die-1 contains a forest of small subtrees. During pre-bond test,

the two dies are separated and tested individually. In this case, the 2D tree in die-0 can

be used without any additional modification. However, the skew of this tree may no longer

be zero because the downstream capacitances of the subtrees in die-1 are not present. This

additional skew will either slow down or corrupt the testing process.

To avoid this high-skew situation, we employ our TSV-buffer, simply a buffer inserted

right before a TSV. In our test-aware DME (TaDME) algorithm, we add a TSV-buffer for

each TSV and route the tree accordingly under the zero-skew constraint. In this case, the

TSV-buffers are inserted in die-0, where the clock source is located. Since the buffers shield

die-0 from the downstream capacitance, die-0 remains zero-skew when tested pre-bond. The
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outcome of TaDME is a zero-skew 3D tree that contains a zero-skew 2D tree in die-0 for

pre-bond test.

In what follows, we describe how our TaDME algorithm modifies the traditional DME

algorithm to construct a zero-skew 3D clock tree in the presence of TSV-buffers. A key

step in TaDME is the bottom-up recursive tree merging. Given a pair of zero-skew subtrees

that must be merged, our goal is to determine the merging segment (the set of potential

locations for the merging points) and to connect it to the root nodes of the subtrees so that

the new merged tree has zero skew. The traditional merging process as used in the original

DME algorithm is illustrated in Figure 15(a), where the merging segment of internal Node

E is determined based on the parasitics of the TSVs, wires, downstream capacitances, and

internal delays of the two subtrees. In this case, if the right branch (TSV, Edge (E, A), and

CT2) of the overall tree is missing, the delay from E to B will change because of the change

in the downstream capacitance at Node E. However, if we use a TSV-buffer as shown in

Figure 15(b), the delay from E′ to B will not change, even if we remove the right branch.

This is because the TSV-buffer hides the downstream capacitance at Node E′.
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Figure 15: (a) A 3D clock tree built with TSVs, where the separation of die-0 and die-1
skews the tree in die-0. (b) A 3D clock tree built with TSV-buffers, where the separation
of die does not skew the die-0 tree.

The following notations are used in Figure 15: r and c denote the unit-length wire

resistance and capacitance, respectively; Rd is the output resistance of a buffer; CL is the
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input capacitance of a buffer; and td is the intrinsic delay of a buffer; RTSV and CTSV are

the resistance and capacitance of a TSV. Die-0 contains Subtree CT1 with Root B and a

loading capacitance CLB. The internal delay from B to the sinks of CT1 is tB. Similar

symbols are used for CT2. A clock wire of length l is modeled as a π-type circuit with a

resistor (rl) and two capacitors (cl/2). We also model the TSVs with π-type circuits with

resistance RTSV and two capacitances CTSV /2. Note that the downstream capacitance at

internal Node E′ in Figure 15(b) is clE′B + CLB + CL both before and after the dies are

bonded. Thus, TSV-buffers allow us to build a 3D tree for die-0 that has zero skew in both

pre-bond and post-bond operations.

In the bottom-up merging process, we require that the delay from E′ to sinks in CT1

(through B = dE′,CT1) is equal to the delay to the sinks of CT2 (through A = dE′,CT2).

That is,

dE′,CT1 = dE′,CT2 . (12)

Referring to the merging structure in Figure 15(b), dE′,CT1 and dE′,CT2 can be expressed as

dE′,CT1 = rlE′B(clE′B/2 + CLB) + tB, (13)

dE′,CT2 = td + Rd(CTSV + clE′A + CLA) + RTSV (CTSV /2 + clE′A + CLA) +

rlE′A(clE′A/2 + CLA) + tA, (14)

where tA is the internal delay from A to sinks of CT2, and CLA is the downstream capaci-

tance of Node A. If there is no detour, the distances between E′ and A (lE′A) and between

E′ and B (lE′B) can be expressed as

lE′B + lE′A = L, (15)

where L is the minimum merging distance between A and B. lE′A and lE′B can be deter-

mined by solving Equations (12), (13), (14), and (15).

If lE′A or lE′B is negative, a wire detour is required. For example, when lE′A is negative,

lE′B must be longer than L to obtain a zero-skew merging. In this case, lE′A is set to zero,

and lE′B is calculated by solving Equations (12), (13), and (14). If the calculated lE′B is too

long, we insert a clock buffer along Edge E′B. Equation (13) is updated correspondingly.
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The decision to avoid a detour with a buffer is made by a cost function that considers the

capacitance of clock wires, buffers, and TSVs. We use a wire detour if the cost is less than

that of buffer insertion, and satisfies the slew constraint.

3.2.3 Redundant Tree Insertion

The pre-bond test of die-1 requires a fully connected clock tree so that the clock signal

is delivered to all the sinks in die-1 from just a single test probe. As mentioned earlier,

when multiple TSVs are used for wirelength reduction, the 3D tree construction generates a

forest of subtrees in die-1. Therefore, our goal is to combine these subtrees into a single fully

connected clock tree with zero clock skew and minimum overall wirelength. We accomplish

this by adding a redundant tree that connects the roots of the subtrees while maintaining

zero skew. We use this fully connected tree during the pre-bond test of die-1. Note that the

redundant tree is not used during post-bond test and operation. We use TGs to disconnect

the redundant tree.

The redundant tree routing is done using a conventional algorithm as follows: (1) con-

struct a binary abstract tree in a top-down fashion; (2) insert a TG at each sink node; and

(3) embed and buffer the abstract tree under the zero-skew and minimal wirelength goals.

A sample flow is illustrated in Figure 16.
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Figure 16: The redundant tree insertion in die-1. (a) Extract sinks from subtrees. (b)
Generate a redundant tree and insert transmission gates. (c) The final pre-bond testable
clock tree in die-1. The extra control signal that connects the transmission gates is not
shown here for simplicity.

Given many subtrees in die-1, we first extract a new set of sinks based on the subtrees as

in Figure 16(a). Then, we construct a 2D clock tree for this extracted set as in Figure 16(b).

The final pre-bond testable clock tree in die-1 (pre-die-1) is illustrated in Figure 16(c), which

consists of three subtrees (sub-die-1) and one redundant tree (red-die-1). Last, we connect

the enable input of the TGs using an extra control wire. To minimize the routing overhead,
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we need to minimize the total wirelength of this control signal. We use the rectilinear

minimum spanning tree algorithm (RMST-pack) [85] for this purpose. The cost of this

overhead is reported in Section 3.4.3.

3.2.4 Putting It Together

Upon the completion of our algorithm, we obtain fully connected zero-skew 2D clock trees

for both die-0 and die-1 as well as a fully connected zero-skew 3D tree for the entire stack.

In die-1, we turn on the TGs to connect the redundant tree to the subtrees for pre-bond test.

Once the pre-bond testing is complete, we turn off the TGs to disconnect the redundant

tree. By doing this, the original zero-skew 3D tree is used for post-bond test and normal

operation. We will show in our experimental results that our 3D trees with multiple TSVs,

TSV-buffers, and TGs plus the control signal consume significantly less power than a simple

single-TSV solution.

The entire design flow is illustrated in Figure 17(a). In post-bond operation, the TGs

are turned off and the pre-die-0 and sub-die-1 trees are connected with TSVs to form the

post-3d tree as shown in Figure 17(b). In pre-bond test, the pre-die-0 tree can be reused

with zero skew to test die-0 as shown in Figure 17(c). To test die-1, we turn on the TGs, and

the red-die-1 and sub-die-1 trees form the zero-skew pre-die-1 tree, as shown in Figure 17(c).
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Figure 17: Example of the post-bond operations and pre-bond test using our 3D clock
tree. (a) A pre-bond testable 3D clock tree; (b) a post-3d in post-bond operation with TGs
turned off; (c) pre-die-0 and pre-die-1 in pre-bond test with TGs turned on.

3.2.5 Multiple-Die Extension

For a stack with more-than-two dies, we face the same challenges of creating clock trees

for pre-bond test. We take a four-die stacked clock tree in Figure 18 as an example. The

41



clock source is located in die-0. If we apply the 3D-MMM algorithm [45], the resulting

post-3d tree contains the following topology: (1) die-0 has a complete clock tree connecting

all the sinks in die-0; (2) the non-source dies (die-1, die-2, and die-3) have each a sub-die-k

(k = 1, 2, 3), which are connected to the clock source through 10 TSVs.

(a) 3D clock tree, in post-bond

die-1

die-0

src

die-2

die-3

src

src

src

die-1

die-0

src

(b) 2D clock trees, in pre -bond test

die-2

die-3

src

src

src

Figure 18: An example of a pre-bond testable clock routing in a four-die stack.

Our pre-bond testable clock routing algorithm for a two-die stack can be easily extended

to larger die stacks with an arbitrary clock source location. Our basic 3D tree construction

algorithm generates a 3D tree, where die-s (defined as containing the clock source; die-0 in

Figure 18) has a single, fully-connected tree, while all the other dies have a forest. During

the bottom-up merging process, the TSV-buffer insertion algorithm is extended as follows:

• If a TSV connects die-s and a non-source die-k, where (k 6= s), we insert a TSV-buffer

in die-s;

• If a TSV connects non-adjacent dies and passes through die-s (e.g., connecting die-(s-

1) and die-(s+1)), we insert a single TSV-buffer in die-s;

• If a TSV does not connect to or travel through die-s, no TSV-buffer is required.

Once the TSV-buffer insertion, embedding, and buffering are completed, we add redundant

trees to the non-source dies. In addition, we insert TGs at the root of each subtree and

add a global control signal to connect all the TG enable inputs in each die. This operation
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allows us to use the redundant trees for pre-bond test (TGs on) and disable them during

post-bond test and operations (TGs off). The whole process generates the following items:

(1) a single zero-skew 3D clock tree for post-bond test and normal operation; (2) a zero-skew

2D clock tree in each die for pre-bond test; and (3) a global control signal that connects the

enable inputs of the TGs in each die. The pre-bond testable and post-bond operational 3D

clock tree for a four-die stack is illustrated in Figure 18.

3.3 Buffering for Wirelength and Slew Control

Our pre-bond testable 3D clock routing algorithm inserts two kinds of buffers: clock buffers

and TSV-buffers. Clock buffers are mainly used to control delay and skew. These clock

buffers are usually inserted close to the clock source and drive large loads to reduce the

delay along the clock paths. The TSV-buffers, as discussed in Section 3.2.2, are inserted at

every TSV location in the clock source die, so that the clock tree in that die has also zero

skew during pre-bond test.

Our observations indicate that the TSV-buffers may unbalance the wirelength during

the bottom-up merging process. Considering the example of Subtrees CT1 and CT2 in die-0

and die-1, respectively, we must use a TSV-buffer in die-0 to merge these subtrees. As shown

in Figure 15(b), the TSV-buffer insertion can increase the delay from E′ to CT2. If the

internal delay of CT2 is already much greater than that of CT1, adding the TSV-buffer only

makes the difference worse. If the difference is too large, wire snaking is required to balance

the delays and to achieve a zero-skew merged tree. Thus, the addition of a TSV-buffer has

led to a significant clock wirelength overhead in die-0.

To mitigate this overhead, we add extra clock buffers to die-0 to balance the internal

delays and eliminate snaking. Specifically, when a TSV-buffer significantly unbalances

the delay, we insert an extra clock buffer on the other branch as a counter balance. In

Figure 15(b), we add an extra clock buffer along E′-B. We observe that this delay balancing

scheme reduces the overall wirelength in die-0. We also observe that few clock buffers are

required in this way because such unbalances do not occur frequently.

Clock slew rate control is an important reliability issue for high-speed clocking. If the
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slew rate is too low – that is, if it takes too long for the clock signal to rise or fall – setup

and hold times may be violated. This hold time violation cannot be fixed with a lower clock

frequency. Existing work on slew-aware clock tree synthesis relies on buffer insertion [34–37].

Buffers are added along the clock paths so that the output load of each buffer is limited.

This bounding condition, denoted as cmax in the literature, is shown to be effective in

controlling the slew rate. A smaller cmax value improves the slew rate, but requires more

buffers. Most existing studies insert buffers in a given clock tree as a post-processing step

to improve the slew rate under various constraints: buffer area, clock power, etc. This

post-synthesis slew-aware buffer insertion must be done carefully to avoid introducing new

clock skew, which may constrain the location of the buffers.

Our strategy is to tackle the slew rate issue during the construction of the pre-bond

testable clock trees by adding buffers to meet the cmax constraint. Specifically, we insert

clock buffers, together with TSV-buffers, during the bottom-up merging process so that

cmax is satisfied for both types of buffers. We add clock buffers along the paths from the

merging node to the subtree root nodes if the downstream capacitance at the merging node

exceeds cmax. Depending on the load, we may insert multiple clock buffers to meet the

cmax requirement.

Several possible scenarios for the clock buffer and TSV-buffer insertion are illustrated in

Figure 19. In summary, our clock tree synthesis algorithm uses the following three criteria

for buffer insertion during the bottom-up merging process:

• For pre-bond testability, we add a TSV-buffer for every TSV connecting to the clock

source die;

• For wirelength reduction, we add a clock buffer to correct unbalances in the delays of

two merging subtrees as discussed in the previous section;

• For slew rate control, we add clock buffers, if the downstream capacitance of any

buffer exceeds the given limit cmax.

44



TSV-buf

TSV

(a)                        (b)                          (c)

E E E

CLK-buf

A(tA,CA)     B(tB,CB) A(tA,CA)     B(tB,CB) A(tA,CA)     B(tB,CB)

Figure 19: Examples of the clock buffer and TSV-buffer insertion. (a) A clock buffer is
inserted to balance the delay of the two branches, where tA < tB. (b) Multiple clock buffers
are inserted if the wires are long and/or the download capacitance is large. (c) A clock
buffer is inserted along with a TSV-buffer to balance the delay.

3.4 Experimental Results

We implemented our algorithm using C++/STL on Linux. We use five benchmarks from

the IBM suite [83] and four from the ISPD clock network synthesis contest suite [86]. Since

these designs are for 2D ICs, we obtain 3D designs by randomly partitioning the clock

sinks across the multiple dies and scaling the footprint area by
√

2 and
√

4 for two-die and

four-die stacks, respectively.

We use technology parameters from the 45 nm Predictive Technology Model (PTM) [82];

the unit-length wire resistance is 0.1 Ω/µm, and the unit-length wire capacitance is 0.2 fF/µm.

The sink capacitance values range from 5 fF to 80 fF. The buffer parameters are Rd =

122 Ω, CL = 24 fF, and td = 17 ps. We use 10 µm × 10 µm via-last TSVs with 20 µm

height and 0.1 µm liner oxide thickness. By simulating the TSV structure with Synopsys

Raphael [87], we determine the TSV parasitics to be RTSV = 0.035 Ω and CTSV = 15.48 fF.

The clock frequency is set to 1 GHz and the supply voltage (Vdd) to 1.2 V2. The maximum

load capacitance for each buffer cmax is 300 fF for slew rate control.

In SPICE simulation, wire segments and TSVs are represented as π models, and clock

buffers and TSV-buffers are represented as inverter pairs. The simulated clock skew and

slew tolerances are 3 % and 10 % of the clock period, respectively. We report wirelength in

µm, clock power in mW, skew and slew in ps, and capacitance in fF.

2Note that our clock trees with single and multiple TSVs are simulated under the same Vdd, and the
power savings mainly come from the capacitance reduction. Therefore, the efficiency of our algorithm in low
power and pre-bond testability apply on different Vdd (e.g., from 1.2 V to 1.0 V).
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3.4.1 TSV-Buffer and TG Model Validation

In pre-bond testable clock routing, we utilize TSV-buffers and TGs to facilitate pre-bond

test, and post-bond test and operation. The equivalent circuits are shown in Figure 20,

which are used for SPICE validation of the TSV-buffers and TGs. We simulate a post-bond

3D clock tree in a two-die stack and two pre-bond testable 2D clock trees in die-0 and die-1.

Node A is the clock source for post-bond operation. Sink C in die-0 and Sink E in die-1

have loading capacitances of CLC and CLE , respectively. Nodes B and D are connected by

a TSV-buffer and a TSV. Edge (D, E) is a subtree in die-1 and is connected to F , the clock

source for pre-bond test of die-1, via a TG. CLC and CLE are set to 5 fF. Wires (A,B),

(B,C), (D, E), and (F, D) all have 500 µm length.

A B
C

D
E

F

A CLC

CLE

IN

F

EN=0

+

-

A’ B’
C’

die-0

A’ B’ C’

CLC

+

-

D’ E’F’

F’ D’ E’

CLE

+

-

(a)

(c)

(b)

die-1

die-0

die-1

D             E

EN=1

IN

IN

B           C

Figure 20: Circuit models for (a) the post-bond 3D clock tree, (b) the pre-bond testable
2D clock tree in die-0, and (c) the pre-bond testable 2D clock tree in die-1.

First, we observe from SPICE simulation that the delay from A to C in Figure 20(a) is

42.21 ps, which is the same as that from A′ to C ′ in Figure 20(b). This verifies that die-0 is

zero skew before die-1 is attached, so the TSV-buffer has done its job. Second, the TG has

14.2 fF capacitance between Node D and the ground, when it is off. This TG completely

blocks the clock signal from A to F . When the TG is turned on for the pre-bond testing
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on die-1, however, it has 108 Ω between its input and output nodes, 16.4 fF between its

input and the ground, and 18.4 fF between its output and the ground. The intrinsic delay

of a TG is 1.04 ps. Under this model, the calculated delay from F ′ to E′ is 54.13 ps, which

closely matches the simulated delay of 54.14 ps.

3.4.2 Sample Trees

A series of pre-bond testable clock trees are depicted in Figure 21, where the circuit is r1

from the IBM suite with a TSV bound of 10. The TSVs are shown as black dots, the clock

sources as triangles.

(a)                                                          (b)

(c)

Figure 21: The pre-bond testable clock trees for circuit r1 in a two-die stack for a TSV
bound of 10. The TSVs and the clock sources are represented by black dots and triangles,
respectively. (a) The post-bond 3D clock tree, where the solid and dotted lines denote the
trees in die-0 and die-1, respectively. (b) The pre-bond testable 2D clock tree for die-0. (c)
The pre-bond testable 2D clock tree for die-1, where the redundant tree and the subtrees
are drawn in solid and in dotted lines, respectively.
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The zero-skew 3D clock tree for post-bond test and normal operation is shown in Fig-

ure 21(a). This 3D clock tree contains 10 TSVs. The solid and dotted lines represent the

clock trees in die-0 and die-1, respectively. Note that die-1 contains many subtrees (dotted

lines) that are not connected to each other except through die-0. The zero-skew pre-bond

testable 2D clock tree for die-0 is shown in Figure 21(b), which is identical to the solid line

clock tree in Figure 21(a). The zero-skew pre-bond testable 2D clock tree for die-1 is shown

in Figure 21(c), which contains all the subtrees (dotted lines) in die-1 and the redundant

tree (solid line) which connects them.

3.4.3 Wirelength, Skew, and Power Results

The wirelength (µm), power consumption (mW), and skew (ps) results are summarized in

Table 3, which include the post-bond 3D clock tree (post-3d) and the pre-bond testable 2D

clock tree for die-0 (pre-die-0) and die-1 (pre-die-1). For die-1, we report the total wirelength

(WL) and the wirelength of the subtrees (WL-sub), the redundant tree (WL-red), and the

TG control signal (WL-TG). In this case, the wirelength of the pre-bond testable clock

tree for die-1 is equal to the sum of WL-sub and WL-red. In addition, the wirelength of

the post-bond 3D clock tree is the sum of the wirelength of pre-die-0 and WL-sub from

pre-die-1.

Table 3: Wirelength, clock power, and skew results for post-bond testable 3D clock trees
and pre-bond testable 2D clock trees.

post-bond 3D pre-bond testable
die-0 die-1

ckt #Sinks #TSVs WL Pwr Skew WL Pwr Skew WL WL-sub WL-red WL-TG Pwr Skew

r1 267 57 227141 128.4 13.7 166691 103.0 13.5 150219 60450 89769 62732 68.2 13.0
r2 598 95 488987 274.1 14.2 328914 196.0 14.1 302023 160073 141950 109031 148.6 11.8
r3 862 183 616077 361.6 15.5 444156 280.5 15.5 429950 171921 258029 161561 201.9 16.2
r4 1903 265 1311290 763.2 15.5 889460 536.4 14.9 846980 421830 425151 259442 422.1 15.1
r5 3101 269 1998950 1115.0 29.1 1255760 715.9 29.1 1236417 743190 493227 310855 615.9 20.9

ispd1 121 44 129391 73.3 9.4 99393 64.1 9.2 99169 29998 69171 51214 44.3 6.3
ispd2 117 36 127763 71.2 6.8 96093 60.4 6.2 93625 31669 61956 42134 42.0 5.7
ispd3 117 42 136676 75.6 5.0 107834 67.0 4.7 101968 28841 73127 52241 45.0 7.3
ispd4 91 30 80977 46.8 15.3 61504 40.4 15.2 59870 19473 40397 29449 26.4 14.9

RATIO 1.00 1.00 1.00 0.72 0.79 0.97 0.69 0.28 0.41 0.29 0.57 0.94

Based on the wirelength-related columns, we observe that (1) the total wirelength of

pre-die-0 and pre-die-1 are comparable (0.72 vs. 0.69 in ratio); (2) in several cases, the
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wirelength of the redundant tree is about 2x of the total wirelength of the subtrees in die-1

(0.41 vs. 0.28); and (3) in several cases, the wirelength of the TG control signal is about

half of the redundant tree in die-1 (0.29 vs. 0.41).

The total clock routing resource cost is equal to the sum of post-3d and WL-red from

pre-die-1. Normalizing to the wirelength of post-3d, the overall wirelength of the pre-bond

testable clock tree and its redundant trees is 1.41. Die-0 and die-1 utilize 51 % and 49 %

of the total clock routing resource, respectively. In the post-bond operations, the post-3d

consumes 71 % of the clock routing resource, which means that 29 % of the clock resource

is used for the pre-bond test only. Note that the redundant tree and the TG control

signal are used only during the pre-bond testing for die-1. This non-negligible overhead is

compensated by the significant power savings to be discussed in Section 3.4.4.

Last, the clock skew values do not exceed 30 ps, satisfying our 3 % of the clock period

constraint on the simulated skew. Die-0 consumes more clock power than die-1, primarily

because of the TSV-buffers inserted in die-0.

3.4.4 Comparison with The Single-TSV Approach

Our baseline 3D clock tree contains a single, fully-connected zero-skew clock tree in each

die; these trees are connected with a single TSV in the two-die stacks and a single column of

TSVs in taller stacks. The comparisons of the wirelength (µm) and clock power (mW), and

the skew (ps) results from the SPICE simulation are summarized in Table 4. In the multi-

TSV designs, we choose the TSV count that gives us the minimum power by an exhaustive

search, wherein we sweep the TSV bound from 2 to infinity, construct a 3D clock tree for

each bound, and simulate the power consumption. The clock synthesis time for each tree

is less than one second in all cases.

We make the following observations. First, our multi-TSV approach significantly out-

performs the single-TSV approach in terms of wirelength: 14.8 % to 24.4 % reductions for

the two-die stacks, and 39.2 % to 42.0 % reductions for the four-die stacks. Similarly, power

savings for the clock trees are 10.1 % to 15.9 % for the two-die cases and 18.2 % to 29.7 %

for the four-die cases. These results convincingly demonstrate the benefits of our multi-TSV
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approach.

Table 4: Comparison between single-TSV and multi-TSV designs.
Single TSV Multi-TSV

Reduction %
ckt #Sinks #Bufs WL Power Skew #TSVs #Bufs WL Power Skew WL Power

r1 267 327 279796 145.0 12.7 57 324 227141 128.4 13.7 18.8 11.4
r2 598 693 600880 310.6 12.5 95 684 488987 274.1 14.2 18.6 11.8
r3 862 928 765397 404.3 16.1 183 925 616077 361.6 15.5 19.5 10.6
r4 1903 1982 1576510 848.7 15.3 265 1963 1311290 763.2 15.5 16.8 10.1

Two-die r5 3101 2528 2344960 1242.0 22.2 269 2449 1998950 1115.0 29.1 14.8 10.2
ispd09f11 121 212 168500 85.4 7.6 44 201 129391 73.3 9.4 23.2 14.1
ispd09f12 117 215 164966 84.2 5.8 36 193 127763 71.2 6.8 22.6 15.5
ispd09f21 117 226 180867 89.9 9.4 42 211 136676 75.6 5.0 24.4 15.9
ispd09f22 91 106 106401 53.2 15.1 30 111 80977 46.8 15.3 23.9 12.1

r1 267 318 272355 141.8 10.5 248 325 160394 111.4 13.3 41.1 21.4
r2 598 700 582115 304.5 14.4 434 647 353646 233.9 15.7 39.2 23.2
r3 862 945 735299 398.0 14.9 718 922 442903 317.1 13.7 39.8 20.3
r4 1903 1956 1532220 831.1 14.8 1651 2011 908375 675.6 16.5 40.7 18.7

Four-die r5 3101 2939 2312930 1272.0 22.2 2469 3134 1368370 1041.0 20.3 40.8 18.2
ispd09f11 121 216 159752 83.1 8.4 129 176 93440 60.0 5.8 41.5 27.8
ispd09f12 117 208 155542 80.9 8.9 114 160 90281 56.8 10.2 42.0 29.7
ispd09f21 117 212 163816 83.0 17.8 102 160 99179 58.4 7.8 39.5 29.6
ispd09f22 91 99 98123 48.7 18.0 81 88 57342 36.1 14.7 41.6 25.9

Second, the total number of buffers (#Bufs) used in the clock trees consists of the

clock buffers and the TSV-buffers. Detailed buffer usages in the two-die cases are shown in

Table 5, which includes the total number of buffers (#Bufs), the TSV-buffer count (#TBs),

and the clock buffer count (#CBs).

Table 5: Buffer usage between the single- and multi-TSV cases. We report the total
number of buffers (#Bufs), TSV-buffers (#TBs), and clock buffers (#CBs). The number
of dies is two.

Single TSV Multi-TSV
ckt #Bufs #TBs #CBs #TSVs #Bufs #TBs #CBs

r1 327 1 326 57 324 57 267
r2 693 1 692 95 684 95 589
r3 928 1 927 183 925 183 742
r4 1982 1 1981 265 1963 265 1698
r5 2528 1 2527 269 2449 269 2180

ispd09f11 212 1 211 44 201 44 157
ispd09f12 215 1 214 36 193 36 157
ispd09f21 226 1 225 42 211 42 169
ispd09f22 106 1 105 30 111 30 81

We observe that a similar number of buffers is used in both the single- and the multi-

TSV trees. In the single-TSV design, buffers are inserted to control the wirelength and

slew in each die. In the multi-TSV policy, we need more TSV-buffers to ensure pre-bond
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testability but use fewer clock buffers. This is because the total wirelength is shorter in the

multi-TSV designs and the TSV-buffers have positive impact on slew control.

3.4.5 Impact of TSV Bound on Power

The impact of the TSV bound on wirelength, buffer count, and clock power consumption

is depicted in Figure 22. These metrics are normalized to the baseline results from the

single-TSV approach. The x-axis corresponds to the TSV bound used to build our multi-

TSV pre-bond testable 3D clock trees. Note that the actual TSV usage may be less than

the TSV bound because the clock tree synthesis algorithm may determine that the optimal

number of TSVs is less than the allowed number. For example, when the TSV bound is set

to infinity, only 3097 TSVs are actually used in the four-die stack of benchmark r5.

TSV bound

Figure 22: Impact of the TSV bound constraint on wirelength, buffer count, and clock
power consumption based on the four-die stack of r5. The baseline is the single-TSV ap-
proach.

We first observe that the wirelength consistently reduces as more and more TSVs are

used in our 3D pre-bond testable clock trees. The wirelength savings reach 45 %, if the

TSV bound is set to infinity. This confirms that, in general, TSVs help to reduce the over-

all wirelength of 3D clock trees. Second, the total number of buffers (both clock buffers

and TSV-buffers) increases as more TSVs are used, which is mainly due to the insertion

of required TSV-buffers for pre-bond testability. Considering both trends, the power con-

sumption decreases consistently but slowly for a time but eventually begins to rise as the
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cost of the TSV-buffers finally begins to outweigh the wirelength savings. The maximum

power saving for r5 is around 18 %. The corresponding 3D clock tree uses approximately

2500 TSVs across all four dies. With more than 2500 TSVs, the power consumption finally

rises because of the excessive number of TSV-buffers. This trend gives us an optimum TSV

bound for a given power budget: for the four-die stack r5, the TSV bound should be set to

300 for a power consumption savings of 10 %.

3.4.6 Impact of CMAX on Power and Slew

The impact of CMAX (the maximum output load each buffer can drive) on skew, maximum

rise-slew, and maximum fall-slew among all sinks on all dies is summarized in Table 6.

We use four-die stack of benchmark r1 and compare the single-TSV with our multi-TSV

approaches.

Table 6: Impact of CMAX (fF) on skew (ps) and slew (ps) based on four-die stack of r1.
We compare the single-TSV and the multi-TSV approaches.

Skew Max rise-slew Max fall-slew

CMAX Single Multi Single Multi Single Multi

150 22.6 5.6 37.1 37.4 32.8 33.0
175 22.0 6.3 43.9 44.0 38.7 38.6
200 8.8 6.7 51.5 50.5 45.5 44.3
225 11.3 7.3 58.7 54.0 52.4 47.4
250 9.7 8.3 67.4 59.7 60.1 52.4
275 12.4 11.4 76.4 71.0 68.5 62.5
300 10.5 13.3 86.6 80.8 78.2 71.5

We observe that as the CMAX value increases, the maximum rise and fall slews for both

single-TSV and multi-TSV cases increase. In other words, tighter CMAX means better slew.

All of the slew values are below the constraint, 10% of the clock period, which is 100ps.

The slew values are slightly smaller in multi-TSV designs than single-TSV designs, which

is mainly due to (slightly) more buffers inserted for slew control. In terms of skew, the

trend is not obvious for the single-TSV case. However, skew tends to reduce with a tighter

CMAX value for the multi-TSV case. The main reason is that the wirelength is shorter in

these cases, which causes the clock buffers, originally for slew control, to have a positive

impact on delay and skew as well.

The impact of CMAX on clock power consumption is plotted in Figure 23. We use
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four-die stack of r1 for this experiment. The overall trend is the same in both single-

TSV and multi-TSV cases: a tight CMAX results in more power consumption than a

loose CMAX. This is because more clock buffers are inserted to meet the tight CMAX

constraint. However, the power benefit of the multi-TSV case over the single-TSV case

remains consistent regardless of the CMAX value.

Figure 23: Impact of CMAX (fF) on power consumption (mW ) based on four-die stack
of r1.

3.4.7 Trend Study: Impact of TSV Bound and Capacitance

The impact of the TSV capacitance (TSVCap) and the TSV bound on clock power, wire-

length, and buffer count (#Bufs) trends is shown in Figure 24. We use the four-die stack

implementation of r5. These metrics are normalized to the results from a design with a

single column of TSVs. The TSV capacitance increases from 0 fF to 100 fF. Given both

a TSVCap and a TSV bound, we construct a pre-bond testable 3D clock tree, run SPICE

simulation on the tree, and report the clock power, wirelength, and buffer count.

We observe that using multiple TSVs affects the clock power in different ways, which

depends on the TSV capacitance. First, when the TSV capacitance is small (from 0 fF to

25 fF), we observe that using many TSVs helps to reduce the wirelength, buffer count, and

clock power. We obtain the lowest power using 2469 TSVs. In the ideal case when using

0 fF TSVs, we can achieve up to a 23.6 % power reduction compared with the single-TSV

case, and wirelength is reduced by more than 42 %. For the 15 fF or 25 fF TSVs, the
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clock power is reduced by 18.2 % and 14.5 %, respectively.

Figure 24: Impact of the TSV capacitance and the TSV usage on the clock power consump-
tion, wirelength, and buffer count trends based on the four-die stack of r5. The baselines
are the single-TSV clock tree for each value of the TSV capacitance.

Second, when the TSV capacitance is large (such as 50 fF or 100 fF), clock power first

decreases and then increases when more TSVs are used. In Figure 24, when TSVCap is

100 fF, the lowest clock power (a 4.7 % power reduction) comes from the clock tree with

183 TSVs. When thousands of TSVs are used, the clock power increases significantly.

Third, as the TSV capacitance increases, it becomes more challenging to achieve a

low-power clock network. Based on 0 fF TSVs, the multi-TSV policy is able to obtain a

low-power design with 23.6 % power saving; for 100 fF TSVs, the multi-TSV strategy can

only achieve 4.7 % power reduction.
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Those observations are mainly from the following factors. First, the TSV usage and the

TSV capacitance have opposite effects on wirelength: using more TSVs tends to reduce the

size of each subtree in the non-clock source dies, which reduces the wirelength. However,

TSVs with large capacitance tend to unbalance the subtrees, which increases wire snaking.

Depending on which factor dominates – the wirelength increase from the large TSV capac-

itance or the wirelength reduction from multiple TSVs – the trend of the total wirelength

changes dramatically. The same discussion applies to the buffer count.

Last, clock power is consumed by the capacitance of the wires, buffers, and TSVs. The

multi-TSV strategy helps to reduce the power consumed by the wires but at the cost of

increasing the power consumed in the TSVs. When using TSVs with the large capacitance,

the TSV power consumption increases faster than wire power consumption decreases, so

the total clock power increases. Therefore, as the TSV capacitance grows, the lowest-power

design is achieved with just a few TSVs. In general, a large TSV capacitance makes it hard

to achieve a low-power pre-bond testable 3D clock tree.

3.5 Summary

In this chapter, we demonstrated how to construct a clock tree for a 3D stacked IC so

that both enables test of each die before bonding and provides a minimum-power clock

network after bonding. Our solution utilizes many TSVs to reduce wirelength and clock

power but necessitates the use of new circuit elements – TSV-buffers and transmission gates

– in the clock tree to support the low-skew and low-power characteristics. We studied the

impact of buffer insertion on slew rate in 3D stacked ICs clocking. In addition, SPICE

results show that our method of inserting multiple TSVs into the clock tree significantly

reduces the wirelength and power consumption of the 3D clock tree as compared against a

single-TSV baseline. We also studied the impact of the TSV parasitic capacitance on power

consumption and wirelength. It shows that a larger TSV capacitance makes it harder to

optimize 3D pre-bond testable clock trees.
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CHAPTER IV

THROUGH-SILICON-VIA-INDUCED OBSTACLE-AWARE CLOCK

TREE SYNTHESIS FOR 3D ICS

TSVs are vertical vias through the silicon die and provide die-to-die communication for

multiple functional nets, such as power and ground networks, clock networks, and signal

nets. In TSV-based 3D ICs, TSVs create serious blockages for 3D clock routing. As shown

in Figure 25.(a), three kinds of TSVs co-exist in 3D designs. Power and ground TSVs

(P/G TSVs) usually have large diameter and utilize many local vias to provide the vertical

connection in between; signal TSVs and clock TSVs occupy silicon area and have relatively

smaller diameter compared with P/G TSVs.

7.41um

12.35um

2.47um

(a) (b)

signal/clock TSV cell

P/G TSV cell

local
vias

signal
TSV

clock
TSV

P/G
TSV

Figure 25: Side and top-down view of via-first power/ground (P/G) TSVs, clock TSVs
and signal TSVs. (a) P/G TSVs use many local vias in between vertically, (b) size of
the TSV cells (= TSV + keep-out-zone) in terms of the standard cell row height (45nm
technology).

Before clock tree synthesis, P/G TSVs and signal TSVs are inserted and occupy both

silicon and metal space. The TSV diameters in terms of the standard cell row height in

45nm technology is depicted in Figure 25.(b). TSVs are significant layout obstacles due to
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their large size compared with logic gates and local wires. The TSV-to-gate size ratio is

predicted to increase in ITRS 2009, especially when the keep-out-zone around TSVs is taken

into account. Therefore, clock routing in 3D IC becomes challenging because these various

types of TSVs all become obstacles. Existing work on 3D clock tree synthesis focuses on

thermal-aware clock skew minimization [45]. We have also developed 3D clock synthesis for

wirelength and power minimization in Chapter 2 and for pre-bond testability in Chapter 3.

But, none of these works take into account TSV-induced obstacles.

In this chapter, a practical 3D clock routing problem that stems from TSV-induced

obstacles is solved. An analysis on TSV-induced obstacles is performed that the P/G TSVs

and signal TSVs are two different types of obstacles in 3D clock routing. A TSV-induced

obstacle-aware clock routing algorithm is developed to construct a TSV-overlap-free buffered

clock tree. The traditional concept of merging segment is extended to represent clock

TSV insertion and clock buffer insertion; two detour policies are presented to handle clock

routing in heavily crowded regions. This algorithm is applied on several real benchmarks.

The efficiency of the proposed algorithm is demonstrated in the experimental results: the

generated TSV-obstacle-aware clock tree does not sacrifice wirelength or clock power too

much while avoiding various TSV-induced obstacles.

4.1 TSV Obstacle Analysis

The 3D IC physical design flow consists of several steps. In each design stage, different

types of TSVs are added. We use a TSV map to illustrate the size and location of TSVs.

Figure 26 shows how the TSV map evolves during each 3D design stage.

During 3D power planning, the 3D power/ground network is constructed, where power

and ground TSVs (= P/G TSVs) are inserted at regular locations. To obtain small resis-

tance, P/G TSVs may have a larger size than other TSVs, occupy several standard cell

rows, and utilize many local vias to provide the vertical connection in between.

During 3D placement, the locations of gates and signal TSVs are determined. The

major reason to insert TSVs during placement is that enough space for the signal TSVs

can be reserved, which are several times larger than gates; otherwise, inserting signal TSVs
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Figure 26: Addition of TSVs during 3D IC physical design. Note that P/G and signal
TSVs are added before clock routing.

during routing would create many problems. These P/G and signal TSVs then become

obstacles during clock routing1. In addition, clock TSVs and buffers are added during clock

routing, where clock TSVs themselves become another source of TSV-induced obstacles2.

The TSV-induced obstacles in 3D clock routing is depicted in Figure 27.

These TSV obstacles behave in the following ways:

• Signal TSVs: they occupy silicon area only and work as placement obstacles for clock

buffers and clock TSVs, which means that, 1) clock TSVs and clock buffers are not

allowed to overlap with existing signal TSVs; 2) clock nets are allowed to routed over

the signal TSVs because their landing pads are in M1 and free up the metal spaces

above. An illustration is shown in Figure 27.(a).

• P/G TSVs: they occupy both silicon area and metal layers and thus function as both

placement and routing obstacles, which means that, 1) clock TSVs and clock buffers

should avoid overlap with existing P/G TSVs; 2) the clock net is not allowed to route

over the P/G TSV. An illustration is shown in Figure 27.(b).

• Clock TSVs/buffers: besides P/G TSVs and signal TSVs, 3D clock tree synthesis

1In large 3D IC design, 3D global clock synthesis may be performed after floorplanning, where signal
TSVs have not been inserted yet. As a result, the TSV-obstacles for 3D clock synthesis include P/G TSVs
(acting as both placement and routing obstacles), clock TSVs, and clock buffers. To show the efficiency of
our algorithm, this paper focuses on the design flow where 3D clock routing performs after placement, where
all types of TSV-induced obstacles exist.

2We focus on inserting clock TSVs during clock routing to gain shorter wirelength and lower power.
Preserving TSVs before routing is an alternative solution, but out of the scope of this work.
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Figure 27: TSV-induced obstacles in 3D clock routing for Clock Sinks a, b and s. (a)
signal TSVs as placement obstacles, where the clock net is allowed to route over the signal
TSVs, (b) P/G TSVs as placement and routing obstacles, where the clock net is not allowed
to route over the P/G TSVs.

itself also inserts clock buffers and clock TSVs. They become the same kind of clock

routing obstacles as signal TSVs if added in an iterative fashion such as DME-based

clock tree embedding.

Due to the sheer size of TSVs, detour policies are required to handle the cases when TSV

obstacles significantly block the routing and placement area. A sample of the buffered 3D

clock tree is plotted in Figure 28, which avoids overlap with TSV obstacles.

4.2 Preliminaries

4.2.1 Problem Formulation

The formal definition of TSV-induced obstacle-aware 3D clock routing problem is as follows:

Given a 3D TSV obstacle map consisting of signal TSVs and P/G TSVs on each die, a set

of clock sinks on each die, dimensions of clock buffers and clock TSVs, an upper bound on

TSV count, the objective is to construct an overlap-free buffered 3D clock tree such that

1) clock skew is zero; 2) clock wirelength and power are minimized; 3) clock slew is bound

under the given constraint. The overlap-free constraint requires that 1) clock buffers and
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signal TSVP/G TSV clock TSV clock buffer

Figure 28: TSV-obstacle avoidance in 3D clock routing. TSVs cannot overlap with each
other, clock buffers cannot overlap with TSVs, and clock nets cannot route over P/G TSVs.

clock TSVs do not overlap with the signal TSVs and P/G TSVs; 2) clock nets are not

routed over the P/G TSVs.

4.2.2 Extension of Merging Segment Concept

In our 3D TSV-obstacle-aware clock routing, we extend the concept of merging segment

(ms) that is primarily used for clock internal nodes only to denote the candidate locations of

non-zero-sized clock buffers and clock TSVs under minimum skew and wirelength objectives.

Specifically, msp(p) and msc(t) denote the ms of an internal Clock Node p and the center of

a non-zero-sized clock TSV or buffer, respectively. The extended merging segment concept

is illustrated in Figure 29.

We focus on via-first TSV-induced obstacles in 3D clock tree synthesis3. These obstacles

can be classified into two types: placement obstacle that blocks the silicon area and affects

clock buffer/clock TSV insertion. This obstacles comes from P/G TSVs, signal TSVs, and

3We apply our TSV-obstacle-aware clock routing on via-first TSV 3D application. It can be easily extend
to via-middle or via-last TSVs.
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Figure 29: Illustration of the extended merging segment concept. When merging Nodes u
and v in different dies, msp(p) denotes the merging segment of Node p; msc(TSV ) denotes
the center-point locations of the clock TSV. Signal TSVs allow Node p and the clock net
to route over it. However, clock TSV x cannot overlap with a P/G TSV.

clock TSVs; Routing obstacle that blocks the routing area and affects the clock routing

topology. This obstacle comes from P/G TSVs.

We use the following merging segments in this work:

• Placement-overlap-free merging segments: collection of the merging points that the

corresponding non-zero-sized clock components, i.e., clock TSVs and clock buffers,

have no overlap with the placement obstacles and have its center point located along

the msc.

• Routing-overlap-free merging segments: potential location of msc and msp, which are

able to reach the children merging segments with the minimum distance while avoiding

routing obstacles.

• Feasible merging segments: for msp, the feasible merging segment becomes the routing-

overlap-free merging segments; for msc, the feasible merging segment satisfies both

placement-overlap-free and routing-overlap-free requirements.

4.3 Overview of the algorithm

Our TSV-obstacle-aware clock routing algorithm consists of the following two steps:

Bottom-up feasible merging segment construction: Our goal is to determine

the feasible merging segments (= FMS) for internal nodes, clock buffers, and clock TSVs.
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Depending on the merging types (e.g., wire merging, TSV merging), the flow is different.

When merging ms(u) and ms(v) to msp(p), we first generate the msp(p) under a zero-skew

constraint and determine its FMS using the Nine-Region-Based Cutting method explained

in Section 4.4.2. Note that clock TSVs and clock buffers may be inserted along Edges (u, p)

or (v, p) together. If a clock TSV is required on (v, p) because u and v are in different dies,

we aim to find the FMS for p and the TSV. When a clock buffer is required to be inserted

along (u, p) or (v, p), our goal is to determine the FMS for p using the Nine-Region-Based

Cutting method and for the buffer and TSV using both the Nine-Region-Based Cutting and

Expanded-Obstacle Cutting method explained in Section 4.4.2 and Section 4.4.1. If no FMS

can be found in the merging area with the shortest distance, we utilize two detour policies

for both placement obstacles and routing obstacles explained in Section 4.5.

Top-down obstacle-aware embedding: Our goal is to decide the exact embedding

point along the FMS and to determine the clock routing topology. The embedding points

for the clock buffers and clock TSVs should avoid overlap between other clock TSVs, P/G

TSVs, signal TSVs, and clock buffers. In addition, we use the Nine-Region-Based method

to determine the final routing-overlap-free topology.

4.4 Feasible Merging Segments

We present two techniques to obtain overlap-free merging segments: Expanded-Obstacle

Cutting to obtain a placement-overlap-free merging segment and Nine-Region-Based Cutting

to determine a routing-overlap-free merging segment. Based on whether a given TSV is a

placement or routing obstacle, we apply different cutting policies. For P/G TSVs, both the

Expanded-Obstacle Cutting and Nine-Region-Based Cutting methods are used; for signal

TSVs, only the Expanded-Obstacle Cutting method is used.

4.4.1 Expanded-Obstacle Cutting

The goal of Expanded-Obstacle Cutting method is to determine the placement-overlap-free

merging segment of clock TSVs and buffers. The outcome is an insertion of a clock TSV or

a clock buffer with the center point located along the merging segment. In this case, this

clock TSV or the clock buffer should have no overlap with other placement obstacles such
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as P/G TSVs, signal TSVs, other clock TSVs, and clock buffers that are already existing

in the layout.

Given an initial merging segment msc(t), the dimension of the clock component, d, to

be added (= either clock TSV or clock buffer), and a placement obstacle obst, the basic

procedure of Expanded-Obstacle Cutting is as follows: We first construct an expanded-

overlap-free boundary (EOFB) by expanding the obst by the distance of d/2 in all four

directions. We then utilize EOFB to determine a feasible merging segment: any merging

point along the msc(t) outside the EOFB is a placement-overlap-free point; in other words,

any point along msc(t) inside the EOFB will have overlap with the placement obstacle.

Figure 30 shows an illustration.

d/2

d/2

n3

n2

n1

n4 msc(t)

d

obstacle

s2

s1

Expanded-obstacle-free boundary

Figure 30: Expanded-Obstacle Cutting on a merging segment msc(t). The expanded-
overlap-free boundary determines that Segments n1-n2 and n3-n4 are the feasible merging
segments. A clock TSV with s1 as the center will cause an overlap with the obstacle,
whereas inserting the TSV with its center on s2 is safe.

4.4.2 Nine-Region-Based Cutting

Given a merging segment of Child u, our goal in Nine-Region-Based Cutting is to find the

routing-overlap-free feasible merging segments of its Parent p (= either an internal clock

tree node, clock TSV, or clock buffer), so that the merging segment of p provides a feasible

routing topology to its child u with the shortest distance.

A routing obstacle (in red) partitions the routing area into nine regions with its four

extended boundary lines as shown in Figure 31.(a). These nine regions are used to determine
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the connectivity between a pair of nodes. For instance, Node p can connect to u in both HV

(horizontal first, then vertical) and VH (vertical first, then horizaontal) topology, whereas

VH routing type from Nodes p′ to u′ is blocked by the obstacle.

1 3

4 5 6

7 8 9

2

p

u

p’

u’

ms(p)

ms(u)

p1

p2
p3

p4

u1

u2

u3

(a) (b)

Figure 31: Nine-Region-Based Cutting method. (a) Nine regions partitioned by a routing
obstacle in red. p to u is HV and VH connectable, and p′ to u′ is HV only. (b) (p1, p2) and
(p2, p3) are the routing-overlap-free merging segment of ms(p) to its child ms(u), (p3, p4)
is not due to the shortest distance constraint.

Note that these nine regions are symmetric; they can be classified into three groups:

Group A: Regions 1, 3, 7, and 9; Group B: Regions 2, 4, 6, and 8; and Group C: Region 5.

The connectivity of merging segments can be easily determined by referring to the region

groups. (1) When p is located in Region 2, it is two-way (both HV and VH) connectable

to Regions 1, 2 and 3; HV connectable to Regions 4, 6, 7 and 9; and is not connectable to

Regions 5 and 8. The same discussion applies to the case when p is located in Regions 4,

6, or 8. (2) When p is located in Region 1, it is two-way (both HV and VH) connectable to

Regions 1, 2, 3, 4, 7 and 9; HV connectable to Region 6; VH connectable to Region 8; and

is not connectable to Region 5. The same discussion applies to the case when p is located

in Regions 3, 7, or 9. (3) When p is located in Region 5, it is not connectable to any region.

Given the merging segments of Parent p and its Child u, the Nine-Region-Based Cut-

ting method consists of two steps. First, it constructs nine regions for a routing obstacle.

Correspondingly, a merging segment is divided into several sub-segments, where each sub-

segment belongs to a unique region. Second, it checks each sub-segment of Parent p to see

if it is connectable to any sub-segment of Child u. In addition, the distance between these

two sub-segments should be equal to the shortest distance between ms(p) and ms(u). If
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these conditions are satisfied, the current sub-segment of the parent is routing-overlap free.

Figure 31.(b) shows a sample, where (p1, p2) and (p2, p3) are the FMS of ms(p). Note that

(p3, p4) is not a FMS since the distance between (p3, p4) and (u2, u3) is longer than the

shortest distance between ms(p) and ms(u). This technique also helps us determine the

actual routing topology during the top-down embedding procedure when a routing obstacle

presents in the merging region.

4.5 TSV-Obstacle-Aware Detouring

In this section, we discuss two major cases when no feasible merging segment exists within

the merging region of the shortest distance: one is for routing obstacles, the other is for

placement obstacles. We develop two detour policies to find the feasible merging segments

outside the merging region.

4.5.1 Routing-Obstacle-Aware Detour

When a routing obstacle blocks the routing region, we use the routing-obstacle-aware detour

technique to find the feasible merging segments outside the merging region. This situation

is usually caused by big P/G TSVs. In this case, the merging segment of the parent is

not connectable to that of its children ms(u) and ms(v). Two detour cases are shown in

Figure 32, when the merging segment is a point (Figure 32.(a)) or an arc (Figure 32.(b)).

pu v

p'

ms(u)

ms(v)
ms(p)

ms(p’)

(a) (b)

Figure 32: Detour policy when a routing-obstacle blocks the routing region. (a) merging
segment for u and v are points, where the top (= red) detour is chosen over the bottom (=
orange), (b) merging segments for u and v are lines, where the bottom (= red) detour is
chosen.

A new merging point location of Parent p′ is chosen along the boundary of the obstacle

that the u-to-p′-to-v wirelength (L′) is minimized. We then calculate the merging distance

between Nodes p′, u and p′, v based on the zero-skew equations. In this case, L′ becomes the
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shortest distance to connect ms(u) and ms(v) while traveling along the obstacle boundary.

And p′ is the zero-skew point in between u and v.

4.5.2 Placement-Obstacle-Aware Detour

We use a TSV merging example to show how our detour policy works in the case that no

feasible merging segment exists when inserting a clock TSV. When merging Node a in the

top die and b in the bottom die at their merging segment located on the top, the expanded-

overlap-free boundary of the signal TSV (= placement obstacle) may cover both Nodes a

and b. As a result, the placement-overlap-free merging segment of the clock TSV to be

added exists in the merging region. The placement-aware detour for TSV merging is shown

in Figure 33.

msc1

b

a

b

a b

p

a

(a) (b)

TSV

msc2

msc3

msc4

Figure 33: Placement-obstacle-aware detour for TSV merging. A signal TSV occupies the
merging area between Nodes a and b where a TSV is needed. A feasible merging segment for
this clock TSV is added on the expanded-overlap-free boundary with the shortest merging
distance. msc1-msc4 show four candidates. We choose msc2 due to its shortest distance to
b.

As shown in Figure 33.(a), b in the bottom die is allowed to have overlap with the signal

TSVs in the top die. Referring to the top-down view in Figure 33.(b), our detour policy is to

extend Node b in four directions, and obtain intersections along the expanded-overlap-free

boundary of the obstacle, i.e., msc1 to msc4, which are the four potential locations of the

merging segments of the clock TSV. We choose msc2, which is the nearest intersection to

b, update the distance between msc2 and b, and the merging distance between a and msc2.
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By solving the zero-skew equations, we can then determine the merging segment of Parent

p.

4.6 Clock TSV Merging

We observe that a longer feasible merging segment helps avoid TSV-induced overlap with

clock buffers and other TSVs. Our policy is to find the longest feasible merging segment by

sweeping the distance between the clock TSV and its child. An illustration on clock TSV

merging is shown in Figure 34.

u v

p
msp(p)

d1

v

u msc(TSV)

d2 d3d1

d2

d3

TSV

Figure 34: Finding the longest feasible merging segment for the clock TSV by sweeping
the distance between clock TSV and ms(v).

We first determine the merging segment for the clock TSV, denoted msc(TSV ), using

d3, which is the distance between msc(TSV ) and ms(v), the merging segment of Child

v. We then apply the Nine-Region-Based Cutting and Expanded-Obstacle Cutting methods

to decide the feasible merging segment for the clock TSV. After that, we determine the

merging segment of Parent p, denoted msp(p), by deriving Distances d1 and d2 based on

the conventional zero-skew constraint and the shortest merging distance requirement. The

feasible merging segment for p is determined using the Nine-Region-Based Cutting method

in this case.

To find the longest msc(TSV ), we sweep Distance d3 with a certain step (such as d/2).

Under a given d3, we obtain a pair of the feasible merging segments for the TSV and p. We

choose the longest length of the feasible merging segment for the TSV as our final merging

solution. This scheme is shown to provide a better chance to avoid overlap between clock
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Table 7: Benchmark information. Footprint area is in µm2.
Ckt Area #Sinks (die-0 + die-1) #Signal TSVs #P/G TSVs

IDCT 4332 117 + 356 342 82
8086 4202 230 + 427 323 82
8051 4002 347 + 1009 306 64
b18 4832 1652 + 1448 440 100
b19 5902 3099 + 3071 462 144

buffers and clock TSVs during the top-down embedding.

4.7 Experimental results

4.7.1 Simulation Setting

We apply our TSV-obstacle-aware clock routing method to the IWLS 2005 benchmarks [88],

as listed in Table 7. We use 45nm technology. The P/G TSV cell is 12.35µm × 12.35µm,

the signal and clock TSV cells are 7.41µm × 7.41µm. And the clock buffer cell occupies

2.09µm× 2.47µm.

For each benchmark, we perform 3D power planning and gate/TSV placement using a

Cadence Encounter-based 3D physical design tool-chain. We obtain a TSV obstacle map

(including P/G and signal TSVs) and clock sinks locations. The benchmark information is

summarized in Table 7. We then apply our TSV-obstacle-aware 3D clock routing algorithm

to achieve an overlap-free 3D clock tree under the given maximum slew rate, TSV count

bound, and zero-skew (under the Elmore delay model) constraints. Then we apply SPICE

simulation on entire 3D clock network to report clock power consumption and timing. The

clock frequency is set to 1GHz, with the supply voltage 1.1V. The maximum clock skew

from the simulation is required to be under 30ps. The maximum loading capacitance for

each clock buffer is 100fF. TSV capacitance is 15fF, and resistance is 35mΩ. The clock

source is located on the topmost die (= die-0).

4.7.2 Sample TSV-Aware Clock Topology

The 3D clock routing result of benchmark b19 is shown in Figures 35 and 36, where the first

ignores TSV obstacles (= Figure 35) and the second avoids TSV obstacles (= Figure 36).

Both results are based on the same set of two-die stack clock sinks, TSV obstacle map,

and clock constraints. We highlight several dense regions in the tree and show the details
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die-0 die-1

4
1

2

3

Zone 1                           Zone 2                           Zone 3        Zone 4

Figure 35: A two-die stack clock routing WITHOUT considering TSV obstacles. We show
P/G TSVs (green), signal TSVs (blue), clock TSVs (red), clock wires, and clock buffers
(red). This tree violates several overlapping constraints, including clock TSVs overlap with
other P/G TSVs, signal TSVs, and buffers, and routing over P/G TSVs.

inside. We observe that many violations (= illegal overlaps) occur, especially in the dense

regions, including clock TSV overlap with other P/G and signal TSVs, routing over P/G

TSVs, buffer and signal TSV overlap. However, by using our TSV-obstacle-aware clock

routing algorithm, we see that no clock net is routed over the P/G TSVs, and no overlap

exists among P/G TSVs, signal TSVs, clock TSVs, and clock buffers.

4.7.3 Impact of TSV-Induced Obstacles

We compare the quality of the clock trees with and without TSV obstacle avoidance to

quantify various kinds of overhead that occur by avoiding TSV obstacles. A comparison

is shown in Table 8, which includes wirelength, clock skew, clock slew and clock power

under the same amount of clock TSVs and the same clock buffer used. We also show the
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4

Figure 36: A two-die stack clock tree WITH TSV obstacle avoidance for the same circuit
as Figure 35. This tree does not contain any illegal overlap.

percentage increase of wirelength and power of the TSV-obstacle-aware clock routing results

over the obstacle-ignoring cases.

First, our TSV obstacle-aware clock routing algorithm is able to achieve a TSV-overlap-

free clock tree. Second, the clock skews are all zero under the Elmore delay model and are

well controlled under 30ps from SPICE simulation. Third, our TSV-obstacle-aware clock

routing results are comparable to the result when TSV obstacles are ignored. We show two

cases of clock TSV usage, one that uses a small number of TSVs, the other one that uses a

larger number of TSVs. In most of the cases, the TSV-obstacle-aware clock tree has slightly

larger wirelength or clock power; in some benchmarks, TSV-obstacle-aware clock routing

obtains slightly better results. This phenomenon demonstrates that our TSV obstacle

avoidance method works well while keeping the overhead almost negligible. Moreover, the

runtime of our TSV-obstacle-aware clock routing is within several seconds.
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Table 8: Comparison of two 3D clock routing results. The first one avoids TSV obstacles
by applying TSV-obstacle-aware routing; and the second one ignores TSV obstacles. We
also show % increase of clock power and wirelength of TSV-obstacle-aware routing.

Avoid TSV obstacles Ignore TSV obstacles Increase (%)
ckt #TSVs WL #Bufs Pwr Skew WL #Bufs Pwr Skew WL Pwr

(µm) (mW) (ps) (µm) (mW) (ps) (µm) (mW)
Using small amount of clock TSVs
IDCT 4 21431 178 16.6 17.7 21810 178 16.7 19.7 -1.7 -0.3
8086 4 25055 131 12.3 19.3 25223 125 12.0 22.4 -0.7 3.1
8051 5 50128 456 41.5 15.0 47616 449 40.8 15.4 5.3 1.6
b18 10 75653 471 42.4 23.9 74964 468 42.1 20.4 0.9 0.9
b19 10 160621 823 81.8 16.4 158082 818 81.0 15.7 1.6 1.0

Using more clock TSVs
IDCT 10 22069 172 16.7 19.7 22146 170 16.5 18.5 -0.3 0.9
8086 14 22475 110 10.7 21.1 22459 110 10.7 21.1 0.1 0.0
8051 35 51627 439 42.2 11.7 52007 438 42.2 11.6 -0.7 -0.1
b18 58 91273 517 50.7 14.2 90811 515 50.5 14.3 0.5 0.4
b19 70 146603 792 78.2 20.9 145798 791 78.0 20.7 0.6 0.2

4.8 Summary

In this chapter, we addressed a practical obstacle issue in TSV-based 3D clock tree synthesis

and studied how to avoid TSV-induced obstacles in 3D clock routing. We first discussed how

power/ground TSVs (P/G TSVs) and signal TSVs become two different types of obstacles

in 3D clock routing. We then developed a TSV-obstacle-aware clock routing algorithm to

construct a TSV-overlap-free buffered clock tree. We proposed a TSV-obstacle-aware DME

technique. We also studied how to apply detour when no feasible merging segment exists.

Experiments show that we can achieve a buffered clock tree that avoids overlapping with

TSV-induced obstacles while keeping the wirelength and power overhead to a minimum.

71



CHAPTER V

TSV ARRAY UTILIZATION IN LOW-POWER 3D CLOCK

NETWORK DESIGN

5.1 Introduction

Three-dimensional ICs (3D ICs) is one of the most promising technologies that enables

higher integration and further miniaturization. However, through-silicon vias (TSVs), may

cause reliability and cost issues that delay mainstream acceptance [4,58]. TSVs can squeeze

or stretch adjacent transistors and interconnects. This material deformation may lead to

mobility change and thus performance variation [4,59]. It also causes mechanical reliability

issues, causing open hole, short, or even crack. TSV-to-TSV and TSV-to-device coupling

affect timing and signal integrity [60–62]. All these TSV-related issues require extra design

efforts.

TSV array, defined as a group of TSVs placed in regular positions either in 1D or 2D

grid fashion, is shown to be more manufacturable and practical to address the TSV-related

reliability issues. As shown in Figure 37, multiple TSV arrays can be found in block-level

design. It is also possible that a single 2D TSV array covers the entire layout area in

gate-level design. Recent studies show that placing TSVs at any desired locations during

placement [63] or routing [64] leads to shorter wirelength and better timing results compared

with regular locations (TSV arrays). However, this irregular placement may result in TSVs

crowded in a certain region and cause problems in coupling [61,65], timing variations [62,66],

and mechanical reliability [59,67].

In previous chapters, we developed 3D clock synthesis methods for clock power mini-

mization in Chapter 2 and for pre-bond testability in Chapter 3. Existing works on 3D

clock synthesis also focus on variability analysis [1] and fault tolerance [89]. However, none

of them consider TSV arrays, but all insert TSVs at any desired positions during routing.
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Simply extending existing work for TSV array design style cannot guarantee power effi-

ciency. In the TSV array 3D design, the TSV count and locations have been determined

BEFORE clock routing, where any TSV movement or additional TSV insertion is not al-

lowed. Consequently, the clock network is limited to utilize these given TSVs. The final

clock power is significantly affected by the TSV array utilization (how many and where).

Thus, a practical question is what is the optimal TSV array utilization for power efficient

3D clock network design with skew minimization and slew constrained?

(a) 3 TSV arrays

(c) full-die TSV array

signal TSVs clock TSV

(b) irregular TSV placement

block-level 3D design

gate-level 3D design

b1

b2

b3

b4

b1

b2

b3

b4

standard cell

(d) irregular TSV placement

Figure 37: TSVs at regular locations (TSV arrays) vs. irregular locations in block-level
and gate-level 3D designs.

This chapter addresses the 3D clock routing problem for TSV array utilization to con-

struct low-power and reliable 3D clock networks. A novel method named decision-tree-based

clock synthesis (DTCS) is presented to generate small-skew and low-power clock trees by

efficiently exploring the entire solution space for the best TSV array utilization. The ex-

isting 3D clock synthesis method is also extended for TSV array utilization. At last, The

efficiency of the proposed DTCS method is verified for both gate-level chip-scale 3D clock
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designs and block-level global clock designs. Close-to-optimal solutions of power efficiency

can be figured out in short runtime.

5.2 Clock Design Methodology for TSV Arrays

5.2.1 Problem Formulation

Given a set of clock sinks and an M × N(= K) TSV array for each die in a 3D stack,

the goal of 3D Clock Routing with TSV Arrays (3D-CRTA) problem is to build a buffered

3D clock tree while using up to K TSVs for each die so that clock skew and power are

minimized under clock slew constraint. If an additional constraint that the TSV bound

B < K is given on the total TSV count, the clock tree should not use more than B TSVs

in each die.1 In both cases, we do not add additional TSVs into the arrays.

5.2.2 Overview

We develop a Decision-Tree-based Clock Synthesis (DTCS) method to construct a low-

power 3D clock tree with minimum skew while satisfying the slew and TSV count con-

straints. This method explores the entire solution space of TSV array utilization to find

out a power-optimal design based on a decision tree. Meanwhile, the clock routing and

buffering method [1] is integrated into DTCS method so that the clock topology is balanced

and buffer insertion is performed to satisfy skew and slew constraints.

Our DTCS method consists of three steps. (1) Decision Tree Construction: We generate

a decision tree that contains all the feasible solutions of TSV array utilization. The decision

tree evaluates clock power overhead in various 3D clock trees under consideration. (2) Clock

Tree Construction: We construct an initial 3D clock tree with lowest power under no TSV

bound constraint. If no TSV count constraint is given, this initial tree becomes the final

tree, and our algorithm terminates at this point. (3) Clock Tree Refinement : If the initial

clock tree exceeds a TSV bound, we remove some TSVs by modifying the cut orientation

of some decision nodes. Meanwhile, the resulting power and skew are kept minimal.

To verify the efficiency, our DTCS method focuses on finding out the optimal TSV

1A practical purpose of this TSV count constraint B is to reserve K − B TSVs in each array for signal
and/or P/G routing later.
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utilization, but tries to keep using existing routing and buffer insertion techniques [1]. We

use two-die stack to describe the proposed method and algorithms, which is then extended

to handle more-than-two dies in Section 5.3.4.

5.2.3 Our Decision Tree

Our decision tree, as shown in Figure 38, is represented as a binary tree which visualizes

the entire solution space for TSV array utilization in low-power 3D clock design. A decision

node di (shown in a gray box) for a sink set Si contains the following information: (1) cut

orientation of Si (zi is 0 for XY-cut, 1 for Z-cut); (2) a sink set SXY
i after an XY-cut is

applied onto Si, where SXY
i = {S2i, S2i+1} that contains two children nodes; (3) a sink set

SZ
i after a Z-cut is applied onto Si; (4) power and TSV utilization for Si. The root node

d1 contains the original 3D sink set, and the leaf nodes represent the subsets that have a

unique solution.
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Figure 38: Illustration of our decision tree that shows the entire solution space of TSV
array usage for low power. Each node (except leaf nodes) can choose between using one
TSV (= Z-cut) or multiple TSVs (= XY-cut) in the array. Once the entire decision tree
is built, we obtain different 3D clock trees by visiting all possible sink-to-root paths during
our clock tree construction step.

A decision tree is built in a top-down recursive fashion, where we explore all feasible

partitioning options, both Z-cut and XY-cut, for a given subset of clock sinks. XY-cut
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and Z-cut are two partitioning steps to define the clock abstract topology. An XY-cut

partitions the sinks based on their X or Y coordinates, where the 3D sinks are flattened

into 2D. The median value of the given sink set is the cutline for the XY-cut. An XY-cut

results in multiple TSVs to connect descendant sink sets. A Z-cut separates the sinks die-

wise so that the sinks in the same die are assigned to the same subset. A Z-cut immediately

requires one TSV for connecting two subsets. This top-down partitioning and decision tree

construction continue until the current sink set has a unique TSV utilization.

In our decision analysis, we call a sink set unique if it does not require any further

partitioning and exploration of TSV utilization. We define a unique set based on the

following conditions (shown in red rectangles in Figure 38). Condition 1 : Si is a 2D sink

set (e.g., S9 in Figure 38); Condition 2 : Si is a 3D sink set, but it requires a Z-cut due to

the limited availability of TSVs in the TSV array; Condition 3 : SZ
i is obtained by applying

a Z-cut on the 3D sink set Si that does not satisfy Condition 2 (e.g., SZ
1 -SZ

7 in Figure 38).

The second condition requires us to look ahead one more partitioning level down: when the

bounding box of Si contains only one TSV in the array or at least one of the two subsets

(S2i or S2i+1) is a 3D set, but does not contain any TSV in the bounding box (e.g., S8 in

Figure 38), Si must select SZ
i (= Z-cut). Our decision tree exploration is terminated at a

unique solution satisfying one of above three conditions. The leaf nodes satisfy Conditions

1 or 2. A 3D clock tree can be obtained by traveling from the root node to the unique

decision nodes.

The clock trees for all the unique sink sets are generated as follows. First, in abstract tree

generation, we apply 2D-MMM algorithm [18] for a 2D sink set, or 3D-MMM algorithm [1]

with TSV bound of 1 for a 3D sink set. We then perform clock tree embedding and buffering

using classical DME method [90] or 3D slew-aware deferred-merge buffering and embedding

(sDMBE) method [1] for zero skew under the Elmore delay model and satisfying the slew

constraint.
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5.2.4 Power Minimization with Decision Tree

Given a 3D sink set S1 for the entire 3D design, our primary goal is to find the lowest power

clock tree that connects all the sink nodes in S1. Since either XY-cut or Z-cut is applied to

S1 (with the corresponding clock trees for sink subsets TXY
1 or TZ

1 ), the minimum power

value P (S1) is expressed as

P (S1) = min{P (SZ
1 ), P (SXY

1 )} (16)

where P (SZ
1 ) and P (SXY

1 ) are the minimum power values achieved with clock tress on

subsets SZ
1 and SXY

1 .

It is possible that the clock design SZ
1 can be obtained directly by performing 3D-MMM

algorithm [1] on S1 with TSV bound of 1, selecting one TSV in the TSV array with lowest

wiring cost, and then applying 3D clock tree embedding and buffering. The resulting clock

tree SZ
1 uses one TSV, and P (SZ

1 ) can be calculated. However, low-power clock tree design

for SXY
i depends on the partitioning styles of its descendants.

Our DTCS methodology determines the power-optimal TSV array utilization based on a

decision tree, where applying Z-cut vs. XY-cut at different partition levels leads to different

power consumption and TSV array usage. Especially, applying an XY-cut on subset Si

(i = 1, 2, · · · , n) results in two subsets S2i and S2i+1. The corresponding power estimation

P (SXY
i ) is represented as follows:

P (SXY
i ) = P (S2i) + P (S2i+1) + P (S2i, S2i+1) (17)

where P (S2i) and P (S2i+1) are clock power of subsets S2i and S2i+1, respectively. P (S2i, S2i+1)

is the power of merging S2i and S2i+1 that includes clock wires, buffers, and TSVs. Since the

partitioning options for S2i and S2i+1 are not determined yet, P (SXY
i ) can not be accurately

determined at this point. Therefore, we need to first explore all possible cut orientations

(XY-cut or Z-cut) for all descendant 3D subsets, which is done with our decision tree in-

troduced in the previous Section 5.2.3. In addition, our clock tree construction algorithm

to be discussed in Section 5.3.2 performs bottom-up traversal and accurately computes the

power value for all nodes in the decision tree.

77



5.3 Decision-Tree-based Clock Synthesis Algorithms

5.3.1 Decision Tree Construction Algorithm

Our decision tree construction algorithm explores all the feasible solutions of TSV array

utilization by recursively dividing a given sink set into two subsets in a top-down fashion.

Given a sink set Si, we first add a decision tree node di. For a node with Index i, the left

and right child node indices are 2i and 2i + 1, respectively. The root node has index 1.

Second, we explore two candidate partitioning styles: Z-cut or XY-cut. We apply a Z-cut

on Si, obtain SZ
i , and estimate the power consumption (P (SZ

i )). Specifically, this is done

by performing 3D-MMM algorithm [1] on Si with the TSV bound of 1, where we select a

TSV in the array with the lowest wiring cost in the bounding box of SZ
i . Then, we embed

the tree and insert buffers using sDMBE algorithm [1]. Next, we apply an XY-cut on Si

and obtain two subsets S2i and S2i+1. The P (SXY
i ) for 3D sink set can not be estimated

at this point because the cut orientations for all descendants are not determined yet. If Si

is unique satisfying Conditions 1 or 2, the exploration is terminated, and node di obtains

one solution only (i.e., SZ
i or SXY

i with estimated P (SZ
i ) or P (SXY

i ) for 3D or 2D set,

respectively); otherwise, we continue our top-down recursion on S2i and S2i+1.

5.3.2 Clock Tree Construction Algorithm

Our clock tree construction is to build an initial clock tree for power minimization using

TSV arrays. If no TSV count constraint is specified, this initial tree becomes our final

result. Otherwise, we perform clock tree refinement discussed in Section 5.3.3 to reduce the

TSV count further down to satisfy the given TSV count constraint.

The input to our clock tree construction is a decision tree, where the cut orientations,

clock trees, and their power values are determined for all leaf nodes. For internal nodes,

only the clock trees and their power values are determined for Z-cuts. Thus, the goal is to

determine the missing information: the clock tree and power value for XY-cut and the cut

orientation for all internal nodes. We accomplish this goal by visiting each internal decision

node di in a bottom-up fashion and determining the follows: (1) A clock tree and its power

value for di for XY-cut (note that the clock tree and power are already available for the
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Z-cut for di); (2) cut orientation for its children (not for di yet).

To compute the clock power for XY-cut (P (SXY
i )), we compare following 4 possible

trees for di and choose the one with the lowest power (see Figure 39): (1) merge SZ
2i and

SZ
2i+1; (2) merge SZ

2i and SXY
2i+1; (3) merge SXY

2i and SZ
2i+1; (4) merge SXY

2i and SXY
2i+1.

S2i
xy

S2i
z

Choose one 

S2i+1
xy

S2i+1
z

Si
xy

Si
z

Choose one 

Merge

di

d2i d2i+1S2i S2i+1

Si

Figure 39: Bottom-up merging for node di, where we decide (1) clock tree and its power
value for di for XY-cut (= SXY

i ), and (2) cut orientations for its children d2i and d2i+1.

P (SXY
i ) = min





P (SZ
2i) + P (SZ

2i+1) + P (SZ
2i, S

Z
2i+1)

P (SZ
2i) + P (SXY

2i+1) + P (SZ
2i, S

XY
2i+1)

P (SXY
2i ) + P (SZ

2i+1) + P (SXY
2i , SZ

2i+1)

P (SXY
2i ) + P (SXY

2i+1) + P (SXY
2i , SXY

2i+1)





(18)

We select the merging combination that results in the lowest power for SXY
i and as-

sign the corresponding cut orientation decisions (Z+Z, Z+XY, XY+Z, or XY+XY) to the

children d2i and d2i+1. The reason we consider these 4 merging options instead of simply

propagating the minimum power bottom-up from the leaf nodes is due to the third term:

P (S2i, S2i+1). This power overhead is caused by the wires, buffers, and TSVs used to merge

the two children, and depends on the first two power terms P (S2i) and P (S2i+1). Thus, we

build all possible merging and then pick the one with minimum power for accurate power

evaluation.

Note that if we visit an internal node di whose children are leaf nodes, the cut orientation
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for the leaf nodes has been fixed already. In this case, the clock tree and XY-cut power of

di are only based on a single combination. For all other internal nodes that do not have

leaf nodes as children, the XY-cut power values are determined based on the 4 merging

combinations shown in Equation (18). Especially, the root node d1 selects the cut orientation

(z1) that results in the minimum power from P (SZ
1 ) and P (SXY

1 ).

5.3.3 Clock Tree Refinement Algorithm

Note that our clock tree construction algorithm builds a 3D clock tree that uses no more

TSVs than what is available in the TSV arrays in each die. However, if the TSV count is

further bounded by a constant B, this constraint may not be satisfied. Therefore, we develop

Clock Tree Refinement algorithm to reduce the TSV count below B while maintaining low

power. The basic idea is to choose a subset of nodes in the decision tree and convert their

cut orientation from XY to Z. Note that this conversion may lead to a TSV count reduction

because an XY-cut node uses more-than-1 TSVs while a Z-cut node uses a single TSV. We

develop a binary-integer-linear-programming (BILP)-based algorithm for this purpose to

choose an optimal set of decision nodes.

The input to our BILP method is a decision tree with the cut orientation for all the

nodes fixed and uses more TSVs than allowed. Each decision node di contains a sink set

Si, a total number of TSVs (= ti) used in di for either SXY
i or SZ

i (which is 1 in this case),

and the cost (ci) if we convert the cut orientation from XY-cut to Z-cut. We first present

our binary non-linear integer programming (BNLIP) as follows:

Minimize

∑

i∈D

ci × zi (19)

Subject to
∑

i∈D

(ti − 1)× zi ≥ T −B (20)

zi ×
∑

j∈child(i)

zj = 0, for i, j ∈ D (21)

zi = {0, 1}, for i ∈ D (22)

The binary variable zi represents the cut orientation for di with 0 for XY-cut and 1 for Z-cut.
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We define D as the set of decision nodes that its XY-to-Z cut orientation conversion leads

to a TSV count reduction. Note that for each di ∈ D, the zi = 0 initially. The objective

function Equation (19) is to minimize the total cost from cut orientation conversion. The

cost ci is the power overhead from the conversion and is expressed as:

ci = P (SZ
i )− P (SXY

i ) (23)

where P (SZ
i ) and P (SXY

i ) are the power of a Z-cut (i.e., using one TSV) or an XY-cut

(i.e., using multiple TSVs) for Si. Thus, our goal is to choose low-cost nodes for TSV count

reduction.

Equation (20) ensures that the total TSV count should be no more than the given upper

bound B, where T is the initial TSV count that exceeds the bound B. Once di is converted

from XY-cut to Z-cut, SZ
i is selected and one TSV is used instead. As a result, the total

number of TSVs reduces by ti − 1. Equation (21) shows that if node di is converted to

Z-cut, the cut orientation of its children nodes zj will not affect the overall power. This is

because SZ
i is a unique solution, and the decision tree is pruned at this node. Consequently,

Equation (21) ensures that if zi = 1, zj for all descendant nodes are changed to 0.

Note that Equation (21) is not linear. For binary integer variables a and bi, where

i = {1, 2, .., n}, the quadratic constraint a× (b1 + b2 + ...bn) = 0 can be expressed as n linear

constraints as a + bi ≤ 1 for i = {1, 2, .., n}. Thus, our binary integer linear programming

(BILP) is formulated as Equations (19), (20), (24), and (22).

zi + zj ≤ 1, for i, j ∈ D, j ∈ child(i) (24)

5.3.4 Extensions

Our methodology can be easily extended to handle more-than-two dies. A more-than-two-

die 3D design can be decomposed into several pairs of two adjacent dies. Then, each two-die

pair obtains a low-power 3D clock tree using our DTCS method. Finally, the 3D clock trees

in those two-die pairs are connected through a single stacked TSV at the roots. Take a four-

die stack (die-1 to die-4) as an example, we apply DTCS on die-1+die-2 and die-3+die-4,

separately, and then connect the sources in the two 3D clock trees using a stacked TSV. As
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a result, the clock tree will use multiple TSVs mostly from two dies. We show 4-die stack

clock tree designs in Section 5.4.3.

We extend the existing method 3D-MMM [1] to utilize TSV arrays. 3D-MMM is a

top-down partition procedure, which assigns TSV bound for each subset based on the size

and determines Z-cut primarily based on the given TSV bound in current partitioning. It

chooses Z-cut if the current TSV bound is 1. This method inserts TSVs at any desired

location. Thus, we modify it to handle TSV arrays in the following way. We first introduce

additional constraints for Z-cut decision. Our major goal is to ensure that each 3D sink

set will be assigned at least one TSV in the array within its bounding box under small

routing overhead. A Z-cut will be applied to the current 3D sink set if any of the following

conditions is satisfied: 1) if the bounding box of the 3D sink set contains only one TSV in

the array; or 2) look ahead one more partitioning level down and check the availability of

TSVs in the array. We apply an XY-cut at current partitioning and check for the bounding

box of each subset. If a subset contains 3D sinks but has no TSV in the bounding box, we

apply a Z-cut at current iteration. Note that if the available TSV is outside the bounding

box of a 3D sink set, a routing detour will be added. Thus, we use bounding box of a 3D

sink set to determine the availability of the TSVs in the array.

5.4 Experimental Results

5.4.1 Simulation Setting

In our experiments, we compare the following four algorithms to demonstrate the effective-

ness of our DTCS method:

• ALG-D: our decision-tree-based clock synthesis (DTCS) algorithm that is specific for

3D clock routing with TSV arrays.

• ALG-M: extension on the existing method 3D-MMM [1] to utilize TSV arrays, which

is described in Section 5.3.4.

• ALG-F: existing method 3D-MMM [1] that freely inserts TSVs at desired positions

without the TSV array constraint.

• ALG-X: results in the optimal design. It exhaustively enumerates all feasible solu-

tions of TSV array utilization and selects the tree with minimum power satisfying the
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TSV bound.

We implemented the above four algorithms in C++/STL and performed experiments on a

64-bit Linux server with Intel 2.5GHz CPU. 3D clock trees operate at 1GHz frequency and

1.1V supply voltage. We report clock power, slew, and skew from SPICE simulation, where

skew and slew are constrained below 30ps and 100ps, respectively. Our DTCS (=ALG-D)

solves the BILP problem using MOSEK. We use 45nm PTM model. The TSV parasitic

resistance and capacitance are 35mΩ and 15fF2, respectively.

We performed verifications on various types of benchmark circuits (see Table 9): 12

gate-level circuits with 1K to 17.6K clock sinks, where each of the ckts contains both 2-die

and 4-die designs; and 4 block-level 2-die circuits (ckts 7-10).

Table 9: Benchmark designs. Footprint area is in mm×mm.

gate-level
2-Die 4-Die

footp TSV TSV TSV TSV
ckt #sinks area array bnd area array bnd
ckt1 1089 3.7 × 3.7 32 × 32 120 2.6 × 2.6 20 × 20 130
ckt2 3204 5.3 × 5.4 36 × 36 250 3.8 × 3.7 28 × 28 180
ckt3 12404 12.3× 12.1 52 × 52 271 8.7 × 8.6 46 × 46 544
ckt4 1090 4.0 × 3.7 32 × 32 70 2.7 × 2.6 24 × 24 80
ckt5 12340 6.1 × 6.1 48 × 48 331 4.3 × 4.3 32 × 32 180
ckt6 17616 7.0 × 7.0 52 × 52 320 4.9 × 4.9 42 × 42 400

block-level, 2-Die only
#2D footp #TSV TSV

ckt blocks area blocks bnd
ckt7 33 7.9×8.7 16 5 - - -
ckt8 49 3.9×4.8 39 5 - - -
ckt9 300 3.9×5.0 161 35 - - -
ckt10 51 5.7×6.6 30 7 - - -

These benchmark circuits come from IWLS05, MCNC, GSRC, and ISPD09. For ckts

4-10, we perform 3D placement [63] for gate-level designs and 3D floorplanning for block-

level designs. Both are Cadence Encounter-based 3D physical design tool chains. For ckt 1

(from ISPD09) and ckts 2-3 (from GSRC), since they only include the information of clock

sinks for 2D ICs, we duplicate the circuits, scale the footprint area by 1/
√

2 and 1/
√

4 for

2-die and 4-die, respectively, then randomly assign sinks on different dies and insert TSV

2Our DTCS takes into account the TSV parasitics in power evaluation and is efficient for any given TSV
parasitics.
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arrays accordingly. The TSV bound constraint for each die is set as 5% to 20% of total

TSV count in the arrays per die for gate-level and 10% of 2D block count for block-level

design.

Two 3D clock trees generated by our ALG-D for the TSV arrays are shown in Figure 40,

where Figures 40(a) and 40(b) are for block-level ckt8 using 8 TSVs, and Figures 40(c)

and 40(d) are for gate-level circuit with 121 sinks in two-die stack with 11 TSVs. The top

die contains a complete 2D tree and the bottom die contains many subtrees. The utilized

clock TSVs are highlighted by red circles.

(a) Block-level, top-die (b) Block-level, bottom-die

(c) Gate-level, top-die (d) Gate-level, bottom-die

Figure 40: Clock trees generated by our ALG-D using TSV arrays. We show 3D clock trees
for block-level ckt8 ((a) and (b)) and a gate-level ckt ((c) and (d)) in top- and bottom-die,
respectively. TSV arrays are denoted as squares. Clock TSVs are shown in red circles.

84



5.4.2 Comparison with ALG-X

Comparisons between ALG-X and our ALG-D are shown in Table 10, which includes power

(mW) and runtime (s) for a 2-die circuit with 121 sinks under TSV bound of 7. The TSV

array size increase from 4x4 to 7x7. Our ALG-D efficiently finds close-to-optimal solutions

in short runtime for both designs with and without TSV bound.

Table 10: Comparison between ALG-X and our ALG-D in power (mW) and runtime (s).
No TSV Bound With TSV Bound

TSV Power Runtime Power Runtime
array ALG ALG ALG ALG ALG ALG ALG ALG

X D X D X D X D
4x4 64.28 64.34 20 0.12 67.03 67.27 20 0.16
5x5 64.88 64.93 130 0.11 65.54 65.54 130 0.17
6x6 63.82 63.85 2357 0.14 64.53 64.53 2357 0.18
7x7 62.31 62.31 79813 0.15 63.48 63.57 79813 0.21
Inc. 0.05% 0.13%

First, our ALG-D results in no more than 0.4% power increase compared with the

optimal design obtained in ALG-X. This demonstrates the effectiveness of our clock tree

construction and refinement in DTCS. Second, our ALG-D finishes routing within 0.3 sec-

onds. But, ALG-X may cost more than tens of hours depending on the TSV array size.

The runtime of ALG-X is unaffordable for two reasons. The solution space tremendously

expands in larger TSV array: ALG-X synthesizes 677 clock trees in 20 seconds for 4×4 TSV

array, but 2648145 trees in 79813 seconds (>22 hours) for the 7×7 TSV array. Next, a larger

circuit with more than 10k sinks requires longer runtime for each run of 3D clock routing.

Lastly, as expected, we observe that our clock tree with a TSV bound utilizes fewer TSVs in

the TSV array and consumes more power and longer runtime than the design with no TSV

bound constraint. This extra runtime comes from our BILP-based clock tree refinement.

5.4.3 Comparison with Related Work

The comparisons of our ALG-D with ALG-F and ALG-M for gate-level and block-level

circuits are shown in Table 11. Results are obtained under three TSV bound constraints,

i.e., single, no TSV bound, and with a bound. Detailed clock routing results are also

presented for the designs with no TSV bound.
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Limitations in ALG-M: As discussed early, TSV array utilization significantly affects

the clock power consumption. The straightforward extension for TSV arrays (ALG-M)

cannot efficiently reduce clock power when using many TSVs. When TSVs are irregularly

inserted at any desired location (with no TSV array limitation), ALG-F [1] achieves 12%

average power reduction compared with using single TSV in a 3D clock network. However,

to support the TSV array design style, the ALG-M, a straightforward extension on existing

method [1], did not efficiently reduce the power by using multiple TSVs. Instead, it may

waste tens to hundreds of TSVs. The major reason is that the existing algorithm does not

take into account the TSV array limitations, where using many TSVs may result in detour

and extra TSV parasitic capacitance.

Our ALG-D versus ALG-M: Detailed results are presented in Table 11, which in-

cludes wirelength, TSV count, buffer count, and power consumption for the comparisons

between ALG-M and our ALG-D. Our observations are as follows. First, in the design with

no TSV bound, our ALG-D efficiently minimizes clock power by utilizing TSV arrays. Com-

pared with ALG-M, our ALG-D achieves 13.5%, 11.3%, 15.7% reduction in clock power,

wirelength, and buffer count, respectively. In addition, our ALG-D uses 55.1% fewer TSVs

than ALG-M. Second, in the design with bounded TSVs, our ALG-D achieves 9.1% power

reduction on average. Third, clock skew is well controlled below 30 ps. The ALG-D runtime

of the designs is in the range of 5 to 40 seconds based on the circuit size.

Our ALG-D versus ALG-F: Note that ALG-F [1] freely inserts TSVs at any desired

position. Our ALG-D results in comparable or even lower power than ALG-F. In the

design with no TSV bound, ALG-F and our ALG-D can achieve 12% and 11% average

power reduction compared with the single-TSV solution, respectively. With a TSV bound,

our ALG-D generates clock designs with 0.90 average power ratio, whereas, ALG-F obtains

0.94 average power ratio.

5.5 Summary

In this chapter, for the first time, we studied low-power 3D clock design with TSV ar-

rays. The TSV array design style is essential for reliable 3D ICs, but it significantly affects
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the power efficiency due to the constrained TSV locations. We presented a novel method-

ology, so called decision-tree-based clock synthesis (DTCS), to generate high-quality and

low-power 3D clock trees by efficiently exploring the entire solution space for the best TSV

array utilization. Our DTCS algorithm consists of decision tree construction, clock tree

construction, and clock tree refinement. We demonstrated the effectiveness of our DTCS

method for both chip-scale gate-level and block-level 3D IC designs. The following conclu-

sions have been drawn. First, our DTCS algorithm obtains close-to-optimal solutions in

short runtime, compared with the method of exhaustive searching TSV utilizations. Sec-

ond, a straightforward extension on the existing algorithm for TSV arrays can not generate

low-power 3D clock network, but waste many TSVs. Third, compared with the extension

of existing algorithm, our DTCS algorithm achieves 13.5% and 9.1% power reduction in

various given TSV bounds, uses 55.1% fewer TSVs, and obtains 11.3% shorter wirelength

and 15.7% fewer buffers on average.
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CHAPTER VI

THREE-DIMENSIONAL POWER NETWORK ANALYSIS FOR

ELECTRO-MIGRATION RELIABILITY

Power-delivery network (PDN) design has become a challenging task in integrated circuit

(IC) design. Since the supply voltage scales slower than transistors and interconnects do,

the current density has been rapidly increasing. This increased current density along with

the high temperature accelerates the degradation of transistors and wires and shortens the

lifetime of both devices and wires.

Power-delivery networks provide supply voltage to all devices in the entire three-

dimensional (3D) stack. The inter-die power-delivery interconnects, formed by power/groun-

d (P/G) through-silicon vias (TSVs) or micro-bumps, are unique components in 3D power

grids. Because these vertical connections carry large amounts of current, the 3D power

networks may suffer from electro-migration (EM) degradation. Therefore, the detailed and

accurate analysis on the 3D PDN is important to predict the performance and to improve

the power integrity.

This chapter focuses on studying the current-density distribution inside TSVs and the

impact of current crowding on power integrity. A small cross section of the global 3D PDN

is illustrated in Figure 41. Two dies are bonded face-to-back and are connected using via-

last TSVs. The voltage is supplied from the package through the controlled-collapse chip

connection (C4). In the bottom die, the current is delivered directly to Metal 10 and Metal

9. However, in the top die, the current is delivered to Metal 10 and Metal 9 through TSVs.

Both the intermediate and local sections of the PDN are connected using local vias to the

global PDN. This generic structure is used for both isolated TSV modeling and large-scale

3D PDN modeling.
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M10 (top) landing pad
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back-side
metal of bottom die

through-silicon via
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M9 (top)
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  bottom
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(thin)

package

Figure 41: 3D connection in a global power-delivery network.

6.1 Current Crowding in 3D ICs

6.1.1 Current-Density Distribution inside a TSV

The test case used to investigate the current-density distribution inside a TSV is shown

in Figure 42. This corner case is chosen specifically to study a highly asymmetric current

distribution, which consists of the following components: (1) One TSV with a 5µm diameter

and a 30µm height; (2) two 6µm×6µm landing pads; (3) two 2µm-wide power wires on the

top; and (4) one 6µm-wide power wire on the bottom.

(a)

x

y

z
50mA

50mA

100mA
Z=0

Z=1

Z=2

Z=4

Z=30

4

30

5

(b)

Z=0.0 um Z=1.0 um

Z=30.0 um Z=29.0 um

Z=29

(c)
Unit: um

JDC [ mA/um2 ]

>10.0

9.57

9.14

8.71

8.29

7.86

7.43

7.00

6.57

6.14

5.71

5.29

4.86

4.43

<4.00

Figure 42: Current crowding in the test case of a TSV and power wires (a). The current-
density distribution is shown in a ZY plane (b) and in top-down XY planes (c).

In Figure 42 (a), the thickness of the power wire is 2µm. The copper resistivity is

18Ω·nm. Two current sources are inserted at the top-left corner, each sourcing a 50mA
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current. A current sink is defined at the bottom-right corner. This test case constrains

the direction of current flow and is used to investigate the current-density distribution in

the TSV. ANSYS Q3D [91], a finite element tool, is used to simulate the current-density

distribution and the voltage drop.

The magnitude of current density is plotted for several cross sections in Figures 42(b)

and 42(c). In Figure 42(b), a large portion of current from the power wires dives into the

top-left TSV edge and flows out at the bottom-right edge. Compared with the average

current density inside the TSV, which is 5.1mA/µm2, the edge current density is approx-

imately 10mA/µm2. For the current-density distribution on the ZY plane, a significant

current crowding is observed. This crowding occurs at 4µm into the TSV from both the

top and the bottom interfaces along the Z-axis. In the center region of the TSV, where Z

is between 4µm and 26µm, the current is uniformly distributed inside the TSV. Current-

density distributions on the XY planes are depicted in Figure 42(c), where Z is 30.0µm,

29.0µm, 1.0µm, and 0.0µm. Most of the current is concentrated at the connection between

the power wires and the TSV.

6.1.2 TSV-Diameter-to-Wire-Thickness Ratio

The magnitude of current crowding depends on the ratio of the TSV diameter to the wire

thickness. Current-density distributions under different wire thickness are illustrated in

Figure 43, where the TSV diameter is fixed at 5µm, and the wire thickness is changed from

1.0µm to 3.0µm.

In the case of the 3um-thick wires, a significant amount of current is shunted over the

power wire instead of concentrating at the edge. This phenomenon is due to the low-resistive

path in the thick wire. If two designs have the same TSV-diameter-to-wire-thickness ratio,

the current-density distributions will be the same. For example, the current density of a

design using 5.0µm-wide TSVs and 1.0µm-thick wires will be similar to the current density

of a design using 10.0µm-wide TSVs and 2.0µm-thick wires.
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5um
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(a) (b) (c)

1um

5um 5um
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6um

Side view at center

top-down view at Z=0

Figure 43: The ratio of the TSV diameter to the wire thickness affects the current crowding
at the connection corner. The TSV diameter is set to 5.0µm, and the power thickness is
1.0µm (a), 2.0µm (b), and 3.0µm (c).

The maximum current density (Jmax) inside the TSV due to current crowding is shown in

Table 12, where the TSV diameter changes from 16.0µm to 2.0µm, and the wire thickness is

held constant at 2.0µm. When the TSV diameter is 16.0µm, the maximum current density

is more than 10 times larger than the average value (Javg). When the TSV diameter is

2.0µm, however, the maximum current density is twice of the average value. Therefore, a

high maximum current density can occur at the edge of the TSV that has a large diameter.

Table 12: Impact of the TSV diameter on the current crowding. The TSV delivers 100mA
current, and the wire thickness is 2.0µm.

Case 1 Case 2 Case 3 Case 4 Case 5
TSV diameter (µm) 16 8 5 4 2
TSV height (µm) 48 48 30 24 12
Power wire length (µm) 18 10 6 5 3
Javg (mA/µm2) 0.5 2.0 5.1 8.0 31.8
Jmax (mA/µm2) 5.5 10.4 19.2 25.8 62.0
Jmax/Javg 11.1 5.2 3.8 3.2 2.0
TSV diameter: wire thickness 8:1 4:1 2.5:1 2:1 1:1

6.1.3 Impact of Current Crowding on IR Drop

The current crowding inside the TSV changes the effective resistance of the TSV as well

as the voltage drop across the TSV. Because the spreading resistance [92] is caused by the

nonparallel current between two spatially separated contacts, the effective resistance of the

TSV due to current crowding is larger than the value obtained using R0=ρ×l/A, where ρ

is the resistivity, l is the length, and A is the cross-sectional area of the TSV.
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ANSYS Q3D extractor is used to simulate the voltage drop across the TSV. In these

simulations, the TSV dimensions are held constant, and the wire thickness increases from

1.0µm to 3.0µm. The resulting voltage drop through the TSV is shown in Table 13.

Table 13: Impact of current crowding on voltage drop through a TSV. The thickness of
power wire varies from 1.0µm to 3.0µm.

Wire thickness (µm) 1.0 2.0 3.0
Voltage drop w/ current crowding (mV) 3.33 3.11 3.02
Voltage drop w/o current crowding (mV) 2.75 2.75 2.75
Increase by current crowding (%) 21.1 13.1 9.8

For a 100mA current, the voltage drop through R0 is IR0=2.75mV, which is not affected

by the wire thickness. However, since current crowding is sensitive to the wire thickness, as

the wire thickness increases from 1.0µm to 3.0µm, the voltage drop decreases from 3.33mV

to 3.02mV, which corresponds to 21.1% to 9.8% greater voltage drop than the calculated

value.

6.1.4 Interface of Power Wires and TSVs

The current-density gradient occurs not only at the edge of the TSV but also at the con-

nections between the power wires and the TSV landing pad as shown in Figure 44. Before

connecting to the landing pad, the current density inside power wires is relatively uniform.

In the transition region, the current concentrates toward the nearest interface between the

TSV and the landing pad.

JDC [ mA/um2 ]

>14.00

13.07

12.14

11.21

10.29

9.36

8.43

7.50

6.57

5.64

4.71

3.79

2.86

1.93

<1.00

r

r

Figure 44: Current crowding in the transition region between power wires and TSVs.
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6.2 TSV Current Crowding Model

In traditional PDN modeling, power wire segments and TSVs are modeled as lumped resis-

tors. This traditional model can only represent uniform current densities, which is insuffi-

cient to accurately capture non-uniform current distributions caused by current crowding.

Likewise, modeling the TSV as a single resistor is also insufficient to accurately calculate the

voltage drop that is related to the spreading resistance and depends on current distributions.

This section describes a TSV model that allows non-uniform current densities within a

TSV and its transition regions. The proposed model can be easily integrated into netlists

for chip-scale PDN analysis and is simple enough that runtime remains reasonable. An

illustration of the TSV model is shown in Figure 45.

Landing pad

TSV

Landing pad

Mesh line

Rx/y1
Rz1

Rz3

Rz2

Rz1

Rx/y1

Rz2

Rz3

Rx/y2

Mesh lines

Virtual 

XY plane

(a) (b)

R1

R2

Mesh lines Mesh !le

(c) (d)

Rx/y2

Figure 45: The proposed TSV modeling approach. Basic rectangular box after 3D meshing
(a); XY-mesh and partially overlapped mesh tiles (b); side view (c); 3D view of the network
(d).
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6.2.1 3D Resistance Network for TSV Modeling

A TSV is modeled as rectangular mesh boxes as depicted in Figure 45(a), where each mesh

box consists of six resistors: east, south, west, north, up, and down. These rectangular

mesh boxes are connected to the neighboring boxes at the center connecting points. The

3D mesh structure of a TSV is generated as follows: (1) Z-mesh: The TSV is divided into

multiple short cylinders with the same diameter but various thicknesses and (2) XY-mesh:

Each short cylinder is then meshed into a 2D resistance network on a virtual XY plane,

which is located at the center of each cylinder.

Virtual XY planes are created by partitioning the TSV along the Z-axis. The Z locations

of these XY planes, referred to as the Z-mesh, are determined by the current gradient on

the ZY plane. The region with a large current crowding contains more cylinders than the

region with a uniform current density. Specifically, the Z-mesh size is fine near both top

and bottom landing pads and is coarse in the middle of the TSV.

A side view of the 3D resistance network is shown in Figure 45(c), where two virtual

XY planes are generated. The resulting model is a non-uniform 3D resistance network

consisting of two types of resistors: (1) The resistors along the Z-axis (Rz1, Rz2, and Rz3 in

Figures 45(c) and 45(d)) that are connected to the neighboring virtual XY planes and (2)

the resistors in virtual XY planes (Rx/y1 and Rx/y2 in Figures 45(c) and 45(d)).

If a mesh tile is completely covered by the real TSV shape, Rz and Rx/y are directly

obtained referring to the size of XY-mesh and Z-mesh. However, around the TSV boundary,

mesh tiles partially overlap with the real shape as shown in Figure 45(b). For this case, the

overlap area is calculated as the cross-sectional area for Rz calculation, and the effective

length along the X-axis and Y-axis is then obtained for R1 and R2 calculation.

A schematic of the proposed modeling approach is depicted in Figure 45(d). Most

virtual planes and resistors are not shown for readability. The non-uniform Z-mesh used

in the model is a trade-off between complexity and accuracy. The 30µm-high TSV is

vertically partitioned at 0.1µm, 0.4µm, 0.9µm, 2.0µm, 5.0µm, 16.0µm, 27.0µm, 28.9µm,

29.4µm, 29.7µm, 29.9µm, and 30.0µm. Three different XY-mesh sizes are implemented for

comparisons: 0.25µm, 0.5µm, and 1.0µm.
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6.2.2 Modeling of Transition Region

A transition region is defined as the connection area between a power wire and a TSV

landing pad. The meshing result on the transition region is shown in Figure 46, where a

non-uniform current gradient can occur.

Power wire
Landing pad

TSVTransi!on region

A

Figure 46: Meshing on the transition region.

Although the total current flowing into the transition region is equal to that out of

the region, the local current density at the landing pad depends on the meshing structure.

Without meshing the transition region, the entire current would entirely flow into Point

A, which results in a large but incorrect current at the edge of the TSV. By meshing

the transition region, the current spreads evenly along the power wire and then flows into

the landing pad and the TSV edge, which results in a high accuracy. A transition region

approximately 6.0µm long is found to be long enough.

6.2.3 Modeling Accuracy

Detailed comparisons between ANSYS Q3D and a power simulator (PSIM) are shown in

Figure 47, where PSIM models TSVs using the proposed approach, and the XY-mesh size

is 0.25µm. For the PSIM results, the current in each mesh tile is extracted and divided by

the effective area. For the Q3D results, the current gradient is simulated by running the

internal mesh generator and solver, and the current values are mapped into the mesh tile

structure.
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2.86~ 19.23 mA/um2 2.53~ 18.77 mA/um2

Red: 19.23 mA/um2,  Blue:  2.86 mA/um2

ANSYS Q3D Our PSIM

Max error = 8.8%

RMSE = 0.37 mA/um2

Error histogram @ Z = 0.1um

Figure 47: Current density distributions and the error histogram of ANSYS Q3D and
the proposed TSV modeling approach in PSIM at Z=0.1µm. The error in each tile is the
absolute difference between Q3D and PSIM.

The current-density distributions obtained from Q3D and PSIM are plotted in the top

half of Figure 47, where the virtual plane locates at Z=0.1µm. The error histogram of

the current density between Q3D and PSIM is shown at the bottom of Figure 47, where

the error for each tile is defined as the absolute difference between Q3D and PSIM. This

comparison is for the closest virtual XY plane to the landing pad, where the largest current

crowding is observed.

PSIM has a very good accuracy compared with Q3D. The relative error of PSIM for

each mesh tile is less than 10%, and most of the errors are within 5%. The root-mean-square

error (RMSE) is expressed as follows:

RMSE =
√

(
∑

i=1 to n

(JQ3D
i − JPSIM

i )2)/n , (25)

where i is the ith tile, and n is the total number of tiles. The RMSE of the proposed method

is 0.36mA/µm2. The voltage drop of PSIM is 3.07mV, which is 0.33% different from the

Q3D result.

The differences between Q3D and PSIM are mainly due to the mesh structure. The

proposed model uses low-density orthogonal meshing boxes for simplicity, whereas Q3D

supports sophisticated meshing structures, e.g., triangular and tetrahedral shapes. However,
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the simulation time of PSIM is less than one second; whereas Q3D takes up to one hour.

These comparisons demonstrate that the proposed modeling approach has the potential

to analyze the chip-scale power integrity with a reasonable accuracy and an acceptable

runtime.

6.2.4 Impact of XY-Mesh Size

The impact of XY-mesh size on the accuracy of the proposed model in terms of current

density and voltage drop is shown in Table 14. The Z-mesh size is held constant, and the

XY-mesh size is increased from 0.25µm, 0.5µm, to 1.0µm.

Using larger meshing tiles, the RMSE of the current density increases from 0.25mA/µm2

to 0.55mA/µm2, which is equal to 4.9% to 10.7% of the average current density. To report

the maximum current density in Q3D for a given mesh size, the Q3D simulation result

is mapped into each mesh tile. Thus, the maximum current density of Q3D reduces with

different mesh sizes in Table 14 as well. The error of the maximum current density increases

from 2.1% to 27.9%, and the voltage drop error increases from 0.3% to 3.9%.

Table 14: Impact of the XY-mesh size on the current density (mA/µm2) and the voltage
drop (mV).

mesh Max. Current density Voltage drop
(µm) #tiles RMSE Q3D PSIM err (%) Q3D PSIM err (%)
0.25 4641 0.25 19.2 18.8 -2.1 3.1 3.10 0.3
0.5 1313 0.34 18.0 20.8 15.6 3.1 3.09 0.7
1.0 325 0.55 12.2 15.6 27.9 3.1 2.99 3.9

none 1 – 19.2 5.1 73.4 3.1 2.75 11.3

The cost of using finer size is that the total number of mesh tiles increases from 325 to

4641. Simulation results using a single resistor are also shown in the table, which results in

average current density of 5.1mA/µm2 (73.4% smaller than the maximum current density

from Q3D) and lower voltage drop of 2.75mV.

6.3 Chip-Scale 3D PDN Analysis

6.3.1 Chip-Scale PDN Circuit Model

A circuit model of a partial 3D PDN is illustrated in Figure 48. This model is developed to

analyze global PDNs that have high current densities and contain TSV connections. Both
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power wire segments and local vias are represented as lumped resistors. The 3D power

connection is modeled using the proposed approach, which includes TSVs and transition

regions. An ideal voltage of 1V is supplied from the C4. The current sinks in each die

are located at the intersections of the power grids. The power wires are 2.0µm thick and

5.0µm wide. The TSVs are 30.0µm high and 5.0µm wide. The size of landing pads is

6.0µm×6.0µm.

C4 (Vdd)

T
o

p
 

B
o

!
o

m

3D TSV 

modeling

3D TSV modeling

(a)

(b)

Figure 48: A circuit model for a two-die TSV-based PDN using the proposed 3D TSV
modeling approach in top-down view (a) and side view (b).

6.3.2 Simulation Results

Two voltage-drop maps and one power map of a global PDN are shown in Figure 49.

The footprint area is 1.4mm×1.4mm. Each die has 16×16 power wires and a 15µm-thick

power ring around the boundary. TSVs and C4s are aligned in the bottom die, which are

enlarged as white blocks for readability. Current sinks are represented as black boxes at

the intersections of power wires.

The power map in the bottom die is shown in Figure 49(c). Power maps in both top die

and bottom die have a cool spot in the bottom-left corner and a hot spot in the top-right

corner. In the center of each die, another two narrow cool spots are placed on the left

and right. These power maps result in different current-density patterns surrounding the
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Figure 49: The voltage-drop maps in the top die (a) and in the bottom die (b). The power
map in the bottom die (c).

TSVs: (1) The symmetric current density, e.g., TSV-1 in Figure 49(c), where the current

density of all the power wires is high and (2) the asymmetric current density, e.g., TSV-2

in Figure 49(c), where the current density of the left power wires is much lower than the

current density of the right power wires.

The voltage-drop maps in the top die and the bottom die are shown in Figures 49(a)

and 49(b). The top-right corner has the maximum IR drop: 23.0mV IR drop in the top die

and 19.0mV IR drop in the bottom. The IR drops in the bottom die are larger than the

IR drops in the top die because of the TSV parasitic resistance. Since TSVs and C4s are

aligned, the region close to TSVs has a smaller IR drop than the region far from TSVs.

Detailed current-density distributions in TSV-1 and TSV-2 are shown in Figure 50,

where TSV-1, located in the center of the hot region, has fairly symmetric current densities
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along power wires; and TSV-2, located at the boundary between a power-hot region and a

cool region, has asymmetric current densities in the power wires.

0.1~7.6 mA/um2 1.3~15.3 mA/um2

0.04~3.2 mA/um2 8.7~25.6 mA/um2 2.4~14.9 mA/um2 0.02~7.5 mA/um2

0.9~5.0 mA/um2 0.6~9.9 mA/um2

0.02~2.1 mA/um2 4.5~16.6 mA/um2 0.3~7.7 mA/um2 0.01~4.5 mA/um2

(a) (b)

(c) (d) (e) (f)

TSV-1

TSV-2

(a)

(b)

(d)

(c)

(e)

(f)S1-M10

S1-BM

S2-M10

Jz Jxy

Figure 50: Current-density distribution in the XY direction (Jxy) and the Z direction (Jz)
of TSV-1 and TSV-2.

The current densities in Metal 10 of Die-2 (S2-M10), back metal of Die-1 (S1-BM), and

Metal 10 of Die-1 (S1-M10) are plotted in Figures 50(a), 50(c), and 50(f), respectively. The

plots of Jz flowing through the interface between S1-BM and S2-M10, through the top sur-

face of the TSV, and through the bottom surface of the TSV are depicted in Figures 50(b),

50(d), and 50(e), respectively.

First, PSIM is effective to capture the detailed current-density distribution inside the 3D

power connections. A symmetric current crowding occurs at both edges of TSV-1, whereas

most of the current crowds at the right edge of TSV-2.

Second, a large current crowding inside TSVs is observed. For TSV-1, the maximum

current density (Jmax) along the wire in Figure 50(a) is 7.6mA/µm2, where most current

concentrates at the connection between the power wire and the landing pad. However, the
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maximum current density through the TSV in the Z direction can reach to 25.6mA/µm2

as shown in Figure 50(d), which is approximately 2.4 times larger than the wire Jmax.

Third, a large current crowding occurs at the TSV top surface because of the aligned

TSVs and C4s. The current density in the Z direction through the TSV bottom surface

(Figure 50(e)) is 14.9mA/µm2 compared with the top surface of 25.6mA/µm2.

Fourth, in the bottom TSV surface (Figure 50(e)), the current in the Z direction crowds

at the top and bottom edges instead of concentrating at the left and right edges. This

phenomenon happens because a large amount of current in the XY direction flows out from

the left and right edges to feed the current sinks in Die-1. As a result, the current, delivered

to the power grid in Die-2, concentrates at the top and bottom edges. Moreover, the current

crowding leads to a 5.7mV IR drop through TSV-1, which is 3.7% larger than the IR drop

without considering the crowding.

The next subsections contain the following results: (1) The maximum current density

(Jmax) along the power wires, (2) the maximum and average current density (Javg) of the

TSVs, (3) the minimum, maximum, and average IR drops in top and bottom dies, and (4)

the IR drop through the TSVs. A baseline PDN design contains a 16×16 power grid in

each die, 16 TSVs, and 16 C4s. The TSV diameter is 5.0µm. The mesh size is 0.25µm.

6.3.3 Impact of TSV Mesh Size

To study the impact of the TSV mesh size on power integrity, the mesh size of the TSV

model is increased from 0.25µm to 1.0µm. The results of the current density and the IR

drop are shown in Table 15.

Table 15: Impact of the TSV mesh size on current density (mA/µm2) and IR drop (mV).
The TSV diameter is 5.0µm. And the power grid is 16×16.

#TSVs Mesh Wire TSV w/ max(Jmax) Jinc (%) of TSVs IR Bottom IR Top
&#C4s (µm) Jmax Jmax Javg Jinc(%) Min Avg Max Min Avg Max Min Avg Max

4×4 0.25 10.5 25.6 10.2 151 151 161 192 2.1 9.5 19.1 3.8 12.7 23.0
4×4 0.50 10.4 20.2 10.1 100 100 105 124 2.4 10.0 19.8 4.1 13.3 23.7
4×4 1.00 10.5 14.3 10.2 41 41 42 48 2.1 9.4 18.9 3.9 12.9 23.1

First, using large mesh tiles in the TSV model results in low Jmax. As the mesh size

increases from 0.25µm to 1.0µm, Jmax reduces from 25.6mA/µm2 to 14.3mA/µm2, and Jinc
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reduces from 151%-192% to 41%-48%. This phenomenon happens because the coarse mesh

averages out the current gradient. Second, the mesh size does not affect the IR drop of

power grids and the wire Jmax very much. In contrast, a significant current crowding is

observed in the TSVs for small mesh sizes. For the mesh size of 0.25µm, the TSV Jmax is

25.6mA/µm2, which is 110% larger than the TSV Javg of 10.2mA/µm2.

6.3.4 Impact of Power Wire Density

For the baseline PDN design and power maps described in Section 6.3.2, we increase the

power grid from 8×8, 12×12, 16×16, to 20×20 and fix other design factors. The power

wire density increases from 2.9% to 7.1% over the footprint area. The simulation results

of current density and IR drop are shown in Table 16. Using more power wires helps to

reduce the IR drop in both dies, but reduces the Jmax of TSVs and wires in small scale.

The maximum IR drop in bottom and top die reduces from 36.0mV to 15.2mV and 37.8mV

to 20.6mV, respectively; the maximum Jmax of the TSVs only reduces from 28.8mA/µm2

to 25.2mA/µm2. This is mainly due to the fixed placement of TSVs and C4s, where the

current through each TSV in the Z direction is related to the TSV count.

Table 16: Impact of the power wire density on current density (mA/µm2) and IR drop
(mV). The TSV mesh size is 0.25µm, the TSV diameter is 5.0µm.

Power P-wire Wire TSV w/ max(Jmax) Jinc (%) of TSVs IR Bottom IR Top
grid den Jmax Jmax Javg Jinc(%) Min Avg Max Min Avg Max Min Avg Max
8x8 2.9% 11.8 28.8 11.2 157 147 169 223 3.1 15.7 36.0 4.8 18.5 37.8

12x12 4.3% 11.6 27.9 10.6 162 151 167 200 2.6 11.1 22.8 4.1 15.1 29.3
16x16 5.7% 10.5 25.6 10.2 151 151 161 192 2.1 9.5 19.1 3.8 12.7 23.0
20x20 7.1% 10.5 25.2 9.9 154 150 160 183 1.9 8.0 15.2 3.6 11.7 20.6

6.3.5 Impact of TSV and C4 Count

For the baseline PDN design and power maps described in Section 6.3.2, we increase the

TSV and C4 count from 2×2, 3×3, 4×4, to 5×5 and fix other design factors. The simulation

results of the current density and IR drop are shown in Table 17. Using more TSVs and

C4s significantly reduces both the Jmax and IR drop. With TSV and C4 count increases

from 2×2 to 5×5, the Jmax of wires reduces from 30.3mA/µm2 to 8.4mA/µm2; the Jmax

of the TSV reduces from 74.7mA/µm2 to 19.8mA/µm2; the worst IR in bottom and top
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die reduces from 59.5mV to 15.1mV, and 77.1mV to 18.3mV, respectively. This is mainly

because using more TSVs leads to less current per TSV and thus lower Jmax, and using

more C4s helps to improve the IR. Furthermore, the Jmax of the TSVs caused by current

crowding is still around 150% to 190% larger over the Javg, and approximately 140% larger

over the Jmax of the wires.

Table 17: Impact of the TSV count on current density (mA/µm2) and IR drop (mV). The
TSV diameter is 5.0µm, and the mesh size is 0.25µm

Power #TSV Wire TSV w/ max(Jmax) Jinc (%) of TSVs IR Bottom IR Top
grid &#C4 Jmax Jmax Javg Jinc(%) min avg max min avg max min avg max

16x16 2x2 30.3 74.7 29.5 153 153 154 156 18.7 44.8 59.5 30.0 58.5 77.1
16x16 3x3 16.9 41.0 16.0 156 155 157 162 5.7 18.4 34.1 9.6 24.0 40.8
16x16 4x4 10.5 25.6 10.2 151 151 161 192 2.1 9.5 19.1 3.8 12.7 23.0
16x16 5x5 8.4 19.8 7.7 158 147 161 193 1.1 6.1 15.1 2.1 8.1 18.3

6.3.6 Impact of TSV Diameter

For the baseline PDN design and power maps described in Section 6.3.2, we increase the

TSV diameter from 4µm, 5µm, 8µm, to 16µm, with mesh size of 0.25µm, 0.25µm, 0.5µm,

and 0.5µm, respectively. Other design factors are fixed. The simulation results of current

density and IR drop are shown in Table 18. We observe that larger TSVs significantly

reduce Javg from 15.7mA/µm2 to 10mA/µm2 and Jmax of the TSVs from 33.5mA/µm2 to

10.6mA/µm2. However, Jmax of TSVs reduces slower than Javg of TSVs. As a result, for

the 16µm diameter TSVs, Jmax of TSVs is even 930% to 1180% larger than Javg of the

TSVs. In addition, the TSV diameter only affects IR drops in the top die. IR drops in the

bottom die are insensitive to the TSV diameter because the voltage is directly supplied by

C4s from the package. The top die has lower IR drops when using larger TSVs, which is

due to the reduced TSV effective resistance and the IR through TSVs.

Table 18: Impact of the TSV diameter (µm) on current density (mA/µm2) and IR drop
(mV). The power grid is 4×4, and the mesh size is 0.25µm.

#TSV TSV Wire TSV with max(Jmax) Jinc (%) of TSVs IR Bottom IR Top
&#C4 (µm) Jmax Jmax Javg Jinc(%) min avg max min avg max min avg max
4x4 4 10.5 33.5 15.7 113 109 113 117 2.2 9.5 19.2 4.3 13.6 24.1
4x4 5 10.5 25.6 10.2 151 151 161 192 2.1 9.5 19.1 3.8 12.7 23.0
4x4 8 10.4 19.0 4.0 372 372 394 463 2.3 9.9 19.7 3.3 11.8 21.7
4x4 16 10.7 10.6 1.0 928 928 986 1177 2.2 9.5 19.2 2.3 9.8 18.8
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6.3.7 Impact of TSV and C4 Offset

Previous simulations assume aligned TSVs and C4s. To study the impact of offset on power

integrity, a 175µm distance is created between the TSV and the C4. The offset design has

12 C4s and 16 TSVs. The simulation results are shown in Table 19.

Aligned TSV and C4 Offset TSV and C4

Figure 51: Zoom-in for partial PDNs with aligned vs offset TSV and C4.

The current crowding has larger impact on the TSV IR drop in the offset design than

in the aligned design. In Table 19, the six columns from the right compare the IR drop

through the TSV with (IR c) and without (IR n) considering current crowding. The current

crowding in the offset design results in 5.9% to 10.6% larger IR drop than IR n, whereas in

the aligned design, current crowding results in 3.4% to 5.2% larger IR drop than IR n. This

phenomenon happens mainly because a large current crowding occurs in both the top and

bottom surfaces of TSVs in the offset design, whereas in the aligned design, only the top

interface between the TSV and the backside metal has a large current crowding, where the

voltage at the bottom interface between TSVs and S1-M10 is constantly supplied by C4s.

6.3.8 3D Power Integrity on Large-Scale PDNs

Five large-scale two-die stacked PDNs are designed for 3D power analysis using PSIM.

The power-wire utilization, defined as the total area of power wires in each die over the

footprint area, is set to 5%. The local and global power density refers to the 3D core-to-

memory PDN designs [75] [93], Intel microprocessors, and the power density estimation in

the International Technology Roadmap for Semiconductors (ITRS) 2005 [6].

The results of power analysis on large-scale PDNs are shown in Table 20. First, excessive
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Table 19: Impact of TSV and C4 offset on current density (mA/µm2) and IR drop (mV)
through TSVs.

Aligned Offset
#TSVs 16 16
#C4s 16 12

Wire Jmax 10.5 25.2

TSV with max(Jmax)
Jmax 25.6 22.0
Javg. 10.2 8.3

Jinc.(%) 151 165

Jinc(%) of TSVs
Min 151 149
Avg 161 164
Max 192 190

IR Bottom
Min 2.1 10.2
Avg 9.5 26.5
Max 19.1 48.3

IR Top
Min 3.8 29.7
Avg 12.7 46.7
Max 23.0 65.5

TSV with max(IR)
IR c 5.7 4.8
IR n 5.5 4.5

Inc.(%) 3.7 6.4

Inc(%) of TSV IR
Min 3.4 5.9
Avg 4.0 8.0
Max 5.2 10.6

current densities through the TSVs are observed. The TSV Jmax is 40% to 47% larger than

the TSV Javg. Second, the wire Jmax is affected by the power density in Die-1 and Die-2.

The large power density (PDN2 and PDN4) in the bottom die results in comparable Jmax

of wires and TSVs. When the power density in the bottom die is low, the TSV Jmax is

13% larger than the wire Jmax. Third, current crowding also increases the IR drop through

the TSVs. The TSV IR drop with current crowding is 11.4% to 12.2% larger than the IR

drop without considering current crowding. Furthermore, the IR drops in Die-1 and Die-2

are also affected by the power density. When each die has a comparable power density, the

maximum IR in the top die is usually larger than that in the bottom die. Allocating high

power densities close to C4s (in the bottom die) helps reduce the IR drops in the top die.

6.4 Summary

In this chapter, the current crowding inside TSV-based 3D power connections has been

studied. First, the current-density distribution inside the 3D TSV-based power grids has

been investigated. A large current gradient called current crowding near the interface

106



Table 20: Power integrity analysis for large-scale 3D PDNs including the footprint (mm2),
power density (W/mm2), current density (mA/µm2), and IR drop (mV).

Design PDN1 PDN2 PDN3 PDN4 PDN5
Footprint 5×5 6×6 9×9 11×11 15×15
Power grid 50×50 60×60 90×90 110×110 150×150

#TSVs 144 225 484 729 1369
#C4s 144 225 484 729 1369

Power density top 0.57 0.4 0.8 0.71 0.47
bot 0.57 0.75 0.8 0.91 0.49

Wire Jmax
top 7.0 3.5 13.6 8.7 16.2
bot 7.2 6.6 12.1 11.4 17.4

TSV with max(Jmax)
Jmax 9.6 5.0 18.5 11.1 23.3
Javg 6.8 3.6 13.1 7.5 16.3

Jinc(%) 41 40 41 47 43

IR Bottom
min 5.1 6.0 4.4 8.1 1.8
avg 8.7 9.9 11.3 12.8 6.8
max 15.9 13.3 24.2 25.2 34.9

IR Top
min 7.9 5.0 6.8 9.7 2.7
avg 11.7 7.2 15.6 13.5 8.8
max 19.6 9.2 37.8 24.2 49.6

TSV with max(IR)
IR c 4.1 2.1 7.9 5.1 9.9
IR n 3.7 1.9 7.1 4.5 8.8

Inc.(%) 11.4 11.4 11.5 11.4 12.2

between power wires and TSVs has been observed. In addition, the current crowding also

increases the effective resistance of the TSV and the voltage drop in the PDN. Second, a

3D TSV model has been implemented and simulated using PSIM. This model has a good

accuracy and far less complexity compared with the finite-element tools. Third, PSIM with

the proposed simple TSV model has been applied on chip-scale 3D PDNs to analyze detailed

current-density distributions and voltage drops. By identifying the current crowding corner

inside each TSV, PSIM helps assign reasonable current limits and voltage-drop limits for 3D

PDN design and optimization. Moreover, PSIM can select a different mesh size depending

on the resolution of the power analysis. First, for a large-scale PDN, a coarse mesh size can

be used to quickly identify the hotspots associated with the maximum current density and

IR drop. Then, in a bounded hotspot region, a fine mesh size can be used to identify the

detailed current-density distribution and to optimize the power grid, correspondingly.
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CHAPTER VII

MODELING OF ATOMIC CONCENTRATION AT THE

WIRE-TO-TSV INTERFACE

Electromigration (EM) decreases the reliability of integrated circuits (ICs). It may even-

tually cause shorts or opens in circuits and interconnects which can reduce IC lifetimes, or

worst, cause field fails. EM is driven by multiple physical mechanisms, including electric

current, temperature gradient, stress gradient, and atomic concentration gradient. The

evolution of atomic concentration or the mean time to failure (MTTF) are two important

parameters to investigate the EM reliability. This analysis requires a transient analysis of

the atomic concentration. Atomic diffusion is significantly different within a metal grain

and along grain boundaries, each having different activation energies. Atomic transport is

dominated by grain boundary diffusion and must be included in any realistic EM simulation.

Through-silicon-via (TSV)-based 3D integration has gained a lot of interest due to its

potential to overcome conventional CMOS scaling limitations and its potential to enable

heterogeneous integration. Reliability of TSV-based 3D ICs is an important issue for main

stream acceptance. In particular, the reliability related to EM in 3D TSVs and TSV

connections is a critical issue to explore. TSVs, especially the power/ground (P/G) TSVs

in 3D power delivery networks (PDNs), carry large amounts of current. Specifically, P/G

TSVs which typically have a high average current density can have much higher local current

densities due to current crowding. These regions of high local current density are much more

susceptible to EM degradation. Moreover, the large power density with high temperature

or large thermal gradient inside 3D ICs due to multi-tier stacking or joule heating can

accelerate atomic migration. Therefore, analyzing the evolution of atomic concentration

and the EM lifetime for the 3D connection is important.

A test case to study the EM reliability of wire-to-TSV interface is shown in Figure 52.
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A TSV having no grain structure is illustrated in Figure 52(a). Here the entire TSV is con-

sidered as a perfect crystal. However, in reality, most metal materials have polycrystalline

structures with grains having a characteristic average size. These grains are separated

by grain boundaries having a characteristic thickness. The TSVs shown in Figures 52(b)

and 52(c) have simplified grains structures with sizes of 2.0um and 1.0um, respectively. The

grain structure significantly affects the atom diffusion and the EM lifetime.

Grains (2.0um)

Grain boundaries

Curre
nt

(a) (b) (c)

Curre
nt

wire-to-TSV

interface

wire-to-TSV

interface Grains (1.0um)

Grain boundaries

Figure 52: A test case to study the EM reliability of wire-to-TSV interface, with no grain
structure (a), 2.0um grain size (b), and 1.0um grain size (c).

In this chapter, the atomic concentration in TSVs is modeled and analyzed. Investiga-

tions are performed on the impact of current crowding, grain structure, and temperature on

EM lifetime using a multi-physics simulation. Transient analysis is applied on the atomic

concentration and its evolution with grain and grain boundary structures. Current crowd-

ing at the wire-to-TSV interface accelerates the atomic migration and reduces the lifetime

of TSVs. The impact of current, temperature, and grain structure on the EM lifetime of

TSVs are explored. In addition, the TSV resistance change is modeled.
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7.1 Fundamentals

7.1.1 Mean Time To Failure

The mean-time-to-failure (MTTF) is an important parameter used to characterize the time

to potential failures during operation. Previous work utilized the following criteria to iden-

tify the MTTF subject to EM.

MTTF = Aj−neEA/kT (26)

Equation (26), known as Black’s equation [68] is the most commonly used method to predict

the life span of integrated circuits due to EM. It enables accelerated EM testing, where the

coefficient A, scaling factor n, and the activation energy EA are determined by fitting the

model to the experimental data, and k is the Boltzmann’s constant. This equation clearly

shows that the EM failure rate depends exponentially on the temperature T and depends

on a power of the current density j. However, this model does not include the thermal

migration caused by thermal gradients, and is not based on a specific physical model.

Thus, it is hard to identify the potential failure locations.

Another method to locate the EM sensitive regions is to calculate the atomic flux di-

vergence (AFD) [15, 94] at each location using the finite element model (FEM) approach.

The maximum AFD is usually considered as a likely failure site. The atomic fluxes are

calculated using Equations (29) through (32), where the initial atomic concentration is N0.

However, the maximum AFD is a stationary analysis result, which can not predict the

atomic concentration and its evolution over time.

Our modeling approach is based on the FEM approach. The atomic concentration is

solved by using the partial differential equations, Equations (27) through (32). Detailed

discussions will be presented in Section 7.2. In this paper, we report the MTTF when the

atomic concentration has 10% deviation of the initial value.

7.1.2 Grains and Grain Boundaries

The grain structure depends on the pretreatment of copper and on the conditions of de-

position. This grain structure of the conductive material has a strong influence on the
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lifetime. Theoretically, the crystal structure of a solid material, e.g., copper, should have a

perfect periodic arrangement of “face centered cubic” structure. However, in reality, most

metals never consist of only one crystal, but contain a collection of small crystals, so called

polycrystalline structure as shown in Figure 53. Each small crystal, called a grain, has

periodic arrangement of atoms. The average diameter of grains is called grain size. Inside

each grain, momentum exchange between the electrons and atoms is small because of the

uniform lattice structure of metal ions. However, the periodic pattern is broken at the

interface between two grains, called a grain boundary. The atoms in this transition region

can not match up perfectly with both crystal lattice, so the momentum transfer in the grain

boundary is much larger.

Grain

Grain boundaries

Figure 53: Illustrations of grains and grain boundaries in polycrystalline.

Since the atoms are bounded weakly in the grain boundaries, once a strong force is

applied, such as concentration gradient, thermal gradient, current, or stress gradient, the

atoms become mobile. The diffusion caused by EM includes lattice diffusion, surface diffu-

sion, and grain boundary diffusion. Since the diffusion barrier layer between the TSV and

the silicon dioxide typically helps minimize the migration of TSV metal into the silicon,

our model mainly focuses on the lattice diffusion and grain boundary diffusion of the TSVs.

Correspondingly, the lattice has high activation energy EA, whereas the grain boundaries

have low EA.
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7.2 Modeling Approach and Settings

A set of partial differential equations (PDE) is used to obtain the atomic concentration,

N(x, y, z, t), at each location (x, y, z) at time t, where the atomic concentration evolution is

described in a continuity equation (Equation (27)), and the atomic flux J is determined by

the combined mechanisms of concentration gradient (JN in Equation (29)), current density

(Jc in Equation (30)), thermal gradient (JT in Equation (31)), and stress gradient (Js in

Equation (32)).

These PDEs are formulated and solved in COMSOL multiphysics simulation tool [95].

In addition, the current density, temperature, and hydrostatic stress can be also obtained

by electrical-thermal and thermal-mechanical coupling simulations in COMSOL.

7.2.1 Electromigration Equations

The PDEs used to obtain the atomic concentration are shown as follows.

∂N

∂t
+ O · J = 0 (27)

J = Jc + JT + Js + JN (28)

JN = −D ON (29)

Jc =
N

kT
eZ∗ρj D (30)

JT = −NQ∗

kT 2
D OT (31)

Js =
NΩ
kT

D OσH (32)

D = D0 exp(
−EA

kT
) (33)

where N is the atomic concentration per unit volume, which is the variable in the PDEs.

N0 is the initial concentration. ON is the concentration gradient. The atomic diffusion D

is described as D0 exp(−EA
kT ), where D0 is the self-diffusion coefficient, k is the Boltzmann

constant, T is the absolute temperature. The diffusion J is the total atomic flux at a

location, which includes the flux caused by concentration gradient JN, current density JN,

thermal gradient JT, and stress gradient Js. j is the current density. OT is temperature

gradient. OσH is the hydrostatic stress gradient. The meanings of other notations are

112



summarized in Table 21. Detailed discussions of these PDEs will be presented in the

following subsections of this paper.

Table 21: Notations and meanings in EM PDEs.
term meaning
N Atomic concentration in atoms/m3

j Current density in mA/um2

EA Activation energy in eV
k Boltzmann constant in J/K
T Absolute temperature in K
e Electric charge in C
Z∗ Effective valence charge
ρ Electrical resistivity in Ω·m
D0 Self-diffusion coefficient in m2/s
Q∗ Heat of transport
Ω Atomic volume in m3

σH Hydrostatic stress in Pa

7.2.2 Atomic Flux and Atomic Flux Divergence

Atomic flux, J, describes the total number of atoms that flow across a unit area per unit

time. A large atomic flux means the atoms moves fast across the unit area. Atomic flux

divergence, O · J, describes the changes of atomic number through unit volume per unit

time, which is the spatial difference between the inward and outward flux at the boundary

planes of the unit volume.

Equation (27) is the continuity equation that describes the atomic concentration evo-

lution over time and also insures that atoms are conserved. It governs the atomic flux

divergence over spatial dimensions and determines how the atomic concentration evolves

over time. As shown in Figure 54, along the direction x, when the inward atomic flux

Jin is larger than the outward flux Jout, the atoms in the unit volume tends to increase.

From Equation (27), the atomic flux decreases over the x direction, which corresponds to a

negative atomic flux divergence. As a result, the ∂N
∂t will be positive for mass conservative.

This means the atomic concentration N in this unit volume tends to increase over time.
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Jin Jout

X

Figure 54: Illustration of the atomic flux and divergence.

7.2.3 Effect of Activation Energy and Atomic Concentration

If we set Jc, JT, Js to zero, atomic diffusion can still occur due to the atomic flux JN

from the atomic concentration gradient and the difference of activation energy in grains

and grain boundaries. Equation (29) is analogous to the Fick’s first law. The flux is

proportional to the negative concentration gradient −ON . The atoms are likely to flow

from high-concentration regions to low-concentration regions.

The activation energy EA is different in grains EA(g) and grain boundaries EA(gb).

Smaller EA(gb) in grain boundaries results in high diffusion, whereas larger EA(g) in grains

results in low diffusion. Because D exponentially depends on−EA (shown in Equation (33)),

a large divergence of diffusion in grains and grain boundaries can be observed, which leads to

large atomic flux divergence. Therefore, atomic accumulation or depletion may be observed

around the grain boundaries.

7.2.4 Effect of Current

Atomic flux caused by electric current density is governed by Equation (30), where e is the

electron charge, ρ is the resistivity of the conductor, j is the local current density.

In the present of non-zero local current density, thermally activated metal ions are

acted on by two opposing forces as shown in Figure 55, which can be described as the

effective valence Z∗. The Z∗ consists of two parts, Z∗ = Z∗el + Z∗wd, where Z∗eleE is the

direct electrostatic force on the positive ions as a result of the electric field E. This force

has the same direction as electric filed, but opposite to the electron flow. The Z∗wdeE
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is called the electron wind force, which is caused by the momentum exchange between

conducting electrons colliding with the activated metal ions, and is in the opposite direction

as Z∗eleE. The diffusion of the atom is found to be enhanced in the direction of electron

wind, so the momentum exchange effect is much greater than the electrostatic filed effect

for electromigration in metals [96].

Current j

Electrostatic force

Electron wind force

Potential void

(depeletion)

Potential hillock

(accumulation)

Figure 55: The electrostatic force and electron wind force on the atoms, and the weak
positions of void and hillock formation.

7.2.5 Effect of Thermal and Stress

Atomic flux caused by thermal gradient is shown in Equation (31), where Q∗ is the heat

of transport. This means that the atomic flux is proportional to the negative gradient

of temperature (−OT ), and atoms likely to move from high-temperature regions to low-

temperature regions.

In addition to the effect of thermal gradient, the temperature profile also exponentially

impacts the atom diffusion D in each atomic flux Jc, JN, and Js. That is, the high

temperature will accelerates the atomic diffusion, thus shortening the lifetime.

Atomic flux caused by hydrostatic stress gradient is shown in Equation (32), where Ω is

the atomic volume, σH = (σx +σy +σz)/3, σx, σy, σz are the corresponding normal stresses

in the Cartesian coordinates system (x, y, z). The OσH is the stress gradient that results

from material accumulation and depletion due to electromigration. The stress involves

both EM-induced back-flow mechanical stress [97] and the residual stress that is generated

in thermal processing when there is a difference in thermal expansion coefficients (CTE) in

the TSV structure [14]. We found Js which related to CTE mismatch is small compared

with the other atomic flux (JT, Jc, JN) components and will therefore ignore Js in the
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simulations in the rest of this paper.

7.2.6 Model Settings

The structure to investigate the atomic concentration evolution and EM lifetime is shown

in Figure 52, which consists of the following components: (1) a copper TSV with 5um

diameter and 25um height, (2) landing pads are 6um×10um and 1um thick, (3) a TSV is

composed of regular cubic grains and grain boundaries. A current sources is inserted at

the top-left corner; the current sink is defined at the bottom-right corner. This test case

constrains the current flow direction and helps us investigate the current density impact on

atomic concentration and EM reliability with the presence of grain boundaries.

COMSOL multiphysics is used to simulate the DC current density distribution, temper-

ature distribution, and stress distribution, and to solve the partial differential equations to

obtain the atomic concentration over time.

Our special interest is to investigate the atomic concentration and EM reliability at the

wire-to-TSV interface, where large current crowding happens. The MTTF is defined as the

10% deviation of atomic concentration over the initial concentration inside the TSV, where

the initial concentration N0 is 1.53e28 Atoms/um3. Since we focus at the TSV-to-wire

interface, the wire is assumed a perfect diffusion model, where no grain is modeled inside

the wire. In reality, if the depletion or accumulation of atomic concentration is expected

at a specific TSV-wire interface, then both the TSV and the wire are expected to have

voids or hillocks. Meanwhile, the grain structure of the wire will also affect the atomic

concentration.

The TSV structure contains regular cubic grains and grain boundaries. Since no mea-

surement data has been reported on the TSV grain structure, which can be different from

Cu interconnects, we vary the grain size from 2.0um to 1.0um to study its impact on MTTF.

The default grain size is 0.9um with a grain boundary thickness of 0.1um. The activation

energy of the lattice (grain) is 2.1eV; and the grain boundary has default activation energy

as 0.8eV, which will vary from 0.7eV to 0.9eV [98] to investigate its impact on MTTF.

Unless specified, other default values in the models are as follows: the input current
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density inside the TSV is 3.1mA/um2; the temperature is 350K; the Z∗ is -4; k is 1.38e-23

J/K, e is 1.6e-19C, ρ = ρ0(1 + α(T − T0)), where ρ0 is 1.68e-8Ω·m, α is 0.0039, T0 is 293K.

the D0 is 1e-7 m2/s, Q∗ is 1.387e-20, Ω is 1.182e-29m3.

7.3 Simulation Flow and Assumptions

7.3.1 Simulation Flow

In this study, we use a commercial tool, COMSOL MULTIPHYSICS, to conduct the sim-

ulation, which is superior to customize and solve the partial differential equations. The

simulation flow is illustrated in Figure 56.

Geometry and mesh generation

Atomic conc., Nt

Resistivity, ρt(Nt)

Current density, Jt (ρt)

COMSOL DC current analysis

COMSOL PDE* solver

Atomic flux due to 
> Current density, JC(Nt,  ρt , Jt ) 

> Atomic conc. gradient, JN(Nt)

EM transient analysis

üEvolution of atomic concentration 

üEvolution of current density distribution

üEffective resistance over time

For each time step ∆t

t → t + ∆t

Figure 56: Simulation flow using COMSOL.

This flow starts from creating geometry and generating meshes. Then the EM transient

analysis is performed, which consists of an iteration loop. At each time step ∆t, the atomic

concentration at current time t, Nt, is given. The resistivity distribution ρt(Nt) is calculated

based on the resistivity function, which describes the resistivity based on the local atomic

concentration. After COMSOL DC current analysis, the current density distribution Jt(ρt)

can be simulated, which is a function of resistivity. Then the atomic fluxes can be updated,
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where the flux driven by the current density Jc is a function of the current atomic concen-

tration Nt, the resistivity distribution ρt, and the current density distribution Jt. The flux

driven by atomic concentration gradient JN depends on the atomic concentration Nt. The

PDEs are then solved by COMOSL to obtain the atomic concentration in the next time

t + ∆t. In this transient analysis, COMOSL determines the iteration times and step for

convergence automatically.

7.3.2 Assumptions in This Work

A lot of assumptions are included in this modeling work. In principle, most of these as-

sumption can be included in our model later. We assume uniform grain and grain boundary

geometry. This model did not consider the grain orientation, grain/grain boundary propa-

gation. No nucleation sites for void and hillock formation. The activation energy is obtained

from the literature on wire structure because few works reported the activation energy of

TSVs. We assume that grain and grain boundaries have the same initial atomic concentra-

tion and resistance. Our simulation shows negligible thermal gradient from joule heating

and thermal stress because the copper TSV has very good thermal conductivity. Thus, we

assume uniform temperature in the 3D structure. Diffusion is assumed stress independent.

No quantum effect is considered, no atomic tunneling through grain boundaries. We didn’t

include back flow stress. Resistivity function is assumed dependent on atomic concentration.

both grain and grain boundary is assumed the same function of resistivity.

7.4 Investigations on TSVs

7.4.1 Impact of Current Crowding

A recent work [70] analyzed the current density distribution for the 3D connection of wires

and P/G TSVs. They discovered that for some geometries significant current crowding can

occur giving rise to high local current densities at the wire-to-TSV interface. To analyze

the impact of current crowding on atomic concentration, in this paper, we assume 60mA

current flows from the top-left landing pad, through a TSV, and flows out of the bottom-

right landing pad. The atomic concentration is affected by both atomic flux from current

density (Jc in Equation (30)) and from atomic concentration gradient (JN in Equation (29)).
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Therefore, we include these two terms of flux in the continuity equation (27) and set Js and

JT to zero.

The atomic concentration on the top and bottom wire-to-TSV interfaces at time 1e5s,

1e7s, and 1e8s are shown in Figure 57, where the color legend displays the percentage

difference of the atomic concentration compared with the initial concentration (N0=1.53e28

Atoms/m3).
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Figure 57: Atomic concentration on top and bottom wire-to-TSV interface at time=1e5s
(b), time=1e6s (c), and time=1e7s (c). The color legend displays the percentage difference
of atomic concentration normalized to the initial concentration (N0=1.53e28 Atoms/m3).
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First, we observe that the atoms begin to accumulate/deplete along the grain boundary

at time=1e5s. This accumulation or depletion penetrate to the neighboring grains over a

short distance. This is because that grain boundaries provide fast paths with low activation

energy for atom diffusion. Second, we observe that most accumulation (red) occurs at

the top-left interface; and most depletion (blue) happens at the bottom-right interface.

For example, at time=1e5s, the maximum atomic concentration is 2.2% larger than the

initial value, whereas the minimum atomic concentration is 1.5% smaller than the initial

concentration. In addition, these accumulation and depletion densities grow over time, and

will very likely cause hillocks and voids, respectively. From time 1e5s to 1e8s, the maximum

deviation of the atomic concentration compared with initial value increases from 2.2% to

4.2%. That is mainly due to the current crowding at each location and fast diffusion along

grain boundaries. The local high current density increases the atomic flux and enlarges the

atomic flux divergence as indicated in Equation (30).

Meanwhile, the current crowding at the wire-to-TSV interface is significantly affected

by the thickness of landing wires [70]. A thinner landing wire causes larger current crowd-

ing than a thicker landing wire at the corners of wire-to-TSV interface. As a result, the

maximum current density increases at these interfaces.

To investigate the current crowding impact on atomic concentration, we vary the landing

wire thickness from 0.5um, 1.0um, 1.5um, 2.0um, to 3.0um. Meanwhile, the TSV diameter

is kept at 5.0um, and the total current is 60mA. The impact of wire thickness on current

density distribution and atomic concentration at time 1e7s for 0.5um and 3.0um thick wires

are also shown in Figure 58.

Figures 58(a) through 58(c) are the 3D structure, current density distribution in side

view and top/bottom wire-to-TSV interfaces, and atomic concentration in side view and top-

bottom wire-to-TSV interfaces for 0.5um thick wire, respectively. Figures 58(d) through 58(f)

are those for 3.0um wire thickness. The color legend of atomic concentration is the percent-

age difference of the concentration over the initial value.
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Figure 58: Impact of wire thickness on current crowding and atomic concentration at time
1e7s for top and bottom wire-to-TSV interfaces. The wire thickness is 0.5um (a)-(c) and
3.0um (d)-(f). (a) and (d) are 3D views for 0.5um and 3.0um wire thickness. (b) and (e) are
current density distributions in side view and in 3D top and bottom wire-to-TSV interfaces
for 0.5um and 3.0um wire thickness. (c) and (f) are atomic concentrations in side view and
in 3D top and bottom wire-to-TSV interfaces for 0.5um and 3.0um wire thickness. The
color legend of atomic concentration is the percentage difference normalized to the initial
concentration N0=1.53e28 atoms/m3.

In Figures 58(b) and 58(b)(e), we observe significant current crowding at both top and

bottom corners of wire-to-TSV interfaces. Thinner wires result in more current crowding.

These results are consistent with the current crowding discussed in other papers [70]. The

atomic concentration distributions, shown in Figures 58(c) and 58(f), demonstrate that

more atoms accumulate at the top-left and deplete at the bottom-right, where current

crowding gives higher current densities. This implies that using thin wires may result in

earlier EM failures than using thick wires. In addition, in the case of 3.0um thick wire,

since less current crowding occurs at the corners, the atom accumulation and depletion are

121



spread over the entire interface but with lower local density.

Detailed results of maximum current density (Jmax) and average current density (Javg)

inside the TSV, the atomic concentration at time t=1e7s, and MTTF are shown in Table 22.

As the wire thickness decreases from 3.0um to 0.5um, the maximum current density inside

the TSV increases from 11.0mA/um2 to 37.1mA/um2, however, the average current density

remains at 3.1mA/um2. Meanwhile, the maximum atomic concentration increases from

1.57e28 Atoms/m3 to 1.63e28 Atoms/m3, which corresponds to 2.6% to 6.5% larger con-

centration than the initial value; the minimum atomic concentration decreases from 1.49e28

Atoms/m3 to 1.44e28 Atoms/m3, which corresponds to 2.6% to 5.9% smaller concentration

than the initial one; and the MTTF decrease from 3.0e8s to 0.3e8s. Note that the total

input current is kept constant for each case. Current crowding can have a large impact on

atomic concentration generating voids and hillocks and therefore accelerate EM failure.

Table 22: Impact of wire thickness on current density inside the TSV (mA/um2), atomic
concentration (Atoms/m3) at time=1e7(s), and MTTF (s). Initial concentration is 1.53×
1028 Atoms/m3.

Wire Current density Atomic conc.(×1028) MTTF
thickness (um) Jmax Javg Max Min (×108)

0.5 37.1 3.1 1.63 1.44 0.3
1.0 32.0 3.1 1.60 1.46 1.6
1.5 22.6 3.1 1.59 1.47 2.1
2.0 13.5 3.1 1.58 1.48 2.5
3.0 11.0 3.1 1.57 1.49 3.0

7.4.2 Impact of Current Direction and Density

The current direction determines the location of voids and hillocks. From Figure 57, we

observe that the bottom-right wire-to-TSV interface has smaller concentration than the

initial value (atom depletion) and the top-left wire-to-TSV interface has larger concentration

than the initial value (atom accumulation). This means atoms move from the bottom-right

corner to the top-left corner, which is opposite to the direction of positive current. This

makes sense from a physical point of view and is due to the momentum exchange from

the electrons to the atoms, which is the dominant force in EM, the atoms are pushed in

the same direction as electrons (i.e., the opposite direction of current). Over time, atoms
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accumulate forming voids where current is injected. Likewise, atoms deplete forming voids

where current is removed.

As the average current density inside the TSV is increased from 1.5mA/um2 to 6mA/um2

with the temperature set to 350K, the resulting MTTF is shown in Figure 59. The EM

lifetime of a TSV with high current dramatically reduces from 2.6e9s to 1.0e7s. A TSV,

carrying a high current density accelerates the depletion and accumulation of atoms, and

decreases the EM lifetime. For P/G TSVs, which can carry the current density larger than

5mA/um2, the EM reliability may become critical.

Figure 59: MTTF vs. average current density. The average current density increases from
1.5mA/um2 to 6mA/um2, T=350K.

7.4.3 Impact of Temperature

Temperature also plays an important role in atomic concentration and EM reliability. From

Equations (28) to (29), the diffusivity D is exponentially related to the temperature. More-

over, Equation (31) also shows that atomic flux is affected by the thermal gradient. Note

that, in 3D operation, the temperature can vary from tens of degree C to a hundred of

degree C.

Joule heating from high current density inside a TSV causes high temperature. However,

due to high thermal conductivity of copper, the thermal gradient is very small inside the

TSV. The thermal gradient caused by joule heating of the TSV with 60mA input current is
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shown in Figure 60. The structure consists of three silicon layers (each is 25um thick), two

inter-layer dielectric (ILD) layers (each is 4um thick), a TSV liner (SiO2 with 0.2um thick),

and a copper TSV with two landing wires. The heat sink is assigned at the top surface with

the heat transfer coefficient of 25e3W/(m2·K).

SiO2 (0.2um)

ILD (4um thick)

ILD (4um thick)

Silicon (25um thick)

Silicon

(25um thick)

Silicon (25um thick)

Current

(a) (b)

Convective cooling (heat sink)

Current

349.90

349.84

  (K)

ILD 

ILD 

(c)

Figure 60: Simulation of joule heating for a TSV with 60mA input current. The structure
(a) consists of three silicon layers, two ILD layers, a TSV liner (SiO2), and a TSV with
two landing wires. Heat sink is assigned at the top surface. (b) is the thermal gradient in
ILD layers, landing wires, and the TSV. (c) is the thermal gradient inside the TSV which
is negligible with a small range of 349.90K to 349.86K.

A small thermal gradient is shown in Figure 60(b) in the ILD layers, landing wires, and

the TSV, where the temperature varies from 349.84K to 349.90K. The thermal gradient

inside the TSV and landing wires is shown in Figure 60(c), which covers a small range of

349.86K to 349.90K. Therefore, we include the flux caused by current Jc and concentration

gradient JN in continuity Equation (27), and set other two terms of temperature gradient

JT and stress gradient Js to zero.

To analyze the impact of temperature on migration, the current value is kept constant,

and the temperature is increased from 300K to 400K. This temperature range is affected

by both the power density from neighboring devices and the joule heating of the TSV. The

impact of temperature on EM lifetime is shown in Figure 61. As the temperature increases

from 300K to 400K, the MTTF is dramatically reduced from 5.9e9s to 8.7e6s.
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Figure 61: MTTF vs. temperature. The temperature is varied from 300K to 400K, and
the current density is 3.1mA/um2.

7.4.4 Impact of Grain Size

The grain structure and size is mainly determined by the manufacturing process, and can

vary over a wide range. To study this, we vary the grain size of the TSV from 1.9um to

0.9um, while the grain boundary thickness is kept at 0.1um. The total current is 60mA,

and the temperature is 350K.

The resulting MTTF is shown in Figure 62. With the grain size increases, the MTTF

is increased from 1.6e8s to 3.1e8s. A TSV with larger grains helps to increase the lifetime.

This is because the total grain boundaries with fast diffusion path decreases. Of course the

average grain sizes and average grain boundary thicknesses can vary more than we have

shown in this simple simulation. However, all these details can all be added to the model

as needed.

7.4.5 Impact of Activation Energy

For these simulations, the activation energy of the grains and grain boundaries may also

vary a lot. Especially, the small activation energy of grain boundaries determines the EM

lifetime. Therefore, we increase the activation energy of grain boundaries from 0.7eV to

0.9eV to investigate its impact. The resulting MTTF is shown in Figure 63. We observe that

with the activation energy reduces from 0.9eV to 0.7eV, the MTTF dramatically reduces
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Figure 62: MTTF vs. grain size.

from 3.55e9s to 5.2e6s. This demonstrates the exponential impact of EA on the atomic flux.

Figure 63: MTTF vs. activation energy in grain boundaries. Grain size and grain bound-
ary size is 0.9um and 0.1um.

7.5 Simulation of TSV Effective Resistance

7.5.1 Resistivity Function

To simulate the effective resistance of the TSV-based 3D connection, we need to construct

a resistivity function. Since we could not find the resistivity function in the literature,

we arbitrarily defined a function to describe the resistivity evolution w.r.t. the atomic

concentration, which is depicted in Figure 64.
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Figure 64: The resistivity function vs atomic concentration.

When N is equal to N0, ρ is constrained as ρ0. When N ≤ 85%N0, ρ is saturated at a

high value, where we choose the arbitrary large number 16ρ. When 85%N0 ≤ N ≤ N0, ρ is

reversely dependent to the concentration. When N ≥ N0, ρ has very little decrease. The

accuracy of this resistivity function is still under investigation.

7.5.2 TSV Resistance Evolution

The simulated TSV effective resistance evolution is plotted in Figure 65, where the TSV has

5um diameter, 25um depth, 1.9um grains, and 0.1um-thick grain boundary thickness, and

the wires connecting to the top and bottom of the TSV have 6um width, 10um length, and

1um thickness. At the early time period, the effective resistance of the TSV increases very

fast. After 2e9 seconds, the resistance is saturated. Up to 19% TSV resistance increases is

observed.

7.5.3 Adding Grains in Wires

In the previous simulations, all wires have no grain, which simulates the EM phenomenon

of bamboo wire structures. In this section, the test structure is extended to contain grains

in the wires that are the non-bamboo structure as shown in Figure 66. The grains in the

wires illustrated in Figure 66(b) have the same grain and grain boundary structure as the

TSV, where grain size is 1.9um, grain boundary thickness is 0.1um. In grained wires, the

atoms can now transport through the wires also.
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Figure 65: The simulation of TSV effective resistance changes over time.
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Figure 66: Adding grains in the wires. (a) Bamboo wire with no grains. (b) non-bamboo
wires with grains.

The simulated TSV effective resistance is plotted in Figure 67. This resistance has sim-

ilar trend as the case when no grains are presented in the wires. In addition, the maximum

resistance increase can reach to 28% compared with the initial value. This resistance change

is greater than the one in Figure 65 when wires are bamboo structure. The major reason

is because that the local current density in the wires is higher when wires have grains than
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the case when wires have no grains. In the case of bamboo wires (no grain in the wires), the

current in the wire is uniform before diving into the TSV. However, in the case of grained

wires, the current density is nonuniform inside the wires, the local high current density will

make the current crowding higher at the TSV-to-wire interfaces.
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Figure 67: The simulated TSV effective resistance evolution when wires have grains.

The detailed current density distribution is plotted in Figure 68 when time is 31.7 years.

First, at the top TSV-to-wire interfaces (plots on the left), the current crowds not only at the

TSV-to-wire connection but also along the grain boundaries of the wires. Because the top-

left interface has accumulated atoms, which means low resistivity referring to the equations.

Since most accumulations occur at the grain boundary, the effective resistance along the

grain boundary is lower than that in the grains. Therefore, most current concentrates at the

grain boundaries in the wires. Second, with the XY plane moves towards TSV center, the

current density becomes uniform. Third, for the bottom-right TSV-to-wire interface, the

current tends to crowd again with XY plane moves to the bottom. The current crowds at

the TSV-to-wire interfaces. In addition, the current concentrates at the grains of the wires.

This is because that the atomic depletion occurs at the bottom-right interface, where the

resistivity of the grain boundary is much higher than that of the grains. Therefore, most of

the current concentrates at grains instead of grain boundaries in the bottom wires.
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Figure 68: Current density distribution in 3D view and XY planes when wires contain
grains. The current density is normalized to the TSV average current density (5mA/um2).

7.6 Summary

In this chapter, electromigration (EM) has been studied by modeling atomic concentration

in TSVs and TSV effective resistance change including the effect of grain boundaries. From

a set of extensive investigations, our observations are as follows: (1) Atomic concentration

depleted or accumulated at the corner of wire-to-TSV interfaces, where the high current

density are crowded; (2) Potential hillocks and voids inside the TSV have been simulated

at the corner of wire-to-TSV interfaces; (3) High temperature, large current density, small

grain size, or low activation energy of grain boundaries can accelerate the electromigration,

thus shortening the lifetime of the TSV. By performing transient analysis and defining the

resistivity function, the TSV effective resistance change over time is able to simulated.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORKS

8.1 Conclusions

Three-dimensional integrated circuit (3D IC) has emerged as a promising technology to

continue the scaling trajectory predicted by Moores Law for future IC generations. Recent

3D research has focused on improving performance, lowering power consumption, increasing

reliability and manufacturability, and designing testing schemes. Reliable clock and power

network designs play an important role in pushing the mainstream acceptance of 3D ICs.

This dissertation has addressed many reliability issues in clock and power distribution

networks for 3D ICs. For 3D clock synthesis, challenges issues, including pre-bond testa-

bility, TSV-induced obstacle avoidance, and TSV array utilization have been taken care.

Meanwhile, three important general design goals, including low power, skew, and slew, have

been ensured in 3D clock designs.

In addition to reliable clock design, power integrity analysis for EM reliability has also

been addressed in this dissertation. Investigations and modeling on current crowding and

electromigration for TSV-based 3D connections have been performed.

The following works have been presented in this thesis:

• A comprehensive clock synthesis algorithm for 3D ICs;

• An in-depth investigation on the impact of TSV utilization on 3D clock performance;

• The first clock design methodology for pre-bond testing in 3D ICs;

• The first clock synthesis algorithm for TSV-induced obstacle avoidance;

• The first clock synthesis algorithm of TSV array utilization for low-power 3D clock

design;

131



• A detailed investigation on current density distribution in TSV-to-wire interface and

a TSV model for 3D power integrity analysis;

• The first multi-physics modeling approach for transient analysis on Electromigration

in TSV-based 3D connections.

First, design optimization techniques for reliable low-power and low-slew 3D clock net-

work design have been investigated. TSV utilization has shown significant impact on clock

power consumption: More TSVs helps to reduce the wirelength and power consumption;

using TSVs with large parasitic capacitance may increase clock power when too many TSVs

are used. Second, to ensure the pre-bond testing, which test each individual die before bond-

ing, the 3D clock design methodology has been developed and implemented. The generated

3D clock network is able to ensure both pre-bond testability and post-bond operation with

minimum skew and short wirelength. Third, a practical obstacle issue in TSV-based 3D

clock tree synthesis has been studied. The proposed clock routing algorithm can avoid over-

lapping with TSV-induced obstacles with minimum skew and do not sacrifice wirelength

or clock power. Fourth, the proposed decision-tree-based clock synthesis (DTCS) method

explores the entire solution space for the best TSV array utilization in terms of low power.

Close-to-optimal solutions can be found for power efficiency with skew minimization in short

runtime.

Moreover, the current-density distribution inside the 3D TSV-based power grids has

been investigated. A large current gradient called current crowding near the interface be-

tween power wires and TSVs has been observed. The 3D TSV model has been implemented

with a good accuracy and far less complexity compared with the finite-element tools. The

proposed simple TSV model has been applied on chip-scale 3D PDNs to analyze detailed

current-density distributions and voltage drops. Finally, electromigration (EM) has been

studied by modeling atomic concentration in TSVs and simulating the TSV effective resis-

tance, which includes the effect of grain and grain boundary structure. Atomic concentration

depleted or accumulated at the corner of wire-to-TSV interfaces, where the high current
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density are crowded. High temperature, large current density, small grain size, or low acti-

vation energy of grain boundaries can accelerate the electromigration, thus shortening the

lifetime of the TSV.

8.2 Future Works

Many important reliability issues in clock and power network designs should be addressed

in the future: TSV redundancy is important to ensure that the clock signal can be delivered

safely when TSV faults present. Each clock TSV can be assigned a redundant TSV right

close to it. However, it may occupy significant silicon area and brings in large congestion

due to the large-scale 3D clock network. In addition, the clock skew should be taken care

when a fault TSV is replaced by a redundant one. Thus, an efficient redundancy for 3D

clock network with minimum skew and low power is important.

The TSV coupling, especially in the clock TSVs with high switching activities, should be

considered in the 3D clock synthesis. The TSV coupling capacitance is non-negligible in 3D

clock network. An investigation on the TSV coupling capacitance on clock timing should be

performed. Meanwhile, to reduce the coupling effect, driver sizing or TSV shielding should

be performed. Since P/G TSVs can work as shielding TSVs, the co-design of 3D clock

and power network and co-utilization of P/G TSVs and clock TSVs can be an interesting

research direction.

The EM modeling work is able to help the designers allocate the EM risk locations of

the 3D connection and analyze the atomic concentration evolution overtime. These simu-

lations should also allow comparisons with experimental measurements of void and hillock

formation and measurements of EM lifetime. The modeling approach can be smoothly ex-

tended to include irregular grain structures in the TSVs, grain boundaries in both the wires

and TSVs, surface diffusion, grain boundary thickness, grain boundary non-uniformity, and

other physical details. Many assumptions have been included in this work. We did not

consider physical effect such as grain migration, void nucleation and growth. However, in

principle, these phenomena could be integrated in the modeling approach.
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