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SUMMARY 

The purpose of t h i s  r e s e a r c h  was t o  s tudy  t h e  i n t e r a c t i o n  of car- 

bon monoxide wi th  s i n g l e  c r y s t a l l i n e  ruthenium. It w a s  a n t i c i p a t e d  and 

confirmed by t h e s e  experiments t h a t  ruthenium c a t a l y s e s  t h e  decomposition 

of carbon monoxide i n  t h e  temperature range  of 500 t o  550°C. An impor- 

t a n t  p a r t  of t h i s  r e s e a r c h  was t o  determine any c r y s t a l l o g r a p h i c  spec i -  

f i c i t y  f o r  t h e  decomposition r e a c t i o n  and t o  c o r r e l a t e  t h e s e  r e s u l t s ,  

i f  pos s ib l e ,  w i th  t hose  on n i c k e l  i n  o r d e r  t o  i d e n t i f y  a c t i v e  sites f o r  

t h e  decomposition. 

In  many heterogeneous c a t a l y t i c  r e a c t i o n s  i t  is  known t h a t  t h e  

c a t a l y t i c  a c t i v i t y  v a r i e s  w i th  c r y s t a l  o r i e n t a t i o n  of t h e  c a t a l y s t  and 

t h a t  r e l a t i v e l y  few sites on t h e  c a t a l y s t  s u r f a c e  p a r t i c i p a t e  i n  t h e  r e -  

a c t i o n .  For t h e  c a t a l y t i c  decomposition of carbon monoxide on n i c k e l ,  

i t  has been shown t h a t  t h e s e  sites are c e r t a i n  s t e p s  on one of t h e  low 

index  reg ions .  Carbon monoxide a l s o  decomposes on i r o n ,  b u t  t h e  forma- 

t i o n  of c a r b i d e s  p r i o r  t o  t h a t  of g r a p h i t e  h inde r s  t h e  i d e n t i f i c a t i o n  of 

a c t i v e  s u r f a c e  s i t e s  f o r  t h e  i n i t i a l  decomposition. 

A ruthenium s i n g l e  c r y s t a l ,  c u t  t o  a s p h e r i c a l  shgpe, was used 

i n  t h i s  r e s e a r c h  i n  o rde r  t o  expose a l l  p o s s i b l e  c r y s t a l  o r i e n t a t i o n s  

t o  t h e  carbon monoxide environment. Af te r  e l e c t r o p o l i s h i n g  t o  produce 

a  smooth, s t r a i n - f r e e  s u r f a c e ,  t h e  specimen was annealed i n  hydrogen, 

outgassed i n  vacuum and then  t r e a t e d  wi th  carbon monoxide a t  500 t o  

550°C f o r  t i m e s  va ry ing  from 1 t o  96 hours.  

The e f f e c t  of c r y s t a l  o r i e n t a t i o n  on t h e  r e a c t i o n  was apparent  



v i i  

from the  r e s u l t i n g  p a t t e r n  of deposi t ion  on the  ruthenium c r y s t a l .  The 

specimen was examined by s e v e r a l  techniques,  the  most successful  of which 

were o p t i c a l  microscopy and r e f l e c t i o n  high energy e l e c t r o n  d i f f r a c t i o n  

(RHEED). RHEED r e s u l t s  revealed only graph:Lte on the  ruthenium surface;  

the  g raph i t e  morphology was then s tudied  with o p t i c a l  microscopy. 

Opt ica l  microscopy revealed g raph i t e  s treamers centered about 

<0001>, <1070>, and < 1 0 i l >  poles.  The deposi t ion  began on these  low in- 

dex regions and spread outwards from them. These r e s u l t s  a r e  comparable 

t o  those on n i c k e l  and can a l s o  be  explained by decomposition of carbon 

monoxide a t  s t e p s  on these  low index regions.  A s i g n i f i c a n t  d i f f e rence  

f o r  ruthenium, however, i s  the  high a c t i v i t y  f o r  decomposition on t h r e e  

low index regions ,  compared t o  only one f o r  n icke l .  



CHAPTER I 

INTRODUCTION 

Carbon monoxide is  known t o  decompose c a t a l y t i c a l l y  on the  sur- 

f ace  of i r o n ,  coba l t ,  and n i c k e l  a t  about 550°C (1,2). The decomposi- 

t i o n  reac t ion  i s  given by the  following equation: 

After  the  reac t ion  carbon is found on the  su r face  or  i n  the  metal i n  t h e  

form of s o l i d  so lu t ion ,  carbides  and/or graphi te  depending on the  metal 

c a t a l y s t .  Ruthenium behaves s i m i l a r l y  t o  i ron ,  c o b a l t ,  and n i c k e l  i n  

many c a t a l y t i c  r eac t ions  involving carbon monoxide, and i t  is  expected 

t o  behave s i m i l a r l y  i n  the  carbon monoxide decomposition reac t ion .  

The purpose of t h i s  research i s  t o  confirm t h i s  expectat ion and 

t o  study any topographical and c rys ta l lograph ic  inf luences  of the  

ruthenium sur face  on t h e  c a t a l y t i c  r eac t ion .  Thus t h e  f i r s t  experiments 

were d i rec ted  mainly towards e s t a b l i s h i n g  t h e  condit ions f o r  the  reac- 

t i o n  and iden t i fy ing  t h e  s o l i d  s t a t e  products of the  i n t e r a c t i o n  of car-  

bon monoxide wi th  ruthenium. The decomposition products of t h e  reac t ion  

a r e  examined by one or more of severa l  techniques including o p t i c a l  

microscopy, transmission e lec t ron  microscopy and d i f f r a c t i o n ,  RHEED, 

and SEM. From these  r e s u l t s  the  r e l a t i v e  a c t i v i t y  of var ious  c r y s t a l l -  

ographic regions is  determined. An attempt is  a l s o  made t o  c o r r e l a t e  

the graphi te  deposi t ion  behavior on ruthenium with the  proposed theory 

of a c t i v e  s i t e s  f o r  t h i s  r eac t ion .  



CHAPTER I1 

BACKGROUND 

A heterogeneous c a t a l y t i c  r e a c t i o n  involving gas and s o l i d  phases 

takes  p lace  on t h e  su r face  of the  s o l i d  c a t a l y s t .  However, r e l a t i v e l y  

few sur face  s i t e s  a c t u a l l y  p a r t i c i p a t e  i n  t h e  r eac t ion .  The c a t a l y t i c  

a c t i v i t y  of metal su r faces  has been shown to  be  a func t ion  of the  crys- 

t a l  o r i e n t a t i o n  exposed t o  t h e  r e a c t a n t s  (3), F,m gi bas ic  understand- 

ing of t h e  behavior of metals i n  heterogeneous c a t a l y s i s ,  i t  is  impor- 

t a n t  t o  know the  a c t i v i t y  of various c rys ta l lograph ic  o r i e n t a t i o n s ,  as 

wel l  a s  the  na tu re  of sites where t h e  c a t a l y t i c  r e a c t i o n  takes  p lace  on 

these  o r i e n t a t i o n s .  

The c a t a l y t i c  decomposition of carb~on monoxide on monocrystal l ine 

n icke l ,  which produces graphi te  su r face  depos i t s ,  has been used t o  s tudy 

t h e  a c t i v e  s i t e s  f o r  t h i s  c a t a l y t i c  r e a c t i o n  (4,5). Ruthenium behaves 

s i m i l a r l y  t o  i r o n ,  c o b a l t ,  and n i c k e l  i n  many c a t a l y t i c  r e a c t i o n s  in- 

volving carbon monoxide. However, the  decomposition of carbon monoxide 

on ruthenium has not  been previously repor ted ,  and t h e  background f o r  

the  present  study was pr imar i ly  derived from previous s t u d i e s  of t h i s  re-  

a c t i o n  on o ther  metals.  

A ruthenium carbide  of unknown composition has r epor ted ly  (6) been 

formed a t  about 2500°C, but  the re  is no r e p o r t  of a carbide  of ruthenium 

e x i s t i n g  i n  the  temperature range of 500 t o  550°C. Molten ruthenium 

repor ted ly  ( 6 )  d i s so lves  up t o  4.8 weight % of carbon, which separa tes  

t o  form graph i t e  upon cooling. Therefore, i t  i s  expected t h a t  i f  carbon 



monoxide decomposes on ruthenium, g raph i t e  w i l l  be deposi ted on t h e  sur-  

f a c e  at  the  r e a c t i o n  s i t e s .  This expected behavior of ruthenium would 

be s i m i l a r  t o  t h a t  shown by the  most a c t i v e  regions  of n ickel .  Also, 

s i n c e  the  r e s u l t s  of c a t a l y t i c  decomposition of carbon monoxide on nick- 

e l  a r e  more extens ive  i n  terms of i d e n t i f i c a t i o n  of a c t i v e  o r i e n t a t i o n s  

and a c t i v e  sites, a review of the  r e s u l t s  on n i c k e l  i s  given separa te ly  

from other  i r o n  group metals.  

A .  Decomposition of CO on N i  

1. Single  Crys ta l  Sphere 

The evolut ion  of the  l a r g e  s i n g l e  c r y s t a l  sphere method f o r  t h e  

study of c a t a l y t i c  r eac t ions  on the  su r face  of metals has been described 

by Gwathmey and Cunningham (7 ,  8) and Gwathmey (9).  

The c a t a l y t i c  decomposition of carbon monoxide t o  deposi t  graph- 

i t e  on t h e  su r face  of n i c k e l  a t  high temperature was used by Leidheiser  

and Gwathmey (3)  t o  determine the  e f f e c t  of c rys ta l lograph ic  o r i e n t a t i o n  

on this heterogeneous catalytic reaction. At 550'~ they observed t h a t  

g raph i t e  formed quickly a t  (111) f aces  and then spread o u t  from the re .  

Even a f t e r  prolonged r e a c t i o n s  small square regions  around <loo> po les  

remained f r e e  from graphi te .  Kehrer and Leidheiser  (10) a l s o  performed 

a l a r g e  number of carbon monoxide reac t ions  on s i n g l e  c r y s t a l  spheres of 

ii ickel.  They s t a t e d  t h a t ,  "Careful examination during t h e  course of t h e  

r e a c t i o n  ind ica ted  t h a t  the  regions  surrounding the  €111) f aces  were 

s l i g h t l y  more a c t i v e  than the  { I l l )  f aces  themselves. These regions  a r e  

associa ted  with t h e  minor c r y s t a l  f aces  of high index surrounding the  

(111) face."  They repor ted  t h a t  t h e  r e l a t i v e  r a t e  of a c t i v i t y  was i n  



the  following decreasing order:  high index faces  about <Ill> poles,  

(111) faces ;  {110) and {lo01 faces .  There was no e f f e c t  of pretreatment 

on t h e  high a c t i v i t y  of (111) regions  compared t o  (110) and (100) re- 

gions,  even when the  l a t t e r  had rougher surfaces .  I n  f a c t  some pre t rea t -  

ments ( for  example, e l e c t r o l y t i c  e tching with H2S04) rendered (110) and 

(100) i n a c t i v e  but  t h e  (111) s t i l l  remained ac t ive .  

Cox, e t  a l .  ( l l ) ,  using transmission e lec t ron  microscopy of ex- 

t r a c t i o n  r e p l i c a s ,  s t u d i e s  t h e  morphology of g raph i t e  depos i t s  formed 

on s p h e r i c a l  s i n g l e  c r y s t a l s  of n i c k e l  and some nickel-copper a l l o y s .  

They observed t h a t  graphi te  formed a s  streamers wi th  t h e i r  heads pointing 

towards t h e  cen te r  of t h e  nea res t  a c t i v e  region. They concluded t h a t  t h e  

carbon nucleates  a t  the  a c t i v e  s i t e s  and then extends away from them. 

They suggested t h a t  t h e  a c t i v e  sites may be d i s loca t ions ,  atomic s t e p s  

and/or kink sites. 

2. Single Crys ta l  Thin Films 

Although t h e  s i n g l e  c r y s t a l  sphere method is  very use fu l  t o  deter-  

mine t h e  e f f e c t  of c rys ta l lograph ic  o r i e n t a t i o n  on c a t a l y t i c  a c t i v i t y ,  

i t  cannot be used t o  determine whether d i s l o c a t i o n s ,  s t e p s  o r  other fea- 

t u r e s  are a l s o  t h e  a c t i v e  sites on a given surface .  

Oriented t h i n  f i lms of n i c k e l  were used by Grenga (4, 5) t o  deter-  

mine the  nature  of a c t i v e  sites f o r  the  c a t a l y t i c  decomposition of car- 

bon monoxide. Thin f i lms  of ( I l l ) ,  (110), and (100) o r i e n t a t i o n s  were 

reacted  with carbon monoxide a t  550°C and atmospheric pressure  f o r  t i m e s  

varying from a few minutes t o  severa l  hours. Some of the  reac t ions  were 

a l s o  c a r r i e d  out  a t  lower carbon monoxide pressures of and 300 t o r r .  

Transmission e l e c t r o n  microscopy and d i f f r a c t i o n  were used t o  observe 



t h e  n icke l  t h i n  f i lms  and shadowed ex t rac t ion  r e p l i c a s  of the  su r face ,  

both before and a f t e r  r eac t ion .  The r e s u l t s  of t h i s  work showed t h a t  

c e r t a i n  s t eps  on (111) o r i en ted  f i lms w e r e  t h e  most a c t i v e  sites f o r  

the  c a t a l y t i c  decomposition of carbon monoxide. It was suggested t h a t  

kinked bteps might be more a c t i v e  than those without kinks and t h a t  

polyatomic s t e p s  might be more a c t i v e  than monoatomic s t eps .  She con- 

c l u s i v e l y  showed t h a t  d i s l o c a t i o n s  and o the r  l a t t i c e  imperfect ions were 

not  t h e  most a c t i v e  s i t e s  f o r  t h i s  c a t a l y t i c  react ion.  

B. Decomposition of CO on Other Metals 

I n  add i t ion  t o  n icke l ,  severa l  o ther  metals  c a t a l y t i c a l l y  decom- 

pose carbon monoxide. Kehrer and Leidheiser  (10) s tudied the  reac t ion  

with severa l  metals. They es tab l i shed  t h a t  Cu, Ag,  Rh and Pd were com- 

p l e t e l y  inac t ive .  Chromium and molybdenum may have been s l i g h t l y  a c t i v e ,  

but  the  r e s u l t s  were r a t h e r  inconclusive.  Cobalt i n  both hexagonal and 

f . c . c .  forms, n icke l  and i r o n ,  however, were a c t i v e  f o r  t h e  c a t a l y t i c  

decomposition of carbon monoxide. The  most pe r t inen t  r e s u l t s  of t h i s  

and other  s tud ies  a r e  b r i e f l y  given below. 

I ron:  The decreasing order of a c t i v i t y  a t  450 and 550°C was 

found by Kehrer and Leidheiser  (10) t o  be a s  follows: minor faces  wi th  

unequal indices ;  minor faces  of type (211), (311), (411) e t c . ;  minor 

faces  of type (221), (331), (441) e t c .  ; minor f a c e s  of type (210), (310), 

(410) e t c . ;  (111) and (110); (100). I ron  d i f fe red  from other  metals of 

the  group i n  t h a t  i t  f i r s t  formed carbides ,  such a s  Fe C ,  before  graphi te  3 

formed. From the  reac t ions  a t  350°C the:y a l s o  found evidence of com- 

pounds l i k e  FeZ0C9 and Fe304. 



R a t l i f f  (12) reacted  (100) s i n g l e  c r y s t a l  t h i n  f i l m  of i r o n  with 

carbon monoxide. He reported t h a t  the  carbon from c a t a l y t i c  decomposi- 

t i o n  of carbon monoxide went i n t o  the  matrix of i ron.  The f i r s t  de tec t -  

a b l e  s o l i d  phase product of the  reac t ion  w a s  found t o  be cementite de- 

cora t ing  the  d i s loca t ions  and d i s loca t ion  sub-boundaries within t h e  

i r o n  matrix. Graphite nucleated only when cementite began t o  d i s s o c i a t e  

(at a  temperature a s  low a s  4 5 0 " ~ ) .  The graphi te  f l a k e s  were loca ted  

a t  r e l a t i v e l y  l a r g e  su r face  s t eps  and holes i n  the  i r o n  f i l m  such t h a t  

t h e  (002) graphi te  planes tended t o  l i e  p a r a l l e l  t o  (110) and (200) i r o n  

planes. Magnetite (Fe 0  ) was discounted s i n c e  i t  was not  found as a 3 4 

product of CO a t t ack .  

Cobalt: In both t h e  h.c.p.  and f . c . c .  forms, cobal t  ca ta lysed 

the  decomposition of carbon monoxide (10). The hexagonal phase, which 

is  s t a b l e  a t  temperatures below 420°C was l e s s  a c t i v e  than t h e  f .c .c .  

phase. However, t h e  d i f fe rence  i n  temperature may account f o r  t h e  d i f -  

ference  i n  a c t i v i t y .  The decreasing order  of a c t i v i t y  of f.c.c. coba l t  

between 450 and 600°C was found t o  be: minor faces  with unequal i n -  

d ices ;  {211), {311), (411); {ill); {1101; and {100), while t h a t  f o r  h.c.p. 

coba l t  a t  410°C was: {0113); i1124); I0110); (0111); {0001). 



CHAPTER I11 

EXPERIMENTAL TECHNIQUES 

A .  Mate r i a l s  

A ruthenium s i n g l e  c r y s t a l  rod was procured from Mate r i a l s  Re- 

s ea rch  Corporation. The c r y s t a l  was 1 / 4  inch  (6.35 mm) diameter  and 2 

inch  (50 mm) i n  l eng th .  

Research grade carbon monoxide and hydrogen were obtained from 

Matheson, Inc . ;  t h e  hydrogen was 99.9995% pure  and the composition of 

t h e  carbon monoxide was r epo r t ed  from t h e i r  a n a l y s i s  t o  be as fo l lows:  

C02 = 5 ppm 

O 2  = 5 p m m  

H2 = 100 p m  

N2 = 800 pmm 

A r  = 10 pmm 

CO = Balance. 

B. Vacuum System - 

The vacuum system used f o r  t h e  r e a c t i o n  is  shown schemat ica l ly  

i n  F igure  1. 

The system was a convent iona l  h igh  vacuum system, equipped wi th  

a mechanical pump, o i l  d i f f u s i o n  pump, l i q u i d  n i t r o g e n  t r a p ,  p i r a n i  

gauge and Veeco i o n i z a t i o n  gauge. The system was capable of a vacuum 
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i n  t h e  t o r r  range ,  b u t  was t y p i c a l l y  used i n  t h e  low 1 0  t o r r  

range.  A diaphragm gauge was a l s o  p re sen t  i n  t h e  roughing l i n e ,  and 





wi th  t h e  pumps valved o f f ,  could b e  used t o  determine when t h e  system 

reached atmospheric p re s su re .  During t h e  r e a c t i o n  gases  were flowed 

through a  water  t r a p  t o  t h e  o u t s i d e  atmosphere. This  water t r a p  a l s o  

provided an i n d i c a t i o n  of t h e  gas f low rate. 

Most of t h e  system was cons t ruc t ed  of pyrex g l a s s  tubing;  v i t o n  

'0' r i n g  s e a l s  wi th  apiezon 'T' high vacuum l u b r i c a n t  w e r e  used through- 

o u t ,  The g l a s s  was wrapped wi th  hea t ing  t a p e  f o r  bake o u t  purposes.  

The r e a c t i o n  chamber c o n s i s t e d  of two p a r t s ,  a f i x e d  part which 

w a s  made of q u a r t z  tub ing  about  1 1 / 2  i nch  diameter and 15 inch  long ,  

and a  removable p a r t  (specimen ho lde r )  a l s o  made of qua r t z  tub ing  and 

jo ined  t o  t h e  f i x e d  p a r t  v i a  a v i t o n  '0' r i n g  s e a l .  The specimen ho lde r  

had a  long p i ece  of small diameter  qua r t z  tub ing ,  on t h e  end of which 

was a  qua r t z  r i n g  t o  hold t h e  specimen up r igh t  and i n  t h e  d i r e c t  pa th  of 

t h e  e n t e r i n g  gases .  A thermocouple w a s  i n s e r t e d  i n  t h e  atmosphere s i d e  

of the long tubing  of t h e  specimen holder .  This  allowed temperature 

readings  nea r  t h e  specimen. This  assembly w a s  pos i t i oned  i n  a p i t  t ype  

Lindbergh fu rnace  such t h a t  t h e  specimen was i n  t h e  middle of t h e  h o t  

zone. The temperature w a s  c o n t r o l l e d  by t h e  Lindbergh c o n t r o l l e r  console  

through a  p l a t i n e l  thermocouple near  t h e  bottom of t h e  fu rnace  chamber. 

The temperature set on t h e  c o n t r o l l e r  was u s u a l l y  about  5 ' ~  higher  than  

t h e  specimen temperature,  a s  measured by t h e  chromel-alwnel thermocouple 

near  t h e  specimen. 

The gas en t r ance  t o  t h e  r e a c t i o n  chamber was loca t ed  near  t h e  

bottom of t h e  f i x e d  p a r t ;  a  gas  manifold and a  system of va lves  and 

gauges f o r  each l i n e  were incorpora ted  i n  t h e  system. The carbon monox- 

i d e  gas l i n e  was provided wi th  a  h o t  t r a p ;  t h i s  t r a p  decomposed n i c k e l  



carbonyl which w a s  found present  i n  t h e  gas and had i n t e r f e r e d  with pre- 

l iminary experiments. After assembly, t h e  system was i n i t i a l l y  baked f o r  

more than 48 hours at 120°C with t h e  reac t ion  chamber a t  300 '~ ;  the 

pressure  dur ing bakeout w a s  about 4 x t o r r .  Subsequently dry  n i t ro -  

gen w a s  leaked i n t o  t h e  system whenever it was opened. 

C.  Specimen Prepara t ion 

The ruthenium s i n g l e  c r y s t a l  was machined t o  a spher ica l  shape by 

spark eros ion technique on a servomet spark machine. A low spark energy 

was used f o r  slower machining i n  order t o  minimize the  depth of s t r a i n e d  

matrix. Spark machining was chosen i n  preference t o  mechanical machining 

due t o  high hardness, b r i t t l e n e s s  and mechanical anisotropy of ruthenium. 

The t o o l  wear, however, was severe,  as shown i n  Figure 2; i t  was neces- 

sary  t o  use t h i s  s p e c i a l l y  designed t o o l  of s t a i n l e s s  steel which, during 

machining, brought new t o o l  su r face  i n  contact  with the  ruthenium crys- 

t a l  (by t h e  servomechanism of t h e  machine). Approximately one inch of 

tool length was consumed ro machine a depth of 1/16 inch (1.6 ram) on the 

rad ius  of the  c r y s t a l .  Due t o  the  high degree of anisotropy of t h e  

ruthenium c r y s t a l ,  t h e  erosion was non-uniform giving a p a t t e r n  of r i n g s  

centered around t h e  [0001] pole,  as shown i n  Figure 3. 

The specimen was thus machined t o  a spher ica l  shape about 114 inch 

i n  diameter, with a s t e m  118 inch i n  diameter and 1 / 4  inch long t o  fa- 

c i l i t a t e  handling of the  c r y s t a l .  The machined specimen was mechanical- 

l y  polished wi th  successively f i n e r  grades of abras ive  pol ishing paper 

and then with a f e l t  c o l t h ,  w e t  with an  aqueous suspension of 0.3 p 

alumina. 



Figure 2. Tool for Spark Erosion Machining, X1 
(a) Before Use, (b) After Use 

Figure 3.  Ruthenium Single Crystal After Spark Erosfon Machining 
(0001) i s  a t  center of concentric rings; scale a t  bottom 
has mm divis ions  



Elect ropol ishing was then used t o  ob ta in  a  smoother surface  and 

t o  e l iminate  t h e  s t r a i n e d  su r face  l ayers  r e s u l t i n g  from mechanical abra- 

s ion.  The e l e c t r o l y t e s  s p e c i f i e d  i n  t h e  l i t e r a t u r e  (13, 14) f o r  elec-  

t ropol ishing ruthenium are molten s a l t s .  However, an aqueous e lec t ro-  

l y t e  was des i red ,  and was developed based on the  e lec t ropo l i sh ing  theo- 

r i e s  (13, 1 4 )  a s  w e l l  a s  on reported e tching s o l u t i o n  f o r  F.I.M. w i r e  

specimens 1 18).  This so lu t ion  is  a s  follows: 5 g potassium hydrox- 

i d e ,  6 m l  glycer ine ,  80 m l  water,  and up t o  3 m l  of used e l e c t r o l y t e .  

The e l e c t r o l y t e  was aged f o r  24 hours and then used with the  followfng 

e lec t ropo l i sh ing  condit ions:  

Temperature - -3  t o  0 O C  

Voltage = 8 t o  9 V. d. c .  

Time = 5 t o  10 minutes. 

Brisk s t i r r i n g  of e l e c t r o l y t e  was e s s e n t i a l .  The vol tage  was r a t h e r  

c r i t i c a l  and depended on minor v a r i a t i o n s  i n  the  d i s t a n c e  between the  

e lec t rodes  and t h e  temperature. S l i g h t  v a r i a t i o n s  i n  vol tage  resu l t ed  

i n  face t ing  o r  e tching of high index a r e a s  surrounding t h e  I0001) planes. 

Af ter  e l ec t ropo l i sh ing ,  the  specimen was r insed thoroughly i n  

d i s t i l l e d  water, d r i e d  i n  a  stream of dry n i t rogen and placed i n  t h e  re- 

ac t ion  chamber which was then evacuated immediately. 

D. Annealing and Reaction 
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After  the  system had been evacuated t o  approximately 10 t o r r ,  

t h e  furance was turned on and set a t  the  reac t ion  temperature. The 

specimen was annealed i n  vacuum or i n  hydrogen. When hydrogen annealing 



was used,  an  i n i t i a l  f l u s h i n g  procedure was followed. Hydrogen was ad- 

mi t t ed  t o  t h e  system t o  a  p r e s s u r e  of 200 t o  500 micron and then  evacu- 

a t e d  t o  t o r r  o r  l e s s .  This  procedure was repea ted  f o u r  o r  f i v e  

t imes be fo re  hydrogen was f i n a l l y  introduced t o  760 t o r r .  Af te r  anneal- 

i n g  t h e  specimen f o r  one hour i n  hydrogen, t h e  appa ra tus  was evacuated 

and t h e  specimen was annealed f o r  one hour i n  vacuum a t  t h e  r e a c t i o n  

temperature.  

Carbon moaoxide w a s  t hen  admit ted s lowly t o  a  p re s su re  of 760 

t o r r ,  and t h e  gas  exit s topcock w a s  opened t o  a l low carbon monoxide t o  

flow through t h e  water  t r a p  and ou t s ide .  The r a t e  of gas  f low was ad- 

j u s t e d  by t h i s  s topcock,  l eav ing  o t h e r  va lves  i n  t h e  gas l i n e  completely 

open. This  procedure a c t u a l l y  minimized t h e  = i s k  of t h e  water  vapor 

backing i n t o  t h e  r e a c t i o n  chamber. Care was a l s o  taken ,  however, t o  

minimize t h e  p o s i t i v e  p r e s s u r e  i n  t h e  system. 

A f t e r  r e a c t i n g  t h e  specimen wi th  carbon monoxide f o r  a  s p e c i f i e d  

time, t h e  gas  en t r ance  and e x i t  va lves  were c losed ,  and t h e  system was 
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evacuated t o  below 1 0  t o r r ;  t h e  fu rnace  was then  turned  of f  and t h e  

c r y s t a l  allowed t o  coo l  t o  room temperature be fo re  removal. 

E. Specimen Examination 

1. For C r y s t a l  O r i e n t a t i o n  

A back r e f l e c t i o n  Laue p a t t e r n  was i n i t i a l l y  used t o  determine 

t h e  o r i e n t a t i o n  of t h e  c r y s t a l  ( l a t e r  i t  was found t h a t  t h e  an i so t ropy  

of t h e  c a t a l y t i c  r e a c t i o n  a l s o  c l e a r l y  revea led  t h e  o r i e n t a t i o n ) .  The 

o r i e n t a t i o n  w a s  a l s o  revea led  by a n i s o t r o p i c  e t ch ing  du r ing  t h e  specimen 

p r e p a r a t i o n  procedures.  The s p a r k  machining revea led  t h e  <0001> po le s  



a s  shown i n  Figure 3.  Furthermore, a f t e r  e lec t ropol ishing f a c e t i n g  f r e -  

quently occurred on severa l  planes giving a  p a t t e r n  again r e l a t e d  t o  t h e  

o r i en ta t ion .  These f a c e t s  w e r e  minimized f o r  subsequent r eac t ions  by 

c a r e f u l  con t ro l  of the  e lec t ropo l i sh ing  parameters. 

2. After the  Reaction 

A l l  specimens were examined by o p t i c a l  microscopy on a  Vickers 

metallograph; t h e  photographs w e r e  taken by a  polaroid land camera. 

Scanning e lec t ron  microscopy and r e f l e c t i o n  high energy e l e c t r o n  d i f f rac -  

t i o n  were used f o r  some specimens t o  observe and i d e n t i f y  su r face  de- 

p o s i t s  a f t e r  t h e  reac t ion .  Platinum shadowed ex t rac t ion  r e p l i c a s  of one 

of t h e  specimens were examined with transmission e lec t ron  microscopy and 

d i f f r a c t i o n .  The e tching so lu t ion  used t o  remove the  e x t r a c t i o n  r e p l i c a s  

was 5% KOH i n  d i s t i l l e d  water. 



CHAPTER I V  

RESULTS AND DISCUSSION 

A. Resu l t s  

Table 1 g ives  a summary of experimental  cond i t i ons  f o r  t h e  an- 

n e a l i n g  and carbon monoxide t rea tment  of ruthenium. I n  experiments  I 

and I1 vacuum annea l ing  a l o n e  w a s  used p r i o r  t o  carbon monoxide t r e a t -  

ment. The r e s u l t s  of h i g h  energy e l e c t r o n  d i f f r a c t i o n  (RHEED) showed 

t h e  presence  of on ly  ruthenium oxide ,  even a f t e r  a s i x  hour exposure t o  

carbon monoxide. 

I n  experiments 111 through V I I ,  t h e  ruthenium c r y s t a l  w a s  annealed 

i n  hydrogen f o r  one hour p r i o r  t o  carbon monoxide t rea tment .  The RHEED 

r e s u l t s  f o r  two of t h e s e  experiments ,  which a r e  given i n  Table 11, con- 

f i r m  t h e  presence  of g raph i t e .  Since t h e  g r a p h i t e  d e p o s i t i o n  was f a i r l y  

heavy and t h e  under ly ing  ruthenium o r i e n t a t i o n  could n o t  be  determined 

e x a c t l y ,  any e p i t a x i a l  r e l a t i o n  between g r a p h i t e  and ruthenium could n o t  

be obta ined  from t h e s e  r e s u l t s .  

Af te r  a s i x  hour t rea tment  w i t h  carbon monoxide (experiments 111 

and I V ) ,  on ly  a s m a l l  amount of depos i t i on  loca t ed  around t h e  <0001> 

po le ,  w a s  observed by o p t i c a l  microscopy. 

Af t e r  r e a c t i o n  f o r  twelve o r  more hours  g r a p h i t e  d e p o s i t s  were 

found on a l a r g e r  area of t h e  ruthenium su r face .  The amount of g r a p h i t e  

d e p o s i t i o n  increased  w i t h  i n c r e a s e  i n  carbon monoxide exposure t ime, and 

t h e  boundaries  of t h e  g r a p h i t e  d e p o s i t s  became i n c r e a s i n g l y  w e l l  de f ined  

r e v e a l i n g  t h e  ruthenium hexagonal symmetry, as shown i n  F igure  4. The 



Table 1. Summary of Experimental Conditions 

Annealing Reaction With CO 

Experiment Temperature T i m e  .. Pressure Temperature Flow Rate Time 
Number ("c) (Minutes) (Torr ) ("C) (ml /min) (Hour s ) 

2 x (a) 

760 (b) 

2 x 10-~ (a )  

760 (b) 

760 (b) 

2 x 1 0 - ~ ( a )  

VII 760 (b) 

5 00 6 0 2 x 10% 550 40-50 9 6 

(a) Vacuum annealing, (b) Hydrogen annealing 



Figure 4. Pattern of Graphite Deposition on Ruthenium 
Single Crystal in CO at 550°C 

(a) and (b) 12 hours 

( c )  and (d) 48 hours 



Table 2.  Results  of RHEED on Specimens From Reactions IV and V I  

Observed 'd '  Spacings 

Experiment I V  Experiment V I  Graphite  'd' Spacings (hkl) 

b a s a l  plane appeared t o  have only a  l i g h t  amount of g raph i t e  deposi t ion  

wi th  a  hexagonal shaped region centered about it. Far ther  from the  

<0001> pole t h e  g raph i t e  depos i t ion  became inc reas ing ly  heavier .  The 

dark  g r a p h i t i c  depos i t s  on t h e  c r y s t a l  were separated by narrow bands 

wi th  l i g h t e r  deposi t ion.  These bands were along the  planes of <112b> 

zones and along planes l y i n g  between <10 i l>  poles  v i a  t h e  <1122> poles.  

Figure 5 shows, on ruthenium s tereographic  p ro jec t ion ,  t h e  a r e a  covered 

wi th  r e l a t i v e l y  heavy amounts of g raph i t e  a f t e r  r e a c t i o n  times of 12 and 

48 hours. It is  apparent  from Figure 5 t h a t  the  heavy deposi t ion  i n  t h e  

t r i a n g u l a r  region between <0001> and <10i l>  poles  began near  the  respec- 





t i v e  low index poles (Figure 5a) and spread inward from t h e r e  (Figure 

5b).  

Two of t h e  ruthenium c r y s t a l s  (Experiments V and VII) were ex- 

amined a f t e r  r e a c t i o n  by scanning e l e c t r o n  microscopy, but  t h e  c o n t r a s t  

was poor and the  g raph i t e  depos i t s  could no t  be resolved.  The depos i t s ,  

however, were r e a d i l y  observable with o p t i c a l  microscopy, and the  re- 

s u l t s  of these  observations a r e  given i n  t h e  following paragraphs. 

Very l i t t l e  d e t a i l  could be seen i n  the  heavy deposi t ion  regions ,  

but the  deposi t  morphology was d i s c e r n i b l e  i n  t h e  l i g h t e r  deposi t ion  near  

low index poles. Much of t h e  g raph i t e  appeared t o  be i n  the  form of 

s treamers,  which va r i ed  i n  dens i ty ,  shape and s i z e  depending upon t h e  

ruthenium o r i e n t a t i o n .  The streamers had heavier  depos i t ion  a t  t h e  

'head' followed by a t r a i l  of l i g h t e r  deposi t ion .  

The streamers were formed i n  c i r c l e s  about <0001>, <10i0>, and 

<10i l>  poles  with t h e i r  heads point ing  t o  the  r e spec t ive  low index poles. 

Figure 6a shows the  g raph i t e  deposi t ion  around t h e  <0001> pole  and Fig- 

u re  6b the  g raph i t e  s treamers a  s h o r t  d i s t a n c e  from t h i s  pole.  It should 

be  noted t h a t  the  deposi t ion  was f a i r l y  heavy so  t h a t  most of t h e  

streamers were overlapping, however, some i s o l a t e d  and reasonably d i s -  

t i n c t  streamers a r e  enc i rc led ,  a s  examples, on t h e  micrographs. (An 

a d d i t i o n a l  d i f f i c u l t y  encountered i n  obta in ing c l e a r  p i c t u r e s  of the  

streamers was t h e  h ighly  curved su r face  on t h i s  114 inch diameter sphere) .  

Moving f a r t h e r  from the  <0001> poles ,  heads of the  s t reamers  became in- 

creas ingly  darker ,  t h e  t r a i l  s h o r t e r  and l e s s  d i s t i n c t ,  u n t i l  f i n a l l y  

the  g raph i t e  appeared a s  narrow bands. A s i m i l a r  arrangement of graph- 

i t e  s treamers was observed around <10 i l>  and <101'0> poles ,  examples of 



which a r e  shown i n  Figure 6c and 6d respect ively .  The length of 

streamers about the  <10 i l>  and <10i0> poles  decreased more sharply a- 

long t h e  d i r e c t i o n  towards t h e  ~ 0 0 0 1 >  poles than a t  r i g h t  angles t o  

t h a t  d i r e c t i o n .  

The graphi te  deposi t ion  on severa l  high index regions is shown i n  

Figure 7. The depos i t s  near <20?i>, <1012>, and <11?2> poles,  as shown 

i n  Figure 7a through 7c, a t  f i r s t  appeared t o  be streamers point ing t o  

the  respec t ive  high index poles. However, f u r t h e r  examination showed t h a t  

there  was no c i r c u l a r  p a t t e r n  about t h e  poles a s  i n  the case of depos i t s  

i n  t h e  {0001), 110i01, o r  { l ~ i l )  regions.  There was a s m a l l  amount of 

f e a t u r e l e s s  g raph i t e  deposi t ion  on (11%3 regions,  - a s  shown i n  Figure.  7d. 

The g raph i te  was very s t rongly  adherent t o  t h e  ruthenium sur face  

and could not  be removed by wiping with a c l o t h  o r  by u l t r ason ic  clean- 

ing. 

B. Discussion 

The expectat ion t h a t  ruthenium would show a behavior s i m i l a r  t o  

i r o n ,  coba l t ,  and n i c k e l  f o r  the  c a t a l y t i c  decomposition of carbon mon- 

oxide was confirmed; graphi te  was deposited on the  surface  of ruthenium 

when i t  was pre-reduced i n  hydrogen. 

1. Ef fec t  of Crys ta l  Or ienta t ion on Act iv i ty  

The p a t t e r n  of graphi te  decomposition showed t h a t  t h e  a c t i v i t y  

f o r  c a t a l y t i c  decomposition of carbon monoxide depended on the  c rys ta l lo -  

graphic o r i e n t a t i o n  of the  ruthenium surface.  

The g raph i te  f i r s t  appeared on the  ruthenium (0001) regions.  This 

behavior was s imi la r  t o  t h a t  shown by n i c k e l  i n  severa l  s t u d i e s  (7 ,  8 ,  



Figure  6 .  Opt i ca l  Micrographs of Graphi te  Deposi t ion on Low Index Regions 
(a) (0001) r eg ion ,  X150 (b) (0021) r eg ion ,  X400 
(c) ( 1 0 i l )  r eg ion ,  X400 (d) (1010) r eg ion ,  X200 
S i n g l e  arrow i n d i c a t e s  p o s i t i o n  of t h e  low index  pole ;  
Double arrow i n d i c a t e s  r e l a t i v e  p o s i t i o n  of a po le  which i s  
n o t  i n  t h e  f i e l d  of view. 



Figu re  7 .  O p t i c a l  Micrographs of Graphi te  Deposi t ion on High Index 
Regions, X400 

(a> (20%)~ (b) (11T2), (c) ( l o i ~ ) ,  (d) (11.20). 



10,  l l ) ,  where the  c lose  packed n i c k e l  I1111 regions were found t o  b e  

the  most ac t ive .  For both cases ,  n i c k e l  (111) and ruthenium (OOOl), by 

o p t i c a l  microscopy a f t e r  moderate reac t ion  time, very l i t t l e  graphi te  

was found on t h e  surface  near the  pole,  but  increas ing amounts w e r e  

found f u r t h e r  from t h e  pole. However, a f t e r  long r e a c t i o n  t i m e s ,  t he  

a r e a  i n  t h e  immediate v i c i n i t y  of the  n icke l  (111) f a c e  had equal ly  

heavy g raph i te  deposi t ion  i n  a l l  d i r e c t i o n s ;  whereas i n  the  case  of 

ruthenium t h e  planes of <11% zones had r e l a t i v e l y  l i t t l e  graphi te  de- 

pos i t ion .  This r esu l t ed  i n  t h e  hexagonal p a t t e r n  of g raph i t e  about t h e  

ruthenium (0001) face .  Another major d i f fe rence  between n i c k e l  and 

ruthenium was t h a t  the re  were th ree  a c t i v e  o r i e n t a t i o n s  on ruthenium 

I O O O l ) ,  {10i0), and I l ~ i l ) ,  compared t o  only one on n i c k e l  f1111. 

The p a t t e r n  of g raph i t e  deposi t ion  on ruthenium i n  t h i s  s tudy i s  

s imi la r  t o  t h a t  reported f o r  hexagonal cobal t  ( lo ) ,  the  major d i f fe rence  

being the  reported high a c t i v i t y  of coba l t  ~ 0 1 i 3 1  planes.  

2. Active S i t e s  f o r  CO Decomposition 

Active sites f o r  c a t a l y t i c  r eac t ions  a r e  the  su r face  f e a t u r e s  on 

the  c a t a l y s t  where t h e  reac t ion  occurs. I n  the  case  of carbon monoxide 

decomposition on n icke l ,  Grenga (4)  found t h a t  graphi te  nucleated a t  

c e r t a i n  s t e p s  between t e r races  of low index planes. She proposed t h a t  

the  observed nucleat ion sites were a t  or  very near t h e  a c t i v e  sites f o r  

the  c a t a l y t i c  react ion.  Both t h e o r e t i c a l  and experimental evidence t o  

support t h i s  were c i t e d .  It was a l s o  pointed out  t h a t  t h e  a c t i v i t y  of 

s t e p s  o r  o ther  su r face  f e a t u r e s  would be a funct ion of the  c a t a l y t i c  

r e a c t i o n  and c a t a l y s t .  I n  the  present  s t u d i e s  on bulk  ruthenium, t h e  

reac t ion  condit ions were s imi la r  t o  those used i n  t h e  above s tud ies .  It 



i s  the re fo re  expected t h a t  the  morphology of t h e  graphi te  depos i t s  can 

be r e l a t e d  t o  the  a c t i v e  s i t e s  f o r  t h i s  c a t a l y t i c  r eac t ion  on ruthenium. 

A s  reported i n  t h e  s e c t i o n  on r e s u l t s ,  the  g raph i t e  was i n i t i a l l y  de- 

pos i ted  i n  a c i r c u l a r  p a t t e r n  about t h e  th ree  major types of low index 

poles,  <0001>, ~101'07, and <lo%. The densi ty  of deposi ts  o r  s treamers 

increased with d i s t ance  from each pole. These observations a r e  consis- 

t e n t  with nucleat ion a t  s t eps  between t e r races  of the  low index planes 

a s  explained below. 

For a spher ica l ly  shaped s i n g l e  c r y s t a l ,  a  low index plane i s  

located d i r e c t l y  a t  the  pole with the same indices .  Further from t h e  

pole  t h e r e  a r e  t e r r a c e s  of t h i s  plane sepatated by s t e p s  between the  

t e r races .  Since the  c r y s t a l  i s  spher ica l ,  t h e  s t e p s  w i l l  form a c i rcu-  

l a r  p a t t e r n  centered about the  pole,  and the d i s t ance  between t h e  suc- 

cess ive  s t e p s  w i l l  decrease as the  d i s t ance  from t h e  pole  increases.  

If s t e p s  between t e r races  of low index planes a r e  a c t i v e  sites, 

and i f  graphi te  from t h e  carbon monoxide decomposition nucleates  a t  these  

a c t i v e  s i tes ,  then the  graphi te  deposi t ion  should be centered about t h e  

low index pole and the  dens i ty  of deposi ts  should increase  with d i s t ance  

from t h e  pole. It should be noted, however, t h a t  high index planes 

which c o n s i s t  e n t i r e l y  of such s t e p s  were found t o  be i n a c t i v e  on nickel .  

For ruthenium, while t h e  graphi te  eventually covered many such high index 

planes ( for  example ( 1 1 E ) ) ,  i t  was evident  t h a t  deposi t ion  began on low 

index regions and grew outwards from these  regions t o  eventually cover 

the  high index planes. The observed morphology of graphi te  i n  these  

s t u d i e s  therefore  ind ica tes  t h a t  the  a c t i v e  sites f o r  t h e  c a t a l y t i c  de- 

composition o f  carbon monoxide on ruthenium a r e  a l s o  a t  the  s t e p s  between 



t e r r a c e s  of low index planes. 

There were ind ica t ions  t h a t  not  a l l  su r face  s t e p s  on a given crys- 

t a l  region were equal ly  a c t i v e ,  s imi la r  observation t o  t h a t  made on nick- 

e l  (4).  This r esu l t ed  i n  the hexagonal p a t t e r n  about the  <0001> poles 

a s  w e l l  as t h e  regions  of l i g h t e r  deposi t ion  centered about t h e  <101'0> 

and <10 i l>  poles. 



CHAPTER v 

CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusions 

From t h i s  research the  following conclusions were drawn; 

1. Carbon monoxide c a t a l y t i c a l l y  decomposes t o  deposit  graphi te  

on t h e  surface  of ruthenium a t  500 t o  550%. 

2. The a c t i v i t y  of ruthenium f o r  the c a t a l y t i c  decomposition of 

carbon monoxide is primarily influenced by c r y s t a l  or ienta t ion.  

3. The {0001), ( 10 i l )  and ~ 1 0 i 0 )  regions are the  most a c t i v e  f o r  

t h i s  reac t ion ,  and ce r t a in  s teps  on these  regions a r e  the  ac t ive  sites. 

4. Steps on the  low index regions ly ing along <11%> zones ap- 

peared t o  be r e l a t i ve ly  inac t ive  a s  were other planes of t h i s  zone. 

5 .  The 411%) regions were r e l a t i v e l y  inac t ive  f o r  the  CO decom- 

posi t ion.  

B. Recommendations 

The following recommendations can be made f o r  f u tu r e  work t h a t  

would supplement the r e s u l t s  of the present work and contr ibute  t o  t he  

understanding of the  heterogeneous ca t a ly s i s :  

1. Kinetics s tud ies  should be made f o r  the  c a t a l y t i c  decomposi- 

t ion  of carbon monoxide on ruthenium. 

2. Flat surfaces ,  corresponding t o  ac t ive  low index regions, 

should be cu t  on the sphere t o  provide a l a rge r  surface  a rea  of these 

regions. After reac t ion  with carbon monoxide, ex t rac t ion  r ep l i ca s  should 



be examined with transmission e lec t ron  microscopy t o  give more de ta i l ed  

information about the  graphi te  morphology and any e p i t a x i a l  r e l a t i ons  

between graphi te  and ruthenium. 

3. The c a t a l y t i c  decomposition of o ther  carbonaceous gases l i k e  

methane and ethylene on ruthenium should be investigated t o  determine 

whether t he  ac t i ve  s i t e s  are similar t o  those fo r  carbon monoxide decow 

posit ion.  

4. Chernisorption s tud ies  of carbon monoxide on ruthenium, cur* 

r en t l y  being done in t h i s  laboratory,  should be compared with t he  ree 

s u l t s  of the  present work, t o  ascer ta in  any r e l a t i o n  between chemisorp- 

t i on  and ac t i ve  s i t e s .  
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