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Abstract

This paper presents JECho, a Java-based communication infrastructure for collaborative high
performance applications. JECho implements a publish/subscribe communication paradigm,
permitting distributed, concurrently executing sets of components to provide interactive service to
collaborating end users via event channels. JECho’s efficient implementation enables it to move
events at rates higher than other Java-based event system implementations. In addition, using
JECho’s eager handler concept, individual event subscribers can dynamically tailor event flows to
adapt to runtime changes in component behaviors and needs, and to changes in platform resources.

JECho has been used to build distributed collaborative scientific codes as well as ubiquitous
applications. Its event interface and eager handler mechanism have been shown flexible and in some
scenarios, critical to the successful implementations of such applications. This paper’s micro-
benchmarks demonstrate that, with optimizations and customizations of the runtime system and the
object transport layer, TCP-based reliable group communication in Java can reach good
performance levels. These benchmark results also suggest that it is viable to use JECho to build
large-scale, high-performance event delivery systems. JECho’s implementation is in pure Java. Its
group-cast communication layer is based on Java Sockets, and it also runs in some embedded
environments that currently lack standard object serialization support.

1. Introduction

End users of high performance codes increasingly desire to interact with their complex applications
as they run, perhaps simply to monitor their progress, or to perform tasks like program
steering[8][9], or to collaborate with fellow researchers using these applications as computational
tools. For instance, in our own past research, we have constructed a distributed scientific laboratory
with 3D data visualizations of atmospheric constituents, like ozone, and with parallel computations
that simulate ozone distribution and chemistries in the earth’s atmosphere [4][10]. While an
experiment is being performed, scientists collaborating within this laboratory may jointly inspect
certain outputs, may create alternative data views on shared data or create new data streams, and may
steer the simulations themselves to affect the data being generated. Similarly, the Hydrology
Workbench[11] created by NCSA researchers uses a Java-based visualization tool, termed VisAD[3],
to permit end users to view data produced by the running model or from previous generated model
files. Finally, for meta-computing environments, researchers have created and are developing the



Access Grid[1] framework and, in related work, domain-specific ‘portals’ for accessing and using
computations that are spread across heterogeneous, distributed machines.

Our group has been developing both C/C++- and Java[5]- based middle-ware targeted at such high
performance interactive applications. In this context, the need to work with Java is evident from our
interactions with end users. For example, in a ‘Design Workbench’ application we are jointly
developing with end users in Mechanical Engineering at Georgia Tech, users are expecting to use
web browsers to remotely inspect ongoing experiments. They use both physical views captured by
cameras watching production machines and logical views derived from data captured from running
materials simulations. In addition, in discussions surrounding the Chemical Engineering Workbench
being developed at MIT[1], end users would even like to interact with their running simulations from
the shop floor, via Palmtops or sub-notebook devices, using wireless communication media. In this
context, Java-based programs are easily deployed. Finally, with Habanero[25], VisAD and
specialized visualization engines like Povray[18], there is a plethora of Java-based collaboration and
visualization tools available from other researchers and from industry, of which researchers need to
take advantage when constructing their HPC applications.

Current Problems and Contributions

For the interactive HPC applications described above, our group's earlier work showed substantial
(order of magnitude) differences in performance for Java- vs. non-Java-based communications[12],
for the transfer of scientific data of interest to HPC end users. In response to this problem, we have
been developing a lightweight, Java-based communication middle-ware, called JECho.

JECho addresses three requirements of Java-based interactive HPC applications, in Grid
environments and/or in ubiquitous computing/communication settings:
1. High level support for anonymous group communication -- to permit end users to collaborate via

logical event channels[19][20] to which subscribers send, and/or from which they receive,
substantial amounts of data, rather than forcing them to explicitly build such collaboration
structures from lower-level communication  constructs like Java sockets or raw object streams;

2. Scalability in group communication -- to permit large numbers of end users to collaborate with
performance exceeding that of other Java-based communication paradigms, including
Javaspaces[14], Jini events[15], and the lower-level mechanisms used by them, such as RMI[16];
and

3. Heterogeneity of collaborators -- to enable collaboration across heterogeneous platforms and
communication media, thereby supporting the wide variety of scientific/engineering, office-, and
home-based platforms across which end users wish to collaborate.

JECho addresses these three requirements by providing a lightweight, performance conscious,
distributed implementation of event channels1. Besides using a simplified and optimized runtime
system, performance enhancement is achieved by using an optimized object transport layer. This
layer operates across both standard and embedded JVMs, and uses standard Java serialization as
fallback (i.e., objects that implement only the java.io.Serializable or
                                                       
1 JECho also supports reliable mobility for communication end-points and the ability to inter-operate with the ECho native
distributed event system described in [21], thereby permitting users to construct collaborative applications that span both the C/C++
and Java domains. These aspects of JECho, however, are not described further or evaluated in this paper.



java.io.Externizable interface will be sent from one J2SE JVM to another using Java’s
standard serialization). Scalability is addressed by offering both synchronous and asynchronous
event delivery modes, and by reducing the total serialization overhead experienced in group
communications. Heterogeneity in end user needs and of underlying execution platforms is
addressed by JECho’s concept of eager handlers, which may be used to dynamically customize
communications for individual user or for groups of collaborators.

JECho is pure Java, thus operates across both the NT and Unix operating systems.  Ports to wireless
devices like laptops and palmtops are in progress. Benchmarking results show that JECho meets the
requirements of high performance collaborations listed above. First, its synchronous communication
mode has latencies that vary from slightly to considerably better than that of Java RMI. Second, its
asynchronous delivery mode provides substantially higher communication throughput (up to
1240%) than its synchronous mode. Furthermore, with respect to group size, both delivery modes
scale better than current implementations of RMI and the one-way messaging of a Java-based
commercial product. Its asynchronous mode also scales well with respect to the lengths of the
communication paths being constructed. This latter scalability is critical for the stream- and network-
like communication structures constructed in support of many of our collaborative HPC
applications[16][4].

JECho’s novel concept of  ‘eager handler’ is the basis for mapping JECho to highly heterogeneous
computing platforms. Our ongoing experimentation addresses both ubiquitous and grid applications.
The idea of an eager handler is to partition a sink-side (i.e., a client-specific) event handler at
runtime to move event handling code from the sink to the appropriate sources. In this fashion, a sink
can specialize its event sources, typically resulting in reduced sink-to-source communication
bandwidth requirements, although such specialization is subject to the availability of source-side
processing resources. By using eager handlers, we were able to improve the effective communication
throughput of a scientific-data visualization application by up to 85%. By changing handler
partitioning at runtime, we were able to maintain such improvements even when end users radically
changed their behaviors. Even radical changes like replacing the handlers employed for
communications costs as little as 1.23msec for clients of one of the sample applications in our
experiment environment (see section 5).

The remainder of this paper is organized as follows. Section 2 describes sample applications. Section
3 introduces JECho’s abstractions, followed by a brief outline of their implementation in Section 4.
Results of benchmarking tests appear in Section 5. Section 6 discusses related work, and Section 7
completes the paper with conclusions and future work.

2. Target Applications and Environments

The evaluation of JECho presented in this paper uses applications representative of some of future
systems. In such applications, end users collaborate via potentially high-end computations that
involve large data sets, and/or rich media objects are created and shared across highly heterogeneous
hardware/software platforms.

One such application created and evaluated by our group implements the collaborations of scientists
and engineers. In the application, data is not only moved between multiple application components,



but also from these components to user interfaces running on various access engines. The two types
of access engines with which we experiment in this paper are (1) those used in labs/offices offering
high end graphical interfaces and machines and (2) those in mobile settings using Java-based tools
running on laptops or even PDAs. In such a setting, users wish to switch from one access engine to
another, as they move from one lab/office to another or from lab/office to shop floors or conference
rooms. Furthermore, two-way interactions occur, such as those where engineers continuously
interact via simulations or computational tools (including when jointly ‘steering’ such computations
and sharing alternative views of large-scale data sets[8][9]).
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Figure 1 depicts a simple version of a multi-user and multi-view collaboration via computational
components. Three concrete instances of such collaborations have been constructed by our group,
including an interactively steered simulation of the earth’s atmosphere[4], an instance of the hydrology
workbench originally developed at the Univ. of Wisconsin[11], and a design workbench used by
mechanical engineers in materials design. The figure also shows different user interface devices and
connectivity being employed, ranging from high-end immersive systems to web browsers or palmtops
(being used to ‘stay in touch’ or to loosely cooperate with selected application components). Two
important elements of JECho depicted in this figure are
(1) its ability to automatically transfer data from the Fortran or C/C++ domains (in which high end

computations tend to operate) to the Java domain and vice versa, and
(2) its ability to operate across heterogeneous underlying hardware/software systems, including NT,

Unix and embedded systems.

In measurements reported in more detail in [41], we evaluate experimentally the costs of translating
the data typically used in our applications to Java objects (and vice versa). One interesting result is that
it is often the costs of object communication in the Java domain that dominate performance, not the
costs of translating structured binary data to Java objects (and vice versa).

A second application now being constructed by our group targets ubiquitous computing environments,
involving wireless-connected laptops and palmtop devices. This application implements server-side

Figure 1. Using event Channels in Multi-
user, Multi-view Collaborations.

Figure 2. Components of JECho Distributed Event

System.(Modulator and Demodulator are explained later)



functionality that provides client-specific flexibility, in excess of which currently offered by typical
web portals. The idea is to use eager handlers to permit servers generate and deliver content to clients
based on dynamically changing client profiles. One example of such generated content are user-
selected instant replays for sports actions being viewed, where both the replays and the concurrently
ongoing continuous data deliveries must be adapted to current client connectivity and capabilities.

3. JECho Concepts

Basic Concepts

JECho supports group communication by offering the abstractions of events and event channels. An
event is an asynchronous occurrence, such as a scientific model generating data output of interest to
several visualization engines used by end users, or a control event sent by a wireless-connected sub-
notebook throttling data production at some source. Events, then, may be used both to transport data
and for control. In either case, an event is a Java object with some well-defined internal structure
defined using XML[22] or lower-level specifications. An event endpoint is either a producer that raises
an event, or a consumer that observes an event. An event channel is a logical construct that links some
number of endpoints to each other. An event generated by a producer and placed onto a channel will
be observed by all of the consumers attached to the channel. An event handler resident at a consumer
is applied to each event received by the specific consumer.

Since the notion of publish/subscribe communications via events is well known, the remainder of this
section focuses on an innovative software abstraction, termed eager handler. Its purpose is to deal with
the dynamic heterogeneous systems and user behaviors targeted by JECho. Two aspects of JECho not
discussed further in this paper are the inter-operability between Java and non-Java event endpoints,
and end point mobility. Eager handlers, however, are critical to JECho’s ability to deliver suitable
performance for heterogeneous, high performance computing and communication environments. The
performance implication of eager handlers, as well as JECho’s other optimization and customization
efforts, will be described in detail in Section 5 below.

Eager Handlers -- Distributing Event Handling Across Producers and Consumers

Consider the multi-user and multi-view depiction of data being generated by a single source. Use the
multiple, distributed visualizations of the scientific data generated by a single running simulation as an
example[4](see Figure 1). When some Java-based visualization engines, such as VisAD, are to
visualize data received from the running model, they usually cannot display the wealth of data
continuously being produced, neither does the end user want to inspect all the data at all the times. In
response, most visualization applications will, not only transform data for display, but also down-
sample or filter it, in order to create useful views. In other words, the data consumer (i.e., the
visualization) applies a handler to the incoming data that filters or down-samples it before presenting
the data to its graphical processing component. Moreover, such filtering varies over time, as end users
view data in different forms, zoom into or out of specific data areas, or simply change their level of
attention to their graphical displays. In all of those cases, it is clearly inappropriate to send all possible
data for display to the visualization engine, only to discover that most data will be discarded.



To summarize, in order to customize data for each visualization client, it is necessary for a client to
dynamically control its data sources in accordance with its current data needs and resource
availability[13]. Otherwise, it would receive unneeded or undesirable data. In effect, event receivers
must be able to customize event producers.

JECho handles the dynamic, receiver-initiated specialization of data producers with a novel software
abstraction: eager handler1. An eager handler is an event handler that consists of two parts, with one
part remaining in the consumer’s space and the other part replicated and sent into each event supplier’s
space. We term the latter event modulator, while the part that stays local to the consumer is termed
event demodulator. Events first move through the modulator, then across the wire, and then through
the demodulator. The event modulator is split from the original handler, moved across the wire, and
then installed in order to operate inside the producer’s address space. Namely, it is ‘eager’ to touch the
producer’s events before they are sent across the wire.

The result of using an eager handler is not that all event consumers suddenly receive modulated events.
Instead, by partitioning a handler, the specific client’s modulator implicitly creates a new event channel
‘derived’ from the channel used previously, and the client automatically subscribes to this new
channel. As a result, eager handler creation initially affects only the specific client that performed
handler partitioning, though we also permit additional clients to subscribe to the newly created and
now modulated event stream. More specifically, any consumers of a channel that use the same
modulator subscribe to the same event channel `derived' from the original one. Whether or not two
modulators are the same is determined by the user-defined equals() methods of the modulators.

A sample eager handler used in this paper is applied to an event channel that provides to a scientist
data from a running atmospheric simulation. Such data is, in accordance with the atmosphere's
representation, structured into vertical layers, with each layer further divided into rectangular grids
overlaid onto the earth's surface. A scientist viewing this data (by subscribing to this channel) may
change her subscription at any time. Examples of such changes include: (1) specifying to the
partitioned handler new values for desired grid positions, and (2) changing the partitioned handler to
create new ways in which data is clustered, down-sampled, or converted for interactive display. Such
flexibility is important since at any one time, the scientist is typically interested only in studying
specific atmospheric regions, at some desired level of detail, using certain visual tools and analysis
techniques. Runtime handler partitioning helps us implement such tasks by enabling changes both at
the data consumer and data provider sides of a communication, thereby reducing the bandwidth needs
and the processing power requirements at the recipients.

We have already demonstrated the importance and benefits of client-controlled, dynamic data filtering
for wide area systems[13]. Such filtering is even more important in the Java environment where
communication costs are high. Therefore, our principal goal in creating the notion of eager handlers is
to prevent networks with limited bandwidth and event consumer stations with limited computing
capability from being flooded by events. In addition, eager handlers can be also be used for:
• Consumer-specific traffic control: Using eager handlers, event consumers can change the

scheduling methods and/or priority rules used by producers, thereby enabling clients to control

                                                       
1 JECho’s eager handler is similar to ECho’s[21] notion of ‘derived’ event channel, with JECho offering more general
functionality due to its use of Java facilities like object serialization, dynamic class loading, etc.



event traffic based on application-level semantics; examples include priority delivery for events
tagged as ‘urgent’ and runtime changes in event delivery rates.

• Quality control on event streams: An event consumer may use an eager handler to filter out less
important events, to perform lossy compression to match event rates to available network
bandwidth, or to simply drop some of the events (rather than leaving it up to the supplier to
determine which events are important to the consumer). Such consumer-based event stream control
is particularly important when producers do not know about consumers’ event usage, thereby
making it unrealistic to have producers implement appropriate QoS criteria for the event stream.

• Event transformation and filtering: Since only consumers know about their current usage of data-
carrying events, JECho gives them the ability to customize and transform events before producers
send them. One example of the utility of consumer-based event transformation is a consumer
providing a handler that transforms a full stock quote issued by a live feed into one only carrying
only a tag and a price. Other examples include event clustering, encryption, and compression.

Our current research is exploring some of these broader opportunities realizable by runtime handler
partitioning. In this paper, we demonstrate the utility of eager handlers to limit bandwidth
consumption as well as the computational costs experienced by receivers.

4. JECho Implementation

A JECho system (see Figure 2) consists of channel name servers, concentrators, channel managers,
channels and event endpoints. In this section, we first describe issues in implementing JECho’s base
system, then we describe the implementation of JECho’s eager handlers.

Base System

The key goals of JECho are system performance and scalability. For the base system’s implementation,
this means that channels, endpoints, and events must be lightweight entities in terms of the event
processing and transport overheads they imply.

Scalability with Respect to Numbers of Channels and Clients:
JECho’s implementation uses the concentrator model. Each Java virtual machine (JVM) involved in
the system has a concentrator that serves as a hub for all incoming/outgoing events. Since the
concentrator multiplexes the potentially large number of logical event channels used by the JVM onto
a smaller number of socket connections to other JVMs, JECho can easily support thousands of event
channels. Furthermore, since each concentrator can rapidly dispatch local events, without involving
some remote entity, event transport within a JVM has low latency. Finally, concentrators can reduce
total inter-JVM event traffic by eliminating duplicated events sent across JVMs when there are
multiple consumers of one channel residing within the same concentrator.

Bookkeeping is distributed, a prerequisite for building a scalable event infrastructure. Specifically, to
each event channel is assigned a channel manager that maintains such information, thereby
distributing such meta-data generation and storage across multiple managers. Sample bookkeeping
data includes information about which concentrator is currently involved with the channel, the number
and types of end points of the channel currently residing in that concentrator, etc. JECho can be



instantiated with any number of channel managers, where the mapping of channels to managers are
maintained by the channel name servers.

A channel name server defines a name space for channel names. The name of an event channel is
represented by a <name server address, channel name> pair. Name server address is the IP address
(and TCP port number) of the channel name server, and the channel name is a user-defined string.
This naming scheme helps avoid possible naming conflicts in a large-scale system as a system can
deploy multiple independent name servers.

Optimizing/Customizing Object Serialization:
To efficiently handle and move the large data events used by collaborative applications in the HPC
domain, specific attention must be paid to the marshalling and unmarshalling of such events[28][27].
In Java domain, this implies that we must reduce the overheads of its object serialization mechanism.
A second issue to be dealt with for the ubiquitous computing platforms targeted by JECho is that the
object serialization protocol is not currently supported on all editions of the Java virtual machine. In
order to address these problems, JECho has customized its object transport layer. Specifically, JECho
provides a customized object stream that serializes objects that implement the
jecho.JEChoObject interface. This interface is similar to the java.io.Externizable
interface, except that it uses JEChoObjectInputStream and JEChoObjectOutputStream,
instead of standard ObjectInputStream and ObjectOutputStream.

The JECho object stream is a simplified version of Java’s standard object stream, in that, amongst
others, it does not support dynamic loading of classes from remote sites (the reason for this is that
some JVMs do not support runtime class verification). However, an event producer can still send an
object of type unknown to the consumer as long as both are running on top of JVMs that support
standard serialization. This is because JECho’s object stream embeds a standard object stream when
both ends of the JECho stream are on non-embedded JVMs. But this standard stream is invoked only
when necessary.

JECho also optimizes the object output stream for specific objects commonly used in the applications
we address. This includes objects of types like Integer (java.lang.Integer), Float and
Hashtable, all of which are specially treated to improve serialization and communication
performance. This is especially useful when a vector or a hashtable, which is likely to contain such
objects, is serialized and deserialized. One of our experiments in section 5 shows that such
optimization can save up to 71.6% of total time.

Another improvement in JECho is in the object output stream. In Java’s standard object output stream,
there are usually two layers of buffering when the stream is used for network communication: the first
layer is the internal buffer in ObjectOutputStream for block data mode, the other layer is the
buffer in BufferedOutputStream. The latter layer is necessary because otherwise, every change
to the state of block data mode (which can be cause by a reset to the stream, which happens for RMI
invocation) will cause a write operation to the call to the underlying network layer. JECho’s object
output stream combines these two layers into one, thereby avoiding the additional copying. The effect
of this optimization is also shown in Section 5.



JECho’s object transport layer also does group serialization for events to be sent to multiple
destinations. Instead of using multiple object streams (one between the sender and each of the
receivers), which will result in serializing the event for multiple times, JECho serializes the event once
and sends the resulting byte array directly through sockets. Benefit of this is obvious when sending a
complex object to multiple destinations.

Flexible Event Delivery:
Collaborative applications, as well as multimedia or sensor processing codes running in wireless
domains, are often comprised of sequences of code modules operating on streaming data. These
pipeline/graph-structured applications expect that different execution stages will run concurrently and
across multiple machines. In response, JECho offers not only a synchronous model for event handling
and delivery, but also permits applications to publish and consume events asynchronously.
Asynchronous delivery means that a producer returns from an 'event submit' call immediately after the
event has been placed into an outgoing event queue. It requires producers to employ other, application-
level means for checking successful event distribution and reception when necessary (we have created
application-level handlers that implement several useful 'end-to-end' delivery guarantees).
Synchronous event delivery, however, offers strong semantics for event delivery. It returns
successfully from an event submission only when all consumers of that event channel have received
and processed the event (in other words, the invocation to the handler function at the consumer side
has returned and an acknowledgment has been received by the supplier side). For both synchronous
and asynchronous events, event delivery is partially ordered in that all consumers of a channel observe
events in the same order in which any one producer generates them.

Asynchronous event delivery is important not only because its functionality matches the needs of
JECho's target applications, but also because asynchronous event handling offers event throughput
rates that exceed those of synchronous mechanisms (e.g., RMI or JECho's synchronous events).
Asynchronous delivery can overlap the processing and transport of 'current' with 'previous' events, and
it can also batch the delivery of events. Event batching means that multiple events sent to the same
concentrator result in a single, not multiple Java socket operations (and multiple crossings from the
Java domain into the native domain), generating significantly higher event throughput rate for smaller
events (see section 5).

Implementation of Eager Handlers

One of the most interesting features of JECho is its notion of `eager handlers'. The idea is to permit an
event consumer to specialize the content and the manner of handling and delivery of events by
producers. This is achieved by `splitting' the consumer's event handler into two components, a
`modulator' resident in the event supplier and a `demodulator' in the consumer. Furthermore, to each
client, the multiple producers in which modulators exist are anonymous. Consequently, JECho must
take care of modulator replication, of their placement into potentially multiple event producers, and of
their safe execution in those contexts. Therefore, it is important for the system to (1) provide secure
environments with necessary resources for the execution of modulators, (2) ensure state coherence
among replicated modulators, and (3) define an interface for modulators to define their actions upon
system state changes. JECho accomplishes (1)-(3) by providing the Modulator Operating Environment
(MOE):
• MOE's resource control interface exports and controls `capabilities' based on which event users

can access system- and application-level resources;



• MOE’s shared object interface provides consistency control for replicated modulators that share
state; and

• MOE’s intercept interface defines a set of functions that are invoked at different state changing
moments. For example, an Enqueue function is invoked when a supplier generates an event, a
Dequeue function is invoked when the transport layer is ready to send an event across the network,
and a Period function is invoked when a timer expires.

Figure 3 shows the architecture of MOE. . We next demonstrate the use of these interfaces.

Resource Control Interface.
MOE’s resource control interface provides a secure environment containing the resources necessary
for modulator execution. A modulator can use two classes of resources: system resources and
application resources. JECho depends on Java’s built-in security model for access control on system
resources1.

For application resources, JECho’s modulator operating environment provides a resource control
interface that allows suppliers to export resource descriptors that can be granted to consumers.
Specifically, a modulator can specify a list of services (implemented as Java interfaces) that it
expects from the supplier’s MOE in order to be able to execute correctly. In addition, when
subscribing to a channel, a supplier can provide a delegate to the MOE. This delegate provides
handles to services upon requests from the MOE.

                                                       
1 We are also looking at incorporating runtime resource management tools, such as Cornell’s JRes[29], into MOE to
more effectively control system resources.
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When installing a modulator, for each service required by the modulator, if the MOE cannot provide
it, then it will request the service from the supplier’s delegate. If the delegate cannot provide it either,
then an exception will be raised and the process of eager handler installation will fail.
Shared Object. Interface
Since a distributed event channel can have more than one supplier, a modulator of an eager handler
must be replicated in all suppliers. Such replication will not cause any problem if the modulator is
stateless. Otherwise, there must be a consistency control mechanism to ensure state coherency among
replicated modulators. Furthermore, as a modulator comes from (is instantiated in) the consumer’s
space, it may reference objects defined at the consumer. In such cases, it is important to ensure that
the modulator can correctly reference such objects after being installed in the supplier’s space.

JECho’s MOE provides a shared-object interface as the consistency control mechanism for both
cases of state sharing. A modulator can reference a number of shared objects. Each shared object has
a master copy, and from this master copy an application can create an arbitrary number of secondary
copies. Both the master copy and all of the secondary copies can read and write the shared state. The
master copy always has the newest version of the state; all updates performed at the secondary copies
are sent to the master copy immediately. The master copy can choose from prompt or lazy update
policies to decide whether updates should be propagated to secondary copies immediately or not.
Secondary copies can also actively pull the newest version of the shared from the master copy.

One use of the shared object interface is demonstrated for the sample application in a code fragment
appearing in Appendix 0. The purpose of that object is for the modulators and demodulators of eager
handlers to share parameters. This presents to end users the appearance of a partitioned handler
parameterized in terms of longitudes, latitudes, and atmospheric layers.

JECho’s shared object interface is implemented in pure Java and does not require any compiler help.
The feature that distinguishes it from other distributed shared data systems is that it enables a piece
of code to continue working properly after the code has been migrated (and replicated) at runtime.
Intercept Interface.
A modulator can specify its response to relevant state changes occurring at the supplier by defining
intercept functions:
• Enqueue function: The enqueue function of a remote handler is invoked at the time a producer

pushes an event onto the channel. This function takes the event as a parameter. The function can
perform any operation on the event, including discarding it, transforming it, or storing it
somewhere.

• Dequeue function: Dequeue function is invoked at the time the transport subsystem delivers an
event from a remote handler to its associated event consumer. This function returns the event to
be delivered.   

• Period function: The period function is invoked whenever the elapsed time since this function
was last called exceeds some specified period. This function is useful in producers to ‘push’ data
and at consumers to ‘pull’ data at well-defined rates.

Changing Modulators and/or Demodulators.
Given the MOE support of JECho, modulators can collaborate with demodulators to implement
application-specific group communication protocols, and such protocols can be efficiently changed



at runtime. Changes are enacted by having an event consumer providing a new modulator-
demodulator pair and then reset its event handler, thereby dynamically adapting the communication
protocol it uses with its event supplier. An example of such a change can also be found in [40].

5. Evaluation

All measurements presented in this section are performed on a cluster of Sun Ultra-30 (248 MHz)
workstations, each with 128MB memory, running the Solaris 7 OS and connected by 100Mbps Fast
Ethernet. The roundtrip time for native sockets is about 260us. The JVM is from J2SE 1.3.0.

Recall the basic requirements of Java-based, interactive HPC applications to be supported by JECho:
(1) anonymous group communication for data of substantial size, (2) scalability for groups in terms
of potentially large numbers of publishers and subscribers, and (3) runtime adaptation and
specialization to support highly heterogeneous distributed systems and applications. To evaluate
JECho with respect to these requirements, this section presents measurements that compare JECho’s
performance to RMI, which is used by some the current implementations of Java-based distributed
event systems including JavaSpaces and versions of Jini event systems. We also compare with
Voyager’s (which is an influential commercial product from ObjectSpace) messaging mechanism,
albeit Voyager provides a lot more functionality other than messaging. Results show that JECho's
performance exceeds that of RMI and Voyager, sometimes by substantial margins. Our results in
more complicated experiment setups show that JECho, and thus Java, can potentially support large-
scale applications.

Object Types ObjectStream
(JDK1.3, reset)

ObjectStream
(JDk1.3, NO reset)

RMI
(JDK1.3)

JECho
ObjectStream

JECho
Sync

JECho*

Async

null 460 454 929 455 791 59

int100 968 841 1625 714 1073 177

byte400 887 766 1420 638 1011 143

Vector of Integers 2603 2553 3186 723 1097 225

Composite Object 2851 1753 3219 996 1334 318

Simple Case Latency and Throughput

This experiment measures the roundtrip latency and throughput (JECho Async only) for single
source, single-sink setups. Separate measurements send one of the five types of objects from source
to the sink: null, an array of 100 integers, an array of 400 bytes, a Vector of 20 Integers and a
composite object, which has a string, two arrays of primitives and a hashtable with two

                                                       
* JECho Async numbers are for ‘average time used per event’, rather than for ‘round-trip latency’.

Table 1. Round-trip Latency for Different Objects (in usec). Return objects are
always ‘null’ objects. The difference between the 1st and 2nd columns is that the
first column does a reset to the stream before sending each object. RMI also does

such resets. The round-trip time for native sockets is about 260usec.



entries. All the objects implement java.io.Externizable for better standard serialization
whenever necessary. All setups except JECho Async send null objects from sink to source as
acknowledgements. All timings are initiated some time after each test is started, in order to allow for
dynamic optimizations to take effect.

Table 1 shows that, as one would expect, JECho Async offers much higher event throughput rates
than both JECho Sync and RMI do, as it uses event batching and one-way messaging. Also, in
addition to some of the simplifications made by JECho’s implementation (e.g., no full class and
activation support), JECho Sync has shorter latencies than RMI:
• Less base runtime overhead: For the ‘null object’ case, while the underlying streams

perform at the same level, RMI has 17% more overhead than JECho Sync, partly because JECho
does optimization for special cases. For instance, if a sink has only one source and message is
sent synchronously, then the sink will go into ‘express mode’, using a single thread to read the
incoming event, process the event and send back an acknowledgement.

• Eliminating additional level of buffering: As we described earlier, JECho uses its own output
stream to combine ObjectOutputStream’s internal buffering with external buffering. This
is partly reflected in the ‘byte400’ case: standard object stream (without reset) has 20%
overhead over JECho stream.

• Special serialization for commonly used objects: the effect of special serialization for objects like
java.lang.Integer and java.util.Hashtable is reflected in the ‘Vector of
Integers’ case, where standard stream (without reset) costs 255% more than JECho’s
serialization.

• Persistent stream states: While RMI needs to reset steam state (or create a new stream) for each
invocation, JECho does not do so unless explicitly requested. In the ‘Composite Object’
case, this ‘reset’ causes about 63% of the overhead for standard stream, which is part of the
reason that the current implementation of RMI is not optimal for stream-based applications.

These optimizations, combined with the fact that JECho currently does not support some of RMI’s
more advanced features, make JECho Sync 58.6% faster than RMI for ‘composite objects’.

Multi-sink Throughput and Latency

Figure 4 shows the measurement numbers for JECho Sync, JECho Async, RMI and Voyager
multicast one-way messaging under varying number of sinks.

Since current implementations of RMI do not yet support group communication, the RMI numbers
in the figure are not actual measurements. Rather, they are deducted from the following formula and
are used only as reference numbers:

TRMI(n, o) = TRMI (1, o) + (n – 1) * TOS(1, byte[sizeof (o)]),

Where TRMI(n, o) is the latency for RMI to send object o to n sinks, TOS(n, o) is the roundtrip latency
of the standard object stream. Note that it always takes a byte array with a length of the size of the
object, rather than the object itself. In essence, this hypothetical ‘multicast-RMI’ (hereafter termed



RM-RMI) only serializes the object once, for the first sink, and the result byte array will be reused to
be sent to remaining sinks, exactly as with the current implementation of JECho. We use these
hypothetical RM-RMI numbers in order to provide a fairer comparison with JECho than that
produced by our actual measurements (where RMI does repeated serialization). RM-RMI
performance, therefore, is substantially better than that of our actual RMI measurements.

The reason JECho Sync still scales better than RM-RMI is that JECho Sync parallelizes its send and
reply-receive tasks with respect to different subscribers, by overlapping these tasks in a way similar
to that used by vector processors to achieve parallelism. As a result, an event might still be in
progress of being sent to some subscriber S2 while a reply to this event is already being received
from some other subscriber S1. Figure 4 shows that for each additional sink, the increased overhead
of JECho Sync is about half of that of RM-RMI.

It is not surprising that JECho Async scales much better than both JECho Sync and RM-RMI.
Furthermore, compared to Voyager’s multicast one-way messaging, JECho Async provides much
higher (50+ times better for ‘null’, and 18+ times better for ‘composite’ objects) event
throughput rates. JECho Async also experienced much less overhead for each additional sink. For
instance, for the ‘null’ objects, this overhead is about 10us for JECho Async, while it is in the
range of from 200us to 700us for Voyager multicast. We suspect that this performance disparity
is caused by: (1) Voyager’s one-way messaging is probably built on top of synchronous unicast
remote method invocation, and (2) Voyager is subject to overheads for features such as fault-
tolerance support, which JECho lacks.
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In large-scale distributed collaborative applications and in the cluster server application described in
Section 2, the communication pattern among distributed components of the application can be
complex, resulting in communication paths within applications where events are sent across multiple
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Number of Sinks

Figure 5. Average Time (in usec) for
an Event/Invocation to Travel Through a
Pipeline of Components, with Changing
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channels. For instance, component A might send an event to component B. In handling this event, B
sends another event to component C. As a result, an event from A to B will result in the creation of a
communication pipeline of length 2.

Experimental results depicted in Figure 5 clearly show that asynchronous event delivery and
handling are essential for achieving scalability along the ‘length’ dimension of communication
pipelines. Specifically, for JECho Async, the throughput rate is much less affected by any increment
in pipeline length. In fact, the throughput rate is largely determined by the speed of the relayer,
which is slower than both the sender and the receiver, as it has to receive as well as send events.
This is shown in the figure, that JECho Async’s curves are relatively flat after pipeline length of 2.

Multi-channel Throughput

Larger applications may use a large number of logical channels, reflecting the complex control and
data transmission structure of these applications. Figure 6 depicts JECho Async’s throughput rate
under changing number of logical channels. In this experiment, the channel used for sending an
event is chosen in a round-robin fashion. Results show that throughput does not vary significantly
for up to 4096 channels.
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Costs/Benefits of Eager Handlers

The eager handler mechanism enables a single consumer of an event channel to specialize the events
it receives, without affecting the other channel consumers. This is particularly important in an
anonymous group communication environment, as a subscriber to a channel cannot have a priori
knowledge of other channel subscribers, let alone about the events these other subscribers will place
onto the channel.

As an example, consider the collaborative scientific application presented in Section 2. Here, it is
clear that different channel subscribers may differ both with respect to their data needs and display
abilities. For instance, a web-based display used by a student collaborator may view only small
subsets of the data viewed by a teacher manipulating the actual application and its data outputs. The

Figure 6. Average Time (in usec) for Sending an Event Using
Different Numbers of Channels.



eager handler mechanism makes it easy to implement scenarios like these, where a student simply
uses a different modulator/demodulator pair than the teacher, while subscribing to what appears to be
the ‘same’ event channel. We next first describe the costs of eager handler installation, followed by
presentation of one example of its utility.

Costs of installing an eager handler.
Installing an eager handler and/or dynamically modifying it can be done in two ways:
• Updating an existing modulator using the shared object interface: shared objects used in a

modulator can be changed at runtime. Such shared objects can be looked at as parameters of the
modulator and by changing them, a consumer can change the parameters of its modulator. Since
a shared object is implemented using Java sockets, the costs of changing the value of a parameter
is the cost of sending the parameter object to all suppliers of the channel via object serialization.
In the code fragment appearing in Appendix 1, an update to the current_view shared object has
a latency of about 0.5ms (in our test environment) when there exists one supplier. The benefits
of such parameterization are obvious when the view window shrinks, as it may potentially filter
out large amount of events.  The operation must be performed each time the view window shifts
or is reduced/enlarged.

• Changing modulator/demodulator pairs at runtime: JECho provides an API using which a
consumer may replace its modulator/demodulator pair at runtime. There are two components to
the cost of doing so: one is the cost of shipping the modulator object itself from the consumer’s
space to the supplier’s space and installing it, the other is the cost of loading the bytecode that
defines that specific modulator class. The cost of class loading depends on the performance of
class loader and hence is out of JECho’s control. It will not be discussed further. However, to
ship a modulator (again using object serialization) and to install it at a supplier, results in costs
that are just slightly higher than the cost of synchronously sending an event of the same size. For
example, for a modulator with state (data fields) of size similar to that of a 100-integer array, the
total cost of handler shipping and installation is approximately 1.23ms under our test
environment (with the supplier’s classloader loading modulator code from its local file system).

Benefits of Dynamically Changing Eager Handlers.
While it is hard to quantify the benefits from features like QoS control provided by an eager handler,
it is obvious that filtering and down-sampling can reduce network traffic and system load. In our
sample application, depending on the dimensions of users’ views and their displays’ resolutions, the
use of eager handlers can reduce network traffic by up to 85% via event filtering, with consequent
additional savings in the processing requirements for events received by clients. Even higher savings
are experienced when using event differencing.

Summary of Results

The experimental results in this section show that, JECho’s synchronous event delivery is faster than
RMI in single-source, single-sink cases because of JECho’s optimizations and simplifications in both
its object stream layer and its runtime system. JECho Sync also scales better than the reference
numbers computed for an appropriate implementation of multicast-RMI.

JECho’s asynchronous delivery offers much higher throughput rates than JECho Sync and than
Voyager 's one-way messaging. It also scales better, both in terms of increases in the number of sinks



and increases in the lengths of communication paths. JECho’s good scalability, combined with the
fact that JECho channels are lightweight, and that we distribute channel name servers and channel
manager, makes us believe that it is viable to build high performance, large-scale event delivery
systems with JECho.

The benefits of advanced JECho features like eager handlers are apparent for a simple scenario of
use demonstrated in this section. In general, such benefits arise from the reduction of network
bandwidth and network-relevant processing at suppliers and from reducing the number of irrelevant
events (and their processing) at receivers. Experiments with the non-Java version of JECho (the
ECho event system[21]) described in [13] demonstrate the utility of eager handler. Additional
experiments now in progress will show the utility of eager handler for collaborative applications in
general and for the runtime quality management actions described in Section 1.

6. Related Work

There has been much work to improve Java object serialization and RMI[36][35][38]. In particular,
UKA-RMI[36] also does buffering optimization to speedup serialization. However, UKA-RMI’s
output side buffer optimization exposes the object output stream’s internal buffer but it does not
eliminate the extra layer of buffering; both its output and input side buffer optimizations are
orthogonal to our optimizations. There has also been a considerable work on high performance
messaging in Java[30][31][33][34]. Some of these systems are native-code libraries with Java
interfaces[30][33], while pure Java systems had performance limits, especially for roundtrip
latencies[32][34].

Jini[15]’s distributed event specification does not rely on RMI, but most current implementations of
this specification are based on unicast RMI, which, as we demonstrated, has performance limitations
in distributed systems. Some commercial Java notification and messaging systems, such as
JavaSpaces[14] and Voyager[26] are also based on unicast remote method invocations. While these
systems provide higher-level features such as transaction and persistency support, they usually do not
implement direct connections between sources and links, hence they are less likely to satisfy the
performance requirements of throughput- and latency-conscious applications.

Gryphon[39] is a content based publish/subscribe system that implements the JMS distributed
messaging system specification[23]. Its parallel matching algorithm enables the system to expand to
very large scale in terms of the number of clients it services. However, Its matching criteria are
currently limited to database query like expressions, while JECho’s eager handler permits virtually
arbitrary codes.

The use of code migration for performance improvement is not novel. In particular, some database
systems[24] support stored procedures to allow database clients to define subroutines to be stored in
the server's address space and invoked by clients. The notion of eager handler is more powerful than
stored procedures, in that it permits clients to place `active' functionality into suppliers, with
modulators run by their own execution threads. Furthermore, JECho permits handlers to be
comprised of arbitrarily complex Java objects, and its MOE (modulator operating environment)
provides a general environment in which modulators and demodulators can be dynamically installed,
deleted, and changed, for multiple suppliers and consumers.



7. Conclusions and Directions of Future Work

This paper presents JECho, a high performance Java-based communication middle-ware supporting
both synchronous and asynchronous group communication. It also presents eager handlers, a
mechanism that enables the partitioning of event handling across event suppliers and consumers,
thereby allowing applications to dynamically install and configure client-customized protocols for
event processing and distribution.

Benchmarking results show that JECho provides shorter latencies and higher throughput than other
pure Java-based communication paradigms, including RMI, the transport facility used in most
current implementations of Jini’s distributed event system. Our results also show that JECho channels
are lightweight entities, thereby making it easy to create hundreds of event channels that link event
producers and consumers. Furthermore, JECho offers scalability in terms of numbers of data
receivers/senders and/or lengths in communication pipelines. Finally, our efficient implementation of
eager handlers makes it a useful basis for creating the large-scale, heterogeneous communication
infrastructures required for collaborative HPC and cluster applications.

Our future work entails (1) implementing a more secure modulator operating environment, (2)
designing an efficient consistency control protocol specialized for high performance event
communication systems, (3) automating the process of eager handler generation with the help of
runtime program analysis, and (4) supporting standards such as JMS.
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9. Appendix A

Handler Partitioning Sample Code
// This is the class that defines the shared object
public class BBox extends SharedObject {
    int start_layer, end_layer;
    int start_lat, end_lat;
    int start_long, end_long;

    ...
}  

// This is the class that defines the event consumer
public class GridViewer implements PushConsumer {
    BBox current_view;
    FilterModulator mod;

    public GridViewer () {
        current_view = new BBox ();

        // Create a modulator, passing current view as para
        mod = new FilterModulator (mod);

        // Create a push consumer handle with this object as the consumer and with no capability requirement,
        // no restriction on event types Use newly created mod as modulator and use no demodulator
        PushConsumerHandle pch = new PushConsumerHandle (this, null, null, mod, null);

        // connected to the channel named ‘ ‘MyChannel’’
        pch.connectTo (new EventChannel ("MyChannel", null));

        ...
    }

    // This is the handler for events being received
    public void push (Object event) {
        ...
    }

    // This is the method that responds to GUI actions
    public void action (...) {
        if (GUI view changed) {
            // Locally modifies the current view
            current_view.start_layer = new_value1;
            current_view.end_layer = new_value2;
            ...
            // publish modifications so that the modulator can see the change too
            current_view.publish ();
        } else {
            ...
       }
    }
}

// This is the class that defines Modulator
public class FilterModulator extends FIFOModulator {
    BBox consumer_view;



    public FilterModulator (BBox view) {
        super ();
        consumer_view = view;
    } 

    // Overides the ‘ ‘enqueue’’ intercept function
    public void enqueue (DECEvent e) {
        GridData gd = (GridData)e.getContent ();

        // discard the event if layer is not inside consumer’s view
        int layer = gd.getLayer ();
        if (layer < consumer_view.start_layer ||
            layer > consumer_view.end_layer) return;

        // discard the event if latitude is not inside consumer’s view
        int lat = gd.getLatitude ();
        if (lat < consumer_view.start_lat ||
            lat > consumer_view.end_lat) return;

        // discard the event if longitute is not inside consumer’s view
        int long = gd.getLongitute ();
        if (long < consumer_view.start_long ||
            long > consumer_view.end_long) return;

        // Inside consumer view, so enqueue it
        super.enqueue (e);
    }
}

This code fragment demonstrates the programming interface for implementing eager handler in the
previously described example to achieve event filtering. As we can see from the code, one advantage
of MOE’s shared object interface is its ease of use. A shared object need only extend the
SharedObject interface and call the publish method, which is defined in the SharedObject class,
whenever it wants to propagate modifications. JECho’s runtime system takes care of making copies
of the object on different JVMs when necessary and propagates changes to all of the copies of the
shared object. For small objects, such latency is less than 0.5ms in environments where the
minimum RMI ping time is over 1.5ms.

10. Appendix B

Sample Code for Dynamically Changing Modulator/Demodulator
// This is the class that defines the event consumer
public class GridViewer implements PushConsumer {

    ...

    // This is the method that responds to GUI actions
    public void action (...) {
        ...

        // If we are changing from filter mode to diff mode, create a DIFFModulator and



        // synchronously reset the modulator/demodulator(null) pair.
        if (mode changed to DIFF mode) {
            pch.reset (new DIFFModulator (DIFF_THRESHOLD), null, true);
        }
    }
}

The above code segment shows the way to dynamically change modulator/demodulator pair in
JECho. Here, the visualization application supports two different modes of operation. One mode is
used when data is streamed and displayed continuously. In the other mode, data is sent and displays
are updated only when significant changes occur in selected data fields, thereby having the display
act as an ‘alarm’ for such changes. The latter mode employs a modulator that does differencing rather
than filtering.


